OPERATOR ALGEBRAS ASSOCIATED
TO SEMIGROUP ACTIONS

ROBERT T. BICKERTON

Thesis submitted for the degree of
Doctor of Philosophy

Supervisors:

Dr. Evgenios Kakariadis

Dr. Michael Dritschel

School of Mathematics, Statistics € Physics
Newcastle University
Newcastle upon Tyne
United Kingdom

May 2019






Abstract

Reflexivity offers a way of reconstructing an algebra from a set of invariant sub-
spaces. It is considered as Noncommutative Spectral Synthesis in association with
synthesis problems in commutative Harmonic Analysis. Large classes of algebras are
reflexive, the prototypical example being von Neumann algebras. The first example
in the nonselfadjoint setting was the algebra of the unilateral shift which was shown
by Sarason in the 1960s. Some further examples include the influential work of Arve-
son on CSL algebras, the HP Hardy algebras examined by Peligrad, tensor products
with the Hardy algebras and nest algebras. The concept of reflexivity was extended
by Arveson who introduced the notion of hyperreflexivity. This is a measure of the
distance to an algebra in terms of the invariant subspaces. It is a stronger property
than reflexivity and examples include nest algebras, the free semigroup algebra and

the algebra of analytic Toeplitz operators.

Here we consider these questions for the class of w*-semicrossed products, in partic-
ular, those arising from actions of the free semigroup and the free abelian semigroup.
We show that they are hyperreflexive when the action is implemented by uniformly
bounded row operators. Combining our results with those of Helmer, we derive that
w*-semicrossed products of factors of any type are reflexive. Furthermore, we show
that w*-semicrossed products of automorphic actions on maximal abelian selfad-
joint algebras are reflexive. In each case it is also proved that the w*-semicrossed
products have the bicommutant property if and only if the initial algebra of the
dynamics does also. In addition we are interested in classifying the commuting
endomorphisms of B(#H) as an important example of dynamics implemented by a
Cuntz family. Recall that O,, does not have a nice representation space in the sense
that there is no countable collection of Borel functions that distinguish the unitary
invariants. Therefore we focus our attention on the free atomic representations,
which Davidson and Pitts classified up to unitary equivalence. Specifically we give
a necessary and sufficient condition for an automorphism of B(#) to commute with

a cyclic endomorphism.
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Chapter 1

Introduction and historic remarks

1.1 Introduction

The study of the reflexivity of operator algebras has its roots in the work of Radjavi-
Rosenthal in [45] and is closely linked to the bicommutant property and invariant
subspace problems. The term reflexivity is attributed to Halmos and is used to
describe an algebra that is characterised by its invariant subspaces. That is, a unital
algebra A C B(H) is reflexive if it is equal to the algebra of bounded operators which
leave invariant each subspace left invariant by every operator in A. More specifically
we can investigate the lattice of invariant subspaces of A. If A C B(H) then define
the lattice of A and the Alg as follows

LatA={p : (1—p)ap =0 for all a € A},

and,
AlgA={x : (1—p)zp=0forallz € A}.

We can also define the AlglLat as
AlgLat(A) ={T € B(H) : Lat A C LatT}.

Then A is called reflexive if A = AlgLat . A. Reflexivity is considered as Noncom-
mutative Spectral Synthesis in conjunction with synthesis problems in commutative
Harmonic Analysis and it offers a systematic way of reconstructing an algebra from

a set of invariant subspaces [6].
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An operator algebra A is said to have the bicommutant property if it coincides
with its bicommutant A”. The prototypical examples are von Neumann algebras
which are reflexive and have the bicommutant property. However results are less
straightforward for nonselfadjoint algebras. In [4], Arveson introduced a function

to measure reflexivity. Define
B(T, A) = sup{|[(1 = p)Tpl|| : p € Lat A},

then an algebra A C B(H) is hyperreflexive if there is a constant C' such that for
each T' € B(H),
dist(7,A) < CB(T, A).

A single operator A is called hyperreflexive if the wot-closed algebra generated by A
and the identity is reflexive. This is a stronger property than reflexivity and so all hy-
perreflexive algebras are reflexive. Examples of hyperreflexive algebras include nest
algebras and abelian von Neumann algebras. In fact, Rosenoer shows that abelian
von neumann algebras are hyperreflexive with constant at most 2 [47]. However it is
an open question if all von Neumann algebras are hyperreflexive. Kraus-Larson [39]
and Davidson [15] showed that hyperreflexivity is a hereditary property. Bercovici
[9] proved that a wot-closed algebra is hyperreflexive with distance constant at most

3 when its commutant contains two isometries with orthogonal ranges.

Our purpose is to examine the hyperreflexivity of operator algebras arising from
dynamical systems which encode the action of the free semigroup or the free abelian
semigroup. A dynamical system consists of an operator algebra A as well as its (uni-
formly bounded) endomorphisms. From this we can construct the w*-semicrossed
product of the system. As in [33] and [18] we interpret a w*-semicrossed product
as an algebra densely spanned by generalised analytic polynomials subject to a set
of covariance relations. Examples of algebras related to dynamical systems were
examined by Kastis-Power [34] and Katavolos-Power [35]. Then in [30], Kakariadis
examined the reflexivity of one-variable systems. This work was extended by Helmer
[27] to the examination of Hardy algebras of w*-correspondences. Semicrossed prod-
ucts and their norm-closed variants have been subject to a methodical programme
of research since the latter half of the twentieth century. Here we further the ar-
guments in [30] to semicrossed products over F% and Z<%. Algebras arising from

the free semigroup FZ have previously been studied by numerous authors. Some
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examples include; Arias and Popescu [1], Davidson, Katsoulis and Pitts [20] and
Fuller and Kennedy in [24].

Further motivation arises from the results of Helmer [27]. An application of Helmer’s
results demonstrate the reflexivity of semicrossed products of Type II or II factors
over Fi. Therefore, we wish to complete this programme by studying endomor-
phisms of B(H). Since every endomorphism of B(#) is spatial, we focus on actions
where each generator is implemented by a Cuntz family. Dynamical systems im-
plemented by Cuntz families have been examined in the works of Kakariadis and
Peters [32], Laca [40] and Courtney-Muhly-Schmidt [13] amongst others.

In Chapter 3 we introduce the notion of dynamical systems over Fi and Zi and
use suitable covariance relations to define the algebras that play the role of the w*-
semicrossed products. The key feature when working over F? is the separation into
left and right-lower triangular operators (clearly this distinction is redundant in the

Z% case).

In Chapter 4 we further examine dynamics of Cuntz families. Our setting accom-
modates Zi—actions where the generators are implemented by unitaries but where
the unitaries implementing the actions may not commute. For example any two
commuting automorphisms over B(#) are implemented by two unitaries that sat-
isfy Weyl’s relation and may not commute. In fact, the same holds if we consider
a maximal abelian selfajoint subalgebra (m.a.s.a.) rather than B(#). We consider
free atomic representations. These were classified by Davidson and Pitts [22]. We
examine the case where the representation forms a cycle and we give a necessary
and sufficient condition for this to commute with an automorphism of B(#). By
appealing to the results of Laca [40] we determine when an automorphism of B(#H)

commutes with specific endomorphisms induced by Cuntz isometries.

In Chapter 5 we state the bicommutants of several w*-semicrossed products. In
each case we identify the commutant with a twisted w*-semicrossed product over
the commutant. Similar algebras (in the normed case) were examined in [32]. The
twisting for w*-closed algebras was explored for automorphic Z, -actions in [30]. We
apply similiar results for Z2-actions here by noting that twisting twice gives the

w*-semicrossed product over the bicommutant.
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In Chapter 6 we state our reflexivity results regarding the semicrossed products
whose action is implemented by a Cuntz family. We then proceed in combination
with [27] to tackle systems over any factor and automorphic systems over maximal
abelian selfadjoint algebras. Alongside this we translate Helmer’s reflexivity proof
in our context for the right-sided version. We note that the methods described here
appear to be generic and may be applicable to semicrossed products created from
other semigroups. For example one may be able to examine semicrossed products

arising from the discrete Heisenberg semigroup.

1.2 Known Results

The first result regarding reflexivity was developed by Sarason [49] in which it was
proved that normal operators and the algebra of analytic Toeplitz operators, H®>
are reflexive. This result was the inspiration for much of the research regarding
reflexivity, for example Radjavi-Rosenthal [46]. Sarason’s results have since been
extended by Peligrad to the noncommutative Hardy Spaces [43] and to algebras of
commuting isometries or tensor products with the Hardy Algebras obtained by Ptak
[44]. Specifically a pair of isometries {V;, 4} are called doubly commuting if Vi, V5
commute and Vi, V5 commute. Ptak [44] showed that every such pair is reflexive by

using a decomposition due to Slociriski [51].

Further positive examples are given in the work of Arveson regarding commuta-
tive subspace lattice (CSL) algebras [3] and in the consideration of the class of the
nest algebras [16], in which the hypereflexivity of nest algebras is established (with
constant at most 1). An algebra A C B(H) is called a nest algebra if A = Alg N,
where N is a nest, that is N is a totally ordered lattice of projections. A com-
mutative subspace lattice is a lattice of mutually commuting projections which are
sot-closed. Arveson shows that such lattices are always reflexive and then gives some

examples of reflexive algebras related to CSLs.

In [15] Davidson examined the distance to the algebra of analytic Toeplitz operators
H*>. If we let My be the multiplication operator given by (Mh)(z) = f(x)h(z)
for f € L*. Then recall that the Toeplitz operator with symbol f is given by
Tt = Py2My|g2, where H? is the Hardy space on the disk. The algebra of analytic
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Toeplitz operators is given by H*® = {7, : ¢ € H*}. Davidson [15] showed that
the analytic Toeplitz algebra is hyperreflexive with distance constant 19. Key to
his arugment is the existence of a linear projection 7 into the space of all Toeplitz
operators {Tf : f € L>}. Exsistence of this projection was established by Arveson
in [4]. Davidson and Pitts [22] showed that for n > 2, the left free semigroup algebra
Ly = a_lgmt{lu : p € F2} is hyperreflexive with constant at most 51. This was

later improved by Bercovici [9] who reduced the distance constant to be at most 3.

An operator A is called quasinormal if A commutes with A*A. The arguments
of Davidson in [16] were further extended by Klis and Ptak [37] in order to tackle
quasinormal operators. In [37] it is shown that quasinormal operators are hyper-
reflexive with distance constant at most 259 by using a result of Brown [11] who
shows that every quasinormal operator is unitarily equivalent to (A® S) @ N where
A is positive with ker A = {0}, N is normal and S is the unilateral shift. Rosenoer
[48] adapted Davidsons results to show that B(H) ® H* is hyperreflexive with dis-

tance constant at most 19.

Fuller and Kennedy [24] examine reflexivity for isometric n-tuples. An n-tuple of
operators (V1,...,V,) acting on a Hilbert space H is called isometric if the row oper-
ator (V1,...,V,) : H" — H is an isometry. By using a Lebesgue-von Neumann-Wold
type decomposition for an isometry Fuller and Kennedy show that isometric tuples
are hyperreflexive with constant 95 if n = 1 (that is isometries are hyperreflexive

with constant 95) and constant 6 for n > 2.

In [30] Kakariadis showed that reflexivity holds for a number of w*-semicrossed
products over Z,. For example, it is shown that the semicrossed product A X, Z
is reflexive when A is reflexive and « is implemented by a unitary. It is further estab-
lished that A has the bicommutant property if and only if the resulting semicrossed

product does also.

1.3 Main Results

We are primarily interested in investigating the hyperreflexivity and bicommutan-
tant property of various semicrossed products. Here we summarise the main results

developed. These results appear in [8]. We examine actions implemented by invert-
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ible row operators that satisfy a uniform bound hypothesis. Specifically we say that
{ci}icia) is a uniformly bounded spatial action on a w*-closed algebra A of B(H) if
every ; is implemented by an invertible row operator u; and {u;}:c|g is uniformly
bounded.

Our main results regarding the bicommutant property are encapsulated in the fol-

lowing corollaries.

Corollary 1.3.1 (Corollary 5.1.2). Let (A, {a;}iciq) be a w*-dynamical system of

a uniformly bounded spatial action. Then the following are equivalent
(i) A has the bicommutant property;
(i) AX, Ly has the bicommutant property;
(111) AX4 Ra has the bicommutant property;
(iv) A® Ly has the bicommutant property;
(v) A® Ry has the bicommutant property.
If any of the items above hold then all algebras are inverse closed.
For dynamical systems over Z‘i we have a similar result.

Corollary 1.3.2 (Corollary 5.2.2). Let (A, o, Z%) be a unital w*-dynamical system.
Suppose that each oy is implemented by a uniformly bounded row operator u;. Then

the following are equivalent
(i) A has the bicommutant property;
(i) AXoZ% has the bicommutant property;
(i) A @ H*(Z) has the bicommutant property.

In short we show that if « is an action of Fﬂlr or Zi on a w*-closed algebra A where
each generator of « is implemented by a Cuntz family. Then A has the bicommutant

property if and only if any of the resulting w*-semicrossed products does also.
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Our main results regarding reflexivity are given as follows. Writing n; for the mul-

tiplicity of the Cuntz family implementing the i-th generator of the action then we
define

d d
N = an for Fi—systems and M := H n; for Zi—systems

i=1 =1
for the capacity of the systems. We then show the following.
Theorem 1.3.3 (Theorem 6.1.2). Let (A, {a;}iclg) be a w*-dynamical system of a

uniformly bounded spatial action. Suppose that every «; is given by an invertible

row operator w; = (U j,]jem) and set N =37, pn.

(i) If N > 2 then every w*-closed subspace of AXq Ly or A X4 Ry is hyperreflex-
ive. If K is the uniform bound related to {u;} then the hyperreflexivity constant

is at most 3 - K*.
(i1)) If N =1 and A is reflexive then A Xy Lg = AXq Ry = AXoZy is reflezive.
From this we obtain the following corollaries.

Corollary 1.3.4 (Corollary 6.1.3). Let (A, {ai}iciq) be a w*-dynamical system so
that every a; is given by a Cuntz family (s j,]jem- If N = Zie[d] n; > 2 then every
w*-closed subspace of AXy Ly or A Xy Ry is hyperreflexive with distance constant

at most 3.

Corollary 1.3.5 (Corollary 6.1.4). Let (A, {;}icia) be a system of w*-continuous
automorphisms on a mazimal abelian selfadjoint algebra A. Then Ax, Ly and

A Xy Ry are reflexive.
In fact, we have similar results for the case of dynamics over Z%

Theorem 1.3.6 (Theorem 6.2.1). Let (A, a,Z%) be a unital w*-dynamical system.
Suppose that every oy is uniformly bounded spatial, given by an invertible row oper-

ator u; = [Uij,]j.en,), and set M = T,y ni

(i) If M > 2 then every w*-closed subspace of AXoZ% is hyperreflexive. If K; is
the uniform bound associated to u; (and its inverse) then the hyperreflezivity
constant is at most 3 - K* for K = min{K; | n; > 2}.

(i) If M =1 and A is reflezive then AX, Z% is reflezive.

7
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Corollary 1.3.7 (Corollary 6.2.2). Let (A, o, Z%) be a unital w*-dynamical system.
Suppose that at least one oy is implemented by a Cuntz family [s; ;] j,em,) with n; > 2.
Then every w*-closed subspace of A X, Zi s hyperreflexive with distance constant
3.

Corollary 1.3.8 (Corollary 6.2.3). Let (A, a,Z%) be a unital automorphic system

over a mazimal abelian selfadjoint algebra A. Then AX,Z% is reflexive.

That is, we show that if « is an action of Iﬁ‘i or Zi on A such that each generator
of v is implemented by a Cuntz family. If the capacity of the system is greater than
1 then the resulting w*-semicrossed products are (hereditarily) hyperreflexive. If
the capacity of the system is 1 and A is reflexive then the resulting w*-semicrossed
products are reflexive. By applying the results of Bercovici [9] we get that the hy-
perreflexivity constant in Theorems 6.1.2 and 6.2.1 is at most 3- K* when N, M > 2
(where K is the uniform bound for the invertible row operators). This follows since

their commutant contains two isometries with orthogonal ranges.

For the free semigroup case the key strategy we rely on is to realise the semicrossed

product as a subspace of B(H) ® L, which is encapsulated in the following theorem.

Theorem 1.3.9 (Theorem 6.1.1). Let (B(H), {c}iciq) be a w*-dynamical system of
a uniformly bounded spatial action. Suppose that every oy is given by an invertible
row operator u; = [U;j]jcm, and set N = Zz‘e[d] n;. Then the w*-semicrossed

product B(H) X o Ly is similar to B(H) @ L.

This relies on the fact that every system on B(#H) given by a Cuntz family of mul-
tiplicity n; is equivalent to the trivial action of F'/' on B(#). This was noted by
Kakariadis and Katsoulis [31] and Kakariadis and Peters [33]. In the Z% case we

decompose the semicrossed product in each direction.

Proposition 1.3.10 (Proposition 3.3.15). Let (A, «,Z%) be a unital w*-dynamical

system. Then A X, Zi 15 unitarily equivalent to
(A Be) R ) ) K

where 0 = o5 VT fori=2,...,d.

Following the work of Helmer [27], we obtain reflexivity for injectively reflexive

systems. We call an algebra A C B(H) injectively reducible if there is a non-trivial

8
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reducing subspace M of A such that the representations
araly and  a > aly

are both injective. Then, we can make the following definiton.
Definition 1.3.11. A w*-dynamical system (A, {c;}ic[q)) is injectively reflevive if
(i) A is reflexive.
(ii) A is injectively reducible by some M.
(iii) B, (A) is reflexive for all v € F% with

6y<a> — [a|M O ] ‘

0 ay(a)|y

Therefore we have the following results.

Theorem 1.3.12 (Theorem 6.1.7). Let (A, o, FL) be a unital w*-dynamical system.
If A is injectively reflexive then the semicrossed products A X, Ly and AX, Ry are

reflexive.

Since dynamical systems over Type II or Type III factors are injectively reflexive

we have the next corollary.

Corollary 1.3.13 (Corollary 6.1.8). Let (A, {c;}icq) be a unital w*-dynamical sys-
tem on a factor A C B(H) for a separable Hilbert space H. Then AX, Ly and

AXyRa are reflexive.
In a similar manner we can define injectively reflexive systems in the Z‘fr case.
Definition 1.3.14. A w*-dynamical system (A, a, Z%) is injectively reflezive if

(i) A is reflexive.

(ii) A is injectively reducible by M.

(iii) B,(A) is reflexive for all n € Z2% with

fula) = [“'M ! ] .
0 anla)|ye

9
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We have corresponding results for this case also.

Theorem 1.3.15 (Theorem 6.2.5). Let (A, a,Z%) be a unital w*-dynamical system.

If the system is injectively reflezive then AX, 2% is reflexive.

Corollary 1.3.16 (Corollary 6.2.7). Let (A, a, Z%) be a unital w*-dynamical system
on a factor A C B(H) for a separable Hilbert space H. Then AX,Z% is reflexive.

10



Chapter 2
Preliminaries

We shall begin with a brief survey of topologies on operator algebras before intro-
ducing von Neumann algebras. We then progress to a discussion of some general

results regarding reflexivity and hyperreflexivity [42].

2.1 Topologies

Let ‘H be a Hilbert space and let B(?) denote the set of bounded operators on H. An
operator algebra is a subalgebra of B(H) closed under multiplication of operators. A
x-algebra is an algebra equipped with an involution. The study of operator algebras
is primarily concerned with the study of subalgebras of B(H) closed under different
topologies. For example a C*-algebra is a selfadjoint subalgebra of B(H) which is
closed with respect to the topology induced by the norm on B(H) [42].

2.1.1 Weak Topologies

Let (X, ||||) be a normed space, then its dual is
X*"=B(X,C)={f: X — C : fis continuous}.

By the Hahn-Banach theorem it can be seen that X embeds into X** injectively.

We can therefore define convergence in the following weak topologies.

Definition 2.1.1 (Weak Topologies). We say that z; converges to x in the weak
topology on X (or z; — ) if ¢(x;) — ¢(x) for all p € X*.

11
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We say that ¢; converges to ¢ in the w*-topology on X* (or ¢; LN o(x)) if ¢i(z) —
o(z) for all x € X.

Note that there is also the weak topology on X* induced by X**. In the above
definition, the w*-topology refers to X*, however it may happen that (X;)* = X =
(X5)* then X admits two w*-topologies, one from X, the other from X,.

2.1.2 Operator Topologies

We now move on to discuss the various operator topologies on B(H).

Definition 2.1.2 (Strong Operator Topology). Let H be a Hilbert space, and x €
‘H. Then the function
pr:BH) > R: T ||Tz|

is a seminorm on B(#H). The locally convex topology on B(#H) generated by the
separating family (p,).ey is called the strong operator topology on B(H).

The strong operator topology is the topology of pointwise convergence for an oper-
ator. We say that T; converges to T in the strong operator topology (or T; =4 T) if
Tix — Tx for all x € H. A base for the sot is given by

B(T,€,$1-.-an):{W : H(T—W)xZH < g, Z:L ’n}_

This topology is weaker than the norm topology on B(#H). With respect to the
sot, B(H) is a topological vector space, i.e. the operations of vector addition and
scalar multiplication are strongly continuous. This is not the case in general for the

operations of multiplication and involution. For example if v is the unilateral shift
sot

then (v™)* ! 0 in the strong operator topology but v" - 0.

Definition 2.1.3 (Weak Operator Topology). Let H be a Hilbert space. Then the
Hausdorff locally convex topology on B(H) generated by the separating family of
seminorms

B(H) = R": T [(Tz,y)], (v,y€H)
is called the weak operator topology on B(H).

Say that T; converges to T in the weak operator topology (or T; et ) in the weak
operator topology if and only if (T;x,y) — (T'z,y) for all x,y € H. Linear function-

12
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als on B(H) are sot-continuous if and only if they are wot-continuous. Specifically,

we have the following.

Proposition 2.1.4. [12, Proposition 8.1] If ® : B(H) — C is a linear functional

then the following are equivalent.
(i) ® is sot-continuous.
(11) ® is wot-continuous.

(i1i) There are vectors fi, -+, fn, g1, , gn € H such that

n

O(T) =Y (Tfu.gr) for all T € B(H).

k=1

It follows that if E is a convex set then E is sot-closed if and only if E is wot-closed.
It is immediate that the adjoint is continuous in the wot, whilst multiplication is

separately continuous in the wot. The wot is strictly weaker than the sot. This is
sot

clear since if v is the unilateral shift and H = ¢2 then v™ 3 0 but clearly v™ 4 0.
Continuity of multiplication in the weak topology does not hold in general. For
example, again for the unilateral shift v we have that the sequences (v*"*) and (v")
both converge weakly to zero, but the product sequence ((v*)"v™) is Iy.

Now suppose u € B(H). Then w is called trace-class if ||ul|, = > (Ju|z, z) < oo for
zeFE
an orthonormal basis E of the Hilbert space H. For a trace class operator u define

the trace of u by

tr(u) = Z (uzx, x) .

zel
In fact this definition of tr(u) is independent of the choice of basis E. Write £,(H)
for the collection of trace-class operators on H. It can be shown that £1(H) C K(H)
and £,(H) is closed with respect to ||-||; = tr(|u|). Then u € £4(H) if and only if

u= Z)\nxn ® vy, for Z An| < oo and  lz,||, |yal < 1.

Then tr(ub) : K(H) — C is continuous, hence the map

Li(H) = K(H)" : u— tr(ub)

13
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is an isometric linear isomorphism. Similarly for v € B(H), tr(av) : £1(H) — C is

continuous, so the map
B(H) — (L1(H))" : v — tr(av)

is an isometric linear isomorphism [42, Chapter 4]. Thus B(H) = (£Li(H))* =
(K(H)")"

Definition 2.1.5 (w*-topology). If H is a Hilbert space, then the w*-topology on
B(H) is the Hausdorff, locally convex topology on B(#H) generated by the seminorms:

B(H) = R : u Jtr(uwv)], (ve Li(H)).

We say that T; converges to T in the w*-topology (or T; YT ) if and only if
tr(uT;) — tr(uT) for all u € L4(H).

Thus the w*-topology is the w*-topology induced by £;(#) on its dual, B(H). Hence
the closed unit ball of B(H) is w*-compact by the Banach-Alaoglu theorem. The
relative weak and w*-topologies on the closed unit ball of B(#) coincide, therefore
the unit ball of B(#) is weakly compact.

Proposition 2.1.6. [12, Proposition 20.1]

(a) If H is separable then the closed unit ball of B(H) with the w*-topology is a

compact metric space.
(b) The w*-topology and the wot agree on bounded subsets of B(H).
(c) A sequence in B(H) converges w* if and only if it converges in the wot.

Addition and scalar multiplication are w*-continuous, as is the involution. The weak
operator topology is properly weaker than the w*-topology. This can be seen by

way of the following example.

Example 2.1.7. Let uy,...,uy, - € N be non-zero such that

Uy

u = U2 € £1(€2(Z+)>

14



2.2. von Neumann Algebras

Then let ¢ : B(H) — C be such that ¢(v) = tr(uv) = > (uveg,er). Then ¢ is
k=1
w*-continuous. If ¢ is wot-continuous, then by Proposition 2.1.4 there are vectors

X1, ..., Ty and yq,...,y, in H such that

o(v) = Z (vay, yx) for all v € B(H).

k=1

We need to find a v such that (vay, yx) = 0 for all k. Let W = span{xy,---z,} and
P = Py =1— Py. Then there exists an M such that ey, & W, otherwise we

would have ¢*(Z,) = C". Then Y (Pyiag,yx) = 0 and,

k=1

Z <PWiueka ek’> - Z <u€k7 PWLek>

k=1 k=1

If this is equal to zero then uy ||Pyreg” = 0 for all k and since uj, # 0 we have
Pyiey, = 0 for all k. Thus e, € W and then ¢*(Z,) = C" which is a contradiction

and so ¢ is not wot continuous.

2.2 von Neumann Algebras

A von Neumann algebra R is a w*-closed, unital, x-subalgebra of B(#). Note that
every von Neumann algebra is a C*-algebra. If C' is a subset of an algebra A, then
we define its commutant C' to be the set of all elements of B(#) that commute with
the elements of C. The bicommutant C" is the set of all elements of B(#) which

commute with the elements of C’ [12].

Theorem 2.2.1 (Bicommutant Theorem). Let R be a x-algebra on a Hilbert space
H and suppose that Ty, € R. Then R is a von Neumann algebra on H if and only
ifR=TR".

Definition 2.2.2 (Representation). A representation m of a C*-algebra A is a pair

(H, ), where H is a Hilbert space and 7 : A — B(H) is a *-homomorphism. A
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2.2. von Neumann Algebras

representation is called faithful if ker m = {0}, that is, if 7 is injective.

If A is a C*-algebra acting on a Hilbert space H and S C H, set
AS =span{aé |a € A, € S}

and set [AS] to be the closure of AS. A acts non-degenerately on H if [AH] = H.
Equivalently, for each non-zero £ € H there is an a € A such that a& # 0. It can
be demonstrated that a von Neumann algebra is the dual space of a Banach space,
however this is not true in general for C*-algebras. Due to the Spectral Theorem
[50, Theorem 5.1] von Neumann algebras are useful as they are generated by their
projections. It is possible to develop a comparison theory for these projections. This

leads to the notion of ‘type decomposition’ for von Neumann algebras.

Definition 2.2.3 (Factors). Let R be a von Neumann algebra on a Hilbert space
H. Then R is said to be a factor if RNR' = CI, where I = idy.

Definition 2.2.4 (Central Carrier). The central carrier of an element a in a von
Neumann algebra R, denoted by C,, is the smallest projection p in C' = RNR’ for

which pa = a.

Two projections p,q in R are said to be (Murray-von Neumann) equivalent when
v'v = p and vv* = ¢ for some v € R. If p,q € R then p is weaker than ¢
(written p = ¢) when p is equivalent to a subprojection of ¢. Similarly, we say
that ¢ is stronger than p. It can be demonstrated that ‘=’ is a partial order on
the (equivalence classes of) projections in a von Neumann algebra and that the

equivalence classes of projections in a factor are totally ordered [29, Chapter 6.

Definition 2.2.5 (Projections). If p € R is a projection in a von Neumann algebra

then p is said to be:
(i) Abelian: if pRp is abelian.
(i) Infinite: (relative to R) when p ~ py < p for some projection py € R.
(iii) Flinite: (relative to R) if it is not infinite.

(iv) Properly Infinite: if p is infinite and cp is either 0 or infinite, for each central

projection c.
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2.2. von Neumann Algebras

(v) Countably decomposable if any collection of mutually orthogonal non-zero sub-

projections of p is countable.

R is finite, properly infinite or countably decomposable if I is respectively finite,

properly infinite or countably decomposable.
We now have the terminology to define the different Types of von Neumann algebras.

Definition 2.2.6 (Types of von Neumann Algebra). A von Neumann algebra R is
said to be of:

(i) Type I if it has an abelian projection with central carrier I. R is of Type I,

if I is the sum of n equivalent abelian projections.

(ii) Type II if R has no non-zero abelian projections but has a finite projection

with central carrier I.

e R is Type II if I is finite.
e R is Type Il if I is infinite.

(iii) Type III if R has no non-zero finite projections.

Every von Neumann algebra can be decomposed into a direct sum of von Neumann
algebras of Types I, 11y, I, and III. A factor is one and only one of the Type I,
Type I1;, Type 11, or Type III. A factor of Type I is isomorphic to B(H) for some
Hilbert space H.

Type I von Neumann algebras are often referred to as discrete von Neumann al-
gebras to indicate that fact that the identity can be decomposed into a sum of
central projections, each of which is the ‘discrete’ sum of projections, minimal with
the given central projection as central carrier. Type II von Neumann algebras are
often called continuous. Factors of Type I,, and II; are finite von Neumann algebras,
while factors of the other Types are properly infinite von Neumann algebras. Each

factor of Type II; has infinite linear dimension.

It transpires that the comparison of projections in von Neumann algebra R re-
lates to the nature of the dimension functions on R. It is therefore possible to
reformulate the type decomposition of R in terms of properties of the corresponding

dimension function [29].
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2.2. von Neumann Algebras

Definition 2.2.7 (Dimension Function). Let R, denote the set of projections in a
von Neumann algebra R and let p,q € R,. A dimension function on R is a function
d: R4 — [0,00] such that

(i) d(p) = d(q) when p ~¢.
(i) d(p+q) =d(p) +d(q) ifp L g
(ili) d extends to a function on M, (R); with the same properties.
We say that d is normalised if sup{d(p) : pe Ry} = 1.

Let R be a factor and let R, denote the set of projections in R. Then it is possible
to construct a dimension function d : R, — [0, 00] such that p 3 ¢ if and only if
d(p) < d(q) [29]. The range of d determines the type of R as illustrated in the

following theorem.

Theorem 2.2.8. Let R be a countably decomposable factor. Then there is a dimen-
sion function d, which is unique up to normalization. Then the range of d has the

following possibilities:
(i) {0,1,...,n} if R is Type I,.
(i) {0,1,2,... 00} if R is Type L.
(iii) [0,1] if R is Type II,.
(i) [0,00) if R is Type .
(v) {0,00} if R is Type III.

We can use the projections in a von Neumann algebra to describe the structure of
their weakly closed ideals. If Z is a left ideal in a von Neumann algebra R, p € Z
a projection and v a partial isometry in R with initial projection p then v € Z for
v = vp. Also, if Z is two sided and ¢ = p then ¢ € Z, for ¢ ~ py < p. The set of
operators with finite range projection in R forms a two sided ideal. It can be shown
that each non-zero two sided ideal in a factor A contains this ideal [29, Section 6.8].
This implies that if I is finite relative to the factor A then [ lies in each non-zero,
two sided ideal in A and so A has no proper two sided ideals. Therefore we have

the following lemmas.
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Lemma 2.2.9. Let R be a factor, then:
(i) If R is finite then it is simple with respect to norm-closed ideals.

(i1) If R is a countably decomposable Type III factor then it is simple with respect

to norm-closed ideals.

(11i) No proper two-sided ideal in a countably decomposable factor contains an infi-

nite projection.

Lemma 2.2.10. If 7 is a weakly closed left (or right) ideal in the von Neumann
algebra R then T = Rp (or L = pR) for some projection p € R. If T is a two sided

1deal then p is a central projection in R.

Thus the weakly closed ideals in R are the principal ideals generated by the (central)
projections in R. It follows that each weakly-closed two sided ideal Z in a von
Neumann algebra R is a self adjoint. Note that if R is a factor then by Lemma

2.2.10 it must have no weakly-closed ideals.

2.3 Reflexivity

A unital subalgebra A C B(#H) is said to be reflexive if it can be determined by
its invariant subspaces. An operator is called reflexive if the algebra it generates is
reflexive. The concept of reflexivity has been examined since the latter half of the
twentieth century, beginning with Sarason’s proof that the unilateral shift is reflexive
[49]. von Neumann algebras are reflexive due to the Bicommutant Theorem. For

now we require the following definitions.

Definition 2.3.1 (Invariant Subspace). Let M be a closed linear subspace of H
where # is a Hilbert space and let A € B(#) be a bounded linear operator. Then
M is said to be an invariant subspace for A if h € M implies Ah € M. That is, if
AM C M. If M= is the orthogonal complement of M then M is called a reducing
subspace for A if both M and M are invariant subspaces for A.

Definition 2.3.2 (Reflexive Cover). For a subspace S C B(H) the reflexive cover
of § is given by

Ref(S) = {T € B(H) : T¢ € S¢, for all € € H)}.
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2.3. Reflexivity

It is clear that Ref(.A) is a weakly-closed subspace of B(#H) which contains A. The
reflexive cover proves to be useful when A is a subspace of operators which need not

be an algebra or contain the identity.

Let ‘H be a Hilbert space, S(#H) be the collection of all closed subspaces of H and
P(H) be the collection of all orthogonal projections on H. Then for sy € S(H) let
Vs, denote the projection on the closed linear span of UsyH, and let As) denote the
projection on the intersection Nsy\H. Then this makes S(#) into a lattice. Recall
that there is a bijective correspondence between closed subspaces and orthogonal
projections. This allows us to transfer the lattice structure of S(H) to P(H). So if
S C B(H) then the set

LatS ={P € P(H) : SP=PSPforall S €S}

is a complete sublattice of P(H) called the invariant subspace lattice of S. It can be
seen that the ranges of the projections in Lat S are precisely the closed S-invariant
subspaces.

If £ is a subspace lattice, we can define
AlgL ={S € B(H) : SP = PSP for all projections P € L}

which is the algebra of all operators leaving invariant the projections of £. A unital
algebra A of operators on a Hilbert space is reflexive if any 7" € B(H) which leaves
invariant all A-invariant subspaces (that is, all elements of the lattice Lat(.A)) is in

A.

Definition 2.3.3 (AlgLat). For an algebra A C B(H) the AlgLat of A is given by
AlgLat(A) = {T € B(H) : Lat(A) C LatT'}.

We say that A is reflexive if Alglat(.A) = A. A unital algebra A C B(H) is called

hereditarily reflexive if every w*-closed subalgebra of A is reflexive.

Note that AlgLat(A) is the unital algebra of all operators leaving invariant all A-

invariant subspaces.

Theorem 2.3.4. [12, Proposition 22.3(e)] If A C B(H) is a unital subalgebra for
a Hilbert space H then Ref(A) = AlgLat(A).
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In general, Ref(A) C AlgLat(A), and the inclusion may be strict. In fact, it can
be demonstrated that for a subspace S C B(H), the smallest reflexive algebra con-
taining S is AlgLat(A). It is clear that any reflexive algebra must be unital. By

—w*

the Bicommutant Theorem if A C B(#) is a unital x-algebra, then Ref(A) = A
Therefore von Neumann algebras are reflexive (note that p € Lat A for A selfadjoint
if and only if p is reducing if and only if p € A’).

Reflexivity is preserved under operations such as taking adjoints and similarity.

Recall that two (unital) algebras A and B are said to be similar if A = WBW ™!
for some invertible operator W € B(#H, K).

Lemma 2.3.5. Let £ be a lattice and let S be a w*-closed subspace of B(H). If
A C B(H) is a unital subalgebra for a Hilbert space H and W € B(H, K) is invertible
then

(1) W(Alg L)W= = Alg(WL).
(ii) W Lat A = Lat(WAW ™).
(iii) W Ref(S)W ™! = Ref(WSW ).

We call a w*-closed subspace S C B(H) hereditarily reflexive if each of its w*-closed
subspaces is reflexive. It is immediate that hereditary reflexivity is also preserved

under similarities.

Lemma 2.3.6. (a) If {S,} is a sequence of reflexive subspaces then @,S,, is re-

flexive.

(b) If {S;} is any collection of reflexive subspaces then N;S; is reflexive.

2.4 Hyperreflexivity and the A;-Property

Hyperreflexivity is a stronger property than reflexivity, introduced by Arveson,
which provides a measurement for reflexivity. For an algebra A C B(H) and an

operator T, the distance from T to A is given by
dist(7, A) = inf{||T — A|| : A€ A}.
We can also define the distance quantity
B(T, A) =sup{||[(1 — P)TP|| : P € Lat.A}.
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In general we have that 3(T,.A) < dist(T,.A) for all T' € B(H), since if A € A and
P € Lat A then

(1 = P)TP|| = [[(1=P)(T - A)P| < |1 = PI|T = Al [|P| = [T — Al

Definition 2.4.1 (Hyperreflexivity). A w*-closed algebra A C B(H) is hyperreflex-

ive (with distance constant at most ') if there exists a constant C' such that
dist(7T', A) < CB(T, A) for all T' € B(H).

Note that if T € B(#H) then 5(7,A) = 0 if and only if " € Ref A. It follows
that a hyperreflexive algebra is reflexive. When H is finite dimensional a subspace
S C B(H) is reflexive if and only if it is hyperreflexive. A subspace S C B(H) is

called hereditarily hyperreflexive is each of its w*-closed subspaces is hyperreflexive.

There is a connection between hyperreflexivity and the preannihilator. Recall the

following definition.

Definition 2.4.2 (Preannihilator). If X' is a Banach space and Y C X'* then the

preannihilator of Y is the set
Y ={zxeX : y(z)=0foraly” €Y}

The following lemma demonstrates that the reflexive cover of a subspace can be

recovered via rank one operators.

Lemma 2.4.3. [12, Theorem 56.9] If S is any linear subspace of B(H) then (Ref S) |

18 the closed linear span of the rank one operators it contains.

Consequently, we have that a w*-closed subspace of B(H) is reflexive if and only
if its preannihilator is the closed linear span of the rank one operators it contains,
that is S is reflexive if and only if S| = (Ref S) .

Similarly it is possible to characterise hyperreflexivity through A, . Arveson showed
that a w*-closed unital algebra A is hyperreflexive if and only if for every ¢ € A,
there are rank one functionals ¢,, € A, such that ¢ = Z ¢n, and Z |pn|| < co. The

hyperreflexivity constant is at most C' when Z ol < c. ol for o= 2 on € AL

as above. Specifically, Arveson demonstrated the following theorem.
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Theorem 2.4.4. [6, Theorem 7.4]. Let A be a w*-closed subalgebra of B(H). Then
A is hyperreflexive if and only if every ¢ € A, has a representation ¢ = > ¢,

n=1
where each ¢, is a elementary functional (that is, a functional of rank at most one)

in Al and Y ||én]] < oo.
n=1

We give an outline of the proof here for the purposes of self-containment. For one

o
direction assume that every ¢ € A, can be written as ¢ = »_ ¢, for elementary
n=1

functionals ¢, and > ||¢,| < oo. Hyperreflexivity shall follow by demonstrating
n=1
that there is a constant C' such that

D lenl <C- il (2.1)
n=1

First we define a new norm on A as follows. Let |¢| be the infimum of all numbers
such that > ||¢,|| < oo where ¢y, ¢o, ... is a sequence of elementary functionals in
=1

A such tﬁ;t
D lénll <o and ¢ =3 ¢n.
n=1 n=1

Then by hypothesis ||¢|| < |¢p| < oo for all ¢ € A,. It follows by an application
of the Open Mapping Theorem that there is a constant C' such that |¢| < C - ||¢]|
(take the identity map from (A.,|-|) = (AL, [-]|)). We have to show that A is
hyperreflexive, that is, that

dist(B, A) = sup{|¢(B) : ¢ € AL, [|¢]| <1} <C- sup [|(1—p)Bp]|.

p€ELat A

To show this it suffices to show that for each ¢ € A, such that ||¢|| < 1 we have

lp(B)| < C- sup |(1—p)Bpl.

peLat A
This is established via direct computations.

For the converse we shall require the use of the following facts. The first lemma

is a standard fact from Banach space theory.

Lemma 2.4.5. Let B be a bounded set in a Banach space E such thatr-B C B
for each 0 < r <1 and such that the closure of B contains the unit ball of EI. Then
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o0
every element x € E has a representation x = Y 0,x, where z, € B, 0 <0, < co.
n=1

Lemma 2.4.6. [6, Lemma 1] Let ¢ € A, and assume there is a projection p € Lat A
for whzch o(B) = ¢((1 — p)Bp), for all B € B(?—l) Then ¢ has a representation

= Z ¢n, where each ¢, is elementary in A and Z llonll < 119]|-

n=1
Returning to the proof of Theorem 2.4.4, assume that A is hyperreflexive with dis-
tance constant C'. For every p € Lat A, define B, to be the space of all functionals
¢ of B(H) such that ¢(B) = ¢((1 — p)Bp), for all B € B(H). Also, let B denote
the set of all finite sums of the form ¢ = ¢ + --- + ¢, where ¢; € B, for some
pi € Lat A and ||¢1]| + -+ + ||¢n]| < C. It can be shown that ball A, C B.

We claim that we may write each ¢,, as a finite sum

Ou=gf ot g
where g7 (B) = g7 ((1 — p})Bp}) for some p? € Lat A and Zg,ﬁ} < (. This follows

by using Lemma 2.4.5 to write ¢ = Z 0,0, where ¢, € B, 6, > 0 and Zé’ < 00.

We may then use the definition of B to write each ¢, as the required ﬁmte sum.

Applying Lemma 2.4.6 allows us to write each g7 as
g]? = hnkl + hnkg +

(i.e. as a possibly infinite sum of elementary functionals in A, ) where

9]
> Ml < Nlg2ll
r=1

where each A, is an elementary functional in A,. So it follows that f can be
expressed as a series of elementary functionals in A, that can be shown (directly)
to be absolutely convergent. This completes the proof of the theorem.

Note that from this proof we get that the hyperreflexivity constant arises from the

absolute convergence of the series ) ||¢,|| in the sense of (2.1).

Corollary 2.4.7. Let A,B C B(H) be w*-closed. If A is similar to B via an
invertible operator U and B is hyperreflexive with constant at most C' then A is

hyperreflevive with constant at most (max{||U]|,||U~||})*- C
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Proof. Let ¢ : A — Bbegiven by ¢)(A) = UAU ' and let ¢ € A, . Set g = poyp™'.
Then
g(W(A)) =¢(A) =0 for all A€ A,

therefore g € B, . Therefore by [6, Theorem 7.4] there are elementary functionals
(gn) such that

9= g0 and > lgnl <C- gl
n=1 n=1

Now set ¢, = g, o 1, then g, = ¢,, 0 )~! and we have that

¢:90¢229n0¢22¢n-
n=1 n=1

Also we see that if g, = 0 then ¢, = g, o ¥ = 0. Note that each ¢, is elementary
since if g, (A) = (A&, n,) then

¢n(A) =gn© ID(A) = <¢(A)§m7]n> = <UAU_1§m7]n> = <AU_1§m U_lnn>

In addition,

Do lgall <D llgall - Il = 181 llgall = 121 - C - llgl]
n=1 n=1 n=1
- 12
= Il -C - ol o™ || = I lo={"- C- lll
< (max{||U[|, [U7H|H)*-C - llgll,
showing that the hyperreflexivity constant is at most (max{||U|, [[U|[})*-C. =

There is a corresponding notion of hyperreflexivity for linear subspaces, reflecting
the connection between reflexive subspaces and reflexive algebras. If S is a linear

subspace of B(#H) we can define an algebra associated to this subspace as

45-{

We can see that Ag is a subalgebra of B(H @ #H) and we have the following lemma.

M T
0 wpl

: TESand)\,uEC}.

Lemma 2.4.8. [12, Proposition 56.4] Let S be a linear subspace of B(H) and let
As be the algebra defined above. Then a closed subspace, M of H ® H is in Lat As
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if and only if M = My & My, where M1, My CH and SMy C M. In addition S
is reflexive if and only if As is reflexive. Also if As is hyperreflexive with distance

constant C' then S is hyperreflerive with distance constant at most C'.

A hyperreflexive algebra is reflexive, however not all reflexive algebras are hyper-

reflexive as illustrated in the following example due to Kraus and Larson [38].

Example 2.4.9. [38, Section 2] Let {ej,e2} be an orthonormal basis for a two
dimensional Hilbert space Hs. Fix € with 0 < e < 1/3. Put

e1 1+ eea

Viter

Also, let g1, g2 be the rank one projections g; = u; ® u; and let £ be the linear span
of gy and gy. Set S = &+ = {A € B(H,) : tr(Af) =0, f € £}. We can see that

this is a linear span of its rank one projections therefore S is reflexive. In fact it is

Uy = €1, U=

hyperreflexive as it is acting on a finite dimensional space. Kraus and Larson [38]
show that the constant of hyperreflexivity is at least é

Now, for each n > 4 let S,, be the linear subspace just constructed with ¢ = n=1.
Therefore, by the arguments above we know that &, is hyperreflexive with con-
stant at least n/3. Then let As, be the algebra constructed prior to Lemma
2.4.8 corresponding to the subspace S,. Then Ag, is hyperreflexive with con-
stant at least n/3. Let H, denote the Hilbert space upon which Ag, acts and
let A = &2 ,As,. We have just shown that every Ag, is reflexive, therefore by
Lemma 2.3.6 A is reflexive. If T), € B(H,) with dist(T,, As,) > 58(Tn, As,) let

T, = P X; where X,, = T,, and S; = 0 for i # n. Therefore (by definition of
i=4

T we have that dist(7}, As,) = dist(T}, As,). However, Lat A = @, Lat A,.

Therefore dist(Tn, An) = dist(T},, Ayp) > (T, Ayp) = &(Tn, A,) and thus A is not

hyperreflexive.

We now proceed to define the A;-property. Note that for any w*-closed subspace S
of B(H) there is a predual given by £;(H)/S,.

Definition 2.4.10 (A;-property). A linear subspace S of B(H) is said to have the
Aj-property if S is w*-closed and for every w*-continuous linear functional ¢ on S
there are vectors h, g € H such that ¢(S) = (Sh,g) for all S € S.

In particular, if r > 1 say that S has property A;(r) if S is w*-closed and for every
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e > 0 and every w*-continuous linear functional ¢ on S there are vectors h,g € H
such that ¢(S) = (Sh,g) for all S € § and

1P1 gl < (r+ ) llell -

The usefulness of this property becomes apparent with the following results.

Lemma 2.4.11. If S is a w*-closed subspace of B(H) that has property Ay(r) for

somer > 1 then S is wot-closed.

Theorem 2.4.12. A subspace S of B(H) is hereditarily reflexive if and only if S is
reflexive and has property Aq.

We have a similar result if we are considering hyperreflexive spaces.

Theorem 2.4.13. If S is a hyperreflexive subspace of B(H) then then every w*-
closed subspace of S is hyperreflexive if and only if S has property A;(1).

If S is hyperreflexive and has property Ai(r) for some r > 1 , then for every w*-
closed subspace of T of S,

K(T) <r+ (1+71)k(S),

where K(S) is the smallest possible .

Kraus-Larson [38] and Davidson [15] have shown that the above result holds if we
consider a w*-closed algebra A C B(H) instead of a linear subspace. If S C B(H)

is a w*-closed subspace then we write S for the inflation of S, that is

0
S =-J10 S 0| :85€S
0 0

Proposition 2.4.14. If S is a w*-closed subspace of B(H) then S is reflexive.

This follows since B(’H)(OO) has the A -property. Therefore an application of Theo-
rem 2.4.12 implies that it suffices to show that B (H)(OO) is reflexive. However it is a
von Neumann algebra and thus is reflexive. We end this chapter by considering the
following examples in order to demonstrate the difference between reflexivity and

the bicommutant property.
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2.4. Hyperreflexivity and the A,-Property

Examples 2.4.15. (1) Reflexive and has Bicommutant Property:

If we take any w*-closed algebra A = A” in B(H) then consider its inflation
A®) ¢ B(H>)). However B(H)) has the A,(1)-property therefore it is hered-
itarily hyperreflexive and thus since A is w*-closed A is reflexive. We will now
show that A() has the bicommutant property. Suppose that 7' € (A())’ so that

0 - |t ti2
AT = |0 a e t21 t22
t11 tio 0
= tgl t22 0 a = TA,
for a € A. Therefore,
atn at12 s tnCL tlg(l
atey atey | = |t21a tooa

Thus if T € (A®)) then every entry of T is in A’. Therefore T € My (A’). The
reverse containment follows by completing the inverse computation. Hence the com-

mutant of the inflation consists of matrices whose entries are in A’.

We can now perform a similar computation to obtain that (A())” = (A”)(>),
In this case we require, for B € B(H(>)) that

TB =BT for all T € M (A"). (2.2)

Applying (2.2) for ¢;; = I and every other entry equal to zero we have

bir b1z - b1
0 0 -+l =1|by O
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2.4. Hyperreflexivity and the A;-Property

Similarly, applying for ¢9; = I and every other entry equal to zero we have

o 0 --- bio
bit bz | = |bn O
0 ) )

Repeating these calculations for each entry of the first column of 7' equal to the
identity we see that all non-diagonal entries must be equal to zero. Similarly using
the second set of equalities forces by, = by, for all n. Hence (A”)(>) consists of
diagonal matrices with constant diagonal whose entries are in A”.

The reverse containment follows by a similar computation and so (M (A")) =
(A")(*). Therefore (A")>® = (A>)".

(2) Reflexive but does not have the Bicommutant Property:

Suppose that A is a w*-closed subalgebra of B(#) which doesn’t have the bicom-
mutant property and consider its inflation A € B(’H("o)). Then we have seen
that A is reflexive. Also, from Example (1) we have that (A"”)(>) = (A()”,
Taking compressions of (A®))” to the (0,0)-entry we have that PyA"Py = A thus
implying that A” = A, which contradicts the assumption that 4 did not have the

bicommutant property.

(3) Not reflexive but has the Bicommutant Property:

An example of a non-reflexive algebra is the 2 x 2 lower triangular matrices over C.

Set
A0
A= { [ ] P WINS C}
oA
Then
L=TLat(A)={M CC?: AM C M for all A € A} = {{0}, Ce,, C*}
Thus

AlgLat(A) = { [)\ O] N,V E (C} :
pov

Therefore AlgLat(A) O A and therefore A is not reflexive.
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2.4. Hyperreflexivity and the A,-Property

However A = A" = A” in this case. Indeed, for T € A’ and A € A we require

TA— a bl A O _ A O] ]a b _ar
c d| |p A w Al |lc d
That is,
aX+bu OA| Aa Ab
A+dp d\| |pa+ e pb+ M|

Applying for A = 0, u = 1 we have that

Lol

Comparing entry-wise, we see that b = 0 and a = d. Therefore A = A’ and so

A=A = A",

30



Chapter 3
Semicrossed Products

We now discuss a generalised version of Fejér’s Theorem and its application to
operators. We examine lower triangular operators and use Fejér’s theorem to realise
a gauge action of T on B(H) @ (*(F).

3.1 Fejér’s Theorem

We shall begin by presenting Féjer’s theorem for functions [17, Section 14.6]. We

include a proof for self-containment. Recall the definition of a positive kernel.

Definition 3.1.1 (Positive Kernel). We call a family of 2w-periodic continuous

functions k, n € N a positive kernel if
(1) kn(t) >0 for all t € R.
(i) [T kn(t) dt =1.
(iii) If § € (0,7) then k, converges uniformly to zero on [—m, —d] U [, 7].
Given f : [—m, 7] = R we write o, (f)(z) = [7_f(z + )k, (t) dt.

Lemma 3.1.2. [17, Theorem 14.6.4] If f : [-m, 7] — R is continuous and 27-

periodic and if {k,}n is a positive kernel then:
on(f) = [ uniformly.

Proof. The idea is to appropriately cut the integral of o, (f) into two parts: [—0, J]
and [—7m — 0,0 + 7]. So, fix ¢ > 0 and let M = sup{|f(z)| : « € [-m,7]}. Since
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3.1. Fejér’s Theorem

f is uniformly continuous, for € > 0 we find 6 > 0 such that |f(z) — f(y)| < /2
wherever |z —y| < § and find ng > 0 such that k,(z) < g5 for all n > ng, for all
x € [—m, —d] U [§, 7]. Combining these,

™

lon(f)(x) = f(2)] = |on(f)(z) —f(:c)/_ (1) dt|
= / U+ 1)~ @)k i
= [ 1+ 0 = @k ) e+
x4 t) — fa)[ka(t) dt.
+/[rr,a]u[7r,a} |[f(z+1) = f(2)lka(t) dt

Then, since |f(x) — f(y)| < 5 we have that
é
[ et =@ e+ [ ) - fa)lkle) e
-5 [—m,—8]U[r,d]

< 5/ (1) dt+2]\/[/ k(1) dt
2) & (=, —8]U[m,d]

e [T €

< _/ k(t) dt + 2M dt
2/ 8T M i — 5100
e [T €

< = k,(t) dt + — dt

<3/ () dt + Trl)

<S4io.

-2 2

Write Kiq(z) = o= > (1 — n‘%‘l)eikl’ for the Fejér kernel. It can be verified that

k=—n

this is a positive kernel. Therefore we have that o, (f) — f uniformly for f being
2m-periodic as in Lemma 3.1.2. It is convenient to have a formula for o,(f) when

computed with respect to the Fejér kernel. To this end we obtain

s T+
/_ F(o— Ko (1) dt = / F(r— ) (1) dt

T Kz — 1) dt.

Inputting the Fejér kernel K1 (z) then gives
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3.2. Lower Triangular Operators

/W e~ Ko (1) dt = o / 7(0) BLI

. n+ 1
1 / —ikt ik
— f 7 dt 1RT
2 =
- k| ‘k
— 1— O, - etk

where Cy, = (f,e™) , = 5= [T f(t)e”** dt. This is convenient as it shows that

{e*} ez forms a basis in L?([—, 7]).

3.2 Lower Triangular Operators

We now proceed to consider lower triangular operators. We begin by examining an

application of Fejér’s theorem in operator theory for operators on the free semigroup.

3.2.1 Free Semigroup Operators

For d € Z, U {oo} let F4 be the free semigroup on d generators. Also let K = H &
(?(F) for a Hilbert space H. Write |u| for the length of a word pt = piyy, ...y € FL.
For z € T define u, : (*(F%) — ¢*(F) such that u(e,) = zle, and set U, = I @ u,.
Note that every u, is a unitary. For m € N we define the m-th Fourier coefficient

to be the expression

1

Gm(T) = —/ UeitTUe—itC_imt dt,

2m
where the integral is the w*-limit of Riemann sums.

Theorem 3.2.1. Let T € B(H @ (*(F%)) and write

~ . |k
n+1

)G ().
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3.2. Lower Triangular Operators

Proof. Let ¢ € L'(H) then we have to show ¢(c,41(T)) iR o(T). Define f :

[r, 7] = R, given by f(t) = ¢(UptTU.-it). Then o,(f) — f uniformly by Lemma
3.1.2. Hence 0,(f)(0) — o(f)(0) = ¢(T). Therefore we have to show that
on(f)(0) = ¢(0,(T)). We compute:

a0 = 5= 3 (1-

2
—Z( K

- ¢(0n+1 (T>>,

) (Upt TU,—i)e ™ dt

"
) (e
e

and the proof is complete. |

Now proceed to fix a Hilbert space H and consider the space K = H ® (> (F‘i) Then
let p,v e Fi then we can endow Iﬁ‘i with a (right) partial order given by

v <, pif there exists z € Fi such that u = vz.
We can similarly define a left partial ordering by
v <; pif there exists z € Fi such that u = zv.

For a word p = gy ... 1 we write @ := pq ... g for the reversed word of p. We
define the following creation operators on the Hilbert space ¢?(F2%) by

lew=¢eun and r,e, = eup.
For p,v € FL we write
L,=14®l, and R, :=1Iy®r,.
Then we can define the free semigroup algebras

Ly = alg Ot{lu cueFL} and Ry :=alg Ot{rl, c v eFL}
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3.2. Lower Triangular Operators

Example 3.2.2. For the purposes of illustration we shall now calculate the values
of 04 1(T) for a specific operator 7. For 2 € B(H), let T = 32 @ I + /22 ® l15 +
Tx @ 31 — 42 ® ly391 in B(H ® Ez(Fi)). By definition we have

1 ™
=5 - Uit (BI ® I)Ueﬂ‘t dt

1
— [ dtBz®I)

T o _,T

=3r®I.

Note that all the other terms of 7" will be equal to zero. We can proceed similarly
to see that the values of G,,,(T") are

Go(T) =3z ® 1

G1(T) =0

Go(T) = V22 ® lip + 731 ® I3y
G3(T) =0

Gy(T) = 42 ® li391,

and G,,(T') = 0 for m > 4. Hence

o1(T) = Go(T)

()= 3 - e = e + Lo
: k| 2 1
o3(T) = Z( - ?)Gk(T) = Go(T) + §G1<T) + ng(T)

o4(T) = Z 1— m)Gk(T) =0+ Go(T)+ %G1(T) + éGQ(T) + iGg(T)

Taia(T) = GolT) + ——=Ga(T) -+ + — = Gi(T)
— Go(T) + (1 — HLH)@(T) +(1— niH)GZL(T).
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3.2. Lower Triangular Operators

Hence 0,1(T) — T.

The following application of Fejér’s Theorem, shows that we can consider the algebra
B(H) ® Ly to be closed in the w*-topology instead.

*

Proposition 3.2.3. Let A, = B(H) ® Ls and Ay = B(H)® Edmt then A; = A,.
Proof. The fact that A; C Ay isclear. If x € A and z = w*—limz;, ; € B(H)RL,

then = wot — lim z; and so x € As.
(A

Conversely let € A and consider the m-th Fourier coefficient

Gm(z) = wot — Z L, wot— Z Thww @ Py | = wot — Z L,a,®1.

|ul=m wEFi |u|=m

However, ||G,,(T)|| < ||z||. Suppose that {x € FL : |u| = m} is infinite. We need
to show that the wot sum is the same as the w* sum. Since the sum is countably
infinite then if 7 C {y € F4 : |u| = m} is a finite subset then

Z ay @l = (Z LyLy,) - G ().

HEF neF

Then taking norms we have that

Yoan @l =Y LuLy - Gu(a).|| < [Gml@)] -
HeEF BEF
Thus the wot-sum is bounded and therefore also converges in the w* sense. [

Therefore the Fourier coefficients coincide in the wot and w*-topologies. Then from
the end of Section 3.1 we have that B(H ® ¢?(F%)) admits a w*-continuous action

induced by the unitaries
Ul @ e, = eV @ e, for all £ ® ey,
with s € [—m, 7]. Also the m-th Fourier coefficient is given by

Gn(T) : i/ UTU e "™ ds.

:27T

—T
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3.2. Lower Triangular Operators

For T € B(H ® (*(F1)) we write T},,, € B(H) for the (u,v)-entry given by
<Tu,1/57 77) = <T€ @ €v, 1 ® eu> for all g) n eH.

We can now define lower triangular operators in this setting.

Definition 3.2.4. An operator T € B(H ® (*(F1)) is a right lower triangular oper-
ator if T, , = 0 whenever v «£, p. Similarly an operator 7" is a left lower triangular

operator if T, ,, = 0 whenever v #£; p.
Writing p,, for the projection onto e, we then have the following result.
Proposition 3.2.5. If T is a left lower triangular operator in B(H @ (*(F%)) then

Z\#\:m Zwe]Fi L,(Tyww ®pw) if m>0,
0 if m <0,

G (T) =

where the sum is taken in the w*-topology. In a dual way if T is a right lower
triangular operator in B(H ® (*(FL)) then

Z\M=m Zwelﬁ‘i Ru<Twﬁ,w ® pw) if m>0,
0 if m <0,

Gn(T) =

where the sum is taken in the w*-topology.

Proof. Here we give the proof for the right case, the left case is proven in [8]. Fix
v, € F% and £, € H. Then

1 [ . ,
(Cu(T)E @ e @) = o / (TE® e, ® e,0) el IHDs g
T

—T

r [ . /
- <T§ ® €uv, M 0% ey/> 2_ / ez(—m—|y|+|y s dS
m

—T

1 T /
- <Ty’,l/§7n> 2_/ ez(—m—|y|+|y s ds
v

-7

= 5\1/|,m+\1/| <TV’,V€7 77)

for all T' € B(K). Let T be a right lower triangular operator and consider the case
where m < 0. We have that (G,(T){ ® e,,n®e,) = 0 when [V/| # m + |v], so
assume equality holds. If [/| = m + |v| then |/| < |v| and thus v £, /. Then
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3.2. Lower Triangular Operators

we get that (T,/,&,m) = 0 since we have assumed that T is lower right triangular.
Therefore G,,(T') = 0 when m < 0. Now consider the case when m > 0. We have
that (7, ,&,n) = 0 whenever v £, /. Therefore we obtain that

T,.&m) ifv<, v and |V/|=m+ v,
<Gm<T)§®eu,77®€l,/> = < > | | ’ |
0 otherwise,

(T, ,&,my itV =wvz with |z| =m,

0 otherwise.

On the other hand we compute

Z Z <R#Twﬁ,w ®pw(€ ® 6,,), ne el/,> —

= d
lul=m weFd

= Z Z <Twﬁ,w ®pW<€®eu)7RZ(n®eV')>

= d
|lul=m weFd

= Z <Tyﬁ’l/§ ® €v, 1 ® r;ktel’/>

lul=m

= Z <Tuﬁ,uf @ evm, N & €V’> .

lpl=m

If v/ = vZ for some z € F% with length m then we have that

Z Z <RM(Twﬁ,w Rpuw)§ B e, n®es) = (Tz,®e,nRey) =

lul=m weFd
(T, ,&,m) if v =vz and |Z] = m,
0 otherwise.
Now, notice that if we have 1/ = vx then v/ = vz for 2z = T, and we are done. N

3.2.2 Operators on Zi

It is possible to develop results analogous to those in the previous section for Zi
which is done as follows. Consider the Hilbert space H ® ¢*(Z%). There is a partial

order on Z‘fr given by saying

n < mif there exists z € Zi such that m = z + n.
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3.2. Lower Triangular Operators

Analogously to the previous section we can define creation operators in EQ(Z‘i) given
by Lnew = emiw. We write H> (Z‘i) for the wot-closed algebra generated by these
creation operators. An appeal to Fejér’s theorem again gives that implies that we
may consider the w*-closure instead. We can define a w*-continuous action on
H @ (*(ZL) by considering the unitaries

Ul ® e, =€ zgzlwisif ® e, for all £ @ e,

Then the Fourier coefficients on 7' € B(H ® (*(Z%)) are given by

1
(2m)4

Gn(T) = / UTU e Siamisids  for m € A
[77"»7‘—}0{ a

where the integral is the w*-limit of Riemann sums. For T' € B(H ® (*(Z4%)) we
write T}, , € B(#H) for the operator given by

(T, m) = (TE @ ep,n @ em) -

Again we can define lower triangular operators as follows.

Definition 3.2.6. An operator T' € B(H ® (*(Z%)) is a lower triangular operator if

Tnn = 0 whenever n £ m.

Set Ly, = Iy ® L, and write p,, for the projection of ¢*(Z%) to e,,. We then have

the following proposition in analogy to Proposition 3.2.5.

Proposition 3.2.7. If T is a lower triangular operator in B(H @ (*(Z%)) then

dezi Lin(Tpww ®pw) ifme Zia

0 otherwise.

where the sum is taken in the w*-topology.

Proof. The proof follows similarly to Proposition 3.2.5. Let T be a lower triangular
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3.3. Tensoring with B(H)

operator. Then for n,n’ € Z% and &,n € H we obtain

<Gm(T)§ X en,N & 6714) =
1

~ (2n) T n n _izle(mi-f-ni—n;)gid
(2r)1 /[m]d (TE® €0, 1 @ ew)e )

1 -S4 (mitn;—nl)s;
g W<T§®emn®€n/>/[ ]de Zz:l( z+ 7 z) zd§

= 51’,m+ﬂ <T1’,@€> 77> .

Therefore (G (T)E @ e, n®ey) =0 when 0’ #m+n. If n/ =m+n for m ¢ 24
then there exists an @ = 1,...,d such that n; < n;. In this case n £ n’ hence
T » = 0 and thus G,,(T") = 0, since we assumed that 7" is lower triangular. On the
other hand if m € Z? then

Z <Lm(Tm+w ® p&)g ® en, N & 6@’) =

d
wezd

= Z <(Tm+w,w ® Ppuw)é @ €n, N @ l*men;>

d
weZd

- Z <Tm+w@f @ Pwen, N D l*mel/ >

wezZd
= <Tm+ﬁ,ﬁ§ @ en, N & l*mei/>
= (Tintnn€ ® €min, N @ €w)
= O mtn (Totnnés 1) -

Hence

(Gu(T)E® en,n® ey) = Z (Ln(Tipw ® Puw)§ ® €0, 1 @ €xr)

d
wezd

and we are done. ]

3.3 Tensoring with B(H)

The primary purpose of this section is to provide a proof of the reflexivity of
B(H) ® L4. Bercovici in [9] shows that a wot-closed algebra is hyperreflexive with

distance constant at most 3 when its commutant contains two isometries with or-
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3.3. Tensoring with B(H)

thogonal ranges. Davidson and Pitts [22] show that the wot-closure of the algebraic
tensor product of B(H) with L, satisfies the A;(1)-property, when d > 2. Their
arguments again depend on the existence of two isometries with orthogonal ranges
in the commutant; thus they also apply for the tensor product of B(H) with Rg.
By following this idea we have that every w*-closed subalgebra of B(H) ® L4 is
hyperreflexive with distance constant at most 3, when d > 2, as its commutant
contains I3; ® R4. Thus the reflexivity of B(H) ® L; can be derived from the
hyperreflexivity results of Bercovici [9]. However the method stated here gives an

independent proof of reflexivity.

We shall require the following notation. Write B, for the ¢2-unit ball in d dimen-
sions. For A € B; and w = w,,, ---w; € ]F‘Slr write w(\) = Ay, -+ - Awy- Then by [22]
Theorem 2.6] the eigenvectors of £ = alg" {I" : p € F1} are the Vectors

d
m= =AY Y whew = (L= [INP)A(1 Z e for A € By

d
weFq

They are well defined because if A € B; then v, is defined for A € B; and

Do lwP=) Y e

k>0 |w|=k

Z Z m l. ’)\ Pml U |)‘d‘2md

E>0,m;>0 3 my=

-> (Zw)

k>0 N i=1

= (1= [IAI")" < 0.

Also, since

d 2 d
DML =D NP =A<
=1 =1

d _
we have that (I — " \;L;) is invertible with inverse given by



3.3. Tensoring with B(H)

by the above computation, thus rearranging gives the equality. Thus we can now

establish the following.
Proposition 3.3.1. [1], [22] The algebras B(H) @ L4 and B(H) @ R4 are reflezive.

Proof. We shall just show that B(H) ® L, is reflexive. Since the gauge action of
B(H @ (*(FL)) restricts to a gauge action of B(H) ® Ly, it suffices to show that
every G,,(T) is in B(H) ® L4 whenever T is in Ref(B(H) ® Ly).

For £,n € H and v, u € F4 there is a sequence X,, € B(H) ® L, such that

<T,LL,1/€7 77> = <T€ @ ey, n & €“> = hTrln <Xn’£ X ey, n& €u> = li£n <[Xn]u,1/€7 77) .

Taking v £; u gives that T is left lower triangular because each X, is. Therefore
it suffices to show that T}, ., = T},¢ for all z € FZ. In fact when this holds, we can

write

Z‘M:m Zwe]F:lL LM(Tuw,w & pw) ifm > 07
0 if m <0,

Gon(T) =

Dtplem Lu(Tpp ® 1) it m >0,

0 if m < 0,

and thus G,,(T) € B(H) ® L4. An application of Fejér’s Lemma will give that

T € B(H) ® L, as required. For convenience we use the notation

Ty = LiGn(T) = Y Tyww @ pur
wEFi
We treat the cases m = 0 and m > 1 separately.

e The case m = 0. Let z € F¢ and assume that {z,..., 2} C [d] for some finite
d'. If d < oo then take d' = d. Let A € By C By such that \; # 0 for every i € [d'],
and consider the vector

g= Z wW(N)ey.

d/
welFy

From [22] we have that g is an eigenvector for L. Therefore the vector (L,(x ®
1))*¢ ® g is in the closure of {y§ ® g | y € B(H)}. Thus for £ € H there exists a

42



3.3. Tensoring with B(H)

sequence (z,) in B(H) such that
Go(T)'¢®g=limz{®yg. (3.1)
Hence for n € ‘H, taking inner products we get

(€, Towwm) (9 €w)
= (£ ® g, Twuwn ® ew)
=(Go(T)"§ ® g,n ® ew)

w(A) (€, Twwn) =

._.

lim (2,6 @ 9,1 @ ew)
h<

= w(A) h£n (&, zum) .

&, Tun) (9, €w)

Then applying for w = ) and w = z we have that T, , = Ty as z(\) # 0. Therefore
since z was arbitrary we have that Go(T") = Ty @ I.

e The case m > 1. We have to show that T),,, =T} for all z € F% and |u| =
Note that every p of length m can be written as u = ¢i* for some i € [d] and
w>1and q = qq - q with ¢; # 7. We shall consider the case when i = 1. Then
substituting this for ¢ € {2,...,d} shall complete the proof.

Hence fix a word p = ¢1¢ of length m = |g| + w with

w>1 and ¢=gq...q1 with g1 # 1 or ¢ =0.

We will use induction on |z|. To this end fix an r € (0,1). For w = wyy,...w; € F4
we write

w(t) =wy...w; fort=1,... |w|

- For |z| = 1: First suppose that ¢ # ). Let the vectors

vi=ep+ Zrkelk and  lyyv = eq) + Zrkeq(t)lk fort=1,...,|q|
k=1 k=1

and fix £ € H. Again, an application of [22, Theorem 2.6] yields that v is an
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3.3. Tensoring with B(H)

eigenvector for L. Therefore we get that X*¢ ® L v is in the closure of

]

{x£®v+zxt£®lq(t)v | X, Ty GB(H)7t: 177|q‘}

t=1

for all X € B(H) ® L4 Hence there are sequences (z,,) and (z;,) in B(#) such

that
]

Gu(T)*¢@ v = 1irrln rrERv+ Z Ty & @ Lyyv. (3.2)

t=1
Furthermore for |p/| = m note that we have (1,/)*l,v = 6,/ ,7“v. Now for all n € H
and z € F% we get that

(Gu(T) €@ v, n®e,) =1Y(E, Tipe.n) (v, e.) -

Every l,v is supported on ¢(¢)1% with |¢(t)1¥| > ¢ > 1 and so (l,xv, ep) = 0 for
all t. By taking the inner product with n ® ey in (3.2) we get

(Gu(T) E @ v, n®eg) =1 (§, Tinwgn) (v, )
=" <€7 qu‘*’,@77>
= lim (&, z,,m) .
On the other hand the only vector of length 1 in the support of 1,4v is achieved

when ¢ = 1 and k& = 0, in which case it is ¢(1) # 1 by assumption. Therefore by
taking inner product with 7 ® e; in (3.2) we obtain

(Gn(T)¢@]1v,n®@er) = e, Tore1.1m)
= limr (£, x,n) .

Therefore by rearranging, (£, Tie1,1m) = lim, v~ (§, x,n) = (£, Tj1w 9n) which im-
plies that Tw11 = Tje g when g # (.

On the other hand if ¢ = () then we can repeat the above argument by substi-
tuting l,)v with zeros to get again that Tjw;; = Tie g. Therefore in every case we

have that T}, 1 =T}, p.

In a similar manner we next show that 7)o = T},p. Similarly to above, let the
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3.3. Tensoring with B(H)

vectors

w = ey + Zrkegk and  Lyw = ey + Zrkeu(s)zk fors=1,...,m.
k=1 k=1

Again, w is an eigenvector for £} and thus following similar reasoning as above we
have that for £ € H there are sequences (y,,) and (ys,,) in B(H) such that

Cu(T)€ @ Lw =lmy £ @w+ Yy, @ Lygw (33)

s=1

since w is an eigenvector of £. Once again we have that (1,)*l,w = 6,/ ,w when

|1/| =m. Now for n € H and z € F% we get

(Gn(T) € @ Lw,n® e.) = (€ Ty 1) (w, ez)

For z = () we have that

(Lusyw; ep) = <€u(s> + Y rFeua, 6’@> =0

k=1

for all s € [m]. Therefore taking inner products with 7 ® ey in (3.3) gives

(€ T} = lim (€, yan).

For z = 2 we have that <IM(1)w,62> = (Lhw,ey) = 0. Moreover we have that
(Lysyw, e2) = 0 when s > 2. Therefore (3.3) gives

r <€7 qu‘*’272€2> - 117{117“ <£7 yn77> .

Therefore we have that (£, T0.262) = (§,T,9n) and thus T},00 = T}, 9. Applying for
i€ {3,...,d} yields T),;; = T, for all i € [d].

- Inductive hypothesis: Assume that Tjje, , = Tj1e g when |z| < N. We will show
that the same is true for words of length N + 1.

First consider the word 1z with |z| = N. Suppose that ¢ # 0 so that ¢(1) # 1. We

apply the same arguments as above for the vectors r,v and r.l,yv with t = 1,...,|q|.
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3.3. Tensoring with B(H)

Since r, commutes with every 1, we get that
r.(r.) (L) rv=r.(,)v and r.(r.)"(L)"rlymv =r.(1,)mv.

As every R,(R.)* commutes with every x ® I for x € B(H), we have that for a fixed
¢ € H there are sequences (x,,) and (z;,) in B(#H) such that

lal
R.(R,)"Gn(T)é@r v =limz{ @r,0+ Z ;& @11y (3.4)

t=1

Arguing as above for n ® e, and 7 ® ey, (i.e. taking inner products now in (3.4))
yields that

<’57 qu“’lz,lzﬁ) = <€7 qu“’z,z”) .

Consequently Tj1w1,,1, = Ty1w, . which is Ty;w g by the inductive hypothesis.

On the other hand if ¢ = @ then we repeat the above arguments by substitut-
ing the 1,4)v with zeros. Therefore in either case we have that 7,1, 1. = T}, .
For 2z with |z| = N we take the vectors r,w and r.l,w for s € [m]. Then

for a fixed & € H there are sequences (y,) and (ys,) in B(#) such that

R.(R.)'Gn(T)¢®@r.lw= liin yrE @r,w+ Z YsnS @11 0. (3.5)
s=1

Taking inner product with n®e, and n® eq, gives that (£, T)2,2.1) = (§, Tpiz2m). As
n and § are arbitrary we then derive that T),9. 2. = T),. . which is T}, y by the inductive
hypothesis. Applying for i € {3,...,d} in place of 2 gives the same conclusion, thus
Tyiziz = Ty for all ¢ € [d] and |z| = N. The induction then shows that T),.. =T,
for all z € F4.
Substituting the letter 1 in the word u by any letter i € {2,...,d} completes the
proof. n

We can use similar methods to show the reflexivity of B(H) @ H>(Z%).
Theorem 3.3.2. [/4, Section 3.] The algebra B(H) ® H*(ZY) is reflexive.

Proof. By definition we have that B(H) @ H*(Z4) is reflexive if B(H) @ H>(Z%) D
Ref(B(H)®H>™(Z%)). Since the gauge action of B(H)®(*(Z%) restricts to an action
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3.3. Tensoring with B(H)

of B(H)®H>(Z%) it suffices to show that every G,,(T) € B(H)®H>(Z%) whenever
T is in the reflexive cover.

Now let £,n € H and let m,n € Z%, then there is a sequence A,, € B(H) @ H*(Z%)
such that

<Tm,ﬂ£a 77> = <T5 Qen,N& €m> = liqgn <An§ @ en, N em) = hfln <(An)m,n§> 77> .

If we take n < m then we have that T is lower triangular since each A, is. Thus
it suffices to show that Tpniww = Tmo for all m € Z4. This follows because if

Ttww = Tmo then,

Go(T) =Y Tuw®pu= Y Too®pu=Too®I € B(H) @ H*(Z}),

d d
Q€Z+ QGZJr

and,

Gu(T) = Ln Z Tontwaw @ Pw = Lin(Tino @ I) = Tino @l € B(H) ® HOO(Zi)-

d
wezd

Let r € (0,1) and consider the vector v = > 1% ® e, Then
Le7d

2
[l = [ D rfe@e| =) o> r¥pe g2 =) ey g7
0 lg 2 Ly

d
Lezd

Hence, |[v||> = (1 —72)~¢||€||? that is, |[v]| = (1 — r?)~%2]||€||. Note that the space
K :=span{(z @ Iv: 2z € B(H)} is (B(H) ® H>*(Z%))*-invariant since

(ral,)v=(zaL,)( Z rte @ e = Z rtré ® e = Z e @ epp

d d
LezZy LeZy £2m

= Z ety @ e, = r™(x @ Iv.

d
Q€Z+

Hence
oLzl =) a,)v=r"(zel)veck.

Therefore A*KC C K for all A € B(H) ® H*(Z%) and so G,,(T)*K C K.
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3.3. Tensoring with B(H)

Since v € K there exists x, € B(#H) such that G,,(T)*v = lim(z} ® I)v. Then,

Cun(T)0 = (D Trpw @Pu)I @1n)(Y € @ er)

d d
wEZ EEZJF

Z m+ww®pw ri v

weZd

= Z Z reT,wa w& @ Dwtr)

LeZ% weZd

= (Y b ® ).
QGZi
Also,
lim(z; ® Iv = lim(z; ® I)( Z rt ® eg) = lim Z e ® ey
" ! Lezd ! Lezd

Then taking inner products with n ® e, gives,

<Gm(T>*U777 & e§> = <Tm Z wT;;L-i—’w w§ @ €y, N & 65> = ritrs < mts, 35 77>

d
QEZJr

On the other hand

<1im(x;; ®Nv,n® e§> = <lim Z rlrié ®enn ® 65> = r*lim (2§, 1)

d
tezd

for all s. Thus

mk T * mrk
T Tm70—117rlnxnf—7" Tm+88§

for all s. That is, ™7}, = limz,{ = 7™T,,4ss§. Since § is arbitrary we have
that T o = Tr,,, for all s € Z%. That is, Ty = Tntss for all s € Z4. Hence

m,0 = T m+s,s

Gu(T) € B(H) @ H®(Z4) as required. n

3.3.1 Semicrossed Products over ]Fﬁlr

A w*-semicrossed product is is a nonselfadjoint analogue of the crossed product and
our aim is to study the reflexivity of the w*-semicrossed product in various cases.
From now on we fix a w*-closed unital subalgebra A C B(H) and we write End(.A)

for the continuous completely bounded endomorphisms of A.
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3.3. Tensoring with B(H)

Definition 3.3.3 (Dynamical System). A dynamical system denoted (A, {a;}iciq),
consists of an operator algebra A and d unital o; € End(A) such that each o; is

uniformly bounded, that is
supf{fla | : 1 € FL} < oo,

where o, = @y, - o, for = pu, - py € FL.

Now, given such a dynamical system we define the following two representations

acting on K = H ® (*(F%)
m(a){®e, =ayu(a)f ®e, and T(a)Re, = az(a)l®e,.
Recall that we previously defined
L,=Iy®1, and R, :=1Iy®r,.

This leads us to define the following.

Definition 3.3.4. Let (A, {a;}iciq) be a w*-dynamical system. We define the w*-

semicrossed products
AX o Ly :=5pan” {L,7(a) |a € A,p €T}

and
AX o Ry :=5pan” {R,m(a) | a € A pu€FY,

It transpires that (7, {L;}%,) and (7, {R;}%_,) satisfy the following covariance rela-
tions
T(a)L; = Li7a;(a) and 7(a)R; = Rima;(a)

for all a € A and ¢ € [d]. We shall show the right version. For every w € F% we
have that

T(a)Ri€ ® €y = pi()€ @ ey = i ()€ ® ey = Rima(a)€ @ ey,

and similarly for the left version. Therefore A X, Ly and A X, Ry are algebras.

Note that for the unitaries Us; € B(K) for s € [—m, 7| defined previously we have
Usr(a)U; =7w(a) and UR,U; = ¢sR,
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3.3. Tensoring with B(H)

and similarly for the left version we have
U(a)U; =7(a) and UL, U; = s, .

Therefore applying Proposition 3.2.3 we have that T € A X, Ry if and only if
Gm(T) € AXy R, for all m € Z. and similarly for the left version. This leads to

the following proposition.

Proposition 3.3.5. Let (A, {i}iciq) be a unital w*-dynamical system. Then an
operator T € B(K) is in A X Ly if and only if it is left lower triangular and

= Z L,7(a,) fora,e A

lul=m

for allm € Z.. Similarly an operator T € B(K) is in A X, Ry if and only if it is

right lower triangular and

= Z R,m(a,) fora, e A

lu|l=m
for allm € Z,.

Proof. We shall show the right version, the left follows similarly and is provided in

[8]. Note that if T'= R,m(a) with |z| = m then it is right lower triangular since

(Rer(@) @ e, @e,) = (Raas(@)§ @ e @e,)
= (ay(a)é ® ey, € @)
= 5y'§,y <au’(a)§’ 77> .

This is zero whenever v'Z # v.
If vZ = v then |v| > || and thus v £, v/ and thus T is right lower triangular.
Furthermore, for T'= R,m(a) with |z| = m then

<Tw2,w£7 77> <T€ ® Cw, T ® ewz)
<RZ ( )f ® ew7 77 ® ewz>
= (R.m(a)§ © ew, Ron © ew)
=

()€ ® €y, N R ey) -
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3.3. Tensoring with B(H)

Hence 3  Tyzw ® pw = m(a). Therefore G,,(T) = >_,,_,, Rum(a,) where a, = a
wEFi

and a, = 0 for pu # z.

Conversely if T satisfies the conditions above then we shall show that every G,,(T)

is in A X, R4. This follows since for every finite subset of words F', of length m, we

have that
Z R,m(a,)

HeEF

Thus (3_,,cr Rum(a,))r, is bounded and therefore every G.,,(T') is in A X Rq. Then
applying Fejér’s Lemma shows that for every T' we have T' € A X, R4 and completes

> Ru(Ry) Gu(T)

HEF

< |G ()] -

the proof. N

We can also form dynamical systems when the action is induced by an invertible

row operator. We begin with the following definitions.

Definition 3.3.6 (Invertible Row Operator). For n € {1,... 00} a row operator
w=[uy...u,...] € B(H®*n),H) is invertible if there exists a column operator
v=[v1...0,...]" € B(H,H ® ¢*(n)) such that

vu = Iygem and Z wiv; = Iy,

1€[n]
where the sum is considered in the sot.
Definition 3.3.7. Let {u;}iclq be a family of invertible row operators such that

u; = (Ui j,)jiem- We say that {u;}iciq is uniformly bounded if the operators

Upopy = Upsyy, * (uﬂmfl ® I[num]) T (uul ® I[nuw--n@])

and their inverses

@Lu.um = (Uul ® I[num“%uz}) T <Uum71 ® I[mm]) " Vum
are uniformly bounded with respect to t,, ..., € Iﬁ‘i.

Note that when every n; = 1 we have that w,,, ,, = u,,, ---u,, = u,. More gener-

m

ally 4y, ., is the row operator of all possible products of the w,, ;. We illustrate

1

this in the following example for finite multiplicities.
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3.3. Tensoring with B(H)

Example 3.3.8. Let the row operators uy, ug, ug with ny = 2, no = 3, ng = 2. Then

the operators us319 is given by

Usia = ug - (U1 @ Ipny)) - (U2 @ Ljngny))
= Uus - (Ul & 12) . <U2 & [4)
= [U3,1U1,1U2,1 U3,1U1,1U22 U3 1UL,1U23 U3 1UL2U21 U3 1UI2U22 U3 1UI2U23

Uz 2U1,1U2,;1 U32UL1U22 U3 2U1,1U2,3 U3 2UI 2U21 U3 2U12U2 2 U3,2U1,2U2,3]-

Thus we see that the u is the row opertator of all the possible products of the

Uy, U2, U3

So, now suppose that we have (A, {a;}ic[q) where each ; is given by

a;(a) = Z u; j, av; j, for all a € A.

Ji€[ni]

Applying u; j, and v; ;, on each side we have that
ai(@)uyy, = uiga and v e(a) = avig,.

We call {a; }iciq a uniformly bounded spatial action on A if every o; is implemented

by an invertible row operator u; and {u;}c[q is uniformly bounded.

Proposition 3.3.9. Let a be an endomorphism of B(H) induced by an invertible
row operator u = [W;|;cp) for some n € Zy U {oo}. Then for any x,y € B(H) we
have that

a(z)y =ya(z) if and only if x-vjyur = vjyuy - x for all j,k € [n]

where v = [V;];cp is the inverse of u.

Proof. Suppose first that a(z)y = ya(x). Then it follows that
TV YU = v;0(T) YU = vyo(T)up = VYU
for all j, k € [n]. Conversely if zv;yu, = vjyu,x for all j, k € [n] then we get

vjo(T)yuy = Tvjyu, = vjyur = vjya(z)uy.
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3.3. Tensoring with B(H)

Therefore we obtain

a(z)y = Z Z uj(vja(z)yur ), = Z Z u;(vjya(z)ug)v, = yo(z),

J€[n] k€ln] J€ln] k€ln]
and the proof is complete. n

Uniformly bounded spatial actions can be extended to all of B(#H). In fact, if
a € End(A) is implemented by an invertible row operator u then a extends to an
endomorphism of A”. This is because if we apply the above proposition we have
that v;yu, € A’ for all y € A’ since A" C a(A)’. Therefore for z € A” we have that

20jYUp = VjYUL2.

Therefore a(z) € A” again by the above proposition. Thus given a w*-dynamical
system (A, {o;}icjq) where each o; is implemented by an invertible row operator
u; then we also have the systems (B(H),{ci}iclg) and (A", {@i}iclg). Hence the

w*-semicrossed products over these systems are all well defined.

We end this section by defining two other semicrossed products. Let {a;}icq be
endomorphisms of B(H) where each «; is induced by an invertible row operator w;.

Then form the free semigroup
FY = {(i,4) |i € [d,5 € [nl) = e
for N =ny + -+ + ng. Similarly to above, define the following operators
Vij=u;®lL and W;; =wu;; ®r; forall (i,7) € ([d], [ni])-

We also define the representation p(z) = x® [. This allows us to make the following

definition.

Definition 3.3.10. We define the w*-semicrossed products
A Ly = alg {Vig,p(b) | (i,5) € ([d], [ni]), b € A}

and
A%, Ry = alg” {Wiy,p(b) | (i,5) € ([d], [ni)),b € A
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3.3. Tensoring with B(H)

We can use the following proposition to show that the algebras in Definition 3.3.10

are spaces of generalised polynomials.

Proposition 3.3.11. Let (A, {a;}icq) be a w*-dynamical system such that each a;

18 implemented by a uniformly bounded invertible row operator u;. Then
A%, Lg =5pan® {Vip(b) | w € FY b€ A'}

and
A%, Ry =span” {Wyp(b) | weFY be A}

where W = (W, Ju, ) - - - (W1, Ju, ) € FY.

Proof. We prove the left version. The right version follows by similar arguments.
By the above comments the linear span on the right hand side is an algebra. It
suffices to show that p(b)V;; is in the span of {V,,p(b) : Hor all b € A’ and (i, 7) €

([d], [ni]). Suppose that v; = [v;;,]j,cm,] is the inverse of u;. Then we can write
= Z Z Ui 105 kDU 0 = Z Z Ui kbi g 1y
ke[nl] le[ni] ke[nz‘] le[ni]

where b; ; := v; xbu; ;. We can then appeal to Proposition 3.3.9 to give that b; ;,; is
in A’ since b € A" C «;(.A)’". Therefore we have that

bui,j — § § U kbzklvz qUi 5 = E ui,kbi,k,j7

kelng] l€[ng] ke(nq)

which gives that

p(b)Vij = Lip(b)p(ui ;)

Z sz Us kbzk]

ken;]

= Z Vikp(bik.j).

k‘E[ni]

Since v; is the inverse of u; we have that ||}, . uixvik| < 1 for every finite subset
F of [n;], hence

| Z uzkzbzk’]H = || Z Ui Vi kb

keF keF

< (1l flwi s
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3.3. Tensoring with B(H)

is bounded and the sum »_ V;p(bix, ). con-
kE[n,-]
verges in the w*-topology. This follows because the sum is considered in the sot, so

Thus the net (Zkep ui,kbi,k,j){pzﬁnite}

it is also in the wot. Since it is bounded it is also w*-convergent. Hence p(b)V;; is

in A’ x, Ly since it is w*-closed by definition. N

3.3.2 Semicrossed Products over Zi

In analogy to the previous section, we can define w*-semicrossed products over Zi

in a similar manner.

Definition 3.3.12 (Dynamical System). A dynamical system, (A, a,Z%) consists
of an operator algebra A and a semigroup action « : Z‘i — End(A) such that

sup{|lan|| : n € Zi} < 0.
We define the representation,
m(a) @ e, = ap(a)f @ ey
and creation operators on H ® (*(Z%),
Li§ @ € =R eitp.

This allows us to define a w*-semicrossed product in this setting.

Definition 3.3.13. Let (A, a,Z%) be a unital w*-dynamical system. We define the

w*-semicrossed product
A%, 2% =5pan® {L,n(a) |a € A,n € Z%}.
Again we can show that the generators satisfy the covariance relation
m(a)L; = Liray(a).

Applying on elementary tensors we have that

m(a)Lif ® en = qitn(@)§ ® ei4n = Limai (@) ® ep.

In a similar manner to Proposition 3.3.5 we have the following
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3.3. Tensoring with B(H)

Proposition 3.3.14. Let (A,«,Z%) be a unital w*-dynamical system. Then an
operator T € B(H @ (*(Z1)) is in AX,Z% if and only if it is lower triangular and

Gw(T) = Lyym(ay) fora, € A

for allm € Z4.

Proof. The proof follows in a similar manner to that of Proposition 3.3.5. If T' =

L,,m(a) then T is lower triangular since

<Lm7r(a)§ @ ep,N & 6@> = <Lian7’<a)§ ep,n& eﬂ)
= (aw ()€ @ i, @ ep)
Omtnn (C (@)€, M) -

Clearly this is zero whenever m +n’ # n. If m + n’ = n, then |n| > |n| and thus

n £ n', thus T is lower triangular. Furthermore for 7' = L,,m(a) we have

= (T€ © en, N S enim)

= (Lm7(a)§ © €n, N @ enim)
= (Lmm(a) & en, Limn © en)
= (m(a) @ en,n @ en) .

<Tﬁ+m@§ ;1)

Hence Y Thimn @ pn = m(a). Therefore G, (T) = L,,7(a,,) where a,, = a and
@GZi
ay, = 0 for m # n.

Conversely, if T" satisfies the above conditions then we shall show every G,,(T') €
AX,Z%. This follows since Gp(T) = Lym(ay) for an € A and so for a, = a,
Gm(T) € AX,Z% by definition. .

Usefully, in this setting we also have the following proposition which allows us to

decompose a semicrossed product over Zi in each direction.

Proposition 3.3.15. Let (A, o, Z%) be a unital w*-dynamical system. Then the

semicrossed product A X, Zi 15 unitarily equivalent to

(- (AXay L) Xy Ly) - ) Xy Ly
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3.3. Tensoring with B(H)

where 05 = a; @D I fori=2,....d.

Proof. We show how this decomposition works when d = 2; the general case follows
by iteration. Let oy and ag be commuting endomorphisms of A. Then A X,, Z,
acts on H ® (% by

() ® en = amoy(a)é ®e, and Lif®@e, =@ enpq

by definition. Now we can define the w*-dynamical system (A X,, Zy, 0z, Zy) by
setting
as(m(a)) = maz(a) and as(Ly) = L.

To see that a, defines a w*-continuous completely bounded endomorphism on
AX o, Z, first note that AX,, Z, is a w*-closed subalgebra of A @ B(¢?). Then the
map s ® id defines a w*-endomorphism of A ® B(¢?). Since oz is w*-continuous
and completely bounded, for X € A ® B(¢?) we can obtain as ® id(X) as the limit
of

a2 ® idy (Pugem)X usem)) € A My(C).

Hence ap ® id defines a w*-completely bounded endomorphism of A ® B(¢?) and

Qip is its restriction to the A X, Z,. To allow comparisons write
T AXe 2y — B(H® @ (%)

for the orbit representation and
L=1Iyer®lcBH A

for the amplification of the unilateral shift. Then let Q: H ® (*(Z) — H @ (* ® (?
be the unitary given by
QE® €(n,m) = EQen ®em.

We show that @ induces the required unitary equivalence between A X, Z7 and

A X, Ly X, 7. Tt suffices to check that it maps generators to generators. For
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3.3. Tensoring with B(H)

a € A we see that

“T(1(a))QE ® enm) = QF((a))E @ e, @ e,
= Qg (m(a))(§ @ en) ®en,
= Q" mam)(a)(§ ® €,) ® em
= Q" (n,0)%(0,m) ()€ ® €5 @ €
= Q(n,m) (@) @ €(nm)-

Therefore Q*7(m(A))Q is the copy of A inside AX,Z%. A similar computation
gives that

QT (L1)QE ® em) = QT (L1)E e, @ e,
= Q*§ @ ept1 @ €y = £E® €(n+1,m)

so that Q*7(L)Q = L;. Likewise we have that

Q* LQE @ enm) = Q LE @ e, @ 4
- Q*g Xe, & Em+1 = é ® 6(n,m—|—1)~

Therefore we have the required unitary equivalence and the proof is complete. =
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Chapter 4
Examples of Dynamics Over ZSZr

Now we will focus on actions of Z% implemented by a Cuntz family. There are
several examples of dynamics implemented by Cuntz families in the works of Laca
[40] and Kakariadis and Peters [33]. They arise naturally and form generalizations
of the Cuntz-Krieger odometer (Examples 4.2.2). Our setting accommodates Zi—
actions where the generators «; are implemented by unitaries but the unitaries
implementing the actions may not commute. Such cases arise naturally. For example
any two commuting automorphisms over B(H) are implemented by two unitaries
that satisfy Weyl’s relation and may not commute (see Example 4.1.3). By using
results of Laca [40] we determine when an automorphism of B(#) commutes with

specific endomorphisms induced by Cuntz isometries.

4.1 Automorphisms of an algebra

Proposition 4.1.1. Let A C B(H) be an algebra and suppose that a;, a;; € Aut(A)
such that

a; =ady, and a;=ady,,

where U; and U; are unitaries. Then a; commutes with o; if and only if there exists
a unitary for w € A" such that U;U; = U;Usw.

Proof. First suppose that o; commutes with a;. Let W = U;U; and @ = U,U;.

Since «; commutes with a; we have,

UinaU;Ui* = UjUiCLUi*U;,
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That is, WaW* = Qa@)*. So multiplying on the left by Q* and the right by W
we have Q*Wa = aQ*W. Therefore Q*W € A, therefore Q*W = w and therefore
W = Quw thus,

U;U; = U;Uw.

On the other hand, if U;U; = U;U;w for w € A’ then we have,
oziozj(a) = UinCLU;Ui*
= U;Uiwaw*U;U;
= U;U;aU;U; = ajai(a).
and the proof is complete. |

Automorphisms of B(H) are all spatial in the sense that they have the form ady,
[10, Example I1.5.5.14]. Similarly automorphisms of a m.a.s.a. are also given by ady

for a unitary V. [16, Theorem 17.4] In particular, we have the following examples.

Example 4.1.2. If A C B(H) is L*(X,m), where X is a measure space and if
a; = ady, and a; = ady; are automorphisms of A then a; commutes with a; if and
only if

U;U; = U;U; My, with |f| =1 a.e.

where M is the multiplication operator given by Mg = fg and f € L>(X, m).

Example 4.1.3. If o; = ady, and o; = ady, are automorphisms of B(H), for

unitaries U; and U; then o; commutes with «; if and only if
Uin = )\i,jUjUi for >\z‘,j e T.

That is, a; commutes with «; if and only if they satisfy Weyl’s relation.

4.2 Endomorphisms

We now recall the definition of a Cuntz family.

Definition 4.2.1. Let {S;}%, be a family of isometries on a Hilbert space H. Then
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4.2. Endomorphisms

{S;}4 | is a Cuntz family if

d
D 88 =1 and S;8; =0l

i=1

Arveson [7] showed that every irreducible representation of B(H) is unitarily equiv-
alent to the identity representation. We can use this to demonstrate that every
endomorphism of B(#H) is implemented by a Cuntz family. Suppose that we have
a: B(H) — B(H) to be a w*-continuous endomorphism and let o) : K(H) —
B(H) be its restriction to K(#). By [5, Section 1.4] we can write afcm) ~ @id.
Therefore there exist Cuntz isometries {Sy,. .., Sq} such that

d
a(T) =) STS; for all T € K(H).
=1

Since K(H) is a w*-closed ideal of B(H) we have Ww* = B(H) and therefore
the map ok ) has a unique w*-continuous extension to B(H) which is namely «.
Therefore a(z) = Y0, S;zS? for all z € B(H).

Laca [40] shows that the Cuntz family implementing such endomorphisms may not

be unique. We have the following example.

Examples 4.2.2. We have seen that every (unital) endomorphism of B(#) is im-
plemented by a countable Cuntz family when H is separable. Examples of endomor-
phisms of maximal abelian selfadjoint algebras implemented by a Cuntz family have
been considered in [33]. In particular let ¢: X — X be an onto map on a measure

space (X, m) such that:
(i) ¢ and ¢! preserve the null sets.

(ii) There are d Borel cross-sections 1, ..., 14 of ¢ with ¢;(X) N;(X) = 0 such
that UL ,1;(X) is almost equal to X.

Then it is shown in [33, Proposition 2.2] that the endomorphism a: L>®(X,m) —
L>(X,m) given by f +— ¢ is realised through a Cuntz family. Specifically, there are
Cuntz isometries S; : L*(X) — L*(X) such that

Myog|r2(x,my = SiM S}
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4.2. Endomorphisms

for all f € L>(X,m). Such cases arise in the context of d-to-1 local homeomorphisms
for which an appropriate decomposition of X into disjoint sets can be obtained [33,
Lemma 3.1]. As long as the boundaries of the components are null sets then the

requirements (i) and (ii) above are satisfied by [33, Proposition 2.2].

The prototypical example is the Cuntz-Krieger odometer, where

X:ﬁ{l,...,d} and m:ﬁm’
k=1 k=1

for the averaging measure m’, and the backward shift ¢ [33, Example 3.3]. Here ¢
is a local homeomorphism and X can be appropriately decomposed into the (dis-
joint) cylinder sets U; := {(i1,42,...) : 91 = i}. Thus applying [33, Theorem 3.2] in
this case, if a is an endomorphism of L*(X,m) given by a : My — My.s then it
admits an extension to an endomorphism g of B(L?*(X,m)) which is ergodic (i.e.
the von Neumann algebra N,, = {T € B(H) : as(T) = T'} is trivial). Further, ag

is implemented by a Cuntz family.

The results of [33] follow the work of Courtney-Muhly-Schmidt [13] on endomor-
phisms « of the Hardy algebra induced by a Blaschke product. Let (a,) be a

sequence of complex numbers inside the unit disk such that ) (1 — |a,|) < co then

the Blaschke product is

had lan| an, — 2
B(z) = [[ Blan, 2) = —1-2,
n=1 n

where a,, # 0 for all n.

In [13, Corollary 3.5] It is shown that there is a Cuntz family implementing « if
and only if there is a specific orthonormal basis {vy,...,v4} for H*(T) ©b- H*(T).
In [33], further necessary and sufficient conditions are given for a Cuntz family to

implement an endomorphism of L>(X,m).

Definition 4.2.3 (Conjugacy). Two endomorphisms «y of B(H;) and ay of B(H,)
are called conjugate if there is an isomorphism 0 : B(#H;) — B(#z) such that

ooy = apo0b.
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4.2. Endomorphisms

Note that 6 is implemented by a unitary operator W : H; — H, such that
aj(a) = Wrag(WaW™)W,

for a € B(H;). Therefore conjugacy corresponds to «; and as being unitarily

equivalent. Let n be a positive integer and let {v;}7_; be a collection of isometries

which satisfy izzlvjv; < I. Let T, be the algebra generated by the vis. If n < oo

n
the projection I — » v;vf € T, and generates an ideal 7, which is isomorphic to
j=1

K(H). The quotient_’ﬁl/jn is the Cuntz algbera O,, = C*({S;}1,).

Remark 4.2.4. [14], Whenever {S;}? , are n isometries on a Hilbert space H sat-
isfying > S;SF < I there is a unique representation 7 of 7, such that 7(v;) = S; for

j=1,...,n. If n <ooand ) S;SF = I the representation factors through O,, and

(2
thus can be thought of as a representation of O,.

Now let £ be the Hilbert space generated by {v;}7_, with the inner product (z,y) I =
y*x. Then whenever U is a unitary on £ then there is a unique automorphism vy
of T, such that vy (z) = Uz for all z € £. In [40] Laca demonstrates a link between
the representation theory of the C*-algebras 7, to the study of endomorphisms of
B(H) by way of the following theorem.

Theorem 4.2.5. [40, Theorem 2.1] If w is a nondegenerate representation of T, on
‘H then

n

ala) = Zﬂ(vj)mr(vj)* =ad, fora € B(H)

j=1
defines an endomorphism o of B(H). Conversely, every endomorphism of B(H)
arises in this fashion for some n and some representation 7.

Furthermore the set E = {T € B(H) : a(a)T = Ta, for all a € B(H)} is a Hilbert
space with the inner product given by T*S = (S,T) 1 and m establishes a unitary

equivalence between € and E. In particular, 7(€) = E.
Therefore we see that the isometries determine the endomorphism a.

Proposition 4.2.6. [/0, Proposition 2.2] Suppose that m and o are nondegenerate
representations of T, and T, respectively. Then ad, = ad, if and only if m =n and

m™ =0 o~y for some unitary operator U in E.
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4.3. Free Atomic Representations

We now apply this result to examine commuting endomorphisms of B(#). Suppose
that a, f € End(B(H)) commute and are given by

a(r) = Z sizs; and [(x Z tjxt;

i€[n) J€m]

where {s;}icin) and {;};cm) are both Cuntz families. Therefore

ZZstact** ZZtsxs*t*

i€[n] jelm JjE€[m] i€[n

On each side we have orthogonal representations of B(?) and thus we can take the

k ko * gk
E sitjat;s; = E ljsixs;t;.

(i,7) €[n] x[m] (i,4)€[n] x[m]

limits so that

We can see
{sit;}apemxim and  {t;si}a . )xmixim)

both as representations of the Cuntz algebra O,,.,,. Applying Proposition 4.2.6 gives
a unitary operator W = [w),i,)] in Mpum(C) such that

tjsz- = Z w(kymi’j)sktl. (41)
(k:1)€[n]x[m]

We call the unitary W Laca’s Unitary resolution Since [40, Proposition 2.2] works
both ways this condition is also necessary for having that o and g commute. We are
going to use this to study commuting endomorphisms of B(#). However, we cannot
study all such representations as O,, does not have a nice representation space in
the sense that there is no countable collection of Borel functions that distinguish

the unitary invariants. So we restrict our attention to free atomic representations.

4.3 Free Atomic Representations

Recall that a d-tuple of isometries (51, ...,Sy) is called free-atomic if S5Si = 051

d
and ) S;SF < I and there is an orthonormal basis {e, },en for H for which there
i=1
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4.3. Free Atomic Representations

are injections m; : N — N (for 1 <i < d) and scalars \;,, € T satisfying
Sien = )\i,nem(n)-

Davidson and Pitts [22] define the following three types of representation.

Definition 4.3.1 (Left Regular Representation). The left reqular representation of
F¢ acts on ¢*(F%) by
S;e, = e, for v e Fi.

Definition 4.3.2 (Infinite Tail). Fix x = zy29...2, ... to be an infinite word in
Fi. Define z,, = x1z9...x, for n > 0. Let Fiafl denote the collection of words
of the form v = wuz,' for n > 0 and u € F%. Call two words = = z;,...2;, ...
and 2’ = z;, ...%j, ... tail equivalent if there are integers k, ¢ so that iy, 1x = jms
for all m > 0. Identify words after cancellation, i.e. uz, ! = (umnﬂ)z;il. Let H,
be the Hilbert space with orthonormal basis {e, : v € FLz7'}. Then define the

representation S; of Fi by: S;e, = e, for v e F ix_l

Example 4.3.3. Fix the aperiodic word x = 125 ... 2, --- = 01001000100001 .. ..
Then for u € F, let

H = <€u(x1...xn)*1 :n €N, p(ry...2,) " is in reduced form> )

Define Sa€(z,..20)-1 = €ap(er..zn)-1- Lhen this yields an infinite tail representation

with the following diagram:

So
\ So Si So
€ €p-1 €1-10-1 < €p—11-19—1 <« ---
>

€1 Sl So Sl

€0

0(1—10-1) €1(0—-11-10—

A

Figure 4.1
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4.3. Free Atomic Representations

Definition 4.3.4 (Cycle Representation). Fix a non-void word g = g;---go € F.
Let IC be a Hilbert space with orthonormal basis given by

{ejw:1<j<tand weF]\Flgjn}.

Define a representation S; of FZ by:

.
Siejo = e€jy10 i =gjr1, 1 # go

Sierp = Aegy  if i = go,

Siejp = € if © # gjt1,

Sipe—esan w0 # D and w g Flgp,

for A € T. Note that Syejg = Aejp for all 7 € {0,...,¢}. Then the word g is called
the central generator for this representation. A word g = g;---go € FZ is called

primitive if it is not the power of a smaller word.

Example 4.3.5. Let H = (?(N) and let
Sie, = eg, and Sse, = €9,41.

Then Siey = ey and therefore this is a cycle representation with the following dia-

gram:

Si

)

€0

Sy
P
s/ N s/

Figure 4.2
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4.3. Free Atomic Representations

In [22] Davidson and Pitts give a classification of the free atomic representations of

Fi up to unitary equivalence via the following theorem.

Theorem 4.3.6. [22, Theorem 3.4] Every irreducible free atomic representation of

Fi 1s unitarily equivalent to one of the following:
1. The left reqular representation.

2. The infinite tail representation corresponding to an aperiodic infinite word

which is unique up to tail equivalence.

3. The representation arising from a primitive central generator g, which is
unique up to cyclic permutations and a scalar A € T.
The key to this result is the following split into two cases. If the free atomic repre-
d
sentation is given by »_ S;SF < I then it gives rise to the left regular representation.
i=1

1

d
If 75,5 = I then Davidson and Pitts showed that there are two possibilities.
1

i=
Firstly, if there is an eigenvector for the S; then this gives rise to a cycle represen-
tation. However if there is no eigenvector then this leads to the case of an infinite
tail.

4.3.1 Certain Endomorphisms of B(H)

Fix g = ¢;--- go to be non-void primitive word in Fi. Up to permutation suppose
that go,...,q € {0,...,¢} Let H be a Hilbert space with basis {e;,}, for j €
{0,...,t} and w € Fi. Then 5 gives the position in the cycle and the corresponding
branches. Our aim is to identify the unitaries U € B(#H) such that the induced
actions

d

a(z) =ady =UzU* and f(x) =adg = Z S;x S}
i=0

commute, where adg is given by a cycle free atomic representation.

We shall firstly show that we can arrange the weights around the cycle to have
the same value. To this end let {S;}%_, be the representation given by the following:

For i # gy we have
= €j.i if i # gj1

ejr1,0 i =g,
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4.3. Free Atomic Representations

and for w # (), we have S;e;,, = €;4,. Then for i = gy we have

PR €j7gow lfj 7£ t

Sgo€jw =
’ NHlegy if j=t.
Which gives the diagram:
Slu i ;é 92
R 617(2) R
Sg2 Sar
Sii# g3 €2,0 €00 Sni#a
/ \\\ )\t+1 )
~ SQO
s ey
EJ i ?é go
Figure 4.3

We also define the Cuntz family {S;}L, by:

€j,i if i # gj
Si(ij’@ =

Aejpp  ifi=gin

and for w # () we have S;e;,, = €;,. This yields the diagram:
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4.3. Free Atomic Representations

Sia Z 7£ g2
€1,0
SQQ Sgl
A A /
Siv Z # g3 i 6270) 60’@ i Si; Z ?é gl
A A
8 S
> e
Siy 1 3& go
Figure 4.4

These Cuntz families are unitarily equivalent by the following lemma. x

Lemma 4.3.7. The family {S;}, is unitarily equivalent to the {S;}L, via the
unitary

1
Wej,w = Fej,w

Proof. We claim that W.S; = S;W. We have the following cases

e Case 1l (j #t,i = gj41): Firstly we have that

1 1
WSiejp = AWejpip = A- NG = 35610

and,
_ 1 1
SiWej,@ = Fsieﬁ@ = §€j+1,@'
e Case 2 (j #t,i# g;j+1): We have that

1

i

WSZ‘Gj’(]) = W@jﬂ‘ =
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On the other hand

e Case 3 (j =t,i=gp): We see that
WSiet,(Z) = )\W@m@ = /\60’@

and,

— 1 1
SinJt,(z) = ﬁSiem = ﬁ : )\t+1€07@ = )\607@.

e Case 4 (j =t,i%# go): We have

1
WSiet,(i) = Wet,i = ﬁem-
and,
_ 1 — 1
Siwet,@ = ;Siet,w = ﬁet,i

e Case 5 (w # (0): Finally we have that

1 1

WSZ'Gj,w = Wejm = Eemw = Y Sl-ej,w = Siwej,w‘

Thus, in each case WS; = S;IV. ]

Therefore, without loss of generality we now fix the cycle representation to have the
form of {S;}¢_, in Figure 4.4. For the main theorem of this section we will need to
consider permutations. To this end suppose that there exists a cyclic permutation

of {e;p}:_, which induces:
1. A permutation o on {0,...,t}

2. A permutation @ on {go,...,g:} = {0,...,¢} such that g,;) = 7(g;) for all
=0, ..t

We can extend o to Fi by

(wk .. 'wo) — E(Wk) .. 'E(UJ())

Ql

such that o(w;) = w; if w; € {go,-..,9:}. We can now state the main theorem of

this section.
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Theorem 4.3.8. Let U € B(H) be a unitary. If ady commutes with adg, where S
15 the cycle representation given in Figure 4.4, then there exist permutations o on
{0,...,t} and @ on {go,...,g:} = {0,..., €} such that g,;y = 0(g;). Furthermore,
there exist weights g, ..., e € T such that

/J’jea(j),@ wa = ®7
Ue; = ‘
g ‘ % lﬂjvu,wsuea(j)ﬂ if w ¢ ]Figjntla
wl=|w

and Laca’s unitary resolution has the form

where Az ,....np) 15 the permutation matrixz for @ such that

B ifi = o(j)

(AGporme))i; =2 ifi=5(0)

e
0 otherwise.

Conversely if there exist permutations o and & and if U and Laca’s resolution V

have the forms above then ady commutes with adg.
In order to prove this theorem we shall make use of the following preliminary lemmas.

Lemma 4.3.9. Let H = H, & Hs for the Hilbert spaces
Hi=(e,:w#0,weF}) and Ho=(fu:w#0 weF,).
Let the Cuntz family {S;}, be such that

)\6]' ZfZ:j,w:j,
Siew=1S e ifwjlwl=1,i# ],

eiw Otherwise,
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4.3. Free Atomic Representations

and,
)‘fj/ ifi:jlaw:jla
Sifw= 1 f; ifw#j' Jwl =17 # j,

fiw otherwise.

Let U € B(H) be a unitary and suppose that ady commutes with the induced adg

and V = (v; ;) be Laca’s resolution matriz. Then one of the following holds:
(1) v;; =1 and thus Uey = pey for p € T; or
(2) v;; =1 and thus Uey = pfo for p e T.

Proof. It is clear that {S;}&, is the direct sum of two one-cycle representations.

We have the following picture:

Figure 4.5

We have that .
U€0 = U(XSJC()) = XUS]'GO = ZX’ULJ'S@'UGO-

=0

Then,

d
U€0, f() Z Ui 5 Ueg, Sz f()> XU]'J/ <U€0, S;/f()> = Uy 4 <U€0, f0> . (42)

1=0

Thus (Uey, fo) (1—v; ) = 0 and there are two cases, either (Uey, fo) = 0 or v;;; = 1.
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4.3. Free Atomic Representations

Case (1): Suppose that (Ueg, fo) = 0, then for every w # () we have

(Ueo, fu) = X" (USIeo, fu) = 32 Xy (Ueo, S fu)

lgl=|w]
= X‘w‘vw,ﬂw\ (Uea, fo)
=0.

Thus Uey is orthogonal to f,. Applying (4.2) for (Uey, eg) gives that
<U€0, €0> (1 — /Uj,j) =0.

Thus either (Ueg, y) = 0 in which case we have that (Ueg, e,) = 0 and therefore
Uey = 0 or v;; = 1. The first case yields a contradiction since U is a unitary and
therefore we have that v; ; = 1. Since v;; = 1 we have that v, ; = 0if i # j as V is

a unitary. Therefore
d —_—
U€0 = XUS]B() = XZ Ui,jSier = /\Sj(U€0).
=0

Hence Uey is a A-eigenvector of S; and thus Uey € Cey and so Uey = peg. Since U
is a unitary we have that |u| = 1.

Case (2): Now suppose that v;;; = 1 then similarly to above, we have
v; =0 iftj#T
Vjir = 0 lf] 7£ 1.

Then
— — d f—
er = )\USjeo = )\Zvi,jSier = )\Sj/(U@(]).

i=0
Therefore Uey is a A-eigenvector of S}, thus Uey € Cfy and so Uey = pfy. Since U

is a unitary we have that |u| = 1. m

We now proceed to decompose H as follows. For w € FE™ with |w| =t + 1 define

FU>t+1) ={S, : t + 1 divides ||, u # w*, k € N},

73
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Then set
Ho= (PO Ve,

where c is a cyclic permutation of the word g. We shall show in the following lemma
that
H=H, @ ®Hy = (Ft + Degy) B <]—"Ct(g)(t n 1)et,@> .

Therefore we must show that every vector in H lies in exactly one of the H;.
Lemma 4.3.10. With the aforementioned notation we have that:
(1) For all w € FL there exists a unique i € {0, ...t} such that e;,, € H,.
(2) Ifwe FEO(t 4 1) then:
(a) Sweig L Syeig for allv € FEO(t 4 1) and,
(b) Sweig L Sye;q for all v € FEO(t 4 1).
Proof. (1) We wish to find an appropriate v such that e;,, = S,e;¢ Firstly note
that the vector e is in the cycle and satisfies

Swejvw = 6j,'UJ7

and |w| = p(k 4+ 1) +r where 0 < r < k+ 1. Now choose an ¢ such that e; is
connected to ey by (k+1)—r steps along the cycle. That is, choose a word w’ € F%
such that,

Sweig = )\(k-&-l)—rej’w'
—k —
Let f=A i "e; then

~—k+1—7r ~—k+1—r

Swa’f = Swa’)\ €0 = A )‘]H—l_rswej,@ = Swej,@ = Cjw-

Also,
lw|+|w'|=pk+1)+r+(k+1)—r=(p+1)(k+1).

Therefore taking v = ww’ we see that S,e; 9 = €., € H;.

(2a) Without loss of generality suppose that |w| > |v|. There are two cases. If

w # vw' we have that

<Sw€i,@v Suei,®> = <€i,w7 6i,u> =0.
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If w = vw' then
<Sw€z',@, Suei,®> = <Su5w/€i,@, Suei,®> = <Suei,w’>Suei,@> = <6i,w’7€i,®> =0.
(2b) Again assume that |w| > |v|. Then if w # vw’ similarly to above we have that
(Swein, Svejp) = 0.
If w = vw" we have
(Sweip, Svejp) = (SuSweip, Svejp) = (Sveiw, Svejp) = (€iw,€j0) = 0. n

Now set (adg)'™ = adg where S = {Su}u=t+1- Then since ady commutes with adg

it also commutes with (adg)®*!. Therefore we have the following picture:

)\t+1 )\t-i—l

o
%
S

Sy, pb # g with weights Sy, 1 # c'(g) with weights

Figure 4.6

Moreover for a unitary @), adguq+ commutes with adggo.. We may choose a @
which makes the weights on each of the branches in the above picture equal to one.
Then @ preserves the peaks of each summand and hence by Lemma 4.3.9, QUQ*
permutes the peaks. As @) is diagonal then U permutes the peaks. Therefore, there
is a cyclic permutation o of {0,...,t} and u; € T such that

Uejp = Hj€o(j).0-
We can now turn to the proof of our main theorem.
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Proof of Theorem 4.3.8. For the forward direction we have to show that o € S}, de-
fines a cyclic permutation of the word g, and induces a permutation & on
{90,.-.,9:} = {0,..., £} such that o(g;) = go;)- That is, (for w = () we have

to show that if U is as above then

Sgoisn €oi)) = A€o(it1),0-

By the arguments above, the unitary U takes peaks to peaks and therefore
XUng@zyw = Ueit1,0 = Hit1€0(i+1),0-

On the other hand applying Laca’s criterion [40], gives that

d
AUSg, €0 =AY Vg SkUeig

k=0

d
= XD kg i Skea0-
k=0

Il
>

U5 (gi 1 1),9i+11i05(gi 1) €a (i),

Therefore we have that

[i41€o (1410 = AVs(gis1).gi HiSF(gisr) Ea(i) 0 (4.3)

since by construction ey(;) ¢ passes to €q(i+1),0 by Sgg(i o Therefore we must have

that go(i+1) = 0(gi+1). Applying this in (4.3) also gives that

v _ Hit
o(i+1),giv1 — —
' 2%

as required.

Now for the case where w ¢ Flg;,1, by applying Laca’s resolution we have

Uejw = USyejp = Z VpwSuUej 0 = Z V0 S 1o (5,05

p|=[wl p|=[wl

as required.
For the reverse direction we need to consider four cases.
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Case 1: (w=10,7# gj+1)

By direct computations we have that
d
USiejp = Uej; = Z iUk i SkCo(5),0-
k=0

On the other hand by Laca’s resolution we have

d d
Z viSpUejp = Z 1§ Vk i SkCo(5),0-

k=0 k=0

Case 2: (w=10,1= gj1)

Here we have that

USy, €0 =Ueji10 = j1€5(j+1),0-

On the other hand by Laca’s resolution,

d
Hj+1
D kg SkU €0 = 15V5(g511),501 S0 41) € ()0 = 1 —Zb €o(j+1).0-

k=0 J

Case 3: (w € Flgji1, i # gj+1)

Here we have, USiej . = Uejiw = Y. [ VuiwSu€s()0-
|p|=liw]

On the other hand,

d d
ka,iSkUej,w = ka,isk( Z M- Uu,wsueo(j),ﬁ)
k=0

k=0 v]=lw]

d
=3 D 1y kirwSkCo(i)0

k=0 [v]=lu|

= Z 115 " Upsiw Suo(5).0-

|n|=liw]
Case 4: (w & Fd g1 i = gj1)
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Calculating directly,

Ung+16j7w = USQ,7'+1U)6]}@ - Z Hj - UM79,7'+1U)SM60(]')»@‘

lul=lgj+1w|
On the other hand,
d d
kavgj+1SkU€jvw = Z Uk,g; 1k Z 1 VuwSu€o(j),0)
k=0 k=0 lv|=|w|
d
- Z Z 11 * Vk,gj 2 VvwShwCo(4).0
k=0 |v|=]ul
= Z 1 * Vpsgs 1w pCa(s) 0-
lul=lg;+1w]
Therefore Laca’s criterion holds in each case and the proof is complete. [

4.3.2 Examples and Applications

As an application of Theorem 4.3.8 we have the following result when all of the

weights g, . .., g are equal to 1. For a word w = w, - - - wy define

suppy(w) ={i € {0,...,r} 1 w; #0,...,(}.
For n € Z, write
Ho = <6j,@ ZjE {Oaat}>

and

Hjn = (€jw : suppy(w) = suppy(n)) .
We write v — w if:
1. |v| = |w].
2. supp,(v) = supp,(w).
3. v; = w; for all i & supp,(w).
4. v; €49g0,-..,g¢} for all i € supp,(v).

We then have the following corollary.
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Corollary 4.3.11. Suppose that ady commutes with adg, where S is the cycle rep-
resentation given in Figure 4.4. Then, by Theorem 4.3.8 U permutes the cycle by
some weights po, . . ., . In addition, suppose that g = --- = pu = 1. Then Laca’s

unitary resolution has the form

Az 0
0 B

V:

Y

where Az is the permutation matriz for the permutation o and,

Uejw = Z Vs(v),wCo(j),7(v)

v—w

up to a constant of modulus one.

Proof. We proceed by induction. For Hg, by hypothesis we have that
Uem = €5(4),0-

This gives the required result for H,.
For the n = 1 step: Let j € {0,...,¢} and note that

Hj1 = (ejw @ for |w|=1,w#j,j€{0,...,0}).

Then

d d
Uejw=USyejp = thwSkUej,@ = Z Vk,wSkCo (5),0

k=0 k=0(+1
d d
= E : VkwCo(j),k = E Vo (k),wCo(j),5 (k)
k=0+1 k=0+1

where k € {{ +1,...,d}, o(j) € {0,..., ¢} and k # o(j).

Now for the inductive step, assume that Ue;., = ) Vzu)weos(j)zw) for all 1 <
V—w
m < n. Then we have two preliminary cases.

Case 1: Suppose that n = *---* 0 is the binary expansion of n written in reverse
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order. Thenn+1=x%---%1 and

Supr(”):{T:ir>"'>il3i17é0}7

thus
suppo(n+1) = {r =14, > --- >i; > 0}.

First let w = w, ... wy such that supp,(w) = suppy(n + 1) with w, & {go,...,ge}

and
d

U€j7w = USwrej,w/ = Z vl,mwTSerejM/. (44)
vr=f¢+1

Now, note that supp,(w’) = suppy((n + 1) —2") where n +1 —2" < n as r > 0,

therefore

and by the inductive hypothesis, (4.4) becomes

d
U€j7w = E § Ul/r,wrUE(V’),w’ea(j),VrE(V’)‘

vp=0+1 v —w’
We see that v — w = w,w’ with w, ¢ {0,...,¢} if and only if v/ — w’ with

v, € {0,...,¢}. Also if we have v — w, v =v,/, V' — w' and v, € {0,...¢} then:

€o(j).a(v) = Co(i)awr)a(w) = Co(j) ()

Therefore

Vypowr * V() w' = Vua(v)wer’ = Us(v),w-

Hence we see that we have the required equality as

d
Ue.]»w = : : : : UVvaT UE(Vl)vw/eU(j)vyTE(V/) = : : UE(V)7w€O-(j)1E(V) :
vr=f+1 v —w’ v —w’

Case 2: Now suppose that n = *--- % 1 is the binary expansion of n written in

reverse order.

We consider three sub-cases.
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Case 2(a): First suppose that supp,(n) = {i, > -+ > i1} such that
suppo(n+1) ={i,+1>--->io+1>d0+1:ig—iy =+ =i, — iy = 1}.

Set x := 7, + 1 then we have w = w,w’" with supp,(w) = suppy(n + 1) and w, ¢
{90, --,9¢}. So we have:

d
Uejw =USy,€juw = E Vyg s Ovp U

Ve=0+1

and,
suppy(w') = {ip-1+ 1>+ >idg+1>i;+ 1} =suppy(n + 1 — 2%),

where n + 1 — 2% < n. So by the inductive hypothesis we have:

d
Uej,w = E E Vg we Va(v),w' €o(5),va5 (V')

Ve=A+1 vV —w’

Again, we see that v — w = w,w’ with w, & {0,...,¢} if and only if v/ < w’ with
vy € {0,...,0}. Also if we have v — w, v = 1,1/, V' — w' and v, € {0,...¢} then:

€o(j).a(v) = €o(3)a(ve)a(w) = Co(j)veo(V'):

Therefore

Vypwe * V(") w' = Vvpa(v)wer’ = Va(v),w-

Hence we have

d
Uejw =Y D Unpun V() aCo)ms) = D Vo) wCol)aw)-

Ve=A+1 v —w’ v—w

Case 2(b): Suppose that

SUppy(n) = {ip > -+ > ipyy > iy >+ >0}
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Withip+1—ip22andi2—i1:...:Z'p_ip_l:1‘ Then
suppy(n + 1) = {iy > -+ > ipp1 > ip+1> - > iy + 1}

Set x =14, # 0. Let w = w,w’ with supp,(w) = suppy(n + 1) and compute
d
Uejw=USw,€jw = Z Uy e v, U
Ve=f+1

and,
supp,(w') = {ip_1 > -+ >dpp1 > dp+ 1> >ig+1> i1+ 1} = suppy(n+1—27),

where n + 1 — 2% < n. So by the inductive hypothesis we have:
d
Uejvw = Z Z UvawacUE(V/)vwleU(j)szE(vl)'
Ve=t+1 v/ —w’

Then, performing similar computations as before we have that

€o(5),5(v) = €o(§),a(ve)a(v’) = €o(§)vaa(')

and
Vipowy * V(") w' = Vua(v)wev' = Va(v),w)
which gives the required equality.

Case 2(c): Now suppose that w = zw,---wy with z; € {0,...,¢} and
supp,(w, - - - wy) = suppy(n + 1). Hence

suppy(w) = supp,(wy - - - wo)

and w, is the first occurrence where w, ¢ {0,...,¢}. Set w, - --wy = w” then

Uej,w = USzej,w” = SE(z)Uej,w” = Sﬁ(z) Z Vz(v),w" €o(j),5(v)

v—w’

= Z Uz (v),w" €o(j),(2)a(v) = Z U5 (v),wCo(j)a(2v)

v—w’! v—w’
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Now notice that v — w” if and only if 2z < w and vy, = 1. Hence

V5 (w)w" = Va(zv),w

and we have

Uej,w = E V5 (v),w" €o(j),5(w) E V5 (zv),w€o(j),5(zv) E V5 (w),w€o(j),a(v)"

v—w' ZU—=w v—w

So we have the required form for U in each case and the proof is complete.

We end this section by noting the following examples.

Example 4.3.12. If 0 = id then Corollary 4.3.11 connects with binary weights in
the following way. Let ¢(n) be the binary weight of n and make the identification

Csw = Csw, @ @ €54, then define

B(¢<n))€j,w = €}, R R €jwy = fj,r R R fj,O

such that .
> Uyw€iw  if @ € supp,(w),
fj,i = l/lif-‘rl
€jw; if i & supp,(w).

Then Ue;,, = B(¢(n))ejn on H;,. That is, U is the block diagonal of the ¢(n).

Example 4.3.13. Fix H = (*(Z,) and let the Cuntz family
Sie, = eg, and Sse, = €9,41.
Let U € B(#H) be a unitary and fix the induced actions
a(z) =UzU* and [(z)= S12S] + S2x5;.
Then a and S commute if and only if
U = Adiag{u®™ |neZ,} for \,ueT,

where ¢(n) is the sequence of the binary weights of n.
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Example 4.3.14. Let H = ¢*(Z) and the Cuntz family
Sie, = eg, and  Sse, = e9,41-
Let U € B(H) be a unitary and write (*(Z) = H, & H, for
Hy={e,|n>0) and Hy;= (e, |n<-1).

Therefore we have the direct sum of two cycle representations. Then either {5, S2}
act as in Lemma 4.3.9 or they interchange the summands. Then we see that the

actions induced by U and {Si, S} commute if and only if U has one of the forms

0 pw*

U:)\Iﬂl@/LIH2 or U= \w 0

(4.5)

where A\, € T and w € B(H;, Hy) is the unitary with we,, = e_,_.

Example 4.3.15. Forn € Z, let H = (*(Zy) = Ho @ H,1 B - D H,, D --- such
that Ho = (eo) and

Hn:<en:n:no-do—l—m-di1+~~-+nk-di’“>,

for ny,...,nx € {1,...,d — 1} and 4y,...,i; € suppy(n). Let the Cuntz family
So, -+ ,94-1 be given by

Sken = Cdn+k

fork=1,---,d—1and{e, :n=0,1,---}. Let U € B(H) be a unitary and fix the

actions

d—1
a(x) =UzU* and f(z)= ZSkaZ.
k=0

For n =ng-d°+mny-d* +---+ny-d*, let ¢(n) be the binary weight of n and make
the identification e, = e,, ® - -+ ® e,,. Then define the unitary

I 0
V= [() W¢(n)] ’

W¢(n):WO®"'®Wk,

where
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with

W when n; # 0,
W, =
1 when n; = 0.

d—1

Then, the actions « and 5 commute if and only if Ue,, = A > Wwe*Me, on H,, for
j=1

AeT.
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Chapter 5
Bicommutant Property

As stated previously, we are interested in examining the bicommutant property and
reflexivity of our semicrossed products. In this section we detail our results regarding
the former, when the dynamics come from a uniformly bounded spatial action. We

will deal with the Fi and Zi cases separately.

d
5.1 Systems over [

Our first result regarding the bicommutant property is in the following theorem

Theorem 5.1.1. Let (A, {c;}icjq) be a w*-dynamical system of a uniformly bounded

spatial action implemented by {u;}icqa). Then we have that
(.Aya ,Cd)/ = A/ Yu Rd and (A/ ;u ,Cd)/ = .AN ;a Rd

and that

(AR R = AXu Ly and (A X, Ra) = A" Ko La.

Proof. We shall show the first two equalities, the others follow in a similar manner.
For the first equality we begin by demonstrating that A’ X, Ry is in the commutant
of A X, Ly. Recall that A’ X, Ry is generated by p(b) =b® I and W;; = u; ; @ 1
for b € A'. A X, Ly is generated by 7(a) and L;. By direct calculation we have;

p(O)L,=bRNIR]) =], =1®L)(bxI)=Lpb),

WiiLi = (uij @) (I @) = u;; @ I = (I @ Li)(u;; @ v5) = LW 5.
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Similarly,
p(0)7(a)€ ® ey = p(b)am(a) ® ey
= bag(a)€ @ ey
= ag(a)bé ®e,, forallae Abe A
and

Wi m(a)§ @ ey = (Ui ® ri)am(a)f ® ey
= U ;0 (a) € @ €y
= a;05(a)u; j§ ® ey
= agi(a)ui;.§ ® ey

=7(a)W; ;£ ®e,, forallae A

Therefore the generators of A’ x,, Ry commute with the generators of A X, L4 and
thus A" X, Rq C (A X4 Ly) .

For the reverse inclusion let T be in the commutant of A X, L. As the Fourier
transform respects the commutant it suffices to show that G,,(T) is in A’ X, Ry for
all m € Z,, and it is zero for all m < 0. For u,v € Iﬁ‘i and by using the commutant

property we get that

<T,u,1/£7 77> = <T€ @ ey, n & ep,>

= (TL,& ® ey, @ ey)
- <LVT£ ® 6(2), 77 ® e,u>
=

T¢®ep,n@Le,) .

However we have that (1,)*e, = 0 whenever v &£, pu. Therefore T is right lower

triangular and thus

D jpg=m BTy i m =0,

0 it m <0,

for T{,y = ZweFi Towgiw ® P = RZGm(T). As the Fourier transform respects the
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commutant we also have that G,,,(T') € (A X, L) as well. Moreover we have that

Z Twﬁ,wg ® Cun = Gm(T)ng ® ep

lul=m

= Lme(T)f & eg
= Z Tﬁ,@& ® Cuwn

|pu|=m

and therefore T{,) = p(T5p) for all pu of length m. In addition we have that

Y Tapaé @ ez = Go(T)7(a) @ €

|pul=m

3

(@)Gm(T)E @ ey

= 7(a)Tr0é ® ex
|

m

a,(a)Tgpé @ e

m

T

T

and therefore T ga = o, (a)Typ for all @ € A. Now, for p = pi, ... 1 and j; € [n,,,]
we set

b#7j1 ~~~~~ Jm = Uﬂlajl T v#m:jmTﬁvw
where v; is the inverse of w;. Then b, ;, is in A’ since

----- Jm

a- vlh»jl e ’UﬂmvjmTﬁvm = /U//flvjl e vﬂmvijéNm e Oé;u«l (G)Tﬁ’@
= Uulhjl e U/J'mvjmapf(a)Tﬁ:w

=V ji Vo jm L1200 * @

for all a € A. Therefore we can write

R;LT(M) = Z Ut Z R/—Lp(uﬂmvjm e U’thl)p(b/ivjl ~~~~~ ]m)
Jm€Mpum]  J1€[np,]
- Z T Z W.U‘mvjm e W/»‘l:jlp<b#7j1 )))) .]'m)
jme[’"‘ﬂ'm] jle[nﬂl]
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Then if F' is a finite subset of [n,,] we have

H Z WNm,]m T W/Lly]lp(buﬂl77]m)” =

J1eF
=D U U 1 Vs s+ Vpi o T
J1EF
< o o D 1Oy | 102+ Vg | [ T
J1EF
< K2 || Taoll,

where K is the uniform bound for {%,}, and {v,},. Inductively we have that the
sums above converge in the w*-topology and therefore each R, T, is in A’ X, Rq4. As

in Proposition 3.2.5 an application of Fejér’s Lemma induces that 7" is in A’ X, Rq.

We now move on to show the equality (A’ x, Ly) = A" X, Rq4. Performing similar
calculations to those above we have that A" X, Ry C (A X, Ly). For the reverse
inclusion let 7" be in the commutant. Then 7" commutes with all L;p(u; ;,). First let

v £, u with v = v, ... vq; then

<TP«7Vqu:jk e 'uVlJlgﬁ 77> = <Tp(u7/k7jk s u'/l,jl)£ ® ey, N & €M>
= <TLVp(qu7jk 3 'uV1,j1)£ @ ep, N & 6,u>
<Lvlo<ul/k,jk . 'ul/17j1)T§ X ep,n & €,u>

Therefore by summing over the j; we obtain

Tu,u = E T E 1, v g oo oy 1 Vo gy - Vg = 0

jke[nuk} jle[nul]

so that T is right lower triangular. We can check the non-negative Fourier co-

efficients. For m = 0 we have that T{g) commutes with p(A") and therefore every

90



d
5.1. Systems over F¢.

T is in A”. Now for w € FL with w = wy, ... w; we have that

Tw7wuwk,jk s uwhjlf Q) €y = GO(T)pr<uwk7jk) T p(uwl,ﬁ)f ® ep
= pr(uwmjk) e 'p(uwh]'l)GU(T)g ® ep

= Uwpjj, " ° UW1,J'1T@,@£ @ -

Consequently we obtain

v (Tpp) = .+~ s, (T p)

= § : T § : Uy, g * " uwlyle@,(DUWhﬁ © Uy,

]ke[nwk} jle[nwl]

:Twﬂv E: E: uwk,jk"'uwhhvwldl"'ka,jk:Twﬂv'

jke[nwk] j1€[nw1]

Thus we have that Go(T') = 7(Tpg). Now let m > 0 then since G,,(T") commutes
with L;p(u; ;,) we have that

Ty Lip(uij,) = B,Gu(T) Lip(uij;) = B, Lip(uij,)Gm(T).
However for £ ® e, € K we have that
(Ru)"Lip(uij,)Gin(T)E ® €y = i3, T @ () iy = Lip(ui ) T()€ @ ey,

therefore T'(11) commutes with L;p(u; ;,) for all <. Furthermore for b € A" we get
that

= p(B)(R,)*Co(T) = ()T,

Therefore T, is a diagonal operator in (A’ X, L4)" and thus T(,) = m(T54) by what
we have shown for the zero Fourier co-efficients. Therefore we have that G,,(T) is
in A" X, Ry forallm e Z,. ]

From this we have the following corollaries. Note that the equivalence between
items (i) and (ii) follows by using Theorem 5.1.1 to write (A X, Ly)” = A" X4 Ly
then applying the compression to the (0, ))-entry.
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Corollary 5.1.2. Let (A, {a;}icla) be a w*-dynamical system of a uniformly

bounded spatial action. Then the following are equivalent
(i) A has the bicommutant property;
(1i) A Xq Ly has the bicommutant property;
(11i) A X, Raq has the bicommutant property;
(iv) A® Ly has the bicommutant property;
(v) A® Ry has the bicommutant property.
If any of the items above hold then all algebras above are inverse closed.

It is known that commutants are inverse closed algebras, therefore we have the

following application.

Corollary 5.1.3. (i) Let {c;}icig be a uniformly bounded spatial action on B(H).
Then the w*-semicrossed products B(H) Xq Lq and B(H) X4 Ra are inverse closed.
(ii) Let (A, {i}icia)) be an automorphic system over a mazimal abelian selfadjoint
algebra (m.a.s.a.) A. Then the w*-semicrossed products A X, Lyq and A X, Rq are

inverse closed.

Proof. In both cases we can write A = B’ for a suitable B and then B x, L4 and

B x, R4 are well defined. The result then follows by applying Theorem 5.1.1. N

d
5.2 Systems over Zf

The main result regarding the bicommutant property in this setting involves ap-
plying the decomposition developed in Proposition 3.3.15. We can apply Theorem

5.1.1 recursively to each separate factor to obtain the following.

Theorem 5.2.1. Let (A, o, Z%) be a unital w*-dynamical system. Suppose that each

a; 1s implemented by a uniformly bounded row operator u;. Then
(AXGZLY =~ (- (A Xy T )Xy Zy ) -+ ) Xy Loy

where U; = u; @Y e fori=2,...,d.
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Proof. We show the case when d = 2, the result then follows by iterating. By
Proposition 3.3.15 we have that

AXGZE = (AXo, Ly )Xa; Ly
where a3 = s ® Ip2(,)). By Theorem 5.1.1 we also have that

(AYOH Z-i—)/ =A §u1 Z-I—'

Hence,
(AXoZY) = (AXay Ly ) Xa; Ly )
— (A%, 1) Xz Zs
- A/ §u1 Z+§{[§ Z+7
where 1 = uy ® 2. [

Theorem 5.2.1 and Theorem 5.1.1 now imply the following corollary.

Corollary 5.2.2. Let (A, o, Z%) be a unital w*-dynamical system. Suppose that
each oy is implemented by a uniformly bounded row operator u;. Then the following

are equivalent
(i) A has the bicommutant property;
(1)) AXoZYL has the bicommutant property;
(i) A @ H>(ZL) has the bicommutant property.
If any of the items above hold then all algebras above are inverse closed.

Corollary 5.2.3. (i) Let (B(H), o, Z%) be a w*-dynamical system such that each o
is implemented by a uniformly bounded row operator u;. Then the w*-semicrossed
product B(H) X o Z% is inverse closed.

(ii) Let (A, a,Z%) be an automorphic system over a mazimal abelian selfadjoint

algebra (m.a.s.a) A. Then the w*-semicrossed product AX, Z% is inverse closed.

The proofs of each of these follows from the same reasoning as in the case for F¢

and are omitted.
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Chapter 6

Reflexivity of Semicrossed
Products

The purpose of this section is to develop some results regarding reflexivity for each
of the w*-semicrossed products that we have defined previously. Once again, we

split our consideration to semicrossed products over FZ and those over Zi.

6.1 Semicrossed Products over Fi

Let (B(H), {i}ic|q) be a unital w*-dynamical system of a uniformly bounded spatial

action such that each «; is implemented by
ui = [uig]jiem)-

We shall obtain our reflexivity results by showing that B(H) X, L4 is similar to
B(H) ® Ly for N =3)".n;, where N is the capacity of the system. To this end we

define the operator
U: HeFY) - He(FL,

by U(§ ® ep) = £ ® ey and,

U(f ® e(ﬂkvjk)w(ﬂl,jl)) - <uM17j1 U uuk,jkg) ® Clag..pi1 -

For words of length k we can define
ICk = span{f ® €(upsgn) - (p1,1) | g € H’ (Hza]z) € ([d]v [nuz])}
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By construction Ulx, = € u, and so
nl=k

10l < sup 7] = |
lul=k

um'(um@[[nul])”'(uuk@)][ })H <K7

Mopy Mg g =

where K is the uniform bound for {u;},c[q. Additionally the ranges of I under U

are orthogonal and so ||U|| = sup ||U|k,|| < K, therefore U is bounded. Also note
lul=k
that U is invertible with

U™ He P(FL) — H e (FY)

given by U H§ ® eg) = £ ® ey and

U71<€ ® i) = Z o Z Vg Vin & | © € i) (urn)

J1€np,] Jr€[nuy)

where v; is the inverse of u;. We can see this since

UU_lg ® Cup.pr = U Z e Z Upgeogie " 'Uu1,j1§ ® € (torin) -+ (p1,41)

J1€[np, ] jkG[TLuk}

= (Ui - Uy i) Z T Z Ui ™" " Vpn s §Cpagopn

jle[niﬂ} jke[nuk]

We can see that each term cancels here and thus we have that UU ! = I. Similarly,
U_1U§ @ € (g ) (p1.1) = U_l(uul,jl e Uy € ® e#k-n#l)

= § : T E : Upp,gie " " Yy, (uuhjl T ullk»jk)g & € (g i) (11,51) -

J1€[np,] Ir€lnuy,]

Again, each term passes through the sum and cancels and thus, U~ ! is indeed the

inverse of U.

Theorem 6.1.1. Let (B(H),{i}icla) be a w*-dynamical system of a uniformly
bounded spatial action. Suppose that every «; is given by an invertible row operator
ui = (Ui ]jiem) and set N =3,y ni. Then the w*-semicrossed product B(H) X o La
is similar to B(H) ® L.
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Proof. We will show that U as constructed above yields the required similarity.

Recall that o, (z)u,, j; = u,, j;x. Therefore applying for x € B(H) we have

ﬁ(m)Uf O €(pprgi) - (1,g1) = Oy =" Oy (x)ulllvjl o 'uuk,jkg & €y
= Upy gy " uuk7jkxf ® Cup...pn

= Up(z)€ @ €(u ). 1)

On the other hand we have that

LUE® C(uksdi)--(p1,41) = Lium,jl e 'uuk,jkf & €

= Upq,5p " uuk,jk£ ® Cifigg...un -

Now applying on the second generator we have that

U Z Li’jz’p(vi’ji)g ® C(pksdi)--(p1,41) =

Ji€ni]

=U Z V35§ @ €(ig) (ki) (11 1)

Ji€[ni]

= E : Upy g - 'uﬂkajkuiajiviajig @ Cipg.oy
Ji€nil

= Upy 5y - - 'ummjkf ® Cipg...p1

since  ; cp,. WijiVig, = 1. Hence we have

U™'LiU = > Lijp(viy,) for all i € [d].

Ji€lni]

Therefore the generators of B(#H) X, L4 are mapped into B(H) ® Ly. To complete
the proof we need to show that the elements p(z) and U~'L;U also generate

Lij, for all (i, j;) € ([d], [ni])-
Since every wu; j, is in B(#H) we have that

U™ LiUp(uij,) = Y Lijyp(vi)p(uiz,) = Lij,

Jleni)

as required. m
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6.1. Semicrossed Products over Fi

Theorem 6.1.2. Let (A, {c;}iciq) be a w*-dynamical system of a uniformly bounded

spatial action. Suppose that every «; is given by an invertible row operator u; =

[wigljicm,) and set N =3 e qni.

(i) If N > 2 then every w*-closed subspace of A Xy Ly or A X, Ry is hyperreflex-
ive. If K is the uniform bound related to {u;} then the hyperreflexivity constant

is at most 3 - K.
(i) If N =1 and A is reflezive then A Xy Ly = A X4 Ry = AXyZy is reflezive.

Proof. We remarked previously in Section 3.3.1 that since every «; implemented
by an invertible row operator wu; can be extended to all of B(H) we have that
(A, {a;}icia)) extends to (B(H), {a;}icia)). Therefore

ARy La C B(H) X0 Lg~ BH) @ Ly

by Theorem 6.1.1. If N > 2 then every w*-closed subspace of B(H) ® Ly is hyper-
reflexive with distance constant at most 3 by [9]. As hyperreflexivity is preserved
under taking similarities, by Corollary 2.4.7 we have that the hyperreflexivity con-

stant is 3 - K4 and the proof of item (i) is complete. Part (ii) is shown in [30]. =

Corollary 6.1.3. Let (A, {a;}icq) be a w*-dynamical system so that every ; is
gwen by a Cuntz family [s;;]jem). If N = Zie[d] n; > 2 then every w*-closed

subspace of AX 4 Ly or A Xy Ry is hyperreflexive with distance constant at most 3.

Proof. If d > 2 then choose W;; and W5;. If d = 1 then n; > 2 and choose
W11 and Wi, In both cases these are isometries with orthogonal ranges, in the
commutant of A X, L4 by Theorem 5.1.1, and we can apply Bercovici’s result [9] to

get the constant 3. N

Corollary 6.1.4. Let (A, {c;}iclg) be a system of w*-continuous automorphisms
on a maximal abelian selfadjoint algebra (m.a.s.a) A. Then A X, Ly and AX, Ry

are reflexive.

The reflexivity results discussed above can be extended to systems over any factor.
In [27] arguments were developed which covered the cases for Type II and Type II1
factors. We now follow the arguments of Helmer in [27] and treat dynamical systems
over Type II and Type III factors. Again, we treat cases of dynamical systems over
both Fi and Zi. We begin with the following definitions.
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6.1. Semicrossed Products over Iﬁ‘i

Definition 6.1.5. An algebra A C B(H) is injectively reducible if there is a non-

trivial reducing subspace M of A such that the representations
a—aly and a+— alpye

are both injective.

Definition 6.1.6. A w*-dynamical system (A, {;}iciq)) is injectively reflexive if:
(i) A is reflexive.
(ii) A is injectively reducible by some M.

(iii) B,(A) is reflexive for all v € FL with

51/(&) — [a’M O ] ‘

0 ay(a)|ye
Recall that the m-th Fourier coefficient is given by
Gn(T) = —/ UTU e "™ ds,
Also, we have seen that if T € B(H ® (*(F)) then

Z|N|=m ZwEIF‘j_ LM(T,uw,w (9 pw) ifm > O,
0 if m <0,

G <T> =

Thus we have the following.

Theorem 6.1.7. Let (A, o, F%) be a unital w*-dynamical system. If A is injectively

reflexive then the semicrossed products A X, Lq and A X, Rq are reflezive.

Proof. Here, we show the left version, the right is provided in [8]. The crux of the
argument is a translation from the language of w*-correspondences in [27].

Fix T € Ref(A X, Ly) and without loss of generality assume that T = G,,(T). If
m < 0 then G,,(T) = 0. If m > 0 then T,y € A and it suffices to show that

Tuu,u = aﬁ(Tu,@) :
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6.1. Semicrossed Products over Fi

By assumption let Hy and H; = Hy be the subspaces that injectively reduce A.

Now fix a word v € ]F‘Slr and define the subspace
E={{®e,+N® ey :£E€HoyneHi, weFL}
of K =H ® (*(F1). It is clear that E is an invariant subspaces of AX, L, since
T(a)(€ ® ew + 1 ® ew) = am(a) © ey + agp(a)) @ ewy € E

and,
Li(€®ey +N®ey) =R e +N® ey € E.

If p is the projection on E, since this is invariant for A X, £, we have that
Gn(T)p € Ref((A x4 Lg)p).
Now, define the unitary
UV:E—>H®€2(F‘1) ERep+NR ey — (E+1) R ey.
Performing the following computations we have that

Ul,f(a)pU:k = U,jf(a)p(f & €y + n X ewu)
= Uy (@) 1€ ® € + ap5(a)1,)§ @ un
= 2 (aw(@)luo + o)€@ eu.

d
welFy

and similarly that

U, LipUpk = U, Lip(§ ® ey + 1 @ eyy)
= Uy(g X €y + n X eiwu)
= (5 + 77)5 @ Ejap-

Hence we have that

U(a)pU; = Y (am(a) |y + gy (@) © pu

d
weFq
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6.1. Semicrossed Products over Iﬁ‘i

and

Moreover,
[]1,7-']9(];k Z Z Lu<Tuw,’w‘H0 + Tyuw,wV’Hl) ®pw

— d
lul=m weFd

Taking compressions, we have that the (u,()-entry of U,TpU} is in the reflexive
cover of the (u,)-block of the algebra Ref(U, (A X, L4)pU). However the latter

coincides with the reflexive cover of, and hence equals

Br(A) = { [a|§° au(2)|?-[1] la € A}.

This follows since

UV(LM%(CL))(M,@)U:]{ = UV(LM%(CL))(M,@) (®ew+n® ewl/) = (CL|7.,50 + aﬁ(a)yﬂl) @ epw-

Therefore there exists an a € A such that

Tu,@‘?—lo + T,ul/,l/l?h = a’|7'l0 + aﬁ(a)‘ﬂl'

Consequently we have that T),9|y, = alu, and Tyuu|ln, = ow(a)|y,. Since the

restrictions to Hy and H; are injective we derive that
T,o=a and T,,,=oay(a)=an(T,p)
which completes the proof. [

From this we obtain the following corollaries.

Corollary 6.1.8. Let (A, {a;}icia) be a unital w*-dynamical system on a factor
A C B(H) for a separable Hilbert space H. Then AX, Ly and AX,, Ry are reflezive.

Corollary 6.1.9. Let (A, «,Zy) be a unital w*-dynamical system on a factor A C
B(H) for a separable Hilbert space H. Then A X, Zy is reflezive.
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6.2. Semicrossed Products over Zi

6.2 Semicrossed Products over Zi

Again, we develop similar results to the previous section for semicrossed products
over Z%. So, consider the dynamical system (A, {c;}icig,Z%) where each «; is
implemented by an invertible row operator u; = [u;,]j,cn,) Where we write M =

Hie[ 4 i for the capacity of the system. Then we have the following theorem.

Theorem 6.2.1. Let (A, «,Z%) be a unital w*-dynamical system. Suppose that

every o 1s uniformly bounded spatial, given by an invertible row operator u; =

[wijljiem), and set M = Hie[d] i

(i) If M > 2 then every w*-closed subspace of AXoZ% is hyperreflezive. If K; is
the uniform bound associated to u; (and its inverse) then the hyperreflexivity
constant is at most 3 - K* for K = min{K; | n; > 2}.

(it) If M =1 and A is reflezive then AX, Z% is reflezive.

Proof. For item (i), suppose without loss of generality that ny > 2 with K; =
min{K; | n; > 2}. Then we can apply Proposition 3.3.15 and write AX,Z% ~
B X5, Z, for an appropriate w*-closed algebra B. Hence we can therefore apply
Theorem 6.1.2 for the system (B, aq,7Z, ), as its capacity is greater than 2.

For part (ii) we can again apply Proposition 3.3.15 and write A X, Z% as successive
w-semicrossed products. We can then apply Theorem 6.1.2(ii) recursively to each

factor. ]

Corollary 6.2.2. Let (A, a,Z%) be a unital w*-dynamical system. Suppose that at
least one aj is implemented by a Cuntz family [s; j,]cm,) with n; > 2. Then every

w*-closed subspace of AX,Z% is hyperreflexive with distance constant 3.

Proof. Suppose without loss of generality that agq is defined by a Cuntz family
with nq > 2. Then @4 is also given by the Cuntz family {s; ®?~! I'} of size nq. By
Proposition 3.3.15 we can write AX,, Z¢ ~ BX5, Z, for some w*-closed algebra B.

Applying then Corollary 6.1.3 completes the proof. N
This also shows that B(H) ® H>(Z%) is reflexive.

Corollary 6.2.3. Let (.A,Oé,Zi) be a unital automorphic system over a mazximal

abelian selfadjoint algebra A. Then AX,Z% is reflexive.
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6.2. Semicrossed Products over Z2

In a similar manner to the previous section we can also define injectively reflexive

systems in the Z‘i case.

Definition 6.2.4. A w*-dynamical system (A, o, Z%) is injectively reflezive if
(i) A is reflexive.
(ii) A is injectively reducible by M.

(iii) B,(A) is reflexive for all n € Z% with

Balo) = [“’M | ] .

0 apla)|ye

In analogy to the Fi case we have the following theorem.

Theorem 6.2.5. Let (A, o, Z%) be a unital w*-dynamical system. If the system is

injectively reflezive then AX o, ZY is reflexive.

Proof. The proof follows in a similar manner to Theorem 6.1.7. If T is in
Ref(A X, Z%) then T is lower triangular and T, € A for every m € Z%. Thus we
need to show that Ty, = an(T o) for every n € Z%. Let M, M~ be the subspaces
that injectively reduce A. For a fixed n define the space

E={{®ep+N®@eniw:EEM, ne M weZl}.
It is clear that E is an invariant subspace of A X, Z‘i since
m(a)( ® €y TN 6@—&-@) = O‘w(a)g @ €y + %w(a)?? ®epty € F

and,
Lm(f X ey +1n& ener) ={Q®emiw TN emintw € E.

Let p be the projection onto FE, since this is invariant for A X, Zi we have that
Gm(T)p € Ref((AX, Z%)p). Let the unitary

U: E—H®C(Z]) with UEQey+1®enin) = (E+1) Q ey
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6.2. Semicrossed Products over Zi

Performing the following computations we have that

UGu(T)pU (€ +n) ® ey = UGR(T)(§ ® ew + 1 @ €pyu)
=U(Lm Z Tontw m ® Puw ) (§ ® €w + 1 ® ntu)

w’ EZi
= U[<Tm+w,m£ & em—k&) + (Tm+@+g,@+ﬂl ® em-&-m—y)]
= ((Tm—l—w,mg + Tm-i—@—kw,ﬂ—kwn) @ emtw-

On the other hand,

Lin| Z (Tt mlne + Tm+n+w7@+w|ML) ®pw|[(§+1) ® eu] =

g’ezi
= Lm[(Tmﬁ-uLm‘M + Tm-&-n-ﬁ-w,ﬂ—i-ﬂML)] (€ +n) @ ey
= [Teru’,m’M + Tm+ﬂ+w,@+y’M L] (6 +n)® Cm+w

= (Terw,mf + Tm+ﬂ+w@+wn) @ emtw-

Therefore we see that

UGu(T)pU" = Ly, Z (Tn+wawlv + Totmrwntwlvs) @ pu.

QEZi
Indeed,
Ur(@)pU” = > (aw(@)ln + antu(@)|as) @ pu.
weZg
and,
ULlpU*k = (f -+ 77) & Citw,
so UL;pU* = L.

Taking compressions to the (m, 0)-block of A X, Z% we have that the (m, 0)-entry of
UG (T)U* is in the reflexive cover of the (m, 0)-block of the algebra Ref(A X, Z%).
However the latter coincides with the reflexive cover of 3,(A) and hence equals
Bn(A). Therefore there exists an a € A such that

Tm79|M + Tﬂ-&-m@lMi = a|M + aﬂ+m(a)|ML-

Therefore Ty inn = an(a) = oy (T o) and the proof is complete. n
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6.2. Semicrossed Products over Z2

Remark 6.2.6. Type I factors are hyperreflexive. For the capacity N = 1 this is
shown in [30], when the capacity N > 1 this is shown in [8]. In [27, Corollary 3.2
Helmer establishes that Type III factors have infinite multiplicity and therefore, by

invoking a result of Davidson and Pitts in [22], Type III factors are hyperreflexive.

We now end by noting we have reflexivity for w*-semicrossed products of factors in

this case also.

Corollary 6.2.7. Let (A, a,Z%) be a unital w*-dynamical system on a factor A C
B(H) for a separable Hilbert space H. Then AXoZ% is reflexive.
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