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Abstract 

Polyoxometalates (POMs) are metal-oxide polynuclear anions. The interface 

between a metal (often in the form of nanoparticles) and a metal oxide is 

important in heterogeneous catalysis and has been the subject of intense 

research over years. The stabilization of metal nanoparticles (such as Pd, Pt, 

Ag, Au, Ir, Rh, Ru) by polyoxometalates has been studied by Weinstock, 

Papaconstintinou and Kortz. This represents a new type of catalytic material 

where molecules (e.g. H2) may be activated at the metal nanoparticles while 

the POM provides redox and Brønsted acid functionality. Metal nanoparticles 

and POM molecular metal oxides have each been applied in chemical synthesis, 

electrochemistry and photocatalysis, but by exploiting the interface between 

metal nanoparticles and POMs, this project aimed to design new nanoscale 

catalysts that incorporate the features associated with each component. A 

convenient method of reduction by hydrogen was used to synthesize POM-

stabilized ruthenium nanoparticles, which were subsequently incorporated into 

immobilized systems as catalysts. The catalysts were then tested for a range 

of transformations. 

The brief history of the development of POMs, the classification and structure 

of POMs and the function and application of POMs is discussed in Chapter 1. 

The use of polymer-immobilised ionic liquid phase (PIILP) and graphite-like 

carbon nitride (C3N4) as supports is introduced based on previous research. 

In Chapter 2, the preparation of a series of POM stabilized ruthenium 

nanoparticles in aqueous solution is discussed, wherein the different kinds of 

POMs (H3PW12O40, H3PMo12O40, H4SiW12O40, K6[P2W18O62].19H2O and 

K10[P2W17O61].20H2O ) were used to prepare Ru0@POM in solution. The result 

of these showed that the POM anions were adsorbed onto the surface of metal 
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nanoparticles due to the POM anions being able to afford negative charges to 

metal nanoparticles. The performance of the resulting nanoclusters for a range 

of reactions was assessed. In Fischer-Tropsch synthesis, the hydrogenation of 

CO to produce hydrocarbons occurred at 150 oC over 18 hrs. According to the 

results of electrochemical CO2 reduction in acid aqueous solution, Ru0@POM 

nanoclusters also improved reaction performance compared with pure Ru0 

nanoparticles. 

Ru0 nanoparticles and POMs have been shown to act in tandem for (i) activation 

of H2 and (ii) creation of strong Brønsted acidity, but these POM-stabilised Ru0 

nanoparticles are difficult to recover and recycle. The high solubility of POMs in 

aqueous solution has limited the application of Ru0@POM nanoclusters; and in 

Chapter 3 describes attempts to address this problem through the use of water-

tolerant polymer-immobilised ionic liquid phase (PIILP) supports upon which to 

immobilize Ru0/POM nanoparticles, to give Ru0@POM/PIILP bifunctional 

catalysts for the hydrogenation of trans-cinnamaldehyde, 5-

hydroxymethylfurfural and furfural. Ru0@POM/PIILP exhibited excellent 

catalytic performance in terms of both conversion and selectivity.  

In Chapter 4, catalysts prepared by adsorbing polyoxometalate-stabilized 

ruthenium nanoparticles onto carbon nitride are described. The g-C3N4 is a 

semiconductor with a high surface area and is an attractive support for POM-

stabilized ruthenium nanoparticles. This Ru0@POM/C3N4 material is a potential 

redox and photocatalyst for hydrogenolysis of cellobiose to sorbitol, selective 

hydrogenation of levulinic acid and water splitting. The H2 production efficiency 

of Ru0@H3PW12O40/C3N4 was 6.44 times higher than that of g-C3N4. The 

Ru0@H3PW12O40/C3N4 catalyst gave a high sorbitol yield (85%) for 

hydrogenolysis of cellobiose and was highly selectivite for GVL (almost 100%) 

in the hydrogenation of levulinic acid. 
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The catalysts described in Chapters 2-4 were characterized by a combination 

of techniques including NMR, UV-vis, XRD, FT-IR, UV-DRS, TGA, SEM, TEM 

and XPS analysis.  

The results obtained in this thesis emphasize the potential of polyoxometalate-

stabilized ruthenium nanoparticles in new functional composites for catalysis. 

In the future, more extensive research will expand their use for conversion of 

biomass and platform chemicals as well as for green electrocatalytic reduction 

and photocatalysis.  
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Chapter 1. Background 

1.1 Polyoxometalates 

1.1.1 A brief background to polyoxometalates chemistry  

Polyoxometalates (POMs) have been studied for more than one hundred years, 

and represent an important research field in inorganic chemistry and catalytic 

chemistry. The polyanions are formed by the condensation of oxyanions, such 

as:  

 

The heteropolyanions are formed by the incorporation of other elements, such 

as: 

 

The corresponding acid salt is called a heteropoly acid, i.e. H3PW12O40, which 

is the classical heteropoly acid, 12-phosphotungstic acid. 

As early as 1826, Berzelius described the yellow precipitate produced by 

adding ammonium molybdate to phosphoric acid, which is known as 12-

phosphomolybdic acid. At that time, the question of its composition and 

structure was not discussed. It was not until 1862 that Marignac discovered 

tungstosilicic acid and its salts and accurately determined the composition of 

these heteropoly compounds, and truly opened the era of POM research. In 

1872, Scheibler synthesized 12-phosphotungstic acid. Miolati and Rosenheim 

measured and synthesized phosphomolybdic acid [H7P(Mo2O7)6] by 

conductometric titration and ether extraction, respectively. In 1929, Pauling 

proposed a three-dimensional model of 12 series of POM structures, that is, the 

"basket" structure of heteropoly acids, thus making the development of 

heteropoly acid chemistry enter a new period.1 According to Pauling’s model, 
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12-silicotungstic acid and 12-phosphotungstic acid can be written as: 

H4[SiO4W12O18(OH)36] and H3[PO4W12O18(OH)36]. Although the idea was 

incorrect, it represented a new way of thinking, and laid a foundation for the 

later development of heteropoly acids. In 1934, J.F. Keggin of the Bragg 

research group prepared H3PW12O40·5H2O by drying 12-phosphotungstic acid 

containing about 30 H2O using P2O5. The XRD of H3PW12O40·5H2O powder 

showed 32 sharp diffraction lines, which were compared with the calculated 

results and a structural model was proposed.2 The structure of the 2:18 

heteropoly compound K6[P2W18O62]14·H2O was determined by Dawson in 

1953.3 Therefore, the 2:18 heteropoly compounds are the Dawson structure. In 

1974, the 1:6 heteropoly compounds conjectured by Anderson in 1937 were 

finally identified as the Anderson structure4, such as [TeMo6O24]6-. The above 

three structures together with Waugh4,5, Silverton6 and Lindqvist structures are 

the six basic structures of heteropoly compounds. Since the 1980s, POM 

research has become more active than ever, with a great expansion in applied 

resarch. 

In recent years, due to the overlap of various disciplines, new methods have 

been introduced into POM chemistry. In addition to conventional solution 

synthesis under conventional conditions, hydrothermal / solvothermal synthesis, 

high-temperature solid-phase synthesis and other synthesis methods are now 

used extensively.  

1.1.2 Structure and characterization of polyoxometalates  

1.1.2.1 Structure of polyoxometalates 

Polyoxometalates can be classified into:7 
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(1) A 1:12 series of heteropoly anions with tetrahedral coordination. The 

structure of this kind of POM is also called Keggin structure (Figure 1.1). Typical 

representatives are [PW12O40]3-, [PMo12O40]3-, [SiW12O40]3- and [SiMo12O40]3-, 

etc. 

(2) A 2:18 series of heteropoly anions with tetrahedral coordination. This kind 

of POM is called Dawson structure. The typical representative is [P2W18O62]6-, 

[As2W18O62]6- and [As2Mo18O62]3- ect. The structure of these heteropoly anions 

is shown in Figure 1.1. It consists of two identical half-cells that are connected 

by a plane of symmetry perpendicular to the triple axis of rotation. Each half cell 

is a central XO4 (X = P, As, etc.) tetrahedron surrounded by nine MO6 (M = W, 

Mo, etc.) octahedra, which are connected together by edges. Among them, the 

half-cells also share a common side with the center XO4 tetrahedron. 

(3) A 1:6 series of heteropoly anions with octahedral coordination. This kind of 

POM is called Anderson structure, typical representative is [TeⅥMo6O24]6- and 

[X Ⅲ Mo6O24]9- (X = Al, Ga, Cr, Fe, Co, Rh, etc.). The structure of these 

heteropoly anions is shown in Figure 1.1. It consists of seven octahedra in a 

plane, and six MoO6 octahedra forming a ring around the central TeO6 

octahedron. 

(4) A 1:12 series of heteropoly anions with icosahedral coordination. This kind 

of POM, called Silverton structure, is typically represented by [Xn+Mo12O42](12-n)- 

(X = CeⅣ, ZrⅣ, ThⅣ).The heteropoly anion structure is shown in Figure 1.1. It is 

composed of 12 MoO6 octahedra, with a central icosahedral Ce with a 

coordination number of 12. It contains 42 oxygen atoms, which is different from 

the tetrahedral coordination [PMo12O40]3- and [PW12O40]3-, and belongs to the 1: 

12B series where the central atom is 12 coordinated.  

(5) A 1:9 series of heteropoly anions with octahedral coordination. The structure 

of the POM is also called Waugh structure, which is represented by 
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[Xn+Mo9O24](10-n)- (X = MnⅣ, NiⅣ)and so on. This heteropoly anion structure is 

shown in Figure 1.1, Mn with octahedral coordination is partially surrounded by 

MoO6 octahedra. 

 

Figure 1.1 (a) Keggin, (b) Dawson, (c) Anderson, (d) Silverton, (e) Waugh and 

(f) Lindqvist structures of polyoxometalates 

In addition to the above five types, there are 1:11 and 2:17 series of heteropoly 

compounds. Among the above kinds of POM, the most commonly encountered 

is the 1:12 series with tetrahedral coordination, that is, the POM with Keggin 

structure.  

1.1.2.2 Characterization 

The methods to characterize the structure of POM include: vibrational 

spectroscopy, electron paramagnetic resonance (EPR), nuclear magnetic 

resonance spectroscopy (NMR), X-ray single crystal and powder diffraction 

(XRD) and X-ray absorption fine structure (XAFS). 

(1) Vibrational spectroscopy includes infrared and Raman spectroscopy. 

Infrared spectroscopy (IR) is the most commonly used method in heteropoly 
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anion chemistry. It can be used to identify heteropolyanions, mainly for the 

determination of solid POM. In POMs with the Keggin structure, the vibrational 

stretching frequency of each bond is as follows: 

 

X-Oa: W 1079 cm-1, Mo 1064 cm-1 

M=Od: W 983 cm-1, Mo is 964 cm-1 

M-Ob-M: 890-850 cm-1 

M-Oc-M: 800-760 cm-1 

The IR results show that the skeleton vibration characteristics of Keggin 

structures are almost the same between 600 and 1200 cm-1 when the number 

of crystal water and the counter-cations are different.8 Therefore, the primary 

structure of POM is reflected by IR spectra, and it is quite stable.  

To confirm the target POM, reference IR spectra are used as controls. IR 

spectra of the heteropoly anion in the solution and the crystal are similar, and 

results show that the structure of solute anion is consistent with that observed 

in crystal. The IR structural determination of POMs is used extensively for the 

molecular recognition and molecular structure resolution, in catalytic reactions 

and redox reactions of POM. 

Raman spectroscopy can provide useful information for the identification of 

chemical species in solid samples and aqueous solution. It is an important 

method for the study of POMs. For example, Mioc et al. have studied the 

Raman spectra of POM, which are used to recognize H3O+, H2O and the 

interaction between, OH...H2O, H3O+...H2O and H2O...H2O. 

(2) Electronic spectroscopy (ultraviolet-visible spectroscopy). POMs generally 

have two absorption bands at 200 and 260 nm, and the absorption bands 

belongs to the electron transition. 
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(3) Nuclear magnetic resonance (NMR). NMR can not only provide information 

about the structure and solution equilibria involving heteropoly anions, but also 

can be used to identify heteropoly anion. 

(4) X-ray powder diffraction (XRD) and X-ray absorption fine structure (XAFS). 

XRD is an important method to study the structure and properties of solids. Two 

points should be paid attention to in the application of this method: (a) If the 

sample is amorphous or vitreous, there is a broad peak, which can not be 

identified; (b) The same POM with Keggin structure have different positions of 

diffraction peaks. This is because the XRD characterizes the secondary or 

tertiary structure of the POM. The diffraction peaks of the POM are different 

when the counterious or the crystal water are different. The position of the 

diffraction peak determines the lattice structure of the crystal and the diffraction 

intensity depends on the position of atoms in the crystal cell. The experimental 

results show that the secondary or tertiary structures of POM are easy to 

change.  

X-ray absorption fine structure (XAFS) is the general name of XAFS and 

XANES. It includes atomic valence, electron state, coordination symmetry and 

local structure information around the atoms absorbing X-rays. 

1.1.2.2.1 Acidity and characterization of POMs 

POMs exhibit stronger acidity than traditional inorganic oxyacids (sulfuric acid, 

phosphoric acid, etc.). Acidic POMs are completely dissociated in aqueous 

solution and gradually dissociated in organic solvents.9 The order of acidity of 

conventional POM is: H3PW12O40 > H4PW11VO40 > H3PMo12O40 ~ H4SiW12O40 > 

PMo11VO40 ~ H3SiMo12O40 >> HCI, HNO3.10 

As a solid acid catalyst, the most important property of POM lies in their unique 

acidity. It is a protic acid and its acidity is stronger than that of SiO2-AI2O3. 
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H3PO4/SiO2, molecular sieve and other solid acids.11 The acid strength of POM 

mainly depends on the elements and counter-cations, so the acid catalysts with 

certain acid strength can be designed and synthesized by changing the 

composition elements and counter-cations. At present, there are five main 

methods to adjust the acid strength of POM catalysts: (1) proper selection of 

anionic; (2) partial neutralization to form acid salts; (3) salt forming with different 

metal ions; (4) salt formation with different organic bases; (5) dispersion on a 

support. 

The results show that the acidity of heteropolyacid salts may include the 

following five mechanisms: (1) protons in acid salts; (2) weak acidic protons due 

to partial hydrolysis of heteropolyanions during preparation; (3) protons 

produced by acid dissociation of water molecules coordinated with metal ions; 

(4) Lewis acidity of metal ions; (5) protons produced by hydrogen reduction of 

metal ions.7  

Both in solution and solid, POMs have strong Brønsted acidity, and their salts 

have both Brønsted acid sites and Lewis acid sites. Its acidity is characterized 

by the type of acid center, the strength of acid center and the concentration of 

acid center.  

Table 1.1 IR bands of pyridine in 1400-1700cm-1 region on solid acids 

Pyridine hydrogen 

bonding 

Pyridine coordination 

bond 

Pyridine cations 

1400-1447(vs) 

1485-1490(w) 

1580-1600(s) 

 

1447-1460(vs) 

1485-1500(vs) 

1488-1503(v)  

1580(v) 

1600-1633(s) 

1485-1500(vs) 

1540(s) 

1620(s) 

1640(s) 
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The adsorption of ammonia and pyridine on the surface of solid acid can 

distinguish the type of solid surface acid, that is, the type B-acid and L-acid. 

Basila and Kantne have indicated that ammonia has three adsorption forms on 

SiO2-Al2O3: the physical adsorption ammonia, the coordination bond and the 

ionic form NH4
+, each adsorption state can be detected with a corresponding 

absorption band.12 Similarly, the band of coordination bond formed between 

pyridine and surface is different from that of pyridine ion, as shown in Table 

1.1.13 When adsorbed on a strong B-acid site, it exists in the form of a pyridine 

cation (C5H5NH+), and when adsorbed on the L-acid center, it exists in the form 

of a coordination compound containing an acceptor bond. In other words, 1540 

cm-1 is the characteristic absorption band of pyridine adsorbed on the B-acid 

center, and 1450 cm-1 is the characteristic absorption band of pyridine adsorbed 

on the L-acid center. 

For example, Yue et al. used in situ TPD-FTIR technique to characterize the 

surface acid type of H3PMo11VO40·12H2O, H3AsMo11VO40·8H2O catalyst. It was 

found that only L-acid sites existed on the surface when the purification 

temperature was below 120 oC. When higher than 120 oC, B-acid and L-acid 

exist simultaneously.  

The commonly used methods for the determination of acid strength and acid 

content of POM and their salts are Hammett indicator method, n-butylamine 

potentiometric titration method and NH3-TPD method.14-17 

1.1.2.2.2 Redox characterization  

Redox properties of POMs are another important characteristic of POMs for 

catalysis. The redox ability also depends on the central heteroatom, the 

addenda atom and the counter-cations. When the skeleton metal atom is fixed, 

the oxidation ability of the POM increases with the increase of electronegativity 



Chapter 1. Background 

9 

 

of the central atoms, which is consistent with the experimental results in the 

order of oxidation: SMo12O40
2- > AsW12VO40

3- > PMo12O40
3- > GeMo12O40

4- > 

SiMo12O40
4- > AlMo12O40. 5-18 It also accords with the results of quantum 

chemistry calculation.  

The redox properties of POM can be characterized by polarography and 

voltammetry.19 This is because its redox potential can well reflect its redox 

ability. In addition to characterizing its redox properties, the polarographic 

method has historically been used to distinguish isomers, identify heteropoly 

anions and study the structural transformation between reductive states.  

1.1.3 Polyoxometalate-stabilized with metal nanomaterials 

Up to now, there are a variety of methods and stabilizers used to synthesize 

metal nanoparticles.20-27 Nanoparticle synthesis using POMs is different from 

other methods using various reductions and “stabilizers”. The synthetic method 

is simple, the reaction conditions are mild. Different from other stabilizers, POM, 

as a stabilizer, can enhance the properties of metal nanoparticles because of 

its electrocatalysis, photocatalysis, and redox, ect.28 In particular, the catalytic 

activity of POM stabilized with gold nanoparticles metal is very significant.29-32 

POMs can be used as a reducing agent, stabilizer and photocatalyst to 

synthesize nanoparticles with many advantages, such as: (1) the method of 

synthesis is simple and has fewer steps; (2) can exist stably in a large pH range; 

(3) can be used as reducing agent, stabilizer and photocatalyst at the same 

time33,34 (4) the nanoparticles can be modified, coordinated and bonded with 

other functional molecules to obtain new functional materials. 

Therefore, using POM to synthesize new functional nanoparticles and study 

their applications has gradually become of great interest. 
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1.1.4.1 Synthesis of nanoparticles coated with Keggin type 

polyoxometalate 

As early as 1956, Chalkley had used a photochemical method to prepare 

elemental silver by using the one-electron reduced Keggin anion [PW12O40]4- 

as a reducing agent.35 The principle of the reaction is as follows: 

 

Chemical reduction is the most common method for the synthesis of silver 

nanoparticles. In general, in chemical reduction, the most common reductants 

are hydrogen, citrate, ascorbic acid, borohydride, etc.36-40 The use of POM can 

be attributed to one method, because POM can be used as photocatalysts, as 

well as reductants (recent work by Laurent Ruhlmann suggests that POMs 

serve to generate radicals in solution by photochemical reaction with RCH2OH 

and the radicals act as reducing agents for Mn+) and stabilizers.33,41,42 

The reduced POMs have two most basic applications: (1) reducing precious or 

toxic metal, and degradation of organic pollutants in the system at the same 

time; (2) can provide a simple and effective method to synthesize metal 

nanoparticles. Reduced POM is a very effective reductant. It can be easily 

oxidized by many chemical reagents, including metal ions, such as: Ag+, Cu2+, 

Pd2+, Au3+, Hg2+, Cr6+, and so on.42,43 

Troupis et al. proposed that the reduction of metal ions to zero valence single 

substance requires that organic substrates act as electron donors and POM be 

used as photocatalysts in photocatalytic cycles, and that the following reactions 

occur:43 
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By adjusting the appropriate reaction conditions, in a low ionic strength 

environment, nanoparticles such as Ag, Au, Pd, Pt with a narrow size range can 

be obtained by this method. Using the Keggin type heteropoly anions 

[SiW12O40]5- and [PW12O40]4- as photocatalytic reductants, four noble metal 

nanoparticles (Ag0, Au0, Pd0, Pt0) were successfully synthesized by this 

method.34, 44 

Compared with other ligands, the size of heteropoly anions is large and the 

negative charge is high, it can prevent metal nanoparticles from aggregating. 

For example, [SiW12O40]4- is spherical, with four negative charges and a 

diameter of about 1.2 nm, and is not protonated even at pH = 1.34 

The choice of POM with appropriate redox potential can control the size of silver 

nanoparticles. The more negative the reduction potential of POM, the faster the 

reduction rate of Ag, for example, H2W12O40
7− > SiW12O40

5− >P2W18O62
8− > 

P2W18O62
7− > P2Mo18O62

10− > P2Mo18O62
8−.41 In addition, increasing the 

concentration of POM reductants will lead to the gradual formation of small 

nanoparticles, and the concentration of silver ions will also affect the size of the 

particles, and the increase in the amount of silver ions will lead to a larger size 

of the silver ion.45 

Gordeev presented the ability of POMs to act as catalytic reducing reagents 

and stabilizers upon radiolysis of aqueous solutions of metal ions for the 

formation of Ag, Cu, Cd, Ti, Pd, Co, and Ni nanoparticles. 

Gordeev et al indicated that radiolysis reduced [PW12O40]3- to [PW12O40]4- and 

then transfer electrons to Ag+ to form a stable Ag0 nanoparticles.42 Inspired by 

this, Papaconstantinou et al found that in the deoxygenated POM/S/Mn+ (POM: 

PW12 or SiW12, S: isopropanol or 2,4-dichlorophenol, Mn+: Ag+, Pd2+, Cu2+) 

solution, metal precipitates or nanosol were prepared by adjusting the ionic 

strength of the solution, and POM were excited by ultraviolet light. Heteropoly 

blue is obtained from isopropanol (as an electron donor), and then the electron 
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is transferred from heteropoly blue to Ag+ to form Ag0, thus forming a 

photocatalytic process. In the process, the POM acts as photocatalyst, 

reductant and stabilizer. 

Shanmugam et al described a one-step chemical method in which gold and 

silver particles were implanted into the complex.43 They proved that [SiW12O40]5- 

are helpful in promoting the reduction of metal nanoparticles on the composite 

film. The average size of silver particles was 16 nm, which can be controlled by 

controlling the immersion time and the concentration of metal ion solution. The 

size distribution of silver particles can be changed by changing the 

concentration of [SiW12O40]5- in the composite film.46,47 The preparation method 

is shown in Figure 1.2. First, the composite membrane is synthesized by sol-

gel method and spin-coated on the glass; then the composite film is immersed 

in AgNO3 solution and irradiated in sunlight, and the blue composite film 

gradually turns yellow within a few minutes due to the formation of silver 

particles on the composite film. 

 

Figure 1.2 Preparation of Ag NPs embedded composite film 
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In 2003, Mandal et al reported that gold nanoparticles stabilized by 

photochemically active [PW12O40]4- can reduce Ag ions at their surface to give 

Au-Ag core-shell bimetallic nanoparticles under UV irradiation.48 This method 

is unique in that the reaction takes only a few seconds at room temperature and 

the reduction of POM is mild (Figure 1.3). 

 

Figure 1.3 (A) Scheme of synthesis of Au core Ag shell NPs by the Keggin ion-

mediated. (B) UV-vis spectra of (1) PTA solution after UV irradiation; (2) addition 

of HAuCl4 solution to PTA solution and then UV irradiation; (3) solution 2 after 

further UV irradiation; (4) addition of Ag2SO4 solution to solution 3; and (5) 

addition of Ag2SO4 solution to solution 2.  

In 2008, Nadjo et al used K9[H4PVIVW17O62] (HPVIV) as a reducing agent and 

stabilizer to reduce the Pd2+ in acid solution to obtain about HPV-capped 

palladium nanoparticles nanoparticles (6 nm).49 Moreover, HPV-capped the 

small size palladium nanoparticles can further self-assemble into a stable 

supramolecular hollow structure (blackberry structure) with a diameter of 

60~100 nm (Figure 1.4). The blackberry structure nanoparticles have a much 

better hydrogen storage capacity than ordinary isolated palladium 

nanoparticles.  
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Figure 1.4 The 3 nm radius Pd NPs with a layer of HPV on the surface self-

organize into aggregates.  

1.1.4 Application of Keggin type polyoxometalate 

POMs are a widely used species, which can play a powerful role in the selective 

oxidation of organic molecules as well as in treating various viruses. As an 

important branch of metal-oxo cluster, POM has become the new functional 

materials, the research of POM compounds has been involved in almost all 

fields, including the field of functional materials, catalysis and biomedicine.50-66 

The application of POM has the advantages: (1) In solvents, the structure of the 

basic POM skeleton remains the same as that of the original solid state. (2) 

There are many kinds of POM, and POM of different charges, sizes and shapes 

provide a solid basis for molecular design and assembly, making it possible to 

synthesize target molecular aggregates and target functional materials as 

electron receptors. (3) POM can be used as an electron acceptor, reduced to 

mixed valence heteropoly blue and combined with the organic π electron donor 

to form an inorganic-organic hybrid cluster. 

The early study of POM was devoted mainly to the synthesis and 

characterization of new POM species. Until the 1960s, people gradually 

became interested in the properties and applications of POM, thus began a new 
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era. Since then, POMs have been widely used in various fields because of their 

excellent properties, especially the multifunctional, modifiable and adjustable 

Keggin heteropoly anions. The skeleton of this kind of heteropolyanion is 

composed of MVI atoms with d0, which are coordinated to oxygen (O2-) ligand 

atoms. Therefore, this kind of POM may behave as an oxidizing agent and can 

be used in various homogeneous and heterogeneous catalytic systems.59  

1.1.4.1 Catalysis with Keggin type heteropolytungstate 

Hill and Khenkin were the first to use Keggin type heteropolytungstate as a 

catalyst.67 They found that tetra-substituted Keggin type POM 

[FeII
4(H2O)2(PW9O34)2]10- had high selectivity to epoxidation of alkene, which 

was not found in other iron-containing POM. In the same reaction system, three 

different [FeIIPW11O39], [(FeIII)(SiW9O37)]7- and [FeII
4(H2O)2(PW9O34)2]10- were 

used as catalysts, respectively. Their selectivity for the epoxidation of hexene 

is 79% and 90%, respectively. Therefore, the POM with a multi-iron sandwich 

have stronger catalytic selectivity to the reaction. Subsequently, Neumann and 

Gara used [WZnMn2
II(ZnW9O34)2]12- as catalysts for epoxidation of olefins by 

H2O2 oxidation. It shows that the high charge of POM is also helpful for catalysis. 

Therefore, the highly charged Keggin type sandwich structure POM has 

become a hot topic in the field of catalysis, and this class of POM is considered 

to be the most promising catalyst. They exhibit many advantages over other 

compounds in the catalytic process, for example, (1) their pH stability ranges 

from 6 to 10; (2) the substitution points in sandwich structure can be replaced 

by many other transition metals, such as Mn2+, Mn 3+, Fe2+, Fe 3+, Co2+, Ni2+, 

Cu2+, Zn2+, Pd2+ and Pt2+, which provides an opportunity for the design of new, 

better and more efficient catalysts; (3), their elemental composition can be 

modified, solubility can be adjusted, redox reversible, size, charge density, 

morphology and so on are all adjustable, and thus can meet the requirements 
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of various reactions on these aspects of the catalyst properties; (4) their 

selectivity, reaction rate and catalytic activity in redox of organics are very high, 

and can be recycled for hundreds or even thousands of times. 

Hybrid catalytic materials prepared by ionic liquids and POM are important for 

the development of POM catalysts. Wang et al. used imidazole, pyridine and 

quaternary ammonium salts modified with propane sulfonic acid as cations of 

ionic liquids to form a new solid organic heteropoly salt with Keggin POM anion 

(Figure 1.5), which exhibited high activity for various esterification reactions. 

The catalyst was solid and insoluble in water at room temperature, and when 

the reaction temperature was raised to 110 oC, the catalyst is soluble in 

polycarboxylic acid or polyol as reactants. After the reaction temperature 

decreases and the catalyst changes to a solid precipitation which is easy to 

separate and reused. 

 

Figure 1.5 POM modified ionic liquids catalyst 

Yan et al. synthesized a series of heteropolyacid salt/ionic liquid catalysts by 

reaction of POM with ionic liquids, which were used in transesterification of 

trimethylolpropane to synthesize self-degradabl] lubricating oils.68 
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[PyBS]3[PW12O40]showed the best activity, and had the characteristics of easy 

separation and high yield compared with the traditional catalyst. 

1.1.4.2 Electrocatalytic performance 

(1) Homogeneous electrocatalytic reduction: after the reduction of many POMs 

on an electrode, a series of reduced polyanions called "heteropoly blue" are 

formed. These heteropoly blue anions often have electrocatalytic activity and 

can be used for catalytic reduction in some reactions. For example, α-

[SiW12O40
4-] in acidic aqueous solution is easily reduced to [α-SiW12O40

5-] and 

[α-H2SiW12O40
6-] on the cathode. Both of them exhibit high electrocatalytic 

activity for nitrite ion reduction and hydrogen evolution.69 

(2) Homogeneous electrocatalytic oxidation: because the central atom and the 

coordination atom in the heteropoly anions are in the highest valence state, it 

is difficult to reoxidize on the anode. Therefore, it is necessary to replace one 

or more coordination atoms with some transition metal ions or lanthanide ions 

with a variable valence before they can be used as electrocatalytic oxidants. 

For example, ruthenium substituted [PW11O39Ru Ⅲ (H2O)]4- easily loses two 

electrons on the anode, oxidizes to [PW11O39RuVO]4- and then catalyzes the 

oxidation of organic compounds such as dimethyl sulfoxide, alcohols, etc.70,71 

(3) Heterogeneous electrocatalysis: in addition to homogeneous 

electrocatalysis, heteropolyanions can also be used to modify electrode 

surfaces, e.g. in conducting polymers for heterogeneous electrocatalysis. For 

example, [SiW12O40
4-], [PMo12O40

3-] and [P2W18O62
6-] can be incorporated into 

an electrode of poly (4-vinylpyridine-12-dibromodecane). These modified 

electrodes maintain the electrocatalytic properties of heteropoly anions in 

solution, and some of them have a better catalytic effect.72-74 

The electrochemistry and electrocatalysis of substituted POMs are less studied. 

Studies by Toth and Anson, focused on the electrochemistry of Fe substituted 
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Keggin POM and their electrocatalytic reduction of H2O2, NO2
- and NO-. In the 

process of catalytic reduction, Fe is not only the catalytically active site but also 

the inner electron transfer channel between the catalyst and the substrate.75 

1.1.4.3 Photocatalytic application 

The photochemical reduction of α-Keggin structure H3PW12O40 to heteropoly 

blue was noticed 80 years ago, and this phenomenon has been applied to the 

colorimetric test for elements, such as P, Si, As, Ge and the identification of uric 

acid, sugar and other biological compounds. In 1978, Isobe M of Tokyo 

University of Technology, Japan, noticed the photochromic effect of ammonium 

molybdate salt, and has done a lot of work in this field.76 The study of POM 

photochemistry has been paid more and more attention. Hill and Foxon in the 

USA and Papaconstantinon in Greece have done a great deal of pioneering 

work on the photochemical principle, photocatalytic reaction and photochemical 

synthesis with POMs, which has laid a foundation for the further development 

of POM photochemistry.33,63,77-72 

Since 1980, researchers have begun to study the photocatalytic properties of 

POM. Since the special structures of POM and their salts are similar to 

semiconductor metal (oxide atoms with 2p electron configurations and 

transition metal atoms with d0 electron configurations). Therefore, 

polyoxometalates can be used for photocatalytic experiments. The reaction 

mechanism of POM (HPA) photocatalysis can be summarized as follows: the 

electrons in the oxygen atom 2p orbit are excited into the transition metal empty 

5d orbit. This is an O-M charge transfer transition, i.e. OMCT. Based on the 

analysis of the molecular orbital theory, it can be seen that when the HPA 

molecule is illuminated, the energy absorbed by HPA is excited from the highest 

occupied orbit (HOMO orbital) to the lowest unoccupied molecular orbital 
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(LUMO orbital), an excited HPA* is formed, which has a strong oxidation 

capacity. This gives them the ability to oxidize other substances while being 

themselves reduced to heteropoly blue. 

 

Figure 1.6 POM electron transfer model 

Fig. 1.6 can be explained as follows: (a) electron transition produces "electron 

hole"; (b) hole and electron are captured by electron donor and acceptor 

respectively, oxidant is reduced and reductant is oxidized; (c) HPA was reduced 

to get HPA-, then HPA- was oxidized again and released electrons; (d) electron 

hole recombination, which has no effect on photocatalytic reaction, should be 

avoided as far as possible. 

The mechanism of photocatalytic degradation of organic compounds by POM 

presented by Papaconstantinou et al can be explained by the following 

method:33,80,83  

HPA + hv → HPA* (photoactive) 

HPA* + S → HPA(e-) + S(+) (redox reaction) 

HPA* + H2O → HPA(e-) +··OH + H (·OH radical formation) 

HPA(e-) + H+ + O2 → HPA + H2O (regeneration of catalyst) 

The difference of LUMO and HOMO energy of POM is equivalent to that 

between the conduction band and valence band of TiO2. The excited states 
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formed by photoexcitation have similar redox properties. For example, the 

redox potential of excited Keggin type POM is 2.63 eV, while that of excited 

state of TiO2 is 2.53 eV. Both of them have strong oxidation ability. Therefore, 

many organic reactions have thermodynamically difficult which only be carried 

out under harsh conditions can be successfully completed under mild 

experimental conditions through the photocatalytic action of POMs or TiO2. 

At present, there are many reports on the application of POM photocatalytic 

properties in organic chemical reactions, typical of which are (1) photocatalytic 

dehydrogenation of alkanes, alcohols, amines and oxygenated acids. 

Dehydrogenation of alkanes is an important reaction in the petroleum industry. 

(2) the activation of unsaturated hydrocarbon bonds remote from functional 

groups (carbonyl) in naphthenic ketones.84 (3) the functionalization of alkanes; 

If POM as a highly selective photoinitiator, the functionalization of alkanes can 

be successfully completed at room temperature and atmospheric pressure, and 

the resulting products are of practical value. (4) degradation and mineralization 

of organic pollutants; Such reactions are of particular importance in the field of 

environmental catalysis. 

At present, POM photocatalytic degradation of organic pollutants such as 

organic sulphide, halogenated hydrocarbon, halogenated aromatics and 

halogenphenol in homogeneous system is mainly reported, and their 

mineralization into CO2 and simple inorganic compounds. Photoactivated POM 

has a catalytic activity similar to that of TiO2 for these organic pollutants which 

are difficult to degrade by other methods. In addition, Papaconstantinon et al 

studied the photocatalytic properties and mechanism of Keggin species 

H3PW12, H4SiW12 and other compounds, and studied the degradation of organic 

pollutants in homogeneous system and the application of POM was extended 
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to the recovery of heavy metal ions and the synthesis of 

nanoparticles.42,63,78,83,85-89  

1.1.4.4 Pharmaceutical chemistry 

The application of POMs in pharmacology began in 1971. The first discovered 

POMs with in vivo and in vitro antiviral activity were Keggin type [SiW2O40]4- and 

[BW12O40]5-. In the mid-1980s, heteropoly antimonates 

(NH4)17Na[NaSb9W21O86] (HPA-23) were found to inhibit HIV reverse 

transcriptase and were used as anti-AIDS drugs. Then it was found that the 

Keggin type POM [(VO)3(SbW9O33)2]12- had a strong inhibitory effect on HIV-

1.90,91 In addition, many other Keggin polyoxometalates exhibited anticancer, 

antiviral and antitumor activities.92 Up to now, there have been hundreds of 

kinds of POMs with various anticancer, antiviral and anti-tumor activities, which 

have the characteristics of low toxicity, high stability and high activity in 

pharmacology. It has aroused great interest from researchers of various 

disciplines, including chemistry, biology and medicine. Since then, POM drug 

chemistry has developed rapidly. 

1.2 Polymer immobilised ionic liquid phases (PIILPs) 

1.2.1 Ionic liquids (ILs)  

Since the discovery of the first room temperature ionic liquids in 1951, with the 

further understanding of the physical and chemical properties of ionic liquids, 

the kinds and applications of ionic liquids have been continuously developed.93 

In recent years, ionic liquids, as green solvents and catalysts, have been widely 

used in biomass research. 
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1.2.1.1 Concept and classification of ionic liquids 

(1) Ionic liquids are only composed of ions and are liquid at low temperature 

(usually less than 100 oC). Conventional molten salts consisting of smaller ions 

have a higher melting point. For example, the melting point of NaCl is about 

800 oC. If a salt has one or two large volume ions, the diffusion and charge 

distribution are asymmetric, and the interaction between ions weakens, leading 

to a significant decrease in melting point, even a liquid at room temperature.94 

Ionic liquids are generally composed of organic cations and inorganic anions, 

and are divided into imidazoles, pyridines and pyrrolidines according to cations 

(Figure 1.7), while the anions are mainly Cl-, Br-, I-, BF4
-, CH3COO-, NO3

-, HSO4
-, 

and so on. According to the solubility of ionic liquids in water, they can be 

divided into hydrophilic ionic liquids and hydrophobic ionic liquids. For example, 

most of the ionic liquids such as BmimCl, BmimAc and BmimBF4 are hydrophilic, 

while BmimPF6 and BPyPF6 are hydrophobic ionic liquids. In addition, 

according to the acidity and basicity of ionic liquids, they can also be divided 

into acidic ionic liquids, basic ionic liquids and neutral ionic liquids. The acidic 

ionic liquids include Lewis acidic ionic liquids and Brønsted acidic ionic liquids. 

 

Figure 1.7 A series of cations for ionic liquids (ILs) 
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Due to the strong tuneability electronic and structures of ionic liquids, different 

structures of ionic liquids can be obtained by changing different combinations 

of anions and cations. The synthetic methods of ionic liquids include direct 

synthesis and two-step synthesis. The main results are as follows:  

(a) Direct synthesis. Bonhôte and Souza et al synthesized ionic liquids by one-

step reaction of alkyl imidazole with trifluoromethane sulfonate and ethyl 

trifluoroacetate with high yield. However, the raw materials used are 

expensive.95,96 (b) Two-step synthesis method. Firstly, alkylation of chlorinated 

alkanes with alkyl imidazole was carried out to obtain the target cation halide. 

As the reaction is a nucleophilic substitution reaction, it is a highly exothermic 

process. Therefore, in order to avoid impurities in the synthesis process, it is 

necessary to carry out the reaction in dry and inert atmosphere and at a lower 

temperature. 97,98 After purification by extraction, drying and recrystallization, 

halogen ions were replaced with metal salts, ammonium salts or conjugated 

acids containing target anions, and then purified. For example, hydrophilic ionic 

liquids usually use water as the reaction medium. After the reaction, the ionic 

liquids are extracted by dichloromethane, the solvent is removed, and the target 

ionic liquids are obtained after vacuum drying (Figure 1.8). 

 

Figure 1.8 Two-step synthesis method for ionic liquid 

Compared with conventional molten salts and conventional organic solvents, 

ionic liquids have the following characteristics: (1) wide liquid range; (2) low 



L．Feng (2018) 

 

24 

 

saturated vapor pressure; (3) the designable structures; (4) high solubility; (5) 

chemical and thermal stability.99 (2) Task specific ionic liquids are a kind of ionic 

liquid which is synthesized for special application and feature one or more 

functional groups in the anion or cations.100 At present, more studies have been 

done on the introduction of functional groups, such as –OH, -SH, -NH2, -SO3H, 

including acid-base ionic liquids, chiral ionic liquids, POM ionic liquids, chelate 

ionic liquids, and so on, on the side chains of cations, which have been widely 

used in hydroformylation, asymmetric hydrogenation, carbon-carbon coupling, 

oxidation and other catalysis, organic synthesis solvents, extractants and so on, 

with enhanced reaction selectivity, conversion, stability and easy recovery.101 

1.2.2 Polymer immobilised ionic liquid phases (PIILPs) 

Polymer immobilised ionic liquid phases (PIILPs) refers to a class of ionic liquid 

polymers which are formed by ionic liquid monomer polymerization and have 

anion and cationic groups on the repeating unit, and have the excellent 

properties of both ionic liquids and polymers.102 According to the chemical 

structure, PIILPs can be divided into the following categories (Figure 1.9): (1) 

polycationic ionic liquids, which are linked to the main chain of polymers by 

covalent bonds; (2) polyanionic ionic liquids, which are covalently bonded with 

each other. (3) Amphoteric polyionic liquids, cations and anions are connected 

to the polymer main chains by covalent bonds.103 Because PIILPs have the 

combined advantages of ionic liquids and polymers, and overcome the fluidity 

of ionic liquids, PIILPs have attracted much interest in the field of polymer 

science in recent years.104-107 
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Figure 1.9 General structures of PIILPs 

1.2.2 Synthesis of PIILPs 

The synthesis of PIILPs can be achieved by free radical polymerization of ionic 

liquid monomers. Similar to the properties of ionic liquids, many kinds of PIILPs 

with different structures and functions can be synthesized by designing and 

combining the anions or cations of PIILPs. At present, the preparation of PIILPs 

by cationic monomer polymerization of imidazolium salt has been studied. It 

can be functionalized by anion exchange before polymerization (monomer) or 

after polymerization (polymer) (Figure 1.10). For example, Mecerreyes et al 

prepared and polymerized 1-vinyl-3-butylimidazole chloride and bromide, and 

regulated the hydrophobicity of the polymer by plasma exchange with PF6
-, BF4

-, 

(CF3SO2)2N-, CF3SO3
-. Polyionic liquid gel was prepared by microemulsion 

polymerization by Texter et al, solvent-responsive porous polymer materials 

(gels) were prepared by anion exchange.105 

In recent years, controlled-active atom transfer radical polymerization (ATRP) 

and reversible addition-fragmentation chain transfer (RAFT) polymerization, 

ring-opening metathesis polymerization (ROMP), in-situ polymerization, 

cyclopolymerization, dehydrogenative coupling polymerization, etc. Modern 

polymerization methods have also been initially introduced for the synthesis of 

PIILPs.102,105,108,109 
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Figure 1.10 General synthetic routes of PIILPs 

1.2.3 Ionic liquid-based organic-inorganic POM catalysts 

Organic-inorganic hybrid materials have the characteristics of both organic and 

inorganic materials. POMs have good thermal stability, and the addenda atoms 

generally exist in the highest oxidation state. They are a kind of bifunctional 

catalysts with both oxidation and acidity, and because of the high designability 

of ionic liquids, many researchers first combine the functionalized ionic liquids 

suitable for a particular reaction system with the corresponding POM to prepare 

solid catalysts, which have a good application in many organic reactions such 

as oxidation reaction, esterification and redox reaction. 

Kakati et al. modified the anions and synthesized a catalyst 

[(C6H5CH2)(CH3)3N]3[H3V10O28]3·H2O with vanadium as the active center.110 It 

was used in the selective oxidation of benzyl alcohol to benzophenone, and the 

conversion reached 98% in one minute at room temperature. Sun et al 

synthesized a tungsten ionic liquid [(CH3)N(n-C8H17)3]2[W2O11]. The catalyst 

was used to catalyze cyclohexanol to cyclohexanone without solvent, no 

byproducts were generated. The best oxidation effect was obtained under the 

conditions: oxygen source hydrogen peroxide 15 mmol, reaction temperature 
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65 oC, cyclohexanol 5 mmol, catalyst amount 50 mmol refluxing for 8 h. The 

yield of cyclohexanone was over 99%. The catalyst can be recycled for 4 times 

after simple recovery.  

 

Figure 1.11 Polymeric acid ionic liquid-POM catalyst 

Leng et al exchanged carboxylic acid functionalized ionic liquids with Keggin 

type V-containing POM to obtain an ionic liquid-POM catalyst (Figure 1.11), 

which was used in the hydroxylation of benzene.111 The catalytic performance 

of H2O2 as oxidant and acetonitrile as solvent was investigated. The results 

showed that the polymer had high heterogeneous catalytic performance, the 

yield of phenol reached 26.9%, selectivity reached 100%, and the yield of 

phenol was still 17.8% after 4 cycles. A novel organometallic polyoxometalate 

hybrid (Figure 1.12) was prepared to catalyze the hydroxylation of benzene with 

ionic liquid supported Schiff base as cationic ion and phosphorus molybdenum 

vanadate ion as anions.112 A compound with two V catalytic centers was formed. 

The catalyst showed excellent catalytic activity in the heterogeneous reaction 

of benzene hydroxylation, with a yield of 19.6% and selectivity of 100%. The 

catalyst was reused by simple filtration and recovery, and the structure of the 

catalyst remained unchanged after being used 4 times. In the same year, they 

also loaded the polymeric ionic liquid-POM catalyst into magnetic material and 

synthesized a kind of ionic polymer magnetic composite catalyst Fe3O4@PIL-

PMoV based on POM, which realized the efficient and rapid recovery of the 

catalyst. 
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Figure 1.12 Schiff base -POM catalyst supported by ionic liquid 

Concentrated sulfuric acid is commonly used as catalyst for esterification 

reaction in industry. The concentrated sulfuric acid is cheap, has good catalytic 

activity and absorbency, and can effectively promote the reaction to the 

direction of ester formation, thus increasing the conversion rate of the reaction. 

Therefore, it is the most widely used. But the concentrated sulfuric acid 

corrodes the equipment very seriously, accompanied by the serious 

environmental pollution, and the product selectivity is low. Therefore using a 

hybrid catalyst instead of concentrated sulfuric acid not only overcomes the 

above disadvantages but also improves the recovery efficiency of catalyst. 

Leng et al. designed and synthesized a POM sulfonic acid functionalized ionic 

liquid catalyst (the synthesis route is shown in Figure 1.13), and used it to 

catalyze a variety of esterification reactions without a solvent.113 The results 

showed that the catalyst had a high catalytic effect and selectivity, and the 

catalyst was easy to be recovered and reused. 
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Figure 1.13 Synthesis of POM sulfonic acid functionalized polymerized ionic 

liquids 

Epoxides are very important organic raw materials and chemical intermediates, 

which are widely used in fine chemical, petrochemical and organic synthesis. 

At present, the traditional methods of epoxidation are mainly chlorohydrination 

method and common oxidation method. The chlorohydrin process can be 

divided into three processes: chloroalcoholization, saponification and 

purification. The common oxidation method is a method of catalyzing carbon-

carbon unsaturated double bond epoxidation with organic peroxide under the 

condition of peroxycarboxylic acid. Epoxides were prepared using proton acid 

(sulfuric acid or phosphoric acid) as catalyst. These two methods have many 

disadvantages, such as high production cost, serious environmental pollution, 

complex technology and many by-products. With the development of research, 

more and more green and environmental protection catalysts have been 

developed. At present, many kinds of highly efficient epoxidation catalysts, such 

as metal compounds, molecular sieves, hydrotalcite, POM and ionic liquids, 

have been studied. However, organic and inorganic hybrid materials based on 

ionic liquids have been widely studied in catalytic epoxidation because of their 

advantages of being green, clean and effective, and recyclable.114, 115 
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Raisa et al. have prepared three kinds of phosphotungstic acid with 

tetrabutylammonium salts and 1-ethyl-3-methyl imidazole salts: [(n-

C4H9)4N]3{PO4[WO(O2)2]4}, [(n-C4H9)4N]5Na0.6H1.4[PW11O39] and 

[(C2H5)(CH3)C3H3N2]5NaH[PW11O39].116,117 Using 34% hydrogen peroxide as 

oxidant and acetonitrile as solvent, the epoxidation of butadiene was carried 

out. It was found that the conversion rate of 1,3-butadiene to 3,4-epoxy-1-

butene could reach 97%, and the utilization ratio of hydrogen peroxide almost 

reached 100%. [(C2H5)(CH3)C3H3N2]5NaH[PW11O39] showed the best catalytic 

activity.  

Wang et al synthesized a mesoporous dihydroxyl functionalized POM ionic 

liquid catalyst (Figure 1.14) and catalyzed cyclooctene epoxidation with H2O2 

as an oxygen source in a heterogeneous system.118 The results show that the 

catalytic effect of the catalyst is 4 times that of the homogeneous catalyst and 

14 times that of the non-porous catalyst. 

 

Figure 1.14 Synthesis of dihydroxy-functionalized POM ionic liquids 

A kind of binuclear long-chain alkylimidazole cationic Venturello complex 

catalyst [Dnmim]1.5PW4O24 (Figure 1.15) was synthesized by Wu et al.119 The 

catalytic activity of the catalyst in the epoxidation of olefins with hydrogen 

peroxide as an oxygen source was investigated. The results show that this kind 
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of catalyst exhibits phase transfer catalysis and has a high catalytic activity and 

selectivity. The conversion of cyclohexene and selectivity of cyclohexane over 

binuclear dodecyl imidazole POM catalyst reached 97.7% and 96.3% 

respectively. The cyclohexene conversion and the selectivity of cyclohexane 

can still reach 72.4% and 96.3% after repeated use for 4 times. At the same 

time, they used this kind of catalyst to catalyze the epoxidation of soybean oil. 

The influence of the length of organic cationic carbon chain on the epoxidation 

reaction, the reuse of catalyst and the reaction conditions were investigated 

under the condition of no solvent and hydrogen peroxide as the oxygen source. 

The results show that this kind of catalyst had good catalytic activity and 

reusability. 

 

Figure 1.15 Dinuclear imidazole peroxophosphate tungstate catalyst 

In general, ionic liquids as solvents and catalysts take part in chemical reactions, 

most of which are homogeneous processes. The homogeneous reaction can 

increase the contact between reactants and obtain a good catalytic effect. 

Based on the flexible and adjustable denaturation of ionic liquids, they can be 

made into amphiphilic heterogeneous catalysts by changing the hydrophilic and 

oil-lipophilic properties of anions and cations. High efficiency of phase transfer 

catalysis is realized. On this basis, it can also be made into polymers or various 

porous materials to increase the contact surface between the active center and 

the reactant and to improve the catalytic activity. Therefore, ionic liquids have a 

wider application prospect in heterogeneous catalysis. 
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1.3 Graphitic carbon nitride 

The new carbon-nitrogen materials formed by the combination of the two 

elements have attracted much attention after their discovery, and in recent 

years, it has been found that the materials have various new functions and have 

been paid more attention by many researchers in recent years. It is worth 

mentioning that the functional properties of new carbon-nitrogen materials as 

catalysts and catalyst carriers in recent years have attracted wide attention, and 

it is a potential material for the development of new technologies for sustainable 

development. 

1.3.1 Structure of graphitic carbon nitride 

In the 1980s, A.Y. Liu and M. L. Cohen of the University of Berkeley in the 

United States replaced the Si atoms in β-Si3N4 with C atoms based on the first 

pseudopotential energy band theory under the condition of local density of state 

approximation.120 The existence of β-C3N4, which does not exist in nature, is 

predicted. Shortly afterwards, Teter and Hemley of the Carnegie Institute in 

Washington calculated five possible phases of C3N4, namely α phase (α-C3N4), 

β phase (β-C3N4), cubic phase (c-C3N4), pseudocubicy phase (p-C3N4) and 

graphite phase (g-C3N4). Because of their most stable chemical properties, 

moderate band gap, environmentally sound and low cost of raw materials, C3N4 

have been favored by researchers for a long time.121 In 2009, Wang’s research 

group prepared mesoporous g-C3N4.122 It was found that mesoporous g-C3N4 

has good catalytic properties for photodegradation of water to produce 

hydrogen under visible light, which initiated a wave of research on g-C3N4, 

which makes g-C3N4 come to prominence in the field of photocatalysis in the 

future. It is called graphitic carbon nitride, because g-C3N4 has a lot of 
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similarities to graphite, especially in the microstructure of g-C3N4, which has a 

layered structure similar to graphite, and it is made up of a single layer of g-

C3N4. Therefore, the force between layers is van der Waals force, and the 

distance between layers is about 0.326 nm, which is slightly smaller than that 

of graphite. 

 

Figure 1.16 The g-C3N4 consisting of (a) 1,3-s-triazines (C3N3) and (b) tris-s-

triazines (C6N7)  

As shown in Figure 1.16, there may be two structural formulae for graphitic 

carbon nitride: the net structure formed by the outer end N atoms of the basic 

structural units of the 1,3-s-triazines (C3N3) and tris-s-triazines (C6N7), which 

belong to the space groups of R3m and P6m2, respectively.123 The elements of 

C and N are connected by δ bond between C and N in sp2 hybrid mode, in 

which the solitary pair electrons in the Pz orbital are coupled to form a 

conjugated electron delocalization system similar to aromatic benzene ring. 

1.3.2 Preparation of g-C3N4 

1.3.2.1 Solid state reaction method 

The solid state reaction method usually uses the compound containing 1,3-s-

triazines structure as precursor to prepare g-C3N4, such as melamine and 

cyanuric chloride. This is because the triazine structure can reduce the reaction 

energy barrier of nitrogen and carbon bonding in solid phase synthesis process, 
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which is more favorable to ensure the uniform growth of the crystal structure. 

Guo et al. by using cyanuric chloride in solid state reaction with NaNH2, NaN3 

or K at a certain temperature, respectively, showed that the g-C3N4 produced 

by this method, the N content can be adjusted, and molar ratios of C/N of 0.8, 

1.04 and 4 respectively, were obtained.124 

1.3.2.2 Electrochemical deposition technology 

Electrochemical deposition technology not only requires simple equipment, but 

it is also easy to operate, and can effectively reduce the reaction energy barrier 

and reaction system temperature. Fu et al. used acetonitrile as electrolyte to 

prepare carbon nitride film under 80 oC, which are characterized by FTIR and 

XRD.125 It is known that the synthesized products contain C-N and C=N bonds, 

and g-C3N4 crystals exist. 

1.3.2.3 Pyrolysis organics 

The process of thermal condensation is not easy to control for pyrolytic organics. 

The reaction process is shown in Figure 1.17 below. A series of products with 

different structures were obtained by controlling the final temperature of 

pyrolysis. XRD analysis showed that the structure of the products changed from 

melem to graphite phase gradually with the increase of pyrolysis temperature 

in a certain temperature range. The results of FTIR and XPS showed that the 

products were mainly composed of C-N double bond with sp2 and C-N single 

bond with sp3. TEM photos showed that the product had multilayer structure. In 

addition, the researchers introduced the template agent into the preparation 

process of thermal decomposition. After treatment of precursor and template, 

the products of specific morphology were obtained. Wang et al summarized that 
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some surfactants were used as templates to prepare highly ordered nano-

porous carbon nitride.126 

 

Figure 1.17 Schematic diagram of preparation of g-C3N4 by pyrolytic organic 

matter 

1.3.2.4 Solvothermal synthesis 

Solvothermal synthesis is usually used to prepare powder materials with small 

particle size. This method has the advantages of low synthesis temperature, 

short reaction time, similar final product morphology and uniform size. In 

addition, by adjusting the reaction conditions, the self-assembly process of 

reactants can be affected, and to prepare g-C3N4 nanostructures with special 

morphology. By the solvothermal reaction of CN3Cl3 with NaN3 at 220 oC, the 

high quality g-C3N4 carbon nanotubes with an inner diameter of 50-100 nm and 

a wall thickness of 20-50 nm were obtained by Guo et al..127 

1.3.3 Functional application of graphitic carbon nitride 

The g-C3N4 has many advantages such as low price, good thermal and 

chemical stability, and can easily be modified chemically, so it has gained 

unprecedented research interest in recent years. Because of its unique 
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graphite-like stacking structure and sp2 hybrid π-conjugate electron band 

structure, it has a promising future in catalysis, electronics, optics, materials 

and fuel cells. 

1.3.3.1 As the organic reaction catalyst 

Selective catalysis in organic reactions is of much interest. Carbon nitride has 

strong nucleophilic ability on its surface and forms hydrogen bond, Brønsted 

base site and Lewis acid site easily. It can be used in traditional catalytic 

reactions. 

Carbon nitride and its modified materials have been found to be good catalysts 

for selective catalytic oxidation and hydrogenation.  

Goettmann et al showed that the mesoporous g-C3N4 was a good Lewis base 

catalyst, which could facilitate the Friedel-Crafts acylation of benzene and 

acetyl chloride.128,129 In addition, chlorine free electron nucleophilic reagents 

such as ethanol and formic acid can react with benzene with Friedel-Crafts 

acylation under the catalysis of g-C3N4.130 The application of g-C3N4 in green 

chemical synthesis was expanded. Since then, various catalytic applications 

have been developed, such as the cyclization of various nitriles and acetylene 

compounds, the activation of various alcohols to obtain ketoacid esters, and the 

Knoevenagel condensation of benzyl alcohol with malonitrile.131-133 After 

unsaturated carbon compounds were obtained with high selectivity, activated 

saturated C-H bond was successfully converted from toluene and dimethyl 

methane to benzaldehyde or benzophenone.134 
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1.3.3.2 Photocatalytic mechanism of g-C3N4 and its application in the field 

of photocatalysis 

1.3.3.2.1 Photocatalytic mechanism of g-C3N4 

The band gap of g-C3N4 is 2.7 eV (Figure 1.18) and it has a visible light 

response, so it is known that g-C3N4 is a typical polymer semiconductor, in 

which the C and N atoms in the structure are hybridized by sp2 to form a highly 

delocalized π conjugate system.135,136 In addition, (the photocatalytic reaction 

mechanism of g-C3N4 is shown in Figure 1.19), when the light absorption of g-

C3N4 is equal to or greater than its band gap energy, the electrons from valence 

band transmit to conduction band, and then excited to bind to the oxygen 

molecules adsorbed on the surface to form superoxide ion free radicals, which 

can react further with the surrounding water to form superhydroxyl radicals and 

hydrogen peroxide. The valence band excited the transition of electrons to form 

an electron hole which reacts with the surrounding water or hydroxyl ions to 

form strongly oxidized hydroxyl radicals. The organic dyes, such as methylene 

blue, can be oxidized to water and carbon dioxide by the formation of 

perhydroxyl radical and hydrogen peroxide. 

 

Figure 1.18 The g-C3N4 semiconductor band structure diagram 
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Figure 1.19 The g-C3N4 photocatalytic mechanism 

1.3.3.2.2 Application of g-C3N4 in photocatalysis 

1.3.3.2.2.1 Photolysis of water for hydrogen production 

In 1972, it was first reported by Japanese scholars Fujishima A and Honda K 

that TiO2 single crystals can photocatalyze the decomposition of water to 

hydrogen, thus opening the way for the research of electrolysis of hydrogen by 

solar photocatalysis.137 Bulk g-C3N4 was prepared by using melamine as 

precursor, and then the rod-like g-C3N4 was obtained by hydrothermal 

treatment at 180 oC for 2 h.138 Under visible light irradiation, the rod-like g-C3N4 

was used as catalyst and triethanolamine as electron donor and Pt as co-

catalyst for photodissociation of aqueous hydrogen. The experimental results 

showed that the relative specific surface area of rod-like g-C3N4 increased. 

Thus, more active sites are provided and the rate of hydrogen production is 

obviously increased. 

1.3.3.2.2.2 Degradation of organic pollutants 

Since g-C3N4 has been attracting the attention of many researchers, the 

catalytic degradation of organic pollutants has become the important research 
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direction because g-C3N4 can be used as a catalyst with visible light response. 

Using urea as precursor, calcined at 550 oC for 3 h to obtain g-C3N4.139 The 

obtained g-C3N4 was used to photodegrade acid red G. it was found that g-C3N4 

had good photocatalytic activity under visible light.135 The photocatalytic activity 

of g-C3N4 can be improved under acid conditions, and the addition of surfactant 

and inorganic salt can promote the photocatalytic degradation of acid red G.  

Zhao et al., using melamine as precursor, obtained the monolithic layer g-C3N4 

by controlling and adjusting the pyrolysis temperature.140 The photocatalytic 

properties of the samples were examined by degradation of phenol and 

Rhodamine B in visible light. The degradation rate of Rhodamine B by g-C3N4 

monolayer was greatly improved because of its unique electronic structure and 

relatively large specific surface area, which effectively promoted the separation 

of photogenerated electron-hole pairs. The photocatalytic activity for phenol 

degradation was also improved. 

1.3.3.2.2.3 Catalyzing specific chemical reactions 

In recent years, with the study of g-C3N4, the g-C3N4 has been widely used in 

catalyzing specific chemical reactions. The mesoporous graphitic carbon nitride 

material (mpg-C3N4) was prepared by using cyanide as the precursor and 

colloidal silica spheres as template. The structure and morphology of mpg-C3N4 

were analyzed by XRD, TEM, FT-IR and elemental analysis. The mpg-C3N4 

material with adjustable pore volume can be obtained by controlling the amount 

of template and precursor. The Knoevenagel condensation was used as a 

probe reaction to test the photocatalytic performance of mpg-C3N4. The results 

showed that mpg-C3N4 had good photocatalytic performance in the 

condensation reaction with benzaldehyde and propionitrile as substrate. After 

5 cycles of catalysis, high photocatalytic activity was still obtained. 
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As a new type of material, the C3N4 monomer and its composites have excellent 

properties in many aspects, especially in the field of photocatalytic hydrolysis 

hydrogen production, in order to solve the problem of energy shortage. 

Compared with C3N4 monomers, the composites have better properties. In 

future studies, on the one hand, people are working to improve and optimize 

the existing C3N4-based composite photocatalysts; on the other hand, 

researchers are trying to find new materials that can be combined with C3N4. 

This will ensure an increasingly important role in the future. 

1.4 Preparation and application of ruthenium nanoparticles 

Particles with sizes between 1 and 100 nm are called nanoparticles. Its 

properties are not only different from macroscopic particles, but also different 

from those of individual atoms and molecules. It is located in the transition 

region between clusters and macroscopic objects. The small size effect, 

quantum size effect, surface effect, macroscopic quantum tunneling effect and 

dielectric limiting effect of nanocrystalline particles make them have some 

properties which are not possessed by conventional coarse-crystalline 

materials. These nano-effects give nanomaterials to have unique functions in 

mechanics, electricity, magnetism, heat, optics and catalysis. For example, 

ruthenium exhibits good catalytic activity in hydrogenation of carbon-carbon 

triple bond, carbon-carbon double bond and aromatic compounds, and 

palladium is an excellent catalyst for the reduction of pollutants and organic 

compounds at low temperature.141 Nanocrystalline silver and nickel powder can 

be used as electrodes in chemical batteries.36 Metal nano-oxide ZnO and CuO 

are popular among new semiconductor materials.142 Its small size and range of 

morphologies make it an excellent medium for sensing and photoconductivity. 

The high specific surface area and the high proportion of surface atoms make 



Chapter 1. Background 

41 

 

Ag widely used in the production and biology of antibacterial materials, tissue 

contrast and other biomedical fields.143 

Therefore, in recent years, nanomaterials have attracted extensive attention in 

many fields reference – reviews, books etc.. As one of the most active research 

and development fields in the world, it is considered to be the most promising 

technological field for human beings in the 21st century. 

Similar to platinum group elements, ruthenium has good catalytic properties, 

especially in hydrogenation, oxidation, isomerization and catalytic reforming 

have excellent catalytic performance. Ruthenium is also relatively cheap 

relative to platinum. Because Ru (4d75s1) contains more empty orbitals, 

ruthenium also has excellent hydrogenation catalytic ability compare to 

platinum-group elements. In addition, ruthenium nanoparticles not only have 

high selectivity, good catalytic activity, but also very stable chemical properties. 

They can be used as catalysts alone or co-catalyst with other catalysts. The 

overall catalytic activity is improved after the formation of co-catalyst. In recent 

years, the preparation and catalytic performance of ruthenium nanoparticles 

have become a hot topic. 

1.4.1 Preparation of ruthenium nanoparticles 

At present, the preparation of Ru NPs is mainly achieved by chemical reduction 

of Ru3+ precursors to Ru0, RuCl3, [Ru(COD)(COT)] and Ru3(CO)12 are common 

precursors. Reducing agents are generally alcohols, such as monohydric 

alcohol (n-propanol, n-butanol) and polyols (ethylene glycol, glycerol), etc. The 

reason why alcohol can be used as reducing agent is that with hydroxyl group 

(-OH), the hydroxyl group can reduce ruthenium precursor to Ru NPs with zero 

valence, while the valence of hydroxyl group is increased and oxidized to 

aldehydes. The reducing agent for the synthesis of Ru NPs is usually an alcohol, 

and alcohols can be used not only as reducing agent but also as solvent, so the 
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synthesis process is simple. Secondly, the reducibility of hydroxyl group is not 

high, the ruthenium precursor is difficult to nucleate and crystallize, so it needs 

a long reaction time. Therefore, the particle size of Ru NPs obtained by this 

alcohol reduction method is more uniform. In addition, the longer reaction time 

is one of the advantages, so we can add some structural guidance agents, such 

as halogen ions, which can cover on some crystal planes of Ru NPs, and have 

enough time to control the growth of Ru NPs. It is favorable for the control of 

size and morphology. 

Due to the difference of reductivity between monohydric alcohol and polyols, it 

is often reported that the growth of Ru NPs is regulated by adding different kinds 

of alcohols, the advantages of this method are that the synthesized Ru NPs are 

small in size, spherical in shape and mostly less than 10 nm in size. 

Sodium citrate and ascorbic acid with hydroxyl groups can also be used as 

reducing agents, but because of their high cost and no obvious advantage over 

alcohols, they are seldom used in the synthesis of Ru NPs. In addition, H2 can 

also be used as reducing agent, but because H2 is explosive, it is seldom used 

in laboratory synthesis, being used mostly in industrial large-scale production. 

In addition, both NaBH4 and N2H4·H2O can be used as reductants to synthesize 

Ru NPs.144 However, because of their strong reductivity, especially the high 

reduction rate of NaBH4, the nucleation rate of the Ru precursor is very fast and 

the reaction is difficult to control. The diameter of Ru NPs obtained is below 

1nm. As a result, the synthesized nanoparticles are particularly easy to 

aggregate.  

There are also solid reducing agents, such as zinc powder, but is generally not 

used alone, it can be combined with an alcohol reductant, which can accelerate 

the reaction rate.145 After the reaction, the excess zinc powder can be dissolved 
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into ionic state by hydrochloric acid to avoid the difficulty of separating zinc 

powder and Ru NPs during later treatment.  

Since nanoparticles aggregate readily, stabilizers need to be added. 

Polyvinylpyrrolidone (PVP) is the common stabilizer for the synthesis of Ru NPs, 

but ionic liquids such as 1-butyl-3-methylimidazole lactate ionic liquid and 1-

butyl-3-methyl-midazole tetrafluoroborate [(BMIM)BF4] have also been used.146, 

147 

1.4.2 Application of ruthenium nanoparticles in catalysis 

Ru NPs have important applications in many fields, such as biology, medicine 

and chemical industry. 

1.4.2.1 Ammonia synthesis reaction (N2+3H2→2NH3) 

Since the first application of iron to ammonia synthesis, people have been 

looking for new catalysts to obtain higher conversion rates under mild 

conditions for nearly a century. As the reaction needs to be carried out at high 

pressure, there is room for further reduction in energy consumption. 

Researchers have found that Ru NPs catalyst has high catalytic activity for 

ammonia synthesis under low temperature and low pressure, and is regarded 

as the second generation ammonia synthesis catalyst after iron. The catalytic 

activity of Ru is higher than that of other metal nanoparticles. One of the 

reasons is that Ru has a higher antitoxicity to CO and NH3 than other metals, 

and its activity is not easily passivated.148 

1.4.2.2 Catalytic hydrogenation  

Ru NPs are excellent catalysts for the hydrogenation of unsaturated carbon 

carbon double bonds and carbon carbon triple bonds. During the hydrogenation 
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of unsaturated aldehydes and ketones, Ru NP catalysts can selectively 

hydrogenate C=O, thus increasing the selectivity and yield of the target 

products. For example, Ru NP as catalysts can catalyze the hydrogenation of 

benzene rings. Zhu et al. used the physical adsorption of C and the electrostatic 

effect of NiO, Ni as a bridge for electron transfer (Figure 1.20), which greatly 

increases the ability of adsorption benzene rings for Ru under the catalysis of 

Ru NPs. The yield of hydrogen can reach 100%.149 

 

Figure 1.20 Schematic diagram of Ru–Ni/Ni O catalyzed hydrogenation of 

benzene ring 

 
Figure 1.21 Ru NPs catalyst for hydrogenation of levulinic acid (LA) and 

formic acid (FA) into γ-valerolactone (GVL) 
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In addition, Using H2 as a reducing agent, Ru NPs can catalyze the 

hydrogenation of lactic acid to propylene glycol and catalyze the hydrogenation 

of D-glucose to sorbitol with a selectivity of more than 95%.150, 151 Besides using 

H2 as a reductant, Ru NPs can also catalyze the hydrogenation of levulinic acid 

from formic acid (Figure 1.21). 

1.4.2.3 Hydrogen production 

Besides participating in hydrogenation, Ru NPs can also participate in hydrogen 

production.152 H2 is considered to be a clean energy source, but H2 storage is 

still a challenge. Ammonia borane (NH3·BH3) has a very high hydrogen storage 

ability in solid hydrogen storage materials. It is a suitable hydrogen source. Ru 

NP catalysts can be used to catalyze the decomposition of aminoborane to H2. 

The catalytic reaction showed high catalytic activity at room temperature and 

atmospheric pressure. 

 

1.4.2.4 Water gas shift reaction (CO+H2O→CO2+H2) 

The water gas shift reaction is a common reaction in industry. It is widely used 

in ammonia and methanol synthesis and hydrogen production.153 It is the main 

reaction to remove CO and produce high purity H2 in mixed gas. In fuel cells, it 

is often necessary to remove CO to avoid Pt electrode poisoning, while water 

gas shift reaction can not only remove CO, but also provide a rich hydrogen 

flow to avoid CO residue on Pt electrode. Therefore, it is very important to 

improve the conversion rate of water gas. Generally, Cr2O3 is used as catalyst, 

but the use of Cr3+ is strictly prohibited because of its high toxicity to human 

beings and organisms. The activity of Ru NPs is not easily passivated in CO 
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and NH3, and it has excellent stability and low temperature catalytic activity in 

shift reaction, which makes Ru NPs ideal catalysts for water gas shift reaction. 
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Chapter 2. Catalysis with polyoxometalate-stabilized 

ruthenium nanoparticles catalysts 

2.1 Introduction 

Particles in the nanometer, size range often have properties, such as surface effect 

and quantum tunneling effect.1,2 Among them, surface effect which refers to 

nanoparticles with high surface area, multi-active centers and strong adsorption 

ability, makes nanomaterials have excellent performance in such aspects as 

catalysis, electrochemistry, magnetism and superconductivity.3 

Metal nanoparticles are widely used in different fields, mainly because of their 

photochemistry, photovoltaic, photoelectron properties and catalytic activity.2,4 The 

exploration of the synthesis and properties of noble metals has attracted great 

interest because noble metals show higher catalytic activity and selectivity 

compared with other metals.5 In order to increase the efficiency of noble metals in 

heterogeneous catalysis, composite materials are usually prepared by combining 

noble metals with suitable substrates. 

Polyoxometalates (POMs) are increasingly being used in catalysis because they 

are well-defined, molecular species with a wide variety of structures and 

compositions and they exhibit the ability to reversibly take up multiple electrons and 

protons.6 POMs plays an important role in the preparation of metal NPs, and can 

act as a reducing agent and stabilizer. The preparation of metal NPs using POMs 

as surface capping groups is attracting much interest. 

It is straight forward to synthesize metal nanomaterial using POMs. The metal ions 

can be reduced to metal elements in a one-step synthesis method by choosing the 

appropriate POMs. A variety of methods can be used to reduce POMs, such as 

electrochemistry, photochemistry and radiation chemistry. However, the 

preparation of metal nanomaterial by POMs is mainly through photochemical 

reduction or direct addition of reducing agent. 
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In this Chapter, ruthenium ions were reduced to ruthenium nanoparticles (Ru NPs) 

in the presence of POMs in aqueous solutions by hydrogen. POMs have an 

electrostatic and steric effect at the surface of the Ru NPs.7-9 Kinetic stability is 

achieved between POMs and Ru NPs, and reduces the aggregation of Ru NPs. l 

POMs have basically act similar to surfactants by stabilizing the nanoparticles, 

therefore a detailed comparison between standard surfactant stabilized 

nanoparticles and the present POM stabilized nanoparticles is warranted in this 

Chapter. 

2.1.1 Hydrogenation of unsaturated compounds 

The hydrogenation of unsaturated compounds is important in organic synthesis, 

medicine, and the chemical industry. Different unsaturated organic compounds 

such as olefins, diolefins, alkynes, aromatic hydrocarbons, aldehydes, ketones, 

imines, carboxylic acid derivatives, nitriles and carbon dioxide can be 

hydrogenated by homogeneous or heterogeneous catalysts. Unsaturated 

compounds have the characteristics of small volume, high mobility and low 

viscosity. The key factor to determine the rate of hydrogenation reaction is whether 

the reactant molecules can interact efficiently with the catalyst. Therefore, 

supported catalysts with high specific surface area and porous structure are usually 

used in the hydrogenation of unsaturated compounds. The efficiency of the 

hydrogenation reaction can be raised as much as possible, and the recovery and 

reuse of the catalyst can be easily realized. 

 

Scheme 2.1 Hydrogenation of olefin reaction mechanism 
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The addition reaction of olefin and hydrogen is discussed in current general 

textbooks of organic chemistry as follows: The mixture of olefin and hydrogen can 

not react at 200 oC, but in the presence of catalyst, alkanes can be formed by 

addition reaction with hydrogen. It is generally believed that the hydrogenation of 

olefins takes place on the surface of the catalyst. When the olefin and hydrogen 

are adsorbed on the surface of the dispersed metal, the surface of the catalyst 

breaks the H-H covalent bond of the hydrogen molecule and forms an active 

hydrogen atom (Scheme 2.1). At the same time, the π bond in olefin is also 

weakened, which greatly reduces the activation energy required for the 

hydrogenation reaction and increases the reaction rate. When hydrogen atoms 

combine with carbon atoms of alkenes to form alkanes, the adsorption ability of 

alkanes on the catalyst surface is smaller than that of alkenes, so once alkanes are 

formed, they are immediately liberated from the catalyst surface. 

2.1.2 Fischer-Tropsch synthesis  

Fischer-Tropsch (F-T) synthesis was first discovered by German scientists Frans 

Fischer and Hans Tropsch in 1923.10 F-T synthesis is the production of 

hydrocarbons from CO/H2 mixtures. CO / H2 as raw materials, can produce wide 

distribution of carbon produced (alkanes and alkenes) under catalysts. By-products 

of organic oxygenated compounds such as alcohol, aldehydes, ketones, acids and 

esters are also formed. High-quality liquid fuels, high-grade wax and other 

chemicals can be obtained by further refining and processing of F-T synthetic 

products.11 F-T synthesis is a process based mainly on coal and natural gas to 

produce gasoline, diesel and some chemicals.12,13 Since the reserves of coal and 

natural gas far exceed those of petroleum, the F-T synthetic reaction can provide 

a certain amount of liquid fuel, represented by gasoline and diesel, for a longer 

period of time, and the fuel produced is characterized by low sulfur content. With 

the depletion of petroleum resources and the increasing of energy consumption, 
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the search for alternative petroleum energy becomes an important issue, and 

determines the national energy security. In this context, F-T synthesis technology 

has been more and more researched. 

There are many reactions in the process of producing low molecular weight olefins 

by adding hydrogen to CO. The most important reaction is the hydrogenation of 

CO to surface bound methylene and water, as follows: 

 

Methylene can form alkenes and alkanes by increasing the chain length. The total 

reaction formula is as follows:  

 

In this process, water-gas shift reaction, methanation reaction, carbon deposition 

reaction and many other side reactions will occur. The reaction formula is: 

 

F-T synthesis is an exothermic reaction. Kinetic analysis show that increasing the 

reaction temperature is beneficial to the formation of short chain and saturated 

hydrocarbon products. Therefore, with the increase of reaction temperature (350 

oC), the selectivity of methane byproduct will increase. In the temperature range of 

F-T synthesis, the selectivity of the obtained product is quite different. According to 

kinetic calculations, when the composition of syngas H2 : CO = 1 : 1, the main 

products of F-T synthesis under atmospheric pressure should be CH4, CO2 and C, 

and the ratio of long chain hydrocarbon products can be neglected. However, 

experiments show relatively low selectivity to CH4, and the carbon accumulation 

can be ignored. If the reaction pressure is raised from atmospheric pressure to 60 

atmospheres, the calculated yield of heavy hydrocarbons will increase by nearly a 
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hundredfold, but its selectivity to methane is still very low. This is still very different 

from the actual F-T synthetic product data. At the same time, the ratio of alkane to 

olefin in the product, the hydrogenation or dehydration of alcohols all deviated 

greatly from the thermodynamic calculated values. Therefore, it can be concluded 

that the distribution of the products of F-T synthetic reaction does not correspond 

to the calculated values of ideal thermodynamic equilibrium. 

F-T synthesis is a complex reaction process. Many scholars have studied the 

reaction mechanism in depth and put forward a variety of mechanism models. 

These mechanisms are supported by experimental facts to a certain extent, but 

evidence of the exact surface mechanism is still lacking, and so far there is no 

consensus. However, it is generally accepted that the carbide mechanism, the 

oxygen intermediate condensation mechanism and the CO insertion mechanism 

are all relevant under certain circumstance. The reason for carbides mechanism 

was first proposed by Fischer and Tropsch, who believed that CO and active metals 

will first form corresponding carbides, and then, through hydrogen reduction, an 

intermediate M=CH2 is obtained. This intermediate undergoes polymerization to 

produce corresponding hydrocarbon compounds. Hydrocarbon products can be 

explained by this mechanism, but the production of products such as alcohols 

cannot be explained. The schematic diagram is shown in Figure 2.1. In the CO 

insertion mechanism proposed by Pichler et al., CO is hydrogenated to formyl. The 

formyl group is then hydrodehydrated to give carbene and methyl, respectively.14,15 

According to the homogeneous organometallic catalysis mechanism, CO can 

complete carbon chain growth by inserting M-H bonds or by adding H2. The 

schematic diagram of this mechanism is shown in Figure 2.2. Anderson et al. 

proposed the condensation mechanism of oxygenates, which exist as 

intermediates. In this mechanism, CO and H2 first generate HCOH, and then 

undergo dehydration to achieve carbon chain growth.16,17 Finally, after 

polymerization, the corresponding product is obtained. The mechanism diagram is 
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shown in Figure 2.3. The condensation mechanism of oxygen-containing 

intermediates can well explain the formation of linear and branched products, but 

it lacks the necessary experimental basis for the intermediate HCOH. 

CO
+H2

-H2O
M-C

+H2 C

M

HH polymerization
-CH2-CH2-CH2

　 

Figure 2.1 The carbide mechanism 

 

Figure 2.2 The CO insertion mechanism 

 

Figure 2.3 The oxygen intermediate condensation mechanism 

The mechanism of F-T synthesis proposed above is more or less defective from 

different angles. Although the study of F-T synthesis has a history of nearly 90 

years, up to now, the reaction mechanism of F-T synthesis is still a controversial 

issue in the field of catalysis. It can be predicted that with the progress of surface 

science and technology and the improvement of research methods, further 
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investigations will provide more details of the catalyst active site and reveal the 

mechanism of F-T synthesis. According to the result and discussion for the F-T 

synthesis experiment in this Chapter, using the CO insertion mechanism to explain 

the F-T synthesis result seems more reasonable. 

It has now been found that almost all of elements from the groups 8, 9 and 10 have 

F-T synthesis catalytic activity. Previous studies have investigated the catalytic 

activity of the groups 8, 9 and 10 elements in the F-T reaction, resulting in the 

following sequence of catalytic activity: Ru > Fe > Ni > Co > Rh > Pd > Pt.18 Among 

them, ruthenium is the metal with the highest catalytic activity in hydrogenation, 

especially for high molecular weight straight chain alkanes. Because of its high 

price, the possibility of industrialization is very small. However, it is of great 

significance to develop new process and explore reaction mechanism. Nickel-

based catalysts tend to produce too much methane.19 Cobalt and iron are most 

widely used in industrial F-T synthesis, while iron is cheaper; cobalt-based catalysts 

have higher activity and selectivity, are less easily deactivated, and are mostly used 

in the generation of alkanes with longer carbon chains, e.g. paraffin and 

diesel.13,20,21 The development of catalysts is mainly for iron and cobalt-based 

catalysts, and has been implemented in industrial demonstration plants of some 

major oil companies around the world where they are sources of CH4 to provide H2. 

2.1.3 Electrochemical reduction of CO2  

The increasing demand for coal, oil and natural gas not only aggravates the 

depletion of fossil energy, but also significantly increases the CO2 content of the 

atmosphere.22 CO2 is the most important greenhouse gas, which is increasing at a 

rate of 2 ppm in the atmosphere, and is about to reach and exceed 400 ppm.23 

Global warming and ecological problems are the severe challenges of human 

sustainable development. Facing the worsening energy and environmental 

problems, governments attach great importance to emission reduction, and to the 
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capture and fixation of CO2.24-26 On the other hand, CO2 provides a feedstock for 

transformation into high value-added fuel or fine chemicals.27,28 The artificial carbon 

cycle will effectively recycle CO2, and promote its transformation into new and 

green carbon resources, which will revolutionize human environment and energy. 

Table 2.1 Methods of CO2 conversion30,31 

Transformation mode Product type 

electrochemical conversion method HCOOH, CH3OH, CO, ethylene 

catalytic hydrogenation method Hydrocarbon, CH3OH, CH3CH2OH, 

catalytic reforming method CO+H2 

photochemical conversion method CO, HCOOH, CH4 

biological transformation method CH3CH2OH, carbohydrate, 

CH3COOH 

inorganic chemical absorption 

method 

carbonate, carbaminate, etc. 

 

CO2 has very high chemical stability, and with existing scientific and technological 

means, level of CO2 reuse is far lower than the scale and speed of its production. 

A new artificial carbon cycle therefore needs new methods for CO2 activation. 

Highly efficient catalysts are required to activate the C-O bond, and provide the 

basis for the formation of new C-H or C-C bonds.29 There have been many reports 

on CO2 conversion, mainly focused on the catalytic hydrogenation of CO2, 

photochemical or electrochemical conversion, or catalytic reforming with natural 

gas to syngas, as shown in Table 2.1. Traditional chemical conversion methods are 

usually carried out at high temperature and high pressure, which involve large 

amounts of energy and expensive reaction vessels to provide the necessary levels 

of safety.  
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The electrochemical conversion of CO2, or electrochemical reduction of CO2, can 

effectively utilize renewable electrical energy and provide an effective way for the 

"carbon-neutral" strategy, which has a good prospect of research and application.32 

The advantages are: (1) the electroreduction reaction can be carried out under mild 

conditions, with no need for high temperature and high pressure; (2) 

electrochemical equipment can achieve higher energy efficiency than other 

chemical conversion equipment; (3) the free energy of catalyst surface can be 

directly controlled by the electrode potential, which creates conditions for 

controlling reaction rate and product selectivity.33,34 At present, research on CO2 

electroreduction mainly focuses on exploring new catalysts and the formation 

mechanism of corresponding products.35,36 In addition, the conditions of reaction 

and the exploration of new electrochemical reactors also provide engineering 

verification for key materials. The electrochemical reduction theory of CO2 began 

in the 19th century. In the last 30 years, the common products of electrochemical 

reduction of CO2 are formate, CO and ethylene.37,38 Methanol and methane can 

also be produced in 6 or 8 electron reactions.31,39 The thermodynamic potentials 

for the formation of various products are given in equations (1) - (7): (pH = 7, in 

aqueous solution, Vs. NHE 25 oC, 1 atm (1atm = 101,300 Pa), 1 M solute):40 

 

Figure 2.4 CO2 electrochemical reduction equation 
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The electrochemical reduction of CO2 mainly includes the process of CO2 activation 

and hydrogenation (Figure 2.4). It is a complex multi-step reaction occurring at the 

electrode interface, involving processes such as gain and loss of electrons, 

adsorption and proton transfer. The whole reaction is restricted by the single 

electron reduction reaction in the first step of CO2 activation (the reaction formula 

is (7) in Figure 2.4), and usually occurs at high overpotential, therefore, reducing 

the step overpotential is the key to improve the energy efficiency of the whole 

reaction.41 There are many factors affecting the yield and selectivity of the 

electrochemical reduction products of CO2. However, the key technology is mainly 

through the interfacial action of the catalyst, so the existing research can be divided 

into two aspects: heterogeneous and homogeneous catalysts.  
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2.2 Results and discussion 

2.2.1 Characterization of polyoxometalate-stabilized ruthenium catalyst 

 

Scheme 2.2 The designed route for Ru0@POM nanoclusters 

 

Figure 2.5 Scheme of POM stabilized Ru0 nanoclusters 

The first polyoxometalate (POM) of 12-ammonium molybdophosphate has a 

history of 170 years and was successfully synthesized in 1826. POM chemistry is 

an important field and has developed rapidly in recent years. In this Chapter, typical 

and well-known POMs were selected for study into: Keggin spcies H3PW12O40, 

H3PMo12O40 and H4SiW12O40, and the lacunary derivatives Na7(PW11O39) as well 

as the Wells-Dawson species K10(P2W17O61). Ru3+ was reduced to Ru0 in aqueous 

solution by reduction with hydrogen to form ruthenium nanoparticles, which have 

positively charged surfaces at which the polyoxoanions are adsorbed to form stable 
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water-soluble nanoclusters, Ru0@POM. The synthesis of Ru0@POM nanoclusters 

and a representation of the structure is shown in Scheme 2.2 and Figure 2.5. 

 

Figure 2.6 UV-Vis spectra of (a) Na[trans-Ru(DMSO)2Cl4], (b) H3PW12O40, 

Ru3+@H3PW12O40 s and Ru0@H3PW12O40, (c) H3PMo12O40, Ru3+@H3PMo12O40 

and Ru0@H3PMo12O40, (d) H4SiW12O40, Ru3+@H4SiW12O40 and Ru0@H4SiW12O40, 

(e) K10(P2W17O61), Ru3+@K10(P2W17O61) and Ru0@K10(P2W17O61) and (f) 

Na7(PW11O39), Ru3+@Na7(PW11O39) and Ru0@Na7(PW11O39) in aqueous solution. 

Figure 2.6 (a) shows the ultraviolet–visible (UV-Vis) spectra of Na[trans-

Ru(DMSO)2Cl4] in water. The Ru3+ solution gives a strong absorption peak at 375 
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nm and a shoulder at 440 nm, which is characteristic of aqueous Ru3+.42 Figures 

2.6 (b)-(f) show a series of spectra which illustrate the effect of addition of different 

POMs to Ru3+ (aq) and subsequent reduction. The aqueous POMs show no 

absorption peak in the range 350-500 nm, but H3PW12O40, H3PMo12O40, 

H4SiW12O40, K10(P2W17O61) and Na7(PW11O39) show absorption peaks at 258, 212, 

263, 266, 245 nm respectively due to O→M charge transfer.43 After H2 reduction, 

the absorption peaks around 350-500 nm disappear indicating that Ru3+ is reduced 

to Ru0 nanoparticles. In addition, the POM charge transfer bonds are shifted slightly 

to longer wavelength. 

Figure 2.7 (a) shows Fourier transform infrared (FT-IR) spectroscopy of Na[trans-

Ru(DMSO)2Cl4]: 3021 (m), 2920 (m), γ (C−H); 1427 (m), 1393 (m), 1310 (m), 1290 

(m), 1015 (s), 970 (s), 940 (m), 910 (w), ρ (CH3); 1090 (vs), 1065 (s), ν (S−O); 735 

(m), 690 (m), γ (C−S); 425 (m), γ (Ru−S) is consistent with literature reports.44 In 

order to confirm Figure 2.7 (b)-(f) gives the comparison spectroscopy of POM and 

their stabilized Ru0 nanoparticles to illustrate the presence of POM on ruthenium 

nanoparticles. 
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Figure 2.7 FT-IR spectra of (a) Na[trans-Ru(DMSO)2Cl4], (b) H3PW12O40 , Ru0@ 

H3PW12O40, (c) H3PMo12O40, Ru0@ H3PMo12O40, (d) H4SiW12O40, Ru0@ 

H4SiW12O40, (e) K10(P2W17O61), Ru0@K10(P2W17O61) and (f) Na7(PW11O39), 

Ru0@Na7(PW11O39). 
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Table 2.2 FT-IR assignments for POM and Ru0@POM 

POM γ (P−Oa) γ (W=Od) γ(W−Ob-W) γ(W-Oc-W) (cm-1) 

H3PW12O40 

Ru0@H3PW12O40 

H3PMo12O40 

Ru0@H3PMo12O40 

H4SiW12O40 

Na7(PW11O39)  

Ru0@Na7(PW11O39) 

Ru0@H4SiW12O40 

K10(P2W17O61) 

Ru0@K10(P2W17O61) 

1081 

1083 

1056 

1079 

1015 

1039 

1046 

1022 

1082 

1077 

976 

971 

955 

943 

975 

953 

955 

973 

934 

942 

891 

887 

886 

820 

908 

868 

879 

909 

877 

904 

756 

755 

767 

747 

751 

796 

786 

746 

811 

808 

 

 

 

Table 2.2 shows the FT-IR spectral assignments for the series of POM and their 

stabilized Ru0 nanoparticles. The presence of the important peaks in the fingerprint 

region for the POMs (H3PW12O40, H3PMo12O40, H4SiW12O40, K10(P2W17O61), 

Na7(PW11O39)) in the spectra of POM stabilized Ru0 nanoparticles proves the 

presence of the POM anions on the Ru0 nanoparticles.45,46 According to 

comparison with the tiny shift band of stretching γ (P−Oa), γ (W=Od), γ(W−Ob-W), 

γ(W-Oc-W), the analysis results also demonstrate H2 reduction process has not 

transformed the basic structure of POM when they stabilized on ruthenium 

nanoparticles. In brief, FT-IR analysis of POM and Ru0@POM is carried out to 

confirm the presence of POM on ruthenium nanoparticles and their chemical 

structures remain intact.  
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Figure 2.8 XRD spectra of (a) H3PW12O40 and (b) Ru0@H3PW12O40 

 

Figure 2.9 XRD spectra of (a) H3PMo12O40 and (b) Ru0@H3PMo12O40 

 

Figure 2.10 XRD spectra of (a) H4SiW12O40 and (b) Ru0@H4SiW12O40 
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Figure 2.11 XRD spectra of (a) Na7(PW11O39) and (b) Ru0@Na7(PW11O39) 

 

Figure 2.12 Powder XRD spectra of (a) K10(P2W17O61) and (b) Ru0@K10(P2W17O61) 

Figure 2.8-2.12 shows the powder X-ray diffraction (XRD) patterns of POM and 

POM stabilized Ru0 nanoparticles. The XRD patterns of the series of POM have 

well-defined diffraction crystalline structures and the diffraction patterns observed, 

which are exactly consistent with literature reports. The XRD patterns of ruthenium 

nanoparticles gives peaks at 18.45°, 25.93°, 35.77°, 31.42°, 42.19°, 44.04°, 

58.37°representing Bragg reflections from (111), (102), (311), (222), (002), (101) 

and (102) crystal lattice planes of the standard Ru cubic phase.47-49 As shown in 

Figure 2.8 (b), Ru0@H3PW12O40 complex demonstrates the presence of several 

peaks at 18.04°, 25.2°, 35.0°, 37.7°, 42.2°, 44.0° and 59.0° of ruthenium cubic 

phase.50-52 Similarly, Figure 2.9 and Figure 2.10 shows the presence of Ru 
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nanoparticles on the basis of the XRD spectra. However, in Figures 2.11 and 2.12, 

the XRD patterns of Ru0@Na7(PW11O39) and Ru0@K10(P2W17O61) show no 

obvious strong peaks of metallic Ru, which may be due to poor crystallinity. 

Therefore, the XRD of Ru nanoparticles in Figures 2.11 and 2.12 show broad and 

weak peaks, which indicates the size of POM stabilized Ru nanoparticles from 

Ru0@H3PW12O40, Ru0@H3PMo12O40, Ru0@H4SiW12O40, Ru0@Na7(PW11O39) to 

Ru0@K10(P2W17O61) is gradually increasing. The the size of samples can be 

calculated On the basis of Scherer equation, but when the size of nanoparticles is 

under 15 nm, the peaks of XRD are wide, not sharp. According to the XRD patterns, 

the presence of Ru nanoparticles in POM was further confirmed. 

 

Figure 2.13 TEM images of (a), (b) Ru0@H3PW12O40 and (c), (d) Ru0@H3PMo12O40 

in water solutions 
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Figure 2.14 TEM images of (a), (b) Ru0@H4SiW12O40, (c) Ru0@Na7(PW11O39) and 

(d) Ru0@K10(P2W17O61) in water solutions 
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Figure 2.15 Particle size distribution of (a) Ru0@H3PW12O40, (b) Ru0@H3PMo12O40, 

(c) Ru0@H4SiW12O40, (d) Ru0@Na7(PW11O39) and (e) Ru0@K10(P2W17O61) 

Transmission electron microscopy (TEM) images of POM stabilized ruthenium 

nanoparticles and their corresponding Ru0 nanoparticles size distribution 

histograms were shown in Figure 2.13 to Figure 2.15. TEM images of Figure 2.13 

and Figure 2.14 illustrated ruthenium nanoparticles were well distributed and 

stabilized by POM. Particles size for ruthenium nanoparticles were given in Figure 
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2.15, the average size of ruthenium nanoparticles for Ru0@H3PW12O40, 

Ru0@H3PMo12O40, Ru0@H4SiW12O40, Ru0@Na7(PW11O39) and 

Ru0@K10(P2W17O61) were about 2.5-3 nm, 4.5-5 nm, 4-5 nm, 6.5-7.5 nm and 7-8 

nm respectively. The diameter of ruthenium nanoparticles were gradually 

increasing from 2.5-8 nm, owing to the size of POM changed. As the size of the 

POM anion increased, the radius of the ruthenium nanoparticles gradually enlarged. 

As a consequence, it appears the size of ruthenium nanoparticles might be 

controlled by suitable choice of POM.  

 

Figure 2.16 XPS spectra of (a) Ru1s and (b) W1s for Ru0@H3PW12O40 

 

Figure 2.17 XPS spectra of (a) Ru1s and (b) Mo1s for Ru0@H3PMo12O40 
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Figure 2.18 XPS spectra of (a) Ru1s and (b) W1s for Ru0@ H4SiW12O40 

 

Figure 2.19 XPS spectra of (a) Ru1s and (b) W1s for Ru0@Na7(PW11O39) 

 

Figure 2.20 XPS spectra of (a) Ru1s and (b) W1s for Ru0@K10(P2W17O61) 
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Figures 2.16 to 2.20 show X-ray photoelectron spectra (XPS) for POM stabilized 

Ru0 nanoparticles. The XPS spectra (Ru3d5/2 at 280.7 eV and Ru 3d3/2 at 283.7 

eV) of POM stabilized ruthenium nanoparticles verified Ru in the nanoparticles was 

in zero oxidation state which was consistent with the literature reports.53-55 

Moreover, XPS spectra of Ru in Figure 2.16 and Figure 2.17 (a) show peaks due 

to oxide at low and high B.E. at 285.4 eV and 287.6 eV, showing that proved Ru(IV) 

is present. Probably the surface of Ru0 nanoparticles on samples was oxidized in 

air when they were prepared for analysis by XPS.127 The presence of W (W 4f7/2 

at 35 eV, W 5p3/2 at 37 eV) and Mo (Mo3d5/2 at 233 eV, Mo3d3/2 at 236 eV) was 

also demonstrated in all samples.56-59  

The interaction between POMs and ruthenium nanoparticles is important, and XPS 

spectra for W or Mo compared with Ru can indicate how many POM anions are 

present on Ru0 nanoparticles. Calculation of the relative amounts of W, Mo and Ru 

and demonstrated that on average 15 [PW12O40]3-and [PMo12O40]3- anions, 16 

[SiW12O40[4- anions, 23 [PW11O39]7- anions and 31 [P2W17O61]10-were absorbed on 

each respective Ru0 nanoparticle.  

2.2.2 Stability and redispersion of POM stabilized Ru0 nanoparticles in 

aqueous solution 

Freshly prepared POM stabilized Ru0 nanoparticles in aqueous solution under 

nitrogen were used to examine the stability. We found that Ru0@H4SiW12O40 was 

the least stable, and it was found that there was a precipitate of ruthenium metal 

particles in its solution after three days, while for the other four nanocluster 

solutions, the solution remained homogeneous and did not produce precipitation 

after six months. The results showed that the Ru0@H3PW12O40, Ru0@H3PMo12O40, 

Ru0@Na7(PW11O39) and Ru0@K10(P2W17O61 nanocluster solutions are stable but 

the Ru0@H4SiW12O40 solution precipitate after three days under nitrogen. 
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In order to study the redispersity of Ru0@POM nanoclusters, we removed the water 

from the solutions of nanoclusters under vacuum to form dark brown powders, and 

then re-dispersed the powders in water under nitrogen. We found that all of the 

Ru0@POM nanoclusters could be uniformly re-dispersed in aqueous solution. 

Hence, we can see that the Ru0@POM nanoclusters solution can be stored in the 

form of powders, and when re-dispersed in water, their chemical properties remain 

unchanged. 

2.2.3 Hydrogenation of 1-decene to decane 

 

Scheme 2.3 Reaction formula of hydrogenation of 1-decene to decane 

In this section, the hydrogenation of olefins in the presence of ruthenium catalyst 

is discussed by using the frontier orbital theory and a satisfactory explanation is 

given. In the study of the reaction mechanism using the molecular orbital theory, 

the most important orbitals are the highest energy filled orbitals (HOMO) and the 

lowest energy empty molecular orbital (LUMO). The electrons in the occupied 

molecular orbitals with the highest energy are not held tightly, with the properties 

of electron donators, while the empty orbitals with the lowest energy LUMOs have 

stronger affinity to electrons and have the properties of electron acceptors. These 

two kinds of orbitals play a key role in the chemical reaction process.They are 

called Frontier-molecular Orbital (FMO).  
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Scheme 2.4 Hydrogenation of decene with Ru catalyst mechanism 

The FMO interaction of the two orbitals is analyzed by taking the hydrogenation of 

1-decene as an example. It is known that when 1-decene and hydrogen in addition 

reaction, HOMO of 1-decene molecule and LUMO of hydrogen molecule or LUMO 

of ethylene molecule and HOMO of hydrogen molecule are symmetrically forbidden. 

Therefore, the addition of 1-decene and hydrogen can not be directly carried out 

under heating conditions. To make this reaction feasible, ruthenium or some other 

transition metal must be used as catalyst. Because the d orbital of ruthenium 

(HOMO) and the σ* orbital of H2 (LUMO) have adaptive symmetry, they can react 

directly with hydrogen molecule, and electrons flow from the full d orbital into the 

empty σ* orbital of H2. The H2 is dissociated into two separate atoms, combined 

with ruthenium atoms, and then the two hydrogen atoms can be transferred to a 1-

decene molecule in a synergistic manner, and these are the paths allowed by 

orbital symmetry (Scheme 2.4). In conclusion, alkenes can react with hydrogen to 

form alkanes only in the presence of ruthenium or other transition metals such as 

Pd and Pt, and the stereochemistry of alkenes is cis-addition. 
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Table 2.3 Hydrogenation of 1-decene to decane by different Ru0@POM catalysts 

Entry Catalyst Conversion(%)a Selectivity(%)a 

1 Ru0@H3PW12O40  45 ＞99 

2 Ru0@H3PMo12O40 41 ＞99 

3 Ru0@H4SiW12O40  42 ＞99 

4 Ru0@Na7(PW11O3)  64 ＞99 

5 Ru0@K10(P2W17O61) 53 ＞99 

Reaction conditions: 1-decene (1 mmol), H2O (12 mL), Ru0@POM catalyst (0.01 

mmol, nRu : nPOM=1 :1), H2 pressure (1MPa), temperature ( 20 oC), time (1.5 hours). 

aDetermined by GC-MS, 1,3-dinitrobenzene as an internal standard. 

Freshly prepared POM stabilized Ru0 nanoparticle nanoclusters were tested for 

catalytic activity through hydrogenation of 1-decene to decane, thus we can 

compare and illustrate which kind of POM has better catalytic activity between 

Keggin and Wells-Dawson species. The reaction formula of hydrogenation of 1-

decene to decane is shown in Scheme 2.3. After the hydrogenation reaction the 

solution of Ru0@POM was homogeneous without any precipitate formed by bulk 

ruthenium particles, which indicated that all the solution of Ru0@POM nanoclusters 

was stable after reaction.  

Table 2.3 gives the results of hydrogenation of 1-decene to decane for different 

POM stabilized Ru0 nanoparticles. Different conversions but the same slectivity of 

decane (＞99%) were observed for different species of POM after 1-decene 

hydrogenation, and no by-products were observed. The Keggin POM stabilized Ru0 

nanoparticles catalysts (Ru0@H3PW12O40, Ru0@H3PMo12O40, Ru0@H4SiW12O40) 

showed the similar catalytic activity, with conversion of 1-decene of 45%, 41%, 42%, 

respectively. Compared with the plenary (i.e. EM12) structure POM catalysts, the 

conversion efficiency of the catalysts with lacunary structures were better, with 
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conversion for Ru0@Na7(PW11O39) and Ru0@K10(P2W17O61) of 64% and 53% 

respectively. With the same amount of ruthenium in the catalysts, it seems that the 

natural properties of heteropoly acid will affect the catalytic activity of catalytic 

reaction. The catalytic activity of lacunary species catalysts are better than that of 

plenary species catalysts for hydrogenation of 1-decene. 

2.2.4 Aqueous-phase Fischer-Tropsch synthesis 

Table 2.4 Results of Fischer-Tropsch synthesis activity over different Ru based 

catalysts 

 

Catalyst 

CO 

conversion 

(%) 

CO2 

selectivity 

(%) 

HC distribution (%) 

CH4    C2-C4       C5
+

Ru0@H3PW12O40 31.1 39.8 16.0 25.5 58.5 

Ru0@H3PMo12O40 39.0 42.9 8.6 26.8 64.6 

Ru0@H4SiW12O40 50.0 35.8 13.8 26.9 59.3 

Ru0@K10(P2W17O61) 21.8 46.9 18.2 17.1 64.7 

Ru0@Na7(PW11O39) 25.1 46.5 12.0 11.5 76.5 

Ru0/C 16.0 62.9 5.7 6.6 87.7 

Reaction conditions: 2.79×10-4 mol Ru catalyst， H2 / CO = 1∶1，P= 4 MPa，T = 

150 oC, t = 18 hrs, H2O = 12 mL 

 

Traditional F-T synthesis uses heterogeneous catalyst and gas phase reaction in 

very large plants, liquid phase is a lower energy process and in water the 

hydrocarbons are easily separated and the aqueous phase catalyst re-used. 

As mentioned above, most of the Ru based catalysts are supported mainly on 

oxides, molecular sieve or carbon. The specific effects include: (1) increasing the 

specific surface area and providing appropriate pore structure; (2) enhancing the 



L．Feng (2018) 

 

84 

 

thermal conductivity of the catalyst, to avoid deactivation of catalyst due to local 

overheating; (3) to provide active center / acid-base center, to influence the 

adsorption and desorption of reactants and products, and then to influence the 

selectivity of reaction products; (4) to improve the mechanical strength and stability 

of the catalyst. 

In aqueous-phase F-T synthesis, we compared a series of Ru0@POM catalysts 

and Ru/C catalysts under the same reaction conditions (shown in Table 2.4). The 

CO conversion with Ru0@POM catalysts was obviously better than that with Ru/C 

catalyst. The CO conversion of Ru/C catalyst was only 16%, and the order of CO 

conversion of Ru0@POM catalyst was as follows: Ru0@H4SiW12O40 (50%) > 

Ru0@H3PMo12O40, (39%) > Ru0@H3PW12O40 (31.1%) > Ru0@Na7(PW11O39) 

(25.1%) > Ru0@K10(P2W17O61) (21.8%). We know that the CO conversion of 

Ru0@H4SiW12O40 catalyst was 3.1 times higher than Ru/C catalyst in F-T synthesis 

reaction and CO conversion of Ru0@H4SiW12O40 catalyst was the best in the 

Ru0@POM catalysts we prepared. The selectivity of catalyst to CO2 in aqueous-

phase F-T synthesis reaction was very high, for Ru0@POM (39.8%, 42.9%, 35.8%, 

46.9% and 46.5%), but these were lower than that of Ru/C (62.9%). The high 

selectivity for CO2 was due to the water-gas shift reaction which produces CO2 

easily in aqueous system. The selectivity for low carbon hydrocarbons and heavy 

hydrocarbons of the Ru/C catalyst was 6.6% and 87.7% respectively, whereas for 

Ru0@POM catalysts, the selectivity for low carbon hydrocarbons of 

Ru0@H3PW12O40, Ru0@H3PMo12O40, Ru0@H4SiW12O40, Ru0@Na7(PW11O39) and 

Ru0@K10(P2W17O61) catalysts were 25.2%, 26.8%, 26.9%, 17.1% and 11.5% 

respectively. The selectivity for heavy hydrocarbons of Ru0@H3PW12O40, 

Ru0@H3PMo12O40, Ru0@H4SiW12O40, Ru0@Na7(PW11O39) and 

Ru0@K10(P2W17O61) catalysts were 58.5%, 64.6%, 59.3%, 64.7% and 76.5% 

respectively. Compared with the Ru/C catalyst, the selectivity for low carbon 
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hydrocarbon products with Ru0@POM catalysts increased, while the selectivity for 

heavy hydrocarbon products decreased. This is probably because the direct 

products of the F-T synthesis reaction, n-alkanes and α-olefin, are catalytically 

cleaved or isomerized by the acidic sites of the Ru0@POM catalyst, thereby 

inhibiting the formation of heavy hydrocarbons. Therefore, we can use the unique 

nature of Ru0@POM catalysts to improve the selectivity for low carbon 

hydrocarbons. 

It can be seen from the CO insertion reaction mechanism that the activity and 

conversion of CO hydrogenation will be determined by the ease with which CO is 

adsorbed and dissociated in the first step. The strength of hydrogenation ability and 

the ability of carbon chain growth in the second and third steps are the key factors 

to determine the selectivity of each component in the product. In order to improve 

the activity of CO hydrogenation and the selectivity of low olefins, we should 

improve the adsorption and dissociation ability of CO. On the other hand, the 

hydrogenation ability in the reaction process and the carbon chain growth ability 

should be controlled by the acid site of the catalyst, so that the activity of CO 

hydrogenation and the selectivity of low carbon hydrocarbon can reach a higher 

value. 
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2.2.5 Electrochemical CO2 reduction  
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Figure 2.21 Comparison of catalytic performance (CO2-electroreduction) of bare 

ruthenium nanoparticles in 0.1 M HClO4 solution. Scan rate: 10 mV s-1, Ru 

nanoparticles; 6-8 nm. 

The cyclic voltammetry curve of PVP stabilized ruthenium nanopraticles modified 

electrode in saturated CO2 and N2 solution is shown in Figure 2.21. The cyclic 

voltammetry curves illustrate no difference between responses in the presence and 

absence of CO2. Hydrogen evolution (proton discharge) dominates 

electroreduction. By comparison, similar experiments using electrodes modified 

with POM-stabilised Ru nanoparticles are described below. 
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Scheme 2.5 Catalyst(Ru0@H3PW12O40) (a) and Rotating ring-(Pt) disk-(glassy 

carbon with catalyst) electrode (b) 
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Figure 2.22 Reduction of CO2 at Ru0@H3PW12O40 catalyst deposited on glassy 

carbon electrode in 0.1 M HClO4 solution. Scan rate: 10 mV s-1. 

 

Figure 2.23 Chronoamperometric reduction of CO2 of (a) 0, (b) -0.15, (c) -0.25 and 

(d) -0.30 V. at carbon disk with Ru0@H3PW12O40 catalyst 



L．Feng (2018) 

 

88 

 

 

Figure 2.24 Voltammetric oxidation (stripping) of reaction products at Pt ring with 

Ru0@H3PW12O40 catalyst. Electrode 0.5 mol·dm-3 HClO4, scan rate: 10 mV s-1. 

Perchloric acid was used as the model acid electrolyte was used for monitoring 

oxidation of the reaction products at a Pt ring generated during the CO2 reduction 

at the catalytic disk electrode (Scheme 2.5). Figure 2.22 shows the voltammetric 

responses recorded with Ru0@H3PW12O40 catalyst in the absence and presence 

of CO2 respectively. Under rotating disk electrode (RDE) voltammetric conditions, 

N2 was saturated in the electrolyte, and the hydrogen evolution current was 

generated when the negative potential is scanned to -0.35 V. This shows that the 

catalytic disk electrode has a lower hydrogen evolution overpotential. When CO2 

was saturated in the electrolyte and the negative potential was less than -0.35 V, 

the reduction current began to increase, and the more negative the potential shifted, 

the more the reduction current increased. The potential was more negative than 

that observed in nitrogen (CO2 -free) atmosphere. The increase of reduction current 

was ascribed to the electrochemical reduction of CO2 and the formation of CO as 

an intermediate which tended to adsorb strongly and inhibit the performance of the 

Ru0@H3PW12O40 catalyst on the surface of the catalytic disk electrode. 

Apparently,the CO-poisoning effect was diminished due to polytungstate-Ru 

interactions. Furthermore, the steady state electroreduction currents (Figure 2.23) 
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using the rotating disk electrode with the Ru0@H3PW12O40 catalyst were obtained. 

Chronoamperograms recorded upon application of (a) -0.00, (b) -0.15, (c) -0.25 

and (d) -0.30 V showed well-behaved steady-state responses. The electrode 

showed good stability during electrolysis, and no electrode shedding was found in 

the electrolyte, which indicated that the catalytic disk electrode was stable in 

aqueous HClO4. With the increase of the RDE chronoamperometric currents, the 

electrolysis potential decreased.  

During RDE stripping-type experiments (Figure 2.24), with more negative 

potentials applied to the catalytic disk electrode, the oxidation (stripping) peaks 

tended to increase. This result may reflect formation of individual CO2 reduction 

products under different electroreduction conditions or their generation in larger 

amounts upon application of more negative potentials. Upon application of the 

minimum negative reduction potential of -0.23 V (where contribution from proton 

discharge and hydrogen evolution is negligible) to the catalytic disk electrode, a 

single stripping (oxidation) peak was observed (at Pt ring). The other stripping 

voltammetric peaks (developed on Pt ring at about 0.6-0.8 V) stretched (Figure 

2.24 a, b, c) seemed to result from the overlapping of two or more peaks, related 

to the generation of adsorbates containing -CHO or -CHO groups in addition to CO. 
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2.3 Conclusions 

A series of ruthenium nanoparticles stabilized POM nanoclusters 

(Ru0@H3PW12O40, Ru0@H3PMo12O40, Ru0@H4SiW12O40, Ru0@Na7(PW11O39) and 

Ru0@K10(P2W17O61)) were synthesized using a hydrogen reduction method. The 

Ru0@POM nanoclusters have been characterization by analysis UV-Vis, FT-IR, 

XRD, TEM and XPS and their stability and redispersion was demonstrated. 

The Ru0@POM catalysts were active for hydrogenation of 1-decene, and it was 

observed that the conversion depended on which kind of POM was used. In our 

test, the order was [PW11O39]7- > [P2W17O61]10- > [PW12O40]3- > [SiW12O40]4- > 

[PMo12O40]3-, the catalytic activity of lacunary species catalysts were better than 

plenary species catalysts. 

In aqueous-phase Fischer-Tropsch synthesis, under the conditions of reaction 

pressure of 4.0 MPa, reaction temperature of 150 °C and reaction time of 18 hours, 

the CO conversion of the new Ru0@POM catalysts were higher than that of Ru/C 

catalyst. Among them, the CO conversion rate of Ru0@H4SiW12O40 is 3.1 times 

higher than that of Ru/C. The selectivity for low carbon hydrocarbons was higher 

than that of the Ru/C catalyst, and the low hydrocarbon selectivity of 

Ru0@H4SiW12O40 was as high as 26.9%. At the same time, the selectivity for CO2 

was increased because of the water-gas shift reaction. The results suggest that the 

new Ru0@POM catalysts can effectively promote the cracking of high carbon 

hydrocarbons and reduce the selectivity for high carbon hydrocarbons. The 

improved selectivity for low carbon hydrocarbons is ascribed to the formation of 

acidic sites. A new bifunctional type of Ru0@POM catalyst with acid and supported 

ruthenium was prepared. Our idea is to exploit the synergistic behavior of Ru 

nanoparticles and POMs by creating a Ru-POM interface in POM-stabilized Ru 

nanoparticles. In the future, by optimising the conditions, the Ru0@POM catalysts 
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can be applied to some important industrial processes such as F-T synthesis, 

hydrodesulfurization ect. 

Commercially available ruthenium nanoparticles do not exhibit significant 

electrocatalytic activity toward CO2-reduction in acid medium (the reduction is 

dominated by hydrogen evolution or proton discharge). In acid medium, POM 

stabilized Ru nanoparticles (Ru0@H3PW12O40) produced much higher 

electroreduction currents in the presence of carbon dioxide than in the absence 

CO2. Adsorbed polytungstates are likely to interact with metallic Ru sites, inhibit 

hydrogen evolution (shift proton discharge to more negative potentials) and absorb 

reactive hydrogen to form heteropolyblues. The polytungstate adsorbates on the 

Ru nanoaprticles appear to modify the electronic nature of ruthenium, and 

decrease CO catalyst poisoning, possibly via competition with CO for Ru catalytic 

sites. Consequently, the phosphotungstate modified Ru nanostructures are more 

active than conventional Ru nanoparticles.  
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2.4 Experimental 

2.4.1 General Chemicals 

All chemicals were purchased from commercial suppliers (Alfa Aesar, Sigma 

Aldrich, Fisher Scientific, Acros Organics) and used without any purification. 

Distilled water was used throughout all this work. All manipulations of air-sensitive 

materials were carried out using standard Schlenk techniques under nitrogen and 

a glove-box with a recirculation system.  

2.4.2 Instrumentation 

2.4.2.1 Fourier transform infrared spectroscopy (FT-IR)  

FT-IR spectra were recorded on a Bruker Alpha spectrometer using a Platinum 

ATR module. Spectra were recorded for dried solid powder samples after vacuum 

drying for 5 hours. 

2.4.2.2 Ultraviolet–visible spectroscopy (UV-Vis)  

UV-Vis spectra were recording on a UV-1800 Shimadzu UV spectrometer, over the 

range 200~900 nm, with a resolution of 2.00 nm. The aqueous samples were 

measured in 1 cm quartz cuvettes. 

2.4.2.3 Powder X-ray diffraction (XRD) 

Powder XRD analyses were recorded on a Rigaku Ultima IV diffractometer with Cu 

Kα radiation, and the scanning angle range was 5~90 degrees at 40 Kv and 40 mA. 
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2.4.2.4 X-ray photoelectron spectroscopy (XPS) 

XPS spectra were recorded on a PHI Quantum-2000 system with Al Kα X-ray 

source. The samples were pressed into pieces and then measured. 

2.4.2.5 Transmission electron microscopy (TEM) 

TEM photographs were taken using a 50 kV~300 kV high resolution transmission 

electron microscope (TECNAI F-30) from FEI, Holland. After ultrasonic dispersion 

of the samples, they were deposited onto a copper net. 

2.4.2.6 Gas chromatography-mass spectrometer (GC-MS) 

GC-MS ananlysis was performed on a Varian CP 3800 GC coupled to a Saturn 

2200 ion trap MS instrument. The column with GC we used was the Varian 

FactorFour VF-5ms CP 8944 (30m x 0.25mm x 0.25um). 

2.4.2.7 Gas chromatography (GC) 

GC analysis used a GC 2060 instrument. The gaseous products were analysed by 

a gas chromatograph equipped with a thermal conductivity detector (TCD) which 

is connected to a TDX-01 packed column and a flame ionization detector (FID) 

which is using an alumina capil-lary column. The products in the liquid phase were 

analysed by a gas chromatograph equipped with an FID, PONA and Bond-Q 

capillary columns was connected to FID. 

2.4.2.8 Electrochemical measurements 

Electrochemical experiments were performed with CH Instruments (Austin, TX, 

USA) Model 750D and 920D workstations. Rotating ring disk electrode (RRDE) 

experiments were executed using a variable speed rotator (Pine Instruments, USA). 
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2.4.3 Synthesis and Catalysis  

2.4.3.1 Synthesis of [(DMSO)2H][trans-Ru(DMSO)2Cl4]60 

In an oven-dried Schlenk flask, a mount of commercial RuCl3 (0.75 g, 3.6 mmol) 

was partially dissolved in DMSO (4 mL), and 37% aqueous HCl (0.5 mL) added. 

The mixture was stirred and heated to 80 oC and keep this temperature in 30 min 

until RuCl3 was totally dissolved. The resultant red solution was the heated to 100 

oC and allowed to stir for 20 min. The color of mixture is gradually changed from 

deep red to bright orange. The orange transparent solution was cooled to room 

temperature followed by acetone (15 mL) and then stored in the fridge, big red-

orange crystal was formed after 24 hours. The crystal was filtered with a Buchner 

funnel, vacuum dried to obtain a red- orange crystal powder, which was washed 

with cold acetone and diethyl ether (yield 70%).  

2.4.3.2 Synthesis of Na[trans-Ru(DMSO)2Cl4]60 

In an oven-dried Schlenk flask, a sample of ground [(DMSO)2H][trans-

Ru(DMSO)2Cl4] (0.69 g, 1.24 mmol) was gently dissolved in the mixture of H2O 

(0.45 mL) and ethanol (30 mL). The clear red-orange solution was added NaCl 

(109 mg, 1.86 mmol) dissolved in H2O (0.45 mL). The product of light orange crystal 

was rapidly precipitated in the solution. The crystal was filtered with a Buchner 

funnel, vacuum dried to obtain a light orange microcrystal powder, which was 

washed with cold ethanol and diethyl ether. The complex was recrystallized by 

addition of small amounts of acetone and diethyl ether (yield 66%). 
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2.4.3.3 Synthesis of K6[P2W18O62] .19H2O61 

A sample of Na2WO4
.2H2O (100 g, 0.38 mol) was dissolved in water (250 mL), 

followed by the addition of 85% orthophosphoric acid (105 mL, 1.55 mol). The 

solution was heated to 50 oC at reflux for 5 h. If any greenish coloration appeared, 

it was removed by several drops of bromine. The solution was cooled to room 

temperature followed by ammonium chloride (50 g), and allowed to stir for 10 min. 

The yellow-green salt was removed by filtering, dissolved in water (100 mL) and a 

precipitate formed immediately with ammonium chloride (25 g). The mixture was 

filtered before stirring 20 min, the precipitate was dissolved in 50 oC water (100-

200 mL). After cooling to room temperature, the solution was added a quantity of 

potassium chloride (20 g, 0.27 mol) to formed pale green solid. The solid was 

filtered and redissolved in 80 oC water (100 mL) which was enabled white needles 

of K14NaP5 W30O11.XH2O to be removed by filtration. The solution was then refluxed 

for hours. After cooling, the solution was added potassium chloride (10 g, 0.24 mol) 

to precipitate K6[P2W18O62] .19H2O (yield 92%). 

2.4.3.4 Synthesis of K10[P2W17O61].20H2O61 

A sample of K6[P2W18O62] .19H2O (80 g, 0.012 mol) in water (200 mL) was added 

a solution of potassium hydrogen carbonate (20 g, 0.2 mol) in water (200 mL) and 

a white precipitate was formed immedietaly. The precipitate was filtered, 

redissolved in 95 oC water (500 mL) and then cooled to room temperature, during 

which time the snowlike crystals formed (yield 88%). The crystals were isolated by 

filtration and dried under high vacuum.  

2.4.3.5 Synthesis of Na7[PW11O39].11H2O61 

A beaker was charged with Na2HPO4
.12H2O (7.2 g, 0.02 mol), N2WO4

.2H2O (74.2 

g, 0.225 mol) and water (150 mL). The solution was treated with nitric acid to 
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approximately PH = 4.8 and heated to 100 oC with rapid stirring. The solution was 

cooled to room temperature after the water (75 mL) was evaporated and acetone 

(80-100 mL) was added with continuous stirring to give two layers. The acetone 

layer was removed using a separatory funnel, and repeat this step a few times until 

no NO3
- in removed acetone by brown ring test. The resulting aqueous layer was 

dried in oven to give the white product (yield 82%).  

2.4.3.6 Synthesis of Ru@H3PW12O40 nanoparticle solution   

Added H3PW12O40 (28.8 mg, 0.01mmol) and Na[trans-Ru(DMSO)2Cl4] (4.2 mg, 

0.01 mmol) to reaction flask with water (12 mL), then reduced under 1.0 MPa H2 at 

50 oC for 5 hours in an 50 mL stainless steel autoclave with a stirring speed of 600 

rpm. After reaction, the autoclave was cooled to room temperature, to give blue 

black stable and homogeneous sample solutions, and no deposits were formed. 

2.4.3.7 Synthesis of Ru@H3PMo12O40 nanoparticle solution   

Added H3PMo12O40 (18.3 mg, 0.01mmol) and Na[trans-Ru(DMSO)2Cl4] (4.2 mg, 

0.01 mmol) to reaction flask with water (12 mL), then reduced under 1.0 MPa H2 at 

50 oC for 5 hours in an 50 mL stainless steel autoclave with a stirring speed of 600 

rpm. After reaction, the autoclave was cooled to room temperature, to give blue 

black stable and homogeneous sample solutions, and no deposits were formed. 

2.4.3.8 Synthesis of Ru@H4SiW12O40 nanoparticle solution   

Added H4SWi12O40 (28.78 mg, 0.01mmol) and Na[trans-Ru(DMSO)2Cl4] (4.2 mg, 

0.01 mmol) to reaction flask with water (12 mL), then reduced under 1.0 MPa H2 at 

50 oC for 5 hours in an 50 mL stainless steel autoclave with a stirring speed of 600 
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rpm. After reaction, the autoclave was cooled to room temperature, to give black 

stable and homogeneous sample solutions, and no deposits were formed. 

2.4.3.9 Synthesis of Ru@K10[P2W17O61] nanoparticle solution   

Added K10[P2W17O61] .20H2O (52.5 mg, 0.01mmol) and Na[trans-Ru(DMSO)2Cl4] 

(4.2 mg, 0.01 mmol) to reaction flask with water (12 mL), then reduced under 1.0 

MPa H2 at 50 oC for 5 hours in an 50 mL stainless steel autoclave with a stirring 

speed of 600 rpm. After reaction, the autoclave was cooled to room temperature, 

to give black stable and homogeneou sample solutions, and no deposits were 

formed. 

2.4.3.10 Synthesis of Ru@Na7[PW11O39] nanoparticle solution  

Added Na7[PW11O39].11H2O (30.4 mg, 0.01mmol) and Na[trans-Ru(DMSO)2Cl4] 

(4.2 mg, 0.01 mmol) to reaction flask with water (12 mL), then reduced under 1.0 

MPa H2 at 50 oC for 5 hours in an 50 mL stainless steel autoclave with a stirring 

speed of 600 rpm. After reaction, the autoclave was cooled to room temperature, 

to give black stable and homogeneous sample solutions, and no deposits were 

formed. 

2.4.3.11 General procedure for hydrogenation of decene to decane 

Catalyst (Ru@POM, 0.01 mmol) in water solution (12 mL) and decene (1 mmol, 

189 μL)) and water (12 mL) were placed in a Parr reactor and heated at 20 oC 

under different H2 (1 MPa) before being allowed to stir for 1 hour. Upon cooling to 

room temperature, the reaction mixture was added diluted with diethyl ether (15 

mL). The organic layer was separated, dried with magnesium sulfate, filtered and 

solvent removed under reduced vacuum. The resulting residue was analyzed by 

1H NMR spectroscopy to determine conversion. 
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2.4.3.12 General procedure for aqueous-phase Fischer-Tropsch synthesis  

An aqueous solution of the freshly prepared Ru@POM (POM = H3PW12O40, 

H3PMo12O40, H4SWi12O40, K10[P2W17O61] and Na7[PW11O39]) was prepared from 

Na[trans-Ru(DMSO)2Cl4] (2.79 mmol) and POM (2.79 mmol) placed in a stainless 

steel autoclave (50 mL). The autoclave was heated to 150 oC with stirring 18 hours 

at 800 rmp in the presence of 2.0 MPa CO and 2.0 MPa H2. After reaction, the 

autoclave was cooled to room temperature, the gas phase products was collected 

and analyzed by GC. The solution phase was added to cyclohexane (10 mL) and 

n-Hexadecane (10 μL), then heated to 150 oC with stirring 2 hours and cooled to 

room temperature. The organic phase products were then analyzed by GC. 

2.4.3.13 General procedure for electrochemical CO2 reduction  

To the catalyst (Ru@POM, 1 mmol) in water (12 mL) was added Nafion (20% by 

weight) as binder and the mixture was sonicated for 20 min. The suspension (7 μL) 

was dropped onto the glassy carbon electrode surface including a glassy carbon 

disk (with geometric area of 0.247 cm2) and a Pt ring by using a micropipette. The 

resulting layer was dried on the air for 30 min at room temperature. The collection 

efficiency (N) of the RRDE assembly, as determined from the ratio of ring and disk 

currents (at 1600 rpm) using the argon-saturated K3[Fe(CN)6] (5 mmol/dm3 ) in 

K2SO4 solution (0.1 mol/dm3), was equal to 0.388. The inert counter electrode was 

a gold rod. A Hg/Hg2SO4 electrode was used as a reference electrode, but all 

potentials were reported versus the Reversible Hydrogen Electrode (RHE). The pH 

values of the pure and CO2-saturated potassium bicarbonate (0.1 mol/dm3) 

(electrolyte) were 8.4 and 6.8, respectively. They were considered when 

recalculating and expressing the potential values against RHE. During diagnostic 

voltammetric experiments, the electrolyte was saturated with CO2 for at least 30 
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min. The voltammetric responses were recorded under conditions of gentle CO2 -

bubbling.  
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Chapter 3. Polymer immobilized ionic liquids containing 

polyoxometalate-stabilized ruthenium nanoparticles 

3.1 Introduction 

Ru0 nanoparticles and POMs have been shown to act in tandem for (i) activation 

of H2 and (ii) creation of strong Brønsted acidity, but these POM-stabilised Ru0 

nanoparticles are difficult to recover and recycle. The high solubility of POMs in 

aqueous solution has limited the application of Ru0@POM nanoclusters in 

water, and this Chapter describes attempts to address this problem through the 

use of water-tolerant polymer-immobilised ionic liquid phase (PIILP) supports 

upon which to immobilize Ru0/POM nanoparticles, to give Ru0@POM/PIILP 

bifunctional catalysts. 

3.1.1 Hydrogenation of 5-hydroxymethylfurfural (HMF) 

 

Scheme 3.1 Hydrogenation of HMF to DMF 

Over time, the conflicting decrease in non-renewable petroleum resources and 

the increasing demand for petroleum fuel will become increasingly prominent.1 

The search for renewable resources to replace petroleum as fuel has great 

significance in reducing the dependence on petroleum fuels. 5-

Hydroxymethylfurfural (HMF) is one of the intermediate products of cellulose 

degradation and it contains a carbonyl group and a hydroxyl group in the 

molecule.2 Many furan chemical products can be derived from HMF, by e.g. 

hydrogenation, oxidative dehydrogenation, esterification and halogenation.3-6 

The catalytic hydrogenation of HMF can yield 2,5-dimethylfuran (DMF) 
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(Scheme 3.1), which has an energy density of 30 MJ/L, close to that of gasoline 

(31.6 MJ/L).7 Moreover, DMF has a low boiling point (336.5K), is insoluble in 

water, and can be used to increase the octane number of gasoline. Due to its 

excellent combustion performance and renewable properties, DMF is 

considered as one of the most likely alternative fuels. Although DMF can be 

obtained by catalytic hydrogenation of HMF, there is no reasonable and efficient 

catalytic hydrogenation method for the preparation of DMF. Studies of the 

catalytic reduction of HMF to DMF, provide a good foundation for the 

preparation and application of HMF, and provide a reference for the conversion 

of renewable biomass resources to energy. 

Catalytic systems for the preparation of DMF can be divided into three 

categories, which include monometallic catalysts (such as Ru, Pd and Ni), 

bimetallic catalysts (such as Ni-Pd, Cu-Ru) and Ni-W2C, Ru-CoOx with 

transition metal additives, on supports such as activated carbon, ZrO2, SiO2 

and CeO2.2,8,9 Although non-noble metal catalysts are cheaper, the conversion 

of DMF are poor due to its low catalytic activity. In contrast, transition metal 

catalyst has good catalytic activity and stability, because the transition metal 

contains d-orbital, it can combine with oxygen, which shows the properties of 

Lewis acid. Therefore, the oxygen-containing groups such as alcohol-hydroxyl 

and aldehyde group in HMF molecule are activated, the aldehyde group is 

hydrogenated to form the CH2-OH bond under the action of metal site, and then 

the C-O bond is selectively broken under the action of acidic site, thus 

enhancing the selectivity of DMF. In this metal-acid type catalyst, the synergism 

of metal site and acid site is very important. In addition, the occurrence of side 

reactions such as hydrogenation of the furan ring due to the strong 

hydrogenation activity of the metal sites, and the ring opening of the furan ring 

due to the too strong acidity, etc.. Therefore, the prevention of side reactions is 
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one of the key factors to be considered in the reaction process. Summarizing 

the previous research results of HMF conversion to DMF, we conclude that 

HMF easily undergoes side reactions in aqueous systems, which leads to low 

selectivity to DMF. The highest selectivity to DMF was observed in the THF 

solution, compared with isopropanol, methanol, butanol, n-butyl alcohol, 

tetrahydrofuran and hexane solution.2,9-11 Hu and Saha et al. reported that THF 

solvent can promote the hydrogenation of HMF into 2,5-dimethylfuran.12,13 Zu 

and Nagpure et al. demonstrated that Ru/C has the best catalytic activity for 

hydrogenation of HMF to DMF compared to Raney Ni, Pt/C, Pd/C, Ru/C, 

catalysts, which is bacause Ru has superior activity in hydrogenation of polyols 

to alkanes.14-18 

α,β-Unsaturated aldehydes and ketones are widely used in daily life. Their 

hydrogenation products are important fine chemical products, and occupy an 

important position in the perfume, chemical, pharmaceutical and other 

industries. Because of the C=O and C=C bonds in α,β-unsaturated aldehyde 

ketones, there are various possible products of catalytic hydrogenation. 

Different hydrogenation sites and degrees of hydrogenation will produce many 

different kinds of hydrogenation products. Excessive hydrogenation will also 

produce alkanes. Since the C=C bond and the C=O bond form a conjugated 

system, the bond energy of the C=C bond is relatively lower, so that the 

hydrogenation of the other unsaturated bond C=O bond becomes very difficult. 

The selective control of the reduction of this kind of compound is therefore 

important in industrial production and scientific experimental research. 

3.1.2 Hydrogenation of cinnamaldehyde (CAL) 

Cinnamaldehyde (CAL) is a representative α, β-unsaturated aldehyde. In recent 

years, many researchers have done a lot of research on selective 

hydrogenation of cinnamaldehyde. Its hydrogenation products are important 
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organic synthetic materials, which are widely used in the synthesis of flavours, 

spices, cosmetics, medicine and fungicides.19-27 The bond energy of C=O in 

cinnamaldehyde structure (715 KJ/mol) is higher than that of C=C (615 KJ/mol), 

which makes the hydrogenation reaction more likely to occur on the C=C double 

bond.28,29 But the hydrogenation products of CAL were found mostly to be a 

mixture of hydrocinnamic aldehyde (HCAL), cinnamyl alcohol (COL) and 

hydrocinnamic alcohol (HCOL) (Scheme 3.2).30 Therefore, the design of a 

hydrogenation catalyst with moderate activity and high selectivity is of great 

significance in theoretical research and industrial application. 

 

Scheme 3.2 Hydrogenation of CAL to HCAL, COL and HCOL 

Cordier and Gallezot et al. reported hydrogenation of CAL using platinum group 

metal as catalysts as early as the 1980s.31-33 The selectivity order of the 

formation of COL is Os > Ir > Pt > Ru > Rh > Pd, which is related to the width 

of the d band of metal.24,34,35 The wider the d-band, the stronger the four-

electron repulsion of the unsaturated aldehyde, and as a result, the harder for 

C=C to be adsorbed. The d-band width of Pd is the smallest, so the η4 type 

conjugated adsorption is easier to perform. Since the activation energy required 

for C=C hydrogenation is lower than that of C=O.31 However, the hydrogenation 

selectivity of Pt and Ru can be adjusted by loading or doping.36,37 Ru is one of 
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the cheaper precious metals and can be used to selectively catalyze the 

hydrogenation of CAL to COL, and has been studied extensively. In order to 

suppress side reactions and increase the selectivity of target products, 

researchers have tried to use suitable supports and additives. In the optimized 

ruthenium-based catalysts, commonly used supports are C, certain oxides and 

molecular sieves, widely commonly used additives are Sn.  

3.1.3 Hydrogenation of furfural  

 

Scheme 3.3 Hydrogenation of furfural 

Furfural is an important chemical raw material. It is mainly produced from 

renewable biomass resources such as corn cobs, rice husks and bagasse.38-40 

These biomass resources are hydrolyzed to pentose under the action of acidic 

catalysts, and then dehydrated and cyclized to obtain furfural. Furfural is very 

active chemically, result from the furan ring and the aldehyde group. The furan 

ring contains two double bonds and a ring ether bond, which can undergo 

chemical reactions such as hydrogenation, oxidation, decarburization and 

condensation to give many derivatives. The carbonyl group is one of the active 

sites of furfural, and the carbonyl carbon atom is sp2 hybridized in which two 
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sp2 hybrid orbitals and two H atoms form two σ C-H bonds. Another hybrid 

orbital forms an σ bond with the O atom, and an un-hybridized p-orbital and a 

O-atom p-orbital overlap in parallel to form a C=O double bond. Both C-H and 

C=O are in the same plane centered on the carbonyl C atom. This planar 

configuration facilitates the attack of reagents, which is one of the reasons for 

the higher activity of the carbonyl group. Since the electronegativity of O atom 

is larger than that of C atom, the bonding electrons, especially the p electron, 

are biased toward the O atom, so that the C=O bond has a greater polarity, the 

carbonyl C band is partially positively charged, and the O band is partially 

negatively charged. The dipole moment is 2.3-2.9 D. This is one of the reasons 

why carbonyls have high activity. Since the C=O bond energy is 715 KJ/mol, 

compared with the C=C bond energy of 615 KJ/mol, and the two are conjugated, 

it is difficult for the reaction to selectively hydrogenate the C=O bond without 

also hydrogenating the C=C bond. Therefore, a complicated reaction may occur 

during the hydrogenation of furfural. Moreover, the difference in hydrogenation 

activation energy of various functional groups is very small, which puts high 

requirements on the selectivity of the catalyst and the control of the reaction 

conditions. 

Hydrogenation of furfural is a complex reaction system. Different products can 

be obtained by using different catalysts and reaction conditions. When a 

copper-based catalyst with a weaker hydrogenation ability is used, 

hydrogenation of the carbonyl group in the side chain occurs mainly, and this 

reaction mainly generates furfuryl alcohol at a relatively low temperature, and 

methyl furan at a higher temperatures (Scheme 3.3). In this Chapter, 

hydrogenation of furfural using Ru based catalyst to produce furfuryl alcohol is 

our aim. The reduction of furfural to furfuryl alcohol is challenging because the 

formation of tetrahydrofuran and polymerization products may also occur in 
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addition to selective reduction of furfural. Furfuryl alcohol is an important fine 

chemical, widely used in synthetic fiber, rubber and pesticide industries. Furfuryl 

alcohol can be used as rocket fuel and hydrolyzed to give levulinic acid; furfuryl 

alcohol also can be used to produce high temperature resistant phenolic resin 

binder for friction wheel, such as brake pads for automobiles, etc. Furfuryl 

alcohol is also an intermediates for the production of perfumes, fragrances, 

medicines and pesticides.  
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3.2 Results and discussion 

3.2.1 Characterization of PIILP containing POM stabilized ruthenium 

nanoparticles (Ru0@POM(H3PW12O40) /PIILP) 

Imidazolium styrene based monomers were synthesized to produce both linear 

and cross-linked polymers to react with H3PW12O40 stabilized ruthenium 

nanoparticles. The synthesis of the monomers and the cross-linked polyionic 

liquid is described and discussed in the following section (Figure 3.1). 

 

Figure 3.1 Synthesis of 2-methylated imidazolium chloride monomer 

Styrene monomer 1 was synthesized as a white powder with a 90% yield in the 

reaction between 1,2-dimethylimidazole and 4-chloromethyl styrene. The 1H 

NMR showed the characteristic peaks for the HaC=CHbHc of the alkene (a 

doublet of doublets at 6.63 ppm), the other two alkene protons at δ 5.71 and δ 

5.54 ppm and methyl group (a three proton singlet at δ 2.73 ppm). 
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Figure 3.2 Radical polymerization of monomers 

The Polymer immobilized ionic liquids (PIILP) was synthesized by the AIBN 

initiated radical polymerization 2-methylated imidazolium chloride monomer 1 

and styrene in the presence of a cross-linker. The designed ratio of imidazolium 

monomer: styrene monomer cross-linker was 1.84 : 1 : 0.14 (Figure 3.2) and 

1H NMR data of PIILP were as expected. The extent of polymerization was 

confirmed by 1H NMR spectroscopy which showed the presence of only a minor 

amount of unreacted monomer (<1%). The broadening of peaks in the spectra 

are indicative of a polymer; this is especially evident for polymer immobilized 

ionic liquids. The polymer immobilized ionic liquid was produced as a white solid 

in a high yield which could be easily ground to a fine powder. PIILP was 

characterized by solution state 1H NMR spectra in methanol-d solvent (Figure 

3.3) and solid state 13C NMR spectra (Figure 3.4), which showed proof of the 

characteristic broadening. 
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Figure 3.3 1H NMR spectrum of polymer 

A solution of H3PW12O40 stabilized ruthenium nanoparticles was prepared as 

described in Chapter 2 and it was allowed to react with PIILPs under nitrogen. 

H3PW12O40 stabilized Ruthenium nanoparticles appeared to enter into the 

channels of PIILP easily. The molecular structure, surface structure and thermal 

stability of the prepared Ru0/POM@PIILP ( POM= [PW12O40]3-) hybrid 

composites were examined by solid state NMR, FT-IR, XRD, SEM, EDS, TEM, 

TGA and XPS analysis methods. 

As shown in Figure 3.4 (a), the solid state 13C NMR spectrum of PIILP and 

Ru0@POM/PIILP were consistent, that indicated the presence of PIILP in 

Ru0@POM/PIILP. Figure 3.4 (b) shows the solid state 31P NMR spectrum of 

POM (H3PW12O40) which exhibited a sharp peak at -15.58 ppm and 

Ru0@POM/PIILP which exhibited a broader peak at -15.73 ppm. The minor 

peak shift and the wide peak were owing to electrostatical interactions between 
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POM and PIILP. The solid state 31P and 13C NMR spectrum provides evidence 

for the successful preparation of Ru0@POM/PIILP. 

 

Figure 3.4 Solid state 13C NMR spectrum of PIILP and Ru0@POM/PIILP (a) and 

solid state 31P NMR spectrum of POM (H3PW12O40) and Ru0@POM/PIILP (b) 
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Figure 3.5 XRD spectra of POM (H3PW12O40), PIILP and Ru0@POM/PIILP 

Figure 3.5 shows the powder X-ray diffraction (XRD) patterns of POM 

(H3PW12O40), PIILP and Ru0@POM/PIILP. The XRD pattern of H3PW12O40 is 

characteristic of a crystalline structure. The XRD pattern of PIILP had two wide 

and weak peaks at 19 and 28 degrees respectively, indicating that the form of 

PIILP was amorphous. The XRD pattern of Ru0@POM/PIILP is shown in Figure 

3.5, shows a strong intensity peak at 7.8 degrees because of the presence of 

POM ([PW12O40]3-), which indicates the [PW12O40]3- is in Ru0@POM/PIILP, the 

PIILP contributed the low intensity of peaks at 19 and 28 degrees. No obvious 

ruthenium nanoparticles cubic phase were observed in XRD spectra of 

Ru0@POM/PIILP as the results of the broadening peaks of PIILP covered up 

the ruthenium nanoparticles crystallite phase. 
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Figure 3.6 FT-IR spectra of POM (H3PW12O40), PIILP and Ru0@POM/PIILP 

The FT-IR spectra of Keggin structure of H3PW12O40 showed the typical peaks: 

ν (P−Oa) at 1076 cm-1, ν (W=Od) at 975 cm-1, ν (W−Ob-W) at 891 cm-1 and ν 

(W-Oc-W) at 769 cm-1 in Figure 3.7.41 The characteristic bonds of PIILP were 

shown in FT-IR spectra: the deformation of benzene rings at 1451-1531 cm-1, 

C=N stretching at 1160-1240 cm-1 and C-H stretching at 2986 cm-1. The 

Ru0@POM/PIILP hybrid composites contained the absorption characteristic 

peaks for POM, [PW12O40]3- and PIILP, all the results confirmed that the 

presence of the [PW12O40]3- and PIILP in the hybrid composites. 
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Figure 3.7 XPS spectra of Ru0@POM/PIILP with (a) ruthenium, carbon and (b) 

tungsten 

In order to prove the chemical composition and elemental valence of 

Ru0@POM/PIILP composites, XPS analysis was carried out and results are 

shown in Figure 3.7. Figure 3.7 (a) gave XPS spectra (Ru 3d5/2 at 280.0 eV and 

Ru 3d3/2 at 284.3 eV) of ruthenium nanoparticles verified that the Ru 

nanoparticles in samples contained Ru in a zero oxidation state, as in previous 

literature reports.42,43 Moreover, XPS spectra of Ru in Figure 3.7 (a) showed 

the oxide to have a low and high B.E.at 281.0 eV and 287.6 eV, that proved 

Ru2+ and Ru5+ atoms existed in the samples, probably Ru atoms at the surface 

might be oxidized by POM or the surface of Ru0 nanoparticles on samples was 

oxidized in the air when they were ready for analysis by XPS.43 Nevertheless, 

the binding energy was clearly presented for the valence state of Ru0. The 

relative element such as W (W 4f7/2 at 34.9 eV, W 5p3/2 at 37 eV) proved the 

presence of [PW12O40]3- in hybrid composites. 
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Figure 3.8 SEM images of Ru0@POM/PIILP composites 

 

Figure 3.9 Typical images of (A) Ru0@POM/PIILP sample and the 

corresponding elemental mapping images of (B) oxygen, (C) ruthenium, (D) 

nitrogen, (E) tungsten, (F) phosphorus 
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The Ru0@POM/PIILP composites were also analysed by scanning electron 

microscope (SEM) analysis to examine the surface morphology. In Figure 3.8, 

the PIILP appeared to have a porous surface, due to the highly crosslinked 

nature characteristics of the PIILP. As the polymer was a porous material, 

Ru0@POM was included in the pores of PIILP. As shown in Figure 3.9, the 

corresponding SEM elemental mapping images of oxygen, ruthenium, nitrogen, 

tungsten, phosphorus for Ru0@POM/PIILP sample showed a uniform 

dispersion of Ru0@POM/PIILP in the porous PIILP.  

 

Figure 3.10 SEM(A) and EDS(B) images of Ru0@POM/PIILP sample. The 

contents (C) and ratio (D) of different elements in Ru0@POM/PIILP sample  

In order to verify the contents of Ru0@POM/PIILP sample, energy dispersive 

spectrometer (EDS) analysis was performed in Figure 3.10. According to the 

result of EDS, in the presence of elements of C, N, O, Ru, P, W, Cl, Na was 

confirmed in the Ru0@POM/PIILP sample. Through the calculating of the Ru, 

P, W elements, we can draw the following conclusion that the mole ratio of Ru 
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nanoparticles and [PW12O40]3- was 1:1 which was beneficial to calculate the 

amount of catalyst in the catalytic reaction. 

 

Figure 3.11 TEM images (a), (b), (c) and (d) particle size distribution of 

Ru0@POM/PIILP 

TEM images in Figure 3.11 clarified the morphologies of the Ru0@POM/PIILP 

sample. The black spots of ruthenium nanoparticles were observed to be well 

distributed on the surface of PIILP. A Ru0 nanoparticle size histogram showed 

a distribution ranging from 2.5-3.5 nm (Figure 3.11 (d)). The Ru0@POM/PIILP 

TEM images indicated the presence of ruthenium nanoparticles in composites. 
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Figure 3.12 TGA pattern of Ru0@POM/PIILP sample 

Thermal gravimetric analysis (TGA) of the sythesized Ru0@POM/PIILP 

composite is given in Figure 3.12. Ru0@POM/PIILP sample before reaction in 

TGA curve was indicated 2.5% weight loss in the range of 25 to 100 oC was 

due to the weight loss of water, the primary 6% weight loss for composites was 

observed between 100 to 450 oC was due to the decomposition of organic PIILP. 

The Keggin type H3PW12O40 has been shown to decompose at 550 oC, whereas 

when the PW12O40
3- anion was interacted with PIILP, the decomposition of POM 

proceeded at a lower temperature of 450 oC. As a result, the futher weight loss 

occurred above 450 oC was ascribed to the decomposition of the [PW12O40]3- 

anion.  

3.2.2 Hydrogenolysis of HMF to DMF 

3.2.2.1 Reaction pathway for hydrogenolysis of HMF 

Catalytic hydrogenation is usually carried out in an autoclave reactor or fixed 

bed reactor and usually requires higher reaction temperature and hydrogen 
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pressure. Unsaturated organic compounds are transferred from the solvent to 

the catalyst surface, where hydrogenation occurs. After the reaction, reduction 

products are automatically desorbed from the catalyst surface into the solvent. 

Therefore, hydrogenation requires the selection of catalysts for hydrogenation 

of compounds with functional groups containing unsaturated bonds, such as 

carbon-carbon double bond, carbon-oxygen double bond, carbon-nitrogen 

triple bond, carbon-oxygen single bond, etc. 

 

Scheme 3.4 Reaction pathways for hydrogenolysis of HMF to DMF 

In recent years, scientists have developed a variety of catalytic systems for the 

selective hydrogenation of HMF to DMF, most of which are liquid phase 

hydrogenation. However, the selective hydrogenation of HMF in catalytic 

reaction system takes three steps (in Scheme 3.4): (1) the aldehyde and alcohol 

hydroxyl groups in the HMF molecule were hydrogenated to form 2,5-

dihydroxymethyl furan (DHMF) and 5-methyl furfural (MF); (2) DHMF and MF 

were further hydrogenated to form 5-methyl furfuryl alcohol (MFA); (3) MFA was 

finally hydrogenated to form DMF. HMF is very active chemically because it 

contains simultaneously an aldehyde group, an alcohol hydroxyl group and a 

furan ring. In the presence of catalyst and hydrogen donor, hydrogenation 

occurs easily to form different products. Therefore, in the process of selective 

hydrogenation of HMF, in addition to the target product DMF, it will also produce 
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2,5-dihydroxymethyltetrahydrofuran (DHMF) and 5-methyltetrahydrofurfuryl 

alcohol (MTHFA) as by-products. 

3.2.2.2 Conversion of HMF on different catalysts  

Table 3.1 Effect of catalysts for the conversion of HMF. 

Entry Catalyst HMF conversion (%) DMF yield (%) 

1 Ru0@ POM/PIILP 100 87 

2 Ru0@PIILP 56 51 

3 5%Ru0/Carbon 91 75 

4 None 7 0 

Reaction conditions: 0.5 mmol HMF, 12mL THF, 200 ��, 2 MPa H2, 5 hours. 1 

mmol% Ru catalyst. Determined by GC-MS, decane was the internal standard. 

 

The hydrogenolysis of HMF to DMF was investigated using different catalysts. 

The conversion of HMF and the yield of DMF under the reaction conditions 

(temperature = 200 ��, reaction time = 5 h, and H2 pressure = 2 MPa) are shown 

in the Table 3.1. The HMF conversion was 7% and the yield of DMF was 0% 

without the catalyst under the same reaction conditions. Compared with results, 

using different supported Ru catalysts, Ru0@POM/PIILP achieved good 

conversion of HMF (100%) and yield of DMF (87%), which was better than 

Ru0@PIILP and 5% Ru0/Carbon catalysts. When Ru0@PIILP and 5% 

Ru0/Carbon were used as catalysts, the conversion of HMF was 56% and 91% 

and the yield of DMF was 51% and 75% respectively. These results proved that 

the Ru based catalysts are selective for the conversion of HMF to DMF, which 

was consistent with the literature reports. Ru0@POM/PIILP catalyst has better 

catalytic activity than the other two catalysts due to it being a bifuncional 

catalyst, the Ru metal and Brønsted acid sites associated with the POM. 
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Wang’s group proposed that in hydrogenation using Ru/Cs3PW12O40 catalyst, 

the Brønsted acid sites were generated from molecular hydrogen, by adsorption 

and dissociation on the Ru surface. Similar to Ru/Cs3PW12O40, the unique 

generation of Brønsted acid sites from hydrogen over Ru0@POM/PIILP catalyst 

can increase the deoxygenation ability and improve the yield of DMF. 

3.2.2.3 Study on kinetic factors of hydrogenolysis of HMF over 

Ru0@POM/PIILP 

In order to further study the catalytic performance of Ru0@POM/PIILP catalyst, 

the kinetic factors such as hydrogen pressure, reaction temperature and 

reaction time were investigated.  

3.2.3.3.1 Effect of reaction temperature 

 

Figure 3.13 Effect of temperature on the Ru0@POM/PIILP catalysed 

conversion of HMF. Reaction conditions: 0.5 mmol HMF, 1 mmol% catalyst, 

12mL THF, 2 MPa H2, 5 hours. Determined by GC-MS, decane was the internal 

standard. 
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The effect of reaction temperature on HMF conversion and DMF yield were 

studied (shown in Figure 3.13), when the reaction temperature was 150 °C, the 

conversion of HMF was 63%, but the yield of DMF was only 53%, while the 

yield of the intermediate products (such as DHMF and MFA) were 45% and the 

yield of others (such as MTHFA and DMTHF) were 2%. When the temperature 

was raised from 150 °C to 200 °C, the conversion rate of HMF increased from 

63% to 100%, the yield of DMF increased from 53% to 84%, while by-products 

of the intermediates DHMF and MFA were not detected, indicating that the two 

intermediates were gradually converted into the target product DMF. In addition, 

the amount of by-products (MTHFA and DMTHF) also was lower (16%). When 

the temperature was 225 °C, the yield of DMF decreased to 71% and at the 

same time, the yield of the by-product (MTHFA and DMTHF) increased to 

12.5%, so 200 °C was the best reaction temperature. 

3.2.3.3.2 Effect of reaction time 

 

Figure 3.14 Effect of reaction time on Ru0@POM/PIILP catalysed conversion 

of HMF. Reaction conditions: 0.5 mmol HMF, 1 mmol% catalyst, 12mL THF, 2 

MPa H2, 200 oC. Determined by GC-MS, decane was the internal standard. 
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The effect of reaction time on HMF conversion and DMF yield were studied 

(shown in Figure 3.14). The reaction time was 1-5 hours and the interval was 

1.5 hours. The experimental results showed that when the reaction time was 1 

hour, the HMF conversion was only 39%, the main products (51%) were the 

reaction intermediates (MTHF and MFA), the yield of DMF was only 48% and 

the yield of by-product was 1%. With the increase of reaction time to 3.5 hours, 

the conversion of HMF increased to 82%, and the yield of DMF also increased 

to 71%, the sum of intermediate products (MTHFA and DMTHF) yield 

decreased to 23%, but the by-product also increased from 1% to 5%. When the 

reaction time increased to 5 hours, the conversion of HMF reached 100% and 

the sum of intermediate products yield decreased to 9%. The yield of DMF 

gradually increased to 84%. With the increase of DMF yield, the by-product 

increased to 7%. The conversion of HMF reached 100%, if the reaction time 

continues, the product DMF would also undergo hydrogenation or ring opening 

reaction, and increase the yield of by-products. Therefore, the optimum reaction 

time for this reaction condition was 5 hours. 

3.2.3.3.3 Effect of hydrogen pressure  

The influence of H2 pressure for HMF conversion and DMF yield were studied 

(shown in Figure 3.15). When the hydrogenolysis of HMF was carried out at 0.5 

MPa H2, the HMF conversion was as low as 59%, the by-products of 

intermediate products such as DHMF, MFA were the main product (75%), the 

DMF yield was 25%. The selectivity of DMF increased to 79% slowly when the 

pressure gradually increased to 1.5 MPa, the conversion of HMF was 87%. 

When the pressure continued to increase to 2 MPa, the HMF conversion was 

almost 100%, the DMF yield was 84%, the intermediate products of DHMF and 

MFA were 9%, and the by-products of MTHFA and DMTHF yield increased to 
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7%. Excessive H2 can promote the hydrogenolysis and ring opening reaction of 

furan ring, so 2 MPa H2 is the best reaction pressure. 

 

Figure 3.15 Effect of H2 pressure on Ru0@POM/PIILP catalysed conversion of 

HMF. Reaction conditions: 0.5 mmol HMF, 1 mmol% catalyst, 12mL THF, 2 MPa 

H2, 5 hours, 200 oC. Determined by GC-MS, decane was the internal standard. 

3.2.3.3.4 Study on the stability of Ru0@POM/PIILP catalysts 

In order to explore the recycling performance of the Ru0@POM/PIILP catalyst, 

we used 1 mol% Ru catalyst, under the best experimental conditions (5 hours, 

2 MPa H2, 200 oC). After the first reaction, the catalyst and the solution was 

separated by centrifugation and washed with THF solvent. After washing three 

times, the next reaction was carried out directly. From Figure 3.16, it shows the 

HMF conversion of the first three cycles were all 100%, the DMF yields were 

decreased from 84% to 81%. After the third cycle, the HMF conversion was 

95%, the selectivity of DMF gradually decreased to 77%. At the fifth cycle, the 

conversion of HMF was decreased to 91%, indicating the gradual inactivation 

of the catalyst. It has been shown in the literature that due to the gradual 
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formation of carbon-containing compounds (humin) during the hydrogenation 

reaction, these carbon-containing compounds can be deposited on the surface 

of the catalyst, resulting in deactivation of the catalyst.40,44,45 

 

Figure 3.16 Effect of recycling the Ru0@POM/PIILP catalyst in the conversion 

of HMF. Reaction conditions: 0.5 mmol HMF, 1 mmol% Ru catalyst, 12mL THF, 

5 hours, 2 MPa H2, 200 oC. Determined by GC-MS, decane was the internal 

standard. 

3.2.3 Hydrogenation of trans-cinnamaldehyde 

3.2.3.1. The pathways of hydrogenation of cinnamaldehyde (CAL) 

Three types of products can arise in the hydrogenation of cinnamaldehyde 

(CAL): (1) the C=C double bond is hydrogenated to give a saturated aldehyde; 

(2) the C=O double bond is hydrogenated giving an unsaturated alcohol; (3) 

both C=C and C=O double bond are hydrogenated to give a saturated alcohol. 

The bond energy of a C=C bond is 615 kJ/mol and the bond energy of a C=O 

bond is 715 kJ/mol, so that C=C bond hydrogenation is easier than C=O bond 

hydrogenation. Competitive reduction of C=C and C=O double bonds will give 

the products including hydrocinnamaldehyde (HCAL), cinnamyl alcohol (COL) 
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and hydrocinnamyl alcohol (HCOL) (Figure 3.17). The products obtained are 

usually difficult to separate; and consequently the selectivity towards the 

desired product must be high in order for the reaction to be viable. For this, the 

choice of catalyst is key. 

O OH
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H
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Figure 3.17 Products formed after the hydrogenation of the trans-

cinnamaldehyde. 

 

Figure 3.18 1H NMR spectra of cinnamaldehyde (CAL) (A) and all possible products: 

hydrocinnamaldehyde (HCAL) (B), cinnamyl alcohol (COL) (C) and 

hydrocinnamyl alcohol (HCOL) (D) in CDCl3. 
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The hydrogenation reactions were conducted in a Parr bench top pressure 

reactor. 1H NMR spectroscopy was used to analyze the reaction mixture and 

obtain conversion and selectivity. The amounts of each product were calculated 

from the integrals. Conversion was calculated using the difference between the 

starting material CAL (A) and all possible products (B, C, D) in the 1H NMR and 

selectivity was calculated using the difference between the product B or C or D 

and all other possibilities (B+C+D) (Figure 3.19). The equations conversion% = 

(B+C+D)/(A+B+C+D)×100% and selectivity % = B or C or D /(B+C+D)×100% 

were used to calculate both conversion and selectivity. From the 1H NMR 

spectrum, we can observe none of the COL (B). The catalyst most likely 

hydrogenated the alkene first. A mass balance reaction using 1,3-

dinitrobenzene as an internal standard showed that no substrate was lost 

during the reaction. 

3.2.3.2 The performance of different solvents in the hydrogenation of 
cinnamaldehyde  

 

Figure 3.19 Effect of different solvents on the hydrogenation of CAL. Reaction 

conditions: CAL 1 mmol, solvent, 12 mL, 1 mmol% Ru0@POM/PIILP catalyst, 

H2, 0.7 MPa, temperature, 60 oC, time, 2 hours. Determined by 1H NMR, 1,3-

dinitrobenzene as an internal standard. 
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Figure 3.19 showed the different catalytic hydrogenation performance of the 

Ru0@POM/PIILP catalyst in water, ethanol, ethanol/water 1:1, ethyl acetate, 

hexane and THF as solvent under the conditions of temperature 60 oC, 

hydrogen pressure 0.7 MPa and reaction time 2 hours. Solubility and dielectric 

constant in water are the criteria for measuring solvent polarity. Different 

solvents affect the solubility of hydrogen in the solvent. The higher the polarity 

of the solvent, the higher the hydrogen solubility, the higher the conversion of 

reactants. The conversion of CAL and selectivity of HCAL were 95% and 74% 

respectively in water. When ethanol and ethanol/water 1:1 are were used as 

solvents, the CAL conversion and HCAL selectivity were slightly lower, the 

conversion was 75% and 61%, and the selectivity of HCAL were 55% and 65%. 

When ethyl acetate, hexane and THF were used as solvents, the conversion 

and selectivity of CAL catalyzed by hydrogenation were very low. In this 

experiment, considering the solubility of substrate and hydrogen in solvent, 

although CAL can only be slightly soluble in water, the polarity of water is great. 

Considering the conversion and selectivity, water was chosen as solvent. 

3.2.3.3 Study of the kinetic factors affecting hydrogenation of LA over 

Ru0@POM/PIILP catalysts  

In order to further study the catalytic performance of Ru0@POM/PIILP catalyst, 

the kinetic factors such as hydrogen pressure, reaction temperature and 

reaction time were investigated.  

3.2.3.3.1 Effect of reaction temperature 

The influence of reaction temperature on the hydrogenation reaction was 

investigated using Ru0@POM/PIILP catalyst (shown in Figure 3.20). The 

reaction conditions were as follows: hydrogen pressure 0.7MPa, hydrogenation 
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reaction time 2 hours, the reaction temperature changed from 20 oC to 80 oC. 

When the reaction temperature increased from 20 oC to 60 oC, the conversion 

and selectivity of CAL also increased. At 60 oC, the CAL conversion reached 

95% and the HCAL selectivity reached 74%. Because the hydrogenation 

reaction is endothermic reaction, the conversion rate of the reaction keeps 

rising with the increase of temperature step by step. The selectivity of HCAL 

was reduced from 74% to 66% in the temperature range of 60 oC to 80 oC. It 

can be seen that too high temperature will lead to excessive hydrogenation of 

HCAL. Therefore, the effects of selectivity and conversion of CAL were 

considered. The optimum temperature of hydrogenation was 60 oC.  

 

Figure 3.20 Effect of reaction temperature on the hydrogenation of CAL. 

Reaction conditions: CAL 1 mmol, H2O, 12 mL, 1 mmol% Ru0@POM/PIILP 

catalyst, H2, 0.7 MPa, time, 2 hour. Determined by 1H NMR, 1,3-dinitrobenzene 

as an internal standard. 

The influence of reaction temperature on the hydrogenation reaction was 

investigated using Ru0@POM/PIILP catalyst (shown in Figure 3.20). The 

reaction conditions were as follows: hydrogen pressure 0.7MPa, hydrogenation 

reaction time 2 hours, the reaction temperature changed from 20 oC to 80 oC. 

When the reaction temperature increased from 20 oC to 60 oC, the conversion 
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and selectivity of CAL also increased. At 60 oC, the CAL conversion reached 

95% and the HCAL selectivity reached 74%. Because the hydrogenation 

reaction is endothermic reaction, the conversion rate of the reaction keeps 

rising with the increase of temperature step by step. The selectivity of HCAL 

was reduced from 74% to 66% in the temperature range of 60 oC to 80 oC. It 

can be seen that too high temperature will lead to excessive hydrogenation of 

HCAL. Therefore, the effects of selectivity and conversion of CAL were 

considered. The optimum temperature of hydrogenation was 60 oC.  

3.2.3.3.2 Effect of hydrogen pressure 

 

Figure 3.21 Effect of hydrogen pressure on the hydrogenation of CAL. Reaction 

conditions: CAL 1 mmol, H2O, 12 mL, 1 mmol% Ru0@POM/PIILP catalyst, 

temperature, 60 oC, time, 2 hours. Determined by 1H NMR, 1,3-dinitrobenzene 

as an internal standard. 

The effects of hydrogen pressure on the selectivity and conversion of CAL to 

HCAL by hydrogenation were investigated by using Ru0@POM/PIILP catalyst 

at 60 oC for 2 hours. From Figure 3.21, when the hydrogen pressure in the 
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reactor is 0.3 MPa, the conversion of CAL was 93% and the HCAL selectivity 

was 67%. When the hydrogen pressure was raised from 0.3 MPa to 0.7 MPa, 

the conversion rate was increased to 95%, and the HCAL selectivity was 

increased from 67% to 74%. When the hydrogen pressure continues to 

increase to 1.4 MPa, the conversion rate reaches 100%, it can be seen that the 

conversion rate increases with the increase of reaction pressure, but the 

selectivity of HCAL decreased from 74% to 59% with increasing pressure to 2 

MPa. If the reaction pressure is too high, the saturation of hydrogen will lead to 

excessive hydrogenation. In this section, 0.7 MPa was selected as the pressure 

for the hydrogenation of CAL. 

3.2.3.3.3 Effect of reaction time   

 

Figure 3.22 Effect of reaction time on the hydrogenation of CAL. Reaction 

conditions: CAL 1 mmol, H2O, 12 mL, 1 mmol% Ru0@POM/PIILP catalyst, H2, 

0.7 MPa, temperature, 60 oC. Determined by 1H NMR, 1,3-dinitrobenzene as 

an internal standard. 

The influence of reaction time on the selectivity and conversion of CAL by 

hydrogenation of C=C bond with Ru0@POM/PIILP catalyst was investigated  
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under the condition of 60 oC and 0.7 MPa H2. Several reactions were carried 

out to investigate reaction times between 0.5 hours and 2.5 hours. As shown in 

Figure 3.22, with the change of reaction time, the reaction was fast within 0.5 

hour, and the conversion of the reaction increased rapidly to 79%. After 0.5 to 

2 hours, the reaction conversion continued to increase to 95% and the 

selectivity of HCAL increased to 74%, which indicated that the catalyst has 

higher activity. The selectivity of HCAL of reaction reached the highest in 2 

hours. With the prolongation of the reaction time, the selectivity gradually 

decreased, and when the reaction time was 2.5 hours, the selectivity decreased 

to 58%. Considering selectivity and conversion, the optimal time for 

hydrogenation of CAL was set to 2 hours. 

3.2.3.4 Study on the stability of the Ru0@POM/PIILP catalyst 

  

Figure 3.23 Recycles of Ru0@POM/PIILP catalyst for the hydrogenation of CAL. 

Reaction conditions: CAL 1 mmol, H2O, 12 mL, 1 mmol% Ru catalyst, H2, 0.7 

MPa, temperature, 60 oC, time, 2 hours. Determined by 1H NMR, 1,3-

dinitrobenzene as an internal standard. 

Recycle experiments were carried out on the hydrogenation of CAL using 

Ru0@POM/PIILP catalyst under optimum conditions (H2O, 12 mL, H2, 0.7 MPa, 
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temperature, 60 oC, time, 2 hours), to investigate the reusability of the 

Ru0@POM/PIILP catalyst. In Figure 3.23, after the 3 runs, it can be seen that 

the selectivity of C =C bond did not decrease significantly, and the selectivity to 

HCAL decreases from 74% to 68%. The conversion decreased slightly from 95% 

to 92%. The hydrogenation conversion and selectivity can be therefore 

maintained at a high value. This demonstrated that the catalyst has good 

chemical and structural stability. To this end, XPS analysis of Ru0@POM/PIILP 

catalyst after 3 runs confirmed that the ruthenium nanoparticles were stable in 

the catalyst. 

3.2.3.5 The performance of different catalysts for hydrogenation of 

cinnamaldehyde 

 

Figure 3.24 Effect of different catalysts for the conversion of CAL in aqueous 

solution. Reaction conditions: CAL, 1 mmol, water, 12 mL, 1mmol% Ru catalyst, 

H2, 0.7 MPa, temperature, 60 oC, time, 1 hour. Determined by 1H NMR, 1,3-

dinitrobenzene as an internal standard. 

In this section, Ru/C, Ru@PIILP and Ru0@POM/PIILP catalysts are compared 

for the hydrogenation conversion and selectivity (Figure 3.24). When Ru/C was 

used as catalyst, the reaction activity was higher, the conversion of CAL was 
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94%, and the selectivity HCAL was low, only 58%. When Ru@PIILP was used 

as catalyst, the conversion was not as good as that of the Ru/C catalyst, which 

was 78%, but the selectivity of HCAL was higher than that of the Ru/C, which 

was 70%. The conversion performance of Ru0@POM/PIILP catalyst was 

slightly higher than that of the Ru@PIILP, which was 85%, but the selectivity 

was slightly reduced to 66%. When POM was added to the catalyst, the reaction 

rate therefore increased, but the selectivity of HCAL decreased. We suggest 

that the Brønsted acid sites generated by the Ru0@POM/PIILP catalyst in the 

hydrogenation reaction can improve the reaction rate, but was not conducive to 

the selectivity of HCAL. According to Doherty et al. report, alkaline conditions 

are beneficial to the selectivity of HCAL and it can reach 100%. Therefore, the 

selectivity of Ru0@POM/PIILP catalyst for hydrogenation of CAL was not as 

good as that of Ru@PIILP because of the inhibition of HCAL selectivity by the 

generated Brønsted acid. 

3.2.4 Hydrogenation of furfural 

3.2.4.1 The pathway for hydrogenation of furfural 

Hydrogenation of different functional groups of furfural (FFA) results in different 

products. In general, there may be four routes for the reaction. The first is the 

hydrogenation of furfural carbonyl to furfuryl alcohol (FA) and the subsequent 

hydrogenation to tetrahydrofurfuryl alcohol (THFA), followed by ring-opening 

hydrogenation to give pentanediol. The second is the hydrogenation of 

tetrahydrofurfural ring to tetrahydro-2-furancarboxaldehyde, then continued 

hydrogenation to tetrahydrofurfuryl alcohol, followed by ring-opening 

hydrogenation to give pentylene glycol. The third is furfural decarbonylation to 

furan, followed by hydrogenation to tetrahydrofuran (THF), and further ring 
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opening hydrogenation to give n-pentanol. The fourth is hydro-dehydration of 

furfural to methylanthran, followed by ring-opening hydrogenation to give 

pentanone and pentanol. These reactions are parallel competing reactions and 

consume raw materials furfural and hydrogen. 

 

Figure 3.24 Scheme showing the possible products for hydrogenation of furfural 

3.2.4.2 The performance of different catalysts for hydrogenation of 

furfural (FFA) 

A solvent is used in most catalytic hydrogenation reactions and plays an 

important role in the reaction. It affects the hydrogenation rate and sometimes 

the reaction direction. This is mainly because the solvent changes the 

adsorption characteristics of the unsaturated substrate, which changes the 

amount of hydrogen adsorption, and also results in the change of bond energy 

and state of hydrogen and catalyst surface, and makes the catalyst disperse 

better. In general, hydrogenation takes place in a neutral medium, while 

hydrogenolysis takes place in acidic or alkaline medium. Polar solvents can 

accelerate the rate of hydrogenation. We used H2O as the green solvent for 

hydrogenation of FFA. 
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Figure 3.25 Effect of different catalysts on the conversion of furfural (FFA) in 

aqueous solution. Reaction conditions: FFA, 1 mmol, water, 12 mL, 1 mmol% 

Ru catalyst, H2, 1 MPa, temperature, 55 oC, time, 2.5 hour. Determined by 1H 

NMR, 1,3-dinitrobenzene as an internal standard. 

Under the experimental conditions, the amount of FFA was monitored, 

indicating that the catalyst has a high selectivity to the target product FA (100%), 

and the catalytic activities of various catalysts in the FFA hydrogenation reaction 

are shown in Figure 3.25. It can be seen from Figure 3.25 that the catalytic 

activity of PIILP catalyst increased rapidly with the addition of the ruthenium 

nanoparticles, the FFA conversion rate increased from 28% to 64%, indicating 

that the ruthenium nanoparticles can increase the catalytic reaction rate. 

Compared with Ru/C, Ru/PIIPL catalysts, Ru@POM/PILP catalyst had the 

highest conversion rate of FFA, which indicated that the catalyst had the best 

catalytic effect. On the one hand, ruthenium as an active site was well dispersed 

on the carrier POM/PIILP. The presence of the carrier prevented the 

agglomeration of the ruthenium nanoparticles and also increased the specific 

surface area of the catalyst, thereby greatly increasing the activity of the 
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catalyst. On the other hand, due to the strong mutual electron effect between 

Ru, POM and PIILP, the selectivity of FFA hydrogenation product also had a 

great influence on the conversion of FFA, while PW12O40
3- can also produce 

Brønsted acid to make the catalyst more strongly adsorb and polarizae C=O. 

3.2.4.3 Study on kinetic factors of hydrogenation of furfural over 

Ru0@POM/PIILP  

In order to further study the catalytic performance of Ru0@POM/PIILP catalyst, 

the kinetic factors such as hydrogen pressure, reaction temperature and 

reaction time were investigated.  

3.2.4.3.1 Effect of hydrogen pressure 

 

Figure 3.26 Effect of hydrogen pressure on the hydrogenation of FFA. Reaction 

conditions: FFA 1 mmol, H2O, 12 mL, 1 mmol% Ru0@POM/PIILP catalyst, 

temperature, 55 oC, time, 2 hours. Determined by 1H NMR, 1,3-dinitrobenzene 

as an internal standard.  

The change of conversion with hydrogen pressure is shown in Figure 3.27. It 

can be seen that hydrogen pressure had a great influence on the conversion of 

FFA. The hydrogen pressure was varied from 0.5 to 1.5 MPa and results 
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showed that the conversion rate of FFA was very low (33%) under the pressure 

of 0.5 MPa hydrogen. When the hydrogen pressure was increased to 1.0 MPa, 

the conversion of furfural was found to reach 65%. With the further increase of 

hydrogen pressure, more FFA was converted to FA (83%). This illustrated that 

the formation of FA required certain hydrogen pressure, and this was a powerful 

means to influence the hydrogenation reaction. New products can be obtained, 

the speed of reaction is accelerated and space resistance can be overcome. 

The hydrogenation of FFA to FA is a volume-reduced reaction, so increasing 

the pressure favors the reaction equilibrium. In addition, from the collision 

theory, it is known that increasing the pressure increases the chance of 

collisions between molecules, and from a kinetic point of view, the high 

pressure also favors the forward reaction. 

3.2.4.3.2 Effect of reaction time 

 

Figure 3.27 Effect of reaction time on the hydrogenation of FFA. Reaction 

conditions: FFA 1 mmol, H2O, 12 mL, 1 mmol% Ru0@POM/PIILP catalyst, 

temperature, 55 oC, H2, 1 MPa. Determined by 1H NMR, 1,3-dinitrobenzene as 

an internal standard. 
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Figure 3.27 shows the trend of product distribution over time using the 

Ru0@POM/PIILP catalyst. The conversion of FFA gradually increased with time, 

with the reaction time increased from 1 hour to 1.5 hours and then to 2.5 hours, 

FFA conversion to FA increased from 33% to 65% to 87%. The highest yield of 

87% when their reaction time was 2.5 hours. 

3.2.4.3.2 Effect of reaction temperature 

 

Figure 3.28 Effect of reaction temperature on the hydrogenation of FFA. 

Reaction conditions: FFA 1 mmol, H2O, 12 mL, 1 mmol% Ru0@POM/PIILP 

catalyst, time, 1.5 hours H2, 1 MPa. Determined by 1H NMR, 1,3-dinitrobenzene 

as an internal standard. 

Figure 3.28 showed how the yield of the products varied with temperature. It 

can be seen that the temperature had a great influence on FFA conversion. The 

main product was FA produced by hydrogenation of FFA at a lower temperature 

of 35 oC, with a FFA conversion of 38%. With the increase of temperature, more 

FFA was converted to FA at 65 oC, the conversion of FFA reached 65%. When 

the temperature continued to rise to 75 oC, the conversion of FFA reached to 
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86% and the selectivity for FA was also100%. At 100 °C, the conversion rate of 

FFA reached 98%, but the selectivity of FA decreased to 98%, the by-products 

THFA had 2% yield. The hydrogenation of furfural to FA is an exothermic 

reaction. From the point of view of thermodynamics, too high temperature is not 

beneficial to the reaction in order to improve the equilibrium conversion. The 

thermodynamics of hydrogenation of unsaturated hydrocarbons and aromatics 

indicate that a favorable equilibrium can be obtained at atmospheric pressure 

below 200 oC, but the by-products can be produced at a high temperature. 

3.2.4.4 Study on the Stability of Ru0@POM/PIILP Catalyst for 

hydrogenation of FFA 

 

Figure 3.29 Recycles of Ru0@POM/PIILP catalyst for the hydrogenation of FFA. 

Reaction conditions: FFA 1 mmol, H2O, 12 mL, 1 mmol% Ru catalyst, H2,1.0 

MPa, temperature, 100 oC, time, 1.5 hours. Determined by 1H NMR, 1,3-

dinitrobenzene as an internal standard. 
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The Ru0@POM/PIILP catalyst was used twice to investigate its stability, as 

shown in Figure 3.29. It can be seen from the diagram that the conversion of 

the two reactions was above 90%, and the conversion of FA decreases slightly 

from 98% to 91% in the second use, and the selectivity of FA was 98% in two 

runs. The decrease of FFA conversion showed that the activity of the catalyst 

decreased to a small extent.  
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3.3 Conclusions 

The Ru0@POM/PIILP composite was insoluble in water catalyst prepared. We 

assumed that + ve charges in PIILP will act to immobilize the – ve charged 

Ru@POM NPs. The morphology, structure and composition of the 

Ru0@POM/PIILP catalyst were determined by various characterization 

methods, such as FT-IR, XRD, SEM, EDS, TEM, TGA and so on.  

In the hydrogenolysis reaction of HMF to DMF, HMF contains C=C double 

bonds, C=O groups and OH groups. However, these active groups are likely to 

be reduced by catalysis in the process of hydrogenation reduction, and the 

interaction between the chemical groups makes it more difficult to reduce the 

catalytic hydrogenation to DMF, so the selection of catalyst is particularly 

important. By comparing the results of catalytic hydrogenolysis of HMF with 

Ru0@POM/PIILP and various catalysts under the same reaction conditions, it 

indicated that the catalytic effect of Ru0@POM/PIILP catalyst was the best, 

which was due to the fact that Ru0@POM/PIILP was a kind of bi-functional 

catalyst. The synergistic effect between ruthenium nanoparticles and the POM 

served to generated Brønsted acid in Ru0@POM/PIILP catalyst, making the 

selectivity of DMF increase in the selective catalytic reaction of hydrogenolysis. 

We also investigated the effect of the reaction temperature, reaction time and 

reaction pressure for the hydrogenolysis of HMF to DMF. It was concluded that 

the optimum reaction conditions for catalytic hydrogenolysis of HMF to DMF 

were 5 hours, 2 MPa H2, 200 oC when Ru0@POM/PIILP as catalyst, the 

conversion of HMF was 100% and the yield of DMF was 84%. The stability of 

the Ru0@POM/PIILP catalyst was investigated by using the catalyst 5 times. 

When the Ru0@POM/PIILP catalyst was repeatedly used three times, the 

catalyst can maintain good activity and all achieved a consistent catalytic effect 

on HMF conversion and DMF yield, but the conversion of HMF decreased from 
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100% to 91% at the fifth cycle and the DMF selectivity decreased from 84% to 

77%. Although the activity of the catalyst decreased slightly at the fifth cycle, 

the catalytic activity remained stable. 

The catalytic efficiency of CAL hydrogenation of Ru0@POM/PIIL catalyst under 

different solvents was investigated, showing that water is the best reaction 

solvent, and the effects of different hydrogen pressure, reaction time, and 

reaction temperature on hydrogenation of CAL were also investigated. The 

optimal reaction conditions were 60 oC and 0.7 MPa of hydrogen, and the 

reaction time was 2 hours, the hydrogenation conversion of CAL was 95% and 

the HCAL selectivity was 74% under this conditions using Ru0@POM/PIIL 

catalyst. When comparing the catalytic effects of different catalysts, it was 

known that the selectivity of Ru/C catalysts was poor. The conversion of 

Ru0@POM/PIIL catalysts with POM was higher than that of Ru0@PIIL, but the 

HCAL selectivity was slightly lower with Ru0@POM/PIIL catalyst. This is 

because the generated Brønsted acid of Ru0@POM/PIIL is not conducive to 

the selective hydrogenation of CAL. 

In this work, the Ru0@POM/PIIL catalyst was prepared to catalyze FFA to 

produce FA. The catalyst of Ru0@POM/PIIL had the best activity and stability 

among different ruthenium-containing catalysts. Under different reaction 

temperature, time and pressure of hydrogen, the conversion of FFA and the 

selectivity of FA in hydrogenation catalyst were optimized, and the conversion 

of FFA was up to 98%. The activity of the catalyst decreased to a certain extent 

after two runs of use. Therefore, Ru0@POM/PIIL is a possible catalyst for the 

production of FA from furfural. The catalytic performance of the catalyst was 

better than that of the Ru/C catalyst, mainly because of the synergetic effect of 

POM and the use of PIILP support for the Ru@POM nanoparticles, which 

improved the active surface area of the catalyst. In the hydrogenation using 

Ru0@POM/PIIL catalyst, it is proposed that Brønsted acid sites are formed. A 
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small number of adsorption centers are beneficial to the forward reaction from 

a kinetic point of view. The higher selectivity is mainly due to the weak 

adsorption intensity of FA.  
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3.4 Experimental 

3.4.1 General Chemicals 

All chemicals were purchased from commercial suppliers (Alfa Aesar, Sigma 

Aldrich, Fisher Scientific, Acros Organics) and used without any purification. 

Distilled water was used throughout all this work. All manipulations of air-

sensitive materials were carried out using standard Schlenk techniques under 

nitrogen and a glove-box with a recirculation system.  

3.4.2 Instrumentation 

3.4.2.1 Fourier transform infrared spectroscopy (FT-IR)  

FT-IR spectra were analyzed on a Bruker Alpha spectrometer using a Platinum 

ATR module. Spectra were recorded for dried solid powder samples (vacuum 

drying for 5 hours). 

3.4.2.2 Powder X-ray diffraction (XRD) 

Powder XRD analysis was recorded on a Rigaku Ultima IV diffractometer with 

Cu Kα radiation, and the scanning angle range was 5~90 degrees at 40 kV and 

40 mA. 

3.4.2.3 X-ray photoelectron spectroscopy (XPS) 

XPS characterization was recorded on a PHI Quantum-2000 system with Al Kα 

X-ray source. The powdered samples were pressed into sheets and then 

measured. 
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3.4.2.4 Scanning electron microscope (SEM) and energy dispersive 

spectrometer (EDS) 

SEM images were taken using a HITACHI S-4800 instrument to check the 

morphology, element composition and element content of samples. The 

working voltage was 15 kV. In the experiment, samples were dispersed in 

solution and then dripped on clean silicon wafers. After drying, the silicon 

wafers with conductive tape on the sample stage were sent to the SEM 

instrument for testing. 

3.4.2.5 Thermal gravimetric analysis (TGA) 

TGA was performed using a SDT Q600 instrumen, at a heating rate of 10 

oC/min under nitrogen, from room temperature up to 800 oC. 5-10 mg of sample 

was used for each measurement. 

3.5.2.6 Transmission electron microscopy (TEM) 

TEM photographs were taken using a 50 kV~300 kV high resolution 

transmission electron microscope (TECNAI F-30) from FEI, Holland. After 

ultrasonic dispersion of the samples, copper net is used as the observation 

carrier. 

3.4.2.7 Nuclear magnetic resonance spectroscopy (NMR) 

NMR spectra were recorded on Bruker JEOL ESC-300 and 400 instruments. 

Solid-state NMR spectra were recorded on a Varian VNMRS 400 instrument. 

Typical concentration of samples for solution NMR was 0.01 M, the mass of 

samples used for solid-state NMR was approxomately 10 mg. 
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3.4.2.8 Gas chromatography (GC) 

GC results were recorded on a GC-2060 instrument. The gaseous products 

were analysed by a gas chromatograph equipped with a thermal conductivity 

detector (TCD) which was connected to a TDX-01 packed column and a flame 

ionization detector (FID) which used an alumina capillary column. The products 

in the liquid phase were analysed by a gas chromatograph equipped with an 

FID, PONA and Bond-Q capillary columns connected to FID. 

3.4.3 Experimental  

3.4.3.1 Synthesis of 1,2-dimethyl-3-(4-vinylbenzyl) imidazolium chloride  

 

To an oven-dried Schlenk flask under N2, 1,2-dimethylimidazole (5.25 g, 54.6 

mmol, 1 eq.) in CHCl3 (50 mL) and 4-chloromethyl styrene (10 mL, 71 mmol, 

1.3 eq.) were added. The reaction mixture was stirred for 18 hours at 50 oC. 

The solvent was removed under vacuum and then washed with ethyl acetate 

(4 × 50 mL). The resulting fine beige powder (12.20 g，90.0 %) was dried under 

reduced pressure. 1H NMR (300 MHz, chloroform-d) δ 7.79 – 7.69 (m, 2H), 7.39 

– 7.23 (m, 3H), 6.63 (dd, J = 17.6, 10.9 Hz, 1H), 5.71 (dd, J = 17.6, 0.8 Hz, 1H), 

5.54 (s, 2H), 5.25 (dd, J = 10.8, 0.8 Hz, 1H), 3.93 (s, 3H), 2.73 (s, 3H).13C NMR 

(75 MHz, Chloroform-d) δ 135.76, 132.33, 128.50, 127.09, 122.85, 121.81, 

115.33, 52.14, 35.85, 10.91. The 1H NMR data is consistent with the literature 

(yield: 90 %).46 
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3.4.3.2 Synthesis of radical polymerisation 

 

To an oven-dried Schlenk flask under N2, 1 (5.00 g, 20.10 mmol, 1.84 eq), 2-

methyl-1,3-bis(4-vinylbenzyl0-1H-imidazol-3-iumchloride (0.53g, 1.52 mmol, 

0.14 eq), AIBN (0.25 g, 1.53 mmol, 0.14 eq.), styrene (1.45 g, 10.90 mmol, 1 

eq.) were added in ethanol (100 mL). The resulting reagents were degassed 

using freeze-thaw method (6 cycles). After reaching room temperature, the 

reaction mixture was heated to 85 oC for 96 hours. The reaction mixture was 

then cooled to room temperature and an equivalent of AIBN was added 

followed by been degassed again (5 times) and stirring at 85 oC overnight. The 

solvent was removed under reduced pressure after cooling to room 

temperature. The yellow product was washed using ethanol (3 times) and dried 

under reduced pressure to give the polymer as a white powder (3.34 g). The 

sample was analysed by 1H NMR peaks in MeOD solvent. 

3.4.3.3 Synthesis of Ru/POM(H3PW12O40)@PIILP 

 



Chapter 3. PIILP containing polyoxometalate-stabilized ruthenium nanoparticles 

 153  

 

H3PW12O40 (340 mg, 118mmol) and Na[trans-Ru(DMSO)2Cl4] (50 mg, 118 

mmol) were added to reaction flask with water (12 mL), then reduced under 1.0 

MPa H2 at 50 oC for 5 hours in a 50 mL stainless steel autoclave with a stirring 

speed of 600 rpm. After reaction, the autoclave was cooled to room temperature, 

to obtain black stable and homogeneous solutions of Ru@H3PW12O40. An 

oven-dried Schlenk flask was charged with Ru@H3PW12O40 solution (12 mL) 

and polymer 2 (108 mg, 177 mmol) under nitrogen and allowed to stir at room 

temperature for 3 hours to form brown-black solid powder product. After 

reaction, the reaction mixture was centrifuged (10 min, 8000 rpm), then 

removed the solution and followed by washing with water (10 mL). This step 

was repeated 3 times, and the brown-black solid powder product was dried 

under reduced pressure (yield: 91 %). The sample was analysed by solid state 

1H and 13C NMR.  

3.4.3.4 Synthesis of Ru0@PIILP 

 

Polymer 2 (280 mg, 0.45 mmol) was dissolved in water (10 mL). The clear 

solution was added to Na[trans-Ru(DMSO)2Cl4] (127 mg, 0.3 mmol) and 

allowed to stir for 4 hours, the colour of the solution was changed to deep green. 

After reaction, the water was removed using rotary evaporator to get an 

amorphous solid. Diethyl ether (50 mL) was added to the solid and scratched 
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using spatula to obtain deep green powder [(RuCl4)-@PIILP] which was then 

washed with diethyl ether (3 times) and was dried under reduced pressure. 

[(RuCl4)-@PIILP] (500 mg) was added to reaction flask with ethanol (12 mL), 

then reduced under 1.0 MPa H2 at room temperature for 5 hours in a 50 mL 

stainless steel autoclave with a stirring speed of 600 rpm. After reaction, the 

resulting brown solid was washed with ethanol, diethyl ether and then dried 

overnight under reduced pressure to afford the product as an orange powder 

(yield: 85 %) The sample was analysed by solid state 1H and 13C NMR peaks.  

3.4.3.5 Synthesis of Cs1.5H1.5PW12O40 

In a beaker, H3PW12O40 (8.6 g, 3.0 mmol) was dissolved in H2O (50 mL) with 

stirring. In another beaker, Cs2CO3 was dissolved in H2O (37.5 mL) with 

stirring.47 The precipitate was obtained after the addition of the aqueous 

solution of Cs2CO3 into that of H3PW12O40. The white precipitate was filtered 

and washed with H2O and ethanol before stirring for 4 hours. After drying and 

calcinating the sample at 400 oC for 2 hours Cs1.5H1.5PW12O40 was obtained 

(yield: 88 %). The sample was analysed by solid state 1H and 31P NMR. 

3.4.3.6 Synthesis of polymer supported phosphotungstate (PIILP/POM)  
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A suspension of polymer 2 (0.58 g, 0.2 mmol) and pyridine (47.46 mg, 0.6 mmol) 

was dissolved in ethanol (20 mL) and stirred for 40 min at room temperature, 

phosphotungstate acid (0.58 g, 0.2 mmol) was added and dissolved in a 

minimum volume of H2O was added. The reaction mixture was stirred at room 

temperature for 4 hours. The white precipitate was filtered, washed with H2O, 

ethanol and diethyl ether, and then dried under reduced pressure to afford the 

product of a white solid (yield: 93 %). The sample was analysed by solid state 

1H and 13C NMR peaks. 

3.4.3.7 General procedure for selective hydrogenation of HMF to DMF 

0.1 mol% catalyst (based on Ru loading), HMF (63 mg, 0,.5 mmol) and THF 

(12 mL) were placed in a Parr reactor and heated at different temperatures 

under different H2 pressures before being allowed to stir for the alloted time. 

After cooling to room temperature, the decane (27μL) was added as an internal 

standard substance and filtered by glass microfilter. The products solution was 

analyzed by GC-MS to determine conversion and selectivity. 

3.4.3.8 General procedure for selective hydrogenation of trans-

cinnamaldehyde 

0.1 mol% catalyst (based on Ru loading), trans-cinnamaldehyde (0.125 mL, 1.0 

mmol) and solvent (toluene, isopropyl alcohol, hexane or ethanol) (12 mL) were 

placed in a Parr reactor and heated at different temperatures under different H2 

pressures before being allowed to stir for the alloted time. After cooling to room 

temperature, reaction mixture was diluted with diethyl ether (15 mL). The 

organic layer was separated, dried with magnesium sulfate, filtered and solvent 

removed under vacuum. The resulting residue was analyzed by 1H NMR 

spectroscopy to determine conversion and selectivity. 
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3.4.3.9 General procedure for selective hydrogenation of furfural 

0.1 mol% catalyst (based on Ru loading), decene (1 mmol, 82.5 μL)) and water 

(12 mL) were placed in a Parr reactor and heated at different temperatures 

under different H2 pressures before being allowed to stir for the alloted time. 

Upon cooling to room temperature, the reaction mixture was diluted with diethyl 

ether (15 mL). The organic layer was separated, dried with magnesium sulfate, 

filtered and solvent removed under reduced vacuum. The resulting residue was 

analyzed by 1H NMR spectroscopy to determine conversion.  
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Chapter 4. Polyoxometalate-stabilized ruthenium 

nanoparticles adsorbed onto carbon nitride 

4.1 Introduction 

The material g-C3N4 is a new type of non-metallic semiconductor photocatalyst 

with a band gap of about 2.7 eV.1,2 When irradiated by sunlight, valence band 

electrons are excited to form electron-hole pairs and produce active particles 

that catalyze the decomposition of pollutants, hydrolysis and oxygen 

reduction.3-6 In addition, it can also catalyze the synthesis of organic 

compounds. The preparation of g-C3N4 by conventional polycondensation has 

many disadvantages, such as low photocatalytic activity, small specific surface 

area, facile recombination of the photogenerated electrons and holes, large 

band gap, slow transport of photogenerated carriers, and unsatisfactory 

photocatalytic activity.7-9 Using a hydrothermal method, a series of 

Ru0@H3PW12O40/C3N4 hybrid composites were synthesized, in which the 

modification of g-C3N4 by Ru0@H3PW12O40 not only solved the solubility 

problem of Ru0@H3PW12O40, but also overcame the disadvantages of the small 

specific surface area of C3N4, the high exciton binding energy and fast photo-

carrier recombination, and thereby promotes the photocatalytic reaction. 

4.1.1 Water splitting 

Energy shortage and environmental pollution are the most important issues for 

humans to solve in the 21st century. In 1972, Japanese scientists Fujishima 

and Honda discovered that TiO2 single crystal electrodes can be used to 

photolytically to decompose water to give hydrogen.10  
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Photocatalytic water splitting for hydrogen production has attracted great 

interest by scientists all over the world. The photocatalytic conversion of low-

density solar energy to high-density chemical energy is one of the simplest 

hydrogen energy production technologies, and it can be used to solve energy 

shortage and environmental pollution.11 Novel photocatalysts with high 

quantum efficiency, high visible light utilization, high stability and low cost have 

been designed and developed.12,13 In the past 40 years, inorganic compounds 

have been developed as the main photocatalysts, including metal oxides, 

sulfides and nitrides.14-16 The unique structure of g-C3N4 also shows good 

photocatalytic performance for water splitting.3 In practice, in order to further 

improve the photocatalytic effect of g-C3N4, researchers have developed a 

variety of improved methods, such as physical modification, chemical doping 

and microstructure adjustment.17,18 The Keggin type heteropolyacid H3PW12O40 

combined with TiO2 can enhance the photocatalytic effect because the 

unoccupied W5d orbital of PW12O40
3- might trap photogenerated electrons.19 

The g-C3N4 was modified by adsorbing Ru0@H3PW12O40 nanoclusters using 

the hydrothermal method described in this Chapter, which was used to inhibit 

the combination of photogenerated electrons and holes, increase the 

absorption of visible light and improving the photocatalytic activity. The effect 

of g-C3N4 prepared with different amounts of Ru0@H3PW12O40 on 

photocatalytic hydrogen production was studied systematically. The catalytic 

performance of the resulting Ru0@H3PW12O40/C3N4 hybrid composites were 

compared with g-C3N4, and the photocatalytic mechanism of 

Ru0@H3PW12O40/C3N4 is described in this Chapter. 
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4.1.2 Hydrogenation of cellobiose to sorbitol  

Sorbitol is an important raw material in medicine, the chemical industry, light 

industry and the food industry.20,21 It can be used as a softener, a humidity 

regulator and in other houselold chemicals such as toothpaste and 

mouthwash.21 Sorbitol is also widely used in the leather, tobacco and metallurgy 

industries, and can also be used as an energy platform molecule through further 

catalytic conversion.22 At present, the preparation of sorbitol by heterogeneous 

catalytic hydrogenation mainly uses glucose, sucrose, starch and other edible 

sugars as raw materials.23,24 The production cost is therefore high and does not 

meet sustainability requirements. If the hydrogenation of cellulose to sorbitol 

can be realized by designing and developing high performance catalysts, it will 

not only effectively reduce the production cost of sorbitol, but also play an 

important role in ensuring food security and social sustainable development. 

However, the catalytic conversion of cellulose is still a very difficult challenge 

primarily because of its stable crystal structure and poor solubility in water and 

other solvents.25 Although some progress was been made in the development 

of catalysts for the hydrogenation of cellulose to sorbitol, the yield is still low, 

and the complexity of cellulose is not conducive to basic research. Therefore, 

cellobiose is used as a model for cellulose (Scheme 4.1), and was chosen as 

the research object in this Chapter.26 At present, Ni and Ru based catalysts are 

mainly used for hydrogenation of glucose to sorbitol. Ni is used in industry, but 

because the active components are easily lost and the surface adsorption of 

by-products poisons the catalyst, the system has the disadvantages of short 

catalyst life and the product needs to be purified.27-30 Compared with this, 

ruthenium supported catalysts have become important for the hydrogenation of 

glucose because the low content of Ru in the catalyst shows the same activity 

as the high content Ni based catalyst and its performance is stable.30-32 The 
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properties of different catalysts for hydrogenation of cellobiose to sorbitol are 

described in this Chapter, including details of reaction mechanism and factors 

affecting the kinetics of hydrogenation of cellobiose using 

Ru0@H3PW12O40/C3N4 hybrid catalysts. Ru0@H3PW12O40/C3N4 catalysts 

showed good catalytic performance in the hydrogenation of cellobiose due to 

the unique generation of Brønsted acid sites from hydrogen over 

Ru0@H3PW12O40/C3N4 catalysts (Scheme 4.2). This work provides the 

foundation for the hydrogenation of cellulose based on the model study with 

cellobiose. 

 

Scheme 4.1 Chemical structure of cellulose and cellobiose unit 

 

Scheme 4.2 Reaction mechanism of cellobiose under acidic conditions 



Chapter 4. Polyoxometalate-stabilized ruthenium nanoparticles adsorbed onto carbon nitride 

 165  

 

4.1.3 Hydrogenation of levulinic acid (LA) 

With the decreasing availability of fossil fuels and global warming, finding 

renewable resources to replace fossil fuels is an important way to solve the 

energy crisis and realize renewable energy. Biomass is a major source of 

renewable fuels and chemicals due to its low cost and sustainability.33 Among 

the various biomass-derived compound, levulinic acid (LA) is an important 

platform molecule, which can be obtained by hydrolysis of lignocellulose and 

waste biomass.34 Many add-value products can be obtained by LA 

hydrogenation, of which γ-valerolactone (GVL) is main intermediate, because 

of its non-toxic, stable properties, large storage and biodegradability. It is widely 

used in liquid fuels, food additives or solvents, so LA hydrogenation to GVL is 

a very important reaction.35,36 In recent years, a growing number of catalyst 

supportes have been used in the hydrogenation of LA to produce GVL, 

including silicon dioxide (SiO2), alumina (Al2O3), activated carbon (AC), ordered 

mesoporous carbon (OMC) and carbon nanotubes (CNTs) with supported Cu, 

Ni, Ir, Au, Pd, Pt, Ru, Co catalysts.37-55 The supported Ru catalyst has the 

highest catalytic activity, and results showed that the pore structure (specific 

surface area, pore volume and pore size distribution) not only affects the 

dispersion of the active components but also affects the mass transfer rate 

during the reaction.56-58 Therefore, the activity, selectivity and stability of the 

supported catalysts are closely related to the properties of the support. 

 

Scheme 4.3 Chemical structure of (a) LA) and (b) GVL 
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4.2 Results and discussion 

4.2.1 Characterization of POM stabilized ruthenium nanoparticles 

adsorbed onto carbon nitride (Ru0@H3PW12O40/C3N4) composites 

 

The synthesis of Ru0@H3PW12O40/C3N4 composites is shown in Scheme 4.4. 

POM stabilized ruthenium nanoparticles were prepared by the H2 reduction of 

mixture of H3PW12O40 and Na[trans-Ru(DMSO)2Cl4]. Dicyandiamide was used 

to synthesize g-C3N4, and elemental analysis showed 1.65 wt% for H, 35.10 

wt % for C and 61.98 wt% for N, so the C/N mole ratio was 0.66, as previous 

reported. Ru0@H3PW12O40/C3N4 was synthesized from POM stabilized 

ruthenium nanoparticles and g-C3N4 using hydrothermal treatment as 

described in Chapter 2. The OH groups were replaced by NH2 groups on the 

surface of g-C3N4 during hydrothermal method, and in the acidic solution of 

Ru0@H3PW12O40, the NH2 groups of C3N4 are protonated by H3PW12O40, The 

resulting NH3
+ groups on the surface of g-C3N4 will cause adsorption of 

Ru0@H3PW12O40 by electrostatic attraction to form Ru0@H3PW12O40/C3N4.  

 

Scheme 4.4 The designed route for Ru0@H3PW12O40/C3N4 hybrid composites 

The solid state 13C NMR spectra of g-C3N4 and Ru0@H3PW12O40/C3N4 are 

shown in Figure 4.1 (a). The 13C NMR peaks of g-C3N4 at 156 and 164 ppm, 

and the 13C NMR peaks of Ru0@H3PW12O40/C3N were also at 156 and 164 
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ppm. The location of the 13C NMR peaks of g-C3N4 were consistent with that of 

Ru0@H3PW12O40/C3N4. These indicated the presence of g-C3N4 in 

Ru0@H3PW12O40/C3N4. Figure 4.1 (b) showed the solid state 31P NMR spectra 

of H3PW12O40 and Ru0@H3PW12O40/C3N4, they all exhibited a sharp peak at -

15.6 ppm, the 31P NMR peak position of Ru0@H3PW12O40/C3N4 was consistent 

with H3PW12O40 and the band width was broadened. The broadening of the 

signs has been attributed to electrostatic interactions between H3PW12O40 and 

g-C3N4. The solid state 31P and 13C NMR spectra indicated the successful 

preparation of Ru0@H3PW12O40/C3N4. 

 

Figure 4.1 Solid state 13C NMR spectra (a) and solid state 31P NMR spectra (b) 

for samples 

The g-C3N4, H3PW12O40, Ru0@5%H3PW12O40/C3N4, 

Ru0@10%H3PW12O40/C3N4 and Ru0@15%H3PW12O40/C3N4 composites were 

also characterized by powder X-ray diffraction (XRD) and results are shown in 

Figure 4.2. The g-C3N4 was a typical lamellar graphite phase structure, and 

there are two obvious XRD characteristic peaks at 13.0 ° (d = 0.618 nm) and 

27.4 ° (d = 0.326 nm), which belonged to the stacked diffraction peaks of the 

heptazine heterocyclic units and the graphite-like layers in the crystal planes of 

(100) and (002).5,59,60 The diffraction pattern of H3PW12O40 was consistent with 

a monoclinic structure. For Ru0@H3PW12O40/C3N4, the co-occurrence of 

[PW12O40]3-, ruthenium and g-C3N4 were exposed in XRD patterns, the 



L．Feng (2018) 

 

168 

 

[PW12O40]3- peak intensities increased gradually with the content of [PW12O40]3- 

in composites from 5% to 15%, this was due to the strong diffraction peak of 

H3PW12O40 covering g-C3N4 diffraction peak. 

 

Figure 4.2 XRD patterns of (a) g-C3N4, (b) H3PW12O40, (c) 

Ru0@5%H3PW12O40/C3N4, (d) Ru0@10%H3PW12O40/C3N4 and (e) 

Ru0@15%H3PW12O40/C3N4 samples 
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Figure 4.3 TGA curves of H3PW12O40, g-C3N4, Ru0@5%H3PW12O40/C3N4, 

Ru0@10%H3PW12O40/C3N4 and Ru0@15%H3PW12O40/C3N4 samples 

Thermal gravimetric analysis (TGA) profiles are shown in Figure 4.3. The 4% 

weight loss for the H3PW12O40 between 100 to 200 oC was due to moisture 

volatilization. After calculation, we can make sure the x for H3PW12O40·xH2O is 

6.6. Then the weight of H3PW12O40 did not change with the temperature 

increase to 700 oC, which illustrated H3PW12O40 was stable until 700 oC. The 

combustion of  pure g-C3N4 occurred in the range of 580 to 700 oC. Rapid 

decomposition region was observed from 505 to 625 oC for 

Ru0@5%H3PW12O40/C3N4, Ru0@10%H3PW12O40/C3N4 and 

Ru0@15%H3PW12O40/C3N4 samples, at lower temperature than g-C3N4 and 

showed 52.5%, 36.5%, 27.5% weight losses respectively, which was attributed 

to the decomposition of C3N4. At higher temperatures, the 

Ru0@H3PW12O40/C3N4 samples showed no decomposition between 625 and 

700 oC. 
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Figure 4.4 FT-IR spectra of H3PW12O40, g-C3N4, Ru0@5%H3PW12O40/C3N4, 

Ru0@10%H3PW12O40/C3N4 and Ru0@15%H3PW12O40/C3N4 samples 

Figure 4.4 shows the Fourier transform infrared (FT-IR) spectra of g-C3N4, 

H3PW12O40 and the series of Ru0@H3PW12O40/C3N4 composites. For 

H3PW12O40, the peaks at 1079, 976, 889, 765 cm-1 were attributable to 

stretching vibration of (P−Oa), (W=Od), (W−Ob-W) and (W-Oc-W).61,62 For g-

C3N4, a series of bonds were contained in the range 1200-1650 cm-1 because 

of CN (C-N and C=N) heterocycles, a characteristic peak at 808 cm-1 was 

assigned to stretching vibration of the triazine units.63 Moreover, in the case of 

Ru0@H3PW12O40/C3N4 composites, FT-IR modes of [PW12O40]3-
 were shifted to 

1089, 977, 894, 755 cm-1, indicating that [PW12O40]3- interacted with g-C3N4 

upon hydrothermal treatment. The g-C3N4 related FT-IR mode at 808 cm-1 

cannot be observed in the Ru0@H3PW12O40/C3N4 composites due to overlap 

with bonds [PW12O40]3-. 
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Figure 4.5 XPS spectra of Ru0@5%H3PW12O40/C3N4 sample, (a) C1s peak, (b) 

N1s peak, (c) Ru1s peak and (d) W1s peak 

Interactions between g-C3N4 and Ru0@H3PW12O40 can be confirmed by X-ray 

photoelectron spectroscopy (XPS) as shown in Figures 4.5-4.7. The XPS 

spectra of Ru0 (Ru0 3d5/2 at 280.5 eV, Ru0 3p3 at 466.2 eV, Ru0 3p1 at 488.5 eV), 

ndicates the existence of Ru0 nanoparticles in the serial composites. The C1s 

bonding energy values for g-C3N4 and Ru0@H3PW12O40 showed a peak at 

284.7 eV assigned to C-C and C=C, which was associated with adventitious 

carbon on the surface of Ru0@H3PW12O40/C3N4 samples, while the peak at 288 

eV was attributed to sp2 C atoms of C-N-C.64 The W1s spectra in Figures 4.5-

4.7 (d), show bonding energy values of 35.5 eV and 37.3 eV which can be 

assigned to W 4f7/2 and W 5p3/2 respectively, similar to the XPS results for WO3 

(35.8 eV and 37.0 eV) reported in the literature.65,66 The minor shift of peaks 
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may be due to the interaction between g-C3N4 and Ru0@H3PW12O40. The N1s 

peaks are shown in Figures 4.5-4.7 (b), and the bonding energy peak at 397.0 

eV was assigned to C=N-C (sp2 hybrizied nitrogen), which established the 

presence of graphitic carbon nitride. N-C3 groups can be confirmed from the 

presence of two peaks at 399.0 eV and 400.5 eV.67 

 

Figure 4.6 XPS spectra of Ru0@10%H3PW12O40/C3N4 sample, (a) C1s peak, (b) 

N1s peak, (c) Ru1s peak and (d) W1s peak 
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Figure 4.7 XPS spectra of Ru0@15%H3PW12O40/C3N4 sample, (a) C1s peak, (b) 

N1s peak, (c) Ru1s peak and (d) W1s peak 

 

Figure 4.8 UV-DRS spectra of samples 

Ultraviolet–visible diffuse reflectance spectroscopy (UV-DRS) was used to 

investigate the optical properties of each of the composites (Figure 4.8). The 
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absorption edge of g-C3N4 sample was at 480 nm, which can be associated 

with the semiconductor band gap of 2.6 eV and is consistent with the literature 

report.68 The absorption edge for H3PW12O40 at 404 nm was assigned to charge 

transfer from O2p orbitals to W5d orbitals, the band gap energy was about 3.0 

eV. Compared with g-C3N4 and H3PW12O40, the absorption edge of Ru0@C3N4, 

Ru0@5%H3PW12O40/C3N4, Ru0@10%H3PW12O40/C3N4 and 

Ru0@15%H3PW12O40/C3N4 samples moved to longer wavelengths, with values 

of about 514 nm (2.4 eV), 532 nm (2.33 eV), 539 nm (2.30 eV) and 553 nm 

(2.24 eV) respectively. The red shift of the absorption edge was attributed to 

the interaction between g-C3N4 and H3PW12O40 (Ru) in the composites, which 

indicated the composites can absorb more light and create more electron hole 

pairs. It was suggested that the introduction of H3PW12O40 indirectly causes at 

change in the electronic structure of g-C3N4 in the composites of 

Ru0@H3PW12O40/C3N4 by NH3
+…OW coordination bond. The absorption of 

Ru0@H3PW12O40/C3N4 in the visible region increased with the amount of 

H3PW12O40, especially in the range 500~560 nm. Therefore, the composite 

catalyst not only broadened absorption into the visible region, but also improves 

the light absorption ability of g-C3N4. This would improve the light utilization 

efficiency of these materials in photocatalytic reactions. 
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Figure 4.9 SEM images of (a), (b) Ru0@5%H3PW12O40/C3N4, (c), (d) 

Ru0@10%H3PW12O40/C3N4, (e), (f) Ru0@15%H3PW12O40/C3N4 and (g), (h) g-

C3N4 samples 

The morphologies and structure of Ru0@H3PW12O40/C3N4 composite materials 

were studied by scanning electron microscopy (SEM) and the results are shown 

in Figure 4.9. Typical g-C3N4 structure is shown in Figure.4.9 (g) and (h), the 
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morphology of -C3N4 was irregular and stacked together. After hydrothermal 

treatment with Ru0@H3PW12O40, the Ru0@H3PW12O40/C3N4 composites 

seemed to form nanosheets with sharp edges (Figure 4.9 (a) to (f)), and the 

Ru0@H3PW12O40/C3N4 were new intercalation compounds, which might be 

attributed to Ru0@H3PW12O40 inserted between layers of g-C3N4, this result 

clearly indicated that Ru0@H3PW12O40 impacted the microstructure. 

 

Figure 4.10 Typical images of (a) Ru0@5%H3PW12O40/C3N4 sample and the 

corresponding elemental mapping images of (b) carbon, (c) tungsten, (d) 

phosphorus (e) nitrogen and (f) ruthenium 
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Figure 4.11 Typical images of (a) Ru0@10%H3PW12O40/C3N4 sample and the 

corresponding elemental mapping images of (b) carbon, (c) tungsten, (d) 

phosphorus, (d) nitrogen and (f) ruthenium 

The energy dispersive spectroscopy (EDS) elemental mapping images of 

carbon, ruthenium, nitrogen, tungsten, phosphorus for Ru0@H3PW12O40/C3N4 

samples indicated a uniform distribution of Ru0@H3PW12O40 over the g-C3N4 

surface on the microscale. 
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Figure 4.12 Typical images of (a) Ru0@15%H3PW12O40/C3N4 sample and the 

corresponding elemental mapping images of (b) carbon, (c) tungsten, (d) 

phosphorus, (d) nitrogen and (f) ruthenium 

Table 4.1 BET results of g-C3N4 and Ru0@H3PW12O40/C3N4 composites 

Entry Catalyst Surface 

area 

(m2/g) 

Pore 

volume 

(cm3/g) 

Pore size

(nm) 

1 g-C3N4 11.085 0.094 17.576 

2  Ru0@5%H3PW12O40/C3N4 30.424 0.143 21.066 

3 Ru0@10%H3PW12O40/C3N4 40.965 0.155 23.012 

4 Ru0@15%H3PW12O40/C3N4 36.532 0.150 22.236 
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The BET surface area of the catalyst is another key factor affecting the catalytic 

activity and a large specific surface area is favorable for the adsorption and 

transport of the reactants. We tested the samples by N2 adsorption isotherms 

and Table 4.1 lists the BET surface area, pore volume and pore size data of g-

C3N4 and Ru0@H3PW12O40/C3N4. The BET surface areas of g-C3N4, 

Ru0@5%H3PW12O40/C3N4, Ru0@10%H3PW12O40/C3N4 and 

Ru0@15%H3PW12O40/C3N4 were 11.085, 30.424, 40.965 and 36.532 m2/g 

respectively, indicating that with the increase of H3PW12O40 content, the BET 

surface areas of the series of Ru0@H3PW12O40/C3N4 composites also 

increased. We proposed that this is due adsorption of Ru0@H3PW12O40 on the 

g-C3N4 layer and electrostatic attraction causing expansion of the interlayer 

spacing of g-C3N4, and formation of intercalation compounds, which increases 

the BET surface areas of Ru0@H3PW12O40/C3N4. The 

Ru0@10%H3PW12O40/C3N4 had the largest specific surface area, but when the 

content of H3PW12O40 was increased to 15%, the value of BET surface area 

decreased. According to literature reports the BET surface areas of H3PW12O40 

was 8.5 m2/g.69 When the interlayer spacing of g-C3N4 increases to a certain 

point, the BET surface area of Ru0@15%H3PW12O40/C3N4 decreased due to 

the increase of H3PW12O40 content. From the pore size data, it can be 

concluded that the composites can be classified as mesoporous materials (pore 

diameter between 2-50 nm). 

4.2.2 Efficient photocatalyst for water splitting   

4.2.2.1 The performance and stability of catalysts for photocatalytic 

hydrogen production  

The photocatalytic performance of the catalyst for hydrogen production was 

evaluated under visible light. Under these experimental conditions, no gas was 
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detected in the reaction system in the absence of catalyst. Therefore, the effect 

of the sacrificial agent (triethanolamie) on the activity evaluation of the catalyst 

could be ignored in the photochemical reaction. Under the dark reaction 

condition with catalyst, no gas generation was detected in the reaction system, 

which indicated that the gas tightness of the photocatalytic reaction system was 

good. 

 

Figure 4.13 Photocatalytic hydrogen evolution as a function of catalysts 

The photocatalytic performance for water splitting was investigated in the 

presence of triethanolamine (TEOA) as the electron sacrificial agent. Figure 

4.13 shows the photocatalytic hydrogen production for g-C3N4, H3PW12O40, 

Ru0@H3PW12O40, Ru0@5%H3PW12O40/C3N4, Ru0@10%H3PW12O40/C3N4 and 

Ru0@15%H3PW12O40/C3N4 samples irradiated for 4 hours under visible light (> 

420 nm). Figure 4.13 clearly shows that the series of Ru0@ H3PW12O40/C3N4 

samples were significantly more active than that of g-C3N4 H3PW12O40 and 

Ru0@ H3PW12O40. The H2 production with g-C3N4 was only 15.39 µmol (513 
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µmol g-1 h-1) for 4 hour under visible light, which indicated that the photocatalytic 

activity of g-C3N4 was low because of its low photoelectron generation and hole 

separation efficiency, which is unfavorable for proton reduction on its surface. 

Hydrogen production with H3PW12O40 and Ru0@ H3PW12O40 catalysts was only 

9.9 µmol (330 µmol g-1 h-1) and 13.52 µmol (451 µmol g-1 h-1) in 4 hours 

respectively, while for Ru0@ H3PW12O40/C3N4 catalysts it was 36.34 µmol l 

(1211 µmol g-1 h-1), 99.10 µmol (3303 µmol g-1 h-1) and.56.70 µmol (1890 µmol 

g-1 h-1) over the same time, respectively. The hydrogen-producing activity of the 

Ru0@ H3PW12O40/C3N4 series catalysts were 3.67, 6.44 and 3.68 times higher 

than g-C3N4 catalyst, respectively. With the further increase of H3PW12O40 

content, the activity for hydrogen production decreased, which might be due to 

excess H3PW12O40 covering the surface active sites of g-C3N4 and inhibiting the 

activity of hydrogen production. According to UV-DRS analysis and the 

photocatalytic activity, the Ru0@H3PW12O40/C3N4 catalysts showed longer 

photoelectron lifetimes and better electron conductivities than bulk g-C3N4. 

 

Figure 4.14 Photocatalytic stability of Ru0@10%H3PW12O40/C3N4 catalyst 
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The stability of Ru0@10%H3PW12O40/C3N4 catalyst was investigated by water 

splitting experiments under the same conditions after recycling 3 times (12 

hours). Figure 4.14 shows that Ru0@10%H3PW12O40/C3N4 exhibited good 

photocatalytic hydrogen production stability. The hydrogen production of 

Ru0@10%H3PW12O40/C3N4 increased linearly with the increase of irradiation 

time, which indicated that it had the capability of continuous hydrogen 

production. In the first cycle, hydrogen production was 97.99 µmol and the 

second cycle, produced 98.30 µmol. After the third cycle, the hydrogen 

production decreased slightly (87.40 µmol), which may be due to the decrease 

of the interaction force between g-C3N4 and Ru0@10%H3PW12O40 under the 

conditions of light activation, and an increase in effective distance of 

photocharge transport. However, after 12 hours of continuous light reaction, the 

catalyst still maintained a good hydrogen production rate, indicating that the 

catalyst had good long termstability. 

4.2.2.2 Analysis of photocatalytic hydrogen production mechanism of 

Ru0@H3PW12O40/C3N4 composites 

 
Figure 4.15 Mechanism of water splitting in Ru0@H3PW12O40/C3N4 Z-Scheme 

system 
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Among the solar energy conversion into the chemical system, the 

photosynthesis of green plants in nature is the most representative. The 

photosystem I and the photosystem II in the chloroplast membrane absorb 

photons as energy, and electrons are obtained from the decomposition process 

of water molecules and continuously transmitted to form a Z-like system (Z-

Scheme).70 Inspired by the electron transfer mechanism of photosynthesis, a 

Z-Scheme system had been designed for water splitting.71 The system 

combines hydrogen production and oxygen generating catalyst through an 

electron transmitter, the electron conduction band of the oxygen-producing 

catalyst is transferred to the valence band of the hydrogen-producing catalyst 

through the electron transmitter, and are combined with the valence band holes 

of the hydrogen-producing catalyst, thereby realizing the overall electron hole 

separation. At the same time, conduction band electron of hydrogen production 

catalyst involved in the reduction for hydrogen production, while valence band 

hole of oxygen production catalyst involved in oxidation for oxygen production. 

According to the type of electron transmitter, the Z-Scheme system can be 

divided into ion-pair electron transfer Z-Scheme system (using IO3-/IO- and 

Fe3+/Fe2+ etc, ion pair as electron transmitter), solid state electron transport Z-

Scheme system (using Au, Ru, Ag, etc. as electron transmitter) and Z-Scheme 

system without electron transmitter.72-78 

Compared with the traditional photocatalytic ammonia production system, the 

Z-scheme system has lower requirements on the catalyst band gap and could 

make more efficient use of visible light. At the same time, the electron hole 

between the oxidation catalyst and the reduction catalyst can separate the 

electron hole of the whole system, and effectively enhance the photocatalytic 

efficiency. Ru as a common solid electron transfer, is used to prepare 

Ru0@H3PW12O40/C3N4 catalysts containing Z-Scheme system. It is important 
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to increase the electron transfer path in the catalyst and enhance the efficiency 

of photocatalytic hydrogen production. 

Under visible light irradiation, electrons and holes were generated in PW12O40
3- 

and g-C3N4, respectively. Meanwhile, the conduction band potential (-4.80 eV) 

of PW12O40
3- was more negative than that of Ru (0.69 eV), which results in 

Schottky barrier and leads to the transition of the conduction band electrons to 

Ru easily.79 On the other hand, because the Fermi level (0.69 eV) of Ru is more 

negative than the valence band potential of g-C3N4 (1.4 eV), the electrons on 

Ru were rapidly transferred to the valence band of g-C3N4 and recombined with 

the valence band hole of g-C3N4 to form a Z-Scheme system (Figure 4.15).80 

The formation of the system hindered the combination of electron-hole pairs in 

the whole catalyst and enhanced the photocatalytic activity of the catalyst. 

4.2.3 Conversion of cellobiose to sorbitol 

4.2.3.1 Reaction pathway of cellobiose to sorbitol 

Previous work by Wang’s group (Scheme 4.6) has indicated that the reaction 

pathway of the catalytic hydrogenation of cellobiose on the solid acid supported 

ruthenium catalyst Ru/Cs3PW12O40 under low temperature conditions included 

the following two transformation processes: (1) the C-O bond of glucose in 

cellobiose was first hydrogenated to produce the intermediate 3-β-D-

glucopyranosyl-glucitol (glucitol), and then the glucitol intermediate was 

hydrolyzed to produce glucose and sorbitol.81 The glucose will then be further 

hydrogenated to produce sorbitol. In scheme 4.5 (a); (b) the β-glycosidic bond 

in the cellobiose was first broken into glucose by the solid acid catalyst which 

was subsequently reduced to sorbitol over Ru catalyst (Scheme 4.5 (b)). 
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Scheme 4.5 Reaction scheme for the conversion cellobiose to sorbitol on Ru 

supported solid acids catalysts  

 

Scheme 4.6 Reaction scheme for the conversion cellobiose to sorbitol on 

Ru/Cs3PW12O40 catalyst  

4.2.3.2 Conversion of cellobiose on the supported ruthenium catalysts in 

nitrogen  

The results of cellobiose hydrolysis on ruthenium catalysts are shown in Figure 

4.16. The main product was glucose. Figure 4.16 shows that catalytic 

performance of ruthenium supported on different catalysts at 160 oC under 

nitrogen (in the absence of hydrogen). The conversion of cellobiose on Ru/C, 
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Ru/C3N4, Ru0@5%H3PW12O40/C3N4, Ru0@10%H3PW12O40/C3N4 and 

Ru0@15%H3PW12O40/C3N4 composites catalysts was about 20%, where 

Ru0@H3PW12O40 gave 75% conversion of cellobiose, which was ascribe to the 

acidic properties of the Ru0@H3PW12O40 catalyst.  

 

Figure 4.16 Effect of Ru catalysts for the conversion of cellobiose in water (pH 

= 7) under nitrogen. Reaction conditions: cellobiose (0.1 g); water (15 mL); 1% 

Ru catalyst; N2, 3 MPa; temperature, 160 oC; time, 6 hours. Products were 

determined by HPLC. 

4.2.3.3 Hydrogenation of cellobiose on the supported ruthenium catalysts  

Using the same reaction conditions, the catalytic conversion of cellobiose on 

the supported ruthenium catalysts was studied under hydrogen instead of 

nitrogen and Figure 4.17 shows that the conversion of cellobiose was almost 

100%. The main product obtained from Ru/C, Ru/C3N4 catalysts was 3-β-D-

glucopyranosyl-glucitol (glucitol) formed by hydrogenolysis of a C-O bond of 

cellobiose. The main products with Ru0@5%H3PW12O40/C3N4, 



Chapter 4. Polyoxometalate-stabilized ruthenium nanoparticles adsorbed onto carbon nitride 

 187  

 

Ru0@10%H3PW12O40/C3N4 and Ru0@15%H3PW12O40/C3N4 catalysts was 

sorbitol in 76%, 85% and 81% yields, respectively. The by-products of the 

reaction were mannitol and other degradation products such as erythritol and 

glycerin (Scheme 4.7), were due to the C-C bond cleavage of sorbitol in the 

hydrogenation process. The requirements for preparation of sorbitol were, on 

the one hand, the catalytic hydrogenation at Ru to break the unsaturated C-O 

bond in cellobiose and on the other hand, the effect of acid to cleave the β-

glycosidic bond in cellobiose. Ru0@5%H3PW12O40/C3N4, 

Ru0@10%H3PW12O40/C3N4 and Ru0@15%H3PW12O40/C3N4 composites gave 

a high yield of sorbitol in hydrogen, which suggests that the catalysts could 

produce acid in hydrogen. Wang proposed that Brønsted acid sites were 

generated from hydrogen and played an important role in the conversion of 

cellobiose over Ru/Cs3PW12O40, and analysed the catalyst by monitoring the 

adsorption of pyridine by FT-IR spectroscopy, in the presence of H2, the FT-IR 

spectrum showed a bond at 1540 cm-1 which was assigned to Brønsted acid 

sites associated with pyridine. It appears that in a similar fashion to 

Ru/Cs3PW12O40, Brønsted acid sites are generated from hydrogen over 

Ru0@H3PW12O40/C3N4 catalysts and promoted the conversion to sorbitol. The 

performance of Ru0@10%H3PW12O40/C3N4 was slightly better than 

Ru0@5%H3PW12O40/C3N4 and Ru0@15%H3PW12O40/C3N4 catalysts for 

conversion of cellobiose to sorbital. While,Ru0@15%H3PW12O40/C3N4 could 

generate more Brønsted acid sites than Ru0@10%H3PW12O40/C3N4 due to the 

higher [PW12O40]3- content, the lower performance of 

Ru0@15%H3PW12O40/C3N4 than Ru0@10%H3PW12O40/C3N4 may be due to the 

smaller surface and pore volume of Ru0@15%H3PW12O40/C3N4 showed by 

BET analysis, as this may well hinder access to the active sites. 
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Figure 4.17 Effect of Ru catalysts for the conversion of cellobiose in water 

(pH=7) under hydrogen. Reaction conditions: cellobiose, 0.1 g; water, 15 mL; 

1% Ru catalyst; H2, 3MPa; temperature, 160 oC; time, 6 hours. Determined by 

HPLC. 

 

Scheme 4.7 Reaction scheme for by-products 
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4.2.3.3.1 Effect of surface area of catalyst on catalytic reaction 

performance  

The surface of the catalyst is the place where the catalytic reaction takes place. 

In general, the larger the surface area, the higher the activity of the catalyst, but 

the relationship is not absolute. In this work, catalysts with different surface 

areas were prepared by changing the experimental conditions and their 

catalytic properties were investigated (Table 4.1). The specific surface area of 

the Ru0@5%H3PW12O40/C3N4 catalyst is 30.42 m2/g, lower than 

Ru0@10%H3PW12O40/C3 (40.95 m2/g) catalyst and the catalytic activity of 

Ru0@5%H3PW12O40/C3N4 is similarly lower than Ru0@10%H3PW12O40/C3N4, 

with yields of sorbitol of 76% and 85% respectively. Moreover, the specific 

surface area of 36.53 m2/g for Ru0@15%H3PW12O40/C3N4 was associated with 

a sorbitol yield of 81% which appears to correlate with the surface area-activity 

relationship described above. It can be seen that the specific surface area of 

the catalyst also has a certain effect on the catalytic performance. 

4.2.3.4 Study of factors effecting Kinetics of hydrogenation of cellobiose 

over Ru0@10%H3PW12O40/C3N  

In order to further study the catalytic performance of 

Ru0@10%H3PW12O40/C3N4 catalyst, factors such as hydrogen pressure, 

reaction temperature and reaction time were investigated.  

4.2.3.4.1 Effect of hydrogen pressure  

The effect of hydrogen pressure on the catalytic hydrogenation of cellobiose is 

shown in Figure 4.18. When only N2 was added to the reactor, the conversion 

of cellobiose was low and the main product was glucose in a yield of only 20%. 

With an increase in the hydrogen pressure, the conversion of cellobiose and 

the yield of sorbitol increased. The yield of glucose increased when hydrogen 

pressure was introduced and then glucose was hydrolyzed to sorbitol by an 
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acid-catalyzed process. The increase in yield of glucose indicated that acid was 

formed on the surface of Ru0@10%H3PW12O40/C3N4 catalyst, which might be 

derived by H atom by H2 activation at Ru followed by H transfer to [PW12O40]3- 

on the surface of the Ru0@10%H3PW12O40/C3N4. When the hydrogen pressure 

was greater than 2 MPa, the cellobiose was almost completely transformed and 

the yield of sorbitol was 86%. At this point, the hydrogen dissolved in water 

might reach saturation and future increase no longer affects the catalytic 

reaction. 

 

Figure 4.18 Effect of Ru0@10%H3PW12O40/C3N4 catalyst for the conversion of 

cellobiose in water (PH = 7) under hydrogen. Reaction conditions: cellobiose 

(0.1 g); water (15 mL); 1% Ru catalyst; temperature, 160 oC; time, 6 hours. 

Determined by HPLC. 
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4.2.3.4.2 Effect of reaction temperature 

 

Figure 4.19 Effect of temperature on conversion of cellobiose catalyzed by 

Ru0@10%H3PW12O40/C3N4 in water (pH = 7) under hydrogen. Reaction 

conditions: cellobiose (0.1 g); water, (15 mL); 1% Ru catalyst; H2, 3MPa; time, 

6 hours. Determined by HPLC. 

Figure 4.19 shows the influence of temperature on the conversion of cellobiose 

catalyzed by Ru0@10%H3PW12O40/C3N4 over a temperature range of 120~180 

oC showing that the conversion of cellobiose reached 100% at 80 oC. At the 

lower temperatures, glucitol was the main product, but increasing temperature, 

glucitol gradually transformed to sorbitol, and the intermediate underwent 

breaking of the β-glycosidic bond in the presence of acid catalyst. This indicated 

that the increase of temperature was beneficial to the hydrolysis of cellobiose. 

The highest yield of sorbitol was 85% when the reaction temperature reached 

160 oC. However, at higher temperatures, the yield of sorbitol began to 

Temperature /degree

120 140 160 180

C
o

n
ve

rs
io

n
 o

f 
ce

llo
b

io
se

 a
n

d
 y

ie
ld

 o
f 

g
lu

ci
to

l, 
g

lu
co

se
, 

so
rb

it
o

l a
n

d
 b

y 
p

ro
d

u
ct

s 
/%

0

20

40

60

80

100

Conversion 
Glucitol 
Gucose 
Sorbitol 
By products 



L．Feng (2018) 

 

192 

 

decrease, mainly due to the formation of by-products resulting from 

isomerization and degradation of sorbitol. 

4.2.3.4.3 Effect of reaction time 

 

Figure 4.20 Effect of time on conversion of cellobiose catalyzed by 

Ru0@10%H3PW12O40/C3N4 in water (pH = 7) under hydrogen. Reaction 

conditions: cellobiose (0.1 g); water (15 mL); 1% Ru catalyst; H2, 3MPa; 

temperature, 160 oC. Determined by HPLC. 

Figure 4.20 shows that the products distribution varied with time using 

Ru0@10%H3PW12O40/C3N4 as catalyst. With the prolongation of reaction time, 

the cellobiose was transformed completely, and the main product was sorbitol. 

The experimental results indicated that the reaction mechanism of cellobiose 

conversion catalyzed by Ru0@10%H3PW12O40/C3N4 was that Ru first catalyzes 

cellobiose production of glucitol, when the reaction time was 2 hours, the 

highest yield of glucitol was 68%, the yield of glucose and sorbitol only 8% and 

12%. Then an acid catalyzed process produced sorbitol and glucose from 
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glucitol. Meanwhile, hydrogenation of glucose to sorbitol. Between the reaction 

time of 2 and 6 hours, the yield of sorbitol increased from 12% to 85%, the yield 

of by-products was only 4%. When the reaction time was increased to 8 hours, 

the yield of sorbitol reached 90%, but the by-products also increased to 6%. 

Therefore, the yield of sorbitol increases with the increasing of reaction time. 

4.2.3.5 Study on the stability of Ru0@10%H3PW12O40/C3N4 catalysts 

 

Figure 4.21 Recyclability of Ru0@10%H3PW12O40/C3N4 catalyst for the 

conversion of cellobiose in water (PH = 7) under hydrogen. Reaction conditions: 

cellobiose (0.1 g); water (15 mL); 1% Ru catalyst; H2, 3MPa; temperature, 160 

oC; time, 6 hours. Determined by HPLC. 

As Ru0@10%H3PW12O40/C3N4 showed excellent catalytic performance for the 

hydrogenation of cellobiose to sorbitol, recycle studies were undertaken in 

order to investigate the stability, the results of which are shown in Figure 4.21. 

The Ru0@10%H3PW12O40/C3N4 catalyst had good catalytic stability after 3 

cycles, although the yield of sorbitol reduced slightly from 85% to 80%, and the 

conversion of cellobiose was a little lower than in first cycle. 
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4.2.4 Selective hydrogenation of levulinic acid 

4.2.4.1. Mechanism of hydroreduction of LA to GVL  

 

Scheme 4.8 Possible hydroren reduction pathways (1, 2) of LA to GVL 

In recent years, GVL has been attracting increasing attention and catalytic 

studies on the reduction of LA to GVL have been investigated. The reaction can 

occur via different two step processes: (1) the carbonyl group in LA molecule is 

reduced under the effect of catalyst to form 4-hydroxypentanioc acid (HPA) and 

then after esterification, a molecule of water is removed and the ring closes to 

form GVL under acidic condition (Scheme 4.8 pathway 1). When the reaction 

is carried out in acidic condition, the reaction pathway (2) is slightly different. 

Firstly, the carbonyl group in LA can undergo enolation and α-angelica lactone 

(AL) is formed by dehydration of the enolate via intramolecular ring formation. 

The α-angelica lactone is isomerized to β-angelica lactone under acidic 

condition, and both are reduced to GVL under the action of catalyst (Scheme 

4.8 pathway 2). 
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4.2.4.2. The performance of different catalysts for hydrogenation of LA 

 

Figure 4.22 Effect of catalysts for the conversion of LA in aqueous solution (PH 

= 7). Reaction conditions: LA, 1 mmol; H2O, 15 mL; 1 mmol% Ru catalyst; H2, 

1 MPa; temperature, 50 oC; time, 3 hours. Determined by 1H NMR, decane as 

an internal standard. 

Under the reaction conditions, the activity of Ru/C, Ru0/C3N4, g-C3N4 and 

Ru0@H3PW12O40/C3N4 were investigated in aqueous solution (Figure 4.22). In 

the absence of Ru0, the conversion of LA was low, showing that ruthenium had 

good catalytic activity for LA. Ruthenium has good hydrogen adsorption 

strength and hydrogenation activity for aliphatic carbonyl compounds. Under 

mild reaction conditions, ruthenium can rapidly achieve high conversion and 

selectivity, and is an ideal catalyst for hydrogenation. Figure 4.22 shows that 

the conversion of LA was 80% and 90% over Ru/C and Ru0/C3N4 catalysts, with 

selectivity to GVL of 22% and 28%. However, with Ru0@H3PW12O40/C3N4 

catalysts both the conversion of LA and the selectivity to GVL were higher. This 
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could be due to several factors. Firstly, the surface of Ru0@H3PW12O40/C3N4 

has hydrophilic oxygen-containing functional groups, which might favor for the 

adsorption of polar LA for reaction. Secondly, mesoporous 

Ru0@H3PW12O40/C3N4 has uniform pore size and large specific surface area, 

greatly improving the speed of mass transfer. Thirdly, for 

Ru0@H3PW12O40/C3N4 catalysts, H2 adsorbed and dissociated on the Ru 

surface, and H species were formed, which could transfer to [PW12O40]3- and 

generate Brønsted acid. This Brønsted acid is beneficial for fomation of GVL in 

LA conversion. The Ru0@10%H3PW12O40/C3N4 catalyst had a better catalytic 

effect than Ru0@5%H3PW12O40/C3N4 and Ru0@15%H3PW12O40/C3N4 

catalysts, due to its larger specific surface area and pore size than the other 

two catalysts. At this stage, we firmly believe that the hydrogenation of LA 

occurs via reduction of the carbonyl to form 4-hydroxypentanioc acid (HPA) 

which further reacted to give GVL as there was no evidence for the formation 

ofα -angelica lactoneate (AL). 

4.2.4.3 Study of factors affecting the kinetics of LA hydrogenation over 

Ru0@10%H3PW12O40/C3N  

In order to further study the catalytic performance of 

Ru0@10%H3PW12O40/C3N4, the factors such as hydrogen pressure, reaction 

temperature and reaction time were investigated.  
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4.2.4.3.1 Effect of reaction temperature 

 

Figure 4.23 Effect of reaction temperature for the conversion of LA in aqueous 

solution (pH=7). Reaction conditions: LA, 1 mmol; water, 15 mL; 1 mmol % Ru 

catalyst; H2, 1MPa; time, 3 hours. Determined by 1H NMR, decane as an 

internal standard. 

The hydrogenation of LA was carried out with Ru0@10%H3PW12O40/C3N4 as 

catalyst and the effect of different temperatures is shown in Figure 4.23. It can 

be seen that temperature had a significant effect on the reaction with an 

increase in temperature from 25 oC to 75 oC, resulting in an improvement in 

conversion of LA from 66%-98% and a dramatic increase in selectivity for GVL 

from 29% to 90%. We propose that this is because an increase in temperature 

can increase hydrogen diffusion in the liquid phase and rapidly regenerate 

active sites, which can increase the rate of LA reaction. However, the 

hydrogenation reaction is a reversible exothermic reaction. Raising the 

temperature can accelerate the reaction, but it is unfavorable to the equilibrium 

of the reaction. When the temperature increases to a certain extent, it caused 
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the decrease of selectivity of GVL and the increase of by-products. The 

optimum reaction temperature was therefore found to be 75 oC. 

4.2.4.3.2 Effect of hydrogen pressure 

 

Figure 4.24 Effect of hydrogen pressure on the conversion of LA in aqueous 

solution (pH = 7). Reaction conditions: LA, 1 mmol; water, 15 mL; 1 mmol % Ru 

catalyst; temperature, 75 oC; time, 3 hours. Determined by 1H NMR, decane as 

an internal standard. 

The effect of different pressures on the hydrogenation of LA was investigated 

by using Ru0@10%H3PW12O40/C3N4 as catalyst and results are shown in 

Figure 4.24. The conversion of LA clearly and the selectivity of GV increased 

with increasing pressure. The lower reaction pressure of 0.5 MPa was 

unfavorable for the conversion of LA, but when the reaction pressure was 

increased from 0.5 MPa to 2.0 MPa, the conversion of LA increased from 64% 

to 100%, and the selectivity of GVL increased from 75% to 100%. We propose 

the reaction pressure had a great effect on the reaction rate. From Figure 4.24, 
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the rate of hydrogenation appears to increase with an increase in pressure. In 

the hydrogenation system, the adsorption rate of H2 at the catalyst is higher 

than LA, so at the beginning of the reaction, there were a lot of active sites on 

the surface of the catalyst and with the increase of the pressure. The greater 

solubility of hydrogen could increase the adsorption of H2 on the surface of the 

catalyst. The collision probability between hydrogen molecules and reactants 

on catalyst surface can be increased, as a result, reaction rate can be increased. 

4.2.3.4.3 Effect of reaction time 

 

Figure 4.25 Effect of reaction time for the conversion of LA in aqueous solution 

(pH = 7). Reaction conditions: LA, 1 mmol; water, 15 mL; 1 mmol % Ru catalyst; 

H2, 1MPa; temperature, 75 oC. Determined by 1H NMR, decane as an internal 

standard. 

The effect of different reaction times on the hydrogenation of LA was 

investigated with Ru0@10%H3PW12O40/C3N4 catalyst the details of which are 

shown in Figure 4.25. At the beginning of the reaction, the conversion of LA 

was 60% and the selectivity of HPA and GVL were similar. After 3 hours, the 
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conversion of LA was 90% and the yield of GVL was 90%, so 3 hours was the 

optimum reaction time. 

4.2.4.3.4 Study on the Stability of Ru0@10%H3PW12O40/C3N4 Catalysts 

 

Figure 4.26 Recycles of Ru0@10%H3PW12O40/C3N4 catalyst for the conversion 

of LA in aqueous solution (pH = 7). Reaction conditions: LA, 1 mmol, water, 15 

mL, 1 mmol % Ru catalyst, H2, 1 MPa, temperature, 75 oC, time, 3 hours. 

Determined by 1H NMR spectroscope using decane as an internal standard. 

In order to investigate the stability of Ru0@10%H3PW12O40/C3N4 recycle 

experiment were conducted and the results shown in Figure 4.26 reveal that 

the catalyst had good stability. In the process of reusing the catalyst, levulinic 

acid was almost completely transformed, and the selectivity of GVL decreases 

only slightly. After 3 times cycles, the catalyst still had high catalytic activity as 

the conversion of LA was 95% with a selectivity to GVL of 85%. 
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4.3 Conclusions 

A series of Ru0@H3PW12O40/C3N4 catalysts were prepared. The morphology of 

the catalyst was characterized by several techniques including XRD solid state 

NMR, FT-IR, TGA, XPS, SEM, EDS, UV-DRS. The UV-DRS showed that the 

visible light absorption ability of Ru0@H3PW12O40/C3N4 composites were 

greatly enhanced.  

The H2 production efficiency of Ru0@10%H3PW12O40/C3N4 was 6.44 times 

higher than that of g-C3N4. This was mainly due to the synergism between Ru, 

[PW12O40]3- and g-C3N4, which accelerates the formation of electron hole pairs 

and inhibits recombination of the electron hole in the catalyst. At this stage we 

tentatively propose that, [PW12O40]3- produces electrons and holes under visible 

light irradiation, the electrons of [PW12O40]3- are then transferred to Ru and 

subsequently to the valence band of g-C3N4, which combines with the valence 

band holes of g-C3N4, and the electronhole separation of the catalyst was 

performed. The separated electrons are involved in the reduction of H2O to 

produce hydrogen. The existence of this electron transfer path improved the 

separation efficiency of electrons and holes in the catalyst, and hindered the 

recombination of electrons and holes, this in turn increases the rate of hydrogen 

production in photocatalysis. 

It was found that Ru0@10%H3PW12O40/C3N4 is an efficient catalyst for the 

hydrogenation of cellobiose giving 85% yield of sorbitol at 160 oC, moreover, 

the catalyst had good stability and could be recycled with yields in excess of 

80% over three runs. The effect of several parameters (reaction temperature, 

reaction time, hydrogen pressure, etc.) were studied for the catalytic conversion 

of cellobiose over Ru0@10%H3PW12O40/C3N4. The results demonstrated that 

the highest yield of sorbitol were obtained under the following conditions: w 

(cellobiose) = 0.1 g, V = 15 ml, P (H2) = 3 MPa, T = 160 oC, t = 6 h over 
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Ru0@10%H3PW12O40/C3N4 catalyst. The kinetic study also showed that 

cellobiose was first hydrogenated by Ru0@10%H3PW12O40/C3N4 to form 

sorbitol. It was found that in nitrogen the activity of catalysts were low for the 

hydrolysis of cellobiose, and the yield of glucose was only 20% at 160 oC. 

However, the catalytic performance of Ru0@10%H3PW12O40/C3N4 in 

hydrogenation of cellobiose was significantly improved (85% yield of sorbitol). 

This suggests that there was acid formation on the surface of 

Ru0@H3PW12O40/C3N4 catalysts in hydrogen because of the presence of 

[PW12O40]3-. 

When Ru0@H3PW12O40/C3N4 was applied to the hydrogenation of levulinic acid, 

the conversion of LA and the selectivity for GVL were both higher than those of 

Ru/C, Ru0/C3N4 and g-C3N4 and in this regard it appears to be an ideal catalyst 

for the hydrogenation of LA to GVL. The factors affecting the hydrogenation of 

LA catalyzed by Ru0@10%H3PW12O40/C3N4, such as the reaction time, the 

pressure and the temperature of the reaction were studied. The optimum 

reaction conditions were identified as a temperature of 75 oC and a H2 pressure 

of 2 MPa. The catalysis was conducted in aqueous solution and which eliminate 

the use of organic solvents and due to the synergetic effect of Ru0 and 

[PW12O40]3- to generate acid sites, avoids addition of acid to the reaction to 

improve the effect of hydrogenation of LA. Under these conditions, the 

conversion of LA reached 100% and the selectivity of GVL was almost 100%. 

Presently, GVL is mainly obtained by hydrogenation of LA, which is usually 

obtained from hydrolysis of biomass (lignocellulose, cellulose, glucose, fructose, 

etc.) and the process of separation and purification of raw material and products 

is complicated. In the future, it may be possible to produce GVL directly from 

biomass by a combination of dehydration and hydrogenation using 

Ru0@H3PW12O40/C3N4 which would greatly reduce the production cost of GVL. 
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4.4 Experimental 

4.4.1 General Chemicals 

All chemicals were purchased from commercial suppliers (Alfa Aesar, Sigma 

Aldrich, Fisher Scientific, Acros Organics) and used without any purification. 

Distilled water was used throughout all this work. All manipulations of air-

sensitive materials were carried out using standard Schlenk techniques under 

nitrogen and a glove-box with a recirculation system.  

4.4.2 Instrumentation 

4.4.2.1 Fourier transform infrared spectroscopy (FT-IR)  

FT-IR spectra was analyzed on a Bruker Alpha spectrometer using a Platinum 

ATR module. Spectra were recorded for dried solid powder samples (vacuum 

drying for 5 hours). 

4.4.2.2 Ultraviolet–visible spectroscopy (UV-Vis)  

UV-Vis spectra were recorded on a UV-1800 Shimadzu UV spectrometer. The 

scanning range is 200~900 nm, and the scanning slit is 2.00 nm. The water 

solution samples were measured in 1 cm quartz cuvette. 

4.4.2.3 X-ray diffraction (XRD) 

XRD analysis wwas recorded on a Rigaku Ultima IV diffractometer with Cu Kα 

radiation, and the scanning angle range was 5~90 degrees at 40 Kv and 40 mA. 

4.4.2.4 X-ray photoelectron spectroscopy (XPS) 
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XPS characterization was recorded on a PHI Quantum-2000 system with Al Kα 

X-ray source. The powdered samples pressed into sheets and then measured. 

4.4.2.5 Scanning electron microscope (SEM) and energy dispersive 

spectrometer (EDS) 

SEM images were taken using HITACHI S-4800 to check the morphology, 

element composition and element content of samples, the working voltage is 

15 kV. In the experiment, samples were dispersed in solution and then dripped 

on clean silicon wafers. After drying, the silicon wafers with conductive tape on 

the sample stage were sent to the SEM instrument for testing. 

4.4.2.6 UV diffuse reflectance spectrum (UV-DRS) 

UV-DRS spectra were recorded on a Varian Cary 5000 spectrometer equipped 

with a diffuse reflectance attachment with an integrating sphere. The dried 

samples were mixed with analytical grade KBr and measured. 

4.4.2.7 Thermal gravimetric analysis (TGA) 

TGA was performed using a SDT Q600 at a heating rate of 10 oC/min under 

nitrogen, from room temperature increased to 800 oC. 5-10 mg of sample was 

used for easc measurement. 

4.4.2.8 BET surface area analysis (BET) 

BET surface area were recorded on a Tristar II 3020 instrument, the samples 

were put in glass tubes and allowed to dry for 3 hours and then to be tested. 
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4.4.2.9 Nuclear magnetic resonance spectroscopy (NMR) 

NMR spectra were recorded on Bruker JEOL ESC-300 and 400 instruments. 

Solid-state NMR were recorded on a Varian VNMRS 400 instrument. Typical 

concentration of samples for solution NMR was 0.01M, the mass of samples 

used for solid-state NMR was approxomately 10 mg. 

4.4.2.10 Gas chromatography (GC) 

GC results were recorded on a GC-2060 instrument. The gaseous products 

were analysed by a gas chromatograph equipped with a thermal conductivity 

detector (TCD) which was connected to a TDX-01 packed column and a flame 

ionization detector (FID) which used an alumina capillary column. The products 

in the liquid phase were analysed by a gas chromatograph equipped with an 

FID, PONA and Bond-Q capillary columns was connected to FID. 

4.4.2.11 High performance liquid chromatography (HPLC) 

HPLC spectra were recorded on a Shimazu LC-20A instrument equipped with 

a RI detector and a CHO-620 10 μm, 6.5×300 nm column. The injection volume 

of samples was 2.5 μL. When passing the detector, the sample concentration 

is converted into an electrical signal and sent to the recorder. The data is printed 

out as a map. 

4.4.3 Experimental  

4.4.3.1 Synthesis of g-C3N4 

In a typical procedure, dicyandiamide (4.0 g) was placed in a porcelain boat 

and calcined at 550 oC for 4 hours, and then cooled to room temperature in air 

to form the bulk g-C3N4.82 The resultant yellow solid of bulk g-C3N4 was ground 
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in a agate mortar and transferred to a porcelain boat, then annealed at 400 oC 

for 2 hours in air. The ground, light yellow g-C3N4 powder was obtained in 20% 

yield, 80% of dicyandiamide produced carbon monoxide and nitrogen.  

4.4.3.2 Synthesis of Ru0@POM(H3PW12O40)/g-C3N4 

4.4.3.2.1 Synthesis of Ru0@POM(5%H3PW12O40)/g-C3N4 

H3PW12O40 (28.8 mg, 1 mmol) and Na[trans-Ru(DMSO)2Cl4] (4.2 mg, 1 mmol) 

were added to a reaction flask with water (12 mL), then reduced under 1.0 MPa 

H2 at 50 oC for 5 hours in a 50 mL stainless steel autoclave with a stirring speed 

of 600 rpm. After reaction, the autoclave was cooled to room temperature, to 

give a blue black stable and homogeneous sample solution of 

Ru0@POM(H3PW12O40). The g-C3N4 (1.84 g, 20 mmol) was added to 

Ru0@POM(H3PW12O40) solution and allowed to stir at 110 oC for 24 hours 

under nitrogen in the 50 mL stainless steel autoclave. After the reaction, the 

resulting light brown solid was cooled to room temperature and isolated by 

filtration, washed with water and dried under high vacuum to give 

Ru0@POM(5%H3PW12O40)/g-C3N4  

4.4.3.2.2 Synthesis of Ru0@POM(10%H3PW12O40)/g-C3N4 

H3PW12O40 (28.8 mg, 1 mmol) and Na[trans-Ru(DMSO)2Cl4] (4.2 mg, 1 mmol) 

were added to a reaction flask with water (12 mL), then reduced under 1.0 MPa 

H2 at 50 oC for 5 hours in a 50 mL stainless steel autoclave with a stirring speed 

of 600 rpm. After reaction, the autoclave was cooled to room temperature, to 

give a blue black stable and homogeneous solution of Ru0@POM(H3PW12O40). 

The g-C3N4 (0.92 g, 10 mmol) was added to Ru0@POM(H3PW12O40) solution 

and allowed to stir at 110 oC for 24 hours under nitrogen in the 50 mL stainless 
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steel autoclave. After the reaction, the resulting light brown solid was cooled to 

room temperature and isolated by filtration, washed with water and dried under 

high vacuum to give Ru0@POM(10%H3PW12O40)/g-C3N4  

4.4.3.2.3 Synthesis of Ru0@POM(15%H3PW12O40)/g-C3N4 

H3PW12O40 (28.8 mg, 1 mmol) and Na[trans-Ru(DMSO)2Cl4] (4.2 mg, 1 mmol) 

were added to a reaction flask with water (15 mL), then reduced under 1.0 MPa 

H2 at 50 oC for 5 hours in a 50 mL stainless steel autoclave with a stirring speed 

of 600 rpm. After reaction, the autoclave was cooled to room temperature, to 

give a blue black stable and homogeneous sample solution of 

Ru0@POM(H3PW12O40). The g-C3N4 (0.61 g, 6.6 mmol) was added to 

Ru0@POM(H3PW12O40) solution and allowed to stir at 110 oC for 24 hours 

under nitrogen in the 50 mL stainless steel autoclave. After the reaction, the 

resulting light brown solid was cooled to room temperature and isolated by 

filtration, washed with water and dried under high vacuum to give 

Ru0@POM(15%H3PW12O40)/g-C3N4  

4.4.3.3 General procedure for selective hydrogenolysis of cellobiose to 

sorbitol 

Catalyst (40 mg), cellobiose (100 mg) and water (15 mL) were placed in a 

Teflon-lined stainless steel reactor and heated at different temperatures under 

different H2 pressures before being allowed to stir for the alloted time. Upon 

cooling to room temperature, the liquid products was separated by glass 

microfilter and analyzed by a HPLC to determine conversion and selectivity. 
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4.4.3.4 General procedure for selective hydrogenation of levulinic acid  

1 mmol% catalyst (based on repeat unit, assuming complete Ru loading), and 

levulinic acid (1 mmol, 102 μL) and water (15 mL) were placed in a Parr reactor 

and heated at different temperatures under different H2 pressures before being 

allowed to stir for the allotted time. Upon cooling to room temperature, the 

reaction mixture was diluted with diethyl ether (15 mL). The organic layer was 

separated, dried with magnesium sulfate, filtered and the solvent removed 

under vacuum. The resulting residue was analyzed by 1H NMR spectroscopy, 

decane as the internal standard used to determine and ensure mass balance. 

4.4.3.5 General procedure for efficient photocatalyst for water splitting 

The water splitting reactions of the composite photocatalyst were performed in 

a Pyrex photoreactor with top irradiation, connected to a glass closed circulation 

system. The photoreactor was charged with photocatalyst (40 mg), H2O (80 

mL), triethanolamine (20 mL) and the suspension was stirred (600 rpm) to 

ensure homogeneity and eliminate sedimentation, and was degassed to 

remove air under vacuum. Then the suspension was irradiated with a 300W 

Xenon lamp (PLS-SXE 300) with 320 nm filter. A flow of cooling water was used 

to control the reaction under room temperature. The H2 evolved was analyzed 

by an online SP-6890 gas chromatograph (GC) equipped with a TCD detector 

and a 5 A˚ molecular sieve column and N2 carrier.  
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