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Abstract 

The tremendous development of Interferometric Synthetic Aperture Radar (InSAR) missions in 

recent years facilitates the study of smaller amplitude ground deformation over greater spatial 

scales using longer time series. However, this poses more challenges for correcting atmospheric 

effects due to the spatial-temporal variability of atmospheric delays. Previous attempts have 

used observations from Global Positioning System (GPS) and Numerical Weather Models 

(NWMs) to separate the atmospheric delays, but they are limited by (i) the availability (and 

distribution) of GPS stations; (ii) the time difference between NWM and radar observations; 

and (iii) the difficulties in quantifying their performance.  

 

To overcome the abovementioned limitations, we have developed the Iterative Tropospheric 

Decomposition (ITD) model to reduce the coupling effects of the troposphere turbulence and 

stratification and hence achieve similar performances over flat and mountainous terrains. High-

resolution European Centre for Medium-Range Weather Forecasts (ECMWF) and GPS-derived 

tropospheric delays were properly integrated by investigating the GPS network geometry and 

topography variations. These led to a generic atmospheric correction model with a range of 

notable features: (i) global coverage, (ii) all-weather, all-time usability, (iii) available with a 

maximum of two-day latency, and (iv) indicators available to assess the model’s performance 

and feasibility.  

 

The generic atmospheric correction model enables the investigation of the small magnitude co-

seismic deformation of the 2017 Mw-6.4 Nyingchi earthquake from InSAR observations in 

spite of substantial atmospheric contamination. It can also minimize the temporal correlations 

of InSAR atmospheric delays so that reliable velocity maps over large spatial extents can be 

achieved. Its application to the post-seismic motion following the 2016 Kaikoura earthquake 

shows a success to recover the time-dependent afterslip distribution, which in turn evidences 

the deep inactive subduction slip mechanism. This procedure can be used to map surface 

deformation in other scenarios including volcanic eruptions, tectonic rifting, cracking, and city 

subsidence. 
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Chapter 1. Introduction 

The Interferometric Synthetic Aperture Radar (InSAR) technique has experienced a tremendous 

development during the past 10 years that enables research for mapping the Earth’s surface 

movements at larger scales and with smaller amplitudes than ever before. Apart from already 

in orbit satellites such as Sentinel-1A/B, Gaofen-3 and ALOS-2, many more have been 

scheduled for the period from 2018 to 2025 (e.g., Sentinel-1C/D, Gaofen-3B/C, RADARSAT 

Constellation). One of the most critical challenges when utilizing these data, hampering all 

techniques that require microwaves passing through the Earth’s atmosphere, is to mitigate their 

atmospheric effects due to the spatial and temporal variations of water vapour. This effect may 

dominate over large scales and completely mask the actual displacement due to tectonic or 

volcanic deformation. Accordingly, the aim of this thesis is to provide a generic atmospheric 

correction model through an operational high-resolution numerical weather model, the Global 

Positioning System (GPS), and/or their combination, with particular application to co- and post-

seismic studies.  

 

1.1 Background  

Catastrophic events such as major earthquakes occur when the Earth's crust fails in response 

to accumulated deformation, caused by ongoing processes such as aseismic deformation of the 

subcrustal rock associated with relative plate motions. Geodetic measurements document the 

crustal deformation leading to and resulting from these failures, and provide a unique insight 

into the physical processes involved (Massonnet et al., 1994). As a result, for a range of natural 

events including earthquakes, aseismic fault motions and volcanic eruptions, geodetic 

measurements have been widely applied to constrain the physical models behind such 

phenomena.  

 

Among all geodetic techniques, GPS and InSAR have received massive developments during 

the past 20 years for widespread applications. GPS provides accuracies of millimetre level in 

static post-processing and centimetres in Real Time Kinematic (RTK) for measuring ground 

movements (e.g., Teunissen et al., 2014), approximately 1 mm for troposphere water vapour 
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estimates in post-processing (e.g., Ning et al., 2016) and 1-2 mm in real-time (e.g., Li et al., 

2015), and 2-8 units for the ionosphere Total Electron Content (TEC) (e.g., Spits and Warnant, 

2011). Therefore, it has shown its successes in the global reference frame definition (e.g., 

Altamimi et al., 2002), meteorology (e.g., Bevis et al., 1992), real-time geohazard monitoring 

(e.g., Genrich and Bock, 2006), precision agriculture (e.g., Stafford, 2000) and so on. It is one 

of the key geodetic inputs for geophysical models including co-seismic offsets (e.g., Anzidei 

et al., 2009), post-seismic ground motion time series (e.g., Tong et al., 2010), inter-seismic 

strain rates (e.g., Serpelloni et al., 2005) and slow slip motions (e.g., Li et al., 2016). Apart 

from deformation, an important by-product of GPS is the tropospheric delay from which high-

resolution tropospheric delay or water vapour fields can be generated in real-time (e.g., Li et 

al., 2015).  

 

Compared with GPS, InSAR provides a better spatial resolution and measures the positions of 

millions of points over large spatial extents. The concept of InSAR was first introduced by 

Rogers and Ingalls (1969) who mapped the surface reflectivity of Venus by radar interferometry, 

using amplitude fringes with a wavelength of 3.8 cm. Zebker and Goldstein (1986) extended 

this concept with an airborne platform to produce a topographic map using both the amplitude 

and phase information recorded by the SAR sensors. Under this technique, the interferograms 

from two or more SAR images taken at different acquisitions inevitably contain both the 

signature of the Earth’s topography and ground deformation. It was after Massonnet et al. 

(1993), who subtracted the topographic contribution by a Digital Elevation Model (DEM) thus 

led to a pure co-seismic displacement field for the Landers earthquake, that repeat-pass InSAR 

has been extensively used in the geophysical field. Using the same method, Massonnet et al. 

(1995, 1994) produced the post-seismic deformation for the Landers earthquake and long-term 

volcanic deformation for Mount Etna. Rosen et al. (1998) measured a wide-area distribution 

of an aseismic fault creep by the ERS-1 radar, which was relatively easy to be detected due to 

the creep being discontinuous. Further progress was made by Wright et al. (2001b) who stacked 

an interferogram time series to enhance the crustal strain signal relative to atmospheric and 

orbital errors and produced a deformation velocity field of only 17-32 mm/year over a 70 km 

wide region. Since then, InSAR time series analysis methods have been intensively developed, 
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such as the small baseline (Mora et al., 2002) and persistent scatters (Hooper et al., 2004), 

which eventually enable a wide range of applications such as groundwater pump responses 

(e.g., Bell et al., 2008), landslide monitoring (e.g., Liu et al., 2012), and post-mining activities 

(e.g., Samsonov et al., 2013). Without doubt InSAR will continue to grow substantially for a 

wide range of scientific, engineering, and commercial uses.  

 

1.2 New Era of InSAR 

 

Figure 1.1 An overview of SAR satellites with interferometry capacity, including historic, 

current and planned missions. The revisit time is in days, except for X-band satellites which 

can be in hours. 

With the success of mapping the Earth’s surface movements, InSAR has undergone a 
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tremendous development during the past decade, with emerging missions such as Sentinel-

1A/1B, ALOS-2, TerraSAR-X/TanDEM-X, COSMO-SkyMED, RADARSAT-2, Gaofen-3, as 

well as their successors planned for launch during 2018-2025. Figure 1.1 shows an overview of 

SAR satellites with interferometry capabilities, including historic, current and planned missions. 

As of 2018, there have been at least eight operational SAR missions and a whole 25 years of 

InSAR data time series for major tectonic and volcanic regions.  

 

Among all current missions, ESA’s Sentinel-1 provides for the first-time global coverage 

images, systematically and frequently every 12 (one satellite) or six days (two satellites), freely 

available to the public, and therefore it is believed to have opened a new era for the InSAR 

community. The mission has a long duration, with future launches planned to extend the time 

series to at least 20 years. Since the launch of Sentinel-1A, a fruitful number of Earth 

observation applications have been studied with very promising results (e.g., Feng et al., 2016; 

Lau et al., 2018; Shirzaei et al., 2017). As a result, more and more researchers are gathered to 

look at the Earth with unprecedented details from a SAR point of view, which in turn positively 

impacts future SAR missions. 

 

1.3 Atmospheric Effects on InSAR Measurements 

InSAR phase measurements can be contaminated by several error sources such as the orbital 

error due to inaccurate satellite state vectors, the error introduced by the external DEM, the 

unwrapping error, the decorrelation error, the ionospheric and tropospheric delays. The 

tropospheric effect is conventionally named as the atmospheric effect among InSAR 

communities, although the realistic atmospheric error is a combined effect that comes from both 

the troposphere and the ionosphere. This thesis regards the tropospheric effect as the 

atmospheric effect, ignoring any contribution from the ionosphere whose effect is specifically 

referred as the ionospheric delay. In this context, we will not distinguish between the 

atmospheric delay and the tropospheric delay.  

  

The atmospheric effect represents one of the major error sources of InSAR which may mask 

actual displacements due to tectonic or volcanic deformation. It has become increasingly 
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problematic recently, as the new wide coverage, fine spatial-temporal resolution datasets, with 

precise orbital controls and free data distribution policies, facilitate the studies of small 

amplitude ground deformation, over long time periods and across great spatial scales (e.g., Lau 

et al., 2018; Shirzaei et al., 2017).  

 

1.3.1 Definition of atmospheric effects  

The atmospheric (tropospheric) delay is generated when the microwave signal passing through 

the Earth’s troposphere in the presence of water vapour, with also substantial relationships with 

the temperature and air pressure. It can be represented conveniently at the zenith direction (ZTD, 

Zenith Tropospheric Delay) and then mapped onto a Line of Sight (LOS) direction. There are 

two components of the ZTD in a physical sense, the Zenith Wet Delay (ZWD) and Zenith 

Hydrostatic Delay (ZHD), which are distinguished mainly by their relations to humidity 

(Saastamoinen, 1972). Water vapour can be retrieved from the ZWD when ground 

meteorological measurements (pressure and temperature), or, more precisely, their vertical 

profiles, are provided (Bevis et al., 1992; Jolivet et al., 2011).  

 

The absolute ZTD is one of the key error sources in techniques such as GPS. However, since 

the InSAR measurement is spatial-temporally differenced, it is only the spatial-temporal 

difference between ZTDs of different acquisitions and pixels that affects InSAR-derived surface 

displacements and causes errors comparable in magnitude to those associated with crustal 

deformation (Hanssen, 1998; Walters et al., 2013; Webley et al., 2002; Williams et al., 1998).  

 

There are a variety of different features of the atmospheric delay in InSAR measurements. 

Firstly, the usage of the ZHD and ZWD is not realistic as most of the ZHD component has been 

cancelled by differencing, leaving the atmospheric effect in InSAR measurements to be more 

sensitive to the variations in the water vapour. As a result, the atmospheric delay in InSAR is 

often divided into a stratified component (or an elevation dependent component) which is 

highly correlated with topography, more disturbing over mountainous areas, and a turbulent 

component resulting from tropospheric turbulence. Both the two components are spatial-

temporally variable and may be indistinguishable from ground motions. Secondly, the 
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atmospheric delay signal shares a broad spectrum, with the short wavelength coming from, for 

example, the rapidly changing turbulent component and/or the stratified component at 

substantially variated topographies, and with the long wavelength resulting from, for example, 

a slow-moving weather front over a large spatial extent and representing as ramps on the 

interferogram.  

 

The magnitude of InSAR atmospheric errors can be substantial. Zebker et al. (1997) reported 

10-14 cm errors in SIR-C/X-SAR displacement measurements from only a 20% variation in the 

water vapour, which is large enough to mask actual ground motions caused by a landslide (e.g., 

Luzi et al., 2004), urban subsidence (e.g., Crosetto et al., 2002) and permafrost (e.g., Short et 

al., 2014). There were 0.5 to 3.6 cm atmospheric delay RMS values among a series of 26 ERS 

tandem SAR interferograms in the Netherlands studied by Hanssen, (1998), which could result 

in 2.3 phase cycles for the observed phase values. Every interferogram in Hanssen’s study 

displayed a completely different atmospheric behaviour and it was thus problematic to detect 

them from other errors including satellite orbit errors. Jolivet et al. (2014) showed that the 

stratified atmospheric delay degraded the unwrapping performance over rough terrain and made 

it indistinguishable between the long wavelength deformation signal and different noise sources.  

 

1.3.2 Impact on co-seismic modelling 

Atmospheric delays are typically ignored in co-seismic modelling under the hypothesis that the 

magnitude of co-seismic signals is much greater than that of tropospheric delays (e.g., Gualandi 

et al., 2017; Hamling et al., 2017; Polcari et al., 2017; Simons et al., 2002). However, for 

earthquakes with small magnitude surface displacements, tropospheric delays can be of the 

same order or even larger than ground motions. For example, co-seismic signals for three Mw 

5.2–5.6 2004 Huntoon Valley earthquakes (Lee et al., 2017) and the Mw 5.5 2007 Ghazaband 

earthquake (Fattahi et al., 2015) were completely masked by atmospheric errors, causing 

difficulties to determine the source parameters and to resolve the fault slip distribution. Even 

for some large events such as the Mw 8.3 2015 Illapel earthquake, Feng et al. (2016) found 

serious atmospheric contaminations. A few attempts have been made to address this issue, 

however, they failed in the presence of tropospheric turbulence (e.g., Fattahi et al., 2015), had 
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a delayed response due to the data availability (e.g., Lee et al., 2017), and were limited to certain 

radar satellites (e.g., Feng et al., 2016).  

 

1.3.3 Impact on velocity mapping 

Post- or inter-seismic process modelling typically utilizes a series of SAR image stacks and 

relies on spatial-temporal filters to minimize the atmospheric noise to achieve millimetre level 

velocity mapping accuracies. However, since water vapour is spatial-temporally correlated, the 

atmospheric effect may be enlarged in large spatial extent interferograms or long time series as 

the InSAR measurement is spatial-temporally differenced (e.g., Simons and Rosen, 2007; 

Massonnet et al., 1994; Hooper et al., 2012). For example, Elliott et al. (2008) showed that the 

strain rate measured over short time scales was dominated by orbital and atmospheric errors 

along the Altyn Tagh Fault, and standard stacking techniques could not remove topographically 

correlated atmospheric delays. Jung et al. (2014) found that the stratified atmospheric errors 

were substantially correlated with time and sometimes severely contaminated the quality of 

deformation estimation for volcanic activities, hence preventing the use of the high-pass filter 

in traditional time series methods. Non-steady deformation time series is also hard to distinguish 

from atmospheric errors, making it challenging to detect time-varying processes such as creep 

(e.g., Jolivet et al., 2015; Hussain et al., 2016) or slow slip events (e.g., Cavalié et al., 2013; 

Bekaert et al., 2016).  

 

1.4 Reviews of InSAR Atmospheric Correction Techniques 

Based on the dynamic nature of the troposphere, numerous attempts have been made on the 

quantification and mitigation of InSAR tropospheric effects which are usually divided into two 

categories: internal correction methods which are mostly statistical correlation analyzes based 

on phase measurements, and external data-based correction methods which rely on external 

atmospheric delay datasets.  

 

1.4.1 Internal correction methods 

One of the most popular approaches used to mitigate atmospheric effects on InSAR 
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measurements is correlation analysis, which seeks to capture the spatial-temporal properties of 

water vapour and attempts to separate the tropospheric noise from the ground motion signal 

without any external information (e.g., Williams et al., 1998; Fruneau and Sarti, 2000; Ferretti 

et al., 2001; Hooper et al., 2004). Hanssen (2002) noticed that the atmospheric delay signal 

generally follows a power law spectrum in its frequency domain, and therefore is estimable 

from the phase observations. Only one exponential parameter can be estimated per 

interferogram making it unsuitable for large spatial extent data, and the performance was much 

poorer at long wavelengths than short wavelengths in his study area. Bekaert et al. (2015a) 

proposed a new power law-based correction model in the space domain of measurements that 

allows for a spatial variability of exponent parameters. A large interferogram can be divided 

into smaller pieces whose power law spectrums are estimated independently. However, other 

contamination signals such as orbit errors cannot be handled and manual interactions are 

required, such as a priori information about the spatial extent of deformation throughout time 

for the selection of the non-deforming band (Bekaert et al., 2015b). There are also methods 

which simulate the stratified atmospheric delay by a linear (or exponential) relation between 

the phase and elevation across the whole region (e.g., Elliott et al., 2008; Shirzaei and 

Bürgmann, 2012), or, such as Béjar-Pizarro et al. (2013), by a piece-wise linear correlation over 

multiple adjacent windows to allow for the spatial variation of the stratified delay component.  

 

Overall, this type of approach is straightforward to implement. However, the disadvantages are, 

firstly, there is inevitably a risk of removing actual ground motions, such as those induced by 

volcanic activities which may exert a similar topographic pattern with the stratified atmospheric 

delay. Secondly, the extraction of atmospheric delays from phases can be biased by ground 

motions or other error sources. Furthermore, it is sometimes impossible to quantify their 

performance.  

 

1.4.2 External data-based correction methods 

Since atmospheric delays are non-dispersive, we can utilize the external datasets which provide 

atmospheric delay or water vapour products from instruments other than SAR. There are three 

main types of external data sources, i.e. space-based instruments, ground-based instruments and 
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weather models.  

 

The space-based instruments used for InSAR atmospheric corrections include NASA’s 

Moderate Resolution Imaging Spectroradiometer (MODIS, (e.g., Li et al., 2009b, 2005)) and 

ESA’s Medium Resolution Imaging Spectrometer (MERIS, (e.g., Li et al., 2006b; Li et al., 

2012)). MERIS is ideal for Envisat since their measurements were taken simultaneously, but 

both have been expired since 2012. MODIS provides a 1.0-1.2 mm RMS water vapour 

agreement with radiosondes at ~1 km spatial resolution (Gao and Kaufman, 2003) but is 

restricted to daytime cloud-free conditions. For some newly launched SAR satellites (e.g., 

Sentinel-1 and ALOS-2), there may be a large time difference between SAR and MODIS 

acquisitions (typically > 5 hours) which severely degrades its correction performance.  

 

Ground-based instruments such as GPS and meteorological stations can be used to estimate 

atmospheric delays continuously (e.g., every 5 minutes) under all-weather conditions and are 

capable of capturing small features of tropospheric turbulence (e.g., Li et al., 2006a; Onn and 

Zebker, 2006; Williams et al., 1998). Standard deviations between pointwise GPS water vapour 

estimates and those from radiosondes and microwave radiometers are about 1–3 mm (Koulali 

et al., 2012; Li et al., 2003; Mears et al., 2015) depending on the atmospheric water vapour 

content, with Glowacki et al. (2006) finding the errors were 8–10%. These pointwise estimates 

must be spatially interpolated to generate high-resolution maps for InSAR atmospheric 

corrections. Li et al. (2006a) proposed a GPS topography-dependent turbulence model based 

on the space structure function (Williams et al., 1998) and a linear height scaling function. An 

overall improvement of 50% after correction using the ERS Tandem Data over the Los Angeles 

Southern California integrated GPS network area was obtained. However, the interpolator 

requires a predefined parameter which is sensitive to the local environment and is thus difficult 

to determine. Onn and Zebker (2006) used a frozen-flow air assumption plus an exponential 

function for modelling GPS ZWDs, which improved the interferograms by 43% in terms of 

phase variations. Reuveni et al. (2015) also applied an exponential function but with different 

scale factors for the hydrostatic and wet components of ZTD which corrected, on average, 17% 

of the interferogram tropospheric noise. All these GPS-based correction models are applied 
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blindly to InSAR measurements without any assessment of their applicability or qualities, 

which may lead to increased noise after correction (Chen et al., 2010). Furthermore, few 

previous models have accounted for both the stratified and turbulent components of the 

tropospheric delay and therefore may fail if there are large topographic variations (Houlie et al., 

2016).  

 

Popular weather models include the ECMWF Re-Analysis Interim (ERA-Interim, 6 hourly, 

0.75 degree horizontal resolution, e.g., Doin et al., 2009; Jolivet et al., 2011) and the Weather 

Research and Forecasting model (WRF, e.g., Bekaert et al., 2015b; Nico et al., 2011). Jolivet et 

al. (2011) demonstrated the use of ERA-Interim for atmospheric correction with only the 

stratified atmospheric delay component being considered. It is, therefore, less accurate over 

coastal areas, where the temporal fluctuation of atmospheric turbulence is usually stronger. 

Furthermore, Bekaert et al. (2015b) applied ERA-Interim over Mexico and Italy and reported a 

1.7 cm RMS displacement error of the corrected interferograms, which was insufficient to 

capture both topographic correlated tropospheric signals and local weather turbulent variations. 

Jung et al. (2014) showed that the WRF model can reduce the seasonal variation of the stratified 

atmospheric delay and make the displacement related to volcanic activities being dominant. In 

general, weather models are often released with a latency of several months and tend to be more 

accurate to predict stratified atmospheric delays. Nevertheless, they are typically insensitive to 

turbulent components due to their coarse spatial-temporal resolution.  

 

There have also been attempts to integrate multiple external data sources as compensations for 

each other. For example, Li et al. (2005) interpolated GPS estimates to fill up the cloudy pixels 

in MODIS water vapour maps and to reduce their time difference effects. Löfgren et al. (2010) 

combined both GPS and ERA-Interim data to generate atmospheric correction maps. However, 

they simply used GPS to calibrate ERA-Interim ZTDs instead of properly weighting and 

integrating them. Should there be fewer GPS stations, or the network exhibits poorer geometry, 

their approach may fail.  
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1.5 Aims and Objectives 

Despite the success achieved by the abovementioned methods for InSAR atmospheric 

correction, researchers have increasingly been aware of their inherent limitations. This thesis 

will address some of the limitations which include, (i) the coupling effect of the tropospheric 

stratification and turbulence; (ii) the low spatial-temporal resolution of weather models; (iii) 

the lack of quality control indicators. The overall aim of this thesis is to develop a generic 

InSAR atmospheric correction model to be capable to deal with the challenges arising from the 

vast development of InSAR data and techniques, such as the larger spatial extent and longer 

time series interferograms, higher offset or velocity mapping accuracy requirement and near 

real-time monitoring applications.  

 

The key objectives are summarized as follows: 

O1. To develop a generic InSAR atmospheric correction model by integrating GPS and 

high-resolution ECMWF. An Iterative Tropospheric Decomposition (ITD) model for 

generation of high-resolution water vapour fields and integration of GPS and ECMWF will be 

developed. The key purposes of the generic correction model are to provide atmospheric 

correction maps that comprise features of: (i) global coverage, (ii) all-weather, all-time usability, 

(iii) available with a short time latency (less than two days), and (iv) with performance 

indicators.  

 

O2. To model the small magnitude co-seismic deformation of the 2017 Mw 6.4 Nyingchi 

earthquake by atmospheric corrected InSAR measurements. The developed atmospheric 

correction model will be used to extract the co-seismic displacement related to a buried fault 

located south of the Jiali fault in Tibet from the atmospheric error contaminated InSAR 

measurement. The resulting displacement map will be used to determine the fault plane 

geometry and the slip distribution, providing insights into the oblique convergence of the 

Indian-Eurasian plates. 

 

O3. To model the triggered afterslip on the southern Hikurangi subduction slab following 

the 2016 Kaikoura earthquake from InSAR time series addressing atmospheric 
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corrections. An InSAR time series analysis method, aiming to mitigate spatial-temporally 

correlated atmospheric errors over large spatial extents, will be developed. The method is 

expected to be less dependent on atmospheric delay spatial correlations, suitable for large areas, 

and is able to degrade atmospheric delay temporal correlations before filtering. The corrected 

InSAR interferograms will be used to model the triggered afterslips on the inactive 

southwestern Hikurangi subduction slab which is probably accommodating regional plate 

motions, with the time-varying afterslip distribution being retrieved to investigate the potential 

co-seismic slip on the subduction interface.  

 

1.6 Outline 

The thesis is structured as follows: 

 

Chapter 2 is a concise introduction to InSAR principles, error sources, and features of the 

atmospheric error on interferograms.  

 

Chapter 3 introduces and validates real-time mode GPS tropospheric delay estimates, after 

which an Iterative Tropospheric Decomposition (ITD) model is proposed. The model is 

carefully evaluated through internal cross tests and against the high-resolution (1 km) MODIS 

water vapour map.   

 

Chapter 4 develops a framework to routinely use GPS to reduce tropospheric effects on InSAR 

measurements. The method is validated on five Sentinel-1A interferograms in Southern 

California (with a 10–20 km station spacing network) and Southern England (with a 50–80 km 

station spacing network). The impact of the station spacing on the model performance is 

evaluated. 

 

Chapter 5 develops a generic InSAR atmospheric correction model by tightly integrating the 

high-resolution ECMWF product and GPS ZTD pointwise estimate using the ITD model. The 

model’s performance is tested using eight globally-distributed Sentinel-1 interferograms under 
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various environments. Performance indicator metrics for quality control and model 

applicability are developed. A Generic Atmospheric Correction Online Service (GACOS) is 

developed based on the main methodology of this chapter which automatically generates 

correction maps per user request. 

 

Chapter 6 applies GACOS atmospheric correction maps to co-seismic interferograms, and 

successfully extracts co-seismic surface displacements for the 2017 Mw 6.4 Nyingchi 

earthquake. The buried fault geometry located south of the Jiali fault and its slip distribution 

are investigated.  

 

Chapter 7 recovers the time-dependent afterslip distribution on the southwest Hikurangi 

Subduction Zone by two tracks of Sentinel-1 data after mitigating the spatial-temporally 

correlated atmospheric errors. This gives insights into reviewing the co-seismic slip sources, 

the present status of the inactive subduction plate and future seismic hazards.   

 

Chapter 8 highlights the major innovations and the conclusions of this thesis.  
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Chapter 2. SAR Interferometry and Error Analysis 

SAR is a microwave remote sensing technique that comprises advantages, compared to an 

optical sensor, such as the cloud-penetrating capability, all day and all climate availability and 

high interferometric measurement accuracy. A typical SAR system has three main components: 

it transmits a microwave signal from the satellite to the Earth’s surface, receives a portion of 

the reflected energy as backscatter, and then observes the strength and time delay of the returned 

signal. Each pixel in a SAR image encodes a complex number whose amplitude corresponds to 

the intensity of the returned signal energy and whose phase represents a fraction of one complete 

wavelength. The amplitude measurement, similar to a single band optical image, can be used 

to invert for the surface’s roughness, i.e. the vertical and horizontal irregularity of the surface, 

or to retrieve the first order ground motion by pixel offset tracking (e.g., Michel et al., 1999). 

The phase measurements contain information on the ground target altitude and the displacement 

between acquisitions, from which a DEM map and a deformation field can be respectively 

generated. Addressing the atmospheric effect for measuring ground motions, this thesis will 

focus on the portion of phase measurements that is solely related to the deformation signal.    

 

2.1 Principles of SAR Interferometry 

 

Figure 2.1 The geometry of repeat-pass InSAR. 

 

Phases in a SAR image may be random between adjacent pixels and reflect complicated 

scattering features of the Earth’s surface. However, when one image is multiplied by the 
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conjugate value of another image (a process known as interferometry), the resulting 

interferometric phase can be interpreted as the ground movement during these two acquisitions 

along the LOS direction.  

 

2.1.1 Two-pass interferometric phase 

For a typical repeat two-pass InSAR geometry (Figure 2.1), the interferometric phase 

measurement can be written as (Ding et al., 2008):  

4 4 4

sin
LOS noise

π π B π
φ B θ h d ε

λ λ R θ λ        (Equation 2.1) 

where λ is the wavelength of the radar signal, B is the baseline length with B⊥ the perpendicular 

component; R is the distance between the satellite and the ground target with a height of h; α is 

the orientation of the baseline and θ is the look angle, which is shifted due to the Earth’s relief 

by ∆θ. The first term on the right-hand side of Equation 2.1 is the so-called flattened phase, 

resulting from the elevation variation of the Earth’s surface and which can be calibrated 

according to the baseline length (i.e. the flat-Earth phase removal). The second term relates to 

the target altitude from which a DEM can be generated. The third term relates to the ground 

deformation between the master and slave acquisitions. ε represents the phase noise that could 

come from atmospheric delays, orbital determination errors and so on.  

 

Equation 2.1 implies that the altitude related phase is sensitive to the perpendicular baseline. 

Therefore, if we consider solely the second term and ignore the other contributions, the standard 

deviation of the generated DEM has a relationship with the phase measurement as: 

sin

4
h φ

λR θ
σ σ

π B                      (Equation 2.2) 

while the phase standard deviation 𝜎𝜑 is affected by the baseline length, with shorter baselines 

producing higher qualities, resulting in the retrieval of an accurate DEM inherently requiring a 

long baseline separation. Hence a compromised decision on the geometry has to be made. For 

example, the C-band Shuttle Radar Topography Mission (SRTM) has a fixed 60 m baseline, 

and the X-band TerraSAR-X add-on for Digital Elevation Measurement (TanDEM) has 

baselines varying from 250 to 500 m. 



SAR Interferometry and Error Analysis 

28 

 

2.1.2 Deformation related phase component  

In the situation that DEM information is known, the first two terms of Equation 2.1 are 

determined, leaving a pure phase component that can be interpreted as ground deformation. In 

this scenario, the geometry is usually carefully designed to ensure a small baseline separation 

to minimize the impact of DEM uncertainties. The phase measurement is much more sensitive 

to deformation than to elevations (e.g., a 2.8 cm ground motion along the LOS direction could 

generate a 2π interferometric phase variation for C-band InSAR), so we can achieve at least a 

centimetre level accuracy of deformation, compared to the metre level DEM accuracy.  

 

The InSAR derived displacement is only a projected portion of the actual ground motion along 

the LOS direction, resulting in InSAR measurements being insensitive to surface movements 

along certain directions (Dawson and Tregoning, 2007). A possible solution for this is to 

combine multiple platforms of InSAR measurements with different geometries and look angles 

and to resolve 3D displacement vectors (e.g., Samieie-esfahany et al., 2010).   

 

Figure 2.2 Wrapped and unwrapped 1D/2D phase measurements. 

 

Another key feature related to the phase measurement is that it is wrapped between (-π, π) and 

hence only provides an ambiguous measurement of the ground motion. A 2π-multiple integer 

must be adjusted to recover the continuous displacement, leading to a process which is known 

as phase unwrapping. Figure 2.2 is an illustration of the unwrapping process for 1-dimensional 
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and 2-dimensional InSAR phase measurements, respectively. The fundamental hypothesis 

behind the process is that the gradient between adjacent pixels is less than π. Disobeying this 

will result in an unwrapping failure, which is typical when the magnitude of ground deformation 

or noise such as the atmospheric delay, depending on the signal’s wavelength, is large enough.  

 
Figure 2.3 Flow chart of standard repeat-pass InSAR processing. 

 

Figure 2.3 is a standard repeat-pass InSAR processing procedure. The Single Look Complex 

(SLC) images are multi-looked (i.e. averaged) to increase the signal to noise ratio and to 

improve the computing efficiency. Precise orbit information (recently from onboard GPS 

receivers) is needed to remove the flat-Earth and topographic phase components (see Equation 

2.1). An adaptive filter is applied to the interferometric phase to further reduce the noise level 

and to minimize the loss of signal. The final displacement map is generated after phase 

unwrapping and then geocoded from the SAR geometry to geographic geometry. Several tools 

have been developed to process InSAR data, such as the commercial GAMMA Remote Sensing 

and Consulting AG (https://www.gamma-rs.ch) and the open source InSAR Scientific 

Computing Environment (ISCE) software (https://winsar.unavco.org/software/isce). For a full 

theory of SAR interferometry, readers can refer to (Hanssen, 2001).  

https://www.gamma-rs.ch/
https://winsar.unavco.org/software/isce
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The measured deformation related interferometric phase is influenced by a series of factors. To 

extract accurate deformation signals, contributions except actual ground deformation should be 

quantified and mitigated. These contributions are interpreted as noise (i.e. error sources) in 

Equation 2.1, and can be extended as follows: 

noise atmosphere ionosphere DEM orbit unwrapping coherence instrumentε δ δ δ δ δ δ δ  (Equation 2.3)      

The terms of the right-hand side are the atmospheric delay, ionospheric delay, DEM error, orbit 

error, unwrapping error, low coherence effect and instrument error, respectively. These error 

sources may exert different behaviour but are, to some extent, correlated with each other and 

are affecting the phase measurement in an integrated way. Although being listed as error source, 

there are situations where they can be regarded as useful information, such as when using 

InSAR to sense water vapour content. The following sections will discuss them in detail.  

 

2.2 Atmospheric Effects  

Microwaves are delayed when passing through the atmosphere, firstly due to the ionosphere 

electron density which leads to a dispersive delay dependent on the microwave frequency (i.e. 

the ionospheric delay), and secondly due to the troposphere which leads to a non-dispersive 

delay dependent on the atmospheric pressure, temperature and water vapour (i.e. the 

tropospheric delay). We will start with the tropospheric delay in this section and introduce the 

ionospheric delay in the following section.  

 

2.2.1 Quantification of the total tropospheric delay 

The tropospheric effect on the measurement of satellite-Earth distance has already been well 

documented (e.g., Hopfield, 1971). The ZTD can be computed from the integral between the 

surface elevation z0 and the top of the electrically neutral atmosphere along the zenith direction 

(Askne and Nordius, 1987):  
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       (Equation 2.4) 

where, P(z0) is the surface pressure in Pa; N is the refractive index; gm is the gravitational 

acceleration averaged over the troposphere in m s-2; e is the water vapour pressure in Pa; T is 

the temperature in K. The remaining terms are constants: k1 = 0.776 K Pa-1, 𝑘2
′ =0.233 K Pa-1, 
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k3=3.75 ×103 K2 Pa-1, Rd = 287.05 J kg-1 K-1.  

 

Saastamoinen (1972) showed that the total tropospheric delay can be partitioned into (i) a 

hydrostatic delay component which can be precisely determined with surface pressure (ZHD), 

and (ii) a wet delay component which is a function of water vapour distribution (ZWD). The 

hydrostatic delay includes a combined contribution from dry air and water vapour, whilst the 

wet delay is produced solely by atmospheric water vapour. These components can be 

approximated by:  

0
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ZHD P z φ h

ZWD k e T dz k e T dz
     (Equation 2.5) 

where, φ is the latitude and h is the elevation in km. In order to project the ZTD to the radar 

LOS direction, i.e. to produce the Slant Tropospheric Delay (STD), mapping functions for the 

ZHD and ZWD are needed as (e.g., Boehm et al., 2006): 

( ) ( )LOS H WSTD M θ ZHD M θ ZWD                 (Equation 2.6) 

MH and MW are the mapping functions at elevation angle θ for the ZHD and ZWD, respectively.  

 

Equation 2.5 reveals that the estimation of the ZHD can be accomplished from only surface 

measurements, whilst it may be unrealistic for the ZWD where a whole vertical profile of 

meteorological measurements is needed (Berrada Baby et al., 1988). In practice, the wet delay 

is measured by launching radiosondes or WVRs, or alternatively derived from stochastic or 

other forms of parametric models using the GPS data themselves (Bevis et al., 1992).  

 

Equation 2.5 defines the absolute value of the tropospheric delays. Tropospheric effects in SAR 

interferograms, however, are mainly due to the spatial-temporal variations in atmospheric 

pressure, temperature and water vapour between two acquisitions. The variations could lead to, 

depending on the spatial extent, 10–20 cm errors on an interferogram and can often be greater 

than the tectonic signals of interest (Jolivet et al., 2014; Williams et al., 1998). Based on 

geometrical configurations of the repeat-pass SAR interferometry, the interferometric phase can 

be written as (Zebker et al., 1997):  

( ) ( )
1 2

LOS LOS

1 2 1 2

4π 4π
= - = - - L - L

λ λ
    r r             (Equation 2.7) 
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where λ is the wavelength of the radar signal; r1 and r2 are the slant ranges corresponding to 

the first and second acquisitions, respectively; ∆𝐿1
𝐿𝑂𝑆 and ∆𝐿2

𝐿𝑂𝑆 are atmospheric propagation 

delays of radar signals along the LOS (differenced from Equation 2.6). Equation 2.7 reveals 

that atmospheric delay can be easily interpreted as deformation signals. 

 

Since it is only the spatial-temporally differenced tropospheric delay that matters in InSAR 

measurements, if the tropospheric profiles at two acquisitions remained the same, the 

tropospheric effect would disappear, and if the tropospheric delay was constant for all the 

resolution cells in an area of interest, the tropospheric effects would also be cancelled. However, 

in practice, these situations are rare to happen, given the fact that water vapour varies 

substantially over periods of a few hours or shorter and has strong local turbulence.  

 

2.2.2 Tropospheric turbulence 

Two types of atmospheric signal can be identified based on their physical origin, (i) a turbulent 

component resulting from turbulent processes in the atmosphere which causes spatial 

heterogeneities in the refractivity during both SAR acquisitions, affecting both flat and 

mountainous terrain and behaving as both short wavelength and long wavelength signals; (ii) a 

vertically stratified component, resulting from different vertical refractivity profiles during the 

two SAR acquisitions, which is highly correlated with topography.  

 

The turbulent signal is a result of different tropospheric processes such as (i) local weather 

conditions amid strong water vapour variations, which lead to turbulent fluctuations of the 

atmosphere’s temperature and humidity (Tarayre and Massonnet, 1996); (ii) scintillations, 

vertical wind shear forces or strong convective effects due to thin turbulent layers in cumulus 

clouds (Anber et al., 2014); (iii) changes of local land covers and ecosystems that result in 

localized variations of surface temperature and humidity (Mahmood et al., 2014). Tarayre and 

Massonnet (1996) reported that a 150 mm/h rainfall can create a 1.8 cm phase shift whilst a 

shear turbulence extending vertically over 2 km can cause a 4.4 cm shift. Although the 

tropospheric refractivity for microwaves is mainly dependent on temperature, pressure, and 

water vapour, for a SAR image coverage (e.g., 250 km by 250 km), however, it is mainly the 
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water vapour that causes the atmospheric signal due to its great spatial-temporal variability. 

 

There are several mathematical models to describe the behaviour of the tropospheric turbulence, 

such as the power spectral function, covariance function, structure function, and fractal 

dimension model. The power spectral function is effective to recognize the scaling properties 

of the data or to distinguish different scaling regimes (Bekaert et al., 2015a). The covariance 

function is similar to the power spectrum, nevertheless, it is more suitable to be applied to 

irregularly spaced data (Li et al., 2004). The structure function provides a quantitative 

expression for the variance of the differenced atmospheric delay between two points separated 

by a specific distance and is useful for data quality description (Williams et al., 1998). Finally, 

the fractal dimension model evaluates the roughness and scaling characteristics of the turbulent 

signal (Lancaster, 1989). Among these models, the spatial structure function Dx(L) provides the 

simplest and most robust measure of the variability in the delay signal in the case of isotropic 

turbulence in three dimensions:  

2
0 0( ) (( ( , ) ( )) ) α

xD L E x r L x r CL              (Equation 2.8) 

where, E(·) denotes an ensemble average; x(r0) represents a random function (i.e. the phase 

measurement of InSAR) and x(r0+L) is the same random function at a point separated from r0 

by the vector L. The structure function can be further described as a power law process where 

C characterizes the roughness or scale of the process and α is the power index, which expresses 

the rate at which the random function loses correlation with increasing distance. Based on 

Equation 2.8, several tropospheric turbulent delay correction models have been developed (e.g., 

Li et al., 2006a, 2007).  

 

2.2.3 Tropospheric stratification  

Atmospheric stratification is another important feature of the InSAR atmospheric effect, which 

addresses the variation of the atmospheric delay in line with the topography. This effect is 

seriously identified especially in volcanic deformation studies (e.g., Delacourt et al., 1998; 

Tarayre and Massonnet, 1996), but could also be substantial on other terrain with high 

topographic variations (e.g., Walters et al., 2013).   
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Figure 2.4 Comparison of the ECMWF vertical profile and the exponential profile. 

 

The stratified atmospheric delay S can be modelled by an exponential function: 

0( ) kβh
kS h L e                     (Equation 2.9) 

where h is the elevation at point k; β and L0 are estimated exponential coefficients for the region 

considered. To assess this simple model, we estimated the exponential parameters in Equation 

2.9 using the ECMWF atmospheric delays from a whole 137-level vertical profile at a point in 

California (38.125N, 119.75W). Their difference, shown in Figure 2.4, culminates at 3-4 cm, 

occurring between 15 and 35 km in elevation, with an overall RMS difference of 2.1 cm for the 

whole profile. At low elevations where the InSAR measurement is taken, the exponential 

function agrees with the actual profile better (1.8 cm RMS for layers below 10 km and 2.3 cm 

for those above 10 km). However, it should be noted that the phase measurement on an 

interferogram is differenced between two dates and the stationary atmospheric contributions 

(mostly come from the upper layers) are cancelled. This will result in the exponential law being 

disturbed due to the dynamic interaction between the lower troposphere and the ground surface 

at the atmospheric boundary layer. To conclude, it is the lower troposphere and its dynamics 

that most affect the InSAR measurement and the atmospheric error correction.  
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2.2.4 Examples of InSAR atmospheric effects 

The InSAR atmospheric effect in flat regions can be quite different from those observed in 

mountainous regions due to the vertical stratification or the “static” effect of the troposphere in 

mountainous regions. For example, Ding et al. (2008) applied the Radon transformation (Wood 

and Barry, 1992) on the phase measurement and derived substantially different properties of the 

atmospheric effect anisotropy on flat and mountainous regions. Li et al. (2007) used both the 

Jarque-Bera (Jarque and Bera, 1980) and the Hinich (Hinich and Wilson, 1990) methods to test 

the atmospheric signals over Shanghai and confirmed that the atmospheric signals in all the 

interferograms are non-Gaussian. Goldstein (1995) also pointed out that atmospheric signals in 

a SAR interferogram generally follow a power law distribution, however, the power exponent 

varies on an interferogram and requires high-resolution external data for quantification. 

 

Figure 2.5 Examples of different types of InSAR atmospheric effects on Sentinel-1 

interferograms. Unit: radians.  

 

Figure 2.5 shows some different types of InSAR atmospheric effects on some Sentine1-1 

interferograms. Figure 2.5a exhibits a substantial long wavelength effect with a clear gradient 

from southeast to northwest, behaving similarly to an orbital ramp. Figure 2.5b experiences 

serious topographic related atmospheric errors due to its steep topography along numerous 
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mountain chains. Rapid changing topography can also lead to ripple-like atmospheric signals, 

as shown in Figure 2.5c, as a result of water vapour propagation over mountains. The turbulent 

atmospheric effect, however, can be random in space regardless of topography, such as the 

eastern and northern coasts in Figure 2.5d. Due to the complex interactions between water 

vapour above ocean and land areas, atmospheric effects in coastal areas are inevitably severe 

and hard to mitigate.  

 

2.3 Ionospheric Effect 

The free electrons in the ionosphere interact with electromagnetic waves as a dispersive 

medium, inversely proportional to the frequency, and so exert stronger effects at lower 

frequencies. The free electron density variation introduces interferometric phase gradients and 

range registration offsets, which sometimes fail the co-registration. Gray et al. (2000) presented 

observations of C-band (RadarSAT) and L-band (JERS-1) interferometric pairs, showed 

substantial azimuth shifts in the fringes that are correlated with ionospheric activity, and 

confirmed that larger phase offsets and azimuth shifts were observed at long wavelengths with 

up to several resolution cells at L-band. Due to the shape of the Earth’s magnetic field, peak 

electron concentrations and spatial variations occur mainly in polar and tropical regions. As a 

result, ionospheric effects are generally negligible for short wavelength SAR satellites (e.g., the 

C-band Sentinel-1) at least over temperate zones, but more serious for long wavelength SAR 

satellites (e.g., the L-band ALOS-1/2), particularly over polar and tropical regions (e.g., tectonic 

and volcanic activities in Taiwan or Indonesia (Zhang et al., 2018)). However, Gomba et al. 

(2017) pointed out that for C-band SAR interferograms spanning large spatial extent such as 

Sentinel-1, the ionospheric effect is also observable under extreme ionosphere turbulence.   

 

Several methods have been proposed to mitigate ionospheric effects. The Faraday rotation 

method, which derives the phase distortion induced by the ionosphere from Faraday rotation 

estimates, requiring full polarization data and an accurate magnetic field (Kim et al., 2015; Pi 

et al., 2011); Alternatively, Raucoules and De Michele (2010) investigated the sensitivity of the 

azimuth offset to small-scale variations in the ionosphere, but it may fail because of spatial 
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discontinuities. The most recent promising method adopts the split-spectral technique which 

benefits from the dispersive nature of the ionosphere and separates the ionospheric delay 

component from the interferometric phase (Gomba et al., 2016). It has received great successes 

and correction performance improvements, particularly on Sentinel-1 and ALOS-2 

interferograms due to their wide beam antennae. Accordingly, this method has been 

implemented into the standard interferometry processing procedure in software such as 

GAMMA and ISCE.  

 

2.4 Decorrelation  

InSAR phase decorrelations occur due to massive surface changes, particularly in vegetated 

areas, which produce low correlation ground targets and prevent the recovery of unwrapped 

phase measurements. Typically, longer wavelength signals enable coherent phase recoveries 

over much longer time intervals than shorter wavelength signals, making the wavelength one 

of the key factors when choosing SAR data for different areas of interest. For example, L-band 

SAR is more suitable in the tropical areas than C-band SAR due to heavy vegetation.  

 

There are many independent factors causing the InSAR decorrelation, such as the Doppler 

centroid difference, imaging geometry, temporal change, thermal noise, and atmospheric effects. 

The interferometric decorrelation can be statistically reflected by the phase coherence, 

computed as a complex cross‐correlation index between two complex SAR images (e.g., Jiang 

et al., 2014). Given a window of N pixels, the coherence can be estimated as (Seymour and 

Cumming, 1994): 
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                (Equation 2.10) 

where z1 and z2 are the complex measurements of the master and slave SAR images, respectively. 

Zebker and Villasenor (1992) demonstrated that decorrelation effects are multiplicative and 

hence a single coherence value accounts for all potential decorrelation phase error sources. 

Moreover, a proper estimation of phase coherence guarantees a successful phase unwrapping 
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and subsequent time series analysis. Figure 2.6 shows some examples of phase decorrelation 

for C-band Sentinel-1 interferograms, with the phase measurement retaining high coherence at 

a 12-day interval but gradually decreasing until a complete coherence loss after 168 days over 

vegetated areas.  

 

Figure 2.6 Temporal decorrelation of Sentinel-1 interferograms over New Zealand. (a) 

20161115-20161127; (b) 20161115-20170114; (c) 20161115-20170601. (d) Location of the 

interferograms from Google Earth, showing vegetation and topography.  

The relationship between the phase standard deviation and coherence can be set up statistically, 

under the hypothesis that the reflection for a given interferogram pixel can be modelled as the 

sum of many randomly and independently oriented sub-reflectors. An empirical expression is 

given by Rodriguez and Martin (1992) when the multi-look factor is large enough:  
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where δ is the standard deviation of the phase φ along LOS; ρ is the coherence between 0 and 

1; λ is the phase wavelength. 

 

2.5 Geometric Related Errors 

Geometric related errors are those dependent on InSAR satellite geometries, especially the 

perpendicular baseline, including the DEM error and the orbital error.  

 

2.5.1 DEM error  

Recalling Equation 2.1, the extraction of ground displacement requires the separation of the 

phase components due to the Earth’s curvature and topography, which is accomplished by 

applying an external DEM (e.g., Shuttle Radar Topography Mission (SRTM) or Advanced 

Spaceborne Thermal Emission and Reflection DEM (ASTER-GDEM)). Therefore, an 

inaccurate DEM, including actual vertical shifts between the target height and nearby DEM 

posting values (González and Fernández, 2011), will inevitably introduce phase residuals that 

are baseline-dependent (Bürgmann et al., 2000). The phase standard deviation related to the 

DEM error can be expressed as: 

2 2 24
( ) ( ) ( )

sin

πB
σ φ σ h

λR θ
                  (Equation 2.12) 

Please refer to Equation 2.1 for symbols. Due to the linear dependence between the topographic 

phase and the perpendicular baseline, longer baseline separations will produce greater height 

errors (see examples in Figure 2.7). This provides a criterion to optimize the interferogram 

selection in a time series, i.e. pairs with short baselines should be chosen in priority to reduce 

the impact of height errors, leaving the long baseline interferograms only necessary to connect 

the network. The linear relationship also enables the estimation of the height error in a time 

series with variable perpendicular baseline lengths (e.g., Li et al., 2009a).  

 

In practice, it is the height difference between the reference pixel and the pixel under 

consideration that matters to the phase measurement accuracy. As a result, spatial correlations 

in the data, for example as introduced by the atmosphere, need consideration. In this case, 

adjacent cells will experience small DEM errors since the atmospheric contributions for both 
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resolution cells are nearly identical. For two resolution cells with a large spatial separation, the 

variance of the height difference will be large, as the atmospheric contribution for both 

resolution cells will be almost uncorrelated. A detailed methodology to minimize the DEM error 

is described in Fattahi and Amelung (2013). 

 

Figure 2.7 Examples of DEM errors at different baseline lengths. Unit: m. 

 

2.5.2 Orbital error 

Orbital ephemerides are sometimes not accurate enough to retrieve precise satellite state vectors, 

introducing long wavelength orbital errors onto phase measurements (Massonnet and Feigl, 

1998), as shown in Figure 2.8. They are indistinguishable from long wavelength atmospheric 

delays and/or deformation signals, hence limiting InSAR for measuring widespread 

displacements. Massonnet and Feigl (1998) showed orbital errors, at least the first order, on an 

interferogram can be simply simulated as a best-fit linear or quadratic surface. A more advanced 

method was proposed by Biggs et al. (2007) who considered a network of interferograms to 

estimate a consistent surface fitted to all the interferometric phases. A review of these methods 

and their pro and cons is summarized in Fattahi and Amelung (2014).  

 

Orbital errors may propagate to DEM errors due to an inaccurate perpendicular baseline length 

estimate. Their relationship can be described as (Lancaster, 1989): 

0

0

n
dH H

B
                 (Equation 2.13) 

where H0 is the initial height derived using the available orbit information, 
0B  is the 

perpendicular baseline derived from observed state vectors, 
0n   is the residual (error) 
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perpendicular baseline caused by the error in satellite state vectors. Equation 2.13 reveals that 

orbital errors result in an erroneous scaling of the topographic height.  

 

Figure 2.8 Examples of orbital ramps over Indonesia. (a) 20171105-20171117. (b) 20171105-

20180221. Unit: rad. 

In general, geometric related errors are problematic for some old SAR missions (e.g., ERS-1/2 

and JERS-1) due to inaccurate orbit geometry determination. However, this has been largely 

improved by onboard GPS receivers on modern SAR satellites (e.g., TerraSAR-X, Sentinel-1 

and ALOS-2), leaving their geometric errors typically being negligible. For precise velocity 

mapping, their effects can still be further reduced using interferogram time series and precise 

orbit information.  

 

2.6 Phase Unwrapping Error 

Unwrapping an interferogram with noise contamination can be problematic as the errors may 

introduce phase jumps of a multiple of 2π and thus seriously degrade the accuracy of InSAR 

derived displacements. The fundamental assumption in phase unwrapping is that gradients 

between adjacent pixels (the difference between them) have no ambiguities, therefore, the 

unwrapped phase could be recovered by integrating the wrapped phases pixel by pixel along an 

arbitrary path. However, this assumption is quite optimistic because most of the interferograms 

have gradients large enough to cause discontinuities. One of the origins of these discontinuities 

comes from the interferometric decorrelation and can be averted by filtering, but with a 

compromise of losing resolution. Regions with steep phase gradients or cracks (e.g., a ruptured 
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fault) could also lead to discontinuities, resulting in InSAR only being capable of measuring 

small magnitude deformation (dependent on wavelength). Figure 2.9 shows a simple method to 

detect unwrapping errors within a closed loop. Should unwrapping errors occur in any of the 

three interferograms, there will be a large jump in the residual map.  

 

Figure 2.9 Unwrapping error check schedule. (a), (b) and (c) are Sentinel-1 interferograms in 

the same area. (d) is the residual map by (a + b - c). 

There are several ways to avoid unwrapping error with compromises on resolutions and/or 

accuracies. For example, by the pixel offset tracking method (Hu et al., 2014) or the split-band 

method (Libert et al., 2017). With new SAR missions become increasingly available, it will be 

possible to combine multiple satellites with different frequencies to improve the unwrapping 

accuracy (Ding et al., 2017).  
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2.7 Discussion 

Among all error sources discussed above, the atmospheric error remains one of the most crucial 

sources in whatever the spatial extent or time span. There are various types of SAR satellites 

with different wavelengths for users to balance the temporal decorrelation, ionospheric effect 

and accuracy. The geometric related error is currently negligible because of the precise orbit 

control, except for the applications which require extreme high-resolution deformation maps in 

developing cities or when the topography changes rapidly due to volcanic flows, where the 

DEM error is still problematic. The phase unwrapping error can be detected and removed, 

although manually, during data processing, or reduced by rejecting poor quality interferograms 

(e.g., those with low coherence or frequent phase discontinuities). The atmospheric error has 

been left as the most important and unavoidable error source that has to be corrected in order 

to achieve reasonable deformation maps. 

 

Figure 2.10 Atmospheric error examples that could be interpreted as ground motions. (a) is in 

Indonesia around Agung volcano (red box). (b) is in Central California. Unit: rad.   

Atmospheric errors can be easily interpreted as ground motions. We demonstrated this in Figure 

2.10 with two Sentinel-1 interferograms with 12-day temporal baselines to exclude the effect 

of actual ground motions. Volcanic edifices always have strong topographic variations which 

may experience atmospheric errors in the same pattern with volcanic deformation (red box in 

Figure 2.10a). An extreme rainfall on either acquisition of an interferogram may introduce 

strong localized atmospheric errors which may resemble ground subsidence (red box in Figure 

2.10b). As a result, the atmospheric correction is vital for InSAR to achieve authentic and 
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accurate ground motion measurements, particularly for small magnitude and long-term slow-

moving deformation series.  

 

The magnitude of atmospheric effects ranges from 5 to 20 cm (Bekaert et al., 2015b) but is 

subject to the spatial extent of the interferogram. Though typically increasing with the spatial 

extent, atmospheric errors can be substantial on small interferograms. Figure 2.11 shows some 

examples of atmospheric errors on different spatial extents. The small landslide has serious 

topographic related errors mainly due to its large elevation variation (from 0.1 to 3 km), with a 

similar magnitude of a long wavelength atmospheric error being observed on the New Zealand 

interferogram across ~250 km.  

 
Figure 2.11 Atmospheric errors at interferograms over different spatial extents. (a) is around a 

small landslide in China; (b) is in the South Island of New Zealand. Unit: rad. 

 

2.8 Summary 

In this chapter, the basic knowledge of SAR interferometry is described, and the most important 

error sources are analyzed. The atmospheric error, identified as the most important error source 

of InSAR, varies spatial-temporally and contributes substantially to the variance and covariance 

of the phase. The ionospheric error, dependent with the frequency, exerts mostly long 

wavelength signals over great spatial extents and is particularly serious over polar and tropical 

regions. The phase noise can be mathematically related to the coherence (Equation 2.10) and 

DEM error (Equation 2.12). However, their relationships are only effective to estimate an upper 

bound for coherence and a lower bound for phase variance, since the influence of temporal 

decorrelation is often spatially variable and difficult to assess (Lancaster, 1989). A combined 
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variance matrix of atmospheric, ionospheric, temporal decorrelation and geometric errors can 

lead to a priori prediction of the phase variance, even before the data is scanned, which is a 

useful information for data selections or satellite scanning time allocations.  
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Chapter 3. GPS Based Iterative Tropospheric Decomposition (ITD) 

Model 

Pointwise GPS measurements of tropospheric ZTD should be interpolated to provide high-

resolution water vapour maps in order to be used for correcting InSAR measurements, as well 

as for numeral weather prediction and for correcting GPS observations in network RTK. To 

achieve this, numerous efforts have been attempted, with emphasis on the importance of the 

elevation dependency of water vapour, but it remains a challenge to model the elevation-

dependent tropospheric delay in the presence of tropospheric turbulence. To overcome this, we 

present an iterative tropospheric decomposition interpolation model that decouples the 

elevation and turbulent tropospheric delay components to retrieve high resolution water vapour 

maps, with both the tropospheric stratification and turbulence being considered.  

 

3.1 Real-time GPS Tropospheric Delay 

In this section, we introduce the method for estimating ZTDs from GPS observations in real-

time mode and validate them internally and against the post-processed solutions.  

 

3.1.1 Real-time mode GPS precise point positioning method 

The pointwise ZTD values were estimated using real-time mode GPS Precise Point Positioning 

(PPP) processing. We used a PPP software which is a highly self-modified version of RTKLIB 

(www.rtklib.com), employing an extended Kalman filter (Haddad, 1976) to estimate in the state 

vector the constant ambiguities and time varying receiver coordinates, receiver and satellite 

clocks (considered as white noise), whilst the ZWD was estimated as a random walk parameter 

as a correction to an a priori ZTD from the UNB3 global empirical model (Leandro et al., 2006), 

employing the Global Mapping Function (Boehm et al., 2006), and east-west and north-south 

tropospheric gradients were estimated. We used the ionospherically-free pseudorange and 

carrier phase observables and applied absolute IGS satellite and receiver antenna phase centre 

offset corrections. We also applied corrections for antenna phase wind up (Beyerle, 2009), 

relativistic effects (Kouba, 2009), pseudorange differential calibration delays, Earth tide 

(McCarthy, 1996) and ocean tide loading effects using FES2004 coefficients obtained from 
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http://holt.oso.chalmers.se/loading. Uncalibrated phase and pseudorange hardware delays were 

assumed to be absorbed by the (float) ambiguity parameters and estimated receiver clocks, 

respectively. 

 

PPP relies on highly accurate satellite orbits and clocks (Zumberge et al., 1997), which are 

usually held fixed in post-processed PPP. For our real-time mode processing, we used fixed 

real-time satellite orbits from the International GPS Service (IGS) Real-time Service, which 

were generated by decoding the IGC01 solution streams (products.igs-ip.net) every 15 seconds 

to match the GPS observation sampling rate of the Plate Boundary Observation (PBO, 

http://pbo.unavco.org/data/gps) stations used. However, the satellite clocks have unpredictable 

behaviour which makes their real-time prediction challenging (Li et al., 2014), so we did not 

fix these to the real-time product values but estimated corrections to them using satellite clock 

parameters with the Gundlich and Koch (2002) robust estimation method. Additional 

constraints were introduced to overcome the rank deficiency of the normal equations, namely: 
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dt dt

res dt dt dt
                   (Equation 3.1) 

where dtk,RTS is the initial value of the satellite clock given by the real-time product and acts as 

a pseudo-observation; res(dtk) and dtk are the satellite clock residual and value, respectively. 

The satellite clock parameters were estimated as white noise parameters with a sigma of 0.001 

ns, and the error messages contained in the real-time satellite clock product were used to 

determine the weights of the pseudo-observations in Equation 3.1. An iterative process was 

used to identify some clock outliers which were hence ignored or assigned less weight in 

subsequent iterations (Gundlich and Koch, 2002). 

 

3.1.2 Validation of real-time mode GPS pointwise ZTDs 

To validate our real-time mode PPP (RTPPP) method, we processed the data for the 41 stations 

in a 150 km x 150 km California study region (Figure 3.1) from 1 January to 31 December 2015 

per GPS station in daily, discrete 24-hour batches in real-time mode, with an elevation angle 

cut-off of 10º. The tropospheric delay was estimated every 5 minutes using a process noise of 

5.0e-8 km s-1, as per the GIPSY solutions. To enable the fastest PPP solution convergence and 
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separation of the ambiguities from the other estimated parameters, which is particularly 

problematic when using real-time satellite orbits and clocks (e.g., Yao et al., 2014), we applied 

loose constraints (1000 times lower than the phase observation) to a priori receiver coordinate 

values obtained from the PBO GPS Station Position Time Series. Nearly 70% of daily solutions 

converged within 30 minutes (convergence time here means, from the beginning epoch to an 

epoch whose horizontal component bias is less than 10 cm and height component bias is less 

than 15 cm, and the overall standard deviation of its next 20 consecutive epochs also satisfies 

this requirement), with 90% of daily solutions converging within 50 minutes. The results 

presented hereafter are based only on the ZTD values after convergence was attained, according 

to these criteria.  

 

The real-time mode PPP (RTPPP) GPS ZTD estimates was compared with post-processed ‘truth’ 

values computed by the Geodesy Laboratory at Central Washington University using the NASA 

JPL / Caltech GIPSY software version 6.2 and made available at ftp://data-

out.unavco.org/pub/products/troposphere/. The truth values were estimated every 5 minutes 

using the PPP technique, fixing IGS final orbits and clocks, using the VMF1 gridded 

tropospheric mapping function together with ECMWF gridded a priori ZHDs and ZWDs 

(Boehm et al., 2006), whilst estimating the ZWD and tropospheric gradients (east-west and 

north-south), applying process noise values of 5.0e-8 km s-1 and 5.0e-9 km s-1, respectively. We 

computed the differences between our RTPPP and GIPSY ZTDs at the common 5-minute 

epochs, excluded all the outliers greater than three times the standard deviation, then for each 

station computed per day the mean difference and the Root Mean Square (RMS) of the 

differences to assess the quality of the real-time mode processing. These are shown for a sample 

day (2 September 2015) in Figure 3.1, chosen as it is indicative of the median differences for 

all days of 2015. The mean of the per station differences across the whole network is 1.9 mm 

for the sample day, indicating that no large systematic error exists between the RTPPP and 

GIPSY ZTDs, including stations in mountainous areas. The mean RMS is 10.1 mm and more 

than 80% of the stations have an RMS value smaller than 12 mm, which is deemed sufficient 

quality for assimilation into real-time meteorological models (Shoji et al., 2011). 
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Apart from considering the spatial distribution of the differences, it is also important to assess 

the RTPPP performance over time. We therefore in Figure 3.2 show the 5-minute RTPPP ZTDs 

plotted against the common epoch 5-minute GIPSY ZTDs, from all 41 stations for the entire 

year, and plot the differences as a histogram. A linear regression fit gave: GIPSY ZTD = 

0.989(±0.002) × RTPPP ZTD + 0.024(±0.003), and the correlation coefficient between them 

was 0.99, demonstrating high consistency between the RTPPP and GIPSY ZTDs not just 

spatially but also temporally. About 82% of solutions show differences smaller than 15 mm 

with 73% below 12 mm. The RMS difference is 12.5 mm, commensurate with the spatial RMS 

difference and further indicating an RTPPP ZTD precision of about 1 cm, which is 

commensurate with previous real-time studies (e.g., Ahmed et al., 2016; Li et al., 2014). 

 

Figure 3.1 Mean (a) and RMS (b) differences per station between RTPPP and GIPSY ZTDs, 

estimated every 5 minutes on 2 September 2015 for all 41 GPS stations in the California study 

region. For all stations, the mean difference and the mean RMS difference are 1.9 mm and 10.1 

mm respectively, with this day being indicative of the median differences for all days of 2015. 

The white area represents the Pacific Ocean and San Francisco Bay, and the background shows 

the elevation. Stations P177, P230 and S300 are labelled as they are considered in Figure 3.9. 

The time-varying ZTD is estimated per receiver using the GPS data alone, and then the ZHD 

(which may be accurately modelled using surface pressure data, obtained from ftp://data-

out.unavco.org/pub/rinex/met) is subtracted to leave the ZWD, which is spatially and 

temporally much more variable. The ZWD may then be readily converted to Precipitable Water 

Vapour (PWV) using estimates of the mean temperature of the atmosphere, based on surface 
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temperature measurements (Bevis et al., 1992). GPS hence provides a means of obtaining PWV 

with continuous temporal resolution without any cloud or weather dependence, albeit at discrete 

points where the GPS receivers are located. The pointwise GPS PWV measurements agree to 

those from radiosondes and microwave radiometers with standard deviations of about 1-2 mm 

(e.g., Ohtani and Naito, 2000; Liou et al., 2001; Li et al., 2003), and may then be interpolated 

to provide PWV fields, which has been attempted using different models. 

  

Figure 3.2 Comparison between RTPPP and GIPSY ZTDs for all 41 GPS reference stations in 

California, from 1 January to 31 December 2015 at an interval of 5 minutes. (a) Correlation 

analysis with a linear model: GIPSY ZTD = Slope × RTPPP ZTD + Intercept, and (b) Histogram 

of the differences. 

3.2 Iterative Tropospheric Decomposition (ITD) Model 

The pointwise ZTD/PWV samples will need to be interpolated into fields (maps) in order to be 

used in meteorological nowcasting, including the identification of events dominated by 

horizontal advection (Benevides et al., 2015); for assessing moisture transport in the lower 

troposphere (e.g., Mengistu Tsidu et al., 2015); for relating humidity fields to precipitation 

events (e.g., Boniface et al., 2009); for assessing the severity of tropical cyclones (e.g., Shoji et 

al., 2011); for assessing the impact of new assimilated observations for forecasting precipitation 

(Yan et al., 2009). Such maps are also essential for correcting SAR images for atmospheric 

effects to enable small (and long wavelength) geophysical signals to be measured, including 

inter-seismic strain accumulation and post-seismic motion, observations of which not only give 

insight into the mechanics of a fault, but also play key roles in estimating the likelihood of 
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future earthquakes (Fialko, 2006; Gourmelen and Amelung, 2005; Wright et al., 2004). Dense 

ZTD fields also enable GPS network RTK observations to be corrected for signal delays due to 

water vapour on propagating from space through the Earth’s neutral atmosphere to a ground-

based receiver. Such corrections are essential for centimetre level positioning, particularly 

heights, and enable (subject to sufficient GPS base station coverage) Network RTK to be used 

for geophysical and engineering applications that have normally only used local base station 

RTK, such as river channel mapping (e.g., Notebaert et al., 2009), glacier flow and debris 

mapping (e.g., Paoli and Flowers, 2007), coastal erosion (e.g., Thomas et al., 2010), crustal 

deformation and structural monitoring (e.g., Genrich and Bock 2006), precision farming (e.g., 

Pérez-Ruiz et al., 2011), embankment instability and landslide monitoring (e.g., Gili et al., 

2000). The ZTD, ZWD and PWV shares similar characteristics when being dealt with by 

interpolators, although ZWD/PWV are more turbulent than the dry components. All the models 

we mentioned and proposed hereafter can be applied on all of them, so that we may introduce 

the model in terms of ZTD but validate the model on PWV or ZWD whatever data is available. 

 

3.2.1 Review of atmospheric delay interpolation techniques  

To interpolate the GPS pointwise ZTD, Jarlemark and Emardson (1998) evaluated a gradient 

model, a linear regression in time model that ignored observational directions, and a turbulence 

model that yielded at least 10% improved RMS error than the other two models. Williams et al. 

(1998) used a structure function to model the water vapour variation in space, but with respect 

to a reference value, whilst Janssen et al. (2004) found that Inverse Distance Weighted (IDW) 

and Ordinary Kriging (OK) interpolation models perform better than spline interpolation, but 

also only considered double differenced ZTDs as they were considering InSAR atmospheric 

corrections only. A deficiency of all these models is that they did not consider the terrain 

elevation dependence of water vapour and hence the interpolated values may contain large 

errors in regions with highly varying topography (Walters et al., 2013).  

 

To deal with the atmospheric stratification, Emardson and Johansson (1998) incorporated a 

height scaling function with a best linear unbiased estimator and suggested an interpolated 

ZWD accuracy of about 1 cm, but only one station in Sweden was considered and the height 
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variation across the network was only about 200 m. Li et al. (2006a) proposed a GPS 

topography-dependent turbulence model (GTTM) but reported that interpolation models should 

be applied to ZTD/ZWD values differenced in time rather than the absolute ZTD/ZWD values 

themselves, as this can reduce the influence of topographic effects on the ZTD/ZWD variations. 

For interpolating undifferenced GPS ZWD point values, Onn and Zebker (2006) utilized a 

frozen flow hypothesis to model the water vapour variation in time. Then Xu et al. (2011) 

showed that incorporating this height scaling function approach with an interpolator model 

based on the estimator of simple Kriging with varying local means (we will refer to this model 

as SKlm+Onn) improved the ZWD interpolation RMS accuracy by 29% compared with using 

the Berrada Baby et al. (1988) semi-empirical height scaling function. In a different approach 

to account for variations with topography, Bekaert et al. (2015a) employed an InSAR phase 

observation-based power law correction model which used a fixed reference at the relative top 

of the troposphere, and described how the phase delay varies with altitude. To separate 

deformation and tropospheric signals, a frequency band insensitive to deformation is required. 

Benevides et al. (2016) also attempted to constrain GPS PWV with InSAR-derived PWV maps 

containing the topography signal. However, these models did not take into account that the 

InSAR measurements themselves have uncertainties of up to several centimetres and are 

susceptible to not detecting geophysical signals such as volcano inflation/deflation and inter-

seismic slip rate (Williams et al., 1998). Hence, we consider the SKlm+Onn model to represent 

the current state-of-the-art for the generation of PWV maps. 

 

3.2.2 Description of the ITD model 

Several previous studies have noticed the coupling effect of the tropospheric turbulence and 

terrain elevation dependency (e.g., Treuhaft and Lanyi 1987; Li et al., 2006a; Xu et al., 2011; 

Benevides et al., 2016). However, in the presence of strong atmospheric turbulence, the 

previous models are inadequate for correcting SAR images to be used for sub-centimetre level 

ground motion monitoring (e.g., Walters et al., 2013; Fattahi et al., 2015), or for the highest 

network RTK positional precisions when such variations are not eliminated by data differencing. 

The aim of our proposed ITD model is therefore to improve the accuracy of GPS interpolated 

tropospheric water vapour maps by accounting for the coupling effect of both the terrain 
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elevation dependency and tropospheric turbulence, demonstrate this over varying terrain, and 

compare with the current state-of-art SKlm+Onn model (see Section 3.2.1).  

 

The ITD model can effectively separate the turbulent and elevation dependent ZTD components 

by decoupling the ZTD into a stratified delay and a turbulent delay, as described in Section 2.2, 

which enables the more accurate interpolation of dense ZTD fields from pointwise values from 

a set of GPS reference stations across a region. It is defined mathematically as:  

( ) ( )k k k kZTD S h T x ε                   (Equation 3.2) 

where, for the ZTD at location k, T represents the turbulent component and xk is the station 

coordinate vector in the local topocentric coordinate system; S represents the stratified 

component correlated with height h. ε represents the remaining unmodeled residual errors, 

including unmodeled stratified and turbulent signals. The stratified component in Equation 3.2 

can be fitted with a modified exponential function (Emardson and Johansson, 1998; Xu et al., 

2011): 

0 min max min)( ) exp{ ( ) / ( )}u uS h L β h h h h           (Equation 3.3) 

where, β is the exponential coefficient and L0 is, for the region considered, the stratified 

component delay at sea level. The height has been scaled to local minimum and maximum. L0 

and β can be estimated by regression analysis if the stratified delays on a set of GPS stations 

are known. However, instead of using the stratified delay, previous researchers (e.g., Doin et 

al., 2009; Li et al., 2006a; Xu et al., 2011) used total ZTDs to regress the parameters in Equation 

3.3 since the stratified and the turbulent components are coupled together (see Equation 3.2) 

and hard to distinguish from each other. In this case, the stratification regression could be biased 

by strong turbulence processes.  

 

The turbulent component which is driven by tropospheric convective water vapour variance 

and/or local rainfall processes usually consists of medium-to-long wavelength signals (Tarayre 

and Massonnet, 1996). It is sensitive to a variety of geophysical variables including, but not 

limited to, location and topography, climate, time and land covers. Janssen et al. (2004) 

investigated several interpolators and found that the IDW and OK perform comparatively 
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effective. Hence, in this thesis, we choose IDW. Suppose n GPS stations are used as references, 

the IDW model reads as: 

 

max
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          (Equation 3.4) 

where wui denotes the interpolation coefficient; u and i are indices for the image pixels and the 

reference stations, respectively; x represents the station coordinate vector in the local Plane 

Coordinate System. dui represents the horizontal distance from the user to reference station. 

Reference stations with a distance larger than ~100 km (dmax), according to Jarlemark and 

Emardson (1998), were excluded since they show limited correlations with the user station.  

 

Under the above definition, the total delay is mathematically divided into two parts: the 

stratified part which is completely correlated with the elevation whereas the turbulent part has 

no correlation with the elevation. We use their linear summation in Equation 3.2 as we treat 

them as independent parameters, under the assumption that the tropospheric delay is a sum of 

the stratified component and the turbulence component (e.g., Doin et al., 2009; Emardson et al., 

2003; Hanssen, 2001). As a result, there will be no cross term in Equation 3.2 and the two 

components can be separated by iteration.  

 

Both the stratified and turbulent delays can account for a substantial amount in the total delay 

but behave very differently. The main procedures for separating these two components are 

summarized as: 

(i) The total delays are used to estimate the initial exponential coefficient β and L0. This is done 

on a pixel by pixel basis, i.e. for each pixel, the surrounded data samples within the defined 

maximum distance are used, resulting in a lateral variation of the coefficients as a consequence 

of the data sampling;  

(ii) The residuals, which are the summation of unmodelled errors and the turbulent component, 

are computed by subtracting per station the stratified delay (as modelled by the estimated 
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exponential coefficients) from the ZTD;  

(iii) Extract the turbulent component of all reference stations from the residuals by forming an 

IDW function: 

12 11 1

21 22 2

1 , 1

0

0

0

0

n

n

n n nn n

w wT ε

w wT ε

w wT ε

             (Equation 3.5) 

where wij is the jth coefficient when interpolating station i using the remaining stations in IDW 

model (see Equation 3.4).  

(iv) Consider the output of Equation 3.5 as the new turbulent component and subtract it from 

the total delay to produce a new input for Equation 3.3. A new set of exponential coefficients is 

obtained.  

(v) Repeat (ii) – (iv) until stable coefficients are obtained. The final outputs are exponential 

coefficients (L0, β) for the given region, the turbulent part and residuals on each reference station.  

(vi) Both the final turbulent delay components and residuals from all stations are used to 

interpolate to each grid cell. The stratified delay is then computed per grid cell using the final 

values for the exponential coefficients, and the two are summed to produce the ZTD per grid 

cell. 

 

It should be noted that the assumption of the ITD model is that the turbulent component obeys 

the IDW interpolation law and the stratified component obeys the exponential law and, 

importantly, that these two components are not tightly coupled together. We later show that the 

two components are indeed separable, and the convergence state can be reached rapidly. 

Although here we present the ITD model by ZTDs in zero difference mode, it is also suitable 

for interpolating differenced ZTD or PWV/ZWD.  

 

3.3 Validation of the ITD Model 

In this section, we validate the ITD model using the real-time mode ZTDs processed in Section 

3.1 and demonstrate that the decoupled interpolation model generates improved high-resolution 

tropospheric delay maps compared with previous tropospheric turbulence and elevation 
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dependent models. 

3.3.1 Cross validation of the interpolated ZTDs at GPS stations 

 

Figure 3.3 Time series of cross validated daily MAE and RMS differences, based on 14:00 

Pacific Standard Time (i.e. local time) RTPPP interpolation at all 41 GPS stations using the ITD 

and SKlm+Onn models, and comparing with RTPPP ZTDs. The annual mean MAE values are 

3.2 mm for ITD and 6.2 mm for SKlm+Onn, whilst the annual mean RMS differences are 4.1 

mm for ITD and 7.4 mm for SKlm+Onn. 

Cross validation was used to evaluate the performance of the ITD model for interpolating ZTDs 

and compared with the SKlm+Onn model. In this, one point from the whole network of GPS 

stations was excluded and the ZTD values from the other points used to determine the ZTD at 

the particular point considered. This procedure was repeated for all stations and the cross-RMS 

difference computed between the interpolated and original ZTD values. Whilst Xu et al. (2011) 

applied the SKlm+Onn model to ZWD, as ZWD also dominates the spatiotemporal variations 

of ZTD (with the ZHD being readily determined with surface pressure) we may also apply it to 

ZTD interpolation. Since the dry and wet components are both crucial for applications such as 

InSAR atmosphere corrections (Elliott et al., 2008; Jolivet et al., 2014), it is then recommended 

to use total delays rather than just the wet component. To provide an indication of the ZTD 
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quality used for single epoch SAR corrections, and to be commensurate with subsequent 

MODIS validations, we adopted the approach of Xu et al. (2011) and used one ZTD value per 

day (that at 14:00 Pacific Standard Time, i.e. local time, the approximate time of day when the 

troposphere is most active (Gendt et al., 2004; Wang et al., 2005), although this is not an all-

encompassing rule and diurnal variations of PWV can differ from location to location) per 

station for the whole of 2015. The RTPPP ZTDs were interpolated for each GPS station in turn, 

with the 40 other GPS station ZTD values providing the input. Hence for ITD, per epoch, L0 

and β of Equation 3.3 were estimated for the network and the turbulent component estimated 

per station. Validation was carried out by comparing the interpolated ZTDs with the RTPPP 

ZTD estimates themselves at 14:00 local time and computing the RMS difference and Mean 

Absolute Error (MAE) for all stations for each day. This was repeated using interpolation with 

the SKlm+Onn model. 

 

 

Figure 3.4 Cross validation of (a) ITD and (b) SKlm+Onn RTPPP ZTDs daily at 14:00 local 

time for 1 year for all the 41 GPS stations. Linear model (Initial RTPPP ZTD = 

Slope×Interpolated RTPPP ZTD + Intercept) was also applied. 

Time series of the cross validated daily MAE and RMS differences from the ITD and 

SKlm+Onn ZTD interpolation models are shown in Figure 3.3. It is clear that the ITD model 

leads to both lower annual mean MAE and RMS difference values than SKlm+Onn, i.e. the 

MAE and RMS reduce from 6.2 mm to 3.2 mm and 7.4 mm to 4.1 mm, respectively. It can also 

be seen from Figure 3.3 that the improvement of ITD is greater than that of Sklm+Onn in colder 
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seasons (e.g., between days 0 to 100 and 280 to 365), when the medium-to-long wavelength 

and elevation-dependent signals dominate and can be effectively modelled by ITD. The 

performance of the two models is more similar in the summer (i.e. from around day of year 150 

to 220), indicating that short wavelength water vapour effects are substantial and variable and 

cannot be fully mitigated by either model. 

 

 
Figure 3.5 Spatial distribution of cross validation ZTD results, showing MAE and RMS of 

daily (14:00 local time) differences of interpolated versus RTPPP ZTDs, computed over all of 

2015 per GPS station. (a) MAE using ITD, with an overall mean of 3.6 mm; (b) MAE using 

SKlm+Onn, with overall mean of 6.1 mm; (c) RMS using ITD, with an overall RMS of 4.6 mm; 

(d) RMS using SKlm+Onn, with an overall RMS of 8.4 mm. 

 

Cross comparisons of the daily interpolated ZTD values are shown in Figure 3.4 for both the 

ITD and SKlm+Onn interpolation models, for all 41 stations for all of 2015. As for the time 
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series, substantial reductions in the scatter is observed for ITD compared with SKlm+Onn, i.e. 

the RMS difference decreases from 8.4 mm to 4.6 mm. Improved correlations and linear fits 

are also obtained with ITD compared with SKlm+Onn. Furthermore, the proportion of 

differences under (magnitude) 10 mm increases from 61% for SKlm+Onn to 89% for ITD, and 

increases from 32% to 69% for the proportion under 5 mm magnitude.  

 

When considered for all stations for the entire year, the ITD interpolation model has been shown 

to substantially improve on the SKlm+Onn model. However, in the cross validation, some large 

differences occurred (more than 2 cm magnitude for both models), which suggests that the 

interpolation result is influenced by the GPS reference station distribution. To investigate this, 

the annual MAE and RMS differences per station are plotted in Figure 3.5, for both the ITD 

and SKlm+Onn models. It can be seen that the smaller MAE and RMS differences occur where 

the station coverage is denser, but the SKlm+Onn MAE and RMS values show substantial 

degradation compared with ITD in the north-west of the region where there are fewer stations, 

e.g., ~12 mm MAE for SKlm+Onn compared with ~5 mm for ITD. Meanwhile, the largest 

RMS value for any station is only ~8 mm for ITD, improved from ~12 mm for SKlm+Onn 

(Table 3.1). In terms of terrain effects on the MAE and RMS, for the ITD model, stations in the 

mountainous areas show approximately comparable precision with those at lower altitudes, 

whereas with SKlm+Onn larger MAE and RMSs arise, and the same applies in coastal areas. 

This is mainly attributed to the variability of the turbulent component and the coupling effect 

of the turbulent and elevation dependent components. 

 

In conclusion, fewer gross errors are observed in Figure 3.4a than Figure 3.4b, revealing that 

outliers in GPS estimates or strong and irregular turbulent signals could impact the interpolation 

results. One immediate benefit of ITD is its robust estimation capability through iterations even 

with relatively low quality real-time data and/or variable tropospheric environments. Another 

essential benefit is to separate medium to long wavelength turbulent signals from others, which 

in turn makes it efficient to determine stratified delays using regression analysis. In other words, 

ITD can better handle stratified signals as well as the medium to long wavelength turbulent 

signals, and hence produces lower RMS values, especially in the winter and spring seasons 
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dominated by medium and long wavelength turbulent signals (Figure 3.3). This is particularly 

useful in areas with strong topography variations, illustrated here by the big improvements in 

Figure 3.5 across mountain areas. 

 

3.3.2 Validation of the interpolated PWV maps with MODIS water vapour products 

To provide further validation of the ITD interpolation model and its improvement over the 

SKlm+Onn model, including a detailed spatial resolution assessment, and to provide an 

accuracy assessment with an independent data set, the RTPPP GPS pointwise ZTD values at 

the MODIS acquisition time (19:00 UTC) were converted to PWV, interpolated to 1 km pixels 

across the entire study region and compared with the MODIS near-IR PWV product. Pressure 

and temperature data at 5-minute temporal resolution from co-located meteorological sensors 

were available at four of the 41 GPS stations and obtained from unavco.org. These were 

supplemented by 10 meteorological stations which were located up to 10 km outside the study 

region. The meteorological data were first interpolated to all 41 stations using the Li et al. (2003) 

differential models and, according to their cross tests, the resulting pressure and temperature 

errors should be less than 1 hPa and 2 K, respectively. The interpolated pressure measurements 

at each GPS station were used to directly compute ZHD using the Saastamoinen (1972) model 

and subtracted from the RTPPP ZTD estimates, with the resulting ZWD pointwise values 

converted to PWV using the Bevis et al. (1992) model, inputting the interpolated surface 

temperature measurements. To enable the comparisons, 1 year of MODIS Level 2 data from the 

Terra satellite were obtained across the study region, providing one PWV map at the Terra orbit 

track time of each day (during daytime, about 10:30 local time). The Level 2 data were 

generated at the 1-km spatial resolution of the MODIS instrument using the near-IR algorithm 

(Gao and Kaufman, 2003). About 30% of days had severe cloud conditions so we excluded 

them as only a few grids can be obtained. Areas with cloud conditions or above water were also 

masked and only the cloud free land areas were used in the comparison.  
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Figure 3.6 Cross validation of (a) ITD and (b) SKlm+Onn interpolated RTPPP GPS PWV with 

MODIS, using daily values at MODIS acquisition time on all 41 GPS stations for all of 2015. 

(c) and (d) displays all the available pixels between MODIS PWV and ITD/SKlm+Onn PWV 

maps for year 2015. The colour scale represents the density of occurrence. The daily cloud free 

MODIS PWV pixel density is displayed by (e) in which the vertical bar represents the total 

available pixel numbers divided by the maximum amount. The colour scale represents the 

average daily PWV of all available pixels. 
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Figure 3.7 MODIS PWV and ITD RTPPP GPS PWV maps and RTPPP GPS minus MODIS 

PWV difference maps at 1 km spatial resolution, for both ITD and SKlm+Onn interpolations. 

(a,b,c,d) are for 3 September 2015 and (e,f,g,h) for 19 November 2015. (a) and (e) are MODIS 

maps, (b) and (f) are ITD maps, (c) and (g) are ITD difference maps, (d) and (h) are SKlm+Onn 

difference maps. The large differences (red pixels) in the north east of (c) and (d) are likely due 

to the presence of thin clouds which are not labelled in the cloud mask product. 
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Figure 3.8 ITD RTPPP map and MODIS PWV (red line) and ITD RTPPP PWV (blue line) 

profiles along certain latitudes and longitudes, after shifting a constant number, for 3 September 

2015. The PWV profile series are in the same order as the line segments in the PWV map, and 

are averaged by a tenth average window. The gray polygon areas represent the mountain area. 

The overall RMS difference between MODIS and ITD PWV along the eight profiles is 1.51 

mm and the RMS difference for the mountainous (gray polygon) and flat areas are 1.57 mm 

and 1.47 mm, respectively. 



GPS Based Iterative Tropospheric Decomposition (ITD) Model 

64 

 

As the first step, cross validation was carried out at each GPS reference station, using one GPS 

PWV value per day per station, taken at the MODIS acquisition time. We used MODIS PWV 

as ‘truth’ values to validate the interpolated PWV at each GPS station (cross test), and the 

MODIS PWV values were averaged over boxes of 3 × 3 pixels centred on the GPS station’s 

location if the centred pixel was missing. PWV cross comparisons for all daily values available 

for each GPS station for the whole of 2015 are shown in Figure 3.6, with the RMS of the 

differences being 1.48 mm for the ITD model and 1.73 mm for SKlm+Onn, as also listed in 

Table 3.1. The ITD model also results in a better linear regression fit, with a slope of 0.97 and 

intercept of 0.33 mm compared with respective values of 0.95 and 0.63 mm with the SKlm+Onn 

model, and the correlation coefficient increased from 0.97 to 0.98. The height scaling model 

works under the assumption that the turbulent delays are small and of short-wavelength 

compared with stratified delays, therefore the height scaling would be easily biased when strong 

tropospheric turbulence with medium-to-long wavelength signals occurred. In Figure 3.3 a clear 

improvement of ITD against SKlm+Onn, in terms of both mean and RMS differences, can be 

observed in cold seasons (between late autumn and early spring). Similarly, substantial 

improvements can be observed in mountainous areas (Figure 3.5). Figures 3.6a and 3.6b also 

suggest that when PWV values are low (e.g., 0-10 mm), the improvements of ITD are greater. 

This is because ITD takes into account the turbulence effects which in turn benefit to estimate 

the height scaling and separate the topography-dependent and turbulent components. 

 

The interpolated RTPPP PWV values and resulting maps were then compared spatially with the 

MODIS PWV maps, with the results (RTPPP GPS minus MODIS) shown in Figure 3.7 for 

MODIS images acquired on 3 September and 19 November 2015, chosen as they are sample 

days which are virtually free from cloud conditions across the whole study region. The height 

for each grid cell was resampled by the 30 m Shuttle Radar Topography Mission DEM. Some 

large differences are visually apparent, mostly across the areas with frequent cloud masks and 

near San Francisco Bay, but MODIS PWVs above water areas also involve a different retrieval 

algorithm compared to those above the land, resulting in differences and discontinuities at the 

land edge. Furthermore, any values over water areas have been removed since PWVs above 

water (bay, lake or ocean) share different characteristics from PWVs over land areas which 
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cannot be well-described by the interpolation model (Sobrino et al., 2003). On average, the 

mountainous areas give more negative differences than flat terrain, showing that MODIS tends 

to overestimate PWV compared with GPS with increasing altitude (i.e. small PWV values), as 

previously found by Li et al. (2003). It can also be seen in Figure 3.7 that edge areas with fewer 

GPS stations produce larger differences than central areas, confirming as discussed in Section 

3.3.1 that improved GPS station coverage will improve the quality of interpolated PWV maps. 

The ITD model produces smoother difference maps than SKlm+Onn and has a lower 

percentage of large differences. ITD also performs much better than SKlm+Onn in coastal areas 

where the PWV is more changeable and gives more complicated turbulent components. 

 

Table 3.1 Summary of ITD and SKlm+Onn Model Interpolation Performance from Cross 

Validation of all ZTDs and all Common Epoch RTPPP and MODIS PWVs for all of 2015. 

X1 Y1 
No. Data 

Points 
Slope2 Intercept2 

Correl. 

Coeff. 

RMS 

(mm) 

ITD ZTD RTPPP ZTD 14883 1.012 ± 0.002 0.004 ± 0.003 m 0.99 4.6 

SKlm+Onn 

ZTD 
RTPPP ZTD 14883 1.025 ± 0.002 0.026 ± 0.003 m 0.98 8.4 

ITD PWV MODIS PWV3 8523 0.971 ± 0.002 0.329 ± 0.004 mm 0.98 1.48 

SKlm+Onn 

PWV 
MODIS PWV 8523 0.948 ± 0.002 0.634 ± 0.004 mm 0.97 1.73 

ITD Map MODIS Map4 288 million 0.934 ± 0.003 1.223 ± 0.004 mm 0.97 1.71 

SKlm+Onn 

Map 
MODIS Map 288 million 0.912 ± 0.002 2.101 ± 0.004 mm 0.96 1.96 

1The linear model is Y = Slope * X + Intercept 
2Uncertainties are 95% confidence 
3MODIS PWV pixels with co-locate GPS stations for year 2015 
4All available MODIS pixels 

 

Figure 3.6c and 3.6d display the correlation statistics between all MODIS and ITD/SKlm+Onn 

PWV maps in 3D view for all available pixels. The colour scale represents the density of 

occurrences. Pixels outside the GPS station coverage (i.e. the edge area) were excluded as the 

performance would decrease after extrapolating. Overall, most PWV pairs are located along the 

1:1 line, implying a good correlation between the GPS based PWV and MODIS PWV maps. 

The SKlm+Onn map exhibits greater differences compared to the ITD PWV map and the 

scatters were distributed more unsymmetrically (red rectangle) especially for when PWV 
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amounts fell between 5-15 mm and 30-35 mm.  

 

To illustrate the finer spatial detail of PWV and the performance of interpolated RTPPP PWV, 

in Figure 3.8 we plot ITD-based PWVs over mountainous areas, shown as (a) from 37º 09’ to 

38º 30’ in latitude and -122º 12’ to -121º 00’ in longitude, and (b) from 37º 09’ to 37º 50’ in 

latitude and -122º 30’ to -121º 00’ in longitude, for 3 September 2015. In Figure 3.8 we include 

PWV profiles (smoothed using a tenth averaging window) for both ITD RTPPP and MODIS 

along lines of constant latitude and longitude, over both mountainous and flat areas, which 

enable detailed comparisons of the ITD PWV gradients with respect to topography. The ITD 

PWV profiles change in a similar tendency with MODIS and share similar gradients. The 

overall RMS difference between MODIS and ITD PWV for the eight profiles considered is 1.51 

mm and the RMS differences for mountain (gray polygon in Figure 3.8) and flat areas are 1.57 

mm and 1.47 mm, respectively. These agreements demonstrate that the ITD model is capable 

of retrieving detailed water vapour distributions over a wide region, thereby showing its 

potential application for monitoring local extreme weather events. 

 

3.4 Discussion on Tropospheric Turbulence 

The principal aim of the ITD model is to separate the elevation dependent ZTD/PWV 

component from the turbulent component, which is the most variable and uncertain part, and 

can easily bias the vertical ZTD scaling, making the separation of the two components 

challenging. Due to the constraints of the density of GPS stations, only medium-to-long 

wavelength turbulent signals are expected to be successfully modelled using ITD. To illustrate 

the size and variation of the turbulent component, and the importance of iterating the solution 

until convergence arises, a sample three GPS stations were considered: P177, P230 and S300 

(Figure 3.1), which are in different parts of the study region, are at different elevations, and are 

at varying distances from the nearest other GPS reference stations. P177 is near the ocean, 

whilst S300 and P230 are in mountainous areas with elevations of ~500m and ~700m, 

respectively. Three epochs, from different seasons (spring, summer and autumn) were 

considered, and the variation of the turbulent component and its convergence with the number 
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of iterations is illustrated in Figure 3.9. 

 

Figure 3.9 RTPPP ZTD turbulent component separated by ITD at each iteration step. The first, 

second and third columns represent stations P177, P230 and S300, respectively, and the fourth 

column represents the ZTD cross validation RMS difference for all 41 stations on the 

corresponding day. Shown for sample days in each of spring, summer and autumn. 

 

It is clear from Figure 3.9 that the turbulent ZTD component can reach several centimetres and 

can be efficiently separated from the elevation dependent component. Although the first 

iteration enables the majority of the turbulent component to be determined, the subsequent 

iterations are needed for robust estimation. The far righthand column in Figure 3.9 further 

indicates the performance improvement with increasing number of iterations, with the RMS 

difference (computed through the RTPPP ZTD cross validation from all 41 stations at the 

corresponding epoch of each row) becoming smaller and tending towards convergence. Around 

six iterations are typically needed for convergence, after which sub-millimetre RMS changes 

arise. 

 

As the most important feature of the ITD model, the convergence tendency in Figure 3.9 reveals 

that the turbulence effect can be reduced by separating the stratified and turbulent components 
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through iteration. The decoupling procedure acts very similarly to robust estimation, in which 

the ZTDs from stations exhibiting strong turbulence will contribute less in height scaling but 

account for more in the turbulent delay interpolation. In this way, the systematic patterns of 

turbulence resulting from local weather conditions or topography (Betts et al., 2007; Cho et al., 

2003) can be better modelled. The iteration also allows for the detection of ZTD outliers, which 

is a not uncommon occurrence in real-time PPP due to the unpredictable behaviour of the 

satellite clocks. Consequently, the ITD model enables both fitting of the tropospheric vertical 

profiles and also models the turbulence processes. As the fourth column in Figure 3.9 suggests, 

successfully accounting for this results in the overall RMS difference of the cross validation 

test reducing and converging. 

 

3.5 Summary 

In this chapter, an iterative tropospheric decomposition model has been developed to interpolate 

pointwise GPS ZTDs and to generate high-resolution water vapour maps, without any data 

differencing. For a California study region of around 150 km x 150 km, the approach of 

decoupling the terrain elevation dependency and the tropospheric turbulence contribution to 

ZTD in an iterative procedure (typically 4-6 iterations were required) led to improved accuracy 

interpolated tropospheric water vapour maps over those based on previous studies, such as the 

tropospheric turbulence and elevation dependent model SKlm+Onn of Xu et al. (2011). To be 

applicable to not only post-processed SAR atmospheric corrections, i.e. to also facilitate SAR 

for rapid response to monitoring earthquakes and volcanoes, network RTK positioning and 

meteorological forecasting, we used real-time mode PPP GPS ZTD values estimated every 5 

minutes (which were validated with post-processed GIPSY ZTDs with an overall RMS 

difference of 12.5 mm for all 41 stations for all of 2015) to generate the tropospheric maps. 

Cross validation of the GPS ZTD values resulted in 4.6 mm RMS differences using the ITD 

model compared with 8.4 mm using the SKlm+Onn model, using one value per station per day 

(14:00 local time) for all of 2015. Whereas the SKlm+Onn interpolation model has degraded 

performance over mountainous areas, the cross validation ITD model RMS and mean 

differences are similar for both mountainous and flatter terrain, and also similar for both coastal 

and inland areas. The cross validation improvements using ITD are smallest in the summer 
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months. Spatially, we generated PWV values for 1 km pixels for all land-covered parts of the 

region and compared with daily MODIS PWV near-IR product values, with the RMS difference 

for the year being improved from 1.73 mm using the SKlm+Onn model to 1.48 mm using ITD. 

Furthermore, the spatial PWV gradients using the ITD model and MODIS across a variety of 

topography were nearly identical to each other. The overall RMS difference between MODIS 

and ITD PWV profiles is 1.51 mm and the RMS differences for mountainous and flat areas are 

1.57 mm and 1.47 mm, respectively. Hence the ITD PWV fields are also able to reveal detailed 

water vapour information over varying terrains. 

 

Figure 3.10 RTPPP PWV fields across the California study region every 2 hours on 2 

November 2015 during a rainfall process from (a) 10:00 to (f) 20:00 UTC. Arrows represent 

PWV increasing (upwards) or decreasing (downwards) during the preceding 2 hours. 

To provide an indication of the potential of the real-time mode ITD model interpolated 

tropospheric maps for meteorological and geodetic applications, including revealing detailed 

information of local weather processes, we show in Figure 3.10 the detailed 2-hourly PWV 

information during a rainfall process over the study region on 2 November 2015 (10 am to 8 

pm UTC). Arrows represent the PWV increasing (upwards) or decreasing (downwards) during 

each preceding two hours. One important fact is that the PWV over mountainous areas 
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decreased during the whole rainfall process, but other areas experienced increasing and 

decreasing PWV before and after the rainfall, respectively. We do not explain the patterns 

further as the focus of this chapter is on showing the quality of RTPPP ZTD and PWV maps. 

 

The generated spatially-dense PWV fields with continuous, high (5 minute) temporal resolution 

are not only suitable for correcting atmospheric effects in SAR images at the instant of 

acquisition, but they also will ensure the identification of water vapour variation from ground 

motion between image acquisition times (Foster et al., 2006). What is more, the high 

performance of the dense PWV maps using the ITD model is especially useful for mitigating 

the effects of water vapour for SAR measurements in mountainous areas, which usually suffer 

from vertical stratification and turbulent mixing due to the orography (Wadge et al., 2002). 
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Chapter 4. GPS Based InSAR Atmospheric Correction Model 

The growing number of continuous GPS networks in different regions/countries with increasing 

densities, although still variable from place to place, has inspired and facilitated the utilization 

of GPS for InSAR atmospheric correction. Chapter 3 has provided a method for generating 

high-resolution atmospheric delay maps from these pointwise GPS data. In this chapter, we 

evaluate this method by applying it to reduce atmospheric effects on radar measurements, 

addressing also the impact of station spacing on the model performance. This GPS-based 

atmospheric correction model produces high temporal resolution (5 minute) atmospheric 

correction maps and can be used routinely in a systematic, automatic way.  

 

4.1 Atmospheric Effects Modelling for Repeat-pass InSAR 

The atmospheric effects in repeat-pass InSAR derived surface displacements are, in dimensions 

of length, caused by the relative tropospheric delay occurring between two image acquisitions 

(see Equation 2.7). Hence GPS-based tropospheric corrections should be provided as high 

spatial resolution maps of LOS relative delays to enable pixel by pixel correction. This is 

obtained by interpolating pointwise relative ZTDs (differenced per GPS station between image 

acquisitions) from the continuously operating GPS stations across and around the area of the 

interferogram, then mapping to LOS. The ITD model proposed in Chapter 3 for the 

interpolation of undifferenced ZTDs is used and validated for the interpolation of relative ZTDs, 

including the separation of the stratified and turbulent components. 

 

4.1.1 Interpolation of the differenced GPS ZTD 

The ITD model considers the relative ZTD between image pair i and j at pixel k with coordinate 

vector x to be represented as:  

  Δ ( ) ( )k
ij k kL S h T εx                    (Equation 4.1) 

where S represents the stratified component correlated with height h, T represents the turbulent 

component and ε is the unmodeled residual. The stratified component in Equation 4.1 can be 

fitted with a modified exponential height scaling function as in Equation 3.3. 
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The main procedure of ITD is to iteratively estimate the height scaling function and find the 

optimal exponential coefficients. The turbulent part is horizontally interpolated and then 

removed from the total delay. In order to apply the ITD model to InSAR atmospheric correction, 

we apply a constant value to the relative ZTDs input, and then map to LOS using a tropospheric 

mapping function. The constant applied will not affect the final result after shifting back but 

provides the advantage of avoiding negative values in the exponential function regression. We 

must also consider which GPS reference stations ZTD values are needed in order to interpolate 

to the pixel of interest. This depends on the network density, i.e. for a dense network a smaller 

distance is used, however, for a sparse network, a larger distance is used to ensure that more 

stations are employed. While Chapter 3 used a maximum distance of 100 km, this was for a 

dense California network, but as we need to consider both dense and sparse networks, we use 

a maximum distance of 200 km from the particular pixel here. This ensures sufficient stations 

in the sparse network are included, but not those that would be completely uncorrelated with 

the user station. 

 

4.1.2 Cross validation of interpolated differenced GPS ZTDs 

To assess the capability of the ITD model for handling relative ZTDs, a cross validation was 

applied to the ITD interpolated values from two different GPS networks. The first is a subset of 

the PBO network, selecting the Southern California region (32º 40´ to 34º 40´ N, 116 to 119º 

W) of around 250 x 250 km, i.e. about the size of a Sentinel-1A image. It comprises 294 

continuous GPS (CGPS) stations, thus providing a very dense network with a station spacing 

of typically 10-20 km, exhibits large topography variations (from sea level to 3500 m) and 

experiences a variety of weather/climate conditions in winter and summer seasons. The second 

is a relatively sparse network, comprising all (up to 141) stations from the UK British Isles 

continuous GNSS Facility (BIGF: www.bigf.ac.uk) network, which has a typical station 

spacing of 50-100 km and is more representative of the CGPS station spacing in many countries 

than the dense Southern California spacing. It also exhibits only limited topography variations 

(from sea level to 1300 m, but with median elevation only 120 m), and is a cooler atmosphere 

that can hold less water vapour than Southern California. 



GPS Based InSAR Atmospheric Correction Model 

73 

 

 

Figure 4.1 Daily RMS (blue) and MAE (green) of the 12-day ITD model interpolated relative 

ZTDs in 2015 compared with the actual relative ZTDs. (a) Southern California GPS network. 

(b) UK GPS network. The horizontal axis represents the first day that the ZTD is differenced, 

i.e. day 1 represents the relative ZTD between days 1 and 13. 

All available GPS data from the stations of the Southern California and UK networks for all of 

2015 were processed separately per day using the PANDA software package (Liu and Ge, 2003) 

in Precise Point Positioning mode, with JPL ‘repro2’ satellite orbits and 30 second clocks, 

obtained through the IGS, held fixed. A least squares adjustment was used for the daily 

parameter estimation, which comprised constant (float) ambiguities, one set of station 

coordinates, receiver clocks (estimated as a white noise parameter), and the tropospheric ZWD 

estimated per 5 minutes epoch as a random walk parameter with a process noise of 5.0e-8 

km/s1/2, as well as east-west and north-south tropospheric gradients. We used the 

ionospherically-free carrier phase and pseudorange observables, employed the Global Mapping 

Function (GMF: Boehm et al. (2006)), applied models for satellite and receiver antenna phase 

centre models (from the IGS), Earth tide (McCarthy, 1996), ocean tide loading (FES2004, from 

http://holt.oso.chalmers.se/loading), phase wind up (Beyerle, 2009), relativistic effects and 

pseudorange Differential Calibration Delays (Kouba, 2009).  

 

All PANDA-derived GPS ZTDs at 14:00 local time per day were firstly differenced by every 

12 days (i.e. between days 1 and 13, 2 and 14, 3 and 15, etc.) in year 2015. We chose 12-day 
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ZTD time differencing to match the repeat cycles of Sentinel-1A, and 14:00 local time provided 

daily estimates sampled when tropospheric activity and water vapour content was typically 

greatest. These relative ZTDs were then used for cross validation, repeating for all sampled 

points, i.e. all stations from both the Southern California and UK networks for the whole of 

2015. 

 

Figure 4.2 Cross validation of 12-day ITD model interpolated relative ZTDs for all of 2015 for 

Southern California (10-20 km station spacing) and UK (50-100 km station spacing) GPS 

networks, compared with the actual relative ZTDs. The linear model in (a) and (b) is GPS-ZTD 

= Slope × (Interpolated ZTD) + Intercept. (c) and (d) show the average RMS errors for all of 

2015 per station. Note the different map scales. 

 

The difference between the interpolated and actual 12-day relative ZTDs was computed per 

station for each of the two GPS networks at 14:00 local time on each day, and the RMS and 

MAE computed per network per day. These cross validation results, for the whole of 2015, are 

shown in Figure 4.1. For the Southern California network, 94% of the RMS values and 99% of 
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the MAE values are below 1 cm, indicating a high performance of the ITD model interpolator. 

The overall mean RMS and MAE are 6.9 mm and 5.2 mm, respectively. The ITD model 

performed better in colder seasons (i.e. between days 0 to 160 and 280 to 365), which we 

attribute to medium-to-long wavelength and elevation-dependent signals dominating and which 

were effectively modelled. However, the RMS/MAE are fairly high between day 160 and 280, 

i.e. the summer months of June to September when the water vapour content is high, implying 

that the short-wavelength water vapour effects were large and variable during this period and 

cannot be fully mitigated by the ITD model. It can be seen from Figure 4.1 that the performance 

was slightly lower in the UK compared with Southern California because of its greater station 

spacing. 60% of the RMS values and 95% of the MAE values are below 1 cm and the overall 

RMS and MAE values are 9.7 mm and 6.9 mm, respectively. These results are however still 

promising for InSAR atmospheric correction which typically aims for (sub-) cm-level precision 

(Li et al., 2006a; Onn and Zebker, 2006). The seasonal signal was not as substantial for the UK 

as for Southern California due to different climate features, for example, the precipitation in the 

UK is nearly stationary during the year whilst the water vapour content in summer is typically 

2~3 times higher than winter in Southern California.  

 

The ITD model interpolation performance was also assessed using a correlation analysis 

between the interpolated relative ZTDs and the original values, which are plotted for all stations 

for 14:00 local time for all of 2015 in Figure 4.2. The overall cross validation RMS differences 

of the 12-day relative ZTDs is only 6.2 mm for the Southern California network and 9.7 mm 

for the UK network. The slopes are close to one with an intercept of zero for both networks, 

implying that there is no substantial deviation after interpolation. Figures 4.2c and 4.2d show 

the RMS distribution of ITD model interpolated relative ZTD of each station for both networks. 

One clear pattern is that more precise interpolated relative ZTDs are generated in areas with a 

denser station distribution. In terms of terrain effects on the RMS difference, stations in 

mountainous areas show approximately comparable precision with those in flat areas, 

indicating that the performance of the ITD model is nearly independent of height for these 

networks. The different performance between Southern California and the UK provides an 

indication of the impact of station distribution as well as the different climate conditions on the 
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ITD model’s performance. 

 

4.2 Validation of GPS Derived Atmospheric Correction Map  

In order to evaluate the suitability of the GPS based ITD model for InSAR atmospheric 

correction, five Sentinel-1A interferograms (three over Southern California, USA, and two over 

Southern England, UK, see Table 4.1) were selected. We chose these interferograms to sample 

different climate and weather conditions in summer and winter seasons, cool and warm 

atmospheres, as well as different station densities and topography variations. The interferogram 

processing was undertaken using the GAMMA software (http://www.gamma-rs.ch), with 

precise orbit data from the European Space Agency (ESA) used to reduce baseline errors and 

assist image co-registration and flat Earth phase removal. The topographic phase contribution 

was removed using a 1-arcsec (~30 m) DEM from the Shuttle Radar Topography Mission (Farr 

et al., 2007). The interferometric pairs were processed by multi-looking operation with ten 

pixels in the azimuth direction and two pixels in the range direction, and then unwrapped by 

the branch-cut method with the coherence threshold set to 0.5 (Goldstein et al., 1988). The ITD 

model was utilized to generate relative ZTD maps for all the five interferograms; the relative 

ZTDs were projected to the LOS direction of the InSAR observations with the GMF mapping 

function, and then applied as the interferogram atmospheric corrections per pixel (one point 

every ~30 m). It should be noted that the unwrapped phase (in radians) was converted to range 

changes (in meters) in the LOS where a negative range change indicates the Earth’s surface is 

moving away from the satellite (or an increase in the delay of radar propagation due to the 

atmosphere). Since the ITD model is able to separate stratified delays from the turbulent 

component, stratified delay maps were also generated to investigate the impact of tropospheric 

turbulence on InSAR observations. 

 

To assess the performance of the ITD model, two metrics were used. The LOS range change 

standard deviation (hereafter called StdDev) across the entire interferogram was computed to 

assess the precision, which assumed there was negligible ground movement between the two 

image acquisitions (12-156 days). As a large StdDev could also result from actual ground 
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movements such as inter-seismic slip or ground water extraction (e.g., Argus et al., 2005), to 

account for this and assess the accuracy, the InSAR displacements at each GPS station location 

were compared with independent 3D GPS-derived displacements provided by the Nevada 

Geodetic Laboratory at the University of Nevada, Reno (Blewitt et al., 2016). Both InSAR and 

GPS-derived displacements were converted to LOS, differenced for all GPS stations in the 

interferogram, and the RMS displacement difference computed. Note that all stations (within 

the defined 200 km decorrelation range limit) from the GPS networks were used to generate the 

correction maps for interferograms, but only the stations located inside the interferogram were 

used when computing the StdDev and RMS differences. We hereafter categorise stations with 

displacement improvements greater than twice the RMS difference (2RMS) per corrected 

interferogram as substantial improvements. 

 

Table 4.1 Sentinel-1A interferograms (denoted as IFG) used in this Chapter. 

IFG Orbit Date 1 Date 2 
∆t 

(days) 
Location 

Geographical 

extent 

IFG1 Ascending 26/05/2015 29/10/2015 156 
Southern 

California 
32-35N, 116-119W 

IFG2 Ascending 13/07/2015 25/07/2015 12 
Southern 

California 
32-35N, 116-119W 

IFG3 Descending 16/12/2015 21/03/2016 96 
Southern 

California 
33-36N, 116-119W 

IFG4 Ascending 30/01/2015 07/03/2015 36 
Southern 

England 
51-54N, 1-3W 

IFG5 Ascending 01/01/2016 25/01/2016 24 
Southern 

England 
50-53N, 2W-2E 

 

4.2.1 Atmospheric correction using the dense GPS network in Southern California 

Figure 4.3 shows the three Southern California interferograms with and without the GPS-based 

ITD model atmospheric correction. IFG1, which spans a time interval of 156 days from 25 May 

2015 (dry season) to 29 October 2015 (rainy season), shows in its raw form (Figure 4.3a, with 

no atmospheric correction) a range increase (up to 6.4 cm, i.e. the Earth surface moving towards 

the radar sensor) around San Bernardino National Forest, together with a range decrease (up to 

-4.9 cm, i.e. the Earth surface moving away the radar sensor) around Palm Desert. After 

correcting with the stratified delays only (Figure 4.3b) and then the ITD model total (stratified 
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and turbulent) delays (Figure 4.3c), both clustering features still exist, but their magnitudes 

decrease, with the StdDev reducing from 1.69 cm to 1.45 cm and 1.05 cm, respectively. At the 

GPS stations, the RMS displacement difference reduced from 1.66 cm to 1.47 cm after applying 

the stratified correction only, and further to 0.92 cm after applying the total delay correction, 

indicating that the ITD model reduced the large variances around San Bernardino National 

Forest and Palm Desert mainly by modelling the troposphere turbulence. 72% of stations 

exhibited substantial (> 2RMS) improvements after correcting with total delays compared to 

57% with the correction using the stratified part only. Moreover, accounting for the tropospheric 

turbulence reduced the percentage of stations with deteriorated performance from 11% to 3%. 

Note that Sneed et al. (2014) reported that the Coachella Valley (close to Palm Desert) is 

subsiding due to reduced groundwater-levels, as observed both by InSAR and GPS methods, 

which may be associated with the remaining LOS displacement signal in the corrected map of 

Figure 4.3c.  

 

IFG2 was obtained from images 12 days (one orbital period) apart in July, i.e. the summer, 

when the atmosphere can hold most water vapour. A prominent long wavelength signal was 

observed across the whole raw interferogram (Figure 4.3d), with an inhomogeneous pattern 

with clear gradients towards the middle of the area, and troughs around the Palm Desert and the 

Anza-Borrego Desert. The RMS displacement difference was 3.85 cm and the phase StdDev 

was 3.72 cm, indicating substantial tropospheric noise contamination. After applying the ITD 

model total delay (Figure 4.3f), the RMS difference reduced to 0.84 cm and the StdDev to 1.75 

cm. Overall, 63% of stations exhibited RMS improvements greater than 2RMS after correcting 

with the total delays compared to 23% with the stratified part only. Moreover, accounting for 

the tropospheric turbulence reduced the percentage of stations at which deterioration arose 

(after applying the tropospheric corrections compared with applying none) from 14% with 

stratified delays only, to 2%. Unlike for IFG1, the major improvement came from the turbulent 

delay correction (RMS difference reduction from 3.85 cm to 0.84 cm with the total delays, but 

only reduced to 2.67 cm with the stratified delays) and the GPS stations which exhibited > 

2RMS improvements only arose after correcting with the total delays (and not with the stratified 

part only), indicating that substantial atmospheric turbulence occurred during this short 12 day 
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time-differencing interval. These strong turbulent signals are most likely caused by conditions 

when the 23 July 2015 radar image was acquired, since a rainfall event was reported during 18-

21 July 2015 (www.wunderground.com/).  

 

Figure 4.3 Southern California Sentinel-1A interferograms. (a, d, g) Raw; (b, e, h) corrected 

only by the stratified delays from the ITD model; (c, f, i) corrected by the total delays from the 

ITD model. SBNF: San Bernardino National Forest; PD: Palm Desert; ABD: Anza-Borrego 

Desert. The LOS range change StdDev and the RMS difference between GPS and InSAR 

displacements are listed per interferogram per tropospheric correction approach. White 

triangles, blue squares and red solid circles in (b, e, h) and (c, f, i) represent GPS stations with 

displacement improvement < 2RMS, > 2RMS, and deterioration, after correction, respectively. 

Note the different colour bars. 

IFG3 was obtained from two images in rainy seasons with a time interval of 96 days. As can be 

seen from Figure 4.3g, the phase measurements exhibit a clear long wavelength pattern along 

the southwest to northeast direction, which is probably due to atmospheric errors considering 

the relatively short time span. The RMS displacement difference reduced by 68% from 2.32 cm 
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to 0.75 cm after correcting with the total delays and by 54% to 1.07 cm with only the stratified 

delays, respectively. The long wavelength pattern seen in Figure 4.3g has been mostly 

eliminated on correcting with only the stratified delays, but a further 14% improvement was 

achieved when correcting using the total delays. 74% of the GPS stations experienced greater 

than 2RMS displacement improvements after correcting with total delays compared with 59% 

on only correcting with the stratified component delays. Moreover, accounting for the 

troposphere turbulence reduced the percentage of stations at which deteriorations occurred from 

7% to 2%. Similarly, the LOS range change StdDev was reduced from 2.18 cm for the raw 

interferogram, to 1.08 cm on correcting with the stratified delays only, to 0.85 cm when using 

the total delays, i.e. respective 50% and 61% improvements (Table 4.2). 

 

Table 4.2 Performance of ITD model stratified and total delay atmospheric corrections on the 

interferograms. Unit: cm. Numbers in parentheses indicate the percentage improvement, (Raw 

– Corrected) / Raw. 

Interferograms Phase StdDev Displacement RMS 

 
Raw 

IFG 

Stratified 

correction 

Total delay 

correction 

Raw 

IFG 

Stratified 

correction 

Total delay 

correction 

IFG1 1.69 1.45 (14%) 1.05 (38%) 1.66 1.47 (11%) 0.92 (45%) 

IFG2 3.72 2.79 (25%) 1.75 (53%) 3.85 2.67 (31%) 0.84 (78%) 

IFG3 2.18 1.08 (50%) 0.85 (61%) 2.32 1.07 (54%) 0.75 (68%) 

IFG4 2.56 1.50 (41%) 0.90 (65%) 2.72 1.79 (34%) 0.80 (71%) 

IFG5 4.76 1.30 (73%) 0.98 (79%) 2.42 1.45 (40%) 0.97 (59%) 

Mean 2.98 1.62 (46%) 1.11 (63%) 2.59 1.69 (35%) 0.86 (67%) 

 

To further consider the improvement obtained for the InSAR-derived displacements at the GPS 

stations after applying the atmospheric corrections in all three interferograms, the differences 

between InSAR and GPS displacements in the LOS direction at 127 GPS stations for all three 

interferograms IFG1-3 are shown in Figure 4.4, with no tropospheric corrections (raw), 

correcting with the stratified delays only, and correcting with the total delays. The overall RMS 

difference between InSAR and GPS displacements improved from 3.79 cm with no atmospheric 

corrections, to 1.86 cm on correcting with stratified delays only, to 0.87 cm on correcting with 

the total delays. It can be seen from Figure 4.4 that differences of around 7 cm still arise in some 

instances if only the stratified delay is applied, further illustrating the need to consider and 

successfully correct both the stratified and turbulent components. 
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Figure 4.4 Differences between InSAR and GPS LOS displacements after ITD model 

atmospheric correction with (a) stratified delays and (b) total delays, respectively, collated for 

all three Southern California interferograms. Numbers in parentheses indicate the overall RMS 

differences. The horizontal axes represent the 127 stations. 

 

4.2.2 Atmospheric correction using the sparse GPS network in Southern England 

To assess whether the substantial improvements obtained on correcting the Southern California 

interferograms (with the dense 10-20 km GPS station spacing) are also obtained for a sparser 

GPS network, we applied the ITD atmospheric corrections to two Southern England 

interferograms, with a station spacing of 50-80 km. The maximum spacing of 80 km for this 

part of the UK network is slightly less than the 100 km maximum spacing that arises in some 

parts of the UK network. For both interferograms (IFG4 and IFG5 in Figure 4.5), the LOS range 

change StdDev was reduced to below 1 cm after correcting with the total delays (from a StdDev 

of 2.56 cm and 4.76 cm for the respective two raw interferograms, representing improvements 

of 65-79%), whilst applying the stratified delay corrections only led to StdDev values of 1.3-

1.5 cm. Similarly, the RMS LOS displacement differences were improved from 2.72 cm and 

2.42 cm (raw) to 1.79 cm and 1.45 cm respectively on applying the stratified delays only, to 

0.80 cm and 0.97 cm when applying the total delays, representing improvements of about 60-

70% (Table 4.2).  
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Figure 4.5 Southern England Sentinel-1A interferograms. (a, d) Raw; (b, e) corrected only by 

the stratified delays from the ITD model; (c, f) corrected by the total delays from the ITD model. 

The LOS range change StdDev and the RMS difference between GPS and InSAR 

displacements are listed per interferogram per tropospheric correction approach. White 

triangles, blue squares and red solid circles in (b, e) and (c, f) represent GPS stations with 

displacement improvement < 2RMS, > 2RMS, and deterioration, after correction, respectively. 

Note the different colour bars. (g) Collated differences for both interferograms. 

 

The short time intervals of 24 and 36 days between the image acquisitions used for the two 

interferograms means that actual ground movements should be negligible, and the atmosphere-

corrected maps confirm this hypothesis more strongly than the raw interferograms, as can be 

seen from Figure 4.5. Figure 4.5 also show that the proportion of GPS stations with more than 

2RMS displacement difference improvements increases from 32% and 50% on correcting with 

the stratified delays only, to 73% and 69% on correcting with the total delays. Finally, the raw 

and corrected displacement differences are collated for both interferograms in Figure 4.5g, with 

the raw overall RMS displacement difference reducing from 2.36 cm to 1.69 cm and 0.81 cm 
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on applying the stratified delays and total delays, respectively. These statistics illustrate the 

capability of the ITD model to be applied to relatively sparse GPS networks, which are 

commonly distributed globally. The impact of GPS station density is further considered in 

Section 4.3. 

 

4.2.3 Features of tropospheric turbulence 

Substantial improvements to InSAR displacement maps have been obtained after applying 

atmospheric corrections with both dense and sparser GPS networks. In theory, a denser network 

can reveal topography-related tropospheric signals better and capture the turbulence features in 

greater detail, especially in mountainous areas. Most likely due to a lack of high-resolution ZTD 

maps, turbulent signals have previously commonly been considered as a random process with 

a Gaussian distribution and either reduced by averaging or stacking (e.g., Fruneau and Sarti, 

2000; Ferretti et al., 2011) or simply ignored (Doin et al., 2009; Elliott et al., 2008). However, 

our experiments show that turbulent delays can exhibit non-random patterns in space and 

account for a large proportion (e.g., up to 72% for IFG2) of the total delays. This is especially 

true given the fact that the atmospheric effects on repeat-pass InSAR observations are 

differenced (between two image acquisitions) and part of the stratified components can be 

cancelled out, leaving the turbulence effects as dominant. In Section 4.2.1 and 4.2.2, we have 

demonstrated the presence of turbulent signals and the improvements arising to interferograms 

if atmospheric corrections using the total delays, not just the stratified delays, are applied. Here 

we further discuss the turbulent signal features and their impact on InSAR atmospheric 

corrections. 

 

Figure 4.6 shows the stratified and turbulent components of relative ZTD for all GPS stations 

in the three Southern California interferograms. For IFG1, the average percentages of the total 

delay made up by the turbulent and stratified components are nearly identical (49% against 51%, 

Fig. 6a) and there is no clear pattern for the turbulent part. However, a strong turbulent pattern 

can be observed for IFG2 with the turbulent component contributing on average 72% of the 

total delay (Figure 4.6b). A clear turbulent pattern can also be seen in Figure 4.6c where some 

of the stations suffer from substantial atmospheric delay increases while others exhibit 



GPS Based InSAR Atmospheric Correction Model 

84 

 

substantial decreases. We attribute this mainly to the crowded tropospheric delays in the shore 

area where the turbulence behaviour is completely different from that in the inland area. On 

correcting with the stratified delays only, such as would be obtained via correlation analysis 

between interferometric phases and elevations (as used by for example Elliott et al. (2008) and 

Doin et al. (2009)), only limited RMS LOS displacement reductions can be obtained (Figure 

4.3). The turbulent part also helped to reduce the tropospheric delay clustering on certain 

topographies such as the forest and desert in IFG1. It is therefore clear that correcting with only 

the stratified delay component is far from optimal for mitigating InSAR atmospheric effects. 

 

Figure 4.6 Turbulent and stratified components of the relative ZTDs, as separated by the ITD 

model with all the available GPS stations in the three Southern California interferograms (IFG1-

3). The listed percentages denote the average proportion of the total delay contributed by the 

stratified and turbulent components. Note the different ZTD ranges. 

Figure 4.7 shows the spatial distribution of the tropospheric turbulent signals on the Southern 

California interferograms, and the key features can be summarized as: 

 

1). The turbulent components can have a comparable magnitude to the elevation-dependent 

component (i.e. stratified delays, see Figure 4.3 and 4.6). This is mainly because the 

differencing in InSAR weakens the stratification but, to some extent, amplifies the turbulence, 

especially when the weather conditions on the two days of image acquisition are considerably 

different and hence the errors tend towards a random distribution.  

 

2). Patterns of the turbulent delays arise, with decreasing delays around the Palm Desert in 

Figure 4.7a and Figure 4.7b and the Anza-Borrego Desert in Figure 4.7b, and increasing delays 

around San Bernardino National Forest in Figure 4.7a and the shore areas, as shown in Figure 

4.7c. The turbulent delays are sometimes clustered into different groups all with their own peak 
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values. The distribution of tropospheric turbulence is inhomogeneous, making it challenging to 

interpret actual deformation signals in InSAR measurements if they are not appropriately 

mitigated. 

 

3). More variable turbulence can be seen in the summer than in other seasons (see the magnitude 

scales in Figure 4.7, where IFG2 is in the summer), which is attributed to the atmosphere being 

able to hold more water vapour and hence also substantial variability.  

 

Figure 4.7 Turbulent relative zenith delays estimated using the ITD model for the three 

Southern California interferograms, IFG1-3. The black dotted lines represent turbulent delay 

contours of 1 cm; SBNF = San Bernardino National Forest, PD = Palm Desert, ABD = Anza-

Borrego Desert. Note the different colour bars. 

4.3 Assessment of the Impact of Station Spacing 

As shown in Section 4.2, all the five interferograms were improved after applying the ITD 

model atmospheric corrections. The Southern California interferograms covered a region of 

varying topography but with a dense GPS network, while the Southern England region had a 

sparser GPS network but with flatter terrain. In order to assess the impact of station distribution 

on the ITD model performance, a station spacing test was carried out for the Southern California 

network. It comprised deleting stations from the (dense) network covered by the interferogram, 

to form sub-networks with different station spacing. The procedure was as follows: (i) we 

divided the whole coverage area into uniform grids for a chosen station spacing distance (1 km, 

2 km, 3 km, etc.); (ii) for each grid, we selected only one station inside it (the closest one from 

the grid centre) and all the selected stations were then used to form a new sub-network; (iii) by 

repeating the previous two steps, we generated a series of sub-networks with different station 

spacings ranging from 1 km to 70 km. The station spacing here means the size of each grid and, 

to some extent, represents the average distance between stations. This procedure ensured 
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resampling of stations as uniformly as possible, leaving the spacing distance as the main 

variable between the sub-networks. 

 

Figure 4.8 GPS station spacing tests on the Southern California interferograms. Three sub-

networks were considered with spacing distances of 80 km, 40 km and 10 km, with the blue 

dots representing the GPS stations used to compute the ITD model total delay corrections 

applied in each interferogram. The corrected interferograms and the corresponding phase 

StdDev and RMS displacement difference statistics are also indicated. Note the different colour 

bars per interferogram. 

Figure 4.8 shows some results of the spacing test with three sub-networks used to generate ITD 

model total delays and applied to the three Southern California interferograms, plotted for 

station spacing distances of 80 km, 40 km and 10 km. The performance improves dramatically 

as the spacing decreases from 80 km to 40 km (LOS range change StdDev improving from 1.49, 

2.40 and 1.13 cm, to 1.13, 1.96 and 0.96 cm, respectively for interferograms IFG1-3; RMS LOS 

displacement differences improving from 1.26, 1.75 and 1.25 cm, to 1.00, 1.23 and 0.90 cm, 

respectively), but little further improvement was attained when further decreasing the spacing 
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from 40 km to 10 km, as can be seen in Figure 4.8 and Table 4.3. This indicates that some 

medium-to-long wavelength signals are not handled well by the sparsely distributed pointwise 

ZTDs, although even this 80 km spacing provides improvements over the raw interferogram, 

e.g., for IFG2 the StdDev and RMS difference improved from 3.85 and 3.72 cm to 2.40 and 

1.75 cm, respectively. By adding stations uniformly until a 40 km spacing was attained enabled 

the overall tropospheric noise to be modelled as much as possible by the network. A denser 

network with 10 km distance had a similar performance, revealing that short-wavelength 

turbulent signals are hard to model even with a very dense GPS network.  

 

Table 4.3 Summary of station spacing tests for the Southern California interferograms. Unit: 

cm. The number in parentheses indicates the improvement, (Raw – Corrected)/Raw. 

Interferograms Phase StdDev Displacement RMS 

IFG1 - Raw 1.69 1.66 

IFG1 – 80 km 1.49 (12%) 1.26 (24%) 

IFG1 – 40 km 1.13 (33%) 1.00 (40%) 

IFG1 – 10 km 1.05 (38%) 0.92 (45%) 

IFG2 - Raw 3.72 3.85 

IFG2 – 80 km 2.40 (35%) 1.75 (55%) 

IFG2 – 40 km 1.96 (47%) 1.23 (68%) 

IFG2 – 10 km 1.77 (52%) 0.88 (77%) 

IFG3 - Raw 2.18 2.32 

IFG3 – 80 km 1.13 (48%) 1.25 (46%) 

IFG3 – 40 km 0.98 (55%) 0.90 (61%) 

IFG3 – 10 km 0.86 (61%) 0.77 (67%) 

 

More detailed statistics of the spacing test are shown in Figure 4.9. Figure 4.9a represents the 

relative ZTD cross validation RMS differences (using the three interferograms) for each sub-

network with spacing distance ranging from 2 km to 80 km at a 1 km interval. Figure 4.9b 

shows the noise reduction level of each sub-network and the improvement percentage, 

calculated as the LOS range change StdDev and RMS LOS displacement difference reduction 

divided by the maximum reduction. Limited improvement was obtained on decreasing the 

spacing from 15 km due to (i) the additional stations were located in areas where the 

tropospheric delays had already been fully modelled (it should be noted that the station 
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distribution in our original network is not uniform), so it contributed no further improvement; 

(ii) the principal component of tropospheric delay signals has already been modelled and the 

closer distance between stations contributed only limited improvement on modelling short 

wavelength signals. When the spacing is below 15 km, the performance remains similar to when 

the principal component of tropospheric delay signals is modelled. However, as the distance 

increased from 15 km the performance degraded, with the increased spacing distance resulting 

in fewer stations being available, which made the correction maps less reliable. This can be 

seen from the more variable performance between 50–80 km, i.e. although some sub-networks 

have similar spacing, their performance can be totally different. 

 

Figure 4.9 Multiple station spacing tests for the three Southern California interferograms, 

ranging from 2 km to 80 km. (a) Relative ZTD cross validation for each sub-network on every 

interferogram. (b) Noise reduction using each sub-network stations on every interferogram, for 

phase (StdDev) and RMS difference between InSAR and GPS LOS displacements. (c) number 

of stations for each sub-network with different station spacings. 

The spacing test serves as an intuitive way to understand the impact of the station distribution 

on the ITD model performance. A good distribution should be able to model the principal 

components of tropospheric noise, i.e. as the spacing distance decreases, the ZTD cross 

validation RMS should converge before the number of stations converges and therefore adding 

more stations would introduce little improvement. In the case that the stations are distributed 

rather non-uniformly, the conclusions still hold except that the largest noise reduction will 

converge to a local optimum, leaving some medium-to-long wavelength noise signal still being 

uncorrected, especially those areas where few or no stations are available.  
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4.4 Summary 

In this chapter, we have demonstrated GPS-based atmospheric correction model to reduce 

atmospheric effects on radar measurements. The ITD model was employed to separate the 

turbulent and stratified delays from the total delays in order to reduce their coupling effects on 

SAR interferograms. Cross validation and station spacing tests were carried out to serve as 

indicators of correction performance to inform users whether the correction is applicable and 

provide insights into the trade-off between station spacing and the achievable accuracy.  

 

After applying our GPS-based tropospheric correction model (using the total delays, i.e. 

including both the stratified and turbulent components), the RMS differences between InSAR 

and GPS displacements in the LOS for five Sentinel-1A interferograms in Southern California 

(10-20 km station spacing) and Southern England (50-80 km station spacing) reduced from 

1.66, 3.85, 2.32, 2.72 and 2.42 cm, to 0.92, 0.84, 0.75, 0.80 and 0.97 cm, respectively. These 

represented improvements of 45-79% for Southern California, and 59-71% for Southern 

England, and the phase standard deviation improvements for the two test areas were 38-61% 

and 65-79%, respectively. The importance of correcting for turbulent delays has been 

emphasized since the time differencing of InSAR can cancel out part of the stratified component 

and amplify the turbulence effects. The turbulent components can have a comparable magnitude 

to the stratified component and exhibit larger variations in the summer than in other seasons 

due to the atmosphere being able to hold more water vapour hence exhibits greater variability. 

By accounting for both the stratification and turbulence of the troposphere, ~1 cm precision of 

the corrected interferograms is achievable. This improves the feasibility of using InSAR 

observations to investigate low-amplitude, long wavelength deformation fields such as those 

due to inter-seismic strain accumulation and/or post-seismic motion, and to investigate 

underground human activities in modern cities which plays an important role in ground 

subsidence monitoring (Chen et al., 2016; Crosetto et al., 2002; Walters et al., 2013). 

Furthermore, this method does not result in any removal of real deformation signals or require 

manual interaction, which can arise when using filtering tropospheric mitigation approaches, 

and unlike using MERIS and MODIS, is applicable in all weathers. 
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The station spacing test by cross validating the GPS ZTDs provides an assessment of the overall 

interpolation performance which should be considered as one essential step to assess the 

feasibility of the ITD model correction. A lower RMS in the cross validation indicates higher 

ITD model performance, and vice versa (Figure 4.9). Spacing tests served as an intuitive way 

to understand how the station distribution affects the correction performance, which is 

especially important when using pointwise GPS ZTDs which may be sparsely or non-uniformly 

distributed. A network with a greater station spacing is likely to provide higher RMS values and 

hence poorer correction performance against a denser network. Based on these two indicators, 

one could decide whether the correction is applicable as well as assessing the expected accuracy 

of the network considered. 
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Chapter 5. Generic Atmospheric Correction Model 

The GPS based atmospheric correction model is dependent on the availability of sufficiently 

dense and geometrically sound networks of GPS stations, which are not available everywhere 

globally. To overcome this, in this chapter we propose a generic InSAR atmospheric correction 

model whose notable features comprise: (i) global coverage, (ii) all-weather, all-time usability, 

(iii) correction maps available with a short time latency, and (iv) indicators to assess the 

correction performance and feasibility. The model integrates operational high-resolution 

ECMWF data (0.125-degree grid, 137 vertical levels, 6-hour interval) and continuous GPS 

tropospheric delay estimates (every 5 minutes) using the revised ITD model. Indicators 

describing the model’s performance are developed to provide quality control for subsequent 

automatic processing, and to give insights of the confidence level with which the generated 

atmospheric correction maps may be applied.  

 

5.1 High-resolution ECMWF ZTDs 

Previously used weather models such as the ERA‐Interim are often released with a latency of 

several months and suffer from coarse temporal and/or spatial resolution and failure in 

accurately capturing atmospheric turbulence (e.g., Foster et al., 2013; Jolivet et al., 2011; 

Webley et al., 2002), with Bekaert et al. (2015b) reporting a 1.7‐cm RMS displacement error 

of corrected interferograms over Mexico and Italy, after applying corrections generated from 

ERA‐Interim and WRF. We used the output from the model level operational high-resolution 

ECMWF analysis product. Specifically, modelled surface pressure, temperature and specific 

humidity were used to calculate ZTDs and PWV at each 0.125-degree grid point (i.e. spacing 

of approximately 9-12 km), as described in Jolivet et al. (2011). While forecast products can 

potentially introduce pluri-annual time series trends when compared with reanalysis products, 

we expect such effects to be small here as the ECMWF product is not purely forecasted, but 

computed using a uniform procedure over time, combining short-range forecast data with real 

observations to produce the best fit to both (Persson, 2015).  

 

We also compared the daily (at 12:00 UTC) ECMWF and GPS ZTDs in California (35-38N, 
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118-122W) for the whole year of 2016 by interpolating the ECMWF regular grids onto GPS 

stations. The GPS data was downloaded from the PBO network and processed as in Section 4.1. 

The result is shown in Figure 5.1. The ECMWF ZTD agrees with the GPS ZTD, with a 9.8 mm 

RMS difference and a 0.994 linear slope.  

 

Figure 5.1 Comparisons between the daily GPS ZTD and ECMWF ZTD in California for the 

whole year of 2016 at 12:00 UTC. The slope and intercept are the parameters in the linear model: 

GPS ZTD = Slope * (ECMWF ZTD) + Intercept. 

 

5.2 Cross Validation of GPS and ECMWF ZTDs 

It is crucial to validate the ZTD interpolation performance and check the GPS network 

distributions before generating and applying atmospheric correction maps for InSAR. For 

validation purposes, in this chapter, we used four networks of continuously operating GPS 

reference stations located respectively in Central California (CA), North of New Zealand (NZ), 

Italy and the United Kingdom (UK), each one characterized by different geometry and station 

density, ranging from an average spacing of 43 km for the UK network, to 12 km for CA (Table 

5.1). All GPS data for the whole of the year 2016 from all stations in the four networks were 

processed in the same way as described in Section 4.1. While in Chapter 4 we used differenced 

ZTDs to generate correction maps, this may not be achievable as the spatial resolution of 

ECMWF ZTDs may be different between two acquisitions (i.e. the resolution improved from 
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~16 km to ~9 km in 2016) where the GPS network is the densest to validate the ECMWF ZTDs. 

As a result, in this Chapter, we use the absolute ZTD to generate atmospheric delay maps, with 

the correction map obtaining by differencing.  

 

Figure 5.2 Cross validation: mean RMS differences for each station in the four GPS networks 

and ECMWF in 2016. Note that the 20% of ECMWF points used were selected randomly from 

the original 0.125-degree spacing grids. 

 

Daily PANDA-derived GPS ZTDs at 14:00 local time for all of 2016 were cross-validated (as 

described in Section 3.3). It was also undertaken for ECMWF, but because of the small and 

regular spacing (and therefore high spatial correlation) of the ECMWF ZTD data points, this 

should only be considered as internal cross validation and will always produce a low RMS 

difference and not realistically reflect the interpolation performance of the whole area. Hence, 

we randomly chose 20% of points among the regular 0.125-degree spacing grids to reduce the 

spatial correlation and then conducted the (internal) cross validation in the same way as for 

GPS. 
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Table 5.1 Cross validation for four GPS networks and one ECMWF area using daily values at 

14:00 local time for all of the year 2016. 

Network Location 

Average 

spacing 

(km)5 

Slope 
Intercept 

(m) 

Bias 

(mm) 

RMS 

(mm) 
Correlation 

Mean 

RMS 

(mm)6 

 

BIGF1 UK 43 0.973 0.065 0.2 9.8 0.97 9.3  

RING2 Italy 30 0.993 0.015 0.1 8.5 0.99 8.8  

GeoNet3 

New 

Zealand 

(NZ) 

17 0.995 0.012 0.2 7.8 0.99 7.7  

PBO4 

California 

USA 

(CA) 

12 1.000 0.001 0.1 6.6 1.00 6.6  

ECMWF
7 

California 

USA 
12 0.997 0.006 0.0 6.3 1.00 5.9  

 1 British Isles continuous GNSS Facility (www.bigf.ac.uk/) at 50-59N, 11W-2E; 
 2 Rete Integrata Nazionale GPS (ring.gm.ingv.it/) at 37-47N, 8-18E; 
 3 Modern geological hazard monitoring system in New Zealand (www.geonet.org.nz/) at 

37-42S, 173-179E; 
 4 Plate Boundary Observatory (pbo.unavco.org/) at 34-39N, 124-118W; 
 5 The spacing is computed as the mean distance between each station and its closest station; 
 6 The mean daily RMS differences for the year 2016; 
 7 For ECMWF, values were taken at 10:00 or 11:00 local time. 

 

The cross validation RMS differences between the interpolated and actual values for all the 

GPS networks and, for the case of CA, also internal cross validation of ECMWF, for the year 

2016 are summarized in Table 5.1. We fitted a linear model (actual ZTDs = Slope * Interpolated 

ZTDs + Intercept) for each network including ECMWF. We used the local time 14:00 for all 

GPS networks, but for ECMWF over CA, we used 18:00 UTC (local time 11:00 during summer 

and 10:00 during winter) to avoid ECMWF temporal interpolation. The average GPS station 

spacing decreases from the UK, Italy, NZ to CA networks, and their corresponding RMS 

differences reduce accordingly: the UK network exhibits the greatest average station spacing 

(43 km), which leads to an RMS of 9.8 mm compared with 6.6 mm for the 12-km spacing CA 

network. The ECMWF of CA has a similar spacing to the CA GPS network but a slightly lower 

RMS, which is attributed to the GPS ZTD capturing more detailed turbulent signals and thus 

degrading the interpolation performance. The RMS differences per station are plotted in Figure 

5.2, which shows that more precise interpolated ZTDs are generated in areas with a denser GPS 

http://www.bigf.ac.uk/
http://ring.gm.ingv.it/
http://www.geonet.org.nz/
http://pbo.unavco.org/
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network. Larger RMSs mostly arise in areas with fewer stations or on the edge of the networks. 

However, all regions present a mean correlation coefficient using all stations of at least 0.97 

and a bias varying between 0 and 0.2 mm. A summary of multiple statistical metrics that were 

computed is given in Table 5.1. 

 

5.3 Integration of GPS and ECMWF 

To model GPS and ECMWF consistently and capitalize on the high spatial resolution of 

ECMWF and the high quality of GPS-estimated tropospheric delay, the ITD approach is used 

to tightly integrate both datasets. 

 

5.3.1 The integrated ITD model 

In the ITD model, the exponential function is used to model the stratified delays, and the 

turbulent part of the delay is constructed by fitting an interpolating scheme based on IDW to 

the remaining delays. To integrate GPS and ECMWF ZTDs, the total delays are defined as in 

the same form as in Equation 3.2, but the stratified components are modelled as: 

0
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      (Equation 5.1) 

where the modelled stratified delay S is represented by an exponential function with coefficient 

(L0, β), the same symbols are used as in Equation 3.3; P is the weight matrix; G represents GPS 

and E represents ECMWF. The equation holds within a defined tropospheric decorrelation 

distance from the point being interpolated. This is a key parameter for GPS-based interpolator 

which is subject to network density and geometry, with Chapter 3 defining it as 100 km for a 

dense California network and Chapter 4 using 200 km to avoid discontinuities for a sparse GPS 

network. In this Chapter, we found 150 km is sufficient for all considered GPS networks and a 

larger distance may result an over-smoothed interpolation. Furthermore, when including the 

ECMWF ZTD, this parameter becomes less important and we believe that 150 km is sufficient 

for any GPS network, since the dense distribution of the ECMWF ZTD ensures a reliable 

estimation of the exponential coefficients and avoids discontinuities in the interpolated delay 

maps.  
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We use all ZTD samples in the region considered to estimate the two coefficients in a least 

squares algorithm. Extra reference locations are needed outside of the interferogram bounds (up 

to the defined decorrelation distance) to avoid any need to extrapolate rather than interpolate. 

The ZTDs used (hereafter called reference location ZTDs) include both the GPS ZTD at 

position m and the ECMWF ZTD at position n. The weight matrix P is defined according to the 

different quality of GPS and ECMWF ZTDs, and there are three principal factors that influence 

this: (i) the quality of GPS ZTD is higher than ECMWF ZTD, especially when there are large 

time differences between ECMWF and InSAR acquisitions (Bock et al., 2005); (ii) GPS ZTD 

captures the tropospheric temporal variations better than ECMWF ZTD, which is essential in 

InSAR atmospheric corrections; (iii) the higher spatial resolution and uniform distribution of 

ECMWF makes it better than GPS for interpolation. A method based on cross validation is 

proposed in the next section to automatically determine the relative weights between GPS and 

ECMWF. 

 

The turbulent part is modelled by a modified IDW to incorporate both ECMWF and GPS ZTDs 

and reads as: 
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            (Equation 5.2) 

where u and i are indices for the user and reference locations, respectively. Each turbulent delay 

at the user location is assigned a weight of wui which is determined by the horizontal distance 

from the user to reference location dui and the weighting pi for GPS and ECMWF, respectively 

(the same as in the case of the stratified delays as per Equation 5.1). The detailed integrated 

ITD implementation steps are the same as in Section 3.2.  

 

The ITD model uses the ZTDs integrated from the layered temperatures, pressures and the 

partial water vapour pressures from ECMWF (Jolivet et al., 2011) to enable the decomposition 

of the stratified and turbulent components in a way consistent with the GPS delays, which is 

critical to integrate them, and a high computing efficiency. Given the fact that the vertical profile 

of water vapour over large scales varies exponentially (Ehret et al., 1999; Rocken et al., 1997), 
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ITD seeks a local average vertical profile for each map pixel by its surrounding reference grid 

nodes and/or reference GPS stations and fit to an exponential function. To avoid over-

interpretation, any disturbances on this assumption will drop into the turbulent component 

which is iteratively handled in the ITD model. In general, the elevation dependent and medium 

to long wavelength tropospheric delays can be well reconstructed by ITD, but the short 

wavelength (e.g., a few kilometres) delays require a dense GPS network. While some GPS 

ZTDs have been assimilated into ECMWF, principally from continuously operating GPS 

stations in Europe, the integrated ECMWF+GPS ITD approach is still needed because of (i) the 

coarse temporal resolution (6 hours) of the ECMWF model; and (ii) the GPS data assimilated 

into ECMWF are used for forecasting, which poses prediction uncertainties compared to the 

GPS ZTD estimates themselves.  

 

5.3.2 Weight determination 

One of the key parameters in the integrated ITD model is the relative weight between GPS and 

ECMWF. Since the cross validation reflects the ZTD interpolation performance and the GPS 

network distributions, we utilized the cross validation RMS of the GPS network stations to 

determine the relative weights between GPS and ECMWF.  

 

For a given GPS network, we calculated its cross validation RMS, but instead of using GPS 

ZTDs only, we also used the surrounding ECMWF grid nodes to predict ZTDs at each GPS 

station. This was done by the integrated ITD model described in Section 5.2.1 and using 

different ECMWF:GPS relative weights ranging from 0.0 to 10 (at a step of 0.1). The optimum 

ECMWF:GPS weighting for the particular network was considered that which led to the lowest 

cross RMS. Figure 5.3 shows examples using data from the CA (~12 km GPS station spacing) 

and UK (~43 km GPS station spacing) networks using one day in winter (7 December 2016) 

and one in summer (5 July 2016). Clear RMS minima can be seen for all cases, arising when 

applying ECMWF:GPS relative weights of 0.15 and 0.25 for the denser CA network, and 0.44 

and 0.45 for the sparser UK network. A simulation test was also undertaken to show the impact 

of a network of GPS stations which has a very sparse distribution. We selected five stations 

from the CA network on 12:00 UTC 1 January 2016 (Figure 5.3e) and repeated the cross 
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validation analysis. The best relative weight was found to be 3.3 which means that in this 

simulation case, the correction maps should be mainly dictated by ECMWF due to the sparse 

GPS station distribution. 

 

Figure 5.3 Relative weighting between GPS and ECMWF ZTDs on integrating, using the 

Central California (CA) and UK GPS networks. The y axes represent the cross-RMS for all 

GPS stations on the dates shown. The horizontal axis represents the relative weighting between 

ECMWF and GPS. 

From the weight determination procedures described above, when the GPS network is sparse, 

the cross validation RMS will be higher because of missing short wavelength components. The 

ECMWF:GPS relative weighting will depend on how well the ECMWF ZTDs represent the 

missing signals from GPS (reflected by the integrated ITD cross validation RMS for the GPS 

stations). If the ECMWF ZTDs have large time latency (resulting in the ECMWF ZTDs 

differing substantially from the GPS values), it will not help to improve the cross validation and 
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hence they will be assigned low weight. 

 

The relative weight from cross validation is a spatial-temporally dependent variable that can be 

easily determined whenever both GPS and ECMWF data are available, and is essential for 

automated processing. For the four IFGs used here covered by GPS stations, the relative weights 

were computed as just described, using all GPS data from stations covered by the IFG and also 

up to 150 km outside its boundaries. Hence the relative weighting reflects not only the ZTD 

precision but also the density of the observations, the variation of the topography, and the local 

tropospheric conditions. 

5.4 Generic Atmospheric Correction Model 

Based on the integrated ITD model and the determined relative weights for the integration of 

the ECMWF and GPS ZTDs, ZTD maps were generated and applied to InSAR measurements 

to correct for atmospheric effects. This leads to a generic atmospheric correction model since it 

has (i) global coverage, (ii) all-weather, all-time usability, and (iii) correction maps available 

with a short time latency (two days latency from ECMWF, no latency from GPS).  

 

Figure 5.4 Sentinel-1 interferograms (denoted as IFG) used in this study. All times are in UTC. 
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We assessed the performance of the generic atmospheric correction model by using it to correct 

atmospheric effects on the eight globally-distributed interferograms (Figure 5.4), thus testing 

its suitability in different parts of the world and when there is a range of GPS ZTDs available, 

from none through to 12 km station spacing. These interferograms represent typical problematic 

scenarios in InSAR processing such as strong, long wavelength signals caused by water vapour, 

large topography variations, large time latency of the ECMWF data, and the effect of the 

different densities of GPS networks, in that they cover the four GPS networks to test the benefit 

of ECMWF combined with GPS but of various station spacings. They also include four areas 

of geophysical interest where there are no GPS stations, namely Tibet, Nepal, Algeria and 

Iceland, in order to test the global applicability of the generic model but in scenarios whereby 

only ECMWF can be used. For the four interferograms which are covered by GPS networks, 

we assess and quantify the model’s performance when the applied correction is based on GPS 

ZTDs only, on ECMWF ZTDs only, and from integrated GPS and ECWMF ZTDs. Then, four 

additional interferograms covering areas without a GPS network are evaluated using ECMWF 

ZTDs only, to emphasize the global applicability of the model developed. The same 

decorrelation limit was used per pixel as per the cross validation tests by using only the 

ECWMF and GPS ZTDs within 150 km of the pixel considered. The metrics used to assess the 

model’s performance are the same as in Section 4.2 (the phase StdDev and the RMS 

displacement difference between GPS and InSAR).  

 

5.4.1 Validation of the integrated ECMWF and GPS correction maps 

Figure 5.5 shows the results for IFG1-UK and IFG2-CA, which represent different station 

spacings. It appears that both raw interferograms exhibit strong atmospheric effects, with raw 

phase StdDev values of 2.75 cm and 2.44 cm, respectively. The long wavelength atmospheric 

effect on IFG1-UK disappeared and the phase StdDev dropped to 0.71 cm after applying the 

GPS-only atmospheric correction map, to 1.02 cm after ECMWF correction and to 0.69 cm 

after the integrated correction, as listed in Table 5.2. The displacement RMS differences 

compared with GPS also decreased dramatically after correction, particularly for the integrated 

correction, which shows a 71% improvement of 2.23 cm to 0.65 cm. It can be seen from Figure 

5.5 that the remaining signals are mostly short wavelength and topography-correlated, 
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especially after applying the ECMWF correction, indicating that these remaining signals, or at 

least parts of them, are unmodeled atmospheric delays. Elliott et al. (2008) used a linear fit with 

height to reduce such effects, but the method fails when the deformation signals are correlated 

with topography or the relationship between phase and height is not constant throughout the 

interferogram. 

 

Figure 5.5 InSAR atmospheric corrections using GPS (G), ECMWF (E) and their combinations 

(GE) for IFG1-UK and IFG2-CA. The first two columns are raw and corrected interferograms. 

The third column shows the displacement differences between GPS and InSAR per GPS station. 

Phase StdDev, displacement RMS and automatically-determined ECMWF:GPS relative weight 

(PE/PG) for each IFG are also listed. The red arrow indicates the radar flight direction and the 

red circles represent GPS stations. All phases are in LOS direction. 

Similar improvements are also observed in Figure 5.5 for IFG2-CA, with 54% improvement in 
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terms of phase StdDev after GPS correction, 41% after ECMWF correction and 61% after the 

integrated correction, reducing from 2.44 cm to 0.96 cm. The displacement measurements 

compared with GPS improved by 70% after the integrated correction, with most of the errors 

per GPS station falling to below 1 cm as can be seen in Figure 5.5b5, and an RMS displacement 

error of 0.72 cm. Although the IFG2-CA GPS network is denser than that for IFG1-UK, it is 

unevenly distributed, resulting in most of the improvements after applying GPS corrections 

occurring in the west (Figure 5.5b2) where most of the GPS stations are located, whereas 

improvements on the eastern part of the interferogram are limited. The large topography 

variation in this area makes it harder to model the atmospheric delays compared with the flatter 

terrain in the UK, and the lower performance of ECMWF (41% StdDev improvement) 

compared with IFG1-UK (63% StdDev improvement) reflects this. Hence the different 

performances of GPS for the two interferograms indicate the dependence on both topography 

and network geometry.  

 

Table 5.2 InSAR atmospheric correction performance statistics expressed in terms of phase 

StdDev and displacement RMS for different correction methods applied on eight interferograms. 

Unit: cm. Percentage improvements over the raw measurements are given in parentheses. 

IFG 

Phase StdDev Displacement RMS 

Raw 

IFG 

GPS 

correction 

ECMWF 

correction 

Integrated 

correction 

Raw 

IFG 

GPS 

correction 

ECMWF 

correction 

Integrated 

correction 

IFG1-

UK 
2.75 0.71 (74%) 1.02 (63%) 0.69 (75%) 2.23 0.95 (57%) 0.86 (61%) 0.65 (71%) 

IFG2-

CA 
2.44 1.13 (54%) 1.45 (41%) 0.96 (61%) 2.43 0.75 (69%) 1.62 (33%) 0.72 (70%) 

IFG3-

Italy 
1.49 0.95 (36%) 0.88 (41%) 0.85 (43%) 1.37 0.70 (49%) 0.61 (55%) 0.47 (66%) 

IFG4-

NZ 
1.97 1.35 (31%) 1.13 (43%) 1.10 (44%) 1.99 1.23 (38%) 1.30 (35%) 1.12 (44%) 

IFG5-

Tibet 
1.15 - 0.45 (61%) - - - - - 

IFG6-

Nepal 
1.83 - 1.11 (39%) - - - - - 

IFG7-

Algeria 
2.40 - 0.88 (63%) - - - - - 

IFG8-

Iceland 
1.76 - 1.05 (40%) - - - - - 

Mean 1.97 1.04 (47%) 1.00 (49%) 0.90 (54%) 2.01 0.91 (55%) 1.10 (45%) 0.74 (63%) 
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IFG3-Italy covers most of the island of Sicily and only incorporates a limited number of GPS 

stations (11, with average spacing 75 km). Figure 5.6 shows that interferogram atmospheric 

contamination arises on the west and north coasts, where the raw observations imply substantial 

ground subsidence, but which is not the case in reality. Applying ECMWF corrections results 

in a 41% StdDev improvement, compared with 36% for GPS (Table 5.2), with the greater 

improvement visually apparent in the northeast and southeast of Sicily. The sparse distribution 

of GPS stations was unable to adequately capture the atmospheric delays around Mount Etna 

and the greater improvement (where GPS has performed similarly to ECMWF) is found in the 

west due to its flat topography. As for IFG1-UK and IFG2-CA, the benefit of applying 

integrated correction maps can be seen from Figure 5.6, with StdDev reductions of 43% 

obtained (from 1.49 cm to 0.85 cm) and 66% RMS displacement reductions (from 1.37 to 0.47 

cm). 

 

The atmospheric correction results for IFG4-NZ shown in Figure 5.6 follow a similar trend to 

those for IFG3-Italy: ECMWF resulting in a lower phase StdDev and similar RMS 

displacement than GPS, with ECMWF removing atmospheric effects in the west where GPS 

correction is less successful because the GPS station distribution is sparse. Whereas in the east, 

where the GPS station distribution is much denser (15 km spacing), the GPS corrections 

perform similarly to ECMWF. As for IFG1-UK, IFG2-CA and IFG3-Italy, the integrated 

correction maps result in the lowest phase StdDev (1.10 cm) and displacement RMS (1.12 cm), 

equating to improvements over the raw interferogram of 44% and 44% respectively. 

 

To summarize, both the GPS and ECMWF atmospheric correction maps are able to 

substantially improve raw InSAR measurements: for the four interferograms considered, phase 

StdDev improvements of up to 74% arise on applying GPS corrections and 63% for ECMWF. 

When a dense GPS network is available, the GPS maps provide more precise corrections and 

capture the small magnitude, turbulent atmospheric delays better than ECMWF and thus 

perform better. However, the performance is highly dependent on the station density and 

distribution (network geometry), as well as the topography, with the GPS corrections when 

using a sparse network (e.g., IFG3-Italy in Figure 5.6a2) performing worse than ECMWF. In 
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all four cases considered, the integration of GPS and ECMWF results in the lowest phase 

StdDev and RMS displacement values. 

 

Figure 5.6 InSAR atmospheric corrections using GPS (G), ECMWF (E) and their combinations 

(GE) for IFG3-Italy and IFG4-NZ. Panel descriptions as for Figure 5.5. All phases are in LOS 

direction. 

5.4.2 Global applicability of ECMWF-based correction maps 

To evaluate the global applicability and performance of the model developed, we applied 

ECMWF atmospheric corrections to the four interferograms that do not contain any GPS 

stations, namely IFG5-Tibet, IFG6-Nepal, IFG7-Algeria and IFG8-Iceland. The results are 
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shown in Figure 5.7, displaying the raw and ECMWF-corrected interferograms, and the phase 

StdDev values are listed in Table 5.2. 

 

 

Figure 5.7 InSAR atmospheric correction using ECMWF for IFG5-Tibet, IFG6-Nepal, IFG7-

Algeria and IFG8-Iceland. The first and second columns represent the raw and corrected 

interferograms, respectively. The numbers in parentheses indicate the phase StdDev before and 

after correction. The red arrow represents the radar flight direction. All phases are in LOS 

direction. 
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It is clear that for the mountainous regions (IGF5-Tibet and IFG6-Nepal), the phase errors are 

mostly topography-correlated and have been corrected by 61% to 0.45 cm StdDev and by 39% 

to 1.11 cm, respectively. The atmospheric errors on IFG5-Tibet tend to be long wavelength and 

thus are easier to be captured by ECMWF. The shorter wavelength effects on IFG6-Nepal, 

mainly due to the high topography variations, cannot be fully removed using the ECMWF 

model, and the remaining uncorrected errors are likely to be turbulent signals. It should be noted 

that for a high-altitude region (which means lower water vapour content on average), a strong 

turbulence effect can also be observed on interferograms (as here for IFG6-Nepal). 

 

IFG7-Algeria is located in a desert region with fairly low altitude and limited topography 

variations (altitude 0.8 km ~ 1.0 km across the IFG). As shown in Figure 5.7, the magnitude of 

the atmospheric errors reaches up to ~8 cm (raw phase StdDev of 2.40 cm) but they appear to 

be mostly associated with a long wavelength signal. After applying ECMWF atmospheric 

corrections, turbulence errors persist but the phase StdDev has reduced by 63% to 0.88 cm. 

Conversely, IFG8-Iceland exhibits large topography variations (from 0 km to 1.5 km) and is 

located close to a polar region, where the water vapour content is lower. It can be seen from 

Figure 5.7 that the large magnitude (8 cm) atmospheric errors systematically affect the 

computed displacement across almost the entire interferogram. After correction, the StdDev of 

the phase errors drops to 1.05 cm (40% improvement) and is partly associated with an elevation 

dependent signal (the western part where the topography variations are high) and partly with a 

turbulent behaviour (eastern part). Hence, as for IFG5-Tibet and IFG6-Nepal, the ECMWF 

based correction model is suitable for obtaining corrected interferograms with a StdDev of 

~1 cm or lower. 

 

5.5 Performance Indicator Metrics 

The generic atmospheric correction model developed has been evaluated at different locations 

globally, encompassing a range of topography, climate and GPS station distributions. The 

model’s performance has been evaluated by considering the phase StdDev and also, for areas 

including GPS stations, the RMS displacement difference between GPS and InSAR. However, 

in practice, when actual surface movements occur and there are insufficient GPS stations to 
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cover the whole area, these performance indicators will fail. It is therefore important to develop 

additional performance indicators to inform users of model applicability, including flagging any 

instances when the modelled atmospheric corrections should not be applied. In this section, we 

introduce several additional indicators for model interpolation and atmospheric error correction 

performance, which include: (i) cross validation RMS of GPS and ECMWF ZTD, (ii) 

correlation analysis between InSAR phase and tropospheric delays, (iii) the time differences 

between ECMWF and InSAR acquisitions, and (iv) topography variations. 

 

5.5.1 Indicator 1: ZTD cross validation RMS 

In Section 5.2, we have used the cross-test to validate the interpolation performance of GPS 

and ECMWF ZTDs. The RMS of the cross validation reflects not only the pointwise ZTD 

interpolation precision, but also the network geometry, especially for GPS where a non-uniform 

and sparse station distribution often arises. It was shown in Section 5.2 that GPS corrections 

perform better than ECMWF for the IFG2-CA dense network case, whereas for the IFG3-Italy 

and IFG4-NZ cases which have sparser GPS station coverage, the ECMWF corrections perform 

slightly better than the GPS. One exception is for IFG1-UK where there is a sparse GPS network, 

but the GPS-based corrections perform well. This is mainly due to its flat topography which is 

another indicator to be discussed later. Section 5.2 also showed that a dense GPS network yields 

a lower cross validation RMS and vice versa. These results imply that the ZTD cross-RMS may 

be used as an indicator to reflect the atmospheric correction performance, and that a lower ZTD 

cross-RMS indicates a better station distribution and more precise atmospheric interpolation 

map. As a result, the cross-RMS of the GPS and ECMWF ZTDs are calculated for each 

interferogram before utilizing the corrections (Table 5.3). 

 

5.5.2 Indicator 2: phase versus estimated atmospheric delay correlation 

A high correlation between phase measurements and the computed atmospheric corrections 

suggests that the model is able to capture most of the atmospheric effects, and thus successful 

InSAR atmospheric error correction is expected. For all eight interferograms, the correlations 

between the phase and tropospheric delays (using the integrated model for IFG1-4 and ECMWF 

for IFG5-8, hereafter referred to as the “phase-delay correlation”) per pixel are shown in Figure 
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5.8, with the statistics per interferogram also listed in Table 5.3. A high correlation of 0.86 was 

observed for IFG1-UK, which corresponds to a 75% improvement in terms of phase StdDev 

reduction, whereas for IFG5-Tibet a lower 0.57 correlation, corresponding to a 61% 

improvement, was obtained. The lower correlation for IFG5-Tibet may be due to the smaller 

magnitude of the raw phase measurements (StdDev=1.15 cm compared with 2.75 cm for IFG1-

UK before correction) and therefore the atmospheric errors may not be dominating in 

magnitude. 

 

Figure 5.8 Phase and interpolated tropospheric delay correlations for all pixels in the eight 

interferograms. The linear relationship between phase and estimated tropospheric delay is 

Phase=Slope×Delay+Intercept. Phase has been converted to raw displacement in cm. 

Tropospheric delays have been computed using the ECMWF and GPS integrated model for 

IFG1-4, and ECWMF only for IFG5-8. Correlation coefficients are listed in parentheses. 

 

5.5.3 Indicator 3: ECMWF time difference 

The GPS ZTDs are coincident in time with the SAR image acquisitions, but the ECMWF ZTDs 

are only available every 6 hours, which can lead to time differences between the InSAR 

measurements and the ECMWF-based atmospheric correction maps. The temporal variation of 

ZTDs, especially the part due to water vapour during a short time interval (e.g., 2-3 hours) can 

be substantial but unpredictable and thus may cause the correction to perform poorly (e.g., 

Fielding et al., 2017; Li et al., 2009a). To investigate the impact of ECMWF and InSAR 

acquisition time differences, we used continuous GPS ZTD time series (5-minute interval) to 
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evaluate errors of temporally interpolating the 6-hourly ECMWF ZTDs to the measurement 

epoch. We used the Central California region covered by IFG2-CA and for each hour of an 

individual day, we linearly interpolated the nearest 6-hourly ECMWF ZTD values on to all GPS 

stations and computed the differences against the GPS ZTDs directly estimated at the station 

and for the hour considered (this approach will hereafter be called ‘nearest’). This procedure 

was then repeated for all days of 2016 and the mean RMS difference per hour was averaged for 

each hour of day (0, 1, 2, …., 23) over the year. These mean hourly RMS values for the year 

are shown in Figure 5.9, together with variations (1-sigma), and it can be clearly seen that as 

the time difference from the ECMWF 6-hourly ZTD times (the model is available at 0, 6, 12 

and 18 hours UTC) increases, so does the RMS and the 1-sigma range. The RMSs at hours 

corresponding to the greatest temporal interpolation have a peak value that is nearly 150% of 

the RMSs at no time difference: approximately 20 mm compared with 12 mm.  

 

Figure 5.9 Impact of ECMWF time differences. The ECMWF ZTDs were evaluated with GPS 

ZTDs using one year of data from 2016 in Central California. The red line represents the mean 

RMS differences using the nearest (in time) data point method with 1-sigma range plotted as 

yellow shade. The blue line represents the mean RMS differences using linear interpolation to 

the InSAR observation time, with the 1-sigma range plotted as green shade. 

 

To minimize the impact of the time differences, we applied a linear temporal interpolation in 

our correction model using the two closest ECMWF ZTD samples. It can be seen from Figure 

5.9 that this procedure improves the performance and reduces the peak values from 15 mm to 

10 mm, however there are still uncertainties during large time difference periods. As a result, 

we may use time difference as an indicator to highlight potential uncertainty induced by rapidly-

changing atmospheric conditions. 
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5.5.4 Indicator 4: topography variations 

 

Figure 5.10 Impact of topography variations. Panels a, b and c shows differences in PWV 

between MODIS and ECMWF on cloud free MODIS grid cells on 20160415 (spring), 

20161116 (autumn) and 20160828 (summer): (d1) is the scaled RMS = (averaged RMS of year 

2016) / (averaged PWV content of year 2016) for each grid; (d2) is the topography; (e) is a 

linear fit between ECMWF and MODIS PWV for all available pixels of year 2016; the colour 

scale represents the density of occurrence. 
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The ZTD variations and the interpolation performance will all be affected by the topography. 

To assess this effect, we introduced MODIS near-infrared PWV data as ‘truth’ and interpolated 

the ECMWF PWV (with the same 0.125 degree grid distribution throughout the region) on to 

the MODIS PWV grid. Since MODIS PWV has a higher spatial resolution than ECMWF 

(~1 km compared with ~9-12 km), it can be used to evaluate the ECMWF-based model’s 

interpolation performance relative to local topography variations. As a test case, we selected 

the region of Central California since it displays considerable topography variations with high 

mountains (~3500 m altitude) on the west coast and on the eastern portion of the domain, and 

nearly flat areas in the middle (under 200 m altitude).  

 

We processed all cloud-free MODIS PWV data during 17:50 ~ 18:10 UTC (i.e. around 10 am 

or 11 am local time) on each day of 2016, which coincides with the ECMWF 18:00 UTC model 

output and hence minimizes any time interpolation errors. The elevation of each MODIS PWV 

grid was bilinearly interpolated to a uniform grid using the 3-arcsec SRTM digital elevation 

model. The ECMWF PWV was then interpolated on to the MODIS PWV grid using the ITD 

model, and the ECMWF PWV agreed with the MODIS PWV with an RMS difference of 

1.88 mm (Figure 5.10e). Figure 5.10a-b-c show the PWV differences for three dates, from 

which greater differences between observations and ECMWF-derived PWV can be observed in 

regions with higher PWV contents. This is consistent with the magnitude of errors in other 

PWV sensors being proportional to the water vapour content, e.g., as found for GPS by 

Glowacki et al. (2006) and for MODIS by Li et al. (2003). The differences are greater in the 

summer and/or over lower altitude flat regions since the average PWV content is higher 

compared with those in the autumn or over mountain areas. Hence, to better evaluate the impact 

of topography variations, the RMS was scaled. We first divided the study region into uniform 

1 km by 1 km grid cells and computed the RMS differences for each cell using all MODIS 

samples that were located in that cell during the whole of 2016. Each of the RMS values were 

then scaled by the average PWV content of the corresponding cell and are displayed in Figure 

5.10d1. The scaled RMS appears to be strongly correlated with the topography (Figure 5.10d2), 

with the higher RMS values occurring over mountains and the lower RMS values over lower, 

flatter areas. The topography variations cause the PWV to be short wavelength in nature, 
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meaning it is challenging to fully model, thus making accurate InSAR atmospheric correction 

more difficult (Bekaert et al., 2015b; Li et al., 2009b; Zebker et al., 1997). In practice, lower 

performances are often expected over high topography variation areas. 

 

Table 5.3 Model performance indicator metrics for all interferograms. 

IFG 

ZTD cross 

validation linear 

fit  

(cm) 

ρ1 

Cross 

RMS of 

GPS 

ZTDs 

(mm) 

Cross 

RMS of 

ECMW

F ZTDs 

(mm) 

IFG-

ECMWF 

time 

difference 

(Minutes)   

Topography variation 

IFG1-UK Y=1.096X-0.928 0.86 11.5 8.3 11 Low 

IFG2-CA Y=0.699X-0.952 0.79 13.1 9.2 118 High 

IFG3-Italy Y=0.624X+0.217 0.65 12.6 4.8 56 Medium 

IFG4-NZ Y=0.693X+1.014 0.63 12.0 6.4 75 Medium 

IFG5-Tibet Y=0.454X+0.531 0.57 - 1.9 8 High 

IFG6-Nepal Y=0.669X+0.522 0.61 - 7.9 21 High 

IFG7-

Algeria 
Y=0.690X+1.078 0.66 - 5.1 11 Low 

IFG8-

Iceland 
Y=0.718X+0.112 0.60 - 4.8 58 Medium 

1Phase-delay correlation 

5.5.5 Uses of the indicator metrics 

The performance indicators presented above are particularly useful for InSAR time series 

analysis, e.g. severe weather phenomena will cause the troposphere to be more turbulent and 

result in larger cross RMS values for ECMWF and GPS, which will reduce the correction 

performance. Figure 5.11a provides an example of the performance indicator matrix for all 

interferograms in this chapter and it should be noted that (i) the phase-delay correlation, cross 

RMS and phase StdDev reduction are direct statistics which link to the displacement 

measurement quality and (ii) ECMWF time difference and topography variation are indirect 

indicators that should be considered when evaluating the performance. The correction 

performance cannot be quantified by one indicator solely (e.g. the UK has a larger cross RMS 

than CA, but higher performance due to the large topography variation in CA) and only the 

combination of all the indicators can provide a complete picture of the atmosphere condition 

and the potential correction performance.  
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Figure 5.11 Performance indicator metrics. (a) indicators for all eight interferograms in this 

chapter. (b) A decision tree for the use of the performance indicators.  

Figure 5.11b provides a simple decision tree to utilize the proposed statistical indicators, in 

which thresholds are set to identify the interferograms with large cross RMS, StdDev reduction, 

and small phase-delay correlation. Particularly, using the cross RMS and the phase-delay 

correlation statistics, it is possible to identify potential problematic interferograms in a time 

series. Applying the predefined thresholds (T2 and T3 in Figure 5.11b), which should be defined 

case by case, interferograms with large cross RMS and low correlation could be excluded to 

ensure a high correction confidence and hence a better performance. This procedure will be 

discussed further in Chapter 6 and 7 using real datasets. In this way, an automatic processing 

chain is possible in order to process a large volume of data or long time series, with all 

interferograms being quality controlled by the indicators.   

 

5.6 Generic Atmospheric Correction Online Service for InSAR (GACOS) 

We released the Generic Atmospheric Correction Online Service (GACOS) based on the 

proposed generic atmospheric correction model (http://ceg-research.ncl.ac.uk/v2/gacos/) on 6th 

June 2017. The main interface is shown in Figure 5.11. The current version only includes the 

ECMWF data, but we will soon release an upgraded version to include the global GPS 

tropospheric delay products. GACOS aims to provide the InSAR atmospheric correction map, 

globally with a short delay of two days, in a convenient way, with its performance indicators 

being processed when requested.  

 

Since releasing, GACOS has received over 15,000 requests from all over the world (until 

http://ceg-research.ncl.ac.uk/v2/gacos/
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December 2018), and attracted over 500 identical users for variety InSAR related researches, 

such as tectonic or volcanic modelling, landslide and city subsidence monitoring. Given the 

convenience and global availability, it has rapidly responded to events such as the Maoxian 

Landslide (24 June 2017) and the Xinjiang earthquake (8 August 2017) by correcting 

interferograms contaminated by serious elevation dependent atmospheric errors. The corrected 

inteferograms facilitated the detection of surface damages, and aided the rescue and recovery 

operations, which was reported by over 20 social media and organizations.  

 

Figure 5.12 Main interface of the GACOS website. 

The GACOS service is a major output of this thesis, involving the key innovations and 

advantages of the proposed generic atmospheric correction model, and will be used in the 

following co- and post-seismic modelling in Chapter 6 and 7.  

 

5.7 Summary 

A generic InSAR atmospheric correction model has been developed in this chapter by using 

both ECMWF grid model output and GPS ZTD pointwise observations, tightly integrated using 

the ITD model to produce atmospheric correction maps. The ECMWF data, available globally 

with a two-day time latency compared to several months for ERA-Interim, provide the basic 

input of the correction model, which is enhanced using GPS-estimated ZTDs where available, 

which improve its performance both spatially and temporally. The developed InSAR 

atmospheric correction model is (i) global and all time useable, including in the presence of 
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clouds; (ii) potentially near real-time (two days latency from ECMWF, while GPS ZTDs can 

be generated in real-time or with much lower latencies); (iii) robust and easy to implement 

automatically, with quality control indicators.  

 

The model developed was evaluated using eight globally distributed interferograms of about 

250 km x 250 km spatial extent in flat and mountainous topographies, mid-latitude and near 

polar regions, monsoon and oceanic climate systems, with or without GPS networks. The 

average improvements in terms of phase StdDev resulting from the atmospheric correction 

maps applied were 47%, 49%, 54% for GPS, ECMWF and the integrated corrections, 

respectively. The corrected InSAR LOS displacements were also compared with the GPS 

displacements with average RMS improvements for the four interferograms of 55%, 45% and 

63% for GPS, ECMWF and the integrated corrections, respectively. Hence the integrated model 

performs the best, with the combination of different data sources increasing the model’s 

reliability, and the displacement StdDev and RMS difference arising for the corrected 

interferograms considered is approximately 1 cm.  

 

A set of performance indicator metrics has also been developed to enable the model’s suitability 

for InSAR atmospheric correction application to be assessed, and we recommend their adoption 

as indicators to inform users when abnormal conditions occur and give insights of the 

confidence level of the correction results. 

 

The model developed can be used either on an individual interferogram to identify small 

amplitude ground movements (e.g., city subsidence, small landslide), or on a series of 

interferograms for larger scale plate movements and longer term monitoring (e.g., post- or inter-

seismic motion) which allows for temporal filtering to further reduce the residual atmospheric 

errors and to achieve mm/year level displacement StdDev. It is believed that the method is 

particularly beneficial for InSAR time series over mountain areas as the residual atmospheric 

errors after correction are more likely to be randomly temporally distributed, which allows an 

easier minimization through time series analysis, and will be discussed further in Chapter 7. 
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Chapter 6. Co-seismic Model of the 2017 Mw 6.4 Nyingchi Earthquake 

from Atmospheric Corrected InSAR Measurements 

The Nyingchi Mw 6.4 earthquake on 17 November 2017 is the first large event since 1950 at 

the southeast end of the Jiali fault. It was observed by ESA’s Sentinel-1A InSAR measurements, 

providing the potential to determine the fault plane geometry as well as co-seismic slip 

distribution, and to understand future seismic hazards. However, due to the limited magnitude 

of its surface displacements and substantial topographic variations, the derived InSAR co-

seismic interferograms were contaminated seriously by atmospheric effects, making it difficult, 

if not impossible, to determine the source parameters and co-seismic slip distribution. In this 

chapter, we apply the GACOS atmospheric correction developed in Chapter 5 to the co-seismic 

interferograms and address the importance of the atmospheric correction for identifying small 

magnitude earthquake-generated surface displacements.  

 

6.1 Introduction  

On 17 November  2017, an Mw 6.4 earthquake hit the Tibetan Plateau, 63 km northeast of 

Nyingchi, China (Figure 6.1). The epicentre lies on the southeast edge of the Tibetan Plateau 

where the dominant tectonic movement is driven by the oblique convergence between the 

Indian and Eurasian plates (Armijo et al., 1986; Tapponnier et al., 1982; Yin and Harrison, 

2000). This region has long been characterized as tectonically weak (e.g., Lee et al., 2003; 

Searle et al., 1998; Weinberg and Searle, 1998) with a limited number of recorded historical 

events according to the United States Geological Survey (USGS) and the China Earthquake 

Administration (CEA). Only a limited number of geodetic surveys have been conducted in this 

region, making this event the first large earthquake captured by one of the modern geodetic 

techniques: the SAR interferometry with the ESA’s Sentinel-1A radar satellite (Malenovský et 

al., 2012). These InSAR measurements provide high spatial resolution co-seismic surface 

displacements, which can be used to infer the source parameters of the seismogenic fault, assess 

future seismic hazards and better understand the activity of seismogenic structures. 

 

In the presence of atmospheric effects, only an accuracy of several centimetres can be reliably 
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achieved for displacement retrieval even under a relatively quiet atmospheric environment (e.g., 

Fielding et al., 2017; Jolivet et al., 2011; Parker et al., 2015). However, while being extensively 

addressed in post- and inter-seismic studies where a millimetre level accuracy of velocity 

mapping is needed (e.g., Fielding et al., 2017; Hooper et al., 2012; Walters et al., 2013), 

tropospheric delays are typically ignored in co-seismic modelling under the hypothesis that the 

magnitude of co-seismic signals is much greater than that of tropospheric delays (e.g., Hamling 

et al., 2017; Liu et al., 2004; Polcari et al., 2017; Simons et al., 2002). However, for earthquakes 

with small magnitude surface displacements, tropospheric delays can be of the same order or 

even larger than ground motions. This is especially true for the Nyingchi earthquake which 

occurred in a high-altitude region with substantial topographic variations, and the co-seismic 

signals were substantially masked by the elevation dependent tropospheric delays, making it 

difficult to determine the source parameters and to resolve the fault slip distribution. To deal 

with small magnitude earthquakes, Lee et al. (2017) used a stacking method to combine a series 

of interferograms to reduce tropospheric errors in order to extract small co-seismic signals for 

three Mw 5.2–5.6 2004 Huntoon Valley earthquakes. However, it has a delayed response to the 

events and requires additional data before and after the earthquakes, which are not always 

available. Fattahi and Amelung (2015) utilized the ERA-Interim global atmospheric model to 

correct tropospheric effects for the co-seismic interferograms of the Mw 5.5 Ghazaband 

earthquake, with only the stratified component being considered. Feng et al. (2016) employed 

MERIS water vapour data for correcting the RADARSAT-2 images of the Mw 8.3 Illapel 

earthquake claiming it would outweigh the ERA-Interim, however, it is not available for recent 

satellite missions such as Sentinel-1 and ALOS-2 (Li et al., 2009b).  

 

This chapter aims to use GACOS to overcome the disadvantages of the abovementioned 

correction methods, including (i) a delayed response of 1 ~ 3 months for the event; (ii) low 

spatial-temporal resolution for capturing the tropospheric turbulence; (iii) incompatibility with 

newly launched satellites such as Sentinel-1 and ALOS-2.  
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6.2 Tectonic Setting  

 

Figure 6.1 Tectonic setting for the Mw 6.4 Nyingchi earthquake. Historical earthquakes 

recorded by the USGS database from January 1950 to October 2017 are plotted as blue dots, 

the main shock is indicated by a green star and aftershocks by red dots. Historical major events 

recorded by the CEA are plotted as a beach ball (red for Mw > 6.0, and black for Mw < 6.0). 

The GPS velocity field (red arrows) is referenced from Liang et al. (2013). The event was 

covered by two pairs of Sentinel-1A images with different geometries (solid line boxes). The 

red solid line is the modelled fault plane projected onto the Earth’s surface.   

 

Driven by the northward movement of the Indian plate relative to the Eurasian plate at a rate of 

~4 cm/year (Wang et al., 2001), the tectonic activities in southern Tibet are dominated by a 

mixture of normal and strike-slip faulting (Armijo and Tapponnier, 1989; Lee et al., 2003; 

Tapponnier et al., 1982), which is in contrast with the thrust faulting along the ranges bordering 
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the Tibetan Plateau (Molnar and Chen, 1983). Most of the faults are predominantly south-north 

striking normal faults, although many locations also show oblique displacements, reflecting the 

eastward tectonic extrusion mostly during ~18-13 Ma (Coleman and Hodges, 1995; Williams 

et al., 2001). The Karakoram-Jiali strike-slip fault system terminates the normal faulting system 

at its northern tips and releases part of the collision energy. Lee et al. (2003) suggested that the 

Jiali fault was initiated during ~18-12 Ma and can be best explained as the accommodation of 

deformation from the oblique convergence between the India and Eurasian plates. Furthermore, 

the clockwise rotation of the GPS velocity field from north-eastward to eastward reflects a 

northeast shortening which is also recorded by several historical events (Figure 6.1). 

 

The Mw 6.4 Nyingchi earthquake occurred on a blind fault in the southeast part of the main 

Jiali fault, where there were a limited number of recorded historical events. From here, the Jiali 

fault is divided into several north-south striking faults such as the Puqu fault and the Kumon 

fault. One Mw 6.0 strike-slip earthquake happened on 11 November 1996 on the north side of 

the Jiali fault, and another more thrust-slip Mw 6.0 event happened on 15 March 2008 on the 

south side. Most of the historic small quakes (< Mw 6.0) were centred on the north part of the 

Jiali fault. The aftershocks were randomly distributed and small in magnitude (< Mw 5.0), 

suggesting a high percentage of stress release by the main shock.  

 

6.3 Datasets and Atmospheric Delay Mitigation 

The event is spatial-temporally covered by two pairs of Sentinel-1A images in descending and 

ascending geometries, respectively (Table 6.1). The interferograms were generated by the same 

method as in Section 4.2. 

 

Clear atmospheric effects can be observed in Figure 6.2, especially over mountainous areas. 

For the descending interferogram, the co-seismic signals were substantially masked by 

atmospheric delays, making it difficult even to check the pattern of ground motions. The 

magnitudes of the atmospheric delay and co-seismic signal were comparable, hence decreasing 

the signal to noise ratio and leading to unreasonable constraints for modelling. These errors can 
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be largely ignored when dealing with earthquakes with large ground motions as the signal to 

noise ratio is high, but they become vital when modelling small and/or deeply buried 

earthquakes with small surface displacements. 

 

Table 6.1 Sentinel-1A interferograms used for the co-seismic modelling and their atmospheric 

correction results. 

 Descending Ascending 

Dates 20171106-20171118 20171111-20171123 

Acquisition time (UTC) 23:37 11:41 

Temporal Baseline (Days) 12 12 

Perpendicular Baseline (m) 9.6 32.9 

Raw Phase StdDev1 (cm) 1.83 1.47 

StdDev after Method 12 (cm) 0.73 0.80 

StdDev after Method 23 (cm) 1.13 0.93 

StdDev after Method 34 (cm) 1.28 0.99 

1 The standard deviation of the observed phases excluding near-field deforming area.  

2 GACOS atmospheric correction. 

3 Conventional removal of signals correlated with altitude. 

4 ECMWF interpolated by bilinear.  

 

To overcome this, we applied the GACOS atmospheric corrections on the Sentinel-1A 

interferograms to mitigate their atmospheric effects. The iterative separation in the ITD model 

performs better over mountain areas compared to the traditional models without iteration, and 

therefore is valuable to this study as the main co-seismic displacements occurred over a high-

altitude mountain (over 3 km), where the elevation dependent signal was dominating. The 

performance of GACOS was also compared against two other methods. The first is a 

conventional method by removing signals which are correlated with the altitude. This was 

implemented by fitting the observed phase (excluding the near-field observations) to an 

exponential function: phase=a*exp(b*h), where a and b are the estimated coefficients, h is the 

altitude. Phases correlated with altitude are removed after estimating the coefficients. The 

second method is to use high-resolution ECMWF data but with a simple bilinear interpolator 

instead of ITD. It is clear in Figure 6.2 that the co-seismic signals stood out with two major 

displacement lobes after the GACOS correction. 
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Figure 6.2 InSAR observations and atmospheric corrections. (a1)-(a2) are raw interferograms. 

Method 1 (b1-b4) is the GACOS correction. Method 2 (c1-c4) is to remove signals correlated 

with elevation. Method 3 (d1-d4) is to use the bilinearly interpolated ECMWF ZTD. Note the 

coverage is different from Figure 6.1 as the very far-field data has been excluded. 

Table 6.1 lists the statistics for the three methods, among which GACOS presented the best 

performance, especially for pair 20171106-20171118 as it is more contaminated by atmospheric 

effects. The phase StdDev after correction for pair 20171106-20171118 reaches 0.8 cm, 

substantially improved from the elevation dependent signal removal method (1.13 cm) or the 

bilinear interpolation method (1.28 cm). Although the atmospheric contamination was limited 

on pair 20171111-20171123, we still see more improvements after the GACOS correction over 

the northeast and southwest areas, compared to the other two methods. The simple bilinear 

interpolation performed the worst because the elevation dependency of the tropospheric delay 

was not considered, leaving the ECMWF data being over-interpreted over some large 

topographic variation areas (e.g., the valley in the southeast of Figure 6.2d1). Although the 
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atmospheric contamination in Figure 6.2a was, to some degree, correlated with topography, 

their correlation may have very localized characteristics and is hard to be described by a single 

equation across the whole interferogram. The phase-elevation correlation can be shifted due to 

the effect of water vapour flow (Onn and Zebker, 2006), making the peak delay value to occur 

not necessarily on the peak altitude. Furthermore, the removal of the elevation dependent signal 

method has a large potential for removing actual ground displacements.  

 

Figure 6.3 Correlations between the observed phase and the GACOS correction for the 

descending (a) and ascending (b) tracks, respectively. Each dot represents one pixel on the 

interferograms and the colour scale corresponds to its elevation. r is the correlation ratio. 

 

To further assess the reliability of the GACOS correction, we calculated the correlation between 

the observed phase observation and the GACOS derived tropospheric delay for all pixels, as 

was done in Section 5.5.2. A high correlation is found for the descending interferogram in 

Figure 6.3a, suggesting that GACOS was able to capture most of the atmospheric effects, and 

therefore resulting in a successful correction. The small magnitude of the tropospheric delay of 

the ascending interferogram, on the other hand, produced a lower correlation. Another 

important statistic is the phase StdDev after correction (computed by excluding the near-field 

co-seismic region), which dropped by approximately 53% after the GACOS correction, 

compared to 37% for the elevation dependent signal removal method and 31% for the bilinear 

interpolation method, and reflected the flat phase patterns over the far-field region. All these 

statistics demonstrate a successful tropospheric correction and ensure a high precision of the 

corrected data. The signal to noise ratio was improved, making the data more applicable to the 
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following modelling step. 

 

6.4 Co-seismic Modelling and Results 

The GACOS atmospheric correction improved the signal to noise ratio of the interferograms, 

making the near-field displacement stand out. It reduced the elevation dependent atmospheric 

error over the far-field and mountainous regions, where the other two methods failed due to the 

steep topography. The corrected interferograms were then used for the following co-seismic 

modelling, implemented in two steps, (i) the non-linear fault geometry inversion; and (ii) the 

linear fault slip distribution inversion. To reduce the high spatial correlation and computation 

burden of the modelling, pixels with coherence smaller than 0.4 were masked, and the masked, 

corrected interferograms were then down-sampled using a quadtree quantization algorithm. 

This led to 1345 input samples on the descending track and 1947 on the ascending track, 

respectively.  

 

6.4.1 Fault geometry inversion 

The first step of the co-seismic modelling is to determine the fault geometry by minimizing the 

square misfit between the observed and modelled surface displacements, incorporating a 

uniform slip model on a rectangular fault in a homogeneous elastic half-space (Okada, 1992). 

An improved particle swarm optimization (Feng et al., 2013) was utilized to solve the non-

linear equations, with a downhill simplex method (Nelder and Mead, 1965) searching for the 

preferred solution and therefore avoiding the convergence at a local minimum. The best-fit fault 

geometry parameters are 132.80 for the strike angle and 590 for the dip angle. The optimal rake 

angle is 1150, reflecting a combination of right-lateral strike and reverse dip slips. The resolved 

fault depth is 9 km with a total moment release of 4.84e+18 Nm, corresponding to a magnitude 

of Mw 6.4. Our model suggests a dip angle of 590, larger than the USGS’s solution of 360, and 

allows the rake angle to vary from 800 to 1150. The overall explaining ratios (defined as (1-

abs(residual)/observation) for the near-field deforming area) are respectively 78% and 82% for 

the descending and ascending interferograms, corresponding to misfits of 1.12 and 0.95 cm. 

The residuals on the descending interferogram may be due to a combined contribution of 

interferometric decorrelation in the near-field and residual atmospheric delays. 
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Figure 6.4 Source parameter inversion. (a) Uncertainty analysis by the Monte Carlo test for the 

non-linear inversion: standard deviation (red histograms) and trade-offs (scatterplots) between 

the model parameters. The vertical axes of the first column share the same scale with the bottom 

horizontal axes in (a). The rest figures are, observed observations (b1, c1), modelled 

displacement maps (b2, c2) and residual maps (b3, c3).    

 

A Monte Carlo test was performed to estimate the uncertainties and trade-offs of the fault 
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geometry parameters based on the method described in Yokota et al. (2016). The far-field 

observations were used to construct an approximate variance-covariance matrix (VCM) with 

which 100 perturbed datasets were generated. These datasets were then used to determine a set 

of 100 fault geometry solutions, using the same method as described above. The distribution of 

each model parameter from the Monte Carlo test is plotted in Figure 6.4a as a histogram to 

visually assess the uncertainty in that parameter, with scatterplots between every two 

parameters being plotted alongside to assess the trade-offs between those parameters. Most of 

the parameters were well resolved, appearing as tight clusters in the scatterplots with narrow 

peaks in the histograms. The overall uncertainties were considered small, revealing a substantial 

confidence level in the non-linear estimation.  

 

6.4.2 Co-seismic slip distribution inversion 

The second step is to linearly resolve the slip distribution by constructing a 15 km × 25 km fault 

plane and discretizing it into 0.5 km × 0.5 km patches. For each fault segment, the strike and 

dip slip components are estimated using the green functions defined by the source parameters 

(Okada, 1986), with its striking angle being fixed to the value of the first step. Meanwhile, the 

Akaike's Bayesian Information Criterion (ABIC) method (Fukahata and Wright, 2008) is used 

to search for the optimal smoothing factor and dip angle, simultaneously, by minimizing the 

ABIC function:  

2 2( , ) 2log ( ; , | )ABIC α δ p α δ d Ca d a              (Equation 6.1) 

where α2 is the smoothing factor; δ is the dip angle; p is the probability density function; a is 

the fault slip vector and d is the observation vector; C is the constant that is not related to the 

smoothing factor and dip angle. For detailed equations related to the ABIC, please refer to 

Fukahata and Wright (2008). Figure 6.5d shows that the fault dip can be well determined from 

the two tracks of InSAR observations, with the smoothing factor not substantially affecting the 

data misfit for this small event. 

 

The resolved fault plane slip distribution is shown in Figure 6.5 and can be divided into two 

regions. Region A was characterized by right lateral slip components with a rake angle of ~1150 

and a maximum slip of 1.9 m. The slips here were concentrated at depths between 5 to 11 km 
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and peaked at 8 km. Region B occupied nearly pure dip slip components with an averagely 

smaller magnitude compared to A. The dip slip components were deeper than the strike slip 

components with its maximum occurring at 10 km. The hypocentre was located at the west of 

the fault plane, reflecting the eastward propagation of the fault rupture. The fault slipped for a 

distance of 25 km with varying slip magnitude from 0.3 m to 1.9 m. The transition from the 

strike slip in the west to the dip slip in the east well reflected the oblique convergence of the 

Indian plate. In this region, the Tibetan Plateau is pushing out eastwards, resulting in the east-

west extension, which may be revealed by the strike-slipping Jiali fault.  

 
Figure 6.5 The fault plane slip distribution of the Nyingchi Mw 6.4 earthquake (a). (b) and (c) 

are the slip RMS values by the Monte Carlo test along the strike and dip directions, respectively. 

(d) is the contour map of the ABIC searching for the optimal smoothing factor and fault dip. 

The smoothing factor is represented as log(α2) in Equation 6.1. The colour bar indicates the 

data misfit. The determined optimal values are 0.9 for α2, 590 for the dip angle. The fault 

geometry is also illustrated with reference to the Jiali fault and the Indian and Eurasian Plates.  
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To assess the uncertainty and resolution of the best-fit slip distribution, two separate error 

analysis techniques were employed, the Monte Carlo and the checkerboard tests. The Monte 

Carlo test was used to estimate the uncertainty of the best-fit slip distribution, in a similar way 

as for the fault geometry parameter uncertainty estimation. It was implemented by perturbing 

the observations 1000 times with a spatial noise covariance matrix estimated from the residuals 

of the best-fit solution. 1000 solutions could be obtained using these synthetic observations in 

the same way for the best-fit slip distribution and their RMS differences against the best-fit 

solution were calculated (Figure 6.5b, c). The overall RMS differences were well below 0.2 m, 

with a mean value of 2.8 cm for the strike slip component and 2.0 cm for the dip slip component, 

respectively. The greatest RMS difference occurred at a depth of 6 km for the strike slip, while 

it is 9 km for the dip slip.  

 

Figure 6.6 Checkerboard test for the slip distribution using the modelled fault geometry and 

the InSAR observation distributions. The input slip sources are 2 m reverse slips.  

 

To assess the inverted resolution of the fault slip distribution and the reliability of the input 

observation’s distribution, a set of checkerboard-like slip sources on the fault plane were used 

to generate a set of synthetic observations, spatially co-locating with the original observations. 

These synthetic observations were used to recover the simulated checkerboard-like slip sources, 

showing in Figure 6.6 (Yokota et al., 2016). The checkerboard-like slip sources were well 

recovered, with a shallower source experiencing higher resolution and a deeper source 

obtaining poorer resolution. This reflects a good distribution of the input observations and a 

reliable retrieval of the fault slip distribution.  
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6.5 Summary 

In this chapter, we inverted for the fault geometry and the slip distribution of the Nyingchi 

earthquake using InSAR observations. This is the first time in this region that a large event (> 

Mw 6.0) was captured by a modern geodetic technique. The observations provide valuable 

information on the local faulting system and tectonic strain balance induced by the oblique 

convergence between the Indian and Eurasian plates over southeast Tibet.  

 

After applying GACOS atmospheric corrections, the Sentinel-1A interferograms were able to 

map the Nyingchi Mw 6.4 earthquake with small ground displacements but substantial 

atmospheric effects. The elevation dependent atmospheric contamination was largely reduced, 

which was crucial due to the region’s steep topography. The phase StdDev dropped from 1.83 

to 0.73 cm for the descending track and 1.47 to 0.80 cm for the ascending track, which 

outperformed the phase correlation analysis method (1.13 and 0.93 cm after correction 

respectively for the two orbits) and a simple bilinear interpolation method (1.28 and 0.99 cm 

after correction respectively for the two orbits). The fault geometry and slip distribution were 

inverted using the corrected interferograms and a mixture of right lateral and reverse slip 

distribution was found. The maximum slip on the determined fault was 1.9 m, occurring in the 

northwest part of the fault plane at a depth of 8 km.  

 

The oblique convergence between the Indian and Eurasian plates results in a wide shear zone 

and the rocks are intensely folded and faulted parallel to the shear zone with the main steeply 

dipping right lateral strike-slip Jiali fault. The Jiali fault was most active during ~18-12 Ma, but 

became quiet after then with limited large events occurring. The Nyingchi Mw 6.4 earthquake 

is the most powerful event ever recorded in this region since 1950 and the modelled fault slips 

suggest it released at least part of the cumulated stress induced by the background Indian-

Eurasian tectonic motion. The modelled surface fault trace is parallel to the Jiali fault with a 

small rotation to the northeast. Most of the surface displacements are concentrated on the 

hanging wall (southwest of the fault trace), consisting with the northeast shortening of the 

clockwise rotation of the eastern Tibetan Plateau revealed by the GPS velocity (Figure 6.1).  
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The major contributions of this chapter are (i) to apply the GACOS correction to improve the 

InSAR capability for measuring small magnitude earthquakes; (ii) to map the buried fault 

geometry located south of the Jiali fault; (iii) to provide evidence of the oblique convergence 

between the Indian-Eurasian plates from the modelled fault plane slip distribution. In a similar 

way, the GACOS atmospheric correction can be applied to large earthquakes, especially to help 

improve the far-field observations, hence aiding the determination of deep fault slip 

distributions. 
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Chapter 7. Afterslip Following the 2016 Kaikoura Earthquake Revealed 

by InSAR Time Series with Atmospheric Correction 

The 2016 Mw 7.8 Kaikoura earthquake represents an extremely complex process involving 

over 10 major faults and has altered some conventional understanding of multi-fault ruptures. 

One of the most striking features relates to the potential sliding on the Hikurangi subduction 

interface which has long been considered as permanently locked. This chapter intends to show 

the triggered afterslips on the Hikurangi subduction slab beneath southwestern Marlborough 

using 1 year of GPS and InSAR time series. An InSAR time series atmospheric correction 

model is developed to reduce the spatial-temporally correlated atmospheric error observed on 

Sentinel-1 interferograms, combining the generic atmospheric correction model proposed in 

Chapter 5 with an Atmospheric Phase Screen (APS) filter. The resulting time series are used to 

precisely locate the origin of the afterslip on the southern Hikurangi interface, and to provide 

implications of the co-seismic slip source, present status of the inactive subduction plate and 

future seismic hazards.   

 

7.1 Introduction 

The 2016 Mw 7.8 Kaikoura earthquake struck the northern South Island of New Zealand on 13 

November 2016 (11:02 UTC) with two people killed, 57 injuries a major economic and fiscal 

impact. It is considered as one of the most complex earthquakes ever studied, which ruptured 

over 10 major faults with up to 10 m surface displacements, generated a regional tsunami 

maximized at ~7 m (Bai et al., 2017), as well as triggering numerous landslides (Massey et al., 

2018). Combined geodetic and seismologic datasets immediately after the earthquake were 

used to constrain the complex multi-fault geometry and co-seismic slip distribution. For 

example, Hamling et al. (2017) determined the fault geometry by surface rupture surveys and 

inverted for its slip distribution by a combination of field data, GPS and InSAR observations. 

At least 20 overriding continental crustal faults in their model had slipped, accompanying a 

potential deep slip source on the Hikurangi subduction interface, and therefore undoubtedly 

challenged the traditional assumption about the degree to which earthquake ruptures are 

controlled by fault segmentation. Xu et al. (2018) showed that the rupture speed was overall 
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slow (1.4 km/s), by combining InSAR and seismologic data, and several Conway‐Charwell 

fault links have aided in the rupture propagation across the step over from the Humps fault zone 

to the Hope fault. Holden et al. (2017) proposed some kinematic models based on local strong‐

motion and high‐rate GPS data, in which the rupture propagated from south to north with half 

of the moment release occurring at the far north, 60 seconds after the origin time. 

 

7.1.1 Poorly resolved afterslip distribution 

Active seismic movements along the Marlborough Fault System (MFS) have accommodated 

most of the plate motions. Consequently, the convergence related to the Hikurangi subduction 

slab beneath the northern South Island becomes insignificant, with GPS observations reporting 

a slip rate deficit < 10 mm/year (Wallace et al., 2012), and this part of the slab has long been 

considered as permanently locked (Reyners, 1998). This assumption, however, has been altered 

as new evidence indicates that the inactive Hikurangi slab was accommodating plate motions 

at least after the 2016 Kaikoura event. The first direct evidence is the triggered large Slow Slip 

Event (SSE) beneath the North Island immediately after the mainshock (Wallace et al., 2017), 

which include a deep Kapiti SSE which accumulated up to 31 cm of slip, and a shallow 

(<15 km), moderate (>10 cm) east coast SSE on the Hikurangi subduction interface revealed by 

GPS observations (Jiang et al., 2018). Through simulating SSE slip distributions near Gisborne 

according to the rate‐and‐state friction framework, Wei et al. (2018) pointed out that only a low 

effective normal stress on the shallow subduction interface is required to trigger the observed 

SSEs. The second evidence is the afterslip on the subducting slab beneath the MFS, producing 

widespread surface displacement over the northern South Island (Wallace et al., 2018). 

However, unlike the SSE events which were covered by a dense GPS network and frequent 

InSAR observations, the origin of this afterslip is poorly located due to the lack of GPS and 

InSAR observations in the region. The InSAR data acquisitions used in Wallace et al. (2018) 

spanned less than 4 months and the ascending track was abandoned due to substantial 

atmospheric disturbances. Their resolved afterslip, largely distributed beneath the central 

offshore and northern MFS, would also produce wide surface displacements above the western 

MFS where there was no data coverage, resulting in a relatively weakly constrained slip model. 

Jiang et al. (2018) recovered a different but less spreading major slip source located southwest 
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of those in Wallace et al. (2018) using five months of GPS data, nevertheless, all were located 

in the east of the MFS. Lacking the surface displacement measurement on the western and 

southwestern MFS, the precise location of the afterslip origin on the Hikurangi subduction zone, 

which is crucial to explain in what degree, if any, the southern Hikurangi subduction slab has 

moved during the co-seismic period, remains unknown. It is therefore important to utilize the 

ascending Sentinel-1 data, which covers the whole MFS region continuously after the 

mainshock, to seek for robust constraints for the afterslip model.   

 

7.1.2 Temporally correlated atmospheric error 

The obstacle preventing Wallace et al. (2018) from utilizing the ascending Sentinel-1 data is the 

observed substantial atmospheric disturbance on interferograms, which, as addressed in the 

previous chapters, may mask actual tectonic displacements. Apart from the proposed models 

that correct interferograms individually, the atmospheric error can be mitigated in a time series 

through spatial and temporal filters, with fundamental assumptions of (i) the atmospheric error 

is spatially correlated; but (ii) temporally random. For example, Ferretti et al. (2001) 

approximated atmospheric errors by removing a linear deformation component, confined to 

slow motion targets over small areas where the linear assumption and the constant velocity 

model held. Hooper et al. (2007) high‐pass filtered the phase in time to isolate atmospheric 

contributions from deformation. Lauknes et al. (2011) modelled atmospheric errors as an 

additive Gaussian random process with zero mean and 2-10 mm standard deviation. Given the 

large spatial extent of the interferograms used in this coastal area (over 250 by 250 km), 

however, these assumptions are threatened. For example, the atmospheric error can hardly be 

expressed as a single linear or power-law function across the whole interferogram, therefore 

restricting the use of spatial filters over large spatial extents. Potential temporal correlations of 

water vapour, such as those induced by a constant landcover or seasonal weather variations (e.g., 

fog is more prevalent at certain times of the year in coastal areas), decrease the filter 

performance, bias geophysical signal estimations and introduce unpredictable uncertainties on 

velocity estimates.  
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7.2 Tectonic Setting 

The oceanic Pacific plate obliquely converges into the continental Australian plate at a rate of 

39-49 mm/year and causes tectonic activities throughout New Zealand. Great earthquakes have 

been documented in the region, including the 1855 Mw 8.2 Wairarapa event (Darby and 

Beanland, 1992), the 1976 Mw 8.2 Kermadec Island event (Habermann and Wyss, 1984), the 

2009 Mw 7.8 Dusky Sound event (Beavan et al., 2010) and the 2016 Mw 7.8 Kaikoura event 

(Hamling et al., 2017). The margin‐parallel component of the plate motion at the North Island 

is represented largely as the clockwise rotation of the crustal Australian plate at 0.5–3.8 degree 

per million years (Wallace et al., 2004), while the perpendicular component happened mainly 

on the Hikurangi subduction interface, therefore releasing high slip rate deficits along the plate 

margin and beneath the southern North Island. Far to the central and southern South Island, the 

transpressional Alpine fault accommodates 35.5±1.5 mm/year parallel and 10±1.5 mm/year 

perpendicular motions relative to itself (Norris and Cooper, 2001) and has resulted in the uplift 

of the Southern Alps and the exposure of deep-seated crustal rocks during the last few million 

years (Norris et al., 1990).  

 

In the northern South Island, the transition from the Hikurangi subduction to the strike-slip 

dominating Alpine fault translates into the MFS, a set of four large dextral strike-slip faults and 

their splayed structures. Slips on these faults are approximately parallel to the direction of the 

relative plate motion and decrease north-westerly from 20-25 mm/year on the Hope fault to 3-

5 mm/year on the Wairau fault (Bourne et al., 1998; Cowan, 1990). On the eastern side of the 

MFS, the fault trend swings anticlockwise by about 30 degrees, such as the Jordan thrust with 

a nearly northerly striking angle and a dominating reverse slip component, and the Kekerengu 

fault with a dominating dextral strike-slip. Both have ruptured during the 2016 Mw 7.8 

Kaikoura earthquake (Figure 7.1). South of the MFS, at the latitude of Canterbury (43W-41W), 

the oblique plate convergence rate reaches 40 mm/year (DeMets et al., 1990) and is largely 

accommodated by a number of slowly deforming faults and folds, including the Humps and 

Hundalee faults (Pettinga et al., 2001). Despite the presence of an underlying subduction 

interface at depths of 25-30 km (Williams et al., 2013), the crustal MFS accommodates a 

majority (>75%) of the relative plate motion within the northern South Island according to the 
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Quaternary evidence and geodetic observations (e.g., Holt and Haines, 1995; Norris and Cooper, 

2001; Wallace et al., 2007).  

 

Figure 7.1 The tectonic setting of the southern Hikurangi Subduction (HS) interaction between 

the Pacific (PAC) and Australian (AUS) plates. Black rectangles represent Sentinel-1 data 

coverage. Blue triangles are GPS stations. Red lines indicate mapped active fault traces 

including the MFS from the institute of Geological and Nuclear Sciences (GNS), New Zealand. 

Red dotted lines are modelled faults which observed major co-seismic slips, HF: Hope Fault; 

HU: Humps Fault; HD: Hundalee Fault; JD: Jordan Thrust; FG: Fidget; KF: Kekerengu Fault; 

NF: Needles Fault; LH: London Hills. 

 

The 2016 Mw 7.8 Kaikoura earthquake rupture initiated from the Humps fault zone and the 

Hundalee fault and propagated to the Hope fault through stepovers. It then splayed further north 

to the Jordan Thrust, Kekerengu fault and Needles segment. At least 12 major faults were 

involved in the multi-fault rupture process with various orientations and slip mechanisms, 

extending along southwest-northeast for about 150 km (Figure 7.1), exhibiting more complexity 

than most previously studied earthquakes such as the 2012 Mw 8.6 Sumatra event which 
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ruptured only three orthogonal strike‐slip fault branches (Satriano et al., 2012). The stepovers 

between the Hump and Hope faults transferred from reverse faulting in the south to 

predominantly strike-slip in the north, whose distances were more than double the threshold for 

halting a fault rupture. The aftershocks first occurred at the offshore end of the Hope fault with 

a broad northeast-southwest trend, then stepped approximately northward along the Jordan 

thrust and Kekerengu fault, and finally clustered at the Needles fault segment (near Cape 

Campbell and Lake Grassmere). Most of the aftershock origins were shallower than 30 km with 

a mixture of reverse and strike-slips according to the USGS (Figure 7.1). 

 

7.3 Data 

Two ascending tracks of Sentinel-1 data were used with spatial and temporal overlaps making 

it possible for checking (coverage in Figure 7.1 and spatial-temporal baselines in Figure 7.2). 

The descending track was excluded since only eight acquisitions were available. Interferograms 

were generated with the GAMMA software (http://www.gamma-rs.ch), in the same manner as 

in Section 4.2.  

 

Figure 7.2 Spatial-temporal baselines for tracks 52 and 154. For T52, max=243.5 m, min=0.1 m, 

standard deviation=49.1 m. For T154, max=251.5 m, min=0.1 m, standard deviation=43.8 m. 

There are also several GPS stations from the New Zealand GeoNet network providing 

continuous observations after the earthquake (Figure 7.3). We utilized their daily position time 

series from the Nevada Geodetic Laboratory at the University of Nevada, Reno (Blewitt et al., 

2016), processed with GIPSY/OASIS-II Version 6.1.1 using final non-fiducial daily JPL orbit 

products (ftp://sideshow.jpl.nasa.gov/pub/JPL_GPS_Products/Final). The time series are in the 

IGS08 reference frame and have been corrected for the ocean tide loading using the Finite 

Element Solutions 2004 (Lyard et al., 2006), and for the solid Earth tides following the 
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International Earth Rotation and Reference Systems 2010 conventions. The full processing 

strategy is summarized at http://geodesy.unr.edu/gps/ngl.acn.txt. These GPS time series were 

then detrended to remove secular inter-seismic deformation (Gualandi et al., 2017) and 

corrected for annual and semi-annual signals by estimating 0.5 and 1 year period sinusoids 

(Bevis and Brown, 2014), using 5 years of daily time series prior to the 2016 earthquake.  

 

Figure 7.3 Observed co-seismic GPS offsets and 1-year (from 15 November 2016 to 31 

December 2017) post-seismic GPS cumulative displacements (black arrows). Modelled post-

seismic displacements are denoted by the yellow arrows. Red dotted lines indicate modelled 

fault surface traces (Hamling et al., 2017). 

 

7.4 Mitigation of Spatial-temporally Correlated Atmospheric Errors 

Original interferograms may experience a mixture of topographic correlated and turbulent 
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atmospheric errors, exhibiting as either short or long wavelength signals, which can degrade 

the spatial-temporal filtering when extracting deformation signals in InSAR time series analysis. 

Traditional InSAR time series analysis methods assume the atmospheric error is temporally 

random (e.g., Hooper et al., 2007), with only spatial correlations being highlighted. However, 

though they may not be as dominant as the spatial correlations, the atmospheric error temporal 

correlations should not be neglected, given the fact that the tropospheric moisture content varies 

seasonally (e.g., fog is more prevalent at certain times of the year in coastal areas) and 

analogously correlated with the topography. The temporal correlation can completely mask 

geophysical signals and introduce unpredictable uncertainties on the velocity estimates (Hooper 

et al., 2007).  

 

7.4.1 Atmospheric correction for individual interferograms with GACOS 

As the first step, the GACOS correction was applied to individually mitigate, at least to first 

order, atmospheric errors, including turbulence as well as the elevation dependent components. 

Some examples are shown in Figure 7.4, where most of the original interferograms experienced 

long wavelength signals along northeast-southwest and northwest-southeast directions with a 

maximum magnitude of over 10 cm and which have been substantially mitigated by GACOS. 

Meanwhile, topographic correlated errors were substantial on acquisitions, for example, 

20161203 and 20170207 but reduced after applying GACOS corrections. The corrected 

interferograms tended to be random in time with the temporal correlation of the atmospheric 

error being reduced, therefore satisfying the basic assumptions in the time series analysis and 

expecting to be better handled through filtering.  

 

To assess the GACOS correction quality, we cross-validated the ECMWF weather model 

derived atmospheric delays, used by GACOS to produce correction maps, by excluding one 

point from the whole grid and determining its value from the remaining grid. This was repeated 

for all the considered grids to obtain a cross-RMS difference between the interpolated and 

original values. The cross-test RMS for each acquisition date in Figure 7.4 revealed a seasonal 

variation which peaks in summer and is minimized in winter. For quality control purposes, the 

dates with large cross-RMS values (more than two standard deviations from the mean) would 
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reject the use of GACOS corrections on their related interferograms (the overall rejection rate 

is 5.8%). Those failed corrections probably came from the extreme turbulent troposphere which 

the weather model was not able to capture. 

 

Figure 7.4 Examples of the individual atmospheric correction result (a, b) and the cross-test 

RMS of the ECMWF data. The master date for all the interferograms is 20161115 and the slave 

dates are indicated in the figure.  

 

7.4.2 SBAS+APS model  

After applying the GACOS atmospheric corrections, a small baseline subset (SBAS) 

differential algorithm was applied to extract the time-dependent deformation map (Li et al., 
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2009a; Mora et al., 2002). For N interferograms from P identical dates, each map pixel complies 

with the following equation: 
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where, L is the original or atmospherically corrected phase observation on an interferogram 

with a master date of tm and a slave date of ts; φt is the cumulative displacement from the 

earthquake rupture time t0 to t; Bperp is the perpendicular baseline; D is the DEM error; r is the 

satellite-target distance (693 km for Sentinel-1); θ is the satellite incidence angle; ε accounts 

for the temporal decorrelation, orbital error, thermal noise effect and atmospheric error if not 

corrected. T is the coefficient matrix of the cumulative displacement and C is the coefficient 

matrix of the DEM error. If all the acquisitions are well connected, as was the case for our 

Sentinel-1 data, Equation 7.1 can be well determined in a least squares sense.  

 

For the interferograms that have rejected GACOS corrections, their atmospheric errors were 

estimated by extending Equation 7.1 to: 
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where, APS is the estimated atmospheric error for the un-corrected interferogram. Equation 7.2 

is singular due to the correlation between deformation and APS parameters. We therefore 

introduced a temporal deformation model as a constraint on the deformation parameter. For this 

post-seismic study, the logarithmic deformation model may be used: 

0log( )tφ a b t t                   (Equation 7.3) 

where φ is the phase change between the time t and rupture time t0; a and b are parameters to 

be estimated. Substituting Equation 7.3 into 7.2, we obtain: 
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Equation 7.4 can be determined with a well-connected acquisition network on a pixel-by-pixel 

basis. The temporal deformation model in Equation 7.4 requires the APS parameter to be 

random, which was largely satisfied in our situation as only a small portion of acquisitions 

required an APS parameter (<6%). To prevent unphysical oscillatory variations in the APS 

estimation, a spatial filter was performed on the APS parameters. Assuming that the 

atmospheric effect on each pixel within a given window W was identical, the final equation 

reformed from 7.4 was obtained: 
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          (Equation 7.5) 

where the DEM error for each pixel was introduced as an independent unknown parameter. 

Equation 7.5 is an overdetermined system and can be easily solved in a least squares sense. 

Once the APS parameters are estimated, we can obtain a whole network of interferograms 

corrected for atmospheric delays.  

 

A further refinement was done by resolving Equation 7.5 again using the atmospherically 

corrected interferograms (either by GACOS or the estimated APS). This time an APS parameter 

was assigned on each acquisition as a residual atmospheric delay, which should be temporally 

uncorrelated and therefore more separable from deformation signals. 

 

A step by step implementation of the proposed method is shown in Figure 7.5: (i) apply the 

GACOS correction on each interferogram; (ii) cross-validate and reject corrections with poor 

ECMWF data qualities; (iii) estimate the APS for interferograms without GACOS corrections 

by a sub-network of corrected interferograms, and iterate until all interferograms are corrected; 
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and (iv) estimate the deformation signal together with residual atmospheric delays and DEM 

errors with least squares and spatial-temporal filters. 

 

Figure 7.5 A flow chart of the SBAS+APS model and its final outputs. 

 

7.4.3 Results and validations 

To evaluate the model’s performance, four different time series methods for generating 

cumulative displacement maps were compared: (i) the traditional SBAS method by 

interferogram stacking without estimating APS parameters (hereafter called SBAS); (ii) the 

traditional SBAS method after applying GACOS corrections for each interferogram (hereafter 

called SBAS-GACOS); (iii) the traditional SBAS method integrated with the APS model 

(hereafter called SBAS-APS); (iv) our proposed method, i.e. the traditional SBAS method plus 

the APS model, but after applying GACOS corrections for each interferogram (hereafter called 

SBAS-GACOS-APS). The major difference between the SBAS-APS and SBAS-GACOS-APS 

was the APS parameter, where the SBAS-APS estimated the whole APS for all acquisitions, 
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which could be temporally correlated and exert long wavelength biases to the deformation field. 

Nevertheless, the SBAS-GACOS-APS only estimated APS residuals using the atmospherically 

corrected interferograms. 

 

Figure 7.6 Cumulative displacements from the four InSAR time series methods for (a) track 

52, 15 November 2015 to 22 December 2017, and (b) track 154, 16 November 2015 to 29 

December 2017. Black dots are the projected surface fault traces. (c) The displacement profile 

from track 52 (coloured) and the elevation profile counterparts (grey lines). (d) Comparisons 

between InSAR and GPS displacement time series for all methods (station locations in Figure 

7.3). 

Figure 7.6 shows the InSAR time series results for the two tracks from all four different methods. 
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A long wavelength signal with a gradient from the northwest to southeast was seen on the 

uncorrected results (i.e. those without GACOS corrections) from both tracks, probably 

revealing the fact that the western South Island has more precipitation than the west (over three 

times) therefore producing strong spatial-temporally correlated atmospheric effects. The 

temporal correlation prevented the atmospheric error from being distinguishable from the 

deformation, hence introducing additional long wavelength signals in the final displacement 

maps. After applying GACOS corrections, the atmospheric effect was largely reduced (see 

Figures 7.6a2, 7.6b2) with a further weakening after applying the SBAS+APS model (Figures 

7.6a4, 7.6b4). Overall, these results demonstrate the importance of the GACOS correction in 

reducing the spatial-temporally correlated atmospheric errors in InSAR time series. 

 

 
Figure 7.7 Comparisons of displacements between InSAR and GPS for all four InSAR time 

series methods.  

The SBAS-APS and SBAS-GACOS-APS were less noisy after applying the SBAS+APS model. 
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Figures 7.6d and 7.7 show detailed comparisons between all available GPS stations and all 

InSAR acquisitions. A 0.72 cm RMS difference was obtained with our SBAS-GACOS-APS 

model, improved from the SBAS (1.95 cm) and SBAS-APS (0.77 cm), respectively. The RMS 

difference for the SBAS-GACOS was smaller than the SBAS method, but both were greater 

than the SBAS-APS and SBAS-GACOS-APS methods, since the short wavelength atmospheric 

noise was unable to be captured by GACOS. This was also demonstrated by their spectrograms, 

which were computed by the spatial Fourier transformation of the phase measurement. For track 

52, the SBAS-GACOS-APS method had a more centralized spectrum amplitude distribution in 

all directions, whereas the others show stronger northwest-southeast signals (Figure 7.8). Track 

154 was less noisy than track 54 due to its smaller spatial extent, and consequently smaller 

atmospheric errors, but still has received considerable improvements after applying the GACOS 

correction and SBAS+APS model. 

 

Figure 7.8 Spectrograms computed by the Fourier transformation for both tracks. The spectrum 

amplitudes are shifted so the low-frequency signals are in the map centre. 

 

7.5 Time-dependent Afterslip Modelling 

From the cumulative displacement maps shown in Figure 7.6, there were two major and one 

minor displacement lobes during the 1-year post-seismic period. An intuitive interpretation is 

that the northeast lobe was probably related to the crustal Kekerengu and Needles faults and 

their oceanic extensions. The other two are symmetrical lobes and should originate at a deeper 
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source because of their far westward location away from the main co-seismic area and the 

crustal faults. From profiles A and B shown in Figure 7.6c, the western displacement lobe 

happened over the mountainous area (2–3 km) whereas the eastern lobe occurred mostly over 

the flat region. There were no sharp surface dislocations on all three profiles, implying the slip 

sources were dominating at a deep depth (~35 km). As we only used one year of data after the 

earthquake, we neglected the viscous-elastic effect and confined our model only to afterslips.  

 

We used the SBAS-GACOS-APS InSAR time series results, combining the detrended and 

seasonal/semi-seasonal signals corrected GPS time series for the time-dependent afterslip 

modelling. We assumed a logarithmic function to simulate the afterslip time history as 

(displacement=A+B*log(t)), where A and B are constant parameters estimated by least squares 

from the displacement time series; t is the epoch time after the mainshock. The misfit standard 

deviations after fitting this equation were 0.54 cm (East), 0.63 cm (North), and 1.10 cm (Vertical) 

for GPS and 0.48 cm (LOS) for InSAR, respectively. The optimal relative weight between GPS 

and InSAR was determined by minimizing their data misfits iteratively.  

 

The location of the western deformation lobes imply that they cannot be explained by the 

shallow crustal faults, so we utilized the fault geometry from Hamling et al. (2017), in which a 

subduction interface along with 19 crustal fault segments was included. To minimize the 

number of free parameters, we included only five major crustal faults (the Humps, Hope, Jordan 

thrust, Kekerengu and Needles faults), where there were largest co-seismic displacements, and 

the subduction interface. We discretized the fault planes into 2 by 2 km patches and, for each 

patch, estimated its strike and dip slip components. The estimation was a linear procedure in a 

least squares sense, with a spatial smoothing factor being applied whose optimal value was 

iteratively determined by minimizing the data residuals. 

 

The observations, modelled surface displacements and residuals for the two InSAR tracks and 

GPS are shown in Figures 7.9 and 7.3, respectively. The major deformation pattern was well 

explained, including the two major lobes and the northeast minor lobe on both tracks. The GPS 

displacements were mostly along the horizontal with the most substantial movements being 
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recorded by stations CMBL, SEDD and WITH, at the coastal end of the Needles fault, and 

KAIK, at the coastal end of the Hundalee fault. Their directions complied with the local tectonic 

background where the strike-slips rotate counter clockwise from south to north. Our afterslip 

model reveals that the movements on CMBL, SEDD and WITH were related to the oceanic 

extensions of the Needles fault, whose triggered surface displacements were only partially 

observed by InSAR. There were small residuals along the Jordan thrust surface trace, 

suggesting the existence of small and shallow reverse slips on the thrust. Northwest of the 

Jordan thrust, the residuals were probably due to the shallow (6.9 km) Mw 5.3 aftershock on 

18 November 2016.  

 

Figure 7.9 Observed, modelled and residual interferograms based on the best fit afterslip model.  

The fault slip distribution is shown in Figure 7.10 with two major slip sources. The first one is 

the oceanic extension of the Needles fault. The afterslip here was right-lateral dominating and 

has propagated deeper (15-25 km) than the co-seismic slip (5-15 km). The slip on this fault may 

have propagated further to the north after the mainshock through frequent aftershocks (Figure 

7.1), most having 15-20 km depth focal mechanisms (Figure 7.1), and have continued steadily 

as afterslips. Although this slip source was not well determined due to the lack of observations 
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above the ocean, the afterslip model reasonably explained the northeast deformation signals 

from InSAR and GPS.  

 

Figure 7.10 Best fit afterslip distributions for all faults. (b) and (c) are the input and output of 

the checkerboard test for slips on the Hikurangi subduction interface (2 m pure reverse slip 

input).  

 

The second source is the slip on the subducting interface at depths from 25 to 35 km, reverse 

dominating with minor right-lateral components of up to ~ 2 m for one year. Unlike the co-

seismic observations, the post-seismic observations provide clear evidence of triggered slips on 

the subduction interface, which were not mixed with the shallow crustal fault related surface 

displacements. We further conducted a checkerboard test around the main subducting region 

and validated that the simulated slips can be well recovered by our input observations. 
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Figure 7.11 The time-dependent afterslip distribution on the Hikurangi subduction interface 

and the co-seismic slip distribution. (a) the cumulative afterslips; and (b) the slip time series, 

referenced from 15 November 2016.  
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The afterslip model evidenced a triggered subduction interface after the mainshock that was 

accommodating the regional oblique plate motion. It extended 50 km horizontally and 6 km 

vertically (equivalent to 22 km along the dipping direction), with a cumulative moment release 

that was equivalent to a Mw 6.9 earthquake on the interface. Our afterslip is complementarily 

located with the co-seismic subduction slip modelled by Hamling et al. (2017), who suggested 

a ~15% moment release on the subduction slab among the whole co-seismic energy. The slip 

distribution was a narrowed ellipsoid peaked below the co-seismic slip deficit area. The full 

afterslip history in Figure 7.11 shows that the afterslip started from the co-seismic deficit area 

and became substantial since May 2017. The overall slip history on the interface (co- and post-

seismic) is rather homogeneous: the triggered co-seismic slips propagated mostly towards 

down-right, producing a slip deficit area where the up-leftward propagating afterslips centred. 

After the GACOS atmospheric correction, the two ascending tracks revealed more 

comprehensive surface displacements related to the subduction slip compared to the descending 

track used in Wallace et al. (2018), and therefore helped to precisely locate the actual afterslip 

source.  

 

The afterslip may be underestimated because of the SAR satellite geometry and missing 

offshore observations. We neglected the potential contribution from poroelastic rebound and 

viscoelastic relaxation. Poroelasticity is mainly visible as uplift and subsidence in the near-field 

with shallow processes, and small spatial extent surface movements (Peltzer et al., 1996). It 

may have led to the small residuals near the Jordan thrust trace in Figure 7.9. After such a large 

event, the crust would consist of an initial elastic rebound followed by a transient element of 

deformation controlled by the viscosity (Nur and Mavko, 1974), which means the viscous 

deformation may be dominant over a decadal timescale, but is obscured by afterslip in the early 

stage of relaxation. To further distinguish the afterslip and viscoelastic deformation, additional 

data would be required. 

 



Afterslip Following the 2016 Kaikoura Earthquake Revealed by InSAR Time Series with Atmospheric Correction 

150 

 

7.6 Discussions 

7.6.1 Features of the proposed atmospheric correction model 

The spatial-temporal correlated atmospheric error is problematic in InSAR time series since the 

APS filters are only valid with random noise. The temporal deformation model (either linear or 

non-linear) also requires the atmospheric error to be temporally random. Within our proposed 

method, the long wavelength and topography related atmospheric errors are removed before 

filtering, leaving the residuals as small and random, which are removable both in space and in 

time. The key features of the proposed method are: (i) the individual atmospheric correction by 

GACOS (ECMWF) is globally anytime usable with a short time delay (< two days); (ii) it is 

suitable for both small and large areas as the APS estimation does not rely on strong spatial 

constraints after the GACOS correction; and (iii) temporal correlations of the atmospheric delay 

can be largely reduced. The performance of this method mainly relies on the accuracy of the 

GACOS correction map and its quality control by identifying out failed corrections. As the 

weather model used in GACOS is improving in both the spatial-temporal resolution and 

accuracy, we expect an improved performance of atmospheric corrections in the next few years. 

 

7.6.2 Insights into the southern Hikurangi subduction slab  

Detailed definition of the subducting plate and overlying plate in the MFS is problematic, as 

the plate boundary is broad and ~80% of the plate motion is accommodated by shallow crustal 

faults (Holt and Haines, 1995). The frequent seismic activities beneath the Hope and Clarence 

faults produced a broad boundary zone both horizontally and vertically. When coupled with 

complex shallow fault slips, the interface slip may be completely masked and hence 

indeterminable from surface geodetic observations. In the case of the 2016 Kaikoura earthquake, 

however, the interface afterslip can be clearly resolved mainly due to the limited contributions 

from the shallow crustal faults after the mainshock. After carefully calibrating the atmospheric 

effect, we obtained post-seismic surface displacements covering the whole MFS, especially the 

western and southwestern MFS which were not covered by previous studies. These 

observations offered valuable insights into the activities at the southern part of the Hikurangi 

subduction interface. 
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The southern margin of the Hikurangi subduction zone has long been considered as 

permanently locked and no longer accommodates the plate motions. There are decreased slip 

rate deficits from ~30 mm/year beneath the North Island to <10 mm/year beneath the MFS. 

Wallace et al. (2018) evidenced that the subduction plate boundary beneath the eastern MFS 

was indeed accommodating the plate motions with up to 5 cm early afterslip. Our resolved 

interface afterslip (up to 2 m in one year) extends their slip area towards the southwest with 

more wide-spreading surface displacements throughout the MFS. The slip source located at the 

edge of the broad seismic active zone beneath the Hope fault, where the subducting plate begins 

to bend downwards, is therefore valuable in the determination of the subducting plate thickness 

and shape.  

 

7.6.2 Link between co-seismic slip and afterslip 

Afterslips after large earthquakes are usually complementarily located with the co-seismic slip, 

compensating in magnitude and distribution with nearly the same direction, such as the 1999 

Izmit earthquake (Wright et al., 2001a) and the 2004 Sumatra-Andaman earthquake (Chlieh et 

al., 2007). By comparing our afterslip model with the co-seismic interface slip proposed by 

Hamling et al. (2017), the afterslip peaked at a co-seismic slip deficit area and was distributed 

adjacently below the main co-seismic slip area. This implies the subduction interface may have 

already been triggered during the mainshock and continued to move afterwards in the same 

manner, but slightly below the main co-seismic slipping area. The total amount of the afterslip 

requires only a relatively low co-seismic moment release compared to the crustal faults, and is 

consistent with those proposed by Clark et al. (2017) and Wallace et al. (2018).  

 

The co-seismic observations for the 2016 Kaikoura earthquake show that multi-faults can be 

triggered during a single large event and fault slips can propagate through fault step-overs and 

splays over a long distance (> 100 km, Hamling et al., 2017; Xu et al., 2018). When considering 

the co-seismic slip on the interface, the far-field subsidence and non-double-couple components 

of global moment tensors would be better explained. This implies a more complex event that 

undergoes slip along numerous faults, varied in orientation and direction, propagated from the 

mainshock both horizontally to adjacent fault segments and vertically to the underlying deep 
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crust.  

 

7.7 Summary 

This chapter detailed the recovery of the time-dependent afterslip distribution on the southwest 

Hikurangi Subduction Zone by the two tracks of Sentinel-1 data after mitigating the spatial-

temporally correlated atmospheric error. A majority of interferograms (~94%) were 

considerably improved after applying GACOS atmospheric corrections, with its correction 

performing poorly for the remaining ~6%, whose corrections were estimated from a sub-

network of the corrected interferograms. The residual atmospheric errors were then isolated 

from deformation by the SBAS+APS method. Validations showed that the resulting InSAR 

displacement has a good agreement against GPS (0.72 cm RMS), improved from the 

conventional SBAS (1.95 cm RMS). More improvements were found on the track with the 

larger spatial extent (>200 km) as larger atmospheric disturbances were observed.  

 

The resultant InSAR displacement filled the data gap above the west and southwest MFS, and 

our resolved slip model clearly evidenced a triggered Hikurangi subduction slab by the 2016 

Kaikoura earthquake. Despite afterslips and a slow slip event beneath the southern North Island 

and offshore South Island proposed by Wallace et al. (2017, 2018), our results identified 

considerable afterslips (up to 2 m in one year) beneath the southwest MFS that were 

complementarily located with the resolved co-seismic interface slip source by Hamling et al. 

(2017), implying that the interface probably has already moved during the mainshock. We also 

found a shallow slip source on the northern extension of the Needles fault, which may have 

induced large offshore surface displacements.  

 

  



 

153 

 

Chapter 8. Conclusions 

8.1 Contributions of this Research 

The accuracy of InSAR derived surface displacement is substantially affected by the spatial-

temporal variations of atmospheric water vapour, which can cause errors comparable in 

magnitude to those associated with crustal deformation. It can not only mask the small 

magnitude tectonic displacement hence biasing the long-term velocity mapping (e.g., for post- 

or inter-seismic studies), but also mask some co-seismic signals when they are not dominant 

enough on an interferogram. The tremendous development of InSAR missions (e.g., Sentinel-

1A/1B, ALOS-2, TerraSAR-X/TanDEM-X, COSMO-SkyMED, RADARSAT-2, Gaofen-3), as 

well as the planned future successors during 2018-2025, has posed more challenges for 

atmospheric corrections, with researchers being increasingly aware of the limitations of the 

existing correction models, including (i) the coupling effect of the tropospheric stratification 

and turbulence; (ii) the low spatial-temporal resolutions of weather models; and (iii) the lack of 

quality control indicators. 

Inspired by the abovementioned research gap, several InSAR atmospheric correction models 

were developed in this thesis using GPS, ECMWF, and a combination of these two to achieve 

improved performance over mountainous areas or in the presence of tropospheric turbulence 

globally. Small magnitude co-seismic signals were detected from the atmospheric corrected 

InSAR measurements and used to invert for the fault geometry and slip distributions. The 

spatial-temporally correlated atmospheric delays in InSAR time series were reduced, after 

which InSAR and GPS were combined to recover the afterslip distribution and time-dependent 

slip history following a large earthquake, and to provide evidence of a downdip interface slip 

source. 

 

8.1.1 Iterative tropospheric decomposition model 

An iterative tropospheric decomposition model has been developed to generate high-resolution 

water vapour fields from GPS observations. Despite the importance of the elevation dependence 

of water vapour, addressed by several previous studies, it is often a challenge to separate 

elevation‐dependent tropospheric delays from turbulent components. The ITD model 
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overcomes this by decoupling the elevation and turbulent tropospheric delay components, 

overcomes the spatial interpolation challenges over mountainous areas and/or in the presence 

of turbulence in the troposphere, and generates improved high‐resolution water vapour maps 

compared with previous tropospheric turbulence‐ and elevation‐dependent models. 

 

The ITD model was validated on a 150 km × 150 km California study region, firstly using real‐

time mode ZTD estimates from precise point positioning at 41 GPS stations over 1 year. Cross 

validation yielded a ZTD RMS error of 4.6 mm with the ITD model, compared with 8.4 mm 

with the previous state-of art SKlm+Onn model. On converting the GPS ZWDs to PWV and 

interpolating to 1 km grid cells across the region, validations with the MODIS near‐IR water 

vapour product for the year showed the RMS difference being improved from 1.96 mm by using 

the SKlm+Onn model to 1.71 mm by using ITD. Furthermore, the spatial PWV gradients using 

ITD and MODIS across a variety of topography were nearly identical to each other. The overall 

RMS difference between MODIS and ITD PWV profiles was 1.51 mm, and the RMS 

differences for mountain and flat areas were 1.57 mm and 1.47 mm, respectively. Such results 

were obtained without differencing the tropospheric delays or water vapour estimates in time 

or space, whilst the errors were similar over flat and mountainous terrains, as well as for both 

inland and coastal areas. 

 

The generated near real-time mode PWV fields, high in spatial-temporal resolution, are 

beneficial to the InSAR atmospheric correction, numerical weather forecasting, and network 

RTK augmentation.  

 

8.1.2 GPS-based InSAR atmospheric correction routine 

Facilitated by the increased density of continuous GPS networks in different regions/countries, 

it becomes timely to integrate InSAR and GPS in a routine way aimed at precise deformation 

mapping, to tackle the binding of the stratified and turbulent tropospheric delays on InSAR 

interferograms without pre-defined local parameters. Based on ITD, we have implemented a 

framework to routinely use pointwise GPS data to reduce atmospheric effects on InSAR 

measurements systematically and automatically. Cross validation was introduced as a 
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performance indicator (exemplified through the station spacing tests in Section 4.3), to ensure 

the correction maps are appropriately applied (or potentially not applied) to InSAR 

measurements, and when. Ignoring this, there is a possibility of degrading InSAR 

measurements if such tropospheric corrections are applied. 

 

The application of this framework to Sentinel-1A interferograms over the Southern California 

(USA) and Southern England (UK) regions showed approximately 45–78% of noise reduction 

even with a sparse (~ 50–80 km station spacing) GPS network and/or in the presence of strong 

and non-random tropospheric turbulence. This is about a 50% greater improvement than 

previous methods. The turbulent components can have a comparable magnitude to the stratified 

component and exhibit larger variations in the summer than in other seasons due to the 

atmosphere being able to hold more water vapour. By accounting for both the stratification and 

turbulence of the troposphere, ~ 1 cm precision of the corrected interferograms was achieved. 

 

8.1.3 Generic atmospheric correction model 

The vast development of InSAR has fulfilled a global coverage of surface movement 

measurements as continuous time series, which poses challenges for correcting interferograms 

for atmospheric effects that GPS alone cannot be used for due to its low availability and low 

spatial resolution. Inspired by newly published ECMWF data, we have developed a generic 

atmospheric correction model whose notable features comprise (i) global coverage, (ii) all‐

weather, all‐time usability, (iii) with a short time delay of less than two days; and (iv) robust 

and easy to implement automatically, with quality control indicators. 

 

Operational high‐resolution ECMWF data (0.125° grid, 137 vertical levels, and 6‐hour interval) 

and continuous GPS tropospheric delay estimates (every 5 min) were integrated using the 

modified ITD model, in which the relative weights between the two data types were determined 

iteratively by a cross test. Model performance was tested using eight globally distributed 

Sentinel‐1 interferograms, encompassing both flat and mountainous topographies, midlatitude 

and near polar regions, and monsoon and oceanic climate systems. The average improvements 

in terms of phase StdDev resulting from the atmospheric correction maps applied were 47%, 
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49%, and 54% for GPS, ECMWF, and the integrated corrections, respectively. The corrected 

InSAR LOS displacements were also compared with the GPS displacements with average RMS 

improvements for the four interferograms of 55%, 45%, and 63% for GPS, ECMWF and the 

integrated corrections, respectively. Hence, the integrated model performed the best, with the 

combination of different data sources increasing the model's reliability, and the displacement 

StdDev and RMS difference arising for the corrected interferograms considered was 

approximately 1 cm. 

 

Factors affecting the model performance were investigated in the scenario of an absent ground 

truth for validation. Then, a set of performance indicators including (i) GPS network and 

ECMWF cross RMS, (ii) phase versus estimated atmospheric delay correlations, (iii) ECMWF 

time differences, and (iv) topography variations were developed to enable the model's 

suitability for InSAR atmospheric correction application to be assessed, and we recommend 

their adoption as indicators to inform users when abnormal conditions occur and give insights 

of the confidence level into the correction results. 

 

We made the proposed generic atmospheric correction model available among a wide audience 

by publishing a Generic Atmospheric Correction Online Service for InSAR (http://ceg-

research.ncl.ac.uk/v2/gacos/). The service provides high-resolution atmospheric delay maps 

globally with two-day latency and benefits not only the InSAR community but GPS and 

meteorological researchers.  

 

8.1.4 Co-seismic modelling using the atmospheric corrected InSAR measurement 

While being extensively addressed in post- and inter-seismic studies requiring millimetre-level 

precision of velocity mapping, atmospheric delays are typically ignored in co-seismic models 

under the hypothesis that their magnitude is far smaller than co-seismic signals. However, there 

are indeed exceptions such as the co-seismic signal of the Nyingchi Mw 6.4 earthquake on 17 

November 2017 which was surpassed and masked by the atmospheric delays, particularly those 

induced by local topographic variations. After applying the generic atmospheric correction 

model developed in Chapter 5, we successfully extracted the co-seismic surface displacements 
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from the Sentinel-1 interferograms. The phase standard deviation after correction for a 

seriously-contaminated interferogram dropped to 0.8 cm, largely improved from the traditional 

phase correlation analysis (1.13 cm) or bilinear interpolation (1.28 cm) methods. The co-

seismic signal stood out only after applying the corrections, and the far-field observation noise 

was largely reduced, which facilitated the inversion of downdip fault slips.  

 

Atmospheric corrections are essential for events with small magnitude ground displacements 

and the corrected interferograms for the Nyingchi Mw 6.4 event improved the inversion of the 

fault geometry and the reconstruction of the slip distribution. The seismogenic fault is a 

northwest–southeast striking back-thrust fault with a right-lateral strike-slip component. The 

maximum slip on the determined fault plane was 1.9 m, concentrated on the northwest part at 

a depth of 8 km. The proposed slip model reflected the strain partitioning of the northeast 

shortening and eastward movements of the Eastern Tibetan Plateau due to the oblique 

convergence between the Indian and Eurasian plates.  

 

8.1.5 Afterslip modelling using InSAR and GPS time series 

For longer term monitoring (e.g., post/inter-seismic motions, city subsidence) purposes, InSAR 

time series analysis allows for the separation of the atmospheric delay, DEM and orbital error 

from the deformation signal through temporal filters so that a 1 mm/year level of velocity 

precision is achievable. However, the temporal correlation of atmospheric delays (e.g., those 

induced by constant land covers or seasonal weather variations) would decrease the filter 

performance and mask or bias geophysical signals and hence introduce unpredictable errors on 

the velocity estimates. To overcome this, we have developed the SBAS+APS model applied 

after the generic atmospheric correction, which is capable of reducing atmospheric delay 

temporal correlations before applying temporal filters and is less dependent on atmospheric 

delay spatial correlations and therefore is applicable over large areas. The model was validated 

using a time series of InSAR measurements following the Mw 7.8 2016 Kaikoura earthquake 

and the resultant InSAR displacement series showed a good agreement against GPS (0.72 cm 

RMS), dramatically improved from the traditional stacking method (1.95 cm RMS). The larger 

the spatial extent, the more improvements were observed. Spectral analysis also implied that if 
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applying only the spatial-temporal filters without the generic atmospheric correction model, the 

biased high-frequency signals can still be dominating, probably due to atmospheric error 

temporal correlations. 

 

The atmospheric corrected InSAR displacement series was combined with GPS to reconstruct 

the afterslip history following the 2016 Kaikoura earthquake. The InSAR time series filled the 

data gap above the west and southwest of the MFS where few GPS stations are installed. 

Despite the afterslips and the slow slip event beneath the southern North Island and offshore 

South Island, we have identified considerable afterslips (up to 2 m in one year) beneath the 

southwestern Marlborough Fault System located complementarily with the resolved co-seismic 

interface slip source. It clearly showed that the Hikurangi subduction slab has been triggered 

by the 2016 Kaikoura earthquake and was accommodating the plate motions. We also observed 

a shallow slip source on the northern extensions of the Needles fault, which may have induced 

large offshore surface displacements. 

 

8.2 Research Innovations 

The innovations and novelties of the research highlighted throughout the thesis are summarized 

as follows. 

(R1) Proposed and developed an iterative tropospheric decomposition model for 

pointwise ZTD/PWV interpolation. The model deals with the ZTD/PWV in terms of the 

tropospheric stratification and turbulence, rather than traditionally dividing it into a hydrostatic 

component and a wet component, which is problematic for the spatial-temporally differenced 

InSAR measurements. High-resolution ZTD/PWV maps are generated and validated against 

MODIS near-IR water vapour fields, with equivalent interpolation performance over 

mountainous and flat terrain.  

(R2) Proposed a framework to routinely use GPS for InSAR atmospheric correction. 45–

79% improvements of InSAR displacements are obtainable with both sparse and dense GPS 

networks, and the impact of station spacing on atmospheric delay interpolation performances 

is quantitatively evaluated. 
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(R3) Developed a generic InSAR atmospheric correction model combining GPS and high-

resolution ECMWF data with global availability at any time and in all weathers. A set of 

performance indicators for InSAR atmospheric correction quality control and model 

applicability evaluation is defined, and an atmospheric correction online service is released.  

(R4) Detected small magnitude co-seismic deformation signals (< 10 cm)from InSAR 

observations contaminated by atmospheric errors. The proposed generic atmospheric 

correction model overperforms the traditional removal of signals exponentially related to the 

altitude, and the ITD model overperforms the bilinear interpolation method for the high-

resolution ECMWF ZTDs.  

(R5) Evidenced the triggered afterslips on the inactive southwestern Hikurangi 

subduction slab that accommodate regional plate motions using InSAR measurements. A 

SBAS+APS model is proposed to reduce spatial-temporally correlated atmospheric error in 

InSAR time series. The recovered afterslip sources suggest an existing but low co-seismic 

moment release on the Hikurangi subduction slab. 

 

8.3 Future Work  

Several InSAR atmospheric correction models were developed, either for individual 

interferograms or a stack of interferogram series, utilizing external datasets such as GPS and 

ECMWF. Room for improvement exists as the dataset itself is updated continuously. For 

example, the ECMWF model has improved its spatial resolution to ~9 km from ~16 km since 

its first release on 6th June 2017, and the GPS station coverage is steadily increasing, though 

gaps still remain. Conversely, new datasets will emerge in the next 2-5 years, such as the ERA-

5 reanalysis product from ECMWF with ~30 km spatial and hourly temporal resolution (the 

next generation of ERA-Interim); the Sentinel-3 Ocean and Land Colour Instrument (OLCI) 

with a 300 m spatial resolution (the next generation of MERIS); and more and more local 

weather models with several kilometre spatial resolution and hourly temporal resolution. These 

developments will necessitate future work on validating the new datasets against each other 

thoroughly on a global scale, and including them in the GACOS system.  
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Conversely, when considering ground movement as a predictable parameter (e.g., linear 

background tectonic movements), it becomes possible to retrieve high-resolution water vapour 

maps from InSAR, perhaps providing more detail spatially than any other water vapour 

detection techniques, which is beneficial for studying the turbulence features of the troposphere 

(e.g., mountain waves) and can be fed into numerical weather models. This is already an on-

going research topic, but our advantage is to use the models developed in this thesis to correct 

the first order atmospheric error on InSAR measurements so that the residual water vapour 

would be separable from the displacement signal without relying on strong linear deformation 

constraints. By doing this, we can estimate the atmospheric delay and the non-linear 

deformation signal simultaneously. 

 

  



 

161 

 

Appendix A: List of Publications 

Yu, C., Penna, N. T., Li, Z., 2017. Generation of real-time mode high resolution water         

vapor fields from GPS observations. J. Geophys. Res. Atmos. 122(3), 2008-2025. 

doi:10.1002/2016JD025753. 

Yu, C., Li, Z., Penna, N. T., 2018. Interferometric synthetic aperture radar atmospheric 

correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. 

Environ. 204, 109-121. doi:10.1016/j.rse.2017.10.038.  

Yu, C., Li, Z., Penna, N. T., Crippa, P., 2018. Generic atmospheric correction model for 

Interferometric Synthetic Aperture Radar observations. J. Geophys. Res. Solid Earth 123. 

doi:10.1029/2017JB015305.    

Yu, C., Li, Z., Chen, J., Hu, J. C., 2018. Small magnitude co-seismic deformation of the 2017 

Mw 6.4 Nyingchi earthquake revealed by InSAR measurements with atmospheric 

correction. Remote Sens. 10(5), 684. doi:10.3390/rs10050684.  

Feng, W., Samsonov, S., Liang, C., Li, J., Charbonneau, F., Yu, C., Li, Z., 2018. Source 

parameters of the 2017 Mw 6.2 Yukon earthquake doublet inferred from coseismic GPS 

and ALOS-2 deformation measurements. Geophys. J. Int. 216.3 (2018): 1517-1528. 

doi:10.1093/gji/ggy497.  

Yao, Y., Yu, C., Hu, Y., 2014. A new method to accelerate PPP convergence time by using a 

global zenith troposphere delay estimate model. J. Navig. 67, 899–910. 

doi:10.1017/S0373463314000265.  

  



 

162 

 

References

Ahmed, F., Václavovic, P., Teferle, F.N., Douša, J., Bingley, R., Laurichesse, D., 2016. 

Comparative analysis of real-time precise point positioning zenith total delay estimates. 

GPS Solut. 20, 187–199. doi:10.1007/s10291-014-0427-z 

Altamimi, Z., Sillard, P., Boucher, C., 2002. ITRF2000: A new release of the International 

Terrestrial Reference Frame for earth science applications. J. Geophys. Res. Solid Earth 

107, ETG 2-1-ETG 2-19. doi:10.1029/2001JB000561 

Anber, U., Wang, S., Sobel, A., 2014. Response of atmospheric convection to vertical wind 

shear: cloud-system-resolving simulations with parameterized large-scale circulation. Part 

I: specified radiative cooling. J. Atmos. Sci. 71, 2976–2993. doi:10.1175/JAS-D-13-

0320.1 

Anzidei, M., Boschi, E., Cannelli, V., Devoti, R., Esposito, A., Galvani, A., Melini, D., 

Pietrantonio, G., Riguzzi, F., Sepe, V., Serpelloni, E., 2009. Coseismic deformation of the 

destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data. Geophys. 

Res. Lett. 36. doi:10.1029/2009GL039145 

Argus, D.F., Heflin, M.B., Peltzer, G., Crampé, F., Webb, F.H., 2005. Interseismic strain 

accumulation and anthropogenic motion in metropolitan Los Angeles. J. Geophys. Res. 

Solid Earth 110, 1–26. doi:10.1029/2003JB002934 

Armijo, R., Tapponnier, P., 1989. Late Cenozoic right-lateral strike-slip faulting in southern 

Tibet. J. Geophys. Res. 94, 2787–2838. doi:10.1029/JB094iB03p02787 

Armijo, R., Tapponnier, P., Mercier, J.L., Han, T.-L., 1986. Quaternary extension in southern 

Tibet: Field observations and tectonic implications. J. Geophys. Res. 91, 13803. 

doi:10.1029/JB091iB14p13803 

Askne, J., Nordius, H., 1987. Estimation of tropospheric delay for microwaves from surface 

weather data. Radio Sci. 22, 379–386. doi:10.1029/RS022i003p00379 

Bai, Y., Lay, T., Cheung, K.F., Ye, L., 2017. Two regions of seafloor deformation generated the 

tsunami for the 13 November 2016, Kaikoura, New Zealand earthquake. Geophys. Res. 

Lett. 44, 6597–6606. doi:10.1002/2017GL073717 

Beavan, J., Samsonov, S., Denys, P., Sutherland, R., Palmer, N., Denham, M., 2010. Oblique 

slip on the Puysegur subduction interface in the 2009 July MW 7.8 Dusky Sound 



References 

163 

 

earthquake from GPS and InSAR observations: Implications for the tectonics of 

southwestern New Zealand. Geophys. J. Int. 183, 1265–1286. doi:10.1111/j.1365-

246X.2010.04798.x 

Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., Simons, M., 2013. Andean 

structural control on interseismic coupling in the North Chile subduction zone. Nat. Geosci. 

6, 462–467. doi:10.1038/ngeo1802 

Bekaert, D.P.S., Hooper, A., Wright, T.J., 2015a. A spatially variable power law tropospheric 

correction technique for InSAR data. J. Geophys. Res. Solid Earth 120, 1345–1356. 

doi:10.1002/2014JB011558 

Bekaert, D.P.S., Segall, P., Wright, T.J., Hooper, A.J., 2016. A Network Inversion Filter 

combining GNSS and InSAR for tectonic slip modeling. J. Geophys. Res. Solid Earth 121, 

2069–2086. doi:10.1002/2015JB012638 

Bekaert, D.P.S., Walters, R.J., Wright, T.J., Hooper, A.J., Parker, D.J., 2015b. Statistical 

comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 170, 40–

47. doi:10.1016/j.rse.2015.08.035 

Bell, J.W., Amelung, F., Ferretti, A., Bianchi, M., Novali, F., 2008. Monitoring aquifer-system 

response to groundwater pumping and artificial recharge. First Break 26, 85–91. 

doi:10.1029/2007WR006152 

Benevides, P., Catalao, J., Miranda, P.M.A., 2015. On the inclusion of GPS precipitable water 

vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 15, 2605–2616. 

doi:10.5194/nhess-15-2605-2015 

Benevides, P., Nico, G., Catalão, J., Miranda, P.M.A., 2016. Bridging InSAR and GPS 

tomography: a new differential geometrical constraint. IEEE Trans. Geosci. Remote Sens. 

54, 697–702. doi:10.1109/TGRS.2015.2463263 

Berrada Baby, H., Golé, P., Lavergnat, J., 1988. A model for the tropospheric excess path length 

of radio waves from surface meteorological measurements. Radio Sci. 23, 1023–1038. 

doi:10.1029/RS023i006p01023 

Betts, R.A., Falloon, P.D., Goldewijk, K.K., Ramankutty, N., 2007. Biogeophysical effects of 

land use on climate: Model simulations of radiative forcing and large-scale temperature 

change. Agric. For. Meteorol. 142, 216–233. doi:10.1016/j.agrformet.2006.08.021 



References 

164 

 

Bevis, M., Brown, A., 2014. Trajectory models and reference frames for crustal motion geodesy. 

J. Geod. 88, 283–311. doi:10.1007/s00190-013-0685-5 

Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., Ware, R.H., 1992. GPS 

meteorology: Remote sensing of atmospheric water vapor using the global positioning 

system. J. Geophys. Res. 97, 15787. doi:10.1029/92JD01517 

Beyerle, G., 2009. Carrier phase wind-up in GPS reflectometry. GPS Solut. 13, 191–198. 

doi:10.1007/s10291-008-0112-1 

Biggs, J., Wright, T., Lu, Z., Parsons, B., 2007. Multi-interferogram method for measuring 

interseismic deformation: Denali Fault, Alaska. Geophys. J. Int. 170, 1165–1179. 

doi:10.1111/j.1365-246X.2007.03415.x 

Blewitt, G., Kreemer, C., Hammond, W.C., Gazeaux, J., 2016. MIDAS robust trend estimator 

for accurate GPS station velocities without step detection. J. Geophys. Res. Solid Earth 

121, 2054–2068. doi:10.1002/2015JB012552 

Bock, O., Keil, C., Richard, E., Flamant, C., Bouin, M.N., 2005. Validation for precipitable 

water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP. 

Q. J. R. Meteorol. Soc. 131, 3013–3036. doi:10.1256/qj.05.27 

Boehm, J., Niell, A., Tregoning, P., Schuh, H., 2006. Global Mapping Function (GMF): A new 

empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 

33, L07304. doi:10.1029/2005GL025546 

Boniface, K., Ducrocq, V., Jaubert, G., Yan, X., Brousseau, P., Masson, F., Champollion, C., 

Chéry, J., Doerflinger, E., 2009. Impact of high-resolution data assimilation of GPS zenith 

delay on Mediterranean heavy rainfall forecasting. Ann. Geophys. 27, 2739–2753. 

doi:10.5194/angeo-27-2739-2009 

Bouin, M.N., Wöppelmann, G., 2010. Land motion estimates from GPS at tide gauges: A 

geophysical evaluation. Geophys. J. Int. 180, 193–209. doi:10.1111/j.1365-

246X.2009.04411.x 

Bourne, S.J., Árnadóttir, T., Beavan, J., Darby, D.J., England, P.C., Parsons, B., Walcott, R.I., 

Wood, P.R., 1998. Crustal deformation of the Marlborough Fault Zone in the South Island 

of New Zealand: Geodetic constraints over the interval 1982–1994. J. Geophys. Res. 103, 

30147. doi:10.1029/98JB02228 



References 

165 

 

Bürgmann, R., Rosen, P.A., Fielding, E.J., 2000. Synthetic aperture radar interferometry to 

measure earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28, 

169–209. doi:10.1146/annurev.earth.28.1.169 

Cavalié, O., Pathier, E., Radiguet, M., Vergnolle, M., Cotte, N., Walpersdorf, A., Kostoglodov, 

V., Cotton, F., 2013. Slow slip event in the Mexican subduction zone: Evidence of 

shallower slip in the Guerrero seismic gap for the 2006 event revealed by the joint 

inversion of InSAR and GPS data. Earth Planet. Sci. Lett. 367, 52–60. 

doi:10.1016/j.epsl.2013.02.020 

Chen, M., Tomás, R., Li, Z., Motagh, M., Li, T., Hu, L., 2016. Imaging land subsidence induced 

by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote 

Sens. 1–21. doi:10.3390/rs8060468 

Chen, Q., Liu, G., Ding, X., Hu, J.C., Yuan, L., Zhong, P., Omura, M., 2010. Tight integration 

of GPS observations and persistent scatterer InSAR for detecting vertical ground motion 

in Hong Kong. Int. J. Appl. Earth Obs. Geoinf. 12, 477–486. 

doi:10.1016/j.jag.2010.05.002 

Chlieh, M., Avouac, J.P., Hjorleifsdottir, V., Song, T.R.A., Ji, C., Sieh, K., Sladen, A., Hebert, 

H., Prawirodirdjo, L., Bock, Y., Galetzka, J., 2007. Coseismic slip and afterslip of the great 

Mw 9.15 Sumatra-Andaman earthquake of 2004. Bull. Seismol. Soc. Am. 97, S152--S173. 

doi:10.1785/0120050631 

Cho, J.Y.N., Newell, R.E., Anderson, B.E., Barrick, J.D.W., Thornhill, K.L., 2003. 

Characterizations of tropospheric turbulence and stability layers from aircraft observations. 

J. Geophys. Res. Atmos. 108. doi:10.1029/2002JD002820 

Clark, K.J., Nissen, E.K., Howarth, J.D., Hamling, I.J., Mountjoy, J.J., Ries, W.F., Jones, K., 

Goldstien, S., Cochran, U.A., Villamor, P., Hreinsdóttir, S., Litchfield, N.J., Mueller, C., 

Berryman, K.R., Strong, D.T., 2017. Highly variable coastal deformation in the 2016 

MW7.8 Kaikōura earthquake reflects rupture complexity along a transpressional plate 

boundary. Earth Planet. Sci. Lett. 474, 334–344. doi:10.1016/j.epsl.2017.06.048 

Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a 

new minimum age for east-west extension. Nature 374, 49–52. doi:10.1038/374049a0 

Cowan, H.A., 1990. Late Quaternary displacements on the Hope Fault at Glynn Wye, north 



References 

166 

 

Canterbury. New Zeal. J. Geol. Geophys. 33, 285–293. 

doi:10.1080/00288306.1990.10425686 

Crosetto, M., Tscherning, C.C., Crippa, B., Castillo, M., 2002. Subsidence monitoring using 

SAR interferometry: Reduction of the atmospheric effects using stochastic filtering. 

Geophys. Res. Lett. 29, 26-1-26–4. doi:10.1029/2001GL013544 

Darby, D.J., Beanland, S., 1992. Possible source models for the 1855 Wairarapa Earthquake, 

New Zealand. J. Geophys. Res. 97, 12375. doi:10.1029/92JB00567 

Dawson, J., Tregoning, P., 2007. Uncertainty analysis of earthquake source parameters 

determined from InSAR: A simulation study. J. Geophys. Res. Solid Earth 112, B09406. 

doi:10.1029/2007JB005209 

Delacourt, C., Briole, P., Achache, J., 1998. Tropospheric corrections of SAR interferograms 

with strong topography. Application to Etna. Geophys. Res. Lett. 25, 2849–2852. 

doi:10.1029/98GL02112 

DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., 1990. Current plate motions. Geophys. J. Int. 

101, 425–478. doi:10.1111/j.1365-246X.1990.tb06579.x 

Ding, X.L., Li, Z.W., Zhu, J.J., Feng, G.C., Long, J.P., 2008. Atmospheric effects on InSAR 

measurements and their mitigation. Sensors 8, 5426–5448. doi:10.3390/s8095426 

Ding, Z., Wang, Z., Lin, S., Liu, T., Zhang, Q., Long, T., 2017. Local fringe frequency 

estimation based on multifrequency InSAR for phase-noise reduction in highly sloped 

terrain. IEEE Geosci. Remote Sens. Lett. 14, 1527–1531. 

doi:10.1109/LGRS.2017.2720695 

Doin, M.P., Lasserre, C., Peltzer, G., Cavalié, O., Doubre, C., 2009. Corrections of stratified 

tropospheric delays in SAR interferometry: Validation with global atmospheric models. J. 

Appl. Geophys. 69, 35–50. doi:10.1016/j.jappgeo.2009.03.010 

Ehret, G., Hoinka, K.P., Stein, J., Fix, A., Kiemle, C., Poberaj, G., 1999. Low stratospheric 

water vapor measured by an airborne DIAL. J. Geophys. Res. Atmos. 104, 31351–31359. 

doi:10.1029/1999JD900959 

Elliott, J.R., Biggs, J., Parsons, B., Wright, T.J., 2008. InSAR slip rate determination on the 

Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated 

atmospheric delays. Geophys. Res. Lett. 35. doi:10.1029/2008GL033659 



References 

167 

 

Emardson, T.R., Johansson, J.M., 1998. Spatial interpolation of the atmospheric water vapor 

content between sites in a ground-based GPS network. Geophys. Res. Lett. 25, 3347–3350. 

doi:10.1029/98GL02504 

Emardson, T.R., Simons, M., Webb, F.H., 2003. Neutral atmospheric delay in interferometric 

synthetic aperture radar applications: Statistical description and mitigation. J. Geophys. 

Res. Solid Earth 108. doi:10.1029/2002JB001781 

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., 

Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, 

M., Burbank, D., Alsdorf, D.E., 2007. The shuttle radar topography mission. Rev. Geophys. 

45, RG2004. doi:10.1029/2005RG000183 

Fattahi, H., Amelung, F., 2015. InSAR bias and uncertainty due to the systematic and stochastic 

tropospheric delay. J. Geophys. Res. Solid Earth 120, 8758–8773. 

doi:10.1002/2015JB012419 

Fattahi, H., Amelung, F., 2014. InSAR uncertainty due to orbital errors. Geophys. J. Int. 199, 

549–560. doi:10.1093/gji/ggu276 

Fattahi, H., Amelung, F., 2013. DEM error correction in InSAR time series. IEEE Trans. Geosci. 

Remote Sens. 51, 4249–4259. doi:10.1109/TGRS.2012.2227761 

Fattahi, H., Amelung, F., Chaussard, E., Wdowinski, S., 2015. Coseismic and postseismic 

deformation due to the 2007 M5.5 Ghazaband fault earthquake, Balochistan, Pakistan. 

Geophys. Res. Lett. 42, 3305–3312. doi:10.1002/2015GL063686 

Feng, W., Li, Z., Elliott, J.R., Fukushima, Y., Hoey, T., Singleton, A., Cook, R., Xu, Z., 2013. 

The 2011MW6.8 Burma earthquake: Fault constraints provided by multiple SAR 

techniques. Geophys. J. Int. 195, 650–660. doi:10.1093/gji/ggt254 

Feng, W., Samsonov, S., Li, P., Omari, K., 2016. Coseismic and early-postseismic 

displacements of the 2015 MW8.3 Illapel (Chile) earthquaek imaged by Sentinel-1a and 

RADARSAT-2, in: International Geoscience and Remote Sensing Symposium (IGARSS). 

IEEE, pp. 5990–5993. doi:10.1109/IGARSS.2016.7730565 

Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., Rucci, A., 2011. A new algorithm for 

processing interferometric data-stacks: SqueeSAR, in: IEEE Transactions on Geoscience 

and Remote Sensing. pp. 3460–3470. doi:10.1109/TGRS.2011.2124465 



References 

168 

 

Ferretti, A., Prati, C., Rocca, F., 2001. Permanent scatterers in SAR interferometry. IEEE Trans. 

Geosci. Remote Sens. 39, 8–20. doi:10.1109/36.898661 

Fialko, Y., 2006. Interseismic strain accumulation and the earthquake potential on the southern 

San Andreas fault system. Nature 441, 968–971. doi:10.1038/nature04797 

Fielding, E.J., Sangha, S.S., Bekaert, D.P.S., Samsonov, S. V., Chang, J.C., 2017. Surface 

deformation of north‐central Oklahoma related to the 2016 Mw 5.8 Pawnee Earthquake 

from SAR interferometry time series. Seismol. Res. Lett. 88, 971–982. 

doi:10.1785/0220170010 

Foster, J., Brooks, B., Cherubini, T., Shacat, C., Businger, S., Werner, C.L., 2006. Mitigating 

atmospheric noise for InSAR using a high resolution weather model. Geophys. Res. Lett. 

33, L16304. doi:10.1029/2006GL026781 

Foster, J., Kealy, J., Cherubini, T., Businger, S., Lu, Z., Murphy, M., 2013. The utility of 

atmospheric analyses for the mitigation of artifacts in InSAR. J. Geophys. Res. Solid Earth 

118, 748–758. doi:10.1002/jgrb.50093 

Fruneau, B., Sarti, F., 2000. Detection of ground subsidence in the city of Paris using radar 

interferometry: Isolation of deformation from atmospheric artifacts using correlation. 

Geophys. Res. Lett. 27, 3981–3984. doi:10.1029/2000GL008489 

Fukahata, Y., Wright, T.J., 2008. A non-linear geodetic data inversion using ABIC for slip 

distribution on a fault with an unknown dip angle. Geophys. J. Int. 173, 353–364. 

doi:10.1111/j.1365-246X.2007.03713.x 

Gao, B.-C., Kaufman, Y.J., 2003. Water vapor retrievals using Moderate Resolution Imaging 

Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res. Atmos. 108, 4389. 

doi:10.1029/2002JD003023 

Gendt, G., Dick, G., Reigber, C., Tomassini, M., Liu, Y., Ramatschi, M., 2004. Near real time 

GPS water vapor monitoring for numerical weather prediction in Germany. J. Meteorol. 

Soc. Japan 82, 361–370. doi:10.2151/jmsj.2004.361 

Genrich, J.F., Bock, Y., 2006. Instantaneous geodetic positioning with 10-50 Hz GPS 

measurements: Noise characteristics and implications for monitoring networks. J. 

Geophys. Res. Solid Earth 111, B03403. doi:10.1029/2005JB003617 

Gili, J.A., Corominas, J., Rius, J., 2000. Using Global Positioning System techniques in 



References 

169 

 

landslide monitoring. Eng. Geol. 55, 167–192. 

Glowacki, T.J., Penna, N.T., Bourke, W.P., 2006. Validation of GPS-based estimates of 

integrated water vapour for the Australian region and identification of diurnal variability. 

Aust. Meteorol. Mag. 55, 131–148. 

Goldstein, R., 1995. Atmospheric limitations to repeat‐track radar interferometry. Geophys. Res. 

Lett. 22, 2517–2520. doi:10.1029/95GL02475 

Goldstein, R.M., Zebker, H.A., Werner, C.L., 1988. Satellite radar interferometry: Two‐

dimensional phase unwrapping. Radio Sci. 23, 713–720. doi:10.1029/RS023i004p00713 

Gomba, G., Parizzi, A., De Zan, F., Eineder, M., Bamler, R., 2016. Toward operational 

compensation of ionospheric effects in SAR interferograms: The split-spectrum method. 

IEEE Trans. Geosci. Remote Sens. 54, 1446–1461. doi:10.1109/TGRS.2015.2481079 

Gomba, G., Rodriguez Gonzalez, F., De Zan, F., 2017. Ionospheric phase screen compensation 

for the Sentinel-1 TOPS and ALOS-2 ScanSAR modes. IEEE Trans. Geosci. Remote Sens. 

55, 223–235. doi:10.1109/TGRS.2016.2604461 

González, P.J., Fernández, J., 2011. Error estimation in multitemporal InSAR deformation time 

series, with application to Lanzarote, Canary Islands. J. Geophys. Res. Solid Earth 116, 

B10404. doi:10.1029/2011JB008412 

Gourmelen, N., Amelung, F., 2005. Geophysics: Postseismic mantle relaxation in the Central 

Nevada Seismic Belt. Science 310, 1473–1476. doi:10.1126/science.1119798 

Gray, A.L., Mattar, K.E., Sofko, G., 2000. Influence of ionospheric electron density fluctuations 

on satellite radar interferometry. Geophys. Res. Lett. 27, 1451–1454. 

doi:10.1029/2000GL000016 

Gualandi, A., Avouac, J.P., Galetzka, J., Genrich, J.F., Blewitt, G., Adhikari, L.B., Koirala, B.P., 

Gupta, R., Upreti, B.N., Pratt-Sitaula, B., Liu-Zeng, J., 2017. Pre- and post-seismic 

deformation related to the 2015, Mw7.8 Gorkha earthquake, Nepal. Tectonophysics 714–

715, 90–106. doi:10.1016/j.tecto.2016.06.014 

Gundlich, B., Koch, K.R., 2002. Confidence regions for GPS baselines by Bayesian statistics. 

J. Geod. 76, 55–62. doi:10.1007/s001900100222 

Habermann, R.E., Wyss, M., 1984. Earthquake triggering during preparation for great 

earthquakes. Geophys. Res. Lett. 11, 291–294. doi:10.1029/GL011i004p00291 



References 

170 

 

Haddad, A.H., 1976. Applied optimal estimation. Proc. IEEE 64, 574–575. 

doi:10.1109/PROC.1976.10175 

Hamling, I.J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., 

Villamor, P., Wallace, L., Wright, T.J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, 

P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., Power, W., Barnes, P., 

Barrell, D.J.A., Van Dissen, R., Langridge, R., Little, T., Nicol, A., Pettinga, J., Rowland, 

J., Stirling, M., 2017. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura 

earthquake, New Zealand. Science 356, eaam7194. doi:10.1126/science.aam7194 

Hanssen, R., 2001. Radar interferometry: data interpretation and error analysis. Springer 

Science & Business Media, The Netherlands. 

Hanssen, R., 1998. Atmospheric heterogeneities in ERS tandem SAR interferometry, DEOS 

Report 98.1. Delft University Press, The Netherlands. 

Hinich, M.J., Wilson, G.R., 1990. Detection of non-Gaussian signals in non-Gaussian noise 

using the bispectrum. IEEE Trans. Acoust. 38, 1126–1131. doi:10.1109/29.57541 

Holden, C., Kaneko, Y., D’Anastasio, E., Benites, R., Fry, B., Hamling, I.J., 2017. The 2016 

Kaikōura Earthquake revealed by kinematic source inversion and seismic wavefield 

simulations: Slow rupture propagation on a geometrically complex crustal fault network. 

Geophys. Res. Lett. 44, 11,320-11,328. doi:10.1002/2017GL075301 

Holt, W.E., Haines, A.J., 1995. The kinematics of northern South Island, New Zealand, 

determined from geologic strain rates. J. Geophys. Res. Solid Earth 100, 17991–18010. 

doi:10.1029/95JB01059 

Hooper, A., Bekaert, D., Spaans, K., Arikan, M., 2012. Recent advances in SAR interferometry 

time series analysis for measuring crustal deformation. Tectonophysics 514–517, 1–13. 

doi:10.1016/j.tecto.2011.10.013 

Hooper, A., Segall, P., Zebker, H., 2007. Persistent scatterer interferometric synthetic aperture 

radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. 

Geophys. Res. Solid Earth 112, B07407. doi:10.1029/2006JB004763 

Hooper, A., Zebker, H., Segall, P., Kampes, B., 2004. A new method for measuring deformation 

on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. 

Lett. 31, 1–5. doi:10.1029/2004GL021737 



References 

171 

 

Hopfield, H.S., 1971. Tropospheric effect on electromagnetically measured range: prediction 

from surface weather data. Radio Sci. 6, 357–367. doi:10.1029/RS006i003p00357 

Houlie, N., Funning, G.J., Burgmann, R., 2016. Use of a GPS-Derived troposphere model to 

improve InSAR deformation estimates in the San Gabriel Valley, California. IEEE Trans. 

Geosci. Remote Sens. 54, 5365–5374. doi:10.1109/TGRS.2016.2561971 

Hu, X., Wang, T., Liao, M., 2014. Measuring coseismic displacements with point-like targets 

offset tracking. IEEE Geosci. Remote Sens. Lett. 11, 283–287. 

doi:10.1109/LGRS.2013.2256104 

Hussain, E., Wright, T.J., Walters, R.J., Bekaert, D., Hooper, A., Houseman, G.A., 2016. 

Geodetic observations of postseismic creep in the decade after the 1999 Izmit earthquake, 

Turkey: Implications for a shallow slip deficit. J. Geophys. Res. Solid Earth 121, 2980–

3001. doi:10.1002/2015JB012737 

Janssen, V., Ge, L., Rizos, C., 2004. Tropospheric corrections to SAR interferometry from GPS 

observations. GPS Solut. 8, 140–151. doi:10.1007/s10291-004-0099-1 

Jarlemark, P.O.J., Emardson, T.R., 1998. Strategies for spatial and temporal extrapolation and 

interpolation of wet delay. J. Geod. 72, 350–355. doi:10.1007/s001900050174 

Jarque, C.M., Bera, A.K., 1980. Efficient tests for normality, homoscedasticity and serial 

independence of regression residuals. Econ. Lett. 6, 255–259. doi:10.1016/0165-

1765(80)90024-5 

Jiang, M., Ding, X., Li, Z., Tian, X., Wang, C., Zhu, W., 2014. InSAR coherence estimation for 

small data sets and its impact on temporal decorrelation extraction. IEEE Trans. Geosci. 

Remote Sens. 52, 6584–6596. doi:10.1109/TGRS.2014.2298408 

Jiang, Z., Huang, D., Yuan, L., Hassan, A., Zhang, L., Yang, Z., 2018. Coseismic and 

postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New 

Zealand: fault movement investigation and seismic hazard analysis. Earth, Planets Sp. 70, 

62. doi:10.1186/s40623-018-0827-3 

Jolivet, R., Agram, P.S., Lin, N.Y., Simons, M., Doin, M.P., Peltzer, G., Li, Z., 2014. Improving 

InSAR geodesy using Global Atmospheric Models. J. Geophys. Res. Solid Earth 119, 

2324–2341. doi:10.1002/2013JB010588 

Jolivet, R., Grandin, R., Lasserre, C., Doin, M.P., Peltzer, G., 2011. Systematic InSAR 



References 

172 

 

tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. 

Res. Lett. 38. doi:10.1029/2011GL048757 

Jolivet, R., Simons, M., Agram, P.S., Duputel, Z., Shen, Z.K., 2015. Aseismic slip and 

seismogenic coupling along the central San Andreas Fault. Geophys. Res. Lett. 42, 297–

306. doi:10.1002/2014GL062222 

Jung, J., Kim, D.J., Park, S.E., 2014. Correction of atmospheric phase screen in time series 

InSAR using WRF model for monitoring volcanic activities. IEEE Trans. Geosci. Remote 

Sens. 52, 2678–2689. doi:10.1109/TGRS.2013.2264532 

Kim, J.S., Papathanassiou, K.P., Scheiber, R., Quegan, S., 2015. Correcting distortion of 

polarimetric SAR data induced by ionospheric scintillation. IEEE Trans. Geosci. Remote 

Sens. 53, 6319–6335. doi:10.1109/TGRS.2015.2431856 

Kouba, J., 2009. Testing of global pressure/temperature (GPT) model and global mapping 

function (GMF) in GPS analyses. J. Geod. 83, 199–208. doi:10.1007/s00190-008-0229-6 

Koulali, A., Ouazar, D., Bock, O., Fadil, A., 2012. Study of seasonal-scale atmospheric water 

cycle with ground-based GPS receivers, radiosondes and NWP models over Morocco. 

Atmos. Res. 104–105, 273–291. doi:10.1016/J.ATMOSRES.2011.11.002 

Lancaster, M., 1989. Summary for Policymakers, in: Climate Change 2013 - The Physical 

Science Basis. pp. 1–30. doi:10.1017/CBO9781107415324.004 

Lau, N., Tymofyeyeva, E., Fialko, Y., 2018. Variations in the long-term uplift rate due to the 

Altiplano–Puna magma body observed with Sentinel-1 interferometry. Earth Planet. Sci. 

Lett. 491, 43–47. doi:10.1016/j.epsl.2018.03.026 

Lauknes, T.R., Zebker, H.A., Larsen, Y., 2011. InSAR deformation time series using an L1-

norm small-baseline approach. IEEE Trans. Geosci. Remote Sens. 49, 536–546. 

doi:10.1109/TGRS.2010.2051951 

Leandro, R.F., Santos, M.C., Langley, R.B., 2006. UNB neutral atmosphere models: 

Development and performance. Proc. 2006 Natl. Tech. Meet. Inst. Navig. 564–573. 

Lee, H.Y., Chung, S.L., Wang, J.R., Wen, D.J., Lo, C.H., Yang, T.F., Zhang, Y., Xie, Y., Lee, 

T.Y., Wu, G., Ji, J., 2003. Miocene Jiali faulting and its implications for Tibetan tectonic 

evolution. Earth Planet. Sci. Lett. 205, 185–194. doi:10.1016/S0012-821X(02)01040-3 

Lee, W.J., Lu, Z., Jung, H.S., Ji, L., 2017. Measurement of small co-seismic deformation field 



References 

173 

 

from multi-temporal SAR interferometry: application to the 19 September 2004 Huntoon 

Valley earthquake. Geomatics, Nat. Hazards Risk 8, 1241–1257. 

doi:10.1080/19475705.2017.1310764 

Li, S., Freymueller, J., McCaffrey, R., 2016. Slow slip events and time-dependent variations in 

locking beneath Lower Cook Inlet of the Alaska-Aleutian subduction zone. J. Geophys. 

Res. Solid Earth 121, 1060–1079. doi:10.1002/2015JB012491 

Li, X., Dick, G., Ge, M., Heise, S., Wickert, J., Bender, M., 2014. Real-time GPS sensing of 

atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay 

corrections. Geophys. Res. Lett. 41, 3615–3621. doi:10.1002/2013GL058721 

Li, X., Zus, F., Lu, C., Dick, G., Ning, T., Ge, M., Wickert, J., Schuh, H., 2015. Retrieving of 

atmospheric parameters from multi-GNSS in real time: Validation with water vapor 

radiometer and numerical weather model. J. Geophys. Res. 120, 7189–7204. 

doi:10.1002/2015JD023454 

Li, Z., Fielding, E.J., Cross, P., 2009a. Integration of InSAR time-series analysis and water-

vapor correction for emapping postseismic motion after the 2003 Bam (Iran) earthquake. 

IEEE Trans. Geosci. Remote Sens. 47, 3220–3230. doi:10.1109/TGRS.2009.2019125 

Li, Z., Fielding, E.J., Cross, P., Muller, J.P., 2006a. Interferometric synthetic aperture radar 

atmospheric correction: GPS topography-dependent turbulence model. J. Geophys. Res. 

Solid Earth 111. doi:10.1029/2005JB003711 

Li, Z., Fielding, E.J., Cross, P., Preusker, R., 2009b. Advanced InSAR atmospheric correction: 

MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens. 30, 

3343–3363. doi:10.1080/01431160802562172 

Li, Z., Muller, J.P., Cross, P., 2003. Comparison of precipitable water vapor derived from 

radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. J. 

Geophys. Res. Atmos. 108, 4651. doi:10.1029/2003JD003372 

Li, Z., Muller, J.P., Cross, P., Albert, P., Fischer, J., Bennartz, R., 2006b. Assessment of the 

potential of MERIS near-infrared water vapour products to correct ASAR interferometric 

measurements. Int. J. Remote Sens. 27, 349–365. doi:10.1080/01431160500307342 

Li, Z., Muller, J.P., Cross, P., Fielding, E.J., 2005. Interferometric synthetic aperture radar 

(InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer 



References 

174 

 

(MODIS), and InSAR integration. J. Geophys. Res. Solid Earth 110, 1–10. 

doi:10.1029/2004JB003446 

Li, Z.W., Ding, X.L., Huang, C., Zou, Z.R., Chen, Y.L., 2007. Atmospheric effects on repeat-

pass InSAR measurements over Shanghai region. J. Atmos. Solar-Terrestrial Phys. 69, 

1344–1356. doi:10.1016/j.jastp.2007.04.007 

Li, Z.W., Ding, X.L., Liu, G.X., 2004. Modeling atmospheric effects on InSAR with 

meteorological and continuous GPS observations: Algorithms and some test results. J. 

Atmos. Solar-Terrestrial Phys. 66, 907–917. doi:10.1016/j.jastp.2004.02.006 

Li, Z.W., Xu, W.B., Feng, G.C., Hu, J., Wang, C.C., Ding, X.L., Zhu, J.J., 2012. Correcting 

atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent 

interpolation model. Geophys. J. Int. 189, 898–910. doi:10.1111/j.1365-

246X.2012.05432.x 

Liang, S., Gan, W., Shen, C., Xiao, G., Liu, J., Chen, W., Ding, X., Zhou, D., 2013. Three-

dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived 

from GPS measurements. J. Geophys. Res. Solid Earth 118, 5722–5732. 

doi:10.1002/2013JB010503 

Libert, L., Derauw, D., D’Oreye, N., Barbier, C., Orban, A., 2017. Split-band interferometry-

assisted phase unwrapping for the phase ambiguities correction. Remote Sens. 9, 879. 

doi:10.3390/rs9090879 

Liou, Y., Teng, Y., Van Hove, T., Liljegren, J.C., 2001. Comparison of precipitable water 

observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. 

Meteorol. 40, 5–15. doi:10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2 

Liu, G.X., Ding, X.L., Li, Z.L., Li, Z.W., Chen, Y.Q., Yu, S.B., 2004. Pre- and co-seismic 

ground deformations of the 1999 Chi-Chi, Taiwan earthquake, measured with SAR 

interferometry. Comput. Geosci. 30, 333–343. doi:10.1016/j.cageo.2003.08.011 

Liu, J., Ge, M., 2003. PANDA software and its preliminary result of positioning and orbit 

determination. Wuhan Univ. J. Nat. Sci. 8, 603–609. doi:10.1007/BF02899825 

Liu, P., Li, Z., Hoey, T., Kincal, C., Zhang, J., Zeng, Q., Muller, J.P., 2012. Using advanced 

inSAR time series techniques to monitor landslide movements in Badong of the Three 

Gorges region, China. Int. J. Appl. Earth Obs. Geoinf. 21, 253–264. 



References 

175 

 

doi:10.1016/j.jag.2011.10.010 

Löfgren, J.S., Björndahl, F., Moore, A.W., Webb, F.H., Fielding, E.J., Fishbein, E.F., 2010. 

Tropospheric correction for InSAR using interpolated ECMWF data and GPS zenith total 

delay from the Southern California integrated GPS network, in: International Geoscience 

and Remote Sensing Symposium (IGARSS). IEEE, pp. 4503–4506. 

doi:10.1109/IGARSS.2010.5649888 

Luzi, G., Pieraccini, M., Mecatti, D., Noferini, L., Guidi, G., Moia, F., Atzeni, C., 2004. Ground-

based radar interferometry for landslides monitoring: Atmospheric and instrumental 

decorrelation sources on experimental data. IEEE Trans. Geosci. Remote Sens. 42, 2454–

2466. doi:10.1109/TGRS.2004.836792 

Lyard, F., Lefevre, F., Letellier, T., Francis, O., 2006. Modelling the global ocean tides: Modern 

insights from FES2004. Ocean Dyn. 56, 394–415. doi:10.1007/s10236-006-0086-x 

Mahmood, R., Pielke, R.A., Hubbard, K.G., Niyogi, D., Dirmeyer, P.A., Mcalpine, C., Carleton, 

A.M., Hale, R., Gameda, S., Beltrán-Przekurat, A., Baker, B., Mcnider, R., Legates, D.R., 

Shepherd, M., Du, J., Blanken, P.D., Frauenfeld, O.W., Nair, U.S., Fall, S., 2014. Land 

cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953. 

doi:10.1002/joc.3736 

Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M.E., García-Santos, G., Fernandes, R., Berger, 

M., 2012. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific 

observations of ocean, cryosphere, and land. Remote Sens. Environ. 120, 91–101. 

doi:10.1016/j.rse.2011.09.026 

Massey, C., Townsend, D., Rathje, E., Allstadt, K.E., Lukovic, B., Kaneko, Y., Bradley, B., 

Wartman, J., Jibson, R.W., Petley, D.N., Horspool, N., Hamling, I., Carey, J., Cox, S., 

Davidson, J., Dellow, S., Godt, J.W., Holden, C., Jones, K., Kaiser, A., Little, M., Lyndsell, 

B., McColl, S., Morgenstern, R., Rengers, F.K., Rhoades, D., Rosser, B., Strong, D., 

Singeisen, C., Villeneuve, M., 2018. Landslides triggered by the 14 November 2016 Mw 

7.8 Kaikoura Earthquake, New Zealand. Bull. Seismol. Soc. Am. 

doi:10.1785/0120170305 

Massonnet, D., Briole, P., Arnaud, A., 1995. Deflation of Mount Etna monitored by spaceborne 

radar interferometry. Nature 375, 567–570. doi:10.1038/375567a0 



References 

176 

 

Massonnet, D., Feigl, K., Rossi, M., Adragna, F., 1994. Radar interferometric mapping of 

deformation in the year after the Landers earthquake. Nature 369, 227–230. 

doi:10.1038/369227a0 

Massonnet, D., Feigl, K.L., 1998. Radar interferometry and its application to changes in the 

earth’s surface. Rev. Geophys. 36, 441–500. doi:10.1029/97RG03139 

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T., 1993. 

The displacement field of the Landers earthquake mapped by radar interferometry. Nature 

364, 138–142. doi:10.1038/364138a0 

McCarthy, D.D., 1996. IERS conventions (1996). IERS Tech. Note 21, 101. 

doi:10.1007/s00190-011-0444-4 

Mears, C.A., Wang, J., Smith, D., Wentz, F.J., 2015. Intercomparison of total precipitable water 

measurements made by satellite-borne microwave radiometers and ground-based GPS 

instruments. J. Geophys. Res. Atmos. 120, 2492–2504. doi:10.1002/2014JD022694 

Mengistu Tsidu, G., Blumenstock, T., Hase, F., 2015. Observations of precipitable water vapour 

over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and 

ERA-Interim reanalysis. Atmos. Meas. Tech. 8, 3277–3295. doi:10.5194/amt-8-3277-

2015 

Michel, R., Avouac, J.P., Taboury, J., 1999. Measuring ground displacements from SAR 

amplitude images: Application to the Landers earthquake. Geophys. Res. Lett. 26, 875–

878. doi:10.1029/1999GL900138 

Molnar, P., Chen, W.P., 1983. Focal depths and fault plane solutions of earthquakes under the 

Tibetan plateau. J. Geophys. Res. 88, 1180–1196. doi:10.1029/JB088iB02p01180 

Mora, O., Lanari, R., Mallorqui, J.J., Berardino, P., Sansosti, E., 2002. A new algorithm for 

monitoring localized deformation phenomena based on small baseline differential SAR 

interferograms, in: IEEE International Geoscience and Remote Sensing Symposium. pp. 

1237–1239. doi:10.1109/IGARSS.2002.1025900 

Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. Comput. J. 7, 308–

313. doi:10.1093/comjnl/7.4.308 

Nico, G., Tomé, R., Catalao, J., Miranda, P.M.A., 2011. On the use of the WRF model to 

mitigate tropospheric phase delay effects in SAR interferograms. IEEE Trans. Geosci. 



References 

177 

 

Remote Sens. 49, 4970–4976. doi:10.1109/TGRS.2011.2157511 

Ning, T., Wang, J., Elgered, G., Dick, G., Wickert, J., Bradke, M., Sommer, M., Querel, R., 

Smale, D., 2016. The uncertainty of the atmospheric integrated water vapour estimated 

from GNSS observations. Atmos. Meas. Tech. 9, 79–92. doi:10.5194/amt-9-79-2016 

Norris, R.J., Cooper, A.F., 2001. Late Quaternary slip rates and slip partitioning on the Alpine 

Fault, New Zealand. J. Struct. Geol. 23, 507–520. doi:10.1016/S0191-8141(00)00122-X 

Norris, R.J., Koons, P.O., Cooper, A.F., 1990. The obliquely-convergent plate boundary in the 

South Island of New Zealand: implications for ancient collision zones. J. Struct. Geol. 12, 

715–725. doi:10.1016/0191-8141(90)90084-C 

Notebaert, B., Verstraeten, G., Govers, G., Poesen, J., 2009. Qualitative and quantitative 

applications of LiDAR imagery in fluvial geomorphology. Earth Surf. Process. Landforms 

34, 217–231. doi:10.1002/esp.1705 

Nur, A., Mavko, G., 1974. Postseismic viscoelastic rebound. Science 183, 204–206. 

doi:10.1126/science.183.4121.204 

Ohtani, R., Naito, I., 2000. Comparisons of GPS-derived precipitable water vapors with 

radiosonde observations in Japan. J. Geophys. Res. Atmos. doi:10.1029/2000JD900362 

Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bull. 

Seismol. Soc. Am. 82, 1018–1040. 

Okada, Y., 1986. Surface deformation due to shear and tensile faults in a half-space. Int. J. Rock 

Mech. Min. Sci. Geomech. Abstr. 23, 128. doi:10.1016/0148-9062(86)90674-1 

Onn, F., Zebker, H.A., 2006. Correction for interferometric synthetic aperture radar atmospheric 

phase artifacts using time series of zenith wet delay observations from a GPS network. J. 

Geophys. Res. Solid Earth 111, B09102. doi:10.1029/2005JB004012 

Paoli, L.D.E., Flowers, G.E., 2007. Dynamics of a small surge-type glacier investigated using 

1-D geophysical inversion. J. Glaciol. 00, 1–26. doi:10.3189/002214309790794850 

Parker, A.L., Biggs, J., Walters, R.J., Ebmeier, S.K., Wright, T.J., Teanby, N.A., Lu, Z., 2015. 

Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using 

large-scale atmospheric models: Application to the Cascade volcanoes, United States. 

Remote Sens. Environ. 170, 102–114. doi:10.1016/j.rse.2015.09.003 

Peltzer, G., Rosen, P., Rogez, F., Hudnut, K., 1996. Postseismic rebound in fault step-overs 



References 

178 

 

caused by pore fluid flow. Science 273, 1202–1204. doi:10.1126/science.273.5279.1202 

Pérez-Ruiz, M., Carballido, J., Agüera, J., Gil, J.A., 2011. Assessing GNSS correction signals 

for assisted guidance systems in agricultural vehicles. Precis. Agric. 12, 639–652. 

doi:10.1007/s11119-010-9211-4 

Persson, A., 2015. User guide to ECMWF forecast products [WWW Document]. Ecmwf. URL 

http://cedadocs.ceda.ac.uk/1218/1/ECMWF_user_guide_2001.pdf (accessed 7.24.18). 

Pettinga, J.R., Yetton, M.D., Van Dissen, R.J., Downes, G., 2001. Earthquake source 

identification and characterisation for the Canterbury Region, South Island, New Zealand. 

Bull. New Zeal. Soc. Earthq. Eng. 34, 282–317. 

Pi, X., Freeman, A., Chapman, B., Rosen, P., Li, Z., 2011. Imaging ionospheric inhomogeneities 

using spaceborne synthetic aperture radar. J. Geophys. Res. Sp. Phys. 116, A04303. 

doi:10.1029/2010JA016267 

Polcari, M., Montuori, A., Bignami, C., Moro, M., Stramondo, S., Tolomei, C., 2017. Using 

multi-band InSAR data for detecting local deformation phenomena induced by the 2016–

2017 Central Italy seismic sequence. Remote Sens. Environ. 201, 234–242. 

doi:10.1016/j.rse.2017.09.009 

Raucoules, D., De Michele, M., 2010. Assessing ionospheric influence on L-Band SAR data: 

Implications on coseismic displacement measurements of the 2008 Sichuan Earthquake. 

IEEE Geosci. Remote Sens. Lett. 7, 286–290. doi:10.1109/LGRS.2009.2033317 

Reuveni, Y., Bock, Y., Tong, X., Moore, A.W., 2015. Calibrating interferometric synthetic 

aperture radar (InSAR) images with regional GPS network atmosphere models. Geophys. 

J. Int. 202, 2106–2119. doi:10.1093/gji/ggv253 

Reyners, M., 1998. Plate coupling and the hazard of large subduction thrust earthquakes at the 

Hikurangi subduction zone, New Zealand. New Zeal. J. Geol. Geophys. 41, 343–354. 

doi:10.1080/00288306.1998.9514815 

Rocken, C., Anthes, R., Exner, M., Hunt, D., Sokolovskiy, S., Ware, R., Gorbunov, M., 

Schreiner, W., Feng, D., Herman, B., Kuo, Y.-H., Zou, X., 1997. Analysis and validation 

of GPS/MET data in the neutral atmosphere. J. Geophys. Res. Atmos. 102, 29849–29866. 

doi:10.1029/97JD02400 

Rodriguez, E., Martin, J.M., 1992. Theory and design of interferometric synthetic aperture 



References 

179 

 

radars. IEE Proc. F Radar Signal Process. 139, 147. doi:10.1049/ip-f-2.1992.0018 

Rogers, A.E.E., Ingalls, R.P., 1969. Venus: Mapping the surface reflectivity by radar 

interferometry. Science 165, 797–799. doi:10.1126/science.165.3895.797 

Rosen, P., Werner, C., Fielding, E., Hensley, S., Buckley, S., Vincent, P., 1998. Aseismic creep 

along the San Andreas Fault northwest of Parkfield, CA measured by radar interferometry. 

Geophys. Res. Lett. 25, 825–828. doi:10.1029/98GL50495 

Saastamoinen, J., 1972. Atmospheric correction for the troposphere and stratosphere in radio 

ranging satellites. American Geophysical Union (AGU), pp. 247–251. 

doi:10.1029/GM015p0247 

Samieie-esfahany, S., Hanssen, R.F., Thienen-visser, K. Van, Muntendam-bos, A., Samiei-

Esfahany, S., Hanssen, R.F., Thienen-visser, K. Van, Muntendam-bos, A., 2010. On the 

effect of horizontal deformation on InSAR subsidence estimates, in: Proceedings of Fringe 

2009 Workshop. 

Samsonov, S., d’Oreye, N., Smets, B., 2013. Ground deformation associated with post-mining 

activity at the French-German border revealed by novel InSAR time series method. Int. J. 

Appl. Earth Obs. Geoinf. 23, 142–154. doi:10.1016/j.jag.2012.12.008 

Satriano, C., Kiraly, E., Bernard, P., Vilotte, J.P., 2012. The 2012 Mw 8.6 Sumatra earthquake: 

Evidence of westward sequential seismic ruptures associated to the reactivation of a N-S 

ocean fabric. Geophys. Res. Lett. 39, L15302. doi:10.1029/2012GL052387 

Searle, M.P., Weinberg, R.F., Dunlap, W.J., 1998. Transpressional tectonics along the 

Karakoram fault zone, northern Ladakh: constraints on Tibetan extrusion. Geol. Soc. Spec. 

Publ. 135, 307–326. doi:10.1144/gsl.sp.1998.135.01.20 

Serpelloni, E., Anzidei, M., Baldi, P., Casula, G., Galvani, A., 2005. Crustal velocity and strain-

rate fields in Italy and surrounding regions: New results from the analysis of permanent 

and non-permanent GPS networks. Geophys. J. Int. 161, 861–880. doi:10.1111/j.1365-

246X.2005.02618.x 

Seymour, M.S., Cumming, I.G., 1994. Maximum likelihood estimation for SAR interferometry. 

Proc. IGARSS’ 94 - 1994 IEEE Int. Geosci. Remote Sens. Symp. 4, 2272–2275. 

doi:10.1109/IGARSS.1994.399711 

Shirzaei, M., Bürgmann, R., 2012. Topography correlated atmospheric delay correction in radar 



References 

180 

 

interferometry using wavelet transforms. Geophys. Res. Lett. 39. 

doi:10.1029/2011GL049971 

Shirzaei, M., Bürgmann, R., Fielding, E.J., 2017. Applicability of Sentinel-1 Terrain 

Observation by Progressive Scans multitemporal interferometry for monitoring slow 

ground motions in the San Francisco Bay Area. Geophys. Res. Lett. 44, 2733–2742. 

doi:10.1002/2017GL072663 

Shoji, Y., Kunii, M., Saito, K., 2011. Mesoscale data assimilation of Myanmar Cyclone Nargis 

Part II: Assimilation of GPS-derived precipitable water vapor, in: Journal of the 

Meteorological Society of Japan. Meteorological Society of Japan, pp. 67–88. 

doi:10.2151/jmsj.2011-105 

Short, N., LeBlanc, A.M., Sladen, W., Oldenborger, G., Mathon-Dufour, V., Brisco, B., 2014. 

RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from 

Iqaluit Airport, Baffin Island, Canada. Remote Sens. Environ. 141, 40–51. 

doi:10.1016/j.rse.2013.10.016 

Simons, M., Fialko, Y., Rivera, L., 2002. Coseismic deformation from the 1999 Mw 7.1 Hector 

Mine, California, earthquake as inferred from InSAR and GPS observations. Bull. Seismol. 

Soc. Am. 92, 1390–1402. doi:10.1785/0120000933 

Simons, M., Rosen, P.A., 2007. Interferometric synthetic aperture radar geodesy, in: Treatise on 

Geophysics. Elsevier, pp. 391–446. doi:10.1016/B978-044452748-6.00059-6 

Sneed, M., Brandt, J.T., Solt, M., 2014. Land subsidence, groundwater levels, and geology in 

the Coachella Valley, California , 1993 – 2010. U.S. Geol. Surv. Sci. Investig. Rep. viii, 

62. doi:10.3133/sir20145075 

Sobrino, J.A., El Kharraz, J., Li, Z.L., 2003. Surface temperature and water vapour retrieval 

from MODIS data. Int. J. Remote Sens. 24, 5161–5182. 

doi:10.1080/0143116031000102502 

Spits, J., Warnant, R., 2011. Total electron content monitoring using triple frequency GNSS: 

Results with Giove-A data. Adv. Sp. Res. 47, 296–303. doi:10.1016/j.asr.2010.08.027 

Stafford, J. V., 2000. Implementing precision agriculture in the 21st century. J. Agric. Eng. Res. 

76, 267–275. doi:10.1006/jaer.2000.0577 

Tapponnier, P., Peltzer, G., Le Dain, A.Y., Armijo, R., Cobbold, P., 1982. Propagating extrusion 



References 

181 

 

tectonics in Asia: new insights from simple experiments with plasticine. Geology 10, 611–

616. doi:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 

Tarayre, H., Massonnet, D., 1996. Atmospheric Propagation heterogeneities revealed by ERS-

1 interferometry. Geophys. Res. Lett. 23, 989–992. doi:10.1029/96GL00622 

Teunissen, P.J.G., Odolinski, R., Odijk, D., 2014. Instantaneous BeiDou+GPS RTK positioning 

with high cut-off elevation angles. J. Geod. 88, 335–350. doi:10.1007/s00190-013-0686-

4 

Thomas, T., Phillips, M.R., Williams, A.T., 2010. Mesoscale evolution of a headland bay: Beach 

rotation processes. Geomorphology 123, 129–141. doi:10.1016/j.geomorph.2010.06.018 

Tong, X., Sandwell, D.T., Fialko, Y., 2010. Coseismic slip model of the 2008 Wenchuan 

earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, 

and field data. J. Geophys. Res. 115, B04314. doi:10.1029/2009JB006625 

Treuhaft, R.N., Lanyi, G.E., 1987. The effect of the dynamic wet troposphere on radio 

interferometric measurements. Radio Sci. 22, 251–265. doi:10.1029/RS022i002p00251 

Wadge, G., Webley, P.W., James, I.N., Bingley, R., Dodson, A., Waugh, S., Veneboer, T., Puglisi, 

G., Mattia, M., Baker, D., Edwards, S.C., Edwards, S.J., Clarke, P.J., 2002. Atmospheric 

models, GPS and InSAR measurements of the tropospheric water vapour field over Mount 

Etna. Geophys. Res. Lett. 29, 11-1-11–4. doi:10.1029/2002GL015159 

Wallace, L.M., Barnes, P., Beavan, J., Van Dissen, R., Litchfield, N., Mountjoy, J., Langridge, 

R., Lamarche, G., Pondard, N., 2012. The kinematics of a transition from subduction to 

strike-slip: An example from the central New Zealand plate boundary. J. Geophys. Res. 

Solid Earth 117, B02405. doi:10.1029/2011JB008640 

Wallace, L.M., Beavan, J., McCaffrey, R., Berryman, K., Denys, P., 2007. Balancing the plate 

motion budget in the South Island, New Zealand using GPS, geological and seismological 

datas. Geophys. J. Int. 168, 332–352. doi:10.1111/j.1365-246X.2006.03183.x 

Wallace, L.M., Beavan, J., McCaffrey, R., Darby, D., 2004. Subduction zone coupling and 

tectonic block rotations in the North Island, New Zealand. J. Geophys. Res. Solid Earth 

109, 1–21. doi:10.1029/2004JB003241 

Wallace, L.M., Hreinsdóttir, S., Ellis, S., Hamling, I., D’Anastasio, E., Denys, P., 2018. 

Triggered slow slip and afterslip on the Southern Hikurangi Subduction Zone following 



References 

182 

 

the Kaikōura Earthquake. Geophys. Res. Lett. 45, 4710–4718. 

doi:10.1002/2018GL077385 

Wallace, L.M., Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., D’Anastasio, 

E., Fry, B., 2017. Large-scale dynamic triggering of shallow slow slip enhanced by 

overlying sedimentary wedge. Nat. Geosci. 10, 765–770. doi:10.1038/ngeo3021 

Walters, R.J., Elliott, J.R., Li, Z., Parsons, B., 2013. Rapid strain accumulation on the Ashkabad 

fault (Turkmenistan) from atmosphere-corrected InSAR. J. Geophys. Res. Solid Earth 118, 

3674–3690. doi:10.1002/jgrb.50236 

Wang, J., Zhang, L., Dai, A., 2005. Global estimates of water-vapor-weighted mean temperature 

of the atmosphere for GPS applications. J. Geophys. Res. Atmos. 110, 1–17. 

doi:10.1029/2005JD006215 

Wang, Q., Zhang, P.Z., Freymueller, J.T., Bilham, R., Larson, K.M., Lai, X., You, X., Niu, Z., 

Wu, J., Li, Y., Liu, J., Yang, Z., Chen, Q., 2001. Present-day crustal deformation in China 

constrained by Global Positioning System measurements. Science 294, 574–577. 

doi:10.1126/science.1063647 

Webley, P.W., Bingley, R.M., Dodson, A.H., Wadge, G., Waugh, S.J., James, I.N., 2002. 

Atmospheric water vapour correction to InSAR surface motion measurements on 

mountains: Results from a dense GPS network on Mount Etna. Phys. Chem. Earth 27, 

363–370. doi:10.1016/S1474-7065(02)00013-X 

Wei, M., Kaneko, Y., Shi, P., Liu, Y., 2018. Numerical modeling of dynamically triggered 

shallow slow slip events in New Zealand by the 2016 Mw7.8 Kaikoura Earthquake. 

Geophys. Res. Lett. 45, 4764–4772. doi:10.1029/2018GL077879 

Weinberg, R.F., Searle, M.P., 1998. The Pangong Injection Complex, Indian Karakoram: a case 

of pervasive granite flowthrough hot viscous crust. J. Geol. Soc. London. 155, 883–891. 

doi:10.1144/gsjgs.155.5.0883 

Williams, C.A., Eberhart-Phillips, D., Bannister, S., Barker, D.H.N., Henrys, S., Reyners, M., 

Sutherland, R., 2013. Revised interface geometry for the Hikurangi Subduction Zone, New 

Zealand. Seismol. Res. Lett. 84, 1066–1073. doi:10.1785/0220130035 

Williams, H., Turner, S., Kelley, S., Harris, N., 2001. Age and composition of dikes in Southern 

Tibet: New constraints on the timing of east-west extension and its relationship to 



References 

183 

 

postcollisional volcanism. Geology 29, 339–342. doi:10.1130/0091-

7613(2001)029<0339:AACODI>2.0.CO;2 

Williams, S., Bock, Y., Fang, P., 1998. Integrated satellite interferometry: Tropospheric noise, 

GPS estimates and implications for interferometric synthetic aperture radar products. J. 

Geophys. Res. Solid Earth 103, 27051–27067. doi:10.1029/98JB02794 

Wood, J.C., Barry, D.T., 1992. Radon transformation of time-frequency distributions for 

analysis of multicomponent signals, in: ICASSP, IEEE International Conference on 

Acoustics, Speech and Signal Processing - Proceedings. pp. 257–260. 

doi:10.1109/ICASSP.1992.226437 

Wright, T., Fielding, E., Parsons, B., 2001a. Triggered slip: Observations of the 17 August 1999 

Izmit (Turkey) earthquake using radar interferometry. Geophys. Res. Lett. 28, 1079–1082. 

doi:10.1029/2000GL011776 

Wright, T., Parsons, B., Fielding, E., 2001b. Measurement of interseismic strain accumulation 

across the North Anatolian Fault by satellite radar interferometry. Geophys. Res. Lett. 28, 

2117–2120. doi:10.1029/2000GL012850 

Wright, T.J., Parsons, B., England, P.C., Fielding, E.J., 2004. InSAR observations of low slip 

rates on the major faults of western Tibet. Science 305, 236–239. 

doi:10.1126/science.1096388 

Xu, W., Feng, G., Meng, L., Zhang, A., Ampuero, J.P., Bürgmann, R., Fang, L., 2018. 

Transpressional rupture cascade of the 2016 Mw7.8 Kaikoura Earthquake, New Zealand. 

J. Geophys. Res. Solid Earth 123, 2396–2409. doi:10.1002/2017JB015168 

Xu, W.B., Li, Z.W., Ding, X.L., Zhu, J.J., 2011. Interpolating atmospheric water vapor delay by 

incorporating terrain elevation information. J. Geod. 85, 555–564. doi:10.1007/s00190-

011-0456-0 

Yan, X., Ducrocq, V., Jaubert, G., Brousseau, P., Poli, P., Champollion, C., Flamant, C., 

Boniface, K., 2009. The benefit of GPS zenith delay assimilation to high-resolution 

quantitative precipitation forecasts: A case-study from COPS IOP 9. Q. J. R. Meteorol. 

Soc. 135, 1788–1800. doi:10.1002/qj.508 

Yao, Y., Yu, C., Hu, Y., 2014. A new method to accelerate PPP convergence time by using a 

global zenith troposphere delay estimate model. J. Navig. 67, 899–910. 



References 

184 

 

doi:10.1017/S0373463314000265 

Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. 

Earth Planet. Sci. 28, 211–280. doi:10.1146/annurev.earth.28.1.211 

Yokota, Y., Ishikawa, T., Watanabe, S.I., Tashiro, T., Asada, A., 2016. Seafloor geodetic 

constraints on interplate coupling of the Nankai Trough megathrust zone. Nature 534, 374–

377. doi:10.1038/nature17632 

Zebker, H.A., Goldstein, R.M., 1986. Topographic mapping from interferometric synthetic 

aperture radar observations. J. Geophys. Res. 91, 4993. doi:10.1029/JB091iB05p04993 

Zebker, H.A., Rosen, P.A., Hensley, S., 1997. Atmospheric effects in interferometric synthetic 

aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth 

102, 7547–7563. doi:10.1029/96JB03804 

Zebker, H.A., Villasenor, J., 1992. Decorrelation in interferometric radar echoes. IEEE Trans. 

Geosci. Remote Sens. 30, 950–959. doi:10.1109/36.175330 

Zhang, B., Wang, C., Ding, X., Zhu, W., Wu, S., 2018. Correction of ionospheric artifacts in 

SAR data: Application to fault slip inversion of 2009 Southern Sumatra Earthquake. IEEE 

Geosci. Remote Sens. Lett. 1–5. doi:10.1109/LGRS.2018.2844686 

Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H., 1997. Precise point 

positioning for the efficient and robust analysis of GPS data from large networks. J. 

Geophys. Res. Solid Earth 102, 5005–5017. doi:10.1029/96JB03860 

 


