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Abstract 
Innovation is required to improve upper limb rehabilitation for neurological conditions such as 

stroke and spinal cord injury (SCI). There is growing appreciation of the importance of neural 

plasticity in recovery, and how this can be facilitated by synchronous activity in peripheral 

neural circuits and central brain areas. However, despite increasing scientific evidence, 

technological solutions that exploit associative plasticity have not yet been widely evaluated in 

clinical practice. 

In this thesis, I report the development and initial evaluation of a novel device which enabled 

a reaching and grasping motion in the affected limb by combining assistive functional electrical 

stimulation (FES) with inferred voluntary brain activity. The device was designed to enable 

translation from laboratory-to-clinic by overcoming common practical barriers to translational 

research, such as adaptability and ease of use.  

The device was demonstrated to be usable by individuals with either chronic stroke or SCI, and 

received positive qualitative feedback. Some participants showed modest improvements on 

assessments of upper limb function following a short intervention period.  

A study with healthy able-bodied volunteers indicated that after using the device, corticospinal 

pathways to the antagonist (flexor) muscle may be facilitated, and this facilitation might be 

increased by adjusting the relative timing of stimulation and inferred brain activity. 

The device could also deliver alternative stimulation techniques, and an exploratory study into 

transcutaneous spinal cord stimulation (tSCS) was conducted with healthy able-bodied 

volunteers. It was found that tSCS may activate peripheral and spinal pathways within 

acceptable comfort levels, but the parameters used in this study did not to generate functional 

contractions. An unexpected oscillatory motor response provided insights into how tSCS acts 

upon the motor system.  

Prior to a large scale evaluation of clinical effectiveness, further research is required to: further 

develop a theoretical basis for the intervention; demonstrate the mechanisms of action; and to 

evaluate the efficacy of the device.  
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Chapter 1 

Introduction and background 
 

 

 

 

 

 

 

 

 

  

 
Key points: 

• There is a clear need for innovation in the field of upper limb rehabilitation for 

stroke and spinal cord injury to improve recovery 

• Traditional methods have limited benefit, but emerging technologies centred on 

driving neural plasticity using a closed-loop system have shown promise 

• In addition, to be introduced into widespread clinical practice, these new 

technologies must offer flexibility, be user-friendly and affordable 
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1.1 Introduction 

Acquired disability following acute neurological conditions, such as stroke and spinal cord 

injury (SCI), is a global challenge [2-4]. A stroke is caused by a loss of blood supply to a region 

of brain, leading to cell death, while a SCI occurs when either through traumatic (e.g. a car 

accident) or non-traumatic (e.g. infection or compression) events the spinal cord is damaged. 

In both instances the nervous system is disrupted, which can lead to long-term disability, 

including reduced voluntary control of movement, shortening and weakening of muscles, 

spasticity, and sensory and proprioceptive deficits. 

With a combined annual incidence of stroke in the USA and the UK approaching 1 million [5, 

6], and India being described as having a stroke epidemic [7], rehabilitation is crucial for 

maintaining the health and well-being of society. Three quarters of people suffering an acute 

stroke report upper limb weakness [8], with 45% having limited fine hand use 18 months after 

stroke [9]. Improving arm function is a research priority for stroke survivors, caregivers and 

health professionals [10], and despite many dedicated and highly-skilled research groups, the 

2014 Cochrane Review (‘Interventions for improving upper limb function after stroke’) [11] 

stated that no high-quality evidence could be found for any current upper limb rehabilitation 

interventions.  

In the UK, there are an estimated 40,000 people living with SCI [12], and a further 282,000 in 

the USA [13]. Combined, it is estimated that there are 18,000 new cases in the UK and USA 

each year [12, 13]. Incomplete tetraplegia, where all four limbs are affected, is the most 

common form of SCI, and regaining hand and arm use is ranked as the highest priority amongst 

tetraplegics [14]. 

In this chapter, I will firstly give a brief overview of upper limb impairment following stroke 

and SCI, and existing approaches to upper limb rehabilitation. Secondly, I will outline novel 

therapeutic techniques and approaches emerging from the field of neuroscience, and highlight 

the opportunities for innovation in this field. Finally, I will describe how this thesis is structured 

to introduce a novel technology developed for upper limb rehabilitation following stroke and 

SCI.  
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1.2 Current approaches to rehabilitation 

 Disability following stroke and SCI 

The degree of upper limb impairment following stroke and SCI is diverse. A stroke is the result 

of a loss of blood supply to the brain either caused by a blockage (ischaemic ~80%) or a bleed 

(haemorrhage ~20% [2]). This can lead to cell death in the cortex, as well as subcortical areas 

such as the brain stem and the cerebellum, according to the vascular territory affected. The 

consequence of this, can be a loss voluntary control of the upper limb, leading to limb weakness 

and subsequently muscle atrophy, contracture, shoulder subluxation and spasticity. 

Furthermore, sensory and proprioceptive deficits can lead to a loss of awareness of limb 

position [11].  

Tetraplegia occurs when cervical spinal cord segments (C1-C8) are damaged leading to 

impairments in all four limbs. This impairment can range from ‘Complete’ where there is a 

loss of sensory and motor function below injured segment, and is defined as when no sensory 

or motor function is preserved in sacral segments S4-S5, through to ‘Sensory Incomplete’, 

‘Motor Incomplete’ and ‘Normal’. These categories are classified as ASIA-A through to ASIA-

E on the American Spinal Association scale [15, 16].  

Voluntary control of upper limb movements is impaired dependent on the level of injury, such 

that a C4 injury results in the retention of moderate strength in the elbow flexor and deltoid 

muscles only. A greater strength in elbow flexors is maintained with a C5 injury, and further 

strength is typically available at subsequent lower levels: active wrist extension at C6, elbow 

extension at C7, and strength in finger flexors at C8 [15]. This loss of voluntary control leads 

to reduced limb activity resulting in muscle atrophy, muscle contractures, and pain. It has been 

suggested that spasticity may also, in part, be caused by mechanical changes in the muscle due 

to this reduction in movement [17].  Research has also indicated that following SCI supraspinal 

structures such as the motor cortex undergo change [18].    

 Current rehabilitative methods 

Rehabilitation following stroke is typically thought of as being delivered by a multidisciplinary 

team including physiotherapists and occupational therapists using traditional methods such as: 

stretching and positioning; ‘hands on’ therapy during which a therapist assists the person in 

making movements; strength training; and task specific training, where an activity of daily 

living (ADL) may be practiced. However, despite many years of implementation, a 

comprehensive review of upper limb rehabilitation following stroke found either low grade 
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evidence, a lack of evidence or moderate evidence of no benefit or harm for all of these 

interventions [11].  

Importantly, this review sign-posted promising avenues of investigation (i.e. those with 

moderate-quality evidence) that included: constraint-induced movement therapy (CIMT) or 

‘forced use therapy’, during which the less affected limb is restricted from being used; 

unilateral training (versus bilateral training); mental practice, which is often combined with 

subsequent physical practice; mirror-therapy; repetitive training (dose > 20 hours); and 

robotics, which may be used to deliver enhanced repetitive training. Additionally, sensory 

interventions and virtual reality were also found to have moderate evidence of benefit. 

A common theme can be observed amongst these encouraging interventions. They typically 

engage the brain and subsequently pair it with either simulated (mirror-therapy, virtual reality) 

or actual movement of the affected limb (CIMT, robotics, repetitive training, mental practice 

followed by physical movement, unilateral training). As discussed below, this is in line with a 

concept known as Hebbian plasticity, and is supported by the latest research from the field of 

neuroscience. 

Rehabilitation of the upper limb following a SCI focuses on the early introduction of passive 

exercises and positioning of joints to prevent muscle atrophy, joint contractures, stiffness and 

reducing pain [15]. Additionally, muscle strengthening is important for independent transfers 

from bed or a wheelchair [15]. Rehabilitation not only aims to promote recovery, but also 

compensation and adaptation, such as training individuals with wrist strength, but no finger or 

thumb control, to use the tenodesis grip [19]. Unfortunately, these techniques only result in 

limited improvements and there is a need to develop new treatments [15, 20-22], with research 

groups aspiring to strengthen spared neural networks through neuroplasticity to improve active 

function and control [18, 20, 23-25]. Systematic reviews of clinical trials are not as abundant 

for SCI as for stroke, but there is positive evidence of clinical effectiveness for high intensity 

training, augmented feedback and virtual reality training for locomotion, and some evidence 

for training duration, augmented feedback and virtual reality training for hand function [20]. 

Like stroke, it is anticipated that neuroplasticity is key to overcoming damage to the nervous 

system [20, 24] 

 Intensity and a ‘critical window’ 

The time-period following a stroke is typically divided into stages known as acute (<1 week), 

sub-acute (1 week to 6 months) and chronic (>6 months) to reflect the evolution of the 
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condition following initial onset [26]. The 1994 Copenhagen Stroke Study stated that stroke 

survivors with mild and severe upper-extremity paresis should not expect recovery of upper 

extremity function after 6 and 11 weeks respectively [27]. This promoted the idea of a ‘critical 

window’ for recovery, which has been widely accepted and demonstrated in animal studies 

[28]. However, while this may be the optimum period for recovery, studies have since shown 

that large amounts of therapy can result in better outcomes for stroke survivors with upper limb 

impairment beyond 2-3 months  [29, 30].  

The case for large amounts of therapy is furthered by increasing evidence that the dosage (i.e. 

frequency and intensity of rehabilitation sessions) is critical for successful rehabilitation [31-

33] and that at present the dosage received by people is small (23 to 32 repetitions per session) 

compared to those tested in animal models (400 reaches per day) [28, 31, 34, 35].  This has led 

to stroke survivors being described as ‘inactive and alone’ [36], a confounding factor in poor 

rehabilitative outcomes [36, 37].  

The time periods used to define key pathological events following SCI are: early acute (≤48 

hours), secondary subacute (≤14 days), intermediate (≤6 months) and chronic (≥6 months) [38].  

A critical therapeutic window has not be defined for SCI, although following the acute phase, 

evidence suggests that earlier interventions may be beneficial [20]. Most recovery of 

sensorimotor deficits occurs over the first 3 to 4 months, but training can induce changes at 

later stages [20]. 

Therefore, it is suggested that new approaches to upper limb rehabilitation should facilitate an 

increase in the amount of therapy received and promote mobilisation of the affected limb at an 

appropriate time soon after injury.  

 Behavioural restitution vs. compensation 

A recent taskforce on rehabilitation following stroke described the terminology associated with 

the field as “problematic, vague and an impediment to progress” [26]. They subsequently 

defined rehabilitation as “a process of care”, whilst recovery is the “extent to which body 

structure and functions, as well as activities, have returned to their pre-stroke state”. A further 

distinction was then made between two approaches to recovery. The first is compensation, 

where goals are accomplished through substitution of a pre-stroke methodology with a new 

approach. This may require assistive tools and devices, such as a wheelchair or a walking stick. 

The other is behavioural restitution leading towards true recovery. Here, behavioural 
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restitution is defined as “a return towards more normal patterns of motor control…” and “the 

process towards true recovery”. True recovery is the “return of some or all of the normal 

repertoire of behaviours that were available before injury”, and importantly, neural repair is 

required for true recovery [26]. 

While compensation and the use of assistive devices is an important aspect of rehabilitation, 

true recovery must be the ultimate goal for research groups working in the field of 

neuroscience, and as such, the following section explores how advances in the field of 

neurorehabilitation may allow researchers to harness properties of the nervous system to work 

towards true recovery following stroke and SCI. 

1.3 New approaches to rehabilitation 

 The motor system 

Prior to a discussion on new approaches to the neural repair, it is important to briefly consider 

how the motor system controls the upper limb, and where interventions could target the nervous 

system to improve upper limb function. A simplified diagram of the pathways controlling an 

upper limb muscle is shown in Figure 1-1. For clarity, much of what is known about the motor 

system and different pathways has been omitted, for example, the reticular spinal tract and 

polysynaptic projections to lower motor neurons are not shown. A thorough review of 

descending pathways in motor control can be found in Roger Lemon’s seminal work 

‘Descending Pathways in Motor Control’ [39]. 

In healthy able-bodied individuals, the motor cortex is the region of the brain that sends 

voluntary commands to the spinal cord, where they may undergo further processing, before 

being propagated to a muscle to generate a contraction. The ‘butterfly’ shaped region in the 

centre of the spinal cord contains grey matter, such as cell bodies of motor neurons and 

interneurons, and the outer region contains myelinated axons and glial cells, known as white 

matter. 

In addition to the cortex, the spinal cord receives sensory input from the peripheral nervous 

system through afferent pathways, which enter the cord via the dorsal roots. An example of 

these sensory inputs are the Group Ia afferents, which detect the rate of change of muscle length 

through a receptor known as a muscle spindle. Afferent inputs can have monosynaptic and 

polysynaptic inputs to lower motor neurons, therefore generating movements without 

conscious input, a process known as a reflex.  
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Any damage to the pathway from cortex to muscle, can lead to an impaired ability to generate 

voluntary movement. Furthermore, damage to the spinal cord may lead to impairment at spinal 

levels below the site of injury, as both ascending and descending commands to and from 

supraspinal structures are interrupted.   

 

Figure 1-1: A simplified diagram of the motor system for controlling an upper limb muscle  
Voluntary commands are sent from the motor cortex (upper motor neuron) to the spinal cord, where 
they synapse onto intra-spinal circuitry (not shown) and lower motor neurons. The signal is then passed 
to the muscle, via efferent pathways which exit the spinal cord through the ventral roots, to generate a 
contraction. Sensory input enters the spinal cord via the dorsal roots, and can be projected up to 
supraspinal structures, and/or processed within the cord. An afferent input may act upon more than one 
muscle, for example, it may directly excite the flexor whilst, via an interneuron, inhibiting the extensor. 
This can bring-about reciprocal inhibition where an agonist and antagonist muscle pair are respectively 
excited and inhibited by the same afferent input. This is reciprocal inhibition is utilised in stretch reflexes.  

 Stimulation of the motor system 

To manipulate the motor system, stimulation can be applied at the three locations shown in 

Figure 1-1: (1) the brain, (2) the spinal cord, and (3) the peripheral nerves and muscles. Each 
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of these locations is associated with different techniques, and accompanying advantages and 

disadvantages.   

In animal models, cortical stimulation is often applied by invasively applying electrical 

stimulation directly to the neural tissue. This allows precise stimulation of cortical regions.  

However, electrical stimulation does not discriminate between cell type, which is where new 

more selective techniques such optogenetics might offer advantages [40]. While cortical 

stimulation has been trialled in humans for rehabilitation following stroke [41], non-invasive 

techniques have clear advantages, with transcranial magnetic stimulation (TMS) prevalent in 

the field of neural plasticity [42, 43]. TMS uses an electromagnetic coil to apply a rapidly 

changing magnetic field over the scalp to induce electrical currents in the brain, which if 

applied over the motor cortex, can generate detectable responses in upper and lower limb 

muscles [44]. TMS is typically favoured to an alternative technique known as transcranial 

electrical stimulation (TES) which in addition to the cortex, can stimulate muscles located on 

the scalp and skin pain receptors, resulting in discomfort [44]. Less specific non-invasive 

approaches such as transcranial direct current stimulation (tDCS) [45-47], which typically uses 

two large electrodes placed on the scalp, are also used to modulate cortical activity on a more 

global scale.   

Invasive stimulation of the spinal cord via epidural stimulation, where an electrode is placed 

on the dorsal surface of the spinal cord, is well established in the field of pain management 

[48]. However, it is undergoing a resurgence in the field of motor control, particularly for the 

lower limb and the generation of locomotion [49-51]. It can also be paired with a brain-

computer interface (BCI) which may enhance neural plasticity and create an intuitive control 

system [52, 53]. An alternative approach, intraspinal micro-stimulation, where electrodes 

penetrate the spinal cord, is also being investigated by several groups [54-56]. In both cases, it 

is believed that local networks of neurons in the spinal cord are being stimulated. Researchers 

are now investigating a non-invasive variant known as transcutaneous spinal cord stimulation 

(tSCS) [57], with reports that both epidural and transcutaneous methodologies can stimulate 

the same posterior reflex pathways [58]. In particular, recent studies have reported that high 

frequency tSCS (10kHz) modulated by a lower frequency (e.g. 30Hz) is ‘pain free’ and can be 

used to modulate upper and lower limb circuitry [59-61]. Furthermore, it is reported that this 

technique can improve function in humans following SCI [60-63], although larger studies with 

control groups and independent, blinded outcome assessors are required to assess the wider 

implications of this research. 
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Peripheral nerve stimulation (PNS) is achieved by delivering a train of electrical pulses to the 

nerve fibre. This is often applied non-invasively by neurophysiologists in nerve conduction 

studies using a bar electrode, as well as in paired associative stimulation (PAS) studies 

combined with TMS [43]. As the nerve contains both efferent and afferent fibres, stimulation 

may affect both pathways, and depending on where along its length it is stimulated, it may 

innervate several muscles. This is in contrast to spinal cord stimulation (SCS) where the 

efferent and afferent pathways have separated to enter the ventral and dorsal roots respectively, 

but muscle selectively is very limited.  

To generate useful movements, a common PNS technique known as functional electrical 

stimulation (FES) is used [64, 65]. This is the application of small electrical charges to motor 

nerves just before they enter the muscle via surface or implanted electrodes. An early 

commercialised assistive FES device used invasively implanted electrodes [66] and although 

promising results were published [67, 68], it is reported that the company behind the 

NeuroControl Freehand System stopped marketing the device in 2001 [64]. Implanted 

technologies are associated with additional challenges such as invasive surgery, the risk of 

infection, high costs and reduced reversibility of interventions. Nevertheless, implanted FES 

devices have continued to be developed [69] and one was recently used in the proof of concept 

BrainGate2 trial [70], which demonstrated that when combined with a BCI, the participant had 

increased control of upper limb movements whilst using the device.  

Non-invasive FES is one of the most common peripheral stimulation techniques used by 

research groups investigating ‘neurorehabilitation’ [64, 71-76]. In addition to being non-

invasive, it offers many advantages over alternative stimulation techniques, such as the 

availability of commercial devices, the range of muscle groups that can be stimulated, and the 

relative ease of use. Similar to other PNS techniques, FES may stimulate both efferent and 

afferent pathways, which might not be desirable for the precise control of neural activity.  

Importantly, a recent systematic review with meta-analysis found it to improve upper limb 

activity after stroke compared to control groups [77]. Also following stroke, it has been 

reported to reduce spasticity and improve motion [78]. Nevertheless, FES does have a 

predisposition to cause muscle fatigue through reverse recruitment of muscle fibres [65] and a 

limited ability to stimulate fine motor movements. Furthermore, despite Howlett et al. 

concluding that there was evidence that FES had a small to moderate positive effect, including 

chronic stroke survivors with upper limb impairment, another recent review did not find 
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evidence of significant improvements to activities of daily living when FES was initiated more 

than one year after stoke [77, 79]. This inconsistency can be partially explained by the fact that 

these two reviews did not consider any of the same upper limb studies, showing differences in 

search criteria. Moreover, small studies often lack sufficient controls, blinding and statistical 

power to find clinically relevant differences. Indeed, both reviews commented on the lack of 

available data, and made the case for larger clinical studies. However, for that to occur, the 

field must agree on a standardised implementation of FES which can be applied in a clinical 

environment. 

Whilst the outcomes of these reviews with meta-analyses should not be dismissed, it is of value 

to appreciate the levels of recovery being reported by research groups undertaking these smaller 

studies. Mann et al. delivered FES to extend the elbow and open hand fully without discomfort 

in stroke survivors [80]. Stimulation was cycled on and off for up to 30 minutes in a fixed 

pattern rather than paired with a task. Following 12 weeks of treatment, participants (n=11) 

showed an average improvement of 14.4 points on the Action Research Arm Test (ARAT) 

[81], furthermore these improvements were maintained at 24 weeks (i.e. 12 weeks after the 

treatment was stopped). A control group (n=11) which only received self-administered passive 

stretching also showed improvements (10.1 points), and although also maintained at 24 weeks, 

these were significantly less. It is of note that the study concluded that it would be beneficial 

to developed a triggering device to enable the use of stimulation during functional tasks. 

So far, we have predominantly considered electrical stimulation, but an alternative solution is 

a dynamic orthosis, robot or exoskeleton [82]. Here, a mechatronic device passively moves the 

joint, and these movements can be combined with a task or computer game [83], or paired with 

inferred voluntary commands, for example, detected using electroencephalography (EEG) 

[84]. Robot-assisted training can facilitate the delivery of large doses of training, and the 

completion of repetitive practice is believed to drive Hebbian plasticity [85, 86]. Furthermore, 

these devices have shown promise [82, 83, 87], with robot assisted upper limb training 

currently the subject of a large randomised control trial [88]. While these devices will not 

directly stimulate efferent pathways, they will activate afferent fibres through passive flexion 

and extension of joints. The cost of these devices is often high and this restricts accessibility 

[89], but if clinical effectiveness is proven, it is anticipated that economies of scale and 

competition between manufacturers will lead to substantial reductions in the price.  
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This wide range of techniques provides researchers with many tools to modulate and control 

neural activity in the motor system, and in doing so, it may be possible to induce neural repair 

to drive recovery following a stroke or SCI.  

 Neural plasticity 

‘Neurorehabilitation’ aims to restore function following neurological damage by inducing 

neural plasticity. This phenomenon, by which connections in the nervous system can be either 

strengthened or weakened by relative timing of the activity of neurons, was pioneered in the 

1940s by Donald Hebb [86] and is often summarised as ‘cells that fire together wire together’ 

[90], or in his own words: 

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells such 

that A's efficiency, as one of the cells firing B, is increased” [86]  

While the actual processes are more complex, and the temporal order of pre- and post-synaptic 

firing is important [91], there is a clear opportunity to utilise this property of the nervous system 

to drive neural repair. Indeed, researchers have demonstrated that this permanent alteration of 

neuronal connectivity (‘Hebbian’ plasticity) can be driven by a number of different protocols. 

These were categorised by Jackson and Zimmerman as: repetitive stimulation, paired 

stimulation and closed-loop stimulation [24], as shown in Figure 1-2. 

Repetitive stimulation aims to generate correlated pre- and post-synaptic neuronal activity by 

repetitive activation of a pathway [24]. This approach was demonstrated in rehabilitative 

setting by Carmel and colleagues  who used a rat model to show that repetitive stimulation of 

the uninjured motor cortex, following unilateral injury, promoted improvements in skilled 

locomotion [92]. This supported the idea that repetitive stimulation can be used to drive neural 

plasticity with functional benefits. However, this protocol, and others like it, require relatively 

long-periods of training and large numbers of stimuli, which might not be practical in humans. 

It has subsequently been suggested that paired stimulation of cortical and spinal or peripheral 

targets may expedite the process [93].  

A 
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Figure 1-2: Three different protocols for inducing Hebbian plasticity 
Three different approaches to inducing plasticity according to Hebbian plasticity. Panel A – Repetitive 
stimulation, where extrinsic stimuli applied to neuron A, via a single pathway, generate a strong and 
consistent response in neuron B. Panel B – Paired stimulation of both neuron A and B strengthens the 
connection between the two neurons. Panel C – Endogenous activity from neuron A is used to trigger 
stimulation of neuron B using a closed-loop. Reprinted with permission from Springer Nature: Springer 
Nature, Nature Reviews Neurology, Neural interfaces for the brain and spinal cord—restoring motor 
function, Andrew Jackson & Jonas B. Zimmermann, © Macmillan Publishers Limited (2012), 
www.nature.com/nrneurol/ [24]. 

A seminal paper on paired stimulation was published by Stefan et al. [94]. In humans, they 

paired transcranial magnetic stimulation (TMS) with low frequency peripheral nerve 

stimulation (PNS) to the median nerve, and recorded increased responses in the abductor 

pollicis brevis muscle (APB). Further testing suggested that this was caused by plasticity in the 

motor cortex, driven by associative long term potentiation of either cortical synapses or related 

neural mechanisms.  A similar study was conducted by Song and colleagues, who in a rat model 

with a pyramidal tract lesion, paired motor cortex stimulation with SCS, and reported cortical 

spinal tract repair and motor recovery [93]. They noted that the pairing of cortical and spinal 

stimulation, led to recovery in much shorter time-frames than repetitive stimulation of a single 

site.  

B 

C 
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‘Open-loop’ protocols such as these, do not use feedback to control stimulation, which makes 

integration into natural tasks challenging. Furthermore, protocols such that presented by Stefan 

et al. require specialist equipment and skilled operators to deliver stimulation [94]. An 

alternative approach is ‘closed-loop’ stimulation, and one of the first demonstrations was by 

Jackson et al. [95]. They artificially created a connection between two areas of motor cortex 

by using activity recorded from one area to trigger electrical stimulation in the other. This 

utilised the natural firing of the brain, and could be operated with minimal input over a 

prolonged period of time. They showed that this closed-loop set-up could strengthen 

connections between the two areas, and that the effect persisted following the end of the 

intervention. The technique was developed further by Nishimura et al. who paired cortical 

recordings with intraspinal micro-stimulation, and demonstrated that the strength of 

connections between the motor cortex and spinal cord could be strengthened or weakened 

depending on the relative timing of the recorded activity and the stimulation [96].  

Since these pioneering studies, a closed-loop system has been shown to have a positive 

rehabilitative effect in a rat model of SCI [23]. Here, intraspinal micro-stimulation below the 

site of injury was synchronised with the arrival volitional motor commands from the motor 

cortex, signalled by muscle activity in the impaired forelimb. This intervention was found to 

improve function on a forelimb reach and grasp task, and further demonstrated the potential of 

closed-loop systems to drive neural plasticity for rehabilitation. However, the translation of 

therapies from animal model to humans is challenging, and as such, these studies must be 

interpreted with care [28]. 

The scientific and engineering challenge for researchers developing closed-loop devices is two-

fold: firstly, the inference of brain activity or motor intent, and secondly, the delivery of 

appropriately timed stimulation. Closed-loop devices have the benefit that the peripheral 

stimulation, such as FES, can also be used to aid the completion of functional tasks in an 

intuitive manner, which will likely aid the translation into humans.   

Two potential solutions were reported by McGie and colleagues who combined FES with 

electroencephalography (EEG), and separately, with non-invasive electromyography (EMG) 

to demonstrate short-term changes in neural plasticity following a short intervention [74]. 

Electroencephalography (EEG) involves placing an array of non-invasive electrodes on the 

scalp and recording electrical signals to infer underlying brain activity, while EMG is used to 

record activity from the muscle and can therefore be used to detect attempted movements. The 
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group noted that to induce plasticity, it was critical that FES was applied when the participant 

voluntarily tried to move their hand.  

Whether these short-term changes in neural plasticity would translate into functional 

improvements was unknown, but the methodology has now been supported by a recent study 

that combined EEG with FES in chronic stroke survivors [97]. This study reported lasting 

improvements 6-12 months following the end of a six week therapy period (10 sessions, 60 

minutes each), and found increases in functional connectivity between motor areas in the 

affected hemisphere [97]. The researchers cited the contingent activity of natural efferent and 

afferent pathways as being crucial for plasticity. However, the intervention was compared to a 

sham-FES group, and to be clinically relevant, a larger sample size and comparisons with a 

conventional therapy, as well as FES delivered passively or via a cheaper control system, such 

as a button press, would be beneficial. Nevertheless, this is a promising result, and further 

support for closed-loop devices came from a meta-analysis by Bolton et al. [98]. They found 

evidence for the use of EMG-triggered neuromuscular stimulation (i.e. FES) as an effective 

post-stroke intervention. 

An alternative closed-loop approach is to infer cortical activity using real-time kinematic 

measures. For example, Meadmore et al. used an iterative learning algorithm based on 

movement kinematics to apply FES to the shoulder, elbow and wrist [75]. A pilot study of 5 

participants with hemiplegia suggested that this system may reduce upper limb impairments 

following stroke. Additional work will be required to validate this small study, but the result 

supports the principle of combining voluntary motor intent with peripheral stimulation.  

Complex systems such as those reported above can be a challenge to evaluate due to: a limited 

range of movements; a need for engineering support; cost; and the requirement to be located in 

a specialist lab. Therefore, regardless of efficacy and effectiveness, for an intervention to have 

wider impact and to facilitate the high dosages reported to be crucial for rehabilitation, it must 

be more akin to home-based exercise equipment than something found in neuroscience 

laboratory. The recently reported FES-UPP project sought to address these concerns by 

developing a flexible kinematic based system designed for use by therapists with little to no 

engineering support or previous FES experience  [73]. While this promising system could be 

used to deliver high intensity therapy, functional benefits and the cost were not reported.  

So far, the closed-loop solutions discussed have typically utilised FES. It is an established and 

accessible method of stimulating the nervous system in a closed-loop set-up, but in search of 
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novel solutions it is important that other technologies such as robotics [83], dynamic orthoses 

[82] and transcutaneous spinal cord stimulation [57, 61] are also considered. 

 Neurological conditions 

A wide range of neurological conditions may lead to upper limb impairment. These include 

multiple sclerosis, motor neurone disease, Parkinson’s disease (PD), traumatic head injury, as 

well as stroke and SCI. When choosing which conditions to target with a novel intervention, it 

was important that they were conditions that would be likely to respond to neural plasticity 

driven by concurrent activity in the cortex and peripheral or spinal nerves. For example, PD is 

caused by a loss of dopaminergic neurons in the brain region known as the substantia nigra 

[99], and there is no strong scientific basis for believing that paired stimulation delivered in the 

manner discussed would be beneficial. Instead, PD is targeted by other stimulation techniques, 

such as deep brain stimulation [99]. 

Although stroke principally effects upper motor neurons and supraspinal pathways, and SCI 

results in damage to upper and lower motor neurons and spinal pathways, it was reasonable to 

believe that both conditions would benefit from an intervention that facilitates or strengthens 

weakened pathways between the cortex and the periphery. Stimulation techniques such as FES 

require the nerve fibre between the spinal cord and muscle to be intact, and this is the case for 

stroke, and often for SCI. FES is also used by people with multiple sclerosis, and they may also 

benefit from a paired stimulation intervention, although this was not investigated in this thesis. 

Newcastle University has expertise on the evaluation of rehabilitative stroke care, and a strong 

collaboration the Miami Project to Cure Paralysis (University of Miami) which has a focus on 

SCI. These two groups provided an excellent knowledge base and access to participants with 

stroke and SCI, which coupled with the global demand for novel rehabilitative solutions for 

these conditions, made them an obvious focus for the intervention developed in this thesis.  

1.4 This thesis 

There is a clear demand for the development of new therapies for upper limb rehabilitation 

following stroke and SCI. Traditional approaches to rehabilitation have limited benefit, but 

research has shown that driving neural plasticity using a closed-loop system may provide 

opportunities to innovate in this field. However, new therapies must demonstrate more than 

efficacy; they must be adaptable, user-focused and cost effective. 
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This thesis describes the development of a novel closed-loop device, which in addition to 

seeking to exploit neural plasticity, allows a user to complete many repetitions of a functional 

task, with minimal support from another person. The device is designed to be low cost and 

suitable for use in the home or clinic. Furthermore, the system offers the flexibility to optimise 

the intervention by adjusting the relative timings of inferred activity and stimulation. In the 

first instance the system utilises FES, but tSCS is also investigated.  

In this chapter, I have given an overview of the state-of-play with regards to upper rehabilitation 

and emerging efforts to use Hebbian plasticity to drive neurorehabilitation. In Chapter 2, I 

describe the development of a novel device and intervention, and in Chapter 3 I report the 

findings of a study with participants with SCI. In Chapter 4, I present a series of studies with 

stroke survivors, and in Chapter 5, I seek to understand the mechanisms by which the 

intervention may be acting and how it could be optimised in healthy able-bodied volunteers. In 

Chapter 6, I investigate tSCS as an alternative to, or as a complementary stimulation technique 

for, FES. Finally, Chapter 7 brings this thesis to a close with a general discussion.  

 

  



35 
 

 

Chapter 2 

Development of a closed-loop 

device for rehabilitation following 

stroke and SCI 
 

 

 

 

 
Aim: 

• To develop a device that seeks to exploit neuroplasticity for the rehabilitation of 

the upper limb following neurological conditions such as stroke and spinal cord 

injury (SCI). 

Objectives: 

• Explore the different options for inferring motor intent and stimulating the 

nervous system to drive neural plasticity for recovery of voluntary upper limb 

movement 

• Design, build and test prototype devices, and collect feedback from user groups 

• Select a final concept to take forward for further testing with participants with 

stroke and SCI. 
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2.1 Introduction 

There is a need for novel interventions to be incorporated into rehabilitation programmes to 

improve upper limb recovery following neurological conditions such as stroke and spinal cord 

injury (SCI). In the previous chapter, it was suggested that an approach that combined a high 

number of task repetitions, limb mobilisation and appropriately timed electrical stimulation 

delivered in a closed-loop, could potentially drive neural plasticity, leading to positive 

rehabilitative outcomes. In this chapter, we explore a number of possible solutions and describe 

a novel device developed for further investigation. 

A closed-loop device requires two key components. Firstly, a method of sensing the users 

motor intent (voluntary brain activity), and secondly, a system to provide stimulation paired 

with that intent. As described in the previous chapter, devices have previously been developed 

in this field, but as of yet, clinical effectiveness has not been widely established. Therefore, 

prior to starting the design process, it was important to define an acceptance criteria that would 

address factors that might have contributed to this limited translation from bench-to-bedside.  

Acceptance criteria:    

1. Suitable for home and clinical use 

2. User friendly 

3. Robust and reliable 

4. Low-cost 

5. Only limited input required by a therapist or carer 

6. Adaptability to support a range of impairments 

7. Does not require significant on-going support or specialist engineering knowledge 

8. Versatile for testing different plasticity protocols 

9. Testable in a large clinical trial, with limited engineering support. 

2.2 Design considerations 

2.2.1 Stimulation of peripheral nerves and the spinal cord 

A challenge of working with people with upper limb impairment is that movements may be 

restricted by paralysis, spasticity and muscle hypertonia. Therefore, in a closed-loop system 

designed to drive neural plasticity, it is advantageous for the stimulation to fulfil two functions: 
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(1) to enable completion of a movement, and (2) to provide a peripheral stimulus to be paired 

with motor intent. 

This can be achieved by functional electrical stimulation (FES), which can induce functional 

muscular contractions, enabling participants to overcome immobilisation and complete a 

movement [65]. Therefore, non-invasive FES is an obvious choice for the design of a new 

system, although as discussed in the previous chapter, it has disadvantages such as reverse 

recruitment of muscle fibres [65], a limited ability to stimulate fine motor movements and some 

questions over its efficacy in chronic stroke [79].  

Implanted FES technology is associated with greater costs and complexity, and therefore falls 

outside the acceptance criteria. Similarly, the risks of invasive surgery, cost, the need for 

specialist installation, and limited evidence of clinical effectiveness for upper limb 

rehabilitation, mean that cortical and epidural spinal stimulation remain inaccessible for the 

majority of the population. An alternative solution is to use a dynamic orthosis or robotic 

device. However, suitable robotics are not widely available and the cost can be high [89]. 

Furthermore, orthoses face many challenges with regards to the diverse range of impairments 

caused by stroke and SCI, and the time and cost associated with developing devices.  

Transcutaneous spinal cord stimulation (tSCS) may offer an alternative to FES, and following 

further development, it could meet the acceptance criteria for this project [57-60, 100, 101]. 

Therefore, the preliminary work in this thesis will make use of non-invasive FES (Chapters 2 

to 5), but tSCS will also be investigated (Chapter 6) to understand how it might be later 

incorporated into the intervention, either in addition to, or as a substitute for, FES. 

2.2.2 Methods of inferring motor intent 

Direct recordings from neurons in the motor cortex and posterior parietal cortex have been used 

in non-human primates to predict movement intent [95, 96, 102], and the first steps are now 

being made to replicate this work in humans [70, 103, 104]. However, these devices are still 

far from being available in normal clinical practice, and for the purposes of this study, less 

invasive alternatives were considered.  

Electroencephalography (EEG) has been used in closed-loop systems combined with both FES 

and an orthosis [71, 84, 97, 105], but the set-up time, cost and complexity of such systems 

limits the wider accessibility of them. Electromyography (EMG) is used to record muscle 

activity to subsequently infer voluntary commands [72, 106, 107], with some devices even 
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being commercialised [107]. However, EMG systems require a certain level of residual 

function that may not be present in a paralysed limb, and the initiation of voluntary commands 

can lead to co-contractions that resist the intended movement [73].  

While FES devices for upper limb rehabilitation are not well-established in a clinical setting, 

lessons may be learned from lower-limb rehabilitation where FES systems are commonly used 

for assistive devices for foot drop [108]. Numerous commercial devices are available (see 

WalkAide (Innovative Neurotronics Inc.), NESS L300 (Bioness Inc.), ODFS Pace (Odstock 

Medical Ltd.)) and typically, they do not use complex physiological measures, but kinematic 

signals associated with walking. This allows stimulation to be combined with voluntary intent, 

and a high number of repetitions to be completed. Despite there being no direct correlate of 

walking in the upper limb in humans, a cyclical task has obvious advantages with regards to 

automation and completing a high number of repetitions. 

Kinematic systems that measure acceleration, joint angle or use motion capture, have been used 

by upper limb research groups, allowing inferences about voluntary brain activity to be made 

[73, 75, 76, 109]. While these systems vary in cost, flexibility and complexity, a key limitation 

is that to be detected, movements need to be made. So while FES might enable the person to 

complete an action, if they cannot initiate that movement, the brain activity cannot be inferred.  

The systems discussed above infer endogenous brain activity by recording a surrogate marker 

of that activity, i.e. electric fields on the scalp, muscle activity or limb movements, and typically 

use this marker to deliver appropriately timed assistive stimulation (e.g. FES). In theory, this 

allows the participant to complete a self-initiated task intuitively. If the requirement to be self-

initiated is removed, then an alternative approach whereby FES is purely used as a 

neurorehabilitative training aid that operates within a pre-defined protocol, rather than as an 

assistive device, presents new opportunities.   

One such opportunity is to stimulate brain using auditory and visual cues, and then infer that it 

has responded in a predicted manner. For example, if a command is given to a trained human 

to reach for an object, it is known that they will try to complete this action, even if motor 

impairment restricts their ability to do so. Furthermore, a reach and grasp movement is a 

stereotyped movement with clearly defined components: (1) transporting the hand to the object, 

(2) the formation of the hand to grasp the object and (3) grasping the object [110]. Therefore, 

once a cue has been given, the brain activity can be inferred and appropriate stimulation 

provided. This offers a simple, yet reliable method of inferring endogenous brain activity, 
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which is not contingent on any physiological measure, and resolves the issue with kinematic 

measures. Movement (reaching and hand opening) can be initiated using a cue or command 

supported by electrical stimulation (or an orthosis), and once in motion, the resulting brain 

activity can be inferred using kinematics, and parameters adjusted for completion of the action 

(grasping).  

2.3 Prototypes 

The following prototype designs were developed to meet the design considerations discussed 

in Sections 2.1 and 2.2. In the first instance, an upper limb alternative to a walking motion was 

sought, and movements were measured in real-time using kinematics. The design then evolved 

towards uni-manual tasks that were better to suited to training activities of daily living, with 

this being achieved in the final design by utilising cues and more robust kinematics measures.  

2.3.1 Vertical pulley 

We first considered the repetitive, bi-manual rope pulley task as shown in Figure 2-1. It had 

the advantage that the participants’ hand motions were approximately out-of-phase, and 

therefore, the position of one hand could be inferred from the position of the other. In the case 

of stroke, this had the practical significance that the intended motion of the affected hand could 

be inferred from the movement of the less affected hand, allowing closed-loop control of FES 

or a hand orthosis. 

 

 

 

 

 

 
Figure 2-1: A prototype bimanual closed-loop task 
Panel A – The vertical pulley. The participant was asked to continuously pull the rope downwards using 
a hand-over-hand technique. Panel B - A dataglove with an inertial measurement unit (IMU) worn on 
one hand to record kinematic signals; accelerometry and/or grip aperture. These signals were 
subsequently processed to provide appropriately timed stimulation to open and close the other hand. 

A number of methods were trialled for capturing the kinematics of the less affected hand. These 

included using a dataglove (VMG 8, Virtual Motion Labs) to record grip aperture and 

A B 
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accelerometry, and separately, a wireless inertial measurement unit (IMU) (Shimmer3 IMU, 

Shimmer Sensing) to record acceleration. Data were streamed in real-time to a PC running 

MATLAB (MathWorks Inc.) which controlled an FES stimulator (OS2CHS, Odstock Medical 

Ltd.) via a custom trigger with a Bluetooth connection. Prototypes showed that this approach 

was feasible in healthy able-bodied controls, but it was clear following consultation with 

clinicians that the range-of-motion motion required in the arm and hand would severely limit 

the number of users, and it would not be suitable for bilateral injuries such as SCI.  

2.3.2 Two-sided Pulley  

In light of the feedback received regarding the vertical pulley, it was realised that if the need 

to grasp the pulley was removed, then this would create an alternative solution for training of 

proximal arm muscles with FES assistance. This resulted in the two-sided pulley shown in 

Figure 2-2.  

Here, the position of one arm was recorded using an IMU (accelerometry), and appropriately 

timed FES provided to the other arm, facilitated lifting the arm and extension at the elbow.  The 

device was placed in either a horizontal or vertical position, and could also be used without any 

stimulation, although this fell outside the scope of this thesis. 

 

 

 

 

 

 

Figure 2-2: A two-sided pulley for a closed-loop FES task 
A wireless IMU was used to capture real-time accelerometry from one arm, and this signal was used to 
predict the location of the other arm in the movement. FES was subsequently provided to facilitate lifting 
the arm and extension of the elbow during appropriate phases of the cycle. The device is shown in the 
vertical position, but could also be used in a horizontal position. 

As previously described, data from the IMU (Shimmer3 IMU, Shimmer Sensing) were 

streamed in real-time to a PC running MATLAB (MathWorks Inc.) that controlled an FES 

stimulator (OS2CHS, Odstock Medical Ltd.) via a custom trigger with a Bluetooth connection.  
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The prototype worked well in healthy able-bodied controls, but had several disadvantages. 

Firstly, it only facilitated a limited range of training, and secondly, if a participant had a weak 

grip, they would require their hand(s) to be attached to the grip(s). Furthermore, the 2014 

Cochrane Review (‘Cochrane overview: Interventions for improving upper function after 

stroke’) stated that unilateral tasks were preferable to bilateral tasks [11], and while this referred 

to bilateral tasks where both sides were completing the same motion, and here they were out-

of-phase, it was not clear how this would impact rehabilitative outcomes with this device.  

2.3.3 Uni-manual task 

We developed the following task (Figure 2-3) to facilitate uni-manual training without the need 

for assistance by the other limb. This was particularly important for SCI, where both limbs may 

be severely affected. An IMU (Shimmer3 IMU, Shimmer Sensing) was placed on the wrist to 

measure acceleration and wrist angle, and the participant was asked to pick up a series of blocks 

and placed them on a raised platform with the block rotated 90 degrees. The intervention 

exploited the fact that for this specific task, the signals from the gyroscope and accelerometer 

were 90 degrees out of phase (see Figure 3-2), and thus the position of the hand relative to the 

task was known throughout. Stimulation was then automatically applied to facilitate the 

opening and closing the hand at the appropriate points in the task, allowing the user to pick-up 

and release the block. 

 

Figure 2-3: A uni-manual block moving task  
Panel A – An IMU was attached the wrist, and FES set-up to stimulate the hand, wrist and fingers 
extensors and flexors. The fingers were ‘buddied’ to improved hand closing with FES. Panel B - A block 
was lifted, rotated 90° and placed at an elevated height. There were multiple blocks to allow many 
repetitions of the task, and these could be designed to make rotation of the block intuitive (i.e. 
appropriately shaped slots at the start and finish positions). Panel C – Signals captured by the IMU 
(acceleration and angular velocity) were 90° out of phase. Panel D – These signals were processed in 
real-time (MATLAB, The MathWorks Inc.) allowing the position of the participant in the task to be 
tracked and FES (OS2CHS, Odstock Medical Ltd.) provided to either open or close the hand at the 
appropriate time.  
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The task was demonstrated to work well for healthy able-bodied volunteers in a laboratory 

setting, but it required reliable and consistent movements, in particular wrist rotation, which 

may not be present individuals with motor impairment. 

2.4 The final device 

2.4.1 Rationale 

It was evident from the uni-manual task described above, that while movements could be 

predicted within specified block moving task, further task constraints would be required to  

provide the robust solution required for upper limb rehabilitation following stroke and SCI. In 

the task shown in Figure 2-4 the block has been retained, but it has been fixed to a slide rail to 

prevent accidental or incorrect movements that might otherwise disrupt the participant’s 

progress through the task. Furthermore, the IMU has been replaced by cue (auditory and visual) 

to drive cortical activity and initiate movements, and proximity sensors to detect the completion 

of self-paced motions. 

As described for the prototypes, non-invasive FES was selected to provide peripheral 

stimulation, due to its accessibility, ease of use, ability to stimulate both proximal and distal 

muscles, and the availability of stimulators. This was paired with a control system that was 

designed to allow the adjustment of the relative timing of cues and stimulation onset, for later 

investigation of optimal timings for neural plasticity. 

 

Figure 2-4: The device developed for this thesis  
Panel A – Participants reached for a cube and pulled it towards themselves, a distance of 300mm. 
Assistive stimulation was delivered by an FES stimulator, modified to be controlled by a microcontroller 
which received input from digital proximity sensors at either end of the rail. Panel B - To stimulate wrist 
and finger extension the active electrode (cathode) was positioned over extensor digitorum communis 
(EDC), and the indifferent electrode (anode) over extensor pollicis longus (EPL) and abductor pollicis 
longus (AbPL). To stimulate extension of the arm, the active electrode was placed over the anterior 
deltoid and the indifferent electrode over the triceps. The slide rail base was ~460mm x ~165mm. © 
2018 IEEE [1]. 
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2.4.2 Description of the device 

The device comprised of a custom-made slide rail, with integrated sensors and a real-time link 

to a FES stimulator via a microcontroller (Figure 2-4, Figure 2-5). The device was placed on a 

flat surface in front of the participant, with the block at the far end of the rail. This was typically 

orthogonal to the table edge, but if necessary it was angled to aid reaching. A 50mm cube (60g) 

was fastened to the rail and tethered by a spring-loaded reel (max force approximately 2N) 

such that when displaced from start position and released, it automatically returned to the start 

position, ready for the next movement repetition. This allowed multiple cycles of the reaching 

and grasping task to be completed automatically.  

 

Figure 2-5: A system schematic for the device 
A microcontroller generated cues and received inputs from two sets of proximity sensors. It subsequently 
triggered stimulation to open the hand and extend the arm at appropriate times during the task. © 2018 
IEEE [1]. 

FES was delivered by a 2-channel stimulator (OS2CHS, Odstock Medical Ltd) to open the 

hand and, for some participants, to extend the arm at the elbow. The trigger was modified to 

be controlled in real-time by a microcontroller (Arduino Micro) and digital proximity sensors 

with a 10cm range (GP2Y0D810Z0F, Sharp) at either end of the rail (see Figure 2-5). Auditory 

and visual cues (a short single (100ms) or double tone (2x100ms) and LED illumination) were 

used to control task timing. Together with the proximity sensors, this allowed the participant’s 

progress through each trial to be tracked so that stimulation of muscles could be delivered at 

the appropriate time, creating the closed-loop shown in Figure 2-6. 
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Figure 2-6: The closed-loop created by the device, stimulator, controller and participant 
© 2018 IEEE [1]. 

At the start of each trial, auditory and visual cues indicated that the participant should reach 

towards and grasp the block. At the same time, stimulation was delivered to enhance this 

movement, e.g. stimulating the hand to open and the arm to extend. The end of the reaching 

phase was determined using a proximity sensor at the far-end of the slide to detect in real-time 

when hand was over the block. Thus stimulation was delivered through the whole outwards 

movement, irrespective of the movement duration. Once the block had been reached, 

stimulation was automatically turned off and participants pulled the block without assistance 

to the finish position. Again, proximity sensors were used to determine when the block had 

reached the finish position. Following a 1.5s delay, the participant received a further auditory 

and visual cue to release the block, and this releasing movement was assisted by concurrent 

stimulation to open the hand. Once released, the block returned automatically to the start 

position, triggering the end of stimulation. The next trial began after a rest period of 5 seconds. 
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Figure 2-7: The intervention protocol  
1. The participant was given an auditory (double tone) and visual cue (LED on) to reach and grasp the 
5cm cube, and FES was given to open the hand and, in most cases, extend the arm. 2. When proximity 
sensors (10cm range) detected that the open hand was over the block (marked by a single tone, LED 
off), the FES was turned off allowing the block to be gripped. 3. The participant pulled the block to the 
finish position with no FES assistance. 4. A proximity sensor detected the return was complete (single 
tone) and the microcontroller initiated a 1.5s delay. 5. Cues (single tone, LED on) indicated that the block 
should be released and FES was applied to open the hand. 6. When proximity sensors detected that the 
release was complete (the block was in the start position), FES was turned off (single tone, LED off). The 
participant then rested for 5 seconds before returning to step 1. Timings shown were calculated using 
data from participants with SCI (n=7) for a block of 25 trials on day 3 of the intervention (see Chapter 
3). Timings (mean (±SE)) are: Reach 1.4s (±0.2), Grasp and Pull 1.0s (±0.15), Hold 1.5s, Release 0.9s 
(±0.07), and Rest 5s. Similar timings were observed for participants with stroke (see Chapter 4). © 2018 
IEEE [1]. 

The combination of cued movement initiation and automated detection of movement 

completion allowed stimulation to be reliably delivered contingent on the timing of the self-

paced task epochs (e.g. reaching outwards and back) whilst maintaining a steady rate of 

progress through multiple trials. The protocol with further details of cues and timings is 

illustrated in Figure 2-7. Note that typically the stimulation and cues were delivered at the same 

time, but the system had the capacity for these timings to be adjusted, and the potential impact 

on neural plasticity is explored in Chapter 5.  
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2.5 User group feedback 

2.5.1 Stroke survivor user group 

2.5.1.1 Introduction / Methods 

In July 2016, the device was demonstrated to the North East Stroke Patient & Carers Group.  

The device received a generally positive reception, and one attendee demonstrated completing 

the reach & grasp task without stimulation. A subsequent session was arranged at the Institute 

of Neurosciences, Kolkata (I-NK), to invite volunteers to try the device for a short-period, i.e. 

10 to 25 repetitions of the task. Ethical approval was given by the local ethics committee, and 

volunteers were pre-screened so that those attending were already believed to have a level of 

upper limb weakness compatible with using the device, i.e. some residual movement, but 

restricted ability to complete a reaching and grasping task. FES was only applied to open the 

hand, and not to extend the arm at the elbow.  

2.5.1.2 Results 

The demonstrator recorded observations for 11 participants (mean±SE age 46±4, years since 

first stroke 2±0.6), and reported a positive experience for 10 out of the 11 participants. One out 

of the 11 gave mixed feedback, as although the extension did help to open his hand, there was 

an unsatisfactory amount of ‘clawing’ of the fingers. Hand and finger extension was not always 

complete in the other participants, but it was sufficient to aid completion of the task. A support 

arm and splint were used to assist one participant in completing the task. Scores on a commonly 

used functional assessment, the Action Research Arm Test (ARAT) [81, 111], were available 

for 9 out of the 11 participants. The average score was (mean±SE) 15±5, which is relevant to 

a discussion on the applicability of the device to a broader population in Chapter 4. 

2.5.1.3 Further findings 

In general, the task was well received, but the first prototype of the device only used an auditory 

cue. It was found that in a noisy environment, or if the participant suffered from deafness, this 

presented a challenge, and participants sometimes compensated by using the stimulation as a 

cue. The visual cue described in the previous section (LED illumination) was subsequently 

added to the device to resolve this issue.  

Participants sometimes found the task a little confusing, and an initial training period was 

required (5 to 10 minutes) to learn the task and adjust the sensors to ensure correct timing of 

stimulation. It was apparent that a splint or arm support may be beneficial for participants with 
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weak proximal muscles, as they struggled to achieve the elevation and distance required to 

reach the block at the start of the task.  Furthermore, four participants used the device in a 

horizontal position (sliding from side-to-side) as they did not have a sufficient range of motion 

to reach the full distance. Consequently, it was decided that it would be beneficial for the blocks 

start position to be adjustable, thus allowing the vertical distance reached to be reduced. This 

was integrated into a later iteration of the device by placing the far sensors on a sliding plate 

and including adjustable end-stops on the slide-rail. The sliding plate can be seen in the device 

shown in Figure 2-4.  

2.5.2 Physiotherapist focus group 

2.5.2.1 Methods 

A questionnaire comprising of predominately structured questions (Likert scale) was composed 

to gather feedback on the device from a focus group of physiotherapists. Prior to completing 

the questionnaire, a presentation on the device, with a short demonstration, was given. The 

questionnaire also provided the opportunity to make additional freehand comments. 

2.5.2.2 Results 

Nine physiotherapists with a range of experience from the National Health Service (NHS) in 

the North East of England attended the focus group. Seven agreed that the task and choice of 

muscles stimulated would be appropriate for a substantial proportion of stroke survivors they 

worked with, and if appropriate, eight said that they would be happy to use the system. None 

of these therapists currently used FES more than ‘every once in a while’, with cost and 

availability of devices reported as barriers to use. 

 

Figure 2-8: A selection of the qualitative data collected from the physiotherapist focus group 
© 2018 IEEE [1]. 
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2.5.2.3 Discussion 

Feedback from this focus group demonstrated that if shown to be effective, the device was 

likely to receive a positive reception from physiotherapists.  

2.6 Future designs 

It is important to note that with regards to choice of task, muscles to be trained and difficulty 

level, this device does not allow the same level of variability as a physiotherapist led session. 

There was a trade-off between the low-cost, simple interface and high repetitions provided by 

using the device, and the personalized care provided by a therapist. However, the device does 

have in-built adaptability; the 5cm cube can easily be swapped for an object of a different size, 

texture and / or shape, and the sensor positions can be adjusted accordingly. The distance 

reached can also be reduced, and there is the potential to upgrade the spring-loaded reel to 

include adjustable resistance. Stimulation parameters can be set to match the user’s needs, and 

the electrode positions adjusted to target specific muscles.  

Adaptability for a range of impairments was an important design criteria, and while the device 

described above does offer versatility, it is also conceivable that further devices based on 

similar principles of cueing and sensing of limb position could be developed for participants 

with higher or lower levels of upper limb function. 

To illustrate this, Figure 2-9 shows two devices combined in a modular fashion to replicate the 

prototype pulley devices described earlier. Here, for stroke survivors, the less affected arm can 

be used to assist the affected side, or both sides can be trained by participants with a bilateral 

injury such SCI. FES would be applied to assist arm extension, and the blocks could be replaced 

with grips. The simple toothed pulley system added to the device to facilitate this additional 

functionality, would be designed to be easily removed when not required. While this device 

was not tested in this thesis, it demonstrates a possible future iteration of the design.  
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Figure 2-9: Two devices combined in a modular fashion to create a pulley system 
This prototype device enables out-of-phase bilateral training, during which stimulation is applied to 
facilitate arm extension. Furthermore, following stroke, movement of the affected arm can be assisted 
by the less affected arm. The devices are prevented from slipping using a non-slip mat (not shown).  
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Chapter 3 

Investigations into the utility of the 

device for upper limb rehabilitation 

following spinal cord injury 
 

 

 

 

 

  

 
Aim: 

• To investigate the utility of the novel device for upper limb rehabilitation 

following spinal cord injury (SCI). 

Objectives: 

• Obtain qualitative feedback from participants with SCI on the usability of the 

device, suitability of the task, and any perceived benefits from a short intervention 

• Use quantitative measures to assess changes in function following a short 

intervention using the device. 
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3.1 Introduction 

Hebb’s principle ("cells that fire together wire together" [86, 112]) suggests that the pairing of 

cortical and peripheral activity could strengthen intact descending pathways following 

neurological conditions such as stroke and spinal cord injury (SCI). If integrated into a 

therapeutic intervention, this could lead to improved motor function that is sustained after the 

intervention has been completed [23, 24, 94, 113, 114]. It has been proposed that the beneficial 

effects of functional electrical stimulation (FES) during rehabilitation may arise in part from 

neuroplastic changes in motor circuits [24, 115, 116], and that this therapeutic benefit of FES 

may rely on its pairing with appropriate descending commands [24].  

Various research groups have reported promising results using such paired approaches [23, 71, 

72, 74, 76, 105, 106, 109, 117], but the challenge remains to translate these often complex 

protocols into simple user-friendly devices suitable for intensive use in a clinical setting or at 

home. Additionally, to become commercially viable, devices must demonstrate efficacy, be 

cost effective, and be suitable for a wide range of people [64].  

In this chapter, the findings of a feasibility study during which participants with cervical SCI 

completed a short intervention with the reaching and grasping device described in Chapter 2 

are presented. The aim was to investigate if the device was suitable for the rehabilitation of the 

upper limb following SCI, with regards to usability, suitability of the task and any perceived 

benefits of a short training period. 

3.2 Methods 

3.2.1 Intervention and assessments 

Participants with chronic SCI (≥ 6 months) were recruited to provide feedback on the device 

and complete a short intervention period. The study was completed at The Miami Project to 

Cure Paralysis, University of Miami, USA. It was approved by the local ethics committees and 

participants gave informed consent prior to joining the study and were reimbursed for the time 

spent completing the study. 

Participants attended five sessions, typically on consecutive days with breaks as required. 

Sessions were scheduled to take one hour each, with a target of 200 repetitions per session. 

Three hours were scheduled for sessions at the start and end of the intervention to allow time 

to brief the participant, set-up the FES, perform assessments and to collect qualitative feedback. 
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Participants aimed to complete blocks of 20 to 25 repetitions followed by a one minute rest, 

although this was flexible to accommodate individual needs. At the start and end of each 

sessions participants completed 10 to 20 repetitions without stimulation.  

The inclusion criteria were that participants had cervical SCI leading to mild, moderate or 

severe impairment of upper limb movement, aged over 18 years old and an Action Research 

Arm Score (ARAT) [111] score less than the maximum score of 57 on the side to be trained. 

It was also confirmed that participants could complete the task with FES assistance. 

Participants were excluded as per the stimulator manufacturer guidelines (e.g. poorly controlled 

epilepsy, an implanted electronic device such as a pacemaker, or pregnancy). 

Participants were assessed before and after the intervention period using the Action Research 

Arm Test (ARAT). ARAT is a reliable and validated measure of upper limb function [81, 111] 

that involves the assessment of grasp, grip, pinch and gross movements on a scale of zero to 

three. The maximum score per arm is 57 and both arms were tested. The minimal clinically 

important difference (MCID) for ARAT is often set at 10% of the total score (≥6) [118]. To 

avoid bias, blinded videos were evaluated by an independent assessor who was not involved in 

delivering the intervention; this methodology has been previously established in stroke studies 

[119, 120]. Statistical testing was completed using a Wilcoxon’s signed-rank test, with the null 

hypotheses that there was no change in ARAT score before and after the intervention, and that 

the change in ARAT score was the same for both the trained and untrained arm.  

Participants were also asked to complete a questionnaire to collect qualitative feedback about 

the intervention. The questionnaires contained structured questions on upper limb function 

such as the strength and the range of movement before and after the intervention, and these 

questions were answered using a Likert scale. They were also asked if they would like to use 

the technology for rehabilitation, if they had benefited from the intervention and if they could 

use the technology independently. They were additionally provided with a section for general 

comments about the intervention. 

3.2.2 Functional electrical stimulation (FES) 

Asymmetric biphasic stimulation was applied using two pairs of disposable surface electrodes 

(PALS Neurostimulation Electrodes). The first pair (3.2cm round) extended the wrist, thumb 

and fingers, with the active electrode placed over the extensor digitorum communis (EDC), 

and the indifferent electrode over the extensor pollicis longus (EPL) and abductor pollicis 
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longus (AbPL). A second pair (5x5cm square) extended the arm at the elbow, with the active 

electrode on the anterior deltoid and the indifferent electrode on the triceps.   

Stimulation parameters were individually set for each participant at the start of the study and 

checked for appropriateness before and throughout each session. Typically, only slight 

adjustment was required during the intervention period. Current values ranged from 20 to 

35mA and stimulation pulse widths of 130 to 350µs were used. The stimulation frequency was 

fixed at 40Hz, and electrodes were positioned on the first day, with the position marked using 

a UV pen. These electrode positions were maintained for the duration of the study with little 

adjustment required.   

As the participants had some residual upper limb function, the intention was to enhance this 

rather than overpower it, thus ensuring participants were actively involved in the task. 

Electrode positions were based on the manufacturer’s guidelines [121] and adjusted to achieve 

the muscle activation that best resembled natural movement as observed by the experimenter 

and reported by the participant. The stimulation current was set at approximately 20mA and 

the pulse width increased until it produced a visible twitch in the index finger or arm. The pulse 

width was then increased to approximately 1.5 to 2.5 times this value as required to generate 

appropriate movement for the task. If this was not possible due to the maximum pulse width 

being reached, the current was increased and the process repeated.  

The proximity sensors, which were fitted on adjustable sliders, were positioned for each 

participant to allow for different hand sizes and reaching trajectories, which may otherwise 

lead to incorrect triggering of the sensors. 

3.3 Results 

3.3.1 Task compliance & functional outcomes 

Seven participants with traumatic SCI were recruited (mean age±SE = 37±6 years, 6 male, 

mean time since SCI 8±2 years, see Table 3-1). Two of participants with SCI were categorised 

on the American Spinal Injury Association (ASIA) impairment scale as AISA A (complete 

injury) due to no sensory or motor function being preserved in the sacral segments S4-S5 [16]. 

However, they were able to elicit some voluntary force below the neurological level of injury, 

indicating residual connectivity. All other participants were categorised as ASIA C (motor 

incomplete).  



56 

Table 3-1:  Participants in this study 
© 2018 IEEE [1]. 

SCI participants completed approximately 1000 repetitions over the five days. All participants 

completed the full period, and as planned, sessions (excluding assessments) took 

approximately one hour. The hand / side best suited to completing the task with FES assistance, 

as agreed with the participant, was trained during the intervention, with the untrained side 

acting as a control.  

Typically, stimulation to the forearm would open the hand, including finger, wrist and thumb 

extension. Stimulation to the shoulder and triceps would extend the arm at the elbow, but only 

aid elevation from the table – elevation was predominately achieved by the participant’s 

residual function. After an initial training and setup period, it was uncommon for incorrect 

triggering to result in inappropriate stimulation. 

ARAT scores were assessed immediately before and after the intervention for both the trained 

and untrained limb (Figure 3-1). That is, following completion of the task on Day 5, the FES 

electrodes were removed and assessments were completed. The assessor did not note any 

significant reports of fatigue that may have influenced assessment outcomes. The mean (± 

standard error) improvement in ARAT score was 3.4 (±1.1) on the trained side (Figure 3-2), 

and this change was statistically significant compared to the untrained side over the same 

period (0.1±0.8, paired two-sided Wilcoxon’s signed-rank test, n=7, T+=21, P=0.03). One SCI 

participant showed an improvement that exceeded the MCID (≥6). 

ID Age Gender NLIa ASIAb SCIMc 
Time since 

SCI (years) 

1 20 M C4 A 21 3 

2 42 M C4 C 30 9 

3 20 M C2 C 68 3 

4 52 F C5 C 99 14 

5 57 M C5 C 66 13 

6 41 M C7 C 64 4 

7 29 M C6 A 39 10 
a Neurological level of injury [16] 

b American Spinal Injury Association (ASIA) Impairment Scale [16]. ASIA A 
= complete, ASIA C = motor incomplete. 
c Spinal Cord Injury Measure (Version III, Self-report 2013) [122] 
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Figure 3-1: Individual ARAT scores for the trained and untrained sides before and after the intervention  
Panel A - The ARAT scores for the trained side for participants before and after the intervention. Panel B 
- The ARAT scores for the untrained side before and after the intervention. The maximum score is 57 per
side. ARAT scores are as assessed by the blinded, independent assessor. For reference, the original
assessor’s scores for the before condition for participants 1 to 7 were (trained / untrained): 8 / 7, 35 / 5,
16 / 55, 27 / 57, 41 / 56, 30 / 34 and 35 / 39 respectively. Statistical testing between the original and
independent blinded assessor on the trained side found a statistically significant correlation between
the scores (Spearman Correlation ρ=0.991, P=6.7x10-12), but minimal agreement according to Cohen’s
Kappa (κ=0.047) [123]. This suggests both assessors captured the same trends, but had different
interpretations of the scoring criteria. The original assessor was the same for all participants in this
study. © 2018 IEEE [1].

Figure 3-2: The mean change in ARAT score for the trained and untrained sides 
P values show the statistical significance measured using a two-sided Wilcoxon signed-rank test 
between the pre- and post-intervention assessments on the trained and untrained sides (n=7, P=0.05 
T+=26.5 and P=1 T+=5.5 respectively), and between the two sides (n=7, P=0.03 T+=21). Error bars show 
standard error. © 2018 IEEE [1]. 



58 

3.3.2 Qualitative feedback 

Six out of seven of the participants reported that they had benefited from using the device, with 

five out of seven saying that they would use it again. Three participants reported benefits with 

activities of daily living such as holding a pen, drinking and cutting food subsequent to using 

the device. A selection of structured questions have been summarized in Figure 3-3. 

Figure 3-3: A selection of the qualitative data  
Responses were collected using a Likert scale (n=7). *Participants often stated that they would require 
assistance with the set-up and the placement of electrodes, but could otherwise use the device 
independently. © 2018 IEEE [1]. 

3.4 Discussion 

We have developed a neurorehabilitation device for reach-to-grasp movements that is suitable 

for use by selected participants with SCI. The intervention was well-tolerated and produced 

measureable changes in a general upper limb function test after training for 1 week. Participants 

showed good compliance with the task and achieved the target number of repetitions. The 

majority of participants reported that they had benefited from using the device.  



59 
 

Further studies will be required to establish whether additional benefits can be obtained through 

continued use of the device over extended periods of time, and to assess whether these benefits 

are maintained. We speculate that the functional improvements we observed may be due to 

neuroplasticity arising from the temporal contingency of voluntary motor commands and 

peripheral stimulation, as well as activity-dependent plasticity generated by completing a large 

number of repetitions of a task. However, additional investigations including neuro-

physiological testing and controls groups receiving FES or performing reaching movements 

alone will be required to support this hypothesis.  

Improvement in ARAT scores amongst participants were modest in comparison to the MCID 

≥6 [118], although one participant (#4) showed an improvement greater than this clinically 

significant threshold. As final evaluations were completed immediately after the intervention 

on day five, we cannot say how long-lasting effects were for the group. However, due to 

participant #4’s improvement, they returned for a follow-up ARAT assessment one week after 

the intervention and it was found that the clinically significant benefit had been sustained. It 

should be noted that in some instances the untrained hand had high levels of function, and this 

limits the comparability of the trained and untrained sides before and after the intervention.  

Participants with residual sensory and motor function below the neurological level of SCI were 

included in this study. It was predicted that the largest changes in function would be seen in 

those classed as ASIA C (motor incomplete), as there should be greater residual connectivity. 

Indeed, as anticipated, participants who had complete SCI (#1 and #7) showed little to no 

improvement in ARAT score, although participant #1 did verbally report feeling a benefit. 

Further studies will be required to establish optimal protocols for different severities of injury. 

The reach and grasp movement can be broken down into three major components: (1) 

transporting the hand to the object, (2) the formation of the hand to grasp the object and (3) 

grasping the object [110]. One concern prior to this study was whether this simple configuration 

of cues and proximity sensors would be sufficient to accurately facilitate this complex 

movement. Auditory and visual cues were delivered simultaneously with the beginning of 

stimulation, therefore not accounting for any reaction time, which may have varied across trials 

and participants. As has been discussed in previous chapters, alternative approaches are to 

trigger stimulation using brain signals [124], EMG [72, 74, 106], accelerometers or other 

motion tracking [76, 109, 117] to correlate descending motor commands with peripheral 

stimulation. However, this increases the complexity and cost of such systems. In this study, 
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participants reported the stimulation to be a help rather than a hindrance to task completion, 

suggesting that the simple automated closed-loop system was capable of delivering stimulation 

with timing that was appropriately coordinated with a participant’s intent. Furthermore, as will 

be explored in Chapter 5, the device has the capacity to provide stimulation at different timings 

relative to motor intent. Additional studies will be required to understand whether neuro-

rehabilitative benefits can be improved by optimizing the stimulation timing.  

3.5 Conclusion 

This study has demonstrated the feasibility of a novel approach to closed-loop control of 

muscle stimulation for the rehabilitation of reach-to-grasp movements following SCI. 

Feasibility data with selected people with upper limb weakness following SCI, has 

demonstrated usability of the device, with positive feedback from users, and some modest 

functional benefits following a short intervention period. Further studies are required to 

establish clinical and cost effectiveness of longer durations of training, and to elucidate the 

mechanisms underlying functional improvements. 
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Chapter 4 

Investigations into the utility of the 

device for upper limb rehabilitation 

following stroke 
 

 

 

 
Aim: 

• To investigate the utility of the novel device for upper limb rehabilitation 

following stroke. 

Objectives: 

• Obtain qualitative feedback from stroke survivors on the usability of the device, 

suitability of the task, and any perceived benefits from a short intervention 

• Use quantitative measures to assess any changes in function following a short 

intervention using the device 

• Investigate the importance of stimulation delivered concurrent with movement for 

device usability and efficacy, versus voluntary completion of the task with 

stimulation only applied during rest periods 

• Identify which groups of stroke survivors are likely to achieve the best outcomes 

with the device.  
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4.1 Introduction 

Following stroke, and subsequent cell death, the motor system can be left impaired. Survivors 

may be limited in their ability to make voluntary movements and experience spasticity [8, 9, 

125]. While there is some natural recovery, this is typically believed to plateau in the chronic 

stages (>6 months) [27]. Stroke survivors may develop compensatory strategies to complete 

activities of daily living, but it is the aspiration of research studies such as this, to develop 

therapeutic interventions that lead to behavioural restitution and true recovery [26]. To this 

end, we have developed the device presented in previous chapters which seeks to drive neural 

plasticity by pairing endogenous brain activity with stimulation of the peripheral motor system 

to improve rehabilitative outcomes.  

This chapter reports the findings of a series of studies investigating the utility of the device for 

the rehabilitation of the upper limb in chronic stroke survivors. The chapter is divided into four 

parts. The first reports a feasibility study which obtained qualitative feedback from stroke 

survivors on the usability of the device, suitability of the task, and any perceived benefits 

following a two week intervention period. Quantitative measurements were also made to assess 

changes in function after training with the device. 

Second, an extended study to investigate possible accruement of benefits with a longer 

intervention (four weeks) is reported. This was conducted to develop a better understanding of 

the time-course of functional changes, future recruitment criteria and to investigate possible 

plateau effects. Thirdly, a small cross-over study to investigate the utility of the device when 

stimulation is delivered during a rest period versus stimulation delivered concurrent with 

movement is presented. This was completed to understand of the importance of stimulation 

timing on qualitative and quantitative outcome measures. 

Finally, data from all the aforementioned studies were combined to assess changes observed 

across this larger population, to improve our understanding of the characteristics of stroke 

survivors that may be best suited to using the device.  
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4.2 A feasibility study to investigate usability and possible benefits of 

using the device following stroke 

4.2.1 Methods 

4.2.1.1 Intervention 

Participants with chronic stroke (≥ 6 months) were recruited to provide feedback on the device 

and complete a two week intervention. Participants attended 9 to 10 sessions, typically on 

consecutive days with breaks, such as weekends, as required. Sessions were scheduled to take 

one hour each, with a target of 200 repetitions per session. Three hours were scheduled for 

sessions at the start and end of the intervention to allow time to take consent, set-up the FES, 

perform assessments and to collect qualitative feedback. Participants aimed to complete blocks 

of 20 to 25 repetitions followed by a one minute rest, although this was flexible to 

accommodate individual needs. At the start and end of each session, participants would 

complete approximately 10 to 20 repetitions without stimulation. 

The electrode positions, stimulation parameters and set-up procedure were previously reported 

in Chapter 3. 

4.2.1.2 Outcome measures 

Participants were assessed immediately before and after the intervention period using the 

Action Research Arm Test (ARAT) [81, 111]. They were also assessed at one week and one 

month following the end of the intervention. To avoid bias, blinded videos were evaluated by 

an independent assessor who was not involved in delivering the intervention. This methodology 

of using videos to assess ARAT has been previously established in stroke studies [119, 120]. 

Participants were also asked to complete a questionnaire to collect qualitative feedback about 

their views and experiences of using the device. The questionnaire was a mix of structured 

(Likert scale) and unstructured questions about the stimulation, appropriateness of the task and 

other suggested improvements or feedback.  

4.2.1.3 Participant recruitment 

The study was completed at two sites: the Institute of Neuroscience, Newcastle University 

(UK) and the Institute of Neurosciences, Kolkata (I-NK). It was approved by the respective 

local ethics committees at both centres and participants gave written informed consent prior to 

joining the study. Reimbursement of transport costs was offered at both sites. 
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The inclusion criteria were that participants had chronic stroke leading to mild, moderate or 

severe impairment of upper limb movement, aged over 18 years old, and an ARAT score less 

than 57 on their affected side. It was confirmed that participants could complete the task with 

FES assistance. Participants were excluded as per the stimulator manufacturer guidelines (e.g. 

poorly controlled epilepsy, an implanted electronic device such as a pacemaker, or pregnancy). 

4.2.2 Results - Task compliance, functional outcomes & qualitative feedback 

Four participants with stroke who met the inclusion criteria were recruited (mean age±SE = 

50±6 years, 4 male, mean time since stroke 6±3 years, see Table 4-1). Two further participants 

were recruited, but were subsequently assessed to have an ARAT score of 57 by the 

independent, blinded assessor and therefore excluded from the analysis. Three participants 

received stimulation to open the hand only. One participant (#2) received additional stimulation 

to the anterior deltoid and triceps to extend the arm at the elbow. 

Table 4-1: Participants in this study 
Time since stroke is rounded to the nearest year. © 2018 IEEE [1]. 

 

 

 

 

 

 

 

 

All four participants completed the study, however, the ARAT dataset for one participant 

(participant #4) was incomplete and has not been shown here. The qualitative feedback from 

this participant is included. Participant #1 completed the intervention on two occasions six 

months apart. Participants completed a total of 1800 to 2000 trials over the intervention period 

with each training session taking approximately one hour.  

In the absence of spasticity or muscle tightness, stimulation to the forearm would open the 

hand, including finger, wrist and thumb extension, and stimulation to the shoulder and triceps 

would extend the arm at the elbow, but only aid elevation from the table – elevation was 

predominately achieved by the participant’s residual function. In the presence of spasticity and 

muscle tightness, finger, thumb and elbow extension were reduced and some ‘clawing’ of the 

ID Age Gender 
Side of 

Weakness 

Left / Right 

Handed 

Time since stroke 

onset (years) 

1 57 M Left Right 5 

2 67 M Right Right 8 

3 40 M Left Right 4 

4 37 M Right Right 3 
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hand was observed. For the participants in this study, the stimulation was sufficient to aid them 

in completing the task. 

Over the period of the intervention, ARAT scores improved by an average (± standard error) 

of 8 (±3.1) (see Figure 4-1). Moreover, these improvements were maintained for one week 

(7±4.5) and one month (7±3.7) after the end of the intervention period. Two participants (#1 

and #2) achieved the minimal clinically important difference (MCID) for ARAT (set at 10% 

of the total score (≥6) [118]), as shown in Figure 4-1. A clinically significant functional 

improvement was not found for participant #3. It is possible, that for this participant, the ARAT 

may not have provided appropriate sensitivity as their score was at the extreme end of the scale. 

 

 

Figure 4-1: ARAT scores for participants in this feasibility study  
Scores are as assessed by the blinded, independent assessor. Assessments were completed before the 
intervention period, immediately after, and 1 week and 1 month after the completion of the intervention. 
Due to the small sample size, statistical testing was not completed, but the minimal clinically important 
difference (MCID) for ARAT is often set at 10% of the total score (≥6) [118]. Error bars show standard 
error. * indicates visit 1 and ** indicates visit 2 for participant #1, which were separated by 6 months. 
Three different assessors completed the original ARAT assessments, but the same assessor completed 
all assessments for any particular participant. A strong correlation was found between the original 
assessors and the blinded assessor total scores (Spearman Correlation ρ=0.951), but no agreement in 
exact scores as measured using Cohen’s Kappa (κ=-0.16) [123]. This suggests systematic differences 
between how the assessors interpreted the ARAT scoring, which meant that similar trends were 
captured, but not with the same score. For reference, the original assessor’s scores for the pre-
intervention assessments were: 10, 14, 29 and 3. Participant #4, who is not shown due to an incomplete 
dataset, had an original assessor score of 31. Panel A - © 2018 IEEE [1]. 

A B 
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4.2.2.1 Qualitative feedback 

All participants reported that they would use the device again. Two participants (#1 and #2) 

noted in an unstructured question that they had experienced functional improvements such as 

better movement in the hand, being able to pick up objects and ability to complete bimanual 

tasks. All participants agreed that the stimulation was comfortable and that it helped them move 

their upper limb in a useful manner during the task. Two participants asked for the device to 

be smaller / more portable. A selection of structured questions have been summarized in Figure 

4-2. 

 

Figure 4-2: A selection of the structured qualitative feedback 
The number of respondents was 4. Questions were answered on a Likert scale. *Participants often added 
the caveat that they would require training to use the device independently and / or at home. © 2018 
IEEE [1]. 

4.2.3 Discussion of feasibility study 

Two participants (#1 and #2) showed a clinically significant increase in function, which 

appeared to be sustained for participant #2. It is less clear for participant #1, as he completed 

two intervention periods and appeared to lose the measured functional gains following the first 

intervention period, but sustain them following the second. However, he did retain some hand 

function following the first intervention as measured by the grasping subsection of the ARAT 

assessment (pre-intervention 3/18, post-intervention 10/18, one week 7/18 and one month 

8/18), but gains were offset by a drop in the scores in grip sub-section (pre-intervention 7/12, 

post-intervention 8/12, one week 5/12, one month 4/12).  
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The grasping function was retained at the start of the second intervention and continued to 

progress (pre-intervention 7/18, post-intervention 12/18, one week 14/18, one month 18/18), 

but gains were offset as the participant scored poorly in the grip subsection (pre-intervention 

0/12, post-intervention 7/12, one week 0/12, one month 7/12) in both the pre-intervention and 

one week after assessments. This suggests that for this participant, the grip element of the 

ARAT may have been affected by other factors. While it is important not to draw strong 

conclusions from a single outcome measure for a small number of participants, there is some 

evidence for a carry-over effect, and the potential for activity dependent stimulation to lead to 

a carry-over effect has previously been reported [23, 24].   

The two stroke participants (#1 and #2) that showed the clinically significant increase in 

function, initially scored in the mid-range of the ARAT. It could be inferred that participants 

with function within this range may benefit the most from using this device. Participant #3, 

who had a very low ARAT score, showed a very small change that was well below the MCID 

and could be attributed to other factors. A larger sample is required to understand the 

relationship between initial ARAT score and functional outcome, and to demonstrate the 

clinical effectiveness of this treatment.  

4.3 An extended study to investigate the possible accruement of 

functional benefits with a longer intervention 

4.3.1 Methods 

This study was designed to replicate the two week feasibility study (see above), but over a four 

week period to investigate whether any measured improvements on functional assessments 

would accumulate with a prolonged training period. A target of 4000 repetitions was set for the 

four week period, with these being completed over the course of two to four sessions each 

week. Repetitions were typically completed in blocks of 100, with a total of 300-400 repetitions 

per session. However, this was flexible to allow participants to self-pace the intervention.  

Furthermore, this was an increase on the blocks of 20 previously used, which some participant 

had found frustrating as it disrupted their rhythm and slowed down delivery of the intervention. 

At the start and end of each session, participants would complete approximately 10 repetitions 

without stimulation. For practical reasons, i.e. time frames available at I-NK, a baseline period 

was not possible for this study. The details of the intervention and assessments are shown in 

Figure 4-3. 
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Figure 4-3: The intervention and assessment timings for the extended intervention  
Outcome measures (ARAT, Fugl Meyer, and ArmA) are described below.  

4.3.1.1 Study location & participants  

The study was completed at two sites: the Institute of Neuroscience, Newcastle University 

(UK) and the Institute of Neurosciences, Kolkata (I-NK). It was approved by the respective 

local ethics committees and participants gave written informed consent prior to joining the 

study. Reimbursement of participant transport costs was offered at both centres. 

Participants were recruited through local support groups, word-of-mouth and by the research 

team at the Institute of Neurosciences, Kolkata (I-NK). Inclusion and exclusion criteria were 

as per the feasibility study reported above.  

4.3.1.2 Task & functional electrical stimulation 

FES was delivered using the device as previously described (see Chapter 3). However, to widen 

accessibility, a Saebo MiniMAS (Saebo Inc.) support arm was made available to participants 

at Newcastle University. This is a zero gravity support arm that supports reaching movements. 

Stimulation was delivered at 40Hz, with currents ranging between 21 and 35mA, and pulse 

widths 110 and 310µs. Stimulation settings were checked at the start of each session for 

comfort, hand opening and arm extension. While stimulation settings were typically kept 

consistent between intervention periods and within sessions, to ensure comfort and suitable 

muscle activation, modifications in electrode position and intensity were made. 

The distance reached during the task was adjusted for each participant, and typically kept 

constant throughout the intervention period, although occasional adjustment was required to 

maintain comfort and to keep the task challenging. 

4.3.1.3 Outcome measures 

The primary outcome measure was the Action Research Arm Test [81, 111], which was 

assessed immediately before the intervention, and then at two weeks, four weeks and following 
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a two week follow-up period, as shown in Figure 4-3 (above). The secondary outcome 

measures were the Fugl Meyer (FM) assessment, and the Arm Activity Measure (ArmA). 

These were completed immediately before the intervention, at four weeks and following the 

two week follow-up period. Further secondary outcomes were reported Ummatul Siddique’s 

and Colin Wan’s masters theses, but due to the small sample size and inconsistencies in data 

collection between centres, these have not been presented here.  

The ARAT (see Chapter 2) has previously been described. The Fugl-Meyer (FM) assessment 

is a stroke specific functional assessment [126]. It can be used to assess the upper and lower 

limb, but only sections relevant to the upper limb were used. It measures voluntary and passive 

joint movement, reflex activity and sensation, and has been validated and recommended as a 

clinical and research tool [127]. The Arm Activity Measure (ArmA) was developed by Stephen 

Ashford and colleagues at King’s College London & Regional Rehabilitation Unit, Northwick 

Park Hospital, London [128]. Participants are asked to respond to a series of questions on a 

five point ordinal scale. Section A is related to caring for the affected hand, and Section B is 

about independently completing activities of daily living with the affected hand. Section A and 

B are treated separately, and lower scores are associated with greater function. The ArmA 

provides a useful self-reported measure of function following an upper limb intervention. 

Statistical testing was completed in IBM SPSS 24. Due to the small sample size, this was 

typically completed using non-parametric tests. For pairwise statistical tests, the null 

hypothesis was that there was no significant difference between either the interim (where 

applicable), post-intervention or follow-up ARAT score and the pre-intervention ARAT score.   

4.3.2 Results - Task compliance & functional outcomes 

Six participants (6 male, 46±6 years old (mean±SE)) were recruited onto the study. The mean 

time since stroke was 4±1.6 years (see Table 4-2). Participants #1 and #2 had completed the 

cross-over study described below prior to taking part in this study (as participants #3 and #5 

respectively). Participant #5 had previously completed the feasibility study described above (as 

participant #3). 

Five of the six participants recruited completed the intervention. Participant #1 was unable to 

complete the study due external difficulties with travel arrangements, and this incomplete 

dataset has been omitted. The support arm was used by one participant (#2) for the first two 

weeks of the intervention. All participants received stimulation to both open the hand and 
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extend the arm, except for one participant (#4) who received stimulation to facilitate hand 

opening only for the first six sessions. 

All participants completed 4000 repetitions over the four week period. These were typically 

completed during two to four sessions per week. Sessions were usually divided into blocks of 

100 repetitions, but this was varied depending on individual needs and preferences.   

ARAT scores are presented in Figure 4-4, and Fugl Meyer scores are split into three sub-

sections: function (Figure 4-5), passive range of motion (Figure 4-6), and sensation (Figure 

4-7). The ArmA scores are split into the assessments two sub-sections: Section A – caring for 

the affected hand (Figure 4-8), and Section B - ability to independently complete tasks or 

activities using the affected arm (Figure 4-9). All scores are those given by the original 

assessor.  

Table 4-2: Participants in this study 
Time since stroke is rounded to the nearest year. 

 Age Gender 
Time Since 

Stroke (years) 

Side of 

Weakness 

Left / Right 

Handed 

1 35 M 1 Left Right 

2 62 M 11 Left Right 

3 66 M 1 Right Right 

4 34 M 2 Right Right 

5 40 M 4 Left Right 

6 40 M 2 Right Right 
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Figure 4-4: Changes in ARAT score  
Panel A - Average change in ARAT score (n=5) halfway through the intervention (interim (2 weeks)), 
post-intervention (1 month) and following an approximately 2 week rest period, compared to before the 
intervention. Panel B - Individual ARAT scores over the intervention and follow-up period. The maximum 
ARAT score is 57. MCID for ARAT is often considered to be ≥6 [5]. A related samples Friedman’s test on 
the change observed at each time point did not find a significant difference across the groups (P=0.143). 
A Wilcoxon sign-rank test was performed and showed a change in ARAT score between the pre-
intervention score and that measured at the two week follow-up (P=0.043), but this was not significant 
following a Bonferroni correction for multiple comparisons (Psig<0.017).  

 

 

Figure 4-5: Change in Fugl Meyer upper extremity function score 
Panel A - Average change in Fugl Meyer upper extremity function scores (n=5) post-intervention (1 
month) and following an approximately 2 week rest period, compared to the pre-intervention 
assessment. Panel B - Individual Fugl Meyer upper extremity function scores. The maximum score for 
this section is 66. A related-samples Friedman’s test was conducted on the scores at each time point and 
a significant difference found (P=0.015). Subsequent pairwise post-hoc testing (Dunn test) found a 
significant difference between the ‘pre’ and ‘follow-up’ measurements (P=0.004), which is significant 
after a Bonferroni correction (Psig = 0.025). A comparison between ‘pre’ and ‘post’ measurements was 
not significant P = 0.058.  
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Figure 4-6: Change in Fugl Meyer upper extremity passive range of motion (ROM) score  
Panel A - Average change in Fugl Meyer upper extremity passive ROM scores (n=5) post-intervention (1 
month) and following an approximately2 week rest period, compared to the pre-intervention 
assessment. Panel B - Individual Fugl Meyer upper extremity passive range of motion scores. The 
maximum score for this section is 48. A related-samples Friedman’s test was conducted on the scores at 
each time point and a significant difference found (P=0.015). Subsequent pairwise post-hoc testing 
(Dunn test) found a significant difference between the ‘pre’ and ‘follow-up’ measurements (P=0.004), 
which is significant after a Bonferroni correction (Psig = 0.025). A comparison between ‘pre’ and ‘post’ 
measurements was not significant P = 0.058.  

 

       

Figure 4-7: Change in Fugl Meyer upper extremity sensation score  
Panel A - Average change in Fugl Meyer upper extremity sensation scores (n=5) post-intervention (1 
month) and following an approximately2 week rest period, compared to the pre-intervention 
assessment. Panel B - Individual Fugl Meyer upper extremity sensation scores. The maximum score for 
this section is 12. A related-samples Friedman’s test was conducted on the scores at each time point and 
no statistically significant difference was found (P=0.584). 
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Figure 4-8: Change in ArmA Section A score  
Lower scores are associated with improved ability to care for the affected arm. Panel A - Average change 
in ArmA Section A (n=5) post-intervention (1 month) and following an approximately 2 week rest period 
compared to the pre-intervention assessment. Panel B - Individual ArmA Section A scores. The maximum 
score is 32. A related-samples Friedman’s test was conducted on the scores at each time point and no 
statistically significant difference was found (P=0.074). 

  

 
Figure 4-9: Change in ArmA Section B score  
Lower scores are associated with improved ability to independently complete tasks or activities using 
the affected arm. Panel A - Average change in ArmA Section B (n=5) post-intervention (1 month) and 
following an approximately 2 week rest period, compared to the pre-intervention assessment. Panel B - 
Individual ArmA Section B scores. The maximum score is 52. A related-samples Friedman’s test was 
conducted on the scores at each time point and a significant difference found (P=0.022). Subsequent 
pairwise post-hoc testing (Dunn test) found a significant difference between the ‘pre’ and ‘post’ 
measurements (P=0.011), which is significant after a Bonferroni correction (Psig = 0.025). A comparison 
between ‘pre’ and ‘follow-up’ measurements was not significant P = 0.027 after correction for multiple 
comparisons. 
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4.3.3 Discussion of the extended intervention 

This study showed that for participants who respond to the intervention, improvements in 

ARAT score may accumulate over a four week training period (Figure 4-4). Individual scores 

suggested that the effect was most prominent for participants with ARAT scores in the mid-

range, where both participants (#3 and #6) improved by more than the Minimum Clinically 

Important Difference (MCID ≥6) [120] (+12 and +7 respectively). Repeated baseline 

assessments were not possible for participants at I-NK, but as participants are chronic stroke 

survivors, it is unlikely the improvements observed were spontaneous or exclusively caused by 

on-going natural recovery. It is interesting to speculate whether these changes would continue 

with a longer intervention, and whether participants would continue to engage with the task for 

a longer period. Participants at I-NK requested an additional two weeks of training at the end 

of the protocol, and while the findings are outside the scope of the study reported here, it 

demonstrated some participants would be willing to complete longer interventions. 

Furthermore, as described in the introduction to this thesis, Mann et al. showed improvements 

on the ARAT after 6 and 12 weeks of training using their FES intervention, with the 

improvements at 6 weeks approximately half those found at 12 [80]. This suggests that some 

FES protocols can show continued improvements on the ARAT over prolonged training 

periods. 

To check for inter-assessor variations, videos of the ARAT assessments from I-NK were 

blinded and assessed by the Newcastle assessor. Due to difficulties with videos for the pinch 

sub-scale and a different interpretation of the gross movement task, only scores for the grip and 

grasp sub-scales were directly comparable. The I-NK assessor found an average improvement 

of 2.25 (grip + grasp) and the blinded assessor an average improvement of 2.0 at the two week 

follow-up compared to before the intervention, suggesting good agreement. A strong 

correlation between the assessors total scores for these two sub-sections was found (Spearman 

Correlation ρ = 0.967, P=3.6x10-12), but a small Cohen’s Kappa score (κ=0.255) indicated 

minimal agreement in exact scores [123]. This suggests that while overall trends are the 

comparable, there could be systematic differences between assessors, such as interpretation of 

the scoring criteria. It is important that future trials ensure consistent training and interpretation 

of test scoring between assessors, and that where possible, assessors are blinded to the study 

treatment to avoid possible bias. There was a notable disagreement between the two assessors 

at one month for participant #4, which might account for the unusual drop seen in Figure 4-4. 

Some of the greatest improvements observed by original assessor were in the pinch sub-scale, 
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hence the large discrepancy between the average change in combined grip and grasp scores 

(2.25) and the overall change in score shown in Figure 4-4. 

Like the ARAT, the Fugl Meyer (FM) function and passive range of motion scores showed 

accumulating improvements across the intervention and subsequent rest-period (Figure 4-5 and 

Figure 4-6), with significant changes in the FM function score at the two week follow-up 

assessment. Of note, is the individual plot for participant #5, who only showed limited 

improvements on the ARAT, but a much larger change on the FM function assessment (Figure 

4-5). Improvements for this participant were below the MCID for ARAT, but the changes in 

FM function were  above levels considered real and meaningful (6 to 8) [129]. Whilst further 

investigations are required, this might indicate that future recruitment and outcome measures 

should not be based on ARAT score alone, as ARAT may not be capturing all the changes 

observed. The FM sensation scores did not see any significant changes (Figure 4-7), which was 

not unexpected as the intervention primarily targets function and range of movement.  

Decreases in score were observed for both section A and section B of the ArmA (Figure 4-8 

and Figure 4-9), which indicates an improved ability to care for the affected hand (Section A) 

and improvements in the independent completion of activities of daily living (Section B). It 

should be noted that the assessors at I-NK reported that the questions did not always translate 

well, and this is a consideration for future studies. Similarly, participants in the UK were at 

times confused by interpretation of questions, which might lead to inconsistent scoring. 

Whether this is a problem with the assessment or delivery of the assessment needs to be 

investigated.  

Overall, while this dataset is limited in size, the outcome measures suggest that for some 

participants, improvements may accumulate with longer intervention periods and over 

subsequent rest periods, and that the FM and ARAT can offer different insights into possible 

functional changes.  

4.4 A study to investigate the utility of the device when stimulation is 

delivered during a rest period vs. delivery concurrent with movement 

4.4.1 Methods 

4.4.1.1 Intervention and assessments 

In this study, participants were invited to complete two interventions. The first, was to complete 

the task as previously described in the feasibility study above, i.e. stimulation concurrent with 
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voluntary movement for a two week period (‘stimulation with movement’). The second, was 

to complete the task using voluntary motion alone with stimulation delivered during the rest 

periods between trials (‘stimulation during rest’). Both intervention periods were for two 

weeks, with a two week baseline period in between which also acted as a follow-up period for 

the first intervention, as shown in Figure 4-10. 

 

Figure 4-10: The interventions and assessments delivered in this study 
A target of 2000 repetitions was set for each intervention, with repetitions typically completed 

in blocks of 100, with a total of around 300 repetitions per session. At the start and end of each 

session, participants would complete approximately 10 repetitions without stimulation. A 

cross-over design was used to counter any possible carry-over effects, and participants were 

alternately placed into two groups in the order they were recruited. 

4.4.1.2 Recruitment 

Participants were recruited from local stroke groups, from previous studies, by an advert and 

through distribution of an information sheet. Participants fulfilled the inclusion / exclusion 

criteria as described previously. The study was completed at the Institute of Neurosciences, 

Newcastle University. The study was granted ethical approval by Newcastle University’s 

Faculty of Medical Sciences Ethics Committee, and reimbursement was offered for participant 

travel costs. 

4.4.1.3 Functional electrical stimulation 

The ‘stimulation with movement’ condition was delivered as previously described. Stimulation 

for the ‘stimulation during rest’ condition was delivered in two bursts during the five second 

rest period between trials. These two bursts represented the reaching and releasing phases of 

the task. This is shown in Figure 4-11. 
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Figure 4-11: The ‘stimulation during rest’ condition 
The ‘stimulation during rest’ condition (red) compared with the conventional stimulation protocol (blue). 
The stimulation is not shown to scale and the time periods were 1.2 and 0.9s respectively to match the 
reach and release phases in the ‘stimulation with movement’ condition. 

The time-periods for these two bursts of stimulation were determined using data collected 

during the feasibility study reported above. This included the two participants that were 

excluded from the study for having an ARAT score greater than 57 (as assessed by the 

independent blinded assessor). Twenty repetitions from the mid-point of that study were 

analysed for these six participants. The average times for the reach and release phases were 

found to be 1.2±0.1s and 0.9±0.0s (mean ± SE) respectively. Subsequently, stimulation was 

delivered during the rest period as follows: 1s rest, 1.2s FES, 1s rest, 0.9s FES, 0.9s rest. The 

total ‘rest’ period therefore remained 5 seconds. 

Stimulation was delivered at 40Hz, with currents ranging between 25 and 43mA, and pulse 

widths 180 and 350µs. Stimulation settings were checked at the start of each session for 

comfort, hand opening and arm extension. While stimulation settings were typically kept 

consistent between interventions and within sessions, to ensure comfort and suitable muscle 

activation, modifications in electrode position and intensity were made. The distance reached 

during the task was adjusted for each participant, and while this was typically kept constant 

throughout the intervention, occasionally adjustments were made to maintain comfort and to 

keep the task challenging.  

To widen accessibility, initially a custom support arm and later a Saebo MiniMAS (Saebo Inc.) 

support arm were made available to participants. Additionally, if it was not possible for a 

participant to complete the task without stimulation, an alternative ‘stimulation during rest’ 

task was developed. Here, the participant would reach and grasp a cloth placed on the table and 
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pull it back towards themselves, replicating a commonly used physiotherapy task. This enabled 

them to slide rather than lift the arm during the reaching and pulling phases of the task.  

4.4.1.4 Outcome measures 

The primary outcome measure was the Action Research Arm Test (ARAT) [81, 111], assessed 

two weeks before the start of the intervention, before and after each intervention, and following 

a two week rest period, as shown in Figure 4-10 (above). A range of additional secondary 

outcome measures, assessed at the same time points, were used. These included: Arm Activity 

Measure (ArmA), the Box and Block Test [130], and maximum pinch and power grip force. 

Participants also completed a questionnaire of predominately structured questions (Likert 

Scale) to provide qualitative feedback on the two interventions. Statistical testing between 

measurements at different time points was completed in IBM SPSS 24. The first null hypothesis 

tested was that the change in ARAT score measured during the intervention, or following the 

follow-up period, was the not significant compared the change in ARAT scored measured 

during the baseline period. This was conducted for both the intervention and control groups. 

The section null hypothesis, referring to pooled data from both the control and intervention 

group, was that there no significant difference between changes in ARAT during the 

intervention and changes in ARAT measured during the baseline period.  

A Hand Dynamometer (HD-BTA, Vernier Software & Technology, LLC.) with a custom 

interface using a National Instruments card and MATLAB software (The MathWorks, Inc.) 

was used to measure pinch and power grip strength. The Box and Block Test is a commonly 

used unilateral assessment of manual dexterity [130]. 

4.4.2 Results 

Of the nine volunteers that completed an initial assessment, five went on to be enrolled onto 

the study (age 58 ± 6.5 years, time since stroke 6 ± 1.5 years (mean ± SE)). Those excluded 

typically did not have suitable levels of impairment for the task. Participant #1 had previously 

taken part in the feasibility study (as participant #2). Participant details are shown in Table 4-3. 

Participant #5 completed both interventions with the support arm, and participant #4 completed 

the ‘stimulation with movement’ intervention with the support arm and the ‘stimulation during 

rest’ intervention using the alternative methodology described above. Additionally, for 

participant #4, a non-slip surface (Dycem Ltd.) was attached to the block to assist with gripping 

the block during the ‘stimulation with movement’ intervention.  
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Table 4-3: Participants in this study 
Time since stroke is rounded to the nearest year. Group refers to those shown in Figure 4-10. 

 
Age Gender Time Since 

Stroke (years) 

Side of 

Weakness 

Left / Right 

Handed  

Group 

1 68 M 8 Right Right 2 

2 69 M 5 Left Right 2 

3 35 M 1 Left Right 1 

4 54 F 5 Left Right 1 

5 62 M 11 Left Right 2 

All participants completed the full intervention. The average (±SE) number of repetitions for 

the ‘stimulation with movement’ and ‘stimulation during rest’ conditions was 2021±26 and 

1961±81 respectively. This discrepancy was due to participant #4 who completed 300 less 

repetitions in the ‘stimulation during rest’ condition due to adverse weather (snow) leading to 

the cancellation of a training session which could not be rescheduled. Participants #1 and #3 

had approximately three to four week between interventions due to adverse weather (snow) 

and other external factors. Participants completed sessions of varying length, but typically 

between 300 and 400 repetitions per session in blocks of 100. Participants received stimulation 

to both open the hand and extend the arm, except for participants #2 and #4 who received 

stimulation to facilitate hand opening only. Participant #2 reported receiving Botulinum toxin 

injections during the intervention, and participant #4 reported receiving Botulinum toxin 

injections prior to the intervention, both of which may act as confounding factors. Similarly, 

participants also reported the intermittent use of splints during the intervention that may also 

have a confounding effect. 

It was not possible for all participants to complete the pinch force test due to difficulties 

gripping the device. Power grip force, Box and Block and ArmA did not show significant 

changes and the data are not shown. Changes in ARAT score are shown in Figure 4-12, and a 

combined analysis of both interventions versus the baseline period is shown in Figure 4-13. In 

addition to structured qualitative feedback shown in Figure 4-14, unstructured qualitative 

feedback gave insights into the nature of changes observed by participants. This is captured in 

Table 4-4. Note that this feedback is not necessarily intervention specific, but often represents 

general comments from throughout both interventions.  
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Figure 4-12: A comparison of the changes in ARAT score observed in the two conditions tested 
A comparison between the changes in ARAT score in the ‘stimulation with movement’ and ‘stimulation 
during rest’ conditions. See Figure 4-10 for intervention timings. Error bars show standard error. The 
number of participants was 5. Statistical testing was completed using a related samples Friedman’s test. 
A statistically significant difference was found between the ‘stimulation with movement’ groups 
(P=0.019), and post-hoc testing (Dunn test) found the P values shown in the figure. A Bonferroni 
correction for multiple comparisons was applied, and therefore Psig = 0.025, making the pairwise 
comparisons significant. No statistically significant difference was found between the ‘stimulation 
during rest’ groups (P=0.662), or between the two interventions (change in ARAT score) at the end of 
follow-up period (Wilcoxon signed rank, P=0.197). Test results should be interpreted with caution due to 
the small sample size.  

 
Figure 4-13: The combined average change in ARAT score during either intervention vs. baseline  
The combined average change in ARAT score during the ‘stimulation with movement’ and ‘stimulation 
during rest’) versus the average change during a baseline period. Statistical testing was completed using 
a Wilcoxon signed-rank test, P<0.05 is considered statistically significant.  
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Figure 4-14: A selection of qualitative feedback collected during the study 
Panel A - Qualitative feedback collected during the two interventions (n=5). Panel B - A comparison of 
the two interventions (n=5).  
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Table 4-4: Participant reported comments and observations from the study  
Note that comments were often general to the entire study and not intervention specific. 

Participant Comments / observations 

1 - Improvements in ADLs such as: filling the kettle, reaching wall units, 

acknowledging other road users, lifting a bag into the bin and using light 

switches. 

- Changes are incremental and hard to immediately detect 

- Improved dexterity, suppleness and control 

- Increased confidence and changed ‘state of mind’ – reminded to use more 

affected limb. 

2 - Modest improvements in ADLs such as using a fork to eat, and an increased 

range of movement when reaching bannisters on the stairs and placing hands on 

the car steering wheel. 

3 - Hand, arm and wrist felt looser during the ‘stimulation with movement’ condition 

- During the two week period between interventions, woke-up one day and the 

affected hand was notably looser than ever before. The change was sustained, and 

subsequently started trying to zip up fleece. 

4 - Some improvements in shoulder looseness and range of movement at the end of 

the study 

- Hand had felt tighter following the inter-intervention rest, but returned to normal 

during the second intervention. 

5 - Improved hand colour during the interventions - it was not getting as cold 

- Affected arm was more relaxed at night and during gardening, and it was easier 

to place hand in coat pocket 

- Physiotherapist/trainer at the gym had remarked on improved hand looseness, 

which also made it more comfortable 

- Observed that the looseness in his hand reduced during the latter half of the two 

week period between interventions. 

 

4.4.3 Discussion on the importance of stimulation with movement 

This study aimed to establish whether the combination of voluntary movement and stimulation 

was key to improvements observed during earlier studies, or if stimulation provided during the 

rest period between reaching and grasping movements would be equally effective. It has been 

shown that on average both interventions led to an increase in ARAT score (Figure 4-12), and 

although only changes in ‘stimulation with movement’ were statistically significant, the small 

sample size means that this result should be interpreted with caution. ‘Stimulation with 

movement’ also appeared to have a greater carry-over effect, but this was largely caused by 
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one individual, and the difference between the two interventions at this time point was not 

statistically significant. A larger sample will be required to test for any wider trends. 

While the average improvement in ARAT score was small, and well below the MCID (≥6) 

[120], the significant improvement observed when data from both interventions are combined 

(Figure 4-13) is contrary to the idea of a ‘critical window’ for chronic stroke survivors [27].  

This result suggests that in some cases, interventions may lead to at least modest short-term 

improvements for chronic stroke survivors. Although, the small sample size, diversity in 

starting impairment and other confounders such as Botulinum toxin injections, make it difficult 

to draw any stronger conclusions from the quantitative data in this study.  

Nevertheless, a known challenge in rehabilitation is participant engagement, and despite 

generally positive qualitative feedback across both interventions (Table 4-4, Figure 4-14 - 

Panel A), participants reported a strong preference for completing the task with stimulation 

concurrent with movement (Figure 4-14 - Panel B). Importantly, this might lead to greater 

participation and subsequent increases in intensity of training. However, whether the modest 

improvements reported here would translate into continued use in the home or clinical setting 

is unknown.  

In the context of the findings of the extended study reported above, the intervention period for 

this study appears to have been too short, and the combination of the follow-up period and 

baseline period prior to the second intervention is problematic for analysis. If this study is to 

be replicated on a larger scale, a longer training and follow-up period, and a stricter inclusion 

/ exclusion criteria based on impairment levels and other on-going therapies should be 

employed. Furthermore, as qualitative feedback suggested an improvement in hand and arm 

looseness, additional assessments such as the Modified Ashworth Scale [131] and, the 

previously described Fugl Meyer, may be informative. 

4.5 Analysis of combined data from the above studies to assess 

changes observed in a larger sub-population of stroke survivors 

4.5.1 Methods 

Following the completion of the studies described above, the opportunity was taken to combine 

data from all studies with stroke participants, to compare the change in ARAT score after two 

weeks of training with the device to the score recorded immediately prior to the intervention. 

For participants who completed more than one study, only the first intervention completed was 
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included, and only data from the ‘stimulation with movement’ intervention (i.e. not 

‘stimulation during rest’) was used. Participants were divided into three groups based on their 

ARAT score immediately before the intervention: ‘<10’, ‘10 to 35’ and ‘>35’. The null 

hypothesis was that there would be no significant difference between the changes in ARAT 

score observed for these groups.  

Two participants who were assessed as having a maximum score of 57 by the independent 

blinded assessor, and therefore excluded from the feasibility study (see Section 4.2.2), were 

included. For reference, the original assessor scored them to both to have increases of 1, whilst 

the blinded assessor showed no change in score (i.e. 57), which is the value used for this 

analysis. Also included is participant #4 from the feasibility study who was excluded for having 

an incomplete dataset, but had completed assessments at both of these time points. Non-

parametric statistical testing was carried out using IBM SPSS 24.  

4.5.2 Results of the combined analysis 

Figure 4-15 shows the average change in ARAT score for each group with the outcome of 

statistical testing. A statistically significant difference was found between the ’10 to 35’ and 

‘>35’ groups (Post-hoc Dunn test, P=0.002). The time since stroke was also calculated for each 

group, but there was no statistically significant difference between the groups (Kruskall-Wallis 

test, χ2(2) = 2.665, P=0.264). Furthermore, change in ARAT score was correlated with time 

since stroke, but no significant correlation was found (Spearman Correlation ρ=0.132, 

P=0.667).  
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Figure 4-15: The average change in ARAT score following 2 weeks of training with participants grouped 
by initial ARAT score 
A Kruskall-Wallis test found significant differences between the groups (χ2(2) = 9.5, P = 0.009). Post-hoc 
tests (Dunn test) found a significant difference between the ‘10 to 35’ and ‘>35’ groups (P = 0.002) 
following a Bonferroni correction for multiple comparisons (Psig < 0.017). P values for comparisons 
between ‘<10’ and ‘10 to 35’, and ‘<10’ and ‘>35’, were 0.075 and 0.228 respectively.  

4.5.3 Discussion of combined analysis 

This combined analysis across all studies with stroke survivors supports the idea of an optimum 

impairment level for recruitment based on the ARAT score (Figure 4-15). Improvements 

appear to be greatest for participants with an initial ARAT score between 10 and 35. Another 

variable, time since stroke, was also considered, but not found to be significant. However, a 

larger sample size would be required to further support this finding, and a sub-group analysis 

of stroke type and location would also be desirable. Furthermore, as discussed earlier, different 

assessments (e.g. Fugl Meyer) may be sensitive to different types of change in function, and 

may provide insights missed at the extremities of the ARAT scale.  

4.6 Conclusions 

Selected participants with chronic stroke were able to use the device, gave generally positive 

qualitative feedback and in some cases, showed modest improvements on standard functional 

assessments following a short intervention.  

It was shown that when present, these improvements may accumulate with longer interventions 

and can be captured by a range of functional assessments. 
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It was not clear whether stimulation delivered with movement led to better outcomes than 

stimulation applied during the rest periods between voluntary movements, however, 

participants reported a preference for receiving stimulation with movement.  

The intervention may be best suited to stroke survivors with an initial Action Research Arm 

Test (ARAT) score between 10 and 35. However, a larger sample is required to assess whether 

other measures (e.g. Fugl Meyer) are better suited to capturing improvements for participants 

that fall outside this group.  
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Chapter 5 

Investigations into the mechanism 

of action of the novel device in 

healthy able-bodied participants 
 

 

 

 

 
Aim: 

• To understand of how the device developed in this thesis might act upon the motor 

system in healthy able-bodied participants and subsequently, investigate how it 

might be optimised.  

Objectives: 

• Following a single session using the device, measure changes in the motor system 

using non-invasive transcranial magnetic stimulation (TMS) and use this result to 

elucidate possible mechanisms of action for the intervention 

• Develop and test an optimised intervention, and discuss how this may be 

beneficial for upper limb rehabilitation following stroke and spinal cord injury 

(SCI). 
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5.1 Introduction 

Paired associative stimulation (PAS) protocols typically deliver low frequency trains of 

precisely timed pairs of stimuli to the brain and peripheral nervous system [94, 132]. They have 

been demonstrated to induce neural plasticity through long-term potentiation (LTP) and long-

term depression (LTD) mechanisms [133].  

Researchers have shown that inferred endogenous brain activity can be substituted for direct 

stimulation of the brain [105, 132, 134], and that when paired with voluntary effort, high 

frequency trains of peripheral stimulation, such as those delivered by functional electrical 

stimulation (FES), can lead to changes in cortical-spinal excitability [74, 115, 135, 136], which 

is used as a measure of associative plasticity. Cortical-spinal excitability can be measured using 

transcranial magnetic stimulation (TMS) to elicit a motor evoked potential (MEP) in the target 

muscle. The size of the MEP, which can be quantified either by its amplitude or area, reflects 

the overall excitability of the motor cortex, nerve roots, corticospinal tract and peripheral motor 

pathways [42]. 

Earlier in this thesis, it was noted that the timing between the cues (auditory and visual) and 

the onset of the stimulation had not been optimised. That is, the stimulation is triggered at the 

same time as the cues, and therefore the time for the brain to process the cue (i.e. the reaction 

time) and for the signal to be conducted to the muscle, are not accounted for. Paired associative 

stimulation (PAS) protocols have shown that precise timing between individual stimuli may be 

important for plasticity effects [96, 105, 137]. It has been suggested that pairing peripheral and 

descending stimuli can influence voluntary output by acting on corticospinal-motoneuronal 

synapses located in the spinal cord [113]. In this chapter, the temporal relationship between the 

cues, inferred brain activity and FES was investigated using the four different conditions, as 

shown in Figure 5-1: ‘stimulation with movement’, ‘no stimulation’, ‘stimulation during rest’, 

and ‘delayed stimulation’. 

These conditions were split into three studies, with the aim of developing a better understanding 

of possible plasticity mechanisms, and to provide data against which refined interventions 

could be compared. It was hypothesised that stimulation concurrent with voluntary cortical 

activity (‘stimulation with movement’) would lead to a sustained facilitation of cortical-spinal 

excitability in the stimulated muscles (i.e. Extensor Digitorum Communis (EDC)), compared 

to either no stimulation (Study 1) or stimulation delivered during the rest period between trials 

(Study 2). In Study 3, stimulation was delayed relative to the cue in an attempt to converge the 



92 
 

arrival of descending voluntary commands from the cortex with peripheral stimulation (i.e. 

FES) in the spinal cord. It was hypothesised that this convergence in the spinal cord would lead 

to increased cortical-spinal excitability and therefore greater drive to the stimulated muscle (i.e. 

EDC). 

 

Figure 5-1: An overview of the reaching phase of the task for the four conditions used in this study 
(1) Stimulation was delivered as previously described in the preceding chapters, i.e. stimulation was 
triggered at the same time as the cue was delivered. For clarity, only the reaching phase of the task is 
shown here, but a cue and stimulation were also delivered in a similar manner for the release phase of 
the task. (2) The task was completed without any stimulation. (3) The task was completed without any 
stimulation, but stimulation was delivered during the rest period between trials. (4) Stimulation was 
delivered as previously described with movement, but the stimulation onset was delayed to account for 
reaction and conductions times. 

5.2 Methods 

5.2.1 Participants 

Healthy able-bodied participants were recruited at the Institute of Neuroscience, Newcastle 

University (UK). Recruitment was subject to the following exclusion criteria: any history of 

neurological disease (e.g. epilepsy), implanted devices (e.g. a pacemaker), skin sensitivity, a 

high-level spinal cord injury, a cancerous tumour in the arm or shoulder, a fracture in the arm 

or shoulder, a metallic implant in the arm or head, or pregnancy. The study received ethical 

approval from the local ethics committee at Newcastle University, and all participants gave 

written informed consent. Participants received reimbursement for their time / travel expenses. 
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5.2.2 Measurement of corticospinal excitability with Transcranial Magnetic 

Stimulation 

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can be used to 

investigate corticospinal excitability [42-44]. Magnetic stimuli were delivered using a Magstim 

BiStim2 (The Magstim Company Ltd) with a Magstim Double 70mm Coil (D702 Coil). To 

record motor evoked potentials (MEPs) bipolar surface electromyography (EMG) (Natus 

Disposable Snap Electrodes 33x22cm) was used to record from the extensor digitorum 

communis (EDC) and flexor digitorum superficialis (FDS) on the dominant side (unless 

otherwise requested by the participant) and a reference electrode was placed on the back of the 

wrist. EMG data were collected using a Digitimer D360 amplifier, CED MICRO2 1401 with 

ADC12 Expansion data acquisition interface (Cambridge Electronic Design Ltd) and Spike2 

software (Cambridge Electronic Design Ltd). The set-up is shown in Figure 5-3. 

Participants were seated at a table, with their arms at rest on a cushion placed in front of them. 

Head and coil position were tracked using a TMS neuronavigation system (Brainsight, Rogue 

Research). The coil was positioned over the motor cortex at 45° to the midline and tangential 

to the skull (known as the posterior-anterior (PA) position [138]), and a ‘hotspot’ was located 

for the EDC muscle. Motor threshold, defined as the lowest intensity required to elicit a MEP 

response greater than 50µV peak-to-peak more than 50% of the time [42], was found for the 

EDC and the stimulator was subsequently set at 120% of this value.  

Twenty-five MEPs were recorded before, immediately after, 15 minutes after and 30 minutes 

after the intervention (200 repetitions). This is shown in Figure 5-2. TMS was delivered with 

an inter-stimulus interval (ISI) of 4-6s. 

 

 

 
 
Figure 5-2: An overview of the protocol used throughout this chapter 
Motor evoked potentials (MEPs) were recorded at set points before and after the intervention to 
investigate changes in corticospinal excitability.  

25 MEPs 200 Task 
Repetitions 25 MEPs 25 MEPs 25 MEPs 

Immediately before 30 mins after 15 mins after Immediately after 
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Figure 5-3: The TMS set-up used in this study 
Bipolar EMG was recorded from the EDC and FDS muscles, with a reference electrode placed on the back 
of the wrist. The coil was placed in posterior-anterior (PA) position [138] on the contralateral side to the 
recorded muscles. The participant’s arms were placed on a cushion on a table and maintained at rest. 
The subject tracker and coil tracker for the neuronavigation system can be seen positioned on the TMS 
coil and on the participant’s forehead.   

5.2.3 Study 1 - A comparison of changes in corticospinal excitability induced by 

completing the task with and without stimulation 

This study investigated the difference in cortical excitability induced by completing 200 

repetitions of the intervention with (‘stimulation with movement’) and without (‘no 

stimulation’) FES stimulation. Participants visited the lab twice with a seven day interval 

between visits, and at approximately the same time of day. They were allocated into two 

groups: ‘with stimulation first’ and ‘without stimulation first’, in a pseudo-random manner, i.e. 

they were alternately allocated into these groups based on the order they were recruited. The 

protocol is shown in Figure 5-4. 

Stimulation was set-up as previously described (see Chapter 3) and delivered to the forearm to 

assist finger, hand and wrist extension only. First, the intensity (current and pulse width) 

required to elicit a twitch in the index finger was found, and then the pulse-width increased to 

approximately 1.5 times this value. It was explained to participants that the stimulation was to 

enhance or assist their voluntary movements, not to override them, and that they should work 

with the stimulation to complete the task.  
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Figure 5-4: The protocol used to compare changes in corticospinal excitability with and without FES 
delivered during the intervention 
Participants completed both interventions, at least 7 days apart, and where possible, at the same time 
of day. 

5.2.4 Study 2 - Changes in corticospinal excitability induced by stimulation delivered 

during the rest period between trials 

In this second study, participants received stimulation during the rest period between trials and 

not during the movement phase of the task. This meant that voluntary effort and stimulation 

were unpaired. Stimulation was set-up as above, delivering stimuli to the extensors muscles 

only, and participants were instructed to remain passive during stimulation. The intervention 

protocol is shown in Figure 5-5. 

Stimulation was delivered in two bursts to replicate the reaching and releasing phases of the 

task. The time stimulated was based on pilot data collected from five healthy able-bodied 

participants who completed 50 repetitions of the task without stimulation. Timings were (mean 

± SE): reaching phase 1.0±0.1s and releasing phase 0.9±0.1s.  

 

 

 

 

 

 

 

Figure 5-5: The protocol used to investigate changes in corticospinal excitability induced by stimulation 
delivered in two bursts during the rest period between trials 
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5.2.5 Study 3 – Investigating an optimised stimulation protocol designed to facilitate 

corticospinal excitability following the intervention 

In this third study, the onset of the FES was timed to theoretically converge with the arrival of 

voluntary commands from the cortex in the spinal cord. The timing was calculated using pilot 

data from 10 healthy able-bodied controls who completed 50 repetitions of the task whilst EMG 

was recorded from the EDC muscle. The time from the cue to muscle activity onset, defined 

as five standard deviations above the baseline mean (found using a 100ms period before cue), 

was calculated in Spike2 software using DC offset and rectified data. The typical EDC reaction 

time was found to be 151±1ms (mean±SE) and 142±16ms for the ‘reach and grasp’ and 

‘release’ phases of the task respectively. An estimate of the peripheral motor conduction time 

(PMCT) for EDC (9.3ms [139]) was then subtracted twice from these values, to give a delay 

between the cue and stimulation of 133 and 123ms for the two phases of the task.  

It should be noted that these timings are based on a group average, and therefore only an 

approximation of optimal timing. Furthermore, there are potential delays between the control 

signal sent to the stimulator and actual delivery of stimulation, although pilot studies suggested 

this was minimal. However, depending on the stimulator design, this could be up to +25ms for 

a 40Hz stimulation train.    

 

Figure 5-6: The ‘delayed stimulation’ condition 
A comparison of the stimulation previously used in the ‘stimulation with movement’ condition (as used 
in Study 1 above) and the ‘delayed stimulation’ condition (red) used in this study. The stimulation onset 
was delayed relative to the cue to try to converge ascending and descending signals in the spinal cord. 
Stimulation was delivered to the extensor muscles only, to facilitate hand, finger and wrist extension.   

5.2.6 Data Analysis 

To ensure the TMS stimulation threshold used for the EDC muscle was also sufficient for the 

FDS muscle, responses were visually inspected offline to ensure MEPs were consistently 
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evoked in both the EDC and FDS muscles, with those not meeting this criteria removed. These 

occurrences are noted in the results section. 

To investigate changes in MEP size (area) pre- and post-intervention, data were imported into 

MATLAB (The MathWorks Inc.) and a ~58ms window extracted following each TMS 

stimulus, with the stimulus artefact avoided. Each window was zero-meaned and then rectified, 

before being integrated to find the MEP area. The mean MEP area was then found for each 

session for each participant, and presented as a percentage of the pre-intervention MEP size. 

This showed whether the average MEP size had been either facilitated, suppressed or if no 

change had occurred following the intervention. This result was then averaged across 

participants to find the group average change in MEP size post-intervention relative to the pre-

intervention response.  

Baseline EMG immediately prior to each TMS stimulus was also analysed to see if the 

intervention would affect baseline activity levels. MEP responses are affected by changes in 

baseline EMG [140]. Furthermore, it would allow anomalies to be identified, for example an 

anonymously large one-off increase in baseline activity. To this end, a 50ms window was 

extracted prior to each TMS stimulus and the area found as previously described for MEPs. 

The results were averaged across trials and individuals to look for group-wide changes.  

Statistical analysis was completed in MATLAB. Normality was tested for using a Lilliefors 

test on datasets with sample sizes below 20 [141, 142]. All tested datasets were found to be 

normally distributed except for the FDS muscle, 30 minutes post-intervention in the ‘no 

stimulation’ condition and the EDC muscle in the ‘stimulation during rest’ condition 15 

minutes post-intervention. In light of the remainder of the dataset, and with sample sizes 

approaching recommended lower limits for t-tests [141, 142], paired and unpaired t-tests were 

applied to compare pre- and post-intervention, between muscles (EDC and FDS) and between 

conditions (e.g. ‘stimulation with movement’ vs. ‘no stimulation’). The null hypothesises for 

statistical testing of MEPs were: (1) there was no significant difference between the size of the 

pre- and post- intervention MEPs (0, 15 and 30 mins) for a particular muscle and intervention 

(completed at a group and individual level), (2) there was no significant difference in the 

percentage change in MEP size between muscles at a particular time-point and intervention 

(group level only), and (3) that there was no significant difference in the percentage change in 

MEP size for particular muscle and time point between interventions (group level only). A null 

hypothesis equivalent to (1) was applied to the baseline data.  
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5.3 Results 

5.3.1 Participants 

Fifteen healthy able-bodied volunteers were recruited to Study 1 – ‘stimulation with 

movement’ vs. ‘no stimulation’ (23±0.7 years old (mean±SE), 6 female), 15 were recruited for 

Study 2 – ‘stimulation during rest’ (23±0.5 years old, 10 female) and 10 were recruited for 

Study 3 – ‘delayed stimulation’ (24±0.8, 5 female). Eight of the participants in Study 1 also 

completed Study 2, and 4 also completed Study 3. Seven participants from Study 2, also 

completed Study 3. Two participants completed all three studies. In these instances, the studies 

were separated by at least 7 days. Stimulation current values ranged from 22.5 to 29mA, and 

pulse widths from 110 to 360μs. 

5.3.2 Study 1 – Change in corticospinal excitability in ‘stimulation with movement’ 

vs. ‘no stimulation’ 

All 15 participants completed the study, however one participant reported illness prior to their 

second session, leading to notably different responses, and therefore their dataset was excluded 

from the analysis. All participants received stimulation to their dominant side, with one 

exception who had a pre-existing injury on this side. 

This study investigated the differences between completing the task with and without 

stimulation. For the flexor (FDS) muscle (Figure 5-7), both the ‘stimulation with movement’ 

and ‘no stimulation’ conditions showed significant increases compared to pre-intervention 

measurements immediately following the intervention (P=0.008 and P=0.038). The excitability 

of the extensor (EDC) muscle was significantly reduced from pre-intervention measurements 

immediately after the intervention in the ‘stimulation with movement’ condition (P=0.047). 

This is in contrast to the extensor muscle following the ‘no stimulation’ condition. Here, 

excitability increased by 9% immediately after, and although not immediately significant, the 

increase was significant 30 minutes post-intervention. A comparison between the ‘stimulation 

with movement’ and ‘no stimulation’ responses in the EDC muscle immediately after the 

intervention was near significance (P=0.06). 

Analysis of individual datasets (Figure 5-8 and Figure 5-9) showed some variation between 

participants, with individual’s exhibiting significant facilitation and suppression in both 

conditions.  However, as reflected in the group data, a bias towards facilitation in both muscles 

can be seen in the ‘no stimulation’ condition, and the flexor muscle in the ‘stimulation with 

movement’ condition. Similarly, a large number of individuals (8 out of 14) showed a 
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suppression of the extensor muscle immediately following the ‘stimulation with movement’ 

condition.  

 

Figure 5-7: Average change in MEP size in the ‘no stimulation’ and ‘stimulation with movement’ conditions 
following the intervention 
The average percentage change in MEP area for the ‘no stimulation’ and ‘stimulation with movement’ 
conditions measured from the extensor (EDC) and flexor (FDS) muscles (n=14) relative to the pre-
intervention measurement. * indicates a significant change (P<0.05) from the pre-intervention value, 
measured using a paired t-test. Values from left-to-right are 0.032, 0.008, 0.047 and 0.038. Horizontal 
lines indicate further paired t-tests which were significant, or approaching significance if deemed of 
particular interest. 
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Figure 5-8: Individual changes in MEP size following the ‘no stimulation’ intervention 
The number of participants showing significant facilitation, suppression or no change at each post-
intervention time point for the ‘no stimulation’ condition. Significance was calculated for each individual 
using an unpaired t-test to compare the individual MEPs at each post-intervention time point to the pre-
intervention MEPs. Significant facilitation and suppression were defined as P < 0.05. 

 

Figure 5-9: Individual changes in MEP size following the ‘stimulation with movement’ intervention  
The number of participants showing significant facilitation, suppression or no change at each post-
intervention time point for the ‘stimulation with movement’ condition. Significance was calculated for 
each individual using an unpaired t-test to compare the individual MEPs at each post-intervention time 
point to the pre-intervention MEPs. Significant facilitation and suppression were defined as P < 0.05. 
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5.3.3 Study 2 - Changes in corticospinal excitability induced by stimulation delivered 

during the rest period between trials 

Fifteen participants completed the study, but participant #12 was excluded due to inadequate 

MEPs in the FDS (flexor) muscle. Participant #1 showed an anomalously large (approx. 800%) 

increase in baseline EMG at the ‘post-intervention 0 minutes’ time point and was also excluded. 

Figure 5-10 shows the group average data from the ‘stimulation during rest’ condition 

alongside the ‘stimulation with movement’ condition from Study 1. A suppression can be 

observed in both muscles in the ‘stimulation during rest’ condition, but this is not significant. 

The analysis of individual data reflects this (Figure 5-11), with just under half (6 / 13) of 

participants showing a significant suppression in the EDC muscle, and this number is sustained 

at 15 minutes.  

 

Figure 5-10: Average change in MEP size following the ‘stimulation during rest’ and ‘stimulation with 
movement’ interventions 
Left - The average percentage change in MEP area for the ‘stimulation during rest’ condition (n=13) 
relative to the pre-intervention condition measured from the extensor (EDC) and flexor (FDS) muscles. 
Right – For comparison, results from ‘stimulation with movement’ as shown in Figure 5-7. There were 
no significant changes from the pre-intervention MEPs for the ‘stimulation during rest’ condition. 
Furthermore, there were no significant differences between the two interventions, between muscles, or 
between post-intervention time points for ‘stimulation during rest’.   
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Figure 5-11: Individual changes in MEP size following the ‘stimulation during rest’ intervention 
The number of participants showing significant facilitation, suppression or no change at each post-
intervention time point for the stimulation during rest condition. Significance was calculated for each 
individual using an unpaired t-test to compare the individual MEPs at each post-intervention time point 
to the pre-intervention MEPs. Significant facilitation and suppression were defined as P < 0.05. 

5.3.4 Study 3 – Investigating an optimised stimulation protocol designed to facilitate 

corticospinal excitability following the intervention 

Ten participants completed Study 3 which investigated a ‘delayed stimulation’ condition. 

Participant #7 was excluded as MEPs were not consistently evoked in the FDS (flexor) muscle. 

Figure 5-12 shows the group average data from this condition alongside the ‘stimulation with 

movement’ data from Study 1. A large facilitation can be observed for the FDS muscle, which 

remains significant at 30 minutes, furthermore, this is statistically significant when compared 

with the facilitation observed immediately post-intervention in the ‘stimulation with 

movement’ condition. In contrast, there is very little change from baseline for the EDC muscle. 

Analysis of individual data (see Figure 5-13) emphasises this result, with a mix of suppression 

and facilitation for the EDC muscle, but importantly, no significant suppression at any time 

point for the FDS muscle.  
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Figure 5-12: Average change in MEP size following the ‘delayed stimulation’ and ‘stimulation with 
movement’ interventions 
Left - The average percentage change in MEP area for the ‘delayed stimulation’ condition (n=9) relative 
to the pre-intervention condition measured from the extensor and flexor muscles. Right – For 
comparison, results from ‘stimulation with movement’ (n=14) as shown in Figure 5-7. A paired t-test 
was used to compare pre- and post- intervention measures, significant (P<0.05) results are indicated 
with *. Values from left-to-right are 0.019, 0.042, 0.037, 0.047 and 0.038. Horizontal lines indicate 
further paired and unpaired t-tests which were found to be significant. 
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Figure 5-13: Individual change in MEP size following the ‘delayed stimulation’ intervention 
The number of participants showing significant facilitation, suppression or no change at each post-
intervention time point for the delayed stimulation condition. Significance was calculated for each 
individual using an unpaired t-test to compare the individual MEPs at each post-intervention time point 
to the pre-intervention MEPs. Significant facilitation and suppression were defined as P < 0.05.  

5.3.5 Investigating changes in baseline EMG across all conditions 

Baseline EMG immediately prior to each TMS stimulus was investigated to look for possible 

confounders and for any group-wide changes that may have been brought-about by the 

intervention. There were no significant changes in baseline EMG for the ‘stimulation with 

movement’ and ‘no stimulation’ conditions (Figure 5-14). However, the ‘delayed stimulation’ 

condition showed significant increases in baseline EMG in both extensors and flexors after 30 

minutes (Figure 5-15). The ‘stimulation during rest’ condition showed a significant decrease 

in baseline flexor activity across all time points (Figure 5-15).  As the baseline EMG is much 

smaller than the MEP size, it is not anticipated that the changes measured in MEP size (reported 

above) are simply due to a fluctuating contributions from baseline activity. 
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Figure 5-14: The percentage change of baseline EMG activity relative to pre-intervention values during the 
‘no stimulation’ and ‘stimulation with movement’ conditions  
There were no significant changes from baseline (P<0.05). 

 

Figure 5-15: The percentage change of baseline EMG activity relative to pre-intervention values during the 
‘delayed stimulation’ and the ‘stimulation during rest period’ conditions 
* indicates a significant change from pre-intervention, defined as P < 0.05, calculated using a paired t-
test. Significant values from left to right are 0.022, 0.04, 0.003, 0.017 and 0.007. 
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5.4 Discussion 

5.4.1 Study 1 - A comparison of changes in corticospinal excitability brought about 

by completing the task with and without stimulation 

Facilitation was observed in both extensor (EDC) and flexor (FDS) muscles following the ‘no 

stimulation’ condition (Figure 5-7). As it has previously been reported that non-fatiguing 

exercise can lead to an increase in MEP size [143], this was not an unexpected result. However, 

the postulated additional facilitation of the extensor muscle when paired with stimulation did 

not occur. In contrast, a significant suppression was recorded immediately after the intervention 

(Figure 5-7).  

This could have been caused by FES induced muscle fatigue, and is supported by the 

observation that on average suppression did not occur in the unstimulated muscle. FES is 

known to cause fatigue through its mode of action and reverse recruitment of muscle fibres 

[65]. However, although not specifically asked, participants did not report significant fatigue 

following the intervention [144], but participants may not report lower levels of discomfort / 

tiredness. Future studies could test for muscle fatigue by testing a participant’s maximal 

voluntary contraction, or by using physiological measures such as the maximal compound 

muscle action potential (Mmax) and twitch interpolation [145]. 

A suppression of MEP size following fatiguing exercise has been reported to last for eight 

minutes following wrist extensions of 90s or more [143]. This eight minute time-course would 

be in line with the results observed here, but only if the two exercises can be considered 

comparable. As the mean-time to fatigue in the wrist extension study was 130s, it seems 

unlikely this study caused such high levels of fatigue. Other studies investigating corticospinal 

excitability following FES do not appear to have induced a suppression [135, 146], and it is 

not clear why this task would bring about greater levels of fatigue. Nevertheless, it was 

anticipated that if caused by fatigue, the effect would also be seen in the subsequent conditions 

(‘stimulation during rest’ and ‘delayed stimulation’) where similar levels of stimulation were 

delivered. 

Interestingly, Kotan and colleagues [147], who also reported a reduction in corticomotor 

excitability following fatiguing electrical stimulation, believed that the reduction was caused 

by intracortical inhibitory mechanisms. This suggests that even if the effect is caused by 

fatigue, this type of training is activating the cortex, which could lead to longer term changes 

in motor function.  
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An alternative explanation is that as the FES is activating the muscle required for completing 

the task, the intervention leads to a reduction in voluntary drive to that muscle and 

subsequently, a decrease in corticospinal excitability immediately following the intervention.  

The observed suppression could also be explained by the importance of the order of pre- and 

post-synaptic activity in Hebbian plasticity. Paired associative stimulation (PAS) protocols 

have shown that if nerve stimulation precedes cortical stimulation (TMS) then a sustained 

suppression of the MEP is recorded, indicating long term depression (LTD) of synaptic activity 

[148]. However, the evidence from studies using trains of stimuli is more complex. Here, 

peripheral nerve stimulation (PNS) prior to TMS has also been reported to increase MEP 

amplitude [149, 150]. Furthermore, the suppression is not sustained in this dataset, which is 

opposite to that observed in PAS studies.    

Similarities between the ‘stimulation with movement’ and ‘no stimulation’ interventions are 

not necessarily undesirable. The facilitation of the FDS muscle in both interventions, 

demonstrates that, in this muscle at least, FES combined with movement can lead to similar 

changes in cortical excitability as exercise alone, suggesting that this may be a useful substitute 

in situations where movement alone is not possible. 

5.4.2 Study 2 - Changes in corticospinal excitability induced by stimulation delivered 

during the rest period between trials 

This study aimed to elucidate whether concurrent FES stimulation and movement were 

required to elicit changes in corticospinal excitability, or if similar changes would be observed 

when the individual components (movement and FES) were delivered separately, i.e. 

stimulation delivered during the rest period between voluntary movements. 

At a group level, no significant changes from the pre-intervention measurements were found. 

Responses in the EDC appeared to decrease, but this was not significant, and notably responses 

did not appear to immediately return to pre-intervention levels as observed in the ‘stimulation 

with movement’ condition. As previously discussed, this may be caused by fatigue, but the 

lack of significance and different time-course casts some doubt on this hypothesis. Similarly, 

based on this dataset, it is difficult to support or refute the influence of the temporal order of 

pre- and post- synaptic activity on changes to cortical excitability, or a reduction in voluntary 

effort.  

The elimination of any facilitation of the FDS muscle is remarkable, and unexpected. The 

flexor muscle does not receive any stimulation, and would therefore be expected to respond in 
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a similar manner to the ‘no stimulation’ condition. This result may in part be explained by the 

significant reduction in baseline EMG which is maintained for 30 minutes (Figure 5-15). This 

has implications for rehabilitation, as a reduction in baseline flexor excitability may be 

advantageous with regards to spasticity, as it could indicate a reduction in resting muscle tone. 

It is therefore suggested, that although there are no significant differences between the MEPs 

in the ‘stimulation with movement’ and ‘stimulation during rest’ conditions, the elimination of 

significant FDS facilitation, as well as changes in baseline EMG, are indications of different 

mechanisms of action for the two conditions.  

5.4.3 Study 3 – Investigating an optimised stimulation protocol designed to facilitate 

corticospinal excitability following the intervention 

This condition was designed to optimise the timing of the descending and ascending commands 

to maximise Hebbian plasticity by convergence of signals in the spinal cord. Notably, in the 

group-wide data (Figure 5-12) a facilitation of pre-intervention MEP was not found for the 

EDC muscle, but a large facilitation of the FDS muscle was observed. Furthermore, this 

facilitation was significantly greater than that observed in the ‘stimulation with movement’ 

condition and was significant compared to pre-intervention levels, and the EDC muscle, for 30 

minutes. Furthermore, no participants showed a significant suppression in this condition 

(Figure 5-13). Baseline EMG was found to be significantly greater than pre-intervention at 30 

minutes (Figure 5-15), and therefore an increase in the overall excitability of the system may 

partially explain the significant increase in flexor response. It is also worth noting that different 

groups of participants completed Study 1, Study 2 and Study 3, and therefore the observed 

effects may reflect variation amongst individuals, although statistical testing should indicate 

group-wide effects. 

The extensor muscle did not show a decrease in excitability, as previously observed in Study 

1, and although in this condition slightly less stimulation is delivered, this result is still contrary 

to the previously hypothesised muscle fatigue. The result does provides some support for the 

importance of the temporal order of pre- and post- synaptic activity, but it must be noted that 

any suppression may be offset by an increase in baseline extensor excitability, which would be 

anticipated to lead to an increase in MEP size [140].  

An interesting comparison can be made between the two stimulation concurrent with 

movement conditions (‘stimulation with movement’ and ‘delayed stimulation’). They both 

showed significant differences between the EDC and FDS muscles immediately after the 
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intervention, demonstrating that when delivered in the manner presented here, stimulation 

concurrent with movement leads to significant short-term changes in the relative excitability 

of this muscle pair. 

A limitation of the approach presented here is that an average reaction time was used to 

calculate the stimulation delay. It is clear that this will not provide optimum timing for all 

participants. Future studies could use the reaction time for each individual, providing 

personalised stimulation timings. Additionally, a condition in which the stimulation is 

delivered much later, say 200-300ms after the cue, would be an interesting control condition. 

In participants with stroke, the reaction time could be calculated using the less impaired arm, 

or using average data from an aged-matched sample.  

It was assumed that plasticity would occur in the spinal cord. However, other researchers who 

have targeted plasticity in the brainstem, and have timed afferent stimulation to arrive in the 

brainstem prior to activation of the descending excitatory postsynaptic potential (EPSP) [151]. 

They argue that this will potentiate the EPSP, leading to an increase in connectivity. It has also 

been shown that peripheral electrical stimulation co-modulates primary sensory and motor 

cortex excitability, which suggests that the early afferent input generated by the ‘stimulation 

with movement’ condition may be better suited to increasing cortical excitability prior to the 

generation of descending commands [152]. It is evident that further studies are required to 

elucidate the interaction of ascending and descending signals, enabling informed refinement of 

stimulation protocols. 

Finally, the TMS protocol used stimuli at 120% of the resting threshold for the EDC muscle, 

however, the FDS muscle was also analysed. It is not known what percentage of resting 

threshold was used for this muscle, with possible floor and ceiling plateau effects, i.e. 

stimulation of insufficient magnitude to generate a response, or so great that it leads to a 

saturation of responses. However, visual inspection ensured adequate responses which should 

counter any floor effect, and the facilitation observed suggests that a ceiling was not being met. 

5.4.4 General discussion 

We have provided evidence that stimulation concurrent with movement (‘stimulation with 

movement’ and ‘delayed stimulation’) leads to a significant increase in the excitability of the 

flexor (FDS) relative to the extensor (EDC) muscle immediately after the intervention. 

Furthermore, stimulation delayed to converge with descending commands in the spinal cord 

(‘delayed stimulation’) led to a significantly greater facilitation of the flexor muscle compared 
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to stimulation delivered simultaneously with the cue (‘stimulation with movement’). This was 

not the hypothesised outcome, but leads to two salient discussion points: (1) what underlying 

physiology might have caused this, and (2) how might these changes explain the results 

observed in earlier studies with stroke survivors and participants with SCI? In this section, we 

look at the evidence for two possible mechanisms: reduced voluntary effort, and a flexor / 

extensor bias in the motor system, and then discuss how this might translate to people with 

neurological conditions such as stroke and SCI.  

5.4.4.1 Reduced voluntary effort 

It is known that voluntary effort can be regulated by the supraspinal factors [145] and it is 

suggested that the addition of FES may lead to a reduction in this required effort. This may 

lead to a down regulation of the input from the cortex to the extensor muscle, and subsequently 

reduced responses to TMS. Furthermore, through reciprocal inhibition, a down-regulation of 

extensor input from the cortex, could lead to reduced inhibition of the corresponding flexor 

muscles and subsequently, greater flexor MEPs as observed here. 

However, contrary to this hypothesis, the extensor muscle was not suppressed by the ‘delayed 

stimulation’ condition (Figure 5-12) and a trend towards suppression was observed in the 

‘stimulation during rest’ condition (Figure 5-10), although changes in baseline EMG may have 

also affected this (Figure 5-15). In future studies, the reduced voluntary effort hypothesis could 

be tested by asking participants to generate a particular grip force with feedback before the 

intervention, and then the same force, without feedback, following the intervention. This would 

address whether ‘stimulation with movement’ led to an underestimate of the required force 

compared to ‘no stimulation’.  

5.4.4.2 A flexor / extensor bias 

It has been suggested by Foysal and colleagues that there may be a bias in the motor system 

towards the facilitation of flexor muscles over extensor muscles [153]. They showed that paired 

stimulation of either the extensor (EDC) or flexor (FDS) muscle, led to facilitation of the flexor 

only. A similar effect has been shown by others. For example, Godfrey et al. demonstrated 

using a tracking task, in which either the EDC or FDS muscle was the prime mover, that 

regardless of which muscle was used, FDS showed greater increases in cortical excitability 

than EDC [154]. This led them to conclude that “the action of the muscle as a flexor vs. 

extensor may be one modulator of the immediate physiological effects of repetitive movement”. 

A similar effect was shown by Yamaguchi et al. who showed that stimulation of the flexor 



111 
 

muscle led to a depression in the extensor muscles [136]. Here the authors ascribed the effect 

to reciprocal pathways. The inclusion of voluntary or descending commands may be important, 

as Tinazzi and colleagues demonstrated that transcutaneous electrical nerve stimulation 

(TENS) stimulation of the flexor carpi radialis (FCR) muscle at rest, led to a reduction in FCR 

MEP amplitude and an increase in extensor carpi radialis brevis muscle (ECR) MEP amplitude 

[155].   

Further evidence of asymmetry in the mediation of extensor and flexor muscles comes from 

Lackmy-Vallee et al [156]. They showed opposite modulation of reciprocal inhibition in 

extensor and flexor muscles in the wrist following transcranial direct current stimulation 

(tDCS) to the motor cortex. That is, a reduction in reciprocal inhibition directed from flexors 

to extensors, and an increase in reciprocal inhibition directed from extensors to flexors.  

This asymmetry can also be observed in group III and group IV afferents. Martin et al. [157] 

reported that during maintained ischaemia of elbow muscles following a fatiguing exercise, 

inputs from group III and group IV afferents depress extensor but facilitate flexor motor 

neurons, as measured using cervicomedullary motor evoked potentials (CMEPS). Although, as 

it is not anticipated that such high levels of fatigue are present in this study, the action of group 

III and IV afferents may be limited.  

Finally, it has been reported that non-human primates with a corticospinal tract lesion show a 

bias during recovery towards the strengthening of flexor over extensor muscles [158]. The 

authors point to the role of the reticulospinal tract as the possible source of this imbalance, 

although they emphasise that it should not simply be seen as the product of greater connectivity 

to flexor muscles from the reticulospinal tract, as the rubrospinal tract has a bias towards 

extensor connectivity, but still shows a preference towards flexion during recovery after injury.  

This asymmetry of the networks controlling extensor and flexor muscles has important 

consequences for plasticity protocols. It is clear that the spinal networks and cortical 

connections are not pre-wired and static [159], and contain a complex network of connections 

and pathways, whose interactions need to be better understood to allow the development of 

targeted stimulation protocols and better interpretation of recorded outcomes. Nevertheless, the 

correlation between the data found in this study and the other plasticity studies discussed, 

suggests that the intervention is activating similar plasticity mechanisms. 
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5.4.4.3 Further observations 

Foysal and colleagues also reported two other results of note [153]. Firstly, repetitive TMS led 

to facilitation of all measured muscles. This could be considered comparable to voluntary 

cortical activity, and this broad facilitation of all muscles is mirrored in the ‘no stimulation’ 

condition presented here. Secondly, both plasticity protocols, stimulating either the extensor or 

flexor muscle, led to significant facilitation of FDI and APB muscles. This shows that changes 

in excitability may reach further than the stimulated muscles and their antagonists.   

5.4.4.4 How does this relate to people with neurological conditions? 

This study was completed with healthy able-bodied volunteers, and whether the motor system 

of a neurologically impaired participant would response in a similar manner is unknown. 

However, it is not unreasonable to believe that parallels would exist, and here we briefly outline 

how the changes in corticospinal excitability and baseline EMG might translate to rehabilitative 

outcomes.  

The ‘stimulation during rest’ condition showed a significant reduction in baseline flexor muscle 

EMG activity, which could indicate a reduction in resting tone. This can be compared with 

Botulinum toxin which is used to reduce muscle tone in people with spasticity, and in a recent 

case study of an individual with chronic stroke, Botulinum toxin injections into the flexor 

muscle were reported to improved grip release times and shortened EDC activity during an 

initiation/release reaction time task [125, 160]. This demonstrated that reductions in muscle 

tone in the antagonist muscle, may lead to improvements in the control of the agonist. 

Moreover, although the efficacy of using Botulinum toxin to improve active upper limb 

function is debated [161], if the ‘stimulation during rest’ condition does reduce baseline EMG 

and therefore muscle tone, this is a possible mechanism by which the ‘stimulation during rest’ 

intervention could bring about positive rehabilitative outcomes. 

The underlying mechanism of spasticity is understood to be hyper-excitable stretch reflexes 

[162], and has been ascribed to changed descending inputs to spinal circuits [163]. In particular, 

it has been suggested that a loss of cortical facilitatory input to dorsal reticular spinal tract, 

which provides a dominant inhibitory effect on spinal stretch reflexes, results in this hyper-

excitability of stretch reflexes [163]. The conditions ‘stimulation with movement’, ‘no 

stimulation’ and ‘delayed stimulation’ all led to significant facilitation of corticospinal 

excitability of the flexor muscle. It is possible that this may reflect facilitated cortical activity, 

which via projections to the dorsal reticular spinal tract, could lead to changes in spasticity. 



113 
 

Furthermore, as MEP amplitude and resting motor threshold have both been linked with 

spasticity and other motor performance measures following stroke [164], facilitated 

corticospinal tract activity could indicate other improvements. However, this is highly 

speculative, and would require further testing, for example, by combining neurophysiological 

and functional assessments in a study with chronic stroke survivors, with subsequent 

investigation of correlations between these different outcome measures.  

An alternative explanation for the modest improvements seen in some participants with 

neurological conditions, is that the intervention was creating a differential response between 

the extensor and flexor muscles. Upper limb impairment can be exacerbated by co-

contractions, for example, an attempt to extend the hand leads to concurrent activation of the 

hand flexors preventing this motion [125]. An intervention that facilitates one muscle, whilst 

either depressing or holding input to the other constant, may help to individuate those muscles 

and reduce co-contractions. This is similar to an approach being used by Wright et al. [165]. 

They mapped EMG signals to control cursor movements on a screen, and specifically mapped 

co-activating muscle pairs in different directions. In a small pilot study they showed that 3 out 

of 5 stroke survivors had an objective reduction in arm impairment. 

5.4.4.5 The wider context 

The findings presented here contrast with other researchers who have reported increases in 

MEPs in the stimulated muscle following FES interventions [74, 115, 135, 146]. However, the 

details of each stimulation protocol are crucial for accurate interpretation, and may be viewed 

differently in the context of an extensor / flexor bias. For example, McGie et al. stimulated 

extensors, flexors and thumb muscles, and reported MEPs from APB, which as discussed 

above, might be facilitated regardless of whether the extensor or flexor muscle is stimulated 

[74]. Barsi and colleagues also reported facilitation of flexor muscles following therapeutic 

FES [135]. However, they provided FES to both extensors and flexors during a grasping task. 

They also included an FES at rest condition, which similar to the ‘stimulation during rest’ 

condition reported here, did not show any significant changes in cortical excitability. However, 

in contrast, their voluntary movement only condition also showed no significant changes. This 

may highlight the importance of the task used during training, as Perez et al. have previously 

highlighted the importance of skilful versus non-skilful training when investigating changes in 

MEPs [166]. 
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Thompson and Stein showed MEP facilitation following FES in the tibialis anterior muscle 

(ankle flexor) and its antagonist soleus muscle (ankle extensor) following walking with FES 

[146]. MEPs were recorded using a 15% MVC contraction which may be important, as post-

exercise depression has been shown to be absent in a contracted muscle [144]. It may also 

indicate differences in the upper and lower limb. These differences between stimulation 

protocols and interventions make comparisons with the literature challenging and highlights 

the need for further studies, and a possible review, to elucidate the relationship between 

plasticity, extensor and flexor muscles, and stimulation timing. 

5.5 Conclusion 

Contrary to our hypothesis, movement concurrent with stimulation was found to significantly 

facilitate corticospinal excitability of the unstimulated antagonist flexor (FDS) muscle, and 

either suppress or not change corticospinal excitability of the stimulated extensor (EDC) 

muscle. Furthermore, refinement of the relative timing of the task cue and the onset of 

stimulation, led to significant additional facilitation of corticospinal excitability of the flexor 

muscle compared to the original protocol. On average, facilitation in this refined condition 

lasted for at least 30 minutes, but was also associated with an increase in baseline EMG activity.  

This study adds to growing body of evidence of a bias in the motor system towards facilitating 

flexor muscles (over extensor muscles) following injury or interventions designed to drive 

associative plasticity. We suggest that this result could be relevant to upper limb rehabilitation, 

as the differential activation of the flexor and extensor muscles may lead to improved 

individuation of muscles, and / or the increased corticospinal excitability of flexor muscles may 

indicate changes in supraspinal and spinal networks that could alter the hyper-excitability of 

spinal circuits associated with spasticity.  

Facilitation of the flexor muscle can also be induced by exercise alone, but for impaired 

individuals, FES concurrent with movement can replicate this effect, or if stimulation is timed 

to converge with voluntary commands in the spinal cord, potentially enhance it. Contrastingly, 

the ‘stimulation during rest’ condition did not lead to facilitated flexor activity, but a significant 

reduction in baseline activity for at least 30 minutes. This could indicate a reduction in resting 

muscle tone and be a mechanism by which spasticity may be reduced following passive FES.  
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Chapter 6 

An exploration of transcutaneous 

spinal cord stimulation for 

applications in upper limb 

rehabilitation 
 

 

 

 

 
Aim: 

• To develop an understanding of the potential of transcutaneous spinal cord 

stimulation (tSCS) for upper limb rehabilitation. 

Objectives: 

• Conduct a study in healthy able-bodied participants to develop an understanding 

of the effect of different parameters such as frequency, amplitude and pulse width 

on the comfort of the technique 

• Examine motor responses for indications of which neural structures may be 

stimulated by tSCS. 
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6.1 Introduction 

Non-invasive transcutaneous spinal cord stimulation (tSCS) is an exciting new avenue of 

research that may be a game-changing technology in neurological rehabilitation for spinal cord 

injury (SCI) [57, 59-62, 100, 167].  While its origins can be traced back to the 1980s and 90s 

[168, 169] more recently, Edgerton et al. [57] have reported that the pain threshold for 

transcutaneous pulse-modulated high frequency (10kHz) stimulation is higher than with 

standard low frequency stimulation protocols. This has consequently been termed ‘pain-free’ 

stimulation and reportedly enabled stimulation at the higher currents necessary for targeting 

the spinal cord. Moreover, they have suggested that tSCS may be effective in improving 

function in humans with paralysis after SCI [60, 62, 63], with a reported 225% increase in grip 

strength (without simultaneous stimulation) following 8 sessions of stimulation combined with 

4 weeks of training (n=8) [61], and in one participant following a similar intervention, a 10 

point increase in upper extremity motor score [60]. Further to this, spinal cord stimulation 

(SCS) has more broadly been associated with pain relief [170], epilepsy [171] and gait 

dysfunction in advanced Parkinson’s Disease (PD) [172], and could be suitable for use in 

closed-loop and wearable devices. In particular, epidural SCS is currently the topic of high 

impact research investigating the rehabilitation of locomotion following SCI [51, 173]. 

Novel stimulation techniques like tSCS could be adapted for interventions such as the one 

introduced in this thesis; possibly either as a substitute for functional electrical stimulation 

(FES), or to complement it. However, before this can take place, studies must be completed to 

characterise different tSCS parameters, such as pulse width, frequency and amplitude, to 

understand which are best suited to rehabilitative applications.  

This chapter describes a preliminary investigation into three different tSCS protocols, focusing 

on the comfort of the intervention and whether motor responses recorded during stimulation 

can provide insights into the underlying mechanisms of the technique.  

6.2 Methods 

6.2.1 Participants and study setting 

Healthy abled-bodied volunteers were recruited at the Institute of Neuroscience, Newcastle 

University. Participants were over 18 years old, and able to give informed consent. Recruitment 

was subject to the following exclusion criteria: pregnancy, and any current or history of: cardiac 
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disease, neurological disease or disorders, epilepsy, SCI, arm, shoulder or neck injury. The 

study received ethical approval by the local ethics committee at Newcastle University. 

6.2.2 Assessment of comfort 

Participants were asked to rate the comfort of each stimulation train (described below) on a 

scale of 0 to 100, where 100 equated to their limit of mild discomfort. Participants were advised 

that they could stop the intervention at any time, stimulation should not be greater than mild 

discomfort, and that any stimulation found to be greater than mild discomfort would not be 

repeated. The protocol was designed such that the most comfortable stimulation frequency 

(lowest) was delivered first, allowing the participant to progressively assess if their limit of 

mild discomfort was being reached. 

6.2.3 Transcutaneous spinal cord stimulation 

Transcutaneous spinal cord stimulation (tSCS) was delivered using a DS8R Biphasic Constant 

Current stimulator (Digitimer Ltd.) modified by the manufacturer to enable stimulation at 

frequencies up to 10kHz. The cathodal electrode (5x5cm Axelgaard PALS Electrode) was 

placed over the C7 spinous process under flexion (the neck was returned to the neutral position 

for the study), and 2 x anodal electrodes (9x5cm Axelgaard Valutrode) were placed over the 

Iliac Crests. This is similar to the placements reported in [61]. The participant was seated at a 

table, with arms at rest on a cushion placed in front of them.  

 

Figure 6-1: A schematic diagram to show approximate electrode positions used in this study 
The cathode was placed over C7, which is the most prominent cervical process when the neck is flexed. 
The anodes were placed over the iliac crests, which sit below the intercristal line, and avoided muscles 
which would otherwise be stimulated if located under the anodal electrodes.  
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6.2.4 Experimental protocol 

Three different stimulation types were used:  

1. ‘Conventional’ stimulation – Single monophasic pulse (pulse width 0.5ms) 

2. ‘Burst’ stimulation – Pulse-modulated high frequency monophasic stimulation (10x 

stimuli with pulse width 50µs) 

3. ‘Single’ stimulation – Single short monophasic pulse stimulation (1x stimulus with 

pulse width 50µs). 

Examples of these are shown in Figure 6-2. 

 

Figure 6-2: The three different types of stimulation used during this study 
‘Conventional’ stimulation consisted of a 0.5ms monophasic pulse, ‘burst’ stimulation consisted of a 
series of ten 50µs pulses, and ‘single’ stimulation was a single 50µs pulse.  

Resting motor threshold was found for each stimulation type for each participant, where 

threshold was defined as the current needed to evoke a MEP in 50% of trials in a single muscle 

(of the eight recorded) [174]. To investigate the impact of different stimulation parameters on 

comfort and motor responses, the protocol was divided into three sub-sections depending on 

the frequency, amplitude relative to resting motor threshold, and the duration of the stimulation 

delivered. The three study sub-sections were as follows (also see Figure 6-3): 

1. Participants received each stimulation type in a block. The order of these blocks was 

randomised for each participant, for example: 1. ‘burst’ stimulation; 2. ‘conventional’ 

stimulation; and 3. ‘single’ stimulation. Trains were delivered for 0.5s for frequencies 

from 10 to 100Hz, and repeated three times. Stimulation was also delivered at 0.5Hz as 

a train of 5 stimuli. The stimulation amplitude was 110% of resting motor threshold for 

that stimulation type (i.e. 1.1 times the stimulation magnitude at resting motor 

threshold).  
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2. The participant received each stimulation type at 100Hz for 2s at 110% of resting motor 

threshold.  

 

3. The participant received ‘conventional’ stimulation at 90, 100, 110, 120, 130 and 140% 

of resting motor threshold for 0.5s at 100Hz  

At the end of each 0.5s or 2s stimulation train the participant was asked to rate the comfort of 

the stimulation (as previously described). There was a minimum of 5 seconds between trains. 

The null hypothesis was that there would be no significant difference between the comfort 

scores when: (1) changing the stimulation frequency, (2) changing the stimulation intensity, 

(3) changing the stimulation duration, or (4) changing the stimulation profile (i.e. conventional 

vs. burst vs. single).  

 

Figure 6-3: The stimulation protocol used in this tSCS study 
1. The different stimulation types were randomised as either Stim 1, Stim 2 or Stim 3 at increasing 
frequencies and delivered for 0.5s or as a train of 5 stimuli (0.5Hz only) three times at 110% of motor 
threshold. 2. Each stimulation type was delivered once for 2s at 100Hz and 110% of motor threshold. 3. 
Conventional stimulation was delivered at 100Hz for 0.5s at increasing intensities relative to motor 
threshold.  

6.2.5 Recording motor responses to transcutaneous spinal cord stimulation 

Responses to tSCS were recorded using bipolar electromyography (EMG). EMG was collected 

using a Digitimer D360 amplifier, a CED MICRO2 1401 with ADC12 Expansion data 

acquisition interface (Cambridge Electronic Design Ltd.) and Spike2 software (Cambridge 
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Electronic Design Ltd). The sampling rate was 5000Hz, and the signal was filtered with a low 

frequency cut-off of 30Hz and a high frequency cut-off at 2000Hz. Responses were recorded 

from eight muscles using surface electrodes (Natus Disposable Snap Electrodes 33x22cm). The 

muscles were: flexor digitorum superficialis (FDS), extensor digitorum communis (EDC), first 

dorsal interosseous (FDI) and abductor pollicis brevis (APB) on both the left and right hand 

sides. Stimulus artefacts were blanked by removing the data points before and after the 

stimulus, and then interpolating across the resulting gap.  

This dataset was imported into MATLAB (The MathWorks Inc.) for offline analysis of 

responses. The size of individual responses to 0.5Hz stimuli was assessed by averaging the 

peak-to-peak motor evoked potential (MEP) elicited by each stimulation type. To compare 

across participants, this was presented as a percentage of the average response to ‘conventional’ 

stimulation. Unless otherwise stated, statistical tests were conducted in IBM SPSS 24. 

6.2.6 Data analysis of oscillatory motor responses 

An unexpected oscillatory response was observed during the study. To quantify how often this 

response occurred, and to test for significance across a range of frequencies, a bootstrap 

statistical approach was used.  

The EMG signal for first 0.5s stimulation train for each stimulation type (‘burst’, 

‘conventional’, ‘stim’) and test frequencies above 10Hz (20, 50 and 100Hz) was divided into 

windows equal to the inter-stimulus interval. The windows were randomly shuffled, zero-

meaned and rectified, and the power spectrum for the resulting signal was found using a Fast 

Fourier Transform (FFT) in MATLAB. This was repeated 1000 times, and for each power 

spectrum frequency the power was ranked in ascending order. The power spectrum of the 

original EMG signal was then found, and if the power at a particular power spectrum frequency 

in the original trial was greater than the value of the 975th power value in the shuffled trials, 

then it was considered to a significant trial with a ‘P’ value less than 0.05. This is illustrated in 

Figure 6-4. The null hypothesis was that no power spectrum frequency would show a 

statistically significant number trials containing oscillations at that frequency. 

Each muscle was treated as a separate trial, and as there were 8 participants and 8 muscles, 

there were 64 trials for each test frequency (20, 50 and 100Hz). Therefore, the percentage of 

trials showing significant oscillatory behaviour at each power spectrum frequency was found, 

allowing the number and frequency of oscillatory responses to be quantified.  
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This method was also repeated for the increasing intensity dataset (see Figure 6-3, 90 to 140%), 

allowing additional analysis on the effect of intensity, participant and muscle on the quantity 

and frequency of oscillations to be assessed. This produced a total of 64 trials for each intensity 

(8 participants, 8 muscles), 48 trials for each participant (6 intensities, 8 muscles) and 48 trials 

for each muscle (8 participants, 6 intensities).  

  

Figure 6-4: An example of the bootstrap statistical method used for data analysis 
Panel A – The power spectrum of a 0.5s trial showing a statistically significant peak at 10Hz and a 
harmonic at 20Hz. The red, blue and yellow dashed lines show the power of 975th, 500th and 25th ranked 
powers for each power spectrum frequency respectively. These were found using the bootstrap 
methodology described above. If the power spectrum of the original 0.5s trial falls outside the red and 
yellow dashed lines at any frequency, then it is significant at this specific frequency with P<0.05. It can 
be seen that this trial contained significant oscillatory behaviour at 10 and 20Hz. Panel B - The 
corresponding example EMG signal showing a clear oscillatory response. 

The synchrony between oscillations in two muscles during a single 0.5s stimulation train were 

compared (in one instance) to investigate the possibility of a common driver. The two 0.5s 

trains were zero-meaned and rectified before being low-pass filtered at 15Hz (Butterworth, 2nd 

order, zero-phase digital filter), and zero-meaned again. The phase angle was then found using 

a Hilbert Transform. The output of this analysis is shown in the results section (Figure 6-15). 

6.2.7 Additional measures 

A small number of control studies were carried out using peripheral nerve stimulation (PNS), 

tSCS with Poisson firing (see description below) and a small sustained contraction (without 

stimulation) to allow comparison between tSCS motor responses and those induced by these 

methods.  

• PNS was delivered using the Digitimer DS8R (0.5ms pulse width) at 100Hz in a 2s 

train to median nerve using a bar electrode to stimulate the APB muscle at an intensity 

that evoked a response of approximately the same magnitude as that observed during 
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tSCS. The power spectrum of the resulting EMG signal was found using a Fast Fourier 

Transform (FFT) in MATLAB, and significance was tested as described above 

(bootstrap method). 

• tSCS with Poisson firing: Trains in the main study were delivered with evenly spaced 

stimuli at a particular test frequency. Here, stimulation timing was controlled using a 

Poisson process, i.e. the probability of stimulation per time interval was constant, but 

the average stimulation rate was approximately 100Hz. For this condition, a minimum 

time interval between stimuli was set at 5ms and a ‘conventional’ stimulation pulse 

width (0.5ms) was used. Stimulation timing was controlled in Spike2 (Cambridge 

Electronic Design Ltd.). The power spectrum and significance were calculated as 

described above. 

• A gentle, sustained contraction: the participant performed a 2s gentle sustained thumb 

extension which was recorded (EMG) from the APB muscle. The power spectrum and 

significance were calculated as described above. 

6.3 Results 

Eight participants (7 male, 26.5±1 years (mean±SE), all right-handed) gave written informed 

consent and took part in the study. Seven of the participants were members of the motor group 

at Newcastle University’s Institute of Neuroscience.  

6.3.1 Parameters 

Figure 6-5 shows the average current required to achieve resting motor threshold in at least one 

muscle for each stimulation type. A statistically significant difference was found for 

comparisons between each stimulation type: burst-single, conventional-burst, and single-

conventional, demonstrating that the threshold current is specific to each stimulation type, and 

that bursts of stimuli have a lower threshold than a single stimuli of the same pulse width 

(‘burst’ vs. ‘single’), showing an accumulating effect of successive stimuli. 

The size of motor responses (peak-to-peak) evoked at 110% of threshold for the three different 

stimulation types relative to ‘conventional’ stimulation are shown in Figure 6-6. These were 

calculated using stimulation delivered at 0.5Hz and with the muscle found to have the greatest 

response at threshold for the ‘single’ stimulation type. As anticipated, at 110% of threshold for 

each stimulation type, there are no statistically significant differences between motor 

responses. 
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Figure 6-5: The average current required at resting motor threshold for each stimulation type 
Error bars show standard error. A Wilcoxon signed-rank test was conducted to test for significance 
between groups. Following a Bonferroni correction for multiple comparisons, significance was defined 
as P < 0.017. A statistically significant difference was found for all comparisons: burst-single (P = 0.012), 
conventional-burst (P = 0.012), and single-conventional (P = 0.012).  

 

Figure 6-6: The average motor evoked response, of the muscle identified at threshold for the ‘single’ 
stimulation type, as a proportion of its response to ‘conventional’ stimulation 
The average motor evoked response (peak-to-peak) to 0.5Hz stimulation at 110% of threshold in the 
muscle with the greatest response at threshold for the ‘single’ stimulation type (8 participants, 1 muscle 
each, average of 15 responses). Results were normalised to the ‘conventional’ stimulation type response 
to allow comparison across participants. Note that typically the same muscle was found to give the 
greatest response at threshold across all stimulation types (‘conventional’, ‘burst’, ‘single’), but where 
variations were recorded, the ‘single’ stimulation type was used for this analysis. A Wilcoxon signed-
rank found no statistically significant difference between the groups (Bonferroni correction for multiple 
comparison, P<0.017): Single-to-Conv (P = 0.3125), Burst-to-Conv (P = 0.0781) and Single-to-Burst 
(P=0.4609). Statistical tests were conducted in MATLAB (The MathWorks Inc.). 

6.3.2 Assessment of comfort 

All participants completed the study and no major adverse effects were reported. Stimulation 

led to contraction of back and neck muscles, and this increased with amplitude, frequency and 
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duration. Despite being above motor threshold, no overt movements of the hand or arm were 

observed. Some participants noted a sensation at the back of the throat during higher frequency 

and amplitude stimulation. One participant reported mild tingling of the hands following 

stimulation, but this was believed to be caused by pre-existing external factors. Two scores of 

100 were recorded in two participants indicating the limit of mild discomfort had been reached. 

The first during the intensity study at 140% of threshold, and the other, during a 2s train of 

burst stimulation. Any discomfort ceased as soon as the stimulation was removed. 

The change in comfort score with stimulation frequency at 110% of resting motor threshold for 

each stimulation type is shown in Figure 6-7. It is evident that increasing frequency reduces 

comfort, and ‘burst’ stimulation was found to be statistically more comfortable than 

‘conventional’ and ‘single’ stimulation. Figure 6-8 shows that there was no statistically 

significant difference in comfort if the duration was increased from 0.5 to 2s, and Figure 6-9 

demonstrates that comfort was reduced by increasing stimulation intensity. 
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Figure 6-7: The average comfort scores for all participants 
The mean score from the three repetitions for each stimulation type was found, and then averaged 
across participants. Error bars show standard error. A comfort score of 0 is the most comfortable, and 
a maximum score of 100 would indicate the limit of mild discomfort. A Friedman test was conducted for 
each stimulation type, and a statistically significant effect for frequency was found for each stimulation 
type (single χ(4)2 = 29.7, P=6x10-6; burst χ(4)2=29.9, P=5x10-6; conventional χ(4)2=25.9, P=3.2x10-5). A 
comparison between stimulation types across all frequencies (Friedman test), found a statistically 
significant difference for stimulation type (χ(2)2 = 10.293, P = 0.006). Pairwise post-hoc analysis (Dunn 
test) found statistically significant differences between conventional and burst (P=0.005), and burst and 
single (P=0.010) following a Bonferroni correction (Psig=0.017). The difference between conventional and 
single was not significant (P=0.823).  

 

Figure 6-8: The effect of stimulation duration on comfort score 
The average comfort score of stimulation at 110% of threshold for a 2s duration compared to a 0.5s 
duration. A comfort score of 0 is the most comfortable, and a maximum score of 100 would indicate the 
limit of mild discomfort. Scores were only available for 7 participants. Error bars show standard error. A 
Wilcoxon Signed-Rank test showed no significant differences between 0.5s and 2s in any stimulation 
type (left-to-right P=0.672, P=0.176 and P=0.866).  
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Figure 6-9: The average comfort score for increasing intensity 
The intensity was increased from 90% of threshold to 140% of threshold for a 0.5s 100Hz train of 
‘conventional’ stimulation. Scores were only available for 7 participants. Error bars show standard error. 
A comfort score of 0 is the most comfortable, and a maximum score of 100 would indicate the limit of 
mild discomfort.  There was a statistically significant difference across all intensities (Friedman Test, 
χ2(5) = 34.417, P=2x10-6). 

6.3.3 An unexpected oscillatory response 

An unexpected oscillatory response was observed during the study. Examples are shown in 

Figure 6-10, Figure 6-11, and Figure 6-12. The frequency of oscillations and the percent of 

trials they appeared in was quantified using bootstrap statistical testing (see Figure 6-13 and 

Figure 6-14).  

Oscillations were intermittently present in all stimulation types, with stimulation at 100Hz 

generating the greatest number of occurrences across all muscles (Figure 6-13).  The number 

of significant occurrences was greatest for the ‘burst’ stimulation, with a tendency towards 

more 8Hz oscillatory behaviour in ‘single’ and ‘conventional’ stimulation types (Figure 6-13), 

although further testing would be required to draw stronger conclusions about this. As on 

average the ‘burst’ stimulation generated a larger MEP (see Figure 6-6), this might partially 

explain the greater number of oscillatory responses found for this stimulation type.  

To demonstrate that this oscillation was driven by the stimulation and was not the product of 

an underlying tremor or ‘background noise’, the dataset from the increasing intensity study was 

analysed (Figure 6-14-A). The frequency of oscillations appears to be independent of intensity, 

which suggests a possible intrinsic oscillator. However, there is a peak and then drop-off in the 

number of significant trials between 120 and 140% (see Figure 6-14-A inset). 
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Instances of oscillations were found to intermittently occur in all muscles tested (Figure 6-14 

– B) and typically, with a peak at 10Hz, although L-FDI (left hand FDI) and R-FDS (right hand 

FDS) peaked at 8 and 14Hz respectively. It might have been expected that the frequency of 

stimulation would vary with, say, proximal vs. distal muscles, as the reflex arc length changes, 

but this does not appear to be the case in this dataset. Instead, these instances of greater power 

at 8 and 14Hz may be the result of inter-participant differences (see Figure 6-14-C).  Oscillatory 

behaviour was elicited in all participants, although some participants did show a larger number 

of significant trials (Figure 6-14-C).  

Typically, oscillations appear to be driven by stimulation onset, i.e. the start of the oscillation 

corresponds to the first stimulus (Figure 6-10, Figure 6-11, and Figure 6-12). This suggests that 

this effect is not the magnification of on-going background oscillation. Despite being initiated 

in synchrony, in some cases, oscillations were observed to shift relative to one-another, this is 

shown in Figure 6-10 and Figure 6-15. Here, two muscles (L-FDI, L-EDC - Figure 6-15) appear 

to be oscillating at different frequencies, suggesting that they are acting independently and that 

there is not a common oscillator maintaining synchrony between these muscles, as might be 

expected with a central pattern generator (CPG).  Furthermore, there are potentially two 

independent oscillators within the same muscle (R-APB, Figure 6-10). It is plausible that the 

different frequencies observed in different muscles are the result of different reflex loop path 

lengths, but as different frequencies may be present within the same muscle, the cause is less 

clear.  

Synchronous oscillations were observed consecutively in agonist / antagonist muscle pairings, 

i.e. EDC and FDS - Figure 6-12), suggesting that this is not purely the activation of a stretch 

reflex loop or CPG which would be expected to inhibit the antagonist muscle.   
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Figure 6-10: An example of oscillatory behaviour  
Recorded during 0.5s of ‘conventional’ stimulation at 130% of motor threshold at 100Hz. R- indicates a 
muscle on the right hand side, and L- the left. In this example, there are approximately 6 oscillations in 
0.5s period (12Hz). Stimulation timing is shown in red triangles and the y-axis shows the EMG signal in 
volts. The latency from the first stimulus to the first response is approximately 13.5ms, 12.5ms and 
10.5ms for R-APB, L-FDI and L-EDC respectively (calculated by using the Spike2 graphical user interface 
(Cambridge Electronic Design Ltd.)). Two oscillations within the same muscle are highlighted in the R-
APB (red & green arrows). The stimulus artefact has been blanked. 

 
Figure 6-11: An example oscillatory behaviour at a range of frequencies  
Recorded using ‘conventional’ stimulation, 110% of threshold, left-hand FDI. Each red triangle indicates 
a stimulus, and the y-axis shows the EMG signal in volts. The stimulus artefact has been blanked. 
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Figure 6-12: An example of strong oscillations across multiple muscles  
A 0.5s EMG signal recorded using ‘conventional’ stimulation at 130% of threshold. Each red triangle 
indicates a stimulus, and the y-axis shows the EMG signal in volts. The stimulus artefact has been 
blanked. 
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Figure 6-13: The output of bootstrap statistical testing of EMG collected during the first 0.5s stimulation 
train at each test frequency (20, 50, 100Hz) for each stimulation type (‘conventional’, ‘burst’, ‘single’)  
This analysis was conducted to identify which muscles showed significant oscillatory power over a range 
of frequencies. Each muscle was treated as a separate trial, giving 64 trials per test frequency and 
stimulation type (8 participants, 8 muscles). A peak in number of significant trials at particular frequency 
is associated with an unexpected oscillatory behaviour observed in the EMG signal during stimulation. 
The definition of a significant trial is given in 6.2.6. 
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Figure 6-14: The output of bootstrap statistical testing of the EMG signals collected for 0.5s trains of 
‘conventional’ stimulation at intensities 90 to 140% of resting motor threshold  
This analysis was used to identify which intensities (A – 64 trials), muscles (B – 48 trials) and participants 
(C - 48 trials) showed significant oscillatory power over a range of frequencies. A peak in number of 
significant trials at particular frequency is associated with an unexpected oscillatory behaviour observed 
in the EMG signal during stimulation. The definition of a significant trial is given in 6.2.6. A-inset shows 
the number of significant trials at 10Hz as function of intensity. It peaks at 120% of threshold before 
dropping off at higher intensities. The peak at ~2Hz may be a consequence of the 0.5s trial length.  
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Figure 6-15: A plot showing the a-synchronous behaviour of two oscillations  
Oscillations were recorded in the L-FDI (blue) and L-EDC (red) as shown in Figure 6-10. The phase angle 
(π to – π) for the two signals is shown at each time point. The first and last 50ms have been removed to 
avoid edge effects. It is evident that the frequency of the oscillation in the EDC is greater than that in the 
FDI, as the two signals drift in and out of synchrony. 

Motor responses were collected from two participants using two different approaches to muscle 

activation: peripheral nerve stimulation (PNS) (Figure 6-16), and a gentle voluntary contraction 

(Figure 6-17), to compare the oscillations observed during tSCS with any oscillatory behaviour 

that might be induced by these methods. Additionally, tSCS was delivered using Poisson firing 

(Figure 6-18) to investigate whether continuous stimulation at a constant rate was the cause of 

oscillations. 

  

Figure 6-16: The oscillatory motor response to peripheral nerve stimulation at 100Hz 
Panel A - The EMG signal from the right-hand APB for the first 1s of 2s of PNS delivered to the median 
nerve (participant #2). Red triangles indicate stimulation timing. Panel B - the corresponding power 
spectrum calculated using rectified EMG data for the 2s period. Statistical significance was tested using 
the previously described bootstrap approach with the signal divided into 10ms windows. P values < 0.05 
are marked with an * (8Hz and 10Hz).  
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Figure 6-17: The oscillatory motor response to a gentle contraction 
Panel A - The EMG signal recorded from right-hand APB during a gentle sustained extension of the thumb 
(participant #2). Panel B – The power spectrum of EMG signal with a small peak between 6 and 10Hz. 
This was found to be statistically significant (P<0.05, marked with *) as tested using the previously 
described bootstrap approach with the signal divided into 10ms windows. Note that this example was 
selected from several contractions as it showed the most obvious oscillatory behaviour.  

  

Figure 6-18: The oscillatory motor response to tSCS controlled by a Poisson process 
Panel A – A 100Hz stimulation train with stimulation timing controlled by a Poisson process. Red 
triangles show the stimulation timing. Panel B - the corresponding power spectrum. This dataset was 
collected from participant #3, right-hand FDS, as this muscle had previously been shown to give a strong 
oscillatory response for this participant. Statistical significance was tested using the previously described 
bootstrap approach with the signal divided into 10ms windows. P values <0.05 are marked with an * 
(10Hz and 12Hz). 
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6.4 Discussion 

6.4.1 Comfort study 

Pulse modulated high frequency stimulation (‘burst’) was significantly more comfortable than 

‘conventional’ and ‘single’ stimulation across a range of frequencies from 0.5Hz to 100Hz at 

110% of resting motor threshold for that stimulation type. There was no significant difference 

between ‘single’ and ‘conventional’ stimulation, suggesting that when different motor 

thresholds are accounted for, high frequency bursts of stimuli are more comfortable than trains 

of single stimuli. However, the mean difference between ‘burst’ and ‘single’ stimulation was 

just 6 points on the comfort scale, and between ‘burst’ and ‘conventional’ it was 4, which is 

only a small percentage of the total scale. As anticipated, increasing the intensity and frequency 

reduced the comfort of stimulation, but contrary to expectations, a longer stimulation duration 

did not lead to a reported increase in discomfort. Although, it should be noted that the 2s trains 

were delivered at the end of the session, and participants may have become more accustomed 

to stimulation by this point, and may not account for the time delivered in their assessment.  

As anticipated, there was no significant difference in size of motor response elicited at 110% 

of resting motor threshold for the different stimulation conditions (‘burst’, ‘conventional’ and 

‘single’ - Figure 6-6). However, there was a trend for ‘burst’ stimulation to deliver slightly 

larger responses, which might have been expected to lead to it being reported to be slightly less 

comfortable, but as discussed, the contrary result was found. It is suggested that the motor 

threshold reflects the stimulation magnitude required to elicit a posterior root reflex [101]. 

It was shown that high frequency bursts of stimuli elicit motor responses at a lower currents 

than a single stimulus of the same pulse width (‘burst’ versus ‘single’ - Figure 6-5). This 

demonstrated that the temporal summation of sub-threshold stimuli can lead to lower 

thresholds in terms of current amplitude. That is, a single 50µs pulse required a significantly 

higher current than a train of 50µs pulses at 10kHz to produce a similar motor response. This 

has previously been described as the Gildemeister effect [175]. Furthermore, the ‘burst’ 

stimulation type could be refined, as it is unlikely that 10 was the optimum number of stimuli, 

and any reduction in train length would be anticipated to increase comfort. 

Therefore, there is evidence that ‘burst’ stimulation is more comfortable than a single stimulus, 

but the small benefits shown in this study do not necessarily justify the development of 

specialist technology to deliver pulse modulated high frequency stimulation. Nevertheless, 
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there are caveats to this statement. Firstly, stimulation was not applied with any refinement, 

such as the aforementioned reduction in train length or features such as ramping the stimulation 

on or off. It may be that ramping can improve comfort by reducing transient currents and that 

these improvements will create greater differences between stimulation conditions. Secondly, 

monophasic stimulation was used during this study, and it is possible that biphasic stimulation 

would show greater differences between stimulation types. However, anecdotal evidence from 

pilot work conducted in the laboratory suggested that biphasic stimulation was slightly less 

comfortable due to stimulation of back muscles proximal to the iliac crests. 

The discomfort caused by the stimulation in this study was typically reported to be two-fold. 

The shock or surprise caused by an unexpected contraction of back and neck muscles, and the 

involuntary contraction of those muscles. The contractions may have been magnified by the 

use of a 5x5cm cathodal electrode over the C7 vertebra. However, pilot work using Ø2.5cm 

and Ø3.2cm round electrodes found that these caused greater discomfort directly underneath 

the electrode. Refinement of the stimulation profile (i.e. ramping) may improve comfort 

sufficiently to enable the use of a smaller cathodal electrode, and subsequently lead to further 

improvements in comfort. Some participants reported a sensation at the back of the throat 

during stimulation, which was possibly due to contraction of neck muscles and/or the 

stimulation of afferent pathways. Identification of the cause of this will require further 

investigation. 

The stimulation did not lead to overt movements in the arm or hand in this study, and therefore, 

using the parameters reported here, it would not be useful as a direct substitution for FES. It is 

proposed that tSCS could be utilised in paired associative stimulation (PAS) plasticity 

protocols [43], or to alter the threshold and excitability of spinal pathways during training tasks 

either with or without FES. An example of the latter was recently demonstrated using epidural 

SCS, which was combined with long-term locomotion training, and reportedly lead to 

improvements in function [51]. Changes in neural plasticity in the motor system could be tested 

using methods similar to those described in Chapter 5, or with other techniques such as H-

reflex [176] and twitch interpolation [177]. This could firstly be trailed in healthy able-bodied 

volunteers, before moving to groups with neurological conditions.  

Finally, it should be noted that the majority of participants in this study worked in motor 

research, and it is anticipated that there might be a different perception of comfort outside the 

research setting. Further studies are required in healthy able-bodied volunteers to develop our 
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understanding parameters such as ramping and stimulation duration. It is recommended that 

where possible, these future studies operate at the lower end of the amplitude, frequency and 

duration values reported here. 

6.4.2 Oscillatory responses 

6.4.2.1 What are the possible sources of the oscillatory responses? 

An unexpected oscillatory behaviour was observed during stimulation at 20, 50 and 100Hz 

(Figure 6-10, Figure 6-11, and Figure 6-12). It had been anticipated that stimulation would 

drive motor responses at the stimulation rate, i.e. 20, 50 or 100Hz, as the relative refractory 

period for median nerve and thenar muscles has been reported to be 5ms [178], suggesting 

firing rates of approximately 200Hz are possible. However, instead, bursts of firing at 

approximately 8 to 12Hz were observed, and this was consistent despite the stimulation rate 

being increased from 20 to 100Hz.  

The source of the oscillatory behaviour is unknown, but frequencies in the region of 10Hz have 

been widely reported in the motor system and ascribed to a number of factors: oscillatory 

activity in the central nervous system, motor unit firing properties, and mechanical and reflex 

loop resonances [179, 180]. This section looks at the evidence collected in this study, and 

endeavours to elucidate the most likely driver of these responses. 

6.4.2.2 Efferent pathways 

The most distal elements in the motor system are the muscle and the neuromuscular junction 

(NMJ). In a control study, peripheral nerve stimulation (PNS) elicited a 10Hz oscillation 

(Figure 6-16), and as this will have directly stimulated efferent pathways, it could be evidence 

that the source of oscillations was distal to the spinal cord. However, as the number of responses 

per oscillation was observed to increase with frequency (see Figure 6-11), this suggests a 

waxing and waning control system, which would require more complex networks than are 

anticipated to exist at the NMJ. Furthermore, as mentioned above, the relative refractory period 

for median nerve and thenar muscles has been reported to be 5ms [178] and therefore, responses 

at higher frequencies would be anticipated. PNS will also stimulate afferent pathways, so the 

motor response from this stimulation may also exhibit the properties of other elements of the 

motor system.  

Similarly, if we consider this to simply be the property of a motor neuron located in the spinal 

cord, we cannot explain the waxing and waning responses observed in Figure 6-12. Instead, 
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we might anticipate a single response followed by a period of slow hyperpolarisation, similar 

to that observed at 10 and 20Hz (Figure 6-11). Instead, increased firing within oscillations at 

50 and 100Hz was observed. Motor units have been reported to fire doublets, with triplets much 

rarer, at feasible inter-spike intervals for this protocol [181]. However, it is not clear that this 

is what is being observed here, and some trains appear to contain 4-peaks (Figure 6-12). 

Researchers have previously shown that when the ventral spinal cord surface is directly 

stimulated (i.e. likely efferent pathways), motor responses at 100Hz are recorded, and do not 

show the 10Hz oscillatory behaviour described here [182]. The evidence shown here, is 

indicative of a more complex mechanism that is either internal to the spinal cord or the 

networks that interacts with it. 

It should be noted that with sufficiently high currents, tSCS may directly stimulate efferent 

(ventral) pathways [101]. This might account for the drop-off in oscillatory behaviour observed 

at higher intensities (Figure 6-14-A inset) [101]. Alternatively, it could be that the merging of 

several oscillatory responses at various frequencies around 10Hz (e.g. Figure 6-10-A) leads to 

the reduction in 10Hz power. Finally, a 100Hz 0.5s stimulus train with Poisson firing (Figure 

6-18), showed similar oscillatory behaviour with a peak around 12Hz, which provides evidence 

that the oscillations are not a special property of stimulation delivered with a consistent inter-

stimulus interval. 

6.4.2.3 Central pattern generators (CPGs) 

Researchers have reported that transcutaneous and epidural SCS stimulation can be used to 

drive central pattern generators (CPGs) located in the lumbar spinal cord which are associated 

with the lower limb.  The motor output of these CPGs also forms a modulating envelope, but 

there is little to no evidence of CPGs for the upper limb in humans. Furthermore, investigation 

of the responses recorded here, found that oscillations simultaneously occurred at different 

frequencies in different muscles (Figure 6-15), and possibly within the same muscle (Figure 

6-10). This is contrary to the idea of a CPG that might be anticipated to keep oscillations in 

synchrony. Synchronous oscillations were also observed in agonist / antagonist muscle 

pairings, i.e. EDC and FDS (Figure 6-12), which could be considered contrary to the firing of 

a CPG, as depending on the movement, it might be expected to inhibit the antagonist muscle 

when activating the agonist.   
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6.4.2.4 Dorsal roots, peripheral nerves and intrinsic oscillators 

Transcutaneous SCS has been shown by Minassian et al. to stimulate afferent pathways, 

believed to be group Ia afferents located in the dorsal roots, to elicit posterior root-muscle 

reflexes [101]. A large fibre diameter, location in the root, fibre curvature and a relatively low 

threshold, are all cited as possible reasons for this bias towards group Ia afferents over other 

sensory fibres. Minassian et al. also showed that following a first stimulus, a second stimulus 

50ms later, would elicit either no response or a response with a reduced amplitude [101]. They 

suggested that this refractory period was evidence that responses were produced by afferent 

reflex pathways, rather than direct activation of motor neurons. Indeed, this 50ms window is 

in agreement with the responses reported here, but we are additionally showing bursts of 

oscillatory activity, which suggests a more complex mechanism than a simple refractory 

window. Similar 10Hz oscillations have been noted during epidural stimulation of the non-

human primate spinal cord [183], which as noted by Minassian et al., may stimulate the dorsal 

roots via the cerebrospinal fluid, rather than directly stimulating neurons located in the spinal 

cord [101]. Investigators have shown that similar neural structures are likely stimulated by both 

transcutaneous and epidural SCS [58]. Interestingly, group Ia fibres are the sensory fibres for 

muscle spindles, and muscle spindle feedback has been associated with neuroplasticity and 

function recovery in a mouse SCI model [184, 185]. 

Ten hertz dorsal root potentials have been recorded from the lumbar spinal cord in 

anaesthetised rats [186]. Here, the authors concluded that the isolated cord contained a 

synchronous oscillatory mechanism at approximately 10Hz which was inhibited by impulses 

in the dorsolateral funiculus and synchronised by intrinsic axons in the Lissauer tract. Both of 

which lie in close proximity to the dorsal roots. Similarly, a spinally mediated 10Hz rhythm 

has been recorded in sympathetic nerve activity in cats following electrical stimulation of the 

dorsolateral funiculus, with the spinal cord and peripheral nerves suggested as a possible source 

[187]. These studies both provide evidence for the possible existence of intrinsic oscillators 

within the spinal cord, and the latter, a possible peripheral nerve component. 

Oscillations at frequencies around 10Hz are a prominent feature of muscle spasms or clonus 

following SCI [188, 189], with the EMG pattern described as consisting of “packets” of activity 

[190], which is an apt description of the oscillations observed here (Figure 6-10, Figure 6-11, 

and Figure 6-12). It has been proposed that since spinal cord lesions interrupt supraspinal 

connections, the most likely source of these spasms is the spinal cord and its peripheral 

feedback loops [189]. A leading view was that recurrent activation of stretch reflexes caused 
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this clonus, as evidence suggested the frequency of clonus correlated with reflex path length 

[190, 191]. However, more recent research suggest that clonus may be caused by an interaction 

of central mechanisms and peripheral events [190, 192]. Interestingly, as early as the 1980s, 

SCS has been linked to reduction in clonus in people with multiple sclerosis [193], and more 

recently, the control of spasticity following SCI [194], where it was noted the frequency of 

stimulation must be in the range of 50 to 100 Hz to be effective. 

A possible explanation for the different oscillation frequencies between and within muscles 

(see Figure 6-10 and Figure 6-15), is that additional central delays are caused by activation of 

propriospinal-like (non-monosynaptic) pathways [195], or as stimulation is located over the C7 

vertebrae, and therefore likely disproportionally targeting C7 and C8 neurological levels, the 

differences could be accounted for by delays between segmental layers. 

6.4.2.5 Cortical input 

Studies have shown that recordings from both the cortex and periphery contain signals with a 

strong 10Hz component, but the lack of corticomuscular coherence at 10Hz is of note [196]. 

Williams et al. proposed that spinal interneuronal circuits may have the capacity to reduce 

10Hz cortical inputs through phase cancellation, and a component of this may be mediated by 

Renshaw Cells acting through recurrent inhibition [197, 198]. It is possible that tSCS is 

disrupting this system, and this results in the oscillations observed here. However, it was shown 

that a gentle voluntary contraction (see Figure 6-17) can also produce an oscillatory response, 

and it seems likely that near motor threshold tSCS is replicating this, rather than interfering 

with an on-going phase cancellation. Furthermore, it does not seem likely that the drop-off in 

10Hz power at higher frequencies (Figure 6-4-A), is caused by the late activation of a phase 

cancellation system. Nevertheless, Renshaw cells may be a possible intrinsic oscillator that 

could modulate the output of motorneurons, although researchers have questioned whether 

Renshaw cells are present in distal upper limb muscles [192, 199, 200]. Either way, intrinsic 

oscillators that act locally (rather than globally, like a CPG) on either a single or group of motor 

units, and receive input from afferent fibres, seem a credible explanation for the effects 

observed here. 

6.4.2.6 Summary 

By introducing an external stimulus to the motor system, possibly through Ia afferents in the 

dorsal spinal roots, it appears that we are replicating a gentle tonic input (similar to that shown 

in Figure 6-17) which evokes a response in a small number of motor units. The response occurs 
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at 10Hz as the motor system has an intrinsic tendency through intraspinal networks and reflex 

loops to respond at this frequency [179, 180], which may be a beneficial property of the motor 

system, as it restricts the continuous firing of individual motor neurons that could lead to 

fatigue. As the intensity of stimulation is increased, this clear 10Hz oscillation reduces as 

further motor units are recruited at range of frequencies around 10Hz. To explore this further, 

in addition to a larger dataset, the importance of reflex loops could be tested either by: eliciting 

oscillations in the lower limb, cooling of the upper limb to reduce conduction times, or tendon 

vibration [101]. 

Following suitable further testing, tSCS may enable the modulation of hyper-excitable reflex 

pathways [17, 162] and intramuscular coherence which have been associated with clonus and 

spasticity in SCI [201]. Furthermore, if propriospinal pathways are being activated, modulation 

of this system could be explored for reducing motor deficits that lead to problems such as trips 

and falls in some neurological conditions [202]. The 10Hz response suggests that intrinsic 

pathways for motor unit recruitment are being activated, which could offer advantages over 

stimulation that targets efferent pathways (e.g. ventral SCS, PNS and FES) as it may reduce 

muscle fatigue and promote natural recruitment of muscle fibres, although it does not offer 

selectivity of muscles. Therefore, tSCS may provide an important pathway for manipulating 

the motor system for therapeutic applications, and could also have a role in the diagnosis of 

neurological conditions where oscillations may be impaired. 

6.5 Conclusion 

In a small sample of healthy able-bodied volunteers, high frequency bursts of transcutaneous 

spinal cord stimulation (tSCS) have been shown to be significantly more comfortable than 

stimulation protocols that use a single stimulus, when compared at 110% of the resting motor 

threshold for each stimulation type. While reported differences in comfort were small, this 

might be improved through refinement of parameters such as the number of stimuli contained 

within a burst and the use ‘ramping’.  

Oscillations at approximately 10Hz were observed in EMG signals when stimulation was 

delivered between 20 and 100Hz. These responses were intermittently observed across all 

muscles and participants, particularly at higher intensities and frequencies of stimulation, 

although a drop-off at the highest intensities was also observed. It is proposed that these 

oscillations may be caused by the activation of spinal networks and reflex pathways which 

have an intrinsic propensity to respond at 10Hz. While further research must be conducted to 
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understand the underlying mechanisms and the safety of interventions, tSCS could have 

important applications in the treatment of spasticity and clonus, as it may allow the activation 

and manipulation of spinal networks in a manner not accessible by other forms of stimulation.  

Furthermore, while not a direct substitute for FES, tSCS could be utilised in paired associative 

stimulation (PAS) plasticity protocols and to alter spinal cord excitability in neurological 

conditions that lead motor impairment. These protocols could subsequently be integrated into 

closed-loop rehabilitative devices such as the one developed in this thesis, or novel wearable 

devices. 
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General discussion: A novel 
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7.1 Overview 

There is a world-wide demand for effective interventions to improve upper limb outcomes 

following neurological conditions such as stroke and spinal cord injury (SCI). While evidence 

for current interventions is limited, an understanding of the role of associative learning and 

neural plasticity during recovery is emerging from the field of neuroscience. In this thesis, a 

novel device to manipulate and enhance this recovery process was developed. The device 

paired voluntary brain activity with stimulation to the peripheral motor system to facilitate the 

completion of a reaching and grasping task, and sought to improve function through Hebbian 

plasticity mechanisms. Furthermore, the device was designed to overcome common barriers to 

translation from the laboratory to the clinic: cost, robustness, adaptability and ease of 

independent use.  

It was demonstrated in a series of feasibility studies that following a short intervention, selected 

stroke survivors and selected individuals with SCI were able to use the device and gave positive 

feedback. Furthermore, some participants made modest gains on an object manipulation task, 

and a subsequent study showed that stroke survivors may continue to make gains with longer 

periods of training.  

These studies added to a growing body of evidence that following stroke, and the closing of 

the ‘critical window’ [27], at least modest functional gains are possible [29, 30] and that these 

changes may be sustained for at least a short period following the completion of an intervention. 

While the modest improvements shown were promising, it is clearly desirable to optimise 

interventions to maximise functional gains. To this end, and to understand how the device 

might be acting on the motor system, a transcranial magnetic stimulation (TMS) study was 

conducted in healthy abled-bodied volunteers to measure changes in corticospinal excitability 

following a short intervention with device. Importantly, facilitation was only observed in the 

antagonist flexor muscle, and this facilitation could be increased by adjusting the relative 

timing of the cue and stimulation onset, to theoretically converge the ascending and descending 

signals in the spinal cord. Differences were also found between conditions in which stimulation 

was delivered concurrent with movement and alternatively, during a rest period between 

voluntary movements, suggesting different mechanisms of action, which might be important 

in a rehabilitative setting. 
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The findings of this study were contrary to the original hypothesis that the stimulated muscle 

(EDC) would be facilitated following an intervention with the device, and evidence that the 

mechanisms of action of paired associative stimulation (PAS) plasticity protocols still need to 

be fully understood. The study has added further evidence to a growing consensus that an 

extensor / flexor bias exists in the motor system, and that the outcomes of studies such as this 

must be interpreted with care. It is unknown how these results in healthy able-bodied volunteers 

would translate to stroke survivors and participants with SCI, but the amplitude of motor 

evoked potentials and the resting motor threshold found using TMS, have both been correlated 

with spasticity in the hand and other motor function measures following stroke [164]. 

It is important that interventions are optimised and shown to produce consistent results as larger 

trials should be considered as ‘one-shot’ endeavours. A negative result means that further 

funding is unlikely, especially for changes in the protocol that would be perceived as minor, 

such as the refinement of the stimulation onset time. Furthermore, if small changes can improve 

the efficacy of an intervention, there are important consequences for cost, participant uptake 

and sustainability of the therapy. This is a sentiment echoed in the Medical Research Council  

guidelines on ‘Developing and evaluating complex interventions’ [203]. It states that there is a 

‘need for greater investment in developmental studies prior to large scale evaluations’ and 

emphasises the need for an intervention to have coherent theoretical basis before proceeding to 

a large-scale evaluation. While the intervention developed in this thesis has a good theoretical 

basis, it has become apparent that further studies are required to develop our understanding of 

neural plasticity in both the healthy and impaired motor system. 

Finally, this thesis explored a novel stimulation technique: transcutaneous spinal cord 

stimulation (tSCS). It was demonstrated that responses could be evoked in the upper limb using 

trains of stimuli that were within reasonable comfort levels for healthy able-bodied volunteers, 

and that at 110% of resting motor threshold for each stimulation type, high frequency bursts of 

stimuli may be more comfortable than a single stimulus. As responses did not lead to overt 

movements of the hard or arm, for the parameters tested, tSCS is not suitable as a direct 

substitution for functional electrical stimulation (FES). An unexpected ~10Hz oscillation was 

observed in motor responses, and this provided insights into which neural structures may be 

activated by tSCS. While further work is required to characterise and understand the safe 

application of this technique, it might enable the activation of spinal and reflex pathways in an 

alternative manner to other stimulation techniques, and provide a new method of manipulating 

neural plasticity, in particular, for the treatment of clonus and spasticity. 
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7.2 Translational pipeline 

The translation of basic science into the health service is coming under increasing scrutiny 

[204-206]. Classically, the translation pipeline is divided into unidirectional steps: Type 1 and 

Type 2, with Type 1 making the link between basic science and clinical trials, and Type 2, the 

subsequent move into health service research and delivery [205]. However, for complex 

conditions such as stroke, there are now calls for new bidirectional approaches, in particular to 

overcome the divide between basic scientists, clinicians and user-groups [205].  

Further to this, healthcare technology is covered by rigorous regulatory frameworks, and the 

translation of any device out of the laboratory is subject to stringent checks. While important 

for consumer protection, these regulations are felt by some to be particularly detrimental for 

devices that target a relatively small number of people, such as bladder control following SCI 

[207], and likely exacerbates a gap between academia and industry. Hansjörg Wyss, the 

philanthropist behind the Harvard University’s Wyss Institute for Biologically Inspired 

Engineering, points out that while academics do not suffer from industry’s aversion to risk, 

they primarily “publish papers and make widgets” [208]. 

More fundamental changes to the wider research environment are required to overcome 

challenges in the translational pipeline. This could be driven by philanthropists such as 

Hansjörg Wyss, or through empowerment of funding-bodies that represent user-groups. For 

example, charities and not-for-profit organisations such as Wings for Life [209], Aspire [210] 

and Stroke Association [211], who have a remit to ensure that research reaches further than the 

next academic publication. However, to influence national and international policy, large 

funding bodies such the Wellcome Trust [212] will have to be engaged. Furthermore, research 

centres should be encouraged to not only integrate medical sciences and engineering, but also 

social scientists with expertise in policy.  

This thesis has tried to overcome many of these obstacles to Type 1 translation, for example, 

by employing a simple and robust design, involving clinicians and user-groups, using existing 

non-invasive techniques, and targeting the large number of people effected by stroke. 

Nevertheless, it is likely that significant changes to the design will be required before it can be 

translated outside the laboratory for further evaluation, and later, for possible 

commercialisation. Here, a partnership with industry may be beneficial, although concerns over 

intellectual property could take precedence over the needs of the end-user.  
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Once developed, the system described in thesis would meet many of the criteria discussed in 

the literature [73] and the introduction to this thesis. For example, Mann et al. highlighted the 

need for a triggering device to allow participants to receive FES whilst completing functional 

tasks [80].The device would also be suitable for use across a number of study centres, and its 

simple operation would be favourable in trials without technical support. This would allow the 

promising results shown in this thesis to be tested further. It is also anticipated the device would 

be available at relatively low-cost. Nevertheless, data presented in this thesis indicates that the 

device, in its present form, would only be suitable for a sub-population of stroke-survivors and 

people with SCI. For that reason, it is envisaged that the developed system would be a valuable 

addition to a therapists 'toolbox', to be used when appropriate for a particular individual. The 

feedback from the physiotherapist focus group in Chapter 2, suggested that the device would 

be met with a positive reception by this potential user-group. 

In recent decades, technology and our understanding of neuroscience have made significant 

advances, but the translational environment needs to keep pace. While it is the responsibility 

of scientists and engineers to remain focused beyond the first publication, to avoid overstating 

their findings, and to work with clinicians, commercial partners and social scientists, this effort 

must be supported by funding bodies and research institute management who are able to create 

an environment that enables this. They must recognise that there is a ‘need for greater 

investment in developmental studies prior to large scale evaluations’ [203], and provide 

researchers with the job security and continuity required to complete thorough developmental 

studies, allowing time to refine, optimise and understand new technology.  

7.3 A closed loop? 

In traditional engineering disciplines, a closed-loop does not take input from a human operator, 

but of course, this definition is redundant for a neural interface which must interface with a 

human (or animal). Jackson and Zimmerman [24] described a bi-directional coupling between 

the nervous system and neuroelectronics which allows information to travel in a ‘closed-loop’. 

They went on to outline a system which decodes neural signals to control an effector which in 

turn gives feedback to the user, typically through visual feedback, although afferent feedback 

could be used. This type of brain-machine interface (BMI) will typically record neuronal 

information and convert it into actions via external software or hardware, and can be considered 

to be ‘brain-led’. That is, the loop is initiated by a neural commands or signals generated by 

the brain which are then sensed by the machine.  
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However, this approach, as well as other approaches that try to record or infer brain activity 

via artificial means, neglect that sensory pathways such as vision, touch and sound, are used 

by computers to interact with the central and peripheral nervous system on a daily basis. There 

was a clear opportunity to exploit this existing biological machinery, to create a ‘machine-led’ 

closed loop.  

This approach is now being adopted by researchers such as Foysal et al. [151] who used a non-

invasive auditory stimulus to activate reticulospinal pathways. They pair this activation with 

peripheral nerve stimulation (in an open loop) to induce plasticity, which they believe may be 

beneficial for stroke survivors. This device can be considered ‘machine-led’, as it is the 

machine, via an auditory stimulus, that initiates and drives the loop through an in-built 

knowledge of sensory processing by the brain. Rather than the machine sensing the brain, the 

brain senses the machine.  

The same approach is utilised in this thesis. The device forms a closed-loop with the user, but 

in contrast to conventional BCIs or closed-loop systems, it uses knowledge of how a trained 

human brain will react to a sensory stimulus (i.e. a cue or a command) to deliver appropriately 

timed stimulation. More traditional means are employed to cease stimulation at the end of the 

movement, i.e. the detection of movement, which is more commonly accepted as being part of 

a closed-loop system [76]. 

It is predicted that as artificial intelligence and our understanding of the brain and nervous 

system advances, ‘machine-led’ closed-loops that manipulate how the brain and nervous 

system will react to different stimuli or inputs will become more prevalent in the field of neural 

prostheses.   

7.4 The future of FES 

While the origins of electrical stimulation can be traced back much further, feasibility studies 

of novel FES devices have been conducted since the 1970s. In 1975, Merletti and colleagues 

designed an upper limb FES orthosis, and reported significant functional rehabilitation of 

hemiplegic participants [213]. They proposed that an extensive clinical evaluation program 

was justified. Numerous devices have since been developed [65, 214], and with the 

modernisation and miniaturisation of electronics, and an improved understanding of 

neuroscience [24], 2018 has been described as a ‘critical time’ for engineered neuroplasticity 
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[215]. However, with over 40 years since these pioneering FES studies, should we be worried 

that FES simply is not good enough? 

Unfortunately there is a common theme, both the 2014 Cochrane Review [11] (‘Cochrane 

overview: Interventions for improving upper limb function after stroke’) and a recent 

systematic review with meta-analysis by Eraifej et al. [79] point to the lack of high quality 

evidence for FES based interventions following stroke. This is likely because many studies 

stop after small pilot and feasibility studies, and simply conclude that further studies should be 

undertaken, without taking this next step. There are many reasons for this, large clinical trials 

are expensive and challenging to run, and it is likely that many prototype devices do not offer 

the flexibility required for clinical practice, and require on-going engineering support. Other 

groups have indeed taken the next step, but only to find a negative result [216, 217]. 

To counter this challenge, a collaboration including The National Clinical FES Centre, devised 

the FES-UPP device [73]. It was specifically designed for therapists with little or no FES or 

programming experience, and uses inertial measurement units (IMU) to track a participant’s 

movement, applying stimulation at the correct time. Alongside this thesis, the FES-UPP device 

shows a convergence in the field, recognising that devices not only need to provide electrical 

stimulation at an appropriate time, but must be user friendly, flexible and suitable for the clinic.  

The element of doubt surrounding FES led therapies suggests that outcomes are either 

inconsistent, too slow to show improvements, plateau, not substantially better than alternatives, 

or that evidence of effectiveness is lacking [11, 218, 219]. This might be countered by refining 

stimulation, treatment and evaluation protocols, and by developing an understanding of the 

theoretical basis of the intervention prior to larger studies. Furthermore, recruitment needs to 

be informed by an appreciation of who might respond to the treatment, i.e. a-priori 

classification of likely ‘responders’ and likely ‘non-responders’. In addition to functional 

assessments, this could be achieved by neuroimaging and modelling studies that predict 

recovery outcomes [28].  

It is important that research groups do not rush towards large scale evaluation of devices, but 

take the time required to understand the underlying mechanisms, and refine and optimise 

treatment and stimulation protocols, recognising under what circumstances they may be 

effective.  
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7.5 Further studies 

The conclusion of this thesis should not simply be that a larger study is required. The device 

should continue to be developed ensuring that it is safe, adaptable, easy-to-use and modular, 

but further to this, studies should be completed to understand the mechanism of action, and 

how the intervention can be refined.  

To this end, studies in healthy able-bodied volunteers should be conducted to confirm the 

additional facilitation brought about by the optimised stimulation timing, and whether this can 

be further enhanced. Separate studies should then be conducted with stroke survivors and 

individuals with SCI, to confirm if the results are replicated in these groups. In stroke survivors, 

this could be conducted using the affected and unaffected limb, providing a natural control. 

The output of these studies, and any subsequent studies, would be used to produce an optimised 

intervention protocol with an identified mechanism of action.  

To investigate a possible extensor / flexor bias within the motor system, a review of upper and 

lower limb plasticity studies should be conducted, with a focus on: which muscles were 

stimulated, whether a facilitation or suppression was observed, and if the stimulation was 

paired with cortical activity. This will help the scientific community to understand and interpret 

the outcomes of these studies, and how they might translate to a rehabilitative setting.   

A paired associative stimulation (PAS) study in healthy abled-bodied volunteers using tSCS, 

similar to that shown in animal models [174], would demonstrate whether this technique has 

the potential to facilitate descending commands. Furthermore, the oscillatory response should 

be further characterised, and bursts of stimulation optimised to enhance comfort. If shown to 

have potential therapeutic benefits, integration of the technology into a wearable device would 

be valuable engineering endeavour.  

The studies in this thesis have focused on chronic stroke and SCI (>6 months from injury). This 

was due to limited access to acute and sub-acute groups, and because natural recovery is 

believed to have plateaued during the chronic phase. While evidence has suggested that 

recovery is possible following the closing of the ‘critical window’, the importance of early 

intervention cannot be ignored. Following appropriate planning, it would be of interest to test 

the device in a sub-acute population. Use of the device, and subsequent use of the trained limb 

for activities of daily living, could be monitored using an activity watch, such as that reported 

by Da-Silva et al. [220].  
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7.6 Summary 

Global improvements in medicine mean that the non-fatal dimensions of disease and injury 

will become an increasing burden on healthcare systems world-wide [2]. This will lead to an 

increased emphasis on rehabilitation, which will require innovative therapeutic strategies. With 

regards to this, the scientific community has reasons to optimistic. Our knowledge of the human 

body has never been greater, and advances in the capability and availability of technology 

provides the tools and techniques necessary for exploiting this improved understanding. The 

closed-loop device developed in this thesis is an important step towards a novel solution for 

upper limb rehabilitation following stroke and SCI, but it is not the finished article. This thesis 

has highlighted gaps in our knowledge of how the motor system works, and how stimulation 

techniques interact with it. Progress will be made, but the pace of this is dependent on the 

ability of the research community to create a supportive, stable and inter-disciplinary 

environment, in which new technologies with a comprehensive theoretical basis can be 

developed. 
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