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Abstract

Asphaltenes constitute the heaviest, most polar and aromatic fraction of petroleum

crucial to the formation of highly-stable water-in-crude oil emulsions. The latter

occur during petroleum production as well as spills and cause difficulties to effi-

cient remediation practice. This work investigates the aggregation of asphaltene

‘monomers into nanoaggregates, the latter analogous to surfactant micelles. It is

generally accepted in the literature that in nanoaggregate form, asphaltenes create

elastic layers around water droplets enhancing the stability of emulsions. A better

understanding of the nanoaggregation process would enable a more efficient spill

remediation practice.

Ultrasonic charaterisation is deployed to infer asphaltene nanoaggregation in toluene.

Ultrasonic velocity measurement is a high-resolution non-invasive tool in colloidal

analysis shown to successfully identify surfactant micelle formation and has been

applied to asphaltene nanoaggregation in toluene. The high sensitivity of acous-

tic velocity to molecular rearrangements and ease in implementation renders it an

attractive method to study asphaltene phase properties. Currently, the onset of ag-

gregate formation is thought to correspond to an intersection of two concentration-

ultrasonic velocity regressions that suggest a critical nanoaggregate concentration.

In this work, measurements indicate a variation in the proximity of nanoaggrega-

tion which could be investigated further. This uncertainty is attributed to physico-

chemical heterogeneity of the asphaltene fraction driven by variation in molecular

size and a critical nanoaggregation region is proposed.

Asphaltenes were obtained from four petroleum samples and treated with ruthe-

nium ion catalysed oxidation to obtain information about their molecular structure.

Statistical analysis was performed to investigate the coupling between asphaltene

structures and velocity measurements and their impact on aggregation. A geo-

chemical characterisation of the parent oils was also performed. Finally, Bayesian

modelling of the ultrasonic measurements was performed to estimate the statisti-

cal likelihoods of a single aggregation concentration versus the aggregation region

hypotheses.
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Chapter 1. Introduction

The petroleum industry is crucial to meeting the global energy demand. Accord-

ing to the U.S. Energy Information Administration International Energy Outlook

2017 (USEIA, 2017), by 2050 ca. 80% of global energy demand will be supplied

by hydrocarbon sources. Figures 1.1 (a,b) illustrate the U.S. Energy Information

Administration global energy consumption forecast by source for all sectors (resi-

dential, transport, etc.). The role of renewables (‘Other’) will be only up to a half

that of liquid fuels, thus petroleum will remain crucial to global energy supply and

security.

The contribution of the petroleum industry to economies on a global scale is hard to

underestimate. For example, in countries like Saudi Arabia up to 90% of the prof-

its from extraction are taxed (EY, 2017), whilst the oil and gas sector contributes

to ca. 50% of the gross domestic product and 70% of export revenues (OPEC,

2018). Infrastructure developments for new exploration/extraction activities create

employment opportunities for local communities, as well as improve the local infras-

tructure, e.g. building new roads and accommodation facilities. Many petroleum

multinational corporations engage in philanthropic activities through charities, e.g.

Figure 1.1: Global energy consumption by source in quadrillion British thermal units
(Btu). One Btu ≈ 1055 Joules. Petroleum and other liquid fuels and denoted ‘Liquids’.
The author presumes renewable energy sources and hydrogen fuels are denoted ‘Other’.
Data taken from (USEIA, 2017).
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Chapter 1. Introduction

Figure 1.2: Petroleum lost due to tanker oil spills, data shown in thousands of tonnes. The
pie chart indicates the number of spill incidences assotiated with a loss of >700 tonnes of
oil. Data taken from ITOPF (2017).

Shell Foundation, Heroes of Tomorrow (Equinor/Statoil) and ExxonMobil Founda-

tion.

The increase in petroleum extraction in the last century and a lack of regulation at

the time, however, resulted in significant environmental damages, a great contribu-

tion to whom were made by petroleum spills. The latter occur due to anthropogenic

(as well as natural) phenomena, such as petroleum exploration, transportation and

refining (Franzetti et al., 2009; Zhang et al., 2011; Marchant & Banat, 2012; Rocha e

Silva et al., 2014; Sobrinho et al., 2013; Souza et al., 2014). Figure 1.2 illustrates

the amount of oil lost during tanker transportation, excluding explorational produc-

tion platform accidents, intentional discharges of oil and natural seeps. The largest

tanker spill was the Atlantic Empress spill in 1979 whereby 287 thousand tonnes

of oil was lost (ITOPF, 2017). The environmental hazards that petroleum spills

pose include toxicity to the marine and coastal ecosystem, evaporation of volatile

substances and contamination of beaches. The Exxon Valdez oil spill released ca.

30,770 tonnes (260,000 barrels) of oil resulting in the fatality of 30,000 birds of 90

species (Piatt et al., 1990) and up to 2,800 sea otters (Garrott et al., 1993). Loughlin

(2013) reported that 302 harbor seals were affected by the toxic fumes leading to

e.g. brain lesions, stress and disorientation (Peterson et al., 2003). The long-term

impacts of exposure to hydrocarbons were due to sub-lethal doses, nevertheless were

reported to have the potential to affect health, growth and reproduction (Peterson

et al., 2003). The spreading of hydrocarbons on water surfaces creates a film that

prevents air and sunlight entering the water column impacting the phytoplankton

2



Chapter 1. Introduction

habitat (Yeung et al., 2011). Figure 1.2, however, illustrates that the amount of oil

lost through tanker spillage in the 21st century is an order of magnitude below that

in 70-90s.

One of the largest recent oil spill (well blow out) events is the Deepwater Horizon

disaster in 2010 (Baelum et al., 2012; Liu et al., 2012; Reddy et al., 2012; Rocha e

Silva et al., 2014), whereby 4-5 million barrels (473-592 thousand tonnes) of light

crude were lost. The platform operating the Macondo well exploded on the 20th of

April of that year (BP, 2010). A combination of eight engineering and operational

faults, including operation under a lack of evidence of well integrity and faults in

the emergency systems, led to a leakage of gas and hydrocarbons onto the platform

causing a chain of explosions and the sinking of the rig (BP, 2010). The casualties

included 11 fatality and 17 injury events, and the estimated total cost to BP due to

criminal and civil settlements was $ 42.2 billion (Fontevecchia, February 5, 2013).

Water-in-oil emulsions (WOE) form during petroleum spills as a result of oil mix-

ing with sea water, whereby very little energy is required for emulsification to oc-

cur (Berridge et al., 1968). Typically, the volume of water in WOEs is ca. 30-

90% (Bridie et al., 1980; Fingas et al., 1994; Lee, 1999). The WOE stability is a

function of a multitude of factors, including the water content, water salinity (Ga-

fonova & Yarranton, 2001; Alves et al., 2014) and pH (Kokal, 2005; Elsharkawy

et al., 2008). The WOE emulsifying petroleum fraction(s) has been reported to be

the asphaltenes and (their interaction with) resins/microcrystalline waxes (Mackay

et al., 1973; Eley et al., 1988; Lee, 1999; Jestin et al., 2007). The so-called oil

‘chocolate mousses’ are highly-viscous emulsions (McLean et al., 1998) whereby the

proportion of water reached 70%, whose formation requires greater shearing forces

than that of the aforementioned WOEs (Bridie et al., 1980). Due to their high

water/oil proportion, mousses can solidify (McLean et al., 1998) and become unre-

sponsive to conventional methods of spill remediation, e.g. the use of dispersants

and burning (Bobra et al., 1992). When in the mousse state, the viscosity of the

resulting mixture can be orders of magnitude greater than that of crude oil (and

water) (Bridie et al., 1980). Combined with the high salt content of the formation

water, the high viscosity of the mousse increases pumping costs and may induce

corrosion of metal equipment (Kilpatrick, 2012). Sea water salinity can also greatly

increase the density of a mousse (Thingstad & Pengerud, 1983).

Asphaltenes, and specifically the natural interfacially-active emulsifiers within them (Stan-

ford et al., 2007a; Kilpatrick, 2012; Rocha et al., 2016), have been extensively re-
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ported to be the main cause of the high WOE stability. Bridie et al. (1980) weathered

fractions of Brent crude oil to initial boiling points (IBP) of 40, 125, 200, 275 ◦C

whereby the two former fractions did not form stable emulsions, the fraction at IBP

200 stabilised emulsions at ≤ 20 ◦C and the last fraction gave stable emulsions at

30 ◦C. Additionally, Bridie et al. (1980) measured how the formed emulsions would

spread on sea water, and the two highest IBP emulsions were stable at 5 ◦C and 15
◦C respectively. In terms of petroleum composition, they reported that the combi-

nation of asphaltenes and petroleum waxes was crucial to the formation of stable

WOEs, whereby the absence of either of the fractions would not be sufficient to

stabilise water in oil (Bridie et al., 1980). The importance of waxes and the droplet

size distribution in increasing the viscosity of WOEs has also been reported numer-

ously (Bridie et al., 1980; Thompson et al., 1985; McLean & Kilpatrick, 1997b; Lee,

1999).

The asphaltenes, or the asphaltene petroleum fraction, is a class of compounds

that is operationally defined as soluble in toluene and insoluble in n-pentane or

n-heptane (e.g. Andersen & Birdi, 1991; Sheu, 1996; Sjoblom et al., 2003, 2015;

Mullins, 2011). The features of an asphaltene fraction, therefore, are defined by the

precipitating solvent and can comprise a huge structural polydispersity (Andersen &

Birdi, 1991; Sjoblom et al., 2015; Schuler et al., 2015, 2017). A subfraction of the as-

phaltenes (Wu, 2003; Czarnecki & Moran, 2005; Stanford et al., 2007a,b; Czarnecki,

2009), that is reported to be more polar (Gawrys et al., 2005), stabilises the WOEs

by adsorbing at the water/oil interface forming rigid films resisting droplet coales-

cence (McLean & Kilpatrick, 1997a; Yarranton et al., 2000a; Gafonova & Yarranton,

2001; Sztukowski et al., 2003; Kokal, 2005; Elsharkawy et al., 2008; Harbottle et al.,

2014; Pauchard et al., 2014). Rocha et al. (2016) reported the asphaltenes to be am-

photeric materials that can be charged at low and high pH increasing their affinity

at the water-oil interface and enhancing emulsion stability (Kokal, 2005; Elsharkawy

et al., 2008) by dramatically lowering the interfacial tension (Kilpatrick, 2012). The

surface-active asphaltenes self-associate at the nanoscale (Barre et al., 2009) forming

nanoaggregates, the latter were reported to form films that stabilise WOEs (Jestin

et al., 2007; Verruto & Kilpatrick, 2008; Alvarez et al., 2009). The nanoaggregates

are ca. 3-10 nm in size, have an ellipsoidal shape and can entrap solvent within

the aggregate interior (Fenistein et al., 2000; Fenistein & Barré, 2001; Gawrys &

Kilpatrick, 2005; Gawrys et al., 2006; Sirota, 2005; Sirota & Lin, 2007; Barre et al.,

2008, 2009; Eyssautier et al., 2011). Recently, asphaltene aggregation state at the
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Figure 1.3: Booms used in oil spill remediation. Image taken from Marine Safety and
Response Equipment Ltd (msar.eu).

water/oil interface has been debated. Rane et al. (2012, 2013, 2015) proposed that

the asphaltenes are in a monomeric state or the observed asphaltenic film density at

the oil/water interface is that of monomers (although the nanoaggregate thickness

is preserved) (Kilpatrick, 2012). However, given the overwhelming evidence of as-

phaltene surface activity, the assumption of nanoaggregation having an impact on

the water-in-oil emulsion stability remains of interest. This will drive the research

that will follow.

The environmental hazards and the economical implications of petroleum spills call

for efficient remediation practice. The physicochemical changes of oil (c.f. Thingstad

& Pengerud, 1983) that accompany its transition form its initial state to a mousse

imply relevant changes in spill remediation strategies, thus this process requires

thorough understanding (Daling et al., 1990). Factors affecting the WOE formation

include evaporation, dissolution and photo-oxidation of oil (Mackay, 1987; Daling

et al., 1990). It may be advantageous to prevent WOE formation by adding emulsion

inhibitors and leading to an improved dispersion of the oil by sea turbulence (Licht-

enthaler & Daling, 1985; Ross, 1986). Current spill remediation technology broadly

includes mechanical, chemical and biological (Prendergast & Gschwend, 2014). The
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former class includes oil booms (Figure 1.3) and skimmers, as well as controlled

burning of oil (Allen et al., 2011). The chemical/biological methods include ab-

sorbents and surface-active agents (surfactants) of either synthetic or biogenic na-

ture. Absorbent materials can be used to clean up spilled hydrocarbons and can be

separated/removed from the water column with a possibility of recycling (Adebajo

et al., 2003). Types of absorbents include inorganic mineral, synthetic organic and

organic vegetable (Melvold et al., 1988; Teas et al., 2001; Adebajo et al., 2003).

Such materials are porous and include clays, graphite, polymers, cellulose-based

materials and elastomers (Daughney, 2000; Reynolds et al., 2001; Teas et al., 2001).

The balance between performance factors such as cost, absorption capacity and

biodegradability determine the type of clay to be deployed (Carmody et al., 2007).

For example, synthetic organic materials have a better adsorption and often lower

cost but also lower biodegradability (Choi & Cloud, 1992; Teas et al., 2001), whilst

organic vegetable products can have a lower adsorption and poor buoyancy (Choi

& Cloud, 1992).

Surfactants used in spill remediation can be synthetic/petroleum-derived and bio-

genic and generally include ionic or non-ionic substances (Edwards et al., 2003).

Biogenically-derived surfactants are produced by e.g. bacteria and fungi (Edwards

et al., 2003) and include glyco/phospholipids, lipoproteins/peptides, fatty acids,

polymeric surfactants and particulate surfactants (Parra et al., 1989; Desai & Desai,

1993; Nabholz et al., 1993). Edwards et al. (2003) tested the toxicity of three types

of synthetic and biogenic surfactants each to Mysidopsis bahia and Menidia beryl-

lina. The most toxic of the observed surfactants were of synthetic nature, although

a bioemulsifier also showed a strong impact on the survival, growth and fecundity

of the studied microorganisms. After seven days of exposure, the least harmful sur-

factants were PES-61 (synthetic) followed by Emulsan (biogenic) (Edwards et al.,

2003). Biosurfactants are likely to have specific toxicity towards isolated/pure cul-

tures but are less hazardous towards diverse microbial populations (Aingh et al.,

2007). The production of biosurfactants can often be performed using waste prod-

ucts, optimising their economic viability and contributing to recycling (Makkar et al.,

2011; Dziegielewska & Adamczak, 2013). Biosurfactants have hydrophobic and hy-

drophilic functionalities that reduce surface tension, increase the contact area of

insoluble components and improve bioavailability of hydrocarbons (Aparna et al.,

2011). Additionally, due to the presence of specific biological functional groups,

biosurfactants can be used to target the detoxification of specific pollutants (Silva
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et al., 2014). One of the main factors limiting the use of biosurfactants over standard

surfactants is the cost of production, which can be optimised through the utilisation

of waste products and renewable resources (Rufino et al., 2014).

Investigation aims and workflow

Considering the global importance of the petroleum industry, the environmental

impact of the oil spills and the need for efficient remediation practice, this research is

focused on obtaining a better understanding of asphaltene nanoaggregation, which is

thought to be a key contributor of WOE stability. The key aims of this investigation

are as follows:

� To verify the asphaltene critical nanoaggregate concentration using ultrasonic

velocity charcterisation (c.f. Andreatta et al., 2005a)

� To understand the impact of asphaltene architecture on asphaltene nanoag-

gregation

� To investigate/model any anomalies in asphaltene nanoaggregation

� Based on the above, to propose the driving mechanism of asphaltene nanoag-

gregation, which could then be used to better remediate petroleum spills.

Additionally, parent petroleum biodegradation, maturity and source studies are per-

formed.
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Figure 1.4: Investigation workflow.
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The workflow of this investigation is illustrated in Figure 1.4 and is as follows.

Firstly, the literature review (Part II) provides a theoretical foundation for this

study. Apart from the review of asphaltene architecture, physico-chemical prop-

erties and nanoaggregation, other areas of review include colloids and surfactants,

geochemistry of petroleum biomarkers and their use in biodegradation, maturity

and source estimation and ultrasonic propagation in homogeneous fluids. Following

this, an overview of methodology (Part III) highlighta the strengths and limitations

of the experimental procedures and analytical instruments, echoing relevant parts of

the literature review, as well as Bayesian inference. Experimental studies (Part IV)

are performed on four petroleum samples (abbreviated E1-E4) obtained from an in-

dustrial collaborator from which the asphaltenes will be extracted. Asphaltene pre-

cipitation/purification and geochemical characterisation of deasphalted petroleum

samples are performed. The latter include biodegradation, maturity and source es-

timation using petroleum biomarkers. To follow, ultrasonic velocity measurements

are used to study aspheltene nanoaggregation (Andreatta et al., 2005a) in the four

samples. An estimation of the asphaltene architecture is obtained from ruthenium

ion catalysed oxidation measurements. To verify the ultrasonic and oxidation tech-

niques, the two methods are performed on model compounds. Inference about the

impact of asphaltene structure on the nanoaggregation behaviour will be performed

using statistical inference, including principal component analysis. Additionally, a

Bayesian modeling exercise tests various aggregation behaviours. The summary and

final discussion of this this investigation is presented in Part V together with future

directions that this research can take.
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Chapter 2. Colloids and Surfactants

This Chapter provides an overview of surfactant and colloid theory in order to better

understand the impact of asphaltene monomers and nanoaggregates on the stabili-

sation of water-in-oil emulsions. Additionally, a comparison is provided between the

two to assess the advantages and limitations of the surfactant analogy regarding the

asphaltenes.

2.1 An Introduction to Surfactants

Surfactants (SURFace ACTive AgeNTs) are agents that accumulate at surfaces, and

change the properties of those surfaces, for liquids often reducing their surface ten-

sion (Clint, 1992f ; Hummel, 1999). Understanding the phenomena of colloids and

surfactant aggregation at interfaces (Clint, 1992f ) will aid in the understanding of

asphaltene nanoaggregation and emulsion stabilisation.

Water-soluble surfactants comprise hydrophilic (head) and hydrophobic (tail) groups.

The hydrophilicity of the head groups often stems from its polarity, and include an-

ionic (e.g. soaps and detergents), cationic (e.e anti-static agents), zwitterionic (e.g.

cosmetics) and (e.g. detergents and emulsifiers) (Laughlin, 1978b,a; Clint, 1992f ).

The hydrophobic tail is often a hydrocarbon (e.g. C12-20 n-alkanes) or a benzene-

containing compound that is not hydrophilic (Hunter, 2001). Surfactants of this

type have a very strong affinity to adsorb at the air-water interface. Adding a hy-

drocarbon phase to an aqueous surfactant solution will result in the partitioning of

the tail groups in the oil phase deciding on the relative surfactant groups concen-

tration in each phase (Clint, 1992f ). This often results in emulsification. Interfacial

activity of surfactants rises due to the minimisation of a solution’s chemical poten-

tial when surfactant molecules are located at the phase interface (Davies & Rideal,

1963; Clint, 1992a,f ). The Maxwell-Boltzmann distribution would thus imply that

the abundance of surfactant molecules at the oil/water interface would be high as

the molecules would be in the lowest energy state allowed by a given system (Lau-
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rendeau, 2005). Hydrocarbon tails are not repelled by water rather, the attraction

of a tail to water is approximately equal to its attraction to itself (Tanford, 1980;

Clint, 1992f ). Asphaltene monomers are reported to have an alkyl side-chain and

a polycyclic aromatic hydrocarbon core (Mullins, 2011). The hydrophobicity of the

alkyl appendages is determined by the presence of heteroatomic functionalities, e.g.

acidic/basic groups. For example, Siffert et al. (1984) reported that asphaltenes with

an imbalance between the acidic and basic groups formed more stable emulsions.

This is presumably due to the preference of the polar groups to enter the water

phase, with the aromatic components remaining in hydrocarbons (Kuznicki et al.,

2008). Molecular dynamic simulations of asphaltene-like molecules have highlighted

the increase in the interfacial activity of asphaltenes due to polar groups (Kuznicki

et al., 2008). A subsequent simulation study by Kuznicki et al. (2009) confirmed

that the asphaltene model molecules remain in the toluene phase, with those with

polar functional groups travelling to the water/oil interface, which is consistent with

experimental observations on asphaltene side-chain polarity (Masliyah et al., 2002;

Peña et al., 2005). This will be discussed further in Section 3.3.

The close packing of surfactant molecules at the phase interface results in the for-

mation of monolayers that also reduce surface tension (Gelbart et al., 1989). Sur-

factant self-association also produces micelles (Section 2.2), vesicles and liposomes,

and at higher concentrations liquid crystals may form Clint (1992c). Such struc-

tures are dynamic and can transfer from one type to another with variations in

system conditions, such as temperature, pH or ionic strength (Clint, 1992a). In hy-

drophilic/hydrophobic mixtures, the surfactant architecture will determine whether

a water-in-oil or oil-in-water emulsion will form (Clint, 1992f ). If the cross-sectional

area of the head is greater then that of the tail, then oil-in-water emulsions will be

formed, and vice versa. Thus, changing the balance between surfactant group areas

will lead to phase inversions, which can be achieved by the addition of other sur-

factants, changing the emulsion temperature (non-ionic compounds) or increasing

electrolyte concentration (ionic compounds) (Clint, 1992a). The area per surfac-

tant molecule at an interface will be determined by the balance between attractive

forces of the heads and steric repulsion of the tails (Israelachvili, 1987; Clint, 1992a).

Again, this will also determine the minimum surfactant energy, whereas the type of

solvent and surfactant geometry will determine the minimum surface tension pos-

sible in a system. The phase-temperature dependence of surfactants is illustrated

in Figure 2.1, where the solution temperature and surfactant concentration deter-
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Figure 2.1: Phase plot of surfactant phase separation. Adapted from Clint (1992c).

mines wthether the surfactants are in a micellar, crystalline or liquid crystalline

state (Clint, 1992c). The Krafft temperature is the temperature below which the

surfactant becomes insoluble (Krafft, 1899).

2.2 Micellarisation

In contrast to conventional solutes, the aggregation properties of surfactants in

aqueous solutions have a non-monotonic relationship with concentration (Clint,

1992d). This is due to the self-association phenomenon, otherwise known as micellar-

isation. The micelle structure depends on the solution temperature and concentra-

tion, as well as the molecular architecture of the surfactant molecules (Hunter, 2001).

In non-aqueous solvents, the addition of small amounts of water will lead to the for-

mation of reverse micelles, whereby the surfactant heads stabilise droplets (Hunter,

2001). The formation of micelles (aggregates) corresponds to a critical micelle con-

centration (CMC), causing a change of dependence of a range of solution physico-

chemical properties on concentration. These properties include osmotic pressure,

turbidity, solubilisation, magnetic resonance, surface tension (Clint, 1992d), auto-

diffusion (Lindman et al., 1982) and ultrasonic velocity (Zielinski et al., 1986). At
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Figure 2.2: Plot of surfactant micellarisation detection. (a) pure surfactant, (b) surfactant
with impurity that lowers the interfacial tension more, (c) surfactant with impurity that
lowers the interfacial tension less. Adapted from Clint (1992d).

and above the CMC, the interfacial tension and concentration of monomeric surfac-

tant remain constant, whereas any additional surfactant molecules aggregate into

micelles (Clint, 1992a). Temporal micelle behaviour is dynamic, thus the aggrega-

tion number is an average amount of molecules leaving and joining the micelles. The

kinetics of micellar aggregation can be studied using ultrasonic relaxation (Gettins

et al., 1980; Kato et al., 1988), temperature or pressure jump (Aniansson et al.,

905-922) and NMR spectroscopy (Fendler & Fendler, 1975). The latter assume that

two major relaxation processes are involved in micellar kinetics, namely faster relax-

ation (microseconds) due to exchange of surfactant monomers between the micelles

and the bulk and slower relaxation (microseconds) due to the total dissipation of

micelles to monomers (Clint, 1992d). The dissociation of micelles is strongly depen-

dent on the alkyl chain length as hydrophobic bonding is stronger for larger groups.

Kato et al. (1988) reported that for a variety of surfactants, regardless of the head

groups, any two additional methylene groups on the surfactant tail will decrease the

dissociation rate by two orders of magnitude.
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Surface tension γ relates to the work w required to change the area σ of a sur-

face (Atkins, 2014a)

dw = γdσ (2.1)

and is one of the most common methods of detecting the CMC or measuring the

impact of surfactant monolayers. After the surfactant concentration reaches the

critical micelle concentration, solution surface tension remains constant for pure so-

lutes despite increasing surfactant concentration (Figure 2.2(a)). The Figure also

illustrates the impact of alien compounds whereby post-CMC the interfacial ten-

sion becomes affected by the impact of impurities. What follows provides a brief

description of surface tension measurement using Gibbs equations of state (Gibbs,

1948; Clint, 1992a). For a pure surfactant solution, the molecules at the interface

are at a lower free energy than those in bulk. Surface tension relates to the amount

of work to create a unit area of surface. Due to the minimised surface energy state,

less work is needed to create unit area of surface than unit area of bulk.

Surface tension γ is defined as the integral of sum chemical potentials µ of solution

species i (Clint, 1992a)

− dγ =
∑
i

Γidµi (2.2)

where Γi is the interfacial concentration of component i or the number of moles of

i per unit area. In a pure surfactant solution, two-phase system of solvent1 and

solute2 that is surface-active and uncharged, the rate of change of γ with respect to

change in chemical potentials is

− dγ = Γ1dµ1 + Γ2dµ2. (2.3)

The term Γi is also defined as the surface excess, which is the difference between bulk

and (total) interfacial concentration. In other words, it is the difference between the

concentration of solute absorbed at the interface and that which would be if the

bulk concentration continued to the interface (Clint, 1992a). It is presumed that at

the interface, the surface excess of the solvent Γ1 is zero, thus

− dγ = Γ2dµ2. (2.4)

For changes in surfactant concentration,

dµ2 = RT · dlna2, (2.5)
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where a2 is the activity of surfactant in solution, T is the temperature and R is the

gas constant. The surfactant excess then becomes

Γ2 = − 1

RT
· dγ

dln(a2)
. (2.6)

For dilute surfactant solutions, assuming that a2 can be approximated to concen-

tration c2 (Gibbs, 1948; Clint, 1992a)

Γ2 = − 1

RT
· dγ

dln(c2)
. (2.7)

In this formalism, the following assumptions have been made. The solute (surfac-

tant) is presumed to be a single component, that a surface for which Γ1 = 0 can be

defined and that a2 = c2 is true (Clint, 1992a). Applying Equation (2.7) to liquid-

liquid interfaces, it is required that the surfactant groups can partition into both of

the (immiscible) phases. The emulsion droplet radius can depend on the surfactant

packing geometries. Ignoring the effect of polydispersity, the relation between equi-

librium/constant interfacial tension γc and droplet radius r, or equally the bending

energy per unit area is (Clint, 1992a)

γc =
K

2r2
(2.8)

where K is the elastic bending modulus that can be measured by ellipsometry (Binks

et al., 1989). Liquid drops tend to be spherical due to the smallest surface-to-volume

ratio of the shape (Atkins, 2014a). At planar liquid interfaces (i.e. r = ∞), γ 6= 0

as energy is required to straighten the natural surfactant packing curvature. Inter-

facial tension is an equilibrium quantity whereby the adsorbed surfactants are in a

dynamic equilibrium (arriving and leaving at the same rate) (Clint, 1992a). Changes

in surfactant arrival/departure rates will result in instantaneous tension gradients

and interfacial monolayer disturbance. The presence of surfactant aggregates, e.g.

micelles will complicate the rebalancing of the monolayer whereby lower CMCs will

lead to higher re-equilibration times (Clint, 1992a).

The onset of the CMC leads to constant surface tension, that is above the CMC

dγ = 0 using Equation (2.4).

The number of molecules in a micelle can be determined by a number of techniques

e.g. small-angle neutron scattering (Hayter & Penfold, 1981; Chen, 1986; Chevalier
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& Zemb, 1990), steady-state fluorescence quenching (Turro & Yetka, 1978; Almgren

& Lofroth, 1981), time-resolved fluorescence quenching (Almgren & Lofroth, 1981,

1982), nuclear magnetic resonance and Raman and infra-red spectrosscopy (Cheva-

lier & Zemb, 1990). For a pure surfactant solution, increasing the number of

molecules per micelle may lead to changes in its shape. Clint (1992d) describes

the change in aggregate shape for sodium dodecyl sulphate (SDS) in aqueous solu-

tions of 0.4 dm m−3 NaCl. Given a fixed salt concentration, the increase in SDS

concentration did not lead to a change in molecule number per micelle. However

increasing NaCl concentration (fixed SDS) the number of molecules per micelle in-

creased, leading to a transition from spherical to cylindrical aggregates (Kratohvil,

1980; Warr et al., 1986; Berr & Jones, 1988). The sphere-to-rod transition (Hayashi

& Ikeda, 1980) is caused by the reduction of the effective head group area (Clint,

1992d).

Dissociation of surfactants in a micelle is much lower than that of single molecules

in solution due to counterion binding. The surface of a micelle has a charge in-

duced by the head-groups, which will lead to a greater (electrostatic) attraction of

counterions than that induced by single molecules. This electrostatic attraction can

be described by the cell model (Gunnarson et al., 1980) whereby the concentration

of counterions decays continuously with distance from the micelle surface (Clint,

1992d). Generally, the counterions normally are thought of as immediately ‘bound’

and diffuse (electrical double layer) (Lindman et al., 1982). The degree of counte-

rion binding βci is the concentration of bound ions divided by the concentration of

surfactant in a micelle. The concentration of counterions of type i at a distance r

from a micelle’s surface mi
0 is (Gunnarson et al., 1980)

mi(r) = mi
0 exp

{
−zie

ψ(r)

kT

}
. (2.9)

In the above, zi is the counterion valency and ψ(r) is the electrostatic potential at

a radial distance r from the micellar centre. In pure ionic surfactant mixtures, βci

is independent of surfactant concentration (Clint, 1992d). In solutions where both

ionic and non-ionic surfactants are present, the non-ionic groups reduce the charge

density at the micelle surface (Scamehorn, 1986; Clint, 1992e). This leads to a

reduction of βci. Treiner et al. (1989) illustrated this reduction by measuring βci in

an SDS solution as a function of a mole fraction of a non-ionic component. Despite

an evident decline the relative surface charge remained constant and independent of
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non-ionic surfactant concentration (Treiner et al., 1989).

Surfactants can also adsorb on solid surfaces, whereby adsorption would be affected

by a surface’s hydrophobicity, charge H bonding and type (organic/inorganic) (Clint,

1992b). The amount of surfactant adsorbed on a surface is more difficult to calculate

than at liquid-liquid or liquid/air interfaces and spectroscopic methods are normally

used, as well as (Langmuir) adsorption isotherms (Clint, 1992b).

2.2.1 The critical micelle concentration

The critical micelle concentration (CMC) of a surfactant is the minimal concen-

tration required to form a micelle (Clint, 1992d). The CMC is influenced by the

minimum of the standard chemical potential of a surfactant molecule in an aggre-

gate with N molecules (Israelachvili, 1987; Clint, 1992d). For aqueous systems this

minimum will depend on the hydrophobicity of the head and the tail (alkyl chain

length). Polar head groups that are highly hydrophobic will lead to an increase in

the CMC, whereas increasing the alkyl chain length will decrease the CMC. Increas-

ing the valency of ionic head groups will decrease the CMC. Non-ionic surfactants

will generally have much lower CMC values as polar groups of ionic compounds

produce greater and wider CMC ranges. For zwitterionic surfactants, crucial for the

CMC is the charge separation as at very short separation distances, the two oppo-

site charges will neutralise. At a critical distance, the positive and negative groups

will maximise the electric dipole moment maximising the CMC in water, whereas

at very long chain lengths more hydrophobic groups will be induced, decreasing the

CMC (Chevalier et al., 1988; Clint, 1992d).

In the presence of ionisable groups (including carboxylic acids), solution pH will

strongly influence the degree of surfactant dissociation (Tokiwa, 1972). Zwitterionic

surfactants can become ionic at low pH (Corkill et al., 1969) which will change their

CMC. Adding electrolyte to systems of ionic surfactants will reduce the CMC as elec-

trostatic repulsion between the molecules will be reduced (Clint, 1992d), whereas

in non-ionic systems this effect will be variable (Schick, 1962; Schott, 1962). Tem-

perature will also have an effect on micellarisation, with the CMC of non-ionic

surfactants decreasing monotonically with increasing temperature. For ionic sur-

factants, the CMC is likely to have a parabolic relation with temperature (and

pressure) (La Mesa, 1990; Clint, 1992d). Atkins (2014b) stated that micelles only

form above the Krafft temperature and that the CMC corresponds to a transition

concentration region whereby the physical properties vary smoothly but nonlinearly
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with concentration.

2.2.2 Multiple micellarisation

Multiple micellarisation is a phenomenon whereby a surfactant solution is prone to

forming micelles of two sizes, corresponding to CMC1 and CMC2 (Georges & Chen,

1986; Clint, 1992a; Ray et al., 2005). It is thought that the former micelle type

(CMC1) undergoes a structural transition to the second type (CMC2) (Ray et al.,

2005). The latter occurs in some pure substances and is very common in mixtures

of cationic surfactants with a variation in the hydrophobic tail length (Georges &

Chen, 1986; Treiner & Makayssi, 1992; Ray et al., 2005). The CMC2 is assumed

to occur due to an alteration in the counterion condensation but not interfacial

tension (Treiner & Makayssi, 1992; Prasad et al., 2004, 2005), thus tensiometry

is incapable of detecting it (Ray et al., 2005). It has been suggested that above

CMC2 the degree of counterion condensation is constant (Treiner & Makayssi,

1992). The methods that can monitor this structural transition include conduc-

tometry, isothermal titration calorimetry (Prasad et al., 2004, 2005), ultrasound

characterisation (Andreatta et al., 2005a; Svalova et al., 2017), viscometry (Ekwall

et al., 1971), NMR (Fabre et al., 1980) and solubilisation (Bury et al., 1991). A

comprehensive investigation of multiple micellarisation was presented in Ray et al.

(2005) and is explained in some detail as follows. Viscosity, enthalpy, surface ten-

sion and specific conductance was measured for cetyltrimethylammonium bromide

(CH3(CH2)n-1N(Br)(CH3)3, n=10,12,14,16; abbrev. CnTAB) surfactants (pure and

mixtures) in aqueous and 0.05 M NaBr solutions. For pure C12,16TAB solutions,

only one CMC was observed. Prior to CMC, viscosity would sharply decline and

flatten out afterwards. For mixed C12,16TAB solutions, CMC1 would be manifested

by an increase in viscosity gradient and CMC2- by a further flattening out of the

slope with an increasing surfactant concentration. This was observed for both, aque-

ous and NaBr solutions. The most blunt indication of multiple micellarisation in

CTAB mixtures was observed using enthalpograms obtained from microcaloriemtry

measurements. Specific conductance showed a very subtle change in response to

multiple micellarisation, whereas surface tension measurements was only able to

detect CMC1 in surfactant mixtures (Ray et al., 2005).
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2.3 An Introduction to Colloids

According to Atkins (2014b), “a colloid [...] is a dispersion of small particles of

one material in another that does not settle under gravity”, whereby small refers

to < 500 nm or nanoparticle suspension size (diameter up to 100 nm), with a

lower limit of c.a. 1 nm (Hunter, 2001). Colloidal dispersions are systems where

the kinetic units that are dispersed through the solvent are much larger than the

solvent molecules (Hunter, 2001), which would be the case for the trapped water

droplets in water-in-oil emulsions and petroleum mousses. Colloids are used in a

variety of industries and science fields, including petroleum extraction (Littman,

1997), medicine (De & Maitra, 1997), cosmetics and food (Challis et al., 2005) to

name just a few. An emulsion is a colloid where the dispersed and continuous phase

are both liquid (Challis et al., 2005), or a thermodynamically unstable dispersion of

two immiscible liquids the stability of which is characterised by a non/slow floccu-

lation/coalescence of the dispersed droplets (McLean et al., 1998).

The particle size distribution (PSD) is one of the key factors affecting the long-

term stability of a colloidal mixture (Jillavenkatesa et al., 2001; Challis et al., 2005),

whereby homogenised emulsions are most stable (Atkins, 2014b). A monodisperse

mixture corresponds to a system with similarly-sized particles and a small size stan-

dard deviation (Challis et al., 2005). Equivalently, colloidal stability depends on the

kinetic state of the system. Droplet-droplet interactions, resulting in the long-term

stability or phase separation, depend on the energy of attraction between individ-

ual atoms (on the droplet surface) and their total interactions (Atkins, 2014a). In

particular, the attraction energy between two atoms in different colloidal particles

separated by a distance R declines ∼ R−6, however the sum of all pairwise inter-

actions declines ∼ R−2. Therefore, the latter play a greater role in the long-term

colloidal stability. Stabilisation techniques to prevent flocculation and coalescence

(coagulation) for colloidal system include addition of surfactants, or by increasing

the viscosity of the continuous phase thus reducing Brownian diffusion (Challis et al.,

2005) that is easily induced by thermal fluctuations (Batchelor, 1976). The latter

description of a stable colloid is consistent with the literature definition of stable

crude oil mousses, that are characterised by a high viscosity and a small water

droplet size (Lee, 1999).
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2.4 Kinetics of Colloidal Interactions

Figure 2.3: Particle interactions in colloidal mixtures. Adapted from (McLean et al., 1998)

Emulsion destabilisation occurs following the movement of the dispersed droplets

towards each other, droplet deformation and formation of a thin parallel film be-

tween them and droplet coalsecence as the parallel film thickness reduces below a

critical value (Zapryanov et al., 1983; McLean et al., 1998). Some of the mechanisms

responsible for the emulsions stability include the electrical double layer, steric re-

pulsion, the Gibbs-Marangoni effect, a rigid, cross-linked network formation of the

adsorbed interfacial layers (McLean et al., 1998) and Pickering stabilisation (Nor-

ton et al., 2013). These are described in some detail as follows, the former three

phenomena are described in more detail in (McLean et al., 1998).

2.4.1 Electrokinetic interactions

The stability/repulsion of lyophobic (solvent-repelling) (Haring, 1926; Atkins, 2014b)

dispersions can be formulated following the Derjaguin, Landau, Verwey, and Over-

beek (DLVO) theory (Hunter, 1987; McLean et al., 1998). The latter assumes

that colloidal interactions are balanced by the van der Waals interactions between

molecules in the adsorbed surfactants and the coloumbic repulsion of the electrical

double layers. Additionally, Born repulsion occurs as the electron clouds of the par-

ticles at the droplet interface overlap (Schramm, 1992). The following summarises

the two former concepts.

Van der Waals theory attempts to describe the long-range attractive forces between

atoms (Van der Waals, 1873) often used to understand colloidal stability (Clint,

1992a; Hoier & Whitson, 2001; Ratulowski et al., 2003; Mullins, 2011; Atkins,
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2014b). The London theory (London, 1930) explains the van der Waals (dispersion)

force as arising from the interaction between a temporary dipole on one molecule

and the induced dipole on another (Israelachvili, 1974). Following Bohr’s model

of the H atom, the instantaneous dipole moment of H can be calculated from the

ground state formulation a0

a0 =
e2

8πε0~v
(2.10)

where e is the proton charge, ε0 is the permittivity of free space, ~ is Planck’s

constant and v is a characteristic frequency of the electron’s motion around the

nucleus. From the formalism of a0, the magnitude of the induced dipole moment is

p1 ≈ a0e. The rest of van der Waals formulations can be found in Hunter (2001). If

a neutral atom is nearby H, it will be polarised by p1 and acquire an induced dipole

moment of strength p2. The individual atom-atom interactions will decay following

R−6 where R is the separation distance. In particular, the van der Waals interaction

energy Vint(R) (London’s equation)

Vint(R) = −3

4
~ω0(R0/R)6, R6

0 =
α0
Aα

0
B

(4πε0)2
, ω0 =

2e√
me√

α0
A

NA
+
√

α0
B

NB

. (2.11)

between two polarisable molecules A and B depends on their separation distance

R, number of electrons in each molecule, NA and NB, and electron mass me. The

polarisabilities α0
A and α0

B are zero-frequency quantities (London, 1930).

Lyophobic colloids are those in which the minimum system energy corresponds to

the dispersed phase condensed in one large aggregate, which can be prevented by

electrostatic and steric stabilisation (Hunter, 2001). In electrostatic stabilisation, the

electrical double layer (EDL) gives rise to the kinetic non-lability of colloids (Atkins,

2014b). The EDL comprises two regions of charge: the tightly-adhering immobile

layer of ions with the electrokinetic potential ζ and an oppositely-charged atmo-

sphere of ions 2.3 (a). The repulsion energy Vrepulsion of two EDLs depends on the

separation distance of the layer centres and surfaces, as well as the thickness of the

EDL. Flocculation occurs at high ionic strengths that result in a dense (compressed)

ionic atmosphere (Hunter, 2001). Coagulation (merging particles) occurs when the

separation between EDLs is sufficiently small and the van der Waals forces domi-

nate (Atkins, 2014b). In water-oil emulsions, however, the EDL is assumed to not

have a significant effect due to the low dielectric constant of oil (Strassner, 1968;
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Caroll, 1976; McLean et al., 1998).

2.4.2 Steric stabilisation

In steric stabilisation (Figure 2.3 (b)), the surface of a lyophobic colloid is covered

by lyophilic material (Napper & Hunter, 1983; Hunter, 2001), or surfactants that

partition into the lyophobic/lyophilic phases acording to their molecular structure.

Steric repulsion arises due to the strong interaction of the adsorbed material (sur-

factants) and the sorbent phase which give rise to enthalpic and entropic repulsion

as two emulsion droplets approach (Mackor, 1951; McLean et al., 1998). Where it

arises from nonionic polymers, steric repulsion is assumed to be the main stabili-

sation mechanism (Mackor & van der Waals, 1952). McLean et al. (1998) reported

that the electrokinetic mechanisms mentioned above are associated with stabilisa-

tion energies lower than those observed in the water-in-oil emulsions stabilised by

resins and asphaltenes. The required solvation energies are typical of H bonding

and it is presumed that steric stabilisation is required (McLean et al., 1998).

2.4.3 Gibbs-Marangoni effect

The Gibbs-Maragoni effect (GME) is a phenomenon that stabilises emulsions with

relatively low interfacial tension at the droplet interfae (Mukherjee & Kushnick,

1988; Krawczyk et al., 1991; Shetty et al., 1992). When two droplets approach, the

continuous phase between them drains out and ‘drags’ the adsorbed surfactants,

and a tension gradient is created at the droplet interface (Figure 2.3 (c)). The diffu-

sion flux arising due to the surfactant depletion opposes the drainage by increasing

interfacial rigidity and acts as a stabilisation mechanism (McLean et al., 1998). To

promote coalescence in emulsions stabilised by this mechanism, the interfacial ac-

tivity and diffusivity of the adsorbed surfactants must be sufficiently high (Hirato

et al., 1991; Krawczyk et al., 1991; Wasan, 1992; Kim et al., 1993). Otherwise, to

destabilise an emulsion where the GME is significant, the interfacial shear viscos-

ity and dynamic tension gradient must be reduced (Mukherjee & Kushnick, 1988).

Due to the high interfacial tensions and elastic moduli reported for the water-in-oil

emulsions, it appears unlikely for the GME to be a dominant mechanism in emulsion

stabilisation (Fordedal et al., 1996).
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2.4.4 Droplet skin formation

The following (mechanical) stabilisation phenomenon has been observed in/applied

to mainly asphaltene-stabilised water-in-oil systems. The indigenous surface-active

material in petroleum, namely resins and asphaltenes, has been assumed to create

an interfacial ‘skin’ and be primarily responsible for stabilising water-in-oil emul-

sions (Van der Waarden, 1958; Kimbler et al., 1966; Eley et al., 1976; Wasan, 1992;

Mohammed et al., 1993; Fordedal et al., 1996). The two component groups were

reported to contribute to stabilisation (Fordedal et al., 1996) through the forma-

tion of a cross-linked asphaltene aggregate network (possibly, but not necessarily)

solvated by resins, that has a high viscosity and rigidity (McLean et al., 1998).

Additionally, the forces which govern the physicochemical state of the asphaltenes

at the phase interface are assumed to be of the magnitude of hydrogen bonds or

electron donation/acceptance, which are, again, greater than the electrokinetic phe-

nomena (McLean et al., 1998). More on asphaltene skin formation round water

droplets will be explained in the next Chapter.

2.4.5 Pickering stabilisation

Emulsions whereby interfaces are kinetically stabilised with colloidal particles are

known as Pickering emulsions (Binks, 2002; Norton et al., 2013). The stabilising

particles don’t form micelles (Binks, 2002) and, unlike surfactants, irreversibly ad-

sorb at the oil-water interface creating a mechanical barrier against droplet coales-

cence (Arditty et al., 2004). The factors determining stabilisation properties of the

adsorbed particles include concentration, size, shape, particle-particle interactions

and wettability (Frasch-Melnik, 2011; Norton et al., 2013). The latter is one of the

most important factors and, in turn, can be measured the particle contact angle at

the interface (Schulman & Leja, 1954; Binks, 2002). In water/oil emulsions, for Pick-

ering stabilisation to occur the particle contact angle at the phase interface should

be > 90◦. Wettability can be measured by goniometry or tensitometry (Norton

et al., 2013). Particle size is also an important factor in the Pickering mechanism,

whereby the adsorbed particles need to be at least an order of magnitude smaller

than the droplets in an emulsion (Norton et al., 2013).

Surfactants and stabilising particles can interact to further enhance emulsion sta-

bility at the interface (Norton et al., 2013). In particular, lower molecular weight

surfactants can adsorb onto the particles and trigger their flocculation at the water-
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oil interface (Norton et al., 2013). Surfactants can also displace particles at the

interface and stabilise the droplets instead, if this is energetically favourable in a

given emulsion (Vashisth et al., 2010). Pichot et al. (2009) proposed a two-part

mechanism giving rise to the long-term stability of an emulsion. They studied

monoolein (surfactant)/silica (particle) mixtures to propose that the presence of

surfactants can initially reduce the interfacial tension and allow droplet formation,

providing time for the less mobile particles to travel to the interface, displace the

surfactant and provide long-term stability of an emulsion. Their further studies

suggested that whether silica or surfactants remain at the phase interface is deter-

mined by the relative surfactant concentration (Pichot et al., 2010). The droplet

size in mixture-stabilised systems will be influenced by concentrations of either of

the phases (Pichot et al., 2010).
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3.1 Introduction

Petroleum can be separated into four SARA fractions, namely saturate, aromatic,

resin and asphaltene (Aske et al., 2001; Gafonova & Yarranton, 2001; Sjoblom et al.,

2003; Peters et al., 2005g ; Klein et al., 2006a), as illustrated in Figure 3.1. As-

phaltenes constitute the highest molecular weight, most polar and aromatic fraction

of crude oil (Gafonova & Yarranton, 2001; Dicharry et al., 2006). The molecu-

lar definition of asphaltenes is problematic given their high structural heterogene-

ity (Schuler et al., 2015, 2017), thus asphaltenes are defined as a solubility class,

namely the hydrocarbon fraction soluble in toluene and insoluble in light normal

Figure 3.1: A schematic of SARA fractionation.
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alkanes (e.g. n-C5-7) (Chilingarian & Yen, 1978; Mullins et al., 1998; Sjoblom et al.,

2003; Mullins et al., 2007; Mullins, 2011; Mullins et al., 2012). A ‘typical’ asphal-

tene molecule has both aromatic and saturated groups; this will be discussed in

detail in Section 3.2. The asphaltene solubility fraction is governed by a balance

of attractive and repulsive forces of its molecules (Betancourt et al., 2009), that

is the balance between the van der Waals aromatic attraction and side-chain re-

pulsion (Buenrostro-Gonzalez et al., 2001). An increase in the relative abundance

of side-chains on asphaltene molecules would increase their solubility (Betancourt

et al., 2009). In contrast, larger asphaltene molecules with a complete removal of

alkane side-chains are completely insoluble (Buch et al., 2003).

Asphaltenes possess heteroatomic functionality and include elements such as N,

O, S, V, Ni and Fe (Speight, 1999; Fossen et al., 2007; Mullins et al., 2007). A

commonly-used method to separate asphaltenes from petroleum is the addition of

excess n-alkane whereby the yield (%) of the asphaltenes will depend on the sol-

vent weight (Peters et al., 2005g), n-C5 typically generating a higher yield (Speight,

1999) by 15-98% (Strausz, 2002). The molecular weight of the precipitating solvent

will also affect the physico-chemical properties of the asphaltene fraction (Bunger

& Li, 1981; Ovalles et al., 2011; McKenna et al., 2013). Resins and low molecular

weight asphaltenes can also precipitate with the asphaltenes which can be sepa-

rated from asphaltenes by Soxhlet extraction (Frakman et al., 1990; Peng et al.,

1997; Strausz et al., 1999a) and gel permeation chromatography (Ignasiak et al.,

1983). In acetone Soxhlet extractions (Strausz et al., 1999a), the molecular weight

of the acetone extract is a third to a half of that of the resulting asphaltene. The

compounds identified in the acetone extract (Frakman et al., 1990; Peng et al.,

1997) included biomarkers and heteroatom compounds, including ketones, alcohols,

sulfoxides arrached to polycyclic terpenoids, and polycyclic terpanes. Carboxylic

acid-containing compounds included those derived from polycyclic terpenoids (tri-

cyclics and hopanoids), dibenzothiophene, n-alkanes, polyaromatics and fluorene.

Nitrogen-containing compounds included different groups of benzocarbazoles (Frak-

man et al., 1988).

Asphaltene precipitation from crude oil depends on a number of factors, includ-

ing aromaticity, polarity, molecular weight and structure, temperature and pres-

sure (Speight, 2004; Fossen et al., 2007). Further, ‘standardised’ n-alkane precipi-

tated asphaltenes may lose or mask important properties of a ‘genuine’ asphaltene

fraction (Fossen et al., 2007). Laboratory-obtained asphaltenes (n-C7 precipitation)
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were found to differ from those precipitated under petroleum recovery (pressure

drop) (Klein et al., 2006b). Noting that ‘live’ crude refers to a petroleum sample

under reservoir pressure (and thus, the volatile compounds have been preserved)

the n-C7 asphaltenes had a higher aromatic and double-bond content and a lower

abundance of the N-, NS-, NS2-, O- and S- containing species than pressure drop

asphaltenes (Klein et al., 2006b). Nevertheless, the n-alkane precipitation ensures

that asphaltenes are mostly isolated from resins in laboratory conditions (Alboud-

warej et al., 2002; Goual & Firoozabadi, 2002), although further purification (e.g.

Soxhlet extraction) may be needed. Asphaltenes can be further fractionated into

subfractions according to their polarity (Nalwaya et al., 1999), solubility in different

solvents (Nalwaya et al., 1999; Speight, 1999; Hu & Guo, 2001; Aquino-Olivos et al.,

2003; Trejo et al., 2004; Acevedo et al., 2005; Wattana et al., 2005) and heteroatomic

content (Speight, 1999). The solubility of asphaltenes will depend on the source type

and H/C ratio- Speight (1999) observed that coal asphaltenes have a very poor sol-

ubility in toluene at room temperature and atmospheric pressure compared to those

precipitated from crude oil.

The molecular weight of asphaltenes has been debated for decades due to their self-

association phenomenon (Mullins, 2011; Sjoblom et al., 2015). Due to the advances

in spectroscopic techniques, such as fluoresence depolarisation, the average asphal-

tene molecular weight has been generally agreed as ca. 750 Da (±250 Da) (Groenzin

& Mullins, 1999, 2000; Buenrostro-Gonzalez et al., 2001; Buch et al., 2003; Groenzin

et al., 2003; Badre et al., 2006). A number of studies investigated the heterogeneity

of the asphaltene fraction through further fractionation (Sjoblom et al., 2015). As-

phaltene samples were fractionated by ultracentrifugation (Fenistein & Barré, 2001;

Barre et al., 2008) or obtained by different n-alkane/crude oil ratios (Fossen et al.,

2007, 2011) to discover that the asphaltenes from different fractions formed aggre-

gates of varying viscometric properties compared to the unfractionated asphaltene.

3.2 The Yen-Mullins Model of Petroleum Asphaltenes

3.2.1 Asphaltene monomers

The Yen-Mullins model (Mullins, 2011) is one of the most widely used in describ-

ing asphaltene molecular structure and self-association. It proposes that a ‘generic’

asphaltene molecule comprises a polycyclic aromatic hydrocarbon core (PAH) and

aliphatic side-chains (Figure 3.2 (i-iii)). The latter architecture known as the ‘island’.
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The average number of rings in a PAH is 7 (±3), confirmed by scanning tunneling mi-

croscopy (Zajac et al., 1994; Mullins, 2011), Raman spectroscopy (Bouhadda et al.,

2007; Mullins, 2011), time-resolved fluorescence depolarisation (Groenzin & Mullins,

1999, 2000; Buch et al., 2003), mass spectroscopy (Boduszynski, 1988) and recently

by atomic force microscopy (Schuler et al., 2015, 2017). The alternative model for

asphaltene architecture is the archipelago (Groenzin & Mullins, 2000), whereby as-

phaltenes are thought to comprise several (1-4 member) PAH connected by alkyl

bridges. The size of an archipelago molecule can reach ca. 2000 Da (Snowdon et al.,

2016) (Figure 3.2 (iv-v)).
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Figure 3.2: Proposed asphaltene structures (Mullins, 2011; Schuler et al., 2017). Schuler et
al. (2017a) is the Supplementary Information attached to Schuler et al. (2017). Unknown
atoms and side-chains are denoted X and R respectively.
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This structure, however, is uncommon and recent atomic force microscopy stud-

ies of coal (Schuler et al., 2015) and petroleum (Schuler et al., 2017) asphaltenes

illustrated their very low abundance. A possible explanation for this is the low

stability of archipelago compounds versus island structures as confirmed by laser

fragmentation experiments (Borton et al., 2010; Sabbah et al., 2011). The size

of a PAH in an island molecule has been estimated at 7 fused rings (Sjoblom

et al., 2015), as studied by high-resolution transmission electron microscopy (Sharma

et al., 2002a), molecular orbital analysis (Ruiz-Morales & Mullins, 2009) and atomic

force microscopy (Schuler et al., 2015, 2017). Hosseini-Dastgerdi et al. (2015) sug-

gested that as different analytical methods to determine asphaltene architecture

indicated different models, the asphaltene molecular structure to be a“continuum of

island and archipelago types”. Coal asphaltenes were reported to be smaller than

petroleum asphaltenes (Groenzin & Mullins, 2000, 2007; Guerra et al., 2007; Hor-

tal et al., 2007; Martinez-Haya et al., 2007; Schneider et al., 2007). Studies using
13C NMR (Buenrostro-Gonzalez et al., 2001) and atomic force microscopy (Schuler

et al., 2015) confirmed that coal asphaltenes have very little or no alkyl side-chains.

3.2.2 Asphaltene nanoaggregates

The first stage of asphaltene self-association is nanoaggregation, occurring at con-

centrations of ca. 100 mg L−1 (± 50 mg L−1) in toluene (Andreatta et al., 2005a;

Mullins, 2011; Mullins et al., 2012). This concentration has also been termed as

the critical nanoaggregate concentration (CNAC) (Andreatta et al., 2005a; Mullins,

2010). In petroleum, it has been estimated that asphaltenes are also present as

nanoaggregates with a colloidal size estimate of ca. 1.6 nm (which corresponds to

nanoaggregate size) (Betancourt et al., 2009). The CNAC has been estimated us-

ing high-Q ultrasonic measurements (Andreatta et al., 2005a; Svalova et al., 2017),

direct conductivity (with a very subtle indication of the changepoint) (Zeng et al.,

2009) and nuclear magnetic resonance (Freed et al., 2009). Two forces are assumed

to govern the dynamics of nanoaggregation, namely π − π attraction between PAH

cores (van der Waals) and steric repulsion between side-chains (Buenrostro-Gonzalez

et al., 2001; Mullins, 2011). The balance between the two forces should determine

the number of monomers in a nanoaggregate (Mullins, 2011) and (presumably for the

island architecture) is estimated to be up to 10 monomers indicated by equation-

of-state estimations (Betancourt et al., 2009), centrifugation experiments (Goual

et al., 2011) and surface compression analyses (Orbulescu et al., 2010a,b). It has
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been suggested that the number of molecules in nanoaggregates is constant with

increasing concentration (Andreatta et al., 2005a,b, 2007). At sufficiently high con-

centrations, corresponding to the critical clustering concentration (CCC), which is

the next stage of aggregation (Mullins, 2011), asphaltene nanoaggregates form clus-

ters causing a strong change in flocculation kinetics (Anisimov et al., 1995; Yudin

& Anisimov, 2007). Asphaltene clustering has been reported to form at a g L−1

scale (Friberg et al., 2007; Oh & Deo, 2007; Yudin & Anisimov, 2007). Clustering

indicates a change in aggregation kinetics (Anisimov et al., 1995; Yudin & Anisimov,

2007) whereby nanoaggregates are held together by much weaker forces (Sheu et al.,

1995a; Sheu, 2002) than the asphaltenes within nanoaggregates.

3.3 Nanoaggregates Versus Surfactant Aggregates

In the present investigation, asphaltene nanoaggregation is compared to surfactant

micellarisation allowing the use of sonic velocity models to detect the CNAC (Zielin-

ski et al., 1986; Andreatta et al., 2005a). This section presents the strengths and

limitations of this assumption. The definition of surfactant micellarisation that

is used is comparison with asphaltene nanoaggregates is consistent with the key

model used with ultrasonic velocity measurements (Zielinski et al., 1986), ‘Surfac-

tant molecules in aqueous solutions exist in the monomeric form below the critical

micelle concentration (CMC), while they can be in either monomeric or micellar

forms, if the surfactant concentration exceeds the CMC.’.

Asphaltenes are often compared to surfactants due to their surface activity at the

solid/liquid (Acevedo et al., 1998, 2003; Dudasova et al., 2008; Simon et al., 2009)

and liquid/liquid (Jeribi et al., 2002) interfaces. Bikky (2012) likened the asphaltenes

to weak ionic surfactants and those adsorbed at a water-oil interface were enriched

with O and S groups (Wu, 2003; Jarvis et al., 2015). The structure of the adsorbed

layer is speculated to depend on asphaltene concentration (Sjoblom et al., 2015) and

has been reported to be that of a monolayer (Gonzales & Middea, 1988; McLean

et al., 1998; Dudasova et al., 2008; Simon et al., 2009) or stepwise/linear adsorp-

tion (Acevedo et al., 1995, 1998, 2003). For liquid/liquid adsorption, two stages

(rapid and slow), have been observed during interfacial tension experiments (Jeribi

et al., 2002; Harbottle et al., 2014). Several explanations have been reviewed

in Sjoblom et al. (2015). Asphaltenes are reported to contribute to WOE stabil-

isation through steric effects (Spiecker et al., 2003; Wang et al., 2010; Tchoukov
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et al., 2014) and the formation of a ‘skin’ (McLean et al., 1998; Bauget et al., 2001;

Jeribi et al., 2002).

Surfactants tend to be located at the interface between two liquid phases as this cor-

responds to their lowest energy state (Clint, 1992f ). Such interfacial activity agrees

with the phenomenon of asphaltene ‘skin’ formation around water droplets (Singh

et al., 1999; Khristov et al., 2000; Yarranton et al., 2000b; Jestin et al., 2007; Mullins,

2011; Rane et al., 2012, 2013). Whether water-in-oil or oil-in-water emulsions are

formed is determined by the ratio of hydrophobic to hydrophilic group areas of

surfactant molecules, and predominance of hydrophobic groups will lead to WOE

formation (Clint, 1992f ). In WOEs, water is present as a dispersed phase as asphal-

tene polar groups, e.g. carboxylic or nitrogen compounds (Sjoblom et al., 2015), are

orders of magnitude smaller than the hydrophobic aromatic/alkyl parts. Molecular

dynamics of non-charged asphaltene model compounds illustrated that asphaltenes

do not partition into the bulk water phase but are present in the bulk oil and inter-

face boundary (Teklebrhan et al., 2014).

Similarly to surfactants, crucial to asphaltene surface activity are the charged/polar

functionalities. Molecular dynamic simulations of asphaltenes illustrated that model

compounds with highest surface activity (with charged functional groups) were lo-

cated at the toluene/water interface after 7 ns of simulation (mostly in cluster form),

whereas non-charged moieties mostly remained in bulk toluene (Kuznicki et al.,

2008, 2009). The latter study developed compounds that were structurally similar

to the atomic force microscopy (AFM) images from Schuler et al. (2015, 2017), thus

the results are representative. Simulations of non-charged asphaltene model com-

pounds illustrated that such asphaltenes were a lot more likely to remain in bulk

oil rather than travel to the water/oil boundary (Teklebrhan et al., 2014). Model

emulsion studies fractionating asphaltenes into interfacial and bulk material found

that the interfacial fraction corresponds to about 2% wt (Yang et al., 2014) and

that its removal decreases emulsion stability (Yang et al., 2014; Jarvis et al., 2015).

Nanoaggregation (self-association) of asphaltenes occurs upon reaching the CNAC,

whereby crucial to asphaltene solubilisation are steric repulsion of the alkane sub-

stituents and π−π stacking of the aromatic cores (Buenrostro-Gonzalez et al., 2001;

Zhang et al., 2003; Andreatta et al., 2005a). Steric hindrance restricts the number

of asphaltenes in a nanoaggregate and a further addition of asphaltenes to the sys-

tem will lead to a change in aggregate number, as opposed to size (Andreatta et al.,

2005a; Friberg, 2007). In other words, nanoaggregation kinetics are controlled by as-
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phaltene (poor) solubility (Buckley et al., 2007) and strong asphaltene-asphaltene in-

teractions (Friberg, 2007); in an aqueous environment micellarisation is controlled by

solvent-surfactant interactions. Nanoaggregation is analogous to surfactant micellar-

isation, whereby self-association of surfactants is controlled by physical forces (Clint,

1992f ). Following Hartely’s model (Hartley, 1936), in a spherical micelle the sur-

factant alkyl chains form a hydrocarbon core and the polar groups form a charged

surface. This is somewhat contradicting to the nanoaggregate structure, whereby

the asphaltene molecules are stacked (Mullins, 2011). The implications of this, in-

cluding the charge density of a micellar surface versus the nanoaggregate may be a

subject of further investigation.

The surface activity of asphaltenes has been reported to occur from polar het-

eroatomic groups (Yang et al., 2014, 2015a) and asphaltenes recovered from emulsion

phase interfaces were found to have a high heteroatom content (Zhang et al., 2003;

Czarnecki, 2009; Tchoukov et al., 2014; Jarvis et al., 2015). Compounds that were

found to contribute to increased emulsion stability included those with N and O

groups (Varadaraj & Brons, 2007) sulfoxides (Czarnecki, 2009; Qiao et al., 2017a,b)

and vanadyl porphyrins (McKenna et al., 2009). Interfacial tension (IFT) is one

of the most widespread measurements in analysing surfactant emulsion-stabilisation

properties (Friberg, 2007). Obtaining a plot of surface tension versus the logarithm

of surfactant concentration will illustrate a decreasing trend and the critical micelle

concentration (CMC). Noteworthy, interfacial tension measurements require that

the activity coefficient as in the Gibbs adsorption equation (estimating interfacial

tension) is constant, which is true for many aqueous systems (Friberg, 2007).

The issues regarding the use of IFT measurements for asphaltene systems are as

follows. Firstly, asphaltene activity coefficient is reported to have contradictory

properties, whereby some studies report an approximation of unity (Yarranton &

Masliyah, 1996), and other suggest that it is not constant (Friberg, 2007). The

surface tension of toluene is two and a half times lower than that of water, and

loading high-energy asphaltenes onto the toluene surface may increase surface ten-

sion (Mostowfi et al., 2009). As only a subfraction of the asphaltene (fraction) is

surface-active (acts as an emulsifier) (Stanford et al., 2007a; Kilpatrick, 2012; Rocha

et al., 2016), the surface tension measurements should be performed with a great

caution, otherwise the results will be misleading.

Whether asphaltene monomers or nanoaggregates stabilise the water-in-oil emul-

sions is still a subject of debate. Alvarez et al. (2009) reported that larger nanoag-
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gregates were more likely to adsorb at the water/oil interface. The nanoaggregates

are asphaltenes with a higher apparent molecular weight and that the latter is posi-

tively related to the degree of self-association (Mullins et al., 2007; Yarranton et al.,

2013; McKenna et al., 2013). The increase in the nanoaggregate size improves the

asphaltene film thickness and surface coverage at the W/O interface (Yarranton

et al., 2000b; Jestin et al., 2007). In an asphaltene model oil emulsion study (Rocha

et al., 2016), interfacial material of > 7000 g mol−1 (mass surface coverage of 5

mg m−2) created stable emulsions, this size is assumed to correspond to the nanoag-

gregates. On the other hand, in Langmuir-Blodgett (Friberg et al., 2007) and pen-

dant droplet (Rane et al., 2012, 2013) experiments, monomeric asphaltenes were

shown to decrease surface tension more than the nanoaggregates. Studies by Rane

et al. (2012, 2013) illustrated that in water-model oil systems with 10-50 ppm (i.e.

monomeric asphaltenes) asphaltene fraction, dynamic interfacial tension decreased

with no reported asymptotic value, whereas emulsions with 50-200 ppm asphaltenes

illustrated an asymptotic limit at 20 mN m−1. Interestingly, the 50-200 ppm asphal-

tene concentration range is consistent with estimations of the critical nanoaggrega-

tion region in Svalova et al. (2017), and their nuclear magnetic resonance (NMR)

data illustrates a linear dependence of asphaltene concentration on NMR signal

breaking around a similar 80-200 ppm range. Furthermore, Rane et al. (2012,

2013, 2015) used the Langmuir equation of state to suggest that it is asphaltene

monomers that stabilise water-in-model oil emulsions rather than nanoaggregates

although their NMR analysis suggested that nearly half of molecules present in

model oil were nanoaggegates (Rane et al., 2012).

The complexity of using IFT for understanding asphaltene impact on water/oil

emulsions is illustrated in the following studies on asphaltene IFT. The addition of

asphaltenes to toluene will has been shown to reduce the interfacial tension between

toluene and water (Sheu et al., 1992, 1995b; Xu, 1995; Jeribi et al., 2002; Acevedo

et al., 2005; Horváth-Szabó et al., 2005; Poteau et al., 2005). In model emulsion

experiments, Fossen et al. (2007) reported that the interfacial tension (IFT) at

toluene/water boundary was 38 mN m−1. The presence of asphaltenes reduced

the IFT to up to 15 mN m−1 for the 18:1 n-pentane:oil precipitated asphaltenes,

as compared to up to 23-28 mN m−1 for the 40:1 n-pentane:oil precipitated as-

phaltenes. To explain the IFT decay behaviour, a bi-exponential model (weighted

sum of two exponents) was proposed with a very good fit (R2 ≥ 0.98) (Fossen

et al., 2007). They proposed that the 18:1 n-pentane:oil precipitated asphaltenes
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are more soluble. The presence of the NSO functionality will increase the preference

of asphaltenes to water which will lower the oil/water IFT (Fossen et al., 2007).

Contradicting this, other surface tension experiments showed that nanoaggregation

caused an increase in surface tension as high-energy molecules were aggregating on

the surface of low-energy toluene (Friberg et al., 2005; Sjoblom et al., 2015).

The above comparison illustrated similarities and differences between asphaltene

nanoaggregates and surfactant micelles. In many respects, asphaltenes do behave

similarly to surfactants, however considering their structural polydispersity some

phenomena are less comparable than others. In particular, the non-uniformity of

the interfacial activity properties of the asphaltene fraction lead to contradictory

conclusions about the asphaltene aggregation state at the water/oil interface. As it

is widely accepted that the nanoaggregates stabilise water/oil emulsions, this study

will still focus on studying nanoaggregation. Considering the issues associated with

the asphaltene IFT measurement, the investigation of asphaltene aggregation state

at water droplet interface should be a subject of further studies.
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4.1 Introduction

Biological markers (biomarkers) are compounds that provide an unambiguous link

between a chemical compound and its biological precursor (Eglinton & Calvin, 1967;

Peters et al., 2005f ). These preserve the chemical signature of the hydrocarbon

source rock, allowing oil-source and oil-oil correlation as well as thermal maturity and

biodegradation estimation. Biomarkers comprise a variety of chemical compounds,

including branched and cyclic/aromatic compounds. Isoprene (Figure 4.1(a)) is

the basic constituent of most non-aromatic biomarkers (Peters et al., 2005e), such

biomarkers would then be called terpenoids, isoprenoids or isopentenoids (Nes &

McKean, 1977). Isoprene biomarkers are divided into groups (e.g. hopanes and

steranes) according to linearity/number of aliphatic rings in a molecule (Peters

et al., 2005e), Figure 4.1 illustrates examples of linear and cyclic biomarkers. Aro-

matic hydrocarbons follow the formula CnH2n−6y, where y is the number of aro-

matic rings (Peters et al., 2005e). Polynuclear aromatic hydrocarbons (PAHs) are

multi-ring aromatic compounds, including naphthalene, phenanthere and coronene,

Figure 4.2. Common alkylated aromatics include toluene, phenyldodecane and

diphenylpropane. The non-hydrocarbon compounds in petroleum include heteroatoms,

e.g. the NSO compounds. Sulfur groups are common and include thiols, sulfides

and thiophenes/benzothiophenes. Nitrogen compound occur as neutral (e.g. ben-

zocarbazoles) or basic (e.g. pyridine, indoline) species. Oxygen moieties are present

forming neutral (e.g. furan, fluorenone) and acidic groups (e.g. phenol, carboxylic

acid groups). Acids can occur due to both, depositional and biological processes (Pe-

ters et al., 2005e).
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Figure 4.1: Examples of biomarkers in the aliphatic fraction of petroleum. Adapted
from Peters et al. (2005e).
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Figure 4.2: Examples of PAHs and heteroatomic compounds in petroleum. Adapted
from Peters et al. (2005e).
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4.2 Stereochemistry of Biomarkers

Stereochemistry is the study of molecular shapes and symmetries (Clayden et al.,

2001; Peters et al., 2005e). Molecular structures that are not identical but mirror

images of each other are enantiomers. Chiral molecular structures are enantiomers

(mirror images) that cannot be superimposed. Thus, achiral isomers are superim-

posable. If a molecule contains a carbon atom with four different groups, it will be

chiral (not have a plane of symmetry). The asymmetric carbon is called a stere-

ogenic or chiral centre. Molecules that have more than one chiral centre and at least

one but not all of those are the same, the resulting stereoisomers are called diastere-

omers. A racemic mixture is a mixture of equal quantities of a pair of enantiomers.

According to Clayden et al. (2001), if the starting compounds of a chemical reac-

tion are achiral, and the products are chiral, the latter will be racemic. In nature,

however, many chiral molecules are present as single enantiomers. Configuration

refers to the arrangement of bonds around the chiral carbon, and is labeled S or R

depending on the order of the attached groups. The configuration assignment pro-

cedure in (Cahn et al., 1966; Clayden et al., 2001), which is the Cahn-Ingold-Prelog

convention is summarised as follows. Given a chiral centre, the four attached groups

(C is tetravalent) should be ranked (1-4) according to decreasing atomic numbers,

e.g. 1- highest, 4-lowest. The molecule should then be arranged with rank 4 (lowest

atomic number) pointing away. If the groups 1-3 are in a clockwise order, the chiral

centre has an R configuration, and S otherwise. Epimers are stereoisomers that

differ at only one centre, diastereomers are those differing at more than one but

not all centres and enantiomers are two stereoisomers that differ in all stereogenic

centres. For polycyclic terpanes, chiral centres are located outside the molecule’s

ring carbons (Peters et al., 2005e). Groups (or atoms) that face below or above a

molecule’s plane (at ring carbons) are indicated α and β respectively (Peters et al.,

2005e).

Stereochemistry of sterane and hopane biomarkers is used in petroleum maturity

(and often biodegradation) assessment. No asymmetric n-alkanes are possible, but

asymmetric acyclic isoprenoids include pristane, whereby the stereochemistry is

characteristic to thermal maturity. Methyl groups at positions C-6 and C-10 are

in the 6R, 10S configuration and have been reported to change to a mixture of

6R,10S, 6S,10S and 6R,10R in the ratio 2:1:1 as a result of thermal maturation (Pa-

tience et al., 1980). Separation of the S and R isomers often requires a chiral sta-
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tionary phase during chromatographic separation, although e.g. C31-35 homohopane

22 S and R isomers are well-separated using achiral stationary phases.

4.2.1 Hopanes and steranes in petroleum

The hopanes include three stereoisomeric series, including 17α, 21β−, 17β, 21β−
and 17β, 21α(H)− (Peters et al., 2005e). The (αβ) configuration in C27-35 hopane

compounds is characteristic of petroleum due to the strong thermodynamic stability,

compared to the (ββ) and (βα) less stable configurations (Peters et al., 2005e), or

(αα) that is not found in the natural products (Bauer et al., 1983). Hopanes with

≤ 30 carbon atoms have asymmetric centres at C-21 and all ring junctures (Peters

et al., 2005e). Homo-hopanes are a class of hopanes with more than 30 carbons and

an additional methylene group attached to C30 hopane.

The precursor for the sterane biomarkers are sterols having a very large number of

possible stereoisomers although very few are found in living organisms (Peters et al.,

2005e). In particular, in living organisms, sterols are in the 8β, 9α, 10β(CH3),13β(CH3),14α, 17α(H)

20R configuration. The configurations at positions C-8,-9,-10 and -13 remain sta-

ble (and/or are highly energetically favourable) thoughout petroleum maturation.

Isomers exist at the C-5 and C-24 positions as mixtures of (α, β) configurations,

and organic sterols show only the 20R configuration (Nes & McKean, 1977). In the

resulting steranes, the configuration at the C-24 positions is a mixture of R and S

in source rocks. The stereochemistry at C-5 is a mixture of 5α and 5β, although the

former is more likely. The configurations at positions C-14 and C-17 are transposed

from (α, α) to (β, β) due to a higher thermodynamic stability (Peters et al., 2005e).

4.3 Biodegradation of Biomarkers

Biodegradation of petroleum occurs due to its alteration by organisms (bacteria) pri-

marily by means of oxidation (Connan, 1984; Blanc & Connan, 1994; Milner et al.,

1977a; Peters et al., 2005a). Biodegradation is a ‘quasi-sequential’ process (Peters

& Moldowan, 1993), whereby organisms preferentially remove and/or alter (e.g. de-

form or oxidise) compounds in the order of increasing molecular weight, complexity

(e.g. branching) and aromaticity, producing CO2. Biodegradation alters petroleum

physico-chemical properties, decreasing the API gravity and increasing the inor-

ganic gas content, viscosity, NSO compounds and trace metals (Peters et al., 2005a).

Microbial biodegradation in reservoirs is a metabolic process requiring favourable
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conditions, such as the presence of electron acceptors, inorganic nutrients, water,

temperatures of ca. 80 ◦C, water salinity of ca. 100-150 ppt (Wenger & Isaksen,

2002) and a low H2S content. The bioavailability of hydrocarbons is facilitated

through an enzyme addition that makes them water-soluble, or direct consumption

at the oil/water interface.

Microbial degradation includes aerobic and anaerobic pathways, described below.

Both organism types require trace amounts of inorganic nutrients to survive, in-

cluding N and P as well as metals e.g. Mo, Co and Cu. Temperatures, greater

than 80 ◦C are thought to ‘sterilise’ a reservoir and prevent biodegradation, and

corresponds to ca. 2000 m burial depth under normal geothermal gradients (Con-

nan, 1984; Palmer, 1993; Blanc & Connan, 1994). Thermophilic bacteria, however,

thrive at much greater temperatures and burial depths (Blöchl et al., 1997). Given

a low geothermal gradient, the geopressure does not appear to be a biodegradation-

limiting factor. Bacteria have been reported to remain active in depths of 4000

m (Walters, 1999) under pressures of up to 1680 MPa and afterwards in atmo-

spheric conditions (Sharma et al., 2002b). Generally, a H2S content of > 5% is

unsuitable for living organisms, although extreme cases have been reported where

microbes thrived in pH 0 (Edwards et al., 2000). The rates of biodegradation are

typically higher for aerobic bacteria, confirmed by empirical (Jobson et al., 1972;

Larter et al., 2000) and laboratory studies (Yamane et al., 1997). Air oxidation is

an alternative pathway for aerobic degradation, especially polar compounds, such

as steroid ketones, benzothophenic acids and sulfones (Charrié-Duhaut et al., 2000).

4.3.1 Aerobic bioegradation

In aerobic degradation, oxygen activates hydrocarbons making them bioavailable

for the microorganisms and also acts as the terminal electron acceptor. Carbon

dioxide and and H2O are produced as by-products, whereas H2S needs to be absent.

Oxygeneases are enzymes which catalyse reactions where dioxygen is incorporated

directly into organic compounds (Harayama et al., 1992). Monooxygenases incor-

porate one OH group into substrates, whereby two atoms of dioxygen are reduced

to one OH group and an H2O. Oxygeneases initiate the degradation of alkanes and

aromatics (Harayama & Timmis, 1989). As aerobic biodegradation requires molec-

ular oxygen, active surface recharge waters are necessary for biodegradation (Peters

et al., 2005a). Furthermore, water washing induces biodegradation with selective

removal of light aromatics (Bailey et al., 1973; Palmer, 1984, 1993).
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4.3.2 Anaerobic biodegradation

Anaerobic biodegradation is assumed to be the dominant mechanism of hydrocar-

bon bio-alteration in reservoirs (Jones et al., 2008). This is supported by the chemi-

cal/biological composition of formation waters, including the depletion of oxygen to

reduce the likelihood of petroleum oxidation (Horstad et al., 1992) and the presence

of anaerobic microorganisms (Bastin, 1926; Magot et al., 1994), as well as anaero-

bic biodegradation metabolites in reservoir-degraded petroleum (Aitken et al., 2004;

Jones et al., 2008). Anaerobic bacteria utilise electron acceptors, such as nitrate,

sulphate and ferric iron, instead of oxygen (Widdel & Rabus, 2001) and can toler-

ate up to ca. 5% of H2S. Pathways for anaerobic biodegradation include fumarate

addition (Widdel & Rabus, 2001) and activation of the terminal carbon by a C1

compound. Examples of degradation through fumarate addition include alkylnaph-

thalene (Annweiler et al., 2000) and n-alkanes (Kropp et al., 2000). The C1 moiety

addition to the terminal carbon is an alternative way for alkane activation (Aeck-

ersberg et al., 1998). The mechanisms for the benzene and PAH degradation re-

main unknown (Peters et al., 2005a), although Coates et al. (1996) have reported

biodegradation of PAHs by unidentified sulfate-reducing organisms. Head et al.

(2003) and Jones et al. (2008) suggested that methanogenic biodegradation is the

main mechanism of anaerobic hydrocarbon biodegradation in-reservoir. Jones et al.

(2008) performed microcosm experiments under methanogenic conditions, monitor-

ing petroleum alteration and gas generation to propose that the observed alteration

of compound classes mimics that of in-reservoir. They suggested that δ13CCO2 re-

lated to oil biodegradation in marine petroleum systems can be very isotopically

heavy, ranging from −25 to +20, which would suggest closed-system reduction of

CO2 to CH4(Boreham et al., 2001; Pallaser, 2000; Masterson et al., 2000). Biodegra-

dation is a quasi-sequential process, whereby hydrocarbon compound classes are re-

moved in a step-wise manner (Wenger et al., 2002; Peters et al., 2005a). In-reservoir

biodegraded oil typically has alkylated naphthalenes and 2-/3-ring aromatic com-

pounds removed only after the biodegradation of n-alkanes and acyclic isoprenoids

(e.g. pristane/phytane) (Volkman et al., 1984; Williams et al., 1986; Wenger et al.,

2002). This is not, however, characteristic of aerobic biodegradation, as labora-

tory studies show evidence of the removal of light aromatic compounds during early

stages of biodegradation (i.e. before n-alkane removal). Jones et al. (2008) per-

formed biodegradation experiments using an oil from a North Sea field comparing it
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with a common-source rock oil from Gullfaks field that has been (naturally) biode-

graded anaerobically in-reservoir. Their results illustrate that the biodegradation

of oil performed under methanogenic conditions (as opposed to sulphate-reducing)

most closely resembles the Gullfaks samples.

4.4 Compositional Alteration

During biodegradation, the composition of petroleum is altered whereby the lighter,

less complex and polar compounds are preferentially removed by living organisms (Pe-

ters et al., 2005a). The latter leads to an enrichment in the heavy and polar

NSO fraction and trace metals and a decrease in the API gravity, thus subse-

quently in commercial value of a petroleum. The initial fraction to be removed

is the C6-12 n-alkanes, followed by branched alkanes. Light aromatic compounds

are first to be degraded from the aromatic fraction by either microbial alteration

or water-washing (Palmer, 1983), the latter presumably accommodated by polar

interactions. Chromatography is typically used in analysing petroleum biodegra-

dation. The Wenger et al. (2002) biodegradation scale describes the sequence of

biodegradation and is illustrated in Figure 4.3, based on empirical field observa-

tions (Peters et al., 2005a). The biodegradation order is quasi-sequential (Peters

& Moldowan, 1993), i.e. it does not occur in the strict stepwise pattern but re-

flects differences in the rates of catabolism under a variety of conditions (Peters

et al., 2005a). The Wenger et al. (2002) biodegradation rank is qualitative, whereas

quantitative assessment of biodegradation measures the amount of hydrocarbons de-

stroyed given the assumption about the structure of unaltered material. The latter

can be inferred from sample thermal maturity, source type, migration and reservoir

conditions (Peters et al., 2005a). Given the removal of biomarkers (severe biodegra-

dation), asphaltene-trapped biomarkers may used (Cassani & Eglinton, 1986; Philp

et al., 1988; Dembicki & Mathiesen, 1994; Rooney et al., 1998; Odden et al., 2002).

Common degradation patterns include the strong preference of isoprenoids to ster-

anes (Peters et al., 2005a), the preference of hopanes to steranes is variable. The n-

alkanes C8-12 are removed at the initial biodegradation stages (Peters et al., 2005a),

followed by the longer n-alkanes. The net effect of biodegradation is a decrease in

wet gas components, increase in unaltered CH4 and biogenic CO2 from microbial

oxidation. Branched alkanes have a higher resistance to biodegradation, especially

at higher degrees of branching, e.g. acyclic isoprenoids (Pirnik et al., 1974). Com-
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Figure 4.3: Wenger et al. (2002) biodegradation scale, adapted from Peters et al. (2005a).
Sequence of alteration of alkylated PAH based on Fisher et al. (1996b, 1998). Bars indicate
where compound classes are initially altered (pale gray), substantially depleted (solid
gray), and completely removed (black). *Hopanes degraded without the formation of
25-nor -hopanes.

monly, isoprenoid/n-alkane ratios are used to estimate biodegradation levels, e.g.

pristane/n-C17 and phytane/n-C18 (Miget et al., 1969; Winters & Williams, 1969;

Peters et al., 2005a). Isoprenoid/sterane or isoprenoid/hopane ratios can be used to

differentiate heavily from severely biodegraded oils, assuming a single charge (Pe-

ters et al., 2005a). Highly-branched alkanes and isoprenoids are constituents of the

unresolved complex mixture and persist at high biodegradation levels (Gough &

Rowland, 1990; Killops & Al-Juboori, 1990). Bicyclic terpane compounds C14-16

are more resistant to biodegradation than isoprenoids but are removed entirely be-

fore the onset of sterane and hopane biodegradation (Hoffmann & Strausz, 1986;

Williams et al., 1986) and can be also removed by water washing (Kuo, 1994). Due

to their solubility in water, alkylphenols can be removed from petroleum by either

microbial removal or water washing (Taylor et al., 2001). Alkylbenzenes tend to

be present after the total removal of isoprenoids (Peters et al., 2005a) and PAH

compounds increase in their resistance to biodegradation with an increase in the

number of rings (Peters et al., 2005a) and the number alkyl substituents (Volkman
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et al., 1984; Williams et al., 1986).

Sterane microbial alteration follows a sequence ααα 20R� αββ 20R ≥ αββ 20S ≥
ααα 20S � diasteranes and C27 > C28 > C29 > C30 (Seifert & Moldowan, 1979;

McKirdy et al., 1983; Seifert et al., 1984; Chosson et al., 1991), and the C20-21 se-

tranes are reported to have a susceptibility similar to that of the diasteranes (Peters

et al., 2005a). Whilst the C27-30 ααα 20R steranes are generally most susceptible

to degradation (Seifert et al., 1984; Chosson et al., 1991; Wang et al., 2001) the

relative susceptibility of the αββ 20R, αββ 20S and ααα 20R compounds is more

variable, perhaps depending on the microbial organism population (Peters et al.,

2005a). The enrichment of the 25-nor -hopanes with the selective removal of ster-

anes is variable (Volkman et al., 1983; Seifert et al., 1984; Chosson et al., 1992). The

susceptibility of sterane isomers to biodegradation tends to decrease with increasing

carbon number (Seifert et al., 1984; Zhang et al., 1988; Chosson et al., 1991; Wang

et al., 2001; Peters et al., 2005a).

Hopanes and 25-nor -hopanes (demethylated hopanes) are generally more resistant

than steranes, although this depends on the microbial population and environmen-

tal conditions (Peters et al., 2005a). Demethylated hopanes can be formed by the

loss of a methyl grop at the C-10 position in hopanes, as revealed by nuclear mag-

netic resonance (NMR) spectroscopy (Rullkötter & Wendisch, 1982). Demethylated

hopanes are useful in biodegradation assessment as they tend to occur in oils when

hopanes have been degraded but are absent whereby steranes are preferentially re-

moved to hopanes (Rullkötter & Wendisch, 1982; Peters & Moldowan, 1991; Peters

et al., 2005a). In particular, the high abundance of 25-nor -hopanes is characteristic

of severe biodegradation (Rullkötter & Wendisch, 1982; Volkman et al., 1984; Tren-

del et al., 1990). Also, in oils where the steranes have been biodegraded before the

normal hopane removal, the 25-nor -hopanes were found to be absent too (Seifert

et al., 1984). In other studies, hopanes were found to be biodegraded without the

25-nor -hopane removal (Seifert & Moldowan, 1979; Goodwin et al., 1983; Connan,

1984). The 25-nor -hopane distribution is analogous to that of the unaltered hopanes,

shifted by one carbon number (Peters et al., 2005a). Caution should be used with

using the 25-nor -hopanes for biodegradation assessment as their dominant m/z 177

ion can also be produced by the regular hopanes (Peters et al., 2005a). Vice versa,

the 25-nor -hopanes have been reported to yield an m/z 191 ion that is charac-

teristic of hopanes (Dzou et al., 1999). No microorganisms have been reported to

biosynthesize the 25-nor -hopanes or their possible biological precursors (Goodwin
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et al., 1983; Chosson et al., 1992; Bost et al., 2001; Peters et al., 2005a). Despite

these limitations, the 25-nor -hopanes are used to assess biodegradation, for example

McCaffrey et al. (1996) reporting that in a set of biodegraded oils (ranks 6-9) the

quantity of individual hopanes were inversely proportional to their 25-nor -hopane

equivalents, hopanes decreasing with increasing biodegradation rank.

4.5 Biomarkers in Asphaltenes

Asphaltenes have been reported to preserve biomarkers removed from petroleum

by depositional processes and biodegradation (Rubinstein et al., 1979), as this is

the petroleum fraction least susceptible to biodegradation (Arefyev et al., 1980).

Studies used hydropyrolysis (Bowden et al., 2006) to investigate the distributions of

bound tricyclic terpanes, hopanes and steranes in asphaltenes from an early Jurassic

deposit, comparing them with the biomarkers from the kerogen resin and free frac-

tions. They found that the asphaltene and resin fraction had significant differences

in the proportion of tricyclic to pentacyclic (hopane) terpanes, whereby the resin

and asphaltene fractions showed more prominent peaks of tricyclics and C32 hopanes.

However, they also discovered that the marine environment indicator (C30 ααα reg-

ular sterane) was present in all fractions allowing source identification (Bowden

et al., 2006). Trapped/occluded n-alk-1-enes and terpenes were reported by (Yang

et al., 2009), where the asphaltenes had occluded terpene biomarkers as well as

n-alkanoic acid ethyl esters. In the latter fraction, Yang et al. (2009) observed a

general even-odd predominance. Often, the biomarkers preserved in asphaltenes

are of lower maturity than those in the maltene fraction as asphaltenes form and

trap biomarkers at an early stage petroleum expulsion (Cassani & Eglinton, 1986).

Biomarkers can be preserved in asphaltenes as both occluded and covaltently bound

species (Snowdon et al., 2016). Techniques to recover the biomarkers include pyrol-

ysis (Behar & Pelet, 1984; Cassani & Eglinton, 1986; Jones et al., 1987), chemical

reduction by metals (Ekweozor, 1985), hydropyrolysis (Snape et al., 1989; Russell

et al., 2004) and ruthenium ion catalysed oxidation (Strausz et al., 1999b,c; Ma

et al., 2008; Svalova et al., 2017). The latter techniques enable to release biomark-

ers trapped as asphaltene moieties. Asphaltene-occluded biomarkers, on the other

hand, may be trapped within an asphaltene aggregate (Murgich et al., 1999; Snow-

don et al., 2016). Therefore, the size and stability through geological time of the

asphaltenes and their aggregates will impact what information they can preserve
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from alteration (Snowdon et al., 2016). The time of asphaltene formation and their

aggregation properties in different media will determine the information they will

be able to preserve as well. Gray et al. (2011), Zhao et al. (2012) and Snowdon

et al. (2016) suggested that an asphaltene monomer of an average mass of 750 Da

would not likely occlude biomarkers of mass ca. 400 Da, thus it is the asphaltene

nanoaggregates that are the source of occlusions.
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Using Compound Ratios

5.1 Maturity Assessment Using Non-Biomarker ratios

5.1.1 Saturated hydrocarbon fraction

Some of the most common non-biomarker maturity ratios are

Pristane

n-C17

and
Phytane

n-C18

,

whereby the two decrease with thermal maturity as the yield of n-alkanes from

kerogen is increased by thermal cracking (Tissot et al., 1971). Caution has to be

used when using the above ratios due to their susceptibility to alteration due to

organic matter input (Alexander et al., 1981) and secondary alteration processes

e.g. biodegradation (Peters et al., 2005d). Ratios based exclusively on the n-alkanes

include the carbon preference index (CPI) (Bray & Evans, 1961) and odd-to-even

predominance indexes (OEP1 and OEP2) (Scalan & Smith, 1970):

CPI =
1

2


∑

i=25,27,...,33

Ci∑
i=24,26,...,32

Ci

+

∑
i=25,27,...,33

Ci∑
i=26,28,...,34

Ci

 ,

OEP1 =
C21 + 6C23 + C25

4C22 + 4C24

and OEP2 =
C25 + 6C27 + C29

4C26 + 4C28

.

Low thermal maturity is indicated by CPI or OEP values significantly above (odd

preference) or below (even preference) 1.0 (Peters et al., 2005d). In practice, OEP

are adjusted to include a desired range of carbon numbers and are used in conjunc-

tion with other biomarker parameters that are not organic-matter input depend-

able (Peters et al., 2005d).
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5.1.2 Aromatic hydrocarbon fraction

The methylphenanthrene index (MPI) (Radke & Welte, 1983)

MPI =
1.5(2-MP + 3-MP)

P + 1-MP + 9-MP

provides an analogous maturity assessment to vitrinite reflectance (Peters et al.,

2005d), e.g. for oil an MPI of 0.65-1.35 suggesting an oil window maturity and

1.35-2 indicating a higher one. An alternative MPI was proposed by Cassani et al.

(1988)

MPI1 =
1.89(2-MP + 3-MP)

P + 1.26(1-MP + 9-MP)
.

However, MPI has been reported to show very similar values for oils of different

maturity (Radke & Welte, 1983), depending on the type of organic matter and

lithology (Cassani et al., 1988) and petroleum migration (Radke et al., 1982b) indi-

cating that the ratios are not purely maturity-dependent. It is recommended that

the index also is to be calibrated separately for each petroleum system (Peters et al.,

2005d). Both, dimethylnaphthalene index (DMNI) (Radke et al., 1982b; Alexander

et al., 1983; Radke et al., 1984) and trimethylnaphthalene index (TMNI) (Alexander

et al., 1985) are specific for high thermal maturity ranges

DMNI =
2, 6-DMN + 2, 7-DMN

1, 5-DMN
and TMNI =

2, 3, 6-TMN

1, 4, 6-TMN + 1, 3, 5-TMN
.

Alexander et al. (1985) reported that both, DMNI and TMNI increase with sample

depth maturity, whereby the DMNI values of ca. > 2.5 would indicate maturity as

the 1,5-DMN isomer might rearrange to 2,6- and 2,70 DMN (Radke et al., 1982a).

The generality of TMNI was assessed in Alexander et al. (1985) whereby it was

correlated with the ratio (10.11) whereby a strong correlation was found. They

reported that the TMNI values of ca. > 0.5 indicated thermal maturity.

5.2 Maturity Assessment Using Biomarker Ratios

5.2.1 Saturated hydrocarbon fraction

One of the first biomarker reactions to occur as a result of thermal maturation

is isomerisation at C-22 in the regular hopanes (Peters et al., 2005c). The C31-35

17α, 21β-homo-hopane C-22 isomerisation ratios (Ensminger et al., 1978; Schoell
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et al., 1983) can be used with any homo-hopane doublet (most frequently C31 or 32),

e.g.

C3117α, 21β-30-homo-hopane 20S

C3117α, 21β-30-homo-hopane 20S + C3117α, 21β-30-homo-hopane 20R
or

C3217α, 21β-30,31-dihomo-hopane 20S

C3217α, 21β-30,31-dihomo-hopane 20S + C3217α, 21β-30,31-dihomo-hopane 20R
.

Ratios within the 0.57-0.62 range indicate a mature oil, whereas values within 0.50-

0.54 indicates an early stage of oil generation. Very low values of this indicator,

e.g. below ca. 0.5 would suggest very low thermal stress (Seifert et al., 1980;

Peters et al., 2005c). The drawbacks of using the above include lithology-dependent

rates of 17α, 21β-homo-hopane isomerisation (Moldowan et al., 1992). Peters &

Moldowan (1991) showed that in laboratory burial maturation simulations homo-

hopanes attached to the kerogen isomerise at a slower rate than free compounds in

the bitumen.

The moretane/hopane ratio (Mackenzie et al., 1980; Seifert et al., 1980)

C2917β, 21α-hopane

C29 17α, 21β-hopane

is used in maturity estimation as the 17β, 21α-moretanes are less stable than the

17α, 21β-hopanes. The minimum ratio of 17α, 21β-hopanes to 17β, 21α-moretanes

is close to 20:1 (Peters et al., 2005c), decreasing from ca. 0.8 in immature samples

to less than 0.15 in mature rocks (Mackenzie et al., 1980; Seifert et al., 1980).

The ratio between Ts (C27 18α, 21β-22,29,30-trinorneo-hopane) and Tm (C27 17α, 21β-

22,29,30-trinor -hopane), often expressed as Ts/Tm (Moldowan & Fago, 1986) and

is useful for estimating thermal alteration from immature to postmature states

Ts

Ts + Tm
.

During thermal maturation (catagenesis) Ts is more stable than Tm (Seifert &

Moldowan, 1978), although its unknown whether the conversion of Tm to Ts also

occurs (Peters et al., 2005c). Values of 0.6-0.8 typically indicate thermal matu-

rity (Moldowan et al., 1986b). Although it is strongly influenced by the source

of petroleum and should be used with caution for oils from different source, for

common-source samples the Ts/Tm is reported to be one of the most reliable (Pe-

ters et al., 2005c). Caution should be used when identifying the two compounds as
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they commonly elute with other tricyclic/tetracyclic hopanes (Peters et al., 2005c).

Sterane isomerisation at C-20 in the C29 5α, 14α, 17α compounds (Seifert & Moldowan,

1986) or % 20S steranes out of the C29 5α, 14α, 17α doublet is used to infer maturity

from immature to mature

C29 5α, 14α, 17α 20S

C29 5α, 14α, 17α 20S + C29 5α, 14α, 17α 20R
.

With increasing maturity, the isomerisation of the unaltered R configuration, e.g.the

ratio value ' 0, increases to ca. 0.5 of the doublet mixture. The ratio equilibrium

was reported to be 0.52-0.55 (Seifert & Moldowan, 1986). Another C29 sterane ratio

uses isomerisation at C-14 and C-17 to infer sample maturity, as the 5α, 14β, 17β

configuration is more stable through thermal stress than the 5α, 14α, 17α configu-

ration. The ratio is defined as

C29 5α, 14β, 17β 20S +R

(C29 5α, 14β, 17β 20S +R) + (C29 5α, 14α, 17α 20S +R)
,

whereby values of ca. 0.7 would suggest thermal maturity, with an equilibrium of

0.67-0.71 (Seifert & Moldowan, 1986).

5.2.2 Aromatic hydrocarbon fraction

In what follows, the abbreviation MAS refers to 17β-methyl-18-nor -cholesta-8,11,13-

triene (monoaromatic steroids) and TAS refers to 17β-methyl-18,19-dinor -cholesta-

1,3,5(10),6,8,11,13-heptane (triaromatic steroids) (Abbott et al., 1985).

The mono- to triaromatic steroid ratio

C26+27+28 TAS

C26+27+28 TAS + C27+28+29 MAS

is specific to samples ranging from immature to mature (Peters et al., 2005c), al-

though its value can be affected by expulsion which negatively affects the retention

of the more polar triaromatic steroids (Hoffmann et al., 1984b; Peters et al., 1990).

It is presumed that conversion of monoaromatic to triaromatic steroids occurs dur-

ing maturation through the loss of a methyl group at the A/B ring junction in the

MAS (Mackenzie et al., 1981; Peters et al., 2005c). Values above ca. 0.5 were re-

ported to correspond to greater burial depths (Mackenzie et al., 1981; Mackenzie,
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1984). Finally, the short/short+long chain MAS and TAS ratios

C21+22 MAS

C21+22+27+28+29 MAS
and

C20+21 TAS

C20+21+26+27+28 TAS

provide inference about the mature-late mature range (Peters et al., 2005a). Exper-

imental evidence suggests that the ratio increases with maturity due to the preferen-

tial degradation of the long-chain compounds (Mackenzie et al., 1981; Beach et al.,

1989).

5.3 Source Assessment Using Compound Ratios

What follows provides biomarker and non-biomarker relations from which the depo-

sitional environment of petroleum samples can be estimated. The ratio of dibenzoth-

iophene to phenanthrene (DBT/P) can distinguish between a carbonate (DBT/P >

1) and a shale (DBT/P < 1) source (Hughes et al., 1995). When used together

with Pr/Ph, the DBT/P has a high specificity towards a source rock’s depositional

environment and lithology, this is known as a Hughes plot (Hughes et al., 1995),

Figure 5.1(a).

The C31R/C30 hopane ratio can be used to indicate a marine vs lacustrine source

deposition (Peters et al., 2005h). A value of > 0.25 indicates a marine shale, car-

bonate and marl source rocks. For better specificity, the ratio should be used to-

gether with C26/C25 tricyclic terpanes, as shown in Figure 5.1(b), although areas

of overlap are still prominent. Redox conditions can be inferred from the 30-nor -

hopane/regular hopane ratio, whereby values > 1 would indicate an anoxic carbon-

ate or marl source (Peters et al., 2005h). The C27-C28-C29 sterane ternary diagram

provides very good specificity towards distinguishing different source rocks (Peters

et al., 2000) or different organic facies of the same source rock (Grantham et al.,

1988). This sterane relation provides limited specificity to distinguish marine from

non-marine depositional environments (Figure 5.1(c)), except plants with a strong

input from higher-plant organic matter (Moldowan et al., 1985), thus should be used

in conjunction with other source indicators.
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Figure 5.1: Relations used in sample source assessment. References for plots (a) and (b)
are Hughes et al. (1995) and (Peters et al., 2005h, Figure 13.77 (GeoMark Research Inc.,
Zumberge 2000, personal communication)) respectively. Plot (c) adapted from Moldowan
et al. (1985).

Two versions of the gammacerane (Ga) index (GI),

GI1 =
Ga

Ga+C3017α, 21β-hopane
× 10 and

GI2 =
Ga

C3117α, 21β-30-homo-hopane 22R hopane
,

provide a high specificity for water-column stratification during source rock depo-

sition, which may indicate hypersalinity at depth (Sinninghe Damsté et al., 1995).

The interpretation should be made with caution, however, as hypersalinity can also

result from temperature gradients (Peters et al., 2005h). When in low quantities,

gammacerane can coelute with other peaks thus should be used carefully (the m/z
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412 ion fragmentogram can be assessed as well).

The pristane/phytane ratio is extensively used in thermal maturity assessment (thus

is affected by it) and provides some specificity towards redox conditions of the source

rock (Peters et al., 2005h). According to Didyk et al. (1978), Pr/Ph < 1 can be

related to source rock anoxia, and oxic conditions otherwise. The ratio is used to

differentiate between marine carbonate/marine shale/lascustrine source input also,

as is illustrated in the Hughes plot above (Figure 5.1 (a)). However, for petroleum

samples within the oil generation window, Ph/Ph can only by used at extreme val-

ues, as it is otherwise weakly correlated with redox conditions. The ratio values

> 3 indicates an oxic terrigenous organic matter deposition and anoxic, hyper-

saline/carbonate deposition for Pr/Ph < 0.8 (Peters et al., 2005h). For better

specificity, Pr/(Pr+Ph) can be plotted against the C27 Dia/(Dia+Regular) sterane

ratio which has a strong positive correlation (Moldowan et al., 1994b, 1986a). The

C30/(C27-C30) regular sterane index has a high specificity to marine organic matter

input (Moldowan et al., 1985; Peters et al., 1986). The C35 pentahomo-hopane index

C35 17α, 21β-30,31,32,33,34-pentahomo-hopane 22S+R

C31+32+ . . .+35 17α, 21β-homo-hopanes 22S+R

indicates high anoxic conditions where the index value is above ca. 20% (Peters &

Moldowan, 1991; Peters et al., 1995). McKirdy et al. (1983) also used a C34/C35 22S

homo-hopane index to illustrate that carbonate source rocks have a ratio of > ca.

0.9, whereas Peters et al. (2005h) noted that lower values would indicate a shale

source.
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Aggregation

6.1 Introduction

Particle molecular aggregation and/or particle flocculation can be detected by a

variety of methods, such as optical microscopy, confocal microscopy, near-infrared

microscopy (Miller, 1996; Cosgrove & Zasadzinski, 1998; Habdas & Weeks, 2002;

Challis et al., 2005), calorimetry (Anderson & Birdi, 1991; Bury et al., 1991; Loh

et al., 2004; Smirnovas et al., 2005; Sun et al., 2005) and nuclear magnetic res-

onance (Fabre et al., 1980; Zajac et al., 1994; Freed et al., 2009), to name a few.

Ultrasonic characterisation is another of such techniques, widely used for commercial

and academic research purposes due to its high sensitivity to molecular rearrange-

ment, invariance to sample opacity and the availability of non-destructive on-line

sampling (Zaman et al., 2004; Xiaobo et al., 2016). The power levels that are typi-

cally deployed during ultrasonic measurements are ca. 10 kW m-2 (Puskar, 1982) and

it is assumed that displacements induced by ultrasonic pressure are elastic (Povey,

1997b). The method allows to detect changes in volumetric/elastic properties of sam-

ples, such as the particle size distribution (Challis et al., 2005; Povey, 2013, 2017),

contrasts in viscous/density properties (Challis et al., 2005), aggregation (Zielinski

et al., 1986; Andreatta et al., 2005a; Ray et al., 2005; Abbott & Povey, 2012; Sval-

ova et al., 2017), particle stability (creaming/flocculation) (Shukla et al., 2007) and

crystallisation (Dickinson et al., 1996; Povey, 2017). Advantages of ultrasound over

light spectroscopic techniques include the phase sensitivity of acoustic transducers, a

higher frequency range (10−1 to 1013 Hz vs 3-6×1016 Hz), coherence between pulses

and non-polarization of the sound pulse (Povey, 1997b).

Ultrasound has been applied to study phase behaviour properties of e.g. proteins,

fats, ionic solutions and surfactants. For example, Taulier & Chalikian (2001) used

ultrasonic velocity along with density, fluorescence anisotropy and circular dichro-

ism measurements to understand conformational transitions in β-lactoglobulin. The
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temperature-induced aggregation and denaturation of the same protein was charac-

terised using ultrasonic velocity and absorption in heat-catalysed conditions (Ochen-

duszko & Buckin, 2010). Airborne ultrasound measurements have been used to

monitor the volume and size distributions of air bubbles in chocolate (Watson et al.,

2014). Low-intensity ultrasound has also been successfully used to promote peri-

odontal alveolar bone regeneration in dogs (Wang et al., 2018). For present pur-

poses, of particular interest is ultrasonic characterisation of colloidal mixtures and

solutions of surfactants. Ultrasound has been widely used to study aggregation of

surfactant solutions. Zielinski et al. (1986) proposed an ultrasonic velocity model

determining the critical micelle concentration of alkyltrimethylammonium bromide

surfactants in water. Ray et al. (2005) have demonstrated secondary micellarisa-

tion of the same type of compound using ultrasound, as well as tensiometric, con-

ductometric, fluorimetric and calorimetric methods. Assuming asphaltenes behave

similarly to surfactants, Andreatta et al. (2005a) used ultrasound to estimate the

critical nanoaggregate concentration of asphaltenes in toluene as well as aggregation

of Tween 80 and sodium dodecyl sulphate surfactants. What follows provides an

introduction into sound mechanics and defines mathematical apparatus in order to

detect micellarisation and nanoaggregation in solutions using ultrasonic characteri-

sation.

6.2 Acoustic Propagation in Homogeneous Fluids and Colloids

6.2.1 Fundamentals of acoustic wave propagation

The sound wave is a mechanical phenomenon, whereby oscillations of pressure oc-

cur about an equilibrium point through a transmission medium (Povey, 1997b).

Sound waves in liquids are compressional/longitudinal (Pierce, 1981) whereby the

particle motion is parallel to the direction of pulse propagation (Povey, 1997b), Fig-

ure 6.1(c,d). In solids, sonic waves can additionally be supported in a shear mode

over macroscopic distances whereby the particles in medium are displaced at a right

angle (transverse) to the direction of sound wave propagation (Povey, 1997b; Mason

& Peters, 2002), Figure 6.1(d).

Consider a plane wave of sound, as shown in Figure 6.1(a), which can be charac-

terised by the following parameters:

� Wavelength λ- the length between two successive sound wave peaks,
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Figure 6.1: Schematic of different types of sound waves. In plots (a,b) red and green
arrows indicate the direction of phase and group velocity propagation respectively.

� Frequency f - number of wave oscillations per unit time (Hz- number of oscil-

lations per second). It follows that the period of the oscillation T is T = f−1.

The evolving amplitude of a wave, A(x, t), can be expressed as

A(x, t) = A0 exp(i(ωt− kx)), ω = 2πf, k =
2π

λ
(6.1)

where A0 is the amplitude, ω is the angular frequency and k is the wavenumber

of the wave. The speed of the wave (travel), in particular that of constant phase

locations on the wave, is given by the phase velocity,

vp =
ω

k
= fλ. (6.2)
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In Figure 6.1 the wave amplitude is depicted as being constant. In reality, as it

propagates through any real medium, the wave will lose energy, leading to a decay in

it’s oscillation amplitude with propagation distance. Equation (6.1) can be modified

to account for decay due to attenuation as

A(x, t) = A0 exp(i(ωt− kx)− αx), (6.3)

where the final term in the exponential describes this exponential decay of am-

plitude, with α being the attenuation coefficient (typically expressed in units of

Nepers m-1). A number of factors contribute to α, including the non-ideality of

a sound transmitter/resonator, viscous losses, thermal dissipation, chemical relax-

ation effects and scattering effects. Given that α is significantly smaller than the

wavenumber k, attenuation does not strongly impact velocity and can be ignored

in situations where the sound velocity is the sole quantity of interest. On the other

hand, under high attenuation the wavefront of an ultrasonic pulse does not preserve

the original phase relationship and sound propagation follows a diffusion process

whereby vp can no longer be used (Povey, 1997a).

Sound can also propagate as a pulse, which is a group of sound waves whose am-

plitude is modulated by a finite-sized envelope, as illustrated in Figure 6.1(b). The

velocity at which the peak of the envelope travels is given by the group velocity

vg =
dω

dk
. (6.4)

Ultrasound waves are sound waves that have a frequency above that detectable by

human hearing, which is typically above 20 kHz (Mason & Peters, 2002).

6.2.2 Acoustic propagation through a single continuous fluid

To derive the equation for sonic velocity in a single continuous fluid, firstly consider

an infinitesimally small mass of the fluid m, which extends over a volume V . If the

pressure experienced by this fluid mass increases, then its volume will decrease, and

vice versa. The propensity of the fluid for changing volume with pressure p through

the adiabatic compressibility β can be defined as

β = − 1

V

(
∂V

∂p

)
=

1

ρ

(
∂ρ

∂p

)
(6.5)
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where ρ is density and V = mρ−1 ∝ ρ−1. Acoustic waves generate a pressure front

that change the local fluid density, thus velocity vp can be defined as a derivative of

pressure with respect to density (Kristensen, 2010),

vp =

√(
∂p

∂ρ

)
. (6.6)

Finally, the speed of sound vp can be linked to β and ρ by substituting the right

hand side of (6.5) into (6.6),

vp =

√
B

ρ
=

1√
ρβ
, (6.7)

where B = β−1 is the bulk modulus. The above formalism is known as the Newton-

Laplace equation (normally using B) or the Wood equation (using β) (Wood, 1941,

1964).

An ideal mixture, whereby there is no interaction between the mixture substances,

can be considered a homogeneous/single continuous fluid (Kristensen, 2010), which

is typically the case in aqueous surfactant solutions. This study presumes that this

is the case for asphaltene-toluene solutions. What follows illustrates a derivation of

sonic velocity in a binary liquid sample with two components, denoted component0

and component1 (Kristensen, 2010). Here, volume fraction φ is used, whereas for

(surfactant or ionic) solutions the weight concentrations c of each of the mixture

components is used (Zielinski et al., 1986). The density of the mixture ρ can be

broken into the two mixture contributions,

ρ =
m0 +m1

V0 + V1
= (1− φ)ρ0 + φρ1. (6.8)

Similarly, β of solution can be broken down into solvent and solute components

using (6.5),
∂V

∂p
=
∂(V0 + V1)

∂p
= −(V0β0 + V1β1). (6.9)

Using equations (6.8)and (6.9), the adiabatic compressibility of a mixture is

β = (1− φ)β0 + φβ1. (6.10)
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Finally, combining (6.8) and (6.10), the sonic velocity through an ideal mixture is

vp = {((1− φ)ρ0 + φρ1) ((1− φ)β0 + φβ1)}−
1
2 . (6.11)

A generalisation of (6.11) can be applied to multi-phase dispersions (colloids) (Urick,

1947)

vp =
1√
βρ
, β =

n∑
i=1

φiβi, ρ =
n∑
i=1

φiρi, (6.12)

where φ is the volume fraction and i = 1, 2 . . . , n is the number of solution phases;

typically i = 1 refers to the continuous phase and the remaining phases are dispersed

solids (Povey, 1997a). Similarly, sonic velocity can detect micellarisation concen-

tration using density and compressibility differences pre- and post-micellarisation.

Section 6.4 details the method.

6.2.3 Ultrasonic propagation through a colloid

Ultrasonic propagation in colloids will involve significant velocity and attenuation

changes, especially at the phase boundary, giving rise to the scattering phenomenon (Chal-

lis et al., 2005). Firstly, in colloidal mixtures the phase velocity and attenuation will

be a ‘weighted average’ of the velocity and attenuation in the two phases, taking

into account sound diffraction at the phase boundary (Urick, 1947; Povey, 1997a).

Contrasts in physical properties of the colloidal phases, including compressibility,

thermal conductivity and density may contribute to energy losses of the sound wave

or induce a phase shift (Challis et al., 2005). Phase density contrasts and viscosity,

in particular, induce scattering of sound in liquid samples. In the present investi-

gation, particles in solution are measured (Svalova et al., 2017), thus multi-phase

resonance contrasts are ignored. The multi-phase nature of mixtures and presence

of inhomogeneities cause issues, such as reflection, rarefaction, scattering and inter-

ference in the propagating wavefront (Povey, 1997c).

The above issues give rise to sound scattering. Povey (1997c) defined sound wave

scattering as “any process which takess energy in one form or mode of motion and

transforms it into another”. Scattering of sound causes its wave amplitude to change

in all directions and/or causes a phase shift. As very few liquids are ‘truly’ homo-

geneous, particle displacements will be associated with inter-particle interactions

and restoring forces (Povey, 1997c). Although (9.2) describes velocity propagation

through colloids as through a ‘homogenized’ fluid, it can be shown to be a special
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case of scattering theory (Povey, 1997c). Also, sound wave propagation is isother-

mal only at frequencies above 1012 Hz, thus although the adiabatic approximation is

satisfactory for present purposes, ultrasonic propagation is accompanied by thermal

waves (on the scale of mK) (Povey, 1997c). Understanding the phenomenon of

scattering, however, allows to obtain a better understanding of the physical sam-

ple properties. This includes creaming/sedimentation (Pinfield, 1996), crystallisa-

tion (Dickinson et al., 1993) and particle size determination (Alba, 1992; Roberts,

1996; Hazlehurst et al., 2014). Thermoacoustic scattering, in particular, is one of the

main phenomena used in the ultrasonic characterisation of colloids and determining

the particle size distribution (Hazlehurst et al., 2014). The formalisms of scattering

theory can be found in the above references, as well as earlier works (Strutt, 1896;

Epstein & Carhart, 1953; Lloyd & Berry, 1967; Allegra & Hawley, 1972).

6.3 Velocity Measurement Methods

This section describes two methods of measuring ultrasonic velocity. In all our

experiments, the acoustic resonance method is used.

6.3.1 Pulse-echo/pitch-catch

The pulse-echo/pitch-catch method is a widely-used ultrasonic velocity characterisa-

tion method, and the following description draws from the work of Povey (1997a,b).

The method measures the group velocity vg of an ultrasonic pulse, Equation 6.4, as

shown in Figure 6.1 (b). A piezoelectric transducer is normally installed in a metal

cell that is temperature-controlled to a high precision, generating a pulsed sound

wave illustrated by Figure 6.2. In particular, the source transducer is excited by

an electrical pulse, which causes a pulsed vibration. This vibration stimulates the

generation of sound waves in the fluid, emanating from the transducer face. In the

pulse-echo method, these propagate through the cell, reflect against the back wall

of the measurement cell, and are detected by the source. In the pitch-catch method,

a receiving transducer detects the sound pulse. A timer records the (two-way for

pulse-echo and one-way for pitch-catch) time of the pulse in sample which is then

converted to velocity. When a reflected wave is received, reverberations need to be

taken into account. In particular, the received pulse will be a succession of the pulse

that travelled through the sample only, and that which penetrated the wall off the

sample cell also. Given that the speed of sound through metals is much greater than
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Figure 6.2: The pulse-echo/pitch-catch measurement method, adapted from Povey
(1997a). The ultrasonic path length is denoted x.

through liquids, reverberations may need to be taken special account for, e.g. by

ensuring sufficient cell wall thickness. The source transducer need to be installed

to a high degree of parallelism with respect to the back wall of the measurement

cell (pulse-echo) or the receiver (pitch-catch), otherwise causing phase variation and

errors in velocity measurement.

6.3.2 Acoustic resonance

The acoustic resonance method (Eggers & Funck, 1973) measures the phase ve-

locity vp, Equation (6.6), and will be used to perform ultrasonic characterisation

through homogenous liquid samples throughout this study. Figure 6.3 (a) illustrates

a schematic of a resonator unit. The latter consists of two metal transducer plates,

often quartz (Eggers & Funck, 1973), labeled Q1 and Q2. The ultrasonic charac-

terisation instrument used in this study, ResoScan, uses gold and lithium niobate

piezocrystals (TF Instruments, 2007). A (sine wave) oscillator sends a pulse through

Q1 producing a standing sound wave in the liquid at characteristic frequencies fn.

The output plate Q2 receives voltage pulses which are processed and displayed as

frequency peaks on an oscilloscope or processing software, Figure 6.3 (b).

In order to measure the sonic velocity, the pressure (a function of frequency) at

the receiving Q2 is the sum of all partial waves in the resonator (Musa, 1958). It

is assumed that the wave reflection at the transducers is ideal and the reflection

loss due to attenuation in the liquid corresponds to one wave transfer (Eggers &

Funck, 1973). Any non-idealities in the transducer plates can contribute to addi-

tional attenuation of the sound wave and errors in the velocity measurement. A

measurement setup whereby the resonator plates’ diameter is large compared to the
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Figure 6.3: The acoustic resonance method, adapted from Eggers & Funck (1973). Res-
onator cavities are labeled Q1 and Q2, x denotes path length, L denotes liquid volume in
the sample, fn denotes characteristic frequencies.

sound wavelength in the liquid, the plane wave field is enhanced which is in contrast

to the complex near field of a piston transducer (Del Grosso, 1966) in the pulse-echo

or time-of-flight techniques. Further, the resonance method offers a higher signal-

to-noise ratio (Andreatta et al., 2007). What follows lists the formalisms used to

estimate ultrasonic velocity using the resonance method, as given in Andreatta et al.

(2007). Given an ideal one-dimensional isolated resonator, the amplitude A of an

ultrasonic wave propagating in the x direction is given by the Equation (6.3). For

the frequency of the nth longitudinal resonance fn is

fn =
nvp
2ls

, (6.13)

where ls is the path in solution (Bolef & Miller, 1971). Given that ls is constant,

the relative change in velocity can be related to a relative change in the resonant

frequency
∂vp
vp

=
∂fn
fn

. (6.14)

Specific to the resonance method is the quality factor Q which is the relative energy

loss per oscillation cycle of a system (Davis, 2009)

Q = 2π
Etotal

∆E
(6.15)

whereby Etotal is the total energy of the resonator and ∆E is the energy loss per

oscillation cycle (Kristensen, 2010). The Q-factor also explains the loss of sharpness

64



Chapter 6. Ultrasonic Characterisation of Molecular Aggregation

of a resonant peak in frequency space through the amount of energy dissipation

Q =
fn
∆fn

(6.16)

where ∆fn is the full width at maximum divided by
√

2. The peak number can then

be determined using the frequencies of two adjacent modes

fn+1 − fn
fn

=
1

n
. (6.17)

6.4 Micelle Detection Using Ultrasonic Velocity Measurements

What follows details the mathematical model in order to detect micellarisation and

nanoaggregation in solutons using ultrasonic phase velocity denoted u,

u = vp,ultrasound. (6.18)

An extension of (6.7) allows to detect the onset of surfactant aggregation into mi-

celles, as proposed by Zielinski et al. (1986). In a surfactant solution of volume V ,

solvent has a weight w0 and the dissolved surfactant has a weight of w = w1 + wm

which is a sum of monomeric1 and micellar m forms. The total volume of the solution

is then related to the component weights following

V = w0v0 + w1ṽ1 + wmṽm (6.19)

where v is specific volume and ṽ is the apparent specific volume of solvent0, monomeric

surfactant1 and micellar surfactantm. The total solution weight wT is a product of

volume V and density ρ

wT = ρV = w0 + w1 + wm. (6.20)

The solution density can be re-written in terms of surfactant concentrations and

solvent density using (6.19) and (6.20)

ρ = ρ0 + (1− ṽ1ρ0)c1 + (1− ṽmρ0)cm, c1 =
w1

V
, cm =

wm
V
, (6.21)
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where c1 and cm are weight concentrations of monomeric and micellar surfactant re-

spectively. Using (6.21) adiabatic compressibility of the solution β can be defined as

a partial derivative of concentration with respect to pressure p (at constant entropy

S)
∂c1
∂p

= c1β,
∂cm
∂p

= cmβ, (6.22)

defining adiabatic compressibility of the solvent β0

β = β0 + (β̃1 − β0)ṽ1c1 + (β̃m − β0)ṽmcm. (6.23)

The apparent surfactant compressibility is then defined as

β̃1 = − 1

ṽ1

(
∂ṽ1
∂p

)
S

, β̃m = − 1

ṽm

(
∂ṽm
∂p

)
S

. (6.24)

Finally, ultrasonic velocity in (6.7) can be related to concentrations of monomeric

and micellar surfactants

u = u0 +
u0
2

(
ṽ1

(
2− β̃1

β0

)
− v0

)
c1 +

u0
2

(
ṽm

(
2− β̃m

β0

)
− v0

)
cm. (6.25)

Further, if c ≤ CMC, then c1 = c, and cm = 0, otherwise

if c > CMC, then c1 = CMC, and cm = c− CMC.
(6.26)

The model (6.25) implies that pre- and post-micellarisation, sonic velocity is re-

lated to surfactant concentration as a combination of two linear behaviours whose

intersection estimates the CMC. Assuming that asphaltenes are similar to surfac-

tants (Andreatta et al., 2005a) and have emulsion-stabilising properties, (6.25) will

be used to study asphaltene nanoaggregation in toluene.
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7.1 Cleaning and Safety Procedures

A laboratory coat, safety goggles and rubber gloves were worn at all times to ensure

personal safety and reduce contamination. Glassware used in all geochemical exper-

iments was pre-washed in a laboratory automatic dish washer and/or rinsed with

dichloromethane (DCM) or DCM/methanol (MeOH) mixtures as appropriate and

dried under nitrogen, air-dried or in a glass oven as appropriate. Metal tools, e.g.

spatulas and tongs, were wiped with paper towels using DCM or DCM/MeOH as

appropriate. Filter media, e.g. glass/cotton wool and paper thimbles, were cleaned

by Soxhlet extraction with DCM prior to use. Filter media for chromatographic

separation, including alumina and silica-coated glass plates, were cleaned by DCM

as appropriate and activated in an oven at 125◦C. Experiments involving the use

of volatile and/or toxic liquids were performed in a fume cupboard. A cup-shaped

respirator was used when appropriate. Laboratory bench/fume cupboard surfaces

were covered with tin foil prior to experiments to reduce contamination. All glass

containers were rinsed with DCM at least three times, plastic lids were gently rinsed

or wiped with DCM or MeOH.

7.2 Asphaltene Precipitation

Asphaltenes were precipitated from their parent petroleum following a 40-fold ex-

cess n-alkane addition (Groenzin & Mullins, 1999; Yu et al., 2014; Svalova et al.,

2017). Crude oil (5 g) was mixed with 200 ml of n-pentane (n-C5), ultrasonicated

for 2 h and left to settle overnight. The mixture was then centrifuged for 15 min

at 3500 rotations per minute (rpm), maltene supernatant decanted (first maltene)

and stored for biodegradation characterisation and maturity assessment. The as-

phaltene fraction was further washed following a cycle of (i) 200 ml n-C5 addition,

(ii) ultrasonication for 30 min, (iii) equilibration for 1 h, (iv) centrifugation for 15
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min at 3500 rpm and (v) decanting of the supernatant. The maltene fraction from

the washing cycles was reduced under reduced pressure to ca. 10 ml and stored.

Asphaltenes were then air-dried overnight and/or dried with nitrogen gas before

purification using Soxhlet extraction with toluene (Yu et al., 2014). The obtained

asphaltene-toluene extract was evaporated under reduced pressure to 2-5 ml and

washed for a final time as described above (i-v) for further use in ultrasonic charac-

terisation and oxidation experiments.

7.3 Ruthenium Ion Catalysed Oxidation of Asphaltenes

Inference about asphaltene architecture was performed using ruthenium ion catal-

ysed oxidation (RICO) (Peng et al., 1999; Ma et al., 2008; Snowdon et al., 2016;

Svalova et al., 2017). The reaction products are homologous series of n-alkanoic fatty

acid methyl esters (FAMEs) representing n-alkyl appendages that were attached to

PAHs and α, ω-di -n-alkanoic fatty acid di -methyl esters (DFAMEs) and α-branched

FAMEs (Strausz et al., 1999a; Peng et al., 1999; Snowdon et al., 2016). Asphaltenes

(50 mg) were firstly dissolved in 4 ml DCM and then mixed with 4 ml acetoni-

trile, 5 ml 12% aqueous sodium periodate (NaIO4) and 5 mg ruthenium trichloride

(RuCl3·xH2O). The mixture was shaken for at least 18 h using an orbital shaker.

Dichloromethane and MeOH (15 ml each) were added to the mixture, shaken vig-

orously and centrifuged for 15 min at 3500 rpm. The two-phase supernatant was

decanted into a separating funnel, the remaining sediment was further mixed with

10 ml MeOH and DCM each, centrifuged for 15 min at 3500 rpm and supernatant

decanted into the same funnel to be combined with the initial washing. This cycle

was repeated three times. The sediment remaining in the centrifuge tubes was of

laurel green colour and had a grainy texture, and was transferred into glass vials

for storage. When combined, the four supernatant washings had no phase separa-

tion, thus care was required to separate the heavier organic phase. The washings

were combined with 5 ml of 4% aqueous sodium hydroxide (NaOH), shaken vigor-

ously and left to settle under gravity for 30 min. Organic acids were washed out

from the aqueous phase using DCM. In particular, 20 ml of DCM was added to

the separating funnel, shaken vigorously and the lower ca. 50% of volume decanted

into a round-bottom flask. This washing was repeated further four times; after the

second-third wash a phase boundary could be seen in the mixture. The remaining

aqueous phase was decanted into a glass container for storage. The organic phase
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was returned into the funnel and mixed with 5 ml 13.5% hydrochloric acid (HCl)

and gently shaken. If required, up to 40 ml of deionised water was added in order

to obtain phase separation. The two-phase mixture was washed with DCM fur-

ther three times. This was then evaporated under reduced pressure until dryness.

A cloudy appearance of the organic phase during volume reduction would be in-

dicative of aqueous traces which would be removed by the addition of anhydrous

sodium sulphate (Na2SO4). When dry, the organic acids would be re-dissolved in

1 ml DCM, mixed with 5 ml 98:2 mixture of MeOH and sulfuric acid (H2SO4) and

reflux-heated for 3h. The obtained esters were mixed with 10 ml deionised water

and washed with DCM four times. Finally, the washings were mixed with 4 ml 2%

aqueous NaHCO3 and evaporated under reduced pressure with Na2SO4 to ca. 5 ml.

The products were pipetted out avoiding aqueous traces and blown down with N2

gas to 1 ml for gas-chromatography-flame ionisation detection (GC-FID) and gas

chromatography-mass spectrometry (GC-MS).

7.4 Maltene Analysis

Maltene (deasphalted) petroleum samples were separated into aliphatic/saturate,

aromatic and polar fractions using thin layer chromatography (TLC) and short col-

umn elution (Svalova et al., 2017). Silica gel was prepared with 30 g Merck Silica

60 G powder and 70 ml deionised water. Washed and DCM-purified glass plates

were covered with 0.5 mm silica gel, left to air-dry and activated in an oven at 125
◦C for at least 4 h or overnight. The plates were then further decontaminated by

elution in DCM, marking a gap on the silica layer 2 cm away from the top elimi-

nate the DCM-eluted contamination, and activated at 125 ◦C for 30 min. Capillary

tubes were prepared from glass pipettes for sample application to ensure a better

application control and homogeneity. Glass tanks filled with ca. 200 ml petroleum

ether (for maltene chromatography) or DCM (for plate purification) were lined with

TLC paper to ensure a volatile eluent atmosphere. The tanks were ready for use

when the paper lining has been fully-saturated with the eluent. Maltenes (10 mg)

were spotted on the plates using capillary tubes with eicosane (C20H42; aliphatic),

phenyldodecane (C12H25C6H5; monoaromatic) and anthracene (C14H10; triaromatic)

elution standards and eluted in the glass tanks. Short columns were prepared by fill-

ing with cotton wool and activated alumina as filter layers. The separated aliphatic

and aromatic fractions were placed in short columns on top of the filter media and
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eluted with petroleum ether and DCM respectively. The final fractions were reduced

to 1 ml and analysed by GC-FID and GC-MS with heptadecylcyclohexane (C23H46)

and p-terphenyl (C6H5C6H4C6H5) as internal aliphatic and aromatic standards re-

spectively.

7.5 Analytical Instruments

The following information has been published earlier in Svalova et al. (2017). Mal-

tene and RICO products were analysed using an Agilent 6890 instrument for GC-FID

and an Agilent 7975C instrument for GC-MS.

Initial compound screening was performed using the GC-FID equipped with a 30

m HP5-MS column (0.25 mm internal diameter, 0.25 µm polysiloxane stationary

phase; J&W Scientific, USA). Helium was used as carrier gas at a flow rate of 1 ml

min−1. The GC oven was initially held at 50 ◦C for two minutes and then raised at

a rate of 5 ◦C min−1 to a final temperature of 310 ◦C where it was held isothermally

for 20 min. The instrument was run in splitless mode, whereby the injector was

held at 280 ◦C and the FID at 300 ◦C. Product detection was carried out using

Agilent 7890A GC split/splitless injector at 280 ◦C linked to an Agilent 5975C mass

spectrometer. The oven was operated at the same temperature mode as GC-FID

using a 30 m HP5-MS column (specification as above, J&W Scientific, USA). A

mass selective detector was used in selected ion monitoring and full scan modes

(m/z 50-700). Compound identification was based on the NIST05 (NIST, 2005)

mass spectral library as well as comparison to mass spectra and relative retention

times reported in other studies and in-house guides.
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This chapter describes the methodology of using ultrasonic velocity characterisa-

tion to better understand the asphaltene nanoaggregation. This includes sample

preparation, ultrasonic instrument description and operation and a probabilistic

framework of constrained optimisation used to estimate the nanoaggregation region

concentration from experimental data.

8.1 Sample Preparation

Tetradecyltrimethylammonium bromide (CH3(CH2)13N(CH3)3Br; C14TAB) and do-

decyltrimethylammonium bromide (CH3(CH2)11N(CH3)3Br; C12TAB) 99% and 98%

purity respectively, were obtained from Sigma Aldrich. Their solutions were pre-

pared with Milli-Q 18 MΩ deionised water. Asphaltenes were purified by Soxhlet

extraction, as described in Section 7.2. Extra-pure toluene (≥ 99.99% purity) was

purchased from Sigma Aldrich.

The concentration ranges of CnTAB (n = 12, 14) aqueous and asphaltene-toluene

solutions were prepared by successive dilution using volumetric flasks and volumetric

pipettes. Plastic and glass stoppers were used for CnTAB and asphaltene solutions

respectively.

The concentration ranges of asphaltene and surfactant solutions were prepared as

follows. A starting weight of a solute C would be diluted in a volumetric flask of

volume Vf . The solution would be mixed (by tipping the volumetric flask 3-5 times)

and a volume Vp taken out by a volumetric (graduated) pipette and placed in a

sample vial (Sample0). The solute concentration of Sample0 would thus be CV −1f .

Then, the solution in the volumetric flask would be topped back to Vf , the solution

in this flask is now of the concentration C1,

C1 =
C

Vf

(
1− Vp

Vf

)
. (8.1)
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A sample of C1 would then be taken into a sample vial (Sample1) and the solu-

tion in the flask would be made up back to Vf that would give the total mixture

concentration of C2 (Sample2)

C2 = C1 ×
(

1− Vp
Vf

)
=
C

Vf

(
1− Vp

Vf

)(
1− Vp

Vf

)
=
C

Vf

(
1− Vp

Vf

)2

. (8.2)

Thus, after n dilutions, the concentration of Samplen would be Cn

Cn =
C

Vf

(
1− Vp

Vf

)n
. (8.3)

For the asphaltenes, the initial solute concentrations were weighted out in 1 ml gas

chromatographic vials or weighing boats, as appropriate, on a Mettler Toledo MT5

microbalance (Mettler Toledo, 1999) using a resolution setting of 10−2 mg. For

CnTAB solutions, the initial solute concentrations were weighted out in 3 ml glass

vials or weighting boats using a balance.

8.2 Analytical Instruments

The Resoscan Research System (TF Instruments, 2007) was used to perform high-

resolution ultrasonic measurements. The Resoscan (Figure 8.1) performs simulta-

neous ultrasonic wave velocity u and attenuation α measurements through liquid

samples. The measurement is performed by a two-channel resonator unit (Fig-

ure 8.1 (1)) that has a fixed path length of 7 mm. Ultrasonic waves are generated

by gold and lithium niobate piezocrystals that are the resonator cavities, and given

a homogeneous liquid this will give a precision of ∆u/u = 10−16. The instrument

has two 250 µL sample cells, requiring ca. 170 µL sample volume. The two cells

can either be used independently or the second cell can be filled with a reference

liquid, e.g. the main solvent in the first cell. Temperature is controlled via two

units, cell temperature measurement unit, Figure 8.1 (2), and Peltier thermostat

control unit, Figure 8.1 (3). Samples can be measured at 5 ◦C - 85 ◦C, with a tem-

perature resolution of 10−3 ◦C and precision of ±5× 10−3 ◦C, isothermally or with

with temperature gradients. The present investigation performed measurements at

25 ◦C. The small sample requirement of 170-250 µL and a high temperature stabil-

ity enable to measure conformational changes on a molecular scale. In the vicinity

of 25 ◦C the sound velocity changes by around 5 m s-1 ◦C. Therefore, the preci-
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sion limit of temperature corresponds to a systematic error in velocity of around

2.5× 10−2 m s-1, which is sufficiently small that it does not affect our results. The

fundamental frequency of the instrument is 10 MHz, with range of 7-11.5 MHz, the

precise frequency chosen to maximise the quality factor of the acoustic resonant cell.

Figure 8.1: Resoscan Research System, image taken from TF Instruments (2007).

Prior to measurement the ultrasonic device was calibrated with solvent for which

sound velocity is known, e.g. distilled water (del Grosso & Mader, 1972; Povey,

1997a) or toluene. A significant factor determining the quality of measurement is the

removal of air bubbles. Whilst dissolved air plays no significant role in the reduction

of measurement quality, air bubbles seriously disrupt the ultrasound propagation

and it is crucial to remove them (Povey, 1997a). Also, sample injection should

be performed slowly to avoid mixing with air. Cetyltrimethylammonium bromide

aqueous solutions were injected using an auto-pipette with a 200 µL plastic tip.

The instrument was left to equilibrate for 1 min and up to 30 measurements taken

for every concentration sample, from which an average velocity was determined.

Asphaltene solutions in toluene were injected using a 500 µL glass syringe with

an aluminum needle. The instrument was allowed to equilibrate for 3-4 min and

left to take around 100 measurements for every solution concentration. During
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sample insertion an injector was held vertically parallel to the cell borehole and

injection performed during 30-60 s to minimize air entrapment. The obtained data

was analysed for extreme outliers, caused by air bubbles and other artefacts. Mean

velocity values were plotted versus solute concentration to which piecewise linear

regression models were fitted.

8.3 Constrained Optimization with Penalty Functions

What follows describes the use of constrained optimisation for the critical nanoag-

gregation region (CNR) estimation. Constrained optimisation (CO) is a statistical

method allowing to select an optimal model from a set of several possibilities (Bert-

sekas, 1982; Smith & Coit, 1995). Suppose there exists a number of models that

show similar performance quality based on some statistic, called the objective func-

tion Ω. When the use of Ω alone is insufficient to make a reliable model choice, a set

of rules/constraints is applied, whose violation results in penalising Ω, resulting on

Ωp = Ω−
∑
penalties. In linear model selection, we apply CO by penalising the co-

efficient of determination R2, which becomes the objective function, thus Ωp = R2
p.

The definitions of linear regression models and R2 are revisited as follows.

Given a set of observations y = (y1, y2, . . . , yn) and x = (x1, x2, . . . , xn) where y

are assumed dependent and x are explanatory, a simple linear regression model is

defined as

yi = β0 + β1xi + εi, εi ∼ N(0, σ2), i = 1, 2, . . . , n (8.4)

where εi is normally distributed with a zero mean and variance σ2. The regression

model can, therefore, be redefined as

fi = β0 + β1xi, εi = yi − fi, (8.5)

where εi is the residual not explained by the linear relationship fi. The coefficient

of determination R2 is a measure of linear model performance that is the ratio of

total variability explained by the model fi,
n∑
i=1

(fi − ȳ)2, to total variability in the
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data
n∑
i=1

(yi − ȳ)2,

R2 =

n∑
i=1

(fi − ȳ)2

n∑
i=1

(yi − ȳ)2
= 1−

n∑
i=1

ε2i

n∑
i=1

(yi − ȳ)2
, ȳ =

1

n

n∑
i=1

yi (8.6)

where
n∑
i=1

ε2i =
n∑
i=1

(yi − fi)2 =
n∑
i=1

(yi − ȳ)2 −
n∑
i=1

(fi − ȳ)2 (8.7)

This implies that in data sets where x and y are perfectly linearly correlated R2 = 1

and as linear dependence decreases, R2 → 0.

In an optimisation problem (Smith & Coit, 1995) the objective function is re-

evaluated by penalties P (·), given the observance or violation of user-defined con-

straints. This produces the formalism of a penalised objective function, R2
p in our

case, defined as

R2
p = R2 −

n∑
i=1

δiwiPi(x), i = 1, 2, . . . , n, n− number of constraints, (8.8)

δi =

1 if constraint i is violated,

0 if constraint i is met.

The constant/weight wi represents the penalty magnitude for the violation of con-

straint i which may be set to increase with the magnitude of constraint violation.

When applied to the asphaltene samples, the selected CNR boundaries were gen-

erally robust against changes in wi and the final constants were chosen to satisfy

wiPi(·) < 1 so that the interpretation of the penalties remained intuitive (Sec-

tion 12.2.2).

We analysed all possible non-overlapping two-regression combinations by varying

the number of points in the monomeric/aggregated regressions. Constraints Pi(·)
allowed to combine a priori knowledge about the behaviour underlying asphaltene

aggregation process with the velocity measurements. Three constraints are proposed

as follows.

1. Initial screening of velocity data illustrated that models with a lower number

of points often led to higher R2 values, Tables 12.2 and C.1-C.7. We penalised
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all R2 by P1(i) = i−0.5 where i is the number of points included in a regression.

2. When fitting a linear regression through monomeric/aggregated regions or

the CNR, the residual distributions will be different due to varying sources

of uncertainty, e.g. instrument measurement error vs a different underlying

model. Therefore, g2(i) is as follows:

(a) Fit a linear regression Mi to the first i velocity-concentration measure-

ments.

(b) Obtain the residuals of Mi, calculate their 95% confidence interval I.

(c) Estimate the value mi+1 of the pointi+1 using Mi.

(d) Obtain the resudual ei+1 = mi+1 − velocityi+1. If ei+1 lies outside I,

penalise R2 by P2(i) = ei+1.

3. Some measurements will cause a change in regression slope without producing

a large outlier which may also be a sign of entering the CNR. Therefore, P3(i)

is the difference between regression slopes fitted to the first i and i+ 1 points.

We tested this model on pure CTAB mixtures and obtained the CMC estimations

that matched those in our ultrasonic velocity measurements.
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Nanoaggregation

Bayesian inference allows to combine data from experimental observations sum-

marised in the likelihood with prior beliefs about the parameters of interest (Lee,

2012, p. 36). In the context of asphaltene and petroleum science, Bayesian infer-

ence has been used to predict asphaltene precipitation in reservoirs/during enhanced

oil recovery (Amin et al., 2010; Alimohammadi et al., 2017), in molecular dynamic

simulations of asphaltene aggregation (Sedghi et al., 2013; Goual et al., 2014; Goual

& Sedghi, 2015) and molecular weight estimation (Halwachi et al., 2012). In the

present investigation it will be used to assess whether a nanoaggegation point or a

range is more appropriate for the observed velocity response. What follows describes

a method of assessing the likelihood of an asphaltene aggregation point versus an

aggregation region given the experimental ultrasonic velocity data and assuming a

linear relation is plausible for the monomeric and aggregated regions. The asphaltene

concentration-velocity relation will be modelled assuming two different changepoint

regression models whose efficiency and accuracy will then be compared. Model one,

a one-changepoint formalism, is equivalent to the CNAC assumption (Andreatta

et al., 2005a), for which a Bayesian marginal posterior distribution of the change-

point will be derived. Model two is a two-changepoint model with a Brownian

bridge (Durham & Gallant, 2002; Chow, 2009) to model the critical aggregation re-

gion (CNR) (Svalova et al., 2017). The distributions will be obtained using Markov

chain Monte Carlo (MCMC) simulation using Metropolis-Hastings (M-H) and Gibbs

updates as appropriate (Brooks et al., 2011; Lee, 2012). The investigation will con-

clude with a comparison of the CNAC and CNR posteriors of asphaltenes from four

petroleum samples E1-E4.
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9.1 Introduction to Empirical Bayesian Inference

Bayesian inference is particularly useful in conditions of low data availability and

uncertainty in making decisions. As opposed to frequentist methods that are based

on high number n of trials and data (ideally, n → ∞), Bayesian framework allows

to incorporate a practitioner’s beliefs/plausibilty into a probability distribution of

the phenomenon of interest when the available information is insufficient (Koch,

2007, p. 1). Suppose, one is interested in a phenomenon Y giving an outcome y

assuming an underlying law/process/model M that is controlled by a parameter

(vector) θ. In reality, M will never be entirely true, except for synthetic data, due

to the inherent nature of chaos and uncertainty, and what suffices is that M is a

reasonable approximation of the ‘true’ law one is interested in, or is included in the

family of models that represent the law well. The probability of Y = y assuming M

and θ is expressed by a probability density function of y given θ, f(y|θ) (M and Y

are suppressed in notation). The product of f over all possible values of y is called

the likelihood function of θ given y, L(θ|y) =
∏n

i=1 f(y|θ) (Dekking et al., 2005;

Ando, 2007, p. 313) (sometimes denoted as simply f(y|θ) where y is a vector of

observations), and finding the maximum of L will give the most likely value of the

control parameter θ assuming M . Notice the difference in conditioning, whereby f

gives the probability of y given θ and M , whereby L gives the most likely value of

θ given y and M .

Likelihood alone can be used to draw inference about θ and whether M is suit-

able to model y. However, when i is small or y is deemed unrepresentative of the

entirety about Y then L will be misleading even if M is reasonable. Bayesian infer-

ence (Koch, 2007; Lee, 2012) offers a solution to this problem by allowing to draw

on the knowledge of the user about θ. These beliefs are expressed in a probabil-

ity distribution π(θ) which can be the same or different to the function f (using π

instead of f for denoting Bayesian inference is conventional). The combination of

the frequentist and Bayesian components gives a posterior distribution π(θ|y) (Lee,

2012, p. 37)

π(θ|y) =
π(θ)L(θ|y)

f(y)
∝ π(θ)L(θ|y). (9.1)

The above is known as the Bayes’ rule. In practice, the distribution f(y) is un-

available in closed form and obtained by solving the integral
∫
Y
π(θ)L(θ|y)dy = 1.

When the latter is computationally burdensome or analytially unavailable, sampling
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methods such as Markov chain Monte Carlo (MCMC) are used.

In conventional Bayes (full Bayes, FB) the prior beliefs about θ are formed before

observing the experiments (Ando, 2007). In situations where this is also unreason-

able and prior beliefs can only be formed after observing the data, inference about θ

is no longer ‘fully’ Bayesian but empirically Bayesian (EB) (Lee, 2012, p. 245, 261).

This may arise when prior information is very low and/or specific to a particular

experimental event yet a Bayesian approach is still desired to combine experimental,

historical and user data. This is indeed the case for asphaltenes as their biological

diversity and a lack of and challenges with ultrasonic measurements make a full

Bayesian approach complicated. Mathematically, the difference between FB and

EB (Ando, 2007) is the parametrisation of π(θ). In FB, the parameters (hyper-

parameters) that specify π(θ), say ψ, are stochastic implying the full notation pf

the prior distribution of θ is π(θ|ψ) and ψ should be assigned π(ψ). In EB, ψ is

non-stochastic and no additional priors are required, although the full form of the

prior for θ remains π(θ|ψ) and the posterior of θ is π(θ|y, ψ) (Ando, 2007).

9.2 Model Setup

Nanoaggregation of asphaltenes may be detected by ultrasonic velocity measure-

ments using theory of surface-active compound (surfactant) aggregation (Zielinski

et al., 1986; Andreatta et al., 2005a). The full model derivation is given is Sec-

tion 6.4. Within a uniform liquid, the ultrasonic velocity u is related to density ρ and

adiabatic compressibility β of the medium according to the Urick equation (Urick,

1947)

u =

√
1

ρβ
. (9.2)

For multi-phase fluids which are well-dispersed, and ignoring the effects of sound

scattering (valid for sufficiently low concentration of scatterers and away from scat-

tering resonances) (Povey, 1997a), Equation (9.2) can be applied with density and

compressibility represented by weighted averages of the mixture components (Sec-

tion 6.2). An extension of Equation (9.2) allows to detect the onset of surfactant

aggregation into micelles to detect the critical micelle concentration (CMC), as pro-

posed by Zielinski et al. (1986). In particular, the sound velocity u is related to
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apparent molar solution quantities following the relation

u = u0 +
u0
2

(
ṽ1

(
2− β̃1

β0

)
− v0

)
c1 +

u0
2

(
ṽm

(
2− β̃m

β0

)
− v0

)
cm, (9.3)

where v denotes specific volume, c- weight concentration, tilde- apparent quantities

and subscripts refer to solvent (0), monomer (1) and micellar (m) quantities. Also,if c ≤ CMC, then c1 = c, and cm = 0, otherwise

if c > CMC, then c1 = CMC, and cm = c− CMC.
(9.4)

The model (9.3) implies that pre- and post-micellarisation, sonic velocity is related

to surfactant concentration as a combination of two linear behaviours whose inter-

section estimates the CMC.

9.2.1 Asphaltene nanoaggregation single-changepoint model

Formalism 9.3 is equivalent to a single-changepoint linear regression model where

the speed of sound y varies with asphaltene concentration x as follows:

yi =

{
α1 + β1xi + ε1,i, ε1,i ∼ N(0, σ2

1), xi < γ,

α2 +
(
α1−α2+β1γ

γ

)
xi + ε2,i, ε2,i ∼ N(0, σ2

2), xi ≥ γ.
(9.5)

In (9.5), γ denotes the changepoint (CNAC), {εj,i, j = 1, 2} refers to regression

residuals that follow a Normal distribution with mean 0 and variance σ2
j , subscripts

refer to the monomericj=1 and aggregatedj=2 concentrations respectively. For con-

venience, we define the slope of aggregated region β2 = α1−α2+β1γ
γ

. The likelihood

for model (9.5) is derived

L(θ|x, y) =

n1∏
i=1

1√
(2πσ2

1)
exp

{
−(yi − α1 − β1xi)2

2σ2
1

}
× (9.6)

×
n2∏
i=1

1√
(2πσ2

2)
exp

−
(
yi − α2 −

(
α1−α2+β1γ

γ

)
xi

)2
2σ2

2

 .
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In the above, n1 and n2 denote the lengths of {x : x < γ1} and {x : x ≥ γ2}
respectively. Parameter priors were chosen to achieve semi-conjugacy where possible:

α1 ∼ N(a1, σ
2
α1

), α2 ∼ N(a2, σ
2
α2

), β1 ∼ N(b1, σ
2
β1

), (9.7)

σ2
1 ∼ IGa(ρ1, φ1), σ2

2 ∼ IGa(ρ2, φ2),

where IGa denotes an Inverse-Gamma distribution. Let θ = (α1, α2, β1, γ, σ1, σ2).

The above setup gives the following marginal posterior distributions.

α1|θ−α1 ,x, y ∼ N(Mα1 , Vα1), (9.8)

Mα1 =

(
a1

2σ2
α1

+

n1∑
i=1

yi − β1xi
2σ2

1

+

n2∑
i=1

A

2σ2
2

)(
1

2σ2
α1

+
n1

2σ2
1

+

n2∑
i=1

x2i
2σ2

2

)−1
,

A = xi

(
yi − α2 − xi

(
β1γ − α2

γ

))
, Vα1 = 0.5

(
1

2σ2
α1

+
n1

2σ2
1

+

n2∑
i=1

x2i
2σ2

2

)−1
.

β1|θ−β1 ,x, y ∼ N(Mβ1 , Vβ1), (9.9)

Mβ1 =

(
b

2σ2
β1

+

n1∑
i=1

(yi − α1)xi
2σ2

1

+

n2∑
i=1

A

2σ2
2

)(
1

2σ2
β1

+

n1∑
i=1

x2i
2σ2

1

+

n2∑
i=1

x2i
2σ2

2

)−1
,

A = xi

(
yi − α2 − xi

(
α1 − α2

γ

))
, Vβ1 = 0.5

(
1

2σ2
β1

+

n1∑
i=1

x2i
2σ2

1

+

n2∑
i=1

x2i
2σ2

2

)−1
.

α2|θ−α2 ,x, y ∼ N(Mα2 , Vα2), (9.10)

Mα2 =

 a2
2σ2

α2

+

n2∑
i=1

A
(

1− xi
γ

)
2σ2

2


 1

2σ2
α2

+

n2∑
i=1

(
1− xi

γ

)2
2σ2

2


−1

,

A = yi − xi
(
α1 + β1γ

γ

)
, Vα2 = 0.5

 1

2σ2
α2

+

n2∑
i=1

(
1− xi

γ

)2
2σ2

2


−1

.

σ2
1|θ−σ2

1
,x, y ∼ IGa

(
n1

2
+ ρ1, 0.5

n1∑
i=1

(yi − α1 − β1xi)2 + φ1

)
. (9.11)

σ2
1|θ−σ2

2
,x, y ∼ IGa

(
n2

2
+ ρ2, 0.5

n2∑
i=1

(
yi − α2 − xi

(
α1 − α2

γ
+ β1

))2

+ φ2

)
.

(9.12)
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In the above nx denotes the length of vector x and θ−z denotes the vector θ without

the variable z. The posterior of the changepoint γ required a Metropolis-Hastings

(M-H) update using a Gamma prior; the proposal kernels are outlined in the Results

section.

9.2.2 Asphaltene nanoaggregation two-changepoint model with a Brow-

nian bridge

We propose to model the mixing region using a diffusion process, namely the Brow-

nian bridge defined as follows. Consider a standard Brownian motion, W (t) defined

as:

W (t)|W (0) = 0 ∼ N(0, t), t > 0. (9.13)

A Brownian bridge B(t) can be defined as a combination of W (t) pinned to start

and end at zero (Bhattacharya & Waymire, 1990; Mansuy & Yor, 2007):

B(t) = W (t)− t

T
W (T ), 0 ≤ t ≤ T, B(0) = B(T ) = 0. (9.14)

The expectation of B(t) is zero ∀t (Chow, 2009). Using (9.13) variance of B(t) is

derived as follows:

V ar(B(t)) = V ar

(
W (t)− t

T
W (T )

)
=

= V ar(W (t))− 2
t

T
Cov(W (t),W (T )) +

t2

T 2
V ar(W (T )) =

= t− 2
t

T
t+

t2

T
= t

(
1− t

T

)
, (9.15)

using Cov(W (t),W (s)) = min(t, s). Variance of a Brownian bridge defined on the

interval t ∈ [0, 1] is given in (Bhattacharya & Waymire, 1990).

The M realisations of a Brownian bridge bridge,

B(t) = (bt0 , bt1 , . . . , bT ), t0 < t1 < . . . < tM−1 = T, (9.16)
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Figure 9.1: A simulated Brownian bridge path.

can be defined recursively for equidistant time intervals and for any end-points as

follows (Durham & Gallant, 2002):

bti = bti−1
+
bT − bti−1

T − ti−1
δ + σ

√
δW, δ =

T − t0
M

, W − standard Brownian motion.

(9.17)

The formalism (9.17) is modified to be suitable for non-equidistant t intervals as

this is a feature of ultrasonic velocity data used in the present study

bti = bti−1
+
bT − bti−1

T − ti−1
δi+σ

√
δiW, δi = ti−ti−1, W−standard Brownian motion.

(9.18)

For B(t) to be a ‘true Brownian bridge’ σ must be constant (Durham & Gallant,

2002) which the author assumes to be satisfactory for the asphaltene model. Fig-

ure 9.1(a) illustrates a path of B(t), t = 0, 0.01, . . . , 10, plot (b) illustrates variance

of the bridge as a function of time. Note that V ar(B(t)) decreases towards end-

points thus is convenient to model asphaltne aggregation. The likelihood function

for the bridge may be derived as follows. Using (9.17), B(t) has a normal probability

density function

B(ti)|B(ti−1) = bti−1
∼ N

(
bti−1

+
bT−bti−1

T−ti−1
δi, σ

2δi

)
, or equally,

B(ti)−B(ti−1) ∼ N
(
bT−bti−1

T−ti−1
δi, σ

2δi

)
, δi = ti − ti−1, (9.19)

and a likelihood function for B(ti)

L(B(t)|b0, bTσ2, t) =
∏M

i=2
1√

2πσ2δi
exp

{
− (bti−bti−1−µti )

2

2σ2δi

}
,

µti =
bT−bti−1

T−ti−1
δi. (9.20)
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The dependence of sound velocity y on asphaltene concentration x is then formulated

as follows:

yi =


α1 + β1xi + ε1,i, ε1,i ∼ N(0, σ2

1), xi ≤ γ1,

yi−1 + α2+β2γ2−yi−1

γ2−xi−1
δi + κ

√
δiW, W ∼ N(0, 1), γ1 < xi < γ2,

α2 + β2xi + ε2,i, ε2,i ∼ N(0, σ2
2), xi ≥ γ2.

(9.21)

In Equation (9.21), {εj,i, l = 1, 2}, is the regression residual and κ2 is the scale of the

bridge variance. Equation (9.21) implies that the dependene of the speed of sound

on asphaltene concentration is described by a linear regression in monomeric and

aggregated regions and a Brownian bridge pinned to start at {x, y} = {γ1, α1+β1γ1}
and end at {x, y} = {γ2, α2 +β2γ2} to describe the mixing region. The model (9.21)

results in the following likelihood.

L(θ|x, y) =
∏n1

i=1
1√

(2πσ2
1)

exp
{
− (yi−α1−β1xi)2

2σ2
1

}
× (9.22)

×
∏n2

i=2
1√

(2πκ2δi)
exp

{
−

(
yi−yi−1−

α2+β2γ2−yi−1
γ2−xi−1

δi

)2

2κ2δi

}
×

×
∏n3

i=1
1√

(2πσ2
2)

exp
{
− (yi−α2−β2xi)2

2σ2
2

}
, nj = number of entries in vector j,

where θ = (α1, α2, β1, β2, γ1, γ2, σ
2
1, σ

2
2, κ

2). The lengths of {x : x < γ1}, {x : γ1 ≤
x ≤ γ2} and {x : x > γ2} are n1, n2 and n3 respectively. The parameter priors are

equivalent to those in (9.7). Additionally,

β2 ∼ N(b2, σ
2
β2

), κ2 ∼ IGa(ρ, φ). (9.23)

The marginal posteriors of θ−{γ1,γ2} were estimated using a Gibbs sampler. Metropolis-

Hastings (M-H) updates were required for γ1 and γ2 as their marginal posteriors are

unknown and their proposal kernels are outlined in the next section. The semi-

conjugate conditional posterior distributions for the two-changepoint model are as

follows.
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α1|θ−α1 ,x, y ∼ N
(
AB−1, 0.5B−1

)
, (9.24)

A =

(
a1

2σ2
α1

+

n1∑
i=1

yi − β1xi
2σ2

1

)
, B =

(
n1

2σ2
1

+
1

2σ2
α1

)
.

β1|θ−β1 ,x, y ∼ N
(
AB−1, 0.5B−1

)
, (9.25)

A =

(
n1∑
i=1

xi(yi − α1)

2σ2
1

+
b1

2σ2
β1

)
, B =

(
n1∑
i=1

x2i
2σ2

1

+
1

2σ2
β1

)
.

σ2
1|θ−σ2

1
,x, y ∼ IGa

(
n1

2
+ ρ1, 0.5

n1∑
i=1

(yi − α1 − β1xi)2 + φ1

)
. (9.26)

α2|θ−α1 ,x, y ∼ N(Mα2 , Vα2), (9.27)

Mα2 =

(
n2∑
i=2

AB

2κ2δi
+

a2
2σ2

α2

+

n3∑
i=1

yi − β2xi
2σ2

2

)(
n2∑
i=2

B2

2κ2δi
+

1

2σ2
α2

+
n3

2σ2
2

)−1
,

V α2 = 0.5

(
n2∑
i=2

B2

2κ2δi
+

1

2σ2
α2

+
n3

2σ2
2

)−1
,

A = yi − yi−1 −
β2γ2 − yi−1
γ2 − xi−1

δi, B =
δi

γ2 − xi−1
.

β2|θ−β2 ,x, y ∼ N(Mβ2 , Vβ2), (9.28)

Mβ2 =

(
n2∑
i=2

AB

2κ2δi
+

n3∑
i=1

xi(yi − α2)

2σ2
2

+
b2

2σ2
β1

)(
n2∑
i=2

B2

2κ2δi
+

n3∑
i=1

x2i
2σ2

2

+
1

2σ2
β2

)−1
,

V β2 = 0.5

(
n2∑
i=2

B2

2κ2δi
+

n3∑
i=1

x2i
2σ2

2

+
1

2σ2
β2

)−1
,

A = yi − yi−1 −
α2 − yi−1
γ2 − xi−1

δi, B =
γ2δi

γ2 − xi−1
.

σ2
2|θ−σ2

2
,x, y ∼ IGa

(
n3

2
+ ρ2, 0.5

n3∑
i=1

(yi − α2 − β2xi)2 + φ2

)
. (9.29)

κ2|θ−κ2 ,x, y ∼ IGa

(
n2

2
+ ρ, 0.5

n2∑
i=2

1

δi

(
yi − yi−1 −

α2 + β2γ2 − yi−1
γ2 − xi−1

δi

)2

+ φ

)
.

(9.30)

In the above equations nx denotes the length of vector x and θ−z denotes the vector

θ without the variable z. To estimate asphaltene aggregation point/region, MCMC

samplers were written in R statistical software (R Core Team, 2015).
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Chapter 10. Geochemical Characterisation of Petroleum

Samples

This chapter presents maturity, source and biodegradation assessment of the petroleum

samples E1-E4. Bar a number of exemplars, partial mass chromatograms used in

this work are provided in the Appendix A.

Four petroleum samples have been obtained from an industrial contact. The sam-

ples have originated from the La Luna formation, Tithonian type 2 source rock

(marl), the charge is likely to be mixed/hybridised. The samples E1 and E2 are

from Venezuela and E3 and E4 are from the Gulf of Mexico. Section 10.2 will per-

form additional assessment of the sample source using biomarker ratios. The weights

of the maltene and asphaltene fractions are summarised in Figure 10.1.

Figure 10.1: Weights of asphaltene fractions. The numbers represent 3-replicate averages,
except the E1 asphaltene weight which had two replicates, the bars indicate confidence
intervals based on standard deviation.

10.1 Maturity Assessment of the Sample Oils

Table 10.1 lists the ratios used for the source and maturity estimation of the petroleum

samples E1-E4, Figure 10.2 illustrates the estimated ratio values. For E3, some of

the ratios are absent due to the high biodegradation of this sample (Section 10.3).

All of the ratios in this section are in an abbreviated format and the positions of
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isomerisation in biomarkers are not indicated. For the full biomarker nomenclature,

refer to Chapter5.

In general, all of the samples are estimated to be mature/in the oil-generating win-

dow. Plot (a) shows ratios based on the even-odd predominance of the n-alkanes,

corresponding to Equations (10.1), (10.3) and (10.4), that are close to unity ±0.1,

suggesting thermal maturity (Bray & Evans, 1961; Scalan & Smith, 1970). In plot

(b), the values of MPI, MPI1, and DMNI, Equations (10.5), (10.6) and (10.7), are

within ca. 0.6, 0.7 and < 2.5 respectively, suggesting that the organic matter has en-

tered the oil generation window (Radke & Welte, 1983; Alexander et al., 1985). The

DMNI ratio, should be used with caution as alkylated naphthalenes are more sus-

ceptible to biodegradation than other aromatic biomarkers (Alexander et al., 1985),

e.g. aromatic steroids (Wenger et al., 2002). Alexander et al. (1985) reported that

TMNI ratio values of ca. 0.5 or above indicate thermal maturity, which is the case for

all samples investigated at present. The homo-hopane isomerisation indices, Equa-

tion (10.9), are also indicating thermal maturity as the values for C31,32 compounds

are within 0.57 and 0.62 (Seifert et al., 1980). In plot (d), the C29βα/C29αβ hopane

ratios, Equation (10.10), are all < 0.15, again indicating thermal maturity (Macken-

zie et al., 1980; Seifert et al., 1980). The Ts/Tm ratio is low for samples E1 and E2

and is somewhat higher for E3 and E4, indicating that all of the oils are immature.

Although it is presumed that during catagenesis Tm is less stable than Ts, thus

higher values of the ratio would indicate a greater maturity, it is also not known

whether any conversion of Tm to Ts occurs (Peters et al., 2005c). The Ts/Tm

values also depend on the source input, therefore this indicator should be used with

caution and applied to samples with common organic source rocks (Moldowan &

Fago, 1986). Both sterane ratios in plot (f) indicate thermal maturation. The C29

ααα S/(S+R), Equation (10.11), is at ca. 0.5 (Seifert & Moldowan, 1986), and the

C29 αββ/(αββ+ααα), Equation (10.12), is at ca. 0.6 which is below marginally the

reported maturity equilibrium of 0.67-0.7 (Seifert & Moldowan, 1986). The aromatic

ratios, however, consistently suggest a low maturity of the oil samples. It is pre-

sumed that conversion of monoaromatic to triaromatic steroids, Equation (10.13),

occurs during maturation through the loss of a methyl group at the A/B ring junc-

tion in the MAS (Mackenzie et al., 1981; Peters et al., 2005c). Values above ca.

0.5 were reported to correspond to greater burial depths (Mackenzie et al., 1981;

Mackenzie, 1984). The ratio can potentially be affected by expulsion as the TAS are

preferentially retained in the source bitumen (Hoffmann et al., 1984a; Peters et al.,
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1990). Based on this ratio, plot (f), E1 and E2 are low in maturity and E3 and E4

are in the oil generation window. Overall, the maturity ratios suggest that the four

samples are mature, except those based on aromatic biomarkers which for E1 and

E2 suggest otherwise, this conflict may be due to the aforementioned hybridisation.

Name Formula

Carbon preference in-

dex

CPI =
1

2


∑

i=25,27,...,33

Ci∑
i=24,26,...,32

Ci

+

∑
i=25,27,...,33

Ci∑
i=26,28,...,34

Ci

 ,(10.1)

CPI1 = 2
C23+25+27+29

C22 + 2C24+26+28 + C30

(10.2)

Odd-even predomi-

nance

OEP1 =
C21 + 6C23 + C25

4C22 + 4C24

, (10.3)

OEP2 =
C25 + 6C27 + C29

4C26 + 4C28

(10.4)

Methylphenanthrene

index

MPI =
1.5(2-MP + 3-MP)

P + 1-MP + 9-MP
, (10.5)

MPI1 =
1.89(2-MP + 3-MP)

P + 1.26(1-MP + 9-MP)
(10.6)

Dimethyl- and

trimethylnaphtha-

lene index

DMNI =
2, 6-DMN + 2, 7-DMN

1, 5-DMN
, (10.7)

TMNI =
2, 3, 6-TMN

1, 4, 6-TMN + 1, 3, 5-TMN
(10.8)

Hopane isomerisation

ratio
Ci αβ S

Ci αβ S + Ci αβ R
i = 31, 32, . . . 35 (10.9)

Hopane/moretane ra-

tio

C29 βα-hopane

C29 αβ-hopane
(10.10)
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Sterane isomrisation

ratio 1

C29 ααα 20S

C29 ααα 20S + C29 ααα 20R
(10.11)

Sterane isomerisation

ratio 2
C29 αββ 20S +R

(C29 αββ 20S +R) + (C29 ααα 20S +R)
(10.12)

Mono/triaromatic

steroid ratio
TAS

MAS + TAS
LC =

C26+27+28 TAS

C26+27+28 TAS + C27+28+29 MAS
(10.13)

Short-chain/long-

chain AS ratios

a =
C21+22MAS

C21+22+27+28+29MAS
, (10.14)

b =
C20+21TAS

C20+21+26+27+28TAS
(10.15)

Table 10.1: Ratios used in petroleum maturity estimation. In (10.14) and (10.15) AS
refers to aromatic steroids. References for ratios and full compound names can be found
in Chapter 5.1.
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Figure 10.2: Ratios used in the maturity estimation of petroleum samples.

10.2 Source Assessment of the Sample Oils

Figure 10.3 illustrates the source ratios calculated for the deasphalted petroleum

samples E1-E4. Noteworthy, for the E3 and E4 samples, their extent of biodegrada-

tion (described in Section 10.3) has limited the reliability of the source assessment

using the maltene fractions; some of the ratios for E3 are absent due to the removal

of biomarkers.
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Figure 10.3: Relations used in petroleum source estimation. In plot (a) E3 is marked in
red as the Pr/Ph ratio could not be calculated due to a high biodegradation of the sample.
The key to interpretation of the plots is in Figure 5.1

A Hughes plot suggests the source of the samples is E1, E2 and E4 marine carbon-

ate/marine marl/lacustrine sulfate-rich (zone 1B) and in zone 1B, whereas E3 is

lacustrine sulfate-poor (Zone 2) (Figure 10.3(a)). The plot (b) located all four sam-

ples on the intersection of marine shale, marine carbonate and marl. The sterane

ternary diagram also located them on the intersection of marine carbonate (predom-
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inantly) and marine shale, thus further clarification is needed. Plot 10.4 illustrates

source assessment ratios. The Pr/Ph values for E1, E2 and E4 are all < 1 indicative

of anoxic source rock conditions (Didyk et al., 1978) and, together with Ph/n-C18

values of < 0.3 (Figure 10.2) suggesting a marine carbonate source rock (Peters

et al., 2005h, p.536). The C3117α, 21β-30-homo-hopane 22R/C3017α, 21β-hopane

(C31R/C30 hopane) values in the Zumberge plot (Figure 10.3(b)) are > 0.25 for all

samples ruling out a lacustrine source. The C2917α, 21β-30-nor -hopane/C3017α, 21β-

hopane ratio (C29/C30 hop) is> 0.6 for all samples and together with the C34 17α, 21β-

30,31,32,33-tetrahomo-hopane 22S/C35 17α, 21β-30,31,32,33,34-pentahomo-hopane

22S homohopane ratio (C34/C35 22S hop) > 0.8 it suggests a marine carbonate

source rock (Peters et al., 2005h, p.567), although according to (Fan et al., 1987;

Ten Haven & Rullkötter, 1988) a C29 30-nor -hopane/C30 regular hopane ratio of

< 1 would suggest a marine shale source for E3 and E4. The gammacerane index

(GI1, expressed in %) should be interpreted with caution as in the present samples

it coeluted with other compounds (Figures 10.6 and A.4). A high GI1 (10-2%) has

been reported to negatively correlated with Pr/Ph (1.6-2.6) indicating a lacustrine

source (Peters et al., 2005h, p.575). In the present samples, the GI1 values are below

3, and their Pr/Ph values are significantly below 1.6, thus a lacustrine source is once

again ruled out. Finally, the C35/C31-35 22 S+R homo-hopane ratio (full nomencla-

ture in Table 10.2) is indicative of the redox potential during deposition, whereby

high ratio values (e.g. > 7%) would indicate a marine carbonate, possibly hyper-

saline (Moldowan et al., 1986b), deposition with little/no available oxygen (Peters

& Moldowan, 1991). The ratio values estimated for E1-E4 are ca. 0.07 (7%) can

still be indicative of a marine carbonate source. This, however, is in contrast to

examples shown in Peters & Moldowan (1991), where the C35 homo-hopanes are

clearly elevated. To conclude, the majority of ratios indicate a marine carbonate

source for the four oils.
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Figure 10.4: Ratios used in petroleum source estimation.

10.3 Biodegradation Assessment of the Sample Oils

Biodegradation of hydrocarbons results in the preferential removal of saturated and

aromatic compounds (Milner et al., 1977b; Peters et al., 2005a). Biodegradation of

the deasphalted petroleum samples will be estimated using the petroleum biodegra-

dation scale by Wenger et al. (2002), which estimates the extent of biodegradation

on levels (LVL) 1-10 (Figure 4.3). Saturated and aromatic compound classes and

corresponding mass spectrometric assignments are analysed in order to suggest the

LVL of biodegradation, although some of the samples illlustrate that the biodegra-

dation order is quasi-sequential (Wenger et al., 2002; Peters et al., 2005a). The

sample E1 has very few signs of biodegradation. The m/z 85 mass chromatogram

in Figure 10.5(a), shows a homologous series of n-alkanes from which only com-

pounds C<10 are absent. Consistently, the Pr/n-C17 and Ph/n-C18 are � 1, Fig-

ure 10.2 (g), suggesting that the biodegradation of n-alkanes has not been extensive.

Sterane susceptibility to biodegradation is 5α, 14α, 17α 20R � 5α, 14β, 17β 20R

≥ 5α, 14β, 17β 20S ≥ 5α, 14α, 17α 20S � diasteranes, and C27 > C28 > C29 >

C30 (Seifert & Moldowan, 1979; McKirdy et al., 1983; Seifert et al., 1984; Peters

et al., 2005a). Figure 10.7 (a) illustrates that the C27 steranes are present and

well-resolved, indicating little signs of biodegradation. The diasteranes are in low

abundance (plot (b)), except a peak at 48 minutes whose mass spectrum had a

strong 259 signal A.6 (a), but was unidentified. As the C27 diasteranes are in low

abundance with the regular steranes unaltered (Seifert & Moldowan, 1979; McKirdy

et al., 1983), it is concluded that the sample is naturally low in the diasterane class.

As mentioned in Section 10.3, 25-nor -hopanes are assumed to result from a loss

of a methyl group at C-10 in normal hopanes (Rullkötter & Wendisch, 1982), thus
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their abundance over the normal hopanes is indicative of biological activity. In gen-

eral, the distribution of the 25-nor -hopanes can be matched to hopane series less

a C number (Peters et al., 2005a). The problems in identifying the two compound

classes are discussed in Section 10.3 as well. Given their absence due to biological

input, the 25-nor -hopanes are absent where the hopanes are more bioresistant than

the steranes (Peters et al., 2005a). The 25-nor -hopanes can also result due to oil

mixing in reservoir (Volkman et al., 1983). In E1, the abundance of 25-nor -hopanes

is significantly below that of hopanes, Figure 10.6 (a) and A.5 (a), except the strong

17α, 21β-30-nor -hopane. Similarly to steranes, the 22S homohopane epimers are

more resistant to biodegradation than the 22R configuration which is observed in

Figure 10.6 (a). The aromatic markers are reported to be highly resistant to mi-

crobial alteration (Connan, 1984; Peters et al., 2005a), and the C20-21 triaromatic

steroids (TAS) are removed first (Wardroper et al., 1984). Such compounds, includ-

ing naphthalenes (Figure A.10), phenanthrenes (Figure A.14), and aromatic steroids

(Figure 10.8) appear unaltered. Therefore, E1 is classified as LVL 1 biodegraded.

The biodegradation extent of E2 is very slightly greater than that of E1 (thus an

m/z 177 plot is omitted for this sample), indicated by the removal of n-C10 from

the n-alkanes, Figure A.1 (b). The remaining compound classes have very similar

distributions to E1, except the lower abundance of the monoaromatic steroids (Fig-

ure A.18 (a)). As the MAS are less susceptible to biodegradation than TAS, their

low abundance is likely to be due to reasons other than biodegradation, which can

include water-washing. Therefore, E2 is is classed as LVL 1-2 biodegraded. In con-

trast, E3 illustrates a complete removal of the n-alkanes, Figure A.2 (a), suggesting

a LVL < 4 alteration. The distribution of hopanes (Figure A.4 (a)) is similar to

those in E1 and E2, including the relative isomeric abundance of the homohopane

compounds, except the removal of the C28-29 tricyclic terpanes. The latter is un-

likely to be due to microbial alteration, as tricyclic terpanes were reported be more

resistant to biodegradation than hopanes (Reed, 1977; Seifert & Moldowan, 1979).

However, the distribution of compounds in the m/z 177 chromatogram is greater

than in the remaining samples, Figure A.5 (b) and A.6 (b). The complete selec-

tive removal of the C27 5α, 14α, 17α 20R steranes (Peters et al., 2005a; Seifert &

Moldowan, 1979; McKirdy et al., 1983; Seifert et al., 1984) and the abundance of di-

asteranes over regular steranes is indicative of biodegradation (Seifert & Moldowan,

1979; McKirdy et al., 1983), Figure A.8. However, the aromatic markers, including

the naphthalenes (Figure A.12), phenanthrenes (Figure A.16) and aromatic steroids
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(Figure A.19) are similar to the distributions in the non-degraded E1. Based on

the compound distribution in the saturate fraction, namely the complete removal of

n-alkanes, partial formation of the 25-nor -hopanes and the near-complete removal

of steranes, E3 would be assigned a biodegradation LVL 5-7. Noteworthy, if the

aromatic fraction would be taken into account, the extent of biodegradation would

be very limited, i.e. LVL 2 on the Wenger et al. (2002) scale. Finally, E4 has

slight signs of biodegradation with a slight removal of the n-C7-10 (Figure A.2 (b),

high Pr/n-C17 and Ph/n-C18 ratios (Figure 10.2 (g)) and a low abundance of the

25-nor -hopanes compared to hopanes (Figure A.4(a)). The abundance of sterane

compounds (Figure A.9), is lower than in E1 and E2 with the C28 compounds in a

much lower abundance. However, the isomeric signature suggests that due to the

higher 5α, 14α, 17α 20R peaks than 5α, 14α, 17α 20S, the low abundance is not due

to biodegradation. Aromatic markers are well-resolved (Figures A.13, A.17 and

A.20). Thus, E4 is suggested to be LVL 2-3 degraded due to the slight removal of

steranes.
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Figure 10.5: Partial mass chromatograms of the E1 aliphatic fraction, showing the distri-
butions of n-alkanes. Labels are listed in Table 10.2.
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Figure 10.6: Partial m/z 191 mass chromatograms of the E1 and E2 aliphatic fraction.
Labels are listed in Table 10.2.
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Figure 10.7: Partial mass chromatograms of the E1 aliphatic fraction, showing sterane
biomarkers. Labels are listed in Table 10.2.
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Figure 10.8: Partial mass chromatograms of the E1 aromatic fraction, showing aromatic
steroid biomarkers. Labels are listed in Table 10.3.
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Label Name Formula Reference

nC17 Normal heptadecane C17H36 (1)

Pr 2,6,10,14-tetramethylpentadecane C19H40 (1)

nC18 Normal octadecane C18H38 (1)

Ph 2,6,10,14-tetramethylhexadecane C20H42 (1)

HDCH Heptadecylcyclohexane C23H46 (1)

nTri Cn tricyclic terpane, n = 19, 20, . . . 25 CnH2n-4 (2)

24Tetra C24 tetracyclic terpane C24H42 (2)

26Tri C26 (S+R) tricyclic terpanes C26H48 (2)

28Tri C28 tricyclic terpane C28H52 (3)

29Tri C29 tricyclic terpane C29H54 (3)

Ts C27 18α, 21β-22,29,30-trinorneo-hopane C27H46 (2)

Tm C27 17α, 21β-22,29,30-trinor -hopane C27H46 (2)

H28aab 17α, 18α, 21β-28,30-dinor -hopane C28H48 (4)

H29ab25n 17α, 21β-25-nor -hopane C29H50 (5)

29Tm 17α, 21β-30-nor -hopane C29H50 (2)

29Ts 18α, 21β-30-norneo-hopane C29H50 (2)

H30a 17α-dia-hopane C30H52 (6)

H29ba30n 17β, 21α-30-nor -hopane (normoretane) C29H50 (5)

H30ab C3017α, 21β-hopane C30H52 (2)

H30ba C3017β, 21α-hopane (moretane) C30H52 (2)

H31abS C3117α, 21β-30-homo-hopane 22S C31H54 (7)

H31abR C3117α, 21β-30-homo-hopane 22R C31H54 (7)

G Gammacerane C30H52 (7)

H32abS C32 17α, 21β-30,31-dihomo-hopane 22S C32H52 (7)

H32abR C32 17α, 21β-30,31-dihomo-hopane 22R C32H56 (7)

H33abS C33 17α, 21β-30,31,32-trihomo-hopane 22S C33H58 (7)

H33abR C33 17α, 21β-30,31,32-trihomo-hopane 22R C33H58 (7)

H34abS C34 17α, 21β-30,31,32,33-tetrahomo-hopane 22S C34H60 (7)

H34abR C34 17α, 21β-30,31,32,33-tetrahomo-hopane 22R C34H60 (7)

H35abS C35 17α, 21β-30,31,32,33,34-pentahomo-hopane

22S

C35H62 (7)
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H35abR C35 17α, 21β-30,31,32,33,34-pentahomo-hopane

22R

C35H62 (7)

D27baS C27 13β, 17α-diasterane 20S C27H48 (7,8)

D27abS C27 13α, 17β-diasterane 20S C27H48 (7,8)

D27abS C27 13α, 17β-diasterane 20R C27H48 (7,8)

S27aaaS C27 5α, 14α, 17α-cholestane 20S C27H48 (7,8)

S27abbR C27 5α, 14β, 17β-cholestane 20R C27H48 (7,8)

S27abbS C27 5α, 14β, 17β-cholestane 20S C27H48 (7,8)

S27aaaR C27 5α, 14α, 17α-cholestane 20R C27H48 (7,8)

S28aaaS C28 5α, 14α, 17α-ergostane 20S C28H50 (7,8)

S28abbR C28 5α, 14β, 17β-ergostane 20R C28H50 (7,8)

D29abS C29 13α, 17β-diasterane 20S C29H52 (7,8)

S28abbS C28 5α, 14β, 17β-ergostane 20S C28H50 (7,8)

S28aaaR C28 5α, 14α, 17α-ergostane 20R C28H50 (7,8)

S29aaaS C29 5α, 14α, 17α-stigmastane 20S C29H52 (7,8)

S29abbR C29 5α, 14β, 17β-stigmastane 20R C29H52 (7,8)

S29abbS C29 5α, 14β, 17β-stigmastane 20S C29H52 (7,8)

S29aaaR C29 5α, 14α, 17α-stigmastane 20R C29H52 (7,8)

Table 10.2: Compound table for biomarkers in the saturated hydrocarbon fraction. Ref-
erence key is (1) NIST (2005), (2) Zumberge (1993), (3) Peters (2000), (4) Nytoft &
Bojesen-Koefoed (2001), (5) Stout & Wang (2008) , (6) Moldowan et al. (1991), (7) Wang
et al. (2006), (8) Grantham (1986).

Label Name Reference

1MAS C21MAS (1)

2MAS C22MAS (1)

3MAS C27 5β, 10β(CH3) 20S MAS (2)

4MAS C27 5β(CH3),10β 20S MAS (2)

5MAS C27 5β, 10β(CH3) 20R + C27 5β(CH3),10β 20R

MAS

(2)

6MAS C27 5α, 10β (CH3) 20S MAS (2)

7MAS C28 5β, 10β (CH3) 20S * MAS (2)

8MAS C28 5β(CH3), 10β 20S * MAS (2)
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9MAS C27 5α, 10β(CH3) 20R + C28 5α, 10β(CH3) 20S

MAS

(2)

10MAS C28 5β, 10β(CH3) 20R + C285β(CH3),10β 20R +

C29 5β, 10β(CH3) 20S + C29 5β(CH3), 10β 20S

MAS

(2)

11MAS C28 5α, 10β(CH3) 20S MAS (2)

12MAS C28 5α, 10β(CH3) 20R MAS (2)

13MAS C29 5β, 10β(CH3) 20R + C29 5β(CH3), 10β 20R

MAS

(2)

14MAS C29 5α, 10β(CH3) 20R MAS (2)

1TAS C20TAS (3,4)

2TAS C21TAS (3,4)

3TAS C26 20S TAS (3,4)

4TAS C27 20S+C26 20R TAS (3,4)

5TAS C28 20S TAS (3,4)

6TAS C27 20R TAS (3,4)

7TAS C28 20R TAS (3,4)

Table 10.3: Compound table of the isomers of 17β-methyl-18-norcholesta-8,11,13-triene
(monoaromatic steroids, MAS) and 17β-methyl-18,19-dinocholesta-1,3,5(10),6,8,11,13-
heptane (triaromatic steroids, TAS) (Abbott et al., 1985). Reference key is (1) Mackenzie
et al. (1981), (2) Moldowan & Fago (1986), (3) Abbott et al. (1985), (4) Yang et al.
(2015b).
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11.1 Ruthenium Ion Catalysed Oxidation of Alkylated Mono- and Di-

aromatic Standard Compounds

The major reactions products of RICO of the asphaltenes are homologous series

of n-alkanoic and α, ω-di -n-alkanoic fatty acid di -methyl esters (FAME, m/z 74;

DFAME, m/z 98) as the oxidised products require methylation to be GC-MS-

ameanable (Peng et al., 1999). To verify the reactions suggested in Peng et al. (1999),

Figure 11.1 theoretical reactions A and B, the RICO procedure was performed on

four standard compounds, phenylbutane (Ph-C4), phenyldodecane (Ph-C12), biben-

zyl (BB) and 1,3-diphenylpropane (DPP). It was assumed that oxidising Ph-C4 and

Ph-C12 would produce products consistent with reaction A, whilst oxidising BB and

DPP would lead to products from reaction B. Figures 11.2 and 11.3 illustrate the

oxidation reactions observed in standard compound results, Figures 11.4 and 11.5

show the corresponding total ion chromatograms (TICs). Following the assumptions

of reactions A and B, the expected products from oxidising the standard compounds

were as follows:

Ph-C4
RICO−−−→ Pentanoic acid methyl ester (11.1)

Ph-C12
RICO−−−→ Tridecanoic acid methyl ester (11.2)

BB
RICO−−−→ Butanedioic acid di -methyl ester (11.3)

DPP
RICO−−−→ Pentanedioic acid di -methyl ester (11.4)
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Figure 11.1: Reactions occurring during RICO of asphaltenes (Peng et al., 1999).

None of the reaction products showed a 100% conversion rate. The literature sug-

gests that the lower-weight fatty acid methyl ester (FAME) and di -fatty acid di -

methyl ester (DFAME) compounds suffer from volatility losses during oxidation and

methylation (Strausz et al., 1999a), thus their yields were expected to be low. Us-

ing diaromatic compounds with long inter-aromatic bridges as standards was not

deemed reasonable as the currently-reported archipelago asphaltenes only have di-

rect aromatic alkyl linkages (Schuler et al., 2015, 2017).

The products from the oxidation of Ph-C4 (reactions in Figure 11.2, products in Fig-

ure 11.4) did not include pentanoic acid methyl ester as expected, instead producing

1-butanone-1-phenyl and Ph-C4 at yields of 7.81% and 78.02% respectively, other

peaks were unidentified. Thus, the oxidation of Ph-C4 was only partially complete,

whereby the butyl chain was oxidised but the aromatic ring was not cleaved. The

oxidation of Ph-C12 proceeded as expected, the main product was tridecanoic acid

methyl ester (77.77%), as well as dodecanoic acid methyl ester (2.30%), methyl-

2-hydroxytetradecanoate (1.86%), Ph-C12 (4.80%) and dodecanophenone (5.76%).

The latter compound suggests that for ca. 6% of the starting material the oxidation

was not complete, which is analogous to the production of 1-butanone-1-phenyl from

the oxidation of Ph-C4. The above results suggest that the oxidation of short-chain

alkylated aromatics would suffer from volatility losses making their inference unre-

liable, whilst medium/long-chain (C≥12) compounds are more stable. This does not

impede the use of RICO for asphaltenes as the author assumes that steric hindrance

(Section 2.1) affecting nanoaggregation is assumed to only be significant for medium-

long side-chains whose oxidation yield was shown to be satisfactory. Although the

stability of Ph-C12 products has been shown, FAME compounds from n-C11 will be

used as this corresponds to the definition of Tissot & Welte (1984) of medium-chain

compounds and it is assumed that the stability of n-C11 FAME is not dramatically
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different from that of n-C13 FAME. Importantly, the production of 1-butanone-1-

phenyl and dodecanophenone from Ph-C4 and Ph-C12 could suggest that one of the

products of RICO is the homologous series of phenylalkylketones. The mass spectra

of 1-butanone-1phenyl and dodecanophenone are shown in Figure 11.6, where the

common ions are 77, 105 and 120. Asphaltene samples were screened for these ions

to determine whether phenylalkylketones are present, results reported later in this

Chapter.

The oxidation of BB was incomplete, whereby only one of the two phenyl rings

was cleaved, producing benzenepropanoic acid (26.87%) and BB (66.02%). It could

be interpreted that the oxidation of BB followed the reaction A instead of the as-

sumed reaction B, whereby one of the phenyl groups was analogous to a side-chain

functionality and was preserved through the reaction. The oxidation of DPP pro-

duced 2.41% of the expected product, pentanedioic acid dimethyl ester, as well as

benzenebutanoic acid methyl ester (10.95%) and DPP (77.85%). The products of

partial oxidation (or observed reaction A instead of expected reaction B) are greater

than that of the full oxidation, whilst the majority of products were the starting

material. As with monoaromatic standards, the production of benzenepropanoic

acid methyl ester and benzenebutanoic acid methyl ester suggests that RICO of

diaromatic compounds linked by alkyl bridges produces benzenecarboxylic acids.

The mass spectra of benzenepropanoic and benzenebutanoic acid methyl ester are

in Figure 11.7, with common ions at m/z 51, 91 and 104. Again, asphaltenes were

screened for benzenecarboxylic acids as well.

In conclusion, the information obtained from RICO is satisfactory for inference about

asphaltene medium/long-chain appendages. As will be shown, some inference about

the direct phenyl-phenyl linkages can also be sought using the present method. For

verification, the analysis of PAH linkages and lower-weight FAMEs/DFAMEs should

also be performed using a different RICO procedure (Peng et al., 1999; Strausz et al.,

1999a) or other methods. The next Section describes the results of RICO performed

on the asphaltene samples. The analysis of the impact of the asphaltene structural

differences implied by the RICO results on their nanoaggregation behaviour is in

the General Discussion Chapter.
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Figure 11.2: Reactions occurring during RICO of asphaltenes. Theoretical reaction A is
according to Peng et al. (1999), observed reactions are inferred from mass spectrometric
analysis of RICO products performed on standard compounds, Figure 11.4

.
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Figure 11.3: Reactions occurring during RICO of asphaltenes. Theoretical reaction B are
according to Peng et al. (1999), observed reactions are inferred from mass spectrometric
analysis of RICO performed on standard compounds, Figure 11.5
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Figure 11.4: Total ion chromatograms (TIC) of RICO products performed on alkylated
mono-aromatic standards, compound labels are given in Table 11.1.
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Figure 11.5: Total ion chromatograms (TIC) of RICO performed on alkylated di-aromatic
standards, compound labels are given in Table 11.1.
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Figure 11.6: Mass spectra of phenylalkylketones identified in RICO products of monoaro-
matic standards.
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Figure 11.7: Mass spectra of phenylalkyl acid methyl esters identified in RICO products
of diaromatic standards.
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11.2 Ruthenium Ion Catalysed Oxidation of Asphaltenes

Figure 11.8: Relative abundances of RICO products based on peak heights, Fig-
ures 11.10, B.1-B.3 and Table 11.2.

11.2.1 Fatty acid methyl esters and di-fatty acid dimethyl esters

Figure 11.8 summarises the asphaltene oxidation results, and plots (a) and (b) illus-

trate the distributions of FAMEs and DFAMEs. Relative compound abundances are

shown in Table 11.2, the m/z 74 and 98 chromatigrams are shown in Figures 11.10

for E1 asphaletene and B.1-B.3 in Appendix B for the remaining samples. The

FAME series start from n-C7 to n-C27 due to the heating regime of the analytical

instrument, and it is assumed that the abundance of n-C≤7 is low and/or such com-

pounds are susceptible to volatility losses. Figure 11.8 (b) shows the distribution of

FAMEs according to the alkyl chain lengths. As lower-weight fatty acids are suscep-

tible to volatility losses, their abundance should be interpreted with caution. All of

the samples illustrate a mild even-odd predominance of the FAME series with very

strong n-C16 and n-C18 peaks. Following the earlier oxidation results performed on

standard compounds, it would be expected that the abundance of lower-weight com-

pounds would decrease with decreasing side-chain length. This is observed for all of

the samples. Thus, the inference about asphaltene side-chains < ca. nC-10 should

be sought using other methods as it is unclear whether their declining abundance in

RICO products is caused by incomplete oxidation, volatility loss or low abundance

in the starting asphaltene material.

The DFAME series are well-resolved from ca. n-C8 and continue up to n-C24.

It is unclear what gives rise to the abundance of long-chain DFAME compounds
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as their derivation from asphaltene archipelago-type compounds is highly unlikely,

given present literature knowledge (Schuler et al., 2015, 2017). The occurrence of

medium/long-chain double acids should be a subject of further investigation.

The m/z 74 chromatograms for E1 and E2 RICO products, Figures 11.10 (a)

and B.1 (a), illustrate left-skewed distributions with a mild even-odd predominance

of medium molecular weight compounds. The even-odd medium-length chain ratio

(C12-18 to C11-17) was calculated and could be used as an indicator of biological ac-

tivity (Tissot & Welte, 1984). The even/odd ratios were 1.71 and 1.33 for E1 and

E2 respectively. Note that the high C16 and C18 peaks also drive the even-odd pre-

dominance of E1 which is highest out of the four samples. The DFAME compounds

(plots (b) in earlier Figures) at C4-C6 are mixed with the baseline and become in-

creasingly better resolved after C7. The FAME distribution of E3, Figure B.2 (a),

is more symmetric, whereby the lower-weight compounds are in lower abundance

whereas the shorter mono-acids in E4, Figure B.3 (a), appear to be preserved to the

highest extent out of all samples. The even-odd ratios are 1.35 and 1.45 for E3 and

E4 respectively. The DFAME series are very well-resolved for E3 using the m/z 98

chromatogram. Interestingly, for E4 the DFAME series are very similar to FAME

peak height (m/z 98) which is in contrast to E3. From Table 11.2 it is evident

that the FAME and DFAME compounds are negatively correlated. The Pearson’s

correlation coefficient is -0.92 with a corresponding p-value of 0.076. Although the

correlation value is very strong, the p-value is indicating that given present data

the evidence that the correlation between FAMEs and DFAMEs is not zero is only

marginally significant at the 5% level. The author speculates that this correlation

arises as during the RICO reaction, the FAME compounds re-fuse with the cleaved

phenyl rings, which would explain the occurrence of the long DFAME compounds.

This would be a phenomenon of interest for a future investigation.

11.2.2 Alpha-branched fatty acid methyl esters

The asphaltene RICO products also contain homologous series of methylated FAME

compounds, consistently with those in Strausz et al. (1999a); Peng et al. (1999).

Figure 11.8 (a) and (c) illustrate the relative abundances of the branched acids. Ex-

ample chromatograms are shown in Figure 11.11, the remaining traces are provided

in Appendix B, Figures B.4-B.6. As their abundance is low, the measurement of

their chromatographic peak areas is difficult, and the provided estimations should

be treated with caution, and only compounds with ≥ C11 in the acid portion of
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the methyl esters are included in quantitation. The latter also avoids errors due to

volatility losses. This should especially be taken into account when comparing their

abundance to the abundance of FAMEs and DFAMEs in plot (a). Plot (c) illustrates

distributions of the the α-methyl, α-ethyl and α-propyl groups whereby their abun-

dance decreases with increasing α-alkyl group length, consistent with literature (Ma

et al., 2008). The compounds were identified by analysing background-subtracted

mass spectra (NIST, 2005) (Appendix B) and by comparison with the existing lit-

erature (Ma et al., 2008).

The E3 and E4 asphaltenes have notably greater abundances of α-methyl FAMEs

than E1 and E2, whilst E2 has the greatest proportion of the α-ethyl acids and E4

has the highest proportion of α-propyl FAMEs. The correlation between α-ethyl

and α-propyl acids is 0.82 with a p-value of 0.17 which is insignificant at the 5%

level. The α-methyl-α-ethyl and α-methyl-α-propyl correlations are 0.69 (p-value

of 0.31) and 0.63 (p-value of 0.37) respectively which is moderate. This lack of cor-

relation may suggests that the α-branched acids are genuine asphaltene derivatives

and products of ‘re-fusion’ processes during RICO.

11.2.3 Phenylalkylketones and benzenecarboxylic acid methyl esters

Figure 11.9: Mass spectrum of benzoic acid methyl ester.
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Following the results of RICO performed on standard compounds asphaltenes were

screened for ions 77, 105 and 120 for phenylalkylketones and 77, 91 and 104 for ben-

zenecarboxylic acids. The major product detected from this search was benzoic acid

methyl ester (BAME) in both of the searches and no other identifiable compounds

were found. Figure 11.9 illustrates the NIST05 entry for benzoic acid methyl ester,

whereby the main ions are 51, 77, 105 and 136. The background-subtracted mass

spectra of all samples are provided in Figure 11.14. The compatibility to the library

entry of BAME is of varying quality, however the characteristic ions 51, 77, 105

and 136 are present in all samples. The partial ion chromatograms, Figure 11.12

and 11.13 and Figures B.7- B.12 in the Appendix B illustrate the noise associated

with identifying BAME. Referring to the RICO performed on diaromatic standards,

this would suggest that RICO of asphaltenes has cleaved an alkyl bridge between

two mono/polyaromatic units. This is also consistent with results from Schuler

et al. (2015, 2017) that illustrate archipelago asphaltenes whereby aromatic centres

are connected by direct alkyl linkages. The absence/low abundance of longer-chain

benzenecarboxylic acids suggests the absence of longer PAH bridge linkages.
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Figure 11.10: Partial ion chromatograms of (a) n-alkanoic fatty acid and (b) α, ω-di-n-
alkanoic di-fatty acid methyl esters of E1 ROCP products.
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Compound label Compound name Empirical formula

1R Butylbenzene C10H14

2R 1-butanone-1-phenyl C10H12O

3R Dodecanoic acid methyl ester C13H26O2

4R Tridecanoic acid methyl ester C13H28O2

5R Methyl-2-hydroxytetradecanoate C15H30O3

6R Phenyldodecane C18H30

7R Dodecanophenone C18H28O

8R Benzenepropanoic acid methyl ester C10H12O2

9R Bibenzyl C14H14

10R Pentanedidoic acid dimethyl ester C7H12O4

11R Benzenebutanoic acid methyl ester C11H14O2

12R 1,3-diphenylpropane C15H16

13R Heptanoic acid methyl ester C8H16O2

14R Octanedioic acid dimethyl ester C10H18O4

15R Hexadecanoic acid methyl ester C17H34O2

16R Tetradecanedioic acid dimethyl ester C16H30O4

17R Octadecanoic acid methyl ester C19H38O2

18R α-methyl nonadecanoic acid methyl ester C20H40O2

19R α-ethyl nonadecanoic acid methyl ester C21H42O2

20R α-propyl nonadecanoic acid methyl ester C22H44O2

21R Benzoic acid methyl ester C8H8O2

Table 11.1: Compound table for RICO experiments (NIST, 2005).

Sample FAME FAME C11-18 FAME C≥19 DFAME α-FAME BAME
E1 69.5 43.50 9.56 9.58 0.53 0.047
E2 71.0 41.84 14.78 2.36 0.55 0.075
E3 66.7 43.69 11.79 12.89 0.94 0.053
E4 71.8 39.73 12.89 2.72 0.70 0.040

Table 11.2: Abundance (%) of different compound series in RICO products. α-FAME
abbreviates the α-branched FAMEs.
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Figure 11.11: Partial ion chromatograms of (a) n-alkanoic, (b) α-methyl-n-alkanoic, (c) α-
ethyl-n-alkanoic and (d) α-propyl-n-alkanoic fatty acid methyl esters of E1 RICO products.
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Figure 11.12: Partial ion chomatograms for phenylalkylketones.
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Figure 11.13: Partial ion chomatograms for benzenecarboxylic acid methyl esters.
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Figure 11.14: Background-subtracted mass spectra of compounds eluting at ca.12.6 min.
Percentage values indicate a match with the NIST (2005) entry of BAME.
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12.1 Ultrasonic Characterisation of Cetyltrimethylammonium Bromides

Calibration of the Resoscan instrument was performed using pure and mixed so-

lutions of cetyltrimethylammonium bromide surfactants (CH3(CH2)nN(Br)(CH3)3,

abbr. CnTAB, n=12,14), Figure 12.1. Asphaltene and CnTAB data was processed

following the scheme described as follows for C12TAB. Processing results for the

remaining data can be found in Appendix C.1.

Figure 12.1: Schematic of CnTAB, n=12,14 molecules.

12.1.1 Pre-processing of velocity data

Figure 12.2 illustrates the ultrasonic velocity profiles of the C12TAB measurements.

The legends indicate measurement temperature, which was very stable with no

greater fluctuations than 3 × 10−3 ◦C. The effect of trapped air bubbles (Povey,

1997a) is illustrated in Figure 12.3. The extreme outlier in plot (b) is assumed to

be characteristic of an air bubble propagating through the cell causing a velocity

fluctuation of 185.46 m s−1 (plot (a) is an example of an air-free sample). This

outlier was removed from final velocity estimations.
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Figure 12.2: Time (s) (x-axis) versus velocity (m s−1) (y-axis) plots of C12TAB ultrasonic
measurements. Titles indicate C12TAB concentration, legends indicate measurement tem-
perature in ◦C. Measurement temperature was set at 25◦C.
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Figure 12.3: Time (s) versus velocity (m s−1) plots of C12TAB ultrasonic measurements
illustrating the effect of air bubbles on velocity. Titles indicate C12TAB concentration,
legends indicate measurement temperature in ◦C.

Figure 12.4: Correlation plots of C12TAB ultrasonic measurements. Temperature and
velocity are abbreviated as ‘temp’ and ‘vel’ respectively. Pearson’s correlation and corre-
sponding p-values are indicated in bold and italic respectively.

Figure 12.4 illustrates correlations between temperature, time and velocity. Some

of the correlation values are missing as for those measurements the temperature

was recorded as constant (e.g. within ±5× 10−4 ◦C). Pearson’s correlation between

variables X and Y is Cor(X, Y ) is

Cor(X, Y ) =
Cov(X, Y )

SD(X)SD(Y )
(12.1)

whereby SD(·) = 0 for constant measurements, for which Cor(X, Y ) is undefined.

Plot (a) indicates one strong (≥ 0.8) correlation value, indicating a significant time-

temperature dependence. As mentioned above, however, the temperature variation
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was small enough that it was assumed to not affect the final concentration-velocity

relation. The temperature-velocity correlation values in plot (b) are only moderate.

Finally, the strongest correlations appear to occur between time and velocity (plot

(c)) some of which are near-perfect (Cor(X, Y ) ' 1). This time trend may arise from

microscopic solvent evaporation, however, the observed trends are not strong enough

to change the estimation of the CMC and/or skew the resulting concentration-

velocity relation, as shown in Figure 12.5.

Figure 12.5: Estimation of the CMC for C12TAB. Red shading indicates the CMC region
estimation, dashed lines in plot (b) indicate the corresponding fitted regressions. Plots (c)
and (d) indicate the changes in R2 as more data is added to a regression model.

Figure 12.5 (a) illustrates the concentration-velocity profile for C12TAB where every

concentration point is an average of the first 7 measurements. Taking more points

for velocity averaging did not affect the concentration-velocity relation, this will

be illustrated for the ultrasonic characterisation of asphaltenes later. The (barely-

visible) confidence intervals are very narrow and non-overlapping, indicating a very

good measurement stability. The measurement mean standard deviation values are

shown in Table 12.1. Plots (c) and (d) illustrate the change in the coefficient of deter-
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mination (R2) values as a function of increasing number of points in the monomeric

(blue dots, LR1) and aggregated (red dots, LR2) linear regions (Zielinski et al.,

1986). For the former, a drop in the R2 values is observed after ca. 3 g L−1 indicat-

ing that the data fit to a linear model declines as more points are added beyond that

concentration. For the aggregated region, same applies to concentrations less than

ca. 5 g L−1. The 3-5 g L−1 region is marked by red shading, the final CMC=4.303

estimation was performed by regression intersection and is consistent with literature

results (Zielinski et al., 1986; Ray et al., 2005) and the ‘transition region’ definition

of the CMC (Atkins, 2014b).

12.1.2 The critical micelle concentration estimation in cetyltrimethy-

lammonium bromide aqueous solutions

Figure 12.6 illustrates the CMC estimation of pure and binary (1/1 and 2/1 mo-

lar) C12TAB and C14TAB surfactants (Svalova et al., 2017). The CMC, R2 and

mean standard deviation (SD) values are shown in Table 12.1. For full temperature-

concentration profiles, correlation and R2 diagnostic plots, see Appendix C.1. Every

concentration measurement is an average of ca. 7-20 points. Plots (a,b) and the

corresponding R2 values (Table 12.1) provide good evidence of linearity between

velocity and surfactant concentration, and the CMC values correspond to previ-

ous measurements (Zielinski et al., 1986; Ray et al., 2005; Sun et al., 2005; Xi &

Guo, 2008). Plots (c,d) illustrate multiple micellarisation in CTAB mixtures, with

a strong indication of the primary critical micelle concentration (CMC1); the sec-

ondary critical micelle concentration (CMC2) may be highlighted by taking a (nat-

ural) log-transformation as shown in plots (e,f). Similar results were found by Ray

et al. (2005) illustrating multiple micellarisation of CnTAB surfactants using tensio-

metric, conductometric and other methods.
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Figure 12.6: Concentration-velocity measurements of CTAB pure and mixed aqueous solu-
tions (Svalova et al., 2017). In (c-f), CMC1 and CMC2 are primary and secondary micelle
formation respectively. Black points indicate data that were not included in regression
estimation.

Name SD CMC1 g L−1 CMC2 g L−1 R2
mono R2

aggr R2
inter

C12TAB 3.7×10−4 4.31 NA 0.62 0.97 NA
C14TAB 7.5×10−4 1.52 NA 0.80 0.84 NA
C12/C14TAB 1/1 M 7.7×10−4 2.08 29.00 0.74 0.98 0.98
C12/C14TAB 2/1 M 4.9×10−4 2.97 18.71 0.94 0.999 0.98

Table 12.1: Summary of CTAB concentration-velocity data (Svalova et al., 2017). Mean
sample standard deviation is denoted SD, subscripts of R2 refer to models fitted in the
estimated monomer (mono), aggregated (aggr) and CMC1-CMC2 intermediate (inter)
regions.

12.2 Ultrasonic Characterisation of Asphaltenes

Asphaltene measurements were taken over a longer period of time, whereby the in-

strument was allowed to equilibrate for 3-4 min before a measurement, and on aver-

age 100 velocity measurements were taken per concentration. Figure 12.7 illustrates
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the full time-temperature velocity profile for the E1 asphaltene. Time breaks, e.g.

in plots (i) and (r), were caused by the re-initalisation of the instrument, possibly

due to a propagating air bubble or another artifact. It was later found that a greater

number of measurements does not improve the final concentration-velocity profile

given that velocities are averaged over the same time period and outliers are treated

prior to final inference. The author has discovered that due to the time-velocity

gradients mentioned earlier, most stable velocity profiles (and narrow velocity con-

fidence intervals) are achieved when only up to 20 measurements are used for an

averaged velocity estimation. Speculatively, this is due to time gradients arising

during continuous velocity measurements.
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Figure 12.7: Time versus velocity (m s−1) plots of E1 asphaltene ultrasonic measurements.
Titles indicate E1 concentration, legends indicate measurement temperature in ◦C.
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12.2.1 Pre-processing of velocity data

Due to longer time series, all asphaltene data was treated to remove extreme outliers

(Figure 12.9, in plot (b) note the change in velocity range). This section describes

the treatment performed on all aspahltene samples, using the velocity measurements

of the E1 284.48 mg L−1 sample (Figure 12.7(p)) as an example.

Recall that Resoscan simultaneously measures velocity, attenuation and temperature

of a sample (Section 8.2). Given a time-velocity profile for a particular concentra-

tion, two underlying models/dependencies were considered, whereby the variation

in velocity change was explained by single (M1) or multiple (M2) linear regressions:

M1 : velocity ∼ β0 + β1 × time + ε,

M2 : velocity ∼ β0 + β1 × time + β2 × temperature + β3 × attenuation + ε,

where ε ∼ N(0, σ2), σ2 − residual variance.

The two models are interpreted that the variation in velocity values are explained

by the change in time alone (M1) or the change in time, temperature and atten-

uation (M2). It is assumed that increases in attenuation are due to scattering ef-

fects from temperature fluctuations, trace amounts of dissolved air and temporal

effects/microscopic toluene evaporation (Povey, 1997d) (inducing a shift in concen-

tration). Noteworthy, the typical time gradients observed (β1 in M1 and M2) were

of the order of 10−7 to 10−6 which is respectively five and four orders of magnitude

smaller than the velocity variation due to changes in asphaltene concentration (An-

dreatta et al., 2005a). Given a time-velocity profile, the two regression models were

fitted and their residual distribution calculated. If a residual lied outside the 95%

two-sided confidence interval, the corresponding data point was removed.
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Figure 12.8: Correlation plots of E1 asphaltene ultrasonic measurements. Temperature
and velocity are abbreviated as ‘temp’ and ‘vel’ respectively. Labels in bold and italic
indicate Pearson’s correlation coefficient and their p-values respectively.

The fitted regression models and their R2 values are illustrated in Figure 12.9 (c),

for M2 the adjusted R2 value was used as the latter is more appropriate for multiple

linear models. The R2 and R2
adjusted are denoted R2 and R2a respectively, the

residual distributions are illustrated in plot (d). Evidently, M2 explains a greater

proportion of the outliers than M1, as the former accounts for variation caused by

temperature and attenuation as opposed to time effects only, this is also reflected

in a narrower residual/outlier distribution (plot (d)). In plot (c), the triangles and

crosses mark the identified extreme outliers following M1 and M2 respectively, and

the high outlier at ca. 400 s was removed by fitting M1 but not M2. Similar results

were observed for other measurements. In conclusion, M1 was used to process and

eliminate extreme outliers in all asphaltene data in order to remove strong effects

caused by temperature and attenuation.
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Figure 12.9: Time (s) versus velocity (m s−1) plot of E1 asphaltene ultrasonic measure-
ments, the 284.48 mg L−1 sample, Figure 12.7 (p). In all plots, ‘linear regression’ is
abbreviated ‘LR’. In plots (a,b) the legend indicates measurement temperature in ◦C, in
plot (c) ‘res’ abbreviates residuals obtained from single (LR1) and multiple (LR2) linear
models.

Figure 12.10 illustrates the effect of outlier removal and velocity averaging over

different time intervals on the final concentration-velocity relation and confidence

intervals. Once outliers are removed it is unnecessary to use long time series of

velocity measurements which seem to have no improvement of the concentration-

velocity relation but significantly increase the confidence intervals. The latter is

plausible due to time gradients, as indicated in Figure 12.8 (c).
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Figure 12.10: Effect of outlier removal and averaging over different time intervals for E1
asphaltene.

In Svalova et al. (2017) full-sample averaging was used as the authors were unaware

of the impact of longer time series on the confidence intervals, and for consistency

this will be followed here as well. Again, this will not affect the critical nanoaggre-

gation region estimation but will widen the 95% confidence intervals.

12.2.2 Constrained optimisation of the CNR

The constrained optimisation scheme (Section 8.3) was used in order to estimate

the critical nanoaggregation region (CNR). The use of weighted penalties for R2

was designed to estimate the aggregation onset (CNR1) and end (CNR2). For a

given velocity-concentration profile, the monomeric boundary CNR1 was estimated

by fitting regressions recursively from the lowest to the highest concentration and

selecting the regression with the largest R2
p. The aggregated boundary CNR2 was

estimated in the same fashion, except fitting regressions recursively from the highest

concentration to the lowest. The change in the R2 and R2
p values, together with the

penalty weights is given in Tables 12.2 and C.1 for E1 asphaltene and C.2-C.7 for

the remaining samples, the estimated CNR are given in Table 12.3. For E1, R2
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is (almost) monotonically decreasing as more points are added to the aggregated

region model, which is not entirely useful for our purposes. This rationalises the

use of a length-based penalty P1. For both CNR boundaries, the R2 and R2
p values

through the first few points were set to -5 to avoid the automatic selection of a very

early onset of CNR1 and a very late onset of CNR2. This did not contradict the

literature estimations of the CNAC (Mullins, 2011).

Conc. P1 w2P2 P2 w3P3 P3 R2 R2
p

21.12 0.58 0.01 1.38×10−3 0.052 5.21×10−5 -5 -5.00

29.24 0.5 0.15 0.015 0.431 4.31×10−4 -5 -5.00

40.47 0.45 0.11 0.011 0.224 2.24×10−4 0.039 -0.740

56.01 0.41 0 0 0.026 2.62×10−5 0.13 -0.305

65.89 0.38 0 0 0.052 5.24×10−5 0.34 -0.091

77.52 0.35 0 0 2.00×10−3 2.00×10−6 0.437 0.082

91.20 0.33 0 0 0.012 1.18×10−5 0.571 0.226

107.29 0.32 0.129 0.013 0.066 6.61×10−5 0.7 0.189

126.23 0.3 0.28 0.028 0.117 1.17×10−4 0.229 -0.467

148.5 0.29 0.2 0.02 0.069 6.87×10−5 0.05 -0.504

174.71 0.28 0 0 3.30×10−3 3.30×10−6 0.082 -0.199

205.54 0.27 0 0 8.80×10−3 8.8×10−6 0.081 -0.195

241.81 0.26 0 0 9.90×10−3 9.90×10−6 0.068 -0.201

284.48 0.25 0 0 1.40×10−3 1.40×10−6 0.088 -0.164

334.69 0.24 0 0 4.70×10−3 4.70×10−6 0.157 -0.09

393.75 0.24 0 0 2.50×10−3 2.50×10−6 0.237 -1.00×10−3

463.23 0.23 0 0 8.00×10−3 8.00×10−6 0.209 -0.028

641.15 0.22 0 0 8.10×10−3 8.10×10−6 0.18 -0.052

887.41 0.22 0 0 5.10×10−3 5.10×10−6 0.185 -0.039

Table 12.2: Constrained nanoaggregation region estimation of E1 asphaltene, monomeric
boundary selection using constrained optimisation, w2 = 10, w3 = 1000. Concentration
indicated in mg L−1. The length, outlier and slope penalties are abbreviated P1, P2 and
P3 respectively. Grey shading indicates concentrations with the highest R2 and R2

p.

The change in penalties (from Tables 12.2 and C.1) with increasing concentration

is illustrated for E1 asphaltene in Figure 12.11. Plots (b,d) illustrate the weighted

penalties used in the R2
p calculation, red shading indicates the estimated CNR.

The aggregation region is marked by a sharp decrease in the R2 values for both,
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monomeric and aggregated boundaries (plot (a)). The outlier and slope penalties

have a maximum at the CNR and decline afterwards. Note that the length penalty

(purple circles in plot (b), P1) is always monotonically decreasing (Section 8.3). With

the E1 sample, the inference using R2
p is only marginally different to that using ordi-

nary R2, except the monomeric region is estimated to occur at a lower concentration

due to larger outliers (blue triangles, P2) and stronger change in regression slope

(magenta crosses, P3). Naturally, R2
p < R2 for all measurements.

Figure 12.11: Linear model selection criteria in the CNR estimation for E1 asphaltene.

The penalty weights in the constrained optimisation scheme (Section 8.3) were cho-

sen such that wiPi, i = 2, 3 were on a meaningful scale, e.g. 10−2-10−1, and no

weighted penalties exceed unity. For E1 asphaltene, w2 = 10 and w3 = 1000, which

was used in the majority of other cases.

What follows illustrates that the CNR estimation was robust through changes in

the penalty weights, as shown in Figure 12.12. The later is a series of bar plots, and

whereby only one bar is shown (plots (c,d)) the change in penalty weights did not

affect the choice of a CNR boundary. Firstly, w2 was varied from 1 to 100 with a

stepsize of 1, w3 fixed at 103 and the distributions of CNR1 and CNR2 are shown
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in Figure 12.12(a,c). To follow, the outlier penalty weight was fixed, w2 = 10, and

w3 was varied from 10 to 104 with a step size of 10; the resulting CNR distributions

are illustrated in plots (b,d). The final CNR1 and CNR2 estimation was a weighted

average of the two iterations, Table 12.3. The bar plots for samples E3 and E4 are

shown in Figures C.18 and C.19. For the sample E2, the weight search above did

not generate other CNR estimations than in Table 12.3, thus the plot is omitted.

Figure 12.12: Barplot of the CNR1 and CNR2 (mg L−1) estimation of E1 asphaltene as a
function of varying penalty weights. In plots (b) and (d) a single bar is drawn indicating
that no other values have been estimated.

Optimisation diagnostics for the remaining asphaltene samples are shown in Ap-

pendix C.2.
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12.2.3 Results of the asphaltene CNR estimation

Figure 12.13: Concentration-velocity measurements of asphaltene-toluene mixtures.
Dashed lines illustrate estimated linear models using constrained optimisation, CNR1 and
CNR2 refer to the onset and decline of the critical nanoaggregation region respectively.

Figure 12.13 illustrates ultrasonic velocity measurements of four asphaltene samples

with linear models superimposed. Every concentration measurement is an average

of 60-100 points, the confidence intervals represent the mean ± standard deviation.

Piecewise regression models indicated by dashed lines were fitted using the con-

strained optimisation scheme. In general, the four plots suggest that at either ends

of asphaltene concentration range the association with ultrasonic velocity is linear,

and the CNR is indicated by large outliers and a change in regression slope. The

width of the CNR (∆ CNR) and the velocity difference between the monomeric and

aggregated linear models (∆u) are highly-variable across the samples which will be

addressed further in Discussion (Chapter 14) by looking at the principal compo-

nent analysis of combined asphaltene ultrasonic and geochemical data. Note that

the inter-measurement change in the speed of sound is larger than the confidence

intervals in the majority of cases. Noteworthy, in (Svalova et al., 2017) the upper

boundary of the sample E4 CNR has been estimated at a different value- this will

also be addressed in Discussion.
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Name CNR1 CNR2 ∆ CNR ∆u R2
mono R2

aggr Total R2
p

E1 91.33 126.23 34.90 1.70×10−2 2.25×10−1 5.90×10−1 8.16×10−1

E2 174.71 284.48 106.78 5.30×10−2 5.33×10−1 5.47×10−1 1.08
E3 90.05 148.76 58.72 2.70×10−2 1.06×10−1 3.37×10−1 4.44×10−1

E4 31.10 181.36 150.26 5.00×10−3 4.30×10−1 6.40×10−1 1.07

Table 12.3: Regression penalised R2 values of asphaltene concentration-velocity data. To-
tal R2

p denotes the sum of R2
mono and R2

aggr, ∆ CNR denotes the CNR (mg L−1) width, ∆u
denotes the velocity jump. Subscripts of CNR denote the onset1 and decline2 of aggre-
gation. Penalised R2 subscripts refer to estimated models in the monomer and aggregate
regions.
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Nanoaggregation

13.1 Model Calibration with Synthetic Data

13.1.1 One changepoint model

A synthetic data set y following specification in Equation (9.5) is illustrated in

Figure 13.1 and has parameter values:

α1 = 150, β1 = 0.5, σ2
1 = 6, α2 = 250,

σ2
2 = 20, γ = 60 x = ei, i = 3, 3.01, . . . 5. (13.1)

Note that the segments of x are exponential which reflects our experimental data (Sval-

ova et al., 2017). Figure 13.1 (a) illustrates the full synthetic data set, plot (b) is a

10-point discretised set (only every 10th point from the original data set retained)

used to assess prediction accuracy in conditions of low data availability. In the anal-

Figure 13.1: Synthetic data for testing the single-changepoint model following (13.1).
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ysis to follow, the main parameter(s) of interest is the changepoint γ (equivalently,

γ1 and γ2 assuming the bridge model) as it would represent the critical nanoaggre-

gation concentration (region).

Prior to analysing the MCMC results, what follows details the burn-in period selec-

tion. In order to obtain reliable posterior estimates, the initial convergence period

(burn-in) needs to be discarded. Brooks et al. (2011) (p. 19) suggests that if an

MCMC chain starts near its equilibrium, discarding long series of draws may be

unnecessary. Regarding the present data, Figure D.1 illustrates the MCMC chains

for γ (or γ1 for a bridge model) in different settings, e.g. synthetic data assuming a

single-changepoint (plots (a,b)) and bridge (plots (c,d)) models and E1 sample data

assuming both models (single and bridge in plots (e) and (f) respectively). It can be

seen that the chain behaviour, such as the mixing efficiency and the onset of equi-

librium is varied across the different scenarios, and in some cases (e.g. plots (b,e))

may require a generous burn-in. Noteworthy, the Figure illustrates draws using a

Metropolis-Hastings scheme (Lee, 2012, p.317), which has less efficient mixing than

a Gibbs sampler (Lee, 2012, p.294) that is used for the parameters for whom the

marginal conditional posterior distributions are available. In most cases throughout

this study, the chains were run for 106 iterations, discarding the first 50% as burn-

in (Brooks et al., 2011, p. 163, although they dealed with much lower numbers).

Although the latter strategy may appear overcautious, running simulations for such

a long period of iterations ensured smoothness of the obtained conditional marginal

posterior distributions that would be unlikely to change with more iterations. Ad-

ditionally, the short computation times per run (on the order of minutes) made this

affordable. Plots (e) and (f) may also reveal that the mixing of the sampler is more

efficient assuming a bridge model, although plot (f) reveals an interesting sampling

‘ceiling’, this will be discussed in Section 13.2.

To estimate the conditional marginal posterior distributions of the changepoint in

the synthetic data following Equations (13.1), an MCMC sampler was run for 106

iterations discarding the initial 50% as a burn-in. Parameter priors were centred at

the parameter true values, standard deviations were set at 0.2 times prior mean, the

γ prior was Normal (Gaussian). The M-H step for γ used a Normal proposal centred

at the current chain value and had a standard deviation of 30, and had a constraint

such that γcandidate was at least two data points away from the sample data bound-

aries. The chain mixing was efficient for all parameters updated via Gibbs step, trace

plots and posterior marginal conditional distributions are provided in Figures D.2
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(201-point data), D.3 (21-point data) and D.4 respectively. Figure 13.2 illustrates

chain mixing for γ using the two data sets and compares sampler efficiency between

105 and 106 iterations (first half discarded) whereby in the latter case the sample

space exploration is significantly better and the sampler appears to have converged.

Evidently, using a smaller data set does not strongly reduce the accuracy of γ es-

timation as the marginal conditional posterior means in plots (b) and (d) are very

similar.

Figure 13.2: MCMC traces of γ conditional marginal posterior using 201-point and 21-
point data sets (abbreviated 201-data and 21-data respectively), prior mean is set at the
true parameter value. Solid red and dashed cyan lines indicate prior and posterior means
respectively.
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Figure 13.3: Posterior density plots of γ assuming a one-changepoint model using synthetic
data. The densities are based on the final 50% of 106 iterations.

Figure 13.3 (a,b) and Figure D.4 illustrate illustrates posterior densities of γ and

the remaining parameters respectively. Overall, there is a dramatic decrease in the

parameter variance for most of the variables, including γ. Plot (a) in Figure 13.3

illustrates that there is a marginal reduction in the accuracy of the posterior γ

mean using a smaller data set, however it is not significant to negatively influence

the inference about the changepoint. For α1, β1 and α2 (Figure D.4 plots (a,b,d)),

a dramatic decrease in variance is observed using either of the data sets. Both

posterior mean estimations are close to the prior means (true parameter values).

Using a smaller data set in this case did not negatively affect the posterior estimation

although the variance is somewhat greater. Importantly, this suggests that a 10-fold

decrease in data quantity does not significantly reduce the quality of the MCMC

posterior estimation. Therefore the scheme can be applied to the asphaltene velocity

data. The posterior densities of σ2
1 and σ2

2 see a smaller decrease in variance from

the prior than for the remaining parameters. For σ2
1 especially, using a 21-point data

set yields a very accurate posterior estimate.

The proposed MCMC scheme is also robust against prior misspecification. The prior

means were scaled by 1.5 (offset by 50%) and standard deviations set at at 0.5 times
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the prior mean. Figure 13.4 illustrates the posterior γ chain mixing for the two data

sets showing that (surprisingly) the sampler is more efficient in exploring the sample

space when the smaller data set is used. The prior mean for γ was set at 90 and

outside the range of the Markov chain. The conditional marginal posterior densities

of γ are near-identical to the true prior mean case, as illustrated in Figure 13.3(b).

The posterior densities and trace plots of the remaining parameters were very similar

to the true prior case, thus are omitted.

Figure 13.4: MCMC trace of γ posterior density using 201-point and 21-point data sets,
prior mean is set at 1.5 times true parameters value. Solid red and dashed cyan lines
indicate true γ and posterior mean respectively. The prior γ mean of is beyond the plot
range.

To confirm that the models perform well and test the posterior model fit in sample

data predictive distributions were simulated (104 draws) using conditional marginal

posterior mean parameters estimations, from which the mean squared error (MSE),

mean average error (MAE) and Pearson correlation (with corresponding p-values)

between the ovserved and predictive values was calculated (Fawcett et al., 2017).

The diagnostic quantities are summarised in Table 13.1 for the 201-point and 21-

point data sets, for priors centred at true and misspecified parameter means. The

information criteria indicate that posterior fits are very similar for both runs. The

MAE and MSE are lower for the larger data sets which is expected. The correla-

tion between synthetic data and predictive distribution is very strong in all cases.

Additionally, to ensure that the MCMC draws are independent, the partial autocor-

relation function (PACF) (Gamerman & Lopes, 2006) was calculated for both data

sets and the were very low. The results were near-identical for the two data sets,

therefore only one result it shown (Figure D.5).
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Data MAE MSE Cor ρ, p-value
201-point, true -0.02 11.33 0.99, 2.2× 10−16

201-point, missp -0.02 11.31 0.99, 2.2× 10−16

21-point, true -0.05 11.75 0.99, 2.2× 10−16

21-point, missp -0.07 11.64 0.99, 2.2× 10−16

Table 13.1: Posterior diagnostic criteria for assessing single-changepoint model fit. Poste-
rior runs based on true and misspecified prior means are marked accordingly. Correlation
(Cor) is calculated for the assotiation between true and predicted values (Fawcett et al.,
2017). Information is calculated on 106 draws form posterior distributions discarding the
initial 5× 105 as burn-in.

13.1.2 Two-changepoint model with a Brownian bridge

The Brownian bridge scheme was tested using synthetic data (Figure 13.5) following

the specification

α1 = 150, β1 = 0.5, σ2
1 = 6, α2 = 350, β2 = −1,

σ2
2 = 20, γ1 = 60, γ2 = 90, κ = 10 and x = ei, i = 3, 3.01, . . . 5. (13.2)

Figure 13.5: Synthetic data for testing the Brownian bridge model following (13.2).

Due to the nature of γ1 and γ2 their priors are ‘in reality’ correlated. It will be

shown later with the sample data that for the estimated CNR widths and using

very wide prior distributions, the posterior draws of γ1 and γ2 are only weakly

correlated. However, the introduction of correlated priors (or a joint bivariate prior)

may be the next step of this investigation. The MCMC sampler was run for 106
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iterations discarding the initial 50% as a burn-in. As with the previous model, the

scheme was firstly run with parameter means at true parameter values, standard

deviation as before. During the M-H steps, Normal proposals were used for γ1 and

γ2, centred at current sampler value with a standard deviation of 30. An additional

condition added in the changepoint proposal forced the bridge segment is at least

two points long, whereby γcandidate1 < γcurrent2 , and equivalently γcandidate2 > γcurrent1 .

Prior distributions were Normal (standard deviation of 30) for both changepoints.

The remaining parameters were updated using a Gibbs mechanism.

Figure 13.6: MCMC traces of γ1 and γ2 posterior densities using 201-point and 21-point
data sets, prior mean is set at the true parameter value. Solid red and dashed cyan lines
indicate prior and posterior means respectively.

Figure 13.6 illustrates MCMC traces for γ1 and γ2, Figure D.6 illustrates trace plots

for the 21-point data set posterior parameter estimations. The use of 201-point

data set produced very similar traces, thus the plots are omitted. The posterior

estimation of the changepoints is consistent with the prior means. In all plots, the

Markov chains appear to have an upper/lower boundary which is consistent with

the sharp change between the bridge and regression segments in Figure 13.5. These

boundaries are less strong for the larger data set which illustrates the advantage of

using more data.
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Figure 13.7: Plots of marginal conditional posterior posterior densities of γ1 and γ2, prior
means are set at true parameter values.

Figure 13.7 illustrates the posterior densities for the two changepoints, which illus-

trate a decrease in the variance of γ1 and γ2. Apparent is the lack of smootheness

of the densities, which can be explained as follows. As a new candidate value of ei-

ther of the changepoints is proposed, the data is compartmentalised into regression

and bridge segments and the posterior distribution of a changepoint will have local

minima and maxima which correspond to the data point locations- as there are not

too many plausible changepoint locations. This roughness is not too pronounced

with synthetic data, however will become very strong when inference with the sam-

ple data is performed, especially for the the bridge model. Figure D.7 illustrates

posterior densities and posterior means from the simulation, ordinary least squares

estimates are also shown. For all parameters posterior means are consistent with

true parameter values. In conclusion, using the two data sets gives very similar

posterior mean values, although the variance is greater with the smaller set. Simi-

larly to the above, the bridge model was tested with prior means at 1.5 times true

parameter value and prior variances at 0.5 times prior mean. Figure 13.8 illustrates

the posterior densities of the two changepoints which are very similar to Figure 13.7,

the remaining plots are omitted. Overall, assuming the two underlying models, the

testing has illustrated that the MCMC scheme provides consistent parameters esti-

mation despite misspecified priors with an offset of 50% from their true parameter

values. Table 13.2 provides performance diagnostics for both data sets and prior

(mis-) specifications.
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Figure 13.8: Marginal conditional posterior posterior densities of γ1 and γ2, prior means
set at 1.5 times true parameter values.

Data MAE MSE Cor ρ, p-value

201-point, true 5.06 115.98 0.95, 2.20×10−16

201-point, miss 5.74 131.19 0.94, 2.20×10−16

21-point, true 8.14 194.49 0.93, 1.51×10−7

21-point, miss 7.91 183.62 0.94, 9.66×10−8

Table 13.2: Posterior diagnostic criteria for assessing Brownian bridge model fit. Posterior
runs based on true and misspecified prior means are marked accordingly. Correlation (Cor)
is calculated for the assotiation between true and predicted values (Fawcett et al., 2017).
Information is calculated on 105 draws form posterior distributions discarding the initial
5× 104 as burn-in.

The MSE values are quite large due to the high stochasticity of the bridge segment.

This is plausible as the expectation of the values along the bridge are given only by its

trajectory and not by the Brownian uncertainty (Equation (9.19) in Section 9.2.2).

The correlation between posterior predictive distributions and synthetic data is> 0.8

for all data sets. The PACF plots in Figure D.8 show low values for all parameters.
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13.2 Experimental Data

13.2.1 Prior elicitation

Figure 13.9: Velocity characterisation of asphaltene aggregation in E1-E4 as-
phaltenes (Svalova et al., 2017).

Priors for the regression coefficients were performed using the constrained optimi-

sation data, Tables 12.2, C.1 and C.2-C.7. The variation in regression coefficients

before 100 mg L−1 (Mullins, 2011) was interpreted as representative of the coeffi-

cient variation in the monomeric region and that after 100 mg L−1 as variation in

the aggregated region. The coefficient distributions and fitted prior densities are

shown in Figure 13.10.

150



Chapter 13. Empirical Bayesian Inference of Asphaltene Nanoaggregation

Figure 13.10: Densities of the parameters assuming a one-changepoint model with γ = 100
using data from constrained optimisation.

The illustrated plots are multimodal and in many cases the variation in regression

parameters, e.g. plots (a) and (f), does not overlap. Additionally, for E3, due to an

extreme outlier at ca. 110 mg L−1 the parameter densities are extremely wide. The

corresponding prior formalisms have included this variation where possible and are

as follows:

α1 ∼ N(1304.6, 0.132), β1 ∼ N(0, 0.0032), σ2
1 ∼ IGa(2.01, 1.5× 10−4), (13.3)

α2 ∼ N(1304.5, 0.132), β2 ∼ N(0.7× 10−4, 0.8× 10−8), σ2
2 ∼ IGa(2.03, 3× 10−4).

What follows will compare the fit of the single-changepoint and bridge models to the

asphaltene data to assess the plausibility of a critical nanoaggregation point versus

a range.

13.2.2 One changepoint model

An MCMC scheme was run for the estimation of the critical nanoaggregate con-

centration in the asphaltene samples E1-E4 assuming a one-changepoint regression

model. The scheme was run for 106 iterations, discarding the first half as a burn-in.

151



Chapter 13. Empirical Bayesian Inference of Asphaltene Nanoaggregation

The prior distribution for γ was γ ∼ N(100, 502), which is consistent with litera-

ture (Mullins, 2011). Although the standard deviation of 50 is quite large, this was

chosen so that the M-H update explores the sample space efficiently. The proposal

kernel for γ was also Normal with a standard deviation of υ = 30 and truncated

above zero. The proposal mechanism included an additional condition such that no

linear region is less than two points long. A search over a range of υ ∈ [1, 2, . . . 40]

was performed in order to ensure no correlation with the information criteria and

posterior MAE/MSE.

Figure 13.11: Variation of posterior single changepoint model performance with the change
in tuning parameter υ using E1 asphaltene data.

Figure 13.12 illustrates the MCMC draws from the γ conditional posterior distri-

butions. A typical output trace for the remaining parameters is shown for E1 in

Figure D.9. The mixing in the four plots looks satisfactory, except the ‘ceiling’ in

plot (c) which is consistent with the large outlier (Figure 13.9(c)) which compart-

mentalises the sample.
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Figure 13.12: Trace plots of 106 MCMC iterations of the γ conditional marginal posterior
distribution, first 50% discarded as a burn-in. Solid red and dashed cyan lines indicate
prior and posterior means respectively.

Figure 13.13 illustrates the conditional marginal posterior densities of γ for E1-

E4, again an example of densities for the remaining parameters is shown for E1 in

Figure D.10. A strong indication of a dominant posterior mode emerges in all of

the samples, although there are second modes. The slight multimodality arises due

to data scarsity giving rise to the posterior mode instability. This multimodality is

only apparent for the γ conditional marginal posteriors as they are samples through

a H-M update- those sampled by a Gibbs samples are smooth and unimodal, as

shown in Figure D.10. Finally, no significant partial autocorrelations were observed

beyond lag 2 for any of the γ traces, as indicated in Figure 13.14 and for all of the

model parameters of E1 (Figure D.11).

Figure 13.13: Density plots of the conditional marginal posterior distributions of γ. Black
solid and dashed lines represent prior density and mean respectively, cyan solid and dashed
lines represent posterior density and mean respectively.
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Figure 13.14: Partial autocorrelation plots of the MCMC draws from γ conditional
marginal posterior distribution.

13.2.3 Brownian bridge model

Figure 13.15 illustrates the trace plots for γ1 and γ2 whereby good mixing is observed

for all samples. For γ1, the posterior modes have diverged from the prior means for

the majority of the samples, whereas for γ2 the posterior means remained close to

prior means. As previously, in E3 a ‘ceiling’ is observed for the γ1 and γ2 boundaries

which is consistent with the outlier in the sample. For E4, however, a lower boundary

for the γ2 trace is also observed, which may reflect the velocity values in the sample.

None of the correlations between the draws from the γ1 and γ2 were strong, with

only E1 having a value of 0.46, the remaining correlations were below 0.2.
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Figure 13.15: Trace plots of 106 MCMC iterations of the γ1 and γ2 conditional marginal
posterior distribution2, first 50% discarded as a burn-in. Solid red and dashed cyan lines
indicate prior and posterior means respectively.

Figure 13.16: Density plots of the conditional marginal posterior distributions of γ1 and
γ2. Black solid and dashed lines represent prior density and mean respectively, cyan solid
and dashed lines represent posterior density and mean respectively.
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Figure 13.16 illustrates the posterior densities of γ1 and γ2, whereby multimodality

is observed. The MCMC scheme was run for 2×106 iterations for E1 and no change

in the posterior densities was observed, thus it is presumed that the distributions are

stationary. None of the partial autocorrelations for the γ1 and γ2 draws were signif-

icant, and similar results were found for all samples. The trace plots, densities and

partial autocorrelation plots are provided for E1 as an example (Figures D.12- D.14).

13.2.4 Model comparison

Figures 13.17 and 13.18 illustrate the predictive distributions for the four samples

that were generated from 104 draws based on posterior parameter means for the

single changepoint and bridge models. For the former, the predictive distributions

provide a good fit for the samples E1, E2 and E3, however for E4 the slope in

the aggregated region appears to be estimated erroneously. As β2 is defined as

(α1 − α2 + β1γ)/γ, a misestimation of any of the other regression parameters will

lead to errors in the aggregated region slope. To test that this was not a compu-

tational/algebraic error, an MCMC scheme was run for E4 using priors that were

based on the regression coefficient variation of E4 only, and a good fit can be ob-

served in plot (c). The choice of prior distributions, therefore, may need to be

re-considered to include more variation. This may also highlight the need of not

forcing an intersection between the two regressions to allow more flexibility around

the aggregation region.

For the bridge model, a much better fit can be observed (Figure 13.18). The intro-

duction of the bridge segment has removed the constraint of regression intersection

and has allowed a much greater flexibility. The variation around the regression inter-

section is much better accounted for by the Brownian bridge variance (Section 9.2.2).

In sample E2 (plot (b)), the critical nanoaggregation region boundaries estimated

by γ1 and γ2 are similar to those using constrained optimisation (Section 12.2).

What follows illustrates diagnostics (Fawcett et al., 2017) in order to assess whether

a single-changepoint or a Brownian bridge model better fits the asphaltene velocity

data. Predictive distributons were generated by using marginal conditional poste-

rior means and simulating 104 values from which the mean average error (MAE)

and mean squared error (MSE) were calculated, as well as the correlation between

observed and predicted values (Fawcett et al., 2017) (Table 13.3). Figure 13.19 plots

predictive versus observed values and illustrates the ‘perfect prediction’ line. The
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Figure suggests that the bridge model provides a better fit to the data whereby

the points that are included in the monomeric/aggregation segments follow the line

of fit well. The deviation of the data points included in the bridge segment is to

be expected as the mean of the bridge will be the drift between its two end-points

whilst the variance along the bridge is quite high (Section 9.2.2). In general, the

MAE and MSE are also lower for the bridge model. Strikingly, the variation in

the sample E4 has been explained much better by the bridge model as well. The

overall improvement in fit facilitates by the bridge model adds to the argument that

asphaltenes form aggregates over a regions of concentrations.
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Figure 13.17: Predictive distributions of E1-E4 assuming the single changepoint underly-
ing model, red lines indicate the model means, red shading indicates the 95% predictive
intervals.
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Figure 13.18: Predictive distributions of γ1 and γ2, red shading indicates the 95% predic-
tive intervals.
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Figure 13.19: Plots of predicted versus observed quantities of E1-E4 asphaltenes, using the
single changepoint (Single) and Brownian bridge (Bridge) models. The black line indicates
the ‘Observed=Prediced’ regression.

Sample MAE MSE Cor (ρ, p)

E1 single -1.93E-03 6.83E-04 0.86, 1.86×10−7

E1 bridge 8.01E-04 4.98E-05 0.88, 2.59×10−4

E2 single 3.22E-04 2.19E-04 0.82, 4.34×10−6

E2 bridge -4.12E-03 2.52E-04 0.81, 8.80×10−6

E3 single -1.6E-02 2.19E-02 0.53, 4.18×10−3

E3 bridge -2.79E-02 2.35E-02 0.51, 6.82×10−2

E4 single 2.68E-02 3.67E-02 -0.38, 0.06×10−3

E4 bridge -1E-02 6.88E-04 0.77, 6.14×10−6

Table 13.3: Diagnostics for comparing the fit of the single-changepoint and bridge models
to data, based on (Fawcett et al., 2017).
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What follows draws on the results and discussions in previous Chapters in an attempt

to explain how the variation in asphaltene geochemistry affects its nanoaggregation.

In Svalova et al. (2017), principal component analysis (PCA) was performed on the

variables

� ∆CNR- the width of the nanoaggregation region, ∆CNR= CNR1-CNR2,

� ∆u- the velocity difference corresponding to CNR1 and CNR2,

� R2
p- the total penalised coefficient of determination of regressions in the monomeric

and aggregated regions,

� Percentage of medium fatty acid methyl esters (FAMEs) out of total FAMEs,

� Percentage of long FAMEs out of total FAMEs.

In the following, these results will be revisited and improved as recent analysis

brought to light new data and corrections. To begin, a clarification on the offset

(CNR2) of E4 nanoaggregation needs to be highlighted, which is 181.358 instead

of 81.358. This mistake was on the author’s behalf and this change will affect the

distribution of the four samples in the principal components. Although this was un-

fortunate, the re-analysis highlighted the need for more data, whereby a change in

one data point would have a lesser implication on the remaining analysis. Secondly,

the α-branched FAME data could aid in the understanding of the impact of steric

hindrance arising from aliphatic branching to nanoaggregation. Thirdly, the discov-

ery of benzoic acid methyl ester (BAME) is consistent with the possible archipelago

structure of asphaltenes which also may have an impact on nanoaggregation.

The % of FAME compounds (based on peak heights) in relation to the total peak

heights was calculated from their corresponding total ion chromatograms (TIC), and

% of α-branched acids and BAME from their diagnostic partial ion chromatograms

(as in Chapter 11.2) in relation to the total peak heights in the TIC. The relative
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abundances of FAMEs were calculated from GC-MS runs in the selected ion moni-

toring (SIM) mode as the latter offered a better resolution (the compound retention

times were confirmed from their corresponding full scan runs). The information on

the branched and benzene acid compounds in the SIM mode was not available, thus

their abundances were identified from scan runs (implying a lower resolution). The

use of peak heights as opposed to peak areas was thought to be more appropriate for

the relative abundance calculation due to the associated errors in variable baseline

widths and heights and deformation of peaks due to coelution, whilst for the peak

height data only the baseline non-uniformity would carry an error. Further, when

the % abundance of FAMEs (and α, ω-di -fatty acid di -methyl esters) was compared

between peak height-based and area-based calculations, virtually no difference was

observed and the correlation between the two quantities was 0.99. On the other

hand, when the two abundances were calculated for the branched compounds, their

% abundance decreased by a factor of 10 when calculated using peak areas.

V1 V2 V3 V4 V5 V6 V7 V8

V2 -0.1, 0.9

V3 0.7, 0.3 0.1, 0.9

V4 -1.0, 0.0 0.3, 0.7 -0.8, 0.2

V5 0.7, 0.3 0.6, 0.4 0.5, 0.5 -0.6, 0.5

V6 -0.1, 0.9 -0.2, 0.8 -0.8, 0.2 0.3, 0.7 -0.1, 0.9

V7 0.2, 0.8 0.1, 0.9 -0.5, 0.5 -0.0, 1.0 0.4, 0.6 0.9, 0.1

V8 0.6, 0.4 -0.4, 0.6 -0.1, 0.9 -0.5, 0.5 0.3, 0.7 0.7, 0.3 0.8, 0.2

V9 -0.0, 1.0 1.0, 0.0 0.2, 0.8 0.2, 0.8 0.7, 0.4 -0.3, 0.7 0.1, 1.0 -0.4, 0.6

Table 14.1: Correlation matrix of the variables used in PCA, every cell illustrates a Pear-
son correlation ρ, followed by its corresponding p-value. Variable abbreviations are V1–
∆CNR, V2– ∆u, V3– R

2
p, V4– medium FAMEs, V5– long FAMEs, V6– α-methyl FAMEs,

V7– α-ethyl FAMEs, V8– α-propyl FAMEs, V9– BAME.

The correlation matrix of the nine variables used in PCA is displayed in Table 14.1,

the ρ and p values are shown to one decimal place (there were no absolute correlations

to two decimal places) and variables are abbreviated V1-9 for compactness. Strong

correlations (ca. > 0.7) are between e.g. ∆CNR and ∆u, and ∆CNR and the

abundance of medium FAMEs. In regards to the newly-introduced variables, striking

is the very strong correlation between BAME and ∆u, whilst the α-methylated
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FAMEs are only weakly/moderately correlated with the remaining variables. To

illustrate the impact of introducing α-branched FAMEs and BAME, PCA was first

performed on V1-5 (Figure 14.1(a)) analogous to the original analysis in Svalova

et al. (2017), then V1-8 (Figure 14.1(b)) introducing the branched acids and, finally,

V1-9 (Figure 14.2) to add the BAME data.

Figure 14.1: Sample separation based on the first two principal components. Loadings for
plots (a) and (b) are given in Tables 14.2 and 14.3 respectively.
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Variable PC1 PC2 PC3 PC4 PC5

∆CNR 0.542 -0.135 0.357 0.264 0.700

∆u 0.043 0.824 -0.162 -0.404 0.361

R2
p 0.476 -0.032 -0.834 0.273 -0.052

M FAME -0.528 0.293 -0.075 0.764 0.215

L FAME 0.447 0.465 0.381 0.329 -0.575

Table 14.2: Loadings of the principal components in Figure 14.1(a). Medium and long
FAMEs are abbreviated M FAME and L FAME.

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

∆ CNR 0.531 0.089 -0.069 0.138 -0.376 -0.499 -0.527 -0.132

∆u 0.005 -0.136 0.771 0.388 -0.298 -0.102 0.217 0.299

R2
p 0.426 -0.353 -0.056 -0.572 -0.413 0.290 0.178 0.277

M FAME -0.515 -0.000 0.239 -0.591 -0.238 -0.474 -0.032 -0.216

L FAME 0.419 0.055 0.495 -0.217 0.350 0.164 0.059 -0.614

α-C1 FAME -0.147 0.557 0.005 0.081 -0.589 0.485 -0.002 -0.281

α-C2 FAME 0.061 0.543 0.262 -0.313 0.269 0.093 -0.383 0.554

α-C3 FAME 0.263 0.491 -0.164 -0.050 0.020 -0.400 0.702 0.082

Table 14.3: Loadings of the principal components in Figure 14.1(b). The α-methyl, α-
ethyl and α-propyl FAMEs are abbreviated α-C1, α-C2 and α-C3 FAME respectively. Blue
indicates principal component loadings analogous to Table 14.2.

The author assumes that steric hindrance (Section 2.1) induced by longer asphaltene

side-chains impacts potentially ‘slows down’ and complicates, the nanoaggregation

process which is reflected in the velocity fluctuations observed in the CNR. This

assumption will be key in the interpretation of PCA that follows. The ‘original’

PCA (Figure 14.1(a) and Table 14.2) has contrasted E1 and E3 versus E2 and E4 in

PC1. The width of the nanoaggregation region has the greatest contribution to PC1

and is strongly related to R2
p. This may imply that as ∆CNR increases, the ‘noisy’

data within the CNR is excluded from the linear model which improves the R2
p. The

long FAME compounds are also positively related to ∆CNR which may imply that

the longer asphaltene side-chains induce higher velocity fluctuations which forces the

∆CNR to increase. Interestingly, the medium FAMEs are strongly contrasted to the

earlier variables, including long FAMES, although the correlation between medium

and long FAMEs is only moderate (Table 14.1). At a risk of overinterpreting, this
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may imply that the velocity fluctuations induced by medium FAMEs are not strong

enough to increase the ∆CNR but nevertheless decrease R2
p. The polarity between

medium and long FAMEs is carried through the following analysis as well. In PC2,

∆u has a very strong positive weight and is positively related to long FAMEs,

suggesting that the long asphaltene side chains are related to the ‘height’ of the

nanoaggregation region too, though not as strongly as to ∆CNR.

The introduction of the α-branched FAMEs to PCA is shown in Figure 14.1(b) and

Table 14.3. The sample division in PC1 is very similar to the previous analysis,

both in the way the samples are located (Figure 14.1(b)) and in the loadings of the

first five variables, whilst giving the branched FAMEs (very) small loads 14.3. In

contrast, PC2 changed the direction of the relation between E2 and E4 and further

separated E1 from E3, positioning the samples according to their source. This

change is reflected in the component’s loadings (Table 14.3) whereby the weight

of ∆u is reduced from 0.824 to -0.136 and the greatest weights are given to the

branched FAMEs. The strongest contrast here is between R2
p and the branched

compounds, which would be interpreted that an increase in the asphaltene side-chain

branching also complicates the nanoaggregation process, thus decreases the fit of the

linear models. Therefore, the introduction of the new variables has improved the

explanation of nanoaggregation in the samples, as E1-E4 are now divided according

to their velocity response in PC1 and structural features in PC2.
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Figure 14.2: Sample separation based on the first two principal components (Table 14.4).

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

∆CNR 0.493 0.218 0.064 0.190 -0.013 0.024 -0.120 0.732 -0.345

∆u 0.105 -0.308 -0.528 -0.579 -0.199 0.194 -0.394 0.192 0.104

R2
p 0.466 -0.201 0.226 -0.182 -0.221 0.324 0.620 0.024 0.345

M FAME -0.474 -0.177 -0.227 -0.061 -0.058 -0.395 0.505 0.522 0.042

L FAME 0.447 0.025 -0.360 -0.205 0.158 -0.472 0.290 -0.353 -0.414

α-C1 FAME -0.235 0.459 -0.246 -0.014 -0.540 0.396 0.234 -0.123 -0.393

α-C2 FAME -0.004 0.431 -0.417 0.003 0.634 0.327 0.178 0.083 0.304

α-C3 FAME 0.157 0.536 -0.054 -0.036 -0.386 -0.461 -0.139 -0.006 0.551

BAME 0.159 -0.321 -0.498 0.740 -0.199 0.046 -0.006 -0.090 0.162

Table 14.4: Loadings of the principal components in Figure 14.2. Abbreviation key is in
Table 14.1.

Figure 14.2 ilustrates PCA performed on all of the variables in Table 14.1 whereby

the introduction BAME has improved the separation of samples, especially in PC2,

whereby the four are now ‘perfectly’ separated according to their source and veloc-

ity response (Table 14.4). The loadings are quite similar to the previous PCA and

BAME does not have too strong of a weight in PC1 or PC2. In conclusion, new
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structural data (branched acids and BAME) obtained from RICO has not strongly

affected the inference of PC1 and built on the sample separation in PC2 by introduc-

ing new asphaltene features that may affect nanoaggregation. The neat separation

of the samples according to their velocity response in PC1 and structural data in

PC2 can suggest that there is indeed a relation between asphaltene artchitecture

and their nanoaggregation behaviour.
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This work aimed to contribute to improving oil spill remediation practice by in-

vestigating the problem of asphaltene nanoaggregation. A literature review has

highlighted the breadth of investigation that is directed towards asphaltene sci-

ence. Fundamentally, what the asphaltenes are, still remains to be somewhat of

a debate as different precipitation and separation techniques yield asphaltene frac-

tions with different physico-chemical properties. A closer look at the asphaltene

molecules appears to confirm that although many molecules have a polyaromatic

hydrocarbon core – side chain structure (Mullins, 2011), a significant proportion of

the molecules can be quite different (Schuler et al., 2015, 2017) and the molecu-

lar heterogeneity of the asphaltenes is vast. In particular, some included only the

longer aliphatic chains, whilst the others-only the polycyclic aromatic cores. The

properties of the asphaltene fraction depend on the separation method and only

a sub-fraction of the asphaltenes is surface-active (Wu, 2003; Czarnecki & Moran,

2005; Czarnecki, 2009), as opposed to the entire fraction (McLean & Kilpatrick,

1997b; Kilpatrick & Spiecker, 2001; Sjöblom et al., 2001). In water-in-oil emulsions,

the surface active portion of the asphaltenes self-associates and tend to sit on the

water-oil boundary forming a rigid skin around water droplets (Gonzales & Middea,

1988; McLean et al., 1998; Jeribi et al., 2002), which is said to be one of the main

petroleum emulsion/mousse stabilisation mechanisms. Experimental work (Svalova

et al., 2017) included oxidation experiments (Peng et al., 1999), ultrasonic character-

isation of asphaltenes (Andreatta et al., 2005a) and maltene analysis (Peters et al.,

2005a,b,c,d). The oxidation experiments performed on model compounds revealed

that the procedure is reliable to analyse straight-chain and α-branched medium-

chain fatty aid methyl esters. Some inference about the archipelago compounds can

also be performed by analysing the benzoic acid methyl esters. This is in contrast to

the previous results whereby archipelago compounds were suggested to be inferred

from the abundance of di -fatty acid di -methyl ester (Peng et al., 1999). As it is

highly-unlikely that the long di -fatty acid di -methyl esters are representative of the
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‘original’ asphaltene structure, a better understanding of our experimental method is

required. If the relative abundance of the latter compound is representative of that of

the archipelago compounds, the proportion of the non-island molecules is extremely

low, as previously reported (Schuler et al., 2015, 2017). Ultrasonic characterisation

was used as a novel method in asphaltene science that presented the advantages

of high sensitivity to molecular rearrangements, probing of opaque samples without

dilution and ease in implementation. Ultrasonic characterisation studies highlighted

the non-linear nature of the asphaltene aggregation concentration point/region as

the analysed samples exibited high variation in the aggregation behaviour.

The analysis and modeling of combined asphaltene geochemical and velocity data

revealed that there is a relationship between asphaltene structure obtained from

oxidation studies, e.g. a higher degree of side-chain branching, and the size of

the nanoaggregation region. However, more data is needed to test this relation.

Additionally, a Bayesian modelling exercise was performed in order to test the as-

sumptions of a critical nanoaggregation concentration point versus a region, and the

latter was supported.

The limitations of the analysis and inference presented in this investigation are as

follows. Firstly, the number of samples used in ultrasonic characterisation is fairly

small, and the PCA analysis presented should be treated as an indication of a rela-

tion between asphaltene nanoaggregation and structure. Secondly, the limitations

of RICO (Peng et al., 1999; Strausz et al., 1999a), such as volatility losses, call

for a further understanding of how to make this experimental procedure more ro-

bust and reliable, or turn to other methods of understanding asphaltene structure.

Thirdly, velocity measurements can be strongly affected by air bubbles and other

artifacts (Povey, 1997a) and in future it would be advantageous to compare the find-

ings with nuclear magnetic resonance (NMR) measurements (Ali et al., 1990; Freed

et al., 2009; Lisitza et al., 2009) and rheological studies (Rane et al., 2012, 2013,

2015). The reported advantage of sound over light spectroscopic techniques could

also be tested experimentally (Aske et al., 2004; Oh & Deo, 2007; Yudin & Anisimov,

2007). Finally, within the greater context of oil spills this project has focused on

the niche of asphaltene nanoaggregation, which is both very broad and narrow. An

asphaltene ‘molecule’ doesn’t really exist as the asphaltene fraction as an agglom-

eration of multiple subfractions, not all of whom include aromatics (Schuler et al.,

2017). A given asphaltene sample will not only depend on the parent hydrocarbons

but also the separation method. Thus, when measuring nanoaggregation in an as-

170



Chapter 15. Conclusions

phaltene sample, one measures aggregation of a very broad class of molecules.

Therefore, further directions of this research could be as follows. Asphaltene sub-

fractions could be determined on the basis of e.g. saturation/aromaticity and surface

activity (Gawrys et al., 2005; Stanford et al., 2007a; Kilpatrick, 2012; Rocha et al.,

2016). Nanoaggregation, then, could be measured in asphaltenes precipitated with

different solvents, e.g. n-C5-n-C7 (lighter solvent precipitates a greater amount of

the asphaltenes with n-C7 yielding the heaviest compounds) (Frakman et al., 1990;

Peng et al., 1997; Strausz et al., 1999a), and in samples of varying surface activ-

ity. These results could be compared with nanoaggregation in petroleum, whereby

a deasphalted crude could be doped with different weight asphaltene subfractions.

The results should then be related to asphaltene film thickness/surface activity

in oil/water emulsions. Surface rheological studies (Fan et al., 2010; Kilpatrick,

2012) currently do and they could add a great depth of understanding the dynamics

of asphaltene subfraction aggregation. This could be compared against molecular

dynamic simulations (Kuznicki et al., 2008, 2009; Sedghi et al., 2013; Teklebrhan

et al., 2014; Yang et al., 2015a) and statistical models, e.g. involving the perco-

lation theory (Sheu, 1996). Next, the water in oil emulsions should be studied.

Again, petroleum is highly complex and to fully understand the interaction between

the asphaltenes and the remaining compound fractions, in a variety of oils, would be

a very burdensome task. Most studies focus on petroleum waxes and asphaltenes,

whereby some report that the presence of waxes (Thompson et al., 1985) and/or

the interaction of the two is important (Bridie et al., 1980), whilst others focus on

the asphaltene ‘skin’ formation (Singh et al., 1999; Yarranton et al., 2000b; Khristov

et al., 2000; Jestin et al., 2007; Mullins, 2011; Rane et al., 2012, 2013). Increasingly,

it seems that both the formation of asphaltene films at the O/W surface and the

interaction with waxes is important (Sjoblom et al., 2003; Jestin et al., 2007), other-

wise one obtains an incomplete picture regarding the stability of WOEs. Petroleum

indigenous acidity as well as water salinity should always be considered, as the in-

teraction between the polar groups in the asphaltenes and the naphthenic acid in

the maltene fraction in petroleum could create greater forces than those between the

asphaltenes and water, this, however, is speculatve. A greater understanding of fac-

tors impacting nanoaggregation and stability of water-in-oil emulsions could then be

used to select a remediation strategy that targets specifically the WOE stabilisation

mechanism, and reduce the environmental impacts of spills and remediation.
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A modern introduction to probability and statistics: understanding why and how .

London: Springer.

Del Grosso, V. A. 1966 NRL Report 6409, 9. 8. Tech. Rep.. Naval Research

Laboratory, Washington.

Dembicki, H. J. & Mathiesen, M. D. 1994 Biomarkers from asphaltene pyrol-

ysis; an additional tool for oil correlation. In Annual Meeting of the American

Association of Petroleum Geologists . Denver, CO.

Desai, J. & Desai, A. 1993 Production of biosurfactants. In Biosurfactants , 1st

edn. (ed. N. Kosaric), , vol. 48, pp. 65–97. New York, NY: Marcel Dekker.

Dicharry, C., Arla, D., Sinquin, A., Gracia, A. & Bouriat, P. 2006

Stability of water/crude oil emulsions based on interfacial dilatational rheology.

Journal of Colloid and Interface Science 297, 785–791.

Dickinson, E., Kruizenga, F., Povey, M. J. W. & van der Molen, M.

1993 Crystallization in oil-in-water emulsions containing liquid and solid droplets.

Colloids and Surfaces A: Physiochemical and Engineering Aspects 81, 273–279.

Dickinson, E., Ma, J. & Povey, M. J. W. 1996 Crystallization kinetics in

oil-in-water emulsions containing a mixture of solid and liquid droplets. Journal

of the Chemical Society, Faraday Transactions 92, 1213–1215.

Didyk, B. M., Simoneit, B. T., Brassell, S. C. & Eglinton, G. 1978 Or-

ganic geochemical indicators of palaeoenvironmental conditions of sedimentation.

Nature 272, 216–222.

Dudasova, D., Simon, S., Hemmingsen, P. & Sjöblom, J. 2008 Study of
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Van der Waals, J. H. 1873 Over de continüıteit van den gas- en vloeistoftoestand

(On the continuity of the gas and liquid state). PhD thesis, University of Leiden.

Van der Waarden, M. 1958 Stability of emulsions of water in mineral oils contain-

ing asphaltenes. Kolloid-Zeitschrift und Zeitschrift f ur Polymere 156, 116–122.

Walters, C. C. 1999 Oil-oil and oil-source rock correlations. In Encyclopedia of

Geochemistry (ed. C. P. Marshall & R. W. Fairbridge), pp. 442 – 444. Dorcrecht,

the Netherlands: Kluwer Academic Publishers.

Wang, S., Liu, J., Zhang, L., Masliyah, J. & Xu, Z. 2010 Interaction forces

between asphaltene surfaces in organic solvents. Langmuir 26, 183–190.

Wang, Y., Qiu, Y., Li, J., Zhao, C. & Song, Z. 2018 Low-intensity pulsed

ultrasound promotes alveolar bone regeneration in a periodontal injury model.

Ultrasonics 90, 166–172.

Wang, Z., Fingas, M. F., Sigouin, L. & Owens, E. H. 2001 Fate and per-

sistence of long-termed spilled Metula oil in the marine salt marsh environment:

degradation of petroleum biomarkers. In Proceedings of the 2001 International

218



References

Oil Spill Conference, Tampa, Florida, pp. 115–125. Washington, DC: American

Petroleum Institute.

Wang, Z., Stout, S. A. & Fingas, M. 2006 Forensic fingerprinting of biomarkers

for oil spill characterization and source identification. Environmental Forensics 7,

105–146.

Wardroper, A. K., Hoffmann, C. F., Maxwell, J. R., Barwise, A. G.,

Goodwin, N. S. & Park, P. D. 1984 Crude oil biodegradation under simulated

and natural conditions 2. Aromatic steriod hydrocarbons. Organic Geochemistry

6, 605–617.

Warr, G. G., Grieser, F. & Evans, D. F. 1986 Determination of micelle size

and polydispersity by fluorescence quenching-experimental results. Journal of the

Chemical Society (Faraday Transactions 1) 82, 1829–1838.

Wasan, D. T. 1992 Destabilization of water-in-oil emulsions. In Emulsions - A

Fundamental and Practical Approach (ed. J. Sjöblom), pp. 283–295. Netherlands:
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.1: Partial mass chromatograms of the E2 aliphatic fraction, showing the distri-
butions of n-alkanes. Labels are listed in Table 10.2.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.2: Partial mass chromatograms of the E3 and E4 aliphatic fractions, showing
the distributions of n-alkanes. Labels are listed in Table 10.2.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.3: Partial mass chromatograms of the E4 aliphatic fraction, showing the distri-
butions of n-alkanes. Labels are listed in Table 10.2.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.4: Partial m/z 191 mass chromatograms of the E3 and E4 aliphatic fraction.
Labels are listed in Table 10.2.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.5: Partial m/z 177 mass chromatograms of the E1 and E3 aliphatic fraction.
Labels are listed in Table 10.2.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.6: Additional mass spectra for biodegradation assessment.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.7: Partial mass chromatograms of the E2 aliphatic fraction, showing sterane
biomarkers. Labels are listed in Table 10.2.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.8: Partial mass chromatograms of the E3 aliphatic fraction, showing sterane
biomarkers. Labels are listed in Table 10.2.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.9: Partial mass chromatograms of the E4 aliphatic fraction, showing sterane
biomarkers. Labels are listed in Table 10.2.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Compound label Compound name Empirical formula

1N Naphthalene C10H8

2N 2-MN C11H10

3N 1-MN C11H10

4N 2,6+2,7-DMN C12H12

5N 1,3+1,7-DMN C12H12

6N 1,6-DMN C12H12

7N 1,4+2,3-DMN C12H12

8N 1,5-DMN C12H12

9N 1,2-DMN C12H12

10N 1,3,7-TMN C13H14

11N 1,3,6-TMN C13H14

12N 1,4,6+,1,3,5-TMN C13H14

13N 2,3,6-TMN C13H14

14N 1,2-TMN C13H14

15N 1,6,7+1,2,6-TMN C13H14

16N 1,2,4-TMN C13H14

17N 1,2,5-TMN C13H14

18N 1,2,3-TMN C13H14

1P Phenanthrene C14H10

2P 3-MP C15H12

3P 2-MP C15H12

4P 9-MP C15H12

5P 1-MP C15H12

6P 3,5+2,6-DMP C16H14

7P 2,7-DMP C16H14

8P 1,3+2,10+3,9+3,10-DMP C16H14

9P 2,5+2,9+1,6-DMP C16H14

10P 1,7-DMP C16H14

11P 2,3-DMP C16H14

12P 1,9+4,9+4,10-DMP C16H14

13P 1,8-DMP C16H14

14P 1,2-DMP C16H14

Table A.1: Compound table for naphthalene and phenanthrene compounds (Stout &
Wang, 2008). Abbreviations MN, DMN and TMN refer to methylnaphthalene, dimethyl-
naphthalene and trimethylnaphthalene respectively. Abbreviations MP and DMP refer to
methylphenanthrene and dimethylphenanthrene respectively.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.10: Partial mass chromatograms of the E1 aromatic fraction, showing naphtha-
lene biomarkers. Labels are listed in Table A.1.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.11: Partial mass chromatograms of the E2 aromatic fraction, showing naphtha-
lene biomarkers. Labels are listed in Table A.1.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.12: Partial mass chromatograms of the E3 aromatic fraction, showing naphtha-
lene biomarkers. Labels are listed in Table A.1.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.13: Partial mass chromatograms of the E4 aromatic fraction, showing naphtha-
lene biomarkers. Labels are listed in Table A.1.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.14: Partial mass chromatograms of the E1 aromatic fraction, showing phenan-
threne biomarkers. Labels are listed in Table A.1.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.15: Partial mass chromatograms of the E2 aromatic fraction, showing phenan-
threne biomarkers. Labels are listed in Table A.1.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.16: Partial mass chromatograms of the E3 aromatic fraction, showing phenan-
threne biomarkers. Labels are listed in Table A.1.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.17: Partial mass chromatograms of the E4 aromatic fraction, showing phenan-
threne biomarkers. Labels are listed in Table A.1.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.18: Partial mass chromatograms of the E2 aromatic fraction, showing aromatic
steroid biomarkers. Labels are listed in Table 10.3.

242



Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.19: Partial mass chromatograms of the E3 aromatic fraction, showing aromatic
steroid biomarkers. Labels are listed in Table 10.3.
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Appendix A. Supplementary Material for Geochemical Characterisation of
Maltenes

Figure A.20: Partial mass chromatograms of the E4 aromatic fraction, showing aromatic
steroid biomarkers. Labels are listed in Table 10.3.
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Catalysed Oxidation of Asphaltenes
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.1: Partial ion chromatograms of (a) n-alkanoic fatty acid and (b) α, ω-di-n-
alkanoic di-fatty acid methyl esters of E2 asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.2: Partial ion chromatograms of (a) n-alkanoic fatty acid and (b) α, ω-di-n-
alkanoic di-fatty acid methyl esters of E3 asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.3: Partial ion chromatograms of (a) n-alkanoic fatty acid and (b) α, ω-di-n-
alkanoic di-fatty acid methyl esters of E4 asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.4: Partial ion chromatograms of (a) n-alkanoic, (b) α-methyl-n-alkanoic, (c)
α-ethyl-n-alkanoic and (d) α-propyl-n-alkanoic fatty acid methyl esters of E2 asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.5: Partial ion chromatograms of (a) n-alkanoic, (b) α-methyl-n-alkanoic, (c)
α-ethyl-n-alkanoic and (d) α-propyl-n-alkanoic fatty acid methyl esters of E3 asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.6: Partial ion chromatograms of (a) n-alkanoic, (b) α-methyl-n-alkanoic, (c)
α-ethyl-n-alkanoic and (d) α-propyl-n-alkanoic fatty acid methyl esters of E4 asphaltene.

251



Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.7: Partial ion chromatograms for the identification of benzenealkyl acid methyl
esters of E2 asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.8: Partial ion chromatograms for the identification of benzenealkyl acid methyl
esters of E3 asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.9: Partial ion chromatograms for the identification of benzenealkyl acid methyl
esters of E4 asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.10: Partial ion chromatograms for the identification of phenylalkylketones of E2
asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.11: Partial ion chromatograms for the identification of phenylalkylketones of E3
asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
Asphaltenes

Figure B.12: Partial ion chromatograms for the identification of phenylalkylketones of E4
asphaltene.
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Appendix B. Supplementary Material for Ruthenium Ion Catalysed Oxidation of
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Figure B.13: Mass spectra of 1-butanone-1-phenyl.
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Figure B.14: Mass spectra of dodecanophenone.
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Characterisation Studies

C.1 Cetyltrimethylammonium bromide diagnostic data
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Figure C.1: Time (s) versus velocity (ms−1) plots of C14TAB ultrasonic measurements.
Titles indicate C14TAB concentration, legends indicate measurement temperature in ◦C.
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Figure C.2: Time (s) versus velocity (ms−1) plots of C12TAB/C14TAB 1/1 M ultrasonic
measurements. Titles indicate C12TAB concentration, legends indicate measurement tem-
perature in ◦C.
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Figure C.3: Time (s) versus velocity (ms−1) plots of C12TAB/C14TAB 2/1 M ultrasonic
measurements. Titles indicate C12TAB concentration, legends indicate measurement tem-
perature in ◦C.
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Figure C.4: Correlation plots of C14TAB ultrasonic measurements. Temperature and
velocity are abbreviated as ‘temp’ and ‘vel’ respectively. Pearson’s correlation and corre-
sponding p-values are indicated in bold and italic respectively.

Figure C.5: Correlation plots of C12TAB/C14TAB 1/1 M ultrasonic measurements. Tem-
perature and velocity are abbreviated as ‘temp’ and ‘vel’ respectively. Pearson’s correlation
and corresponding p-values are indicated in bold and italic respectively.

Figure C.6: Correlation plots of C12TAB/C14TAB 2/1 M ultrasonic measurements. Tem-
perature and velocity are abbreviated as ‘temp’ and ‘vel’ respectively. Pearson’s correlation
and corresponding p-values are indicated in bold and italic respectively.

264



Appendix C. Supplementary Material for Ultrasonic Characterisation Studies

Figure C.7: Estimation of the CMC for C14TAB. Red shading indicates the CMC region
estimation, dashed lines in plots (b) and (c) indicate the corresponding fitted regressions.

Figure C.8: Estimation of the CMC for C12TAB/C14TAB 1/1 M. Red shading indicates
the CMC region estimation, dashed lines in plot (b) and (c) indicate the corresponding
fitted regressions.
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Figure C.9: Estimation of the CMC for C12TAB/C14TAB 2/1 M. Red shading indicates
the CMC region estimation, dashed lines in plot (b) indicate the corresponding fitted
regressions.

C.2 Asphaltene diagnostic data
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Figure C.10: Time versus velocity (m s−1) plots of E2 asphaltene ultrasonic measurements.
Titles indicate E2 concentration, legends indicate measurement temperature in ◦C.

267



Appendix C. Supplementary Material for Ultrasonic Characterisation Studies

Figure C.11: Time versus velocity (m s−1) plots of E3 asphaltene ultrasonic measurements.
Titles indicate E3 concentration, legends indicate measurement temperature in ◦C.
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Figure C.12: Time versus velocity (m s−1) plots of E4 asphaltene ultrasonic measurements.
Titles indicate E4 concentration, legends indicate measurement temperature in ◦C.
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Figure C.13: Time versus velocity (m s−1) plots of S1 asphaltene ultrasonic measurements.
Titles indicate S1 concentration, legends indicate measurement temperature in ◦C.
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Figure C.14: Time versus velocity (m s−1) plots of S3 asphaltene ultrasonic measurements.
Titles indicate S3 concentration, legends indicate measurement temperature in ◦C.
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Figure C.15: Correlation plots of E2 asphaltene ultrasonic measurements. Temperature
and velocity are abbreviated as ‘temp’ and ‘vel’ respectively. Pearson’s correlation and
corresponding p-values are indicated in bold and italic respectively.

Figure C.16: Correlation plots of E3 asphaltene ultrasonic measurements. Temperature
and velocity are abbreviated as ‘temp’ and ‘vel’ respectively. Pearson’s correlation and
corresponding p-values are indicated in bold and italic respectively.

Figure C.17: Correlation plots of E4 asphaltene ultrasonic measurements. Temperature
and velocity are abbreviated as ‘temp’ and ‘vel’ respectively. Pearson’s correlation and
corresponding p-values are indicated in bold and italic respectively.
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Conc. (mg L−1) P1 w2P2 P2 w3P3 P3 R2 R2
p

21.123 0.220 0.126 0.013 9.00×10−4 9.00×10−7 0.720 0.375

29.236 0.220 0.000 0.000 1.00×10−4 1.00×10−7 0.724 0.501

40.465 0.230 0.000 0.000 1.00×10−4 1.00×10−7 0.717 0.488

56.008 0.240 0.000 0.000 1.00×10−4 1.00×10−7 0.712 0.477

65.891 0.240 0.000 0.000 4.00×10−4 4.00×10−7 0.705 0.462

77.519 0.250 0.000 0.000 4.00×10−4 4.00×10−7 0.708 0.458

91.199 0.260 0.000 0.000 9.00×10−4 9.00×10−7 0.708 0.449

107.293 0.270 0.257 0.026 2.80×10−3 2.80×10−6 0.725 0.198

126.227 0.280 0.000 0.000 8.00×10−4 8.00×10−7 0.868 0.590

148.502 0.290 0.000 0.000 1.20×10−3 1.20×10−6 0.865 0.576

174.708 0.300 0.000 0.000 9.00×10−4 9.00×10−7 0.867 0.565

205.539 0.320 0.000 0.000 4.00×10−4 4.00×10−7 0.875 0.558

241.811 0.330 0.000 0.000 1.00×10−4 1.00×10−7 0.870 0.536

284.484 0.350 0.000 0.000 8.00×10−4 8.00×10−7 0.859 0.505

334.686 0.380 0.106 0.011 2.60×10−3 2.60×10−6 0.855 0.368

393.749 0.410 0.159 0.016 4.70×10−3 4.70×10−6 0.886 0.314

463.234 0.450 0.103 0.010 4.00×10−3 4.00×10−6 0.959 0.406

641.154 0.500 0.080 0.008 4.20×10−3 4.20×10−6 -5.000 -5.000

887.411 0.580 0.020 0.002 1.50×10−3 1.50×10−6 -5.000 -5.000

Table C.1: Constrained nanoaggregation region estimation of E1 asphaltene, aggregated
boundary selection using constrained optimisation. The length, outlier and slope penalties
are abbreviated P1, P2 and P3 respectively. Grey shading indicates concentrations with
the highest R2 and R2

p.
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Conc. (mg L−1) P1 w2P2 P2 w3P3 P3 R2 R2
p

29.236 0.580 0.132 0.013 0.986 9.86×10−4 -5.000 -5.000

40.465 0.500 0.000 0.000 0.060 5.95×10−5 -5.000 -5.000

56.008 0.450 0.287 0.029 0.642 6.42×10−4 0.162 -1.214

77.519 0.410 0.000 0.000 0.048 4.77×10−5 0.229 -0.227

91.199 0.380 0.000 0.000 0.025 2.53×10−5 0.415 0.012

107.293 0.350 0.000 0.000 0.007 7.40×10−6 0.516 0.155

126.227 0.330 0.190 0.019 0.095 9.48×10−5 0.680 0.062

148.502 0.320 0.189 0.019 0.076 7.55×10−5 0.782 0.201

174.708 0.300 0.000 0.000 0.005 5.10×10−6 0.839 0.533

205.539 0.290 0.233 0.023 0.062 6.15×10−5 0.779 0.195

241.811 0.280 0.157 0.016 0.034 3.40×10−5 0.778 0.310

284.484 0.270 0.712 0.071 0.127 1.27×10−4 0.255 -0.851

334.686 0.260 0.491 0.049 0.072 7.19×10−5 0.063 -0.759

393.749 0.250 0.000 0.000 0.035 3.50×10−5 0.010 -0.275

463.234 0.240 0.276 0.028 0.028 2.75×10−5 0.004 -0.542

641.154 0.240 0.315 0.032 0.028 2.76×10−5 0.086 -0.492

887.411 0.230 0.000 0.000 0.003 3.20×10−6 0.175 -0.058

Table C.2: Constrained nanoaggregation region estimation of E2 asphaltene, monomeric
boundary selection using constrained optimisation, w2 = 10, w3 = 1000.The length, outlier
and slope penalties are abbreviated P1, P2 and P3 respectively. Grey shading indicates
concentrations with the highest R2 and R2

p.
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Conc. (mg L−1) P1 w2P2 P2 w3P3 P3 R2 R2
p

29.236 0.230 0.000 0.000 1.70×10−3 1.70×10−6 0.557 0.325

40.465 0.240 0.000 0.000 1.00×10−3 1.00×10−6 0.585 0.348

56.008 0.240 0.281 0.028 2.60×10−3 2.60×10−6 0.592 0.066

77.519 0.250 0.000 0.000 1.90×10−3 1.90×10−6 0.641 0.389

91.199 0.260 0.000 0.000 1.50×10−3 1.50×10−6 0.668 0.408

107.293 0.270 0.000 0.000 1.70×10−3 1.70×10−6 0.682 0.413

126.227 0.280 0.000 0.000 1.20×10−3 1.20×10−6 0.696 0.417

148.502 0.290 0.293 0.029 3.80×10−3 3.80×10−6 0.678 0.092

174.708 0.300 0.320 0.032 4.60×10−3 4.60×10−6 0.674 0.047

205.539 0.320 0.000 0.000 4.20×10−3 4.20×10−6 0.678 0.358

241.811 0.330 0.455 0.045 8.10×10−3 8.10×10−6 0.672 -0.125

284.484 0.350 0.000 0.000 1.00×10−3 1.00×10−6 0.902 0.547

334.686 0.380 0.000 0.000 5.00×10−4 5.00×10−7 0.905 0.526

393.749 0.410 0.000 0.000 2.20×10−3 2.20×10−6 0.895 0.485

463.234 0.450 0.000 0.000 1.10×10−3 1.10×10−6 0.878 0.430

641.154 0.500 0.164 0.016 8.50×10−3 8.50×10−6 -5.000 -5.000

887.411 0.580 0.125 0.013 9.30×10−3 9.30×10−6 -5.000 -5.000

Table C.3: Constrained nanoaggregation region estimation of E2 asphaltene, aggregated
boundary selection using constrained optimisation, w2 = 10, w3 = 1000. The length,
outlier and slope penalties are abbreviated P1, P2 and P3 respectively. Grey shading
indicates concentrations with the highest R2 and R2

p.
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Conc. (mg L−1) P1 w2P2 P2 w3P3 P3 R2 R2
p

17.955 0.580 0.060 0.006 2.214 2.21×10−3 -5.000 -5.000

21.123 0.500 0.000 0.000 0.267 2.67×10−4 -5.000 -5.000

24.851 0.450 0.087 0.009 2.160 2.16×10−3 0.690 -2.005

29.236 0.410 0.000 0.000 0.789 7.89×10−4 0.780 -0.418

34.396 0.380 0.093 0.009 1.748 1.75×10−3 0.617 -1.603

40.465 0.350 0.088 0.009 1.417 1.42×10−3 0.469 -1.389

47.606 0.330 0.083 0.008 1.118 1.12×10−3 0.337 -1.198

56.008 0.320 0.097 0.010 1.077 1.08×10−3 0.166 -1.325

65.891 0.300 0.000 0.000 0.278 2.78×10−4 0.161 -0.419

77.519 0.290 0.000 0.000 0.598 5.98×10−4 0.365 -0.522

91.199 0.280 0.000 0.000 0.062 6.17×10−5 0.445 0.106

107.293 0.270 0.000 0.000 0.178 1.78×10−4 0.484 0.039

126.227 0.260 0.717 0.072 2.891 2.89×10−3 0.510 -3.356

148.502 0.250 0.442 0.044 1.460 1.46×10−3 0.339 -1.813

174.708 0.240 0.358 0.036 0.971 9.71×10−4 0.226 -1.346

205.539 0.240 0.214 0.021 0.478 4.78×10−4 0.190 -0.737

241.811 0.230 0.213 0.021 0.392 3.92×10−4 0.152 -0.687

284.484 0.220 0.221 0.022 0.337 3.37×10−4 0.108 -0.674

334.687 0.220 0.176 0.018 0.223 2.23×10−4 0.081 -0.536

393.749 0.210 0.269 0.027 0.283 2.83×10−4 0.029 -0.737

463.234 0.210 0.000 0.000 0.131 1.31×10−4 0.012 -0.327

544.981 0.200 0.000 0.000 0.083 8.27×10−5 0.004 -0.283

641.154 0.200 0.000 0.000 0.085 8.53×10−5 0.000 -0.285

Table C.4: Constrained nanoaggregation region estimation of E3 asphaltene, monomeric
boundary selection using constrained optimisation, w2 = 1, w3 = 1000. The length, outlier
and slope penalties are abbreviated P1, P2 and P3 respectively. Grey shading indicates
concentrations with the highest R2 and R2

p.

276



Appendix C. Supplementary Material for Ultrasonic Characterisation Studies

Conc. (mg L−1) P1 w2P2 P2 w3P3 P3 R2 R2
p

17.955 0.200 0.169 0.017 0.018 1.80×10−5 0.041 -0.343

21.123 0.200 0.151 0.015 0.017 1.69×10−5 0.055 -0.317

24.851 0.210 0.000 0.000 0.006 5.50×10−6 0.068 -0.146

29.236 0.210 0.000 0.000 0.005 4.60×10−6 0.071 -0.147

34.396 0.220 0.000 0.000 0.017 1.67×10−5 0.073 -0.162

40.465 0.220 0.000 0.000 0.020 1.98×10−5 0.086 -0.158

47.606 0.230 0.000 0.000 0.024 2.39×10−5 0.102 -0.151

56.008 0.240 0.202 0.020 0.033 3.30×10−5 0.124 -0.346

65.891 0.240 0.177 0.018 0.031 3.11×10−5 0.159 -0.291

77.519 0.250 0.000 0.000 0.013 1.31×10−5 0.192 -0.072

91.199 0.260 0.000 0.000 0.024 2.36×10−5 0.197 -0.085

107.293 0.270 0.000 0.000 0.029 2.92×10−5 0.214 -0.082

126.227 0.280 0.762 0.076 0.188 1.88×10−4 0.236 -0.991

148.502 0.290 0.000 0.000 0.009 8.90×10−6 0.634 0.337

174.708 0.300 0.000 0.000 0.011 1.05×10−5 0.647 0.335

205.539 0.320 0.060 0.006 0.020 2.02×10−5 0.662 0.266

241.811 0.330 0.060 0.006 0.023 2.28×10−5 0.623 0.208

284.484 0.350 0.000 0.000 0.018 1.82×10−5 0.571 0.199

334.687 0.380 0.080 0.008 0.041 4.08×10−5 0.491 -0.007

393.749 0.410 0.054 0.005 0.033 3.31×10−5 0.400 -0.096

463.234 0.450 0.000 0.000 0.003 2.50×10−6 0.621 0.171

544.981 0.500 0.000 0.000 0.024 2.38×10−5 -5.000 -5.000

641.154 0.580 0.114 0.011 0.182 1.82×10−4 -5.000 -5.000

Table C.5: Constrained nanoaggregation region estimation of E3 asphaltene, aggregated
boundary selection using constrained optimisation, w2 = 1, w3 = 1000. The length, outlier
and slope penalties are abbreviated P1, P2 and P3 respectively. Grey shading indicates
concentrations with the highest R2 and R2

p.

277



Appendix C. Supplementary Material for Ultrasonic Characterisation Studies

Conc. (mg L−1) P1 w2P2 P2 w3P3 P3 R2 R2
p

18.638 0.580 0.104 0.010 0.37 3.66×10−4 -5.000 -5.000

21.927 0.500 0.101 0.010 0.28 2.79×10−4 -5.000 -5.000

25.797 0.450 0.000 0.000 0.04 3.52×10−5 0.773 0.291

30.349 0.410 0.000 0.000 0.01 1.15×10−5 0.824 0.404

35.705 0.380 0.000 0.000 0.04 4.12×10−5 0.857 0.438

42.006 0.350 0.463 0.046 0.72 7.15×10−4 0.686 -0.846

49.418 0.330 0.321 0.032 0.41 4.14×10−4 0.553 -0.515

58.139 0.320 0.000 0.000 0.08 8.02×10−5 0.615 0.218

68.399 0.300 0.470 0.047 0.41 4.11×10−4 0.364 -0.818

80.470 0.290 0.000 0.000 0.10 1.04×10−4 0.524 0.131

94.670 0.280 0.434 0.043 0.25 2.53×10−4 0.366 -0.598

111.377 0.270 0.613 0.061 0.29 2.92×10−4 0.576 -0.596

131.031 0.260 0.674 0.067 0.26 2.62×10−4 0.403 -0.791

154.155 0.250 0.463 0.046 0.15 1.48×10−4 0.326 -0.535

181.358 0.240 0.679 0.068 0.18 1.78×10−4 0.160 -0.939

213.363 0.240 0.506 0.051 0.11 1.09×10−4 0.072 -0.778

251.015 0.230 0.540 0.054 0.10 9.58×10−5 0.009 -0.856

295.312 0.220 0.000 0.000 0.04 4.43×10−5 0.000 -0.268

347.425 0.220 0.000 0.000 0.02 1.74×10−5 0.004 -0.231

480.866 0.210 0.000 0.000 0.02 2.30×10−5 0.032 -0.204

665.558 0.210 0.000 0.000 0.02 1.93×10−5 0.112 -0.116

Table C.6: Constrained nanoaggregation region estimation of E4 asphaltene, monomeric
boundary selection using constrained optimisation, w2 = 10, w3 = 1000. The length,
outlier and slope penalties are abbreviated P1, P2 and P3 respectively. Grey shading
indicates concentrations with the highest R2 and R2

p.
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Conc. (mg L−1) P1 w2P2 P2 w3P3 P3 R2 R2
p

18.638 0.210 0.421 0.042 3.60×10−3 3.60×10−6 0.520 -0.113

21.927 0.210 0.272 0.027 2.40×10−3 2.40×10−6 0.564 0.076

25.797 0.220 0.294 0.029 2.80×10−3 2.80×10−6 0.585 0.070

30.349 0.220 0.283 0.028 2.80×10−3 2.80×10−6 0.609 0.099

35.705 0.230 0.270 0.027 2.80×10−3 2.80×10−6 0.631 0.129

42.006 0.240 0.000 0.000 3.30×10−3 3.30×10−6 0.651 0.413

49.418 0.240 0.000 0.000 2.30×10−3 2.30×10−6 0.644 0.399

58.139 0.250 0.000 0.000 4.00×10−4 4.00×10−7 0.655 0.405

68.399 0.260 0.299 0.030 4.10×10−3 4.10×10−6 0.644 0.0826

80.470 0.270 0.000 0.000 3.70×10−3 3.70×10−6 0.672 0.401

94.670 0.280 0.000 0.000 2.60×10−3 2.60×10−6 0.657 0.377

111.377 0.290 0.956 0.096 1.66×10−2 1.66×10−5 0.662 -0.599

131.031 0.300 0.000 0.000 1.80×10−3 1.80×10−6 0.932 0.628

154.155 0.320 0.248 0.025 5.30×10−3 5.30×10−6 0.931 0.361

181.358 0.330 0.000 0.000 1.00×10−4 1.00×10−7 0.974 0.640

213.363 0.350 0.000 0.000 9.00×10−4 9.00×10−7 0.971 0.616

251.015 0.380 0.138 0.014 4.40×10−3 4.40×10−6 0.968 0.448

295.312 0.410 0.055 0.005 2.20×10−3 2.20×10−6 0.990 0.525

347.425 0.450 0.067 0.007 3.50×10−3 3.50×10−6 0.992 0.474

480.866 0.500 0.041 0.004 2.80×10−3 2.80×10−6 -5.000 -5.0000

665.558 0.580 0.047 0.005 4.60×10−3 4.60×10−6 -5.000 -5.0000

Table C.7: Constrained nanoaggregation region estimation of E4 asphaltene, aggregated
boundary selection using constrained optimisation, w2 = 10, w3 = 1000. The length,
outlier and slope penalties are abbreviated P1, P2 and P3 respectively. Grey shading
indicates concentrations with the highest R2 and R2

p.
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Figure C.18: Barplot of the CNR1 and CNR2 estimation of E3 asphaltene as a function
of varying penalty weights.

Figure C.19: Barplot of the CNR1 and CNR2 estimation of E4 asphaltene as a function
of varying penalty weights.
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Nanoaggregtion Region

D.1 Synthetic data

Figure D.1: MCMC traces of the initial 5 × 104 simulations of γ (a,b,e) or γ1 (c,d,f). In
plots (a-d) synth. and missp. abbreviates synthetic and misspecified.
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Figure D.2: MCMC trace plots of the one-changepoint model using 201-point synthetic
data, prior means are set at the true parameter values. Solid red and dashed cyan lines
indicate prior and posterior means respectively.

Figure D.3: MCMC trace plots of the one-changepoint model using 21-point synthetic
data, prior means are set at the true parameter values. Solid red and dashed cyan lines
indicate prior and posterior means respectively.
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Figure D.4: Posterior density plots of the one-changepoint model using synthetic data,
prior means are set at the true parameter values. In the legend, data obtained using the
201-point and 21-point data sets are abbreviated ‘201pt’ and ’21pt’.

Figure D.5: Plots of the partial autocorrelation function for the 201-point synthetic data
set posterior conditional marginal draws assuming a single-changepoint underlying model,
prior means are set at true parameter values.
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Figure D.6: MCMC trace plots of the Brownian bridge model using 21-point synthetic
data, prior means are set at the true parameter values. Solid red and dashed cyan lines
indicate prior and posterior means respectively.
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Figure D.7: Posterior density plots of the Brownian bridge using synthetic data, prior
means are set at true parameter value, orange and cyan vertical lines indicate density
means.
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Figure D.8: Plots of the partial autocorrelation function for the 201-point synthetic data
set posterior conditional marginal draws assuming a Brownian bridge underlying model,
prior means are set at true parameter values.
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D.2 Sample data

D.2.1 One-changepoint model

Figure D.9: Chain mixing plots of the MCMC sampling from the conditional posterior
distributions of the single changepoint model of E1 asphaltene.

Figure D.10: Conditional posterior density plots of the single changepoint model of E1
asphaltene. Solid red and dashed cyan lines indicate prior and posterior means respectively.
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Figure D.11: Partial autocorrelation plots of the MCMC sampling from the conditional
posterior distributions of the single changepoint model of E1 asphaltene.
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D.2.2 Brownian bridge model

Figure D.12: Chain mixing plots of the MCMC sampling from the conditional posterior
distributions of the Brownian bridge model of E1 asphaltene. Solid red and dashed cyan
lines indicate prior and posterior means respectively.

%endfigure
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Figure D.13: Conditional posterior density plots of the Brownian bridge model of E1
asphaltene.
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Figure D.14: Partial autocorrelation plots of the MCMC sampling from the conditional
posterior distributions of the Brownian bridge model of E1 asphaltene.
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