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Abstract 

This thesis studies the influence of input motion selection strategies on nonlinear site 

response analyses of soft clay soil deposits. It also investigates the role of elastic and 

nonlinear soil properties in nonlinear site response predictions. The research adopts a fully-

coupled finite element (FE) procedure, employing an advanced kinematic hardening soil 

model. In addition, the results of equivalent linear site response analyses are considered for 

comparison purposes. 

Firstly, the research validates the performance of the advanced soil constitutive model as 

implemented in the FE code. For this purpose, the free-field response at the Lotung Large-

Scale Seismic Test (LSST) site in Taiwan is modelled in two dimensions. The best-fit shear 

modulus values according to in-situ data are used and the remaining soil model parameters 

are calibrated against experimental data from samples retrieved at different depths at the site. 

One weak (LSST11) and one strong (LSST7) input motion recorded along the downhole 

array are simulated. The predictions from the nonlinear FE approach at 17 m, 11 m, 6 m and 

at ground surface are compared with the corresponding recordings in terms of acceleration 

time histories, spectral response and maximum acceleration profiles. The accumulation of 

excess pore water pressures obtained from the FE nonlinear analyses is also compared to the 

recorded data. 

Secondly, the research investigates the influence of five input motion selection strategies on 

nonlinear site response predictions. In particular, the effect of Peak Ground Acceleration 

(PGA) scaling, spectral acceleration scaling at T1 (Sa(T1)), where T1 is the natural period of 

the soil column,, 0.2T1-2T1 scaling, Mean Squared Error (MSE) scaling and spectral 

matching selection strategies is studied by modelling an ideal soft clay soil deposit with soil 

class D properties according to Eurocode 8 (EC8). Sets of seven input motions are formed 

for each selection strategy with lower (0.15g) and higher (0.35g) seismic intensity levels. 

The target response spectra are constructed based on the EC8 prescription. The selection 

strategies are evaluated with respect to Sa(T1), PGA profile and amplification factors. 

Moreover, they are assessed based on relative displacement, PGA and Sa(T1) at the ground 

surface (referred to as Engineering Demand Parameters, EDPs).  

Finally, the research investigates the impact of the variability of the elastic (shear wave 

velocity, Vs) and dynamic (shear modulus reduction, G/Go, and damping, D, curves) soil 



ii 
 

properties on nonlinear site response predictions. The same soil model and input motions 

used for the deterministic analysis of the LSST site are adopted for nonlinear Monte Carlo 

Simulations (MCS) of the site. The results are evaluated in terms of spectral response, PGA 

profile and maximum shear strain profile, and the median values are compared with the 

recorded data.  

Overall, the research verifies the capacity of the advanced constitutive soil model within a 

fully-coupled nonlinear FE procedure to correctly predict the free-field ground response at 

a given site, including the accumulation of excess pore water pressures. It also concludes 

that the spectral matching method is the best choice amongst the investigated selection 

strategies, as it leads to the least scatter in the EDP response. Moreover, seven input motions 

are found to be sufficient to obtain a stable response at ground surface. Lastly, the impact of 

variability of the Vs profile and G/Go and D curves is shown to be dependent on both seismic 

intensity level and the adopted numerical approach. (e.g. equivalent linear code vs fully-

coupled nonlinear code). 
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Chapter 1. Introduction  

1.1 Background and Motivation 

Structures are designed to function for particular purposes within a projected lifespan. They 

are expected to ensure the capacity of resisting internal (self-weight) and external 

(earthquake, wind, human activity, etc.) forces, while retaining functionality with respect to 

serviceability limit states. Of particular importance is the load from earthquake events, 

which should be carefully considered, as this has the potential to cause great damage to earth 

structures, resulting in enormous economic and, more seriously, human losses. The 

consideration of seismic forces in geotechnical design requires an understanding of fault 

mechanisms, seismic wave propagation through rigid earth structures and, finally, local site 

conditions where the geotechnical structures are located. 

Whereas the first two considerations mentioned above (fault mechanisms and seismic wave 

propagations) are the concern of the discipline of geology, the last one is dealt by 

geotechnical engineering and soil dynamics. The local site conditions significantly influence 

the characteristics of seismic motions, travelling from the bedrock to the ground surface 

through layered soil deposits (Kramer, 2014). Modern seismic design code provisions (EC8, 

NEHRP, etc.) include the effects of soil deposits on the construction of design response 

spectra for different soil conditions, which are thought to be a good proxy for future potential 

earthquake events at any site of interest. However, the inclusion of soil factors in the 

construction of a design response spectrum cannot guarantee that the local site effect is 

properly accounted for (Pitilakis et al., 2012). This is especially true when soil deposits are 

characterised by low shear wave velocity (Vs), as the dynamic properties of the soils control 

the seismic oscillations of the deposit and can produce a considerable alteration in the 

frequency content of the bedrock motions. For this reason, it is suggested to always closely 

study local site effects in areas located over soft soil deposits. 

One way of studying local site effects is to conduct ground response analyses of the deposit 

subjected to bedrock input motions. While the use of equivalent linear or nonlinear 

numerical approaches can affect the response predictions at the surface, there are three other 

major factors that play an important role: 1) bedrock input motions; 2) adopted Vs profiles; 

and 3) adopted shear modulus reduction (G/Go) and damping (D) curves 
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(Andrade and Borja, 2006). These three site response analysis inputs involve aleatory and 

epistemic uncertainties that may influence the variability in the predictions at surface (Phoon 

and Kulhawy, 1999). To overcome uncertainty due to the bedrock input motions, selection 

and modification strategies can be used, allowing the acquisition of a stable response at the 

surface from fewer analyses (Shome et al., 1998; Iervolino and Cornell, 2005). The selection 

of bedrock input motions firstly requires the determination of a target response spectrum, 

which can be based on site-specific seismic hazard analyses or acquired imposed by design 

code provisions (e.g. EC8, NEHRP). Secondly, bedrock input motions can be modified 

according to a specific selection strategy. This topic of selecting and modifying input 

motions is relatively understudied in the geotechnical earthquake engineering field, 

compared to the research implemented in the nonlinear dynamic analysis of structures 

(Baker and Allin Cornell, 2006; Baker and Cornell, 2006; Galasso, 2010; Galasso and 

Iervolino, 2011; Haselton et al., 2012). This may be due to “poorly documented and unclear 

parameter selection and code usage protocols” of nonlinear site response analyses, as stated 

by Stewart and Kwok (2008).  

To quantify the uncertainty in site response prediction at the surface sourcing from the Vs 

profile and G/Go and D curves, a series of site response analyses can be conducted by 

randomising these input parameters. The influence of their variability on site response can 

be associated with the numerical procedures adopted (i.e. frequency or time domain 

equivalent linear approaches, and time domain nonlinear approaches). In addition, as the 

soil behaviour is mostly dependent on the seismic intensity of the input motion, the site 

response will definitely be affected. While there are several studies that have dealt with this 

topic (Roblee et al., 1996; Bazzurro and Cornell, 2004; Kwok et al., 2008; Li and Assimaki, 

2010; Rota et al., 2011), it is still not clear whether it is appropriate to include the soil 

variability in site response analyses, as no obvious benefit over response predictions from 

deterministic analyses has been observed (Rathje et al., 2010). Therefore, the topic needs 

further research particularly concerning the application of input motion selection, 

modification strategies and the influence of variability in soil properties.  
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1.2 Aim 

The aim of this study is to provide guidance to engineering practitioners and geotechnical 

researchers about the selection and modification of the bedrock input motions and the role 

of elastic and nonlinear soil properties adopted in nonlinear site response analyses of soft 

clay deposits.  

1.3 Objectives 

The aim will be achieved through the following objectives: 

1) To examine existing earthquake databases in order to assess whether the median 

response spectrum of actual input motions, especially those recorded on soft soil 

deposits (class D), matches well the design response spectrum proposed by EC8.  

2) To identify key parameters that will give an indication of the efficiency of the input 

motion selection/scaling strategies for ground response analysis.  

3) To clarify the best earthquake selection strategy from amongst the widely known 

selection methods, in terms of the response parameters identified in Objective 2.  

4) To assess, within a probabilistic framework, the reliability of the EC8 design 

response spectrum with respect to ground response predictions for soft clay soil 

deposits.  

5) To provide guidelines to engineering practitioners and researchers about the 

selection and scaling strategies of bedrock input motions for nonlinear ground 

response analysis. 

6) To model a downhole array site that has been rigorously characterised from a soil 

dynamics point of view and which includes sufficient data to enable a study on the 

variability of the soil properties. 

7) To randomise the soil properties by using available measured in-situ and laboratory 

data for the site under consideration. 

8) To determine the contribution of variability in soil properties to the uncertainty in 

the site response predictions at the ground surface. 
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1.4 Structure of the Thesis 

In this section, the general contents of the chapters that shape the thesis are explained. 

Chapter 2 deals with earthquake databases around the world. Objective 1 will be achieved 

by considering the earthquake ground motions recorded on soft soil deposits, and evaluating 

them in a probabilistic way to test the suitability of the EC8 design response spectrum. The 

main idea of the chapter is to highlight the impact of soft soil deposits on the characteristics 

of ground motions that cannot be accounted for by a smooth design response spectrum. This 

will allow the ideal soft clay deposits discussed in Chapter 5 to be studied in terms of the 

influence of input motion selection and modification strategies in free-field nonlinear site 

response analyses. In addition, some suggestions about the EC8 design response spectrum 

will be given, based on the results, in terms of predicted spectral response values. 

Chapter 3 contains a review of the concept of input motion selection and modification 

strategies, particularly from a structural engineering perspective. It also highlights the lack 

of research on this topic in the geotechnical engineering discipline. Subsequent to that, the 

focus of geotechnical research on the simulation of seismic waves propagation through the 

soil deposit is expressed via equivalent linear or nonlinear codes, incorporating different soil 

constitutive models. Several previous studies have tackled the impact of certain input 

sources (e.g. elastic and nonlinear soil properties, numerical models and thickness of soil 

deposits) bringing uncertainty to site response predictions at the surface. Emphasis is placed 

on the need for further research in this area. This chapter essentially presents clear 

documentation justifying the motivation for this thesis, and addresses Objective 2. 

Chapter 4 documents the performance of the nonlinear numerical finite element code, 

SWANDYNE II, employed in Chapters 5 and 6 with the kinematic hardening soil model 

RMW. The Large-Scale Seismic Test site in Lotung (Taiwan) is considered for the free-field 

nonlinear site response analyses. One weak and one strong input motion recorded at the site 

are simulated and the predictions from the analyses are compared with actual data from 

different depths, along with the results from equivalent linear analyses. Overall, this chapter 

demonstrates the capacity of the code in simulating seismic wave propagation and the 

reliability of the results presented in the following chapters. 

Chapter 5 deals with the implementation of five selection strategies used in nonlinear site 

response analyses which are well established in the nonlinear performance analysis of 
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structures. For this purpose, ideal soft clay soil deposits are modelled in the FE code and the 

analyses are carried out under sets of seven input motions, with lower and higher seismic 

intensity levels. Herein, the results are evaluated at the surface, with respect to spectral 

response and Engineering Demand Parameters (EDPs), i.e. relative displacement, peak 

ground acceleration (PGA) and spectral acceleration at a fundamental period of the soil 

deposits. The influence of the number of input motions for each selection strategy is also 

discussed. Moreover, a statistical test is conducted to check whether the medians of the 

selection strategies results can be found to be equal. Lastly, the level of correlation between 

the Arias intensity/Dobry duration of the bedrock input motions and EDPs are evaluated. 

This chapter reports on the achievement of Objectives 3, 4 and 5. 

Chapter 6 focuses on the effects of variability in the elastic and nonlinear soil properties in 

nonlinear site response analyses. It uses the same soil model and bedrock input motions 

adopted in Chapter 4. This enables an investigation of the role of the inclusion of soil 

properties variability in conjunction with the influence of the seismic intensity level in site 

response prediction. The site response analyses are conducted by nonlinear Monte Carlo 

Simulations (MCSs). Spectral response predictions are considered for evaluation purposes, 

in conjunction with their logarithmic standard deviations. Equivalent linear MCSs are also 

performed to study the model-to-model variability. This chapter reports on Objectives 6, 7 

and 8. 

Finally, Chapter 7 outlines the methodologies used in each chapter. The conclusions from 

each chapter are summarised, and the overall findings and recommendations for future work 

are reported. 
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Chapter 2.  Earthquake Databases on Class D Soils 

2.1 Introduction 

Earthquake events are one of the natural disasters that can cause the utmost damage to earth 

structures, leading to high levels of human and economic loss. By designing earth structures 

to accommodate potential seismic events, earthquake hazards can be minimised. The interest 

of the practitioners of earth structures, in terms of earthquake events, is the spectral 

accelerations of ground motions to be used in their designs. Since the characteristics of each 

ground motion are different, they have unique spectral accelerations. Therefore, it is difficult 

to rely only on spectral accelerations of a single past earthquake event when an earth 

structure at another site is designed. In order to deliver resistance of an earth structure to a 

future earthquake event, it is reasonable to use a standard spectral response shape (i.e. design 

response spectrum) that can include past, and represent future, earthquake events for the site 

of interest.  

From the early stage of the concept of a standard (or smooth) design response spectrum until 

now, there has been ongoing discussion on the reliability of their use in structural design 

(Biot, 1941; Housner, 1941). The basics of the smoothed design response spectrum originate 

from the spectral accelerations of real earthquake events, which are the maximum response 

(i.e. acceleration, velocity or displacement) of all possible single degree of freedom systems 

to an applied input motion with a specific damping level. In the early stages, as Biot (1934) 

expressed, when a reasonable number of real earthquake motions have been obtained, a 

standard response spectrum can be constructed from their shapes, which can be adopted in 

assessing/designing the dynamic performance of existing or new structures (Trifunac, 2008). 

The studies of Blume et al. (1973) and Newmark et al. (1973a), for example, proposed 

smooth response spectra, based on probabilistic computations of the real earthquake 

response spectra. 

The design response spectrum is governed mainly by peak ground acceleration, velocity and 

displacement (PGA, PGV, and PGD, respectively) of seismic motions. Based on these three 

earthquake parameters, the response spectrum is separated into three discrete regions––the 

acceleration, velocity and displacement domain regions, at frequency ranges of around 3-8
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Hz, 0.3–3.0 Hz and 0.1–0.3 Hz, respectively (Mohraz, 1976). In each frequency range, the 

dominant parameter of seismic motion drives the response spectrum. The dominance of each 

parameter at a certain range of frequencies is due to their distinct    greater amplifications at 

certain frequency ranges. Moreover, PGA, PGV and PGD are well correlated with spectral 

acceleration at long, medium and short frequencies (Malhotra, 2006), as spectral 

acceleration is accepted as a good proxy for the representation of earthquake intensity and 

the corresponding structural response. 

The impacts of the surface soil features, such as density, layering, layer thicknesses, depth 

to firm soil, water table level, primary and secondary Vs profiles, and soil linear/nonlinear 

behaviour on the characteristics of the seismic motions, and thus on the shape of the design 

response spectrum, have also been studied (Blume et al. (1973) Newmark et al. (1973b) 

Seed et al. (1976). Amplification factors with different damping levels (i.e. 0, 2, 5, 10 and 

20) have been developed to form a design response spectrum at the ground surface by using 

the PGA, PGV and PGD values of the seismic motions (Newmark et al., 1973b; Mohraz, 

1976). A greater amplification at softer sites has also been clearly observed, although 

characterisation of the sites where the accelerograms were installed was not rigorously 

identified at the time of the studies mentioned above.  

Spectral responses are the product of ground motions. The seismic hazard of a ground 

motion to a site is mainly dependent on three factors –magnitude, distance to the fault and 

local site conditions. As reported below, firstly, these factors were studied to provide a better 

understanding of the concept of seismic hazard analysis in shaping the design response 

spectra that are included in modern seismic design codes. Secondly, the approaches to 

seismic hazard analysis are given, in conjunction with the Newmark and Hall (1973b) 

method. The results of the response spectra for real earthquake events, as recorded in soft 

soils and included in the earthquake databases, are presented. 

2.2 Factors Affecting Ground Motion 

2.2.1 Magnitude 

The magnitude of an earthquake event influences the relative frequency content and the 

duration of ground motions. The greater the magnitude of an earthquake, the higher the 
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spectral accelerations produced at lower and higher frequencies. Another event with a 

smaller magnitude, recorded on the same accelerometers, may be characterised by lower 

spectral amplitudes at higher frequencies, and at the longer periods. In parallel, the greater 

the magnitude of an earthquake, the longer the seismic excitation a site can be exposed to. 

Three earthquake events recorded by the Guerrero accelerometer (Mexico) clearly indicate 

the relation between magnitude and duration (Figure 2.1) or between magnitude and the 

spectral accelerations at the longer periods (Figure 2.2). 

 

Figure 2.1 Acceleration-time histories of three different earthquake events, as recorded by 
the Guerrero accelerometer, Mexico (after Anderson and Quaas, 1998). 

0 20 40 60
Time (s)

-2

0

2

4

6

A
cc

el
er

at
io

n 
(m

/s
2 )

Caleta de Campos
Magnitude 8.1

La Union
Magnitude 7.5

San Marcos
Magnitude 5.1



CHAPTER 2                                                                Earthquake databases on class D soils 
 

9 
 

 

Figure 2.2 The 5% damped response spectra of the acceleration–time histories shown in 

Figure 2.1. 

2.2.2 Distance 

The distance between the location of the accelerometers (or sites) and the epicentre of the 

earthquake does affect the frequency content of ground motions. An earthquake recorded by 

several accelerometers in the same soil type at different locations can clearly describe such 

an effect on the ground motion. The spectral amplitudes of ground motions are expected to 

show a reduction at higher frequencies and an increase at the longer periods with increasing 

distance from the epicentre. 

Figure 2.3 represents the recordings of the October 17 Loma Prieta earthquake at different 

distances from the epicentre. It is clear that the spectral responses of the recordings show 
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Figure 2.3 Influence of the epicentral distances on the spectral shapes of the October 17, 
1989 earthquake recorded at different locations in stiff soil deposits (rock). 

When a site is within 10 to 15 km of the epicentre, the energy of the ground motion pulses 

from medium to long periods. These near-epicentre events are known as pulse-like type 
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Figure 2.4 Acceleration-time histories of, and 5% damped spectral responses to, the 1994 
Northridge earthquake event, California in horizontal (fault-normal and fault-parallel) and 
vertical directions, as recorded by an accelerometer situated 7.5 km away from the epicentre 
(after Somerville et al., 1997). 
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relatively loose, and the seismicity level is greater than 0.4g, the spectral values at higher 

frequencies will tend to de-amplify due to soil nonlinearity, but will still amplify at the 

longer periods, which may be less than the amplifications observed at lower seismicity levels 

(Engineers, 1999). Figure 2.5 shows the spectral responses to the 1989 Loma Prieta 

earthquake in soft (Vs,30, 158 m/s) and relatively stiff (Vs,30, 314 m/s) soil deposits. It is clear 

that the ground motion was more amplified in the soft soil (Gilroy-1 site) than in the stiff 

soil (Santa Teresa Hills site). 

 

Figure 2.5 Spectral responses to ground motions of the 1989 Loma Prieta earthquake 
recorded in soft (Gilroy-1) and stiff (Santa Teresa Hills) soils (a), and their spectral ratios 
(b) (after Engineers, 1999). 
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2.3 Development of Site-Specific Response Spectra 

The ultimate desire of site response analyses involving ground motions is to verify the 

performance of a structure in resisting the intensity of the shaking experienced. One 

fundamental question is: what level of shaking intensity should be applied to the structure 

at a site. The magnitude, location and other earthquake properties (e.g. shaking intensity) 

cannot be precisely determined for a potential earthquake event, but can only be assumed. 

To do this, it is necessary to define the annual rate of exceedance of a specific intensity of 

ground motions for a range of shaking intensities.  

Figure 2.6 indicates that low intense ground shaking is frequently exceeded, while high 

intense ground shaking is rare. It may be feasible to consider annual rate of exceeding ground 

shaking with high intensity for thousands of years, by means of observatory earthquake data; 

however, this is not possible, due to a lack of information on earthquake events with low 

exceedance interest, or with high intensity. Moreover, there is great uncertainty associated 

with the size, location and intensity of an earthquake event, such that extrapolated 

assumptions cannot totally be relied on. On account of that, seismic risk analysis should 

involve mathematical models, which can predict the possible magnitude and distance of a 

future earthquake event at a site with potential ground motion intensities.  

 

Figure 2.6 Probability of ground motion exceedance rate at various predicted intensity levels, 
based on the model of Campbell and Bozorgnia (2008). 
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Two main approaches have been developed to determine ground motion for a potential 

earthquake event at a site –deterministic and probabilistic. These approaches are known to 

form the fundamentals of modern seismic-resistant design codes. In the following section, 

the concept of DSHA will, firstly, be given. Then, the framework of probabilistic seismic 

hazard analysis (PSHA) will briefly be presented.  

2.4 Deterministic seismic hazard analysis (DSHA)  

DSHA estimates the ground motions from an earthquake event of a certain size, emanating 

from an epicentre at a certain distance from the site. This approach considers the worst-case 

earthquake scenario that the site can experience. Such an earthquake event is called a 

maximum credible earthquake (MCE). Alternatively, in order to consider a potential 

maximum earthquake event closer to the site of interest, a deterministic approach can 

sometimes be regarded as the mean maximum considered earthquake. There are two main 

methods leading to a deterministic ground motion estimation. 

a) Anchoring the response spectral shape to PGA: This method consists of three 

steps: 1) estimation of PGA; 2) selection of spectral shape; and 3) multiplication of 

spectral shape with peak ground parameters to obtain the response spectra. 

Estimations of PGA, PGV and PGD can be obtained by using suitable ground motion 

data, along with attenuation models for the site under consideration. The 

amplification factors for three different regions (the acceleration, velocity and 

displacement domain regions) in the spectral shape were provided by Newmark and 

Hall (1978) for different D levels. The response spectra can then be constructed by 

using estimated ground motion parameters and amplification factors, shown in Table 

2.1. 
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Structural D ratio 
Amplification factors for: 

 

Displacement Velocity Acceleration 

0 2.5 4.0 6.4 

2 1.8 2.8 4.3 

5 1.4 1.9 2.6 

10 1.1 1.3 1.5 

20 1.0 1.1 1.2 

Table 2.1 Amplification factors for different D levels following (after Newmark-Hall, 1978). 

b) Direct estimation of the spectrum: There are three ways of estimating the response 

spectrum directly: 1) by using attenuation laws; 2) by performing statistical analyses of 

ground motion data; and 3) by simulating ground motion using numerical models. 

Attenuation laws have been developed for different site conditions in order to compute the 

spectral values at the period ranges of interest through statistical regression and theoretical 

analyses. The spectral values computed from these attenuation laws are generally damped 

at 5%. Spectral values at other damping levels have been calculated by using the spectral 

ratios given in the Newmark and Hall (1978, 1982) model.  

By statistically analysing the ground motion data for specific magnitude and distance ranges, 

the spectral responses at each period can be estimated. If there is not enough earthquake data 

available for statistical analyses to be conducted for the desired magnitude and distance, 

attenuation relationships can be used instead to scale ground motions to the desired values, 

in terms of magnitude and distance. Lastly, numerical ground motion models are able to 

simulate the earthquake rupture, seismic wave propagation from the fault to the site, and the 

influence of local site conditions. This method of direct spectrum estimation is useful if 

earthquake events are rarely encountered, and no similar event is available from earthquake 

databases. Band Limited White Noise/Random Vibration Theory (BLWN/RVT) (Hanks and 
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McGuire, 1981) is one example of a simple numerical technique that is capable of simulating 

earthquake rupture and seismic wave propagation from source to site. 

By using one of the approaches outlined above, it is possible to determine ground motion 

from an earthquake event with the maximum possible magnitude at the closest fault to the 

site under consideration. Even though this philosophy seems to be simple and 

straightforward, some problems can arise in its application. To make the concerns with the 

deterministic approach obvious, one ideal site with two faults, located 10 km and 20 km 

away, are considered. It is assumed that the MCE from the nearer fault is 6.5, and at the 

farther fault, it is 7.5. The median spectral responses are predicted by using the Campbell 

and Bozorgnia (2008) model, shown in Figure 2.7.  

It is obvious that the earthquake with the smaller magnitude at the shortest distance from the 

site will produce greater spectral values at short periods, whilst the earthquake with larger 

magnitude at the furthest distance leads to higher spectral amplitudes at longer periods. 

Hence, it is difficult to determine a single worst-case event, given the highest spectral values 

at all interested periods, but enveloping two spectral curves will provide a reasonable 

approximation for considering the level of hazard risk of a site. 

 

Figure 2.7 Ideal site with two faults capable of producing magnitude 6 and 7.5 earthquakes 
at 20 km and 67 km distances, respectively, and their predicted spectral responses, based on 
the model of Campbell and Bozorgnia (2008). 

In addition, the deterministic approach can become even more challenging due to the fact 
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2.7 indicates the median spectral responses from an empirical model, the actual ground 

motion intensities of an earthquake event will show great scatter around the median values. 

In order to consider this scatter, mean plus and minus one standard deviation curves can be 

plotted. This will account for about two-thirds of the potential ground motion intensities at 

measured sites. 

2.4.1 Probabilistic seismic hazard analysis (PSHA) 

Some challenges in determining ground motion intensity from a single worst-case 

earthquake event in order to obtain seismic hazard risks for a site have been discussed above. 

Rather than neglecting the other potential earthquake scenarios that can cause damage to a 

site, inclusion of those events in describing ground motion may allow a more reasonable 

replication of the actual case. This procedure will bring more uncertainty into the site 

response analysis, but, at the same time, it will provide a better opportunity to evaluate the 

seismic risks for a given site. 

PSHA can be described as the consideration of all potentially damaging earthquake events, 

with their associated occurrence levels, aimed at identifying a ground motion with the 

desired exceedance rate (Baker, 2008). In its simple form, five basic steps are sufficient to 

conduct PSHA for the site under consideration. These consist of: 

1. identifying earthquake sources capable of producing damaging ground motions; 

2. configuring the distribution of earthquake magnitudes, with respect to occurrence 

rates; 

3. characterising the distribution of potential earthquake events, in terms of source-to-

site distances; 

4. predicting the distribution of ground motion intensities by adopting an empirical 

model; and 

5. combining all the uncertainties given above by employing a total probability 

theorem, leading to the exceedance of intensity measures (IMs) at different levels. 

The procedures for accomplishing the above five steps towards the determination of 

potential ground motion intensity, is explained in the following sections. 
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2.4.2 Identification of earthquake sources 

Whilst DSHA focuses only on the worst-case earthquake event from a single fault point, 

PSHA incorporates all the potential earthquake sources into the hazard analysis of a site. 

The geological formation and location of past earthquake events can be used to determine 

earthquake sources around the site of interest. If the sources are not present at the location 

of interest, which may be the case for less seismically active regions, it can be assumed that 

an event could occur anywhere, within a certain distance of the site. When all the potential 

earthquake sources have been revealed, the distribution of magnitude and source-to-site 

distances for events at each source can be identified.  

2.4.3 Distribution of earthquake magnitudes 

Earthquake events produced at tectonic faults show various magnitudes. From past 

earthquake events, it has been found that the distribution of earthquake magnitudes at a site 

follow a specific distribution (Gutenberg and Richter, 1944), formulated as: 

log 𝜆𝜆𝑚𝑚 = 𝑎𝑎 − 𝑏𝑏𝑚𝑚  (2.1) 

where 𝜆𝜆𝑚𝑚 is the rate of earthquake occurrence with magnitudes larger than m, and 𝑎𝑎 and 𝑏𝑏 

are constant parameters. They are predicted by using statistical analysis of past earthquake 

events expressing the overall rate of occurrences, and the ratio of small to large earthquakes, 

respectively. Equation 2.1 is one of the empirical models describing the distribution of 

earthquake magnitudes and known as Gutenberg-Richter recurrence law. The formulation 

of the law does not have an upper limit to the predictions for the recurrences of earthquakes 

with greater magnitudes; however, the physical limitations of fault ruptures constrain the 

maximum level of earthquake magnitudes possible at a site. Consideration of the upper limit 

in the analytical calculation of earthquake magnitude distribution is described by the 

bounded Gutenberg–Richter recurrence law. The probability density function (PDF) 

distributions of both recurrence laws are presented in Figure 2.8, in which a good agreement 

with the return period of the observed earthquake events around Duzce, Izmit, Turkey can 

be seen. 
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Figure 2.8 Predictions of the annual rate of exceedance of earthquake magnitudes, based on 
the Gutenberg–Richter and Bounded Gutenberg–Richter recurrence laws, and actual 
earthquake data for a site (Duzce, Izmit) over 50 years, using European Strong-Motion 
Database. 

2.4.4 Characterisation of site-to-source distances 

The distribution of distances between the site of interest and the earthquake sources should 

be identified in order to define potential ground motion intensity. It is suggested that, for 

any given source, there is an equal probability of earthquake occurrences at any point along 

the fault. Since the fault points are uniformly distributed, the distance can easily be computed 

by simple geometrical calculations. 

2.4.5 Prediction of ground motion intensity 

As long as the size and distance distributions of earthquake events at a site can be predicted, 

the only objective to be achieved in producing ground motion is to identify the distribution 

of intensities. The prediction of ground motion intensities is made by empirical models 

involving magnitude, distance, fault mechanism, near-fault effects, etc. These models are 
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Duzce earthquake). Hence, ground motion prediction models should be capable of 

producing IM at different levels. 

 

Figure 2.9 Spectral acceleration of ground motions recorded at various distances from the 
fault of the 1999 Duzce earthquake event, using European Strong-Motion Database. 

A common formula used in the prediction models for describing the probability distribution 

is: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�������(𝑀𝑀,𝑅𝑅,𝜃𝜃) + 𝜎𝜎(𝑀𝑀,𝑅𝑅,𝜃𝜃)𝜀𝜀  (2.2) 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the natural logarithm of the ground motion IM (such as PGA), and is a 

random variable with normal distribution. The terms on the right-hand side of Equation 2.2 

are the outcomes of the prediction models, where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�������(𝑀𝑀,𝑅𝑅,𝜃𝜃) is the mean and 𝜎𝜎(𝑀𝑀,𝑅𝑅,𝜃𝜃) 

is the standard deviation of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, incorporating the magnitude (𝑀𝑀), distance (𝑅𝑅) and other 

earthquake parameters (which are generally represented by the symbol 𝜃𝜃). 𝜀𝜀 is a standard 

normal random variable representing the change in 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

2.4.6 Combining all information 

Once the probability distributions of earthquake magnitudes and distances have been 

identified (individual or joint distributions), and the probability of the exceedance level of 

the IM has been predicted using ground motion prediction models, the PSHA equations can 
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be readily implemented. Before giving the full formulation of PSHA, in defining the rate of 

exceedance IM for a site, two additional sub-steps are provided so that the fundamental of 

the concept can be well understood. 

Taking a single source of an earthquake, the probability of the IM exceedance level of x for 

a given magnitude and distance can be predicted by ground motion prediction models. Even 

if the magnitude and distance (which are the main inputs for the models) of a potential 

earthquake event cannot be precisely known, their probability distributions can be 

determined, as discussed above. So, reflecting these variables (or probability distributions) 

into the total probability theorem will give (Kramer, 2014): 

𝑃𝑃(𝐼𝐼𝐼𝐼 > 𝑥𝑥) = � � 𝑃𝑃(𝐼𝐼𝐼𝐼 > 𝑥𝑥|𝑚𝑚, 𝑟𝑟)

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

0

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑀𝑀(𝑚𝑚)𝑓𝑓𝑅𝑅(𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2.3) 

where 𝑃𝑃(𝐼𝐼𝐼𝐼 > 𝑥𝑥|𝑚𝑚, 𝑟𝑟) is the output of the ground motion prediction model, and 𝑓𝑓𝑀𝑀(𝑚𝑚) and 

𝑓𝑓𝑅𝑅(𝑟𝑟) are the probability density functions (PDFs) of the magnitudes and distances.  Integral 

operations allow the consideration of the overall probability of exceedance from the possible 

magnitudes and distances at an earthquake source. 

Equation 2.3 only gives the probability of the specific IM exceedance level, but does not 

give any information about the rate of earthquake occurrence from the single source of 

interest. By modifying the equation, the rate of the IM exceedence level of x can be computed: 

𝜆𝜆(𝐼𝐼𝐼𝐼 > 𝑥𝑥) = 𝜆𝜆(𝑀𝑀 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) � � 𝑃𝑃(𝐼𝐼𝐼𝐼 > 𝑥𝑥|𝑚𝑚, 𝑟𝑟)

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

0

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓𝑀𝑀(𝑚𝑚)𝑓𝑓𝑅𝑅(𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2.4) 

where 𝜆𝜆(𝑀𝑀 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) is the rate of earthquake occurrence exceedance, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and 𝜆𝜆(𝐼𝐼𝐼𝐼 >

𝑥𝑥) is the rate of IM greater than x. 

Since the above formulation gives the rate of IM exceedance with a certain amplitude at a 

single source, combining all the sources from a site leads to the total exceedance rate: 
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𝜆𝜆(𝐼𝐼𝐼𝐼 > 𝑥𝑥) = � 𝜆𝜆(𝑀𝑀𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

> 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) � � 𝑃𝑃(𝐼𝐼𝐼𝐼 > 𝑥𝑥|𝑚𝑚, 𝑟𝑟)

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

0

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛

𝑓𝑓𝑀𝑀𝑖𝑖(𝑚𝑚)𝑓𝑓𝑅𝑅𝑖𝑖(𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

(2.5) 

where 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  represents the number of earthquake sources, and 𝑓𝑓𝑀𝑀𝑖𝑖  and 𝑓𝑓𝑅𝑅𝑖𝑖  are the 

magnitude and distance distributions at source i, respectively. 

Equation 2.5 is the character of PSHA incorporating the rates of earthquake occurrences and 

the distributions of the associated magnitudes, distances and ground motion intensities. 

These input variables of PSHA are identified based on information from past earthquake 

events. Computing the exceedance rate of an IM, in the end, is vital in reducing the hazard 

risks of sites. PSHA also allows the prediction of the rate of occurrence of earthquake events 

that are rare (low-rate), and have not been recorded before. Figure 2.10 is an example of 

results of PSHA showing the annual rate of exceedance of PGA and Sa at a range of periods 

obtained by using an OpenSHA program (Field et al., 2003) for an ideal site, applying an 

attenuation model of Campbell and Bozorgnia (2008). 

 

 

Figure 2.10 Example of PSHA results for an ideal site showing exceedance rates of spectral 
accelerations at different periods of interest predicted by using the model of Campbell and 
Bozorgnia, 2008. 

0 0.4 0.8 1.2 1.6 2
Sa (g)

0

0.004

0.008

0.012

0.016

0.02

A
nn

ua
l r

at
e 

of
 e

xc
ee

da
nc

e T=0.1 s
T=0.2 s
T=0.3 s
T=0.4 s
T=0.75 s
T=1.5 s
T=2 s
T=3 s
PGA



CHAPTER 2                                                                Earthquake databases on class D soils 
 

23 
 

2.5 Evaluation of the EC8 Design Response Spectra 

The technological developments have been enabled to better record earthquake events, and 

better investigation of soils and fault mechanisms. In parallel, the available earthquake data 

has been increased with time, assisting the development of comprehensive attenuation laws 

(the basic framework of which was explained in the previous section). With these 

advancements, the standard design response spectrum is covered by the modern seismic 

design codes that must be complied with in performance-based structural design. In the 

current implementations of EC8, two types of horizontal and vertical design response spectra 

with 5% damping are described, based on the magnitude of an earthquake event. When the 

earthquake magnitude is higher than 5.5, it is regarded as Type 1, and if it is equal to or 

lower than 5.5, it is categorised as Type 2.  

In the Type 1 seismicity, the energy content of an earthquake event is more pronounced at 

the long periods observed in high-seismicity regions. Type 2 seismicity has higher 

amplification at short period ranges, and lower energy content at long periods, compared to 

Type 1, and is suggested for low- and moderately-seismic regions (Pousse et al., 2005). Five 

main soil types (A, B, C, D and E) are classified in EC8, with respect to the average Vs of 

the upper 30 m of the soil deposit (Vs,30), standard penetration resistance (NSPT(blows/30cm)) and 

undrained shear strength (cu) values of the soil.  

The soil can be directly classified when the 30 m Vs profile of the soil is available (based on 

Equation 2.6), otherwise the last two soil properties should be taken into consideration. For 

each soil type, the Type 1 and Type 2 elastic design response spectra are provided over a 

range of periods as seen in Figure 2.11. It is clear that stiffer soil classes (A, B and C) have 

spectral response shapes with less amplitude and narrower plateaus, whereas softer soil 

classes (D and E) are characterised by higher spectral values and wider plateaus in both 

seismicity types. Moreover, the period elongation of soft soil deposits with a strong 

earthquake event (i.e. seismicity Type 1) is clearly considered in the design response 

spectrum of EC8, as the spectral shapes shift to the longer periods from soil classes A to D. 

In the case of the seismicity Type 2 spectral shapes, this pattern is not as evident as in 

seismicity Type 1, due to the seismic intensity level. More information regarding the 

construction of EC8 design response spectra can be found in Appendix A-1. 
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Figure 2.11 Types 1 and 2 design response spectra applied in EC8 for different types of soils. 

The horizontal design response spectra given by EC8 for seismicity Types 1 and 2 have 

recently been investigated by Pitilakis et al. (2012). The spectral accelerations from 

earthquake events recorded in soil classes A, B, C, D and E have been compared to the 

associated EC8 design response spectra. Based on the study, the EC8 elastic design response 

spectra provided for soil classes A, B and C were shown to be good representations of an 

earthquake event, as they were in good agreement with the 84th percentile of the real spectral 

accelerations. As for soil classes D and E, the spectral shapes included in EC8 could not be 

evaluated confidently, as the number of real earthquake accelerograms is insufficient in the 

earthquake database considered. Nevertheless, the EC8 seismicity Type 1 elastic response 

spectrum for soil class D is not able to represent the peak over the plateau, based on the 

spectral values of four earthquake events, and the seismicity Type 2 spectrum is insufficient 

to capture the spectral values at longer periods (> 0.5 s). 

In the remaining part of the chapter, the EC8 elastic design response spectra are examined 

by considering the earthquake events measured only by stations on soil class D in the 

national and international databases. This specific interest in the earthquake records in soft 

soils is, firstly, due to concerns about the inadequacy of the associated EC8 design response 

spectrum in accurately representing the spectral responses, as highlighted above. Secondly, 

the phenomena of local site effects on the characteristics of input motions is strongly linked 

to the characteristics of soft soils. Thus, a detailed look at the earthquake events propagated 
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through soft soils may help to justify the focus of ongoing research, in terms of soil class 

considered. 

2.6 Investigation and Discussion of Earthquake Databases 

 The Italian Accelerometric Archive (ITACA) version 2.0, European Strong-Motion 

Database (ESD), Pacific Earthquake Engineering Research Centre (PEER) ground motion 

database, United States Geological Survey (USGS) earthquake database, Consortium of 

Organizations for Strong Motion Observation Systems (COSMOS) database, GeoNet, and 

the Kyoshin (K-NET) and Kiban Kyoshin (KiK-net) networks were investigated. These 

include most of the global earthquake events, along with the devastating and historical ones, 

such as the 1989 Loma Prieta, the 1994 Northridge and the 2011 Christchurch earthquakes. 

Only earthquake magnitude, soil type and the type of housing at the stations were extracted 

from the earthquake records. The magnitude parameter, ranging from 3 to 5.5 (including 

5.5), and from >5.5 to 10, was used to compare the results with the EC8 Type 1 and Type 2 

design response spectra. Moment magnitude (Mw) was generally sought, but in the absence 

of Mw-based measurements, the surface (Ms), or Richter local (ML) magnitudes were taken 

into consideration. The ITACA, PEER and ESD databases provided the direct soil classes 

of the stations, classified in accordance with the EC8 criteria, but for the rest, Vs values for 

soil less than 30 m deep were checked to determine the soil class. As for housing types, free-

field stations, the ground level of buildings, bridge piers and ground surface of the 

geotechnical arrays were considered. 

Except from K-NET and KiK-net, the processed spectral acceleration-time histories of the 

records can be obtained from all of the accessed databases. The appropriate processed 

spectral acceleration data for the earthquake events included in the K-NET and KiK-net 

databases is available on the NEEShub website, as the databases only contain raw 

earthquake data (Dawood et al., 2014). The spectral acceleration values were normalised, 

with respect to the PGA values. The PGA normalisation process is carried out to compare 

earthquake records on a rational basis, as each ground motion has a different intensity 

(Riddell, 1996).  

The median, mean plus one standard deviation (84th percentile) and mean minus one 

standard deviation (16th percentile) of the 5% damped spectral accelerations of the 
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earthquake events were plotted with the EC8 response spectra. The earthquake records were 

considered separately in two horizontal directions, and then the geometric means were 

plotted. It is worth noting that the overall results from the datasets in one direction do not 

differ substantially from the results of the other direction. For brevity, the geometric mean 

shapes are represented in this chapter but the results from the two individual directions can 

be found in Appendix A-2. The earthquake records in the PEER database were excluded 

from this process, since the spectral accelerations given in the Excel sheet were not provided 

with any specification of the horizontal components. Thus, the given values are regarded as 

the geometric means of the earthquake motions. The description of soil class D in EC8 refers 

to the soil class E in NEHRP and NZS1170.5, with respect to the Vs values, as shown in 

Table 2.2 (Khose et al., 2012).  

Soil type NEHRP EC8 NZS1170.5 

A >1500 >800 >1500 

B 760–1500 360–800 360–1500 

C 360–760 180–360 150–360 

D 180–360 <180 150–360 

E <180 - <150 

Table 2.2 Soil classifications from NEHRP, EC8 and NZS1170.5, based on Vs,30 (m/s) 
values. 
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2.6.1 ITACA 

The ITACA version 2.0 web-based earthquake database has approximately 7,500 processed 

three-component waveforms, produced from about 1,200 earthquakes having a magnitude 

of more than 3. Both the processed and unprocessed acceleration-time histories are available 

to users. Furthermore, the 5% damped spectral acceleration values of the earthquake events 

can also be directly downloaded. 

ITACA provides detailed information for each station, including soil type. The available 

number of earthquake events measured by accelerogram on soil class D are eight and 47 for 

seismicity Types 1 and 2, respectively. According to the results shown in Figure 2.12, the 

smooth spectral curve for Type 1 in EC8 is in reasonably good agreement with the 84th 

percentile of the empirical records, although it should be borne in mind that they are small 

in number. Moreover, peaks in the short and medium periods, and beyond 2 s, cannot be 

fully captured in the current EC8 practice. For seismicity Type 2, the design response 

spectrum of EC8 seems not to be conservative, especially above the period of 0.4 s (Figure 

2.12), as it is even considerably below the median of the empirical data of a relatively 

considerable number of earthquake events. 

 

Figure 2.12 Probabilistic empirical earthquake spectral results from the ITACA database 
with corresponding EC8 spectral acceleration shapes. 
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2.6.2 ESD 

The earthquake records presented in this database are from Europe, the Mediterranean and 

the Middle East. It includes over 2,000 earthquake accelerograms, which are available online, 

in raw and processed data formats. As with the European-based strong-motion database, 

data measured by stations on soil class D can be easily derived with 5% damped spectral 

acceleration values; however, for some records, the spectral acceleration values have not 

been provided in the database. To obtain the 5% damped spectral acceleration values of 

those records, the acceleration-time histories must be processed via the Equivalent-linear 

Earthquake site Response Analysis (EERA) code. More information about the code is 

presented in Chapter 3 (Section 3.3.1). 

From the results of the empirical data shown in Figure 2.13, the Type 1 EC8 design response 

spectrum can be regarded as a good representative of probable earthquake events, as it 

captures the 84th percentile of the real events. With respect to the Type 2 results, the design 

response spectrum shows good agreement with the 84th percentile of the real events; 

however, it should be noted that, for both seismic intensities, the design response spectrum 

still does not cover 16% of the earthquake events or the spectral peaks in the medium and 

long period ranges. 

 

Figure 2.13 Probabilistic empirical earthquake spectral results from the ESD database with 
corresponding spectral acceleration shapes from EC8.  
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2.6.3 PEER 

The PEER ground motion database includes spectral accelerations of the records with 

various damping ratios, including 5%. It contains over 21,000 three-component earthquake 

signals from around the world (Campbell, 2013). The number of earthquake motions 

recorded in soft soil class D is 10 for seismicity Type 1 and eight for seismicity Type 2. 

Based on the results of the normalised spectral accelerations of the records, as shown in 

Figure 2.14, the elastic design response spectra of EC8 are positioned well, between the 

median and the 84th percentile of the records, at almost all ranges of periods in both 

seismicity cases; however, at short and medium periods, the Type 1 design response 

spectrum of EC8 is not able to represent certain earthquake scenarios. This may also be a 

concern for the Type 2 design response spectrum, between 0.1 and 0.2 s and 0.4 and 1.6 s.  

 

Figure 2.14 Probabilistic empirical earthquake spectral acceleration results from the PEER 
earthquake database with corresponding spectral acceleration shapes from EC8. 
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classification criteria, were determined with respect to the given Vs values of the soil deposits 

down to 30 m. 

Based on the results plotted in Figure 2.15, smooth spectral acceleration shapes provided by 

EC8 can be a good proxy for potential earthquake events with low or moderate seismic 

intensities; however, the peaks for the 84th percentile of the empirical data are, again, not 

captured by the EC8 design response spectra, especially for the Type 2 seismicity level. This 

may not be strongly supported because of the small number of earthquake samples in both 

seismicity cases.  

 

Figure 2.15 Probabilistic empirical earthquake spectral results from the USGS database with 
corresponding spectral acceleration shapes from EC8 and NEHRP. 
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Figure 2.16 Probabilistic empirical earthquake spectral results from the COSMOS database 
with corresponding spectral acceleration shapes from EC8. 

Referring to Figure 2.16, the design response spectrum included in EC8 does represent most 

of the potential earthquake scenarios for the Type 1 seismicity level, but does not consider 

some of the earthquakes carrying energy at short and at medium periods. As for seismicity 
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period, below and above which the spectral shape of EC8 is a reasonable response spectrum. 

2.6.6 Geonet 

Geonet is the New Zealand national geological hazard monitoring network that records 
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Considering that the number of earthquake events in this database is relatively considerable, 

the results may be more reliable.  

 

Figure 2.17 Probabilistic empirical earthquake spectral results from Geonet with 
corresponding spectral acceleration shapes from EC8. 
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of the spectral acceleration at longer periods, as some records are over the 84th percentile 

and some of them are well below the spectral shape. 

 

Figure 2.18 Comparison of the spectral shapes of processed versus unprocessed earthquake 
data. 

 

Figure 2.19 Comparison between spectral accelerations of processed and unprocessed data 
from two individual earthquake records, with respect to the filtering effect at longer periods. 
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2.6.7 KiK-net 

K-NET and KiK-net are two nationwide strong-motion seismograph networks that are 

operated by the National Research Institute for Earth Science and Disaster Prevention in 

Japan. K-NET stations do not have information on soil profiles, such as VS, compression-

wave velocity (VP), NSPT-values, through 30 m from the ground surface, which is the 

threshold depth to which a soil class can be assigned, based on EC8. In contrast, KiK-net 

stations provide VS and VP values for soil strata below 30 m deep.  

In light of this information, KiK-net stations on class D soils are determined by means of 

average VS values in the top 30 m of soil, while the K-NET database is excluded. However, 

KiK-net does not have a proper search engine that can be used to select earthquake events, 

and it only includes raw earthquake data. On account of that, a web-based search tool, has 

been developed by Dawood et al. (2014) processing 157,000 KiK-net strong ground motions, 

by applying an automated processing protocol. KiK-net does provide two data search 

engines, available on the NEEShub website, with desired earthquake parameters––one for 

metadata and the other for pseudo-spectral accelerations.  

At total of 552 and 1,227 earthquake records, measured by stations on class D soil, were 

found for seismicity Types 1 and 2, respectively. Based on the 16th percentile, median and 

84th percentile normalised spectral acceleration shapes of the records, as presented in Figure 

2.20, the smoothed design response spectrum in EC8 seems to be a good representation of 

future earthquake events, as it lies between the median and the 84th percentile shapes of the 

Type 1 earthquake records. It is, however, closer to the median spectral shape at short and 

medium periods. The EC8 Type 2 design response spectrum shows a good match with the 

84th percentile of the earthquake events at periods above 1 s; however, it only exhibits good 

agreement with the median of the earthquake events at periods of between 0.1 s and 1 s.  
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Figure 2.20 Probabilistic empirical earthquake spectral data results from KiK-net database, 
and corresponding spectral acceleration shapes from EC8. 
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0.01 0.1 1
Period (s)

0

2

4

6
S

a/
P

G
A

EC8 soil class D
Between 16th-84th percentiles
Median

TYPE 1 - N=552

0.01 0.1 1
Period (s)

0

2

4

6

S
a/

P
G

A

TYPE 2 - N=1227

KiK-net

5 5



CHAPTER 2                                                                Earthquake databases on class D soils 
 

36 
 

the actual spectral peaks cannot be represented by the smooth design response spectrum 

given by EC8 for a soft soil deposit and, thus, justify, at least in this respect, the necessity 

of site response analysis.  

 

Figure 2.21 Spectral accelerations of two individual earthquake events from ESD not fully 
captured by the EC8 design response spectra for both Types 1 and 2 seismic intensity levels.  
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2.8 Concluding Remarks  

In this chapter, the early approaches to defining spectral shapes for the design of earth 

structures was firstly outlined. Secondly, the DSHA and PSHA that are thought to be the 

foundation of modern design response spectra were demonstrated. Subsequently, 

investigation of the well-known earthquake databases, with respect to the earthquake 

motions recorded in class D soils, were conducted. The median, 16th and 84th percentiles 

of the spectral accelerations were plotted, in order to test the suitability of EC8 design 

response spectra for a class D soft soil deposit. A considerable number of records were found 

in the KiK-net and Geonet databases, in comparison to records found in the ITACA, ESD, 

PEER, USGS and COSMOS earthquake databases. The main conclusions are summarised 

below. 

• Based on the results from the KiK-net and Geonet earthquake databases, the EC8 

design response spectrum for class D soils might be revisited so as to incorporate a 

good representation of probable major earthquake events. 

• For the other databases, including ESD, the EC8 Type 1 design response spectrum 

is, in general, a good proxy, but this is not quite valid for the Type 2 seismicity level. 

• Specifically, based on earthquake records from ESD, probable major earthquake 

events with high earthquake energy cannot be well represented at longer periods by 

the EC8 design response spectrum, while the low and moderate seismic activities are 

captured well. 

• The peaks at the medium period ranges, especially in some individual events, clearly 

indicate deficiency in the smooth spectral shape in representing the seismic spectral 

response. 

In general, the results of this initial study highlight some concerns about the suitability of 

the smooth spectral shape proposed by EC8 for soft soils. They also point out the influence 

of the characteristics of soft soil deposits on seismic input motions and, hence, justify the 

importance of site response analysis for soft soil deposits, and the need for the further 

investigation that constitutes the remaining part of this study.
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Chapter 3. Concept of Input Motion Selection and Modification in 

Structural and Geotechnical Engineering Disciplines 

3.1 Introduction 

One of the natural hazards that a site can severely experience during the event and its 

aftermaths, can be seen as an earthquake that might cause extreme damage to the urban areas 

leading to numerous casualties as well as social and economic impacts. While some regions 

around the world are not threatened by earthquake events, some have been devastatingly 

affected through the history of mankind. It is inevitable for the regions near to the seismically 

active zones, such as North America, New Zealand, Japan, Italy and Turkey, to experience 

an earthquake within periodic time sequences. Hence, it has been given utmost importance 

in those regions to the development of performance-based seismic design provisions. 

Performance-based seismic design provisions give guidance to the engineering practitioners 

in the seismic resistant design of the earth structures (buildings, bridges, dams, etc.). The 

input motion selection in this regard has been a crucial step influencing the seismic response 

and, ultimately the design. Broadly speaking, a structure can deterministically be designed 

by considering a maximum credible earthquake event at the site under consideration within 

a projected lifetime. Or, probabilistic based design can be possible with consideration of a 

number of seismic input motions. Different seismic design codes provide different 

conditions in the consideration of the input motions but they all agree on the performance 

analysis of the structures to be designed in a deterministic or probabilistic way such that they 

can resist a possible earthquake force within desired limit states. 

The reasonable detailing of the input motion selection given within the context of the seismic 

design codes has been appreciated by the engineering communities as it results in better 

performance evaluation of the structures leading to cost-saving and most importantly life-

saving. It is still in the interest of the researchers to come up with new input motion selection 

methods such that they are efficient and sufficient in accounting for all possible scenarios in 

the structural design (Marasco and Cimellaro, 2017). However, the need of 

 



CHAPTER 3                                                                      Concept of input motion selection 
 

39 
 

selection for site response analysis has only recently been pronounced as it is not clearly 

guided by the seismic design codes. The site response analysis might seem vitally important 

when a site specific response spectrum is required. This is, in particular, true for soft soil 

deposits where seismic input motions may be subjected to great amplification. In this respect, 

the selection of input motion can be seen a crucial step of site response analysis.

This chapter, in the first part, includes the basics of the input motion selection from the 

structural engineering perspective. Furthermore, some recent concerns of the input motion 

selection in the structural engineering discipline will be presented. In the second part, the 

situation in the geotechnical engineering discipline with respect to the early challenges and 

current development in the input motion selection will be explained. Finally, the roles of 

other two key factors in site response analysis (i.e. shear wave velocity and shear modulus 

reduction and damping curves) are expressed with reference to several past studies. 

3.2 Structural Engineering Perspective 

Seismic risk assessment of a site, briefly, involves the seismic excitation applied to the 

structure (seismic hazard), the response of the structure and, ultimately, the imposed 

structural damage (vulnerability) and the resulting social and economic impacts (exposure) 

(Galasso, 2010). The input motion selection links the seismic hazard with the structural 

response, vulnerability, by means of conducting nonlinear dynamic analysis (NLDA) of 

structures. Therefore, earthquake selections have been intensively investigated for recent 

decades with the view to probabilistically assess the seismic risk of the site under 

consideration. 

The selection of the input motions has been regarded as important as modelling of the 

structure itself. The selection can be conducted from three types of earthquake recordings; 

(1) artificial accelerations, (2) simulated accelerations and (3) natural records (Bommer and 

Acevedo, 2004). The first earthquake recording type is thought to be not representing the 

actual form of the seismic waves as well as its cycles and, thus the energy introduced. The 

input motions from simulations have also issues related to the estimation of parameters for 

rupture mechanism (e.g. the rise time). The natural records, in contrast, are the most 

convincing choice in the seismic performance analysis of structures and in the probabilistic 

seismic hazard analysis (PSHA). Because, they are, in general, available online, gathered in 
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well documented databases, improved with digital recording technology in line with the 

increasing data with time (Iervolino and Manfredi, 2008). 

However, the challenge with the natural earthquake records is the considerable record-to-

record variability in a specific site for a structure to be designed or retrofitted. Clearly, it is 

the difference in the magnitude (M) and distance (R) pairs of the earthquake events that 

makes the description of seismic hazard level of one site, with only one dominant earthquake 

event, less likely within a specific return period. Hence, it is necessary to, probabilistically, 

conduct seismic risk analysis that enables to consider all the earthquake events and determine 

major contributors to the seismic hazard of the site and conduct, accordingly, the input 

motion selections and modifications. As a result, it is aimed to evaluate, more accurately, 

the seismic performance of structures with a manageable number of earthquake records that 

requires less budget and time (Iervolino and Manfredi, 2008). In the next section, detailed 

information regarding probabilistic seismic hazard analysis relating to input motion selection 

will be given, while general frameworks of deterministic and probabilistic seismic hazard 

analysis can be found in Chapter 2.  

3.2.1  Probabilistic seismic hazard analysis 

Incorporating the pair of M, R, and often epsilon (ε), of each individual event into the seismic 

hazard estimation of a site is called probabilistic seismic hazard analysis (PSHA) (Bazzurro 

and Cornell, 1999). The combination of hazard contribution of each fault into the seismic 

risk level of the region is regarded as the disaggregation or, in the broad literature, 

deaggregation of the PSHA. (ε, is a distant measurement between the spectral acceleration 

of an input motion and the mean spectral value from the ground motion prediction equation 

(GMPE) at a given period (Baker and Allin Cornell, 2006)). 

The ultimate goal of the PSHA is to express the mean annual frequency rates of a considered 

intensity measure (IMs) expecting to exceed at various levels. In the structural engineering 

discipline, the peak values of the ground motions, (i.e. peak ground acceleration (PGA), 

velocity (PGV) and displacement (PGD)) and the spectral acceleration at the fundamental 

period of the structure (Sa(T1)) are common chosen IMs (More details about the term of IM 

will be provided in the further sections) (Iervolino and Manfredi, 2008). Depending on the 

desired annual exceeding frequency rate of the chosen IM, a design response spectrum that 

represents contributions of all the earthquake motions to the seismic hazard of the site at 
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different period levels can be obtained. Based on that curve, input motion selections can be 

done with respect to the interested selection criterion and, accordingly, NLDA of the 

structures can be conducted. Ultimately, the estimated Engineering Demand Parameters 

(EDPs), which are the seismic performance indicators of a system considered in building 

designs (Bradley, 2013), will be probabilistically assessed based on the desired design limit 

state. 

In terms of spectral acceleration, Uniform Hazard Spectrum (UHS) is the ultimate 

engineering interest from PSHA. The first step to compute UHS is to perform PSHA in 

relation to the spectral accelerations at different periods ((McGuire, 1995; Bazzurro and 

Cornell, 1999)). Subsequently, the spectral acceleration at each period can be read with 

regard to the considered annual exceedance frequency rate, the limit state. As a result, the 

spectral accelerations with the corresponding periods will be plotted. Since the exceedance 

rate is uniform for each spectral value through the interested period ranges, the ultimate 

curve is called UHS. An example of plotting UHS from PSHA is demonstrated in Figure 3.1. 
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Figure 3.1 (a) PSHA curves for different period interests at the site in southern Italy（a site 
in Sant’Angelo dei Lombardi）, showing an example of reading spectral acceleration for, 
in that case, 10% probability of exceedance in 50 years, which is equal to 0.0021 annual 
rate of exceedance, (b) UHS based on specified annual frequency exceedance rate for the 
site considered, adapted from Iervolino and Manfredi (2008). 

It is well-known that the spectral accelerations at short period ranges are controlled by small 

to moderate earthquake intensities taking place at short distances, while the far distant 

earthquake events shape the spectral values at the longer periods in the UHS curve (Bommer 

and Acevedo, 2004). Hence, a single seismic input motion cannot be represented by the UHS 

curve at all periods. In spite of this limitation, UHS has become the basis of modern seismic 

codes, where the smooth design response spectrum curves are standardised with inclusion 

of soil factors and other standard parameters (e.g. ground acceleration at bedrock, ductility 

factor and period ranges with respect to acceleration, velocity and displacement dominant 

regions). This is so that in the absence of PSHA of a site, a target response spectrum for the 
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engineering practitioners can be produced to select input motions for the seismic 

performance analysis of structures. 

Earthquakes to be selected for the probabilistic seismic performance analysis of structures 

are expected to reflect the characteristics of the earthquake events that contribute to the 

seismic hazard level of the site. As mentioned above, the main characteristics of an 

earthquake event are, in general, regarded as M, R and ε. From PSHA, hazard contribution 

graph of a site with regard to M and R, even ε, can be plotted and the dominant distance and 

magnitude ranges or ε at T1, ε(T1), will be assigned. Based on those values, earthquakes can 

be selected and modified to match precisely with the spectral acceleration of the target 

response spectrum at T1, as seen in Figure 3.2. 

Alternatively, they can be modified in such a way that their mean spectral values fit well 

with the target response spectrum giving tolerance level of matching at certain period ranges 

(e.g. between 0.2T1 and 2T1 with lower tolerance of 10% given in EC8). This is to allow 

consideration of higher seismic modes and the elongation of structural periods due to the 

extreme system nonlinearity, as shown in Figure 3.3.  
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Figure 3.2 Brief process of selecting and scaling earthquake records for a site, a) defining 
target response spectrum from PSHA for a limit state of interest, b) disaggregation of the 
seismic site hazard contributions of the events, and c) Scaling of earthquake records to Sa 
at T1, adapted from Iervolino et al. (2010). 
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Figure 3.3 An alternative method (e.g. EC8 based) in earthquake selections for NLDA of a 
structure in a specific site, a) smooth target response spectrum, b) disaggregation of 
seismic site hazards, and c) scaling of set of earthquake events matching target spectrum 
within a range of periods limited with related to T1, adapted from Iervolino et al. (2010).  
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3.2.2  Concepts of earthquake record selection  

1. Intensity measures (IMs) 

An intensity measure, IM, is a ground motion parameter that strongly reflects the structural 

response (Baker and Cornell, 2006a). Efficiency and sufficiency are the two important 

properties of an IM. When the structural response is characterized by an IM without 

considering the properties of a seismic input motion, such as magnitude and distance, the 

selected IM is sufficient. Meanwhile, an IM can be described as efficient once the dispersion 

from the mean structural response within a set of input motions is relatively inconsiderable 

(Iervolino et al., 2008).  

In the early stage of earthquake selection, PGA were commonly applied ground motion 

parameter as an IM. However, Sa(T1) is proven to be more sufficient and efficient IM in the 

consideration of inter-story drift response as an EDP than the PGA since hazard curves for 

Sa are available at periods of interest and it indirectly implies the structural response. 

Furthermore, Sa(T1) is found to be sufficient to represent the influence of duration on 

structural responses when a single degree of structure is analysed (Iervolino et al., 2006). 

Additionally, seismic performance of structures is proved to be, in a statistical framework, 

independent of the duration of the event when the considered EDP is displacement related 

parameter (e.g. inter-story drift ratio, roof drift ratio). On the contrary, EDPs in relation with 

cyclic loading (hysteretic ductility or equivalent number of cycles) are strongly influenced 

by duration. 

By considering an IM that is recognized as sufficient and efficient, this can also render a 

small number of input motions as well as small record-to-record variability of structural 

response. This is the ultimate desire from NLDA as it reduces the necessary time- and cost-

spending. In this regard, the work of Shome et al. (1998) shows that, when the input motions 

are modified to a specific Sa value, the dispersion in the structural response can be 

significantly reduced and the number of analyses required can eventually be decreased. 

However, in some cases, Sa cannot be sufficient and efficient, for example, if the oscillation 

periods of the structure rest at the high periods driven by the larger earthquake events 

(Iervolino et al., 2008).  

Furthermore, Sa(T1) is not a strong IM candidate when the seismic waves propagate through 

the soft soil strata. This is because of the fact that soft soil deposits tend to be extremely 
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nonlinear under strong seismic shakings leading to period elongations. This ultimately 

causes spectral amplifications at periods greater than T1. In addition, if non-structural 

elements are taken into account in the structural design, PGA is regarded as better IM. To 

overcome these deficiencies of scalar Sa(T1) scaling along with the M and R pairs, some 

other scalar IM (i.e. ε) and vector-valued IM (i.e. Sa(T1) and ε combination) can be used 

(Baker and Cornell,2005). 

2. Sa consideration 

Sa is a current widely known IM in the probabilistic assessments of structures which 

correlates probability of earthquake occurrences in a site (hazard) with the structural 

responses (response). Generally speaking, the seismic hazard analysis of a site is conducted 

by earth scientists (e.g. seismologists and geotechnical engineers) as the response analyses 

are undertaken by structural practitioners. While the Sa values corresponding to the 

probability of annual exceedance rate are calculated by earth scientists, with configuration 

of the hazard maps or graphing of the seismic hazard analysis, structural engineers take those 

values into consideration to predict the structural responses (Baker and Cornell, 2006). 

The consistency in the Sa consideration is vital with respect to the structural response 

predictions. When the seismologists consider the geometric mean of the spectral 

accelerations in two horizontal directions for GMPEs, structural engineers only consider one 

single horizontal component of an event for structural analysis (Iervolino et al., 2008).  It 

has been demonstrated by Baker and Cornell (2006) that the probabilistic ground motion 

hazard analysis for a single fault performed with respect to Saarb (arbitrary single horizontal 

components of events), incorporated with the attenuation model (Boore and Bommer, 2005), 

gives higher annual rate of exceedance, especially at long return periods, than the value 

computed by using geometric mean spectral accelerations, Sag.m (i.e. geometric mean of two 

horizontal components of events). This is because, although Saarb and Sag.m are the 

production of events that give the same median magnitude and distance values, Sa values 

above averages for Saarb are greater than those for Sag.m. 

Furthermore, two types of response spectra (e.g. Saarb and Sag.m) are considered in the 

performance analysis of a two-dimensional one bay frame structure to investigate their 

effects on the structural response in terms of maximum inter-story drift. Based on linear 

regression analyses conducted, as it can be seen in Figure 3.5, using Saarb in the estimation 
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of structural response leads to less scatter within the results, implying less uncertainty. 

However, the results based on Sag.m. show higher dispersion, hence higher uncertainty. To 

achieve same confidence, more structural analyses with Sag.m. is required. Because of this, 

in the current practise, only one arbitrary component of the spectral accelerations (Saarb) is 

preferred as an IM in the probabilistic assessment of 2D structural analysis. 

 

Figure 3.4 Performance estimation of a single frame structure based on (top) the spectral 
acceleration from one arbitrary component of ground motion (Saarb), (bottom) the spectral 
acceleration from geometric mean of the two horizontal components of the ground motion 
(Sag.m.) (adapted from Baker and Cornell, 2006b). 

To overcome the inconsistency in the use of Sa for the seismic hazard and response analyses, 

three different methods are proposed by Baker and Cornell (2006), which are applicable for 

two-dimensional structural models: 
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a. Computing ground motion hazard based on Saarb: the structural response analysis 

is performed based on Saarb. This method can provide reduction in variability within 

the structural responses, but one of the limitations is that the current attenuation laws 

cannot directly be used with Saarb in the hazard analysis. 

b. Performing response analysis with respect to Sag.m.: this method causes increase 

in the dispersion and leads to less probabilistic confidence for the structural response, 

(see Figure 3.5b). 

c. Using current practice (Sag.m. for analysis and Saarb for response analysis) but 

expand the response dispersion: once the hazard analysis and response analysis are 

conducted with Sag.m. and Saarb, respectively. To achieve consistency in Sa, the 

obtained structural responses will be increased to some extent that they become 

equivalent to those values calculated based on Sag.m. involved in structural response 

analysis (Iervolino et al., 2008). 

On the other hand, for three dimensional (3D) structural analysis, Sag.m. seems to be stronger 

IM candidate because it is the simplest way of representing the model response. Further, it 

is commonly used in the structural engineering practices for seismic performance analysis 

(Stewart et al., 2002).   

3.2.3  Code-conformed earthquake selection criteria, EC8 prescription 

In order to conduct NLDA of structures, it is, first of all, necessary to obtain a target response 

spectrum called, also, a design response spectrum. This target response spectrum may be 

obtained from PSHA (which is called Uniform Hazard Spectrum, UHS) or from seismic 

design codes (code-conformed response spectrum). As it is highlighted before, seismic 

hazard analysis of a site (PSHA) provides an elastic design response spectrum depending on 

chosen IM (e.g. Sa, PGA, PGV etc.) with respect to the annual probability of exceedance 

level at several oscillation periods. Since, in the current practice, Sa is a convincing IM 

candidate, elastic spectral acceleration over an engineering interest period range can be 

obtained from the seismic hazard analysis and be employed in the site response analysis. In 

order to define the main characteristics of the earthquake events (mainly, M and R) in the 

response analysis, hazard analyses of all faults in the site should be disaggregated. 

It is unlikely, however, to find a site specific PSHA for every region that will give UHS, 

such as in Europe. Because of that, EC8 describes two types of standard seismic design 
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response spectra, with respect to their magnitudes to be used in the response analysis. If the 

surface wave magnitude imposing most of the seismic hazard is equal or less than 5.5, the 

design response spectrum is defined as Type 2, but if it is greater than 5.5 the target spectrum 

is Type 1. Depending on the soil class and the ag (PGA at rock, showing the seismicity level 

of the site considered), the target response spectrum can be characterised. 

In EC8, some prescriptions to be complied with in selecting seismic input motions to conduct 

NLDA of structures are described. EC8 does not restrict one in the types of the input motion 

to be selected whether artificial, simulated or recorded accelerograms. However, it puts some 

criteria on the set of selected motions, showing no reference to its type: 

i. At least 3 input motions should be selected; 

ii. The average spectral acceleration value of a set of input motions at zero period should 

not be less than agS (S soil factor) for the site considered; 

iii. The mean 5% damped response spectrum of a set of events should not be less than 

90% of the corresponding spectral acceleration values of the 5% damped design 

response spectrum between 0.2T1 and 2T1 (T1 is the fundamental period of the 

structure in the direction where the accelerograms applied). 

When only three input motions are considered for the seismic performance assessment of 

structures, the maximum structural response should be considered in design. However, if at 

least seven earthquake accelerograms are taken into account, it is allowed to consider the 

average of structural responses. The value of ag demonstrates the seismicity level of the site 

in question while S represents the amplification of the motion due to soil characteristics. The 

matching criterion (i.e. iii) between 0.2T1 and 2T1 aims to consider, in NLDA, contributions 

of higher structural modes to the response (lower bound, 0.2T1) and elongation of the 

structural period (upper bound, 2T1) attributed to the nonlinearity (Iervolino and Manfredi, 

2008). 

3.2.4  Reflection of earthquake selection criteria to structural responses 

Since this section, it has been shown that earthquake characteristics (mainly, M and R) are 

thought to be main drivers of PSHA of a site and, ultimately, of earthquake selections to be 

scaled to Sa(T1) for nonlinear structural performance analysis. Consideration of M and R in 
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the seismic hazard and response analyses implies that they are expected to be dominantly 

influential in the linear and nonlinear behaviour of structures under dynamic motions besides 

some contributions of the other earthquake features, such as fault mechanism, soil type 

(Iervolino and Cornell, 2005). Because of that, the seismologists provide rigorous data about 

earthquake characteristics to be used by structural engineers. In this respect, it gains great 

interest of structural engineers as to whether M and R consideration is necessary in the input 

motion selections for NLDA of a structure at a considered site. Furthermore, the question of 

whether spectral acceleration scaling and scaling magnitude, to the target spectral 

acceleration at the fundamental period of structure (Sa(T1)), is acceptable in terms of 

structural responses is raised. 

The study of Shome et al. (1998), for example, investigates the effects of Sa scaling/scaling 

intensity and M and R consideration on several post-elastic structural damage measures (e.g. 

displacement ductility, normalized hysteretic energy, and damage index) by modelling a 

single five DOF steel structure. Four earthquake bins, each includes 20 earthquake records 

recorded on stiff soil in California, with different magnitude and distance ranges are utilized 

and careful attention is paid to not include any pulse-like type or near-source earthquake 

event so that large dispersion in the results of structural analyses is avoided. It is, firstly, 

found that scaling of spectral acceleration at Sa(T1) is a more robust measure of response 

than PGA. Secondly, proper Sa scaling reduces the number of required nonlinear structural 

analysis by a factor of 4 as a result of reduction in dispersion. Thirdly, once (M, R) pairs are 

included in the seismic hazard analysis, there is no need of selecting input motions by 

considering specific M and R ranges in the response analysis. Lastly, scaling Sa to lower or 

upper intensities does not introduce any bias into the structural results. The limitation of this 

study, however, is only one type of structure with the accelerogram recordings at only one 

type of soil class was tested. 

Further on this, Iervolino and Cornell (2005) have analysed three SDOF systems with 

different periods (short, moderate and long), incorporating with bilinear and trilinear 

hysteresis, and one MDOF structure with moderate period by selecting/applying two groups 

of sets of earthquake records (one set is carefully selected and the other is arbitrarily chosen). 

Again, the records do not include any pulse-like type and do recorded on firm soils. Based 

on the probabilistic assessments of median drifts of sets, there is no supportive evidence that 

M and R should be carefully considered in the input motion selection. It was also found that 
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Sa scaling with up to scale factor of 4 does not introduce any bias into the structural 

responses (see Figure 3.5). Although the cited study considers several structures with 

different periods, scaling issue is not deeply investigated because of limitation of the 

earthquake records such that large scale factors cannot be obtained. 

 

Figure 3.5 Drift responses of a bilinear SDOF system with a 1.5 s fundamental period 
under a set of input motions without (cloud) and with (stripe) modifications (modified 
from Iervolino and Cornell, 2005).  

The work done by Galasso and Iervolino (2011) investigates the impacts of earthquake input 

motions on the response estimation of a proper code-confirmed structural model in regard to 

recordings at same as target/arbitrary soil type, scaling magnitude and a specific M and R 

scenarios. Selection strategies for all recording sets applied in this study is also complied 

with the EC8 prescriptions. Maximum inter-story drift ratio, roof ratio and hysteretic energy 

are considered EDPs. The results are assessed based on the parametric hypothesis tests and 

concluded that if the spectral accelerations of a set of earthquake event match, individually 

or on an average, with the target response spectrum, it is not necessary to give attention to 

M, R and soil condition when input motions are selected. Moreover, linearly scaling of the 

input motions will reduce the uncertainty in the response values, where scaling magnitude is 

considered as high as 15 in the study.   

Overall, the findings about the influence of Sa scaling in addition to M, R and soil types on 

the structural response can be summarized as: 

• Linear scaling is legitimate and leads to less dispersion in the structural responses 

and, thus, requires less number of NLDA, 
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• Scaling magnitude should be carefully taken into consideration since a single event 

with great scaling factor may cause additional uncertainty into the structural response, 

• There is no need for scenario-based earthquake selections; specific range of 

magnitude and distance, as well as the type of soil where the event is recorded. 

3.3 Geotechnical Engineering Perspective  

While great attention on input motion selections for NLDA of structures are paid by both 

research communities and seismic design codes (e.g. EC8, NEHRP etc.), this topic has been 

studied less in the geotechnical engineering discipline with regard to nonlinear site response 

analysis of soil deposits. These relatively advanced applications of earthquake selections in 

the structural engineering discipline can be attributed to the well-established documentation 

of the topic in modern seismic design codes and clear determination of the structural 

properties. This is not the case in nonlinear site response analysis, in which poorly instructed 

parameter choices and unclear code regulations are the main limitations (Kwok et al., 2007). 

Over the recent decades, research focus in geotechnical engineering has been more on to the 

understanding of the propagation of seismic waves, interaction between soil and seismic 

input motions and, accordingly, simulation of the vertical propagation of seismic waves 

within horizontally layered soil strata. These necessitate developments of adequate 

representative soil constitutive models, rigorous determination of soil properties through 

field and laboratory tests and an appropriate implementation of input motions (Visone et al., 

2010). Moreover, different numerical codes solving the wave propagation problem in 

frequency and time domains are developed in order to simulate the seismic excitation of the 

soil deposits in conjunction with reasonable boundary conditions. The following section is 

aimed to give an overview of numerical codes and soil models, with specific description of 

a finite element code and a soil model employed in this research. Then, the recent 

implementation of input motion selection strategies in the field is given. Finally, several past 

studies, dealing with other two major factors that are influential in the site response analysis, 

namely elastic and nonlinear soil properties are demonstrated. 
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3.4 Site Response Analysis 

 Seismic hazard level of an input motion to a specific site is mainly affected by the 

characteristics of the seismic source and its fault mechanism, deep wave propagation through 

the rigid bedrock body and local site conditions. While the first two topics are studied in 

engineering seismology, the geotechnical engineering discipline deals with the last topic (i.e. 

local site condition).  

The local site conditions can influence the amplitude, duration and frequency content of an 

input motion propagating in the vertical direction through the horizontally layered soil 

deposits and these effects are termed in geotechnical engineering as local site effects. The 

damages due to local site effects to the earth structures have been clearly observed in Mexico 

(Stone et al., 1987), Loma Prieta (Seed, 1990) and recently in Christchurch (Kaiser et al., 

2012) earthquake events. The site response amplification and liquefaction are the two major 

local site effects observed during and aftermath of those earthquake events: the former leads 

to resonance of structures with a certain range of fundamental periods and the later results 

in foundation failures due to excessive settlements. 

Site response analysis is a great tool to simulate the possible consequences of the local site 

effects (e.g. the degree of liquefaction, site amplification as well as settlement).  One 

dimensional site response analysis is the most commonly utilised method by geotechnical 

practitioners. When seismic waves propagate through the soil layers, refracted and reflected 

waves are produced. Since, in general, shear wave velocities of the soil materials at a layer 

are higher than those at the above layers, reflected waves are inclined to the vertical direction. 

This vertical normalisation of the reflected waves leads to almost vertical refraction of the 

waves when they reach to the ground surface. Hence, one dimensional solution is reasonable 

with the assumptions that the seismic wave propagation from bedrock to surface is in vertical 

direction and soil and bedrock surface has infinite horizontal surface (Kramer, 2014). 

 Widely known numerical analysis applied by geotechnical practitioners is a one-

dimensional (1D) equivalent linear visco-elastic approach (Kramer, 2014). It solves the wave 

propagation problem in frequency domain. Even though this numerical scheme is relatively 

easy to use and is time- and cost-effective, it has also well-known deficiencies. Specifically, 

the accumulation of pore water pressures cannot be taken into account as the formulation is 

based on total stress approach. Furthermore, the approach is not capable of representing 
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dynamic soil behaviour under intense seismic oscillations, where soil nonlinearity, thus 

accumulation of displacements and stiffness degradation, is highly likely to take place. 

To better simulate the soil behaviour under seismic excitation, numerical schemes solving 

the problem based on time histories are developed. These numerical solutions can also 

consider the interaction between the solid phase and the fluid phase, where the excess pore 

water pressure is involved in dynamic equations. They are, in general, incorporated with a 

simple or more advanced soil models depending on the complexity of the analyses, and are 

embedded into the finite element codes. Finite element codes enable to conduct a site 

response analysis in two-dimensions (2D) or in three-dimensions (3D) when the seismic 

wave propagation cannot be represented by 1D model in cases such as having inclined soil 

layers, stiff structure on top of the soil, retaining walls or earth embankments. 

3.4.1 Equivalent linear site response analyses 

Soil nonlinearity is represented by the equivalent linear approximation based on the exact 

continuum solution of the seismic waves propagating through the visco-elastic soil elements 

in the vertical direction (Roesset, 1977). There are two important correlated factors in 

describing the dynamic behaviour of soil that should be accounted for in the equivalent linear 

approximation: the stiffness degradation and the hysteretic damping.  Since the shear 

modulus (G) and the damping (D) of a layer are assumed to be constant during cyclic loading, 

simultaneous changes in G and D with time cannot be captured. Thus, it is required to analyse 

the soil iteratively until the analysis is converged with respect to G and D values at an 

earthquake induced shear strain. The process of iteration is given as follows (Kramer, 2014): 

1. G and D at low strain levels are assumed for each layer. 

2. With the initial G and D profiles, frequency domain site response analysis is 

conducted, where the time histories of the shear strain, acceleration and displacement 

at a layer are computed. 

3. Effective shear strain for each layer is calculated by using the following equation: 

𝛾𝛾𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚  (3.1) 
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where 𝑅𝑅𝛾𝛾 is dependent on earthquake magnitude (Idriss and Sun, 1992) given by: 

𝑅𝑅𝛾𝛾 =
𝑀𝑀 − 1

10
  (3.2) 

4.  New G and D values, corresponding to the calculated effective shear strain, are 

selected for the next iteration. 

5.  Steps from 2 to 4 are repeated until the convergence criterion is achieved. 

The time history responses at each layer are calculated by, firstly, representing the 

acceleration-time history of an earthquake at bedrock with a fast Fourier transform (FFT) 

series and, secondly, computing the transfer function for a layer. Ultimately, the inverse fast 

Fourier transform (IFFT) series are adopted to estimate the shear strain, acceleration and 

displacement response histories (see schematic representation in Figure 3.7). 

The philosophy of the equivalent linear approximation of the nonlinear soil response, 

described above, is embedded into the commonly utilised computer codes such as SHAKE 

(Schnabel et al., 1972) and its refined version SHAKE91 (Idriss and Sun, 1992) and EERA 

(Bardet et al., 2000). While these programs can give results showing some indication of 

actual site responses, they cannot predict the accumulation and the dissipation of pore water 

pressure. The permanent displacement also cannot be calculated as it is always considered 

to be zero at the end of the cyclic loading. Nevertheless, they are able to predict site responses 

reasonably well when the intensity of the input motion simulated is low, so that the soil 

behaves within the linear regions. Nonlinear site response analysis, however, is preferable 

when the earthquake intensity causes the soil to experience great nonlinearity, where 

permanent displacement and stiffness degradation are expected to accumulate (Elia et al., 

2017). 
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Figure 3.6 Traditional equivalent linear solution of the seismic wave propagation, adapted 
from Lanzo and Silvestri (1999). 

3.4.2 Nonlinear site response analysis 

Although equivalent linear site response analyses are easy to apply and computationally 

efficient, the approach is not sufficient to capture the actual soil behaviour under cyclic 

loading. To represent the real response of the soil deposit, including soil nonlinearity 

(irrecoverable deformation, stiffness degradation, energy dissipation, pore water pressure 

accumulation), an approach that employs direct numerical integration in time domain can be 

utilised. In a such approach, the dynamic equation of the motion is solved in small time steps 

with linear or nonlinear stress-strain models (e.g. hyperbolic model, modified hyperbolic 

model) or with advanced soil constitutive models. 

The time integration scheme is, most commonly, explicitly or implicitly implemented in the 

finite element codes. When the code uses explicit time integration scheme, where the 

historical information of displacements and their time derivatives used to compute the next 

step displacement, dynamic solutions become conditionally stable. It is unconditionally 

stable, however, if the implicit time integration scheme is adopted which relies on time 
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derivatives of displacement at the end of step, which are unknown, to calculate the 

displacement. The trade-off between these two schemes depends on the expected accuracy 

in the response predictions and computational efforts (Kramer, 2014).  

Free-field soil deposits with uniformly horizontal layers can be analysed in finite element 

codes with 1D model. Moreover, finite element codes enable to conduct 2D nonlinear site 

response analyses, which are required once the soil layers are inclined or the structure 

responses (such as permanent displacements of slopes or retaining walls) on top of the soil 

deposits are in the engineering interest. If the soil deposit and its boundary conditions vary 

in three dimensions or the three dimensional responses of the structures are of great 

importance (e.g. tunnels, earth dams and bridges), 3D dynamic site response analyses can be 

adopted, as well (Kramer, 2014). 

Table 3.1 shows the available computer programs solving the seismic wave propagation 

problem with equivalent linear or nonlinear methods based on total stress or effective stress 

approaches, in 1D and 2D spaces. 
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TS total stress, ES effective stress, EL equivalent linear, NL nonlinear 

Geometry Program Source Type of analysis 

1D SHAKE (Schnabel et al., 1972) TS EL 

SHAKE91 (Idriss and Sun, 1992) 

PROSHAKE (www.proshake.com) 

SHAKE2000 (Ordóñez, 2000) 

EERA (Bardet et al., 2000) 

TESS (Pyke, 1992) TS NL 

NERA (Bardet and Tobita, 2001) 

DEEPSOIL (Hashash et al., 2012) 

DESRA_2 (Lee and Finn, 1978) ES 

DESRAMOD (Vucetic, 1986) 

D-MOD_2 (Matasovic, 2006) 

D-MOD2000 (Matasovic and Ordonez, 2012) 

SUMDES (Li et al., 1992) 

CYCLIC 1D (Elgamal et al., 2001)(Elgamal 
et al., 2001) 

2D QUAD4 (Idriss, 1973) TS EL 

QUAD4M (Hudson et al., 1994) 

FLUSH (Lysmer et al., 1975) 

QUAKE/W (Krahn, 2004) TS NL 
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SPECTRA (Borja and Wu, 1994) ES NL 

DYNAFLOW (Prevost, 1981) 

GEFDYN (Aubry and Modaressi, 1996) 

TARA-3 (Finn et al., 1986) 

FLAC 2D (Itasca, 2002)    

PLAXIS 2D (Brinkgreve et al., 2011) 

SWANDYNE II (Chan, 1995) 

OpenSees (McKenna and Fenves, 2001) 

Table 3.1 Programs for ground response analysis (modified from Italiana (2005)). 

3.5 A Finite Element Code, SWANDYNE II 

SWANDYNE II is a finite element code developed by Chan (1995). It solves the wave 

propagation problem in time domain based on fully-coupled effective stress approach: in 

which solid and fluid phase interactions are simultaneously considered in the following 

dynamic equations (Zienkiewicz et al., 1999). 

[𝑀𝑀]𝑢̈𝑢 + [𝐶𝐶]𝑢̇𝑢 + [𝐾𝐾]𝑢𝑢 − [𝑄𝑄]𝑝𝑝 = 𝑓𝑓𝑠𝑠  (3.3) 

[𝑀𝑀], [𝐶𝐶], [𝐾𝐾] and [𝑄𝑄] in Equations 3.3 and 3.4 are mass, damping, stiffness and coupling 

matrices of the system, respectively. [𝑆𝑆] is compressibility matrix and [𝐻𝐻] is permeability 

matrix. The 𝑓𝑓𝑠𝑠 and 𝑓𝑓𝑝𝑝 are force matrices for solid and fluid phases, respectively. The 𝑢𝑢 and 

𝑝𝑝 are global displacement and pore pressure matrices. 

The generalized Newmark (GNjp) scheme is implemented to compute the dynamic 

responses at each time step (Katona and Zienkiewicz, 1985). When the displacements, pore 

[𝑄𝑄]𝑇𝑇𝑢̇𝑢 + [𝑆𝑆]𝑝̇𝑝 + [𝐻𝐻]𝑝𝑝 = 𝑓𝑓𝑝𝑝  (3.4) 
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water pressures and their time derivatives {𝑢𝑢𝑛𝑛, 𝑢̇𝑢𝑛𝑛, 𝑢̈𝑢𝑛𝑛,𝑝𝑝𝑛𝑛, 𝑝̇𝑝𝑛𝑛} are known at a time step 𝑡𝑡𝑛𝑛, 

their values at the next time step, 𝑡𝑡𝑛𝑛+1, {𝑢𝑢𝑛𝑛+1, 𝑢̇𝑢𝑛𝑛+1, 𝑢̈𝑢𝑛𝑛+1,𝑝𝑝𝑛𝑛+1, 𝑝̇𝑝𝑛𝑛+1}, can be obtained. The 

convergence of dynamic solution is achieved with an iterative process employing the 

Newton Raphson procedure.  

𝑢̈𝑢𝑛𝑛+1 = 𝑢̈𝑢𝑛𝑛 + ∆𝑢̈𝑢𝑛𝑛 

𝑢̇𝑢𝑛𝑛+1 = 𝑢̇𝑢𝑛𝑛 + [(1 − 𝛽𝛽1)𝑢̈𝑢𝑛𝑛 + 𝛽𝛽1𝑢̈𝑢𝑛𝑛+1]∆𝑡𝑡 

(3.5) 

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + 𝑢̇𝑢𝑛𝑛∆𝑡𝑡 + � 1
2

(1 − 𝛽𝛽2)𝑢̈𝑢𝑛𝑛 + 1
2
𝛽𝛽2𝑢̈𝑢𝑛𝑛+1� ∆𝑡𝑡2                                                                        

𝑝̇𝑝𝑛𝑛+1 = 𝑝̇𝑝𝑛𝑛 + ∆𝑝̇𝑝𝑛𝑛 

𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑛𝑛 + 𝑢̇𝑢𝑛𝑛∆𝑡𝑡 + �1
2
�1 − 𝛽̅𝛽1�𝑝̇𝑝𝑛𝑛 + 1

2
𝛽̅𝛽1𝑝̇𝑝𝑛𝑛+1� ∆𝑡𝑡  

In computing the displacement, pore pressure and their time derivatives in each time step, 

Newton Raphson parameters should satisfy the below conditions so that the iteration 

algorithm expressed in Equation 3.5 is unconditionally stable: 

𝛽𝛽1 ≥
1
2
                                    (for solid phase)                    

(3.6) 𝛽𝛽2 ≥  1
2
�1
2

+ 𝛽𝛽1�
2
                  (for solid phase) 

𝛽̅𝛽2 ≥
1
2
                                     (for fluid phase) 

As it is clear from the above expressions that the minimum values for the Newton Raphson 

parameters are 0.5.  However, in the absence of any material damping during the loading, 

the value of 0.5 for the above parameters may cause numerical problems (e.g. unrealistic 

spikes in case of simulating seismic waves). Hence, in this case, more numerical damping 

should be introduced by increasing the values of the Newton Raphson parameters. If the 
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system has a physical damping (viscous or hysteretic), the minimum conditions will be 

adequate for the reasonable accuracy of the numerical predictions.  

The soil systems, in general, produce damping (e.g. hysteretic damping) based on its 

plasticity level and the intensity of loading during the dynamic excitation.  Once the soil 

behaviour is assumed as totally elastic at small strain levels (which is mostly the case in the 

advanced soil constitutive models (Hashash and Park, 2002)), no hysteretic damping will be 

in place, which may lead to unrealistic resonance behaviour. Hence, it is required to assign 

a system damping, named Rayleigh damping [𝐶𝐶], to dissipate the earthquake energy at low 

strain levels. In general, Rayleigh damping is computed by the following Equations 3.6 and 

3.7 (Clough and Penzien, 2003). 

[𝐶𝐶] = 𝛼𝛼𝑅𝑅[𝑀𝑀] + 𝛽𝛽𝑅𝑅[𝐾𝐾]  (3.7) 

�
𝛼𝛼𝑅𝑅
𝛽𝛽𝑅𝑅
� =

2𝐷𝐷
𝜔𝜔𝑚𝑚 + 𝜔𝜔𝑛𝑛

�
𝜔𝜔𝑚𝑚𝜔𝜔𝑛𝑛

1
�  (3.8) 

where, 𝛼𝛼𝑅𝑅  and 𝛽𝛽𝑅𝑅  parameters are associated indirectly with the 𝑓𝑓𝑚𝑚  and 𝑓𝑓𝑛𝑛  frequencies 

(hereby  𝜔𝜔𝑚𝑚  and  𝜔𝜔𝑛𝑛 are angular frequencies of  𝑓𝑓𝑚𝑚  and 𝑓𝑓𝑛𝑛 , respectively) within which 

viscous damping is lower than or equal to the target damping (D) ratio.  

There are three different descriptions of Rayleigh damping: (1) simplified Rayleigh damping, 

(2) full Rayleigh damping and (3) extended Rayleigh damping (Figure 3.8). The first one 

considers only [𝐾𝐾] and hence requires the computation of 𝛽𝛽𝑅𝑅 . The second one is proper 

consideration of [𝑀𝑀]  and [𝐾𝐾] , in which two Rayleigh damping parameters should be 

calculated based on 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑛𝑛 frequencies. The last one is the extension of the full Rayleigh 

damping. In addition to the two frequencies mentioned above, it requires two more 

frequencies of the higher modes of the soil deposit.   
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Figure 3.7 Effective damping curves from Simplified, Full and Extended Rayleigh damping 
formulations, after Park and Hashash (2004). 

 

There are different approaches in defining the 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑛𝑛 frequencies. One approach suggests 

to use the fundamental period of the soil column (𝑓𝑓𝑠𝑠)  for 𝑓𝑓𝑚𝑚  and for 𝑓𝑓𝑛𝑛  to use the 

fundamental period of the input motion (Hudson et al., 1994). Another approach suggests to 

take the frequencies of several modes of the soil deposit that lead to a site response from a 

linear time domain analysis showing good match with a response from a frequency domain 

analysis (Park and Hashash, 2004). In this approach, it is necessary to iterate linear time 

domain site response analysis to determine the modes of the soil deposit giving a reasonable 

response. Alternatively, if one does not want to perform an iterative process to define 𝑓𝑓𝑛𝑛, 5 

times of 𝑓𝑓𝑚𝑚 (which is regarded as equal to 𝑓𝑓𝑠𝑠) can be adequate to represent the full Rayleigh 

damping of the soil system in the linear phase (Stewart and Kwok, 2008).  

3.6 Developments of Soil Models 

The early critical state soil models (Cam Clay model by Roscoe (1963) and subsequently the 

Modified Cam Clay model by Roscoe and Burland (1968)) are based on the assumption that 

the soil behaves an elastic manner inside the bounding surface and starts yielding when the 

stress path touches the surface. The development of soil plasticity and the evolution of the 

yield surface are described with respect to the flow and hardening rules, respectively. These 
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functions allow the models to predict the actual response of the soil under different loading 

conditions. 

These early soil models have some obvious limitations. For instance, defining the soil 

behaviour inside the bounding surface as an elastic response becomes a subject of much 

research. The sharp decrease of the soil stiffness, when the yield surface is reached, a sudden 

introduction of plasticity is recognised to be not a reasonable approximation. Moreover, in 

loading-unloading cases, such as in seismic loading, the soil exhibits only elastic strains, 

within the bounding surface, and constant excess pore water pressure is predicted. This does 

not reflect the real soil behaviour under such condition, since the soil is expected to exhibit 

early irreversibility and continuous change of pore water pressure. 

The soil behaviour is often assumed isotropic in the soil models mentioned above since the 

soil at different initial stress conditions develops the same shapes with proportional 

extensions in the mean effective stress and deviatoric stress (p’-q) space when it is yielded. 

However, real soil behaviour shows that the soil loses its strength gradually when the stress 

moves from the elastic region to the plastic region. Moreover, irrecoverable deformations 

begin inside the yield surface that produce hysteretic damping, dissipating the energy in the 

cyclic loading. Natural soils are also shown to be anisotropic, due to loading history and 

different consolidation in three-dimensional space, as the yield loci are centred on the failure 

line with elliptical shapes (Panayides, 2014).  Because of these deficiencies in the early 

developed soil models in predicting the real soil behaviour under such loading conditions, 

new soil models are developed. 

In order to consider the early stiffness degradation, accumulation of the pore water pressure 

and the development of hysteretic damping within the yield surface, new soil models are 

formulated with the introduction of a small inner yield surface (also called “bubble”). The 

bubble yield surface separates the elastic region from plastic region within the outer surface 

so that early irreversibility is taken into account, expressing the stiffness reduction with 

respect to irrecoverable deformation. Furthermore, the soil mechanism that dissipates the 

energy in the cyclic loading is also activated by the introduction of the bubble producing 

hysteretic loops. These are called kinematic hardening models due to the movement of the 

inner yield surface towards the outer surface during loading. Two surface models (Mroz et 

al., 1979), kinematic hardening models (Hashiguchi, 1985, 1989) (Hashiguchi, 1989) and 
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bubble models (Al-Tabbaa and Wood, 1989) are, among others, extension of Cam Clay 

model.  

Besides these developments in predicting soil behaviour under different loading conditions, 

it is observed that the natural clays exhibit different behaviour from their reconstituted or 

structureless forms.  Natural clays are in structured states due to the interparticle bonding or 

cementation, thus, have higher strength compared to the same remoulded clays (Burland, 

1990). However, the soil structure collapses during loading and the soil follows the 

reconstituted response pattern when it loses all its structure. In this respect, the progress of 

the structure loss during loading (or the soil destructuration towards the intact form) is also 

accounted for in the advanced soil constitutive models such as S3-SKH model (Baudet and 

Stallebrass, 2004), MSS model (Kavvadas and Amorosi, 2000) and RMW model (Rouainia 

and Muir Wood, 2000). 

3.6.1 An advanced kinematic hardening model (RMW) 

The mathematical formulation of the RMW model (Rouainia and Muir Wood, 2000) in the 

general stress space is summarised here. The explanations for the notations are given at the 

end of the current chapter. Since the model describes the response of the soil skeleton, all 

stresses are effective stresses (the primes have been dropped for simplicity). The expression 

of the reference surface is: 

( ) ( )2 2
2

3 : 0
2r c cf p p p

Mθ

= + − − =s s   (3.9) 

The bubble surface is written as:   

( ) ( ) ( ) ( )2 2
2

3 : 0
2b cf p p Rp

M
= − − + − − =α α α

θ

s s s s   (3.10) 

The structure surface is given by: 

( ) ( ) ( ) ( )2 2
0 02

3 1 : 1 0
2 c c c cF r p r p p rp rp

Mθ

   = − − − − + − − =   s sη η   (3.11) 



CHAPTER 3                                                                      Concept of input motion selection 

66 
 

where pc is the effective stress defining the size of the reference surface, R is the size of the 

bubble. Mθ  is a dimensionless scaling function for deviatoric variation of the critical state 

stress ratio, 0η  a deviatoric tensor controlling the structure, r is the ratio of the sizes of the 

structure and the reference surfaces, p and s are the mean pressure and deviatoric stress 

tensor and the symbol ‘ :’ indicates a summation of products. The dots over symbols indicate 

an infinitesimal increment of the corresponding quantity, whereas bold-face symbols 

indicate tensors. 

The scalar variable r, which is a monotonically decreasing function of both plastic 

volumetric and shear strain, represents the progressive degradation of the material as 

follows: 

𝑟̇𝑟 = −
𝑘𝑘

(𝜆𝜆∗ − 𝜅𝜅∗)
(𝑟𝑟 − 1)𝜀𝜀𝑑̇𝑑  (3.12) 

where 𝜆𝜆∗ and 𝜅𝜅∗ are the slopes of normal compression and swelling lines in the lnv : lnp 

compression plane (v being the soil specific volume) and k is a parameter which controls the 

structure degradation with strain. The rate of the destructuration strain 𝜀𝜀𝑑̇𝑑 is assumed to have 

the following form: 

𝜀𝜀𝑑̇𝑑 = �(1− 𝐴𝐴∗)�𝜀𝜀𝑣̇𝑣
𝑝𝑝�

2
+ 𝐴𝐴�𝜀𝜀𝑞̇𝑞

𝑝𝑝�
2
�
1/2

  (3.13) 

where 𝐴𝐴∗ is a non-dimensional scaling parameter and 𝜀𝜀𝑞̇𝑞
𝑝𝑝 and 𝜀𝜀𝑣̇𝑣

𝑝𝑝 are the plastic shear and 

volumetric strain rate, respectively. 

Volumetric hardening rule is adopted in the model, where the change in size of the reference 

surface, pc, is controlled only by plastic volumetric strain rate, 𝜀𝜀𝑣̇𝑣
𝑝𝑝, given by: 

𝑝̇𝑝
𝑝𝑝𝑐𝑐

= −
𝜀𝜀𝑣̇𝑣
𝑝𝑝

(𝜆𝜆∗ − 𝜅𝜅∗)
  (3.14) 

If a stress increment requires movement of the bubble relative to the structure surface, the 

following kinematic hardening is invoked: 
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𝒂𝒂�  = 𝒂𝒂�̇  + 𝑝̇𝑝
𝑝𝑝𝑐𝑐

(𝒂𝒂� − 𝒂𝒂�) + 𝜇̇𝜇(𝝈𝝈𝑐𝑐 − 𝝈𝝈)     (3.15) 

where 𝒂𝒂� and 𝒂𝒂� = 𝑝𝑝𝑐𝑐�𝑟𝑟𝑰𝑰 + (𝑟𝑟 − 1)𝜂𝜂0� denote the locations of the centre of the bubble and 

structure surface respectively, 𝝈𝝈𝑐𝑐  is the conjugate stress and 𝜇𝜇  is a positive scalar of 

proportionality. It should be noted that the centre of the structure surface and the deviator of 

𝒂𝒂� represents the anisotropy of the soil due to structure. The deviator of 𝒂𝒂� therefore degrades 

to zero as r degrades to unity. 

The plastic modulus H is assumed to depend on the distance between the current stress and 

the conjugate stress and is given by: 

𝐻𝐻 = 𝐻𝐻𝑐𝑐 +
𝐵𝐵𝑝𝑝𝑐𝑐3

(𝜆𝜆∗ − 𝜅𝜅∗)𝑅𝑅
�

𝑏𝑏
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

�
𝜓𝜓

  (3.16) 

where Hc is the plastic modulus at the conjugate stress, B and 𝜓𝜓 are two additional material 

properties, 𝑏𝑏 = 𝒏𝒏�: (𝝈𝝈𝑐𝑐 − 𝝈𝝈) is the normalised distance between the bubble and the structure 

surface and 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 2(𝑟𝑟/𝑅𝑅 − 1)𝒏𝒏�: (𝝈𝝈 − 𝒂𝒂�)  is its maximum value. 

Finally, the bulk and shear moduli, K and G, are assumed to depend linearly on the mean 

effective pressure p: 

𝐾𝐾 =
𝑝𝑝
𝜅𝜅∗

  

(3.17) 

𝐺𝐺 =
3(1 − 2𝑣𝑣)
2(1 + 𝑣𝑣)

𝐾𝐾  

where 𝑣𝑣 is a constant Poisson’s ratio. 

RMW model is a kinematic hardening model for structured soils which introduces three yield 

surfaces with the same elliptical shape in the p-q plane and is an extension of the bubble 

model. The model describes the soil behaviours with the bubble, the structure and the 

reference yield surfaces. The bubble yield surface enables the smooth transition of the soil 
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from elastic phase to plastic phase and acts within the structure surface with the current stress 

with respect to the kinematic hardening rule. The structure surface is the representation of 

the degree of the soil structure and its anisotropy. The reference surface shows the original 

yield surface before the soil is structured. When the soil yields, the structure surface starts 

contracting towards the reference surface as the soil structure gradually collapses. 

The size of the reference surface (pc), the position of the current stress (centre of the bubble 

surface), the degree of the initial structure (ro) and the soil anisotropy (𝜂𝜂𝑜𝑜) should be known 

to define the initial yield surfaces. The model uses two elastic parameters (as used in the 

original Cam Clay model):  𝜅𝜅∗ , the slope of the swelling line in the lnv : lnp plane 

(logarithmic volume – logarithmic mean stress compression plane) and 𝜐𝜐, Poisson’s ratio.  

The plastic behaviour of the soil is described by 𝜆𝜆∗, the slope of the compression line in the 

lnv : lnp plane, M, the slope of the critical state line and m, governing the ratio of radii of 

the surfaces in the deviatoric plane. 

The size of the bubble is assigned with a parameter R being a ratio between the bubble and 

the reference surfaces. Two more parameters associated with bubble that play an important 

role in the hardening behaviour of the soil are stiffness interpolation parameter, B, and 

stiffness interpolation exponent, 𝜓𝜓. Increasing B, or reducing 𝜓𝜓, results in increase in the 

plastic hardening modulus and reduction in the plastic strains. The collapse of the structure 

surface towards the reference surface is governed by a rate of destructuration with strain, k, 

and distribution of volumetric and distortional destructuration represented by A. The bigger 

the k, the faster the destructuration happens. When the destructuration is totally volumetric, 

A equals to 0 and it equals to 1 if the destructuration is fully distortional.  
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Figure 3.8 Three yield surfaces and the associated parameters described by the RMW 
model. 

3.7 Earthquake Selection Strategies Applied in Geotechnical Research 

The propagation of seismic waves through soil layers may be exposed to the change in the 

engineering characteristics of the soil that may lead to some alteration in the characteristics 

of a ground motion, such as energy contents, peaks and fundamental frequency. Site 

response analysis is an efficient tool to simulate such interaction between the soil and seismic 

motions, and requires a series of input motions to consider the uncertainty of a potential 

earthquake event. The first step in selecting input motions is to define a target response 

spectrum that may be from design response spectrum or from DSHA or PSHA of a site 

(which is explained in the first part of this chapter). Accordingly, the bedrock input motions 

are selected and modified with respect to a specific selection strategy. In this respect, 

earthquake selection/scaling strategies to be considered is crucial since different selection 

strategies may result in different site responses at the ground surface. 

An earthquake selection strategy developed by Kottke and Rathje (2008) has recently been 

studied by Rathje et al. (2010) by simulating equivalent linear site response analysis in a 

time domain program called Strata (Kottke and Rathje, 2009). The strategy relies on 

selecting and scaling of a set of input motions such that the root-mean-square error (RMSE) 

between the target response spectrum. The median of the scaled input motions is kept at 

minimum level in the log space. The method does not only minimize RMSE but also it 

considers the level of standard deviation of the set of input motions. Five groups of 5, 10 and 
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20 input motions are formed to study the influence of the number of selected and scaled 

input motions in RMSE and in the level of standard deviation of spectral responses between 

groups. It is observed that increasing the number of input motions reduces the value of 

RMSE and the standard deviation of spectral values between groups of input motions. 

Therefore, it is suggested to select at least 10, or more, input motions in order to obtain stable 

response at the ground surface from the site response analyses. 

The effects of the earthquake selection and scaling strategies on the free-field site response 

analysis has been studied by Tönük et al. (2014). The parametric study uses two numerical 

codes; Shake91 (Idriss and Sun, 1992) and DeepSoil (Hashash, 2012). It is believed that the 

quantity of earthquake records can be as many as possible when the seismic hazard condition 

of a site, as fault mechanism, earthquake magnitude range and source-to-site distance, is 

carefully taken into consideration in the earthquake selection. 18 input motions recorded on 

stiff site conditions having shear wave velocity greater than 660 m/s are selected and are 

subjected to following scaling strategies: (1) PGA scaling, (2) mean spectrum fitting and (3) 

spectrum scaling. The results indicate that site response spectrum can significantly be 

influenced by scaling strategies within which mean spectrum fitting is found to give the 

greatest spectral responses while the PGA scaling causes very similar response spectrum. 

The spectrum scaling leads to the lowest spectral values comparing with the responses from 

other selection strategies. Finally, it is recommended to use the scaling strategy that gives 

the mean spectrum showing the best agreement with the target response spectrum without 

modifying the frequency content of input motions. 

More scaling strategies are implemented in the performance assessment of the soil-structure 

interacting system of a basement wall (Amirzehni et al., 2015). A number of nonlinear two-

dimensional finite difference analyses of basement wall is modelled in FLAC2D (Itasca, 

2012). In addition to the spectrally matching method modifying frequency content of the 

input motions, five linearly scaling methods are studied. These are: 

1. PGA Scaling 

2. Sa(T1) Scaling 

3. ASCE Scaling  

4. Sla Scaling 
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5. MSE (Mean Squared Error) Scaling. 

The performance evaluation of the basement wall is done based on the maximum drift ratio 

over the wall. The less scatter in the results is observed within the set of earthquake motions 

when spectral scaling is implemented but extreme scatter and high drift response are 

observed when PGA scaling is considered. This implies that the spectral scaling is a better 

scaling option although some doubts over its suitability are raised, since the frequency 

content of the motion is modified. 

While different earthquake selection strategies from the literature are presented in this 

section, the intention of all is to recognise the best one that leads to a stable response 

prediction with a minimum number of site response analyses. Considering a set of input 

motions allows to take into account the uncertainty of a probable earthquake event (i.e. input 

motion) in the site response analyses. Other two important inputs of site response analyses, 

which can introduce uncertainty into the response prediction, are shear wave velocity and 

modulus reduction and damping curves of the soil. In the following section, the findings of 

past studies dealing with these soil variables in the site response analyses are presented. 

3.8 Variability of Soil Properties  

A site response analysis can be subjected to three main sources of uncertainty: (1) input 

motions, (2) shear wave velocity (𝑉𝑉𝑠𝑠) and (3) modulus reduction (G/Go) and damping (D) 

curves. In the previous section, the methods of dealing with the uncertainty induced by input 

motions are explained by giving specific attention to the earthquake selection strategies. In 

this section, four studies, which aim to quantify the uncertainties of 𝑉𝑉𝑠𝑠  and G/Go and D 

curves and their impact on the site responses (i.e. spectral response and site amplification 

predictions), are demonstrated. 

3.8.1 Study of Kwok et al. (2008) 

The study of Kwok et al. (2008) investigates the influence of variability of 𝑉𝑉𝑠𝑠 profile and 

G/Go and D curves. Different programs are employed to study the effect of model-to-model 

variability. A series of equivalent linear and nonlinear site response analyses are conducted. 

They consider the site response of the 28 September 2004 Parkfield earthquake with 

magnitude 6 recorded at the Turkey Flat vertical array site in California.  



CHAPTER 3                                                                      Concept of input motion selection 

72 
 

There are variety of measured 𝑉𝑉𝑠𝑠 profiles at the site with a coefficient of variation of 0.2. The 

variability of 𝑉𝑉𝑠𝑠 profile is generated in site response analyses by using the first order second 

moment (FOSM) method (Robert, 1999) which uses profiles of mean and mean +/- √3 

standard deviations. The statistical model of Darendeli (2001) is implemented to compute 

the mean and variation of G/Go and D curves for the site. FOSM method is used to vary the 

G/Go and D curves in the site response analyses. Model-to-model variability is studied by 

using six different programs with mean 𝑉𝑉𝑠𝑠  profile and G/Go and D curves: SHAKE04 

(Youngs, 2004), D_MOD_2 (Matasovic, 2006), DEEPSOIL (Hashash and Park 2001;2002; 

Park and Hashash, 2004), TESS (Pyke, 2000), OpenSees (McKenna and Fences, 2001) and 

SUMDES (Li et al., 1992).  

The results indicate that the variability of 𝑉𝑉𝑠𝑠 profile appears to be causing a great uncertainty 

to the site amplification leading to the greatest standard deviations, especially at periods less 

than the fundamental period of the site. Model-to-model variability is a second source of 

variability followed by the variability of G/Go and D curves controlling the uncertainty in 

the site responses at the surface. 

3.8.2 Study of Li and Assimaki (2010) 

Li and Assimaki (2010) investigate the influence of variability of 𝑉𝑉𝑠𝑠 profile and G/Go and D 

curves on the site response predictions at the ground surface. One-dimensional nonlinear site 

response analyses are conducted by modelling three downhole array sites in the Los Angeles 

Basin; La Cienega, Meloland and Obregon Park. The analyses are operated by using “in-

house” nonlinear code, which is only available within the university where the code is 

developed. The code uses a hysteretic scheme developed by the same authors based on the 

model suggested by Muravskii (2005). It has a capacity to achieve simultaneous convergence 

of modulus reduction and damping curves in the medium and high strain levels (> 10-3). 𝑉𝑉𝑠𝑠 

profile and G/Go and D curves are randomized by using statistical models developed by Toro 

(1995) and Darendeli (2001), respectively.  

Firstly, one weak and one strong synthetic input motion from the earthquake dataset 

produced by Assimaki et al. (2008) are adopted to investigate the sensitivity of impact of 

variability of soil properties on the site response predictions to the seismic intensity level. 

Only one soil property is randomized (e.g. 𝑉𝑉𝑠𝑠 profile or G/Go and D curves) through the 

MCSs. The mean value of the other soil property is used for the purpose of distinguishing 
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the influence of the individual soil properties on the site response predictions. Both soil 

properties are also varied simultaneously. Then, a large number of synthetic input motions 

are used to study the effect of the variability to the soil conditions (e.g. softer and stiffer soil 

conditions) and seismic intensity. 

The results, represented in terms of spectral accelerations and its logarithmic standard 

deviations over an engineering period of interest, indicate that a scatter in the response 

predictions at the surface can be dependent on the variability of both elastic and nonlinear 

soil properties (i.e. 𝑉𝑉𝑠𝑠 profile and G/Go and D curves, respectively) when the strong input 

motion is applied. In case of simulating the weak input motion, only the variability of 𝑉𝑉𝑠𝑠 

profile controls the variability in the response prediction. The results also demonstrate that 

the effect of variability of nonlinear soil properties is more pronounced in the softer soil sites 

(La Cienega and Meloland). Moreover, the findings from the stiffer site (Obregon Park), 

where the influence of variability of 𝑉𝑉𝑠𝑠 profile is relatively greater comparing with the other 

sites, point out the impact of the stiffness contrast at the top 20 m influencing the amount of 

seismic energy refracted and reflected. 

3.8.3 Study of Rathje et al. (2010) 

Rathje et al. (2010) studies the influence of variability of 𝑉𝑉𝑠𝑠 profile and G/Go and D curves 

on the median site response, site amplification and its standard deviation. The uncertainty 

sourcing from input motions is also studied by selecting and scaling 5, 10 and 20 input 

motions (as explained in Section 3.3.5). One-dimensional equivalent linear site response 

analyses are simulated using the program STRATA (Kottke and Rathje, 2009) and modelling 

a deep alluvium site characterized when studying the Sylmar Country Hospital (SCH) in 

Southern California (Chang, 1996). The program has built-in function of varying the 𝑉𝑉𝑠𝑠 

profile and G/Go and D curves. The statistical models given by Toro (1995) and Darendeli 

(2001) for randomizing the elastic and nonlinear soil properties are embedded into the 

program. This feature allows conducting equivalent linear MCSs. It is also capable of using 

input motions in time series or a response spectrum. If a response spectrum is a form of input, 

random vibration theory (Rathje and Ozbey, 2006) is utilized. 

From initial results, it is recognised that 10 input motions scaled by RMSE method can be 

sufficient to obtain a stable median response at ground surface. Along with this finding, 60 

realisations for each soil property is generated. The input motions are scaled to the peak 
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ground acceleration of 0.35g aiming to expose more soil nonlinearity.  In total, 600 

equivalent linear analyses are conducted for each median response presented. It is found that 

inclusion of variability of 𝑉𝑉𝑠𝑠 profile or G/Go and D curves or both at the same time leads to 

predictions of less spectral responses and amplification factors comparing with the baseline 

responses (which is obtained by using baseline 𝑉𝑉𝑠𝑠 profile and G/Go and D curves). However, 

the level of standard deviation reduces for spectral response and increases with amplification 

factors. Increasing the level of truncation (e.g. +/- two or three standard deviations) around 

the baseline 𝑉𝑉𝑠𝑠 profile causes further reduction and further scatter in the response predictions. 

Increasing the interlayer correlation (i.e. the spatial variability statistics) has similar effects. 

Although it is believed that inclusion of variability of soil property should produce higher 

spectral responses, the results do not clearly manifest that. Hence, it is suggested to 

reconsider the procedures used to include the variability of soil property in site response 

analyses. 

3.8.4 Study of Barani et al. (2013) 

Barani et al. (2013) study the influence of variability (or uncertainties) of seismic input 

motions, soil modelling (i.e. soil depth to model), unit weight, 𝑉𝑉𝑠𝑠 profile and G/Go and D 

curves on site responses. Specific site responses investigated are frequency-independent site 

amplification factor and site amplification function, fundamental frequency of site and 

spectral accelerations. Two sites located over the alluvial terrace of the Serchio River in 

northern Tuscany, Italy, are studied. One site sits over a shallow bedrock with depth of 23 

m. For the second site, bedrock level is below the top 30 m according to the geophysical and 

geotechnical investigations.  

The study deals with the above uncertainties based on the Monte Carlo approach using 

Shake91 (Schnabel et al., 1972; Idriss and Sun, 1992) that relies on an equivalent linear 

approximation of soil nonlinearity. 20 bedrock input motions representing the seismic hazard 

level of the sites are used in scaled and unscaled forms to investigate their influences on the 

site responses. RMSE method is used to scale the input motions to the 0.19g 5% damped 

target design response spectrum with the mean return period of 475 years. Two main soil 

models are employed to investigate the model-to-model variability. Geometric uncertainty 

is also studied by varying the thickness of the soil models based on normal distribution. 

Finally, unit weight, 𝑉𝑉𝑠𝑠 profile and G/Go and D curves of soil properties are randomized. 
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Unit weight and 𝑉𝑉𝑠𝑠  are assumed to be lognormally distributed based on their means and 

standard deviations from the field and laboratory tests. G/Go and D curves are varied with 

respect to randomizing the value of shear strain at 64% of the shear modulus ratio (G/Go), 

𝜀𝜀64%  (Bazzurro and Cornell, 2004). This randomization is also carried out based on 

lognormal distribution. 

The results based on the record-to-record variability and the model-to-model variability 

indicate that the uncertainty in the amplification functions is caused, to a great extent, by the 

uncertainty in the soil models and, to a less extent, by the uncertainty in the input motions. 

However, this is not valid for the spectral responses at the surface which are greatly 

influenced by the intensity of input motions. The results based on the randomization of the 

remaining soil parameters (each randomized separately by using a single soil model) reflect 

that the variability of 𝑉𝑉𝑠𝑠  profile is a dominant factor affecting the variability of soil 

amplification parameters and spectral responses. It is followed by the variability of soil 

thickness influencing the site responses. On the contrary, variability of unit weight or G/Go 

and D curves has inconsiderable impact on the uncertainty in the results. This is assumed to 

be the result of the seismic intensity level, not leading to extreme soil nonlinearity, especially 

in case of G/Go and D curves. It is, therefore, anticipated that the variability of G/Go and D 

curves will be one of the major factors controlling the uncertainty in the site responses under 

strong input motions.  

3.9  Conclusions 

The key component that links the seismic hazard with structural damage in a seismic risk 

assessment of a site is known to be the input motion selection. The crucial step in the input 

motion selection is the determination of the target response spectrum, which can be based 

on PSHA or code compliant response spectrum and an IM that reflects the structural 

response as well as seismic intensity. In the absence of PSHA (in other word, UHS), a 

standard design response spectrum given by the seismic design codes can be employed in 

the input motion selection. 

This chapter shows the different methods that can be used to determine a target response 

spectrum and an IM in advance of selecting input motions and the inclusions of some 

earthquake characteristics (M, R and ε) in the input motion selection studied by structural 

communities. Moreover, the legitimacy of down and up scaling with respect to the target 
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response spectrum, consideration of two IMs and the consistency with the use of Sa in 

seismic hazard analysis and performance analysis has been clearly demonstrated. Seismic 

design provisions also provide relatively clear input selection criteria to be followed for 

performance-based structural designs. 

On the other hand, the focus in geotechnical engineering in the past decades is showed to be 

more on the modelling of soil behaviour under seismic oscillations. In this respect, suitable 

platforms with a simple frequency domain programs and time domain finite element codes 

are provided to simulate soil deposits under seismic motions with reasonable boundary 

conditions. Depending on the complexity of numerical code adopted, the actual site response 

can reasonably be predicted. 

This chapter also specifically explains the philosophy of the fully-coupled finite element 

procedure, implemented in SWANDYNE II, emphasizing the dynamic equilibrium, 

boundary conditions and the damping considerations. Moreover, the features of the early 

developed soil models along with their drawbacks in representing soil behaviour and, thus, 

the need for more sophisticated soil model are briefly explained. Then, the development of 

the bubble models for clay soils, capturing early soil irreversibility, stiffness degradation and 

producing hysteretic damping is pointed out. Lastly, a kinematic hardening soil model 

(RMW), is described including its advanced characteristics such as introducing a reference 

surface for the remoulded state of the clay, a structure surface and a bubble surface with the 

associated model parameters.  

Finally, several studies focusing on the input motion selection strategies for site response 

analyses are briefly presented. Moreover, two important factors or soil properties (i.e. shear 

wave velocity profile and shear modulus reduction and damping curves) influencing the site 

responses are discussed with reference to past studies. Based on these reviews, this research 

will further bring the input motion selection strategies into context of the free-field nonlinear 

analyses of soft soil deposits causing great amplification. It will also provide further insight 

into the influence of variability of soil properties on site responses at ground surface. 
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Chapter 4. Nonlinear Analyses of Lotung Down-hole Array Site 

4.1 Introduction 

Seismic waves can be subjected to modifications in their predominant acceleration, velocity 

and displacement, as well as frequency and energy contents during their propagation from 

the fault line to the earth surface. These shifts are mainly governed by the seismic waves 

produced at the fault point (fault effects), travelling process through the earth crust structures 

(path effects), and the vertical propagation within the horizontally layered soil deposits (local 

site effects) (Kramer, 2014). While the first two effects are in the interest of geologists, the 

last one is mainly dealt with by the geotechnical engineers.  

The impact of local site conditions on the characteristics of seismic waves (usually called 

bedrock motions) depends on the elastic and dynamic soil properties. If the local site is 

described by firm material properties, bedrock motions can preserve most of their properties 

at surface. However, when the site consists of soft soil material, the surface motion will be 

totally different from the bedrock motion and will be characterised by the higher energy at 

lower frequencies. This phenomenon was observed in the 1985 Mexico City (Hall and Beck, 

1986), 1989 Loma Prieta (Seed, 1990) and the recent  Christchurch 2011 (Kaiser et al., 2012) 

earthquake events.  

To simulate the local site problems, site response analysis is generally used. The key factor 

in site response analysis is the approach used to represent the soil behaviour under dynamic 

conditions and, in particular, the numerical method (i.e. equivalent linear or nonlinear) 

coupled with the soil constitutive model employed for the analysis. In this regard, it is 

necessary to test the performance of the numerical approach adopted against real 

experimental data. While laboratory and in-situ tests can provide reliable and consistent 

information about the soil behaviour under different loading conditions, they can sometimes 

be doubtful because of well-known testing procedure limitations (e.g. soil sample extraction, 

representativeness of loading condition, etc.). However, down-hole array instruments can 

correctly measure the site response since the recording process is totally unmanned (Zeghal 

and Elgamal, 1994). Hence, the recorded earthquake data at array sites can readily be used 

by the researchers to evaluate the performance of the numerical approaches adopted for site 

response predictions. 



CHAPTER 4                                                 Deterministic nonlinear analyses of Lotung site              
 

78 
 

In recent years, seismic array sites have gained great attention, in particular, in seismically 

active regions, as USA, Mexico, Taiwan and Japan (Elgamal et al., 1995). In 1985, the 

Electric Power Research Institute (EPRI), Palo Alto, California, and the Taiwan Power 

Company (TPC), Taipei, Taiwan, have set up a Large-Scale Seismic Test (LSST) site in the 

Lotung (Taiwan) area, including two nuclear power plant containment structure models with 

1/4 and 1/12 scales for soil structure interaction studies (Borja et al., 1999a). The Lotung 

site was particularly chosen for the high-quality multidisciplinary earthquake data collection 

since it is located within a seismically active region and the soil deposit over the bedrock 

comprises of thick alluvial strata with varied depth from 200-600 meters, including recent 

alluvium layers at the top 40 to 50 meters (Glaser and Leeds, 1996). Within two years after 

the down-hole array installation, 18 earthquake events have been recorded, including 

moderate and strong input motions (Shen et al., 1989). 

The earthquake data recorded at Lotung at different depths have been used by many 

researchers to verify the capabilities and limits of the methods developed to define the 

dynamic characteristic of the soil layers and to predict the site response. In this respect, 

Elgamal et al. (1995) and (Zeghal et al., 1995) developed a method able to predict the 

stiffness degradation and damping ratio values with respect to the shear stress-strain 

histories. The method also considered the influence of the accumulation of pore water 

pressures on the shear stiffness degradation and corresponding damping ratio curves during 

seismic excitations. It has been proved that the predicted shear moduli and damping ratio 

values were in reasonable good agreement with the resonant column and cyclic torsional 

shear test results conducted by EPRI, 1993, at the University of Texas, Austin.  

One dimensional seismic wave propagation at the Lotung site have been studied by a number 

of researches since its instrumentation in 1985. As an example, Li et al. (1998) studied the 

seismic propagation at the site by using a fully-coupled finite element (FE) code, SUMDES 

(Li et al., 1992), employing a bounding surface plasticity soil model. The code solves the 

problem in one dimension and considers the motion in three dimensions (vectored motion). 

Two input motions characterised by discrete shaking duration and waveform were simulated. 

Good predictions of the horizontal site response were achieved when the vertical response 

was underestimated by the code. Similarly, Borja et al. (2002) tested the performances of 

two numerical codes; well-known equivalent linear code, SHAKE (Schnabel et al., 1972) 

and a nonlinear FE code, SPECTRA (Borja et al., 1999a), enabling to apply the motion in 

three dimensions. The FE code still relies on total stresses and uses a bounding surface plastic 
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soil model.  Again, two earthquake events with different characteristics were used. Both 

numerical codes predicted the horizontal and vertical site responses reasonably well.  

Very recently, Amorosi et al. (2016) studied the multi-directionality effects on the site 

response at Lotung. They performed 3D nonlinear site response analysis using a full-coupled 

effective stress FE code, PLAXIS (Brinkgreve et al., 2013) and employing an advanced 

kinematic hardening soil model. They simulated two earthquake events having different 

characteristics. The horizontal input motions were applied individually and simultaneously. 

Fairly good agreement with the actual data was obtained when a single horizontal input 

motion was simulated. In case of applying two horizontal input motions, the site response is 

overestimated and unrealistic spurious spikes were produced. Overall, when these works 

with the above mentioned numerical codes and soil models predicted the free-field site 

response reasonably well, especially with the nonlinear codes, the need of more sophisticated 

numerical codes coupling with advanced soil models are evidently emphasised and the 

benefit of the array site data in the performance evaluation of such numerical schemes is 

greatly appreciated. 

In this study a fully-coupled finite element code, SWANDYNE II, with an advanced soil 

constitutive model (Rouainia and Muir Wood, 2000) is employed and its capability to predict 

the free-field ground response at Lotung is examined. One weak and one strong input motion 

recorded on site will be considered. The site will also be analysed using a simple frequency 

domain visco-elastic code (EERA) for comparison purposes. Firstly, the general information 

about the site and its instrumentations will be presented. Following that, the characteristics 

of the seismic input motions applied at the bottom of the soil models will be given. 

Furthermore, the linear and nonlinear numerical models will be described, including the soil 

model calibration. Subsequently, the numerical predictions will be presented in terms of 

acceleration-time histories and site response spectra and compared with the corresponding 

array data. Finally, some general conclusions will be drawn. 
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4.2 Description of the Lotung Down-hole Array Site 

The Lotung geotechnical array site is located in the north-east part of Taiwan, as seen in 

Figure 4.1 (Borja et al., 2002). The two 1/4 and 1/12 scaled nuclear power plant containment 

structures were constructed by Electric Power Research Institute (EPRI) and Taiwan Power 

Company (TPC) for soil-structure interaction studies. Around the 1/4 scaled model structure, 

surface accelerometers were deployed over three armed shapes together with two down-hole 

array instrumentations (shown as DHA and DHB in Figure 4.2).  

The three components down-hole accelerometers recording the earthquake data in the east-

west (E-W), north-south (N-S) and up-down (U-D) directions were located in the DHA and 

DHB down-hole arrays at surface and 6 m, 11 m, 17 m and 47 m depths below the ground 

level. Since the DHA down-hole array was instrumented at a distance of 3.2 m  from the 

edge of the 1/4 scaled structure model, it is likely that the earthquake data recorded along 

this array are influenced by soil-structure interaction (Borja et al., 1999b). For this reason, 

the earthquake data obtained from the DHB down-hole array are considered here for free-

field site response analyses.   

 

Figure 4.1 Location of the Lotung test site in Taipei, Taiwan (from Anderson and Tang, 
1989). 
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Figure 4.2 (a) Elevation view of the down-hole arrays including the scaled nuclear power 
plant containment structure and (b) plan view of the overall seismic instrumentations 
around the same structure model. 

In addition to the deployments of surface and down-hole accelerometers, over 20 pore 

pressure sensors were installed in the late May 1986, within 3 m to 16 m depth, in order to 

measure pore pressure accumulations during the seismic excitations (Shen et al., 1989). Site 

conditions and soil properties were determined by in-situ and laboratory tests (EPRI, 1993). 

Stiffness degradation and damping ratio curves from the laboratory tests conducted by EPRI, 

1993, at different depths are shown in Figure 4.3. The laboratory test results clearly indicate 

that the soil showing a plastic behaviour from 10-3 - 10-2% strain level. A small scatter in the 

test results in terms of stiffness degradation and damping ratio curves can clearly be seen, 

even though the soil samples were extracted from different depths. While the measured 

dynamic shear modulus values are positioned over the upper bound curve given for sands by 
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Seed and Idriss (1970), the measured damping ratio values fit fairly well between the mean 

and lower bound curves proposed by the same Authors. 

 

 

Figure 4.3 Resonant column (RC) and torsional shear tests results for intact silty sand (SM) 
and sandy silt samples from the LSST site (EPRI, 1993). 

Alternatively, Zeghal et al. (1995) developed a method to back-calculate the shear modulus 

reduction and damping ratio curves as a function of shear strain amplitude by using free-

field down-hole acceleration histories recorded at the Lotung site. They implemented this 

method for LSST7, LSST12 and LSST16 earthquake events recorded at the 6 m, 11 m and 

17 m depths of the DHB array. The proposed back-figured nonlinear curves match well with 

those of Seed and Idriss (1970) for sand, too. These back-calculated nonlinear curves are 

used to calibrate the parameters of the adopted soil constitutive model which will be shown 

in Section 6 of the present chapter. 
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4.3 The Soil Properties of the Lotung Down-hole Array Site 

The top 47 m of the soil deposit consists of silty clay and gravel with sand layers. The soil 

layers at the top 17 m were well characterized in terms of elastic and dynamic soil properties 

(e.g. shear wave velocity (Vs), compression wave velocity (Vp), initial shear stiffness (G0), 

Poisson’s ratio, stiffness degradation and damping ratio curves) from in-situ and laboratory 

tests as well as from the empirical approaches (Zeghal et al., 1995). The ground water level 

was assumed to be within 0.4 m or 0.5 m below the surface(Li et al., 1998) (Schneider, 

1993). The total unit weight was assumed to be equal to 19 kN/m3 for the sandy/silty/clayey 

layers and 19.5 kN/m3 for the gravelly layers (Borja et al., 1999a). The average specific 

gravity of soil was calculated to be around 2.7. The general properties of the soil samples 

from different depths determined by using the laboratory tests by EPRI, 1993 are shown in 

Table 4.1. 

LL = liquid limit, PI = plasticity index and e = void ratio 

Depth 
(m) 

Soil 

description 

LL 

(%) 

PI 

(%) 

Water 

content 

Total unit 

weight 

(kN/m3) 

e 
Specific 

gravity 

Degree of 

saturation 

(%) 

5.5 Silt - - 31 17.9 0.93 2.65 88 

10.5 Silt - - 32.5 18.9 0.85 2.65 100 

18 
Silty fine 

sand 
- - 33.3 17.5 1.02 2.65 87 

28.5 Silty sand - - 31.2 19.1 0.82 2.65 100 

34.5 Clayey silt 32 7 35.3 18.9 0.92 2.7 100 

40.5 Clayey silt 33 8 31.1 18.8 0.89 2.7 95 

44.5 silt - - 24 20.5 0.56 2.65 100 

Table 4.1 General properties of the soil from the LSST site at different depths. 

Another important elastic property of the soil is the coefficient of earth pressure at rest, K0. 

The value of K0 has impacts on the ground response of the soil deposit in two different 

aspects:  

1. the initial stress state of the deposit is calculated based on the K0 value and the 

maximum past vertical effective overburden pressure,  

2. during the earthquake loading, the lateral total stress, σh, is subjected to change that 

also partially depends on the initial K0 value (Li et al., 1998).  
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During a cyclic loading condition, the soil is assumed to be subjected to the simple shear 

stress and zero lateral strains. If the initial K0 value of the soil is less than 1, under a dynamic 

motion the K0 value tends to reach a value of 1 (isotropic normal stress state) (Pyke, 1973; 

Youd and Croven, 1975). Such an increase in K0 may result in the reduction of the deviatoric 

stress, thus increasing the liquefaction resistance. Furthermore, it causes increase of the pore 

water pressure depending on the increase in the total mean normal stress.  

Previous earthquake events striking the site can affects the K0 value of the soil deposit since 

in each event the soil elements are subjected to cyclic loadings (Li et al., 1998). For this 

reason, the K0 value for the soil in the LSST site can be greater than its original value. The 

work of Li et al. (1998), in this respect, proposes K0 value for the site by using a trial-error 

method to obtain results in terms of pore water pressure such that they are in good agreement 

with the recorded data from the 14 November 1986 earthquake event (LSST16). It was found 

that considering K0 close to 1 gives good results in terms of excess pore water pressure with 

time. They also suggest a value of 0.8 for the top 3 m because of its recent geological 

formation.  

The Poisson’s ratios (ν) for the soil layers can be calculated from the value of K0 or using 

the compression wave velocity and shear wave velocity profiles measured from up-hole 

seismic tests. By using Vp and Vs profiles, the lower ν value calculated for the top 10 meters 

was found to be around 0.46 while the remaining layers were assumed to have a ν value as 

high as 0.48 (Berger et al., 1989).  

4.4 Earthquake Data Recorded at the Lotung Down-hole Array Site 

During the 1985 and 1986, the LSST site was subjected to 18 earthquake events including 

moderate and strong input motions. One weak (LSST11) and one strong (LSST7) earthquake 

events with magnitude 4.3 and 6.2, respectively, are selected to be applied at the bottom of 

the numerical soil models. General information regarding the earthquake events is provided 

in Table 4.2. The recordings of the earthquake events at the DHB down-hole array with 

record names FA1-5, DHB6, DHB11, DHB17 and DHB47 refer to the accelerations 

measured at surface, 6 m, 11 m, 17 m and 47 m depth, respectively. PGA values of the 

recorded input motions at associated depths are presented in Table 4.3.  
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Table 4.2 General information for the LSST11 and LSST7 earthquake event. 

Table 4.3 Peak accelerations of the weak (LSST11) and strong (LSST7) earthquake events 
at different depths in East-West (E-W), North-South (N-S) and Vertical (U-D) directions. 

Spectral accelerations of the recorded earthquake data at ground surface, 6 m, 11 m, 17 m 

and 47 m depth are reported in Figure 4.4. The figure shows that the strong input motion, 

having a higher focal depth and epicentral distance, is characterised by an energy content 

concentrated in the higher periods. In contrast, the weak input motion, striking the deposit 

from a shallow fault mechanism and a shorter epicentral distance, is characterised by a 

seismic energy at relatively low periods. 

While the E-W component of the strong input motion is amplified regularly at around the 

first and second modes of the soil deposit, the N-S component of the same event shows a 

complex behaviour during its travelling path from the bedrock to the ground surface, which 

can be probably attributed to the different geological formation of the site in the E-W and 

N-S directions. The site, in fact, sits over a smooth layered Pleistocene formation in the E-

W direction, as shown in Figure 4.5, but the same formation has some inclination in the N-

S direction, thus leading to two substantially different seismic excitations in the E-W and N-

S directions. In particular, the PGA of the E-W component of the earthquake event increases 

only 6% from 6 m to the ground surface, while 50% increase in the N-S component is 

observed at the same range of soil depth.  

Event date Magnitude, Mw 
Epicentral 
distance (km) 

Focal depth 
(km) 

LSST11 17/7/1986 4.3 6.0 2.0 

LSTT7 20/5/1986 6.5 66.0 15.8 

Locations/names of accelerometers FA1-5 DHB6 DHB11 DHB17 DHB47 

LSST11 

PGA(g) 

E-W 0.065 0.046 0.041 0.043 0.046 

N-S 0.104 0.068 0.064 0.058 0.062 

U-D 0.432 0.259 0.178 0.0.169 0.146 

LSST7 

PGA(g) 

E-W 0.16 0.15 0.12 0.1 0.08 

N-S 0.21 0.14 0.11 0.09 0.1 

U-D 0.04 0.04 0.04 0.04 0.03 
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Figure 4.4 indicates the period shift (or energy shift of the input motion) of the spectral 

accelerations to the longer periods in both directions from bottom level to the ground surface. 

This can be attributed to the fact that the soil material characterised by higher shear modulus 

may not influence the characteristics of input motions, hence the effect of nonlinear soil 

behaviour cannot be clearly observed. However, when the input motion propagates through 

the soft soil layers, the spectral responses may show great amplification with a shift to the 

longer periods as observed in the LSST7 earthquake event. For both components of the weak 

input motion, several spectral peaks are observed as the motion is characterised by the energy 

at high frequencies, thus the influence of soil nonlinearity is expected to be very limited. 

 

 

Figure 4.4 Recorded spectral acceleration, Sa, at different depths for the E-W and N-S 
components of the (a, b) LSST7 and (c, d) LSST11 earthquake events. 
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Figure 4.5 Geologic profile of the Lotung site (after Anderson and Tang, 1989)). 
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4.5  Numerical Modelling of the Lotung Down-hole Array Site 

4.5.1 Equivalent linear visco-elastic model 

The EERA code (Bardet et al., 2000) represents the nonlinear soil behaviour via an 

equivalent linear approach. It uses the exact formulation of wave propagation in horizontally 

layered soil deposits subjected to vertically propagating transient motions (Roesset, 1977) 

and solves the problem in the frequency domain. The nonlinear shear modulus, G, and 

corresponding damping ratio, D, at a specific shear strain is obtained by means of an iterative 

procedure. The code assumes the G and D values are constant during the seismic oscillations 

within each soil layer. Because of this, it should be guaranteed that the number of iterations 

is sufficient to achieve a specified convergence at the induced shear strain in each soil layer. 

The EERA analyses conducted in this study use the small-strain stiffness profile shown in 

Figure 4.6c. The profile is discretised into 1 m layers and a constant stiffness within each 

sub-strata is assigned. To achieve a rational comparison, the same stiffness degradation and 

damping ratio curves adopted in the nonlinear FE model are used in the EERA simulations. 

4.5.2 Nonlinear FE model 

To overcome the well-known deficiencies of the equivalent linear approach, nonlinear 

schemes solving the wave propagation problem by direct numerical integration in the time 

domain can be implemented. The code SWANDYNE II (Chan, 1995) used in this study is a 

fully-coupled finite element code solving the problem in the time domain and enabling to 

model the soil deposit in two or three-dimensional spaces. Linear or nonlinear dynamic 

analyses can be performed, using the Generalised Newmark method (Katona and 

Zienkiewicz, 1985) for time integration. In particular, the values of the Newmark parameters 

selected in all the FE analyses presented in this study are β1 = 0.600 and β2 = 0.605 for the 

solid phase and β1* = 0.600 for the fluid phase. These values ensure that the solution is 

unconditionally stable and the energy is dissipated at the high frequencies so that unrealistic 

spikes are avoided (Zienkiewicz et al., 1999). 

A 5 m wide, 47 m high FE mesh composed by 235 isoparametric quadrilateral finite elements 

with 8 solid nodes and 4 fluid nodes has been adopted in the FE dynamic simulations. This 

mesh configuration meets the need of the minimum distance between the element nodes, 
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Δlnode, which should not be greater than one-tenth to one-eighth of the seismic wavelength 

(Bathe, 1982): 

∆𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≤
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

(8 − 10)
=

𝑉𝑉𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚

(8 − 10)𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
  (4.1) 

The base of the model is assumed to be rigid, while equal displacements have been imposed 

the nodes along the vertical side boundaries (i.e. tied-nodes lateral boundary conditions). 

This boundary type is also called as repeatable boundary conditions and its efficiency in 

performing free-field seismic wave propagation problem was demonstrated by Kontoe et al. 

(2007). Fluid flow is not permitted at the base and at the lateral boundaries of the mesh 

(impervious boundary conditions), while draining is allowed at the top of the FE model. In 

addition, the adopted soil constitutive model predicts almost a linear behaviour at small 

strain levels (e.g. shear strain < 10-3%), which can result in unrealistic resonance behaviour. 

Hence, 3% Rayleigh damping is introduced. The Rayleigh damping is represented in the FE 

model by means of two coefficients, 𝛼𝛼𝑅𝑅  and 𝛽𝛽𝑅𝑅 , which are 0 and 0.0082 based on the 

formulation given in Chapter 3 Section 5. In the nonlinear site response analyses presented 

here, the mass damping matrix is ignored and only the stiffness damping matrix is taken into 

consideration for the calculation of the Rayleigh damping introduced in the simulations. 

 

Figure 4.6 Local soil profile at the LSST site: (a) stratigraphy; (b) SPT log; (c) elastic shear 
modulus. 



CHAPTER 4                                                 Deterministic nonlinear analyses of Lotung site              
 

90 
 

4.6 The Calibration of the Advanced Soil Constitutive Model Parameters 

To include the influence of nonlinear soil behaviour on the seismic wave propagation, the 

kinematic hardening soil model (RMW) developed by Rouainia and Muir Wood (2000) is 

employed in the fully-coupled finite element analyses. The RMW model has the capacity to 

simulate some of the key features of the dynamic behaviour of natural clay soils such as the 

shear stiffness degradation with strain amplitude, the corresponding increase of hysteretic 

damping and the related accumulation of pore water pressure under undrained conditions. 

The model has been implemented in SWANDYNE II with an explicit stress integration 

algorithm and a constant strain sub-stepping scheme. RMW has been successfully employed 

in the past to simulate both static (Gonzalez et al., 2012; Panayides, 2014) and dynamic 

geotechnical problems (Elia and Rouainia, 2012; Elia and Rouainia, 2014). For more details 

on its formulation and implementation, the reader is referred to Rouainia and Muir Wood 

(2000) and Zhao et al. (2005) (see also Chapter 3). In previous versions of the model, a 

classical hypo-elastic formulation was implemented to determine the bulk and shear moduli, 

K and G0. In this study, however, the well-known equation proposed by Viggiani and 

Atkinson (Viggiani and Atkinson, 1995) for the small-strain shear modulus has been used to 

reproduce the dependency of G0 on the mean effective stress and over-consolidation ratio: 

𝐺𝐺𝑜𝑜
𝑝𝑝𝑟𝑟

= 𝐴𝐴 �
𝑝𝑝′

𝑝𝑝𝑟𝑟
�
𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚  (4.2) 

where 𝑝𝑝𝑟𝑟 is a reference stress taken as 1 kPa, 𝑝𝑝′ is mean effective stress, OCR is the over-

consolidation ratio defined in terms of mean effective stress, A, m and n are the soil plasticity 

index (PI) dependent stiffness parameters. The best-fit G0 profile in Figure 4.6c is achieved 

with A, m and n parameters shown in Table 4.4. In addition, 𝑂𝑂𝑂𝑂𝑂𝑂 is considered 4 from 0 to 

6 m depth and for the remaining soil profile a constant value of 2 is defined. 

The parameters of the advanced soil constitutive model, RMW, are determined based on the 

shear modulus and damping ratio curves proposed for the Lotung site by Zeghal et al. (1995). 

They suggested three different nonlinear curves, thus three different materials, for the layers 

between 0-6 m, 6-11 m, and 11-17 m (as shown in Figure 4.7). These stiffness degradation 

and damping ratio curves also matched well the different laboratory test results conducted 

by the National Taiwan University, the University of California, Davis and the University 

of Texas at Austin. It was assumed that the shear modulus and damping ratio curves of the 
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soil between 17 and 47 m are equal to those from 11 to 17 m, since more detailed data 

relevant to the deeper material were not available. Therefore, three different materials can 

be identified along the soil deposit in terms of dynamic soil properties, although the inclusion 

of sand with gravel between 17 and 23 m and 29 and 36 m are characterized by higher values 

of effective friction angles (based on the SPT data shown in Figure 4.6b). It is noted that the 

lack of a proper characterization of the deeper materials (i.e. below 17 m) in terms of soil 

dynamic properties at the LSST site can affect the accuracy of the site response simulations 

and, therefore, its influence on the seismic wave propagation process has been investigated 

in the last part of the chapter. 

 

 

Figure 4.7 Shear modulus degradation and damping ratio curves  adopted in this study 
(RMW) in comparison with Zeghal et al. (1995). 
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The soil model parameters that govern the nonlinear curves of Figure 4.7 are listed in Table 

4.4. λ* and κ* are calculated based on λ (the slope of the compression line) and κ (slope of 

the swelling line) values obtained from odometer test results (EPRI, 1993). M, the slope of 

the critical state line, is calculated from friction angle predictions obtained from measured 

SPT-N values by using the following empirical formulation (Hatanaka and Uchida, 1996): 

∅𝑑𝑑 = (20𝑁𝑁)0.5 + 18  (4.3) 

𝑀𝑀 =
6 sin∅

3 − sin∅
  (4.4) 

The size of the bubble (controlled by the parameter R) is kept small for all the three materials, 

hence a small elastic behaviour of the soil is ensured. This is due to the fact that the soil at 

the array site shows an irreversible behaviour at small strain levels of around 10-2% (Tang, 

1987). The structure surface is considered centred on the isotropic axis, thus η equals to 0, 

with no initial soil structure, i.e. r0 is equal to 1. The value of Poisson’s ratio is taken equal 

to 0.46 constant with depth, corresponding to the K0 value of 0.85 proposed by Li et al. 

(1998) and Berger et al. (1989). 

The remaining soil parameters, B and ψ controlling the plastic shear modulus, are calibrated 

by producing the stiffness degradation and corresponding damping ratio curves with SM2D 

(Chan, 1995). Soil element undrained strain controlled cyclic simple shear (CSS) tests are 

performed. For each strain level, the secant shear modulus and the damping ratio values are 

predicted at the end of a number of cycles which is adequate to attain a steady-state condition 

where no more stiffness loss or hysteretic damping can be observed.  

Depth λ* κ* M R B ψ r0 A m n 

0-17 m 0.03 0.0015 0.922 0.08 0.60 1.0 1.0 1000 0.36 0.82 

17-23 m 0.03 0.0015 1.096 0.08 0.60 1.0 1.0 1900 0.36 0.82 

23-29 m 0.03 0.0015 0.814 0.08 0.60 1.0 1.0 1350 0.36 0.82 

29-36 m 0.03 0.0015 0.941 0.08 0.60 1.0 1.0 1900 0.36 0.82 

36-47 m 0.03 0.0015 0.730 0.08 0.60 1.0 1.0 1150 0.36 0.82 

Table 4.4 Soil model parameters for different soil layers. 
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4.7 Results of the Equivalent Linear and Nonlinear Site Response Analyses 

In this section, the results of the site response analyses during the weak (LSST11) and strong 

(LSST7) input motions are presented separately in terms of acceleration-time histories and 

site response spectra at different depths. Furthermore, maximum acceleration and shear 

strain profiles along depth obtained with the two numerical approaches are discussed. The 

performances of both numerical approaches are assessed and their benefits and drawbacks 

in the site response predictions are discussed.  It should be noted that some of the results 

shown in this section have been published in the work of Elia et al. (2017). 

4.7.1 Results for the LSST11 earthquake event 

The acceleration-time history predictions for the LSST11 earthquake event at three different 

depths obtained with the equivalent linear and nonlinear numerical approaches are given in 

Figure 4.8. In the same figure, the accelerations recorded by the instrumented accelerometers 

at the DHB down-hole array are also shown. Since the event is expected to have the most 

energy content at the higher frequencies, only the first 10 s of the acceleration-time histories 

are represented. Figure 4.9 presents the corresponding spectral responses of both the 

simulated and recorded acceleration-time histories of the LSST11 earthquake event. At 

depths of 11 and 6 m, the equivalent linear and nonlinear numerical approaches predict the 

site responses reasonably well, capturing the PGAs almost exactly and following the path of 

the recorded response spectra, especially at the longer periods (after about 0.3 s). The 

predictions at ground surface also approach the real site response. The FE code predictions 

at surface become un-conservative, while EERA gives over-predicted ground surface 

response spectra, more evident in the N-S direction.  

Both numerical approaches perform relatively well in predicting the response spectra at 

longer periods, as shown in Figure 4.9a and Figure 4.9b. The results are consistent with 

previous studies by Zalachoris and Rathje (2015) and Kaklamanos et al. (2015), who pointed 

out that at the lower frequencies linear and nonlinear numerical approaches produce identical 

spectral response, while at the higher frequencies overestimation by the linear approach and 

under-prediction by the nonlinear approach can be observed when the strain level is less than 

0.1%. 

In terms of maximum acceleration and maximum shear strain profiles, shown in Figure 4.10, 

both numerical approaches result in similar responses at the bottom of the soil deposit up 
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until 20 m depth in both directions. However, especially at the top 5 m, the maximum 

acceleration and shear strain profiles obtained with the FE and EERA analyses show some 

discrepancy. EERA predicts greater accelerations and shear strains than the FE code at 

ground surface. 

 

Figure 4.8 Comparisons of the recorded acceleration-time histories for the LSST11 
earthquake event with the predictions at three different depths based on equivalent linear 
(EERA) and nonlinear numerical approaches (SWANDYNE II) in the E-W (left-side) and 
N-S directions (right-side). 
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Figure 4.9 Comparisons of the recorded response spectra for the LSST11 earthquake event 
with the ground response spectrum predictions at three different depths based on 
equivalent linear (EERA) and nonlinear numerical approaches (SWANDYNE II) in the E-
W (left-side) and N-S directions (right-side). 
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Figure 4.10 Maximum acceleration (amax) and shear strain (γmax) profiles predicted by EERA 
and FE codes and recorded PGAs at different depths during the LSST11 earthquake event 
in the E-W and N-S directions. 
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The LSST11 earthquake event, being characterised by low input energy, induces shear strain 

levels in the deposit unable to produce soil permanent displacements. Figure 4.11 presents 

the shear stress versus shear strain curves (i.e. backbone curves) induced by the weak input 

motion. The maximum predicted shear strain in this case is equal to about 0.02%. It can also 

be observed that, in parallel with an increase of the strain level towards the ground surface 

of the soil deposit, the FE analysis predicts a softer stiffness behaviour without any hysteretic 

loops under both components of the earthquake event. More clearly, a discrete increase of 

shear strain between 15 m and 5 m depths obtained from the nonlinear FE analyses is 

observed whereas relatively smooth shear strain increase is achieved by EERA analyses at 

the same depth ranges. This trend is evidently reflected by the backbone curves showing 

relatively more and less stiffness degradations for the FE (Figure 4.11c, e) and EERA (Figure 

4.11d, f) codes at 6 and 11 m depths. At the top 5 m, both numerical approaches indicate a 

reduction of shear strain towards the ground surface leading to similar shear stress-strain 

relation. It is also important to note that, from ground surface to the deeper depths, the 

amplitude of the shear strain reduces and both numerical approaches predictions become 

similar in terms of shear stress-strain histories in the E-W and N-S directions. 

Overall, the equivalent linear approach seems to offer a reasonable approximation of the soil 

nonlinearity in the site response prediction of the weak input motion with some over-

prediction at the shorter periods. The nonlinear numerical approach also leads to a good 

prediction of the real site response, even though some under-prediction at the shorter periods 

is observed. Both numerical approximations, however, perform well in predicting the site 

response spectra at the longer periods. Nevertheless, the full capabilities of the nonlinear 

approach are not fully exploited in this case, due to the low energy content of the weak input 

motion concentrated in the high frequency range.  
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Figure 4.11 Stress-strain curves obtained from the equivalent linear and nonlinear site 
response analyses at different depths during the E-W (left-side) and N-S (right-side) 
components of the LSST11 earthquake event. 
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4.7.2 Results for the LSST7 earthquake event 

The results of the LSST7 earthquake event are presented using the same format adopted 

before. In particular, Figure 4.12 shows the comparison of the acceleration-time history 

predictions from EERA and SWANDYNE II with the real data at three different depths. The 

corresponding response spectra at ground surface, 6 and 11 m depth are shown in Figure 

4.13. Although the full acceleration-time histories have being used for the determination of 

the response spectra, only the time histories between 5 and 20 s are presented here. Since the 

LSST7 earthquake event has a greater energy content than the LSST11 motion, the soil will 

show more nonlinearity and the capabilities of both numerical approaches are expected to 

be more clearly highlighted in this case. 

EERA is able to predict the site response reasonably well at 6 and 11 m depth under both 

components of the LSST7 earthquake event, capturing the PGAs and zero crossing. At 

ground surface, the code under-predicts the site response in the E-W direction and over-

predicts it in the N-S direction. Moreover, the time shift in the acceleration-time history of 

the N-S component at ground surface is evident, as seen in Figure 4.12b. Nevertheless, the 

EERA predictions are in good agreement with the array data, especially at the higher periods 

bigger than 1 s (Figure 4.13).  

With respect to the results obtained from the nonlinear FE analyses, better predictions can 

be observed at the considered depths when the E-W component of the earthquake event is 

applied at the bottom of the soil model (Figure 4.12a, c, e). The nonlinear approach captures 

almost exactly the PGAs and the spectral acceleration values of the down-hole recordings 

over the interested period range (Figure 4.13a, c, e). The nonlinear FE analysis of the site 

during the N-S component of the earthquake event under-predicts the response spectra at 

ground surface, 11 and 6 m depth (Figure 4.12b, d, f). This is also reflected to the spectral 

response predictions shown in Figure 4.13b, d, f.  
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Figure 4.12 Comparisons of the recorded acceleration-time histories for the LSST7 
earthquake event with the predictions at three different depths based on the equivalent 
linear (EERA) and nonlinear numerical approaches (SWANDYNE II) in the E-W (left-
side) and N-S directions (right-side). 
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Figure 4.13 Comparisons of the recorded response spectra for the LSST7 earthquake event 
with the ground response spectrum predictions at three different depths based on the 
equivalent linear (EERA) and nonlinear numerical approaches (SWANDYNE II) in the E-
W (left-side) and N-S directions (right-side). 
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Figure 4.14 shows the maximum acceleration and shear strain profiles predicted by the 

equivalent linear and nonlinear numerical approaches under the LSST7 earthquake event in 

the E-W and N-S directions. The maximum acceleration profiles obtained from both 

numerical procedures are quite identical in the E-W direction and they capture well the 

measured PGAs at different depths. In contrast, the PGAs of the N-S component is under-

predicted by both analyses. The equivalent linear approach results in better predictions than 

the nonlinear FE code at ground surface and 6 and 11 m depth, as can be seen in Figure 

4.14c. With respect to the maximum shear strain, both approaches lead to the quite similar 

strain levels below 10 m, giving shear strains at around 0.1% and 0.15% in the E-W direction 

(Figure 4.14b) and between 0.05% and 0.1% in the N-S direction (Figure 4.14d). This can 

also be seen from their shear stress-strain histories at associated depths presented in Figure 

4.15. However, at the top 10 m, the nonlinear FE code predicts greater shear strains than 

those of EERA code in the E-W and N-S directions. The FE code also expresses permanent 

displacement at that range of depth as shown in Figure 4.15a-d. This is the reflection of the 

soil behaviour under such a strong motion which cannot be presented by the EERA code. 

Figure 4.14 indicates that the FE code under-predicts the PGAs of the N-S component of the 

earthquake event at relatively lower strain amplitude as opposed to achieving good 

predictions in the E-W direction at higher strain values. Hence, the under-prediction in the 

N-S direction cannot be attributed to the soil constitutive model employed in the FE code 

producing a great level of damping at the higher strain level. Further research on the 

improvement of the N-S site response predictions is given in the last section of the current 

chapter, Section 4.7.4. 
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Figure 4.14 Maximum acceleration and shear strain profiles predicted by EERA and FE 
codes and recorded PGAs at different depths during the LSST7 earthquake event in the E-
W and N-S directions. 
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Figure 4.15 Stress-strain curves obtained from the equivalent linear and nonlinear site 
response analyses at different depths during the E-W (left-side) and N-S (right-side) 
components of the LSST7 earthquake event. 
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4.7.3 Pore pressure prediction from the nonlinear site response analyses 

One of the advantages of using a fully-coupled nonlinear finite element code in the site 

response analysis is that the accumulation of the pore water pressure during the seismic 

excitation can be captured. This is not possible with the equivalent linear visco-elastic or any 

total stress nonlinear schemes. In the Lotung site, after the LSST7 earthquake event of  the 

20th of May 1986 pore water pressure transducers were installed at depths between 3 and 16 

m, where liquefaction was considered possible, to measure the excess pore water pressure 

during future seismic activities (Shen et al., 1989).  

The excess pore water pressure distribution at the end of FE analyses are shown in Figure 

4.16 for both the LSST7 components. The numerical results are compared with a set of data 

recorded during the LSST16 earthquake event. This event was characterised by similar 

values of peak ground acceleration, epicentral distance magnitude of those relative to the 

LSST7 earthquake event. The comparison shows a reasonable agreement between recorded 

and predicted excess pore pressures. 

 

Figure 4.16 Measured and predicted excess pore water pressure during the LSST7 
earthquake event in the E-W and N-S directions. 
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4.7.4  Further research on the LSST7 earthquake event 

As highlighted before, while the FE code performs well in predicting the site response of the 

strong input motion in the E-W direction, it is not able to fully capture the response in the 

N-S direction, in particular at the top 6 m. This cannot be attributed to the over-damping of 

the employed soil model, since the E-W motion induces higher shear strains than the N-S 

component and still good predictions can be achieved for the E-W event. 

In order to better analyse the problem of the under-prediction of the accelerations in the N-

S direction, it has been decided to simulate only the top 17 m of the soil deposit for a number 

of reasons: 

1. A proper geotechnical characterization of the soil deposit in terms of stiffness 

degradation and damping ratio curves is not available for the soil below 17 m. 

Hence, by modelling only the top 17 m of the soil deposit, the uncertainty in 

the soil dynamic properties below that depth is eliminated. 

2. Secondly, the change in the stiffness profile below 17 m does not significantly 

influence the response predictions at 11 m, 6 m depth and at ground surface. 

3. A record of the acceleration-time history of the LSST7 earthquake event is also 

available at 17 m depth.  

 

 

Figure 4.17 In-situ data, original (RMW) and modified (RMW_mod) stiffness profiles 
used in the shortened soil column analyses. 
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To improve the site response prediction of the strong input motion in the N-S direction 

without giving attention to the predictions in the E-W direction, the stiffness profile of the 

soil deposit has been modified, especially in the top 6 m, as shown in Figure 4.17. The reason 

to concentrate the attention on the top 6 m of the soil deposit is because around 60% increase 

in the peak ground acceleration takes place from 6 m to ground surface. It should be noted 

that the reduced G0 profile is still within the limits of the in-situ measurements, also 

presented in Figure 4.17, showing a natural variability with a standard deviation of 10 MPa 

(Andrade and Borja, 2006).  

The reduction in the stiffness profile leads to a better prediction in the N-S direction at 11 

and 6 m depth and, particularly, at ground surface as can be seen in Figure 4.18 and Figure 

4.19b, d, f. The problem of early acceleration peak time, observed in the N-S acceleration-

time history prediction by using stiffer profile, is not seen at the ground surface when the 

reduced stiffness profile is used. The FE analysis also provides good predictions at 11 and 6 

m depth when the E-W input motion is simulated with a reduced initial stiffness profile 

(Figure 4.18 and Figure 4.19c, e), while it over-predicts accelerations at ground surface 

(Figure 4.18 and Figure 4.19a). While the reduction in the stiffness profile does not seem to 

affect dramatically the site response predictions at 11 and 17 m depth in both directions, 

great spectral amplifications takes place at the top 6 m. The reason for this might be the fact 

that the soil near to the ground surface is exposed to more nonlinearity in comparison with 

the deeper layers. Hence, any change (reduction in this case) in the initial stiffness profile at 

the near surface results in considerably different predictions. 
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Figure 4.18 Comparisons of the recorded acceleration-time histories for the LSST11 
earthquake event with the predictions at three different depths based on the equivalent 
linear (EERA) and nonlinear (SWANDYNE II) numerical approaches in the E-W (left-
side) and N-S directions (right-side) by adopting the reduced stiffness profile. 

5 10 15 20
Time (s)

-0.3

-0.15

0

0.15

0.3
a 

(g
)

FA1-5
RMW

5 10 15 20
Time (s)

LSST7
E-W N-S

5 10 15 20
Time (s)

-0.3

-0.15

0

0.15

0.3

a 
(g

)

5 10 15 20
Time (s)

5 10 15 20
Time (s)

-0.3

-0.15

0

0.15

0.3

a 
(g

)

5 10 15 20
Time (s)

z= 0 m

z= 6 m

z= 11 m

(a) (b)

(c) (d)

(e) (f)



CHAPTER 4                                                 Deterministic nonlinear analyses of Lotung site              
 

109 
 

 

Figure 4.19 Comparisons of the recorded response spectra for the LSST7 earthquake event 
with the ground response spectrum predictions at three different depths based on the 
nonlinear numerical approach in the E-W (left-side) and N-S (right-side) directions using 
the reduced stiffness profile. 
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The maximum acceleration and maximum shear strain profiles in the E-W and N-S 

directions are plotted in Figure 4.20 along with the profiles obtained from the full column 

analyses. The figure clearly indicates the improvement in the PGA predictions of the N-S 

component of the strong motion and the over-prediction of the PGAs of the same input 

motion in the E-W direction, especially at ground surface. The predicted maximum shear 

strains by the shortened soil column analyses are greater than those from the full soil model 

analyses (seen in Figure 4.21) (it should be noted that the ratcheting behaviour, as clearly 

shown in Figure 4.22, is considered in computing maximum shear strains) . This can be 

attributed to the depth of the soil model where the input motion is applied. As it is observed 

from our full and shortened soil model analyses that when the soil deposit is shaken at 

relatively lower depth, it causes greater shear strains and also leads to greater spectral 

acceleration amplifications. 

Overall, the improvement in the site response prediction in the N-S direction appears to be 

possible if the stiffness profile is reduced over a shorter soil column depth. This, however, 

causes over-prediction of the site response at the ground surface in the E-W direction, but, 

still good predictions can be obtained at 6 and 11 m depth.  

Finally, it should be noted that, in addition to the initial stiffness profile, also the nonlinear 

curves may affect the site response predictions. Therefore, Monte Carlo simulations could 

be conducted to consider the influence of both soil properties variability on ground response 

predictions at Lotung, as discussed later in this dissertation. 
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Figure 4.20 Maximum acceleration and shear strain profiles predicted by the FE code 
adopting the full (RMW_main) and shortened (RMW_mod) stiffness profiles and recorded 
PGAs at different depths during the LSST7 earthquake event in the E-W and N-S 
directions.  
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Figure 4.21 Stress-strain curves obtained from the nonlinear site response analyses at 
different depths during the E-W (left-side) and N-S (right-side) components of the LSST7 
earthquake event using the full (RMW_main) and shortened (RMW_mod) stiffness 
profiles. 
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Figure 4.22 Shear strain histories predicted by the FE code in both directions during the 
LSST7 earthquake event employing the reduced stiffness profile. 
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4.8 Conclusions 

The Large-Scale Seismic Test (LSST) site in Lotung, Taiwan, is analysed by using the 

frequency domain equivalent-linear visco-elastic program EERA and the time-domain fully-

coupled finite element code SWANDYNE II where the advanced soil constitutive model 

RMW is employed to represent the soil nonlinearity. To test the full predictive capabilities 

of the two approaches, one weak (LSST11) and one strong (LSST7) input motion recorded 

at the LSST site are considered. Two horizontal components (E-W and N-S) of the 

earthquake events are separately applied at the bottom of the numerical models. The site 

response predictions are, then, compared with the array data at three different depths, 

specifically at 6, 11 m depth and at ground surface. 

The FE nonlinear approach performs well with some under-prediction, especially at ground 

surface, when the weak input motion is applied in both horizontal directions. EERA, 

conversely, results in over-predicted accelerations, while both approaches give similar 

results at the longer periods (> 0.3 s). Under the strong input motion, EERA still produces 

reasonable predictions indicating actual responses in the E-W and N-S directions. The FE 

code, in this case, performs well in predicting the recorded accelerations as it captures the 

PGAs at all depths as well as giving almost identical spectral responses to the array data 

when the E-W component of the strong motion is applied at bedrock. However, if the N-S 

component of the strong motion is simulated, the FE code under-predicts the accelerations 

at ground surface, while at 6 and 11 m depth it leads to better site response predictions.  

When the stiffness profile of the soil deposit is reduced, in particular at the top 6 m, and a 

shorter column is considered some improvement in the site response predictions is observed 

under N-S component of the strong motion. This stiffness reduction, on the other hand, 

causes over-prediction of the site response at the ground surface in the E-W direction while 

at 6 and 11 m depth the FE approach still gives good results in terms of acceleration-time 

histories and spectral acceleration responses. This shows the importance of stiffness change, 

in particular, at the near surface where the soil is expected to experience more nonlinearity 

leading to greater spectral amplifications. 

In conclusion, this research highlights the importance of using array sites for the verification 

of different numerical approaches. Particularly, the performances of equivalent linear and 

nonlinear numerical approaches in predicting seismic site responses have been evaluated and 

their limitations and benefits have been emphasized. Furthermore, the study highlights the 
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crucial influence of stiffness variability on the results of site response analyses. This leads 

to the need of further research to investigate the influence of soil property variability on site 

response predictions, which has been addressed in Chapter 6 of this thesis. 
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Chapter 5. Analysis of Input Motion Selection Strategies 

5.1 Introduction 

The alteration of the earthquake characteristics from bedrock level to the ground surface, 

due to local site conditions is of great interest to the engineering communities concerned 

with the seismic design of earth structures, buildings and infrastructure. This phenomenon 

is less pronounced in stiff soil deposits but more associated with soft soil deposits. In this 

respect, a reasonable approximation of the site response is specifically important in soft soil 

deposits. The common method of predicting local site effects is to propagate seismic waves 

in the vertical direction through the horizontally layered soil deposits by means of simple or 

sophisticated numerical methods. This enables to assess the surface acceleration-time 

histories, response spectra, amplification factors (AFs). In parallel, this will also allow to 

manipulate the soil stiffness degradation and associated hysteretic damping in response to 

the shear strains induced by a possible earthquake event (Kwok et al., 2007; Amorosi et al., 

2010).  

The site response analysis is mainly governed by the bedrock motions, the stiffness 

degradation and damping curves with shear strains and the shear wave velocity profile of 

the soil deposit. These components sustain some uncertainty attributed to: i) the ambiguity 

in the selection of a probable earthquake event with specific features from a database (i.e. 

magnitude, distance, fault mechanism, compatibility with the target response spectrum), ii) 

the possible variability in the measurement of shear wave velocity owing to the 

heterogeneous soil deposit and iii) the influence of the soil disturbance during laboratory 

test procedures to determine the soil nonlinear dynamic characteristics (Phoon and Kulhawy, 

1999). These uncertainties may ultimately cause a bias in the site responses at the surface if 

they are not properly taken into consideration (Li and Assimaki, 2010). 

Several researchers have dealt with the above uncertainties to quantify their possible effects 

on ground response predictions. For this purpose, Monte Carlo simulations have been 

conducted with linear or nonlinear soil models by varying site properties (Bazzurro and 

Cornell, 2004; Stewart and Kwok, 2008; Rathje et al., 2010). While these studies explicitly 

indicate the importance of accounting for the shear wave velocity, stiffness degradation and 

damping variability in site response analyses, they also recognise the fundamental impact of 

bedrock motion selection on the accuracy of site response results. 
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To minimize the bias in the ground response predictions and, thus, the number of simulations, 

the simulated input motions can be subjected to some modification and scaling. 

Different input motion selection and scaling methods, such as peak ground acceleration 

(PGA) scaling, spectral matching and the mean squared error (MSE) approach, have been 

proposed mainly in structural engineering literature (Shome et al., 1998; CEN, 2005; 

Hancock et al., 2006; Ancheta et al., 2013), but their application to geotechnical earthquake 

engineering problems is limited (Kottke and Rathje, 2008; Mazzoni et al., 2012; Tönük et 

al., 2014; Amirzehni et al., 2015). Specifically, no clear guidance is provided to the 

geotechnical engineers by the national or international design codes when dealing with 

advanced ground response analyses of soft deposits, which account for soil nonlinear 

properties. 

This chapter examines the impact of different earthquake selection and scaling strategies on 

the free-field ground response of an ideal soft soil deposit (classified as soil class D 

according to EC8). Five selection approaches of the input motion spectral accelerations are 

adopted in this study: 1) scaling at PGA only, 2) scaling at the natural period of the soil 

column (T1), 3) scaling in a period range of 0.2T1–2T1 according to what is proposed in EC8, 

4) scaling based on mean squared error, and 5) matching the spectral shape of the input 

response spectrum to the target demand using the spectral matching method, which alters 

the frequency content of the earthquake through a wavelet algorithm. Sets of seven bedrock 

motions are used for each selection strategy, considering two seismic intensity levels of 

0.15g and 0.35g representing weak and strong input motions, respectively. 

Equivalent linear visco-elastic simulations and advanced time domain nonlinear analyses 

are conducted to investigate the performance of different numerical approaches in the 

prediction of site response. The comparison with EC8 in terms of amplification and soil 

factors is subsequently presented to highlight the inability of the code prescription to fully 

capture site effects, which occur in soft soil deposits for low seismic intensity levels. The 

results of the advanced nonlinear simulations are then interpreted in terms of spectral 

response and Engineering Demand Parameters (EDPs) at ground surface, i.e. relative 

horizontal displacement, peak acceleration and spectral acceleration at the first natural 

period of the soil deposit (Sa(T1)). The influence of increasing the number of bedrock input 

motions from 7 to 14 for each selection strategy on the ground spectral accelerations and 

EDPs is also investigated. In addition, a statistical analysis aimed at comparing the 
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differences in the EDPs associated to each set of records is presented. Finally, the level of 

correlation between Arias intensity (Ia) and Dobry’s duration (D5-95) of the input motions 

and the EDPs is presented. 

5.2 FE model 

An ideal soft clay soil deposit with 50 m depth and 5 m width is modelled in the fully-

coupled finite element code SWANDYNE II. The soil column is discretised by 250, 1×1 m 

isoparametric quadrilateral finite elements with 8 solid nodes and 4 fluid nodes (Figure 5.1). 

This mesh generation ensures that the seismic wave transmission is represented accurately 

through the FE soil model (Bathe and Saunders, 1984). During the dynamic analyses, the 

bottom of the mesh is assumed to be rigid at the bedrock, while the nodes along the vertical 

sides are characterized by the same displacements (i.e. tied-nodes lateral boundary 

conditions). The modified input motions are directly applied to the solid nodes at the base 

of the mesh as prescribed horizontal displacement time histories. The dynamic simulations 

are carried out with a time step corresponding to that of the earthquake input signals. 
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Figure 5.1 An ideal 50 m soft clay soil model discretised with 1×1 m isoparametric 
quadrilateral finite elements with 8 solid nodes and 4 fluid nodes. 

 

 



CHAPTER 5                                                                          Influence of selection strategies              
 

120 
 

The advanced soil model RMW (Rouainia and Muir Wood, 2000) is employed to simulate 

the dynamic soil behaviour during the nonlinear site response analyses. RMW has been 

successfully employed to predict the dynamic performance of different earth structures (Elia 

and Rouainia, 2012; Elia and Rouainia, 2014) as it can capture early irreversibility, 

accumulation of pore pressure, stiffness degradation and damping ratio curves and the 

destructuration of soil under undrained conditions. In this work, the soil material parameters 

are determined by conducting a series of undrained cyclic simple shear test simulations 

under controlled strain levels in order to produce normalised shear modulus and damping 

curves representative of a soft soil deposit (Vucetic and Dobry, 1991). In the dynamic 

simulations performed with SWANDYNE II, only 2% Rayleigh damping is introduced, with 

coefficients of 𝛼𝛼𝑅𝑅 and 𝛽𝛽𝑅𝑅 being equal to 0 and 0.0075, respectively, to avoid the propagation 

of spurious high frequencies and to compensate for the model underestimation of damping 

in the small-strain range. 

The initial stiffness profile of the soil deposit is obtained using the equation proposed by 

(Viggiani and Atkinson, 1995) for the dependency of the small-strain shear modulus, G0, on 

the mean effective stress and overconsolidation ratio (as its formulation is given in Chapter 

4 Section 6). In particular, the dimensionless stiffness parameters A, m and n in the equation, 

which depend on the plasticity index, are set equal to 1050, 0.27 and 0.84, respectively. In 

the initialisation phase of the FE model, an overconsolidation ratio of 1.5 is assumed 

constant with depth. The resulting shear wave velocity profile has an average value in the 

top 30 m of the column equal to 140 m/s, thus classifying the deposit as a soil class D 

according to EC8. Accordingly, the first natural period (T1) of the deposit is equal to 1.17 s. 

It should be noted that in the EERA analyses, the same profile of small-strain stiffness 

implemented in the FE model is discretised by constant stiffness sub-strata of 1 m thickness. 

Moreover, to perform a consistent comparison between the two different numerical 

approaches, the same normalised stiffness modulus decay and damping curves obtained with 

RMW (see Figure 5.2) are used as inputs in the EERA simulations. 
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Table 5.1 RMW model parameters calibrated against the nonlinear curves given by Vucetic 
and Dobry (1991). 

 

Figure 5.2 Shear stiffness degradation and corresponding damping ratio curves based on 
plasticity index (PI) values and RMW model parameters. 

5.3 The Selection Strategies 

In this section, the adopted selection strategies to investigate their roles in prediction of less 

biased site responses are described along with the tools used. Two target response spectra 

are set according to EC8 prescription with 0.15g and 0.35g seismic intensity levels. These 

correspond to the EC8 5% damped design response spectrum given for soil class A. The 

intention in defining a low and high intensity target response spectra is to emphasise the 

effect of soil nonlinearity in the seismic wave propagation process. Two sets of seven and 

14 input motions are selected for each selection strategy. Consideration of at least seven 

input motions is to take median responses into account, which is in accordance with the EC8 

criterion. The number of input motions is increased to investigate its influence on the 

average site response spectra and EDPs.  

The selection strategies studied in this research are; 

• PGA scaling 

• Sa(T1) scaling 

• 0.2T1-2T1 scaling 

• Spectral matching 
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• Mean squared error (MSE) scaling. 

The selection of input motions according to the first three of above selection strategies are 

conducted by using the computer program REXEL (Iervolino et al., 2010). The 

SEISMOMATCH (Seismosoft, 2016) program applies spectral matching using the wavelets 

algorithm suggested by Abrahamson (1992) and Hancock et al. (2006) while MSE scaling 

is available online on the Peer Ground Motion Database (PGMD) website (Ancheta et al., 

2014). SEISMOMATCH requires inputting the accelerograms to apply full matching 

procedure with the target response spectrum whereas the REXEL and PGMD programs 

automatically select and scale, linearly, the input motions. 

PGA scaling focuses only on the compatibility of the input motions, on an average, with the 

target response spectrum at zero period. Because of this, reasonable compatibility of the 

median response spectrum with the target response spectrum over period ranges cannot be 

expected, as seen in Figure 5.3-4a. Sa(T1) scaling seeks for an average compatibility at T1 

of the target response spectrum. Nevertheless, the median response spectra still match well 

with the targets over all interested period range in both seismic intensity levels (Figure 5.3-

4b). 0.2T1-2T1 scaling presented in Figure 5.3-4c is proposed by EC8, where; 1) the average 

compatibility with the target response spectrum is achieved within 0.2T1-2T1 period range 

with lower tolerance of 10%, and 2) the average PGA is not less than that of the target 

response spectrum (more details about the selection criteria included in EC8 can be found 

in Chapter 3 Section 3.2.5). The dotted lines in the figures are the representation of the target 

response spectrum at 10% lower bound conditioned by EC8 and 30% upper bound suggested 

by Iervolino et al. (2010).  

MSE scaling is based on total difference between the spectral acceleration of the events and 

the target response spectrum in the log space, over the entire engineering period range 

(Equation 5.1). It gives input motions whose average response spectrum is in good 

agreement with the target response spectrum as shown in Figure 5.3-4d. Figures 5.3-4e 

present the full matching of the input motions with the target response spectra in both 

seismic intensity levels. The input motions selected according to 0.2T1-2T1 scaling are 

processed for this selection strategy as SEISMOMATCH does not automatically apply input 

selections and modifications. 

MSE =
∑ 𝑤𝑤(𝑇𝑇𝑖𝑖){𝑙𝑙𝑙𝑙[𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑇𝑇𝑖𝑖]− 𝑙𝑙𝑙𝑙[𝑓𝑓 × 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇𝑖𝑖]}2𝑖𝑖

∑ 𝑤𝑤(𝑇𝑇𝑖𝑖)𝑖𝑖
  (5.1) 

mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CSeismoSoft%5CSeismoMatch%5C2016%5CSeismoMatch.chm::/About%20SeismoMatch/Bibliography.htm
mk:@MSITStore:C:%5CProgram%20Files%20(x86)%5CSeismoSoft%5CSeismoMatch%5C2016%5CSeismoMatch.chm::/About%20SeismoMatch/Bibliography.htm
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, in which parameter f is a linear scale factor applied to match the target response spectrum 

over an entire period range. 𝑤𝑤(𝑇𝑇𝑖𝑖) is a weight function that allows users to assign a more 

precise match of the response spectrum to the target for specific period range. 

 

Figure 5.3 Modified input motions to the 5% damped EC8 design response spectrum with 
their median response spectra for a) PGA scaling, b) Sa(T1) scaling, c) 0.2T1-2T1 scaling, 
d) MSE scaling and d) spectral matching  at 0.15g seismic intensity level along with lower 
(10%) and upper (30%) limits. 
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Figure 5.4 Modified input motions to the 5% damped EC8 design response spectrum with 
their median response spectra for a) PGA scaling, b) Sa(T1) scaling, c) 0.2T1-2T1 scaling, 
d) MSE scaling and d) spectral matching at 0.35g seismic intensity level along with lower 
(10%) and upper (30%) limits. 
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 Waveform 
ID Eq. ID Eq. Name Date M Fault 

Mechanism R 

PG
A

 scaling 

55 34 Friuli 6/5/1976 6.5 Thrust 23 

59 35 Friuli 
(aftershock) 7/5/1976 5.2 Thrust 27 

95 52 Friuli 
(aftershock) 

17/6/197
6 5.2 Oblique 26 

128 63 Friuli 
(aftershock) 

15/9/197
6 6 Thrust 28 

149 65 Friuli 
(aftershock) 

15/9/197
6 6 Thrust 12 

169 80 Calabria 11/3/197
8 5.2 Normal 10 

182 87 Tabas 16/9/197
8 7.3 Oblique 12 

Sa(T
1 ) scaling 

296 146 Campano 
Lucano 

23/11/19
80 6.9 Normal 80 

5821 1888 Strofades 
(aftershock) 

18/11/19
97 6 Strike slip 93 

4675 1635 South 
Iceland 

17/6/200
0 6.5 Strike slip 13 

410 189 Golbasi 5/5/1986 6 Oblique 29 
46 34 Fruili 6/5/1976 6.5 Thrust 146 

5807 1885 Kalamata 13/10/19
97 6.4 Thrust 93 

6335 2142 
South 

Iceland 
(aftershock) 

21/6/200
0 6.4 Strike slip 15 

0.2T
1 -2T

1  scaling and Spectral 
m

atching 

292 146 Campano 
Lucano 

23/11/19
80 6.9 Normal 25 

5814 1885 Kalamata 13/10/19
97 6.4 Thrust 61 

1243 473 Izmit 
(aftershock) 

13/9/199
9 5.8 Oblique 15 

342 307 Cazulas 24/6/198
4 4.9 Oblique 24 

286 146 Campano 
Lucano 

23/11/19
80 6.9 Normal 78 

1902 659 Anchialos 30/4/198
5 5.6 Normal 55 

1255 472 Izmit 17/8/199
9 7.6 Strike slip 78 

 Record sequence no.      
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M
SE scaling 

 

765 Loma 
Prieta 

17/10/1
989 6.93 Reverse 

oblique 9.64 

788 Loma 
Prieta 

17/10/1
989 6.93 Reverse 

oblique 73 

1011 Northridge-
01 

17/1/19
94 6.69 Reverse 20.29 

1165 Kocaeli 17/8/19
99 7.51 Strike slip 7.21 

1245 Chi-Chi 21/9/19
99 7.62 Reverse 

oblique 37.72 

4083 Parkfield-
02 

28/9/20
04 6 Strike slip 5.29 

5618 Iwate 14/6/20
08 6.9 Reverse 16.27 

Table 5.2 Basic properties of the input motions with 0.15g seismic intensity levels selected 
based on the selection strategies (M is for magnitude and R is for epicentral distance). 

 

 Waveform 
ID Eq. ID Eq. name Date M Fault 

Mechanism R 

PG
A

 scaling 

55 34 Friuli 6/5/1976 6.5 Thrust 23 
59 35 Friuli 

(aftershock) 7/5/1976 5.2 Thrust 27 
128 63 Friuli 

(aftershock) 15/9/1976 6 Thrust 28 
149 65 Friuli 

(aftershock) 15/9/1976 6 Thrust 12 
169 80 Calabria 11/3/1978 5.2 Normal 10 
182 87 Tabas 16/9/1978 7.3 Oblique 12 
193 91 Montenegro 9/4/1979 5.4 Thrust 15 

Sa(T
1 ) scaling 

296 146 Campano 
Lucano 

23/11/198
0 6.9 Normal 80 

5821 1888 Strofades 
(aftershock) 

18/11/199
7 6 Strike slip 93 

4675 1635 South 
Iceland 17/6/2000 6.5 Strike slip 13 

410 189 Golbasi 5/5/1986 6 Oblique 29 
46 34 Fruili 6/5/1976 6.5 Thrust 146 

5807 1885 Kalamata 13/10/199
7 6.4 Thrust 93 

6335 2142 South 
Iceland 
(aftershock) 

21/6/2000 6.4 Strike slip 15 
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0.2T
1 -2T

1  scaling and Spectral 
m

atching 

292 146 Campano 
Lucano 

23/11/198
0 6.9 Normal 25 

5814 1885 Kalamata 13/10/199
7 6.4 Thrust 61 

1243 473 Izmit 
(aftershock) 13/9/1999 5.8 Oblique 15 

286 146 Campano 
Lucano 

23/11/198
0 6.9 Normal 78 

182 87 Tabas 16/9/1978 7.3 Oblique 12 
198 93 Montenegro 15/4/1979 6.9 Thrust 21 
198 93 Montenegro 15/4/1979 6.9 Thrust 21 

 Record sequence no.      

M
SE scaling 

77 San 
Fernando 9/2/1971 6.61 Reverse 1.81 

680 Whittier 
Narrows-01 1/10/1987 5.99 Reverse 

oblique 
18.1

2 
765 Loma Prieta 17/10/198

9 6.93 Reverse 
oblique 9.64 

1011 Northridge-
01 17/1/1994 6.69 Reverse 20.2

9 
1108 Kobe 17/1/1995 6.9 Strike slip 0.92 
1165 Kocaeli 17/8/1999 7.51 Strike slip 7.21 
1257 

Chi-Chi 21/9/1999 7.62 Reverse 
oblique 

37.7
2 

Table 5.3 Basic properties of the input motions with 0.35g seismic intensity levels selected 
based on the selection strategies. 

5.4 Results and Discussions 

The site responses from equivalent linear and nonlinear analyses are presented in this section 

in terms of median response spectra and EDPs at the ground surface. The performances of 

the two numerical approaches are assessed based on response spectra and maximum 

acceleration and maximum strain profiles. The validity of the EC8 design response spectrum 

for a soft soil is then discussed with reference to the response predictions. Moreover, the 

median EDP responses from nonlinear FE analyses are analysed for all the selection 

strategies. Furthermore, the influence of the number of the input motions on the site response 

predictions is evaluated. Lastly, a statistical test (i.e. t-test) is conducted to check whether 

the median EDP responses from the selection strategies can be regarded as equal. 
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5.4.1 Site response spectra from selection strategies 

The median site response spectra obtained from seven site response analyses are given in 

Figure 5.5 at two seismic intensity levels, 0.15g and 0.35g.  The responses from EERA 

analyses are represented in Figure 5.5a-b while those from FE analyses are shown in Figure 

5.5c-d. In all cases, the first (T1=1.17 s) and second (T2=0.39 s) natural modes of the soil 

deposit contribute to the site response as the spectral accelerations presented in Figure 5.5 

at around the associated modes of periods show discretely greater amplifications.  

The spectral accelerations from PGA scaling are totally different from the accelerations 

based on other selection strategies in both numerical analyses and seismic intensity levels. 

PGA scaling also results in responses positioned well below the EC8 design response 

spectrum. This can be attributed to the compatibility criteria of PGA scaling with the target, 

as it only modifies the PGA of input motions applied at the bottom of the soil deposit. Hence, 

the selected and modified input motions are not in good agreement with the target response 

spectrum at periods higher than 0.1 s, Figure 5.3a and Figure 5.4a. Ultimately, the spectral 

responses obtained at the surface are separate from the design response spectrum and from 

the other selection strategies.  The site responses under input motions modified based on 

MSE scaling also divert from the other three selection strategies at low and high seismic 

intensities when EERA code is adopted.  

Focusing on the results of nonlinear FE analyses, MSE scaling leads to similar spectral 

responses with the others at 0.15g seismic intensity level. Although, it also shows similarity 

at the higher seismic intensity level, it does not cause similar amplification at around second 

natural period of the soil deposit. This might be owing to the sharp spectral change in each 

individual response spectrum considered by PGMD program for MSE scaling and great 

dispersion in the spectral peaks over the engineering period range. This issue is not 

investigated in this research but the reader can refer to the study of Mazzoni et al. (2012) for 

more information.  The spectral responses from other three selection strategies, namely 

Sa(T1), 0.2T1-2T1 scaling and spectral matching strategies are reasonably similar for both 

seismic intensity levels and numerical approaches. Although the results of the selection 

strategies based on equivalent linear and nonlinear approaches are interpreted and analysed 

within the same context in here, the difference in the spectral responses due to the numerical 

approaches is discussed in the following section at both seismic intensity levels. 
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Figure 5.5 Median site response spectra predictions obtained for each selection strategy at 
the surface by EERA (a, b) and FE codes (c, d) at 0.15g (left) and 0.35g (right) seismic 
intensity levels. 

5.4.2 Performance evaluation of the numerical approaches 

As the equivalent linear approach implemented in EERA uses the stiffness degradation and 

associated damping curves employed in the nonlinear FE analyses, their performances can 

rationally be compared. The equivalent linear and nonlinear analyses predict indiscrete 

spectral responses at around T1. At around second natural period of the soil deposit, the 

EERA code has a wider period band of spectral peaks than the nonlinear predictions for the 

three selection strategies, namely Sa(T1) scaling, 0.2T1-2T1 scaling and spectral matching.  

At 0.15g seismic intensity level, the spectral accelerations from the EERA analyses show 

greater amplification than those from the FE analyses at all engineering period of interest.  

In contrast, at the higher seismic intensity level, the predictions of nonlinear site response 
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analyses exhibit clear de-amplification at high frequencies. This is not clearly observed 

when the EERA code is used. However, the EERA code spectral predictions demonstrate 

more period elongation in both seismic intensity levels implying implicitly greater 

nonlinearity even though both numerical approaches cause similar shear strain at the surface 

(can be seen in Figure 5.5a-b and Figure 5.6a-b). The reason for the greater period elongation 

observed in the equivalent linear site response analyses may be attributed to the 

consideration of constant dynamic shear modulus (G) and damping (D) values for each soil 

layer correspondent of the induced shear strain levels during the propagation of input 

motions. Hence, more stiffness degradation and more damping are taken into consideration 

by the EERA code, which ultimately leads to large period elongation.  

In contrast, the FE analysis represents the nonlinear soil behaviour by predicting continuous 

change of stiffness and damping properties throughout the motion. These features of the 

advanced nonlinear approach result in dissipating the earthquake energy during the seismic 

oscillation and capturing the stiffness degradation and damping levels with a more realistic 

way at the current stress-strain condition. Ultimately, the period elongation becomes less 

pronounced in the nonlinear FE analyses and the predicted spectral responses are expected 

to be a more reasonable approximation of the actual soil behaviour. Thus, from this point 

onwards, the study uses the results of the FE analyses in the evaluation of the EC8 design 

response spectrum and further examination of the selection strategies. 
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Figure 5.6 Median maximum γmax shear strain profiles of EERA (a, b) and FE (c, d) site 
response analyses obtained for each selection strategy at 0.15g and 0.35g seismic intensity 
levels. 
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While the benefit of using FE analysis in site response prediction is appreciated, the 

computed maximum shear strain values at the ground surface for all the selection strategies 

(except from the strain values for PGA scaling), in particular at the 0.35g seismic intensity 

level shown in Figure 5.6d, seem to be in the range where the advanced soil model (RMW) 

produces a great level of damping as can be depicted from Figure 5.2. The stiffness 

degradation and damping values against different shear strain levels up to 1% presented in 

Figure 5.2 are obtained by conducting strain controlled cyclic simple shear tests where the 

hysteretic loops are perfectly centered around the origin of the stress-strain axes. This means 

that the permanent strain accumulation is not accounted for in the stiffness and damping 

calculations at the end of the dynamic cycles and as a result, leads to the computation of 

larger damping value. On the contrary, the soil is expected to express permanent deformation 

under especially moderate and strong earthquake events. Hence, consideration of the 

absolute maximum strain amplitude in defining the maximum damping level of the soil 

during seismic excitation may mislead one in the performance evaluation of the soil model. 

To make this standpoint more obvious, the shear strain-time histories and shear stress-strain 

curves of the input motions are closely investigated through the soil profile for each selection 

strategy. The method used in the determination of the strain level leading to maximum 

hysteretic loop is not to take the maximum absolute strain value but rather to compute the 

maximum difference between two adjacent peaks and half of this value so that the hysteretic 

loop is centred at a point other than the origin of the strain axis. By doing so, the centring of 

the hysteretic loops at the origin of the strain axis is eliminated and, hence, the ratcheting 

soil behaviour is taken into consideration. In this way, the maximum hysteretic loop may 

better be approximated and matched well with the corresponding induced shear strains.  
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Figure 5.7 Replotting the shear strain profiles for each selection strategy based on 
maximum difference between two adjacent strain peaks in the shear strain-time histories 
(i.e. consideration of ratcheting behaviour). 

By using this method, the median shear strain profiles for each selection strategy at lower 

and higher seismic intensity levels are recalculated and plotted in Figure 5.7a-b, respectively. 

At the lower seismic intensity, the recalculated strain profiles do not diverge considerably 

from the previous plots given in Figure 5.6c as opposed to the obvious decline, particularly 

at the ground surface, in the maximum strain levels (Figure 5.6d against Figure 5.7b) at the 

higher seismic intensity level. This is due to the fact that the higher the seismic intensity 

level of the input motion, the greater nonlinear behaviour and, thus greater permanent shear 

strain is expected to be accumulated. On account of that, the difference between the two 

approaches in the calculation of the maximum shear strain producing maximum hysteretic 

loop becomes even more obvious when the seismic intensity level of the input motion is 

relatively greater. 

The shear strain-time histories and shear stress-strain curves of two individual earthquake 

events with lower and higher seismic intensity levels are represented in Figure 5.8 and 

Figure 5.9, respectively. The backbone curves for the low intense input motions exhibit less 

nonlinear behaviour as it can also be clearly seen in their shear strain-time histories with a 
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comparably small amount of permanent strains. However, the ratcheting soil behaviour 

under the 0.35g seismic input motions is more than evident from the shear strain histories as 

well as from the backbone curves. Hence, the method used in the calculation of the 

maximum strain level giving the highest damping seems to be more accurate approximation 

than considering the absolute maximum strain value. 

 

Figure 5.8 Shear strain-time histories (a-b) and backbone curves (c-d) for Anchialos 
(30/4/1985) and Izmit (17/8/1999) earthquake events from nonlinear site response analyses 
at 0.15g seismic intensity level. 
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Figure 5.9 Shear strain-time histories (a-b) and backbone curves (c-d) for Montenegro 
(15/4/1979) and Campano Lucano (23/11/1980) earthquake events from nonlinear site 
response analyses at 0.35g seismic intensity level. 

To show the limitation of the equivalent linear method in the site response prediction, the 

shear strain-time histories and shear stress-strain curves of the same earthquake events are 

plotted in Figure 5.9 and Figure 5.10. The permanent shear strain is not well captured as it 

always converges to zero at the end of the analyses. Although the method produces viscous 

damping at both seismic intensities, it does not represent the ratcheting soil behaviour, 

especially at the higher seismic intensity. While the EERA is still acceptable when the low 

intense input motion is simulated, it is better to adopt, as it is always suggested, a nonlinear 

effective stress approach to simulate high intense input motions. 
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Figure 5.10 Shear strain-time histories (a, b) and backbone curves (c, d) for two individual 
earthquake events from equivalent linear site response analyses at 0.15g seismic intensity 
level. 
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Figure 5.11 Shear strain-time histories (a, b) and backbone curves (c, d) for two individual 
earthquake events from equivalent linear site response analyses at 0.35g seismic intensity 
level. 
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that with the increase in the intensity level of the input motion, EC8 design response 
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EC8 design response spectrum for soil class D also tends to be more conservative at higher 

seismic intensity levels, based on the predicted response spectra of the selection strategies. 

This trend is also demonstrated in Figure 5.12 with respect to the amplification factors (AF) 

in which higher amplification is obtained by analysing the input motions with 0.15g seismic 

intensity levels in comparison with those from 0.35g seismic intensity levels. It should be 

noted that AF is the ratio at the same ordinates between spectral accelerations at the ground 

surface and those at the bedrock level. 

The selection strategies give similar amplification over the engineering period range at the 

higher intensity level while only the amplification factors from PGA and MSE scalings 

differ from the other three selection strategies. The reason of attaining relatively less 

amplification with MSE scaling strategy is due to considerable dispersion between spectral 

peaks as expressed in Section 5. The case with PGA scaling, however, is that the selected 

input motions based on this strategy include energy concentrated more in the shorter periods 

(between 0 and 0.5 seconds, as seen in Figure 5.2 and Figure 5.3). When they are propagated 

through the layers of a soft clay deposit, the earthquake energy shifts to the longer periods 

with some amplification. On account of that, the ratio between the spectral values at a single 

period above 0.5 s becomes far greater than those from the other selection strategies. 

Importantly, this diversion of spectral amplification of PGA scaling from those of the other 

selection strategies is not taken place at the lower seismic intensity levels attributing, 

probably, to the less nonlinearity and, thus no energy shift. 



CHAPTER 5                                                                          Influence of selection strategies              
 

139 
 

 

Figure 5.12 Amplification factors obtained from each selection strategy at 0.15g and 0.35g 
seismic intensity levels. 

Maximum amplification factors in Figure 5.12 can be used to identify the soil factor (S) for 

each selection strategy. However, these values cannot truly describe the soil factor since the 

spectral accelerations do not only exhibit amplification from bedrock motion to the motion 

of softer soils but also show alteration in the period ordinates of the plateau, (i.e. the motion 

at the softer soil has wider plateau over longer periods when the bedrock motion has 

narrower plateau over shorter periods) (Rey et al., 2002). In order to consider this change in 

the S calculation, spectral shape ratio (SR) is determined. SR is the ratio of the areas under 

the response spectrum normalised with the distance (R) (which is the distance between 

station and fault point, otherwise it is epicentral distance) between 0.05 s to 2.5 s at the 

ground surface and at the bedrock level, seen in Equation 5.3. This formulation of SR is 

originally given by Housner (1952) for spectral velocities. Soil factor is computed by 

dividing the amplification factor to the SR value, shown in Equation 5.4 (Pitilakis et al., 

2012). 
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𝐴𝐴𝐴𝐴 =
𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 

 
 

(5.2) 

 

𝑆𝑆𝑆𝑆 =
∫ 𝑅𝑅. 𝑆𝑆𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2.5
0.05

∫ 𝑅𝑅. 𝑆𝑆𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2.5
0.05

 

 
 

(5.3) 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑆𝑆) =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝐴𝐴𝐴𝐴)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑆𝑆𝑆𝑆)

  
(5.4) 

 

Table 5.5 demonstrates the calculated SR and S values for each selection strategy at 0.15g 

and 0.35g seismic intensity levels with the EC8 recommendation. Although, two different 

seismic intensities are considered for the input motions of the selection strategies, the type 

of the target response spectra and the soil type are the same; Type 1 and soil class D, 

respectively. Hence, it is anticipated to obtain roughly same values of S factors in both 

seismicity levels at least within each selection strategy. This consistency is achieved when 

0.2T1-2T1 scaling and spectral matching strategies are applied. Additionally, their S values 

are similar comparing with those obtained from the other selection strategies. This similarity 

is also retained when different levels of seismic intensities are taken into consideration with 

0.2T1-2T1 scaling and spectral matching strategies as shown in Table 5.5 giving S values 

around 2.2 and 2.1, respectively. Nonetheless, neither of the S values from the selection 

strategies acknowledges the value recommended by EC8 for a soft class D soil confirming 

the study of Pitilakis et al. (2012) who found S value greater than EC8 suggested.  

 

Selection strategy Spectral shape ratio (SR) Soil factor (S) 
0.15g 0.35g 0.15g 0.35g 

PGA scaling 1.9 1.6 2.7 3.6 
Sa(T1) scaling 2.20 2.0 2.1 1.7 

0.2T1-2T1 scaling 2.1 1.7 2.4* 2.2* 

MSE scaling 2.2 1.5 2.4 1.9 
Spectral matching 2.3 1.8 2.1* 2.1* 

EC8 suggestion 2.05 (calculated) 1.35 

Table 5.4 SR and S values for each selection strategy along with EC8 recommendation. 
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Seismic 
intensity 

SR S 
0.2T1-2T1 

scaling 
Spectral 
matching 

0.2T1-2T1 
scaling 

Spectral 
matching 

0.15g 2.1 2.3 2.4 2.1 
0.2g 2.1 2.1 2.3 2.1 
0.25g 1.9 1.9 2.2 2.1 
0.3g 1.9 1.9 2.4 2.1 
0.35g 1.7 1.8 2.2 2.1 

Table 5.5 SF and S values at different seismic intensity levels based on 0.2T1-2T1 and 
spectral matching strategies. 

Figure 5.13 indicates the spectral responses of the 50 m soft soil deposit under input motions 

with different seismic intensity levels. Input motions are modified according to 0.2T1-2T1 

scaling and spectral matching strategies. It is clear that the EC8 design response spectrum 

may not be able to capture the spectral responses at around T1 at all seismic intensity levels. 

This is, in particular, true for 0.15g and 0.2g seismic intensity levels. The spectral peaks at 

around T2 are also not represented by the code design spectrum at these two seismic 

intensities. However, at the higher seismic intensity levels (rather than these two) the 

spectral peaks are well captured by the design response spectrum. 
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Figure 5.13 Representativeness of EC8 Type 1 design response spectrum for a soil class D 
at different seismic intensity levels. 

In addition to the testing of the soil factor given by EC8 for class D soil deposit at two 

different Type 1 seismic intensity levels, soil deposits with different depths are also 

simulated to further examine the design response spectrum. As spectral matching modifies 

the frequency content of the input motions, only 0.2T1-2T1 scaling is utilised. From the 

interpretations noted above in this section, this selection strategy is the best alternative to 

spectral matching amongst the remaining earthquake selection strategies. 
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25 m, 30 m, 40 m, 50 m, 60 m, 80 m and 100 m soil deposits are simulated using 0.15g and 

0.35g input motions, selected according to 0.2T1-2T1 scaling. At the lower intensity level, 

the surface spectral responses from the nonlinear analyses of 25 m and 30 m soil deposits 

show amplifications over the plateau of design response spectrum. As highlighted before, 

even though the natural periods of these two soil deposits lie below the plateau, the design 

response spectrum does not capture the spectral peaks. When the soil depth is increased, the 

natural period becomes greater. This implies that the spectral peak may no longer be 

observed at the plateau of the design response spectrum, where the maximum spectral 

acceleration is considered. This can be seen in Figure 5.14 for soil deposits with 40 m or 

more depths that the spectral peaks at the first two natural periods cannot be represented for 

the low intense input motions. 

The spectral predictions from the nonlinear analyses of soil deposits at the higher seismic 

intensity level are given in Figure 5.15. The EC8 design response spectrum seems to be a 

good proxy for the 0.35g input motions when 25 m, 30 m and 40 m soil deposits are 

simulated. If the input motions propagated in 50 m and above soil deposits, the EC8 design 

response spectrum is not able to cover the spectral peaks at around T1. However, the peaks 

at the second natural periods are well captured as the earthquake energy is dissipated at high 

frequencies. In the meantime, spectral values at the longer periods are exposed to greater 

amplifications due to the characteristics of deep soil deposits.  
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Figure 5.14 Median spectral response predictions from the nonlinear analyses of depth 
varied soil deposits against EC8 design response spectrum for a soil class D at 0.15g 
seismic intensity level. 
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Figure 5.15 Median spectral response predictions from the nonlinear analyses of depth 
varied soil deposits against EC8 design response spectrum for a soil class D at 0.35g 
seismic intensity level. 
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5.4.4 EDPs at ground surface 

The earthquake selection strategies are also analysed with respect to the EDPs (relative 

displacement, PGA and Sa(T1)) at the ground surface at both seismic intensity levels. 

Relative displacement, PGA and Sa(T1) responses are presented in Figure 5.16a-b, c-d and 

e-f, at 0.15g and 0.35g seismic intensities, respectively. The blue circles in Figure 5.16 

represent the responses from individual input motions, red circles show the mean value, 

upper and lower dotted lines exhibit mean plus one and mean minus one standard deviation 

within each selection strategy. Discussing the selection strategies with respect to EDPs 

enables to show the dispersions introduced by each strategy. This contributes to, in addition 

to the previous evaluations (e.g. in terms of median spectral responses and soil factors), the 

determination of the best selection strategy. 

The nonlinear site response analyses under input motions selected based on PGA scaling 

produce EDPs considerably less than those from remaining selection strategies. However, 

the scaling strategy gives median PGA, one of the three EDPs, relatively similar to those 

predicted by the remaining selection strategies (Figure 5.16), especially at the higher seismic 

intensity level. This is due to the fact that PGA scaling focuses on the compatibility with the 

target response spectrum at only zero period, where the other selection strategies have 

similar PGA values, on an average basis. 

The site response analyses obtained by using the remaining selection strategies give similar 

mean EDP responses at both seismic intensity levels. But, the EDPs represent 

distinguishably higher dispersion within a set of modified input motions according to MSE 

scaling as can be shown in Figure 5.16. This is more pronounced at the higher seismic 

intensity due to the soil nonlinearity effect causing more uncertainty into the site response 

prediction. The cause of this discrete level of dispersion, as expressed earlier in Section 5.4.1, 

can be attributed to the great scatter in the spectral peaks of the bedrock motions applied at 

the bottom of the soil deposit.  

Noticeably, the EDPs associated with spectral matching are the least scattered responses at 

both seismic intensity levels. This is owing to the fact that it includes bedrock motions which 

are fully matched with the target response spectrum producing relatively more stable 

responses at the ground surface. Interestingly, Sa(T1) scaling introduces similar (or even less) 

variability in the EDP responses than that caused by 0.2T1-2T1 scaling. This is more obvious 

in the responses of relative displacement and Sa(T1) at both seismic intensity levels. In this 
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respect, Sa(T1) scaling seems to be as much convincing candidate in selection and 

modification of input motions as 0.2T1-2T1 scaling in the site response analyses while the 

first preference can be spectral matching even though the alteration of the frequency content 

of the input motions is still questionable. The results presented in this study are consistent 

with the findings of Shome et al. (1998) and Iervolino and Cornell (2005), who investigated 

the variability of the EDP response during structural dynamic analyses. It is also known (e.g. 

Seifried and Baker (2016)) that the spectral matching procedure reduces the variance of the 

structural response due to variability of the earthquake records, thus providing a platform to 

estimate the mean response with fewer numbers of analyses. Nevertheless, the modification 

of the frequency content of the input motions through the spectral matching method does 

not produce ground motions representative of actual earthquake records. 
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Figure 5.16 EDPs of the earthquake selection strategies at 0.15g (left) and 0.35g (right) 
seismic intensity levels obtained by using seven input motions, including mean and mean 
plus/minus one standard deviation. 
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analyses for comparison purposes. The assumption behind the consideration of seven input 

motions is that a stable mean response can be achieved and more than seven dynamic 

analyses may lead to an approximately identical mean response. In order to test this 

assumption in the site response analyses, 14 input motions modified according to each 

selection strategy are simulated. 

As can be seen in Figure 5.17 and Figure 5.18, increasing the number of input motions to 14 

does not provide considerably different spectral response predictions at the ground surface 

for all the selection strategies in both seismic intensity levels. 14 number of analyses gives 

similar response spectra, especially for 0.2T1-2T1 scaling, MSE scaling and spectral 

matching strategies. The similarity becomes more obvious for these selection strategies at 

the higher seismic intensity level with relatively well-matched spectral peaks. However, it 

is less likely to catch same similarity by adopting PGA scaling and Sa(T1) scaling strategies 

since the average compatibility with the target response spectrum is only achieved at a single 

period. Hence, there is no control mechanism that will lead to selection and modification of 

the input motions with similar spectral values at the other periods. In contrast, the other three 

selection strategies seek compatibility with the target response spectrum at a certain or entire 

period range, which, ultimately leads to similar responses with consideration of seven and 

14 number of input motions. 
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Figure 5.17 Effect of increasing the number of bedrock motions on the ground surface 
response spectra with 0.15g seismic intensity level. 
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Figure 5.18 Effect of increasing the number of bedrock motions with 0.35g seismic 
intensity level on the ground surface response spectra with 0.35g seismic intensity level. 

In terms of EDPs, Figure 5.19 represents the individual responses of 14 input motions for 

each selection strategy along with mean and mean plus/minus one standard deviation. 

Furthermore, Figure 5.20 is plotted to make the changes in standard deviations more 

apparent. It indicates the level of dispersion between the standard deviation of EDPs from 
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∆𝜎𝜎(%) =
𝜎𝜎7 − 𝜎𝜎14

𝜎𝜎7
× 100 

The figures at first, second and third rows of Figure 5.20 show the results for relative 

displacement, PGA and Sa(T1), respectively. Also, the figures at first and second columns 

are indications of results for 0.15g and 0.35g seismic intensities. The plots below the zero 

axis points out that the standard deviation of seven input motions is less than that of 14 input 

motions (Case 1). When the plots are above the zero axis it is otherwise (Case 2). 

For the results in terms of relative displacement, only Sa(T1) scaling and MSE scaling leads 

to the Case 1 at 0.15g seismic intensity. In addition, PGA scaling, Sa(T1) scaling and spectral 

matching suits to that case at 0.35g seismic intensity. For the two remaining EDPs, MSE 

scaling always cause the Case 2 in both seismic intensities and it is followed by PGA scaling 

and 0.2T1-2T1 scaling for Sa(T1) only at 0.15g seismic intensity. From these observations, it 

can be interpreted that increasing the number of input motions to 14 can reduce the standard 

deviation when MSE scaling is applied. Otherwise, this cannot be valid for the remaining 

selection strategies, especially when PGA and Sa(T1) is considered as EDPs.   
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Figure 5.19 EDPs of the earthquake selection strategies at 0.15g (left) and 0.35g (right) 
seismic intensity levels obtained by using 14 input motions, including mean and mean 
plus/minus one standard deviation. 
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Figure 5.20 Standard deviations (σ) of seven and 14 response analyses conducted by 
applying different selection strategies. 

Overall, seven input motions can be adequate to get stable site response spectra at the ground 

surface, when 0.2T1-2T1 scaling, MSE scaling and spectral matching strategies are applied. 

For the other selection strategies, in particular, PGA and Sa(T1) scaling strategies, it might 

not be possible to obtain similar response spectra due to spectral compatibility conditions. 

It also seems that, based on EDPs, there is no need of increasing the number of input motions 

more than seven, when spectral matching, 0.2T1-2T1 scaling or Sa(T1) scaling strategies are 

considered, since this does not clearly reduce the variability in the responses at the ground 

surface. 
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5.5 Hypothesis Test 

In order to assess site response predictions according to the earthquake selection strategies 

in terms of the extent of the median EDP responses can be seen as equal, hypothesis tests 

are conducted. The median EDPs are checked with Shapiro and Wilk (1965) test for log-

normal distributions and confirmed that it cannot be rejected at 95% significance level. 

A two-tail Aspin-Welch (Welch, 1938)  test is utilised to check the null hypothesis that the 

median EDP of one selection strategy is equal to that of the any other one at the same seismic 

intensity level, an alternative hypothesis is they are not equal. The test is preferred to the 

Standard t-test since the variances in the populations are assumed not equal. The p-value is 

computed by using the below Equation 5.4, in which 𝑦𝑦1 and 𝑦𝑦2 are the sample means, 𝑠𝑠1 and 

𝑠𝑠2 are the sample standard deviations and 𝑛𝑛1 and 𝑛𝑛2  are the sample sizes. With the null 

hypothesis, the n-1 degrees of freedom with t-distribution is considered in the test. 

𝑡𝑡 =
𝑦𝑦1 − 𝑦𝑦2

�𝑠𝑠1𝑛𝑛1
+ 𝑠𝑠2
𝑛𝑛2

 
 (5.4) 

Table 5.6 and Table 5.7 represent the computed p–values for pairs of selection strategies. 

Since 95% significance level is considered, the p-values less than 0.05 in the tables reject 

the null hypothesis and those higher than that do not reject it. 
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1, 2, 3, 4 and 5 represent sets of input motions from PGA scaling, Sa(T1) scaling, 0.2T1-2T1 scaling, MSE 
scaling and spectral matching, respectively. 
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Table 5.6 Aspin-Welch test results for the EDPs of the earthquake selection strategies, 
each having seven rock input motions, at two seismic intensity levels, the p-values lower 
than 0.05 is in bold. 
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1, 2, 3, 4 and 5 represent sets of input motions from PGA scaling, Sa(T1) scaling, 0.2T1-2T1 scaling, MSE 
scaling and spectral matching, respectively. 
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Table 5.7 Aspin-Welch test results for the EDPs of the earthquake selection strategies, 
each having 14 rock input motions, at two seismic intensity levels, the p-values lower than 
0.05 is in bold. 
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As it is clearly shown in Table 5.6, the involvement of PGA scaling in a pair (seen in the 

first rows) causes rejection of the null hypothesis in all three EDP responses, giving p-values, 

mostly, less than 0.05. On the contrary, the median responses of the pairs from the other 

selection strategies do not reject the null hypothesis in any combination, indicating p-values 

distinctively higher than 0.05 in both seismic intensity levels. 

The t-test is also conducted for the site responses from 14 input motions of earthquake 

selection strategies, keeping the null and alternative hypotheses same. The test results imply 

the same interpretations depicted above that the median responses from PGA scaling are not 

accepted as equal to those of the other selection strategies whose pairs do not refuse the null 

hypothesis, as shown in Table 5.7. However, one pair (Spectral Matching – MSE scaling) 

in relative displacement at the 0.35g seismic intensity level and one (0.2T1-2T1 scaling – 

MSE scaling) in PGA results at the 0.15g seismic intensity level also reject the null 

hypothesis. This is the result of introducing more bias into the site responses at the ground 

surface when the number of input motions is increased, as highlighted in Section 5.4.5. 

While so far the influence of the selection strategies on the site responses (spectral 

acceleration, relative displacement, PGA and Sa(T1)) is investigated, it is worth to look at 

the effect of the main characteristics of the bedrock input motions on the site responses at 

surface. For this aim, Arias intensity (IA, m/s) and Dobry’s duration (D5-95) are considered 

as two of the main features of an input motion. While the former is a measure of an input 

motion showing the shaking intensity (Arias, 1970), the latter is a time interval within which 

5% and 95% of the Arias intensity is obtained (Dobry et al., 1978). All the sets of seven and 

14 bedrock motions for the earthquake selection strategies (105 input motions, in total for 

each selection strategy) are combined within the same seismic intensity level, ultimately the 

correlation test is conducted. The test relies on: 

𝑟𝑟 =
𝑆𝑆𝑥𝑥𝑥𝑥

�𝑆𝑆𝑦𝑦𝑦𝑦𝑆𝑆𝑥𝑥𝑥𝑥
 

 

 
(5.5) 

𝑆𝑆𝑥𝑥𝑥𝑥 = �(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑛𝑛

𝑖𝑖=1

 

 

 (5.6) 
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𝑆𝑆𝑥𝑥𝑥𝑥 = �(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2
𝑛𝑛

𝑖𝑖=1

  (5.7) 

Once the sample correlation coefficient (r-value) is calculated, then, the test statistic 

considers Equation 5.8 to compute the population correlation coefficient: 

𝑟𝑟

�(1 − 𝑟𝑟2)
(𝑛𝑛 − 2)�

 

 

 

(5.8) 

where n is the sample size, n-2 is degrees of freedom. The null hypothesis of the test is that 

there is not a significant correlation between IA or D5-95 of the input motions and the relative 

displacements (or PGA, or Sa(T1)).  

The p-values and the r-values of the tests are shown in Table 5.8. Again, the p-values less 

than 0.05 express that the null hypothesis is rejected, otherwise it is not rejected. The null 

hypothesis is only not rejected at the lower seismic intensity level when Ia correlation with 

the EDPs are checked. On the other hand, D5-95 correlation tests with only the relative 

displacement at the lower seismic intensity level and Sa(T1) at the higher seismic intensity 

level reject the null hypothesis. 

In terms of correlation significance, the correlation coefficients of IA with relative 

displacement and PGA are higher than those of D5-95 with the same EDPs in both seismic 

intensity cases (see Figure 5.21-22). This clearly indicates that IA of an input motion is 

associated more strongly with the relative displacement and the PGA at the ground surface 

than D5-95. In terms of Sa (T1) ground response, both properties of an input motion show 

similar correlation significance. 
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Property 

of input 

motion 

0.15g 

Relative displacement PGA Sa(T1) 

r value p-value r value p-value r value p-value 

Ia 0.257 0.008 0.3 0.002 0.189 0.0523 

D5-95 0.119 0.021 0.12 0.227 0.186 0.058 

 0.35g 

 
Relative displacement PGA Sa(T1) 

r value p-value r value p-value r value p-value 

Ia 0.307 0.001 0.314 0.001 0.244 0.0123 

D5-95 0.14 0.149 0.156 0.11 0.238 0.014 

Table 5.8 Correlation test results between IA and D5-95 of the rock input motions and the 
EDPs at the ground surface, rejection of null hypothesis (p-values) given in bold. 
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Figure 5.21 Representation of the correlation level between IA (left-sided) or D5-95 (right-
sided) of input motions -having 0.15g seismic intensity level- and EDPs. 
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Figure 5.22 representation of the correlation level between IA (left-sided) or D5-95 (right-
sided) of input motions -having 0.35g seismic intensity level- and EDPs. 
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5.6 Conclusions 

This study analyse the effects of input motion selection strategies on the responses of an 

ideal soft clay soil deposit in terms of site response spectra, relative displacement, PGA and 

Sa(T1). The work presented in this chapter diverts from the previous studies as to considering 

five different selection strategies and testing EC8 design response spectrum for soft clay soil 

deposits by using a nonlinear FE code. An equivalent linear frequency domain approach 

implemented in EERA code and a fully-coupled effective stress based FE approach 

implemented in SWANDYNE II, are employed in the dynamic analyses. The FE code 

adopts the advanced soil constitutive model RMW, which is capable of capturing soil early 

nonlinearity, hysteretic damping, accumulation of pore water pressure and the soil structure 

degradation.  

Two different computer programs, namely REXEL and SEISMOMATCH, and one website-

based program (PEER Ground Motion Database) are used in forming sets of bedrock 

motions (according to the two target response spectra indicating low and high seismic 

intensity levels) with respect to each selection strategy. As the proxy of the EC8 design 

response spectrum for a soft soil (with soil class D) has recently being questioned in 

representing a possible earthquake event, the median spectral response predictions at the 

ground surface are also compared with the code spectrum. 

From the results of both numerical approaches, PGA scaling provides considerably different 

median response spectra at 0.15g and 0.35g seismic intensity levels. MSE scaling also gives 

site response spectra relatively less amplified in the shorter periods at the higher seismic 

intensity level owing to the large dispersion in the spectral peaks but leads to similar 

response to the remaining selection strategies at the lower seismic intensity level. Amongst 

the remaining three selection strategies, 0.2T1-2T1 scaling and spectral matching strategies 

result in almost identical response spectra, giving more conservative spectral acceleration at 

the shorter periods, and similar result to that from Sa(T1) scaling at the longer periods. In 

this respect, one can prefer selecting input motions in site response analysis based on 0.2T1-

2T1 scaling or spectral matching strategies. However, 0.2T1-2T1 scaling may seem to be a 

more convincing candidate between the two as spectral scaling modifies the frequency 

content of the input motions as opposed to linear scaling used in 0.2T1-2T1 scaling which 

long been proved to be legitimate. 
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The benefit of using FE code instead of equivalent linear code in site response analysis is 

revealed as the FE code with the adopted advanced soil model is capable of representing 

stiffness degradation and producing hysteretic damping at the exact induced shear strain 

amplitude during seismic excitation. These features implemented in the code lead to more 

realistic representation of the soil behaviour and prediction of the site responses. Meanwhile, 

an approach is used to proximate the maximum induced shear strain level in the nonlinear 

approach taking the ratcheting soil behaviour into account and, hence providing better 

approximate maximum strain value that produces maximum hysteretic damping.   

The EDP results from the nonlinear FE analyses indicate that spectral matching causes the 

least scattered responses within a set of seven input motions amongst the other selection 

strategies. The EDPs from Sa(T1) scaling also exhibit such dispersions that may favour this 

selection strategy over or be an alternative of 0.2T1-2T1 scaling. Hence, if the preference for 

the input motion selection is not spectral matching, one of these two strategies can be a 

second choice to get a reasonably stable EDPs at the ground surface, although the median 

EDPs of all the selection strategies can be regarded as equal based on t-test results except 

those from PGA scaling. This is also valid when the median EDPs for sets of 14 input 

motions are considered. 

Increasing the number of input motions from seven to 14 in case of applying 0.2T1-2T1 

scaling and spectral matching strategies does not affect the median responses. For the 

remaining selection strategies, it seems not possible to obtain identical response spectra as 

their compatibility conditions (i.e. scaling at PGA and scaling at T1) and large dispersion in 

the spectral peaks (i.e. MSE scaling). The increase in the number of input motions seems 

also not favourable because it does not bring more stability into the EDP responses for the 

selection strategies, except from MSE scaling (where the increase leads to reduction in the 

variability of EDPs). Therefore, it might not be in the engineering interest to consider 14 

input motions rather than seven with presented selection strategies for site response analysis. 

Based on the predicted response spectra for the selection strategies from FE analyses, the 

EC8 design response spectrum for a soft soil does not seem to be a good representative of a 

probable earthquake event at the lower intensity level while it is a relatively better proxy for 

the higher intensity level. Moreover, the soil factor suggested by EC8 for a soft soil under 

seismicity Type 1 input motion is found less than those obtained from the dynamic analyses. 

Although the extent of this research is not to such degree that a new soil factor or spectral 
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shape will be recommended, it highlights the necessity of revisiting the EC8 design response 

spectrum for a soft soil. Alternatively, and may be the best choice is to conduct site specific 

response analysis under a set of bedrock motions when the site is located over the soft soil 

deposit. 
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Chapter 6. Influence of Soil Properties Variability on Nonlinear Site 

Response Predictions: Application to the Lotung Site 

6.1 Introduction 

Ground response analysis is a key tool in the seismic design of earth structures. To predict 

local site effects, seismic input motions are propagated through the deposit approximating 

the dynamic characteristics of the soil by means of equivalent linear or nonlinear approaches. 

The results of the simulations are, then, interpreted mostly in terms of response spectra and 

amplification factors obtained at surface (Kramer, 2014). Nonlinear soil behaviour can be 

approximated by an equivalent linear characterisation of soil dynamic properties. As it is 

explained in Chapter 3 Section 3.3.1, the method makes use of the exact continuum solution 

of wave propagation in horizontally layered visco-elastic materials subjected to vertically 

propagating transient motions (Roesset, 1977). It models the nonlinear variation of soil shear 

modulus (G) and damping (D) with shear strain through a sequence of linear analyses with 

iterative update of stiffness and damping parameters. For a given soil layer, G and D are 

assumed to be constant with time during the shaking. Therefore, an iterative procedure is 

needed to ensure that the properties used in the linear dynamic analyses are consistent with 

the level of strain induced in each layer by the input motion (Kramer, 2014). The analysis is 

performed adopting a total stress approach. 

 In contrast, nonlinear approaches used in conjunction with a numerical time integration 

scheme and an effective stress approach are capable of fully capturing soil nonlinearity, pore 

water pressure build-up and consolidation settlements induced by the earthquake. Although 

the equivalent linear approximation is simpler and time effective, the nonlinear approach 

may yield more accurate results. In particular, the benefit of time domain nonlinear schemes 

can be fully appreciated when the site is shaken by a strong seismic motion (e.g. Elia (2014)). 

The free-field seismic response prediction under a single bedrock motion is controlled by 

the elastic and nonlinear soil properties (i.e. the initial shear wave velocity (Vs) profile, the 

normalized shear modulus (G/G0) reduction and damping curves). The Vs profile of a soil 

deposit is commonly measured by means of in-situ tests, such as cross-hole, down-hole, 

seismic cone, SASW, suspension logging methods (e.g. EPRI (1993); Kramer (2014)) The 

shear modulus degradation and associated hysteretic damping can be determined over a 
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range of shear strains through laboratory testing of undisturbed soil samples (e.g. resonant 

column/torsional shear, cyclic triaxial and cyclic simple shear tests).  

Although site response analysis usually adopts the deterministic values of the elastic and 

nonlinear soil properties, their uncertainty and variability in space, even within a single soil 

layer, should be taken into account (e.g. Phoon and Kulhawy (1999)). In this respect, the 

effect of soil properties variability on site response predictions is nowadays of great interest 

for researchers in the geotechnical earthquake engineering field (e.g. Field et al. (2003); 

Bazzurro and Cornell (2004a); Bazzurro and Cornell (2004b); Idriss (2004) Andrade and 

Borja (2006); Sarma and Irakleidis (2007); Rota et al. (2011). 

The most common way of including the variability of the soil properties in site response 

analyses is through Monte Carlo Simulations (MCSs). As an example, Roblee et al. (1996) 

investigated the influence of the variability of soil properties on the site response prediction 

through MCSs. They employed a stochastic finite-fault model able to produce a seismic 

motion with a specific magnitude and distance from the fault. The model was also capable 

of accounting for soil properties variability within an equivalent linear formulation. The 

results indicated that i) site effects variability is clearly a function of the distance (and, 

therefore, of the seismic intensity level); ii) path effects have little impact on response 

variability near fault, but become more pronounced as source-to-site distance increases; iii) 

source effects contribute most to parametric variability at longer periods and are relatively 

insensitive to both site type and distance.  

 Li and Assimaki (2010) also conducted MCSs of the site response of three well-investigated 

down-hole array sites located in the Los Angeles Basin, using the earthquake dataset 

developed by Assimaki et al. (2008) based on synthetic records. It was demonstrated that 

the impact of nonlinear soil properties variability depends strongly on the seismic intensity 

of the applied input motion, particularly for soft soil profiles. On the contrary, the effects of 

velocity profile uncertainties are less intensity dependent and more sensitive to the velocity 

impedance in the near surface that governs the maximum site amplification. Similarly, 

Rathje et al. (2010) performed MCSs for equivalent linear site response analysis by 

including variability coming from the elastic and nonlinear soil properties. The results 

pointed out that modelling shear wave velocity variability generally reduces the predicted 

median surface motions and amplification factors, most significantly at periods less than the 

site period, while accounting for the variability in nonlinear properties has a slightly smaller 
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effect. Moreover, including the variability in soil properties significantly increases the 

standard deviation of the amplification factors but has a lesser effect on the standard 

deviation of the surface motions. 

This chapter investigates the influence of variability in elastic and nonlinear soil properties 

on the site response prediction of the Large Scale Seismic Test (LSST) site in Lotung, 

Taiwan. The fully-coupled finite element (FE) code SWANDYNE II (Chan, 1995) is 

adopted and plasticity is introduced in the FE simulations through the advanced elasto-

plastic model (RMW) developed by Rouainia and Muir Wood (2000). The performance of 

the RMW model in fully-coupled dynamic analysis of earth structures has been demonstrated 

in previous works (e.g. Elia and Rouainia (2012); Elia and Rouainia (2014)). In particular, 

the LSST site has already been studied in Chapter 4, but using a deterministic approach, i.e. 

adopting a single shear wave velocity profile and one set of G/G0 and D curves predicted by 

the RMW model. In this work, the variability of elastic and nonlinear soil properties in 

Lotung is accounted for through a Monte Carlo approach. One weak and one strong input 

motions recorded at the site are considered to test the sensitivity of the ground response 

prediction to the seismic intensity level. 

6.2 Lotung Site and Earthquake Records 

Since the detailed information about the site is given in Chapter 4, this section only intends 

to briefly summarise them. The Lotung accelerometer array is located in the north-east part 

of Taiwan (Tang et al., 1990). The site geology consists of recent alluvium and Pleistocene 

materials over a Miocene basement. The upper alluvial layer, 30-40 m thick, consists mainly 

of clayey-silts and silty-clays (Anderson, 1993). The water table is located approximately at 

a depth of 1 m. The local geological profile shows a 17 m thick silty sand layer above a 6 m 

thick layer of sand with gravel resting on a stratum of silty clay interlayered by an inclusion 

of sand with gravel between 29 m and 36 m.  

The site was instrumented in 1985 with down-hole accelerometers located at different 

depths. Of particular interest here is the vertical array named DHB, which can be considered 

representative of the free-field response at Lotung. The bedrock formation is assumed to be 

at a depth of 47 m, where the recordings of the corresponding accelerometer have been used 

in the numerical simulations as input motions. Within two years from the instrumentation, 

18 earthquake events were recorded with low, moderate and high seismic intensity levels at 



CHAPTER 6                                                  Probabilistic nonlinear analyses of Lotung site              
 

169 
 

the LSST site. Two input motions, one strong (LSST07) and one weak (LSST11), have been 

considered in this work. For the sake of simplicity, only the E-W component of the 

earthquake events has been adopted in the FE simulations (the case of adopting the N-S 

component of the earthquake events is presented in Appendix B). Table 6.1 gives general 

information about the two earthquakes and Figure 6.1 shows their acceleration-time 

histories. 

 

Event Date Magnitude, ML Epicentral 

distance (km) 

Focal 

depth (km) 

LSST07 20/5/1986 6.2 66.0 15.8 

LSST11 17/7/1986 4.3 6.0 2.0 

Table 6.1 Earthquakes recorded by the LSST array and used in the analyses. 
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Figure 6.1 Recorded input motions at the Lotung site in the East-West (E-W) direction: (a) 
strong earthquake event (LSST7) and (b) weak earthquake event (LSST11). 

6.3 Variability of Soil Properties 

The shear wave velocity profile along with shear modulus reduction and damping curves are 

the main soil dynamic properties which have significant impact on the response of a site 

subjected to a specific earthquake event. These properties can vary spatially due to aleatory 

or epistemic uncertainties. The aleatory uncertainty (or randomness) depends strongly on the 

site geology and cannot be reduced by collection of additional information (Roblee et al., 

1996). On the other hand, epistemic uncertainty can be caused by man-made errors during 

laboratory soil testing or deficiencies of current methods in determining the soil properties 

and can be minimised, for example, by gathering good quality data and developing more 

rigorous field and laboratory measurement techniques (e.g. Roblee et al. (1996); Rathje et 

al. (2010)).  
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Most of the soil properties are known to exhibit a high coefficient of variance (COV) that 

can be represented appropriately using a Monte Carlo method (e.g. Li and Assimaki (2010)). 

In order to randomise the soil properties in each MCS, a specific probabilistic distribution 

for each property is required. However, since the availability of soil data to constrain the 

selected probabilistic distribution is usually very limited, it is more practical to formulate 

such distribution based on data from several well-monitored and investigated sites.  

In this respect, Toro (1995) has developed a statistical model - based on generic soil profiles 

retrieved from EPRI database (EPRI, 1993)- to randomise low-strain shear wave velocity 

profiles. The model is able to predict random soil stiffness profiles by considering a baseline 

Vs profile, the data distribution and the interlayer correlation. Once the average value of Vs 

at the top 30 m of the deposit is known, the stiffness profile can be randomised using the 

logarithmic standard deviation and the interlayer correlation parameters given by the 

statistical model.  

Darendeli and Stokoe (2001) developed an empirical method based on extensive data of 

G/G0 and D curves obtained from resonant column and cyclic torsional shear tests on soil 

samples retrieved from different geotechnical array sites. The dynamic characteristics of 

these soils were interpreted in terms of confining pressure, overconsolidation ratio, number 

of loading cycles, loading frequency and site class. The model is based on a first order 

second-moment Bayesian statistical method and is able to generate correlated G/G0 and D 

curves. 

In this work, the amount of data from the Lotung site in terms of high quality shear wave 

velocity measurements and G/G0 and D laboratory data allows to undertake MCSs with well-

constrained probabilistic distributions. The generation of stiffness variability with depth and 

G/G0 and D curves for the LSST site is described in the following sections. 

6.3.1 Point variability of the initial stiffness profile 

The shear wave velocity values obtained at different depths from the results of seismic cross-

hole and up-hole tests performed at the LSST site are illustrated in Figure 6.2. To represent 

the small-strain shear modulus (G0) profile of the Lotung site, the equation proposed by 

Viggiani and Atkinson (1995) is adopted in the FE procedure: 
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𝐺𝐺𝑜𝑜
𝑝𝑝𝑟𝑟

= 𝐴𝐴�
𝑝𝑝′

𝑝𝑝𝑟𝑟
�
𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚  (6.1) 

where pr is a reference pressure, p′ is mean effective stress, 𝑂𝑂𝑂𝑂𝑂𝑂 is overconsolidation ratio 

and A, m and n are dimensionless stiffness parameters. The details of the FE model and its 

boundary conditions are presented in Chapter 4. In the initialisation of the FE model, a higher 

overconsolidation ratio has been assumed for the upper part of the column (from 0 to a depth 

of 6 m), with an average R equal to 4, while a constant overconsolidation ratio of 2 has been 

imposed for the remaining part of the model. Therefore, the G0 profile is completely 

controlled by the parameters A, m and n of Equation 6.1 and to randomise the small-strain 

shear modulus profile it is necessary to transfer the variability of G0 to these parameters.  

Considering that m and n have relatively less effect on the elastic formulation (due to their 

small range of values) than the parameter A, they are regarded as deterministic input with 

values of 0.36 and 0.82, respectively. Hence, only the parameter A is subjected to variability 

when the initial stiffness profile is randomised for the MCSs. In particular, a point variability 

is considered here, i.e. the initial stiffness profile is varied with a certain standard deviation 

with respect to a baseline profile. A lognormal distribution of A (and consequently of G0) 

can be reasonably fitted through the data points for the different layers, as presented in Figure 

6.2a. In addition, this assumption provides realistic stiffness profiles as it only generates 

positive values of G0 (Andrade and Borja, 2006). The mean variation of G0 with depth shown 

in the figure corresponds to the baseline profile used to obtain baseline responses. 

If the only random parameter in the above equation is A, the mean and standard deviation of 

G0 are: 

𝜇𝜇𝐺𝐺𝑜𝑜 = 𝜇𝜇𝐴𝐴 �
𝑝𝑝′

𝑝𝑝𝑟𝑟
�
𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚 

𝜎𝜎𝐺𝐺𝑜𝑜 = 𝜇𝜇𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 �
𝑝𝑝′

𝑝𝑝𝑟𝑟
�
𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚 
 

(6.2) 

Since the stress and overconsolidation ratio dependency of G0 is preserved in the calculation 

of the mean and standard deviation, the coefficient of variance (COV) of G0 can be computed 

as: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑜𝑜 =
𝜎𝜎𝐺𝐺𝑜𝑜
𝜇𝜇𝐺𝐺𝑜𝑜

= 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴   (6.3) 

which implies that the COV is kept constant in the transformation of A into G0. 

After ensuring the consistency in the COV, it is necessary to calculate the statistical 

parameters of the lognormal distribution, e.g. the mean and standard deviation. The 

calculation of these parameters, along with the probability density function (PDF) of A, is 

given as: 

𝐴𝐴: ln (𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙,𝜎𝜎𝑙𝑙𝑙𝑙𝐴𝐴) =  𝑒𝑒𝑒𝑒𝑒𝑒(𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 × 𝜉𝜉)     (6.4) 

where ( )0,1Nξ   is a normally distributed random variable. 

𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙 �
𝜇𝜇𝐴𝐴

�1 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴2
�  

𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑙𝑙𝑙𝑙(1 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴2)  

(6.5) 

Once the PDF expression of A (i.e. Equation 6.4) is substituted into Equation 6.1, G0 can be 

written as follows: 

𝐺𝐺𝑜𝑜 =  𝑒𝑒𝑒𝑒𝑒𝑒(𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙𝜉𝜉)𝑝𝑝′ �
𝑝𝑝′

𝑝𝑝𝑟𝑟
�
𝑛𝑛

𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚   (6.6) 

Rearranging the above expression leads to: 

𝐺𝐺𝑜𝑜 =  exp (𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 + (1 − 𝑛𝑛)𝑝𝑝𝑟𝑟 + 𝑛𝑛𝑛𝑛𝑛𝑛(𝑝𝑝′)+𝑚𝑚𝑚𝑚𝑚𝑚(𝑂𝑂𝑂𝑂𝑂𝑂) + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙𝜉𝜉) (6.7) 

From this formulation, the transformation of variability from A to G0 only affects the mean 

of lnG0 when a certain desired variability is given by the standard deviation (Depina et al., 

2015). Then, the log-normally distributed G0 can be given as: 
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𝐺𝐺𝑜𝑜: ln �𝜇𝜇𝑙𝑙𝑙𝑙𝐺𝐺𝑜𝑜 ,𝜎𝜎𝑙𝑙𝑙𝑙𝐺𝐺𝑜𝑜�  (6.8) 

and: 

𝜇𝜇𝑙𝑙𝑙𝑙𝐺𝐺𝑜𝑜 = 𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 + (1 − 𝑛𝑛)𝑝𝑝𝑟𝑟 + 𝑛𝑛𝑛𝑛𝑛𝑛(𝑝𝑝′) + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑂𝑂𝑂𝑂𝑂𝑂) 

 

(6.9) 

𝜎𝜎𝑙𝑙𝑙𝑙𝐺𝐺𝑜𝑜 = 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 

Once the G0 profile has been randomised, the corresponding Vs variation with depth is 

obtained for each realisation assuming a total unit weight of the soil equal to 20 kN/m3 (as 

proposed by Borja et al. (1999a)). Figure 6.2b displays examples of randomised shear wave 

velocity profiles used in this study. 

 

Figure 6.2 Point variability of stiffness: (a) shear modulus (G0) profile and (b) shear wave 
velocity (Vs) profile. 
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6.3.2 Spatial variability of the initial stiffness profile 

In addition to the point variability of the initial stiffness profile discussed in the previous 

section, the Vs profile can also be varied spatially (e.g. Phoon and Kulhawy (1999)). The 

spatial variation of a soil property is generally modelled by random fields generating a series 

of values to be used in MCSs. In this study, a one-dimensional random field is implemented 

in the vertical direction, assuming homogeneity in the horizontal direction, to investigate the 

influence of spatial variability of the elastic soil property (i.e. shear wave velocity) on the 

site response prediction. The matrix decomposition technique is adopted to generate the 

random field (El‐Kadi and Williams, 2000). The covariance function Σ𝑖𝑖𝑖𝑖  is defined with 

respect to the covariance of the parameter 𝑙𝑙𝑙𝑙𝐺𝐺0 and the distance between data points dij as 

follows: 

Σ𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑙𝑙𝑙𝑙𝐺𝐺0
2 𝑒𝑒−

1
𝐿𝐿�𝑑𝑑𝑖𝑖𝑖𝑖�  (6.10) 

where the correlation length, L, is taken equal to 2 m (Depina et al., 2015). 

The covariance matrix is decomposed based on the Choleski method (Nash, 1990) as 

follows: 

Σ𝑙𝑙𝑙𝑙𝐺𝐺0 = 𝐶𝐶𝐶𝐶𝑇𝑇  (6.11) 

𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑖𝑖𝑖𝑖 = Σ𝑖𝑖𝑖𝑖 − � 𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑚𝑚𝑚𝑚

𝑚𝑚−1

𝑘𝑘=1

  (6.12) 

𝐺𝐺0 = exp (𝐶𝐶𝜉𝜉 + 𝜇𝜇𝑙𝑙𝑙𝑙𝐺𝐺𝑜𝑜)  (6.13) 

where C is a lower triangular matrix, 𝜉𝜉 is the vector of Gaussian random variables with zero 

mean and unit standard deviation. An example of a random field generation is illustrated in 

Figure 6.3 along with mean +/- one standard deviation. 
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Figure 6.3 Spatial variability of stiffness: (a) shear modulus (𝐺𝐺0) profile and (b) shear wave 
velocity (𝑉𝑉𝑠𝑠) profile. 
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The randomisation of the stiffness degradation and corresponding damping curve is, in most 

cases, based on empirical expressions developed considering different soil types and stress 
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the nonlinear soil parameters, it is necessary to describe their statistical distribution and 

define any correlation between them.  

In this work, the G/G0 and D curves are the output of the RMW model adopted in the 

simulations. The constitutive law allows to reproduce some of the key features of the cyclic 

behaviour of natural soils, such as the destructuration induced by the loading, the decay of 

the shear stiffness with strain amplitude, the corresponding increase of hysteretic damping 
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in a direction parallel to the line joining the current stress, σ , and the conjugate stress, cσ , 

as follows: 

𝜶𝜶 �̇ = 𝜶𝜶�̇ + 𝑝̇𝑝𝑐𝑐
𝑝𝑝𝑐𝑐

(𝜶𝜶� + 𝜶𝜶�) + 𝜇̇𝜇(𝝈𝝈𝑐𝑐 − 𝝈𝝈)  (6.14) 

where 𝜶𝜶� and ( ) 0ˆ 1cp r r = − α ηI +  denote the locations of the centre of the bubble and 

structure surface respectively, µ  is a positive scalar of proportionality and r is the degree of 

structure, which is a monotonically decreasing function of the plastic strain. It should be 

noted that the centre of the structure surface and the deviator of 𝜶𝜶� represents the anisotropy 

of the soil due to structure. The deviator of 𝜶𝜶� therefore degrades to zero as r degrades to 

unity. The plastic modulus H is assumed to depend on the distance between the current stress 

and the conjugate stress and is given by: 

𝐻𝐻 = 𝐻𝐻𝑐𝑐 +
1
‖𝑛𝑛‖

𝐵𝐵𝑝𝑝𝑐𝑐3

(𝜆𝜆∗ − 𝜅𝜅∗)𝑅𝑅
�

𝑏𝑏
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

�
𝜓𝜓

  (6.15) 

where *λ  and *κ  are the slopes of normal compression and swelling lines in the lnv : lnp 

compression plane (v being the soil specific volume), : ( )cb = −σ σn  is a measure of the 

distance between the bubble and the structure surface and bmax is the nominal maximal value 

of b. The additional soil parameters ψ and B control the rate of decay of stiffness with strain 

and the magnitude of the contribution of the interpolation term, respectively. The hardening 

modulus Hc is derived from the consistency condition on the structure surface when the 

bubble and the structure surface are in contact. 

The randomisation of the soil nonlinear parameters can be achieved by varying the RMW 

parameters which mostly affect the predicted stiffness degradation and damping curves. To 

identify these parameters, a series of single element simulations of strain-controlled 

undrained cyclic simple shear (CSS) tests are conducted by applying different shear strain 

amplitudes. After 500 cycles for each strain level, which is considered to be sufficient to 

achieve a steady-state condition (Elia et al., 2011), the secant shear modulus and damping 

values are obtained. From an extensive parametric study, it is observed that the G/G0 and D 

curves are greatly affected by the interpolation exponent ψ in Equation 6.15.  



CHAPTER 6                                                  Probabilistic nonlinear analyses of Lotung site              
 

178 
 

The remaining RMW parameters are assumed equal to those used in Chapter 4, which were 

calibrated against the dynamic laboratory tests performed on soil samples retrieved from the 

Lotung site. The soil parameter ψ is considered as log-normally distributed between a lower 

value of 0.1 and an upper value of 4. The range of ψ values is determined in order to 

reasonably capture the empirical data by Zeghal et al. (1995) showing good agreement with 

the laboratory results (EPRI, 1993), presented in Figure 6.4. The mean value of the parameter 

ψ is set equal to 1.1. The COV of ψ is assumed equal to 0.4, in accordance with the guidance 

given in the literature (e.g. Phoon and Kulhawy (1999); Chen et al. (2008)).  

Random ψ values are generated such that they are within the lower and upper limit. The 

corresponding G/Go and D curves obtained through CSS simulations with the RMW model 

are shown in Figure 6.4. The smaller ψ value gives the upper bound G/Go curve and thus 

leads to the lower bound damping curve. In contrast, for the bigger value of ψ the RMW 

model predicts a more rapid stiffness degradation (lower bound G/Go curve), resulting in 

higher hysteretic damping (upper bound damping curve). This inverse trend of the predicted 

G/Go and D curves indicates how the RMW model is able to automatically capture the well-

known negative correlation between the two curves. 
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Figure 6.4 Influence of effect of soil model parameter (ψ, psi) limiting: (a) shear stiffness 
reduction (G/Go) and (b) damping (D) curves along with analytical data from Zeghal et al. 
(1995). 
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6.4 Results and Discussion 

In this section, the results of MCSs of Lotung nonlinear site response are presented in terms 

of median response spectrum predicted at ground surface and compared with the actual 

LSST recorded data and the response spectra computed by using the best-estimate soil 

properties (baseline response) using a deterministic approach. The influence of variability of 

point stiffness, spatial stiffness and nonlinear soil properties is investigated for both the 

strong and the weak input motion. All figures show the results obtained using 200 stiffness 

or 200 nonlinear curves realisations, unless mentioned otherwise. To accurately assess the 

site response predictions, the standard deviation of the logarithmic spectral accelerations, 

σlnSa, is also plotted, as suggested by Li and Assimaki (2010) and Rathje et al. (2010). 

6.4.1 Effects of soil properties variability on site response under the strong input motion 

The surface response spectra of the nonlinear site response analyses when the strong input 

motion (LSST07) is applied at bedrock are shown in Figure 6.5. The results are obtained 

with the Vs profile and G/Go and D curves being randomised around the baseline within plus 

and minus one standard deviation. Point variability of the initial stiffness profile is 

considered first. By statistically changing the Vs profile, the MCSs exhibit only a modest 

variation in the response spectra at surface over the engineering period of interest (Figure 

6.5a). Moreover, the median is remarkably similar to the baseline response prediction. In 

contrast, a significant variation in the response spectra can be observed by randomising the 

G/Go and D curves (Figure 6.5b). The median, in this case, also closely matches the baseline 

response, thus indicating that the variation of nonlinear soil properties does not necessarily 

lead to a different or improved surface response prediction with respect to a deterministic 

approach. By simultaneously varying the Vs profile and the G/Go and D curves, still similar 

median response is observed as it closely matches with the baseline response spectrum 

(Figure 6.5c). However, simultaneous variation of the soil properties causes the increase in 

the standard deviation of the surface response spectra (σlnSa), especially at periods lower than 

0.2 s and periods higher than 0.3 s, which can be seen in Figure 6.5d. 
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Figure 6.5 Site response prediction under the strong input motion (LSST7): (a) variability of 
𝑉𝑉𝑠𝑠 profile, (b) variability of G/Go and D curves, (c) simultaneous variability of 𝑉𝑉𝑠𝑠 profile and 
of G/Go and D curves and (d) logarithmic standard deviations, σlnSa, in each case. 

The confidence intervals for spectral accelerations over the interested period range are 

computed based on Cox method (Land, 1972). This method is shown to be effective in 

representing intervals for lognormally distributed data (Zhou and Gao, 1997). The spectral 

curves showing 95% confidence intervals do not exhibit any band of spectral ranges at any 

periods when the Vs profile is varied (Figure 6.5a). In the cases of varying G/Go and D curves 

or simultaneous changes of the soil properties, marginal spectral intervals at around T1 can 

be observed while the intervals are mostly overlapped at other periods (Figure 6.5b of Figure 

6.5c). This interval curves imply that it is 95% true that the median responses from any 200 

MCSs with the Vs profile and/or G/Go and D curves will be within those intervals covering 

reasonably well the baseline responses as well as recorded data. 

To estimate the number of MCSs required to achieve a stable site response prediction when 

the G/Go and D curves are varied, five suites of 10, 20 and 50 realisations are considered. 
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results from different suites provides an evaluation of the statistical stability of the computed 

response. This analysis is not performed for the shear wave velocity profile, as the results of 

MCSs presented in Figure 6.5a show that the spectral response at surface of 200 different 

realisations of Vs exhibit inconsiderable level of dispersion around the baseline prediction. 

The median surface response spectrum and σlnSa at each period are computed for each suite 

of G/Go and D curves and plotted in Figure 6.6. 

 

Figure 6.6 Median responses of 5 sets: (a) 10 realisations of G/Go and D curves, (b) 20 
realisations, (c) 50 realisations and (d) standard deviations of σlnSa within each set. 
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evident at around 0.85 s, representing the first natural period of the soil deposit, T1. This can 

be explained by the tendency of the system to oscillate around its fundamental period, 

leading to substantial spectral amplifications at this period. Therefore, the spectral response 

predictions become more sensitive to the variability of the soil properties at around T1, 

causing great deviations in the results. At the higher periods (greater than 2 s), the standard 

deviations of the suites composed by 20 and 50 realisations are very similar and approaching 

zero. 

The median surface response obtained for one, two and three standard deviation level of 

truncation around the Vs baseline profile is presented in Figure 6.7, while the effect of 

changing the truncation level of the G/Go and D curve distributions is shown in Figure 6.8. 

As the standard deviation around the Vs profile is increased from one to three, no appreciable 

effect on the median response spectra at the surface can be observed, resulting in an identical 

degree of uncertainty in terms of σlnSa (Figure 6.7d). On the contrary, increasing the level of 

truncation of the G/Go and D distributions causes high variability in the response prediction. 

For one standard deviation (corresponding to the results presented in Figure 6.5b), the 

maximum σlnSa is less than 0.2, while it reaches a value of 0.4 at around T1 with a truncation 

of two standard deviations as the amount of G/Go and D data captured increases from 68% 

to 95% (Figure 6.8d).  

The increase in the truncation level of the G/Go and D curve distributions also increases the 

spectral distances between 95% confidence intervals, which is more apparent, again, at 

around T1.  However, this increase of interval widths with the truncation levels (i.e. from one 

to two and three standard deviations) leads to better coverage of the recorded data as can be 

seen in Figure 6.8b and Figure 6.8c. Hence, it can be interpreted that median responses from 

any 200 MCSs with two or three standard deviations of the G/Go and D curves can reflect 

the actual responses better than that of one standard deviation.                   

Considering a truncation level of three standard deviations, thus implying that almost all 

G/Go and D data are included in the analysis, a slight decrease in the σlnSa is observed. In 

general, accounting for a wide variability of the G/Go and D curves produces higher standard 

deviations of the logarithmic spectral accelerations at surface, but the median response 

remains almost unchanged. Moreover, the level of shear strain induced by the strong motion 

is sufficient to induce nonlinear effects in the soil behaviour, thus making the site response 

very sensitive to the variability of the G/Go and D curves. This is confirmed by Figure 6.9, 
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where the influence of stiffness profile and nonlinear curves variability on the maximum 

horizontal acceleration (amax) and maximum shear strain (γmax) profiles is presented.  

 

Figure 6.7 Influence of the level of truncation around the baseline 𝑉𝑉𝑠𝑠 profile on site response 
prediction using the strong input motion: (a) with one std, (b) with two std, (c) with three std 
and (d) σlnSa at the ground surface. 
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Figure 6.8 Influence of the level of truncation around the baseline G/Go and D curves on site 
response prediction using the strong input motion: (a) with one std, (b) with two std, (c) with 
three std and (d) σlnSa at the ground surface. 
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Figure 6.9 Maximum horizontal acceleration (amax, in unit g) and maximum shear strain 
(γmax, %) profiles when 𝑉𝑉𝑠𝑠 profile (a, b) and G/Go and D curves (c, d) are varied.  
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of the logarithmic spectral accelerations increases when the level of truncation rises (Figure 

6.10d). 

 

Figure 6.10 Median responses of 5 sets: (a) 10 realisations of Vs profile, (b) 20 realisations, 
(c) 50 realisations and (d) standard deviations of σlnSa within each set. 
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of the G/Go and D curves on the response at surface, as seen in Figure 6.11b showing an 

exact match between each MCS and the baseline spectral prediction. Simultaneous variation 

of the Vs profile and the G/Go and D curves causes similar median response closely matching 

with the baseline response spectrum (Figure 6.11c). This also does not lead to any significant 

change of the σlnSa at all periods (Figure 6.11d). It should be noted that there is an 

insignificant level of confidence interval coverages, especially when the G/Go and D curves 

are varied (Figure 6.11b). This shows that small amounts of spectral changes can be observed 

in median responses of any possible 200 MCSs with the variation of the Vs profile and/or the 

G/Go and D curves, and ultimately spectral predictions can give good indication of the actual 

response (Figure 6.11a, b and c). 

 

 

Figure 6.11 Site response prediction under the weak input motion (LSST11): (a) variability 
of 𝑉𝑉𝑠𝑠 profile, (b) variability of G/Go and D curves, (c) simultaneous variability of 𝑉𝑉𝑠𝑠 profile 
and of G/Go and D curves and (d) logarithmic standard deviations σlnSa in each case. 
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Since the Vs profile is the only factor controlling the predicted spectral accelerations when 

the weak input motion is considered, the adequate number of initial stiffness profile 

realisations required to get a stable response at the surface is investigated. Figure 6.12 

presents the median response spectra for five sets of 10, 20 and 50 realisations of Vs and their 

standard deviations. The suites of 10 or 20 realisations produce a significant variation in the 

median responses (Figures 6.12a and 6.12b). Conversely, the sets of 50 realisations reduce 

the variability of the median responses, particularly in the period range between 0.3 s and 2 

s, as shown in Figure 6.12c. This ensures a more stable response at the surface. When suites 

of 50 realisations are considered, discrepancies between the median spectral values can be 

still observed, but the level of standard deviation is considerably reduced (Figure 6.12d). 

 

Figure 6.12 Median responses of 5 sets: (a) 10 realisations of Vs profile, (b) 20 realisations, 
(c) 50 realisations and (d) standard deviations of σlnSa within each set. 
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improvement in the response prediction at the surface. Actually, the predicted median 

response spectrum becomes almost identical to the recorded data for periods higher than 0.2 

s when two standard deviations are considered (Figure 6.13b). No further improvements with 

respect to the recorded accelerations at the site can be obtained by increasing the truncation 

level to three standard deviations (Figure 6.13c). At the same time, the logarithmic standard 

deviation of the spectral accelerations increases with rise of the truncation level (Figure 

6.13d). Therefore, considering two or three standard deviation level of truncation around the 

Vs baseline profile can result in a better prediction at surface, but this requires more site 

response analyses to obtain the same level of stability in the simulation results. For the 

spectral curves of 95% confidence intervals, increasing the level of truncation level does not 

cause any considerable changes in the widths of intervals (Figure 6.13a, b and c) as they are 

closely matched and cover the recorded data reasonably well in all the cases.  

 

Figure 6.13 Influence of the level of truncation around the baseline 𝑉𝑉𝑠𝑠 profile on site response 
prediction using the weak input motion: (a) with one std, (b) with two std, (c) with three std 
and (d) σlnSa at the ground surface. 
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On the contrary, the change in the truncation level around the G/Go and D curve distributions 

does not introduce appreciable changes or variability in the response prediction, as shown in 

Figure 6.14, thus confirming the results presented in Figure 6.11b. The site response is, in 

fact, more sensitive to the initial stiffness profile when the weak motion is applied at bedrock, 

as the level of shear strain induced by the earthquake in this case is most likely to lie within 

the elastic region. Figure 6.15 presents the influence of stiffness profile and nonlinear curves 

variability on the amax and γmax profiles for the LSST11 event. Consistently with the results 

shown in Figure 6.11a, the median profile of amax is closer to the Lotung data recorded along 

the depth when the variation of the Vs profile is accounted for, while the variability of the 

G/Go and D curves has almost no effect of the MCS results (as indicated by Figure 6.11b).  

 

Figure 6.14 Influence of the level of truncation around the baseline G/Go and D curves on 
site response prediction using the weak input motion: (a) with one std, (b) with two std, (c) 
with three std and (d) σlnSa at the ground surface. 
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Figure 6.15 Influence of stiffness profile (a-b) and nonlinear curves (c-d) variability on the 
amax and γmax profiles for the LSST11 event.  
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does not improve the predictions in terms of median surface response. Nevertheless, the σlnSa 

variation for each truncation level (Figure 6.16d) is smaller than the corresponding standard 

deviation distribution obtained considering a point stiffness variability (Figure 6.13d). 

 

Figure 6.16 Influence of the level of truncation around the baseline 𝑉𝑉𝑠𝑠  profile (based on 
spatial variability) on site response prediction of the weak input motion: (a) with one std, (b) 
with two std, (c) with three std and (d) σlnSa at the ground surface. 
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curves is also investigated by conducting equivalent linear MCSs through EERA visco-

elastic program EERA (Bardet et al., 2000). Similar Vs profiles and G/Go and D curves used 

in the nonlinear MCSs are adopted in the equivalent linear analyses with same statistical 

distributions considered. Again, the E-W ground motions of LSST7 and LSST11 earthquake 

events recorded at the Lotung site are simulated. 
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It can be seen from Figure 6.17 that the variability of Vs profile and G/Go and D curves 

contribute to the uncertainty in the site response prediction of the strong input motion at the 

ground surface. The variability of Vs profile does cause greater uncertainty in the response 

when it is compared with G/Go and D curves. Nevertheless, median responses of MCSs are 

quite similar in both cases with the baseline response showing under-prediction of actual 

spectral values between 0.4 s and 2 s. From maximum acceleration and shear strain profiles 

exhibited in Figure 6.18, the influence of the variability through the soil profile can be seen. 

The variability in the amax profiles (Figure 6.18a-c) increases towards the ground surface. 

This can be attributed to the nonlinear soil behaviour becoming more evident at the near 

surface and with this respect the variability in the soil properties affect dramatically the site 

responses. 

 

Figure 6.17 Equivalent linear site response prediction under the strong input motion 
(LSST7): (a) variability of 𝑉𝑉𝑠𝑠 profile and (b) variability of G/Go and D curves. 
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influence of stiffness contrast between the layers as rapid changes in the strain values are 
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not necessarily vary with the layers as relatively smooth transition between the layers is seen. 
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Figure 6.18 Influence of (a-b) stiffness profile and (c-d) nonlinear curves variability on the 
amax and γmax profiles for the LSST7 event. 
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interested period ranges, as can be seen in Figure 6.19b. Median response spectra in both 

cases are reasonably in good agreement with the baseline responses which are higher at the 

short periods (< 0.2 s) and match well with the actual data above that period.  

 

Figure 6.19 Equivalent linear site response prediction under the weak input motion 
(LSST11): (a) variability of 𝑉𝑉𝑠𝑠 profile and (b) variability of G/Go and D curves. 
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Figure 6.20 Influence of (a-b) stiffness profile and (c-d) nonlinear curves variability on the 
amax and γmax profiles for the LSST11 event.   
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6.5 Conclusions 

This chapter investigates the influence of variability of elastic and nonlinear soil properties 

(i.e. shear wave velocity profile, shear modulus reduction and damping curves) on site 

response predictions through a Monte Carlo approach. For this purpose, the Large Scale 

Seismic Test site in Lotung is back-analysed using a fully-coupled finite element code and 

plasticity is introduced in the simulations through a kinematic hardening soil model. Two 

different input motions recorded at the site, one weak and one strong, are applied at bedrock 

to investigate the sensitivity of the statistical results to the seismic intensity level. Achieving 

the variability of Vs profile or G/Go and D curves in MCSs according to the data from in-situ 

measurements or laboratory test results is an obvious advantage, in addition to employing a 

nonlinear FE code, of this study over past studies that implement empirical models with 

simpler codes to obtain such variabilities. The outputs of the MCSs are interpreted in terms 

of spectral responses at surface and standard deviation of the logarithmic spectral 

accelerations. They are also compared to the recorded array data available at the site and to 

the baseline predictions of deterministic FE analyses performed adopting best-estimate soil 

properties.  

Overall, the results of the statistical approach indicate that the effect of variability in the 

elastic and nonlinear soil properties on the site response predictions shows a great 

dependency on the seismic intensity level of the input motion. In the case of a strong input 

motion, the variability of the stiffness degradation and damping curves has a more 

pronounced effect on the predicted site response, as nonlinearity is triggered by the high 

level of induced shear strain. Nevertheless, the median response spectrum of the MCSs is 

remarkably similar to the baseline prediction, even if the level of truncation is increased. 

On the contrary, the results of MCSs at surface are particularly sensitive to the statistical 

variation in the initial stiffness profile when the weak motion is considered, being nonlinear 

effects almost negligible. Additionally, accounting for the point variability of the Vs profile 

in the case of a weak earthquake event can lead to an improved surface response prediction 

with respect to the deterministic approach. In the case of strong or weak input motions, the 

spatial variability of the initial stiffness profile does not improve, instead, the baseline 

predictions in terms of median response at surface. 
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Finally, equivalent linear MCSs performed with EERA show a quite similar statistical 

influence of the Vs profile and the G/Go and D curve distributions on the ground response 

predictions for the strong earthquake event. In case of simulating the weak earthquake event, 

the variability of Vs profile affects the spectral response while the variability of nonlinear 

soil properties does not influence the response considerably. The simpler visco-elastic 

approach is, in fact, not able to distinctively reproduce the elastic and nonlinear soil 

behaviour as it cannot capture the continuous change of stiffness and damping properties 

throughout the motions. 
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Chapter 7. Summary and Conclusions 

7.1 Summary 

This thesis investigates the impact of input motion selection strategies and the influence of 

elastic and nonlinear soil properties (i.e. shear wave velocity profile, Vs, and shear modulus 

reduction, G/Go, and damping, D, curves) on the nonlinear site response analysis of soft soil 

deposits. The ground response analysis is conducted by employing an advanced kinematic 

hardening soil model which has been implemented in a fully-coupled finite element software. 

Chapter 1 briefly explains the background and motivation of the current research. It also 

includes the aim and objectives of the thesis followed by a description of its structure. In 

Chapter 2, the earthquake databases, ITACA, ESM, PEER, USGS, COSMOS, Geonet and 

KiK-net, are explored for the ground motions recorded on soft soil deposits (i.e. soil class D 

according to EC8). The first part of the chapter demonstrates the influence of factors such 

as magnitude, distance and local site conditions, on ground motions. In the second part, the 

types of seismic hazard analysis, used to define a site-specific response spectrum, are 

considered. Focus is given to the design response spectrum encompassed in EC8, whose 

suitability is compared with the empirical results from earthquake databases.  

In Chapter 3, the development of selection strategies is discussed. The implementation of 

selection strategies and issues encountered in structural engineering are reviewed. The 

studies on this topic in the geotechnical engineering field are also presented. By recognising 

the lack of studies on the selection strategies in geotechnical engineering, the common 

research focuses are explained (e.g. development of site response analyses and soil models). 

In the last part of the chapter, the work on the influence of variability of Vs profile and G/Go 

and D curves on site response analyses are reviewed with a special reference to the major 

studies. 

In Chapter 4, the performance of the advanced soil model is evaluated by modelling the free-

field Large-Scale Seismic Test (LSST) site in Lotung, Taiwan. The mean Vs profile obtained 

from the Vs values from the in-situ measurements is adopted. The soil material parameters 

are calibrated against well-documented experimental data (EPRI, 1993)
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relative to soil samples retrieved from different depths of the downhole array. Equivalent 

linear analyses are also conducted for comparison purposes by using the equivalent linear 

visco-elastic program EERA. Two bedrock input motions from LSST7 and LSST11 

earthquake events recorded at the bottom of the array are simulated, which represent 

relatively strong and weak seismic intensities. The input motions are applied in both 

horizontal directions (East-West and North-South). The predicted accumulation of pore 

water pressures at different depths is also compared with the actual data.  

In Chapter 5, well-established input motion selection strategies are studied. Namely, PGA 

scaling, Sa(T1) scaling, 0.2T1 and 2T1 scaling, MSE scaling and spectral scaling selection 

strategies are investigated. Earthquake events are selected from the European Strong-Motion 

Database and PEER Ground Motion Database. For each selection strategy, seven input 

motions are selected and modified, accordingly. Two EC8 target response spectra with 0.15g 

and 0.35g seismic intensities are adopted. An ideal soft clay soil with 50 m depth is modelled 

in the FE code and plasticity is described through the RMW model, as the model performance 

has been verified in Chapter 4. The parameters of soil model are calibrated by using G/Go 

and D curves given in the literature. The spectral response predictions at surface and the 

Engineering Demand Parameters (EDPs), i.e. the relative horizontal displacement, peak 

acceleration and spectral acceleration at the first natural period of the soil deposit (Sa(T1)), 

are considered. The influence of the number of bedrock input motions adopted for each 

scaling strategy and the soil depths on the surface response spectra and EDPs is also studied. 

Lastly, the t-test is conducted to test whether the median responses at surface can statistically 

be accepted as equal. 

In Chapter 6, the effect of variability of Vs profile and G/Go and D curves on site response 

prediction is investigated by using the same free-field FE soil model and input motions used 

in Chapter 4. The measured Vs values are used to randomise the Vs profile based on 

logarithmic distributions using Monte Carlo Simulations (MCSs). The Vs profile is also 

randomised with respect to spatial variability. G/Go and D curves are varied by lognormally 

distributing a soil model parameter that has major impact on the dynamic shear modulus and 

corresponding damping ratio values. This characterisation of nonlinear curves is also in line 

with the experimental data given in the literature. For the sake of simplicity, only the E-W 

components of bedrock input motions are simulated. Model-to-model variability is also 

investigated by employing EERA program in MCSs.  
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Lastly in Chapter 7, the objectives of chapters are recalled including methodologies. 

Subsequently, the results are summarised and followed by general findings of the study. 

Finally, some recommendations are provided for future studies in relation with seismic site 

response analysis.  

7.2 Conclusions from Each Chapter 

7.2.1 Chapter 2 

The first step in input motion selections is to define a target response spectrum obtained 

from a site-specific seismic hazard analysis (deterministic or probabilistic) or from a design 

provision code (e.g. EC8, NEHRP). By closely looking at the input motion selection 

strategies in the structural engineering discipline, it is recognised that the Intensity Measure 

(IM) linking the seismic hazard to the building response is the most useful factor to be 

considered in the selection. Efficiency and sufficiency are the two important features 

expected from an IM. In the early stages, the peak ground acceleration (PGA) of an input 

motion was accepted as a good IM reflecting both the characteristic of the motion and the 

structural response. However, further researches reveal that Sa(T1) is a better IM candidate 

than PGA. This chapter also includes studies showing the legitimacy of linear scaling of 

input motions causing less scatter in the structural response, thus, leading to fewer nonlinear 

analyses. Furthermore, the use of arbitrary spectral acceleration rather than geometric mean 

is justified along with consideration of epsilon, ε, and the use of uniform hazard spectrum 

against conditional mean spectrum. 

In the second part of the chapter, the lack of research focusing on the input motion selections 

in the analyses of geotechnical problems is highlighted by referencing few studies conducted 

recently. The frameworks of equivalent linear and nonlinear approaches developed for site 

response analyses are explained with their merits and drawbacks. Following that, early 

developments of soil models are given and the necessity of more sophisticated soil models 

that can capture early irreversibility, stiffness degradation and soil structure losses is 

justified. Specifically, the philosophy of RMW model is demonstrated. In the last part, the 

chapter investigates the role of variability of Vs profile and G/Go and D curves in site 

response analyses discussed in the relevant literature. 
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Overall, this chapter demonstrates the need of further research on the influence of selection 

strategies on site response analyses. Moreover, it highlights the importance of variability of 

elastic and nonlinear soil properties on site response analyses. These two conclusions drawn 

from the literature justify the necessity of the work undertaken in Chapter 5 and Chapter 6.  

7.2.2 Chapter 3 

This chapter demonstrates that the magnitude of an earthquake event greatly influences the 

frequency content and duration of ground motions. Moreover, the distance between the 

epicentre of the earthquake event and the station is shown to have an impact on the spectral 

values at short, medium and long period ranges. A local site condition (i.e. stiffness profile) 

is shown to be considerably influential in the ground motion amplifications from the bedrock 

to the ground surface. Subsequently, the concepts of deterministic and probabilistic site 

response analyses adopted in modern design codes are explained. Particularly, the benefit of 

a probabilistic approach, which considers all potential future earthquake events at a specific 

site, over the use of a deterministic approach, which is recognised to be subjective as only a 

single worst-case earthquake event is considered, is highlighted.  

The results of spectral responses of ground motions recorded in soft soils from the 

earthquake databases indicate that EC8 design response spectrum can be seen as a good 

proxy of potential earthquake events for both Type 1 and Type 2 seismic intensity levels. In 

contrast, by closely checking the spectral accelerations of several individual ground motions, 

it is found that the spectral peaks over the plateau of the design response spectrum and at the 

longer periods cannot be represented by the EC8 spectral shapes. In this chapter, hence, it is 

suggested to conduct site response analyses when a site is located over soft soil deposits and 

to study ideal soft soil deposits in Chapter 5. 

7.2.3 Chapter 4  

The results from the equivalent linear and nonlinear site response analyses of the Lotung 

site show the potential of both approaches when the weak input motion of LSST11 

earthquake event is applied at the bottom of the soil model. More precisely, both approaches 

lead to similar spectral response predictions in the E-W and N-S directions, especially at 11 

m and 6 m, and they are in good agreement with the actual recordings. This is also confirmed 

by the PGA and shear strain profiles. In case of simulating the strong input motion of LSST7 
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earthquake event, where the soil nonlinearity is expected to be influential in site response 

predictions, both approaches, again, perform well in the prediction of spectral responses at 

11 m and 6 m and at the ground surface in E-W direction, capturing the PGAs.  

When the N-S strong input motion is applied, the equivalent linear approach predicts spectral 

accelerations relatively better than the nonlinear approach at periods lower than T1. 

Conversely, the nonlinear approach shows good performance over periods higher than T1. 

Both approaches, however, under-predict the PGAs at 11 m, 6 m and at the ground surface. 

The predictions of accumulation of pore water pressure at different depths agree well with 

the recorded data under the strong input motion in both directions, indicating the capability 

of the nonlinear approach. Further research is conducted to better understand the reason of 

the under-prediction obtained from the FE nonlinear approach in the N-S direction by 

modelling only a 17 m column with a gradually reduced Vs profile. The spectral predictions 

in this case improve significantly at all considered depths in the N-S direction, while this 

causes over-predictions in the E-W direction.  

This chapter verifies the performance of the advanced soil model in predicting site response 

within a FE procedure, especially under strong input motions. Moreover, it emphasises the 

importance of the Vs profile in site response prediction, especially at the near surface, which 

leads to the study undertaken in Chapter 6. 

7.2.4 Chapter 5 

The initial spectral response results from the equivalent linear and nonlinear analyses show 

that, apart from PGA scaling, the remaining selection strategies result in similar response 

for both seismic intensity levels. The first two natural periods of soil deposit contribute to 

the seismic oscillations. The outputs of the simulations also imply that the EC8 design 

response spectrum may not be a good indicator of a future earthquake event at a 0.15g 

seismic intensity level. In contrast, it becomes a better proxy according for a 0.35g seismic 

intensity level, as confirmed by both equivalent linear and nonlinear analyses. It is also found 

the inappropriateness of the EC8 design response spectrum at the 0.35g seismic intensity 

level for soil deposits with depths higher than 50 m, due to the considerable amplification 

in the long period ranges.  

EDP results point out that the spectral matching selection strategy is the best candidate 

amongst the others as it leads to the least scattered response, thus requiring fewer nonlinear 
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site response analyses. The Sa(T1) or 0.2T1-2T1 selection strategies can be seen as the 

second-best options to be considered. 

Increasing the number of input motions does cause similar median response spectra and 

introduces greater uncertainty or scatter in terms of EDPs. This, hence, does not suggest to 

increase the number of input motions from 7 to 14. From the test results for the selection 

strategies using either 7 or 14 input motions it is concluded that, except from the EDPs from 

PGA selection strategy, the median EDPs from the remaining selection strategies can be 

regarded as equal at both 0.15g and 0.35g seismic intensity levels. 

7.2.5 Chapter 6 

The results of 200 nonlinear MCSs reveal that the variability of G/Go and D curves does 

clearly affect the spectral response predictions, while a very small effect is observed when 

the Vs profile is varied under the strong input motion. Median responses are shown to be 

remarkably similar to the baseline responses obtained by using mean Vs profile and G/Go 

and D curves. Hence, no improvement is observed when the variability of soil property is 

included in the site response analyses. 50 randomisations of G/Go and D curves seem to be 

sufficient to obtain a stable median response at the surface of the soil deposit. Increasing the 

level of truncation from one std to two and three std around Vs profile and G/Go and D curves 

does not change the median responses, but only increase the level of logarithmic standard 

deviation. This is especially evident at around T1, where the site amplification tends to be 

greater and becoming more sensitive to the variability of soil property. Spatial variability of 

Vs profile does also not show any considerable impact on the median response. 

In case of simulating the weak input motion, the variability of Vs profile is the major factor 

influencing the spectral response values, while no effect of the variability of G/Go and D 

curves is observed. Median response prediction in the former case shows better agreement 

with the actual spectral response than the baseline prediction. This is more strongly evident 

when the level of truncation is increased, along with the increase of logarithmic standard 

deviation. Spatial variability of Vs profile also influences the site responses, but does no 

significantly improve it as opposed to the case observed for the normal probability 

distribution. 

The results of the equivalent linear MCSs under the strong input motion show the influence 

of variability of both Vs profile and G/Go and D curves on the spectral response predictions 
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leading to median responses similar to the baseline response. The effect of the variability of 

Vs profile is greater than that of G/Go and D curves. The results under the weak input motion 

demonstrates only the influence of Vs profile on the spectral response, while the variability 

of G/Go and D curves does not affect the response at the surface. 

7.2.6 Findings of the Study 

In light of the aim and objectives of this research study, Chapter 2 and Chapter 3 depict the 

necessity of such study in the geotechnical engineering field, particularly for site response 

analyses. While Chapter 4 tests the performance of the employed nonlinear FE approach 

with the advanced soil constitutive model, it also highlights the importance of shear wave 

velocity profile in site response analyses. Chapter 5 analyses the input motion selection 

strategies with respect to spectral responses and EDPs at the surface and tests the suitability 

of EC8 design response spectrum. Finally, Chapter 6 investigates the influence of variability 

of soil properties on equivalent linear and nonlinear site response analyses. Overall, the 

findings of the thesis can be listed as follows: 

1. The equivalent linear and nonlinear FE codes (EERA and SWANDYNE II, 

respectively) can be useful in predicting site responses when a weak input motion is 

simulated. 

2. The use of a FE code can be particularly recommended in simulating a strong input 

motion as it captures early irreversibility and accumulation of pore water pressure 

during seismic oscillations. 

3. Spectral matching selection strategy is the best candidate in the selection of bedrock 

input motions for site response analyses. Sa(T1) or 0.2T1-2T1 selection strategies can 

be the second best options if only linear scaling is considered appropriate. 

4. Consideration of seven bedrock input motions is sufficient to obtain a stable response 

at the surface, especially for the selection strategies mentioned in the previous point. 

5. The influence of variability of elastic and nonlinear soil properties on site responses 

is dependent on the seismic intensity level of the input motion. The effect of 

variability also show differences with respect to the numerical model adopted (e.g. 

equivalent linear or nonlinear numerical approaches).  

6. Nevertheless, the inclusion of variability into nonlinear or equivalent linear site 

response analyses does not tend to improve the response predictions as the median 
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spectral responses are in good agreement with the baseline predictions, especially in 

the case of simulating strong input motions. 

7.2.7 Recommendations for Future Works 

This research mainly studies input motion selection strategies and the influence of variability 

of soil properties on site response analyses along with the verification of the adopted 

constitutive model in describing the behaviour of soil deposits in two-dimensions (2D). 

Equivalent linear analyses are also undertaken for comparison purposes. While the findings 

of the study are presented in the previous section, the current section intents to give 

suggestions for future works concerning site response analyses. 

2D nonlinear FE analyses is shown to lead to a reasonable response prediction at the Lotung 

site, especially in the E-W direction. Inefficiency of the numerical model in predicting the 

N-S component of the earthquake event is further studied in this study by using reduced 

stiffness profile and some improvement is observed. It is important to note here that the 

spectral amplification at the top 6 m is far greater in the N-S direction than in the E-W 

direction. This makes a good prediction in both directions not possible by using the same 

soil profile. For possible future studies addressing this issue, it is either necessary to modify 

and adopt different soil profiles in E-W and N-S directions in terms of its elastic and 

nonlinear soil properties (as, to some extent, applied in Chapter 4). Or, three-dimensional 

(3D) FE modelling can be used as it will enable to apply the input motions simultaneously 

in both horizontal directions. Full-scale FE modelling of the site can be an alternative study 

that will allow to more realistically simulate the seismic wave propagation through the soil 

layers as the geological formations in the E-W and N-S directions are different (as presented 

in Chapter 4). This is known in the literature as basin effect on site response analysis (Ince 

and Yılmazoğlu, 2014) and can be firstly studied in 2D models and then extended to 3D 

models of the Lotung site.  

This study gives preferable input motion selection strategies for site response analyses of 

soft soil deposits and confirms the inability of EC8 design response spectrum in representing 

the possible future earthquake event. It is also advised to consider the thickness of soft soil 

deposits when the design response spectrum is constructed. In order to pronounce these 

conclusions more strongly, it is necessary to conduct a considerable number of site response 

analyses with a number of different bedrock input motions and different soil deposits. 
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Furthermore, the selection strategies studied here can be further examined in terms of 

structural response by modelling the full soil-foundation-structure interaction problem. This 

will require a numerical code where the behaviour of the soil, foundation and structure 

subjected to dynamic loading can be modelled at the same time. It is only in this way that 

the work will contribute to closing the gap between the geotechnical and structural 

engineering practitioners in relation to understanding comprehensively seismic hazards of 

earthquake events to earth structures. 

Lastly, this study points out the dependence of site response predictions on the seismic 

intensity levels and the numerical models considered when a statistical variation of the soil 

properties is accounted for. It also indicates that the involvement of variability of soil 

properties does not clearly improve the prediction and, thus, its consideration in site response 

analysis seems not to be encouraging. To further discretise the uncertainty in site responses, 

influence of stiffness contrast between the soil layers should be carefully investigated as it 

can cause great amplification, especially at the near surface. Secondly, the influence of 

variability in the thickness of soil deposit on site response should be studied to better 

quantify the uncertainty in the responses. Finally, a deeper insight into the influence of 

variability of soil properties will be gained by modelling a site in 3D and applying the two 

horizontal components of an earthquake event simultaneously. 
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Appendix A 

1 EC8 Design Response Spectrum 

Horizontal design response spectrum is described with the following parameters, within the 

corner period ranges (𝑇𝑇𝐵𝐵 ,𝑇𝑇𝐶𝐶  and 𝑇𝑇𝐷𝐷 ): 

0 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐵𝐵 →   𝑆𝑆𝑒𝑒(𝑇𝑇) = 𝑎𝑎𝑔𝑔𝑆𝑆 �1 +
𝑇𝑇
𝑇𝑇𝐵𝐵

(𝜂𝜂2.5 − 1)� A.1 

𝑇𝑇𝐵𝐵 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐶𝐶 →   𝑆𝑆𝑒𝑒(𝑇𝑇) = 𝑎𝑎𝑔𝑔𝑆𝑆𝑆𝑆2.5 A.2 

𝑇𝑇𝐶𝐶 ≤ 𝑇𝑇 ≤ 𝑇𝑇𝐷𝐷 →   𝑆𝑆𝑒𝑒(𝑇𝑇) = 𝑎𝑎𝑔𝑔𝑆𝑆𝑆𝑆2.5 �
𝑇𝑇𝐶𝐶
𝑇𝑇
� A.3 

𝑇𝑇𝐷𝐷 ≤ 𝑇𝑇 ≤ 4𝑠𝑠 →   𝑆𝑆𝑒𝑒(𝑇𝑇) = 𝑎𝑎𝑔𝑔𝑆𝑆𝑆𝑆2.5 �
𝑇𝑇𝐶𝐶𝑇𝑇𝐷𝐷
𝑇𝑇2

� A.4 

where  

𝑆𝑆𝑒𝑒(𝑇𝑇)= elastic response spectrum;  

𝑇𝑇 = vibration period of a linear single-degree-of-freedom system;  

𝑎𝑎𝑔𝑔= design ground acceleration on type A ground (𝑎𝑎𝑔𝑔  = 𝛾𝛾𝐼𝐼𝑎𝑎𝑔𝑔𝑔𝑔);  

𝛾𝛾𝐼𝐼=importance factor; 

𝑎𝑎𝑔𝑔𝑔𝑔=reference peak ground acceleration on type A ground; 

 𝑇𝑇𝐵𝐵=lower bound of the period of the constant spectral acceleration region;  

𝑇𝑇𝐶𝐶=upper bound of the period of the constant spectral acceleration region;

𝑇𝑇𝐷𝐷= period at and beyond which the constant displacement response range of the spectrum;  

S=soil factor;  



APPENDIX A  

210 
 

𝜂𝜂=damping correction factor with a reference value of η = 1 for 5% viscous damping. 

The soil factors and the corner periods (𝑇𝑇𝐵𝐵 , 𝑇𝑇𝐶𝐶 , and 𝑇𝑇𝐷𝐷) values for each type of soil in 

seismicity Type 1 and Type 2 cases are given in the following table: 

Ground Type 

Seismicity Type 1 Seismicity Type 2 

S 𝑇𝑇𝐵𝐵(s) 𝑇𝑇𝐶𝐶(s) 𝑇𝑇𝐷𝐷(s) S 𝑇𝑇𝐵𝐵(s) 𝑇𝑇𝐶𝐶(s) 𝑇𝑇𝐷𝐷(s) 

A 1 0.15 0.4 2 1 0.05 0.25 1.2 

B 1.2 0.15 0.5 2 1.35 0.05 0.25 1.2 

C 1.15 0.20 0.6 2 1.5 0.1 0.25 1.2 

D 1.35 0.20 0.8 2 1.8 0.1 0.3 1.2 

E 1.4 0.15 0.5 2 1.6 0.05 0.25 1.2 

Table A.1 Soil factors (S) and corner periods for each soil class. 
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2 Horizontal Components of the Records 

The median spectral response of the accelerations recorded along two horizontal directions 

on soil class D and available in each database are represented here. 
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Figure A.1 Median horizontal spectral response of the earthquake events available in the 
earthquake databases and recorded on soil class D. 
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Appendix B 

Chapter 6 - Application of the N-S Component of the Lotung Earthquake Events 

Since the influence of elastic and nonlinear soil properties is presented in Chapter 6 only for 

the E-W components of the earthquake events, in this Appendix the results under the N-S 

component of the events are demonstrated. While Figure 1 shows the acceleration-time 

histories in the N-S direction, the results of the nonlinear MCSs in terms of spectral 

accelerations are presented in Figure 2 and Figure 3 for the strong and weak input motions, 

respectively. 

 

Figure B.1 Recorded input motions at the Lotung site in the North-South (N-S) direction: 
(a) strong earthquake event (LSST7) and (b) weak earthquake event (LSST11).
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Figure B.2 Site response prediction under the strong input motion (LSST7-NS): (a) 
variability of 𝑉𝑉𝑠𝑠 profile based on the probability distribution, (b) variability of G/Go and D 
curves and (c) variability of 𝑉𝑉𝑠𝑠 profile based on the spatial statistics. 
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Figure B.3 Site response prediction under the weak input motion (LSST11-NS): (a) 
variability of 𝑉𝑉𝑠𝑠 profile based on the probability distribution, (b) variability of G/G0 and D 
curves and (c) variability of 𝑉𝑉𝑠𝑠 profile based on the spatial statistics. 
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