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Abstract 

Biodiversity is declining worldwide at alarming rates, through a range of human-

induced changes. At the same time, there are great uncertainties and biases in our 

understanding of biodiversity that limit our ability to detect changes. New approaches 

in estimating and managing uncertainty can inform assessments of the status of 

biodiversity, and identify what actions might be most beneficial. The thesis examines the 

applications of these methods in diverse contexts that are of importance to 

conservation and in which there is limited data available.  

The potential for Value of Information method to contribute to the prioritisation 

of conservation action was explored (chapter 2). While its use is increasing, there are 

currently substantial gaps in its application. Probabilistic graphical models (Bayesian 

Networks) were built with different Machine Learning algorithms to predict the Red List 

status of plants, both in the Caatinga region in Brazil (chapter 3) and globally (chapter 

4) and to assess why some tiger reserves contain higher tiger numbers than others 

(chapter 5). Red List status of plants could be predicted reliably by using the number of 

herbarium specimens of each plant species. The method was used to predict which 

plants might be threatened globally. The number of poached tigers was a good 

indicator for the number of tigers in a tiger reserve, but a lack of data at similar spatial 

scales across the tigers’ range inhibits decision making. 

Overall, the thesis suggests that we can: a) better predict which species are 

threatened and prioritise these species for future Red List assessments; b) standardise 

our research approaches using core outcomes; and c) make better decisions despite 

uncertainty. We need to make better use of these methods and the currently available 

data to prevent species from going extinct and to meet global targets aimed to halt the 

biodiversity crisis. 
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Chapter 1 Introduction 

1.1 Background 

Species are going extinct at such alarming rates that we may have entered a sixth mass 

extinction event, the first one caused by humans (Barnosky et al., 2012; Ceballos et al., 

2015). 866 species are listed as Extinct on the IUCN Red List of species, and a further 69 

species are listed as Extinct in the Wild (IUCN, 2018b). Species face extinction for a 

variety of reasons, but habitat loss is still the number one reported threat to species 

(Tilman et al., 2017). Habitats are being lost due to conversion to agricultural lands, 

deforestation, and development for housing and transport, and is exacerbated by an 

increasing human population (Tilman et al., 2017). There are also great uncertainties 

around how climate change will impact species in the future (Pacifici et al., 2015). The 

extent of our knowledge on species and their threats varies across different taxonomic 

groups, and for different geographic areas (Yesson et al., 2007; Boakes et al., 2010; Beck 

et al., 2014). In some cases there is also a mismatch between where most threatened 

species occur, and where most conservation funds are spent (Miller et al., 2013; Waldron 

et al., 2013) , and the resources available for conservation are not enough to do what 

needs to be done to save species (McCarthy et al., 2012).  It is therefore crucial that 

resources are allocated efficiently for science, management and policy to have the 

biggest possible impact (Waldron et al., 2013). 

1.2 Global targets on preventing extinctions 

To address the declines in species, there is a range of global targets to which most 

nations have committed. Most notable are the Aichi biodiversity targets and the 

Sustainable Development Goals, which are based on the Aichi targets. In Aichi target 12 

preventing extinctions is mentioned specifically: “By 2020 the extinction of known 

threatened species has been prevented and their conservation status, particularly of 

those most in decline, has been improved and sustained” (Convention on Biological 

Diversity, 2014). This is mirrored in Sustainable Development Goal 15, target 15.5: “Take 

urgent and significant action to reduce the degradation of natural habitats, halt the loss 

of biodiversity and, by 2020, protect and prevent the extinction of threatened species” 
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(United Nations, 2015). The Sustainable Development Goals were signed by all 193 UN 

member states which are nearly all countries in the world, as well as Holy See, Palestine, 

Niue and the Cook Islands. To save all species and therefore to meet these targets, first 

of all we need to know which species are at risk of extinction and why. Then suitable 

conservation actions need to be identified and implemented. Progress towards Aichi 

targets was measured in 2014 using a range of indicators, all of which were showing 

declines in species, demonstrating that we need to increase efforts to save species 

(Convention on Biological Diversity, 2014; Tittensor et al., 2014). 

1.3 Uncertainty in conservation decision-making 

Uncertainties are present in all stages of conservation decision-making for saving 

species. There are gaps in our knowledge about the actual number of species on earth, 

with recent disparate estimates of 5 million (Costello et al., 2013) and 8.7 million (Mora 

et al., 2011). Many new species are being described each year, for example over 2,000 

new plants were described annually (Nic Lughadha et al., 2016). Targeted conservation 

action to save species is only possible if we know that they exist in the first place. While 

our knowledge on which species are declining is increasing, this is not happening fast 

enough to meet the target of assessing a sample of 160,000 species by 2020, as set out 

in the Barometer of Life (Stuart et al., 2010), with currently just over 90,000 assessments 

of extinction risk (IUCN, 2018b). We can only decide on targeted conservation if we 

know which species are in decline, but even then monitoring species does not always 

lead to conservation action (Lindenmayer et al., 2013).  

Knowledge of a species’ conservation status and resulting conservation action 

can lead to improved conservation status of a species (Hoffmann et al., 2011), but these 

can also fail for a variety of reasons.  

The main drivers of the decline of a species may be unknown (Runge et al., 2011) 

or difficult to address, such as climate change (Conroy et al., 2011) or stopping poachers 

(Hoffmann et al., 2010), or there may be uncertainty how best to address those drivers. 

Approaches such as structured decision making (Gregory et al., 2012), adaptive 

management (Runge, 2011), and Value of Information analysis (Runge et al., 2011) are 

designed to overcome some of these challenges in a systematic way. They do so by 
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analysing which conservation action is most likely to succeed given current knowledge, 

whether there is uncertainty around which is the best conservation action, and if 

research or monitoring would help determine the best conservation action (McDonald-

Madden et al., 2010). 

1.4 Global data sources on species 

1.4.1 The IUCN Red List of Species 

There are a range of global data sources on species’ extinction risk, traits and 

occurrences freely available. The IUCN Red List of Species is the most comprehensive 

assessment of extinction risk of species and is available online. It covers over 90,000 

species globally as of 20 December 2017, from birds and mammals to orchids and fungi 

(IUCN, 2018b). Most assessment information is prepared by different specialist groups 

that are part of the Species Survival Commission, which have a taxonomic focus, by Red 

List authorities, which are often the same as the specialist groups, or by Red List 

partners such as Birdlife or Royal Botanic gardens, Kew (IUCN, 2018a).  

The IUCN Red List assessments aim to be objective and applicable across 

taxonomic groups (Mace et al., 2008). Extinction risk is assessed according to a range of 

criteria, including population size reduction, small population size, and geographic 

range of a species (IUCN, 2012b). There are different IUCN Red List categories that are 

then applied: Extinct, Extinct in the Wild, Critically Endangered, Endangered, Vulnerable, 

Near Threatened, Least Concern and Data Deficient (Table 1). The risk of extinction is 

highest for Critically Endangered species, followed by Endangered species, then 

Vulnerable species. Least Concern species are not threatened, and Near Threatened 

species may become threatened soon. Data Deficient covers species for which there is 

not enough knowledge to make a reasonable assessment, and the species could be in 

any category (IUCN Standards and Petitions Subcommittee, 2017), but Data Deficient is 

also applied to species with uncertain taxonomies for example (Butchart and Bird, 2010). 

IUCN Red List assessments are deemed outdated after ten years and should, ideally, be 

updated, so that changes in extinction risk of that species can be tracked. However, 17% 

of assessments are older than ten years (Rondinini et al., 2014).   
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Table 1. Description of different Red List categories and corresponding threat status, 

adapted from IUCN (2012b). 

Red List 

category 

Threat 

status 

Description 

Extinct Extinct The last individual of the species has died, and extensive 

and appropriate surveys have not found evidence of 

further individuals. 

Extinct in 

the Wild 

Extinct Individuals of the species remain in zoos, botanical 

gardens, or as naturalised populations outside their 

range. The last wild individual of the species has died, and 

extensive and appropriate surveys have not found 

evidence of further individuals. 

Critically 

Endangered 

Threatened The species is facing an extremely high risk of extinction, 

as established through different criteria. 

Endangered Threatened The species is facing a very high risk of extinction, as 

established through different criteria. 

Vulnerable Threatened The species is facing a high risk of extinction, as 

established through different criteria. 

Near 

Threatened 

Non-

threatened 

The species has not been categorised as threatened, but 

it is likely that it will become threatened soon. 

Least 

Concern 

Non-

threatened 

The species has not been categorised as threatened and 

is not likely to become threatened. 

Data 

Deficient 

NA There is not enough information to make an assessment. 

Data Deficient should only be applied when it can be 

assumed that a species could be in any of the above 

categories. 

While the IUCN Red List currently covers over 90,000 species, it is not a random 

sample of species (IUCN, 2018b). Groups that are better studied or generate more 

public interest such as birds and mammals have been assessed completely, whilst 

bigger taxonomic groups such as insects have not seen the same degree of assessment 

(Butchart et al., 2004; Butchart et al., 2005). Equally, only about 5% of plants have been 

assessed on the IUCN Red List (Brummitt et al., 2015). The only kingdom other than 

plants and animals to have had any assessments are fungi with only 33 assessments 

(IUCN, 2018b). 

Information on species’ IUCN Red List categories is freely available on the IUCN 

Red List website. The information from the assessments includes the habitats and 

countries species occur in, range maps, and in the case of threatened species, the 

threats species face and appropriate conservation actions (IUCN, 2018b). There are 
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packages specifically designed to download IUCN Red List data in the R statistical 

environment (R Core Team, 2017) such as rredlist (Chamberlain, 2017) or letsR (Vilela 

and Villalobos, 2015). Data can also be downloaded directly from the IUCN website 

(IUCN, 2018b). 

1.4.2 Tracking changes in species’ extinction risk 

To be able to track changes in IUCN Red List assessments and therefore the 

conservation status of species, an extended coverage of IUCN Red List assessments has 

been proposed, known as the Barometer of Life (Stuart et al., 2010). The 48,000 

assessments in 2010 were to be increased to 160,000 by 2020, with the aim of having a 

sample that is more representative, and not biased towards vertebrates (Stuart et al., 

2010). Of the more than 90,000 assessments to date, more than 40,000 have been made 

in the past 7 years which is an impressive effort (IUCN, 2018b). If current rates of 

assessment continue, we might expect that by 2020, 108,000 species will have been 

assessed - still a shortfall of over 50,000 species. 

To track changes in species’ extinction risk over time and to rank relative 

extinction risk between taxonomic groups, the Red List Indices as well as the Sampled 

Red List Indices are used (Butchart et al., 2004), for example to measure progress 

towards Aichi target 12 (Tittensor et al., 2014). The Red List Index is used for completely 

assessed taxonomic groups, and is available for birds, mammals, amphibians and corals 

(IUCN, 2017). The Sampled Red List Index is used for taxonomic groups that are not 

completely assessed, so a random sample of species are assessed and reassessed. 

Sampled Red List Indices are available for freshwater crabs (Cumberlidge et al., 2009), 

dragonflies and damselflies (Clausnitzer et al., 2009), reptiles (Böhm et al., 2013), crayfish 

(Richman et al., 2015), and plants (Brummitt et al., 2015). 

1.4.3 National Red Lists 

Apart from the IUCN Red List there are also National Red Lists to guide conservation 

action at national and regional levels. National Red Lists take into account the regional 

nature of assessments, unlike the IUCN Red List,  and in some cases threat categories 

that differ from the IUCN Red List are used (Brito et al., 2010). As of 21 December 2017 

there were 148,921 National Red List assessments which used IUCN Red List categories 
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(National Red List, 2017). There are guidelines for applying IUCN Red List categories and 

criteria to the National Red Lists (IUCN, 2012a). Brito et al. (2010) found that most 

National Red List assessments and IUCN Red List assessments placed species into the 

same category, with differences for 16% of species that had been assessed on both lists 

in Brazil, China, Colombia and the Philippines. As such the National Red Lists can be a 

useful addition to the IUCN Red List for national and regional assessments. 

1.4.4 Other global data sources 

To accelerate estimates of extinction probability of species, modelling can be used to 

predict the extinction risk with different predictive variables, such as phylogeny (Davies 

et al., 2011), occurrence records (Rivers et al., 2011) or traits (Bland et al., 2015). Some of 

these variables can be found in global datasets at species level. Most prominently, the 

Global Biodiversity Information facility (GBIF) holds a wide range of datasets of different 

species groups, all of which are freely available. GBIF was set up in 1999 (Redfearn, 1999) 

and holds nearly 100 million occurrence records for different species from bacteria to 

animals, and for a wide range of spatial scales from local surveys to global plant 

collections (Global Biodiversity Information Facility, 2017).  

For plants, the use of herbaria to inform conservation assessments is important 

as herbaria globally hold approximately 350 million specimens, spanning 400 years 

(Thiers, 2017). Herbarium specimens are routinely used to estimate extent of occurrence 

or area of occupancy for plants which are used for IUCN Red List assessments, and 

historic specimens can help to show where declines have occurred (Willis et al., 2003; 

Brummitt et al., 2015). There is a database that holds information on herbarium records 

called Botanical Information and Ecology Network or BIEN (Botanical Information and 

Ecology Network, 2017), including an R package through which data can be 

downloaded (Maitner et al., 2017). It includes both GBIF occurrence records as well as 

occurrence records from other datasets not currently included in GBIF.  

1.4.5 Challenges in using large-scale occurrence data 

Large-scale databases in ecology are usually made up of a plethora of surveys, museum 

records, and increasingly through citizen science projects such as ebird (Sullivan et al., 

2009). While databases like GBIF provide large amounts of data, the data are not 
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collected evenly across the globe, across time, or across taxa (Troudet et al., 2017). 

When considering the proportion of species to occurrence records within classes, there 

are more bird, liliopsida and mammal records in GBIF than records of insects, arachnids 

and gastropods. There are biases in occurrence records of plants, both at taxonomic 

and geographic level (Meyer et al., 2016). As an example from another kingdom, records 

of Galliformes are biased towards Western Europe and South East Asia, and are also 

biased towards non-threatened species (Boakes et al., 2010). These biases can be a 

hindrance for analyses such as species distribution models, but can be overcome if 

some records are removed (Syfert et al., 2013; Beck et al., 2014). There can also be 

biases in records for sensitive species, for example those that are at risk of poaching 

(Jarnevich et al., 2007). 

If data from a range of sources are to be used in combination, it is crucial that 

taxonomic naming is consistent across datasets, and that there are no misspellings in 

the data. In a recent analysis of threat status of plants, 22,144 names could not be 

matched to accepted species names, showing how this is not a trivial issue (Bachman et 

al., 2017). There is an increasing number of tools designed to overcome these problems, 

many of them implemented through the R statistical environment. For example, with the 

taxize package (Chamberlain and Szöcs, 2013) it is possible to check species names and 

their spelling as well as download taxonomic hierarchies of species. This ensures that 

large numbers of species names can be checked rapidly. 

There are also issues of scale, and how to combine data that differ in their scales. 

This problem was first described in 1992 (Levin, 1992), with a more recent review from 

2013 (Chave, 2013). Different spatial scales can have an effect on the patterns we 

observe (Chase and Knight, 2013), and there can be interactions between them too 

(Sullivan and Vierling, 2012). Often summarised data need to be used to combine data 

at different scales which means that information is lost in the process. There are 

statistical methods that are designed for dealing with different scales, for example 

hierarchical models (Wilson et al., 2011). 

 Finally, making large-scale data available to other scientists is a challenge in 

itself (Hampton et al., 2013). There are difficulties in sharing data due to the 
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heterogeneity of ecological data, a lack of incentives for sharing data (Reichman et al., 

2011), lack of training in managing data (Roche et al., 2015) and a perceived loss of 

control over data (Enke et al., 2012). To ensure more data are shared amongst 

ecologists, there is a need for platforms for data storing, as well as rewards for scientists 

who share their data, such as citations (Whitlock, 2011; Roche et al., 2015). 

1.5 From Red Lists to saving species 

The IUCN Red List addresses the fundamental questions of what is threatened, to what 

extent, and why. How do we get from the assessments to saving species on the ground? 

The IUCN Red List assessments are used by governments to inform action plans to 

protect species and monitor their status, prioritise areas for conservation, as well as 

inform Environmental Impact Assessments (Azam et al., 2016). They are also used by 

conservation NGOs to focus conservation efforts on species that are threatened with 

extinction, for example BirdLife International have undertaken conservation action for 

over 500 threatened bird species since 2008. They have also identified organisations 

which are in a position to implement conservation action to protect Critically 

Endangered bird species (BirdLife International, 2013). Further, the International Finance 

Corporation which supports projects in developing countries avoids investments that 

could negatively affect Critically Endangered or Endangered species (IFC, 2012).  

Our increasing knowledge of the conservation status of species has led to a 

range of conservation actions such as protected areas, reintroductions or invasive 

species control (Hoffmann et al., 2011). Due to these actions the conservation status of 

24 mammal species has seen improvements (Hoffmann et al., 2011), and the extinction 

of 16 bird species is likely to have been prevented (Butchart et al., 2006). Not all species 

declines have been prevented however, and conservation action has been insufficient 

for 146 threatened mammal species and lacking completely for a further 18 (Hoffmann 

et al., 2011). In many cases the main drivers of declines are not addressed, there is 

uncertainty about the effectiveness of conservation actions, or there remains uncertainty 

why a species is actually in decline, which hinders actions to save species (Hoffmann et 

al., 2011; Rodrigues et al., 2014). 
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1.6 Addressing uncertainty in conservation decision-making 

As there is a pressing need to save species, we need to find ways to use available data 

whilst dealing with the uncertainties appropriately. In conservation, there can be 

uncertainty around the conservation status of a species, what is driving the numbers of 

threatened species, and which conservation actions are likely to yield the most benefits, 

for example. The following section will introduce two methods that can be used to deal 

with these uncertainties. 

1.6.1 Bayesian Networks 

Bayesian Networks (BNs) are probabilistic graphical models that can incorporate a wide 

range of data sources. They are useful for dealing with uncertainty because the 

probability distribution of variables can be displayed and the impact of changes in 

variables can be assessed transparently through scenario analysis. BNs can be used for 

predictive modelling, and predictions can be displayed alongside their associated 

probabilities, hence they are a useful tool for conservation decision making (Marcot et 

al., 2006).  

BNs can be constructed with input in the form of expert elicitation or with mixed 

data sources. The researcher assigns their structure through findings from the literature, 

or through experts (Landuyt et al., 2013). These networks are called supervised networks 

(Scutari and Denis, 2014). Unsupervised networks (Scutari and Denis, 2014) can be 

machine-learnt using a variety of algorithms allowing the construction of BNs based on 

data alone. This allows patterns from the data to determine the BN structure and the 

conditional dependencies rather than relying on that proposed by subject experts or 

the researcher. It is also possible to create semi-supervised models by combining prior 

knowledge of the system, for example through experts, with a Machine Learning 

algorithm. The network structure, as well as the conditional probability tables, can be 

learnt from the data separately. Machine Learning methods do not assume 

independence of predictor variables because dependencies are reflected in the model 

structure (Mayfield et al., 2017). While arcs in a supervised network usually infer causal 

effects between variables, this is not necessarily the case for Machine Leant BNs, as 
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further assumptions need to be met for a BN to be a causal model and is therefore 

challenging (Nagarajan et al., 2013). 

Data limitations in BN modelling can be dealt with in various ways. Missing data 

points of a variable can be imputed or elicited from experts. If that variable makes no 

difference in the overall outcome as shown by the BN, then collecting further data on 

this variable is unlikely to lead to any gains in conservation performance.  Missing 

variables are more difficult to deal with, and in the absence of information are very 

difficult to model (Chung et al., 2016). Expert elicitation could be used to find which 

variables may be important and missing, and include them in the network (Marcot, 

2017). The effect of these variables could then be modelled to inform further research 

actions.  

BNs are becoming more sophisticated, and the use of Gaussian BNs has 

removed the earlier requirement to work only with discrete data (Scutari and Denis, 

Bayesian Networks 

Conditional dependences between variables (called nodes in a BN) are demonstrated 

by arrows (called arcs) underpinned by conditional probability tables. For example, 

40% of the habitats may be in good condition, and 60% of habitats may be in poor 

condition in a given area (Figure 1). If Habitat state is good, then 90% of those sites 

may see a high number in species, whereas this drops to 20% where habitat state is 

poor. Scenario analysis is possible by changing the states of nodes and updating the 

conditional probabilities of the other nodes. For example, if habitat state is set to 

100% good, then species number would update to 90% high and 10% low. 

Habitat state 

Good 40% 

Poor 60% 

 

Species 

numbers 

Habitat state 

Good Poor 

High 90% 20% 

Low 10% 80% 

Figure 1. A simple Bayesian Network with conditional probability tables. The “Child” 

node (Species numbers) is conditionally dependent on the “Parent” node (Habitat 

State). The two are linked by a directional arc. 

 

 

 

 



11 

 

 

2014). There are now various open source programmes and packages available for 

constructing BNs, such as GeNIe Modeler (Bayes Fusion LLC, 2017) or the bnlearn 

package in R (Scutari, 2010), not all of which have the ability to build or display Gaussian 

BNs however. 

One of the key advantages of BNs is their transparency, especially when working 

with a range of stakeholders, policy makers and managers (Landuyt et al., 2013). Unlike 

more traditional statistical models, BNs are easier to interpret because they are visual 

models. They can also be used directly as a decision support tool (Stewart et al., 2013), 

for example for decision-analytic approaches, where each objective and each 

management action could be described within a node (Gregory et al., 2012). This way 

trade-offs can be modelled either by updating the conditional probabilities of the 

outcome variables, or by updating the conditional probabilities of the management 

actions (Marcot, 2012). As it is possible to update the evidence within a BN, they are also 

useful for adaptive management (Landuyt et al., 2013). 

However, there are limitations in using BN models. BNs are deterministic, so 

every model run with the same initial conditions will lead to the same outputs; 

stochastic events are not included (Beissinger and Westphal, 1998). This limits the 

interpretation of the outputs, as there is no probability distribution of the outputs. 

Instead, the probabilities of the discrete states of a node are shown only. It is possible to 

model parameter uncertainty with other methods, such as Bayesian Hierarchical models, 

where full probability distributions of discrete node states can be estimated (Wikle, 

2003). Further, BN arcs have to be directed and feedback loops within one network do 

not work, because this would make the creation of conditional probability tables 

impossible. This can limit the application of BNs. There are however emerging 

approaches for modelling temporal systems using Dynamic Bayesian Networks. In 

these, the outputs of one network are fed in as input for a second network (Uusitalo, 

2007; Marcot and Penman, 2018), but this process is very complex (Aguilera et al., 2011). 

While the use of continuous variables BN modelling is possible, it is still challenging 

(Aguilera et al., 2011). Therefore, continuous variables are usually split into discrete 

variable states. The way in which variables are split can affect model performance 
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because relevant information may be lost in the process of discretisation (Uusitalo, 

2007). 

1.6.2 BNs in ecology 

The use of Machine Learning algorithms for creating BNs in ecology and biodiversity 

conservation has been limited so far. They have been used for habitat suitability studies 

(Aguilera et al., 2010; Milns et al., 2010; Boets et al., 2015), predicting locations of biomes, 

bioregions or vegetation types (Dlamini, 2011a; Dlamini, 2011b), predicting food webs 

and trophic relationships for fisheries (Trifonova et al., 2014; Trifonova et al., 2015), 

investigating species assemblages to inform monitoring (Pozsgai et al., 2016) and 

predicting deforestation (Mayfield et al., 2017). The use of BNs for conservation is 

underexplored, particularly with regard to networks that use data or a combination of 

data and expert elicitation (but see Amstrup et al. (2010) and Fortin et al. (2016)). As long 

as relevant data are available, Machine learnt BNs are quicker and cheaper to construct 

than those which rely solely on experts.  

Major benefits of using BNs are the ability to use a wide variety of data sources 

to inform a single model, the transparency of the networks, the ability to include 

uncertainty and the possibilities of using BNs for decision analysis and adaptive 

management. In complex systems with missing data and uncertainty, such as 

conservation, BNs could help us to understand the system in question. For these 

reasons, the use of BNs could greatly enhance conservation decision making at national, 

regional and international level. 

1.6.3 Decision-making under uncertainty 

Decision-making in ecology or biodiversity conservation is usually accompanied by 

uncertainties in the effects of management actions and resulting outcomes. Different 

approaches have been proposed to deal with these uncertainties, and here I will focus 

on two fields that have received considerable attention; these are structured decision-

making or decision analysis, and adaptive management. 

Decision analysis follows a structured process of decision-making, which involves 

the identification of the decision context, the setting of objectives, the identification of 

management actions that can address those objectives, an evaluation of how each 
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management action would contribute to each objective, and the explicit consideration 

of trade-offs between management actions (Gregory et al. 2012). The identification of 

objectives is a key step of decision analysis, and will influence the further process. The 

evaluation of how management actions would contribute to objectives is usually done 

using predictive modelling, and may include not only changes to a population of a 

species of interest, but, depending on the objectives, also the social or economic 

impacts of such change (Runge, 2011). Uncertainty is considered during the evaluation 

of management actions, often through a Value of Information calculation, see section 

1.6.4.  

Adaptive management is considered to be a special case of decision analysis. It is 

a process in which learning is part of the decision process, because the optimal 

management action is unknown, and where decisions are repeated over time. The 

outcomes of one or more management actions are monitored to test whether the 

management action is effective, and then feed back into the next cycle of decision-

making (Runge, 2011). Adaptive management can be active, where different 

management actions are tested simultaneously; or passive, where the management 

action that is considered to best address the objectives is implemented and outcomes 

are monitored (Williams, 2011). Learning is an objective for active adaptive management 

settings, but not for passive adaptive management. Which management actions to 

pursue, and whether adaptive management should be used at all, can be examined 

through a Value of Information analysis (McDonald-Madden et al., 2010). Adaptive 

management can be difficult to implement, because of the difficulties in distinguishing 

between natural variation and the effects of management actions, and due to difficulties 

in establishing effective monitoring (Westgate et al., 2013). 

1.6.4 The Value of Information 

Not all uncertainties affect management decisions, and quantifying when they do and 

when they do not can help decision makers (Runge et al., 2011). A method rooted in 

decision analysis that helps to distinguish between when more data are needed and 

when to act is the Value of Information. Value of Information is routinely used in 

disciplines such as healthcare (Yokota and Thompson, 2004) and has been used in 
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ecology since 1991 (Sainsbury, 1991). The idea of the Value of Information approach is 

that research is only necessary when the changes detected by that research will result in 

a change in management action. For example, research may be necessary when there is 

uncertainty around why a species is declining, and hence which management action will 

lead to the most benefit (Runge et al., 2011). It can also be used to decide which 

conservation action would be best under different budget levels (Maxwell et al., 2015). 

There is scope to extend the use of Value of Information both for finding species-

specific management actions, as well as for broader scale application in ecology. Value 

of Information now forms part of the IUCN’s guidelines for species conservation 

planning as it can help to use resources for conservation wisely (IUCN – SSC Species 

Conservation Planning Sub-Committee, 2017). 

1.7 Thesis aims 

The overall aim of my thesis was to explore how uncertainty affects the different stages 

of preventing extinctions, from making conservation assessments right through to 

finding the best management actions to improve conservation status under uncertainty. 

The individual aims of the thesis chapters are as follows: 

 Evaluate the use of Value of Information in ecology 

 Predict extinction risk of plant species in the Caatinga ecoregion in Brazil 

 Predict extinction risk of plants assessed as Data Deficient globally 

 Assess which variables are most influential in determining tiger numbers at different 

sites 

 Assess when to reduce uncertainty and when to act, and whether Value of 

Information works for conservation 

1.8 Thesis outline 

In chapter 2 I explored the background to decision-making under uncertainty, what the 

Value of Information is, and how it can be calculated using a simple example. I 

undertook a systematic review of the use of the Value of Information in ecology and 

found 30 papers that have applied it to date. I summarised those papers according to 

their application, the management objectives, the uncertainties considered and how 

they were expressed, the predictive model used, the parameter of the net benefit and 
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the type of Value of Information calculation. I explored three of the papers in more 

detail, then discussed what has been achieved so far in using Value of Information in 

ecology, and where there were gaps. 

In the next chapter I explored the extinction risk of plants in the Caatinga 

ecoregion in Brazil. I used Bayesian Network models to determine which variables were 

important in assigning Red List categories, using taxonomic information, habitat 

information, the number of site and occurrence records of each species, and the plant 

growth form. The best performing model was created with a Naïve Bayes classifier 

which predicted the threat status of 80% of assessed species correctly. I used the model 

to predict the extinction risk of 1,189 plants in the Caatinga, of which 68 were predicted 

to be threatened. A Value of Information calculation indicated that more Red List 

assessments are needed from the Caatinga. 

Then I applied a similar methodology to predict extinction risk of Data Deficient 

plants globally. I merged IUCN Red List data with data from the TRY database of plant 

traits, imputed missing values, and predicted IUCN Red List category using Bayesian 

Network models. The best performing model was built using a hill-climbing algorithm 

with oversampled data which predicted 60.5% of threatened and 65.0% of non-

threatened species correctly. The model predicted 53.8% of the 1,732 Data Deficient 

plants to be threatened or Extinct. A Value of Information calculation indicated that 

more work needs to be done in South America, both in terms of assessments and 

conservation action. 

I then shifted the focus from predicting extinction risk of species to determining 

relevant information in conserving species, using the tiger Panthera tigris as a case 

study. I used information at the Tiger Conservation Landscape scale, including tiger 

numbers, habitat information, designations and poaching numbers, and built Bayesian 

Network models. The best performing model predicted tiger numbers correctly for 80% 

of Tiger Conservation Landscapes using a hill-climbing algorithm. Habitat loss had little 

influence on determining tiger numbers, but the amount of poaching did, indicating 

that preventing poaching is the best way to increase tiger numbers once again. 



16 

 

 

In the discussion I explore the current use of VoI in biodiversity conservation, 

what some of the difficulties are in applying it, and what lessons can be drawn from 

applying it to different settings. I then place the extinction risk predictions into the 

context of other literature in which extinction risk was predicted, and discuss the class 

imbalance problem of predicting categories when there is one majority category which 

drives predictions. Then I discuss what some of the difficulties are from Red Listing to 

deciding on conservation actions. I finish with recommendations for future work. 
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Chapter 2 Using the Value of Information to improve 

conservation decision making 

Abstract 

Conservation decisions are challenging, not only because they often involve difficult 

conflicts among outcomes that people value, but because our understanding of the 

natural world and our effects on it is fraught with uncertainty. Value of Information (VoI) 

methods provide an approach for understanding and managing uncertainty from the 

standpoint of the decision maker. These methods are commonly used in other fields 

(e.g. economics, public health) and are increasingly used in biodiversity conservation. 

This decision-analytical approach can identify the best management alternative to select 

where the effectiveness of interventions is uncertain, and can help to decide when to act 

and when to delay action until after further research. We review the use of VoI in the 

environmental domain, reflect on the need for greater uptake of VoI, particularly for 

strategic conservation planning, and suggest promising areas for new research. We also 

suggest common reporting standards as a means of increasing the leverage of this 

powerful tool. 

The environmental science, ecology and biodiversity categories of the Web of 

Knowledge were searched using the terms ‘Value of Information,’ ‘Expected Value of 

Perfect Information,’ and the abbreviation ‘EVPI.’ Google Scholar was searched with the 

same terms, and additionally the terms decision and biology, biodiversity conservation, 

fish, or ecology. We identified 1225 papers from these searches. Included studies were 

limited to those that showed an application of VoI in biodiversity conservation rather 

than simply describing the method. All examples of use of VOI were summarised 

regarding the application of VoI, the management objectives, the uncertainties, the 

models used, how the objectives were measured, and the type of VoI. 

While the use of VoI appears to be on the increase in biodiversity conservation, 

the reporting of results is highly variable, which can make it difficult to understand the 

decision context and which uncertainties were considered. Moreover, it was unclear if, 

and how, the papers informed management and policy interventions, which is why we 

suggest a range of reporting standards that would aid the use of VoI. 
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The use of VoI in conservation settings is at an early stage. There are 

opportunities for broader applications, not only for species-focussed management 

problems, but also for setting local or global research priorities for biodiversity 

conservation, making funding decisions, or designing or improving protected area 

networks and management. The long-term benefits of applying VoI methods to 

biodiversity conservation include a more structured and decision-focused allocation of 

resources to research. 

2.1 Introduction 

2.1.1 The changing landscape of biodiversity conservation 

Our understanding of what constitutes biodiversity [the ‘variety of life’ (CBD Secretariat, 

1992; Watson et al., 1995)] has developed to encompass not only genes, species, and 

habitats or ecosystems but the variation within them and among all levels, and their 

inter-relationships. This has led over time to a desire for policy to go beyond the 

maintenance of species and protection of places. Whilst protecting species and habitats 

remain key and important conservation objectives, other objectives have emerged that 

reflect more fully such holistic definitions of biodiversity. These include maintaining 

genetic variability, evolutionary potential, food webs, ecological networks and the 

interactions within and among species, and ecosystem resilience and function (Mace, 

Norris & Fitter, 2012). A significant challenge is presented in both understanding the 

complex patterns and processes that these components of biodiversity represent and in 

shaping and implementing policies designed to ensure their maintenance. Amongst the 

most complex of globally agreed goals for biodiversity are those in the Convention on 

Biological Diversity’s Strategic Plan for Biodiversity 2011–2020 and specifically their 

constituent Aichi Targets (Leadley et al., 2014), and the environmental goals in the 

recently adopted Sustainable Development Goals. 

There are many statutory initiatives to advance the conservation of biodiversity 

across the globe, but implementation and enforcement of these statutes has been 

hampered because of the potential regulatory burden they impose and potential for 

conflict with human activities such as economic development, recreation, and 

subsistence and sport hunting. As a result, a more nuanced view of biodiversity 
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conservation has emerged, one that recognises the choices and trade-offs implicit in 

decisions about environmental management.  

The political complexity of decisions regarding biodiversity is exacerbated by the 

remaining uncertainties about the nature of biodiversity and its response to human 

interventions, to the extent that scientific uncertainty is sometimes used as a pawn 

during political debates and negotiations. There is a long way to go before the 

components of biodiversity are fully described, let alone their processes understood or 

the consequences of disrupting or even losing them are adequately predicted. In the 

meantime, policy and management decisions are still needed in the absence of such 

ecological knowledge and thus under substantial uncertainty. This leads to two 

important questions that are relevant for environmental managers: how should 

decisions about natural resource management be made in the face of uncertainty, and 

when is it valuable to reduce the uncertainty before committing to a course of action? 

The purpose of this review is to consider the literature concerning the second question, 

while placing it in the context of the first question. 

2.1.2 Strengthening scientific input for management and policy 

This changing landscape of biodiversity conservation has two important implications for 

the science that informs or underpins conservation policy. First, decisions about 

conservation policy are significantly enhanced when what is known about biodiversity is 

made available to decision makers in a form that they can understand and use (Pullin et 

al., 2004). There is a significant body of thought and literature concerning how to 

achieve this, including making literature more available to decision makers, analysing 

management interventions and other relevant topics through systematic reviews (Pullin 

& Stewart, 2006; Sutherland et al., 2017), and promoting research that bridges the 

‘knowing–doing’ gap (Knight et al., 2008). The diversity of these approaches reflects the 

large range of contexts in which information on biodiversity, in all its forms, is now 

sought to inform policy and decision making. 

The second implication of the interplay between uncertainty and decisions about 

biodiversity is the need to identify which uncertainty is most valuable to reduce in order 

to improve the outcomes of policy or management decisions. The critical issue here is 
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determining which of the sources of uncertainty has the strongest influence on the 

choice of action. This requires an understanding of the decision context in which 

knowledge about biodiversity is being used. The question is not whether there is 

scientific uncertainty and how great it is, but rather, whether the scientific uncertainty 

impedes the choice of a management action. Here we examine the potential for a 

formal method called the ‘Value of Information’ (VoI) to address this question in 

support of conservation management and policy. 

2.1.3 Decision making under uncertainty 

Before turning to the topic of the VoI, we first introduce the background on decision 

making in the face of uncertainty. A summary of terms can be found in Table 1. 

Table 2. Definitions of terms relating to decision making in conservation. 

Term Definition 

Decision analysis methodology 

Decision 

analysis 

A broad field that explores both how humans make decisions 

(descriptive decision analysis) and how they should make decisions 

(prescriptive or normative decision analysis). Importantly, normative 

decision analysis provides a framework for decision making that 

includes the context, the objectives, alternative actions, the 

consequences of the actions, the uncertainties involved and how 

learning can be implemented (Gregory et al., 2012). 

Decision 

context 

What decision needs to be made and how? Who is the decision maker 

and what is their authority? What legal, policy, and scientific guidelines 

form the context for the decision? (Gregory et al., 2012). 

Objectives The fundamental outcomes that the decision maker is pursuing in 

making the decision. Objectives need to encompass everything that 

should be achieved by the decision whilst being independent from 

each other. They can be used to build consensus amongst 

stakeholders (Gregory et al., 2012). 

Alternatives Set of potential actions under consideration that could achieve the 

objectives. An alternative may encompass various tasks that will 

address all objectives, so different alternatives can be comparable. 

Alternatives need to be distinct from each other (Gregory et al., 2012). 

Consequences The predicted outcomes of the different alternatives relative to the 

different objectives. Often the consequences show trade-offs between 

different alternatives (Gregory et al., 2012). 

Trade-offs Competing consequences across objectives, such that improving the 

outcome associated with one objective requires giving up 

performance associated with another objective. The challenge to the 

decision maker is to evaluate consequences of the different 
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Term Definition 

alternatives and make a decision on which alternative to implement 

(Gregory et al., 2012). 

Uncertainty terms 

Aleatory 

uncertainty 

Uncertainty arising from inherent variability in random processes. 

Environmental, demographic, and catastrophic stochasticity are 

examples (Gregory et al., 2012). 

Epistemic 

uncertainty 

Uncertainty arising from the limits of current human knowledge. Often 

linked to aspects of data, for example lack of data or imprecise 

measurements (Regan et al., 2002). 

Irreducible 

uncertainty 

Uncertainty that cannot be resolved, for example environmental 

stochasticity (Conroy & Peterson, 2013). 

Linguistic 

uncertainty 

Uncertainty linked to language: vague or ambiguous terms, or terms 

that are context dependent (Regan et al., 2002). 

Parametric 

uncertainty 

Special case of epistemic uncertainty: uncertainty about the values of 

the parameters in a model (Kujala et al., 2013). 

Reducible 

uncertainty 

Uncertainty that can be resolved, if enough effort is exerted, for 

example epistemic or linguistic uncertainty (Conroy & Peterson, 2013). 

Structural 

uncertainty 

Special case of epistemic uncertainty: uncertainty around the systems 

model (Conroy & Peterson, 2013). 

2.1.4 Decision analysis 

The field of decision analysis aims to support decision makers by providing insights 

from a large array of disciplines, including decision theory, cognitive psychology, 

operations research, economics, and statistics. Based on the work of von Neumann & 

Morgenstern (1944) and harkening back to work of Nicolas Bernoulli in 1713, the field of 

decision theory recognises that all decisions have common elements, and searches for 

rational ways to structure decisions. Decision analysis aims to formalise the decision-

making process by using a clear framework that incorporates all aspects that are 

relevant to making a decision, namely: the decision context (the authority of the 

decision maker and the environment in which the decision is being made); the 

objectives that are to be achieved by the decision and how they are measured; the 

different alternative actions that are under consideration to achieve the objectives; an 

analysis of the consequences of each action (the prediction of the consequences of 

each alternative in terms of the objectives is the central means by which scientific 

information is incorporated into a decision); and methods for navigating various types 

of trade-offs in choosing an action to implement (Gregory et al., 2012; see Table 1). A 
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diverse set of analytical tools has been developed to aid decision makers, depending on 

the primary impediments to the decision, including multi-criteria decision analysis 

(Davies, Bryce & Redpath, 2013), risk analysis (Burgman, 2005), spatial optimisation 

(Moilanen, Wilson & Possingham, 2009), and VoI (Runge, Converse & Lyons, 2011). 

Formal methods of decision analysis have been used extensively for decisions 

regarding natural resource management (Gregory et al., 2012), wildlife population 

management (Yokomizo, Couts & Possingham, 2014), fisheries management (Peterson 

& Evans, 2003), and endangered species management (Gregory & Long, 2009), among 

other applications. In practice, decision analysis is often used in conjunction with 

collaborative and participatory facilitation methods, to allow negotiation and dispute 

resolution (Gregory et al., 2012). 

2.1.5 Uncertainty 

Our knowledge of the natural world is extensive, but incomplete. When scientists are 

asked to make predictions about the outcomes associated with alternative management 

actions, they should do so with an understanding of the uncertainties that underlie 

those predictions, where possible. Identifying types of uncertainties can be helpful in 

determining how to deal with them. It is useful to distinguish three types of uncertainty: 

linguistic, epistemic, and aleatory. Linguistic uncertainty is any type of uncertainty that is 

linked to language (vague or ambiguous terms, or terms that are context dependent for 

example; Regan, Colyvan & Burgman, 2002), and is often unresolved in conservation 

decision making (Kujala, Burgman & Moilanen, 2013). Sometimes disputes or confusion 

arise simply because different people ascribe a different definition to the same term. 

Epistemic uncertainty arises from limitations in our knowledge of the world and its 

workings and is often linked to aspects of available data, such as insufficient 

observations or imprecise measurements, which are often parameters in models used to 

forecast the effects of management actions. A special case of epistemic uncertainty is 

structural uncertainty, which refers to uncertainty in the structure of the systems model, 

or of model form, as opposed to model parameters (Morgan & Small, 1992; Conroy & 

Peterson, 2013). Both linguistic and epistemic uncertainty are, at least theoretically, 

reducible uncertainties, that is, with appropriate effort and study, we could resolve the 
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uncertainty (Conroy & Peterson, 2013). The third type of uncertainty, aleatory 

uncertainty, is irreducible, because it arises from sources that are not possible to know 

about in advance (Gregory et al., 2012). For example, variation in the weather over the 

next ten years, and how it will affect a wildlife population relevant to a particular 

decision, is not something we can know in advance. We can describe its expected mean 

and variance, but we cannot know the specific temperature and precipitation patterns 

that will emerge. All three types of uncertainty can be relevant to a decision analysis but 

they often emerge at different stages of the process. For example, linguistic uncertainty 

often arises during problem framing or objective setting, whereas epistemic and 

aleatory uncertainty play a more important role during the prediction of the 

consequences of the alternative actions.  

The first step to grappling with uncertainty in a decision context is simply to 

acknowledge that uncertainty exists and to identify the potential sources of uncertainty 

that could affect the prediction of the consequences of the alternative actions. The 

second step is to estimate the magnitude of the uncertainty. Statistical methods can be 

used to estimate the magnitude of uncertainty in empirical observations; in other cases, 

formal methods of expert elicitation (Martin et al., 2012) can be used. Either way, 

uncertainty can be expressed as probability distributions associated with the state 

variables of interest (e.g. population abundance), the parameters of predictive models 

(e.g. survival or reproductive rates), the underlying alternative hypotheses about how 

the ecosystem responds to management (e.g. whether the population is limited by 

habitat or predation), and the efficacy of actions (e.g. fraction of a grassland burned by 

a prescribed fire). For analysis of empirical data, Bayesian statistical techniques are most 

useful, because the posterior distributions represent direct statements about the 

probabilities of values of the parameters in question. For analysis of expert judgment, 

various elicitation and aggregation methods are available to produce probabilistic 

summaries. Burgman (2005) discusses the range of methods available for estimating 

uncertainty in a risk-analysis context. 

The third step in grappling with uncertainty is to propagate the uncertainty 

through the predictions of the consequences. If a model is being used to connect the 
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alternatives to the outcomes, then standard modelling techniques can be used to 

accomplish this; if not, then again, expert elicitation can be used. The fourth step is the 

most important – figuring out how to handle the uncertainty in the decision. There are 

essentially two different paths. Decisions can be made either without resolving 

uncertainty, or once some of the uncertainty has been resolved. For irreducible 

uncertainty, only the first choice is available. For reducible uncertainty, both choices are 

theoretically available, and the question is whether it is worth resolving the uncertainty 

first. Funders of research may also be interested in prioritisation where there are 

multiple sources of uncertainty to address. In some instances uncertainty may not be an 

important consideration, in others, however, uncertainty may play an important role. 

The next two sections describe the decision analytical tools for evaluating decisions in 

the face of uncertainty, and evaluating the value of reducing uncertainty. 

2.1.6 Decisions in the face of uncertainty 

Many decisions are made in the face of uncertainty, without an attempt to resolve the 

uncertainty before committing to action; analysis of such decisions is the focus of risk 

analysis (Burgman, 2005). The essence of such decisions is to choose the alternative 

action that best manages the risk associated with the uncertain outcomes in a manner 

that reflects the decision maker’s risk tolerance. For a risk-neutral decision maker, the 

analysis involves calculating the expected outcome for each alternative, with the 

expectation (the weighted average) taken over all the uncertainty, and choosing the 

action with the best expected value. The decision maker, however, might not be risk 

neutral; for instance, they might be much more concerned about the risk of downside 

losses than the chance of upside gains. If the decision maker is not risk neutral, utility 

theory (von Neumann & Morgenstern, 1944) is used to express the decision maker’s risk 

tolerance. Both the expected value (risk neutral) and expected utility approaches require 

a probabilistic expression of uncertainty. There are also approaches to risk analysis and 

management that do not require uncertainty to be described with probabilities, that 

instead seek actions that are relatively robust to uncertainty [for example, info-gap 

decision theory (Ben-Haim, 2006)]. So, there are methods for analysing decisions that 
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are made in the face of uncertainty. But what if there is an opportunity to reduce 

uncertainty before committing to action – is it worth doing so? 

2.1.7 Prioritising research to reduce uncertainty about the things that matter: the 

Value of Information 

From the standpoint of a decision maker, research and monitoring are expensive and 

time-consuming, and potentially take resources away from management interventions, 

but hold the promise of providing new information that can guide and improve future 

management actions. When is new information worth the cost? The VoI addresses this 

question by helping to focus research and monitoring efforts on uncertainty that 

impedes choice of an optimal action (Runge et al., 2011). VoI can also be used to identify 

cases where monitoring or further learning would not improve the management actions 

(McDonald-Madden et al., 2010). 

As an example, if the threats to a declining species are unknown, there is 

uncertainty around the management action that would best address the decline. In 

some cases, research may lead to a better understanding of the causes of the decline so 

the decision maker can choose an appropriate management action. In other cases, 

research might not affect the choice of action, either because the decision maker 

cannot address some of the causes of the decline, or because the best action would not 

change even with more knowledge. The aim of VoI is to establish whether the removal 

of uncertainty by conducting research or undertaking monitoring would be beneficial. 

The ability to use VoI to prioritise and choose between different monitoring and 

research options is particularly useful, but to our knowledge has not become common 

practice among research-funding agencies or conservation organisations.  

VoI was first described by Schlaifer & Raiffa (1961) and has since been used in a 

wide range of applied disciplines, notably health economics (Yokota & Thompson, 2004; 

Steuten et al., 2013) and engineering (Zitrou, Bedford & Daneshkhah, 2013). VoI is 

calculated by determining whether the performance of objectives of a decision could be 

improved if uncertainty could be resolved before committing to a course of action.  

There are several variants of VoI, all of which compare the expected benefit with 

new information to the expected benefit when the decision is made in the face of 
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uncertainty (Runge et al., 2011). The expected value of perfect information (EVPI) 

calculates the improvement in performance if all uncertainty is fully resolved, and can be 

used to establish if research or monitoring is valuable to make effective management 

decisions. The expected value of partial perfect information (EVPXI or EVPPI) shows the 

relative value of resolving uncertainty about different hypotheses or different 

parameters, thus serving as a way to prioritise research questions (Yokomizo et al., 

2014). Finally, because reducing uncertainty to zero is likely to be impossible, the 

expected value of sample information (EVSI) calculates the expected gain in 

performance from collecting imperfect information rather than for perfect information 

(Steuten et al., 2013). The expected value of partial sample information (EVXSI) 

combines the concepts of EVPXI and EVSI. Canessa et al. (2015) and Milner‐Gulland & 

Shea (2017) advocate the use of VoI in ecology and also provide explanations and 

online documentation for ecologists on how it can be calculated (Canessa et al., 2015) 

and in which contexts it would be useful for addressing uncertainty (Milner‐Gulland & 

Shea, 2017). 

2.2 Calculating the value of information 

As the calculations can become complex, we provide here a simplified explanation of 

how to calculate VoI. A VoI analysis requires that the decision be formally structured 

(Gregory et al., 2012). First, the decision maker’s objectives must be articulated and 

appropriate performance metrics identified. This is often quite challenging, because it 

requires critical thought about the aims of management and how the outcomes can be 

measured. While managers may be able to identify costs of different interventions, 

estimating benefits for biodiversity conservation is usually more difficult, but there is a 

growing literature on this topic (Keeney, 2007; Runge & Walshe, 2014). Second, at least 

two alternative management actions need to be identified that could meet the 

objectives. Third, the consequences of the alternatives need to be estimated, specifically 

how effective each alternative will be in meeting the different objectives (Gregory et al., 

2012). This is where the evaluation of uncertainty begins. For each action, the 

uncertainty in achieving the objectives needs to be estimated. Often, this comes in the 

form of structural uncertainty: different hypotheses about how the system works that 
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result in different predictions of the outcomes associated with each action (see Case 

Study 3 in Section III.3c, for an example). Along with these predictions, the probability of 

the different hypotheses also needs to be estimated. This information (the objectives, 

the actions, the consequences, and the estimates of uncertainty) form the basis for a 

risk analysis, but they also provide the basis for the VoI analysis. 

To demonstrate a VoI calculation by example, we consider three different areas 

that could be purchased, placed in protection, and managed for the benefit of an 

endangered species. The decision maker has the resources to purchase only one area, 

and would like to know which one will be of most benefit. The decision maker has 

indicated that the fundamental objective can be measured using the long-term 

population size of the endangered species. 

There is uncertainty about the ultimate population size of the endangered 

species that could be supported in the three protected areas, so the population size has 

been estimated under five different hypotheses about what resource most limits the 

species, each of which is judged to be equally likely (Table 3). The expected population 

size across hypotheses is highest for area A with a mean of 1,000, so if we do no further 

research, area A would be the best option under current knowledge. That is, in the face 

of uncertainty, a risk-neutral decision maker would choose to acquire area A. 

Table 3. Long-term population size resulting from choosing areas A, B or C to protect, 

and maximum long-term population size, as estimated under five different hypotheses, 

and their means. 

Hypothesis Area A Area B Area C Maximum long-term population size 

1 1,250 750 500 A - 1,250 

2 1,000 1,250 450 B - 1,250 

3 500 750 450 B - 750 

4 750 500 800 C - 800 

5 1,500 500 300 A - 1,500 

Mean 1,000 750 500 1,110 

For hypotheses 1 and 5, we estimate that area A has the highest long-term 

population size, so A is the optimal choice in 40% of the cases. For hypotheses 2 and 3, 

we estimate that area B would be best, while for hypothesis 4 area C would be best, so 

there is some uncertainty about the best area in which to invest, depending on which 
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hypothesis is correct. That is, the uncertainty matters to the decision maker. Now we can 

use VoI to decide whether to select area A now or invest in more research first. 

The maximum long-term population size under each hypothesis arises if the 

decision maker can choose the best action associated with that hypothesis (A for 

hypothesis 1, B for hypotheses 2 and 3, C for hypothesis 4, and A for hypothesis 5). 

Taking the mean of the maximum long-term population sizes under each hypothesis, 

we can calculate the expected value of the maximum long-term population size, which 

is 1,110. Prior to undertaking research to resolve uncertainty about the true hypothesis, 

we do not know what we will find out, but we think it is equally likely it will be any one 

of the five hypotheses. The average of the performance of the best action for each 

hypothesis tells us the expected value of our decision if we can resolve uncertainty 

before we commit to action. In comparison, the highest long-term population size 

under current knowledge is the mean value of A, which is 1,000. The difference is the 

VoI – we could achieve an expected gain of 110 additional animals in the population if 

we had perfect knowledge. We assume here that one of the five hypotheses is correct 

and therefore one of the estimates for long-term population sizes of area A, B, and C 

under each hypothesis must be correct. The decision maker now knows that reducing 

uncertainty about the limiting factors would increase the expected outcome by 11% (110 

more animals than the 1,000 expected by simply purchasing Area A). Several very 

difficult questions now arise. First, is research possible that can reduce the uncertainty 

and identify the limiting factor? This question requires careful consideration of research 

design. Second, how much would the research cost? A power analysis associated with 

the research design could help identify the amount of sampling necessary, which could 

help with estimation of the costs. Third, is the cost of the research worth the gain? 

Suppose the research would cost $500,000; would the expected gain of 110 individuals 

of this endangered species be worth that investment? The decision maker needs to 

weigh this decision, taking into account such things as the importance of this species, 

the number of other populations that exist, and the other uses to which the funds could 

be put. This is not a trivial task, but the decision is greatly informed by the transparent 

analysis of uncertainty, the comparison with the expected outcome in the face of 
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uncertainty, and the estimate of the potential gain. It is now up to the decision maker to 

decide whether money should be spent on further research, or whether the decision 

should just be made to protect area A. 

2.3 The use of VoI in biodiversity conservation 

2.3.1 Methods 

A literature search was undertaken to examine the extent to which the use of VoI in 

biodiversity conservation has been documented so far. Search criteria were established 

to identify papers that were written in English and were published in a peer-reviewed 

journal before the end of July 2017. The Web of Science was searched for papers 

containing the terms “value of information”, “value of perfect information”, or “EVPI” 

within the environmental science, ecology, and biodiversity conservation categories. To 

search for grey literature, Google Scholar was searched with the following terms: ("value 

of information" OR "value of perfect information" OR EVPI) AND (biology OR 

"biodiversity conservation" OR fish OR ecology) AND decision. The term fish was added 

to ensure that fishing and fisheries papers were included in the search results. Only the 

first 1,000 matches were examined, however this was deemed sufficient as none were 

relevant after entry 318. Not all articles found in this way applied VoI in biodiversity 

conservation, and articles whose research domains were, for example, medicine, 

meteorology, or economics were excluded. Studies that did not use VoI calculations and 

studies that advocated the use of VoI but showed no real-world application were also 

excluded: only studies that incorporated VoI calculations that were applied to 

biodiversity conservation were selected. We report our search using a PRISMA 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses; Liberati et al., 

2009) flow diagram. Citations of studies meeting the inclusion criteria were searched for 

further studies, then all studies were summarised with respect to: the application of VoI, 

management objectives, uncertainties considered and how they were expressed, the 

predictive modelling used, the performance metric used, and the type of VoI. Papers 

were further categorised according to the type of uncertainty (structural, parametric – 

empirical, or parametric – elicited), whether they had single or multiple objectives, 

whether uncertainty was expressed discretely or continuously, and what type of VoI was 
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used (EVPI, EVPXI, EVSI). We also plotted the number of papers we found and the 

overall citations over time.  

Three papers were chosen as case studies, to illustrate in more detail the 

decision context, what data sources were used, how VoI was calculated, and whether it 

made a difference to the decision. They were chosen to represent a range of 

applications that show clearly how VoI was helpful.  

2.3.2 Results 

The searches returned 1225 unique references of which 30 met the inclusion criteria, or 

2.5% of the total references (Figure 2). 901 references were excluded because their 

primary discipline was not biodiversity conservation. 294 were excluded due to no 

mention of VoI, no real-world application of VoI, or due to duplication of previously 

identified records. 

 

Figure 2. PRISMA flow diagram (Liberati et al., 2009) of results of literature search. 

A range of relevant aspects of the included papers are summarised in Table 4. 

Single-species management problems were the focus of 18 (60%) of the papers. Of 

those, the disciplines within which VoI has been used included invasive species 



31 

 

 

management (eight papers: D'Evelyn et al., 2008; Moore et al., 2011; Sahlin et al., 2011; 

Moore & Runge, 2012; Johnson et al., 2014b, 2017; Williams & Johnson, 2015; Post van 

der Burg et al., 2016) and protected species management (10 papers: Grantham et al., 

2009; Runge et al., 2011; Tyre et al., 2011; Williams, Eaton & Breininger, 2011; Smith et al., 

2012, 2013; Johnson et al., 2014a; Canessa et al., 2015; Maxwell et al., 2015; Cohen et al., 

2016). Other papers focused on management of multiple species. Of those, fisheries 

were the subject of five papers (Sainsbury, 1991; Costello, Adams & Polasky, 1998; Kuikka 

et al., 1999; Mäntyniemi et al., 2009; Costello et al., 2010) and the management of 

ecosystems was also the subject of five papers (Bouma, Kuik & Dekker, 2011; Convertino 

et al., 2013; Runting, Wilson & Rhodes, 2013; Perhans, Haight & Gustafsson, 2014; 

Thorne et al., 2015). The use of phylogenetic diversity for deciding which species to 

protect was used by one study (Hartmann & Andre, 2013) and the sustainable harvest of 

a species by another (Johnson, Kendall & Dubovsky, 2002).  

While there was a range of different objectives considered, there were some 

common themes, including maximising populations or their growth rates, or having 

optimal populations (14 papers or 47%), maximising or maintaining harvests (seven 

papers or 23%) and minimising costs (seven papers or 23%). Many papers listed more 

than one objective, and further details of objectives that were specific to individual 

studies can be found in Table 4. The uncertainties considered are also listed (Table 4): 

six papers (20%) used expert elicitation for estimates of uncertainties, the others used 

various models.  
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Table 4. Summary of 30 papers identified by the literature search for inclusion in this study. EVPC, expected value of perfect choice 

(analogous to EVPI); EVPI, expected value of perfect information; EVPXI, expected value of partial perfect information; EVSI, expected value of 

sample information; VoI, Value of Information. 

Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

Invasive species papers 

D'Evelyn 

et al. 

(2008) 

To inform 

management of the 

invasive brown tree 

snake Boiga irregularis 

in the USA under 

uncertainty regarding 

population size 

Establish social 

costs of invasive 

species 

management 

(control costs 

and damages) 

with and without 

learning about 

the true 

population size 

Minimise 

costs of 

managemen

t 

Minimise 

damage to 

invasive 

species 

Population 

size 

Continuous 

– probability 

distribution 

for 

population 

size 

Species 

populatio

n models 

$ Simulatio

n 

comparis

on of 

expected 

value with 

and 

without 

learning 

Johnson 

et al. 

(2014b) 

Establish management 

and monitoring 

options for pink-

footed goose Anser 

brachyrhynchus in 

Western Europe under 

uncertainty regarding 

population dynamics 

to minimise negative 

Choose most 

appropriate 

population 

model for pink-

footed goose 

and whether 

information on 

survival or 

reproduction 

Maintain 

viable goose 

populations 

 Minimise 

losses on 

agricultural 

lands and of 

tundra 

habitat due 

to geese 

Survival 

and 

reproductiv

e rates of 

goose 

Discrete – 

nine 

different 

population 

models 

considered 

Annual 

life-cycle 

models  

Objective 

value – 

relative 

measure of 

management 

performance 

EVPI, 

EVPXI 
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

effects on farmland 

and habitats  

would be most 

beneficial 

Allow goose 

hunting 

Johnson 

et al. 

(2017) 

Control of invasive 

black and white tegu 

Salvator merianae in 

Florida, a newly 

introduced species 

that is increasing 

rapidly under 

uncertainty regarding 

population dynamics  

Find best 

management 

action to control 

tegu abundance 

if uncertainty is 

resolved, and if 

uncertainty 

remains 

Contain tegu 

population 

whilst 

minimising 

costs 

Range of 

uncertainti

es of 

population 

ecology of 

tegu, and 

effectivene

ss of 

control 

Continuous 

– population 

parameter 

elicited from 

experts, 

replicated to 

draw 

distributions, 

then 

included in 

models 

Populatio

n matrix 

model, 

expert 

elicitation 

Objective 

function value 

– combination 

of weighted 

management 

objectives 

EVPI, 

EVPXI 

Moore 

& Runge 

(2012) 

Establish best 

management strategy 

for invasive grey 

sallow willow Salix 

cinerea in Australia 

despite uncertainty 

regarding some of its 

ecological traits and 

how they can be 

managed 

Establish if 

further research 

would enhance 

management 

through 

improving 

dynamic models 

at different 

budget levels 

Protect 

alpine bogs 

by removing 

willows 

Minimise 

resources 

used for 

willow 

removal 

Frequency 

of fires, 

population 

dynamics 

of willow, 

effectivene

ss of 

manageme

nt effort 

Continuous 

– effects of 

actions 

elicited from 

experts, then 

incorporated 

in the 

model; 

discrete - 

different 

parameter 

values used 

Expert 

elicitation, 

dynamic 

managem

ent model 

for 

different 

budgets 

Budget – 

workdays 

allocated 

EVPI, 

EVPXI 



34 

 

 

Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

Moore 

et al. 

(2011) 

Establish which 

interventions are best 

for managing Acacia 

paradoxa, an invasive 

species occurring in 

South Africa, when its 

extent is unknown 

Establish if more 

research needed 

before deciding 

whether 

eradication or 

containment is 

best for 

managing Acacia 

paradoxa 

Minimise 

overall cost 

Current 

extent of 

Acacia 

paradoxa 

Continuous - 

probability 

distribution 

for the 

extent of 

infestation 

Decision 

model 

South African 

Rand 

EVPI, 

EVPXI 

Sahlin et 

al. (2011) 

For cultivated 

introduced marine 

macroalgae in Europe, 

establish those that 

will become invasive 

and those that will not 

become invasive to 

avoid future costs of 

invasive species while 

not spending on non-

invasive species 

Evaluate which 

species of 

macroalgae are 

likely to become 

invasive so 

money can be 

spent on 

avoiding 

introductions of 

such species  

Remove 

populations 

of species 

that will 

become 

invasive 

Do not 

remove 

populations 

of species 

that will not 

become 

invasive 

Base rate 

of 

invasivenes

s 

Continuous 

– different 

parameter 

values in 

pre-

posterior 

Bayesian 

analysis 

Screening 

model of 

species 

invasivene

ss 

Cost ratio – 

relative loss of 

avoiding 

introduction 

of species 

that will not 

be invasive, 

and not 

avoiding 

introduction 

of species 

that will be 

invasive 

EVSI 

(Bayesian 

pre-

posterior 

analysis) 

Post van 

der Burg 

Find optimal 

management for two 

invasive species, leafy 

Evaluate whether 

to prioritise one 

or both invasives 

Maximise 

native 

A whole 

range of 

uncertain 

Continuous 

– probability 

distributions 

State-

and-

US$ per year 

with less than 

EVPI, 

EVPXI 
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

et al. 

(2016) 

spurge Euphorbia 

esula and yellow 

toadflax Linaria 

vulgaris, on private 

and public lands 

under different 

budgets 

and whether to 

focus on 

managing public 

lands directly or 

private land 

indirectly 

through 

incentives, under 

different 

budgets 

species 

populations 

Minimise 

costs 

values was 

modelled, 

see S3 at 

http://www

.fwspubs.or

g/doi/supp

l/10.3996/0

32015-

JFWM-023  

for species-

specific 

spread and 

establishme

nt 

parameters 

transition 

model 

50% 

infestation 

Williams 

& 

Johnson 

(2015) 

Inform management 

of pink-footed goose 

Anser brachyrhynchus 

in Western Europe 

despite uncertainty 

regarding population 

dynamics over a 50-

year time horizon. 

Establish which aspect 

of population 

dynamics would be 

most beneficial to 

understand. Data from 

Johnson et al. (2014b). 

Determine which 

management 

option would be 

best over a 50-

year time 

horizon, looking 

at different 

population levels 

Maximise 

sustainable 

harvest 

whilst 

keeping to 

the 

population 

goal 

Nine 

models 

that differ 

in the 

survival 

and 

reproductiv

e rates of 

geese 

Discrete – 

nine 

different 

population 

models 

considered 

Annual 

cycle 

models 

Objective 

value – 

relative 

measure of 

management 

performance 

EVPI, 

EVPXI 

Protected species papers 

http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
http://www.fwspubs.org/doi/suppl/10.3996/032015-JFWM-023
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

Canessa 

et al. 

(2015) 

Inform reintroduction 

strategy for the 

European pond 

terrapin Emys 

orbicularis under 

uncertainty about 

post-release effect on 

different age classes 

Determine 

optimal age 

class at which to 

release captive 

terrapins into the 

wild under 

uncertainty of 

post-release 

effects in 

different age 

groups 

Maximise 

survival of 

terrapins 

Uncertainty 

if post-

release 

effect on 

terrapins is 

stable, or 

increases 

or 

decreases 

with 

increasing 

age 

Continuous 

– different 

parameter 

values in the 

model 

Populatio

n model 

Probability of 

survival of 

different age 

classes 

EVPI, EVSI 

Cohen 

et al. 

(2016) 

Inform management 

of piping plovers 

Charadrius melodus at 

nest sites for 

improved nesting 

success and adult 

survival under 

different predation 

rates 

Decide if and in 

which situations 

nest exclosures 

improve 

breeding success 

and whether this 

exceeds the 

effect on adult 

mortality 

Maximise 

breeding 

success 

Minimise 

adult 

mortality 

A whole 

range of 

uncertain 

population 

values was 

considered, 

see 

Materials 

and 

Methods in 

Cohen et 

al. (2016) 

Continuous 

– means and 

confidence 

intervals 

identified 

through 

literature or 

expert 

elicitation 

Mixed 

multinomi

al logistic 

exposure 

model, 

expert 

elicitation 

Population 

growth rate in 

per cent 

EVPI 
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

Grantha

m et al. 

(2009) 

Decide on survey 

effort to maximise 

protection of 

members of the 

Proteaceae family in 

South Africa 

Choice of six 

different survey 

durations or use 

of a habitat map 

alone under 

uncertainty 

regarding future 

habitat loss and 

protection 

Maximise 

protection of 

Proteaceae 

Rate of 

surveying 

by 

volunteers, 

rate of 

habitat 

loss, rate of 

establishm

ent of 

newly 

protected 

areas 

Discrete – 

habitat 

suitability of 

plots; 

continuous – 

varying 

mean rates 

of habitat 

loss, habitat 

protection 

and 

volunteer 

survey hours 

spent 

Maximum 

entropy 

model for 

habitat 

suitability; 

minimum 

loss 

algorithm 

and 

maximum 

gain 

algorithm 

for 

designati

on of 

protected 

areas 

Proteaceae 

retention rate 

at the end of 

20-year 

simulation 

period 

EVSI 

Johnson 

et al. 

(2014a) 

Inform management 

of a declining 

population of 

Northern bobwhite 

quail Colinus 

virginianus in the USA 

despite uncertainty 

regarding population 

Choose which 

management 

option would be 

best and which 

potential reasons 

for a decline in 

Northern 

bobwhite quail 

Maximise 

population 

growth rate 

and harvest 

of bobwhites 

Minimise 

costs 

Cause of 

decline of 

bobwhites 

Discrete – 

hypotheses 

elicited from 

experts, then 

ranked 

Expert 

elicitation, 

populatio

n model 

Objective 

value – 

calculated 

with weighted 

objectives 

EVPI, 

EVPXI 



38 

 

 

Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

limitations and how 

management options 

could address these 

would be most 

beneficial to 

study further 

Maximise 

feasibility of 

managemen

t  

Maxwell 

et al. 

(2015) 

Inform management 

options for a declining 

koala Phascolarctos 

cinereus population in 

Australia despite 

uncertainty regarding 

survival and fecundity 

rates and how habitat 

affects different 

threats 

Determine if 

more research is 

necessary to 

decide whether 

habitat 

restoration or 

preventing 

vehicle collisions 

or dog attacks 

would be most 

cost-effective 

Maximise 

koala 

population 

growth rate 

Survival 

and 

fecundity 

rates 

Discrete – 

eight 

different 

structures of 

the 

population 

model; 

continuous – 

varying 

parameter 

values 

Determini

stic age-

structured 

matrix 

populatio

n model 

Relative 

benefit of 

actions at 

different 

monetary 

levels in AU$ 

EVPI, 

EVPXI 

Runge 

et al. 

(2011) 

Establish which 

management 

interventions are best 

for whooping crane 

Grus americana 

conservation in the US 

whilst reasons for low 

reproduction are 

unknown 

Distinguish 

between 

different 

hypotheses 

regarding 

reasons for low 

productivity as 

well as possible 

management 

actions 

Provide 

suitable nest 

sites  

Maximise 

reproductive 

success 

 Maximise 

survival 

during the 

Cause for 

reproductiv

e failure 

Discrete – 

hypotheses 

elicited from 

experts 

Expert 

elicitation 

Multi-criteria 

scale – 

relative values 

of objectives 

EVPI, EVSI 
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

breeding 

season 

Maximise 

body 

condition 

prior to 

migration 

Smith et 

al. (2013) 

Establish harvest rates 

in the US for Delaware 

Bay horseshoe crabs 

Limulus polyphemus 

with uncertainty 

regarding its link to 

red knot Calidris 

canutus rufa 

abundance 

Determine best 

population 

model of red 

knot with and 

without 

uncertainty 

Maintain 

crab harvest 

Ensure red 

knot 

recovery 

Relationshi

p between 

horseshoe 

crab 

spawning, 

red knot 

mass and 

red knot 

vital rates 

Discrete – 

three 

different 

population 

models 

Species-

specific 

populatio

n models 

Mean 

outcome of 

populations 

averaged over 

model 

weights 

EVPI 

Smith et 

al. (2012) 

Find optimal 

management to 

combine extraction of 

shale gas with 

maintaining 

populations of brook 

trout Salvelinus 

fontinalis under 

Determine level 

of gas extraction 

under 

uncertainty 

regarding effect 

of density of well 

pads on brook 

trout, and 

uncertainty 

Extract shale 

gas while 

maintaining 

brook trout 

populations 

Well pad 

density 

Discrete – 

three 

predictive 

models; 

continuous – 

different well 

pad 

densities 

considered, 

Urban-

type, 

forestry-

type and 

intermedi

ate type 

impact 

models 

Increase in 

gas extraction 

while 

maintaining 

brook trout 

populations 

EVPI 
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

different densities of 

well pads 

around 

occupancy 

model 

 

different 

model 

likelihood 

considered  

Tyre et 

al. (2011) 

Inform stream 

management for bull 

trout  Salvelinus 

confluentus 

conservation in north-

western USA under 

uncertainty about 

migratory behaviour 

Choose between 

four 

assumptions and 

a model of bull 

trout movement 

Maintain 

current 

distribution  

Maintain 

stable/increa

se in 

abundance  

Restore/mai

ntain habitat 

suitable for 

all life-

history 

stages 

Conserve 

genetic 

diversity 

Mechanism

s that 

determine 

life-history 

strategy 

Discrete – 

four 

different 

models 

 

Patch 

network 

models 

Probability of 

population 

persisting for 

256 years (for 

demonstratio

n of concept) 

EVPI 

Williams 

et al. 

(2011) 

Establish optimal 

habitat management 

for the recovery of 

Florida scrub-jay 

Aphelocoma 

Find the best 

option for 

habitat 

management 

under 

Maintain 

stable scrub 

jay 

population 

Rate of 

scrub 

regeneratio

n, future 

burning 

Discrete – 

multiple 

transition 

models 

Habitat 

occupanc

y model 

Smallest 

average loss 

in objectives 

EVPI, 

EVPXI, 

EVSI 
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

coerulescens despite 

uncertainty regarding 

the effect of different 

habitat management 

interventions 

uncertainty of 

how vegetation 

will regenerate 

rate after 

removal of 

combustibl

es 

Ecosystems papers 

Bouma 

et al. 

(2011) 

Potential use of Earth 

Observation data for 

Great Barrier Reef 

protection, used to 

assess if non-targeted 

or targeted Water 

Action Plan would 

best address sediment 

discharge 

Determine when 

Earth 

Observation 

data has most 

value: if 

sediment 

discharge is an 

equal issue from 

all catchments or 

if there are 

differences 

among 

catchments 

Decrease 

sediment 

discharge 

into Great 

Barrier Reef 

Difference 

in sediment 

discharge 

between 

catchments 

Cost of 

pollution 

abatement 

Discrete – 

differing 

simulations 

in model, 

expert 

elicitation on 

data 

accuracy 

incorporated 

as prior 

belief 

Four 

different 

simulation

s for cost 

minimisati

on model, 

expert 

elicitation 

Million 

AU$/year 

EVPI 

Converti

no et al. 

(2013) 

Find optimal 

interventions and 

monitoring plans for 

restoring water flow in 

the Florida Everglades 

to meet objectives 

Distinguish 

between 

different 

monitoring 

efforts (low – 

medium – high) 

Improve 

ecological 

conditions 

whilst 

minimising 

Uncertainty 

around 

decisions 

on 

restoration 

alternatives 

Discrete – 

three rainfall 

scenarios 

and two soil 

oxidation 

scenarios 

Probabilis

tic 

decision 

network 

consisting 

of 

Cost in $, 

benefit is 

relative utility 

of 

management 

interventions 

EVPI - 

Change in 

payoff of 

different 

monitorin

g plans 



42 

 

 

Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

including biodiversity 

conservation and 

flood protection 

under uncertainty 

regarding future 

rainfall and soil 

oxidation 

operational 

costs 

and 

monitoring 

as well as 

climate 

change 

were 

modelled 

environm

ental, 

monitorin

g and 

decision 

sub-

models 

for one 

managem

ent plan 

Perhans 

et al. 

(2014) 

In areas to be clear-

cut, find optimal 

method for selecting 

trees that are to be 

conserved with 

highest biodiversity 

value, using lichens as 

indicator species 

Decide which 

method of 

selecting trees to 

retain will give 

most biodiversity 

benefit 

Find trees 

that would 

give highest 

number of 

lichens 

Find trees 

that would 

give highest 

number of 

protected 

lichens 

Maximise 

probability 

that a 

protected 

species is 

represented 

Relationshi

p between 

different 

tree 

attributes 

and lichens 

present 

Continuous 

– model 

averaging of 

model 

parameters 

Generalis

ed linear 

model 

Swedish 

krona 

EVPI 



43 

 

 

Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

Runting 

et al. 

(2013)  

Find optimal 

allocation of resources 

for conservation areas 

under uncertainty 

around sea level rise 

in coastal South East 

Queensland 

Find optimal 

allocation of 

budget towards 

either research 

or conservation 

of coastal areas 

at different 

budget levels 

Maximise 

areas for 

conservation 

Future sea-

level rise, 

accuracy of 

elevation 

data, 

budget 

level 

Discrete –

different 

models, 

coarse/ fine 

resolution 

elevation 

data, 

different 

sea-level rise 

scenarios; 

continuous – 

different 

budget 

levels 

Sea Level 

Affecting 

Marshes 

model or 

Inundatio

n model 

AUS$ EVPXI 

Thorne 

et al. 

(2015) 

Find management 

options robust to 

different climate 

change scenarios in 

the San Francisco Bay 

area 

Decide if and 

which 

uncertainty to 

reduce – storm 

or marsh 

resilience 

Maximize 

marsh 

ecosystem 

integrity 

Maximize 

likelihood of 

recovery of 

California 

Ridgway’s 

Rail (Rallus 

Frequency 

and 

intensity of 

storms and 

tidal marsh 

resilience 

Discrete – 

discrete 

states in 

network with 

conditional 

probabilities 

Bayesian 

network 

Relative utility 

of 

management 

under 

different 

assumptions 

on scale from 

0 to 100 

EVPI 
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t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

obsoletus 

obsoletus) 

Maximize 

human 

benefits 

from tidal 

marshes 

Fisheries papers: 

Costello 

et al. 

(1998) 

Find optimal harvest 

rates of Coho salmon 

Oncorhynchus kisutch 

under uncertainty 

around future El Niño 

events 

Choose optimal 

harvest rate for 

coho salmon 

under 

uncertainty 

about future El 

Niño events and 

if uncertainty can 

be resolved 

Maximize 

expected net 

present 

value of the 

Coho fishery 

Future El 

Niño 

occurrence

s 

 

Discrete; 

three 

different 

states for 

the annual El 

Niño phase 

Bioecono

mic 

model of 

Coho 

salmon 

fishery 

US$ EVPI, EVSI 

Costello 

et al. 

(2010) 

Design optimal 

Marine Protected 

Areas network for 

sheephead 

Semicossyphus 

pulcher, kelp bass 

Paralabrax clathratus 

and kelp rockfish 

Choose location 

and extent of 

Marine 

Protected Areas 

Maximise 

fishery 

profits whilst 

ensuring 

conservation 

of species 

Dispersal 

of fish 

larvae 

Discrete – 10 

different 

dispersal 

kernels used 

Stage-

structured 

spatial 

model, 

ocean 

circulation 

model 

Net profit of 

fishing – 

unitless 

EVPI 
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

Sebastes atrovirens to 

maximise fishery 

profits 

Kuikka 

et al. 

(1999) 

Management of Baltic 

cod Gadus morhua 

fisheries in the Baltic 

Sea 

Determine best 

mesh size for 

cod fishery 

Minimise risk 

of spawning 

biomass 

going below 

critical levels 

Maximise 

yield 

Growth 

rate of cod, 

recruitment 

of cod, 

critical 

spawning 

biomass 

Discrete – 

three 

different 

models for 

recruitment 

Bayesian 

influence 

diagram 

that 

combines 

three 

different 

recruitme

nt models 

Utility 

function 

reflecting 

both yield 

(kilotons) and 

risk of falling 

below critical 

spawning 

mass 

EVPI 

Mäntyni

emi et 

al. 

(2009) 

Management of North 

Sea herring Clupea 

harengus fisheries in 

the North Sea 

Determine ideal 

fishing pressure 

under 

uncertainty 

around the 

stock–

recruitment 

relationship 

Maximise 

expected 

profits over 

20-year 

period 

Stock–

recruitment 

relationship 

Discrete – 

two stock–

recruitment 

relationships 

considered 

Bayesian 

probabilit

y model 

Norwegian 

Krone 

EVPI 

Sainsbur

y (1991) 

Management of a 

multi-species fishery 

in north-western 

Australia of genera 

Find optimal 

management 

option for fishery 

by using trap or 

trawl catch and 

Maximise 

value of 

fisheries 

Effect of 

intra- and 

interspecifi

c 

competitio

Discrete – 

four 

different 

models; 

continuous – 

Populatio

n growth 

models 

Million AUS$ EVPI 
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Paper Paper summary  VoI application  Managemen

t objective(s) 

Uncertainti

es 

considered 

How was 

uncertainty 

expressed 

Predictive 

model 

Net benefit 

parameter  

VoI type 

Lethrinus, Lutjanus, 

Nemipterus, Saurida 

using adaptive 

management to 

incorporate 

learning into the 

management 

process 

n as well as 

habitat on 

abundance 

of different 

fish species 

different 

parameter 

values 

Other topics 

Hartman

n & 

Andre 

(2013) 

A framework for the 

use of phylogenetic 

diversity to inform 

which species should 

be protected, and the 

associated costs and 

benefits 

Distinguish when 

to use species 

richness as a 

measure of 

biodiversity, and 

when to use 

phylogenetic 

diversity as a 

better measure 

Maximize 

phylogenetic 

diversity 

Uncertainty 

in the 

underlying 

phylogenet

ic 

relationship

s among a 

set of 

species 

 

Continuous 

– 10,000 

samples of 

possible 

phylogenetic 

trees for a 

set of 20 

species 

Calculatio

n of 

phylogen

etic 

diversity, 

based on 

the edge 

lengths 

for the 

included 

species 

from a 

phylogen

etic tree 

Proportion of 

maximum 

phylogenetic 

diversity 

retained 

EVPC  
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es 
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uncertainty 
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Predictive 

model 

Net benefit 
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VoI type 

Johnson 

et al. 

(2002) 

Find optimal harvest 

strategy under 

uncertainty regarding 

population processes 

of mallards Anas 

platyrhynchos 

Optimal harvest 

strategy if 

accurate 

population 

model was 

known 

compared to if 

uncertainty 

remained 

Maximise 

long-term 

cumulative 

harvest 

Density 

dependenc

e and 

additive or 

compensat

ory 

mortality 

Discrete – 

four 

population 

models and 

their 

probabilities 

Age-

structured 

populatio

n models 

Harvested 

mallards/year, 

converted to 

$ 

EVPI 
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The type of performance metric, that is, how the achievement of objectives by 

different management interventions was expressed, was conveyed in a wide variety of 

ways. Monetary values for costs and benefits were used by 12 papers (40%) (Sainsbury, 

1991; Costello et al., 1998, 2010; Johnson et al., 2002; D'Evelyn et al., 2008; Mäntyniemi et 

al., 2009; Bouma et al., 2011; Moore et al., 2011; Moore & Runge, 2012; Runting et al., 

2013; Perhans et al., 2014; Post van der Burg et al., 2016). Two papers used monetary 

values for costs only, and relative benefits that can be achieved at those costs (Maxwell 

et al., 2015; Convertino et al., 2013). Another eight (27%) papers used a unitless value 

that reflected a weighted response across multiple objectives (Runge et al., 2011; Smith 

et al., 2013; Williams et al., 2011; Johnson et al., 2014a,b, 2017; Thorne et al., 2015; 

Williams & Johnson, 2015). Other papers used a range of performance metrics, namely 

cost ratio (Sahlin et al., 2011), probability of survival of different age classes (Canessa et 

al., 2015), population growth rate in per cent (Cohen et al., 2016), species retention rate 

at the end of a 20-year simulation period (Grantham et al., 2009), increase in gas 

extraction while maintaining brook trout (Salvelinus fontinalis) populations (Smith et al., 

2012), probability of population persisting for 256 years (Tyre et al., 2011), utility function 

reflecting both yield (kilotons) and risk of falling below critical spawning mass (Kuikka et 

al., 1999), and proportion of maximum phylogenetic diversity retained (Hartmann & 

Andre, 2013). 

Of the 30 papers found, 19 considered multiple objectives (63%), whereas 11 

(37%) considered single objectives (Table 5). 17 papers (57%) were concerned with 

structural forms of uncertainty and 19 with parametric forms of uncertainty (63%) – six 

papers considered both forms of uncertainty (20%). While 27 papers used EVPI (90%), 

10 used EVPXI (33%), all of which were published since 2011, and six used EVSI (20%). 

Twelve papers used more than one VoI calculation. 
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Table 5. Table summarising papers according to the uncertainties and objectives 

considered and depending on the type of VoI used. EVPI, expected value of perfect 

information; EVPXI, expected value of partial perfect information; EVSI, expected value 

of sample information. 

 Uncertainty EVPI EVPXI EVSI 

S
in

g
le

 O
b

je
ct

iv
e
 

Structural Sainsbury (1991); Costello et 

al. (1998); Johnson et al. 

(2002); Mäntyniemi et al. 

(2009); Bouma et al. (2011); 

Williams et al. (2011); 

Maxwell et al. (2015) 

Williams et al. 

(2011); Runting et 

al. (2013); Maxwell 

et al. (2015) 

Costello et al. 

(1998); 

Grantham et al. 

(2009); Williams 

et al. (2011) 

Parametric Sainsbury (1991); Bouma et 

al. (2011); Moore et al. 

(2011); Canessa et al. (2015); 

Maxwell et al. (2015) 

Moore et al. 

(2011); Runting et 

al. (2013); Maxwell 

et al. (2015) 

Grantham et al. 

(2009); Canessa 

et al. (2015) 

M
u

lt
ip

le
 O

b
je

ct
iv

e
s 

Structural Kuikka et al. (1999); Costello 

et al. (2010); Tyre et al. 

(2011); Smith et al. (2012, 

2013); Convertino et al. 

(2013); Johnson et al. 

(2014b); Williams & Johnson 

(2015) 

Johnson et al. 

(2014b); Williams 

& Johnson (2015) 

 

Parametric D'Evelyn et al. (2008); 

Runge et al. (2011); Moore & 

Runge (2012); Smith et al. 

(2012); Hartmann & Andre 

(2013); Johnson et al. 

(2014a, 2017); Perhans et al. 

(2014); Thorne et al. (2015); 

Cohen et al. (2016); Post van 

der Burg et al. (2016) 

Moore & Runge 

(2012); Johnson et 

al. (2014a, 2017); 

Post van der Burg 

et al. (2016) 

Runge et al. 

(2011); Sahlin et 

al. (2011) 

Use of VoI in the field of biodiversity conservation is a recent phenomenon. The 

number of papers has increased markedly since 2011, with eight papers published 

before 2011, and 22 papers published since the start of 2011 (Figure 3). The number of 

citations has increased steadily and was at 813 at the end of 2017, a mean of 27 citations 

per paper. Leadership in this arena comes primarily from the USA and Australia: the 

country of affiliation for first authors was USA for 18 of the papers (60%), Australia for 

seven (23.3%), and European countries for five (16.7%). 18 papers (60%) had at least one 

author who worked for the US Department of Interior. 



50 

 

 

Figure 3. Cumulative number of applied Value of Information (VoI) papers in 

biodiversity conservation and their total citations over time. The citations are tallied until 

the end of 2017. 

2.4 Case studies 

All 30 examples found through the literature search undertook a VoI analysis that shed 

light on whether more information would be valuable to the decision maker, but they 

varied in the transparency of their presentation, the thoroughness of the uncertainty 

analysis, and the clarity of the usefulness to the decision maker. Rather than a detailed 

analysis of the strengths and shortcomings of all 30 cases, we present here three case 

studies that describe clearly how VoI was used and calculated, represent a range of 

applications of VoI, and document how VoI informed the decision-making process. 

These three case studies are exemplary applications of VoI, but each also has a few 

shortcomings; these shortcomings help identify fruitful areas for improved application. 

They are also amongst the VoI papers with the highest annual citations. 

2.4.1 Case study 1 

Costello et al. (2010) used VoI to find an optimal marine protected area network in 

California, under uncertainty around dispersal of larval fish. Their aim was to design an 
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optimal Marine Protected Areas network for sheephead Semicossyphus pulcher, kelp 

bass Paralabrax clathratus, and kelp rockfish Sebastes atrovirens to maximise fishery 

profits whilst ensuring the conservation of the three fish species. They investigated the 

trade-offs between maximising profits and maximising conservation by changing the 

weighting of the two objectives across the different scenarios. The authors considered 

135 patches of 10 km2. There was uncertainty around the dispersal of the fish larvae, 

which affects where the species will be, which is relevant both for fishing these species 

as well as for protecting them. They used ten different dispersal kernels, of which only 

eight may accurately represent the real dispersal of fish larvae. The other two were 

simplified kernels, included to see how incorrect assumptions might affect the 

outcomes. The management alternatives were based around these kernels: to choose 

the best possible spatial harvest either under uncertainty or with perfect information, or 

under the two incorrect dispersal kernels. A stage-structured spatial model as well as an 

ocean-circulation model were used, and EVPI was calculated.  

To maximise profits from fishing, the two incorrect dispersal kernels led to the 

least profits, while imperfect information led to higher profits and perfect information to 

the highest profits, for all three species of fish. To maximise the conservation benefits, 

there was no difference in the value of all three fisheries between the different dispersal 

kernels. The area in marine protected areas increased with certainty, and was lowest for 

the two incorrect dispersal kernels. The VoI to maximise profits was 11%. 

Two observations about this case study point towards challenges in the 

application of VoI methods. First, the analysis of uncertainty focused on one aspect of 

the fish model, the larval dispersal kernels, and did not consider uncertainty in other 

aspects of the model, such as in the other fish population parameters or in assumptions 

about the fidelity with which optimal designs are implemented in practice. How 

comprehensive does the expression of uncertainty need to be? To some extent, the 

practice of modelling involves judgments about which uncertainties will matter and so 

which should be explored; these are essentially informal VoI evaluations. There is no 

guidance yet about how modellers should navigate this question. Second, to generate 

alternative larval dispersal kernels, Costello et al. (2010) used alternative realisations 
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from a stochastic ocean circulation model, but then acknowledge that they assumed 

those represented fixed dispersal kernels for the purpose of developing an optimal 

protected area design. Does their set of eight alternative kernels represent the full range 

of uncertainty for this aspect of their model? Would an alternative ocean circulation 

model have added to the range of dispersal kernels? We believe this is a valuable open 

research question – is there a way to evaluate whether a candidate set of models 

captures the relevant degree of uncertainty for the decision problem at hand? 

2.4.2 Case study 2 

Maxwell et al. (2015) used VoI to determine the value of more research in choosing the 

best management intervention for a declining koala Phascolarctos cinereus population 

in Australia. Their objective was to maximise the growth rate of the koala population. 

Three actions were suggested that could address threats to koalas, and the authors 

investigated how much should be invested in each action under different budget levels: 

preventing vehicle collisions by building fences and bridges; preventing dog attacks by 

building enclosures for dogs; and preventing spread of disease by buying land for 

conversion to koala habitat, which was also considered to reduce the other two threats. 

There was uncertainty about how habitat cover affected koala mortality, as well as 

about the survival and fecundity rates of koalas. These uncertainties were described 

using eight population models. The optimal strategy (how much of a given budget 

should be spent on each action) was calculated for various budget levels. EVPI and 

EVPXI were calculated by determining which uncertainties to reduce under different 

budget levels to achieve a certain population growth rate, which was then converted 

into a financial VoI. 

The authors found that preventing vehicle collisions was the most cost-effective 

action at low budget levels but that larger budgets allowed more to be spent on habitat 

restoration instead, due to the disparity in costs of the different actions. The VoI differed 

between different budget levels; at budgets below AUS$45 million it was best to resolve 

the uncertainty around survival and fecundity, whereas at budgets above $45 million it 

was best to resolve uncertainty around habitat cover. Maxwell et al. (2015) made a 

valuable methodological contribution: even though the management objective was not 



53 

 

stated in monetary terms (the objective was to maximise the population growth rate of 

koalas), the VoI could be converted to a financial value by comparing budget levels that 

could achieve the same expected population growth rate with and without resolving 

uncertainty. Interestingly, the VoI was never more than 1.7% of the budget. 

Maxwell et al. (2015) analysed both structural and parametric uncertainty in a 

combined analysis, serving as a good example for how others can include both types of 

uncertainty in a VoI analysis. They found that parametric uncertainty explained around 

97% of the EVPI, with structural uncertainty contributing very little, but is this a general 

result? There has not yet been a comprehensive study to look at how structural and 

parametric uncertainty contribute to EVPI and whether there are any general patterns 

that can be inferred. 

2.4.3 Case study 3 

A study using expert elicitation was undertaken by Runge et al. (2011) who studied the 

management of a reintroduced whooping crane Grus americana population in the USA. 

At the time of the study, the population was failing to reproduce and so the aim was to 

enhance the current population under uncertainty around the reasons for low 

reproductive success. They formulated four objectives to contribute to a self-sustaining 

population of whooping cranes: provide suitable nest sites; maximise reproduction; 

maximise survival during the summer months; and improve body condition when the 

birds leave for their winter quarters. Because quantitative data were not available to 

evaluate the effectiveness of all proposed actions, they used an expert elicitation 

process to articulate competing hypotheses for reproductive failure, develop alternative 

management action, and evaluate the management actions under each hypothesis. 

Eight hypotheses to explain the pattern of reproductive failure were developed, ranging 

from nutrient limitation to harassment by black flies. Seven alternative management 

actions were developed, using the competing hypotheses as motivation. Using formal 

methods of expert judgment, the experts were then asked to estimate how well each 

action would address each of the four different objectives, under each hypothesis.  

Three variants of VoI (EVPI, EVPXI and EVSI) were calculated with the information 

provided by the expert panel. Under uncertainty, the best action was meadow 
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restoration, which was thought to address all four objectives best. For three of the four 

objectives, the VoI was nearly 0, because the best action was the same under most of 

the hypotheses. But for one objective (maximising the fledging rate), the best action 

depended on the underlying hypothesis for reproductive failure, thus the VoI was 

substantial (25.7%). Calculation of the expected value of partial information (EVPXI) 

revealed that the most important hypotheses to resolve were how parasitic flies and 

human disturbance affected whooping cranes. In part as a result of this analysis, a 

controlled experimental study of the effect of parasitic flies on reproduction was 

undertaken, lending strong support to this hypothesis; in response, management 

agencies have refocused reintroduction efforts to areas with lower parasitic fly densities. 

This study reveals one difficult challenge in estimating uncertainty. The authors 

considered eight hypotheses against seven alternatives and four objectives, thus, each 

expert had to estimate 224 values. A panel of experts was used, but uncertainty across 

experts was not analysed, nor were the experts asked to estimate their internal 

uncertainty, in part because the sheer magnitude of the elicitation task was already 

exhausting for the experts. Thus, differences across objectives and hypotheses were 

evaluated, but differences across and within experts were ignored. In this setting, expert 

judgement was needed, because empirical data could not inform the full set of 

questions being asked. But there are not yet methods in the expert judgment literature 

for eliciting large patterned matrices of responses, while properly estimating within- and 

among-expert uncertainty and minimising expert fatigue. 

2.5 Discussion 

Natural resource managers have to make decisions despite uncertainty on issues such 

as rapid species declines, increasing numbers of invasive species, or changes in 

ecosystems due to land-use change. In many cases, there is an urgency to take action 

even though the science behind these, and other pressing issues, is generally not fully 

understood (Tittensor et al., 2014). VoI is a method for evaluating this uncertainty, yet its 

potential remains relatively unexplored, with only 30 papers so far using it in 

biodiversity conservation.  



55 

 

The pursuit of a VoI analysis requires a structured approach to decision analysis, 

which has rewards in its own right (Gregory et al., 2012; Possingham, 2001). Applied 

biodiversity conservation is about decisions, and the field of decision analysis provides a 

rich set of tools for helping decision makers navigate the complexities in natural 

resource-management settings. The consistent use of these methods is emerging in a 

few conservation organisations around the world, supported by a rapidly expanding 

literature. 

The specific benefit of a VoI analysis is to ascertain whether uncertainty 

surrounding the effects of management actions should be reduced or not. It is valuable 

to note that the answer to this question is context specific. There are examples from our 

review where using VoI showed that uncertainty should be reduced first (Costello et al., 

2010; Bouma et al., 2011; Runting et al., 2013), and other examples where it makes little 

difference to the overall outcomes whether uncertainty is reduced or not (Johnson et al., 

2014a,b; Maxwell et al., 2015). There are two endeavours where the resolution of 

uncertainty takes a central role: research design and adaptive management. There is 

potential to extend the application of VoI to prioritising research topics through the use 

of EVPXI. This could be used by conservation NGOs or funding agencies to prioritise 

which projects to fund, or by policy makers to help set national or international 

conservation and research priorities. VoI can also be used to decide when adaptive 

management is warranted, as it shows whether resolution of uncertainty will improve 

the expected outcomes associated with management decisions and, if so, which 

elements of uncertainty contribute most to that improvement.  

Attention to VoI methods in the conservation literature is recent. The first 

suggestion for using VoI in biodiversity conservation was made by Walters (1986), 

followed by the earliest paper included in our review (Sainsbury, 1991). Seven more 

papers on VoI were published in the next 20 years. A turning point appears to have 

occurred in 2011: 22 of the 30 papers we found were published since then. Because the 

introduction of VoI methods into the biodiversity conservation literature is fairly recent, 

the coverage of topics to which it has been applied is incomplete. Most of the papers 

we reviewed focus on EVPI, while the use of EVPXI has increased since 2011. Only six of 
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the 30 papers used EVSI, so its use remains poorly explored. Uncertainty was dealt with 

in a range of ways: either by using different model structures, by using the same model 

but with different parameters, or by eliciting uncertainties from experts. A wide range of 

predictive models has been used for VoI analysis, with many papers using population 

models, but there is the potential to explore its use with other modelling structures, 

such as machine-learning methods like Random Forests or Neural Networks.  

Our review revealed that although many scientists are talking about VoI methods 

(hundreds of papers), their use in applied settings is more limited (30 papers) – why is 

the uptake of VoI so slow? Using VoI in a structured decision-making context is 

advocated by many in ecology and biodiversity conservation, for example, at the US 

Department of the Interior (Williams, Szaro & Shapiro, 2009), and recently by the IUCN 

in their guidelines for species conservation planning (IUCN – SSC Species Conservation 

Planning Sub-Committee, 2017). It does not appear, however, that these calls have yet 

resulted in the systematic use of VoI in conservation decision making, with the 30 cases 

presented herein encompassing the bulk of the applications. The methods are novel 

enough that applications warrant publication in the peer-reviewed literature. While 

there is not a mechanism to systematically search the grey literature, during our search 

we only came across two or three indications of unpublished VoI analyses by 

conservation decision makers. We have not undertaken an institutional analysis to 

identify the impediments to faster uptake of these methods, but we suspect that the 

methods are simply at an early stage of adoption. Widespread introduction to the 

concept of VoI in the conservation field only occurred in 2011 and conservation agencies 

are only now deliberately building capacity in decision analysis. The study of 

organisational change, especially adoption of decision-analysis methods, suggests that 

it typically takes 15–25 years to achieve widespread adoption of new practices (Spetzler, 

Winter & Meyer, 2016). 

Standardised reporting of VoI analyses might help in the communication and 

adoption of the methods. The calls for using VoI (Williams et al., 2009; IUCN, 2017) 

ensure there is a clear framework within which VoI can be applied. It also means that 

reporting standards for VoI analyses can be developed readily (Table 6). These 
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standards include a description of the full decision context, whether a real or 

hypothetical decision is considered, what the uncertainties are, which type of VoI was 

used, how the objectives were measured, and the time horizon. As VoI is implemented 

more widely, these reporting standards can increase the transparency of the VoI 

calculation. Most of the items we suggest in the reporting standards were listed in the 

papers we found and have been summarised in Table 6, but for some papers stating the 

reporting standards explicitly would aid in making the papers easier to understand. 

Rarely was the decision maker named however, and no paper stated whether the 

research would be used to inform management.  

Table 6. Suggested reporting standards for the use of Value of Information (VoI) in 

biodiversity conservation. Adapted from PrOACT (Hammond et al., 2015). See also 

Section I.3. EVPI, expected value of perfect information; EVPXI, expected value of partial 

perfect information; EVSI, expected value of sample information. 

Reporting 

standard 

Description 

Problem What is the problem or the decision to be made? Is it a real-world 

decision to be made? 

Objectives What objectives are considered to ensure delivery of the decision? 

Alternatives Which alternative actions are proposed to meet objectives? 

Consequences What are the consequences of different alternatives? How have 

they been estimated? 

Trade-offs What are the trade-offs of the alternative actions? 

Uncertainty What are the key uncertainties? Are they structural or parametric? 

Are they discrete or continuous? How have they been dealt with? 

Type of VoI EVPI, EVPXI or EVSI 

Performance 

metric 

The performance metric needs to be stated and fully explained. 

Ideally this would have a financial value too, to make the analysis 

more useful for managers, and to enable synthesising of different 

studies in the future. 

Decision makers State whether the research is undertaken on behalf of a decision 

maker and whether they are planning on implementing the 

findings.  

Time horizon State time horizon. If the VoI shows that more research is 

necessary, and therefore there is a need for adaptive 

management, a timeframe should be given when the information 

will be re-assessed. State how long intervention implementation 

will take. 
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Our review of the extant literature applying VoI methods suggests a number of 

fruitful areas for future research and development. First, Tables 4 and 5 reveal a number 

of gaps in application (e.g. no examples of using EVSI in ecosystem management 

settings); the continued expansion of VoI methods into all types of conservation 

decisions, with all system model types, could provide greater guidance for other 

decision makers. Second, there is a need for guidance about which uncertainties to 

include in a VoI analysis. That is, how should scientists and decision makers work 

together to identify the sources of uncertainty to examine, and what are the 

consequences of leaving out important sources? Third, there are not yet methods for 

evaluating whether the range of values or range of alternative models used to capture 

uncertainty adequately does so. Put another way, does uncertainty about the 

uncertainty matter? Can the usefulness of a VoI analysis be undermined if uncertainty is 

inadequately captured? This question is perhaps most applicable when uncertainty is 

expressed as a discrete set of alternative models or parameter sets. Fourth, perhaps to 

help in developing the guidance for the previous two items, is it possible to identify 

what types of uncertainty contribute most to EVPI? Is there an important difference 

between structural and parametric uncertainty? Are there other properties of sources of 

uncertainty that are associated with greater EVPI? Fifth, there is a need for new methods 

of expert judgment that are designed to elicit patterned matrices of values, with 

expression of uncertainty, without exhausting the cognitive resources of experts. For 

example, a decision setting that involves four possible actions and five alternative 

models of system response (representing uncertainty) requires elicitation of 20 values, 

but these values should not be viewed as independent – there are presumably 

relationships across rows and columns that are part of the expert knowledge. Sixth, and 

finally, there is a curious pattern in many of the examples we reviewed – EVPI can often 

be smaller than one might expect. Is this a common occurrence across conservation 

applications, and if so, why? Is it because the intuitive expectations of a high VoI are 

biased, or is it because the analysis of uncertainty is too narrow? 

Decisions regarding biodiversity conservation, especially in the face of climate 

and land-use change, are often impeded by uncertainty. Risk-analysis methods can help 
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managers make decisions in the face of uncertainty, and VoI methods can help them 

decide whether to gather more information before committing to action. The increased 

use of VoI since 2011 is a positive sign, and its wider implementation will be beneficial 

for making robust decisions in an uncertain future. To support expanded 

implementation, there are a number of open research questions regarding how best to 

conduct VoI analyses. 

2.6 Conclusions 

(1) Formal methods of decision analysis provide tools for making rational conservation 

decisions in the face of uncertainty, whether those decisions concern management of 

imperilled species, control of invasive species, establishment and management of 

protected areas, setting of harvest quotas, or any other of the classes of decisions faced 

by natural resource-management agencies. 

(2) VoI methods allow decision makers to understand the value of resolving uncertainty, 

and thus provide a way: to evaluate whether more information is needed before taking 

action; to set a research agenda by ranking the influence of different sources of 

uncertainty; and to motivate and guide the development of adaptive management. 

(3) The increasing use of VoI in biodiversity conservation since 2011 indicates that there 

are efforts to tie the analysis of uncertainty more explicitly to decision-making contexts. 

The variety of VoI methods have been explored fairly thoroughly in conservation 

settings, but there are few examples of the expected value of sample information (EVSI). 

(4) While VoI has been extensively promoted as a tool to inform management, it is 

much less common that is has been implemented for managing conservation issues. For 

VoI to make a difference, it needs to be used by managers, policy makers and funders, 

not just scientists. The use of decision analysis and formal VoI could do much to reduce 

the incoherence of information flow from scientists to practitioners. We postulate that 

this is a critical missing piece required to bridge the knowing–doing gap. 

(5) Common reporting standards to document the use of VoI could be a valuable way 

to share insights and motivate further application of these methods. 
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Chapter 3 Predicting extinction risk and using Value 

of Information to prioritise conservation assessments 

in the Caatinga Domain in Brazil  

Abstract 

To accelerate measurable progress on species conservation, we need to have 

knowledge regarding species’ conservation status. While the number of species 

assessed on the Red List is increasing, the vast majority of species have not been 

assessed. We used Bayesian Network algorithms to predict extinction risk of plants in 

the Caatinga Phytogeographical Domain, a species-rich area of Brazil, identified factors 

determining threat status, and calculated the Value of Information of the predictions in 

order to prioritise future actions. We used information from a catalogue of vascular 

plants of the Caatinga, IUCN Red List data, and Brazilian National Red List data. We built 

Bayesian Networks to predict extinction risk using three different algorithms, and 

predicted both Red List category and threat status (combining Red List categories into 

‘threatened’ and ‘not threatened’). The best-performing algorithm was Naïve Bayes 

which predicted the threat status of 81.8% of non-threatened and 63.0% of threatened 

species correctly. The most important predictors of threat status were the genus, the 

number of occurrence records, and the growth form of a species, and in which habitats 

they occur. We predicted threat status and IUCN Red List category for 1,002 species not 

assessed on Red Lists, of which 81 species were predicted to be threatened. Value of 

Information analysis indicated that Begoniaceae was the family with highest extinction 

risk, but there was substantial uncertainty around this. We can predict extinction risk 

using Bayesian Networks in data-poor situations with high accuracy, adding to the 

computational methods used so far. Value of Information could be used in the future to 

identify species groups that are at high risk, and decide whether to assess more species 

or to undertake conservation action. 
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3.1 Introduction 

3.1.1 Need for quick assessments to meet global targets 

Humans are impacting the world’s biodiversity, mainly by changing and destroying 

natural habitat through agriculture, logging and development (Maxwell et al., 2016). 

These impacts are likely to be amplified in the future because of the increasing human 

population, consumption patterns, land use changes from natural to managed areas 

(Tilman et al., 2017) and changes in the world’s climate (Pacifici et al., 2015). Because of 

these actions, species are going extinct at rates comparable to those of the five previous 

mass extinction events (Ceballos et al., 2015). Several  global targets aim to halt species 

extinctions, for example the Convention on Biological Diversity’s Aichi Target 12, or 

Target 15.5 of the Sustainable Development Goals, Life on Land (Convention on 

Biological Diversity, 2016), to which most countries have committed. If we are to take 

active measures to prevent species from going extinct, we first need to know which 

species are at risk of extinction, where and why.  

The IUCN Red List of threatened species is the most comprehensive assessment 

of extinction risk globally. Some well-studied groups such as birds have been 

comprehensively assessed for the IUCN Red List (IUCN, 2017). In the case of land plants 

(Embryophyta) however, an estimated 403,911 species had been described by 2016 (Nic 

Lughadha et al., 2016) but only 25,323 or 6.3% have been assessed on the global IUCN 

Red List (IUCN, 2018b). A considerable number of plant species are discovered each 

year, and between 2007 and 2015, a mean of 2,137 new plants were described annually 

(Nic Lughadha et al., 2016). Around 1,500 plants assessments are added to the IUCN Red 

List each year (Brummitt et al., 2015). In other words, current rates of assessment are not 

keeping up with descriptions of new species. Development of rapid, replicable and 

reliable methods for assessing species level of threat on the IUCN Red List are therefore 

imperative. 

3.1.2 Predicting extinction risk 

For species lacking IUCN Red List assessments, it is possible to model which species are 

threatened. Examples include studies on mammals (Davidson et al., 2012; Di Marco et 

al., 2014; Bland et al., 2015; Jetz and Freckleton, 2015), birds (Machado et al., 2013), 
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amphibians (Howard and Bickford, 2014), fish (Dulvy et al., 2014; Comeros-Raynal et al., 

2016), and also plants (Leão et al., 2014; Darrah et al., 2017). Most of these studies model 

species extinction risk of  species from particular taxonomic groups, for example species 

in a single animal order, except for the two papers on plants which predicted the 

extinction risk of species from two different orders (Darrah et al., 2017) and for 

Angiosperms as a whole in the Atlantic Forest (Leão et al., 2014). Predictor variables in 

these studies included, amongst others, information about phylogeny, taxonomy, range 

size, habitat, life history, and threats.  

Many of the studies modelling extinction risk do so using Random Forest models 

(Davidson et al., 2012; Di Marco et al., 2014; Howard and Bickford, 2014; Comeros-

Raynal et al., 2016; Darrah et al., 2017) or other Machine Learning tools such as Neural 

Networks, Support Vector Machines or the K-Nearest Neighbour algorithm (Bland et al., 

2015). Often the models used to predict extinction risk struggle to predict which of the 

species are threatened (for example, Machado et al. (2013) or Comeros-Raynal et al. 

(2016)), as there is usually a much smaller number of threatened species than  non-

threatened species. This issue, known as the class imbalance problem (Johnson et al., 

2012), is not unique to biodiversity conservation but widely discussed in the machine 

learning literature (Guo et al., 2008; Galar et al., 2012; Nanni et al., 2015).  

Bayesian networks are graphical models in which variables (called nodes) are 

linked through conditional probabilities. The network structure can be built by hand, 

using expert knowledge, or through Machine Learning using different algorithms. 

Machine Learning implementations of Bayesian networks have shown promise for 

problems such as classifying deforested areas (Mayfield et al., 2017) or different types of 

vegetation (Dlamini, 2011b), and can be useful for classification of groups with small 

sample sizes (Mayfield et al., 2017). Until now, machine learnt Bayesian Networks have 

not been used for predicting extinction risk (but see Newton 2010), though their 

potential is promising. Updating probabilities of node states through scenario analysis 

can reveal changes in the probability distribution of other nodes, providing novel 

insights into the impact of system perturbation. 
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3.1.3 Value of Information 

Value of Information is a method rooted in decision science and is a way of assessing 

the consequences of acquiring new information for decision-making, as opposed to 

making decisions with current information. The premise is that new information is only 

worth collecting if it is likely to change the course of management actions, so Value of 

Information calculations are based on modelling what the new information might be, 

and how it would impact on decision-making. For example, the impact of different 

management actions on a declining species may be modelled when there are varying 

theories around the causes of decline, to assess whether investigating the cause of 

decline would be informative for management (Runge et al., 2011). Value of Information 

has been applied in biodiversity conservation at species level for managing both 

endangered and invasive species, at ecosystem level, and for fisheries, but it has not 

been applied in the context of prioritising IUCN Red List assessments. 

3.1.4 The Caatinga 

The Caatinga is a semi-arid phytogeographical domain in South America, located in 

north-eastern Brazil (Figure 4). Although located in the tropics, it has low rainfall with 

erratic patterns of precipitation and dry seasons that can last from six to eleven months 

(Nimer, 1972). In the past, conservation efforts of the Brazilian government were 

focussed on other natural areas of Brazil such as rainforests, leaving the semiarid 

Caatinga understudied and unjustly declared to be an area of low importance for 

biodiversity conservation (Banda et al., 2016). In recent years, efforts have been made to 

study the Caatinga vegetation and its threats more closely (Leal et al., 2005), revealing a 

considerable number of species (Moro et al., 2014; Zappi et al., 2015) and endemic 

genera (de Queiroz et al., 2017). 

A catalogue of plants summarises the current state of knowledge about plant 

communities in the Caatinga Domain (Moro et al., 2014), showing that more than 1,700 

plant species have been recorded and well over 2,500 are expected to occur there. It 

also reveals some biases in data collection, with most vegetation surveys focussing on 

woody species, excluding the species-rich herb assemblages also found there. By far the 

most common habitat type, the crystalline Caatinga (Figure 4), has seen a relatively 
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small number of surveys and it is likely that many species have not been recorded yet. 

The second most common habitat type is sedimentary Caatinga. Other habitat types 

include inselbergs, riverine forests, arboreal Caatinga and the Chapada Diamantina 

mountains, a very complex biogeographical area within the Caatinga Domain (Moro et 

al., 2016).  

 

Figure 4. The location of the Caatinga ecoregion in South America, and the different 

habitat types within. Map reproduced from Moro et al. (2016). Sedimentary areas: TJ - 

Tucano-Jatobá sedimentary Basin, IBI - Ibiapaba sedimentary basin, ARA - Araripe 

sedimentary basin, SF - São Francisco Continental Dunes, POT - Potiguar sedimentary 

basin. Reprinted by permission from Springer Customer Service Centre GmbH, Springer 

Nature, The Botanical Review ('A Phytogeographical Metaanalysis of the Semiarid 

Caatinga Domain in Brazil by M.F. Moro, E.N. Lughadha, F.S. de Araújo and F.R Martins, 

Copyright 2016). 

Our choice of Caatinga as the model system for this study is based on data 

availability, timeliness and potential impact. Caatinga is the only phytogeographical 

domain with its entire extent confined within Brazilian national boundaries. Because of 

this, assessments of Caatinga endemic plants (Brazil Flora Group 2015; de Queiroz et al. 

2017) for the Brazilian Red List of threatened species (Martinelli & Moraes, 2013, not yet 

incorporated in the global IUCN Red List ), are equivalent to global assessments, 
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doubling the data available for our analysis. Furthermore, Caatinga is a highly 

threatened domain in Brazil, with only 53% of native vegetation cover remaining, much 

of which is degraded by selective logging, invasive species and road effects (Leal et al. 

2005; Castelletti et al. 2003), such that 63% of Caatinga is now composed of 

anthropogenic ecosystems (Cardoso da Silva & Barbosa, 2017). Although threatened, 

Caatinga has received low legal protection. Only 1.2% is encompassed in fully protected 

nature reserves with a further 6.3% in “sustainable use nature reserves” that afford a 

lower level of protection (Brazil, 2015). Economic and political factors have impeded 

realisation of the Brazilian federal government’s aspiration to extend protected area 

coverage of Caatinga to 17% (Brazil, 2015) and delayed initiation of an approved and 

funded programme to complete extinction risk assessments of more Caatinga plant 

species (Gustavo Martinelli, pers. comm.).  Such assessments represent important 

evidence for recognition of Important Plant Areas and/or Key Biodiversity Areas 

(Darbyshire et al. 2017), helping ensure that future extensions to protected area 

coverage contribute to the goal of achieving ecological representativeness (Brazil, 2015). 

Thus, the Caatinga Domain provides an interesting and timely model to evaluate 

modelled estimates of extinction risk, insights from Value of Information and their 

potential to inform future resource allocation in a species-rich but data-poor system.  

3.1.5 Aim and objectives 

Our aim was to predict the extinction risk of plant species that have not been assessed 

on the Red List and evaluate whether further assessments are likely to be important in 

guiding conservation action. As a study model we focussed on the Caatinga 

Phytogeographical Domain in north-eastern Brazil. We wanted to predict both threat 

status and IUCN Red List category, and to identify those variables that were most 

important for classifying a plant species as threatened or non-threatened. We also 

calculated how well each model correctly predicted the status of species already 

assessed on the Red List, with a view to predicting the conservation status of species 

not currently assessed for the Red List. Finally, we calculated the Value of Information 

for each plant family included, to identify families with species at highest risk of 

extinction and to quantify uncertainty surrounding their extinction risk. 
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3.2 Methods 

3.2.1 Data preparation 

We used a subset of the catalogue of plants that occur in the Caatinga ecoregion (Moro 

et al., 2014) which lists 1,586 species (Moro et al., 2016). This subset excluded exotic 

species, surveys from degraded sites and studies with fewer than 20 species. The 

Caatinga catalogue listed all species recorded in vegetation surveys in the Caatinga, 

their growth form, their taxonomy, at which sites they were observed and the habitat of 

each site. The habitat type Agreste is a subgroup of the crystalline Caatinga (Moro et al., 

2016) so these were merged into one habitat type. Campo Maior is a sedimentary 

habitat type and a subgroup of the sedimentary Caatinga (Moro et al., 2016) so they 

were also merged.  We excluded 92 species only recorded in transitional habitats 

between sedimentary and crystalline as they may not be typical of either habitat (Moro 

et al., 2016). We calculated the number of study sites from which each of the remaining 

1494 species in our dataset was reported. 

We sourced Red List assessments from the IUCN Red List (IUCN, 2018b), by 

downloading all assessments of plants in Brazil, and from the National Red List of 

threatened species for Brazil (Martinelli and Moraes, 2013; National Red List, 2017). Since 

Brazilian Red Listing activities in recent years have focused on endemic species and 

applied IUCN Red List Categories and Criteria: version 3.1 (IUCN, 2012b), these 

assessments are comparable to global assessments. Both sources used the following 

Red List categories: Extinct (EX), Critically Endangered (CR), Endangered (EN), Vulnerable 

(VU), Near Threatened (NT), Least Concern (LC) and Data Deficient (DD). Species that 

have not yet been assessed are classed as Not Evaluated (NE). Apart from the Red List 

category of each species, both datasets contained information on species’ taxonomy, 

date of assessment, and version of the criteria used. The IUCN Red List also specified 

the particular criteria used for assessment for threatened species. 

The spelling of species names in the Caatinga Database (Moro et al., 2016), in the 

IUCN Red List dataset and in the Brazilian National Red List dataset were all checked 

using the “taxize” package in R to ensure consistency between lists (Chamberlain and 

Szöcs, 2013). Taxize uses the Global Names Resolver (Global Names Resolver, 2017) and 
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finds the best match for each species name. We then merged the IUCN and Brazilian 

National Red List datasets. Red List data were then merged with our Caatinga dataset 

according to the species names. 

Of the 1,494 species included in our analysis, 93 or 5.9% had been assessed for 

the IUCN Red List and another 153 had been assessed for the Brazilian National Red 

List. Just 23 species had assessments published in both sources. Of those 23 species on 

both lists, 11 had the same Red List category and six were in adjacent Red List categories 

on the national and IUCN Red Lists (see appendix S1). All species that appeared on both 

lists, but with different Red List categories, were in a higher threat category on the IUCN 

Red List, compared to the national Red List. To avoid underestimation of extinction risk, 

for those species with differing national and IUCN Red List assessments we used IUCN 

Red List assessments as the reference. In addition to the 93 IUCN Red List assessments 

we therefore used 130 assessments from the Brazilian National Red List (Martinelli and 

Moraes, 2013; National Red List, 2017).  

We downloaded occurrence data for all species in the Caatinga Database using 

the BIEN package in R. The BIEN 3+ dataset contains occurrence records from a wide 

range of herbaria globally. Many of these are harvested from databases such as GBIF 

(Botanical Information and Ecology Network, 2017; Maitner et al., 2017). We removed 

duplicate records from the BIEN dataset by first removing records with the same record 

number and species name, and then removing records of the same species that were 

recorded at the same latitude, longitude and on the same date. 

3.2.2 Model building 

We used Bayesian Network models for analysis. Bayesian Networks are models based 

on Bayes theorem. Variables in discrete (or categorical) form are required to build 

Bayesian Networks and assess their performance in GeNIe Modeler (Bayes Fusion LLC, 

2017). Any continuous variables are split into discrete categories or states, such as low 

and high. The number of categories that a continuous variable is assigned can affect 

model performance, so we used a range of discrete groups to find which performed 

best and used this discretisation in the final model. Number of sites with occurrence of 

each species (from the Caatinga catalogue) and number of records of each species 
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(from BIEN 3+) were the only continuous variables and were split into different groups 

by splitting the data into either two, four, six, eight, 10, 12 or 14 equal bins. The number 

of bins was increased until model performance dropped. We also built a custom 

discretisation that kept site numbers in four bins, but split smaller numbers of 

occurrence records into more groups (see appendix S2), following Rivers et al. (2011). 

The different states of a variable are assigned a probability in the Bayesian 

Network, and all probabilities of one variable combined sum to one. A variable that has 

ingoing arrows is called a child node, and has different probabilities for the different 

states of the parent node. For example, if the state of the parent node is low, the child 

node may have a 60% probability to be low and 40% to be high. If the state of the 

parent node is high, the child node may have a 20% probability to be low and 80% to 

be high. 

The structure of the Bayesian Networks can be built using expert knowledge (as 

in Newton, 2010), or with data using Machine Learning algorithms. Our networks were 

learnt from the data using three different Machine Learning algorithms: a Naïve Bayes 

classifier, a tree-augmented Naïve Bayes classifier, and a hill-climbing algorithm, all in 

the bnlearn package in R (Scutari, 2010). In bnlearn, the model structure is built first, 

then the conditional probabilities are calculated separately. Naïve Bayes has a fixed 

model structure where the variable to be predicted is at its centre, and all other 

variables have ingoing arrows from the variable to be predicted (Nagarajan et al., 2013). 

In our case the variable to be predicted was threat status or Red List category (Figure 5). 

Naïve Bayes assumes independence of predictor variables, and although this 

assumption is rarely met, it often outperforms other algorithms (Zhang, 2004). There are 

various theories as to why, including the distribution of the node states (Zhang, 2004), 

or that independence does not have to be assumed in many instances (Domingos and 

Pazzani, 1997). 

To test whether incorporating hierarchical relationships between some variables 

would improve model performance, we also built models using a tree-augmented 

Naïve Bayes classifier, which can take into account relationships between variables other 

than the variable to be predicted. 



69 

 

 

Figure 5. Naïve Bayes model structure for the Caatinga ecoregion. 

Hill-climbing, our third approach, is a score-based algorithm. The network is built 

by adding one arrow at a time at random, then a score penalising unnecessary 

complexity such as Akaike’s Information Criterion (AIC) or Bayesian Information 

Criterion (BIC) is calculated for the network. Here we used BIC. A second arrow is added, 

and BIC is calculated again. If the score improves, the arrow stays; if not, it is removed. 

In this way all possible options are explored until the final network cannot be improved 

further (Nagarajan et al., 2013). For the hill-climbing algorithm, predictor variables do 

not need to be independent as they can be incorporated into the model structure 

(Mayfield et al., 2017). 

Reducing the number of groups that are to be predicted can improve model 

performance, especially when some groups contain very few observations (Guo et al., 

2008). Therefore, as well as building models predicting five Red List categories, we also 

built models predicting just two status groups: threatened and not threatened. 

Following earlier authors (Rivers et al., 2011; Bland et al., 2015), species categorised as 

Critically Endangered, Endangered or Vulnerable were treated collectively as threatened, 

while those categorised as Near Threatened or Least Concern were treated collectively 

as non-threatened species. 
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3.2.3 Model and variable selection 

The three algorithms, with eight discretisations each, and predicting either Red List 

category or threat status resulted in 48 models in total. To identify the best-performing 

model we used 10-fold cross-validation in GeNIe Modeler (Bayes Fusion LLC, 2017). This 

method splits data into 10 groups of equal numbers of observations (Marcot, 2012). 

Nine of the groups are used to recalculate the conditional probabilities whilst 

maintaining the model structure, to predict the state of the outcome variable for the 

tenth group. This process is repeated for each group, so that every Red List category or 

threat status of assessed species in the Caatinga is predicted once. The variable to be 

predicted was either Red List category or threat status. The overall percentage of 

correct predictions, called accuracy, was calculated and plotted (Allouche et al., 2006). 

We also calculated the sensitivity, which is the percentage of correctly predicted 

threatened species of all threatened species, and the specificity, which is the percentage 

of correctly predicted non-threatened species of all non-threatened species (Allouche et 

al., 2006). The accuracy can be driven by the specificity when most species are non-

threatened, which was the case here. We also calculated the True Skill Statistic (Allouche 

et al., 2006), which is the sensitivity plus the specificity less 1. This value ranges from 1 to 

-1 and balances the numbers of threatened and non-threatened species, so it was used 

for model selection. Where the True Skill Statistic is above 0, the model performs better 

than if all species were predicted to be Least Concern, or non-threatened. 

We ran scenario analysis, also called influence analysis (Marcot, 2012), in GeNIe 

Modeler (Bayes Fusion LLC, 2017) by changing the state of threat status to 100% non-

threatened, then to 100% threatened, and plotted those variables that changed by more 

than 10%. 

The best-performing models predicting Red List category and the best model 

predicting threat status were used to predict extinction risk of plants not yet assessed. 

As these models contained the taxonomic ranks genus, family and order, predictions 

could only be made for species in genera from which at least one species had already 

been assessed. In this way 413 species from 95 genera were evaluated (see appendix 

S3). We then rebuilt the models excluding genus and predicted the threat status and 
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Red List category for species from genera lacking any assessments, but belonging to a 

family from which at least one species had been assessed. In this way we predicted the 

status for an additional 589 species in 47 families. As model performance decreased 

substantially once genus and family were removed, the threat status and Red List 

category for other species were not predicted. 

3.2.4 Value of Information calculation 

To find the families whose species are most at risk of extinction in Caatinga, and 

quantify uncertainty around which family was most at risk of extinction, the risk of 

extinction was calculated for each family in the following way. The probability of 

extinction, or severity, varies for each IUCN Red List category, as defined by IUCN 

(IUCN, 2012b). Extinct has a value of 1, Critically Endangered has a value of 0.5, 

Endangered has a value of 0.2 and Vulnerable has a value of 0.1. Near Threatened and 

Least Concern have a value of 0, because there is no immediate risk of extinction. The 

best-performing model predicting category not only predicts which category a species 

is most likely to be in, but also provides a probability of the species being assigned to 

each category. The probability of the predicted category for each species was multiplied 

by the probability of extinction (or severity). The concept of risk is defined as the 

severity multiplied by the probability (Chen et al., 2013), so we will call this value the risk 

value. For example, if a species was predicted to be Critically Endangered, and the 

model gave this prediction a probability of 0.8, then the risk value was 0.5 x 0.8 = 0.4. 

Because both values (the probability of extinction and the probability of the predicted 

category) can only be between 0 and 1, the risk value could also only be between 0 and 

1. The higher the risk value, the more likely it is that a species will go extinct. If a species 

was Near Threatened or Least Concern however, it would always have Risk Value 0. 

The risk value was calculated for all species not previously assessed on Red Lists. 

Risk values were then summed for each plant family in the Caatinga under each Red List 

category and divided by the number of species in that family, thus giving three mean 

values per family, for Critically Endangered, Endangered and Vulnerable. These mean 

values were summed for each family to give an overall expected value for each family. 

The family with the highest overall expected value was the one with the greatest risk 
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that species are going extinct. In other words, in the absence of more conservation-

relevant information about Caatinga plant species, e.g. socioeconomic or cultural value 

of the species, this family is one on which conservation effort should be focussed. The 

value for this family is the expected value of imperfect information. The highest values 

for each Red List category were also summed, from different families, to represent 

perfect information. The difference between this value of perfect information, and the 

value of the family with the highest value, was the Value of Information. 

3.3 Results 

3.3.1 Data summaries 

Species from the Caatinga Database were recorded in 74 different sites (Moro et al., 

2016). For some species there were no occurrence records from the BIEN 3+ database, 

whereas the maximum number of occurrence records was 4,847 for one species. Most 

species were recorded from the Sedimentary Caatinga with 784 species, followed by 

Inselbergs (642) and Crystalline Caatinga (491), with some species being recorded from 

more than one habitat type. Woody species were more numerous (779) than non-

woody species (679), reflecting documented bias in botanical surveys in the region 

towards woody species (Moro et al., 2014). 

 

Figure 6. Count of species from the Caatinga in each Red List category that have been 

assessed on the IUCN Red List and/or the Brazilian National Red List. 
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Of the 223 species recorded in our Caatinga database which had been previously 

assessed on the IUCN Red List or the Brazilian National Red List, 193 (86.6%) were 

categorised as Least Concern or Near Threatened, and three (1.4%) were deemed as 

Data Deficient (Figure 6). Just 27 (12.1%) were categorised as Vulnerable, Endangered or 

Critically Endangered. 

3.3.2 Modelling extinction risk 

We built 48 different models and selected for further use the ones that best predicted 

Red List category or threat status of previously assessed species, judging relative 

performance by the True Skill Statistic, which is measured between 1 (best model 

performance) and -1 (worst model performance), see appendix S4. Threat status was 

better predicted than Red List category. Threat status of assessed species was best 

predicted by a model using discretisation into 12 groups and Naïve Bayes to build the 

model structure, with a True Skill Statistic of 0.45 (Figure 7). The Red List category of 

assessed species was best predicted by a model using discretisation into four groups 

and Tree-Augmented Naïve Bayes to build the model structure, with a True Skill Statistic 

of 0.15. Overall, specificity, or the percentage of correctly classified non-threatened 

species, was greater than sensitivity (the percentage of correctly classified threatened 

species). There were differences in performance between the algorithms. Naïve Bayes 

generally showed greater sensitivity, while the hill-climbing algorithm showed greater 

specificity. Differences between discretisations were greatest for sensitivity. 

To find variables which contributed most to a species’ threat status, we changed 

the threat status in the best model, using 12 groups and a Naïve Bayes classifier, to 

100% non-threatened first, then to 100% threatened. Number of occurrence records, 

growth form and habitat type showed greatest differences. For species previously 

assessed on Red Lists that were non-threatened, the median number of occurrence 

records was 167, compared with 16 for threatened species (Figure 8). Least Concern 

species had a median of 177 occurrence records, and Critically Endangered species had 

a median of 30.5 occurrences. 187 assessed species had 15 or more occurrence records. 
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Figure 7. The best performing Bayesian Network predicting threat status with all 

variables and the probabilities of each state of each variable, built using 12 groups and 

with a Naïve Bayes classifier. Family and genus not shown due to the high number of 

states, but included in the model when processed on our computer. 

 

Figure 8. Number of occurrence records in BIEN database for species assessed on Red 

Lists and recorded in the Caatinga Database. We show the number of records of 

assessed species for different IUCN Red List categories (A) or threat status (B). Colour 

denotes threat status. IUCN Red List categories: CR – Critically Endangered; EN – 

Endangered, VU – Vulnerable; NT – Near Threatened; LC – Least Concern. 

Among assessed species, trees were in the majority for both non-threatened and 

threatened species (Figure 9 A and B). Strikingly, there were no Data Deficient trees, 
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suggesting that trees are better studied than herbs in the Caatinga. Habitat type also 

differed with threat status: there were relatively more threatened species from the 

arboreal Caatinga, and fewer from the sedimentary Caatinga (Figure 9 C). 

 

Figure 9. Breakdown of completely assessed species by threat status combined with: 

growth form (A and B) and habitat type (C and D).  Data are presented both as 

percentages (A and C) and as counts (B and D). A and B show each assessed species 

once, for a total of 27 threatened and 193 non-threatened species. C and D also show 

all assessed species, but each species may occur in more than one habitat. Thus species 

x habitat combinations total 35 for threatened species and 313 for non-threatened 

species.  

3.3.3 Predicting threat status of unassessed species 

The models were then used to predict Red List category or threat status. Another two 

models were built that excluded genus as a predictor, for use with species from a genus 

lacking Red List assessments, but in whose families some species had been assessed. 

For threat status, the True Skill Statistic dropped from 0.45 to 0.39 (accuracy: 84%, 

specificity: 88%, sensitivity: 52%).  For Red List category, the True Skill Statistic dropped 

from 0.15 to 0.11 (accuracy: 81%, specificity: 89%, sensitivity: 22%). 

Of the 1,002 unassessed species for which predictions could be made, extinction 

risk category predictions assigned 18 species to one of the threatened categories 

(Critically Endangered, Endangered or Vulnerable), while 11 were predicted to be Near 
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Threatened, and 973 were predicted to be Least Concern. In contrast, the model simply 

predicting whether species were threatened or non-threatened predicted 78 species to 

be threatened and 924 to be non-threatened. Of the assessed species, 12.3% are 

threatened. In our predictions for unassessed species where Red List category was 

predicted, 1.8% were predicted to be threatened, and where threat status was predicted, 

it was 7.8%. In total, 81 species were predicted to be Critically Endangered, Endangered, 

Vulnerable, or threatened. Just one species was predicted to be Critically Endangered 

(Begonia lealii). Of the 78 species that were predicted to be threatened, 13 were also 

predicted to be either Critically Endangered, Endangered or Vulnerable (see appendix 

S5). Of the 1,002 species where threat status and Red List category were predicted, 

those predictions matched for 93% of species – species that were predicted to be both 

threatened and Critically Endangered, Endangered or Vulnerable, and species that were 

predicted to be both non-threatened and Near Threatened or Least Concern.  

 

Figure 10. Red List category (a) and threat status (B) of species already assessed on the 

Red List and of predicted species. Predictions from models which either included the 

taxonomic ranks of genus, family and order, or only family and order. 
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For each species where no Red List assessments were available (NE Category of 

IUCN), the model gave probabilities of that species being in each Red List category, and 

for each threat status. These probabilities were plotted, both for Red List categories and 

for threat status (Figure 11). Most unassessed species that were predicted to be Least 

Concern or non-threatened had high probabilities to be in that category/status. In total, 

two species had probabilities below 50% for their predicted Red List category, which 

were both predicted to be Least Concern. The categories between Critically Endangered 

and Least Concern had lower median probabilities. Probabilities below 75% were 

attributed to the predicted threat status of 67 species, of which 26 were predicted to be 

threatened, and 41 were predicted to be non-threatened. The median probability for 

threatened species was lower than for non-threatened species. Some of the predictions 

did not match, so that species predicted to be threatened were also predicted to be 

near threatened or Least Concern, or vice versa. For these species where predictions did 

not match, the probabilities were lower with 85%, compared to species where the 

predictions did match with 98%. 

 

Figure 11. Probability of 1,002 unassessed species to be in the predicted Red List 

categories (A) and threat status (B). Each species is placed at random as a dot over the 

boxplot. The probability had to be at least 20% for the Red List category (A), and 50% 

for the threat status (B), shown by the horizontal lines. Colour denotes threat status. 

IUCN Red List categories: CR – Critically Endangered; EN – Endangered, VU – 

Vulnerable; NT – Near Threatened; LC – Least Concern. 
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Since the models were based on a relatively small set of species, we checked the 

percentage of assessed and predicted species within each genus (see appendix S6). For 

genera in which at least one species had been assessed, the mean number of assessed 

species per genus was 1.6, while the mean number of unassessed species predicted in 

each genus was 4.5 – or in other words, two species predicted the threat status of five 

species on average. The 27 species predicted as threatened by our best performing 

model were concentrated in 11 genera, all of which contained at least one species 

already assessed as threatened. In seven genera all assessed species were threatened, 

and of those seven genera, two had all species predicted to be threatened, namely 

Apuleia and Pilocarpus. 

3.3.4 Value of Information 

We calculated the Value of Information for each family with species for which Red List 

categories were predicted. The family with the highest expected value was Begoniaceae 

with a value of 0.179 (Table 7). Begoniaceae also had the highest value for Critically 

Endangered species with 0.179. For Endangered species, Meliaceae had the highest 

value with 0.120. For Vulnerable species, Moraceae had the highest value with 0.108. The 

VoI was the sum of the highest values for the each Red List categories, which was 0.341 

– an increase of 90.5% compared to Begoniaceae. While VoI was expressed as a unitless 

value here, the possible increase in performance if uncertainty was resolved was large. 

As uncertainty was large, further assessments may show that in fact families other than 

Begoniaceae contain more threatened species, and should be the focus of future 

conservation action. This result suggests that further extinction risk assessments are 

highly likely to change the course of conservation action in the Caatinga domain.  

Table 7. Risk values for different Red List categories for different plant families in the 

Caatinga. Bold red values are the highest values for a particular Red List category. The 

expected value is the sum of values for each family. The highest expected value under 

uncertainty is also highlighted in bold and red. No values were zero, but many were 

below 0.0005. 

Family Critically 

Endangered 

Endangered Vulnerable Expected 

Value 

Number 

of species 

Begoniaceae 0.179 < 0.0005 < 0.0005 0.179 3 

Meliaceae 0.007 0.060 0.054 0.120 2 
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Family Critically 

Endangered 

Endangered Vulnerable Expected 

Value 

Number 

of species 

Moraceae < 0.0005 0.108 < 0.0005 0.108 6 

Rutaceae < 0.0005 0.053 < 0.0005 0.053 10 

Solanaceae < 0.0005 0.029 < 0.0005 0.029 20 

Celastraceae < 0.0005 < 0.0005 0.021 0.021 6 

Rhamnaceae 0.007 0.005 0.002 0.015 9 

Bignoniaceae < 0.0005 0.011 0.002 0.013 36 

Myrtaceae < 0.0005 < 0.0005 0.009 0.009 28 

Erythroxylaceae < 0.0005 0.008 < 0.0005 0.008 20 

Malpighiaceae < 0.0005 0.007 < 0.0005 0.007 29 

Apocynaceae < 0.0005 0.007 < 0.0005 0.007 33 

Fabaceae 0.001 0.001 0.001 0.003 208 

Loganiaceae 0.001 0.001 < 0.0005 0.001 2 

3.4 Discussion 

To prioritise which species should be assessed for the Red List, it is possible to model 

factors correlated with species already assessed and apply this information to predict 

the threat status of species not yet assessed. We have predicted both threat status and 

Red List category for 1,002 Not Evaluated species in the Caatinga, 81 (8%) of which are 

predicted to be threatened. The Naïve Bayes classifier worked well for predicting threat 

status, and important predictors were the genus, number of occurrence records and 

growth form of species and the habitat types they occur in. If we are to focus 

conservation action on a certain family in the Caatinga, based only on current Red List 

evidence, it should be Begoniaceae, but it is likely that further research will lead to 

greater benefits. 

The strongest predictors for Red List category and threat status for species 

assessed as threatened were the genus to which a species belongs and the number of 

occurrence records available for that species in the BIEN database. Species with more 

occurrence records were predicted to be less threatened overall which is consistent with 

other studies (Nic Lughadha et al., 2005). It is possible to calculate extent of occurrence 

or area of occupancy accurately enough to predict extinction risk for species 

represented by at least 15 specimens (Rivers et al., 2011), which is the case for 1,223 

species from the Caatinga. There are now tools available to facilitate calculating extent 
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of occurrence or area of occupancy accurately such as GeoCAT (Bachman et al., 2011) or 

the rCAT package (Moat and Bachman, 2017), which can help with Red List assessments.  

It has been suggested that Naïve Bayes is one of the most efficient classifiers 

(Zhang, 2004), performing well for smaller datasets with up to 1,000 observations 

(Domingos and Pazzani, 1997) and this seems to be true for predicting threat status for 

plants in the Caatinga. Random Forest approaches have been used multiple times for 

predicting extinction risk, achieving varying levels of sensitivity (percentage of correctly 

predicted threatened species) which differed between studies predicting threat status 

and Red List category. Sensitivities ranged from 88.0%, N = 148 (Darrah et al., 2017) to 

55.6%, N = 54 (Machado et al., 2013) in studies predicting threat status. Studies 

predicting Red List category achieved sensitivities from 58.1%, N = 4,402 (Howard and 

Bickford, 2014) to 0%, N = 40 (but including only one threatened species) (Comeros-

Raynal et al., 2016). Our models using the Naïve Bayes classifier had a sensitivity of 

63.0% when threat status was predicted, while the tree-augmented Naïve Bayes 

classifier had a sensitivity of 29.6% when Red List category was predicted. Our results 

suggest that Bayesian Networks can be a valuable tool for predicting extinction risk 

when there is class imbalance in the data as is almost always the case for extinction risk 

data.  They also show a clear trade-off between predicting with high levels of accuracy 

whether or not species are threatened (using just the two classes threatened and non-

threatened) as opposed to predicting assignment to the more informative five Red List 

categories but with much lower accuracy.  

The genus of a species was important in determining the predicted threat status 

in our model. This could be due to phylogenetic autocorrelation between threats to 

species, suggesting that when a species is threatened in a phytogeographical domain, 

phylogenetically correlated species have a higher chance of being also threatened. 

There is some evidence that more closely related plant species that are of young, fast 

evolving lineages may be at increased risk of extinction (Davies et al., 2011), but most 

evidence is to the contrary, with phylogenetic signal in extinction risk absent (Daru et al., 

2013; Cardillo and Skeels, 2016) or not detectable in the species at greatest risk of 
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extinction (Yessoufou et al., 2012). It is also possible that our model is overfitted, and 

predicts threat status mainly based on genus.  

For the Caatinga, 15.8% of woody species and 13.1% of non-woody species have 

been assessed on the IUCN or Brazilian National Red List. It is thought that many more 

non-woody species are yet to be reported and described. Moro et al. (2016) estimated a 

total of 1,098 non-woody plants and 938 woody plants in Caatinga vegetation, which 

would decrease the percentages assessed to 13.1% for woody plants and 8.1% for non-

woody plants. There also appear to be biases in assessment effort in different habitats, 

with 30.5% of assessed species from the crystalline Caatinga, the most common habitat 

type, but 47.1% from the sedimentary Caatinga and 44.4% from inselbergs, suggesting 

that the crystalline Caatinga is underrepresented in the assessments. Therefore, more 

non-woody species in the crystalline Caatinga should be assessed, ideally in genera or 

families which have not yet had any assessments. 

To assess the Value of Information, the full decision context is usually required, 

which includes setting objectives, identifying possible actions, modelling the outcomes 

of the actions on objectives, and considering trade-offs (Gregory et al., 2012). Objectives 

could be to prevent extinctions, avoid declines for a certain number of threatened 

species, or move all threatened species back to non-threatened categories. This could 

be measured by counting the number of extinctions or calculating a Red List index for 

Caatinga (Bubb et al., 2009). Here we have calculated the VoI in a more theoretical 

setting without specifying the full decision context, but as an example of how the 

method could be applied to prioritising whether more species should be assessed on 

the Red List or whether conservation action should be taken immediately. Our VoI 

calculation would therefore also rely on the knowledge of threats and possible 

conservation action to mitigate the threats. While Begoniaceae had the highest risk 

value under uncertainty, there is great potential that by resolving uncertainty a higher 

value can be achieved. Begoniaceae was also the only family in which a species was 

predicted to be Critically Endangered, which is likely to drive the Value of Information 

calculations. Red Listing of plants is often done by region or by taxonomy such as 
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family, so our method could be used to prioritise different groups of species, not just 

taxonomically, but also geographically or trait based.  

One question that remains to be answered is how well the model predictions 

match the actual threat status of those species which have not been assessed yet. The 

only way to answer it is to assess the species whose threat status was predicted by our 

model. The type of analysis we present  could be used as a way of prioritising which 

species should be assessed next, either by using the outcomes from the VoI 

calculations, or by assessing those species next which our models predicted to be 

threatened, or by assessing those with the greatest uncertainties in the predicted threat 

status. Brazil is leading the way in meeting the targets of the Global Strategy for Plant 

Conservation (Convention on Biological Diversity, 2018), and aspired to have 50% of 

plants  assessed on the Brazilian National Red List by 2020, though the economic 

downturn has magnified this challenge (Martins et al., 2017). New assessments and 

more information on Caatinga vegetation can lead to opportunities to further improve 

our model. We have shown that extinction risk can be predicted for a range of 

taxonomic ranks for one geographic area, even when there is little information available 

about the species. The genus of a species and occurrence records were important 

predictors, and it would be useful to test whether they are important predictors for 

other taxonomic groups too, especially the genus. Bayesian Networks performed well 

for predicting extinction risk, and are likely to be a useful method when sample sizes are 

low. The Value of Information can be calculated for predictions of extinction risk and 

this knowledge can help to prioritise which species to assess on Red Lists or when to 

focus on conservation actions instead. This is crucial if we are to prevent species from 

going extinct. 
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Chapter 4 Predicting Extinction Risk of Data Deficient 

Plants 

Abstract 

To take targeted action to save species globally, we need to know first of all which 

species are at risk of extinction. While there are just over 400,000 described plant 

species, only 6% have been assessed according to their extinction risk. Predicting 

extinction risk of species can help to identify groups of species that are at increased risk 

of extinction. 

I used publicly available information on plants that have been assessed on the 

IUCN Red List of species, as well as trait information from the TRY database. I built 

Bayesian Network models with Machine Learning algorithms to explore what drives 

extinction risk in plants and to predict what IUCN Red List category plants have that 

have so far been assigned the Data Deficient category. There were 1,732 Data Deficient 

species, of which 932 were predicted to be extinct or threatened. Value of Information 

analysis showed that South America has a high percentage of species predicted to be 

threatened and should be the focus region for plant assessments. 

My work confirms results from other taxonomic groups that Data Deficient 

species are more likely to be threatened than a random sample of species. Using 

models to predict extinction risk is a cost-effective way of getting estimates of extinction 

risk and can help to inform future conservation action. 

4.1 Introduction 

Plants offer an enormous number of benefits to humans: we eat them (Dempewolf et 

al., 2014), we use them to build and heat our homes, they store carbon and therefore 

combat climate change (Isbell et al., 2015), they provide climate regulation and flood 

mitigation (Duarte et al., 2013), they are the basis for many medicines we use (Khazir et 

al., 2014). Because plants are important, one of the objectives of the Global Strategy for 

Plant Conservation is to conserve plant diversity by 2020, and more specifically, one of 

the targets aspires to assess “[…] the conservation status of all known plant species, as 

far as possible, to guide conservation action”. There are an estimated 403,911 described 

land plants as of 2016 (Nic Lughadha et al., 2016), of which 24,230 species (6%) have 
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been assessed on the IUCN Red List as of 18 December 2017 (IUCN, 2017). These 

assessed species are not a random sample however, because plants that scientists 

consider likely to be threatened are more likely to be assessed (Brummitt et al., 2015). 

This means that overall threat status of plants is thought to be overestimated. To 

provide an overall assessment of threat status of plants, the Sampled Red List Index was 

developed which is an assessment of a random sample of plants (Brummitt et al., 2015). 

Between 972 and 1,026 species in the groups monocotyledons, legumes, gymnosperms 

and pteridophytes were assessed to give a representative sample of different major 

plant groups. 21.4% of plants on the Sampled Red List Index were estimated to be 

threatened (classed as Critically Endangered, Endangered or Vulnerable) compared to 

over 50% of species already assessed on the IUCN Red List. A recent study gathered 

data on the conservation status of plants from many different data sources, and found 

37,543 plants to be threatened of 111,824 accepted plant names (Bachman et al., 2017). 

Data Deficient species accounted for 15.8% of over 90,000 plant and animal 

species assessed on the IUCN Red List as of 18 December 2017 (IUCN, 2017). The 

Sampled Red List Index considered 5.1% of the plants they assessed to be Data Deficient 

(Brummitt et al., 2015). Previous research has predicted the IUCN Red List categories of 

Data Deficient mammals (Bland et al., 2015; Jetz and Freckleton, 2015) and amphibians 

(Howard and Bickford, 2014). While the Data Deficient category should only be applied 

when a species could truly be in any of the IUCN Red List categories (Butchart and Bird, 

2010), the predictive approaches estimated more Data Deficient species to be 

threatened than would be expected if it were a random sample of species (Howard and 

Bickford, 2014; Bland et al., 2015; Jetz and Freckleton, 2015). This could mean that Data 

Deficient species might need urgent reassessments where possible to estimate the true 

extinction risk of the species. 

Different methods have been used so far for predicting extinction risk of species 

at different taxonomic levels, for example random forest models for bulbous 

monocotyledons (Darrah et al. 2017) and amphibians (Howard and Bickford, 2014), and 

linear models for mammals (Jetz and Freckleton, 2015). One paper compared seven 

different methods for predicting extinction risk of mammals, namely classification trees, 
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random forest, boosted trees, k nearest neighbour, support vector machines, neural 

networks, and decision stumps, of which neural networks performed best (Bland et al. 

2015). All of the studies have focussed on predicting Red List category or threat status 

for one class or family, some with geographic restrictions as well. None have predicted 

Red List category or threat status for more than one class.  

No papers so far have used machine learnt Bayesian Networks for modelling 

extinction risk, even though some Bayesian Network algorithms predict well, especially 

for classifications with class imbalance (Mayfield et al., 2017). Investigating the use of 

Bayesian Networks for predicting extinction risk would therefore add to the growing 

body of literature on this topic.  

4.1.1 Aim and objectives 

The aim was to predict the IUCN Red List category of plants that have been classed as 

Data Deficient with models not previously used for predicting Red List category. To do 

so I needed to identify whether any trait, taxonomic or occurrence information was 

correlated with IUCN Red List categories of plants that have been assessed already. 

Then using the best-performing model I looked to extend the model to predict IUCN 

Red List category for the Data Deficient plants. I also investigated a method of 

prioritising species for assessment. Finally, I tested whether the model predicted similar 

IUCN Red List categories for plants that were assessed more than 10 years ago, and 

therefore are due for a reassessment (Rondinini et al., 2014). 

4.2 Methods 

4.2.1 Data sources 

A variety of data sources were used. First, assessments of all plant species assessed on 

the IUCN Red List so far were downloaded. This was a total of 23,078 plants and 

included taxonomic information on each species (genus, family, order, class and 

phylum) and the IUCN Red List category (IUCN, 2017). The IUCN uses the following 

categories: Extinct, Extinct in the Wild, Critically Endangered, Endangered, Vulnerable, 

Near Threatened, Least Concern and Data Deficient (see Chapter 1 for definitions of the 

categories). The habitats and countries each species occurs in were downloaded using 

the letsR package in R (Vilela and Villalobos, 2015). This information was used to 
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calculate the number of habitats a species occurred in as well as the number of 

countries. Countries were then classified into regions and continents to get an overview 

of where the assessed plants occurred, based on the geographic regions as defined by 

the United Nations (United Nations Statistics Division, 2011). 

Species trait information was downloaded from the TRY database (Kattge et al., 

2011). A total of 66,044 records were available. The dataset contained trait information 

such as woodiness, leaf type, plant growth form, photosynthetic pathway, leaf 

compoundness, and number of leaflets. Not all of the traits were recorded for all 

species, and where variables were missing for more than 90% of species these variables 

were excluded from the analysis. 

For the species in the IUCN dataset, digital occurrence records were downloaded 

with the BIEN package in R (Botanical Information and Ecology Network, 2017; Maitner 

et al., 2017). Duplicates were removed by first removing records with the same species 

name and the same catalogue number, then by removing records with the same 

species name, latitude, longitude and date of collection. I then calculated the total 

number of occurrence records per species. 

The datasets were then merged into one big dataset containing all species 

information. There were differences in nomenclature, for example the family name 

Fabaceae in the TRY dataset was Leguminosae in the IUCN dataset, which was the 

biggest family group in both datasets. The taxonomy for all species was therefore 

standardised using the taxize package in R (Chamberlain and Szöcs, 2013) to ensure 

consistent use of names throughout. Following standardization 3479 species were 

represented by both IUCN Red List data and TRY data.  

The final dataset contained the following variables: class, order, family, genus, 17 

different habitats, the number of habitats in which a species occurred, phylogenetic 

group, plant growth form, whether the species was a succulent, climber, parasitic, 

aquatic, epiphyte, crop, or palmoid, further the leaf type, leaf phenology, the 

photosynthetic pathway, the woodiness, leaf compoundness, the number of occurrence 

records, the continent and the region. If a species occurred in more than one region, it 

was listed in the dataset more than once too.  
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4.2.2 Data preparation 

As some trait values were missing for many species in the Red List dataset, I imputed 

those values from the TRY dataset, by imputing the values that were most common in 

each genus, following earlier authors (Bland et al., 2015). For example if plant growth 

form for some species within a genus was unknown, and most of the species in that 

genus were trees, then tree was imputed where plant growth form was missing.  

Data were analysed using Bayesian Network models (see chapter 1 and 3 for 

background on Bayesian Networks). The Bayesian Network software GeNIe Modeler 

(Bayes Fusion LLC, 2017) requires variables in categorical form, so the variables habitat 

number, and occurrence records were discretised into four categories and country 

number was discretised into five categories (Table 8). The aim was for the categories to 

have a similar number of counts which was not always possible. For example, most 

species only occurred within one habitat, so that was by far the biggest group for 

habitat number, and could not be split into further groups. Occurrence records on the 

other hand were discretised according to the ability to estimate range sizes from the 

number of records, which is important for conservation assessments (Rivers et al., 2011). 

Areas cannot be estimated with one or two records. Three to five records give variable 

range estimates, whereas six to 14 records give fairly accurate estimates. With 15 records 

range sizes can be estimated with high accuracy (Rivers et al., 2011).  

Table 8. Three continuous variables and how they were discretised in the model. 

Variable State Groups of 

different states 

Count of 

observation 

Habitat number Low 1 20,528 

Medium 2 7,152 

High 3 2,900 

Very high > 3 1,586 

Country number Very low 1 16,550 

Low 2 3,218 

Medium 3 – 5  2,801 

High 6 – 30  5,101 

Very high > 30 4,496 

Occurrence records Low 1 – 2 2,136 

Medium 3 – 5 1,778 

High 6 – 15 3,953 

Very high > 15 24,299 
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Classifying data into different categories can be difficult if the number of 

observations in each group is not even. This was the case for the IUCN Red List data of 

plants, where the largest number of species was classed as Least Concern (34%), and 

relatively few species were in each of the other categories. The smallest category, 

Extinct, accounted for 1% of species. The ROSE (Random Over-Sampling Examples) 

package in R (Lunardon et al., 2014) uses over- and/or undersampling to balance the 

number of observations in each category. Oversampling of the less common categories 

was used to even out the dataset with the aim of building a more robust model, a 

method commonly used in Machine Learning (Guo et al., 2008; Galar et al., 2012; Nanni 

et al., 2015). Species in categories that were less often applied were duplicated until 

there was an even number of species from all categories. Oversampling was chosen to 

preserve as many of the genera in the model as possible, but oversampling can lead to 

overfitting of the data (Galar et al., 2012). Some species were removed for model 

building to decrease the number of genera, to be able to load the networks into GeNIe 

Modeler (Bayes Fusion LLC, 2017). The IUCN Red List categories of these removed 

species were predicted to check for overfitting.  

The variable genus contained so many categories (genera) that networks could 

not be loaded into the GeNIe Modeler software for Bayesian Networks (Bayes Fusion 

LLC, 2017), therefore observations in the data were reduced to reduce the number of 

categories. Those genera containing the smallest number of species were removed first 

to remove as few observations as possible (1,846 removed in the original dataset – 6.2% 

of the original data, 3,321 removed in the oversampled dataset – 3.6% of the 

oversampled data). Based on earlier analyses in Chapter 3 genus was thought to be a 

key variable so this reduction was considered preferable to removing the variable genus 

from both datasets. 

4.2.3 Model building 

Bayesian Networks were used for analysis, building separate models with the normal 

and the oversampled dataset. A hill-climbing algorithm and a Naïve Bayes classifier 

were applied to both datasets in the bnlearn package (Scutari, 2010), see chapter 3 for 

details on hill-climbing and Naïve Bayes. All four models were evaluated using 10-fold 
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cross validation implemented in GeNIe Modeler (Bayes Fusion LLC, 2017). This validation 

method keeps the same model structure for each iteration, but recalculates the 

conditional probabilities. 90% of the data were used to predict the other 10%. This was 

repeated nine times so each IUCN Red List category of a species was predicted once. 

Four measures of predictive performance were plotted for model selection. 

Accuracy is the percentage of all correct predictions for all IUCN Red List categories. 

Sensitivity, specificity and true skill statistic are measures using true and false positives, 

and true and false negatives (Allouche et al., 2006). As two groups were necessary to 

calculate these, the data were split into threatened and Extinct species, (i.e. Extinct, 

Critically Endangered, Endangered, and Vulnerable species), and non-threatened 

species (i.e. Near Threatened and Least Concern species) for the calculations. Sensitivity 

was the number of assessed threatened species that were predicted to be in the correct 

IUCN Red List category, divided by the number of all species that were predicted to be 

threatened (Allouche et al., 2006). Specificity was the number of assessed non-

threatened species that were predicted to be in the correct IUCN Red List category, 

divided by the number of all species that were predicted to be non-threatened 

(Allouche et al., 2006). The true skill statistic combined the two by adding the sensitivity 

to the specificity minus one (Allouche et al., 2006). It gives a value that reflects both 

sensitivity and specificity equally, without giving more weight to the larger group, in this 

case non-threatened species. The true skill statistic value was used for model selection. 

The model with the best predictive performance was used to determine whether 

any of the variables had different conditional probabilities between the threatened and 

non-threatened categories (Marcot, 2012). To do so, first I changed the probabilities of 

IUCN Red List category to 25% each for Extinct, Critically Endangered, Endangered and 

Vulnerable species, and then by changing them to 50% each for Near Threatened and 

Least Concern species. The resulting changes in the probabilities of other variables were 

noted and for those where changes were more than 10%, the distribution of their states 

was plotted from the original data, indicating those variables that contributed more to 

threat status than others. The percentage of false and correct predictions of IUCN Red 

List categories was plotted over time to see whether there were differences between 
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current records (less than ten years old) compared to records in need of re-assessment 

(more than ten years old). 

4.2.4 Predictions 

The best performing model was used to predict IUCN Red List categories of Data 

Deficient plants. First, I predicted the IUCN Red List category using the bnlearn package 

in R (Scutari, 2010). Then I used 10-fold cross validation for all species that were assessed 

on the IUCN Red List, including the Data Deficient ones for which I predicted the IUCN 

Red List category (Bayes Fusion LLC, 2017). 10-fold cross validation gave the probability 

for each species to be in each of the six IUCN Red List categories, and the sum of these 

probabilities is always one. The category with the highest probability was plotted 

against the probability of that species to be in that category for all Data Deficient 

species. 

The original model was used for predicting the IUCN Red List categories for 

those Data Deficient species that were in a genus in which at least one species had an 

IUCN Red List assessment, as in Chapter 3. Then I rebuilt the model without genus as a 

variable, and predicted categories of those Data Deficient species which were in a family 

from which at least one species had an IUCN Red List assessment. Then I rebuilt the 

model without genus and family as variables, and predicted IUCN Red List categories 

for those Data Deficient species which were in an order from which at least one species 

had an IUCN Red List assessment. The number of predicted threatened plants globally 

was mapped by country, and the percentage of assessed and predicted threatened 

plants globally was also mapped by country. 

4.2.5 Value of Information (VoI) 

To find a way to prioritise which assessments of Data Deficient species should be 

undertaken first, VoI was calculated for different regions in the world, as a means of 

finding where to focus sampling (for a detailed description of VoI, see chapter 2).  

The VoI was calculated as described in chapter 3, but for geographic areas rather 

than for families. The probability of extinction was multiplied with the probability of 

each Data Deficient species being in the predicted categories, which gave the risk value, 

or an estimate of the risk of extinction. The risk values of each Data Deficient species 
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were first summed for each IUCN Red List category, and then for all species within each 

region. The regions were assigned to countries according to UN classification (United 

Nations Statistics Division, 2011). The region with the highest summed risk value was the 

one with highest levels of threat. Perfect information was calculated by summing the 

risk values, for the regions that had the highest risk value for each of the IUCN Red List 

categories that are considered threatened categories. The VoI was the difference 

between the latter value and the value of the region with the highest level of threat. 

4.3 Results 

The model using a hill-climbing algorithm and the oversampled dataset (incorporating 

imputed and oversampled data) had the highest true skill statistic with 0.256 so this 

model was used for assessing variable importance and for undertaking predictions 

(Figure 12, Figure 13). Both models that used oversampled data had a higher sensitivity 

(they predicted threatened species better), and both models that used the original data 

had a higher specificity (they predicted non-threatened species better). The hill-

climbing algorithm and the original data produced a model with marginally higher 

accuracy than the others (0.615). As a model built with oversampled data had the 

highest true skill statistic, I checked for overfitting. Predicting IUCN Red List category of 

species from the unseen data lead to a true skill statistic of 0.18, a decrease of 3.8%. 
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Figure 12. Best performing Bayesian Network, built using a hill-climbing algorithm and oversampled data. Variables are shown as nodes in the 

network, and probabilities of each state are also shown. Order, family and genus not shown due to the high number of states, but included in 

the model when processed.  
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Figure 13. Performance of different algorithms and datasets for four different measures 

of model performance. The values for accuracy, sensitivity and specificity are measured 

between 0 (worst) and 1 (best). The value for the True Skill Statistic is measured between 

-1 (worst) and 1 (best). 

Most plant species that have been assessed on the IUCN Red List so far were 

Least Concern, followed by Vulnerable, Endangered, and Critically Endangered (Figure 

14). There were 150 Extinct species and 1,801 Data Deficient species. 

 

Figure 14. Count of different categories of all plant species assessed on the IUCN Red 

List. Red List Categories are: EX – Extinct, CR – Critically Endangered, EN – Endangered, 

VU – Vulnerable, NT – Near Threatened, LC – Least Concern, DD – Data Deficient. 

4.3.1 Variable importance 

Magnoliids had the highest percentage of threatened species apart from bryophytes, 

for which there was only one assessment (Figure 15). Monocotyledons were relatively 

less threatened, and pteridophytes had the highest percentage of Data Deficient 

species. 70.1% of assessed species were Eudicotyledons. 
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Figure 15. Percentage of IUCN Red List categories of assessed species with different 

phylogenetic groups. 

Among assessed species, woody species appeared to be more threatened than 

non-woody species with more than 50% threatened species (Figure 16). Most of the 

species were either woody (48%) or non-woody (51%), with only 1% being reported as 

both woody and non-woody. 

 

Figure 16. Percentage of IUCN Red List categories of assessed species with woodiness. 

The percentage of threatened species was highest in the Americas, followed by 

Africa and Asia (Figure 17). Only two species were assessed in Antarctica, both of which 

were Least Concern. Europe had the highest percentage of Data Deficient species. 
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Figure 17. Percentage of Red List categories of assessed species in different continents. 

The median number of countries of occurrence for species from all IUCN Red List 

categories was one (Figure 18). 72.8% of all species and 85.5% of assessed threatened 

species were endemics. Least Concern was the only category with species that occurred 

in more than 42 countries. The median number of habitats that species from each IUCN 

Red List category occurred in was one for all categories. Least Concern species occurred 

in more habitats than the other species. 

 

Figure 18. Number of countries comprising the native distribution of assessed plants 

(left) and number of habitats that plants occur in (right) for different Red List categories. 

As the level of threat of species increased, the median number of occurrence 

records decreased (Figure 19). The median number of occurrence records was highest in 

species that were Least Concern with 55 records. 
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Figure 19. Number of occurrence records of plants for different IUCN Red List 

categories. Left shows all data, right shows species with up to 200 occurrence records. 

There was no trend in the percentage of correct and false predictions over time 

(Figure 20). Predictions were best for 2006 with 58.7% correct predictions, and worst for 

2009 with 31.0% correct predictions. The mean of correct predictions before 2008 was 

45.0%, and 47.1% since 2008. Since 2011, more than 1,000 species were assessed each 

year, except for 2017. Data were downloaded from the IUCN on 22 September 2017 

however so numbers are incomplete (IUCN, 2017). 

 

Figure 20. Percentage of true and false model predictions of IUCN Red List categories 

over time. Number of assessments within each year shown at the top. 

4.3.2 Model predictions 

Three models were used for predictions: one that included all variables, one that 

excluded genus, and one that excluded genus and family. The true skill statistic was 0.10, 

both for the model excluding genus and for the model excluding genus and family. This 
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was slightly below the true skill statistic for the model including all variables with 0.256, 

a change of 7.8%. Of the 1,732 Data Deficient species, 117 were predicted to be Extinct, 

293 were predicted to be Critically Endangered, and 302 were predicted to be 

Endangered (Figure 21). 53.8% of Data Deficient species were predicted to be Extinct or 

threatened, compared to 53.1% of assessed species that were Extinct or threatened.  

 

Figure 21. Number of plants in each IUCN Red List category, for assessed and predicted 

species. IUCN Red List Categories are: EX – Extinct, CR – Critically Endangered, EN – 

Endangered, VU – Vulnerable, NT – Near Threatened, LC – Least Concern. 

When I predicted the IUCN Red List category of a Data Deficient species, I got a 

probability of the species being in each of the IUCN Red List categories. The predicted 

IUCN Red List category of Data Deficient species was therefore plotted against the 

probability of the Data Deficient species to be in the predicted IUCN Red List category 

(Figure 22). Of the species with probabilities at or above 50%, 72 were predicted to be 

Extinct, 144 were predicted to be Critically Endangered, and 70 were predicted to be 

Endangered. Overall, 46.8% of species had categories that were predicted with 

probabilities at or above 50%. The median probability values were highest for Extinct 

(56.2%) and Least Concern (55.4%) species, and lower for the categories in between 

them. Endangered had the lowest median probability with 37.0%. 
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Figure 22. Probabilities of Data Deficient species to be in their predicted IUCN Red List 

categories. If the probability for each IUCN Red List category was the same, it would be 

16.667% as there are six categories – this is represented by the horizontal line. This was 

the lowest possible probability value. Each species is represented by a light grey circle 

over the boxplot – darker circles are overlapping species. IUCN Red List Categories are: 

EX – Extinct, CR – Critically Endangered, EN – Endangered, VU – Vulnerable, NT – Near 

Threatened, LC – Least Concern. 

The number of plants currently assessed as Data Deficient but predicted to be 

threatened were mapped by country (Figure 23). Half of the countries have four or 

fewer species that are currently listed as Data Deficient but were predicted to be 

threatened. Ecuador has the highest number of predicted threatened species with 133, 

followed by Indonesia with 55, and China with 48. 

 

Figure 23. Number of predicted threatened plants per country. Threatened are those 

plants classed as Critically Endangered, Endangered or Vulnerable. 
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The percentage of threatened species, both assessed on the IUCN Red List and 

predicted by us, was mapped by country (Figure 24). For half of the countries the 

percentage of threatened species was 12.7% or lower. Ecuador had the highest 

percentage of threatened species with 70.4%, followed by New Caledonia (62.6%), 

Madagascar (57.8%), Cameroon (56.2%) and Jamaica (51.2%). 

 

Figure 24. Percentage of known and predicted threatened plants per country. 

Threatened are those classed as Critically Endangered, Endangered or Vulnerable. 

4.3.3 Value of Information 

The VoI was calculated for each region and each IUCN Red List category (Table 9). The 

highest risk of extinction value under uncertainty for any region was for South America 

with 72.00. South America also had the highest risk values for each individual Red List 

category. The sum of these four values was 72.00 which is equivalent to perfect 

knowledge of extinction risk. The VoI was the difference between the value for perfect 

information (72.00) and the value for imperfect information (72.00), which was 0 in this 

case. This means that assessments could happen in South America without resolving 

uncertainty first around which area to sample.  

Table 9. Risk values of different IUCN Red List categories in different regions of the 

world. Bold red values are the highest values for a particular IUCN Red List category. 
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The highest expected value is also highlighted in bold and red, which is the same as the 

expected value under uncertainty. 

Region Extinct Critically 

Endangered 

Endangered Vulnerable Expected 

value 

Antarctica 1.75 1.31 0.37 0.13 3.56 

Australia and New 

Zealand 

0.79 0.98 0.37 0.08 2.21 

Caribbean 0.55 3.06 1.57 0.57 5.74 

Central America 3.05 9.84 5.43 2.40 20.72 

Central Asia 3.71 2.95 0.79 0.36 7.81 

Eastern Africa 5.73 11.23 5.03 2.05 24.04 

Eastern Asia 6.30 11.29 7.36 1.65 26.60 

Eastern Europe 6.92 5.80 2.48 0.94 16.13 

Melanesia 1.05 5.30 2.00 1.05 9.40 

Micronesia 0.56 0.04 0.05 0.01 0.66 

Middle Africa 3.48 4.28 1.63 0.92 10.32 

Northern Africa 0.20 1.35 0.30 0.09 1.95 

Northern America 0.06 0.90 0.50 0.14 1.60 

Northern Europe 0.09 7.66 1.95 0.41 10.10 

Polynesia 1.41 4.38 1.23 0.98 8.00 

South America 12.77 35.40 15.24 8.59 72.00 

South-Eastern Asia 9.29 18.70 9.83 4.54 42.37 

Southern Africa 1.23 2.97 1.13 0.50 5.83 

Southern Asia 5.79 5.65 2.48 0.91 14.83 

Southern Europe 12.22 12.86 5.41 1.40 31.88 

Western Africa 2.55 2.85 1.64 0.84 7.89 

Western Asia 6.60 9.33 2.99 1.36 20.28 

Western Europe 1.09 1.83 1.13 0.29 4.33 

4.4 Discussion 

It was possible to predict the IUCN Red List category of Data Deficient species with a 

sensitivity of 60.5% and a specificity of 65.0%. IUCN Red List category was mainly 

determined by the number of occurrence records and countries for each species, the 

phylogenetic group, the woodiness and the continent where species occurred. Species 

that were assessed on the IUCN Red List more than 10 years ago were predicted with a 

similar accuracy to species assessed more recently. Of the 1,732 Data Deficient species, 

117 were predicted to be extinct and 815 were predicted to be threatened. If a regional 

focus for assessing Data Deficient species is a priority, then South America would be the 

region to focus efforts on first. 
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Least Concern species appear to have greater numbers of occurrence records 

and native distributions that extend to more countries than species that are assessed as 

threatened, consistent with earlier studies (Rivers et al., 2011). 60% of all plant species 

are estimated to be endemics (Bachman et al., 2017), compared to 72.8% on the IUCN 

Red List. The responsibility for saving endemic species that are threatened lies within 

that country (Rodrigues and Gaston, 2002; Schuldt and Assmann, 2010). It may be 

possible to calculate extent of occurrence (EOO) and area of occupancy (AOO) with 

high accuracy for 71.7% of the Data Deficient species, because they have 15 or more 

occurrence records  (Rivers et al., 2011). This would help inform IUCN Red List 

assessments because EOO and AOO are often used as part of assessing criterion B, and 

there are tools available to estimate both EOO and AOO with occurrence data such as 

GeoCAT (Bachman et al., 2011) or the rCAT package (Moat and Bachman, 2017). 

Considering habits of species already assessed it seems that woody species are 

more threatened than other species, as are magnoliids. The species assessed were not 

from a random sample however, and so it is possible that IUCN Red List category is 

overestimated in both groups. This may affect the predictions for the Data Deficient 

species too. 

53.8% of Data Deficient species are predicted to be threatened compared to 

53.1% in whole IUCN Red List, but 21.4% in the Sampled Red List Index. Our analysis is 

based on the whole IUCN Red List, which overestimates extinction risk (Brummitt et al., 

2015), so it is possible that extinction risk in these Data Deficient species is also 

overestimated. Other research however has also shown elevated extinction risk of Data 

Deficient species both in mammals (Bland et al., 2015; Jetz and Freckleton, 2015) and 

amphibians (Howard and Bickford, 2014). This suggests that Data Deficient species 

overall are more likely to be threatened and should therefore not be neglected in 

species conservation. 

The predictive capabilities of the model are similar for newer and older IUCN Red 

List assessments. The IUCN categories changed in 2001 (IUCN, 2012b), and no 

assessments took place in that year. There was no change in the percentage of correct 

and false predictions in the years before 2001 compared to assessments after 2001. 
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IUCN Red List assessments should be repeated every 10 years, but 17% of assessments 

are older (Rondinini et al., 2014). Around $400,000 is spent annually by the IUCN on 

reassessments (Rondinini et al., 2014), so using predictive models could help to prioritise 

which species to reassess first, by using those where model predictions were incorrect. 

While it appears that many of the Data Deficient species in Ecuador and South 

East Asia are threatened, this is also where most of the Data Deficient species occur. 

When comparing the percentage of threatened plants per country to the assessments 

made by Brummitt et al. (2015), the overall global pattern of threat is similar, except that 

the percentages of threatened species estimated by us are much higher than those 

estimated by Brummitt et al. (2015). This might be due to overestimates of extinction 

risk on the IUCN Red List compared to the Sampled Red List Index. Differences include 

South Africa, Mexico and Australia, which were estimated to have a higher percentage 

of threatened species by Brummitt et al. (2015), but Australia and South Africa have 

comparably low numbers of Data Deficient species. Ecuador and Cameroon were 

estimated to have a higher percentage of threatened species by us compared to 

Brummitt et al. (2015). 

Combining IUCN Red List categories into two threat statuses – threatened or 

non-threatened – can improve the accuracy of models. Darrah et al. (2017) for example 

have predicted extinction risk of bulbous monocotyledons, and their models predicted 

88% of threatened species and 93% of non-threatened species correctly. In comparison, 

the Bayesian Network models used here predicted 60.5% of threatened species and 

65% of non-threatened species correctly which is considerable lower. However, Darrah 

et al. (2017) predicted extinction risk for species from two orders within one class, 

whereas I predicted extinction risk of species from seven classes within three phyla. 

While reducing the number of categories improves model performance, the problem 

with this approach is that species that are predicted to be Critically Endangered cannot 

be distinguished from those that are Vulnerable for example, so prioritising plants with 

a very high risk of extinction would not be possible. Using threatened versus non-

threatened categories only, as opposed to IUCN Red List categories, may also be too 
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coarse to detect whether the model predicts newer assessments better than older 

assessments.  

VoI can help to decide when more research is necessary, and when to act to save 

a species (Runge et al., 2011), or in this case, make an IUCN Red List assessment. As an 

example, I calculated the VoI for different regions, but this could be similarly done for 

different countries, taxonomic groups, or habitats. The calculations suggest that South 

America would be a good place to start making more assessments. Brummitt et al. 

(2015) found that on the Sampled Red List Index, more threatened plants occurred in 

the Neotropics, which include all of the South American region considered here.   

Decision makers could also make use of the probabilities of Data Deficient 

species to be in a certain category. For example, species with a high probability of being 

threatened or extinct may be prioritised for IUCN Red List assessments. If suitable 

conservation actions for such species are known (which may be unlikely), they may not 

even be assessed but conservation action may be taken straight away. Alternatively, 

those species may be prioritised for IUCN Red List assessment where uncertainty from 

the predictions is very high, for example species that are predicted to be in a certain 

category with a probability of less than 50%. 

It is possible to predict extinction risk of species using taxonomic, trait and 

occurrence information, even at a global level and with high uncertainties. Data 

Deficient species may be more threatened than the application of the category implies, 

and where possible those species should be reassessed to find their true threat status. 

With more and more global datasets on species’ traits and occurrence information, we 

can use these predictions to help inform global targets like the Global Strategy for Plant 

Conservation, whilst being cautious about the uncertainties at various levels in the data. 
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Chapter 5 Predicting numbers of tigers Panthera 

tigris using publicly available data 

Abstract 

Conservation managers and policy makers often have to make time-sensitive decisions 

about species without all of the necessary information. For example, information that is 

available for analysis is rarely collected in a standardised manner or is inaccessible. It is 

important therefore to analyse existing information whilst accounting for uncertainty 

arising from the way that data have been collected and made available. I examined this 

issue in the tiger, analysing publicly available data on a standard set of variables 

(including habitat data, site designations, tiger numbers and poaching levels) and 

gathered at the same spatial scale (Tiger Conservation Landscapes) across the species’ 

range to assess what determines tiger numbers. I built Bayesian Networks for analysis as 

they are well suited to dealing with uncertainty. I tested a range of algorithms to create 

models and used the best performing model to determine the most important 

variables. Higher tiger numbers were correlated with source sites, World Heritage Sites 

and number of poached tigers. This indicates the value of successful management, but 

could mean that successfully managed sites are specifically targeted by poachers. 

Habitat loss appeared to have little effect on tiger numbers. The model predicted tiger 

numbers correctly for 91% of TCLs. Even for a species of high conservation interest, 

relevant data at the same scales are not always available for decision making which can 

hamper efforts to save the species. 

5.1 Introduction 

Conservation decision making is beset by inadequate information and high uncertainty. 

The complexity of the ecological and social contexts within which decisions are made is 

increasingly understood. It is evident that in most cases we will never have all of the 

information needed to eliminate uncertainty about outcomes (Regan et al., 2005). Not 

only are there great uncertainties, but often data are collected across different temporal 

or spatial scales, making it difficult to analyse such data. These problems of scale are not 

new (Levin, 1992), but they still exist today (Chave, 2013). Choosing appropriate spatial 
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scales is important for effective decision making in conservation so different 

interventions can be compared (Guerrero et al., 2013), especially for wide-ranging 

species (Wheatley and Johnson, 2009). 

5.1.1 Tigers 

Tigers used to occur from the Russian Far East all the way across Asia into Turkey and 

South into Java (Sanderson et al., 2006). The decline in the global tiger population is 

both well established (Dinerstein et al., 2007; Goodrich et al., 2015) and the subject of 

considerable attention from both civil society and governments (see Joshi et al. 2016). 

Despite a wealth of research establishing the tiger’s ecological requirements and the 

pressures on populations, uncertainty around the overall population remains. Tigers are 

listed as Endangered on the IUCN Red List of Threatened Species (Goodrich et al., 2015), 

and three of the six subspecies, namely the South China tiger, the Sumatran tiger and 

the Malayan tiger, have been classed as Critically Endangered (IUCN, 2017). 

Recent changes in tiger numbers are thought to be driven by poaching 

(Wikramanayake et al., 2011). Tigers themselves are poached due to international 

demand for tiger parts, and tiger prey are poached for local consumption or local trade 

(Dinerstein et al., 2007; Walston et al., 2010; Wikramanayake et al., 2011). Tigers also kill 

humans and livestock, which leads to human-tiger conflict (Goodrich, 2010). This conflict 

is exacerbated by the continued expansion of the human footprint into tiger landscapes 

and the expansion of the domestic livestock herd across the tiger’s range (Nyhus and 

Tilson, 2010). Habitat loss also affects tiger numbers, especially in South East Asia, where 

habitat is being converted at faster rates than elsewhere in the tiger range. Previous 

rapid habitat loss elsewhere has slowed (Joshi et al., 2016). Some areas are also at risk of 

fragmentation due to the development of new infrastructure (Wikramanayake et al., 

2011). 

India was the first country to tackle the tiger decline by protecting all tigers 

through the Wildlife Act of 1972, and by declaring a number of protected areas for tiger 

conservation under ‘Project Tiger’. Across their range, tigers were first safeguarded in 

protected areas until the notion of Tiger Conservation Units emphasised that tigers can 

only be fully conserved in expansive landscapes as tigers range over large areas 
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(Sanderson et al., 2006). This work then developed into what are now called Tiger 

Conservation Landscapes (TCLs) that overlap some (but not all) Tiger Conservation Units 

(Sanderson et al., 2006). More recently, core sections of some TCLs have been 

considered tiger source sites and therefore central to solving the tiger ‘crisis’. These sites 

have tiger populations big enough to populate adjacent areas (Walston et al., 2010).  

There is considerable interest and funding for conserving tigers, as demonstrated 

by the Tiger Summit in St. Petersburg in 2010. This was the first global summit held to 

save a single species, where the World Bank pledged $100 million to tiger conservation 

(Global Tiger Initiative, 2010). Tigers are relatively well studied too: a search of Panthera 

tigris in the Web of Science returned 319 entries since 2013 (15/11/2017). At the same 

time, there are differing views about whether the efforts of tiger conservation should be 

focused primarily on protected areas (Walston et al., 2010) or whether wider landscape 

approaches should simultaneously be addressed (Wikramanayake et al., 2011), whether 

tiger numbers are increasing (WWF, 2016) or not (Karanth et al., 2016), and whether 

there are six extant subspecies (Luo et al., 2004) or two (Wilting et al., 2015), and why 

tigers appear to be doing better in India and Nepal for example, compared to some 

areas in South East Asia (IUCN, 2017). Furthermore, it appears that no evidence 

syntheses or meta-analyses have been undertaken to collate findings and inform which 

conservation actions are likely to be most effective. 

5.1.2 Aims 

We sought to determine which variables were most strongly associated with tiger 

numbers in different contexts whilst accounting for the considerable uncertainty 

inherent in the available evidence. We identified TCLs as our unit for analysis since data 

on habitat across the tigers’ current range were available for them, and the Global Tiger 

Initiative (2011) identified TCLs as appropriate units for conserving tigers.  

5.2 Methods 

There was a lack of literature on the whole tiger range, with many papers discussing 

case studies only. Tiger management usually takes place at a reserve or site-scale rather 

than at the whole TCL scale. Many papers reported their findings at site scale with site 

specific objectives and data gathering approaches. There was also a lack of studies that 
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compared across different sites. Additionally, it is likely that most information on tiger 

numbers is held by the range of countries and conservation NGOs that manage tiger 

reserves which is not always publicly available. Since habitat information was available 

for all TCLs, we based our analysis on this scale and worked from there finding other 

information that may be relevant for tiger conservation. 

5.2.1 Data sources 

We searched for publicly available data on tigers in Google Scholar and Web of Science, 

using the search term “tiger conservation landscapes” which was our unit of analysis. 

The searches resulted in a total of 159 papers (14/08/2017). Of those, 155 were 

concerned with one or a few tiger conservation landscapes only, or did not study tigers 

at all. The use of the other four is outlined below. All data used are shown in appendix 

S8. 

A key report was identified: “Setting priorities for the conservation and recovery 

of wild tigers: 2005–2015”, written by a range of conservation NGOs, that used the 

notion of TCLs across the tiger’s range (Sanderson et al., 2006). The location of each 

TCL was specified together with total area, habitat area suitable for tigers and how 

many tigers it could support, area of the largest habitat patch suitable for tigers, 

whether the TCL had a designated Ramsar site, World Heritage Site or a United Nations 

Educational, Scientific and Cultural Organisation Man and Biosphere reserve (MAB) 

within it, and whether other large megafauna, namely Asian elephants Elephas 

maximus, Indian rhinoceros Rhinoceros unicornis, Sumatran rhinoceros Dicerorhinus 

sumatrensis, Javan rhinoceros Rhinoceros sondaicus or orang-utans Pongo pygmaeus, 

were present, all contained in Sanderson et al. (2006). Habitat area and potential tiger 

numbers that the habitat could support were updated using recent estimates of forest 

loss by Joshi et al. (2016). The percentage of the total TCL that was a protected area was 

included (Forrest et al., 2011), and whether the TCL was considered a source site, a 

potential source site, or was not considered a source site (Walston et al., 2010). 

We then extended the search to include information on tiger numbers and 

poaching.  We mapped seized tiger parts to the different TCLs 

(http://wildlifetradetracker.org/?db=tigers, last accessed 14/08/2017), which were first 

http://wildlifetradetracker.org/?db=tigers
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listed in a report by Verheij et al. (2010). We split the seizures into two groups – either 

tiger parts found within a TCL, or within 50km of a TCL. 

Tiger numbers are usually reported by country, but for our analysis estimates of 

tiger numbers in each TCL were needed. As these were not given in the original TCL 

assessment, we used estimates that had been cited in the IUCN Red List entry for tigers 

(Wibisono et al., 2009; Lynam, 2010; Jhala et al., 2011; D'Arcy et al., 2012; O'Kelly et al., 

2012; Sunarto et al., 2013; Dhakal et al., 2014; Goodrich et al., 2015; Duangchantrasiri et 

al., 2016). We also used data from Walston et al. (2010) who listed tiger source sites and 

the corresponding tiger numbers, and matched these to the TCLs. If we were not able 

to find estimates for tiger numbers within a TCL, this landscape was then classed as 

having “low” tiger numbers – see also section 2.5 on data discretisation below. We have 

included data in the supplementary material.  

Parts of some of the TCLs were considered separately as tiger source sites 

(Walston et al., 2010), which listed current spending for protection and monitoring, as 

well as an assessment of tiger numbers within the source site only. All source sites were 

used to plot the spending in each tiger source site per tiger. For Indonesia only the total 

spending for all TCLs combined was reported, so the cost per tiger nationally was used.  

5.2.2 Data preparation 

Tiger densities are directly linked to prey densities, and as prey densities vary across 

bioregions naturally, so do the carrying capacities of tigers (Sanderson et al., 2006). The 

bioregions were used as defined in the TCL assessment of 2005 (Sanderson et al., 2006): 

the Indian subcontinent bioregion which included most of India as well as Bangladesh, 

Bhutan and Nepal; the Indochinese bioregion which included some of the most easterly 

parts of India as well as Cambodia, Laos, Myanmar, Thailand and Vietnam; the Russian 

Far East bioregion which included Russia and northern China, and the South East Asian 

bioregion which included Indonesia and Malaysia. These bioregions were roughly 

equivalent with the tigers’ remaining subspecies as defined by Luo et al. (2004) – the 

Bengal tiger in the Indian subcontinent, the Amur tiger in the Russian Far East, the 

Northern Indochinese tiger in Indochina and both the Malayan and Sumatran tigers 

occurring in the South East Asian bioregion. The South China tiger subspecies is likely to 
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be Extinct in the Wild as it has not been seen since the 1970s (Goodrich et al., 2015). A 

more recent analysis found only two subspecies however (Wilting et al., 2015). We 

calculated the percentage of carrying capacities achieved in different TCLs by dividing 

the number of tigers by the potential number of tigers in each TCL (Sanderson et al., 

2006). 

Using Bayesian Networks (BNs) on a mixture of discrete and continuous variables 

is computationally difficult so we split continuous variables into groups of equal counts. 

We used five different discretisations where possible: we split continuous variables into 

groups of two, four, six, eight or ten equal counts. We built models with the different 

discretisations, and used the best-performing model for analysis. 

The only exception to this method of discretisation was tiger numbers, where 

viable population sizes were used for discretisation, based on the assumption that a 

viable population needs a minimum of 25 female tigers, and better still 50 or more, and 

an assumed sex ratio of two females per male tiger (Smith and McDougal, 1991; 

Miquelle et al., 2015). We used two different discretisations for tigers: two or three 

groups (Table 10). 

Table 10. Groups of tigers used in models. 

Number of 

groups 

Low tiger 

numbers 

Medium tiger 

numbers 

High tiger numbers 

2 0 – 37 tigers NA More than 37 tigers 

3 0 – 37 tigers 38 – 74 tigers More than 74 tigers 

If no estimates of tiger numbers for a TCL could be found, it was assumed that 

tiger numbers were low, as otherwise by definition a site within the TCL would have 

been listed as a tiger source site in Walston et al. (2010) with information regarding the 

population size. We used all possible combinations of continuous discretisations with 

both tiger discretisations, then chose the model with the best model fit. 

5.2.3 Machine-Learnt BNs 

BNs are probabilistic models in which variables are linked through arrows, called arcs, 

and whose relationships are described through conditional probability tables 

(Nagarajan et al., 2013; Scutari and Denis, 2014). BN model structures can be expert 

elicited or built using Machine Learning algorithms. We used one classifier and two 
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Machine Learning algorithms: the Naïve Bayes classifier, the hill-climbing algorithm, 

both implemented in the bnlearn package in R (Scutari, 2010) and the greedy thick 

thinning algorithm, implemented in GeNIe Modeler (Bayes Fusion LLC, 2017) to devise 

the structure of our network.  

Naïve Bayes uses a fixed model structure in which the variable to be predicted (in 

our case tiger numbers) is the centre of the network, and points to all other variables in 

the network (Nagarajan et al., 2013). Both the hill-climbing and the greedy thick thinning 

algorithms are score-based, which means that goodness-of-fit statistics are used to find 

the best network structure (Scutari and Denis, 2014). A network starts with no arcs 

between variables. Then one arc is added to the network, and this network is given a 

score. Then a second arc is added to the network, which is again given a score. If the 

second score is higher than the first, both arcs stay. If the score of the first network is 

higher, then the second arc is removed. This is repeated until the score increases no 

further (Nagarajan et al., 2013). The hill-climbing algorithm (Nagarajan et al., 2013) adds, 

removes and reverses arcs until all possible options are exhausted. The greedy thick 

thinning algorithm (Cheng et al., 1997) adds one arc, then the next, until all possible arcs 

are exhausted. It then removes one arc at a time, until all possible arcs are exhausted. 

We checked model fit with 10-fold cross-validation for tiger numbers in GeNIe 

Modeler (Bayes Fusion LLC, 2017). Observations, in our case TCLs, were randomly 

divided into equal parts and the conditional probabilities were recalculated using nine 

of these parts, called the training set. The data that were not used to build the model 

were then predicted, called the test set (Marcot, 2012; Nagarajan et al., 2013). In our 

case tiger numbers of the test set were predicted, and could be compared with the real 

tiger numbers in a particular TCL. The number of correct predictions can be expressed 

as a percentage, called the accuracy. 

5.2.4 Scenario and sensitivity analysis 

Scenario analysis was used to examine which variables in the model were key and 

therefore warrant further investigation (Marcot, 2012; Stewart et al., 2013), first by setting 

tiger numbers in the BN to 100% high, and then setting them to 100% low. This is also 

known as one-way sensitivity analysis, and can lead to changes in the states of other 
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variables in the network. We recorded the variables with changes of more than 10% 

between the states, and plotted them from the raw data. 

There was considerable uncertainty around some of the variables in the model. 

We therefore varied these in the model to test whether changing them would lead to 

different model outputs. As tiger numbers of some TCLs were unknown, we varied the 

categories of these TCLs in the final model to half low and half high. Similarly, the 

numbers of seized tigers were not collected systematically, so we varied the four 

categories with one at 70% and the other three at 10% each, and repeated this three 

times. None of these sensitivity analyses had a substantive impact on model outputs. 

5.3 Results 

5.3.1 Realised tiger numbers against habitat capacity  

We calculated carrying capacities of TCLs by dividing the actual tiger numbers by the 

potential tiger numbers listed in Sanderson et al. (2006). Of 76 TCLs, 21 (27.6%) achieved 

at least half of their carrying capacity (Figure 25). Of these, five (6.6%) have carrying 

capacities above 100%, possibly because potential tiger numbers in Sanderson et al. 

(2006) were incorrect for those sites, particularly in the Sundarbans. While the 

percentages are variable in the Indian subcontinent, the Russian Far East and South East 

Asia, the highest achieved carrying capacity in Indo-China was 2.2%. 

 

Figure 25. Tiger numbers and carrying capacity achieved at different TCLs, by bioregion. 

One outlier removed, Sundarbans with 470 tigers and 1880% carrying capacity. 
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5.3.2 Spending at source sites 

Costs of conservation per tiger were calculated to examine whether differences in tiger 

numbers across bioregions were linked to differences in funding. The spending per tiger 

in each individual tiger source site ranged from $5,640 to $220,200 (Figure 26). The 

costs per tiger were very variable for sites with low densities, for example the lowest 

cost per tiger was $5640 at a site with 1.5 tigers per 100km2, and the second highest was 

$101,200 at a similar density of 1.8 tigers per km2. Most of the source sites were in the 

Indian subcontinent (21), with seven in South East Asia, six in the Russian Far East and 

three in Indochina. The Indian subcontinent had the sites with the highest densities and 

associated lowest costs. Of all sites, 18 had low tiger numbers and did not have 

minimum viable population sizes (Smith and McDougal, 1991; Miquelle et al., 2015). 

Tiger densities varied from 0.1 tigers per 100km2 to 22 tigers per 100km2.  

 

Figure 26. Tiger density per 100km2 and spending per tiger in each Tiger Source Site in 

US$. Bioregions in which Tiger Source Site is located is shown as well as tiger 

population size. One outlier was removed, the Indian part of the Sundarbans source 

site, with spending of $220,000 per tiger, a tiger density of 0.84 and a tiger population 

of 22. Two sites are overlapping, with a cost of $25,300 per tiger, a density of 6 

tigers/100km2 and populations of 35 and 78, both located in the Indian subcontinent. 

5.3.3 BN analysis 

We created BNs with five different discretisations for continuous variables, two different 

discretisations for tiger numbers, two different algorithms and one classifier. We 
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checked accuracy to find the best model fit (Figure 27). The model that used two 

groups for tiger numbers, eight groups for the other variables and was built with a 

greedy thick thinning algorithm performed best, see appendix S7. It predicted tiger 

numbers as either low or high correctly in 91% of cases. The models that used two 

groups of tiger numbers predicted these better than those that used three groups.  

 

Figure 27. Accuracy of predictions of different discretisations and algorithms. 

We used the best performing BN to run scenario analyses providing probabilistic 

predictions of variable states by changing tiger numbers to 100% low (worst case) or 

100% high (best case). Changing tiger numbers in the BN led to changes in the states of 

the other variables. Four variables had individual states which changed by more than 

10% - the numbers of seized tigers either within the TCL or within 50km and whether 

the TCL was a source site, or a World Heritage site. Habitat loss was very similar 

between the two scenarios, with no state changing more than 2%. Equally, bioregion 

changed little between scenarios, with no bioregion changing by more than 4%.  

The number of seized tigers, both within the TCL and within 50km, increased 

with higher tiger numbers in the TCL (Figure 28). Tigers seized in TCLs were highest in 

the Indian subcontinent. Fewer tigers were seized in South East Asia and the Russian Far 

East compared to the Indian subcontinent and Indochina within 50km of a TCL. 
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Figure 28. Tiger numbers in TCL, by tiger numbers seized within TCLs (top) and outside 

of a TCL but within 50km (bottom). All four bioregions shown. 

By definition, tiger source sites were those that had large enough tiger 

populations to populate other areas. Source sites had higher tiger numbers than sites 

that were not source sites (Figure 29). Similarly, TCLs that were well protected and 

contained high tiger numbers were more likely to be World Heritage sites. 

 

Figure 29. Source sites (left) and World Heritage Sites (right), by tiger numbers in TCL. 

All four bioregions shown. Each circle represents one TCL. 
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Habitat loss on the other hand appeared to have little effect on tiger numbers 

(Figure 30). Larger TCLs experienced higher habitat loss, and may therefore still be able 

to support the number of tigers found in them since tigers were not at carrying capacity 

in most of the TCLs. Habitat loss was lowest in TCLs in the Indian subcontinent, but 

variable in the other bioregions. 

 

Figure 30. Habitat area and habitat loss in different TCLs, split by bioregion. Size of 

point reflects the tiger population in the TCL. 

5.4 Discussion 

Despite the huge amount of literature on tigers, and the pressing need to conserve 

what is left of the global tiger population if we are to save it from extinction, there is still 

uncertainty around how best to pursue tiger conservation. Tiger numbers in many of 

the 76 different TCLs are not near or at carrying capacity, and are particularly low in the 

Indochinese bioregion. The better protected a site is, the more tigers seem to be able to 

survive. TCLs that support more tigers have seen more tiger seizures too. Habitat loss 

on the other hand does not appear to have clear links to tiger numbers. 

We investigated first of all whether there were big differences between 

bioregions in terms of tiger numbers, but both the numbers of tigers and the carrying 

capacities differ within bioregions. This is partly linked to different natural tiger densities 

(Sanderson et al., 2006), as indicated by one Russian TCL with high tiger numbers but 

low carrying capacity. There also appears to be little effect of spending on tiger 

numbers, but cost per tiger declined with increasing tiger densities. Tiger populations 
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with high densities in the Indian subcontinent were cheap to protect per tiger as they 

are often smaller and the threats to them appear to be easier to mitigate. Tiger 

populations with lower densities had very variable costs per tiger. While our analysis 

does not reflect all of the funding going to tiger conservation, it appears indicative and 

would benefit from more accurate information on costs.  

Both TCLs that contain source sites and those that are World Heritage sites have 

higher tiger numbers. Source sites do make a difference to tigers. Not surprisingly the 

model showed that the best protected and managed places are where most tigers are, 

indicating the importance of effective protection and management. It is possible that 

World Heritage Sites may see more tourism than other sites and may, therefore, be less 

subject to poaching, or receive higher levels of scrutiny and management may be more 

effective. This is likely since most of these sites are also source sites. 

Scenario analysis showed that the number of seized tigers, both within the TCL 

and within 50km of it, are higher at those TCLs that have higher tiger numbers. More 

tigers may attract more poachers, which may lead to higher numbers of seizures. It is 

also possible that sites with higher tiger numbers see more enforcement, and seized 

tigers are more likely to be recovered in them than in sites with low rates of 

enforcement (and therefore low numbers of tigers). 

The amount of habitat loss appears to have had little effect on tiger numbers. 

The five TCLs with highest habitat loss are well below their carrying capacities - 14.6% is 

the highest percentage of achieved carrying capacity of these five. While our analysis 

does not account for habitat fragmentation, these results suggest that stopping 

poachers is the crucial part for tiger conservation, while habitat protection can only lead 

to more tigers in combination with better law enforcement. 

There are clear differences in the number of tigers between bioregions but these 

differences stay the same in the scenario analysis. This indicates that even if substantial 

efforts were made to protect tigers outside the Indian subcontinent, it would be difficult 

to increase tiger numbers to levels comparable with the Indian subcontinent. Increasing 

numbers in Indochina, however, looks to be more feasible from the analysis than in the 

South East Asian bioregion or the Russian Far East due to the large difference between 
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actual and potential tiger numbers. Both poaching pressure and habitat loss appear 

more pronounced in Indochina compared with the other bioregions. Further research is 

needed to find out what exactly is affecting this bioregion so badly that carrying 

capacities are not above 2.2%. There is not one bioregion in which all tiger populations 

are at or near carrying capacity, but it is not clear why some countries, most notably 

India, are doing better at protecting tigers than others. 

To our knowledge no range-wide evidence synthesis of what appears to work in 

tiger conservation, and why, has been published. We have provided a starting point in 

analysing in a standard way what is known about tigers and the threats they face across 

their range. One of the biggest problems we faced in our analysis was bringing together 

data sources from the very large range of tiger studies that are usually reported either 

at site, TCL or country scale. The extent of this challenge is shown by the extensive 

description in the Methods section of this process and the work needed to make the 

available data suitable for standardised and repeatable analysis. There are examples 

from other fields of science where outcomes are used, agreed in advance, to ensure 

that the same variables are measured, such as the COMET initiative for clinical trials 

(COMET Initiative, 2017). The outcomes are agreed for different health conditions, with 

the aim of reporting the outcomes from clinical trials. Core outcome measures have 

been used in 227 studies between 1981 and 2014 in 29 different areas of health research 

(Gorst et al., 2016). Guidelines on choosing and reporting of core outcome measures in 

health research are available (Kirkham et al., 2016) and could be adapted for ecological 

research, for example by including information about the phylogeny, spatial and 

temporal scales. This would help with conducting systematic reviews and meta-analyses 

(Kirkham et al., 2016). Gargon et al. (2014) suggest that core outcome measures are 

usually chosen by a range of stakeholders, and in ecology this could comprise scientists, 

site managers and the local population. 

There are already standards to improve the effectiveness of tiger management 

with the Conservation Assured Tiger Standards (Conservation Assured, 2017). They 

could form a basis of core outcome measures that should be reported in tiger studies, 

and would likely include information regarding the spatial scale of the study, tiger and 
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prey populations, poaching levels of both tigers and prey, habitat loss, different 

management interventions used alongside their costs as well as metrics relating to the 

local human population. This is crucial to make scientifically robust comparisons across 

the tigers’ range. The Global Tiger Recovery Program 2010 – 2022 states that innovative 

science, regular monitoring of tigers and their prey, and adaptive management are 

integral to saving tigers (Global Tiger Initiative, 2011), and is well placed to find a set of 

sensible core outcome measures to ensure tigers will not go extinct and to support the 

global goal to double the number of wild tigers. 
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Chapter 6 Discussion 

6.1 Major findings 

The aim of my thesis was to consider how to deal with uncertainty in different stages of 

the decision-making process in conservation, from Red Listing to taking action to save 

species. Value of Information (VoI) offers a way of quantifying the level of uncertainty, 

indicating where it is high and identifying areas of research where it is especially 

important to minimise uncertainty. I have explored the use of VoI in biodiversity 

conservation and found 30 papers to date that use the method in a variety of settings. 

There is uncertainty regarding which species are threatened that is impeding the 

conservation of those species. I therefore predicted extinction risk of plants in the 

Caatinga ecoregion in Brazil, and predicted 68 species to be threatened in addition to 

the 27 threatened species that have been assessed already. There is also uncertainty 

about the risk levels of Data Deficient species globally, so I predicted extinction risk for 

1,732 Data Deficient plants worldwide. I predicted 815 to be threatened, and 117 to be 

Extinct. I also explored uncertainty in what drives the number of tigers in different Tiger 

Conservation Landscapes, the only spatial scale where there are data on a range of 

variables throughout the species’ range. There is only limited data on Tiger 

Conservation Landscapes, but the available data suggest that poaching is the 

determining factor in the number of tigers in each landscape, and habitat loss and 

conservation management spending per site are not. To explore whether the use of VoI 

could be extended to other topics in conservation, I used VoI as a way of prioritising 

which plant species to assess on the Red List first. There was not enough information on 

tiger conservation actions at the right spatial scales to use VoI however, suggesting that 

we can extend the use of VoI in some but not all cases. The general discussion below 

considers the implications of these findings in the wider contexts of science-policy 

interaction and conservation decision-making. 

6.2 VoI in biodiversity conservation 

VoI is a method that can be used to distinguish when to act and when to do more 

research first. It is not a new method, but still relatively uncommon in ecology and 

biodiversity conservation with only 30 papers to date (chapter 2), though both use and 
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advocacy is on the increase. The examples I found span a range of management issues, 

mainly concerning threatened or invasive species. There are also examples of 

management at a landscape scale. Most of the VoI papers were written by research 

groups based in the USA or Australia, so there is scope for more application of the 

method in other regions of the world.  

It is unclear to what extent VoI has actually informed management in any of the 

papers I found. VoI can only make a difference if the results inform management, and it 

is mentioned in a technical guide from the US Department of Interior (Williams et al., 

2009), and recent guidelines for species conservation planning by the IUCN (IUCN – SSC 

Species Conservation Planning Sub-Committee, 2017). There are many VoI papers from 

US universities and institutions, and it remains to be seen whether the IUCN guidelines 

will lead to more VoI papers or implementations designed to save species. 

6.2.1 Measuring net benefits 

In health economics, VoI has been advocated since 1999 (Claxton, 1999) with 59 applied 

uses of VoI analysis (Tuffaha et al., 2014). There it is used to decide between different 

treatments for a condition, or to determine whether more research is necessary before a 

treatment is implemented to improve human health. In the UK, the benefits are 

estimated as quality-adjusted life years, combining life time and quality of life of a 

person, which are given a monetary value (Briggs et al., 2006). Quality-adjusted life 

years are used with cost estimates of different interventions and their effectiveness to 

calculate the net benefits of different interventions and the VoI. In the 30 biodiversity 

conservation papers I found, VoI was measured in a variety of ways, from monetary net 

benefits (Costello et al., 1998) as in health economics to unitless values (Runge et al., 

2011) and probabilities of populations persisting (Tyre et al., 2011). Because there is not 

only one measure of net benefit like in health economics, it is more difficult to compare 

VoI studies in biodiversity conservation.  

Even though the use of VoI is on the increase, the studies I found are almost all 

focused on single-species management, and undertaken for a particular site. Having to 

estimate costs and benefits might impede the application of VoI more broadly, as 

accurate values might be difficult to obtain. For cost data in conservation, many studies 
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do not detail assumptions, ignore heterogeneity in the data, and use proxies 

(Armstrong, 2014). Estimates of benefits might equally be difficult to obtain, such as 

ecosystem service evaluations of human wellbeing (Wegner and Pascual, 2011). These 

estimates are even more difficult to obtain if considered for larger spatial scales with 

greater uncertainties, or for more complex conservation problems that go beyond 

individual species or sites (Keith et al., 2011), and thus inhibiting the use of VoI more 

broadly. 

To facilitate the use of more uniform net benefits, I suggest some ways forward. 

Costs of interventions can be compared by calculating the benefit that could be 

achieved through different interventions at different budget levels, without having to 

put a value on a species or individual (Maxwell et al., 2015). Methods like willingness-to-

pay can be used to estimate what a species’ value is, though estimates can incorporate 

a big range of values (Richardson and Loomis, 2009). It would also be possible to divide 

the annual conservation expenditure for a species by the number of individuals of the 

species. If a standardised monetary net benefit was used in VoI studies, it would not 

only be possible to compare species-specific actions, but also actions for different 

species. For example, we could answer questions such as should we undertake action to 

save species X, or would we gain more by undertaking action to save species Y. Clearly, 

achieving this would be difficult, but if we do not have such values, the question 

remains how we can make rational decisions about alternative actions with finite 

resources (Bottrill et al., 2008). 

6.2.2 Lessons from applying VoI to different settings 

There are no papers that use VoI to prioritise for which species groups to do more Red 

List assessments, or when to undertake conservation action directly, as I have done in 

Chapters 3 and 4. Both chapters are quite theoretical in nature and the full decision 

context is not considered. My analyses could be extended however, and objectives 

could include stopping extinctions or further declines of threatened species. 

Management actions could be to undertake further Red List assessments, or to 

undertake conservation action straight away. Predicting extinction risk and calculating 

the VoI could help to inform these decisions, using costs of Red Listing and costs of 
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management. Grouping species into sensible units for management, for example by 

habitat and location, would help this process, as it is unlikely that species groups such as 

families can be managed over a large range.  

To use VoI, we need a measure of uncertainty around the values we are 

interested in – be it through predictive models or through expert elicitation. In my VoI 

calculations, three values contributed to the overall expected value of a group (family or 

region): the probability of extinction of a category, the uncertainty around species to be 

in that category, and the number of species that were predicted to be in that category. 

In both chapters 3 and 4 the groups with most species that were predicted to be 

Critically Endangered had the highest expected value– the family Bignoniaceae in 

chapter 3 and South America in chapter 4. As Critically Endangered species have an 

extinction probability of 0.5, higher than the other categories apart from Extinct, these 

were driving the overall expected value, and the uncertainties had little effect.  

For Tiger Conservation Landscapes (TCLs) it would be possible to use tiger 

numbers as a basis for a VoI analysis. If there was information available on management 

costs of interventions and their effectiveness for the different TCLs then the costs could 

be multiplied with the effectiveness and the tiger numbers. However, this information is 

not publicly available for all TCLs, and unless conservation NGOs such as WWF hold 

such information calculating a VoI to inform their funding decisions is not possible. 

Using core common outcomes would be a way of facilitating VoI calculations, as long as 

the relevant information is included in the outcomes to be reported. 

Decision analysis and adaptive management are important tools that can help 

ensure that our knowledge then leads to addressing threats to species, and VoI is 

embedded within them. Difficulties in applying these decision-making tools will 

therefore also impact on the use of VoI. Criticisms have highlighted that these methods 

may not include views of diverse stakeholders or non-scientific knowledge (McLain and 

Lee, 1996), and are impeded by institutional barriers and the difficulties in modelling 

complex ecological systems (Keith et al., 2011). These problems could partly be 

addressed by ensuring all relevant stakeholders are considered and setting up the 

analysis well from the start, as is intended in structured decision-making (Gregory et al., 
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2012). Approaches such as agent-based models could help to model socio-ecological 

systems (Rounsevell et al., 2012), and mixed models could help to model patterns of 

biodiversity by including underlying processes (Brown et al., 2014). Such approaches 

could help to better predict the effects of different actions on management objectives 

and so improve both the use of adaptive management and decision analysis, as well as 

consequently the application of VoI. 

6.3 Predicting extinction risk 

6.3.1 Contribution to estimates of extinction risk of plants 

The first step in saving species has to be the knowledge of which species are 

threatened, and why they are threatened. While the Red List already contains over 

90,000 species (IUCN, 2018b), and Red List Indices and Sampled Red List Indices help us 

track real change of species’ threat status over time (Butchart et al., 2004), none of them 

tell us what the conservation status of the vast majority of species is, which is crucial to 

meet global targets to prevent species’ extinctions. One way of estimating which species 

are at risk of extinction is to predict species’ threat status. These predictions could be 

used in different ways, for example to prioritise which species to assess next, or to focus 

on certain areas as they contain more species at risk.  

Of 403,911 described plants (Nic Lughadha et al., 2016), 24,230 species or 6.0% 

have been assessed on the IUCN Red List (IUCN, 2018b). I have predicted the extinction 

risk for 1,189 species in the Caatinga, and for 1,732 Data Deficient plants globally. This 

adds up to a total of 27,151 assessed plant species or 6.7%, and my predictions led to an 

increase of 0.7%. While 53.8% of Data Deficient species globally were predicted to be 

threatened or Extinct, only 5.7% of species were predicted to be threatened in the 

Caatinga. In comparison, the Sampled Red List Index estimated 21.4% of plants to be 

threatened. The data containing all species on the Red List is likely to overestimate 

extinction probability, as threatened species are more likely to have been assessed. It is 

possible that the species assessed so far in the Caatinga are also not a representative 

sample of threat status mainly because few of them were from the main Caatinga 

habitat types. Alternatively, plant species in the Caatinga may face fewer threats 

compared to other areas, and so have a lower probability of extinction. 
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I confirmed that the number of occurrence records can be valuable for 

estimating extinction risk of plants, both in the Caatinga and for assessed species 

globally, as was shown by Rivers et al. (2011) for endemic species from the Leguminosae 

and Orchidaceae families that are endemic to Madagascar. I also showed that taxonomy 

can be an important predictor for threat status as it was the most important variable for 

predicting threat status in the Caatinga, similar to findings from Davies et al. (2011). 

However, taxonomy was of less importance when I predicted Red List categories of Data 

Deficient species globally, which was also found by previous authors (Daru et al., 2013; 

Cardillo and Skeels, 2016). Drivers for extinction risk might be more uniform in the 

Caatinga, and might affect closely related species in a similar way. Threats might differ 

geographically however, and so it is possible that closely related species in different 

areas globally face different threats, and therefore have different extinction probabilities. 

6.3.2 Bayesian Networks and Machine Learning for predicting extinction risk 

Bayesian Networks are visual models that use conditional probabilities between nodes. 

They are useful for combining quantitative and qualitative data, for working with 

stakeholders as they are visual, and for modelling trade-offs. They are increasingly used 

for model building with data and various Machine Learning algorithms, but have so far 

not been used for predicting extinction risk with Machine Learning algorithms. Newton 

(2010) used a Bayesian Network for predicting extinction risk, but built it as a decision-

support tool and not based on data and Machine Learning. Bayesian Networks have 

also been used with VoI in biodiversity conservation, but again the network structure 

was constructed by the authors, not by algorithms (Thorne et al., 2015). 

There are some examples of studies predicting extinction risks of different 

taxonomic groups using Machine Learning methods such as decision trees (Sullivan et 

al., 2006; Leao et al., 2014) or Random Forests (Davidson et al., 2012; Machado et al., 

2013; Di Marco et al., 2014; Howard and Bickford, 2014; Pearson et al., 2014; Comeros-

Raynal et al., 2016; Darrah et al., 2017), see Table 11. There are examples of studies 

predicting extinction risk of other groups such as mammals, birds, amphibians and 

plants, and here I have compared them to the predictions I made in chapters 3 and 4. 

All the papers listed predicted Red List category or threat status for one class or family, 
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some with geographic restrictions as well. In comparison, I predicted Red List categories 

and threat status for plants from three different classes within one phylum in the 

Caatinga, and from seven different classes within three phyla for Data Deficient plants 

globally.  

I have reported specificity (percentage of correctly classified non-threatened 

species) and sensitivity (percentage of correctly classified threatened species) from the 

papers that predicted extinction risk (Table 11). The model predicting Red List category 

for Data Deficient plants globally performed better in terms of sensitivity than the 

models from the other papers that predicted Red List category and the Bayesian 

Network I built for chapter 3, but performed worst in terms of specificity. Some of the 

papers with high sensitivity had low specificity and vice versa (Machado et al., 2013; 

Howard and Bickford, 2014; Comeros-Raynal et al., 2016), so there might be a trade-off 

between predicting threatened species and predicting non-threatened species correctly. 

Table 11. Selection of papers that use Machine Learning methods to classify species 

according to their threat category, and which reported number of species correctly 

classified. Listed are species groups, type of model, whether Red List category or threat 

status was predicted, the accuracy of the model (overall correct predictions), the 

sensitivity (percentage of correctly classified threatened species) and the specificity 

(percentage of correctly classified non-threatened species). 

Paper Species 

group 

Model Type of 

prediction 

Accuracy Sensitivity Specificity 

Comeros-

Raynal et 

al. (2016) 

Sea breams 

and 

porgies 

Random 

Forest 

Red List 

category 

90% (n = 

40) 

0% 92.3% 

Darrah et 

al. (2017) 

Bulbous 

monocotyl

edons 

Random 

Forest 

Threat 

status 

91.0% (n 

= 148) 

88.0% 93.0% 

Davidson 

et al. (2012) 

Marine 

mammals 

Random 

Forest 

Threat 

status 

91.2% (n 

= 116) 

80.0% 97.9% 

Di Marco 

et al. (2014) 

African 

Mammals 

Random 

Forest 

Threat 

status 

92.7% (n 

= 1,044) 

80.3% 96.4% 

Howard 

and 

Bickford 

(2014) 

Amphibian

s globally 

Random 

Forest 

Red List  

category 

73.2% (n 

= 4,402) 

58.1% 83.8% 

Machado 

et al. (2013) 

Sea birds in 

Brazil 

Decision 

trees 

Threat 

status 

94.4% (n 

= 54) 

77% 97.8% 
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Paper Species 

group 

Model Type of 

prediction 

Accuracy Sensitivity Specificity 

Machado 

et al. (2013) 

Sea birds in 

Brazil 

Random 

Forest 

Threat 

status 

90.7% (n 

= 54) 

55.6% 97.8% 

Chapter 3 Plants in 

the 

Caatinga 

BN – 

Naïve 

Bayes 

Threat 

status 

84.8% (n 

= 223) 

82.9% 85.0% 

Chapter 3 Plants in 

the 

Caatinga 

BN – 

Naïve 

Bayes 

Red List 

category 

77.0% (n 

= 223) 

57.1% 79.2% 

Chapter 4 Plants 

globally 

BN – Hill 

climbing 

Red List 

category 

61.0% (n 

= 1,732) 

60.5% 65.0% 

6.3.3 The class imbalance problem 

Problems of class imbalance are well-known in Machine Learning (Guo et al., 2008; 

Galar et al., 2012; Nanni et al., 2015). When the number of observations within one class 

far outweigh the number of observations of the other class(es), Machine Learning 

algorithms and classifiers often struggle to correctly classify the minority classes, and 

instead most or all observations are predicted to be in the majority class. This is also the 

case for Red List data, where the number of non-threatened species usually far 

outweighs the number of threatened species, for example threatened plants comprise 

21.4% of plant species (Brummitt et al., 2015). This can lead to most species being 

predicted to be non-threatened, even when they are in fact threatened, which is of little 

use for conservation purposes.  

I have identified three methods to overcome the class imbalance problem. The 

most common one is to reduce the numbers of groups, by splitting data into two 

groups: threatened or non-threatened. Most of the papers in Table 11 predicted threat 

status, i.e. threatened or not, as opposed to Red List category, which generally leads to 

a higher overall accuracy compared to predicting Red List category.  

The second method is to use a Naïve Bayes classifier as I did in chapter 3. It 

worked well for estimating threat status, and only one study predicted more threatened 

species correctly (Darrah et al., 2017). Because Naïve Bayes is less sensitive to 

unbalanced groups for classification, it could be used more regularly for Red List 

predictions. If splitting the data into two groups only is not an option however, Naïve 

Bayes does not perform that well as I showed in chapter 4.  
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The third method I explored to address class imbalance is oversampling, 

commonly used in Machine Learning. Data can be over- and/or undersampled, by 

resampling observations from minority classes (oversampling), by removing 

observations from majority classes, or by combining the two methods. Over- and 

undersampling can be undertaken in R with the ROSE package (Lunardon et al., 2014). 

In ecology over- and undersampling have been used for species distribution modelling 

(Evans and Cushman, 2009; Freeman et al., 2012; Johnson et al., 2012), tree species 

classification (Piiroinen et al., 2017) and classifying habitat condition (Fox et al., 2017), 

but not for predicting extinction risk. Oversampling can lead to overfitted models (Galar 

et al., 2012), but I found no evidence of overfitting in the model used for predictions in 

chapter 4. 

6.4 From Red Listing to saving species 

Listing species on the Red List is an important first step in ensuring we know which 

species might need protection. The next step is to ensure we address the threats 

species face where possible. In many cases, there may be uncertainty around what the 

threats to a species or population are, or how best to address them. This is reflected in 

the VoI literature, for example by Runge et al. (2011), Williams et al. (2011), Johnson et al. 

(2014a) and Maxwell et al. (2015), all examples where VoI was used to decide which 

conservation action to use for a threatened species, or whether to do more research 

first. 

Despite all our knowledge on tigers, I could not calculate a VoI, whereas for the 

very limited information on plants this was possible. While predicting extinction risk and 

assessing conservation actions for a species are very different endeavours, there was 

also a fundamental difference between them in terms of data availability. The Red List 

information is standardised, available for a range of species, and with published 

probabilities of extinction relating to each Red List category. All of the information is 

freely available online, and there are open data science tools to make workflows 

reproducible (Lowndes et al., 2017). Other information at species level can be 

incorporated, as I did in chapter 4. The initial set-up of a tiger conservation database in 

2006 was to be made available online, with updated annual survey results to track tiger 
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numbers over space and time (Sanderson et al., 2006). To my knowledge this has not 

happened, and no annual survey results are available for Tiger Conservation 

Landscapes. While there are reasons not to have such a database made public because 

of poachers (Oksanen and Kumpula, 2013), it would be an invaluable tool for 

conservation NGOs, governments of tiger range countries and scientists. To make tiger 

conservation evidence based and efficient, priority should be given to having such a 

database realised.  

For tigers, my work suggests that poaching is the main threat. Habitat loss is 

often mentioned as the other main threat (Goodrich et al., 2015), but this is not 

supported by the models I built. Many Tiger Conservation Landscapes have very low 

tiger numbers, very few of them are at carrying capacity, and in some countries tigers 

have gone extinct fairly recently. All of this indicates that there is a lot of empty tiger 

habitat, and unless source populations are protected from poaching so they can expand 

into these areas, protecting those empty habitats will have no effect on the overall tiger 

numbers. Protecting those areas is of value for tiger conservation only if there is 

reasonable certainty that tigers will expand into those areas once again. In terms of 

management this indicates that stopping poaching should be the priority in all Tiger 

Conservation Landscapes.  

Tigers are only one example of a threatened species, and arguably receive more 

conservation attention than most other species, with a global summit held to save them 

in 2010 and $100 million towards their conservation (Global Tiger Initiative, 2010). Most 

species will never see this level of attention and funding. To ensure that resources for 

species conservation lead to increasing numbers of those species, a systematic 

approach is needed. If the reasons for a species decline are not known, we can use a 

VoI approach to decide whether to do research, or whether there is one conservation 

action that might address different hypotheses about the decline, as demonstrated by 

Runge et al. (2011). If there are various actions that would address the decline of a 

species, we need to decide which one is most effective, whilst bearing the cost of 

interventions in mind, as demonstrated by Maxwell et al. (2015). That could mean to 

implement adaptive management and monitor how well several actions work, or to 
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implement one action that was identified as meeting the objectives (McDonald-Madden 

et al., 2010). 

6.5 Recommendations for future work 

There is clearly more work to be done on assessing extinction risk and the drivers of 

extinction so that we can save more species and ensure that the Convention on 

Biological Diversity’s Aichi targets as well as Sustainable Development Goal 15 are met. 

More specifically, occurrence records from databases such as GBIF could be used to 

calculate extent of occurrence and area of occupancy using tools such as GeoCAT 

(Bachman et al., 2011) or rCAT (Moat and Bachman, 2017) which are important for 

determining Red List status of plants. Incorporating this information into models to 

predict extinction risk could improve model performance, which means that we could 

predict extinction risk quite accurately without having to do full assessments. This would 

be particularly useful for plants, as many of their assessments are based on extent of 

occurrence. However, as occurrence records are not random samples, subsampling 

might be necessary to minimise spatial bias in the model outputs (Beck et al., 2014). 

To ensure we can predict Red List categories and threat status well, there is 

scope to explore more techniques for dealing with class imbalance. Over- and 

undersampling is one of these techniques, but there are others such as algorithms that 

can deal with imbalanced data, and a combination of different sampling and algorithms 

which is known as cost-sensitive learning (Galar et al., 2012). These methods could help 

to better predict species at risk of extinction. 

Bayesian hierarchical models are another method that could enhance our 

abilities to deal with bias and uncertainty in the data. If there are known biases then the 

real distributions could be incorporated as prior information into a Bayesian hierarchical 

model. For example, through the Sampled Red List Index for plants we know the 

distribution of Red List categories amongst plants, so that when we model extinction 

risk, we could incorporate this as a prior when our data are biased towards threatened 

species. All of these suggestions rely on ecologists with advanced statistical knowledge, 

data manipulation and programming skills in programmes such as R (R Core Team, 
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2017). Using open, reproducible workflows would ensure that work can be updated 

easily and for working on these issues as teams (Lowndes et al., 2017). 

6.6 Conclusion 

To ensure species are not going extinct, it is crucial that we use available evidence in the 

best possible way. As more and more data are freely available online, we can 

incorporate this information into our models to explore which species are at risk and 

what the main drivers of extinction risk are. The range of modelling tools that ecologists 

use is increasing and becoming more sophisticated, meaning we can better predict 

extinction risk and model management actions to save species. Incorporating the 

available information and model outputs into decision making is important so that 

management addresses the most pressing threats efficiently. Decision analysis and 

adaptive management are tools to enable this, and Value of Information forms part of 

these methods. Uncertainty is an important factor in all stages of decision making, and 

ecologists are increasingly advocating and applying methods to ensure that 

uncertainties are dealt with appropriately. While there are big shortfalls in conservation 

spending, using these methods will ensure that the funding we do have is spent as 

effectively as possible. We have many tools to make rational decisions about what to 

research, when to act, and what actions to choose for different situations. It is up to us 

to use them to save as many species as we can. 
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Supplementary material 

S1. 23 species that were assessed both on the IUCN Red List and on the Brazilian 

National Red Lists, and the categories in which they were classified. Dark shading 

denotes coinciding categories. Categories: CR – Critically Endangered, DD – Data 

Deficient, EN – Endangered, LC – Least Concern, NT – Near threatened, VU - Vulnerable 
 

IUCN Red List  

CR EN VU NT LC 

National 

Red List 

VU 0 2 2 0 0 

NT 1 2 0 0 0 

LC 0 0 2 4 9 

DD 0 0 0 0 1 

 

S2. Groups for custom discretisation for occurrence records from BIEN 3+. 

Group Occurrence records Number assessed species Number unassessed species 

1 0 – 2 10 118 

2 3 – 9 17 71 

3 10 – 14 7 50 

4 15 – 50 35 258 

5 51 – 100 24 190 

6 101 – 500 79 371 

7 501 – 1000  33 138 

8 > 1000 18 77 

 

S3.  Taxonomic ranks in which some but not all species had Red List assessments, and 

number of species to be predicted with the inclusion of the taxonomic rank. 

Taxonomic 

rank 

Number of groups in which at 

least one species was 

assessed 

Species to 

be predicted 

Genus 95 genera 413 

Family 47 families 589 

Sum 1,002 
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S4.  Model performance of 48 different models, built using a hill-climbing algorithm, a 

Naïve Bayes classifier, or a Tree-Augmented Naïve Bayes classifier. Models predicted 

Red List category or threat status, and used different numbers of discretisations (2, 4, 6, 

8, 10, 12 or 14 groups – see S2, or manually customised groups). Metrics shown for 

assessed species are the accuracy (percentage of correctly classified species), sensitivity 

(percentage of correctly classified threatened species), specificity (percentage of 

correctly classified non-threatened species), and True Skill Statistic (sensitivity + 

specificity -1). 

 

S5. The best performing Bayesian Network predicting Red List category with all variables 

and the probabilities of each state of each variable, built using 4 groups and with a 

tree-augmented Naïve Bayes classifier. Family and genus not shown due to the high 

number of states, but included in the model when processed on our computer. 
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S6. Percentage of species in each genus that are assessed as non-threatened or threatened, and predicted to be non-threatened or 

threatened. All genera in which at least one species has been assessed and one species has been predicted on the Red List are shown.



162 

 

 

S7. Final Bayesian Network structure. Network was created for two tiger group 

discretisations, eight discretisations for other continuous variables, and with a greedy 

thick thinning algorithm. 
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S8. Data for tiger BNs. 

TCL Name Source 

site 

Main 

country 

Tiger 

numbers 

Source for tiger 

numbers 

Potentia

l tiger 

number

s 

TCL 

Area 

Habitat 

area 

Larges

t 

habitat 

patch 

World 

Heritag

e Site 

Other 

megafauna 

species 

Heilongjiang no China 8 Goodrich et al. 

(2015) 

15 1315 697 660 N 0 

Bukit Rimbang 

Baling 

no Indonesia 3 Sunarto and 

Zulfahmi (2013) 

45 4395 1680 1563 N 0 

Tesso Nilo 

Landscape 

no Indonesia 8 Sunarto and 

Zulfahmi (2013) 

17 2332 -1240 525 N 0 

Salak-Phra no Thailand 
 

Lynam (2010) 10 647 377 379 N 0 

Bi Dup-Nui Ba no Vietnam 0 Lynam (2010) 55 1660 775 792 N 0 

Kon Ka Kinh no Vietnam 0 Lynam (2010) 90 6389 819 796 N 0 

Xe Bang Nouan no Laos 0 Lynam (2010) 30 657 428 427 N 0 

Royal Bardia 

South 

no Nepal 
  

35 499 199 83 N 0 

Panna East no India 4 Jhala et al. (2011) 70 1390 613 178 N 0 

Panna West no India 4 Jhala et al. (2011) 10 539 171 103 N 0 

Indravati no India 
  

2755 44238 24275 1576 N 0 

Sunabeda-

Udanti 

no India 1 Jhala et al. (2011) 160 2287 1427 603 N 0 

Painganga no India 
  

10 442 162 148 N 0 

Nagarjunasagar 

South 

no India 40 Jhala et al. (2011) 60 1699 832 337 N 0 

Nagarjunasagar 

North 

no India 20 Jhala et al. (2011) 30 915 406 217 N 0 
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TCL Name Source 

site 

Main 

country 

Tiger 

numbers 

Source for tiger 

numbers 

Potentia

l tiger 

number

s 

TCL 

Area 

Habitat 

area 

Larges

t 

habitat 

patch 

World 

Heritag

e Site 

Other 

megafauna 

species 

Valley no India 
  

5 321 -15 188 N 0 

Chandoli no India 
  

35 1682 915 433 N 0 

South no India 
  

5 344 177 177 N 0 

Purna no India 
  

20 1002 560 560 N 0 

North no India 
  

30 406 250 249 N 0 

Shoolpaneswar no India 
  

30 511 259 180 N 0 

Nam Ha potential Laos 0 Lynam (2010) 35 3217 1469 1268 N 0 

Pachmarhi 

Satpura - Bori 

potential India 43 Jhala et al. (2011) 265 4924 2396 299 N 0 

Dandeli North potential India 7 Jhala et al. (2011) 10 517 291 177 N 0 

Radhanagari potential India 
  

120 2945 1662 708 N 0 

Sundarbans yes Banglades

h 

470 Goodrich et al. 

(2015), Jhala et 

al. (2011) 

25 5304 1194 334 Y 0 

Bandhavgarh - 

Panpatha 

yes India 53.76 Walston et al. 

(2010) 

99 2020 905 249 N 0 

Kanha - Phen yes India 84 Walston et al. 

(2010) 

625 10598 5523 690 N 0 

Melghat yes India 52.796 Walston et al. 

(2010) 

90 2398 1277 503 N 0 

Pench yes India 40.811 Walston et al. 

(2010) 

140 2918 1269 205 N 0 
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TCL Name Source 

site 

Main 

country 

Tiger 

numbers 

Source for tiger 

numbers 

Potentia

l tiger 

number

s 

TCL 

Area 

Habitat 

area 

Larges

t 

habitat 

patch 

World 

Heritag

e Site 

Other 

megafauna 

species 

Andhari - 

Tadoba 

yes India 20.625 Walston et al. 

(2010) 

160 3680 1411 331 N 0 

Russian Far East 

- China 

yes Russia 360 Goodrich et al. 

(2015) 

4325 26998

3 

20809

5 

183237 Y 0 

Kuala Kampar-

Kerumutan 

no Indonesia 3 Sunarto and 

Zulfahmi (2013) 

99 9835 -117 2447 N 1 

Berbak no Indonesia 22 D'Arcy et al. 

(2012) 

30 2543 1347 1286 N 2 

Rimbo Panti-

Batang Gadis 

East 

no Indonesia 43 Wibisono et al. 

(2009) 

35 2890 1338 1116 N 1 

Rimbo Panti-

Batang Gadis 

West 

no Indonesia 23 Wibisono et al. 

(2009) 

20 1486 712 843 N 1 

Sibologa no Indonesia 
  

14 1292 812 654 N 1 

Krau no Malaysia 
  

10 1248 261 469 N 1 

Khlong Saeng no Thailand 
 

Lynam (2010) 65 4816 1559 1545 N 1 

Phun Miang - 

Phu Thong 

no Thailand 
 

Lynam (2010) 945 16273 12359 12934 N 1 

Phu Khieo no Thailand 
 

Lynam (2010) 260 5760 3614 2315 N 2 

Khao Yai no Thailand 
 

Lynam (2010) 125 2253 1701 1668 N 1 

Cardamoms no Cambodia 0 O'Kelly et al. 

(2012) 

1065 26345 12319 11470 N 1 
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TCL Name Source 

site 

Main 

country 

Tiger 

numbers 

Source for tiger 

numbers 

Potentia

l tiger 

number

s 

TCL 

Area 

Habitat 

area 

Larges

t 

habitat 

patch 

World 

Heritag

e Site 

Other 

megafauna 

species 

Cambodian 

Northern Plains 

no Cambodia 0 O'Kelly et al. 

(2012) 

981 26835 11788 8526 N 1 

Chu Mom Ray no Vietnam 0 Lynam (2010) 70 1787 579 885 N 1 

Hin Nam Ho no Laos 0 Lynam (2010) 35 2727 1581 1236 Y 1 

Northern-Central 

Annamites 

no Laos 0 Lynam (2010) 685 28826 17157 11191 N 1 

Yamuna no India 
 

Jhala et al. (2011) 15 322 120 82 N 1 

Satkosia-Gorge no India 8 Jhala et al. (2011) 170 2699 1509 643 N 1 

Palamau no India 10 Jhala et al. (2011) 205 3209 1849 727 N 1 

Thap Lan - Pang 

Sida 

no Thailand 
 

Lynam (2010) 214 4445 2970 2778 N 1 

Cat Tien no Vietnam 4 Lynam (2010) 185 3359 2087 2567 N 1 

Southern-Central 

Annamites 

potential Cambodia 0 O'Kelly et al. 

(2012) 

2622 61252 31756 30063 N 1 

Northern Forest 

Complex - 

Namdapha - 

Royal Manas 

potential Myanmar 135 Goodrich et al. 

(2015) (numbers 

for Myanmar 

and Bhutan) 

35498 237820 204615 196851 Y 2 

Dandeli South - 

Anshi 

potential India 32 Jhala et al. (2011) 45 2316 1257 411 N 1 

Bukit Barisan 

Selatan South 

yes Indonesia 13 Walston et al. 

(2010), divided 

by percentage 

20 2107 881 962 Y 2 
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TCL Name Source 

site 

Main 

country 

Tiger 

numbers 

Source for tiger 

numbers 

Potentia

l tiger 

number

s 

TCL 

Area 

Habitat 

area 

Larges

t 

habitat 

patch 

World 

Heritag

e Site 

Other 

megafauna 

species 

Bukit Balai 

Rejang - Selatan 

yes Indonesia 37 Walston et al. 

(2010), divided 

by percentage 

55 3884 2270 2665 Y 2 

Kerinci Seblat yes Indonesia 140 Walston et al. 

(2010) 

360 28162 14971 10928 Y 2 

Bukit Tigapuluh 

Landscape 

yes Indonesia 42 Walston et al. 

(2010) 

59 7106 810 5213 N 1 

Endau Rompin yes Malaysia 24.906 Walston et al. 

(2010) 

30 6505 -472 629 N 2 

Taman Negara - 

Belum 

yes Malaysia 137.659 Walston et al. 

(2010) 

941 49181 16412 12908 N 2 

Nam Et Phou 

Loey 

yes Laos 9 Lynam (2010) 419 17866 9634 6958 N 1 

Kaziranga - 

Garampani 

yes India 82.32 Walston et al. 

(2010) 

931 7514 5108 4648 Y 1 

Royal Chitwan yes Nepal 129 Dhakal et al. 

(2014),  Jhala et 

al. (2011) 

208 4055 1216 560 Y 2 

Royal Bardia yes Nepal 56 Dhakal et al. 

(2014),  Jhala et 

al. (2011) 

544 6777 3206 740 N 1 

Royal 

Suklaphanta 

yes Nepal 112 Dhakal et al. 

(2014),  Jhala et 

al. (2011) 

80 1144 452 300 N 1 
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TCL Name Source 

site 

Main 

country 

Tiger 

numbers 

Source for tiger 

numbers 

Potentia

l tiger 

number

s 

TCL 

Area 

Habitat 

area 

Larges

t 

habitat 

patch 

World 

Heritag

e Site 

Other 

megafauna 

species 

Corbett - 

Sonanadi 

yes India 159.62 Walston et al. 

(2010) 

295 5996 1677 251 N 1 

Rajaji yes India 20.5 Walston et al. 

(2010) 

35 1044 299 172 N 1 

Simlipal yes India 19 Walston et al. 

(2010) 

155 2412 1384 739 N 1 

Shendurney yes India 13.545 Walston et al. 

(2010) 

35 603 326 257 N 1 

Periyar - 

Megamala 

yes India 21.275 Walston et al. 

(2010) 

405 5978 3605 1567 N 1 

Anamalai-

Parambikulam 

yes India 78.24 Walston et al. 

(2010) 

180 3071 1582 831 N 1 

Biligiri Range yes India 34.8 Walston et al. 

(2010) 

15 278 136 136 N 1 

Leuser 

Ecosystem 

yes Indonesia 61.14343 Walston et al. 

(2010) 

320 22319 14370 7817 Y 3 

Tenasserims yes Thailand 56 Duangchantrasir

i et al. (2016) 

9127 162726 120324 113993 Y 2 

Western Ghats - 

Bandipur - 

Khudrenukh - 

Bhadra 

yes India 219.9264 Walston et al. 

(2010) 

965 18973 8677 831 N 1 



 

 


