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Abstract 

Disaster risks induced by different kinds of hazard may emerge in any place where human 

activities or properties exist. Most human settlements are exposed to more than one hazard. 

The multi-hazard risk analysis that assesses the potential loss caused by multiple natural 

hazards can provide a valuable reference for regional land-use planning, disaster prevention 

and emergency management. Although an increasing number of risk assessment methods 

related to multi-hazard have been developed recently, three main challenges remain in the 

current practices: (1) the disparate characteristics of hazards increase the difficulty of their 

combination and comparison, (2) the dependence and interactions between different hazards 

are often neglected, and (3) the results of multi-hazard risk assessment are not quantitative to 

show the probability of disaster loss.  

This thesis aims to construct an integrated framework to quantify and forecast the risk of 

multiple water-related hazards including heavy rainfall, extreme river flow, and storm surge. 

The framework consists of the three typical components of disaster risk assessment containing 

hazard, vulnerability, and risk analysis and is applied in the Greater London and the Eden 

Catchment, UK. For hazard analysis, the joint probability and return period distributions are 

fitted for the three water-related hazards on the basis of dependence analysis and copula 

theory. A newly developed 2D hydrodynamic model is enhanced with auto Input-Output 

control and processing in a multi-GPU platform to drive numerous flood simulations. The 

frequency-inundation curves due to the combination of the three hazards are generated by 

connecting the joint return period functions and the results of flood simulations. The 

distribution of human life and properties in the research area are analysed and classified with 

different vulnerability curves that quantify the potential damage due to the severity of 

inundation. The component of risk analysis evaluates the probability of loss for human life or 

different types of properties according to the results from the hazard and vulnerability 

analysis.  

The risk assessment framework considers the interaction and dependence between the 

multiple hazards by using hydrodynamic modelling and joint probability analysis, 



 
 

respectively. It can produce fully quantitative results such as risk curves quantifying the 

probability of different damage states, and risk maps illustrating the expected loss in the 

research region.  With the efficient 2D hydrodynamic model and the autoprocessing package, 

the framework is further applied to give flood and risk forecasting to the Eden Catchment by 

integrating with a numerical weather prediction model. 

The framework shows a quantitative approach of multi-hazard risk assessment. It also 

provides an integrated procedure of flood risk analysis and forecast in consideration of the 

dependence and interactions between different water sources. The methodology and the 

findings are of interest to insurance companies, regional planners, economists, disaster-

prevention authorities, and residents under the threat of flooding. The main source of 

uncertainties of the framework and the limitations are identified. Future work and further 

applications in other regions are recommended. 
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Chapter 1. Introduction  

1.1 Background 

Natural disasters have always been a big threat to the sustainable development of human 

societies (El-Masri and Tipple, 2002), and can be caused by various types of physical hazards, 

including flood, storm, drought, earthquake, landslide and so on. Most areas in the world have 

experienced and are under the threat of more than one type of hazard (Shi and Kasperson, 

2015). Many catastrophes that lead to significant damage to properties and loss of human 

lives in history are attributed to the joint impact of multiple hazards (Munich Re, 2003). For 

example, the 1928 London Flood was caused by the concurrence of extreme river flow from 

the upstream River Thames and storm surge from the North Sea (Carlsson-Hyslop, 2010); and 

the 2009 Taiwan Debris flows are believed to have been directly triggered by the Typhoon 

Morakot and also influenced by the Chi-Chi earthquake that happened 10 years previously 

(Hsu et al., 2014; SHIEH et al., 2009).  

Disaster risk assessment evaluates the likelihood and magnitude of potential disaster losses 

and plays a critical role in disaster reduction and mitigation (United Nations, 1999). 

Compared with single-hazard risk assessment, multi-hazard risk analysis can acquire a more 

comprehensive perception of the regional risk level and help better understand the 

mechanisms of various causes and the impact of the losses. It would provide integrated 

information to decision-makers in disaster risk management, urban planning, and future 

investment.  

The awareness of the necessity to study multi-hazard risk has continued to grow since the 

concept of multi-hazard was proposed in the 1990s (Kappes et al., 2012). A number of large-

scale studies have been attempted to appraise the general pattern of multi-hazard disaster risk 

in China (Shi, 2011), Europe (ESPON, 2006; Lung et al., 2013), the USA (FEMA, 2011), and 

the whole earth (Shi and Kasperson, 2015) with consideration of all the main types of 

disasters appearing in those areas. The assessing unit is typically the secondary administrative 

district (country, state, province, etc.) of the research region, and the results are shown as 



 
2 

qualitative rank or semi-quantitative risk index that can be used for comparison between the 

assessing units. To produce a more elaborate assessment, some multi-hazard risk assessments 

are performed for small regions with higher analysis resolutions. Examples include a GIS-

based study in the city of Costa Rica using statistical approach to evaluate the risk of flood, 

earthquake and landslide (Westen et al., 2002), an assessment of coastal hazards in a beach 

located in Spain (Lozoya et al., 2011), and a high resolution raster-based (20𝑚𝑚 × 20𝑚𝑚) risk 

assessment of debris flow and rock fall in a settlement of Iceland (Bell and Glade, 2004). The 

small-scale evaluation of multi-hazard risk can focus on the most significant hazards to the 

local region and provide more quantitative results (Li et al., 2009). However, some common 

challenges or limitations exist in the current practice of multi-hazard risk assessment.  

Firstly, the potential dependence of the occurrence of hazards is usually ignored in multi-

hazard risk assessment but may significantly affect the prediction of multi-hazard joint 

frequency (Selva, 2013). The probabilistic relationship between hazards is usually simplified 

to be independent (Liu et al., 2016). Some joint probability studies have attempted to use 

statistical methods to estimate the dependence between two hazards (Horsburgh and Wilson, 

2007; Petroliagkis et al., 2016; Zheng et al., 2014); but have not been extended to disaster risk 

assessment.  

Another limitation is about the hazard interactions (Gill and Malamud, 2014) that are not 

properly investigated in most of the existing studies. The interactions refer to the impact of 

one hazard on the other hazard(s) and are very difficult to be simulated or quantified because 

of the complex process among the various physical forces (Kameshwar and Padgett, 2014). 

However, those interactions can significantly influence the degree of danger of the combined 

hazards. Currently, instead of physically-based models, the dominant approach to investigate 

the hazard interactions is either weight coefficients (Greiving et al., 2006) or statistical 

methods (Selva, 2013) that are empirical and may be problematic when facing unprecedented 

events or in new research areas and environments. 

Moreover, it is a big challenge to produce fully quantitative results in multi-hazard risk 

assessment because of its high complexity. The qualitative measures like risk ranks or semi-

quantitative measures like risk indexes are the typical illustrating method of multi-hazard risk 

(Kappes et al., 2012). However, those methods are only applicable to the comparison of risk 

level between the assessing units but cannot predict the possibility of disaster loss. The full 

quantitative results shown as probability-loss curves are very rare, especially for the 

assessment considering the dependence and interactions of multiple hazards but can provide 
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more detailed information of disaster risk and are valuable for both residents and decision-

makers. 

Therefore, to construct a quantitative multi-hazard risk assessment framework considering the 

dependence of occurrence and the physical interactions between the hazards is of great 

significance to both research and practice. 

1.2 Terminology of disaster risk 

It is always a challenge to find universal definitions for terminologies in an emerging and 

interdisciplinary subject. Concepts related to disaster risk have been proposed and defined by 

different researchers with various understandings based on their own academic background. 

To prevent confusion, it is necessary to summarise the glossary that will be used in this thesis.  

1.2.1 Disaster risk 

According to Oxford Dictionary, ‘risk’ can be defined as ‘the possibility of something bad 

happening at some time in the future or a situation that could be dangerous or have a bad 

result’. While in the context of academic research, risk is generally recognized as the 

combination or interaction of several factors including hazard, vulnerability, exposure, 

resilience, coping capacity, etc. Some works have been done to compare and review the 

glossary of these concepts (Thywissen, 2006). The version of international standard 

terminology proposed by the United Nations (UNISDR, 2009) will be employed in this thesis 

as shown in Table 1-1. 

Disaster can be caused by natural phenomenon, man-made accident, or the combination of 

the two. In this thesis, we only focus on the damage due to natural forces. So, the disaster 

means explicitly the natural disaster and the hazard refers to the natural hazard hereinafter 

unless otherwise specified. Hazard can be categorised as the indirect hazard and the direct 

hazard according to whether the hazard can directly trigger damage on the elements at risk. 

For example, rainfall is typically not a direct hazard to buildings. Instead, the inundation 

accumulated from rainfall is the direct hazard. 

The definition of Vulnerability can derive many relevant concepts, such as resilience (Cutter 

et al., 2008), coping capacity (O’Brien et al., 2006), adaptivity (Smit and Wandel, 2006) etc. 

The generalised analysis of vulnerability would regard all these factors as the parameters of 

vulnerability function and sometimes even treats the exposure as the susceptibility attribute of 
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vulnerability (Capobianco et al., 1999; Klein and Nicholls, 1999). Exposure is defined as 

people and human property present in hazard zones that are thereby subject to potential 

losses. In this thesis, exposure is analysed separately from vulnerability as the extent of 

elements exposed to natural hazards. 

In some research, risk may indicate the chance of harmful events happening, like a flood 

(Zheng et al., 2015), an earthquake (McCloskey et al., 2005), or a heat wave (Stott et al., 

2004), but not necessarily refer to the loss caused by the events. In this thesis, Risk is strictly 

pointed to the potential consequence of events and used to quantify the probability of loss in 

the natural disaster. Hazard, vulnerability, and exposure are the three sides in “The risk 

triangle” that is a schematic representation of disaster risk described by Crichton (1999). To 

quantitatively evaluate disaster risk, an equation of Risk = Hazard x Vulnerability x Exposure 

is generally referenced in many literatures (Kron, 2002), which is utilised as the basis of 

calculating risk in this thesis. 

Table 1-1 Terminology of disaster risk. 

Concept UNISDR Definition (UNISDR, 2009) Note 

Disaster 

A serious disruption of the functioning of a community 
or a society involving widespread human, material, 

economic or environmental losses and impacts, which 
exceeds the ability of the affected community or 

society to cope using its own resources. 

When a disaster is 
trigged by natural 
phenomenon, it is 

called a natural disaster 

Risk 

The potential disaster losses, in lives, health status, 
livelihoods, assets and services, which can occur to a 

particular community or a society over some specified 
future time period. 

“Risk” in this thesis 
specifically refers to 

disaster risk 

Hazard 

A dangerous phenomenon, substance, human activity 
or condition that may cause loss of life, injury or other 
health impacts, property damage, loss of livelihoods 

and services, social and economic disruption, or 
environmental damage. 

Refers to natural 
hazards in this thesis 

unless otherwise 
specified 

Vulnerability 
The characteristics and circumstances of a community, 

system or asset that make it susceptible to the 
damaging effects of a hazard. 

Reflects both internal 
attributes and external 

environment 

Exposure 
People, property, systems, or other elements present in 

hazard zones that are thereby subject to potential 
losses. 

The object of risk 
assessment 
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1.2.2 Multi-hazard risk 

Multi-hazard is the natural stretch of the hazard definition and can be understood 

straightaway as more-than-one-hazard from its literal meaning without any ambiguity. 

However, the context of the multi-hazard issue is various in the views of different scholars 

and research groups. It has been regarded as the direct spatial overlap (Dilley et al., 2005) or 

comparison of single-hazard layers (Grünthal et al., 2006). Some researchers emphasise the 

statistical dependence between hazards (Klerk et al., 2015) while some focus on the triggering 

effect of hazards also known as hazard chains (Shi et al., 2010; Xu et al., 2014). In this thesis, 

the multi-hazard refers to the temporal concurrence, the spatial overlay, and the physical 

interactions of multiple hazards happening in the same area. 

Multi-hazard risk is the potential disaster losses due to multiple hazards. It is also called 

“multi-risk” (Carpignano et al., 2009; Di Mauro et al., 2006; Fleming et al., 2014) or 

“integrated risk” (Greiving et al., 2006) in some papers. Multi-hazard risk analysis considers 

the impact of not only the multiple hazards but also the integrated vulnerability and the 

compound exposure in the multi-hazard situation. It is worth noting that the prediction of the 

probability of occurrence for multiple hazards without loss assessment (Wahl et al., 2015) is 

not complete enough to be regarded as multi-hazard risk analysis in this thesis. 

1.3 Aims and objectives 

This thesis aims to build a framework of multi-hazard risk assessment quantifying the 

potential flood loss at coastal areas due to the concurrence of heavy rainfall, extreme flow, 

and storm surge. The risk assessment framework is further combined with a numeric weather 

prediction model to give real-time risk forecasting for multi-hazard events.  To achieve the 

overall aim of the PhD project, the following objectives will be explored and completed: : 

• To analyse the dependence and joint probability of multiple hazards 

Quantify the dependence of multiple hazards using statistical methods and estimate their 

joint probability and joint return period distributions, using the joint probability distributions 

to generate stochastic multi-hazard events with given non-exceedance probabilities or return 

periods, eventually better understanding the likelihood of occurrence of hazards at the 

different magnitude and with different combinations. 

• To simulate multi-hazard flood events with a 2D hydrodynamic model 
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Explore the feasibility of applying fully hydrodynamic model in large-scale and high-

resolution flood simulation with multiple water sources, validating the model for all the three 

water inputs and calibrating the model with appropriate parameters, using the random multi-

hazard events of rainfall, river flow and total seawater level as inputs to drive the 

hydrodynamic model to simulate multi-hazard flooding.  

• To quantify multi-hazard disaster risks  

Estimate the frequency of flood inundation by combining the multi-hazard probability 

distributions with the simulated flood inundation maps from the hydrodynamic model, 

selecting the concerned elements of human properties and quantifying their amounts and 

values exposed to flood inundation, finding appropriate vulnerability curves of different 

human properties to estimate the disaster risks of damage or economic loss. 

• To apply the risk assessment framework in real-time risk forecasting 

Expand the risk assessment framework to provide real-time risk forecasting by using 

numerical weather forecasting products as inputs in the hydrodynamic model, producing 

forecasts of flood inundation in the multi-hazard environments and predictions of potential 

loss associated with the forecasted inundation maps, exposure data, and vulnerability curves. 

1.4 Study regions 

Two study regions are selected to achieve the four aforementioned research objectives: The 

Greater London catchment and the Eden catchment. The Greater London catchment includes 

Greater London and its downstream areas as shown in Figure 1-1. It has experienced many 

fluvial, pluvial, and coastal floods in history, such as the 1928 Thames Flood, the 1947 Upper 

Lee Flood, and the 1953 East Coast Flood (Environment Agency, 2012). Although fewer 

flood events can be found in recent decades due to the substantial improvement of flood 

defence systems, as a metropolitan region with a big population and high density of 

properties, Greater London can still be at risk when facing low frequent but high destructive 

water-related hazards, especially when the hazards are interrelated with each other. Instead of 

using the administrative boundary, this study region is defined based on the watershed of the 

Thames catchment from Kingston to the river mouth between Southend and Sheerness with a 

total area of 2,718 km2. As a typical multi-hazard influenced area, the Greater London 

catchment is chosen to explore the first three objectives. 
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For risk forecasting that requires more recent events to evaluate its performance, the Eden 

catchment is selected as the study region instead of London that has no serious flooding in 

recent decades. The Eden catchment locates in the northwest of England with an approximate 

area of 2,500 km2 (Figure 1-2). The main watercourse River Eden flows from southeast to 

northwest with three main tributaries: the Caldew, the Petteril, and the Eamont on its left and 

the Irthing on its right. The catchment is a wet region with an average annual rainfall over 

2,800 mm which is three times of the annual average value in England. The largest settlement 

inside the catchment is City Carlisle located at the junction where River Caldew meets River 

Eden. The Eden catchment is fast responding to fluvial floods due to its steep topography in 

the upper region. In history, the lower area including Carlisle city centre has experienced 

many serious floods that are induced by either local intense rainfall or extreme upstream 

flows. The Eden estuary is identified as a high risky area that may suffer from compound 

flooding (Paprotny et al., 2018). Therefore, it is necessary to take into account the physical 

impact of estuarine sea level on upstream flow in hydrodynamic modelling, especially when a 

sea level rise is expected in the near future due to global warming (IPCC, 2014a). 

 
Figure 1-1. The Greater London catchment. DEM data provided by Digimap © Crown 

Copyright Ordnance Survey 
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Figure 1-2. The Eden catchment and its location in Britain. The length of the Eden River is 
145 km. The average and max discharges are 51.82 m3/s and 1700 m3/s at the Sheepmount 

river gauge. 

1.5 Outline of thesis 

Excluding the current chapter for Introduction, the rest of the thesis is organised as follows: 

Chapter 2 gives a comprehensive literature review of the relevant fields including multi-

hazard risk assessment, multivariate dependence analysis, hydrodynamic modelling, 

vulnerability analysis in multi-hazard context, and hazard and risk forecasting. 

Chapter 3 introduces all the methods and tools applied in this thesis including asymptotical 

dependence analysis, copula function, a 2D hydrodynamic model, and the techniques 

for vulnerability and risk assessment. 

Chapter 4 applies dependence measures and copula function to evaluate the different types of 

dependence among the hazards and estimate the joint probability distribution and 

return period of the three hazards.  
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Chapter 5 uses the 2D hydrodynamic model to simulate floods for various hazard 

combination scenarios and produce inundation maps and hazard curves by connecting 

multi-hazard inputs with their estimated frequency. 

Chapter 6 demonstrates the entire procedure of multi-hazard risk assessment for buildings 

and road networks by combining the result of hazard, vulnerability and exposure 

analysis and show the quantitative results in the form of risk curves and risk maps.  

Chapter 7 demonstrates real-time capability of the hydrodynamic model by integrating with a 

numeric weather prediction model to provide flood and risk forecasting in the 

catchment with multi-hazard impacts. 

Chapter 8 draws the conclusions of the study and recommends future research in the research 

topic. 
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Chapter 2. Literature review 

This chapter firstly gives a broad summary of multi-hazard risk research, followed by a 

review of dependence analysis in multi-hazard issues. Then, the review is focused on the 

simulating methods for compound flooding and the flood vulnerability analysis. At last, the 

current studies of hazard and risk forecasting for flooding is reviewed, and a summary is 

given to address the research gaps with objectives of this thesis.  

2.1 An overview of multi-hazard risk analysis 

The number of reported natural disasters experienced a sharp increase in the last decades, 

causing more and more mortality and economic loss (Winsemius et al., 2016). Disaster risk 

has become a prevailing research topic since the launch of the programme International 

Decades of Natural Disaster Reduction (IDNDR) (Housener, 1989) and the International 

Strategy for Disaster Reduction (ISDR) (IDNDR, 1994). As a large number of population and 

land area may be threatened by two or more hazards simultaneously (i.e. multiple hazards) 

(Dilley et al., 2005), it is essential to investigate the disaster risk under the effect of multiple 

hazards. Multi-hazard risk assessment aims to evaluate the integrated disaster risk caused by 

various hazards and has been gaining interest from numerous researchers in the recent decade 

(Gallina et al., 2016). 

Multi-hazard is also expressed as compound events (Leonard et al., 2014) and increasingly 

being used in many literatures (Petroliagkis, 2018; Sadegh et al., 2018; Wahl et al., 2018; 

Ward et al., 2018). Multi-hazard can be categorised as three broad classifications according to 

the relationship between hazards: (1) concurrent hazards – the concurrence of two (or more) 

hazard events in time and/or space (Chen et al., 2012); (2) successive hazards – the recurrence 

of the same hazard within a significant time (SHIEH et al., 2009); (3) cascading hazards – 

primary hazards trigger other secondary/tertiary hazards or increasing the probability of other 

hazards, also known as hazard chains (Xu et al., 2014). In this thesis, only the concurrent 

hazards are considered for risk assessment. 
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The understanding of multi-hazard risk is divergent as an interdisciplinary topic (Kappes et 

al., 2012). However, its fundamental characteristics of interest can include: 

1. Dependence: the statistically dependent occurrence of multiple hazards  

Some hazards may be relevant in terms of the causes, that the appearance of one 

hazard indicates the increase or decrease of the probability of the other hazard(s) 

happening. For example, an earthquake may raise the possibility of landslide (Miles et 

al., 2007), and heavy rainfall is usually accompanied with strong winds in monsoon 

regions (Shukla et al., 1977). The multi-hazard dependence analysis generally focuses 

on the statistical behaviour of the occurrence and magnitude of the hazards 

(Petroliagkis, 2018) and will be specifically reviewed in section 2.2.    

2. Hazard interaction: the physical mutual effect between hazards 

One hazard can affect the physical process, magnitude, or the degree of danger of the 

other hazard(s). For example, strong wind can enlarge total water level (Escobar et al., 

2004), and rainstorms may augment pluvial flooding area (Apel et al., 2015). As one 

of the focuses of multi-hazard study, Gill and Malamud (2014, 2016) have identified 

the interactions between 21 natural hazards from five hazard groups, which is a 

qualitative and comprehensive review for the various mutual relations between 

multiple hazards. Liu et al (2016) categorised the hazard interactions into four types 

including independent, mutually-exclusive, parallel, and cascading relations, 

according to the geophysical hazard-forming environment. Identifying and quantifying 

the hazard interactions are important issues in multi-hazard analysis. 

3. Integrated vulnerability: the likelihood of damage under the impact of multiple 

hazards 

The elements at risk can experience different degrees of damage when acted by the 

coincident multiple hazards compared with the damage due to the individual hazard 

(Li and van de Lindt, 2012).  It is essential to evaluate the integrated effect of all the 

considered hazards in multi-hazard risk assessment. The objective and subjective 

weight methods are commonly employed in the qualitative analysis that measures the 

integrated vulnerability in rank or index (ARMONIA, 2006). Statistical techniques are 

utilized in some papers to quantitatively investigate the integrated vulnerability of 

crops exposed to wind and rain (Ming et al., 2015), and turbines exposed to wind and 
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earthquakes (Mardfekri and Gardoni, 2015). Lee and Rosowsky (2006) employed 

some experimental data to analyse the integrated fragility of woodframe buildings due 

to the joint snow and earthquake loading. 

As a summary of the three characteristics, “integration” is the common and critical word in 

the integrating process from the single-hazard risk to multi-hazard risk as an interrelated 

system (Kappes et al., 2010). According to the procedure of integration, the multi-hazard risk 

assessment can be divided into two types. The first type only integrates into the final step of 

risk assessment using the results from each individual hazard, which is actually the 

assessment of “multi-layer single-hazard risk” (Gill and Malamud, 2014). The integration in 

Type II methods are performed at the risk components, including the multi-hazard (Ehlen and 

Vargas, 2013), the integrated vulnerability (Rød et al., 2012), and the compound exposure 

(Novelo-Casanova and Suárez, 2012).  

If we define the risk (R) as a function of the hazard (H), the vulnerability (V), and the 

exposure (E), the two types of multi-hazard risk assessment can be illustrated by formulas in 

Table 2-1. The symbol ∑ denotes the process of integration, which does not necessarily mean 

summation. The integration in the Type I assessment linearly combines the results of the 

single-hazard risk with proportions representing their contributions to the total risk. But the 

interrelations of the risk components from different hazards are generally ignored. In the Type 

II approaches, the integration of each risk component can better represent their interactions 

and interrelations but is usually problematic because of the complicated physical processes 

and the various hazard quantities.   

Table 2-1. The expressions of the two types of multi-hazard risk assessment. 

Type Expression Reference of examples 

I 𝑅𝑅 = �𝑓𝑓𝑖𝑖(𝐻𝐻𝑖𝑖,𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖) 

(Arnold et al., 2006; Dilley et al., 2005; Grünthal et al., 
2006; Kameshwar and Padgett, 2014; Mosquera-

Machado and Dilley, 2009; Schmidt-Thomé, 2006; 
Shi, 2011; Wipulanusat et al., 2009) 

II 𝑅𝑅 = 𝑓𝑓(�𝐻𝐻𝑖𝑖 ,�𝑉𝑉𝑖𝑖 ,�𝐸𝐸𝑖𝑖) 

(ARMONIA, 2006; Carolina and Management, 2006; 
ESPON, 2006; Mardfekri and Gardoni, 2015; Ming et 

al., 2015; Munich Re, 2003; Olfert and Greiving, 2006; 
Schmidt-thomé et al., 2003; Thierry et al., 2008; Yin 

and Li, 2011) 
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The result of multi-hazard risk analysis can provide comprehensive information on the 

regional disaster risk, which is especially interesting for decision-makers and stakeholders 

like government departments, insurance and consultancy companies. These organizations 

supported or invested in some large-scale assessments of multi-hazard risk, including 

international research projects like the Global Natural Disaster Risk Hotspots (Dilley et al., 

2005) and the ESPON program (Schmidt-thomé et al., 2003), and operational platforms for 

automated evaluation of multi-hazard risks, for instance, HAZUS (FEMA, 2011) and 

RiskScape (Schmidt et al., 2011). The large-scale assessment typically has the following 

features: 

• A large research area, like a big country (FEMA, 2011; Shi, 2011), a continent 

(ESPON, 2006; Fleming et al., 2014), or the whole world (Dilley et al., 2005; Shi and 

Kasperson, 2015) 

• A large assessment unit, typically the second or the third administrative district of the 

research region like country, state, and province 

• A number of considered hazards, trying to cover all the influential dangers inside the 

evaluation domain, for example, 15 natural and technical hazards appraised in ESPON 

(2006), 12 natural hazards evaluated in Shi and Kasperson (2015) 

• Simplified interrelations and interactions between different types of disasters, regarded 

as independent or linear relations with specific proportions of contribution to the total 

risk (Mosquera-Machado and Dilley, 2009) 

Unlike the large-scale project, some small-scale assessments focus on relatively smaller 

regions and thus can be more targeted on the local disaster mitigation and risk management. 

The main characteristics of this research include: 

• A small research area, like a city (Marzocchi et al., 2012), a community (Li et al., 

2009), or a village (Bell and Glade, 2004) 

• High-resolution assessment, the assessing unit can be fine grid cells with hundreds or 

tens of meters wide (e.g. Westen et al. 2014) 

• A few considered hazards, concentrating on the most critical dangers to the local 

region 

• More quantitative integrating methods, like statistical method (Ming et al., 2015), 

engineering experiment (Lee and Rosowsky, 2006), and hazard simulating models 

(Lian et al., 2013) 
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The large-scale assessments were prevailing in the early stage of disaster risk research to 

provide a common and comprehensive view of the multi-hazard risk level. Recently, more 

and more small and regional studies appeared to make the objectives and the methods of 

multi-hazard risk assessment become more diverse. Some cases of the multi-hazard risk 

assessment in the past decade are summarised in Table 2-2. It lists seven recent multi-hazard 

risk studies with the considered hazards, the types of exposure, the measures of risk, the 

outputs of assessment, the study area with assessing unit, and the key features. A significant 

trend of the multi-hazard risk research is that the quantitative risk assessment is becoming 

widespread. The typically quantitative measure of risk is the expected loss. But the object of 

loss is varied between different methods, including the direct economy (Selva, 2013), human 

life (Lung et al., 2013), infrastructure (Westen et al., 2014), agriculture (Wipulanusat et al., 

2009), and so forth. Those quantitative risk assessments can provide more detailed 

information on the possibility of loss and have been the first choice of many recent studies. 

Table 2-2 Cases of multi-hazard risk assessment in the recent decade. 

Reference Hazards Exposure Risk Outcome Study area Features 

(Lozoya et 
al., 2011) 

storm, 
erosion, river 

floods, 
jellyfish, 
tourism 
overuse, 

hinterland 
urbanization 

beach 
 

surface 
area 

reduction, 
quality 

reduction 

annual 
economic 

loss 

S’Abanell 
beach, Spain. 
Divided into 

two parts: 
north and 

south 

considered both 
natural and human 

hazards; direct 
addition for all 
kinds of risks; 

interactions are not 
considered 

(Li and van 
de Lindt, 

2012) 

Hurricane, 
wind, 

earthquake, 
snow, flood 

light-frame 
wood 

buildings 

damage 
condition 

expected 
annual loss 

four cities in 
the USA 

fully quantitative; 
engineering 

methods; direct 
addition of 

independent 
hazards 

(Lung et 
al., 2013) 

heat stress, 
river flood, 
forest fire 

human human 
health 

risk ranks 
(5 ranks) 

NUTS-2 
regions, 26 of 
the Member 
States of the 

European 
Union (EU) 

weighted 
aggregation; the 

influence of 
climate change is 

considered; 
adaptive capacity 

is considered 

(Selva, 
2013) 

volcanic ash 
in seismic, 

local 
earthquakes in 

tsunami 

economy 
direct 

economic 
loss 

loss-
probability 
risk curve 

Naples, Italy 

fully quantitative; 
interactions 

considered in 
limited hazard 

scenarios 
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(Kameshw
ar and 

Padgett, 
2014) 

Earthquake, 
hurricane 

(storm surge 
and wave 
loading) 

highway 
bridges 

bridge 
damage 

annual 
probability 
of damage 

concrete 
girder bridges 

located in 
South 

Carolina, 
USA 

engineering 
methods; fully 

quantitative; only 
comparison 

without 
aggregation 

(Westen et 
al., 2014) 

landslides, 
debris flows, 

rockfalls, 
snow 

avalanches 
and flood 

building building 
loss 

expected 
losses due 

to each 
hazard 

Barcelonnette, 
France, Pixel 

1:25,000 

GIS-based; 
uncertainty 

analysis; non-
aggregation; 

interactions are not 
considered 

(Ming et 
al., 2015) 

Heavy rain, 
strong wind crops crop loss 

ratio 

 loss ratio-
probability 
risk curve 

Yangtze River 
Delta region, 
county level 

fully quantitative; 
statistical analysis; 

dependence 
quantified; 

vulnerability curve 

In general, the multi-hazard risk is a complicated system with a lot of interactive elements and 

inner-relationships to be clarified. The quantitative risk assessment that can reflect the 

interrelations is facing some difficulties, including the estimation of the joint frequency of 

hazards, and the quantification of hazard interactions. It is essential to develop an integrated 

framework of multi-hazard risk assessment that can estimate the joint frequency based on the 

dependence and various marginal distributions of the hazards and use physically-based 

models to simulate the hazard interactions. 

2.2 Dependence analysis for multiple hazards 

When thinking about multiple-hazard issues, a key concern is the potential inter-relationships 

of the occurrence of different hazards in a given spatial region or temporal period. As the 

‘Butterfly Effect’ reveals, the natural phenomena on earth are potentially interrelated with 

each other. Some of the interrelations are evident and can be explained by the current studies, 

i.e. the dependent relationship between seawater temperature in the east and the west Pacific 

(known as El Niño-Southern Oscillation (ENSO)) (Neelin et al., 1998) . Some interrelations 

can be statistically detected but are yet to be physically illustrated like some types of 

earthquakes are found to be correlated with heavy rainfall but the reason is still unclear 

(Hainzl et al., 2006). 

The dependence widely occurs among natural hazards sharing the same initial trigger(s), and 

its intensity varies according to the local geographical environment and the categories of the 
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hazards. For example, heavy rainfall, strong wind and storm surge are highly related to each 

other in coastal zones influenced by tropical cyclones but less relevant in regions with fewer 

severe convective weather systems. For hydrometeorological hazards that result from the 

same regional weather condition, the dependence among them can be even stronger. Multi-

hazard analysis needs to consider the potential dependence between the considered hazards as 

it matters with the likelihood of hazards coincidence that may cause severer consequence 

compared with the outcome of individually happening of hazards (Leonard et al., 2014; Wahl 

et al., 2015). 

There were numerous studies that have concentrated on the dependence between 

hydrometeorological hazards, including the variables from the same hazard, such as the 

volume and discharge at the same gauges during a flood event (Zhang et al., 2006); or from 

different hazards, like the extreme discharge and the height of storm surge in coastal regions 

(Klerk et al., 2015). 

A lot of studies have concentrated on the dependence between hydrometeorological hazards 

including heavy rainfall, extreme river flow, and sea surge. In coastal areas, extreme rainfall 

and surge are two of the main natural hazards that may co-occur and lead to flooding greater 

than from either in isolation. The dependence between heavy rainfall and storm surge are 

investigated for coastlines around the world. Zheng et al. (2013) quantified the strength of 

dependence between daily maximum surge and daily rainfall for the coastal regions of the 

Australian continent and concluded that these two hazards must be considered jointly with 

their dependence if flood risk is to be assessed correctly. Wahl et al. (2015) evaluated the 

likelihood of joint occurrence of storm surge and rainfall at major cities along the US 

coastline and demonstrated the importance of assessing compound flooding and its linkages to 

weather and climate. Van Den Hurk et al. (2015) used an ensemble of regional climate model 

simulations to demonstrate that the combined occurrence of the heavy precipitation and storm 

surge is physically related in the Netherlands. 

The extreme river flow from upstream catchments is another potential hazard that may 

exaggerate flooding when it occurs together with extreme rainfall or sea surge. The dependent 

interaction of sea level and river flow was found to increase the flood risk in low lying 

floodplain zones and can be quantified by joint probability analysis (White, 2007). Kew et al. 

(2013) analysed the concurrence of surge and river flow extremes for the Rhine delta with 

climate ensemble and concluded that the extreme surge and discharge probabilities are not 

independent for the current climate. Moftakhari et al. (2017) proposed a bivariate hazard 
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assessment framework for compound flooding from river flow and coastal water level in three 

estuarine systems along the coasts of the US and found that the correlation between river 

flows and surges is spatially diverse in different regions. Ward et al. (2017) assessed the 

dependence between observed high sea-levels and high river discharge for deltas and estuaries 

around the globe and illustrated how the dependence may influence the joint probability of 

flood. 

In addition to the double-hazard dependence analysis, a few studies also consider all the three 

hazards that are potentially concurrent in river estuaries. For example, the paired dependence 

between extreme sea surge, river flow, and precipitation are evaluated in south and west 

Britain and the strength of different paired dependence is compared (Svensson and Jones, 

2004). Paprotny et al. (2018) investigated the probability of joint occurrence of storm surges, 

precipitation, and river discharges for a pan-European assessment of compound flood 

potential and identified the areas at risk from different types of compound flooding. 

The presence of dependence among multiple hazards is not only analysed based on the 

physical process but also revealed as the stochastic behaviour of their indicating variables. 

Many attempts have been made to quantify the strength of the dependence by applying 

different statistical tools. An asymptotic dependence measure was introduced by Buishand 

(1984) to estimate the dependence of inter-station rainfall data in the Netherlands. It was then 

further developed by Coles et al. (1999) to evaluate both the asymptotic dependence and 

independence of extreme value data. A Bayesian Network is developed to investigate the 

shoreline change rates accompanying sea level rise (Gutierrez et al., 2011). Zheng et al. 

(2013) proposed a bivariate extreme model to calculate the dependence between extreme 

rainfall and storm surge and estimate the coastal flood risk in a catchment near Sydney 

(Zheng et al., 2014). Apart from those bivariate models, many nonparametric and rank-based 

approaches were introduced by statisticians while Spearman’s rho and Kendall’s tau are the 

two most widely used statistics (Genest and Favre, 2007) that are also able to measure the 

multivariable dependence, and methods developed based on them can be found in literature 

(Hult and Lindskog, 2002; Lall et al., 2016; Schmid and Schmidt, 2007). 

The aim of quantifying the dependence between multiple variables is to investigate the 

statistical character of their combinations, which is often illustrated by the joint probability 

distributions. The bivariate distribution functions, like bivariate normal, lognormal, gamma, 

and extreme value, are commonly used to generate joint distributions for two variables that 

have the same univariate distributions (Tawn, 1988). With respect to a wider application in 
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multiple variables that might have various individual statistical behaviours, Copula is a 

prevailing and powerful tool for joint probability analysis.  

Copula function is a link that connects the multivariate distribution functions with their 

univariate marginal distribution functions. The basic theory and main concepts of Copula 

were presented by Nelson (1999) and a detailed step-by-step introduction for constructing a 

copula model is given by Genest & Favre (2007). In the recent decade, an extensive literature 

in the field of quantitative hydrology uses copula functions to deal with multivariate flood 

frequency issues (Corbella & Stretch, 2013; Favre et al., 2004; Kao & Govindaraju, 2008; Liu 

et al., 2018; Salvadori & De Michele, 2015; Wang et al., 2009; Zhang et al., 2006) to 

accompany the development of software computing packages (Kojadinovic and Yan, 2010; 

Yan, 2007). The majority of the applications were performed with bivariate copula while only 

limited cases managed to utilize high-dimension (3D or higher) copula analysis (Kao and 

Govindaraju, 2008; Zhang and Singh, 2007).  

In flood frequency analysis, the notion of return period is widely used for flood estimation. 

For the single hazard with univariate analysis, the return period can be clearly identified from 

the cumulative distribution function of one quantity. However, the joint return period with 

multiple quantities tends to be ambiguous and its calculation is closely related to the structure 

of copula (Salvadori et al., 2011).  

In Britain, Atlantic depressions from the southwest often bring extreme winds and rainfall that 

result in hydrometeorological disasters, such as storm surge, wave, pluvial and fluvial floods. 

A quantitative investigation of bivariate inter-station and cross-variable dependence among 

extreme sea surge, river flow and precipitation using asymptotic dependence and 

independence measures has been applied in eastern Britain (Svensson and Jones, 2002) and 

south and west Britain (Svensson and Jones, 2004), respectively, which gives a general 

assessment of the multi-hazard dependence across the UK. White (2007) then combined the 

asymptotic dependence measure with joint probability analysis and put it into practice at 

Lewes, East Sussex, UK, for the hazard assessment of joint tidal and fluvial flood.  

However, the three main sources of flooding: precipitation, river flow, and surge, have not 

been analysed in terms of joint probability with their trivariate dependence in the UK. 

Moreover, a comprehensive comparison between different dependence measures is also 

required to appropriately evaluate the statistical relations among multiple hazards. 
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2.3 Multivariate, multi-source, and multi-hazard flood modelling 

Flooding is probably the most frequently occurring and significantly damaging natural 

disaster throughout human history (Teng et al., 2017). According to the EM-DAT 

International Disaster Database (Guha-Sapir et al., 2015), the affected population and the 

direct economic loss due to floods have been growing over the past century. Flooding is the 

dominant type of natural disaster, occupying a large ratio of the reported natural disaster 

events in the recent 30 years (Freer et al., 2013). Multi-hazard flooding is caused by several 

different types of water sources such as heavy rainfall over the local region, extreme river 

flow from the upstream area, and sea water from the coast, corresponding to pluvial, fluvial, 

and coastal flooding, respectively. As the result of the coincidence of multiple water sources 

that can be relevant to each other (Lewis et al., 2013; Svensson and Jones, 2002), multi-

hazard flooding may lead to severer threats to human society compared to single-hazard flood 

(Klerk et al., 2015). The simulation and assessment of multi-hazard flooding is a vital task for 

flood management and disaster mitigation. 

2.3.1 The types of single hazard floods 

Pluvial flooding usually occurs in urban areas when an extremely heavy downpour of rain 

saturates drainage systems and the excess water cannot be absorbed. The threat of an increase 

in the frequency and severity of high‐intensity rainfall events is recognised in many regions 

in the world (Falconer et al., 2009; Mallakpour and Villarini, 2015), which is attributed to 

both climate change and urbanization (Ashley et al., 2005; Schreider et al., 2000; Zhou et al., 

2019). Daily or hourly precipitation is the indicating variable to analyse the intensity and 

frequency of the pluvial hazard.  

Fluvial flooding happens when rivers burst their banks as a result of extreme high flow that 

may be caused by the upstream rapid snowmelt, dam failure, or sustained/intense rainfall. 

River floods usually occur suddenly and cause not only direct severe destruction and 

casualties, but also long-term economic damage (Koks and Thissen, 2016). Human activity 

has amplified both river flooding hazard (Munoz et al., 2018) and the risk of human and 

economic losses (Dottori et al., 2018). Flow rate or water level recorded in river gauge 

stations is generally used as the indicating variable in pluvial hazard analysis. 

Coastal flooding is caused by extreme seawater level conditions including high tides, storm 

surges and waves, leading to overtopping of coastal defences and inundation of low-lying 
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coasts, which can potentially result in damage or loss (Wolf, 2009). The threat of coastal 

flooding has also increased globally because of sea level rise and the dramatical growth of 

total population and the economic value of material assets located in coastal zones (Jongman 

et al., 2012; Woodruff et al., 2013). The sea water overtopping in coastal flooding is directly 

triggered by the total water level, which consists of storm surge and the astronomical tide. 

Astronomical tides are caused by the gravitational pull of the sun and the moon. Storm surge 

is the abnormal rise in seawater level during a storm, measured as the height of the water 

above the normal predicted astronomical tide. Besides surges and tides, waves may also 

contribute to coastal flooding but the impacts vary in different geographical locations 

(Hawkes et al., 2002). For the Thames estuary, waves have no significant effect on the total 

water level (Spencer et al., 2015) and is therefore not considered in this research of multi-

hazard assessment and simulation. In frequency analysis of coastal flooding, the height of 

storm surge is the indicating variable. In hydrodynamic modelling, storm surge is added with 

a normal astronomical tide to create total water level as boundary conditions.  

2.3.2 Multivariate flood and multi-source flood simulation 

The understanding of multi-hazard floods can be confused with some close concepts like the 

multivariate flood and the multi-source flood. In general, the multivariate flood refers to the 

multiple variables measuring the same event such as the volume, the peak flow and the 

duration (Wyncoll and Gouldby, 2013; Zhang et al., 2006).  The prediction model of 

multivariate flooding typically focuses on the interrelationship between the variables from 

one type of flood (Goel et al., 1998; Xu et al., 2017; Zhang and Singh, 2007), which 

completely differs from the multi-hazard flooding. However, it is the multivariate flood 

studies that first introduced some statistical techniques in the multivariate frequency analysis 

(Adamowski, 1985; Krstanovic and Singh, 1987; Sackl and Bergmann, 1987; Yue et al., 

1999), which are further applied in the multi-source and multi-hazard flood assessment. 

The multi-source flood indicates the flooding due to multiple water sources that may or may 

not form the same type of hazard. It can be divided into the multi-hazard flood that the water 

sources refer to more than one hazard and the single-hazard multi-source flood. The latter 

kind of flood was investigated for the coincidence of river flows (Chen et al., 2012; Pingel 

and Watkins, 2010; Wang et al., 2009), and the flood due to rainfall in different sub-basins 

(Jiang et al., 2013).  
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Statistical methods are widely used to quantify the dependence between the single-hazard 

water sources, which is typically significant and easy to be detected.  Pingel and Watkins 

(2010) summarised the options for computing the damage due to the confluence of multiple 

flooding sources and emphasised that the hydrological and hydraulic conditions may be 

complicated in the region subjected to flooding as the result of different extreme streams. 

Chen et al. (2012) analysed the coincidence of flood flows from four upstream tributaries of 

the Yangtze River and its impact on the Three Gorges Reservoir. Schulte and Schumann 

(2015) investigated the correlation of the peak discharges of three adjoining catchments and 

the analysis of 178 flood events found a very strong dependence of the cross-catchment flood 

peaks. Serinaldi and Kilsby (2016) estimated the collective flooding risk using a large dataset 

of recorded daily flow time series across the central and eastern European rivers. The 

estimation considered the impact of the spatial and temporal correlation structures not only 

from the extreme events but also on the continuous flow observations. Regrettably, most of 

the studies of multi-source flooding only concentrated on the statistical analysis of the 

concurrent water sources but ignored the simulation of the physical process of the joint water 

flows.  

2.3.3 Multi-hazard flood simulation 

The multi-hazard flood involves water sources from different hazards typically including 

rainfall (pluvial flood), stream flow (fluvial flood), and surge. Coastal regions and urban areas 

with river networks are likely to suffer from multi-hazard flooding (Lian et al., 2013). The 

multi-hazard flood studies are not as numerous as the multi-source flood from the same 

hazard, but a few cases can still be found. 

a) Statistical modelling 

Lamb et al. (2010) carried out a method to evaluate the risk of concurrent flooding on rivers 

and coasts. The joint probability of recorded data between gauge stations is analysed 

separately for flow, tide and surge based on a statistical conditional exceedance model. The 

time lags of the hazard at different locations are quantified by an asymptotically justified 

dependence model. This research produced a statistical approach to assess concurrent multi-

hazard flood but failed to consider the cross-hazard dependence.  

Zheng et al. (2014) made a comparison of three types of statistical method for quantifying the 

dependence between extreme rainfall and storm surge. The methods were applied in a coastal 

area to estimate the multi-hazard frequency of coastal flood and to demonstrate the 
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implications of the two hazards with the various strength of correlations for flood prediction. 

The statistical behaviour of the two hazards was investigated thoroughly but the dynamic 

process from rainfall to overland flow and its interaction with storm surge were not 

considered in this study. 

Examples can also be found for the statistical assessment of flooding due to rainfall and 

extreme river flow, such as statistical assessment of coastal flooding from hurricane-induced 

storms and heavy rainfall presented by Thompson and Frazier (2014). The assessment was 

aiming to produce probabilistic results and employed a series of discrete scenarios with linear 

regression analysis.  

Unfortunately, all the above-mentioned studies only applied statistical methods in the multi-

hazard flood assessment. The statistical methods can estimate the frequency of single or joint 

hazards but not afford to predict the resulted flooding in terms of inundation and water 

velocities. The physical process of the concurrence of multiple water-related hazards is much 

more complicated than the simple overlay of single-hazard flooding results. Therefore, 

physically-based flood simulation is essential for complete multi-hazard flood analysis. 

b) Hydrological modelling 

Breinl et al. (2017) presented a joint framework for simulating flood events due to extreme 

river flow and rainfall in urban areas. The relationship between river discharge and urban 

rainfall was investigated in the framework that can produce dependent time series of the two 

hazards. A hydrological model is employed to simulate the flooding process accompanied by 

a site-based weather generator. The selected hydrological model is conceptual rather than a 

physically-based distributed model to ensure it is fast enough to run numerous simulations. 

Because of this, the result of the flooding is only displayed as river discharges and rainfall 

predictions. The method cannot produce an inundation map of the flooding nor investigate the 

concurrent process of the multiple hazards.  

Klerk et al. (2015) have undertaken studies of coincident flooding from storm surge and 

extreme river discharge in the Rhine-Meuse Delta. The statistical relationship between the 

high sea levels and the extreme river flow is evaluated by the asymptotic dependence 

measures. The impact of future climate change is included in the assessment of the hazards 

coincidence by employing a regional climate model to give sea level predictions. The river 

discharge is estimated by a hydrological model implemented in the Rhine sub-basins. The 

limitations of this study include: the interaction between sea level and river discharge is not 
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simulated, and the hydrological model cannot generate the inundation maps that are essential 

for risk analysis.  

Chen et al. (2010) have proposed a modelling approach for combined outcomes of fluvial and 

pluvial flooding and applied it in a small community of the UK. An integrated 1D sewer and 

2D overland flow modelling system is employed in flood simulation. The rainfall-runoff 

process is simulated by a hydrological model that produces discharge hydrographs. The 

overland flow is derived from a 2D non-inertia model. The modelling system has generated 

inundation maps for the research area with limited scenarios. However, the physical process 

of the flooding is greatly simplified by neglecting the inertial terms in the 2D model and using 

weir equations to reflect the interactions between the river and flooded area. 

The first limitation of applying hydrological models in multi-hazard flood modelling is the 

model itself typically cannot produce inundation depth of the flooded area. For this reason, 

hydrological models are widely coupled with some hydraulic inundation models to predict 

flood extent. However, replicating the high fluid motion and the physical interactions between 

the water sources is another constraint of hydrological models, which leads to the application 

of full hydrodynamic models (Kumbier et al., 2018). 

c) Hydrodynamic modelling 

The advantages of hydrodynamic models have been demonstrated by many studies in 

simulating the water dynamics and the interactions between different flooding drivers and 

providing comprehensive assessment of inundation depth, extent and water velocities (Dutta 

et al., 2007; Liang, 2010; Liang and Smith, 2015; Sanders et al., 2010).  The hydrodynamic 

model can be categorised into 1D, 2D, and 3D models according to their spatial representation 

of the model domain. 

The 1D model simulates water flow along the central line of the river channel and is typically 

computational efficient. Lian et al. (2013) applied the 1D hydrodynamic model in the joint 

frequency estimation of flood due to rainfall and tide level in the river network of Fuzhou, 

China. The interactions between the rainfall-induced flow and sea level are simulated in the 

1D river network. To probabilistically analyse the joint impact of the two hazards, the 1D 

hydrodynamic model is run many times with boundary conditions generated from the joint 

probability distribution of the rainfall and the downstream tidal level. Apart from the common 

drawbacks of the 1D model that cannot reproduce the lateral diffusion of flood wave (Teng et 

al., 2017) and the floodplain inundation over complex topography (Zhang, 2014), this study 
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employs a hydrological model to convert the rainfall to boundary flows and estimates the 

hydrographs over-designed rainfall process, which means the physical process of rainfall-

runoff and its interaction with tidal water outside the river channel are not appropriately 

simulated. 

The 2D hydrodynamic model is probably the most prevailing model for flood simulation that 

aims to produce inundation maps and represents the current state-of-the-art (Teng et al., 

2017). However, regarding the multi-hazard flood simulation, very few studies can be found 

to focus on the hydrodynamic modelling of multi-hazard interactions. Three typical cases of 

2D hydrodynamic modelling for multi-hazard flooding are analysed below. 

Apel et al. (2015) presented a framework of multi-hazard analysis with combined pluvial and 

fluvial flooding and put it into practice in a riverine city in the Mekong Delta. A 2D hydraulic 

model based on shallow water equations is selected to simulate the flood inundation due to 

heavy rain and extreme river flow. The model is run many times with rainfall and flow inputs 

generated from hazard frequency analysis. Probabilistic inundation maps for both single-

hazard and joint-hazard scenarios are produced with estimated exceedance probabilities. 

However, the joint probability is calculated on a rough assumption that the rainfall and flow 

are independent. The study area is a very small part of the city and clipped according to the 

DEM data availability rather than the hydrological catchment. Therefore, the potential water 

exchange on the boundaries of the model domain apart from the river channel is actually 

neglected in the simulations. It is also worth noting that the applied hydrodynamic model is a 

simplified model that is only applicable for subcritical flow in order to save the simulation 

runtime, which means it is not suitable for extreme flood simulation on complex topography 

that may experience high-speed flows. 

Kumbier et al. (2018) have undertaken a study of concurrent flooding with drivers from storm 

surge and river discharge in an estuary of Australia. A 2D hydrodynamic model developed 

based on a finite difference method is employed to simulate the physical processes induced by 

two interacting hazards. A storm event is simulated by the model in a 25 m-resolution grid 

over the model domain with two open boundaries towards the sea and one boundary for the 

river flow. The interacting flooding process is demonstrated by the comparison modelling 

with and without riverine flow. The paper concludes that neglecting the interaction between 

different flooding drivers may significantly underestimate the flood risk, which is a 

supportive view of the objective of the literature review in this section. One limitation of this 

study is that the river flow boundary position is moved about 25 km downstream from its 



 
26 

original river gauge station to avoid the model domain extending too large. However, the 

downstream part of the rives can be greatly impacted by the over-sized interaction that makes 

the flow in the model boundary significantly different from upstream observed discharge time 

series. 

Apart from the two uniform grid-based models, Olbert et al. (2017) proposed a 2D high-

resolution and multi-scale modelling system for multi-hazard flooding triggered by river flow 

and coastal tide and surge. The modelling system is applied in Cork City next to the Cork 

Harbour in the south west of Ireland with three different spatial resolutions cascading from 90 

m to 30 m, 6m, and 2m over four nested grids. A historic flooding event is simulated by the 

multi-scale model to investigate the impact of the riverine extreme flow and the high tide 

level from the coast. An inundation map in the urban area is produced and used to estimate 

the flood risk to people. The multi-scale resolution is an attractive attempt to reduce the 

computational burden in hydrodynamic modelling. However, the model presented in this 

study is applied in a small region and for only one event while the multi-hazard flood 

assessment typically requires numerous simulations. One more concern is whether the 

modelling system can consider rainfall over the entire model domain and keep stable on the 

interface of grids with different resolutions. 

The application of 3D models for the simulation of multi-hazard floods is rare in the 

literature. One example can be found in Chen et al. (2014) investigating the joint impact of 

freshwater discharge and storm surge over a river catchment in Taiwan, China. A 3D 

hydrodynamic model is employed on an unstructured grid with resolutions ranging from 1000 

m to 40 m. The study shows good performance when simulating historical events but does not 

demonstrate the necessity of applying a 3D model while 2D shallow water model is widely 

believed to be adequate in flood simulation (Teng et al., 2017). And the high-dimensional 

model can lead to the compromise in spatial resolution to control the computing cost, like in 

this case, the highest 40 m-resolution may not be fine enough for flood simulating in urban 

areas with a complex land surface. 

As a summary, the basic requirements of a model for multi-hazard flood simulation and 

assessment can be concluded as follows 

• The model must be able to simulate multiple water-related hazards including rainfall, 

stream flow, and coastal surge. Some cases have undertaken double-hazard 
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simulations, but unfortunately, there is no model found to investigate the joint impact 

of all the three water-related hazards. 

• The model must be physically-based and fully hydrodynamic such that the physical 

interactions of multiple hazards in extreme condition can be well simulated without 

significant dynamic loss. 

• The model must be fast and efficient enough to run numerous simulations in a large 

catchment. This is because the impacted region completely covering all of the three 

hazards especially rainfall is usually an entire hydrological basin that is much bigger 

than the small application area in most current hydrodynamic models. Moreover, the 

joint frequency analysis of multiple hazards relies on numerous Monte Carlo 

simulations, requiring high-speed hydrodynamic models. 

2.4 Vulnerability analysis for flooding 

For the quantitative assessment of disaster risk, it is vital to quantify not only the hazard 

process but also the vulnerability of elements at risk. The assessment of vulnerability is 

related with so many internal and external factors (Adger, 2006) and can be generalized into 

physical vulnerability and social vulnerability according to the scope of considered attributes. 

Social vulnerability pays attention to the social and economic characteristics and 

circumstances that may contribute to the state of susceptibility to harm from hazards (Cutter 

and Boruff, 2003; Cutter et al., 2000). In general, a wide range of variables can be included in 

social vulnerability analysis and thus the results are expressed by indicator-based measures 

like the Social Vulnerability Index (Ge et al., 2013). Physical vulnerability focuses on the 

status of loss due to physical forces (Uzielli et al., 2008), and it can also be influenced by 

social aspects, such as the hazard warning system and the actions of disaster prevention from 

the government. In contrast, the evaluation of physical vulnerability usually constrains the 

number of considered variables and scenarios to produce more quantitative results such as 

damage curves (Khanduri and Morrow, 2003; Quan Luna et al., 2011; Shinozuka et al., 2000), 

which is more valuable in the full quantitative risk assessment. 

The typical tool to quantitatively illustrate vulnerability is the vulnerability curve that links 

the magnitude of a specific hazard to the expected loss. Examples include the seismic fragility 

curves showing the damage of structure at given ground motion levels (Singhal and 

Kiremidjian, 1996),  the debris flow vulnerability functions for different types of buildings in 

Austria (Fuchs et al., 2007), and the vulnerability curve for crop loss due to flooding (Dutta et 
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al., 2007). The historical loss data during disaster events is the principle of the estimation of 

vulnerability curves. A more specific investigation, such as survey to properties and 

household, is sometimes necessary for the region without enough recorded disaster data 

(Smith, 1994; Thieken et al., 2005). Loss models and damage experiments are also used to 

estimate loss for some types of the element at risk like crops (Wang et al., 2013) and 

buildings (Khanduri and Morrow, 2003).  

A vulnerability curve usually employs one indicator as the representation of the magnitude of 

hazards, such as the ground motion for earthquakes, the water depth for flooding, and the 

wind speed for hurricanes. However, the destructiveness of some types of hazard can be 

decided by more than one variable, for example, both water depth and velocity can contribute 

to the damage of buildings during flooding (Kelman, 2002). A typical way to deal with this 

problem is to develop a series of vulnerability curves rather than a single one to denote the 

vulnerability function with one continuous variable and some other discrete variables with 

limited states (Schwarz and Maiwald, 2012). The series of vulnerability curves can be 

expanded to vulnerability surface with two continuous variables. Nadal et al. (2010) integrate 

the depth-damage curves and velocity-damage curves to the vulnerability surface illustrating 

the damage function of both depth and velocity in the riverine and surging flood. 

For multi-hazard risk assessment, the vulnerability analysis can involve multiple indicators 

representing different hazards, which also requires multivariate vulnerability functions. Lee 

and Rosowsky (2006) proposed a bivariate vulnerability function of woodframe buildings in 

consideration of snow and earthquake loading and generated several fragility curves with 

limit state probabilities. Schwarz and Maiwald (2012) presented a discrete trivariate 

vulnerability function to estimate the fragility of building due to three hazards including 

flood, earthquake, and wind. The damaging process during multi-hazard disaster events can 

be dynamic and significantly change with the temporal and spatial overlay of the hazards (Gill 

and Malamud, 2014). Some experimental or physical model-based approaches have attempted 

to investigate the physical process of multi-hazard vulnerability for simple objects in small 

areas (Ellingwood et al., 2004). But the most typical and feasible way in large-scale 

application is the empirical regression with historical loss data and insurance data. For 

example, a continuous vulnerability surface considering the concurrence of strong wind and 

heavy rain was developed to estimate crop loss ratio in the Yangtze River Delta according to 

empirical loss assessment (Ming et al., 2015). The physical damaging process is more or less 

neglected in statistical approaches, but the outcome can be estimated by the multivariate 

vulnerability function. However, the high data requirement of the statistical approach makes it 
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only applicable in the multi-hazard disaster events with widespread consequences and to areas 

with a high quantity of loss data survey and collection (Kappes et al., 2012). 

The vulnerability analysis of multi-hazard flooding is less complicated compared with the 

vulnerability issue related to different disaster groups. Because all the hazards can point to the 

same direct stress to the elements at risk, namely the water inundation. Therefore, the loss 

estimation of multi-hazard flooding can follow the general procedure of traditional flood 

vulnerability analysis. For quantitative risk assessment, it is critical to employ the hazard-loss 

functions that appropriately reflect the local attributes of the objects to be assessed (Nasiri et 

al., 2016).  

In the UK, a lot of efforts have been put into the vulnerability analysis of flooding. For 

example, Kelman (2002) analysed the physical vulnerability of residential properties for 

flooding in two small regions in coastal, eastern England. The field survey methods are 

employed to identify the characteristics regarding the physical vulnerability of residences. 

The failure modes of the prominent concerns in the flooded properties are appraised in detail 

using a first-order analysis method. This type of particularised assessment requires 

comprehensive surveyed data and must be renewed with up to date local information when it 

is put into practice in new flooding events.  

Multi-Coloured Manual (Penning-Rowsell et al., 2013) provides many types of vulnerability 

curves that are acquired by historical loss analysis and comprehensive household survey. The 

vulnerability investigation was based on the data from England and Wales and recently 

renewed in 2017. In consideration of the timeliness and regional applicability that are the key 

concerns of flood vulnerability analysis, the Multi-Coloured Manual is a prevailing choice to 

assess flood damage in England and Wales. 

In general, the vulnerability analysis involves lots of physical and social factors and is 

therefore very complex especially when it is in a multi-hazard context. The physical 

vulnerability represented by the loss function of hazard intensities is the feasible choice in 

quantitative risk assessment. The application of vulnerability functions must consider the 

regional applicability and timeliness of the data used to produce the functions. 

2.5 Hazard and risk forecasting of multi-hazard flood 

Due to climate change, the precipitation is expected to be concentrated into more intense 

events in the warmer future (IPCC, 2014b) and consequently result in more extreme rainfall-
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induced flooding. A lot of effort has been put into the construction of flood forecasting 

systems that aim to predict different types of flooding events, such as storm flood, coastal 

flood (Saleh et al., 2017), flash flood (Hapuarachchi et al., 2011), and snowmelt flood 

(Blöschl et al., 2008).  

A reliable flood forecasting system, especially for the short-range and intense flooding, can 

provide timely hazard warning to decision makers and the residents at risk, being extremely 

important to the reduction of both tangible and intangible disaster damages (Carsell et al., 

2004). A complete forecasting system, no matter for what type of flood, can at least consist of 

two major components: a module of simulating flooding processes including the flow in the 

riverbed and floodplain, and a module of predicting flooding sources like rainfall, river flow, 

and storm surge. 

The module of simulating flooding processes involves a wide variety of approaches including 

statistical model, hydrological model, hydrodynamic model, and the combination of them 

(Campolo et al., 1999; Chau et al., 2005; Chiang et al., 2007; Nayak et al., 2005). The 

hydrological models, mainly the distributed hydrological model is widely used to predict the 

long-term and large-scale flooding (Garrote & Bras 1995; Liu et al. 2005; Li et al. 2017). 

However, the application of the simple hydrological model is limited when facing the short-

range and intense flooding as it cannot reflect highly transient and fast-moving water at the 

slope, floodplain and riverbed of the regional catchment. Also, the hydrological model has 

typically many parameters must be calibrated either at a large-scale domain or using less-

extreme events because of the limited availability of observations for extremes in the small 

region, which means the scarcity of data can restrict the model calibration for the small 

domain. For example, the Grid-to-Grid (G2G) distributed hydrological model (Bell et al., 

2007) is currently playing a vital role in the UK’s National Flood Forecasting System (NFFS) 

configured in the 1 km2 grid covering England and Wales. But as suggested in the 

Environment Agency (EA)’s report about the performance of flood forecasting models 

(Environment Agency, 2017), the  G2G model is not expected to perform as well as local 

models due to the limitation of model calibration. 

As an alternative, the hydrological model is sometimes coupled with a 1D or 2D 

hydrodynamic model calculating the flow propagation inside the watercourse (Paiva et al., 

2011; Saleh et al., 2017). Thus, the physical process on riverbed can be reflected in the flood 

simulation, but it is still inadequate to represent the interaction mechanism between the 

riverbed and the floodplain (Dutta et al., 2007). Moreover, it is unreasonable to neglect the 
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dynamic outside the riverbed, which can be significantly high during a severe flood event like 

the pluvial flooding caused by a strong rainstorm. The 2D hydrodynamic models based on the 

principles of Mass Conservation and Momentum Conservation are the realistic approach to 

consider the dynamic covering the whole model domain and particularly suitable for 

simulating extreme floods in favour of understanding the precise physical processes and 

mechanisms (Carrivick, 2006).  

However, very few cases can be found to apply full hydrodynamic models in the entire 

catchment for flood simulation due to the high demand of computational capacity and the 

high-resolution DEM and bathymetric data. A combined 1D & 2D hydrodynamic modelling 

system is used to simulate the flood inundation in the lower Mekong river basin at a 1×1 km 

uniform grid that is applicable only for the flat floodplain with a level surface in each cell 

(Dutta et al., 2007). As a high-resolution case, a full 2D hydrodynamic model is applied to 

simulate the high-magnitude outburst flood with an excessive long model time for a short 

event at a small mountainous region of Iceland (Carrivick, 2006), which is not feasible for 

flood forecasting that requires enough lead time. In general, the current practice of the full 

hydrodynamic model is limited either at a coarse grid or in the small domains. To simulate the 

intense flooding in the forecasting system, most of the applied hydrodynamic models are yet 

too expensive to reach a decent level of spatial resolution and lead time at a large river 

catchment. 

As another critical module of the flood forecasting system, the prediction of flooding sources 

relies typically on numerical weather prediction (NWP) models that use numerical methods to 

solve 3D partial differential equations based on physical laws and quantify the sub-grid 

physical processes in the atmosphere (de Roo et al., 2003). The large-scale (global or 

continental) NWP models are widely run through supercomputers and supported by the 

government at tens or hundreds kilometre spatial resolutions. Examples include the European 

Centre for Medium Range Weather Forecasts (ECMWF) (Palmer et al., 1990), the 

Meteorological Service of Canada (MSC) (Gauthier et al., 2007), the Weather Research and 

Forecasting (WRF) Model (Done et al., 2004), and the US National Weather Service (Fread et 

al., 2002). Those NWP models have been developed since the 1980s and are now widely used 

for the large/medium-scale and long-term flood forecasting platforms, such as the European 

Flood Awareness System (EFAS) (Bartholmes et al., 2009; Thielen et al., 2009) and the 

Advanced Hydrological Prediction Services (AHPS) (Mcenery et al., 2005) giving hydrologic 

forecasts for Europe and the United States, respectively. However, to deal with the short-

range and intense flooding sources like the heavy rainfall brought by intense storms, more 
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spatially precise weather prediction is required to give local-scale forecasting information 

based on the regional atmospheric and geographical conditions. 

Although it is still challenging to run global NWP models at 1 km horizontal resolution that is 

an order of magnitude greater resolution than the current models (Bauer et al., 2015), some 

regional and short-range models have been performed at kilometre scale grids using the 

output from the global model as the boundary conditions. For example, in the UK, a unified 

model (UM) covering the British Isles has been run by the Met Office at low resolution for 

climate modelling and high resolution for regional NWP for decades (Davies et al., 2005). 

One version of the UM is the UK Variable resolution model (UKV) with a grid length of 1.5 

km. The high resolution means the impact of the local domain like enhanced rain over 

mountains can be reflected in the model, which is critical for intense rainfall forecasting. The 

performance of the UKV model has been proved to be significantly improved in terms of 

rainfall prediction compared with other coarser models (Kendon et al., 2012; Mittermaier and 

Csima, 2017).  

With scientific and technological development, it comes to be possible for hydrodynamic 

modelling with both high-resolution grid and large model domain in support of super-

computers and parallel computing (Sanders et al., 2010). More recently, the GPU-based 

acceleration techniques create a new possibility for large-scale hydrodynamic modelling 

without super-computers (Smith and Liang, 2013), suggesting that it can significantly reduce 

both the time and financial cost of full hydrodynamic flood simulation at regional scale. 

Flooding does not necessarily result in the loss of human lives or properties if it happens in an 

area without human activities. Therefore, the final concern of the public and the government 

is the outcome of flooding rather than the flooding itself. While most of the current 

forecasting system focuses on flood prediction, few cases can be found to estimate the 

disaster loss due to the predicted flooding in advance. However, it is necessary to extend the 

flood forecasting system with vulnerability models to predict the outcome of flooding that is 

more valuable to the residents and the authorities of disaster prevention and mitigation. 

2.6 Summary 

According to the literature reviews in the previous sections, the research gaps of multi-hazard 

risk assessment and forecast are identified as follows 
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• Most of the current multi-hazard assessments ignore the dependence of the occurrence 

of hazards or only focus on the bivariate correlations. However, it is essential to 

consider the dependence of all the related hazards and quantify the joint frequency of 

the concurrence of multiple hazards in the risk assessment framework. Therefore, the 

first objective is to analyse the dependence and joint probability of the three water-

related hazards. 

• The hazard interactions are ignored or over-simplified in most of the existing analyses 

of multi-hazard risk. Physically-based models like the hydrodynamic model for water-

related hazards are needed in the simulation of the interaction processes. Therefore, 

the second objective of this thesis is to simulate the physical process of multi-hazard 

flooding via a 2D hydrodynamic model. 

• Few cases of multi-hazard risk assessment can produce fully quantitative results with 

the proper consideration of hazard dependence and interactions. But the quantitative 

assessment shown as risk curves is more valuable than the qualitative risk ranks and 

semi-quantitative risk indexes in the practice of disaster risk management. Therefore, 

the third objective is to develop a quantitative assessment framework to calculate 

multi-hazard disaster risks. 

• The current flood forecasting systems tend to be complicated with a series of models 

with various empirical parameters and assumptions that can limit their application in 

unprecedented events with high physical dynamics and raise the uncertainties across 

the different modules. Few applications can be found to provide flood risk forecasting 

according to the predicted inundation and vulnerability functions, which are very 

meaningful to flood-prevention and risk management. Therefore, the fourth objective 

of this study is to extend the application of the proposed risk assessment framework to 

real-time risk forecasting.  

These research gaps will be investigated and addressed in this thesis. 
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Chapter 3. Methodology 

3.1 Introduction 

This chapter is to introduce the structure of the proposed multi-hazard risk assessment 

framework and all of the involved methods. As shown in Figure 3-1, the multi-hazard risk 

assessment framework consists of four integrated modules including hazard frequency 

analysis, hydrodynamic flood simulation, vulnerability analysis, and multi-hazard risk 

assessment. The framework aims to provide an integrated methodology for quantitative 

assessment of multi-hazard risk that can consider the dependence and physical interactions 

between the associated hazards. 

 
Figure 3-1. The structure of methodology for multi-hazard risk assessment 

Heavy rainfall, extreme river flow and storm surge are the three identified hazards that may 

lead to potential flood disasters in the coastal and riverine regions. The dependence of the 

three individual hazards is evaluated to generate the joint multi-hazard probability distribution 

of the multi-hazard. Asymptotic dependence (Coles et al., 2000) and Copula theory (Nelson, 

1999) are applied in this module. A high-performance 2D hydrodynamic model (Liang, 2010; 
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Xia et al., 2017) is employed to simulate flood inundations associated with designed multi-

hazard events to produce probabilistic inundation maps. The vulnerability module will 

provide the hazard-damage function of properties and their exposure, supported by loss data 

from the Multi-Coloured Manual (MCM) (Penning-Rowsell et al., 2013) and the property 

data from the National Property Dataset (NPD) and the Digimap. The risk assessment module 

combines the results of hazard and vulnerability analysis to predict the potential loss and 

generate quantitative risk curves and maps for use by decision-makers and at-risk residents.  

3.2 Measuring dependence 

Dependence is the statistical relationship between two or more random variables, indicating 

the extent to which the value of one variable is affected by or reliant on another variable. As 

the positive or negative dependence between variables may increase or decrease the 

probability of occurrence of joint extremes, dependence analysis is an essential step for 

estimating joint probability distributions of multivariate events. 

3.2.1 Asymptotic dependence 

Asymptotic dependence is a general and quantitative measure for the whole dataset and 

facilitates the selection of an extreme threshold to generate the joint extreme sample. A 

method for investigating bivariate asymptotic dependence is developed by Coles et al. (2000), 

which is capable of quantifying the dependence level at various extreme thresholds. The 

asymptotic dependence measure χ is defined as the probability of one variable exceeding a 

certain limit given that the other is over that limit. For paired random variables (𝑋𝑋,𝑌𝑌), χ may 

be given by equation (3-1) 

 χ = lim
𝑢𝑢→1

𝑃𝑃(𝐺𝐺(𝑌𝑌) > 𝜒𝜒|𝐹𝐹(𝑋𝑋) > 𝜒𝜒) (3-1) 

where 𝐹𝐹(𝑋𝑋) and 𝐺𝐺(𝑌𝑌) are the marginal distributions of 𝑋𝑋 and 𝑌𝑌 respectively, 𝜒𝜒 is the 

probabilistic extreme threshold within the interval [0,1]. The degree of dependence between 

𝑋𝑋 and 𝑌𝑌 increases when the value of χ moves from 0 to 1, with χ = 1 indicating total 

dependence and χ = 0 being full independence (Svensson and Jones, 2002). If a quantity 

χ(𝜒𝜒) is defined as a function of threshold 𝜒𝜒 as  
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 χ(𝜒𝜒) = 2 −
ln (𝑃𝑃{𝐹𝐹(𝑋𝑋) ≤ 𝜒𝜒,𝐺𝐺(𝑌𝑌) ≤ 𝜒𝜒})

ln (𝑃𝑃{𝐹𝐹(𝑋𝑋) ≤ 𝜒𝜒})
 (3-2) 

the dependence measure χ = lim
𝑢𝑢→1

χ(𝜒𝜒). The properties of dependence measures χ and χ(𝜒𝜒) are 

summarized by Reiss and Thomas (2007, p75), as follows: 

• χ and χ(𝜒𝜒) are asymmetric in 𝑋𝑋 and 𝑌𝑌; 

• the range of χ is between 0 and 1; 

• if 𝑋𝑋 and 𝑌𝑌 are stochastically independent, χ(𝜒𝜒) = 1 − 𝜒𝜒 and χ = 0; therefore, 

independence implies tail independence or extreme independence; 

• if 𝑋𝑋 =  𝑌𝑌, then χ(𝜒𝜒) = 1 and χ = 1. 

However, when analysing χ based on observations, the empirical estimation χ always tends to 

be zero as the threshold approaches one because of the decreasing sample size when the 

extreme threshold gets higher. The left panel of Figure 3-2 shows the estimated χ(𝜒𝜒) of a 

series of random samples derived from the bivariate standard normal distribution with 

correlation values ρ = 0.9, 0.8, … ,−0.9, respectively. A higher correlation value corresponds 

to a higher χ(𝜒𝜒) estimation line towards the positive vertical axis in the figure. For all the 

lines with positive dependence, χ(𝜒𝜒) experiences a sudden drop when 𝜒𝜒 approaches 1. 

Moreover, χ(𝜒𝜒) for negative dependence is converging to zero much quicker than for positive 

dependence as 𝜒𝜒 is getting higher. Minimal gaps between different negative lines can be 

observed when 𝜒𝜒 > 0.9, making it hard to distinguish the different levels of negative 

dependence.  

In order to avoid the aforementioned limitations of χ, Coles et al. (2000) introduced a second 

dependence measure �̅�𝜒 based on survivor functions, defining 

 �̅�𝜒 (𝜒𝜒) =
2 ln(𝑃𝑃{𝐹𝐹(𝑋𝑋) > 𝜒𝜒})

ln (𝑃𝑃{𝐹𝐹(𝑋𝑋) > 𝜒𝜒,𝐺𝐺(𝑌𝑌) > 𝜒𝜒})
− 1 (3-3) 

then �̅�𝜒  = lim
𝑢𝑢→1

�̅�𝜒 (𝜒𝜒). When 𝜒𝜒 → 1, �̅�𝜒(𝜒𝜒) converges to 1, indicating the increase of 

dependence degree, and �̅�𝜒 = 0 means the asymptotic independence. The properties of �̅�𝜒 and 

�̅�𝜒(𝜒𝜒) are summarised by Reiss and Thomas (2007, p323) as: 

• �̅�𝜒 and �̅�𝜒(𝜒𝜒) are symmetric for 𝑋𝑋 and 𝑌𝑌; 
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• �̅�𝜒 and �̅�𝜒(𝜒𝜒) range between -1 to 1; 

• if 𝑋𝑋 =  𝑌𝑌, then �̅�𝜒 = 1. 

 
Figure 3-2. The dependence measures 𝜒𝜒(𝜒𝜒) (a) and �̅�𝜒 (𝜒𝜒) (b) for bivariate standard normal 

distribution with various correlation values 𝜌𝜌 = 0.9, 0.8, … ,−0.9 

The dependence measure �̅�𝜒(𝜒𝜒) for the random sample from bivariate standard normal 

distributions with correlation values from ρ = 0.9 to ρ = −0.9 is illustrated in Figure 3-2 (b). 

�̅�𝜒(𝜒𝜒) is converging to 1 as 𝜒𝜒 → 1 but remains stable and it is almost linear at the high 

threshold level. In comparison with Figure 3-2 (a), the difference between the negative 

dependence lines and the independence line (ρ = 0) becomes more prominent. 

In general, the measures (χ, �̅�𝜒) can be paired to quantify the dependence between variables.  

(χ > 0, �̅�𝜒 = 1) represents the asymptotic dependence utilizing the value of χ to measure the 

dependence. (χ = 0, �̅�𝜒 < 1) indicates the asymptotic independence using the value of �̅�𝜒 to 

measure the dependence (Coles et al., 2000). In equations (3-2) and (3-3), 𝜒𝜒 is the non-

exceedance probability threshold of the two random variables, and (χ, �̅�𝜒) can be estimated 

based on any threshold value. The selection of threshold should ensure that the sample size of 

observations above the threshold is large enough for statistical analysis and the observations 

exceeding the limit are rare enough to be treated as extreme or hazardous events (Svensson 

and Jones, 2002). For dependence analysis of daily data, the characteristic of annual 

maximum series and daily point-over-threshold (POT) series are often used as a reference for 

threshold selection (Petroliagkis, 2018; White, 2007). 

The dependence measures (χ, �̅�𝜒) are estimated based on empirical observations. The 

significance testing is performed with a permutation method (Anderson and Braak, 2003). 

The method randomly generates a large number of datasets for which the independent 

(a) (b) 
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variables would hold. And the dependence measure, for instance, χ, is calculated based on the 

new datasets to obtain a sample of χ that may appear from the independent dataset. If the χ 

derived from the original observations is significantly different from the sample of randomly 

obtained χ, the original observations are recognised as not independent. To maintain the 

seasonality of variables, the observations are divided into year blocks and the sequence of 

records inside a year is kept intact. Then the record series of one variable is fixed while the 

year blocks of record from the other variable are resampled without replacement and 

combined with the first series to generate a paired dataset. The resampling is duplicated a 

certain number of times and a χ value for each resample can be estimated. All the estimated 

values based on resampled observations are regarded as the random sample of variable χ. 

Then, the 5% non-exceedance value of the random sample is the 5% significance level of χ. If 

the original χ is higher than the 5% non-exceedance value, the dataset is regarded to be 

asymptotic dependent at 5% significance level, and vice versa. 

It is also necessary to compute the confidence interval of the dependence measures to provide 

more information about the randomness of dependence. The calculation of confidence interval 

for (χ, �̅�𝜒) is similar to the significance testing. A resample procedure based on yearly blocks 

of observation is performed with the replacement of each variable, which means some years 

can be selected more than once and some are not chosen in a sample. All the values of the 

dependence measure derived from resampled datasets are sorted, and their 2.5% and 97.5% 

non-exceedance probability points correspond to the lower and upper limits of the 95% 

confident interval respectively.   

3.2.2 Rank-based measures of dependence 

The asymptotic dependence measures provide a general view of dependence at continuous 

thresholds that are identical for each variable. However, the magnitude values derived from 

the same limit for different hazards may represent the distinct degree of threat. The rank-

based measures are generally used to extract extreme samples from the whole observation set, 

and the selection of extreme events can be based on different threshold levels for each 

variable. Spearman’s ρ and Kendall’s τ are the classic nonparametric measures that can 

quantify the statistical dependence between the ranks of different variables and do not rely on 

any assumptions of their marginal or joint distributions. 

The detailed introduction of these two measures is given by Genest and Favre (2007). 

Suppose that {(𝑥𝑥1,𝑦𝑦1) … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)} represents a random sample with n observations given 
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from a pair of the continuous random variable (𝑋𝑋,𝑌𝑌). The corresponding ranks of (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) are 

denoted by (𝑅𝑅𝑖𝑖, 𝜌𝜌𝑖𝑖). Then Spearman’s ρ is defined as 

 ρ =
∑ (𝑅𝑅𝑖𝑖 − 𝑅𝑅�)(𝜌𝜌𝑖𝑖 − 𝜌𝜌̅)𝑛𝑛
𝑖𝑖=1

�∑ (𝑅𝑅𝑖𝑖 − 𝑅𝑅�)2𝑛𝑛
𝑖𝑖=1 ∑ (𝜌𝜌𝑖𝑖 − 𝜌𝜌̅)2𝑛𝑛

𝑖𝑖=1

 (3-4) 

where 𝑅𝑅� and 𝜌𝜌̅ are the average value of 𝑅𝑅𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑖𝑖 respectively. The range of ρ is [−1,1] and 

the value closer to 1 or -1 means higher positive or negative monotonic dependent 

relationships between the random variables. If the null hypothesis is the independence 

between 𝑋𝑋 and 𝑌𝑌, then the distribution of Spearman’s rho should be close to normal with zero 

mean and variance 1/(𝑎𝑎 − 1). So, the test statistic for Spearman’s rho is √𝑎𝑎 − 1|𝜌𝜌�|. 

Kendall’s tau is defined based on the concept of concordance that indicates the relation of two 

pairs of observations. The pairs (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) and (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) are regarded as concordant if 

�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗� > 0 and discordant if �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗� < 0, assuming the probability of 

appearance of ties is zero as the variables are continuous. Then Kendall’s tau can be defined 

as 

 τ =
𝑃𝑃 − 𝑄𝑄

𝑎𝑎(𝑎𝑎 − 1)/2
 (3-5) 

where 𝑃𝑃 and 𝑄𝑄 are the numbers of concordant and discordant pairs respectively. The range of 

Kendall’s tau is also from -1 to 1, 𝜏𝜏 = 1 means the perfect agreement of paired rankings, and 

𝜏𝜏 = −1 means complete disagreement of the paired rankings. The test statistic for 𝜏𝜏 under the 

null hypothesis of independence is given as �9𝑛𝑛(𝑛𝑛−1)
2(2𝑛𝑛+5)

|�̂�𝜏|.  

3.3 Joint probability analysis and copula function 

3.3.1 Copula function 

Joint probability distribution provides the quantitative information about statistical behaviour 

between multiple variables, which is crucial for multi-hazard analysis. Let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑑𝑑 be 𝑎𝑎 

continuous random variables with marginal distribution functions 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑑𝑑  respectively. 

The joint cumulative distribution function of those multiple variables can be denoted by 
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 𝐻𝐻(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) = 𝑃𝑃{𝑋𝑋1 ≤ 𝑥𝑥1,𝑋𝑋2 ≤ 𝑥𝑥2, … ,𝑋𝑋𝑑𝑑 ≤ 𝑥𝑥𝑑𝑑} (3-6) 

If the random variables are fully independent between each other, then 

 𝐻𝐻(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) = �𝐹𝐹𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

 (3-7) 

When the hazard variables are not independent, which is more natural in the real world, the 

combination from all the marginal distributions to the joint distribution is not as 

straightforward as equation (3-7) shows. Instead, a function called copula (Nelson, 1999) is 

introduced to build the relationship of the combination as follows: 

 𝐻𝐻(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) = 𝐶𝐶[𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2), … ,𝐹𝐹𝑑𝑑(𝑥𝑥𝑑𝑑)] (3-8) 

According to Sklar’s theorem (Sklar, 1959), the copula function is uniquely determined when 

the joint and marginal distribution are given. The copula is a widely used tool for multi-

variable modelling in many fields. The main advantage of applying copula in the multi-hazard 

analysis is that the univariate distribution of each hazard variable is not necessarily from the 

same parametric family. A well-fitted copula function together with marginal distributions of 

a single hazard make it possible to generate an analytical joint distribution function for 

multiple variables and then use it for joint frequency analysis. 

3.3.2 Joint probability distribution based on copulas 

To build the joint probability distribution of multiple variables with a Copula function, the 

typical procedures are 

• Fit the marginal distribution of each variable, 

• Test multivariate independence, 

• Construct Copulas, 

• Perform Goodness-of-fit test for Copulas, 

• Select the best-fitted copula and generate joint distribution function. 

The first step is to find the appropriate univariate distribution function to fit the observations 

from every single hazard. Step 2 is to estimate whether it is necessary to apply non-

independent copula functions for the multiple variables. A test process for multivariate mutual 
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independence is introduced by (Genest and Rémillard, 2004), and the test statistic is defined 

as 

 𝐼𝐼𝑛𝑛 = � 𝑎𝑎[𝐶𝐶𝑛𝑛(𝒖𝒖) −�𝜒𝜒𝑖𝑖

𝑑𝑑

𝑖𝑖=1

]2

[0,1]𝑑𝑑

𝑎𝑎𝒖𝒖 (3-9) 

where 𝒖𝒖 = [𝜒𝜒1, 𝜒𝜒2, … ,𝜒𝜒𝑑𝑑] is the vector of marginal distributions, 𝜒𝜒𝑖𝑖 = 𝐹𝐹𝑖𝑖(𝑥𝑥𝑖𝑖), 𝑎𝑎 is the number 

of observations for each variable, 𝑎𝑎 is the dimension of the variable, and 𝐶𝐶𝑛𝑛 is the empirical 

copula. The null hypothesis for the test of independence is that all the components of the 

vector of random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑑𝑑 are mutually independent, which means the copula 

function of these variables is 𝐶𝐶(𝒖𝒖) = ∏𝜒𝜒𝑖𝑖  based on Equation (3-7). If the null hypothesis is 

rejected, it is necessary to explore a suitable copula with a certain degree of dependence to fit 

the joint probability distribution of the multiple variables. 

Normally, a copula function has at least one or more parameters. There are several non-

parametric approaches to estimate the parameters of copulas relying on the ranks of 

observations, including the inversion Kendall’s Tau estimator, the inversion Spearman’s Rho 

estimator, and the maximum pseudo-likelihood estimator. The last one is especially efficient 

and widely used in parameter estimation for multidimensional copulas (Genest and Favre, 

2007). Suppose that a one-parametric copula 𝐶𝐶𝜃𝜃 with density function 𝑐𝑐𝜃𝜃 is selected in the 

joint probability analysis for trivariate random variables (𝑋𝑋,𝑌𝑌,𝑍𝑍) with a sample of 𝑎𝑎 

observations (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) and their ranks are (𝑅𝑅𝑖𝑖, 𝜌𝜌𝑖𝑖,𝑇𝑇𝑖𝑖). The likelihood function is defined as 

 𝐿𝐿(𝜃𝜃) = �𝑙𝑙𝑎𝑎 �𝑐𝑐𝜃𝜃(
𝑅𝑅𝑖𝑖

𝑎𝑎 + 1
,
𝜌𝜌𝑖𝑖

𝑎𝑎 + 1
,
𝑇𝑇𝑖𝑖

𝑎𝑎 + 1
)�

𝑛𝑛

𝑖𝑖=1

 (3-10) 

As there are many different families of copulas available, such as Gaussian copula, Placket 

copula, Student’s t copula, and Archimedean copulas. The one-parameter Archimedean 

copulas are most widely used in joint probability analysis as they are easy to construct, and 

serval software packages are available for their parameter estimation. The expressions of four 

types of Archimedean copulas are given in Table 3-1 with bivariate and trivariate cumulative 

distribution functions. Figure 3-3 illustrates the bivariate CDF distributions of the four types 

of Archimedean copulas. 
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Figure 3-3. Contour plots of four types of bivariate Archimedean copulas.  

Table 3-1. One parameter bivariate and trivariate Archimedean copulas. 

Copula 
family 

Bivariate CDF  

𝐶𝐶𝛼𝛼(𝜒𝜒, 𝑣𝑣) 

Trivariate CDF 

 𝐶𝐶𝛼𝛼(𝜒𝜒, 𝑣𝑣,𝑤𝑤) 
Range of 
parameter 

Clayton (1 + (𝜒𝜒−𝛼𝛼  −  1 + 𝑣𝑣−𝛼𝛼  
−  1))−1/𝛼𝛼 (𝜒𝜒−𝛼𝛼 + 𝑣𝑣−𝛼𝛼 + 𝑤𝑤−𝛼𝛼 − 2)−1/𝛼𝛼 [1, +∞) 

Frank 
−

1
𝛼𝛼
𝑙𝑙𝑎𝑎(1

+
(𝑒𝑒−𝛼𝛼𝑢𝑢 − 1)(𝑒𝑒−𝛼𝛼𝛼𝛼 − 1)

(𝑒𝑒−𝛼𝛼 − 1)
) 

−
1
𝛼𝛼
𝑙𝑙𝑎𝑎(1

+
(𝑒𝑒−𝛼𝛼𝑢𝑢 − 1)(𝑒𝑒−𝛼𝛼𝛼𝛼 − 1)(𝑒𝑒−𝛼𝛼𝛼𝛼 − 1)

(𝑒𝑒−𝛼𝛼 − 1)2
− 2) 

(−∞, 0)
∪ (0, +∞) 

Gumbel exp (−[(−𝑙𝑙𝑎𝑎𝜒𝜒)𝛼𝛼
+ (−𝑙𝑙𝑎𝑎𝑣𝑣)𝛼𝛼]1/𝛼𝛼 

exp (−[(−𝑙𝑙𝑎𝑎𝜒𝜒)𝛼𝛼 + (−𝑙𝑙𝑎𝑎𝑣𝑣)𝛼𝛼
+ (−𝑙𝑙𝑎𝑎𝑤𝑤)𝛼𝛼]1/𝛼𝛼) [1, +∞) 

AMH 
𝜒𝜒𝑣𝑣

1 − 𝛼𝛼(1 − 𝜒𝜒)(1 − 𝑣𝑣)
 

𝜒𝜒𝑣𝑣𝑤𝑤
1 − 𝛼𝛼(1 − 𝜒𝜒)(1 − 𝑣𝑣)(1− 𝑤𝑤)

 [−1,1) 

Note: 𝛼𝛼 is the parameter and 𝜒𝜒, 𝑣𝑣,𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤 are the marginal distributions 

The goodness-of-fit test is a necessary step to judge whether the selected copulas are fitted 

well enough at a significance level. The test is based on a null hypothesis that the selected 

copula is the valid one for the observations. There are several approaches (Genest et al., 2009) 

available for the goodness-of-fit test while the one based on multiplier central limit theorems 

introduced by Kojadinovic and Yan (2011) has the best efficiency. A copula R package is 

developed for modelling multivariate distributions with functions including the test of 

(a) (b) 

(c) (d) 
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multivariate independence, estimation of parameters, goodness-of-fit test, and random number 

generation (Kojadinovic and Yan, 2010; Yan, 2007). 

However, it is still possible that more than one type of copulas can pass the goodness-of-fit 

test. The most straightforward way of copula selection is to compare the average Euclidean 

square distance between the empirical copula and the fitted copula. The type of copula with 

the minimum error distance is regarded as the best-fitted one (Zhang et al., 2006). 

3.3.3 Joint return period and extreme scenarios 

The return period, which means a measure of the rarity of an event and sometimes referred to 

as the recurrence interval, is often used to quantify the probability of occurrence of hazards 

above a specific magnitude. For a single hazard indicated by a random variable 𝑋𝑋, the return 

period 𝑇𝑇(𝑥𝑥) is the expected recurrence time of the event that 𝑋𝑋 is larger than 𝑥𝑥, defined as 

 𝑇𝑇(𝑥𝑥) =
𝑀𝑀𝑡𝑡

𝑃𝑃{𝑋𝑋 > 𝑥𝑥} =
𝑀𝑀𝑡𝑡

1 − 𝐹𝐹𝑋𝑋(𝑥𝑥)
 (3-11) 

where 𝑀𝑀𝑡𝑡 is the average reoccurrence time of the hazard event (typically given in years) that 

equals the time span of the events divided by the number of events.  

When dealing with concurrent events with multiple hazards, the different types of hazard 

combinations should be considered. Normally, sample points located at the upper set of the 

variable(s) are regarded as extreme events that may cause disasters. For bivariate analysis, the 

relation of the hazard combinations is categorized as three scenarios according to the extreme 

methods (Zheng et al., 2014). When extended into the multivariate analysis, Salvadori et al. 

(2016) used a copula-based framework to deal with the extreme scenarios of the hazard 

combinations. The trivariate extreme scenarios can be illustrated in Figure 3-4 as four types: 

(a) “And” scenario that each variable should be larger than the threshold; (b) “Or” scenario 

that either one of the variables is larger than the threshold; (c) “Kendall” scenario that the 

sample points located in the upper set defined by a Kendall distribution function layer; and (d) 

“Survival Kendall” scenario that sample points located in the lower set defined by a survival 

Kendall distribution function layer. A narrow definition of multi-hazard disaster is that the 

disaster is contributed to by all the related hazards exceeding the extreme level, but any single 

extreme hazard does not necessarily lead to a disaster, which corresponds to scenario (a) or 

(d). However, single hazard events can be more frequent than joint events in reality. Thus, a 

generalised multi-hazard issue that considers all of the combinations of hazards including the 
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single-hazard events, as shown in scenario (b) or (c), is more worthwhile in disaster risk 

analysis. 

The type of critical surface in scenario (c) is the precise layer to distinguish the extreme 

events from normal observations. However, to obtain this 3D layer requires numerous 

observations or simulations for multi-hazard events, which are not usually available in 

practice. Instead, the critical layer in scenario (b) can be simply represented by analytical 

equations and can include both single and multiple extreme hazards. The extreme events 

defined by the “Or” scenario can be decomposed into six subsets, including one trivariate 

extreme set (𝑋𝑋,𝑌𝑌,𝑍𝑍), three bivariate extreme subsets{(𝑋𝑋,𝑌𝑌), (𝑋𝑋,𝑍𝑍) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑌𝑌,𝑍𝑍)}, and three 

univariate extreme subsets {𝑋𝑋,𝑌𝑌,𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍}. Thus, the return period of three variables can be 

represented by a 3D step function consisting of seven sub-functions. 

 
Figure 3-4. Extreme scenarios of trivariate combination for multiple hazards. Red surface is 

the division layer between normal (blue dot) and extreme (black star) events. The sample 
points are randomly generated from a trivariate standard normal distribution with 0.5 

correlation between each variable. 

The form of a univariate return period is as Equation (3-11) shows with 𝑀𝑀𝑡𝑡 and 𝐹𝐹𝑋𝑋(𝑥𝑥) derived 

from single-hazard extreme observations. Let (𝑋𝑋,𝑌𝑌) and (𝑋𝑋,𝑌𝑌,𝑍𝑍) be random variables 
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representing the bivariate and trivariate extreme combinations, respectively. An example of 

the bivariate joint return period function is as below 

 

𝑇𝑇𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) =
𝑀𝑀𝑡𝑡

𝑃𝑃{𝑋𝑋 > 𝑥𝑥 ∩ 𝑌𝑌 > 𝑦𝑦}

=
𝑀𝑀𝑡𝑡

1 − 𝐹𝐹𝑋𝑋(𝑥𝑥) − 𝐹𝐹𝑋𝑋(𝑦𝑦) + 𝐹𝐹𝑋𝑋,𝑋𝑋(𝑥𝑥,𝑦𝑦)

=
𝑀𝑀𝑡𝑡

1 − 𝐹𝐹𝑋𝑋(𝑥𝑥) − 𝐹𝐹𝑋𝑋(𝑦𝑦) + 𝐶𝐶(𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑋𝑋(𝑦𝑦))
 

(3-12) 

where 𝐹𝐹𝑋𝑋(𝑥𝑥) and 𝐹𝐹𝑋𝑋(𝑦𝑦) are the marginal distribution of 𝑋𝑋 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 respectively, 𝑀𝑀𝑡𝑡 is the 

average recurrence interval of bivariate extreme events, and 𝐶𝐶(. . ) is the bivariate copula of 

𝐹𝐹𝑋𝑋(𝑥𝑥) and 𝐹𝐹𝑋𝑋(𝑦𝑦). Similarly, the trivariate joint return period of (𝑋𝑋,𝑌𝑌,𝑍𝑍) can be defined as 

 𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋 =
𝑀𝑀𝑡𝑡

𝑃𝑃{𝑋𝑋 > 𝑥𝑥 ∩ 𝑌𝑌 > 𝑦𝑦 ∩ 𝑍𝑍 > 𝑧𝑧}
=

𝑀𝑀𝑡𝑡

1 − 𝐹𝐹�𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
 (3-13) 

where 𝐹𝐹�𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐹𝐹𝑋𝑋(𝑥𝑥) − 𝐹𝐹𝑋𝑋(𝑦𝑦) − 𝐹𝐹𝑋𝑋(𝑧𝑧) + 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) + 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑧𝑧) + 𝐹𝐹𝑋𝑋𝑋𝑋(𝑦𝑦, 𝑧𝑧) +

𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑋𝑋(𝑦𝑦),𝐹𝐹𝑋𝑋(𝑧𝑧) are the univariate margins, 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦),𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑧𝑧),𝐹𝐹𝑋𝑋𝑋𝑋(𝑦𝑦, 𝑧𝑧) 

are the bivariate margins, 𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the trivariate joint distribution, and 𝑀𝑀𝑡𝑡 is the 

recurrence interval of the three-hazard events. Both the bivariate margins and trivariate 

distributions can be obtained based on their corresponding bivariate and trivariate copula 

functions and the univariate margins.  

For a given return period, according to Equations (3-11), (3-12) and (3-13), a number of 

random events can be generated with the same return period but various strengths for every 

single variable. Those events can be used to do risk analysis under the framework of multiple 

hazards. Therefore, the joint return period based on copula plays a vital role in multi-hazard 

risk assessment.  

3.4 Hydrodynamic model for multi-hazard flood simulations 

Among the different types of flood simulation models, hydrodynamic models are considered 

to provide high simulation accuracy and require less effort in model calibration. However, it 

is also acknowledged to be computational demanding for large-scale simulations. Thus, the 

application of hydrodynamic models is normally restricted to small catchments or operated on 

coarse spatial resolutions. With the recent technical progress in high-performance computing, 

it has now become realistic to employ hydrodynamic models to support large-scale flood 
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modelling across an entire catchment or city with required performance and accuracy, 

especially after GPU-based acceleration techniques are introduced to hydrodynamic 

modelling. As a large number of simulations and quantitative results of flood depth and extent 

for the whole research domain are needed to support risk assessment in this thesis, the 

recently developed High-Performance Integrated hydrodynamic Modelling System (HiPIMS) 

(Liang and Smith, 2015; Xia et al., 2017) is adopted for flood modelling, which is 

implemented using the NVIDIA CUDA platform to achieve multi-GPU high-performance 

computing. 

3.4.1 Governing equations and numerical scheme 

In a flood event, the water depth is generally much smaller than the horizontal inundation 

extent. The 2D depth-averaged models based on Shallow Water Equations (SWEs) provide a 

rigorous mathematical framework for the simulation of regional flood inundation. A matrix 

form of the SWEs can be written as 

 
𝜕𝜕𝐪𝐪
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐟𝐟
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝐠𝐠
𝜕𝜕𝑦𝑦

= 𝐑𝐑 + 𝐒𝐒b + 𝐒𝐒f (3-14) 

where 𝜕𝜕 denotes the time, 𝑥𝑥 and 𝑦𝑦 are the Cartesian coordinates, 𝐪𝐪 is a vector containing the 

conserved flow variables, f and g are the flux vectors in the 𝑥𝑥 and 𝑦𝑦 direction, and 𝐑𝐑, 𝐒𝐒b and 

𝐒𝐒f are the source terms representing the rainfall/infiltration rate, bed slope and friction effect, 

respectively. The vector terms are given by 

 𝐪𝐪 = �
ℎ
𝜒𝜒ℎ
𝑣𝑣ℎ
� , 𝐟𝐟 = �

𝜒𝜒ℎ

𝜒𝜒2ℎ +
1
2
𝑔𝑔ℎ2

𝜒𝜒𝑣𝑣ℎ

� , 𝐠𝐠 = �

𝑣𝑣ℎ
𝜒𝜒𝑣𝑣ℎ

𝑣𝑣2ℎ +
1
2
𝑔𝑔ℎ2

� (3-15) 

 𝐑𝐑 = �
𝑅𝑅 + 𝐼𝐼

0
0

� , 𝐒𝐒b =

⎣
⎢
⎢
⎢
⎡

0

−𝑔𝑔ℎ
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

−𝑔𝑔ℎ
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦⎦
⎥
⎥
⎥
⎤

, 𝐒𝐒f =

⎣
⎢
⎢
⎢
⎡

0
−
𝜏𝜏𝑏𝑏𝑏𝑏
𝜌𝜌

−
𝜏𝜏𝑏𝑏𝑏𝑏
𝜌𝜌 ⎦
⎥
⎥
⎥
⎤
 (3-16) 

where ℎ is the water depth; 𝜒𝜒 and 𝑣𝑣 denote the two depth-averaged velocities in 𝑥𝑥- and 𝑦𝑦-

direction,  respectively; 𝐑𝐑 is the rainfall rate; 𝐼𝐼 is the infiltration rate; 𝜌𝜌 is the water density, 𝑔𝑔 

is the acceleration of gravity, and 𝜏𝜏𝑏𝑏𝑏𝑏 and 𝜏𝜏𝑏𝑏𝑏𝑏 are the frictional stresses estimated using the 

Manning formula:  
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 𝜏𝜏𝑏𝑏𝑏𝑏 = 𝜌𝜌𝐶𝐶𝑓𝑓𝜒𝜒�𝜒𝜒2 + 𝑣𝑣2 and 𝜏𝜏𝑏𝑏𝑏𝑏 = 𝜌𝜌𝐶𝐶𝑓𝑓𝑣𝑣�𝜒𝜒2 + 𝑣𝑣2 (3-17) 

where 𝐶𝐶𝑓𝑓 = 𝑔𝑔𝑎𝑎2 ℎ1 3⁄⁄  is the coefficient of bed roughness with 𝑎𝑎 being the Manning 

coefficient. 

A Godunov-type finite volume scheme presented by Liang (2010) is used initially to solve the 

above SWEs in HiPIMS. Recently, the numerical scheme is improved by Xia et al. (2017) 

with the application of an innovative surface reconstruction method (SRM) for computing 

slope source terms more accurately, and a novel implicit discretisation method for handling 

the highly nonlinear friction terms, to maintain numerical stability at small water depth. 

Compared with the traditional CPU-based approaches, the GPU-accelerated models have 

been proved to be far more efficient in solving the SWEs for large-scale simulations (Smith 

and Liang, 2013). HiPIMS was developed to run on multiple GPUs for computationally 

efficient high-resolution simulation of multi-source flooding across large domains. The device 

available for executing HiPIMS in this work are four NVIDIA K40 and two NVIDIA K80 

GPUs. 

3.4.2 Model parameters and basic assumptions 

The simulation results of a hydrodynamic model are sensitive to the grid resolution. For flood 

simulation in urban areas, the resolution should be as high as possible to reflect buildings, 

walls, embankments, and kerbs that may affect the overland flow. However, as HiPIMS is 

based on uniform grids and a self-adaptive time step, to halve the grid size can result in an 

eightfold increase in simulation time. Therefore, it is necessary to test the sensitivity of grid 

size in the research domain to find the largest acceptable grid size to ensure simulation 

accuracy but reduce the computation expense.  

The initial conditions of water depth and velocity at each grid resolution may have an impact 

on the result of flood simulation, especially for short-time flooding. To set up the model, 

appropriate initial conditions need to be generated. For real-world modelling, the initial 

conditions can be obtained by running the model with observed rainfall/boundary conditions 

for several days before the events.  

Unlike hydrological models, there are not many parameters to be calibrated in HiPIMS. The 

most critical parameter is the Manning coefficient that represents the roughness of the ground 

surface resisting flood flows. The selection of Manning coefficient is generally based on the 
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landuse types but also influenced by many detailed characteristics of domain surfaces. The 

Manning coefficient in HiPIMS will be selected by following the guidelines suggested by 

Chow (1959) and be further adjusted by comparing simulation results with observations. 

Infiltration rate is another parameter that can be defined in HiPIMS. As surface soil usually 

becomes wet and saturated quickly during extreme events, the infiltration rate is assumed to 

be zero in the HiPIMS simulations to avoid extra parameter adjustment. Surface flow can be 

reduced by a well-designed and functional drainage system during a flooding event. HiPIMS 

is a one-layer surface model that uses permeable DEM cells implemented underneath street 

networks to conceptually represent the underground drainage pipes. 

3.5 Vulnerability and multi-hazard risk analysis 

Apart from hazard analysis, the appraisal of vulnerability and exposure are the other two 

essential modules of the complete risk assessment. The approaches to evaluate the 

vulnerability can be varied with the object of risk assessment, such as the experimental 

method for wooden construction (Yin and Li, 2011), the past damage or loss survey method 

for infrastructure (Kelman, 2002), and the index-based statistical method for social 

vulnerability (Ge et al., 2013). In this thesis, we use the vulnerability data and analysis 

techniques from the Multi-Coloured Manual (MCM) to quantitatively measure the potential 

loss of elements at risk. Exposure analysis is conducted to provide information about the 

types, characters, and values of the buildings and roads that are under threat from flooding. 

The data on exposure is from the national property database and Digimap. The risk analysis 

gives the probability of potential loss of a specific object or a group of objects in a defined 

spatial range. The risk can be estimated according to the hazard curve and the vulnerability 

attribute of the exposure.  

An example of a virtual property exposed to flood can show the relationship between hazard, 

vulnerability, exposure, and risk (Figure 3-5). We suppose that the exposure is a house 

located in an area that is likely to be flooded. The hazard curve in Figure 3-5 shows the 

hazard quantification in that area by the annual exceedance probability (AEP) of inundation 

depth. The vulnerability curve illustrates the potential loss of the house as a result of flooding. 

Each inundation depth corresponds to an AEP value from the hazard curve and a loss value 

from the vulnerability curve. These two variables are linked for all the hazard values to 

generate the risk curve that is a loss function indicated by the AEP. The area below the risk 

curve is the expected average annual loss of the house due to flood. 
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Figure 3-5. Examples of (a) hazard curve, (b) vulnerability curve, and (c) risk curve for a 

property exposed to flooding 

3.5.1 Multi-Coloured Manual for vulnerability analysis 

MCM is the synthesis of a series of manuals produced by the Flood Hazard Research Centre 

(FHRC) to summarise the information on the influence of flooding and coastal erosion in the 

UK. It mainly consists of the “Blue Manual” providing the assessment of flood hazards, the 

“Red Manual” appraising the indirect impact of the flood, and the “Yellow Manual” analysing 

coastal erosion and its intangible effects. The MCM was updated in 2013 by a more 

comprehensive manual with new data and improved techniques. The new version is Flood and 

Coastal Erosion Risk Management – A Manual for Economic Appraisal (Penning-Rowsell et 

al., 2013) but still known as MCM. 

MCM provides detailed vulnerability data about residential properties, non-residential 

properties, and transportation networks. The hazard variable of the vulnerability analysis 

primarily uses the inundation depth but sometimes also considers the duration of immersion, 

and the water velocity. The depth/damage functions are appraised according to many internal 

and external characteristics of the exposure, such as the house types, the building ages, the 

standard of protection, and the lead time of flood warning. The different kinds of vulnerability 

curves will be applied to the corresponding types of the exposure. The extent of detail of the 

curves used is decided by the quality of exposure data.   

3.5.2 National property dataset for exposure analysis 

The objectives of the risk assessment framework can be varied, such as human life, 

infrastructure, agriculture and so on. In this thesis, the case study focuses on buildings and 

transportation networks. The national property dataset (NPD) delivered by the Halcrow Group 

Limited in accordance with the EA aggregates the information on the geographical position 

and category of built properties in England and Wales. The detailed usages of all types of 

properties are given, and the values of non-residential properties are provided. The dataset is 

(a) (b) (c) 
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built on the base of Address point from Ordnance Survey (OS) and Rating List from the 

Valuation Office (VO). The code system of the property types is made compatible with the 

MCM codes that are associated with the typical depth/damage functions. 

As the NPD does not hold information on transportation networks, we use OS Open Roads as 

a supplement to the exposure data. OS Open Roads provides the topological and geographical 

information of the links and nodes of the UK’s road network that is made up of the significant 

national roads and the regional or county level roads. The associated attributions of the road 

link include the identification and classification information and are used to find the 

corresponding vulnerability function in the MCM. 

3.5.3 Multi-hazard risk calculation 

The risk is widely recognised as the function of hazard, vulnerability, and exposure or some 

more related risk components. The calculation method of risk is varied with the understanding 

of the concept and the purpose of the risk assessment. A simple way is to count the sum or the 

product of all risk components, which is usually found in the qualitative or semi-quantitative 

assessment that is only applicable for comparing the risk level (Kappes et al., 2012). The full 

quantitative risk is not just a fixed value but rather a function curve to show the probability of 

loss in accordance with the mathematical definition of risk. And this curve can surely be 

interpreted to a single value like the annual expected loss for comparing and mapping.  

The typical procedure to generate single-hazard risk curves is illustrated in Figure 3-5. For the 

multi-hazard issue, the hazard is a function of multiple variables. In this thesis, rainfall, river 

flow and storm surge are the three primary hazards considered, and they all lead to flood 

inundation that is the direct trigger of damage and loss. So, a trivariate hazard function of 

three primary hazards is first constructed and then the hydrodynamic model is used to find the 

relationship between the primary hazards and the terminating hazard. According to these two 

steps, the probability/inundation curve can be obtained as the final hazard function. The 

multi-hazard disaster risk curve is generated based on the last hazard function, vulnerability 

curves and exposure data. 

3.6 Summary 

This chapter has introduced the structure of the risk assessment framework and all the related 

methodologies. The framework consists of four modules. The frequency analysis module and 

flood simulation module give the probabilistic appraisement of multiple hazards. The 
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vulnerability module provides the hazard/damage curves and the information on exposure. 

The risk module combines the results from hazard and vulnerability to generate risk curves 

and provide real-time disaster loss forecasts. 

The dependence between multiple hazards is measured by asymptotical dependence and rank-

based dependence. A copula function is applied to generate the joint probability distribution 

and joint return period of multiple hazards. A GPU-accelerated 2D hydrodynamic model is 

introduced to simulate flood with the multi-hazard inputs in the large-scale and high-

resolution grid and produce inundation values for each grid cell. The exposure data of 

valuation and spatial distribution of properties is derived from NPD. The vulnerability 

analysis uses damage/depth curves from MCM to calculate disaster loss in different 

vulnerability scenarios. The quantitative multi-hazard disaster risk can be obtained by 

connecting the hazard curve and vulnerability curve. 

The multi-hazard risk assessment framework is fully quantitative and able to estimate the 

probability of loss in the research area. The framework addresses the research gaps of current 

methods regarding the analysis of dependence and the simulation of physical interactions of 

triple hazards. It provides a novel and comprehensive tool to estimate the disaster risk and can 

be applied in any region potentially impacted by fluvial, pluvial, and coastal flooding. 
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Chapter 4. Dependence and joint probability analysis for multiple hazards 

4.1 Introduction 

This chapter corresponds to the section of frequency analysis in the adopted framework of 

multi-hazard assessment (Figure 3-1), aiming to generate a joint return period function for the 

three main hazards (i.e. rainfall, river flow, and storm surge) that may cause flooding in 

Greater London, UK and its adjacent downstream region. The geographical information of the 

research area and the associated hazards are first analysed to give a general view of the hazard 

environment in the research area. Then, the asymptotic and rank-based dependence measures 

introduced at Section 3.2 are employed to investigate the potential correlation among the three 

hazards, both for the same-hazard inter-station correlation and the cross-hazard dependence. 

The joint probability distribution of the three hazards is fitted based on the marginal 

distribution of each hazard and the cross-hazard dependence using copula function. The joint 

return period can be derived from the probability distribution, which is the quantitative 

measure of the multi-hazard frequency. It can be further utilised to generate random multi-

hazard events with a given probability of occurrence, which will provide the main inputs 

required for multi-hazard flood simulations in Chapter 5. 

4.2 Data source and pre-processing 

The main sources of flood water to the Greater London catchment are river flows from the 

upstream of River Thames and River Lee, seawater from the east coast, and rainfall over the 

entire region. As shown in Figure 1-1, the locations of the gauge station are ideal for flood 

frequency analysis, with river flow recorded at Kingston and Feildes Weir, tide height at 

Sheerness, eight stage gauges along the river showing the interactions between tide and flow, 

and many weather stations inside the catchment recording daily or hourly rainfall data. 

4.2.1 River flow 

The flow from the Thames upstream basin in the west of Kingston is the main river water 

source of the study area, accompanied with the relatively lower flow from the upper 
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catchment of the River Lee gauged at Feildes Weir (see their locations in Figure 1-1). The 

River Lee is a tributary of the Thames, and the upstream catchment is about 1036 km2 in the 

north of Feildes Weir. The area of the upper Thames Catchment is around 9948 km2. Both 

Kingston and Feildes Weir gauges have long flow records that can be dated back to the 1880s. 

The daily average flow rate observations for each station and the information about the 

catchment boundary can be downloaded from the UK National River Flow Archive 

(https://nrfa.ceh.ac.uk). A summary of the daily average flow data is given in Table 4-1, 

suggesting that the daily flow at Kingston is approximately an order of magnitude higher than 

it is at Feildes Weir. 

Table 4-1. A summary of daily flow data for river gauge stations, Kingston in the Thames and 
Feildes Weir in the Lee. 

Station Period of 
record 

Daily average flow (m3/s) 

Mean Q95 Q70 Q50 Q10 

Kingston 1883-2016 65.67 7.54 22.1 40.5 161.6 

Feildes Weir 1879-2016 4.46 0.60 1.73 2.78 8.62 

Note: Q95 means 95% exceedance probability and similar hereinafter. 

Figure 4-1 displays the monthly average of daily flows at Kingston and Feildes Weir. At both 

of the two stations, a strong seasonality is shown and the mean daily flow in winter half-year 

from November to April is significantly higher than it is in the summer-half year from May to 

October, similar to the seasonality of flood events in the wider England (Macdonald, 2012). 

Therefore, the investigation of statistical behaviour of daily flow data should consider the 

influence of seasonality.  

4.2.2 Precipitation 

In the UK, the Met Office Integrated Data Archive System (MIDAS) archives and provides 

meteorological observations including daily and hourly precipitation with controlled quality. 

The rainfall records can be downloaded from the Centre for Environmental Data Analysis 

(CEDA) (http://www.ceda.ac.uk). A total number of 348 weather stations with daily 

precipitation records can be found inside the research area, and 15 of them have hourly 

precipitation recorded (see Figure 4-2). However, most of the stations have very limited time 

coverage while only 37 of them have daily rainfall records equal to or longer than 40 years as 

the typical requirement of reliable statistical analysis. These stations are categorised as “good 

stations”. A summary of the daily rainfall completeness from good stations is illustrated in 
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Figure 4-3. Although the majority of the rainfall stations seem to start recording from the 

1960s, there are still some stations like Kew and Cross Ness providing rainfall records for 

more than 100 years.  

 
Figure 4-1. Monthly average of mean daily flow at the Kingston and Feildes Weir river 

stations. 

To analyse the general spatial distribution of rainfall at the research area, the annual average 

precipitation for every “good station” is derived from the daily records. Then the station-

based yearly averages are interpolated using the Inverse Distance Weighted (IDW) method to 

generate a raster and contour map for the research area as shown in Figure 4-4. The contour 

map shows that the annual rainfall accumulation is generally similar at the west, the central, 

and the east regions of the research domain, except for the higher rainfall values at the south 

and northwest corners with higher altitudes (see Figure 1-1).  

4.2.3 Tide and Surge 

As the total sea level changes periodically under the combined influences of the gravitational 

forces exerted by the Moon, the Sun, and the rotation of the Earth, it is not reasonable to 

measure the dependence between astronomical tide and other extreme events directly. Instead, 

the tide level can be decomposed into its tidal and non-tidal components via harmony analysis 

(Pugh, 1996). The non-tidal part of sea level called surge is usually created by suitable 

meteorological conditions and therefore more likely to be correlated to other 

hydrometeorological hazards. 
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The tide station Sheerness is located at the south bank of the Thames river mouth and is 

approximately 35 km away from the east border of Greater London. It provides 1-hour or 15-

min tide and surge observations for about 38 years from 1953 to present with missing data in 

several periods (data available at the website of British Oceanographic Data Centre 

https://www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_network/). The 

monthly average height of the maximum daily surge and mean daily tide are illustrated in 

Figure 4-5. Both the tide and the surge show strong seasonality but different trends in that the 

surge tends to be higher in the cold half-year from October to March while the tide is higher 

in the second half-year from July to December.  

 
Figure 4-2. MIDIAS weather station with daily and hourly rainfall records in the research 

area. 

The location of Sheerness is ideal to provide sea level data as the boundary conditions for 

flood simulations in the model domain. However, compared with the observations of rainfall 

and river flow, the time series for tide and surge observations at Sheerness is relatively short 

which is the limitation in joint statistical analysis. Therefore, another tide station at Dover, 

located 52 km southeast of Sheerness, is considered as a supplementary choice to expand the 

time-coverage of tide and surge observations. Dover has approximately 58-year valid tide and 

surge records that can be dated back to 1924. The regression analysis is performed between 

observations in Dover and Sheerness for the max daily total water level as shown in Figure 
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4-6. The maximum daily total water level is well fitted by a linear equation from Dover to 

Sheerness but the fitting for surge experiences a greater uncertainty. In general, both the tide 

and the surge at the two stations show strong and almost linear correlations between 

Sheerness and Dover. Therefore, total water level data in Sheerness is expanded based on the 

valid observations at Dover via linear regression analysis. 

 
Figure 4-3. Durations of daily rainfall observations for the “good stations” in the research 

area. 
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Figure 4-4. Contour map of annual average rainfall in the research area. 

 
Figure 4-5. Monthly means of daily max surge and daily mean tide at Sheerness. 
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Figure 4-6. Linear regression between the observations at Dover and Sheerness for daily 

maximum tide (a) and daily maximum surge (b). 

4.3 Inter-station dependence for single hazard 

In this section, the inter-station dependence of the same hazard variable is explored, including 

river flow at gauges in the Thames and the Lee, rainfall recorded inside the research area with 

long enough time series. As Sheerness is only one tide station close to London, no inter-

station dependence for tide or surge will be considered.  

4.3.1 Dependence of river flow gauges 

The reason to investigate the dependence between Kingston and Feildes Weir is that they are 

the two main river gauges that measure the flows into the research area from west and north 

respectively. A potential positive dependence would exaggerate the severity of fluvial 

flooding in London.  

At first, the asymptotic dependence measures 𝜒𝜒 and �̅�𝜒 are applied to quantifying the 

dependence of the daily river flows recorded in the two gauges. The results are presented in 

Figure 4-7. The red line denotes 𝜒𝜒 or �̅�𝜒, the black dashed line plots the values of 5% 

significance level, and the dotted blue lines present the 95% confidence intervals. The 

significance test is performed based on the methodology described in 3.2.1 with 500 times of 

resampling with replacement, indicating that the line of 𝜒𝜒(𝜒𝜒) is considerably higher than the 

line of 5% significance level at most of the range. The confidence interval is calculated based 

on the resampling without replacement for 500 times and the results show that the variance of 

(a) (b) 
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𝜒𝜒(𝜒𝜒) and �̅�𝜒(𝜒𝜒) is convergent as 𝜒𝜒 → 1, suggesting a strong dependence of daily flows in the 

two flow gauges.  

 
Figure 4-7. Dependence measures 𝜒𝜒 and �̅�𝜒  for daily flow data at Kingston and Feildes Weir. 

If the threshold 𝜒𝜒 for 𝜒𝜒 and �̅�𝜒  is set to be the 1% exceedance probability (𝜒𝜒 = 0.99), 𝜒𝜒 =

0.340 and �̅�𝜒 = 0.579, and an extreme sample containing 138 paired values over the threshold 

can be extracted from the observation in the two gauges. The threshold 𝜒𝜒 = 0.99 

corresponding to one-year return period makes the selected events be rare enough as 

extremes, and the sample size is reasonably large for statistical analysis. Therefore, this 

sample is used to further analyse the extreme dependence based on rank-based measures.  

A scatter plot in the left panel of Figure 4-8 provides a general view of the extreme sample 

points. The right panel of Figure 4-8 is called Chi-plot, which is a graphic tool for detecting 

dependence (Fisher and Switzer, 2001). The horizontal coordinate λ shows the distance of 

each point to the median point of the whole sample and the vertical coordinate χ indicates 

how far a point is away from the null hypothesis (the two variables are independent) 

illustrated by the black dotted line. If the null hypothesis is true, around 95% of the χ values 

should lie between the two red dashed lines. According to the Chi-plot, a weak dependence 

from the extreme sample can be observed. This is also supported by the values of the two 

rank-based measures Spearman’s Rho ρ = 0.18 and Kendall’s Tau τ = 0.12 that show a 

positive dependence under the 95% significance test.  

4.3.2 Dependence of rainfall stations 

As stated in Section 4.2.2, there are 37 rainfall stations with daily records of no less than 40 

years, the daily rainfall at these stations are selected to perform dependence analysis. Every 

(a) (b) 
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station is paired with all the other stations and calculated one by one for asymptotically 

dependence measures 𝜒𝜒(𝜒𝜒) and �̅�𝜒(𝜒𝜒) at the extreme level 𝜒𝜒 = 0.99, corresponding to around 

1-year return period for a single rainfall station. Then the values of inter-station dependence 

are compared against the horizontal and vertical distances between the stations respectively. 

In Figure 4-9, the top left and right plots illustrate 𝜒𝜒 and �̅�𝜒 values against the horizontal 

distance between the stations respectively while the bottom-left and bottom-right plots depict 

the relationship between dependence measures and the vertical distance between the stations.  

From the figure, we may conclude that 1) the inter-station asymptotically dependences are 

generally high as the measure 𝜒𝜒 is generally over 0.4 and �̅�𝜒 over 0.6; 2) 𝜒𝜒 and �̅�𝜒 decrease 

when the horizontal distance between stations increases but they do not significantly change 

with the vertical distance; and 3) the interpolation method for rainfall based on horizontal 

distance will not spatially omit the extreme character as the existence of high dependence for 

extreme thresholds. 

 
Figure 4-8. Scatter plot (a) and Chi-plot (b) of joint extreme flow at Kingston and Feildes 

Weir. 

(a) (b) 
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Figure 4-9. Inter-station dependence for daily extreme rainfall at stations of London. The X-
axis represents the horizontal or vertical distance between stations and Y-axis represents the 

dependence measures 𝜒𝜒 and �̅�𝜒 estimated at level u=0.99. 

4.4 Dependence between multiple hazards 

Rainfall, river flow, and storm surge are the three hazards in consideration, and both rainfall 

and river flow have more than one recording station to provide data for analysis. According to 

the results of the inter-station analysis for the single hazard, the rainfall station has a strong 

dependence on the nearby stations and daily average flows at the two river gauges are also 

correlated to each other. Meanwhile, the flow rate at Kingston is much higher than that at 

Feildes Weir and more likely to cause flood events. So, the daily records at Kingston are 

selected as the representative variable of river flow. For rainfall, the station Cross Ness is 

chosen as the representative gauge because it provides recorded observations for a very long 

time-series and its annual amount is also close to the median rainfall value of the whole 

research area. Additionally, daily maximum surge observations at Sheerness with expanded 

records from Dover provide the only available but appropriate representative variable for 

coastal flooding. The cross-hazard dependence is investigated for the bivariate combinations 

(a) (b) 

(c) (d) 



 
63 

of rainfall vs flow, rainfall vs surge, and flow vs surge. Each pair of the variables is matched 

based on the same day observations. 

4.4.1 Asymptotic dependence 

For a given sample of bivariate random variables, the estimation of asymptotic dependence 

varies between different thresholds (White, 2007). It is essential to investigate the changing 

trend of dependence strength due to the threshold values. The asymptotic dependence 

measures 𝜒𝜒 and �̅�𝜒 are applied to give a general view of the degree of dependence at 

continuous threshold levels from 80% to 99% for all of the three hazard pairs. 

The representative rainfall station Cross Ness is around 32 km away from the river gauge 

station Thames at Kingston (see Figure 4-2). The weather systems like mild cyclones 

traversing from Wales to east England might bring simultaneous extreme observations for 

both of the stations as the catchment area of Kingston is in the west of the gauge. In contrast, 

concurrent extreme events are unlikely caused by weather systems moving from east England 

to the west. The asymptotic dependence measures χ and 𝜒𝜒� between rainfall and river flow 

over 80% percentile are illustrated in Figure 4-10. For the value of χ(𝜒𝜒), it decreases slowly 

as the threshold approaching to 1 while the uncertainty indicated by 95% confidence interval 

grows as fewer observation pairs can surpass the thresholds for both variables.  The value of 

the other measure 𝜒𝜒�(𝜒𝜒) keeps stable and is always higher than the 5% significance level. The 

𝜒𝜒�(𝜒𝜒) line is almost linear until the threshold value exceeds 98%. The results demonstrate that 

a significant and positive dependent relationship exists between daily rainfall in Cross Ness 

and daily average river flow at Kingston. 

The hazard pair of rainfall and surge is represented by the observations from rainfall station 

Cross Ness and tidal station Sheerness respectively, being around 40.5 km away from each 

other. Figure 4-11 shows the value of asymptotic dependence measures χ and 𝜒𝜒� between 

them. For χ, it decreases, and its uncertainty increases as 𝜒𝜒 approaching 1. When the threshold 

becomes larger than 95%, χ is getting closer to zero and cannot significantly indicate the 

dependence as the estimated value of χ going below the black dashed line. In contrast, 𝜒𝜒� 

drops slightly with the increase of the threshold value and its uncertainty does not enlarge 

until 𝜒𝜒 becomes larger than 96%. The results indicate a weak but statistically significant 

dependence between daily rainfall at Cross Ness and maximum daily surge at Sheerness.  
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Figure 4-10. Asymptotic dependence measures (a) χ and (b) �̅�𝜒 for daily extreme rainfall at 

Cross Ness and extreme daily Thames flow at Kingston. 

 
Figure 4-11. Asymptotic dependence measures χ and 𝜒𝜒� for daily rainfall at Cross Ness and 

daily maximum surge at Sheerness. 

The concurrence of extreme river flow and storm surge is the third hazard pair to be analysed. 

The distance between the river flow station Kingston and the tide station Sheerness is 71 km, 

larger than the distances between the observation stations of the other two hazard pairs. The 

asymptotic dependence between the river flow and the surge is illustrated in Figure 4-12. The 

value of χ equals to 0.21 when 𝜒𝜒 = 0.8 and then decreases to zero with a slightly enlarging 

uncertainty as 𝜒𝜒 becomes closer to 1. When 𝜒𝜒 > 0.95, the estimation of χ(𝜒𝜒) is not 

significant at 5% level.  The value of �̅�𝜒(𝜒𝜒) starts from a similar value to χ and does not 

obviously decrease until 𝜒𝜒 becomes close to 0.95. The 95% confidence interval of �̅�𝜒(𝜒𝜒) is 

convergent and the estimation of �̅�𝜒(𝜒𝜒) can pass the significant test when 𝜒𝜒 is not larger than 

(a) (b) 

(a) (b) 
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0.97. The results can suggest that the dependent relationship between daily average river flow 

at Kingston and daily maximum surge at Sheerness is significant. 

 
Figure 4-12. Asymptotic dependence measures 𝜒𝜒 and 𝜒𝜒� for daily average flow at Kingston 

and daily maximum surge at Sheerness. 

In summary, although the cross-hazard bivariate dependence is much lower than the value of 

inter-station and single-hazard dependence, different degrees of dependence obviously exist 

in the three hazard pairs. The dependence between rainfall and storm surge is the weakest 

among the three hazards pairs. The other two hazard pairs have a similar degree of 

dependence. However, the rainfall and river flow seem to be more reliant on each other at the 

high threshold (𝜒𝜒 > 0.95) compared with the hazard pair of rainfall and storm surge.  

 

4.4.2 Selection of extreme threshold  

The extreme part of each set of variables, instead of the entire time-series records, is of 

interest for natural hazard analysis because only the extremes are responsible for disasters. A 

certain level of threshold needs to be given to define extreme events for each hazard. Both the 

asymptotic and rank-based dependence measures are performed for any of the thresholds 

following two rules: 1) high enough to be treated as extreme, and 2) low enough to retain a 

suitable sample size. For multivariate extreme analysis, the selection of threshold should obey 

these rules for all of the component variables.  

While the time coverage of rainfall and flow records are longer than 100 years, the Sheerness 

tidal station, with expanded observations from Dover, only has valid surge records for 

approximately 60 years. Therefore, to guarantee enough extreme observations for statistical 

(a) (b) 
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analysis, the extreme threshold for each hazard combination is not identical, and neither is the 

resultant extreme sample size. Specifically, the threshold for joint rainfall and river flow can 

be high as long time-series of observations are available. In contrast, if any of them is paired 

with the surge, the threshold value needs to be lower to ensure a suitable sample size of 

observation pairs due to the relatively short time coverage of the surge data. 

In flood frequency analysis, two main types of extreme data series are generally used: the 

annual maximum (AM) series and the peaks-over-threshold (POT) series (Robson and Reed, 

1999). The AM series consists of the largest observed data in each year, which means only the 

single largest value is recorded. A POT series contains all distinct high records that are greater 

than a selected threshold. The resulting POT series is irregular; in some years there may be 

many extreme records, in other years there will be no extremes. POT is a more entire extreme 

dataset to depict flood regime than AM but is also more difficult to extract and not always 

available. Therefore, although POT is more recommended, AM is still a popular and 

pragmatic choice in many cases of flood frequency analysis when data is not adequate. In this 

research, POT series is adopted, but the selection of abstraction threshold is also assessed with 

AM series data. Five POT thresholds are defined for each hazard pairs as 

• The minimum value of the AM series (POTAMmin), which is the smallest annual 

maximum value, suggesting that each year has at least one event, but some years may 

have many; 

• The 5th percentile of the AM series (POTAM05), a high threshold representing 5% of 

the years having no extreme events; 

• The 90th percentile of the POT series (POT90); 

• The 95th percentile of the POT series (POT95); 

• The 98th percentile of the POT series (POT98). 

All the above five thresholds are applied to each pair of hazards to investigate the resultant 

univariate critical values, the extreme sample size, and the frequency of joint extreme events.  

For hazard pair of rainfall and river flow, the length of matched daily records is 103 years (a 

natural year with no more than one-third of missing daily records). Table 4-2 shows the 

selections of the threshold for daily rainfall at Cross Ness and daily average river flow at 

Kingston and lists the corresponding univariate threshold of each hazard, the number of single 

and joint extreme events, and the average annual frequency of joint extremes. It is clear that 

for any universal threshold, the number of joint extreme events is much smaller than the 
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number of extreme observations for every single hazard. As the time-series of matched daily 

records is long, even the high thresholds like POTAM05 and POT98 can generate joint extreme 

events with considerable sample size (64 and 51 respectively) for statistical analysis. 

According to the value at the last column, the threshold of POT90 seems too low to be 

regarded as extreme in that more than 8 joint extreme events can be expected per year. 

Table 4-2. Extreme threshold selection for dependence analysis between rainfall at Cross 
Ness and river flow at Kingston. 

Universal 
probabilistic 

threshold 

Threshold for each 
variable 

Single 
exceedance 

records 

Joint exceedance 
records 

Joint 
exceedance 
records per 

year Rain (mm) Flow (m3/s) Rain Flow Number Rate (%) 

POTAMmin 12.4 86.5 757 9341 362 0.89 3.2 

POTAM05 17.23 192.55 367 2838 64 0.17 0.6 

POT90 4.8 169 3769 3713 831 2.26 8.1 

POT95 7.9 223 1883 1861 275 0.75 2.7 

POT98 12.4 280 757 741 51 0.14 0.5 

The matched daily records between rainfall at Cross Ness and surge at Sheerness have 

stretched approximately 66 years, which means a smaller number of annual maximums can be 

obtained.  The extreme threshold selections for dependence analysis between rainfall and 

surge are summarized in Table 4-3. The limitation of short annual maximum series is 

reflected by the number of the joint exceedance records at the different threshold levels. The 

selection of any of the annual max thresholds or POT98 may lead to a very small size of the 

joint extreme sample, which is inapplicable for further analysis. The threshold of POT90 

appears to be too low as the average frequency of the joint extremes is over 5 events per year. 

Nevertheless, the joint sample size and frequency derived from POT95 is a reasonable choice 

for the joint extreme hazard analysis.  

The hazard pair between the river flow and the storm surge has matched daily records for 64 

years, similar as the rain-surge pair, suggesting the main limitation of the number of multi-

hazard joint records is due to relatively short time series of the surge data. Table 4-4 gives 

information on the single and the joint extreme sample size for the five types of thresholds. It 

shows that the threshold of POTAMmin and POT90 are too low while the POT98 is too high to 
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obtain enough joint extreme records. The other two thresholds, POTAM05 and POT95, can 

generate an appropriate joint extreme sample for statistical analysis.  

In summary, the threshold of POT95 is suitable for all three hazard pairs, and the only 

acceptable one among the five choices for the rain-surge pair. The threshold of POTAM05 can 

be applied to both the rain-flow and the flow-surge pair while POT98 is only reasonable for 

the long time-series pair rain versus flow.  

Table 4-3. Extreme threshold selection for dependence analysis between rainfall at Cross 
Ness and surge at Sheerness. 

Universal 
threshold 

Threshold for each 
variable 

Single 
exceedance 

records 

Joint exceedance 
records 

Joint 
exceedance 
records per 

year Rain (mm) Surge (m) Rain Surge Number Rate (%) 

POTAMmin 12.4 0.93 419 406 15 0.07 0.2 

POTAM05 16.99 1.04 209 286 5 0.02 0.1 

POT90 4.8 0.52 2087 2019 364 1.78 5.5 

POT95 7.9 0.69 1034 1008 95 0.47 1.4 

POT98 12.5 0.93 409 406 15 0.07 0.2 

Table 4-4. Extreme threshold selection for dependence analysis between river flow at 
Kingston and surge at Sheerness 

Universal 
threshold 

Threshold for each 
variable 

Single 
exceedance 

records 

Joint exceedance 
records Joint 

exceedance 
records per 

year Flow (m3/s) Surge (m) Flow Surge Number Rate (%) 

POTAMmin 86.5 0.93 5094 436 181 0.88 2.8 

POTAM05 165.8 1.06 1958 288 45 0.21 0.7 

POT90 158 0.52 2137 2122 469 2.20 7.3 

POT95 215 0.69 1082 1069 122 0.57 1.9 

POT98 271 0.93 428 436 15 0.07 0.2 
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4.4.3 Dependence value 

With a given threshold, the asymptotic dependence measures 𝜒𝜒 and �̅�𝜒  can be calculated. The 

extreme samples generated based on selected thresholds can be used to estimate the rank-

based measures Spearman’s Rho and Kendall’s Tau. As summarised in section 4.4.2, the 

threshold of POT95 is applicable for all three pairs of hazards.  In addition, as observed from 

the figures of asymptotic dependence measures (Figure 4-10, Figure 4-11, Figure 4-12), the 

estimation of 𝜒𝜒 and �̅�𝜒 are above the 5% significant line when 𝜒𝜒 = 95% for all three hazard 

combinations.  

The estimations of 𝜒𝜒 and �̅�𝜒 at threshold level 𝜒𝜒 = 0.95 and the corresponding 95% 

confidence intervals are listed in The existence of tail dependence between rainfall and river 

flow is also supported by the value of Spearman’s Rho and Kendall’s Tau with significant 

positive values. The asymptotic dependence between flow and surge is higher than that 

between rain and surge, which is concordant to the general dependence of the two pairs as 

shown in Figure 4-11 and Figure 4-12. The lower bounds of 95% CI of χ for rain-surge and 

flow-surge pairs are below 0, which suggests that the dependence is relatively weak. It is also 

reflected by the rank-based dependence of the other two hazard pairs that are shown as 

negative values and cannot be verified by the test at 5% Significance level.  

Table 4-5. With the joint extreme samples extracted based on that threshold level, rank-based 

measures Spearman’s Rho and Kendall’s Tau are calculated and listed in the last two columns 

of The existence of tail dependence between rainfall and river flow is also supported by the 

value of Spearman’s Rho and Kendall’s Tau with significant positive values. The asymptotic 

dependence between flow and surge is higher than that between rain and surge, which is 

concordant to the general dependence of the two pairs as shown in Figure 4-11 and Figure 

4-12. The lower bounds of 95% CI of χ for rain-surge and flow-surge pairs are below 0, 

which suggests that the dependence is relatively weak. It is also reflected by the rank-based 

dependence of the other two hazard pairs that are shown as negative values and cannot be 

verified by the test at 5% Significance level.  

Table 4-5. The results show that the dependence at threshold level 𝜒𝜒 = 0.95 between the rain 

and the flow is the highest among all the hazard pairs at the same threshold level.  

The existence of tail dependence between rainfall and river flow is also supported by the 

value of Spearman’s Rho and Kendall’s Tau with significant positive values. The asymptotic 

dependence between flow and surge is higher than that between rain and surge, which is 
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concordant to the general dependence of the two pairs as shown in Figure 4-11 and Figure 

4-12. The lower bounds of 95% CI of 𝜒𝜒 for rain-surge and flow-surge pairs are below 0, 

which suggests that the dependence is relatively weak. It is also reflected by the rank-based 

dependence of the other two hazard pairs that are shown as negative values and cannot be 

verified by the test at 5% Significance level.  

Table 4-5. Dependence value of hazard pairs at threshold u=0.95 for 𝜒𝜒, �̅�𝜒, Spearman’s 𝜌𝜌 and 
Kendall’s 𝜏𝜏.  

Hazard 
pair 𝜒𝜒 𝜒𝜒 95% CI of 𝜒𝜒 �̅�𝜒 95% CI of �̅�𝜒  Spearman’s 

ρ  
Kendall’s 

τ 

Rain vs 
Flow 0.95 0.12 [0.06, 0.18] 0.21 [0.18, 0.24] 0.07 0.05 

Rain vs 
Surge 0.95 0.05 [-0.04, 0.14] 0.12 [0.08, 0.16] -0.03 -0.04 

Flow vs 
Surge 0.95 0.07 [-0.02, 0.16] 0.15 [0.11, 0.19] -0.05 -0.08 

Note: The values with an underline indicate fail of significance test at 5% level. 

4.5 The probability distributions and return period 

4.5.1 Single hazard return period 

The prediction of the return period of a hazard variable requires its cumulative distribution 

function that can be fitted based on the sample observations. The return period is typically 

quantified in year. For a given extreme threshold, a POT series of daily data can be screened 

out from the whole set of daily observations. Then Equation (3-11) is applied to calculate the 

univariate return period of rainfall, river flow and storm surge, respectively. If a predicted 

return period is much longer than the duration of valid observations, the uncertainty of 

estimation can be too large to be meaningful in practice. According to the length of the 

observations time-series for all the three variables, the range of univariate return periods used 

in this chapter is ranged from 1 to 200 years for rain and flow and 1 to 100 years for surge.  

At first, an extreme threshold is chosen for each variable based on their empirical one-year 

return period, which means the size of POT series is close to the number of years of 

observation. Table 4-6 gives the extreme threshold and the corresponding extreme sample 

size for rain, flow, and surge, respectively, showing that river flow has the largest extreme 

sample while surge has the smallest. The extreme sample is then utilised to fit the probability 
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distribution. Several types of distributions are tested, and the three-parameter Generalised 

Pareto (GP) distribution provides the best fit for all the three samples. The cumulative 

distribution function (CDF) is given as 

 𝐹𝐹(𝑥𝑥|𝜉𝜉, 𝜇𝜇,𝜎𝜎) =

⎩
⎨

⎧
1 − �1 +

𝜉𝜉(𝑥𝑥 − 𝜇𝜇)
𝜎𝜎

�
−1𝜉𝜉

  𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉 ≠ 0,

1 − e−
𝑏𝑏−𝜇𝜇
𝜎𝜎       𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉 = 0.

 (4-1) 

The fitted parameters of the univariate distributions are given in Table 4-6. All of the 

distribution fittings can be verified via a KS test at the 0.05 significance level. The cumulative 

distribution functions of the three hazards are illustrated with the 95% confidence interval 

bounds and the empirical distribution of the observations in the left panels of Figure 4-13. A 

wider confidence interval is observed from the bottom-left plot, indicating that a small sample 

size of the surge leads to a larger uncertainty in comparison to the other two hazards.  

Table 4-6. Univariate extreme samples and probability distribution function. 

Hazard 
variable 

Extreme 
threshold 

Extreme 
sample size 

Probability distribution parameters 

Shape (𝜉𝜉) Scale (𝜎𝜎) Location (𝜇𝜇) 

Rain 26.7 (mm) 105 0.36 4.50 26.7 

Flow 393 (m3/s) 131 0.02 86.26 393 

Surge 1.56(m) 60 -0.03 0.30 1.56 

With the fitted cumulative distribution functions, the return period for the given strength of a 

hazard is then calculated via Equation (3-11). The return period, with the 95% confidence 

interval, for each hazard is depicted in the right panels of Figure 4-13. The confidence interval 

of the return period is generated based on the confidence bounds of the CDFs. The red stars in 

the figure signify the return period value of sample points based on their empirical 

distributions. With the return period line, the expected frequency of a hazard over a certain 

quantity can be obtained. However, the uncertainty of the return period is enlarged from the 

uncertainty of the fitted probability distribution and increases sharply after the return period 

moving beyond the sample length. Therefore, the prediction of a large return period should be 

very careful especially for variables with short time-coverage. 
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Figure 4-13. Univariate cumulative distribution functions (left) and return periods (right) of 

rainfall (top panel), river flow (middle panel), and surge (bottom panel). 

(a) (b) 

(e) (f) 

(c) (d) 
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4.5.2 Bivariate return period 

The bivariate return period is the recurrence time of the event quantified by two variables, 

representing the frequency of joint events with different strength combinations. For fully 

independent variables, the joint probability distribution is simply the product of each marginal 

distribution, and similarly, the joint return period is also the product of the univariate return 

periods. For variables with reliant relationships, the calculation of bivariate return period 

should use Equation (3-12) with the dependent joint distributions. 

As analysed in section 4.4, significant and positive dependence exists between the rainfall and 

the river flow at the two representative stations, and weak dependence can be found in the 

pairs of rain-surge and flow-surge. The POT95 threshold is identified to be appropriate for 

every hazard pair. A copula-based procedure introduced in Section 3.3 is applied to fit the 

bivariate joint distribution for each hazard pair with the bivariate extreme samples.  

The first step is to fit the marginal distribution of the two variables using the joint extreme 

sample. The univariate probability distributions for each hazard have been fitted before based 

on the single POT series. However, these cannot be regarded as the marginal distributions in 

the bivariate case because joint sample only contains observation pairs in which both 

components exceed the extreme threshold. To maintain enough observations in the joint 

sample, a lower threshold is applied compared with the single-hazard extreme selection. 

Therefore, instead of using the previously defined univariate distributions, the marginal 

distributions of the bivariate probability distribution are fitted based on the joint extreme 

samples. After testing various types of probability distributions, the three-parameter 

Generalised Extreme Value (GEV) distribution is the best for all marginal distributions of 

each hazard pairs, which is expressed as 

Table 4-7 displays the parameters of all of the fitted GEV distributions in the last two 

columns. 𝜒𝜒 and 𝑣𝑣 respectively represent the marginal distributions of the first and the second 

variable for each hazard pair. The three numbers in each cell give the parameters of shape, 

scale, and location, respectively. All fitted marginal distributions can pass the KS test at the 

significance level of 0.05. 

 𝐹𝐹(𝑥𝑥|𝜉𝜉,𝜎𝜎, 𝜇𝜇) = exp [−�1 + 𝜉𝜉
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
−1
𝜉𝜉 ] (4-2) 
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Table 4-7. Parameters of joint bivariate distribution and their marginal distributions. 

Hazard pair Copula 
type 

Copula 
parameter 

Marginal GEV distribution Marginal 
function 
domain 𝜉𝜉 𝜎𝜎 𝜇𝜇 

Rain 
Frank 0.397 

0.60 2.34 10.00 >7.9 
Flow 0.40 31.83 255.74 >223 

Rain 
Clayton -0.153 

0.72 1.80 9.44 >7.9 
Surge 0.60 0.14 0.82 >0.69 

Flow 
Frank -0.501 

0.34 37.33 251.55 >215 
Surge 0.65 0.10 0.78 >0.69 

After deriving marginal distributions, the next step is to find the copula function that links the 

two margins to a joint distribution function. A test of independence is performed to verify 

whether it is suitable to use the direct product of margins for the variables. The result of the 

test shows that all three hazard pairs have rejected the null hypothesis of independence, 

meaning that it is necessary to find a copula function with a certain level of dependence. Four 

types of one-parameter Archimedean copulas are tested and compared based on the equations 

in Table 3-1. For the hazard pairs rain vs flow and rain vs surge, Frank copula is found to be 

the best fit while AMH copula is better than any other for the pair of flow vs surge. The 

parameter of each copula is estimated using maximum likelihood methods, and the result is 

shown in Table 4-7. 

With the type of copula and the values of the parameters determined, a joint probability 

distribution is built to provide the non-exceedance value of the hazard combination at 

arbitrary intensities. Figure 4-14 displays the joint CDF of rain vs flow, rain vs surge, and 

flow vs surge via probability distribution surface and contours. For any given combination of 

intensity from the two hazards, a non-exceedance probability can be obtained from the joint 

distribution function in the left panel of the figure. Intensity combination of hazards locating 

closer to the upper-right corner of plots in the right indicates a lower probability of 

occurrence.  

To calculate the bivariate return period, Equation (3-12) is applied to the fitted joint 

probability distributions. A surface plot illustrates the joint return periods of each hazard pair 

in Figure 4-15 (left panel).  In theory, for each given intensity pair over each extreme 

threshold, a return period value can always be found. However, due to the huge uncertainty 

when the component variable becomes larger, a very long return period is not practically 

significant. Contours of joint return period are shown in the right panel of Figure 4-15, 
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illustrating the relationship between return period and hazard intensity in plane graphs. The 

red dots are the extreme observations that are used to fit the joint return period function. 

These graphs are useful for getting the value of return period with the given pair of hazards or 

observing what the intensity combination of hazards can be for a given return period. 

However, the above fitted joint return period is only applicable for hazards that both surpass 

their extreme thresholds. For a scenario that one variable is over the threshold while the other 

is not, the return period functions for the single hazard described and fitted in Section 4.5.1 

are then applicable. The thresholds of joint extreme events are lower than the value of each 

corresponding single extremes to maintain a large enough joint sample size. At bivariate 

return period analysis, for any hazard intensity pair lower than both bivariate thresholds, it 

will not be treated as an extreme or dangerous event and is not of interest for further hazard 

analysis. The domain of interest for bivariate hazards is based on the “Or” scenario that can 

be decomposed into two univariate extreme domains and one bivariate “And” scenario as 

discussed in Section 3.3.3. Then, the return period function is able to cover all the intensity 

combinations of the paired hazards that are acknowledged as “extreme” or “dangerous” 

events. 
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Figure 4-14. Bivariate joint CDF of hazard pairs: rain vs flow (a,b), rain vs surge (c,d), and 

flow vs surge (e,f). 

(a) (b) 

(e) (f) 

(c) (d) 
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Figure 4-15. Bivariate joint return period of hazard pairs: rain vs flow (a,b), rain vs surge 

(c,d), and flow vs surge (e,f). 

(a) (b) 

(e) (f) 

(c) (d) 
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4.5.3 Trivariate return period 

The occurrence of trivariate extreme events is even rarer than the bivariate ones. In order to 

retain a considerable sample size of the joint observations, a lower threshold (POT90) is used 

to generate the trivariate extreme sample. A total number of 143 trivariate observations are 

obtained as Figure 4-16 shows. The left panel illustrates the spatial position of each of the 

extreme observations, and the right panel displays the tied rank of the observations.  

 
Figure 4-16. Trivariate extreme samples derived from POT90 observations for rain, flow, and 

tide. The left plot is the observed value and the right is the tied rank. 

According to Equation (3-13), univariate and bivariate distribution functions are also essential 

for fitting trivariate return period. A matrix of plots for bivariate scatters and univariate 

histograms are depicted in Figure 4-17. The similar steps as those described in the previous 

sections but with a new dataset are used to fit the univariate and bivariate probability 

distribution functions. The GEV distribution is still the best-fitted margin for every hazard 

and the parameters are given in Table 4-8. 

Table 4-8. Parameters and domains of estimated marginal distributions and for rain, flow 
and surge based on the POT90 trivariate extreme sample. 

GEV parameters Rain Flow Surge 

Shape (𝜉𝜉) 0.48 0.04 0.45 

Scale (𝜎𝜎) 2.17 53.96 0.12 

Location (𝜇𝜇) 7.07 225.51 0.65 

Domain >4.8 >160 >0.52 

(a) (b) 
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Figure 4-17. Bivariate Scatter plot of trivariate joint extreme events of daily rain, flow, and 

surge. Spearman’s rho (𝜌𝜌𝑆𝑆) and Kendall’s tau (𝜏𝜏𝐾𝐾) are given. 

While there are many families of copula functions and parameter estimation methods 

available for bivariate distribution, the choices of trivariate copula are very limited. Among 

the four types of Archimedean copulas listed in Table 3-1, the 3D Gumbel, Clayton, and 

Frank copula function can be estimated via maximum pseudo-likelihood method using the 

copula R package. Therefore, a goodness-of-fit test is performed for these 3D copulas based 

on the joint extreme observations. The results of best-fitted copulas with estimated parameters 

for trivariate and bivariate scenarios are given in Table 4-9. 

Table 4-9. Best fit Copula types and estimated parameters for bivariate and trivariate 
distributions. 

Copula Rain & Flow Rain & Surge Flow & Surge Rain & Flow & Surge 

Type AMH Gumbel Frank Clayton 

Parameter 0.2 1.09 0.70 0.13 

With univariate margins, bivariate CDFs and trivariate copula function, a 3D joint return 

period function can be obtained according to Equation (3-13). A joint return period value can 
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be derived for any given values of rainfall, river flow and storm surge within the domain of 

the function. And a 2D return period distribution can also be generated if the value of one 

variable is provided. Figure 4-18 displays the contour lines of joint return period of rainfall 

and flow by given four different height of the storm surge.  

 
Figure 4-18. Trivariate  

return period surfaces of rainfall, river flow, and surge height at return level 50-year, 100-
year, 200-year, and 500-year. 

In the last, all the return period functions defined for the univariate, bivariate, and trivariate 

scenarios can be merged into a full return period function with domain covering the whole 

value space of rainfall, river flow and storm surge. Let 𝑋𝑋,𝑌𝑌,𝑍𝑍 represent the strength value for 

the three hazards respectively, then the full function for their return period can be defined as 

below 
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𝑇𝑇𝑏𝑏𝑏𝑏𝑥𝑥

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑀𝑀𝜕𝜕𝑋𝑋𝑋𝑋𝑋𝑋
𝐹𝐹�𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

 ,   (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝛩𝛩𝑋𝑋𝑋𝑋𝑋𝑋,

𝑀𝑀𝜕𝜕𝑋𝑋𝑋𝑋
𝐹𝐹�𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦)

  , (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ 𝛩𝛩𝑋𝑋𝑋𝑋,

𝑀𝑀𝜕𝜕𝑋𝑋𝑋𝑋
𝐹𝐹�𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑧𝑧)

  , (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝛩𝛩𝑋𝑋𝑋𝑋,

𝑀𝑀𝜕𝜕𝑋𝑋𝑋𝑋
𝐹𝐹�𝑋𝑋𝑋𝑋(𝑦𝑦, 𝑧𝑧)

 ,          (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ 𝛩𝛩𝑋𝑋𝑋𝑋,

𝑀𝑀𝜕𝜕𝑋𝑋
𝐹𝐹�𝑋𝑋(𝑥𝑥)

  ,               (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝛩𝛩𝑋𝑋 ,

𝑀𝑀𝜕𝜕𝑋𝑋
𝐹𝐹�𝑋𝑋(𝑧𝑧)

   ,              (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝛩𝛩𝑋𝑋,

𝑀𝑀𝜕𝜕𝑋𝑋
𝐹𝐹�𝑋𝑋(𝑧𝑧)

   ,              (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝛩𝛩𝑋𝑋,

0,                   𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒.

 (4-3) 

For the above equation, 𝑀𝑀𝜕𝜕 is the average reoccurrence time of the extreme events calculated 

by the number of years divided by sample size. 𝐹𝐹�𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the survival function of 

𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, 𝑧𝑧) defined as 

 𝐹𝐹�𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 1 − 𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥, +∞, +∞) − 𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(+∞,𝑦𝑦, +∞)
− 𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(+∞, +∞, 𝑧𝑧) + 𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, +∞)
+ 𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥, +∞, 𝑧𝑧) + 𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(+∞,𝑦𝑦, 𝑧𝑧) + 𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

(4-4) 

Similarly, 𝐹𝐹�𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝐹𝐹�𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑧𝑧), 𝐹𝐹�𝑋𝑋𝑋𝑋(𝑦𝑦, 𝑧𝑧) are the survival functions of 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦), 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑧𝑧), 

𝐹𝐹𝑋𝑋𝑋𝑋(𝑦𝑦, 𝑧𝑧), respectively. For example, 𝐹𝐹�𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦) = 1 − 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥) − 𝐹𝐹𝑋𝑋𝑋𝑋(𝑦𝑦) + 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦). 

𝐹𝐹�𝑋𝑋(𝑥𝑥),𝐹𝐹�𝑋𝑋(𝑦𝑦),𝐹𝐹�𝑋𝑋(𝑧𝑧) are the 1D survival functions simply denoted like 𝐹𝐹�𝑋𝑋(𝑥𝑥) = 1 − 𝐹𝐹𝑋𝑋(𝑥𝑥). 

𝛩𝛩𝑋𝑋𝑋𝑋𝑋𝑋 is the domain of variables 𝑋𝑋,𝑌𝑌,𝑍𝑍 given in Table 4-8. The domains 𝛩𝛩𝑋𝑋𝑋𝑋, 𝛩𝛩𝑋𝑋𝑋𝑋, 𝛩𝛩𝑋𝑋𝑋𝑋 for 

bivariate return period functions are defined as the domain of the corresponding two variables 

given in Table 4-7 excluding 𝛩𝛩𝑋𝑋𝑋𝑋𝑋𝑋.  For the domains of the univariate return period, 

𝛩𝛩𝑋𝑋𝑋𝑋, 𝛩𝛩𝑋𝑋𝑋𝑋, 𝛩𝛩𝑋𝑋𝑋𝑋 are derived from the threshold of each variable given in Table 4-6 excluding all 

the upper dimensional domains 𝛩𝛩𝑋𝑋𝑋𝑋𝑋𝑋, 𝛩𝛩𝑋𝑋𝑋𝑋, 𝛩𝛩𝑋𝑋𝑋𝑋, 𝛩𝛩𝑋𝑋𝑋𝑋.  

For a given event with an intensity of each hazard, it is firstly located in the rightful domain 

signifying whether it is a single-hazard, paired-hazard or triple-hazard event. Then the 

corresponding return period function can be applied to calculate the reoccurrence time for that 

event. In reverse, if a return period value is given, a number of events can be generated based 

on this return level and those events can be derived from either single-hazard or multi-hazard 

scenarios. 
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4.6 Conclusions 

In this chapter, multivariate statistical approaches have been applied to derive the probability 

distributions and the return period distributions of different combinations of the heavy rain, 

extreme river flow and storm surge. Dependence analysis is performed to investigate the 

inter-station dependence of the single hazard and the cross-hazard dependence. The inter-

station dependence in extreme rainfall measured by asymptotical dependence value (𝜒𝜒) ranges 

between 0.4 and 0.99, decreasing with the horizontal distance between stations. The 

asymptotical dependence (𝜒𝜒) in extreme daily flow in the two river gauges is 0.34. In contrast, 

the cross-hazard dependence is much lower (𝜒𝜒 = 0.12 for rain & flow, 𝜒𝜒 = 0.05 for rain & 

surge, 𝜒𝜒 = 0.07 for flow & surge) but still statistically significant, which means the joint 

probability of multi-hazard variables should consider the correlations between marginal 

distributions.  

The bivariate and trivariate joint probability distributions respectively for the concurrence of 

two and three hazards are fitted based on the copula theories and then used to generate joint 

return period distributions of different hazard combinations. The frequency of arbitrary hazard 

intensities in a three-dimensional variable space for rainfall, river flow and storm surge is 

fully quantified by synthesizing all the trivariate, bivariate, and univariate return period 

distributions. This method applied in London provides a quantitative and straightforward way 

to calculate and visualise the probability of occurrence of multiple hazards with consideration 

of their correlation. The joint probability and return period distributions can be further applied 

in disaster risk assessment to evaluate the potential loss of human life and properties in the 

research area. 
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Chapter 5. Hydrodynamic simulation of multiple hazards 

This chapter is to perform flood simulations with various multi-hazard inputs and generate. 

hazards curves under different scenarios and for different areas in the Greater London 

catchment. The chapter begins with an introduction of the process of the hydrodynamic 

modelling, followed by the validation of HiPIMS that is thereupon applied in investigating 

the impact of flood defence facilities. Then, the results of single-hazard, double-hazard, and 

triple-hazard flood simulations are shown and discussed in three sections, respectively. At 

last, conclusions are made for the hydrodynamic multi-hazard simulations. 

5.1 Introduction 

Flood frequency analysis estimates the probabilistic occurrence of the flood magnitude 

measured by rainfall, discharge, or total seawater level that are normally recorded at gauge 

stations or simulated from climate models and hydrological models. However, none of these 

three measurements is the direct trigger of damage during a disaster event. Instead, the 

resulting inundation is the final physical process determining the impact or loss. Therefore, it 

is necessary to investigate the frequency of flood inundation involving the interaction of flood 

depth and extent and the elements at risk inside a spatial domain.  

Chapter 4 has analysed the joint probability and return period distributions of the three flood-

related hazards, rainfall, river flow, and storm surge in Greater London. The Monte Carlo 

method is applied to stochastically generate a series of multi-hazard events with frequencies 

quantified by the joint return period distribution. Each event is simulated by the 

hydrodynamic model (HiPIMS) introduced in Chapter 3, with the three hazard components 

used as inputs. Specifically, storm surge is added to the peak part of the astronomical tide 

height at Sheerness to create a periodic total water level time series. HiPIMS is capable of 

predicting the flood inundation process driven by the inputs of specific return periods and 

generating the hazard curves (frequency versus inundation) for the areas of interest.  
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However, the three flood-related hazards are not the only factors determining the final flood 

inundation pattern in Greater London and the defence systems also play a crucial role in the 

flood prevention and management. The hydrodynamic model should consider the 

function/operation of these flood defence systems and the effect of the potential defence 

failure on the hazard curves.  

5.2 Data for HiPIMS 

The fundamental data required in HiPIMS includes topographical data, river bathymetry, and 

land cover. Inputs of water sources such as gridded rainfall data, river flow rate, and tide 

height on the boundary are also essential for specific type of flood simulation and introduced 

in Section 4.2. Besides the data to setup and drive HiPIMS, some observed datasets such sub-

hourly river gauge data, rainfall radar data, and historic flood extent maps are valuable to 

calibrate and validate the model.   

Digital Terrain Model (DTM) representing height of bare earth surface is the background 

topographical data and can be acquired from Digimap OS Terrain 5 m DTM dataset 

(https://digimap.edina.ac.uk). LIDAR Composite Digital Surface Model (DSM) is needed to 

merge with the DTM to reflect buildings and other infrastructure, which may be downloaded 

from the UK Environment Agency (EA) (https://data.gov.uk/dataset/fba12e80-519f-4be2-

806f-41be9e26ab96/lidar-composite-dsm-2m). River bathymetry data is not included in either 

the DTM or DSM datasets but is essential to support accurate hydrodynamic simulation in 

river channel. So, the surveyed river cross-section data from EA for downstream sections of 

River Eden is also merged into the topographical dataset to obtain the final DEM to set up 

HiPIMS for hydrodynamic flood prediction. 

Land cover information is useful for estimating and adjusting friction and infiltration 

coefficients in HiPIMS. Land cover information in the study area can be subtracted from the 

UK Land Cover Map 2015 provided by the Centre for Ecology & Hydrology (CEH) 

(https://www.ceh.ac.uk/services/land-cover-map-2015). It is a parcel-based land cover map 

created by classifying satellite data into 21 classes (Rowland et al., 2017), available at a 

spatial resolution of up to 25 m for the whole UK.  

The Met Office NIMROD system provides gridded radar rainfall data that is calibrated to give 

the best possible estimation of surface precipitation rate at 1 km spatial resolution and 5 min 

temporal resolution (available in CEDA archive http://badc.nerc.ac.uk). It is produced based 

https://digimap.edina.ac.uk/
https://data.gov.uk/dataset/fba12e80-519f-4be2-806f-41be9e26ab96/lidar-composite-dsm-2m
https://data.gov.uk/dataset/fba12e80-519f-4be2-806f-41be9e26ab96/lidar-composite-dsm-2m
https://www.ceh.ac.uk/services/land-cover-map-2015
http://badc.nerc.ac.uk/


 
85 

on radar records and processed using optimised quality control and correction procedures 

(Met Office, 2003). 

River gauge observations and post-event investigations provide crucial data to evaluate the 

performance of the hydrodynamic model. Unlike the long-term daily river flow from UK 

National River Flow Archive, the EA flood-monitoring API provides sub-hourly and near 

real-time measurements of water level and flow rate for rivers across England 

(https://environment.data.gov.uk/flood-monitoring/doc/reference), which can be used to 

evaluate model performance for recent floods. Historic Flood Map is a GIS layer showing the 

maximum extent of all individual Recorded Flood Outlines from river, the sea and 

groundwater springs and shows areas of land that have previously been subject to flooding in 

England. Records began in 1946 when predecessor bodies to the Environment Agency started 

collecting detailed information about flooding incidents, although we may hold limited details 

about flooding incidents prior to this date (https://data.gov.uk/dataset/76292bec-7d8b-43e8-

9c98-02734fd89c81/historic-flood-map).  

5.3 Hydrodynamic model validation 

As the inputs of the hydrodynamic model include rainfall, river flow and total water level on 

the coast, it is necessary to assess the model performance for simulating extreme events 

related to the three hazard components. Therefore, HiPIMS is firstly validated against three 

different events, i.e. a rainstorm flood, a flow interaction between the seawater and the river 

flow, and a coastal flood. 

5.3.1 Rainfall-runoff process 

Flow or stage observations from the gauge stations at the main watercourses are required for 

validating the rainfall-runoff progress in the model domain. In the Greater London catchment, 

most of the river gauges along the River Thames are greatly influenced by the periodic tidal 

level and therefore the flow/stage records do not entirely reflect the rainfall-caused peak flow. 

Therefore, the upper River Lee Catchment located in the north of Greater London is selected 

as the validating domain for rainfall-runoff progress (see Figure 5-1). The flow observations 

for the rainfall-runoff validation are available from the Lee gauge station located at Feildes 

Weir, which is in the south of the catchment and free from tidal influence.  

https://environment.data.gov.uk/flood-monitoring/doc/reference
https://data.gov.uk/dataset/76292bec-7d8b-43e8-9c98-02734fd89c81/historic-flood-map
https://data.gov.uk/dataset/76292bec-7d8b-43e8-9c98-02734fd89c81/historic-flood-map
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Figure 5-1. Map of the 1049 km2 Upper Lee catchment. In the embedded map, the area in red  

shows the location of the Upper Lee catchment relative to Greater London in the bottom. 

The river gauge at Feildes Weir records the outlet discharge of the catchment, and the quarter-

hourly observations are made available by the Environment Agency (EA). The rainfall input 

for the hydrodynamic model is generated from the Met Office NIMROD system that provides 

rainfall rate at 1-km spatial and the 15-min temporal resolutions (available in CEDA archive 

http://badc.nerc.ac.uk). The heavy rainfall event between 5 and 8 Feb 2014 is chosen in this 

work. Figure 5-2 illustrates the average rainfall rate of the whole catchment for this event. 

The rainfall peak occurred in the morning of 6 Feb 2014, but there is some rainfall before the 

peak. So, a two-day simulation is pre-run to generate initial conditions with the 48-hour 

rainfall data before 5 Feb 2014. The output flow depths and velocities are used as the initial 

conditions to set up HiPIMS for the simulation of the main event starting at 0:00 on 5 Feb 

2014.  

http://badc.nerc.ac.uk/
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Figure 5-2. Average rainfall rate (mm/hour) at the upper Lee Catchment from 5 Feb 2014 to 

8 Feb 2014. 

The model is run on a uniform grid of 20 m resolution. Two sets of Manning coefficient are 

used in the simulations, i.e. 0.055 for rivers/channels and 0.075 for other areas, assigned 

according to the suggested values in hydraulics text books (e.g. Chow (1959)). As there was a 

medium-scale rainfall before the main event, the soil is assumed to be fully saturated and the 

infiltration is not considered. The simulated time-series of unit-width discharge is output 

based on the gridded cross-section line across River Lee at Feildes Weir. Then, the unit-width 

discharge is converted to total discharge by multiplying by the river width. Figure 5-3 

compares simulated hydrograph with the measurements at the Feildes Weir gauge. Although 

the simulated peak retreated a few hours earlier than the observed peak, the simulated results 

generally agree well with the observations regarding the time to peak and also the shape of the 

discharge hydrograph. The root-mean-square-error (RMSE) of the simulated discharge with 

respect to observations is 12.14 m3/s, which demonstrates that HiPIMS is able to reliably 

simulate fluvial floods for the upper Lee catchment and further infers that it is capable of 

simulating the rainfall-runoff process across the whole Greater London catchment. 



 
88 

 
Figure 5-3. Simulated and observed discharge of Lee at Feildes Weir. 

5.3.2 Tide and flow interactions 

Herein, the capability of HiPIMS for flood modelling is further verified against a flood even 

driven by the interaction between total water level and upstream high flow. The area along the 

River Thames between Kingston and Southend is selected as the model domain, as shown in 

Figure 5-4. Water level records from 8 gauges along the River Thames are available for 

evaluating the simulation results.  

 
Figure 5-4. Model domain for the validation of tide and flow in the Greater London. 

The DEM of the domain and the bathymetric data of the River Thames are both downloaded 

from Digimap and merged for use by HiPIMS. The observed sub-daily river flow at Kingston 

and tidal level at Sheerness from 31st March to 2nd April 2014 are used as the boundary 

conditions. Considering the dominant effect from the sea at this part of the river, the initial 
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water depth for the simulation is set based on the average sea level (0 m above Ordnance 

Datum), and the initial velocity was set to be zero. Different Manning coefficients (n), in the 

range of 0.015 ≤  𝑎𝑎 ≤ 0.045, are tested for the river bed roughness.  

The value of 𝑎𝑎 = 0.020 is found to be the best for the model performance. The simulated and 

observed water levels at the eight river gauges are compared in Figure 5-5, where the red 

curves indicate the observed water level and the blue dotted lines denote the simulated values. 

The results show that the peak stage value and changing trend are well matched between the 

simulations and the observations at every station except the Erith, where there are some 

questionable observed values. The result in Richmond does not perform as well as the other 

downstream gauges, which may be attributed to the narrower river channel whose topography 

is over-simplified on the 20 m DEM grid. However, in general we can conclude that HiPIMS 

is capable of accurately predicting the interaction between flow and tide in the River Thames 

in the research region. 

5.3.3 Coastal flooding 

A flood event, which happened in 1953 at the estuary of the River Thames, is used to further 

test the performance of HiPIMS for coastal flood modelling. The event is known as the 1953 

North Sea Flood, it was caused by a very large storm and occurred between the night of 31st 

January and the morning of 1st February. It was one of the most devastating natural disasters 

striking the east coast of London in history and made the government decide to invest in 

constructing new flood defence facilities, such as the Thames Barrier. The process and the 

damage of the flood were described by Steers (1953), and the detailed tide and surge data 

from their study can be used as the boundary conditions for hydrodynamic modelling. The 

maximum surge of 2.44m was recorded in Southend, a region where the flood embankments 

did not exist before the event.  

The DEM data from Digimap represents the current or recent topographic status. However, a 

lot of flood walls, embankments and other defence facilities were built after the flood. To 

reflect the defence conditions during the North Sea Flood of 1953, the DEM is rectified by 

removing the walls and embankments in the model domain. The event is reproduced by a 

three-day simulation (two days before the peak surge and one day after). The simulated 

maximum inundation depth is illustrated in Figure 5-6 and compared with the investigated 

flooding extent according to the Historic Flood Map from the EA. The simulated flood extent 
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is consistent with the surveyed extent indicated by the red lines, confirming that HiPIMS is 

able to reliably predict coastal flood in the Thames Estuary. 

 
Figure 5-5. Comparison of the simulated and observed water levels at the eight gauges along 

the Thames River. 
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Figure 5-6. The simulation of the North Sea Flood 1953 at the Thames Estuary. The 

simulated inundation depth is indicated by light blue area and the red lines outline the 
surveyed inundated area. 

5.4 Impact of flood defences along the Thames River 

In England, around 8% of the land area, containing properties and agricultural land worth 

approximately £105 billion (NAO, 2001), is protected by flood defence facilities with a total 

length of 3300 km. As the most populated and well-developed region in the UK, Greater 

London is protected by a high-standard of flood defence walls, dykes and embankments along 

the River Thames. Moreover, the Thames Barrier, which is designed to protect the city centre 

of London from flooding caused by storm surges from the North Sea (see the red lines in 

Figure 5-7) was built in the 1980s. However, according to the assessment of the EA, not all 

the dykes and embankments are currently in functional status. Instead, some parts of the flood 

defences are appraised as “poor” or “very poor” as indicated by the blue lines in Figure 5-7. 

The poor facilities are found even in the central region of London, such as Chelsea, and are 

very likely to lose efficacy when facing extreme events.  

Significant damages due to defence failures have been reported across England during the 

1998 Easter Floods, 2000 Autumn Floods, and 2015 Storm Desmond Floods. For the 

metropolitan area of the Greater London, it is essential to evaluate the effectiveness of the 
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flood defence systems and consider the impact of potential failure scenarios. As the dykes and 

embankments along the River Thames were designed to defend from fluvial and coastal 

floods, the historical records of river flow and storm surge are selected as the boundary 

conditions of the hydrodynamic model to test the role of defence systems. The historical 

maximum daily average flow (800 m3/s) at Kingston and the historical highest storm surge 

(2.94m) at Sheerness are combined as the extreme multi-hazard scenario corresponding to the 

approximate 2000-year joint return period, 213-year return period for river flow, and 117-year 

return period for the storm surge. 

 
Figure 5-7. Flood defences along the River Thames in Greater London. The green circles 

show the assumed defence failure locations. 

Four failure scenarios of the flood defences along the Thames River are designed: 1) no 

breach at any point and the Thames Barrier is closed (active to protect); 2) no breach at any 

point but the Thames Barrier is open (failed to protect); 3) defence failure at five assumed 

positions before the flooding arrives; 4) defence failure at the five places during the flooding. 

The locations of the defence failures are shown in Figure 5-7 with green circle points, and the 

detailed information is given by Table 5-1.  

The designed joint extreme events of the river flow and total water level is simulated for the 

four defence scenarios. The results are illustrated in Figure 5-8 for the first and the second 

scenarios. Five regions noted from A to E are specified to evaluate the impact of the different 

status of the Thames Barrier with no defence failure in other locations. Region A is normally 

influenced by fluvial flood, and regions B and C are in the city centre. The Thames barrier is 
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located between regions C and D. Region E is exposed to coastal flooding and was seriously 

damaged during the 1953 North Sea Flood but now is well protected by the sea walls. 

Table 5-1. The locations of the assumed defence failure points along the River Thames. 

Location Type Defence level 
(mAOD) Defence length (m) 

Southend wall 6.86 1469.92 

Erith wall 7.01 357.11 
Woolwich wall 7.19 118.24 

Thamesmead embankment 7.18 1873.42 

London Bridge wall 5.48 93.13 

Figure 5-8 (a) shows that even the 2000-year joint extreme event cannot threaten the city 

centre of London with all the current flood defences being functional. If the Thames barrier is 

opened but all the other defences are active (Figure 5-8 (b)), the city centre, region C, can be 

flooded as shown in the bottom panel. The closure of the barrier also affects region A, in 

which a larger inundated area is predicted in the simulation without the Thames Barrier. 

However, not all the regions benefit from the existence of the Thame Barrier. For example, 

the northwest area of region D is predicted to be flooded when the barrier is closed but safe 

when the barrier is open. It is because tidal water is accumulated at the downstream side of 

the barrier by stopping the peak surge. 

 
Figure 5-8. Maximum inundation extents predicted for a 24 hour joint event with highest 

recorded flow(800 m3/s) and surge(2.94m) when Thames barrier is closed (a) and open (b). 

(a) 

(b) 
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Further flood simulations are run for different failure scenarios to investigate the resulting 

potential inundations. The failure is more likely to happen under high hydraulic loading 

during a flood event. Figure 5-9 shows the results of defence failure before flood arrival (a) or 

after the water level reaches 4 m AOD (b) in the simulation of the highest recorded flow and 

surge with the open Thames Barrier. Some differences of the inundated area can be observed 

in region B between the two failure conditions, which suggests that the assumption of pre-

occurred defence failure could lead to a slight overestimation of the flood. In comparison with 

the result in Figure 5-8 (b), region C is less flooded even with the defence failure, which can 

be attributed to the defence failures at its adjacent regions B and D that effectively become 

flood diversion areas. 

In general, Greater London, apart from the upstream region A, is very safe under the current 

flood protection schemes and the Thames Barrier plays a critical role in protecting the city 

centre of London from storm surge. However, a defence failure can lead to serious flooding 

along the River Thames and the seaside area. Some regions heavily rely on the defence 

facilities, e.g. region C, which can be entirely flooded if the sea wall is damaged. The central 

and downstream parts are more influenced by the coastal surge while the upstream area is 

under the threat of both fluvial and the coastal floods. The failing time of the flood defences 

has a small impact on the results in the flood inundation in the city centre. 

 
Figure 5-9. Maximum inundation extents for a 24 hour joint event with highest recorded flow 

(800 m3/s) and surge (2.94m) for (a) defence failure in advance and (b) during the flood 
event. 

(a) 

(b) 
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5.5 Single-hazard simulations 

This section is to simulate the flooding driven by a single water source, either extreme 

rainfall, river flow or storm surge, with assumed defence failure in bad condition sections. 

Failures are assumed to happen before flooding, and the Thames Barrier is set as not active 

during the events. HiPIMS is pre-run for 72 hours with no rainfall. The resulting average river 

flow of 75 m3/s at Kingston, and total seawater level (15-min data with peaks and valleys) at 

Sheerness are used as initial conditions over the model domain to initiate the simulations. 

Hydrodynamic simulations are performed for single hazards of various intensities 

corresponding to different return periods. A peak inundation map is generated for each 

simulation of one hazard with a specific load. Then, the single-hazard curves are generated by 

connecting inundated areas with the probability of occurrence (return period). 

According to the single-hazard return period functions fitted in section 4.5.1, the return 

periods of hazards at any specific intensity can be obtained and shown in Table 5-2.  A series 

of simulations are conducted for each hazard of different return periods including the listed 

ones ranging from 10 years to 500 years. The simulation results are then used to estimate the 

hazard curves. Based on the assumption that the higher intensity (longer return period) of one 

hazard can result in more severe flooding compared with the lower intensity of the same 

hazard, the linear interpolation method is used to generate hazard-inundation curves with the 

discrete hazard intensities and the simulated inundation.  

Table 5-2. The intensity of single hazard rainfall, flow, and surge at various return periods. 

Hazard 
Return period (year) 

10 20 50 100 150 200 500 

Rainfall (mm) 41.67 47.7 60.53 76.46 89.59 101.19 156.17 

Flow (m3/s) 470.61 523.29 602.38 682.46 740.90 788.82 987.23 

Surge (m) 2.24 2.39 2.64 2.88 3.04 3.17 3.68 

5.5.1 Hazard curves of extreme rainfall 

The rainfall rate is used to drive HiPIMS to create potential floods. The daily accumulative 

rainfall height is converted to rainfall rate according to the duration of rain. The temporal 

distribution of rainfall in one day may vary, even with the same daily accumulation. To 

reduce the number of simulations as required for one given daily rainfall, the rainfall rate is 
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simplified as homogeneous during the rain process and the rain is assumed to be happening 

during the first-half of every 24-hour simulation.  

The results of rainfall-runoff simulation for 50, 100, 200, and 500 years return period are 

shown in Figure 5-10. Any cell with no less than 0.3m peak water depth is defined as the 

inundated cell and portrayed as blue. The general inundation maps illustrate a clear increasing 

trend of inundation areas from lower to higher rainfall. The impacted regions are mostly 

located in the lower land close to the river as identified in the topographic map in Figure 1-1. 

London city centre, situated in the middle-left of the map, is generally safe under the one in 

50-year or 100-year rainfall, but starts to be flooded by the 200-year rainfall, and is seriously 

flooded by the extreme rainfall of 500-year return period.  

 
Figure 5-10. Inundation map of extreme rainfall at four return periods. The black line is the 

boundary of the model domain, and the red line is the river bank or coast line.  

The hazard-inundation curves are portrayed in Figure 5-11 to quantitatively show the 

continuous relationship between the severity of flooding and the rainfall loads. The X-axis is 

the daily rainfall amount, and the Y-axis is the total flooded area and flooded water volume 

inside the model domain. The total flooded area is the sum of the area of all the inundated 

cells, and the total flooded water volume is calculated by adding up the peak water volume in 

each inundated cell. The curve of the total inundated water volume is almost linear while the 

(a) (b) 

(c) (d) 



 
97 

curve of the total flooded area is slightly convex, signifying that the latter has a lower 

increasing rate and is less sensitive to the changing of rainfall amount. 

 
Figure 5-11. The total flooded area and the total flooded water volume at Greater London 

due to extreme rainfall. 

To give a more detailed analysis of the inundated area, the inundation depth is classified into 

four grades according to the inundation depth: 0.3~0.5 m, 0.5~1.0 m, 1.0~2.0 m, and larger 

than 2m. The curves of the inundated area at the four grades against the rainfall amount are 

shown in Figure 5-12. It shows a increasing trend of the inundated area for each depth grade. 

The curve of the highest grade (deeper than 2 m) is concave, and its changing rate is rising 

with the increase of rainfall, suggesting more sensitivity to extreme rainfall. 

 
Figure 5-12. The inundated area with different depth grade due to extreme rainfall. 
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With the hazard-inundation curve defining the quantitative relationship between the flooding 

and the hazard intensity in the model domain, the hazard-frequency curves are derived from 

the single-hazard return period function. Figure 5-13 illustrates the relationship between the 

total inundated area and its estimated frequency of occurrence using the return period and the 

annual frequency of exceedance, respectively. The blue line shows the increasing trend of the 

flooding area with the return period while the red line shows the negative relationship 

between the flooding area and the annual frequency of exceedance. This type of hazard-

frequency curve can be generated for any region defined inside the model domain. They are 

necessary for quantitative assessment of single-hazard risk.  

 
Figure 5-13. Hazard-frequency curve of the overall inundated area at Greater London due to 

extreme rainfall. 

5.5.2 Hazard curve of extreme flow 

The river flow is added to HiPIMS as boundary conditions of water velocity in Kingston, 

which is the entrance of the River Thames to the model domain. The velocity at the boundary 

cells is equal to the cross-sectional area divided by the discharge. During the flood simulation, 

the discharge at the boundary is simplified as steady throughout the event. The east boundary 

of the model domain uses the normal astronomical tide height as boundary conditions.  

A series of 24-hour extreme flows as listed in Table 5-2 are used. The results of fluvial 

simulations corresponding to 50, 100, 200, and 500 years return periods are shown in Figure 

5-14 as maximum inundation maps. Areas with flood depth equal to or over 0.3m are marked 

in blue in the maps. Unlike the pluvial results in Figure 5-10, the influenced region is limited 

to the upstream area of the Thames River. The inundated area increases when the intensity of 

river flow rises from one-in-50 years to one-in-500 years. But the flooding does not affect 
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areas further than 10 km from the inlet point of the Thames River. These inundation maps 

suggest that for up to one-in-500 years’ extreme flow, the city centre of London is unlikely to 

be threatened by a one-day event with the current defence facilities and the predefined failure 

scenarios.  

 
Figure 5-14. Inundation map of extreme river flow at four return periods. The black line is 

the boundary of the model domain. 

To quantitatively show the relationship between the intensity of flow and the resulting 

flooding, two curves are depicted in Figure 5-15 respectively for the total inundated area and 

the total inundated water volume in the model domain. The blue curve (inundation area) is 

almost linear while the red curve (water volume) has a slightly higher increasing rate when 

the flow rate goes beyond 800 m3/s.  

We use the inundation grades defined in the previous section to show the hazard-inundation 

curves for four grades in Figure 5-16. The number of inundated cells with peak water between 

0.5 m and 1m is highest among all the depth grades when the flow rate is lower than 1100 

m3/s. With a higher discharge, the cells become most likely flooded on the third inundation 

grade (1 m to 2 m).  

(a) (b) 

(c) (d) 
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Figure 5-15. The total flooded area and the total flooded water volume in Greater London 

due to extreme flow. 

By connecting the return period function of extreme flow with the simulated inundation 

results, the hazard curves showing the relation between inundated area and frequency are 

illustrated in Figure 5-17. The total inundated area in Greater London catchment due to 

Kingston extreme flow is probabilistically estimated with return period and annual frequency 

of exceedance. Similarly, this type of hazard curve can be generated for any smaller region of 

interest inside the model domain. 

 
Figure 5-16. The inundated area with different depth grades due to extreme flow. 
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Figure 5-17. Hazard curve of the overall inundated area in Greater London due to extreme 

river flow. 

5.5.3 Hazard curve of extreme surge 

The storm surge from the North Sea is another main threat to the research area. The height of 

storm surge is added to the peak part of the normal astronomical tide height at Sheerness. The 

time series of surface water elevation is used to drive HiPIMS in the east boundary cells of 

the model domain. The model simulates a series of 24-hour events with surge height ranging 

from 1.6m to 3.8m under the assumed flood defence scenarios. 

Figure 5-18 shows the results of flood simulations driven by storm surge at 50, 100, 200, and 

500 years return periods, respectively. The inundated area is also defined by maximum water 

depth being no less than 0.3m and plotted with varying colours representing the inundation 

depth on the maps. Generally, the inundation extents are not distinguished for the different 

levels of the surge. This may be because the assumed defence failure is the main contributor 

to flooding in the riverine areas. When zooming in at the city centre area, the four localised 

maps indicate a clear increasing trend of both flood area and inundated depth accompanied 

with the rise of the surge height. Even for the one-in-50-year surge, serious flooding can be 

possible in the city centre of London if the hypothesised defence failure occurs. 

The curves in Figure 5-19 quantitatively show the relationship between the severity of 

flooding and the height of surge at the whole London catchment. Unlike the more or less 

linear curves in Figure 5-11 and Figure 5-15, the surge-inundation curves have concave 

shapes herein, indicating that the inundation rises sharply when the surge height increases, 

especially for the total flood volume.  
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Figure 5-18. Inundation map of extreme surge at four return periods. The black line is the 

boundary of the model domain, and the red line is the river banks or coast line. 

 
Figure 5-19. The total flooded area and the total flooded water volume at Greater London 

due to extreme surge. 

(a) (b) 

(c) (d) 
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Figure 5-20 illustrates the curve of the flooded area against the surge height for different 

levels of inundation. The hazard curves of the first and the second grades are relatively flat 

while the areas of the most severe classes move up sharply when the surge is getting higher. 

The curve of the third class fluctuates, which can be attributed to the transformation of the 

flooding region between grade 3 and 4 with the increase of the surge. 

 
Figure 5-20. The inundated area with different depth grade due to extreme surge. 

Figure 5-21 shows the hazard curves of the total flooded area due to the extreme surge in the 

London catchment. These curves are generated by connecting the return period distribution of 

extreme surge as shown in Figure 4-13 with the surge-inundation curve as shown in Figure 

5-19. The curve for the annual frequency of exceedance is calculated according to the return 

period and estimates the probabilistic inundated area in the whole model domain. The similar 

hazard curves can also be generated for any defined area inside the domain. 

 
Figure 5-21. Hazard curves of the overall inundated area of the Greater London catchment 

due to extreme surge. 
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5.5.4 Comparison between the single hazard curves 

The single hazard curves of inundated area and water volume in the Greater London 

catchment are compared respectively in Figure 5-22 and Figure 5-23 for the three hazard 

components. The storm surge can result in the most extensive flooded area, and the rainfall is 

likely to cause the biggest amount of flood volume when the three hazards are in the same 

return period of 100 years. For the current case study, the extreme river flow is relatively less 

dangerous than the other two hazards. Both figures suggest that rainfall and surge are the two 

main threats to the whole research area.  

 
Figure 5-22. Comparing the inundated area frequency curves for the three single hazards. 

 
Figure 5-23. Comparing the inundated water volume frequency curves for the three single 

hazards. 
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However, Figure 5-22 and Figure 5-23 provide only the general assessment for the whole 

catchment but do not reflect the effect of the three hazards on smaller regions with the various 

geographical environments. To obtain more specific hazard curves for local area, the 

simulated flooding results are calculated inside the five small regions as defined in Figure 5-8. 

The total inundated areas of each of the regions due to the three hazards are illustrated 

respectively in Figure 5-24. In region A, the river flow and rainfall are the main drivers of 

flooding while the sea surge only slightly contributes to the flooded area, which is because 

region A is far away from the seaside and its average elevation is higher than the normal sea 

level. From region B to region E, the storm surge has a more significant impact on the 

inundated area, especially in region E which faces the North Sea surge at the very front. In 

contrast, the effect of the extreme river flow can be neglected in the downstream regions. For 

all the five regions, the extreme rainfall is a significant hazard that can cause serious 

inundation. 

 
Figure 5-24. The frequency curves of inundated area for rainfall, flow and tide at the five 

localised regions. 



 
106 

5.6 Double-hazard simulations of joint extreme river flow and total water level 

The 1928 Thames flood was one of the most disastrous flood of the River Thames that 

affected much of riverside London as well as places further downriver, which was caused by 

the concurrence of extreme river flow and total water level from the Thames estuary. In this 

section, we investigate the joint impact of these two hazards on the riverside and seaside 

region along the River Thames. Extreme flow and surges with different single and joint return 

periods are given in Table 5-3 with the estimated single and joint return periods. Due to the 

dependence between the two hazard components, their joint return period is much lower than 

the product of the two single-hazard return periods, suggesting that the joint hazards curve 

can be significantly different from the single-hazard curve as displayed in the previous 

section. 

All the double-hazard combinations of flow and surge as listed in Table 5-3 are simulated 

using HiPIMS in the Greater London catchment. The flow hydrograph is imposed to provide 

flow boundary conditions for the Thames River and the surge level is added to the 

astronomical tide at the east boundary of the catchment close to Sheerness. Results will be 

shown by inundation maps of several joint events for Greater London. Then the hazard curves 

of the inundated area for the whole catchment and selected small regions are displayed, 

respectively. 

Table 5-3. Joint return period (year) of the concurrence of extreme river flow and storm surge 
compared with the single hazard return period (year). 

Surge 
m (year) 2.2  

(8) 
2.4 
(20) 

2.6 
(43) 

2.8 
(80) 

3 
(135) 

3.2 
(211) 

3.4 
(312) Flow  

m3/s (year) 

500 (14) 17 38 78 144 241 375 553 

600 (49) 52 100 196 352 582 902 1325 

700 (114) 118 221 424 756 1246 1926 2828 

800 (213) 219 406 773 1374 2262 3495 5128 

900 (349) 358 659 1254 2224 3659 5651 8291 

1000 (525) 537 987 1873 3321 5462 8433 12372 

1100 (742) 759 1392 2640 4678 7692 11875 17420 
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5.6.1 Inundation maps 

For each combination of the extreme flow and surge, the results of the 24-hour simulations 

are illustrated as inundation maps. The maximum water depths of the three joint events are 

shown in Figure 5-25 and the estimated return periods are found in Table 5-3. With the 

increasing magnitude of the flow and surge from top to bottom, the joint return period of the 

event rises sharply, accompanied by the change of total inundation area in the catchment.  

 
Figure 5-25. Inundation maps due to the concurrence of extreme flow and surge with return 
periods of 100-year (top panel), 1374-year (medium panel), and 8433-year (bottom panel). 

The underlying assumption of the defence failure scenario has a critical effect on the flooding 

areas in the middle and east catchment. All of the flooded areas from London city centre 

towards the east coast are caused by the short or long breaches of the defensive walls or 

embankments adjacent to the river or coast. However, most of the low land along the Thames 

(a) 

(b) 

(c) 
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remains safe, even in the highly extreme events like the bottom plot in Figure 5-25, which can 

be attributed to the high design level of the defence facilities. It is also the reason why the 

general inundated area does not show obviously expand from 100-year event to 8000-year 

event. As the decisive result, the multi-hazard inundation map can display the outcome of 

various hazard intensities as well as defence failure scenarios. But for risk analysis, the result 

needs to be given a meaning of probability that is estimated by a large number of simulations 

and random sampling.  

5.6.2 Hazard curves for the total inundated area 

For any given intensity of flow and surge, the joint return period can be estimated, and the 

inundation map can be generated using HiPIMS. Thus, it becomes possible to construct the 

functional relationship between the return period and the flooded extent or water volume. 

However, a certain return period of multiple hazards can infer to various multi-hazard 

combinations, as shown in Figure 4-15, which means the same return period can result in 

different flooding outcomes. As the return period is defined as positive-going, we choose the 

most severe result from it as the representative outcome. 

The inundated area is a bivariate function of input flow and surge with all the other 

parameters and geographical background settings to be the same. The geometry of this 

function should be a continuous 2D surface in the positive quadrant. By randomly selecting 

hazard pairs to determine flood simulations, we can generate numerous discrete 3D points to 

depict the surface using the simulation results. The trend of the surface should be generally 

flat without peaks or valleys because the function is monotonically non-decreasing on the 

assumption that either a higher flow or a higher surge can result in an outcome of equal or 

more severe inundation. Therefore, instead of performing a large number of simulations, we 

evenly selected a set of hazard pairs as listed in Table 5-3 to estimate the double-hazard 

surface using spatial interpolation. 

The hazard surface for the total flooded area in the whole research domain is illustrated in 

Figure 5-26. The bottom two axes represent the magnitude of the two hazards respectively, 

and the vertical axis displays the simulated total inundated area in the Greater London 

catchment. The red dots on the surface show the results from hydrodynamic simulation and 

are used to fit the whole surface. With the hazard surface, the possible flooded area can be 

estimated for any given flow and surge inputs and running the hydrodynamic model for each 

pair is no longer essential. The surface looks steeper in the axis of the surge than it is in the 
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axis of flow, meaning that the total flooded area is more sensitive to the storm surge than the 

river flow. 

 
Figure 5-26. Total flooded area in Greater London due to joint extreme river flow and storm 

surge. 

As each pair of flow and surge values can be associated with a certain return period, the 

contour lines of the return period can be directly depicted on the hazard surface, as shown in 

Figure 5-27. All points on the same line have the same return period, namely the same 

probability of occurrence. However, the total flooded area varies for the points on the same 

line. According to the concept of the return period, the most severe result should be the 

representing value in that level of return period.  

Using the maximum value of inundated area for hazard pairs at each return period, a hazard 

curve is generated to measure the possibility of the total inundated area in the research 

domain (see Figure 5-28). The bottom axis is the flooded area in the whole research domain. 

The left and right vertical axes show the return period and annual frequency of exceedance of 

the specific inundated area respectively. Concerning the total inundated volume, the 

frequency curves can be generated by following the same steps. Thus, the severity of flooding 

is estimated quantitatively by the return period and the frequency of exceedance for the 

Greater London catchment. Since the hydrodynamic model can produce full 2D inundation 

maps, similar curves are also available for any small regions inside the catchment and make 

the specific risk analysis of target area and properties feasible and statistically reliable. 
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Figure 5-27. Contours of joint return period of flow and surge on the double-hazard surface. 

 
Figure 5-28. Hazard curves of flood inundation due to joint extreme flow and surge at the 

Greater London catchment. 

5.7 Triple-hazard simulations 

5.7.1 Hydrodynamic modelling with multiple inputs 

The designed triple-hazard simulations involve three hazard components, and the range of the 

value for the three hazards is a 3D space of positive real number.  A vast number of 
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simulations are required to adequately estimate all the possible outcomes from the different 

combinations of joint events in the whole range space. However, because of the limited 

computing resources, we choose values from a 3 × 3 × 3 matrix to represent the range space 

of triple hazards in the hydrodynamic model. The values are listed in Table 5-4 with a total 

number of 27 triple-hazard simulations. 

The initial conditions, parameters, and the assumption of defence failures are the same as the 

double-hazard flood simulations. The hydrodynamic model is run for 24-hour events in the 

Greater London catchment. The output of the model is the 24-hour maximum inundation 

depth at each grid cell and can be illustrated as triple-hazard inundation maps. Figure 5-29 

shows the results of two of the triple-hazard simulations. The top panel depicts the outcome of 

a one-in-300 years event. The resulting flooding is limited along the River Thames and the 

east coast while only a few discrete regions away from the riverside are flooded due to the 

rainfall. The bottom map illustrates the result of an extremely infrequent event combining the 

highest values of the three hazards in all the simulations. The floodplain area along the 

Thames is mostly flooded, and severe pluvial flooding can be observed in many places 

outside the riverside region. 

Table 5-4. Input values of triple-hazard simulations using the hydrodynamic model. 

No. 
Rain 

(mm) 

Flow 

(m3/s) 

Surge 

(m) 
No. 

Rain 

(mm) 

Flow 

(m3/s) 

Surge 

(m) 

1 50 500 2.5 15 120 700 3.8 

2 50 500 3.0 16 120 1100 2.5 

3 50 500 3.8 17 120 1100 3.0 

4 50 700 2.5 18 120 1100 3.8 

5 50 700 3.0 19 200 500 2.5 

6 50 700 3.8 20 200 500 3.0 

7 50 1100 2.5 21 200 500 3.8 

8 50 1100 3.0 22 200 700 2.5 

9 50 1100 3.8 23 200 700 3.0 

10 120 500 2.5 24 200 700 3.8 

11 120 500 3.0 25 200 1100 2.5 

12 120 500 3.8 26 200 1100 3.0 

13 120 700 2.5 27 200 1100 3.8 

14 120 700 3.0     
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Figure 5-29. Inundation maps due to joint extreme events of rainfall, river flow and storm 

surge in the Greater London catchment. 

(a) 

(b) 
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5.7.2 Frequency curves of flooding due to triple hazards 

For the triple-hazard simulation, the intensities of hazard are the decisive inputs that create 

flooding in the research domain. So, the inundated areas of any district inside the model 

domain should be a trivariate function of the three hazard components. Figure 5-30 indicates 

the geometry of the trivariate function for the total inundated area in the model domain. The 

three Cartesian axes represent the intensity of each hazard respectively. Different inundated 

areas are indicated by different colours and different sizes of dots. An increasing trend of the 

total inundated area can be observed at the direction of each axis. But the changing rate is 

relatively small in the axis of flow compared with the other two axes, signifying that the flow 

has the lowest effect on the total inundated area among the three hazards. 

Based on the assumption that the increase of intensity of any hazard would result in a larger 

or equal size of inundated area, the trivariate function should be monotone non-decreasing for 

all variables, and its density in the 3D space is gradually varied in each direction. Therefore, it 

is reasonable to estimate the values of the function within its domain of definition based on 

the discrete points from the 27 simulations in Figure 5-30 using a linear interpolating method. 

 
Figure 5-30. The total inundated area in the whole domain due to joint rainfall, river flow 
and storm surge. Varying inundated area is represented by different colour and size of the 

dot.  
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According to the trivariate return period distribution constructed in section 4.5.3, random joint 

events of the three hazards can be generated for any given return period. Thanks to the 

estimated trivariate function of the inundated area, the possible outputs of all the random 

events for a certain region can be worked out directly rather than running numerous 

hydrodynamic simulations. A specific return period corresponds to many random triple-

hazard events and can produce the same number of inundation maps using HiPIMS. The most 

severe flooding from the inundation maps is chosen as the representation of that return period. 

Then, the frequency curve of flooding due to joint extreme rainfall, river flow and storm surge 

can be generated as shown in Figure 5-31. The bottom axis is the total inundated area inside 

the Greater London catchment. The left vertical axis represents the return period, and the right 

vertical axis shows the annual frequency of exceedance. Thus, the possibility of the inundated 

area in the whole catchment is quantitatively estimated, and the same procedures can be 

applied to any small district inside the model domain. 

 
Figure 5-31. Hazard curve of flood inundation due to joint extreme rainfall, flow and surge at 

the Greater London catchment. 

5.8 Conclusions 

In this chapter, a 2D hydrodynamic model, HiPIMS, is applied to simulate flood inundation in 

the Greater London catchment. The model is firstly validated by reproducing three historical 

events to confirm model performance and estimate the essential parameters. The influence of 

the flood defence system is appraised with different failure scenarios and then considered in 

HiPIMS for the entire catchment. According to the return period distributions estimated in 

Chapter 4, random events regarding extreme rainfall, river flow and storm surge are generated 

at various return periods and then put into HiPIMS to simulate the potential floods. The 
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results from all the discrete simulations are used to estimate the relationships between the 

flooding and the input hazards. The frequency curves of flooding, also called hazard curves, 

are generated for single-hazard, double-hazard, and triple-hazard events to quantitatively 

depict the probability of occurrence of flooding at different scales.  

The inundation-frequency curves for individual-hazard show that storm surge is the most 

dangerous hazard to the Great London Catchment, causing around 140 km2 inundated area at 

100-year return period, 90 km2 larger than the rainfall-induced inundation. In contrast, the 

effect of river flow on London is much smaller, only flooding an area of 2.1 km2 at the same 

return period. For local districts inside the Great London Catchment, the hazard curves may 

show totally different patterns as demonstrated in Figure 5-24. The frequency curves of 

inundation due to double-hazard (Figure 5-28) and triple-hazard (Figure 5-31) show the 

possible total inundated area with any given return period levels. For example, at 500-year 

return period, the expected inundated area in the Great London Catchment is 104 km2 due to 

joint extreme flow and surge, and 210 km2 due to joint rainfall, flow, and surge, respectively.   

In the flood risk assessment, the small region with the same type of human properties is often 

selected as the spatial unit of analysis. Although the hazard curves are not demonstrated for 

many local districts in this chapter due to the length limit of the thesis, the procedures for 

generating the hazard curves are applicable to further risk analysis in the next chapter. 

There are a lot of other factors affecting the simulated results apart from the intensity of the 

three hazard components, such as the model parameters, the temporal distribution of the 

hazards during a 24-hour event, and the scenario of defence failure. Due to the lack of data 

and computing capacity, it is unrealistic to consider all the variabilities and uncertainties of 

these factors. Instead, the framework of multi-hazard assessment is concentrated on 

dependence and interaction between the three hazards, which are the critical aspects of a 

multi-hazard issue.  
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Chapter 6. Vulnerability, exposure, and multi-hazard risk analysis 

This chapter is to calculate multi-hazard flood risks. Firstly, integrated inundation maps are 

generated. Then, exposure of human properties is quantified, and vulnerability of the 

properties is analysis. Finally, risk curves and maps are generated based on the results from 

the three risk components. 

6.1 Introduction 

Apart from hazard, vulnerability and exposure are the other two essential components of 

disaster risk. The multi-hazard frequency and outcome have been appraised in Chapter 4 and 

Chapter 5. This chapter aims to accomplish the assessment framework of multi-hazard risk by 

coupling hazards with vulnerability and exposure analysis. The assessment framework is 

employed on a uniform grid of 100 m × 100 m resolution and produces results for every 

one-hectare square inside the research area. The objective of risk assessment in the framework 

can be various and relevant to the evaluation methods of vulnerability and exposure. 

Buildings and road networks are selected as the risk appraising objects to demonstrate the 

complete process of the assessment framework. The first step is to estimate the inundation-

frequency curve for each grid cell and depict integrated inundation maps. Then the 

vulnerability curves of different types of building are derived from the Multi-Coloured 

Manual (MCM) (Penning-Rowsell et al., 2013). The exposure of buildings is analysed and 

illustrated in maps based on the data from the National Property Dataset (NPD) and Digimap. 

Finally, risk curves for each grid cell and risk maps are produced to show the probability of 

loss on each grid cell and the spatial distribution of risk in the Greater London catchment. 

6.2 Integrated inundation map for multiple hazards 

In the previous chapter, a hydrodynamic model is used to produce flood inundation maps, and 

the hazard curve of inundated-area against the probability of occurrence is estimated for the 

whole research domain. As the risk assessment unit is one-hectare square is this chapter, the 

hazard curve is generated for every cell of 100 m×100 m in the Greater London catchment.  
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The proportion of impact on a specific area from each hazard component may be various 

according to the geographical environment. The coastal region along the Thames estuary is 

more likely to be influenced by the surge. The extreme flow and surge can both lead to 

flooding on upstream riversides of the Thames. Regions far away from the river and the 

coastline are only exposed to extreme rainfall induced flooding. The hazard curve for a large 

region may not be able to reflect the real characteristic of hazards at the local areas, and a 

customised curve for each one-hectare cell is therefore necessary.  

Following the same procedures introduced in section 5.7, a number of random events are 

generated for a series of return periods conforming to the joint return period function 

generated in Chapter 4. Then, the flood inundation at the specific cell for each event can be 

estimated by interpolation in accordance with the previous results from hydrodynamic 

modelling. The maximum estimated inundation of the events generated from the same return 

period is regarded as the non-exceeding inundation of that specific return period. Therefore, 

the paired data of inundation and return period can be obtained to illustrate the hazard curve 

for each grid cell. 

For a specified return period is appointed, the corresponding inundation can be worked out 

based on the hazard curve of each cell and the inundation map associated with that return 

period can be generated to cover the whole domain. Figure 6-1 displays the inundation maps 

of 100-year and 500-year return periods for the Greater London catchment. The maps show 

the maximum possible inundation of each cell for the given recurrent time. We can observe 

the increase of both the flooded area and the inundation depth over the domain when the 

return period changes from 100 years to 500 years. However, the event from the same return 

period does not necessarily have the equal hazard magnitudes on each cell because the impact 

of hazards is various at the different locations of the catchment. We call this type of maps the 

integrated inundation maps in which the depth values are not obtained from the simulation of 

one single event. 

The reverse of return period in years is equivalent to the annual non-exceedance probability. 

The function of the inundation against the return period can be transferred to an annual non-

exceedance probability function of inundation for each grid. The mathematical expectation of 

the function is the yearly average inundation that is illustrated in Figure 6-2. It shows the 

expected inundation depth for each cell inside the Greater London catchment by integrating 

the possible flooding of the return period. The map gives a general and quantitative view of 
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the spatial distribution of flooding in consideration of all the three hazard components that are 

potentially destructive to this region. 

 
Figure 6-1. Integrated inundation maps on the 100 m-grid for 100-year and 500-year return 

periods. 

 
Figure 6-2. Expected average annual inundation due to multiple hazards in the Greater 

London catchment. 

6.3 Exposure of human properties 

The typical approach for exposure analysis is to assess the spatial distribution of the value or 

number of elements at risk. Elements to be evaluated are usually human life or properties, 

which are also the objects of the risk assessment, i.e. population, buildings, farmland, 

(a) (b) 
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transportation system, market, industry, and so on. Residential buildings, non-residential 

buildings, and road networks are chosen as the three types of exposure elements to be 

appraised in the framework of multi-hazard risk assessment in this thesis. 

The selection of the exposure is based on the land cover map that gives a general view of 

main types of land use in the research area. According to the Land Cover Map 2015, the land 

use in the Greater London catchment is illustrated in Figure 6-3 with some of the close land 

categories merged into one type. Built-up areas, including urban and suburban areas, are the 

dominant type of land cover in the research domain. The Grassland is distributed sporadically 

in the built-up area and intensively in the northeast and southeast part of the catchment cover 

mainly by arable lands. Referring to the hazard map (Figure 6-2), flooding is more likely to 

happen in built-up areas rather than other landuse types. Therefore, we choose buildings and 

road networks from built-up regions as objects of exposure and risk assessment. 

 
Figure 6-3. Landuse map of the Greater London catchment (Data source: Land Cover Map 

2015, Centre for Ecology and Hydrology (CEH)). 

NPD provides spatial points of properties while the building geometries can be obtained from 

OS MasterMap. Figure 6-4 illustrates zoomed-in maps of three small regions, Twickenham, 

Chelsea, and Canvey Island, which are located respectively in the upstream, midstream and 

the river mouth of the Thames. The background of each map is the land cover. Points of 
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buildings, geometry of buildings, and landuse types are matched well in these three local 

regions. Houses, terraces, and other large buildings can all be illustrated by polygons on the 

map. The high quality of the data makes it feasible to perform quantitative exposure and risk 

analysis at the catchment.  

 
Figure 6-4. The position and shape of buildings in Twickenham, Chelsea, and Canvey Island 

6.3.1 Residential buildings 

For residential buildings, NPD has the geographical information of the property points but 

does not provide detailed categories and valuations. So, exposure analysis of the residential 

building is focused on the number of buildings in each cell. Based on the 100 m-grid defined 

for risk analysis in this chapter, the number of residential properties is calculated for each grid 

cell, and the result is displayed in Figure 6-5.  

The residential buildings are mostly distributed in the middle and west parts of the Greater 

London catchment. In the city centre, the red colour indicates the dense residential buildings 

and also a high level of exposure to flooding in reference to the hazard map as presented in 

Figure 6-2. Apart from the city centre, regions with non-residential buildings along the 

downstream Thames and the coast are also worthy of attention as they are very likely to be 

flooded during extreme events, especially in the Gravesend, Canvey Island and Southend.  
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Figure 6-5. Density of residential buildings. 

6.3.2 Non-residential buildings 

Non-residential buildings are defined as the collection of all other types of building that are 

not used for living, including office, retail, warehouse, sports stadium, industrial buildings, 

and so on. NPD provides the information on the categories of non-residential property. As the 

value and the size of non-residential buildings can vary significantly from one to another, the 

exposure level at each grid cell is delivered by the total floor area of buildings based on the 

geometry data from OS MasterMap. 

Figure 6-6 illustrates the total floor area of the non-residential buildings in each one-hectare 

cell for the Greater London catchment. The spatial distribution of the non-residential 

buildings is concentrated in the central and west part of the catchment, which is similar to the 

residential building. However, unlike the residential properties that spread across the research 

domain, the non-residential buildings distribute more intensively in city and town centres, or 

along the business streets that are indicated by the dark lines on the map.  
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Figure 6-6. Total ground-floor area of non-residential buildings on the 100 m×100 m grid of 

the research area. 

6.3.3 Road networks 

Road networks play a crucial role in the social-economic system. The damage to buildings 

from flooding typically has a more localised impact while the disruption to road networks can 

result in widespread and system-wide disaster leading to substantially tangible and intangible 

losses. The data of road networks can be acquired from OS MasterMap, containing road links, 

nodes and junctions.  

Road links in the Greater London catchment are shown in Figure 6-7. The roads are 

reclassified as two major types to display clearly in the map. The Major road (solid black 

lines) consists of the Motorway, A Road and B Road as defined by the Great Britain Road 

Numbering Scheme. The Local road (dotted yellow lines) includes all the other categories that 

are normally distributed in the smaller regions compared with the Major road. From a general 

view, the distribution of the Local road is in concordance with the distribution of residential 

buildings so that a more populated area commonly has denser road networks.  
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Figure 6-7. The road networks in the Greater London catchment. 

6.4 Vulnerability curves for flooding 

Vulnerability analysis of elements at risk is a big research topic that involves a lot of internal 

attributes of the elements and external environmental factors. This chapter attempts to apply 

some results of the current vulnerability approaches in the risk assessment framework of the 

thesis. MCM is selected in this work, which is widely employed in the UK for flood risk 

assessment, as the primary support of vulnerability data. A typical quantitative vulnerability 

function of flooding should be able to show the relationship between hazard (inundation depth 

or water velocity) and damage. The damage is referred to as loss of human lives, damage of 

buildings, blocking of roads, or economic loss measured in monetary term. Which way to be 

used to quantify the damage depends on the objects of risk analysis and the data availability. 

6.4.1 Depth-loss curve of residential buildings 

The MCM provides vulnerability data for five types of residential buildings as direct loss 

functions against inundation depth. These functions are given for several scenarios according 

to different levels of flood warnings, including no warning, 8-hour warning, and >8-hour 

warning. As the flood forecasting system is well established and operating in the UK (Ballard 
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et al., 2016), we assume that the Greater London catchment can receive the flood warning 

longer than 8 hours.  

According to the damage data table of residential buildings for short duration flood with 

longer than 8-hour warning, the depth/damage curves of five types of house and the average 

residential building are illustrated in Figure 6-8. The damage measured as the economic loss 

in British Pound increases with the rise of inundation depth for all five types of house. As the 

exposure data does not contain detailed categories of the residential building in the research 

area, we only use the curve of residential sector average to generally represent the 

vulnerability of all residential houses in each of the appraising units. 

 
Figure 6-8. Depth-damage curves of residential buildingds due to flood inundation (Data 

source: MCM). 

6.4.2 Depth-loss curves of non-residential buildings 

The vulnerability data of non-residential properties from MCM provides depth/damage 

functions of 12 sector types for two flood warning scenarios (with or without warning). The 

damage is quantified by the economic loss as British Pound per square metre. As we assume 

that flood forecasting is available for the future flooding events, the vulnerability curves for 
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the scenarios with flood warning are selected to perform risk analysis for the non-residential 

buildings, as shown in Figure 6-9. 

According to the vulnerability curves illustrated in Figure 6-9, the Sub-Station has a much 

higher economic loss per square metre compared with other types. The curves of Retail, 

Offices, Warehouses, and Leisure have similar shapes and are close to the curve of the NRP 

sector average while the other types have the relatively smaller loss when facing flood 

inundation. The curves also show that the damage becomes less sensitive to flood inundation 

when the inundation depth is deeper than 2 m. It may be because most valuable stuff inside 

the buildings would be fully submerged and badly damaged when the water depth reaches 2 

meters. With the detailed depth-damage functions for a range of sectors, the risk of direct 

economic loss due to multi-hazard flooding can be evaluated for each sector by combining the 

exposure of property and the hazard curves. 

 
Figure 6-9. Depth-damage curves of non-residential buildings due to flood inundation 

inundation (Data source: MCM). 

6.4.3 Depth-damage curve of road network 

The vulnerability analysis of road networks is more complicated than buildings because the 

loss of road networks due to flooding can involve a larger number of factors that are very 

difficult to investigate. For example, the loss of a part of a submerged road may consist of the 
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money to repair the road, the effect of repairing the road during rush time, the economic loss 

due to traffic disruption that is related to the number of affected vehicles, and the influence on 

other roads. Because of the high complexity of road network disruption, the MCM does not 

provide specific loss function in the current version. However, with the current data of road 

networks, we can use the submerged distance as the representing variable of the road damage. 

Then the depth-damage curve can be illustrated by an indicator function, 

𝐷𝐷(ℎ) = �1, 𝑖𝑖𝑓𝑓 ℎ > 0.3 𝑚𝑚
0,            𝑓𝑓𝜕𝜕ℎ𝑒𝑒𝑓𝑓𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒  

where 𝐷𝐷 is the damage of road, ℎ is the inundated depth over the road. The threshold of road 

failing is set as 0.3 m as it is widely recognised as the maximum inundation depth for safe 

driving of ordinary vehicles (Pregnolato et al., 2017). The vulnerability function coupling 

with the exposure data of road length can be used to evaluate the risk of road damage 

signified by the road failing distance. 

6.5 Multi-hazard risk 

Risk analysis is performed for each grid cell by integrating the hazard curve, the vulnerability 

function, and the exposure for buildings and roads. A hazard curve quantifies the probability 

of occurring of flooding. A vulnerability function estimates the possible damage of elements 

at risk under the impact of inundation depth. A damage/ probability curve is calculated 

according to a shared variable (i.e. inundation depth) of the hazard and the vulnerability 

functions. Then, the damage/probability curve is multiplied by the exposure data to get the 

probability curve of total loss. The quantitative results of multi-hazard risk are produced for 

the buildings and road networks on the 100 m×100 m grid inside the Greater London 

catchment. The result of risk analysis can be shown as risk curves for individual grid cells and 

risk maps for the whole catchment.  

6.5.1 Risk curves 

As the fully quantitative result of risk analysis, risk curves provide the intact information 

about the occurring probability of disaster loss in the form of return period or annual non-

exceedance probability. The risk curve is produced for every cell for properties inside the 

catchment. The vulnerability functions for the residential and non-residential buildings and 

the associated risk curves are both continuous curves. But the risk curves for the road 

networks will be presented as discontinuous lines with two stairs because the applied roads 
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vulnerability function is a step function. In this section, we only display the risk curves for the 

two selected types of buildings. 

It is unrealistic to depict the risk curves of all of the one-hectare cells in the research domain 

as the number of valid cells will be around 0.27 million. The administrative district boundary 

can divide the research area into several smaller regions. We select eight cells that are from 

eight different administrative districts as examples. Figure 6-10 illustrates the risk curves for 

residential and non-residential buildings due to multi-source flooding on the eight cells. The 

vertical axis indicates the economic loss of buildings and the horizontal axis shows the return 

period of the potential flood events. 

 

Figure 6-10. Risk curves for residential and non-residential buildings due to multi-source 
flooding at the eight grid cells as indicated on the map at the centre. 

In the first plot of Figure 6-10, the risk of loss stays in zero until the return period getting 

higher than 200-year for both types of buildings in the cell in Southend. The reason may be 

that Southend is well protected from up to 200-year event but can be seriously flooded when a 

higher return period surge overtops the flood defence walls. The comparison between the risk 
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of residential and non-residential buildings can be made according to the position of the two 

types of the risk curve. For the cells from Southend and Thurrock, the non-residential 

buildings are at higher risk than the residential buildings. On the contrary, the residential 

buildings in the cells from Greenwich, Castle Point, Merton, Richmond, and Tower Hamlets 

are more likely to suffer from economic loss than the non-residential buildings. For the cell 

located in Haringey, the two risk curves across each other make it difficult to conclude which 

type of building is at higher risk, and it is, therefore, necessary to calculate the expected 

average loss.  

6.5.2 Risk maps of average annual loss 

A risk map depicts the spatial distribution of the risk levels on the whole research area. It is 

widely used for qualitative and semi-quantitative risk assessment by visualizing the risk rank 

or risk index of each assessing unit. In this thesis, we draw the risk map with the annual 

average loss (AAL) on each grid cell, providing both qualitative risk comparison and 

quantitative loss prediction. The AAL is derived from the risk curves indicating the annual 

non-exceedance probability of loss, which is the mathematical expectation of the risk 

function. Every cell inside the Greater London catchment with the AAL value larger than zero 

is displayed on the map with colour depth to reflect the value.  

The risk map for residential buildings is illustrated in Figure 6-11. Each pixel in the map 

indicates the expected annual economic loss of the residential houses due to flooding. The 

value is a long-period expectation that does not suggest the specific quantity of loss can be 

expected every year. The south riverside area of the Thames in the city centre shows the very 

high AAL values, suggesting it is the most dangerous region exposed to flooding. According 

to the inundation map in Figure 6-2, the south coast of the Thame estuary is easy to be 

flooded. However, the AAL in that area is almost zero because of the lack of buildings there, 

which is a typical example to show the importance of exposure analysis in risk assessment. 

Figure 6-12 is the AAL risk map for non-residential buildings. The pixel value is the 

aggregated AAL of all types of non-residential properties due to flooding. The spatial 

distribution of the AAL in the research area is similar to it in the risk map of residential 

houses. The significant differences between the two maps can be found in the Canvey Island 

and Southend located in the north of the Thames estuary. The AAL of non-residential 

properties is lower than that of residential buildings in those two regions. It is also because of 

the different exposure of the two elements. 
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Figure 6-11. Average annual loss of residential buildings due to multi-source flooding. 
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Figure 6-12. Average annual loss of non-residential buildings due to multi-source flooding. 
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Figure 6-13. Average annual inundated distance for (a) major roads and (b) local roads. 

The economic loss of road networks from flooding is not worked out in this work due to the 

high complexity of the transportation systems and the lack of traffic data. As a compromise, 

(a) 

(b) 
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we use the inundated length to measure the loss of road networks. Figure 6-13 shows the 

average annual inundated distance of major roads in the top panel and local roads in the 

bottom panel. Since the local road networks are denser than the major road networks, the area 

with high expected loss value is significantly larger in the risk map of the local road. The 

high-risk region of the local roads is generally in accordance with the distribution of 

residential properties. In contrast, the risky region of the major roads is discretely distributed 

over the entire research domain. 

6.6 Conclusions 

This chapter has comprehensively introduced the process of multi-hazard risk assessment and 

demonstrated the functions of the three components of risk analysis. Integrated inundation 

maps are produced for the Greater London catchment based on the hazard curves generated 

from the joint probability analysis and hydrodynamic modelling. The area with expected 

annual average inundation (shown in Figure 6-2) over 0.3 meter is 101.63 km2 and mostly 

distributed along the Thames riverside. Risk curves are generated to quantify the possibility of 

disaster loss and illustrated in Figure 6-10 for buildings at eight different locations. Risk maps 

showing average annual loss are produced according to the risk curves on each grid cell for 

residential buildings (Figure 6-11), non-residential buildings (Figure 6-12), and road networks 

(Figure 6-13), respectively. The total expected average annual loss is £35.8m for residential 

buildings and £32.7m for non-residential buildings.  

The risk assessment framework is able to produce fully quantitative results either as the risk 

curves of each assessing unit or the risk maps showing the average annual loss of elements at 

risk. Risk maps provide a general pattern of loss levels due to multi-hazard flooding for the 

whole Great London Catchment. It can be further calibrated with more detailed information 

about the exposure and vulnerability attributes in smaller regions. The risk assessment 

framework is an important reference tool to decision makers and residents for various flood 

risk reduction purposes.  
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Chapter 7. A forecasting system for multi-hazard flood and risk 

This chapter is to extend the proposed risk assessment framework to a risk forecasting 

framework to predict floods and the resultant damage. The structure of the forecasting 

framework is firstly introduced. Then, it is applied to the Eden catchment as a case study 

followed by results analysis and discussion about model resolutions and uncertainties. 

7.1 Introduction 

With the rapid development of  Numerical Weather Prediction (NWP) models (Bauer et al., 

2015), short-term forecasting has become possible for certain water-related hazards like 

rainfall and storm surge. If an entire basin is used as the flood modelling domain, only two 

types of hazard need to be considered, i.e. rainfall over the entire domain and tide or surge 

imposed through boundary conditions. The risk assessment framework presented in the 

previous chapters can be extended to develop a risk forecasting system if the prediction of 

hazards is available. This chapter is to build a real-time forecasting system for intense 

rainfall-induced flooding and the resulting risk of economic loss. Two hazards are recognised 

as the potential drivers of flooding: extreme rainfall over the catchment region, and the total 

water level on the outlet of the catchment. The hazard simulation and vulnerability analysis 

modules are employed in the forecasting system to predict the flood inundation and potential 

loss. This chapter aims to 1) demonstrate the feasibility of applying the fully 2D 

hydrodynamic model for real-time forecasting of intense-rainfall triggered flooding over 

broad catchments, 2) investigate the effect of spatial resolution on the simulating results and 

lead time of the forecasting, and 3) evaluate the effect of cascading prediction errors from the 

NWP model to the hydrodynamic model. 

7.2 The framework of the flood and risk forecasting system 

The structure of the proposed flood forecasting system is illustrated in Figure 7-1, in which 

the hydrodynamic model HiPIMS is driven by the UKV rainfall forecasts to predict full-scale 

flooding processes across the pre-defined simulation domain (e.g. a catchment or a city). A 
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high-resolution digital elevation model (DEM) of the domain is needed to set up HiPIMS for 

flood simulation. Human-related interventions, e.g. flood defences, are considered when 

processing the topographic data to create the final DEM. Other relevant datasets including 

landcover information and soil properties are also required to estimate model parameters. 

Initial conditions (water depth and velocities in the domain) for starting a simulation may be 

generated by pre-running the model using antecedent rainfall data from observations or UKV 

predictions. The potential impact of the storm surge in catchment outlets is considered by 

imposing the sea level predictions as boundary conditions.  

If available, river gauge and other field observations may be used to calibrate and validate the 

model. The HiPIMS-based forecasting system will produce tempo-spatial varying flood 

depths and velocities across the entire simulation domain, which can then be further processed 

to produce predicted inundation maps and other necessary flood information for issuing 

warnings. The simulation results can also be used to support flood risk analysis by 

superimposing the relevant exposure data and vulnerability curves. 

 
Figure 7-1. Real-time forecasting system for intense-rainfall induced flooding. 

7.2.1 NWP model 

NWP products from the UKV model (Davies et al., 2005) is used in this work to drive 

HiPIMS for real-time forecasting. The UKV model domain covers the entire Britain and 

Ireland (Tang et al., 2013) at a resolution of 1.5 km over its center and 4 km along its edges. It 

is the finest available resolution for short-range weather forecasting in the UK, which is able 
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to represent most convective dynamics without using a convection parameterization scheme 

(Lean et al., 2008). The operational UKV system has been running in real time since 2010 by 

the Met Office, using 3 hourly cycling 3D variational Data Assimilation (3D-Var) to generate 

weather forecasts up to 36 hours in every 6 hours (Ballard et al., 2016). 

The UKV model outputs are deposited at the Centre for Environmental Data Analysis 

(CEDA) and stored as binary files in Met Office pp format which can be converted into the 

NetCDF format via an open software tool XCONV. The rainfall forecast data is output as 

gridded format on a rotated latitude-longitude projection and can be transformed to the 

Ordnance Survey National Grid (BNG) reference system at a spatial resolution of 1.5 km, 

which can be directly used as precipitation inputs to drive HiPIMS for flood simulation. 

7.2.2 Real-time simulation and visualization 

The UKV model is currently running at real-time by the Met Office and keeps producing 

forecasting outputs every 6 hours. A monitor module is running to download the weather 

prediction from UKV model once a new output is generated and monitor the predicted rainfall 

rate inside the system domain. The initial conditions of water depth and velocity are first 

created based on the previous rainfall forecasts and then daily calibrated with river stage 

observations. Once the predicted 36-hour accumulated rainfall is higher than the “warning” 

threshold, the hydrodynamic model is brought into operation with the prepared initial 

conditions and keeps running until the end of the rainfall event.  

The simulated inundation depth and velocity can be output at any given time within the 

forecasting duration, typically 36 hours. The instant output is transferred into a KML file and 

visualised timely using Google Earth, showing the inundation on the local maps with surface 

details, like buildings, roads, and farmland. The predicted maximum flood depth throughout 

the forecasting period is generated once the simulation is finished and can be used to provide 

precise flooding forecasts for each cell inside the model domain. The threshold to release a 

flood warning is when a region with properties experiences inundation higher than 0.3 m in 

the hydrodynamic model. The risk prediction is issued together with the flood warning and 

visualised as risk maps. 
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7.3 Case study: the Eden Catchment 

7.3.1 Catchment and data 

The flood forecasting system is applied to the Eden catchment (see Figure 1-2) located in the 

northwest of England with an approximate area of 2500 km2. The main rivercourse is the 

River Eden flowing from southeast to northwest with main tributaries including Caldew, 

Petteril, Eamont on its left and Irthing on its right. The predominant land-use in the catchment 

is rural, while only 1% of the area is urban. The largest settlement is Carlisle lying at the 

lower Eden with a population of 75000, around one-third of the whole population living in the 

catchment. The average annual rainfall in this area can exceed 2800 mm, which is three times 

of the average for the whole England.  

Eden is a rapid-responding catchment to fluvial floods due to its steep topography in the 

upper areas. But there is no significant risk of tidal flooding within the region (Environment 

Agency, 2009). The lower catchment area like Carlisle suffers a lot from serious floods in 

history, especially the events in January 2005 and December 2015. Therefore, we choose this 

area as the pilot region to build and test the proposed flood forecasting system. 

The terrain data (DEM) is from the Digimap for land surface and buildings with 5 m 

resolution. The river bathymetry is not reflected in the terrain data but is very important for 

accurate hydrodynamic modelling. So, the surveyed river cross-sections for part of Eden and 

its principal tributaries from available from EA are merged into the original DEM to setup the 

forecasting system.  

Rainfall is the critical data to test and run the model. The rainfall rate with 1.5 km spatial 

resolution and 15 min time resolution from UKV model is the precipitation source. And the 

rainfall radar data from the Met Office NIMROD system is regarded as the ‘true’ observed 

rainfall to make a comparison with the flood predicted driven by the UKV outputs. This 

dataset gives the best possible estimation of surface precipitation rate with 1 km resolution 

based on radar sites and processed using optimum quality control and correction procedures 

(Met Office, 2003). Tide is not the direct threat to this area in the history but a high sea level 

during flooding may reduce the speed of river flow in the downstream basin and hence 

influence the flooding process. HiPIMS uses tide predictions from the National Oceanography 

Centre (NOC) as boundary conditions to reflect the tidal effect.  
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7.3.2 Model setup and validation 

The model is validated against a flood event occurred in Eden catchment on 6th December 

2015. It was caused by Storm Desmond that brought a period of heavy and prolonged rainfall 

from the 4th to the 7th of December. The amount of rainfall in one day and two consecutive 

days set new history records in the catchment, and so did the flow rate in River Eden 

(Environment Agency, 2016). Time series of the average and median rainfall across the whole 

domain is given in Figure 7-2, based on the NIMROD rainfall radar data. As the largest 

settlement within the catchment locating at the downstream, Carlisle was seriously flooded 

during the event. The surveyed flood extent is shown in Figure 7-3, which will be used to 

validate simulation results.  

As the details about setting up HiPIMS in the Eden catchment has been described in Xia et al. 

(2018), herein the procedures are only briefly introduced with the results of model validation. 

HiPIMS is calibrated over a spatial resolution of 20 m for this case. The initial conditions of 

water depth and velocity, infiltration rate, and Manning coefficient in each grid cell inside the 

domain are required to set up and run HiPIMS. Three days of rainfall data before the 4th of 

December 2015 is run in advance over a dry DEM to generate the required initial conditions. 

The land was saturated at the beginning of the flood event as it had already recorded more 

than twice of the monthly average rainfall during November before Storm Desmond 

(Environment Agency, 2016). Therefore, the parameter of infiltration rate is set to zero. 

Manning coefficient for each type of land cover is given based on the values suggested by 

Chow (1959). 

 
Figure 7-2. Average and median rainfall rate in Eden Catchment due to Storm Desmond in 

2015  
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Figure 7-3. Flood extent map in Carlisle due to Storm Desmond on 6th Dec 2015 and the 

location of some river gauges. 

Figure 7-4 presents the simulated and observed hydrographs at the three gauges located 

upstream (Great Corby), midstream (Linstock), and downstream (Sheepmount) in the Eden 

and the inundation extent around Carlisle for the two and half days flood caused by Storm 

Desmond. The red lines in Figure 7-4-(a) sketches the EA surveyed flood extent next to 

Carlisle and the blue area shows the simulated maximum water depth throughout the flood 

event. It can be observed that the surveyed flood extent is correctly reproduced by the current 

model to a large extent.  

The Nash-Sutcliffe Efficiency (NSE) coefficient (McCuen et al., 2006) is used to assess the 

goodness of fit of the hydrodynamic model, which is denoted as 

 𝑁𝑁𝜌𝜌𝐸𝐸 = 1 −
∑ �𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖�𝑁𝑁
1

∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)𝑁𝑁
1

 (7-1) 

in which 𝑌𝑌�𝑖𝑖 and 𝑌𝑌𝑖𝑖 are the predicted and observed water depth, respectively, and 𝑌𝑌� is the mean 

of the measured values of  𝑌𝑌. NSE will range from 0 to +1 if the predictions of linear model 

are unbiased. Otherwise, it may be negative. The closer the NSE is to 1, the better match 

between the predictions and observations. 

The NSEs are respectively 0.82, 0.72 and 0.76 at Great Corby, Linstock and Sheepmount, 

confirming accurate forecasting of the water levels. The predicted peak water level is higher 
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than the observations. This may be because the radar rainfall data is underestimated compared 

to the real rainfall in the catchment. Generally, the temporal change of the water level is 

captured reasonably well in all of the three gauges although small underestimates appear in all 

hydrographs. 

  
Figure 7-4. Simulated and Observed water level for different gauges at Eden with Nash-

Sutcliffe Efficient (NSE) during the flood event caused by Storm Desmond. 

7.3.3 Flood simulation with forecast rainfall 

After HiPIMS is calibrated with suitable model parameters, the forecasted rainfall from UKV 

model can be used to drive HiPIMS for real-time flood forecasting. The lead time of the UKV 

forecasts is 36 hours, and the rainfall prediction is compared with NIMROD radar rainfall at 

Eden catchment. Figure 7-5 illustrates the maps of 36-hour accumulated rainfall outputs from 

NIMROD radar and UKV model throughout the event from 2015-12-04 21:00 to 2015-12-06 

9:00 when the region experienced the most intense rainfall. NIMROD radar has a higher 

(a) 

(b) (c) (d) 
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resolution 1 km against the 1.5 km resolution of UKV. The spatial distribution of rainfall 

predicted by UKV is slightly biased to the northeast compared with radar rainfall, leading to 

the heavy rainfall belt (the yellow region in the maps) situated more inside the Eden 

catchment (shown by the red outline).  

Figure 7-6 shows the comparison of bar plots between radar and UKV hourly rainfall at the 

grids within Eden Catchment. For the first 30 hours of prediction, the mean and median value 

of rainfall inside the domain from UKV forecast are generally higher than the values from 

NIMROD radar, which means the rainfall is overestimated. While in the last 6 hours, the 

UKV model underestimated the rainfall. Nonetheless, the rainfall prediction of UKV still 

compares reasonably well with the radar records in terms of spatial distribution, intensity and 

the temporal profile and is well suited for application in the flood forecasting system.  

 
Figure 7-5. The grid-based maps of 36-hour accumulated rainfall from 2015-12-04 21:00 to 
2015-12-06 9:00: (a). NIMROD radar rainfall, (b). UKV model forecast rainfall. Red line is 

the outline of Eden catchment.  

(a) (b) 
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Figure 7-6. Bar plots of hourly rainfall. 

In real-time operation of the flood forecasting system, rainfall predictions are imported to 

HiPIMS once it is released from UKV model, that is, rainfall in HiPIMS is updated every 6 

hours and the model simulation time is 36 hours. But to test the forecast system with the flood 

event caused by Storm Desmond, we run the HiPIMS model for a longer duration covering 

the entire process, which is 84 hours (three and half day) starting from 2015-12-04 12:00 and 

ending at 2015-12-08 00:00.  

A higher spatial resolution can result in a better accuracy of hydrodynamic modelling, but it 

also means the model is more computing-expensive, which may restrict the lead time when 

employed in a flood forecasting system. A 20 m grid was previously used to validate HiPIMS 

with radar rainfall data in the catchment. For flood forecasting, it is worth to test the 

efficiency and computing time of different spatial resolutions and find the optimal choice in 

consideration of the lead time. The forecast model is performed over several different DEM 

grids with resolutions of 10 m, 20 m, 30 m and 50 m. All the cases are executed on the same 

device so that the run time is comparable. The lead time of the whole forecasting system is 

then calculated based on the lead time of UKV model and the runtime of HiPIMS. 

(a) 

(b) 
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UKV model is a determinative model that produces one prediction in each output. 

Uncertainties from UKV model may propagate to HiPIMS and generate flood maps with 

uncertain errors. To evaluate the impact of the uncertainties, rainfall predictions with error 

levels of ±10% and ±20% are used to drive HiPIMS. The “error” results are compared with 

the result simulated with the original UKV forecast to assess the uncertainties in flood maps. 

7.4 Results 

A series of simulations with different grid resolutions and different rainfall sources (forecast 

or radar) are conducted at the whole Eden catchment. Results showing the water level at the 

three gauges at Eden and the flood extent at Carlisle are compared with observations. 

7.4.1 Sensitivity of grid resolutions 

Firstly, we use radar rainfall data to drive the flood forecasting system over various spatial 

resolutions and intend to select the most reasonable resolution for flood forecasting. Figure 

7-7 shows the maximum inundation depths and area in the downstream of Eden near Carlisle 

as simulated at spatial resolutions of 50 m (Figure 7-7-(a)), 30 m (Figure 7-7-(b)), 20 m 

(Figure 7-7-(c)) and 10 m (Figure 7-7-(d)).  In comparison with the surveyed flood extent 

indicated by red lines, the results from the simulation at 30 m resolution is better matched 

than the results of 50 m simulation. However, from a general point of view, there is no 

apparent difference from Figure 7-7-(b) to Figure 7-7-(d), suggesting that higher resolution 

above 30 m does not result in significant improvement in model performance in terms of  

flood extent. 
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Figure 7-7. Simulated flood extent due to radar rainfall in comparison with investigated flood 
area. (a) simulation over 50 m grid; (b) simulation over 30 m grid; (c) simulation over 20 m 

grid; (d) simulation over 10 m grid. 

For more quantitative evaluation, the water levels recorded at Great Corby, Linstock, and 

Sheepmount from different simulations are compared in Figure 7-8. It shows that the water 

level predictions from the 50 m simulation are far deviated from the corresponding 

observations while the water level hydrograph of 30 m simulation matches well at Great 

Corby and Linstock but not at the downstream gauge Sheepmount. The simulated hydrograph 

of 20 m and 10 m look quite similar and both well matched with the observations.  

Looking at the model performance table (Table 7-1), it appears that the model performance 

indicated by NSE increases from the resolution of 50 m to 10 m. In contrast, the computing 

time of HiPIMS rises dramatically with higher spatial resolutions especially from 20 m to 10 

m. The lead time of forecasting system is calculated based on the lead time of UKV model 

(36 h) and the runtime of HiPIMS. Table 7-1 shows that with the multi-GPU devices 

introduced in Section 3.4, the 20 m resolution forecasting system can give flood warning 

more than 34 hours in advance while the 10 m model system is capable for 20-hour forecast. 

As there is no significant improvement from 20 m to 10 m regarding the model performance, 

but 14-hour lead time can be gained if we choose 20 m instead of 10 m, we can conclude that 

(a) (b) 

(c) (d) 
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20 m is the reasonable choice for the flood forecasting system at Eden catchment with the 

current computing capacity.  

 
Figure 7-8. Water levels at (a) Great Corby, (b) Linstock, and (c) Sheepmount obtained the 

simulations of various spatial resolutions. 
Table 7-1. Model performance (Nash-Sutcliffe Efficient) and lead time for various spatial 
resolutions. 

Resolution 
Nash-Sutcliffe Efficient Computing 

Time (For 
36h) 

Lead 
Time Great 

Corby Linstock Sheepmount Mean 

50 m 0.27 -0.31 0.31 0.09 6.5 min 35.89h 

30 m 0.79 0.86 0.63 0.76 21 min 35.65h 

20 m 0.91 0.84 0.90 0.88 1h 30 min 34.50h 

10 m 0.95 0.93 0.85 0.91 15h 45 min 20.25h 

7.4.2 Performance of forecasting system 

From the previous results of sensitivity analysis for grid resolution, 20 m is proved to be a 

feasible and accurate enough resolution for flood forecasting system in consideration of the 

currently available data, models, and devices. Therefore, we use the results of 20 m-resolution 

model driven respectively by radar and NWP rainfall to evaluate the performance of the flood 

(a) (b) 

(c) 
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forecasting system. Simulated flood extents and hydrograph for water level at river gauges are 

compared with investigations and observations in Figure 7-9. The left figure illustrates the 

simulated maximum water depth based on forecasted rainfall and the red line indicates the 

surveyed flood extent. The forecasted flooding is more severe than the flooding simulated 

using radar rainfall in Figure 7-4-a. It covers a higher ratio of the investigated flooding area 

but meanwhile exceeds the extent more outside the investigated flooding area. As the UKV 

rainfall forecast for Storm Desmond is demonstrated to be over-predicted versus the radar 

rainfall, a more severe flood is expected from the forecasting model, and we cannot judge 

whether it is better or worse than the simulated flood extent from radar rainfall.  

However, the hydrographs of water level at the three river gauges (Figure 7-9 b,c,d) are 

helpful to provide more detailed information for model performance comparison. The 

forecasted water level is higher than the simulated results from radar rainfall and higher than 

the gauge observations, which can be attributed to the positive error of UKV rainfall 

prediction for Storm Desmond. Table 7-2 presents the NSE for water level simulation of radar 

and NWP rainfall at Great Corby, Linstock, and Sheepmount, respectively. It is obvious that 

the NSE from forecasting model is lower than the values from the model of radar rainfall, 

which is reasonable because the radar rainfall is believed to be more accurate than the 

forecasted rainfall. Nonetheless, the NSE values at each gauge are high enough to point to 

good model performance for flood forecasting.  

Table 7-2. Model performance (Nash-Sutcliffe Efficient) for the simulation of water level. 

Rainfall Data Great Corby Linstock Sheepmount Average 

NWP 0.88 0.74 0.76 0.79 

Radar 0.91 0.84 0.90 0.88 
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Figure 7-9. Bottom panel: (a) Comparison between surveyed flood extent and simulated flood 
extent due to forecasted rainfall of Storm Desmond. Top panel: Hydrographs of water level 

based on (b) observed values, (c) the simulation of forecast rainfall, and (d) the simulation of 
radar rainfall.  

7.4.3 Risk analysis for buildings 

According to the risk analysis procedures introduced in Chapter 6, the potential loss can be 

calculated from the hazard map, vulnerability curve and exposure data. Once the flood 

forecasting is issued, the predicted inundation depth is combined with the depth/damage 

function for specific exposures to produce the loss prediction result. Figure 7-10 illustrates the 

forecasted risk map of building loss due to Storm Desmond in Carlisle. The map gives 

damage prediction to the residential and non-residential building in Carlisle. Thanks to the 

high-resolution prediction of the flood from HiPIMS, the risk prediction is configured in each 

20 m cell with buildings located. The urban area of Carlisle is in the south bank of the Eden 

River where two tributaries flow through. The damaged area is mostly situated along the two 

river branches. 

(a) 

(b) (c) (d) 
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Figure 7-10. Predicted risk map of building loss due to Storm Desmond. 

7.4.4 Error cascading 

The flood forecasting system is further tested by the UKV predicted rainfall with added error 

levels of ±10% and ±20%. The hydrographs of water depth at river station Great Corby, 

Linstock, and Sheepmount from the four error scenarios are compared with the results of 

model driven by origin rainfall predictions (Figure 7-11). It shows that the error effect for 

simulated water depth increases from upstream to downstream gauges. But the error deviation 

from original prediction is relatively small, and even the most significant difference of water 

depth at Sheepmount locating in the very end of the whole catchment is still less than 1m on a 

20% rainfall error level. The root-mean-square error (RMSE) is generally used to quantify the 

error level regarding the units of the variable calculated by the model, and it can be defined as 

 𝑅𝑅𝑀𝑀𝜌𝜌𝐸𝐸 = �∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑎𝑎
 (7-2) 

where 𝑦𝑦�𝑖𝑖 and 𝑦𝑦𝑖𝑖 usually represent the sample of error predictions and original predictions 

respectively, and n is the sample size. The values of RMSE for water depth at each gauge are 
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given in Table 7-3. The relative mean error is calculated by the average RMSE at three 

gauges divided by their mean water depth respectively, which shows that the error from the 

rainfall prediction is not amplified by the hydrodynamic model in the forecasting system. 

 
Figure 7-11. Water depth hydrographs from flood simulation model with forecasted rainfall 

at various error level. 
Table 7-3. Error table for water depth with various rainfall error level. 

Rainfall 
error level 

RMSE (m) Relative 
mean error Great Corby Linstock Sheepmount Average 

+10% 0.18 0.22 0.33 0.25 +4.73% 

-10% 0.16 0.22 0.31 0.23 -4.36% 

+20% 0.38 0.47 0.69 0.51 +9.91% 

-20% 0.30 0.42 0.59 0.43 -8.35% 

7.5 Discussion 

The situation of man-made flood defence or management facilities such as pumping station, 

sluice gate or embankment, has a great impact on the severity of the flood, especially in urban 

area. One limitation of the flood forecasting system in this paper is that the applied 

(a) (b) 

(c) 
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hydrodynamic model sets the flood defence facilities as a static situation that cannot respond 

to defence failure or emergency management of flood immediately during an event. Hence, 

the next generation of the forecasting system will consider the ‘human factors’ in flood 

management by running a set of cases with various conditions of flood defence and regulation 

facilities and providing forecasts in corresponding with different scenarios. 

Both the operational and research flood forecasting systems in the world are paying attention 

to the Ensemble Prediction System (EPS) by using ensemble NWP data rather than single 

deterministic forecast (Cloke and Pappenberger, 2009). Moreover, ensemble techniques are 

also applied in the application of hydrological modelling to deal with the uncertainty from 

model parameters, initial and boundary conditions (Jeong and Kim, 2005; Pagano et al., 2013; 

Seo et al., 2006). The ensemble forecasting system gives probabilistic flood predictions that 

can provide more detailed forecast information to the public and decision-makers. However, it 

obviously requires much more computing resources for running model multiple times with 

various data and parameters. In the UK, a short-range ensemble weather forecasting model 

called Regional Ensemble Prediction Systems (MOGREPS) is running by Met Office and 

produces weather prediction data available to be downloaded in real-time. Therefore, our next 

step is to employ the MOGREPS rainfall forecasts and HiPIMS with ensemble dressing to 

develop a hydrodynamic-driven ensemble flood forecasting system. And if the probabilistic 

prediction of inundation can be produced from the ensemble flood forecasting, the 

probabilistic risk prediction is also feasible for the exposure in the research domain. 

7.6 Conclusions  

Real-time flood forecasting is an effective means to mitigating the negative impact of 

flooding by providing timely and accurate flood forecasts and warnings to the public and 

relevant parties. Due to climate change, more extreme floods from intense rainfall have been 

observed in recent years across the world and the resultant floods may be amplified by other 

water-related hazards such as storm surge. The reliable simulation of this type of highly 

transient and multi-hazard flooding process requires the use of fully physically-based models. 

Most of the current flood forecasting systems are developed based on hydrological models or 

coupled hydrological and hydrodynamic models, which are not capable of modelling flood 

events induce by intense rainfall and interacted with other hazards to provide reliable and 

complete forecasts of inundation and potential loss. In this chapter, a new real-time flood 

forecasting system is developed by integrating a fully hydrodynamic model with the NWP 
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outputs produced by the UK Met Office’s operational UKV model. By combining the flood 

forecasts with vulnerability and exposure data, a risk forecasting system is constructed to 

produce predictions of potential disaster loss. The performance of the flood forecasting 

system has been confirmed by applying to ‘forecast’ the 2015 Storm Desmond flood across 

the entire 2,500 km2 Eden Catchment including City of Carlisle in the UK. Running on a 

uniform grid at 20 m resolution, the flood and risk forecasting system is able to successfully 

‘forecast’ the event and provide 34 hours of lead time with the numerical weather prediction 

products released 36 hours in advance. Compared with the current flood warning service in 

Carlisle, the proposed flood and risk forecasting system can give 12 hours earlier flood 

warning to the public with a quantitative prediction of 4.19 km2 inundated land and 4917 

inundated buildings. 
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Chapter 8. Discussion and conclusions 

The thesis has constructed an integrated assessment framework for quantifying and 

forecasting water-related multi-hazard risk. It is first applied in the Greater London catchment 

to estimate the risk of building loss and road networks damage due to the collective impact of 

heavy rain, extreme river flow and storm surge. Combined with UKV numerical weather 

prediction model, the framework is also employed in the Eden catchment for flood and risk 

forecasting in consideration of two hazards: the entire-catchment rainfall and the estuary sea 

level. The results are presented as quantitative risk curves and maps that can be visualised in 

real-time on free digital maps, such as Google Earth. The framework provides an effective 

and efficient tool to understand the regional disaster risk due to multiple hazards and provide 

timely risk warnings to residents and decision makers. 

The highlights of the thesis are as follow: 

• Analysis of dependence and joint probability analysis for the three coincident 

mechanisms of flooding. 

• Broad scale full 2D hydrodynamic simulation of multiple sources of flooding and their 

physical interactions. 

• Developed a fully quantitative and probabilistic risk assessment framework for multi-

hazard floods 

• Developed a real-time hazard and risk forecast framework for multi-hazard floods 

8.1 Review of objectives 

• Multi-hazard dependence and joint probability analysis 

For the three water-related hazards considered in this thesis, strong dependence can be found 

in the inter-station observations from the same hazard, and the weak but statistically 

significant correlations are observed from the daily records of different hazards. This can be 

explained by the potential effect of the same weather system moving across south and east 

England. Therefore, when estimating the multi-hazard joint probability distribution, the 

dependence must be considered in the probability function.  
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Copula theory is introduced to construct the joint probability function according to the 

marginal distributions of each hazard and their correlations. A family of the Archimedean 

copula, the trivariate Clayton copula, is found to be best fit and employed to generate the 

trivariate cumulative distribution function with the three margins. The joint return period 

distribution is then derived from the probability function to quantify the frequency of multi-

hazard events in years.  

With the joint distribution functions, numerous multi-hazard events are randomly generated 

through the Monte Carlo method with known recurrence intervals, which means the 3D space 

of the three hazards is fully defined by the joint frequency of triple-hazard with various 

magnitudes. 

• Hydrodynamic modelling for multi-hazard flood 

A 2D hydrodynamic model has been used to simulate physical interactions between the three 

different sources of flooding (rainfall, flow, and costal storm surge) to assess inundation depth 

and extent. The hydrodynamic model, HiPIMS, which is configured on a 20 𝑚𝑚 × 20 𝑚𝑚 grid 

over the Greater London catchment and achieved the broad-scale and fully 2D modelling. 

The model is validated with rainfall-runoff progress, flow and tide interaction, and historic 

flood events. The fluvial and coastal flood defence facilities in London are examined in the 

model and tested with different failure scenarios. The defence system is found to be able to 

protect London city centre from the concurrent of the recorded maximum flow and highest 

storm surge. However, some sections of the facilities are not in good condition, and the 

defence failure of these parts can result in serious flooding when facing extreme events. 

The random multi-hazard events with given frequency generated from the joint distribution 

function are simulated in HiPIMS. The output of HiPIMS is the peak inundation depth for 

each grid. The results are connected with the frequency of the causing events to generate 

inundation-frequency curves and probabilistic inundation maps for the Greater London 

catchment and several local regions. According to the inundation maps, the impact of the 

three hazards varies in different areas of the catchment. The river flow has the smallest 

influencing extent that is limited to the upstream riverside of the Thames. The storm surge is 

dangerous to all the riverside and coastal area. The inland region is only subjected to heavy 

rainfall that has the largest impacting area in the catchment among the three hazards. As for 

every local area, the effective hazards are distinguished so that the inundation with the same 

frequency may be derived from the completely different combinations and magnitudes of 
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hazards. The integrated hazard curve for depth-frequency function is estimated separately at 

each cell of the 100 𝑚𝑚 × 100 𝑚𝑚 grid over the whole catchment for risk assessment. 

• Multi-hazard risk assessment 

Exposure is analysed for residential buildings, non-residential buildings and road networks, 

which shows the spatial distribution of the three elements at risk. Vulnerability functions of 

the three types of exposure are selected from MCM to give functional relationships between 

inundation depth and the resultant damage to the exposure. Economic loss is the measurement 

of risk for the two types of buildings. Inundated distance is used to represent the loss of the 

road networks. 

The multi-hazard risk assessment is achieved by combining the data and results from the three 

essential components of disaster risk, hazard, vulnerability, and exposure. The assessment 

framework for quantifying multi-hazard risk is constructed. The framework has managed to 

cover three water-related hazards, estimate the correlations of the occurrence of hazards in 

joint distribution function, and simulate the physical interaction of the hazards with the 

hydrodynamic model. The results are fully quantitative and shown as risk curves for loss-

frequency function and risk maps for the expected average annual loss. 

The risk curves give the full range probabilistic estimation of disaster loss due to the multiple 

hazards for every assessing unit (one-hectare square cell). The risk map illustrates the general 

pattern of the risk level in the whole research area. It is more likely to experience severe loss 

in the middle and west area of the Greater London catchment. The south riverside between 

Vauxhall Bridge and Greenwich is the region at most risk for building loss due to the multi-

hazard flooding.  

• Multi-hazard flood and risk forecasting 

The UKV numerical weather prediction model is coupled with the multi-hazard risk 

assessment framework to provide real-time flood and risk forecasting. The forecasting 

framework is applied in the Eden catchment with the consideration of rainfall over the whole 

domain and the sea level at the Eden river mouth. 

The flood forecasting system is built on the basis of UKV model and HiPIMS model and 

validated with a historical event that happened in the Eden catchment. The lead time and 

accuracy of the forecasting system are evaluated and compared over several grids with 

different spatial resolution, and the 20 m-grid is chosen as the most suitable assessing unit 
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with current data and device conditions. The propagation of the prediction error from rainfall 

to the inundation depth and the extent is proved to not be amplified between the two models 

via uncertainty analysis. 

The risk forecasting combining the inundation forecasting and local vulnerability functions 

can provide fast disaster loss predictions. The flood inundation prediction together with loss 

estimation can give more comprehensive and detailed warning information to decision makers 

and residents and guide them to take instant actions on flood preparation and prevention. As 

the case study in the Eden Catchment for Storm Desmond shows (Figure 7-10), the proposed 

flood and risk forecasting system produced a forecast of 4.19 km2 inundated land and 4917 

inundated buildings. Compared with the current flood warning service in Carlisle, the 

forecasting system can give 12 hours earlier flood warning to the public with much more 

quantitative predictions. 

8.2 Implications of assumptions and uncertainties 

A lot of assumptions and simplifications have been made to reduce the complexity of the 

framework and make the large-scale hydrodynamic simulations computationally feasible. 

The sub-daily temporal variation of all the three water sources and the spatial variation of the 

rainfall over the Greater London catchment are neglected. However, to consider these factors 

means much higher dimensions of joint probability analysis and also the exponential increase 

of the required number of multi-hazard flood simulations. Therefore, the trivariate joint 

probability analysis is used to represent each hazard with only one variable to constrain the 

dimensions of the input domain of the hydrodynamic model. Nevertheless, this simplification 

results in a great uncertainty of the inundation map produced by the hydrodynamic model. 

Any temporal or spatial concentration of the water input may lead to a more severe flood in 

some areas of the research domain. If more information on sub-daily hazard intensities is 

available, more outcomes can be produced to decrease the uncertainty via a number of 

simulations for various spatial and temporal combinations of hazards. 

The drainage system can play an important role in urban flood mitigation if it is well designed 

and keeps functional during flooding. However, the hydrodynamic model applied in this 

thesis does not have a sub-surface module to reflect the drainage system. It is because the 

underground module of HiPIMS is still under development and the detailed data of the 

drainage system is not available for the research areas. Currently, a conceptualised drainage 
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network is implemented along all the main streets with certain infiltration rates to denote the 

capacity of the sewage pipes. The gap between the predicted and the real capacity of drainage 

system may lead to uncertainties of flood prediction. However, the gap can be reduced if 

more flooding events and observations are available to better estimate the drainage efficiency 

in different areas of the research region. 

The circumstance of defence facilities can be varied along the river bank and the coast. There 

would be countless scenarios of defence failures in the research area with different 

engineered, hydraulic, and environmental conditions. The impact of the occurrence time is 

investigated with only several scenarios of defence failure to confine the number of 

simulations. The circumstance of the flood defence system during flooding involves a large 

number of human and natural factors, which means very uncertain outcomes of flooding in 

the riverine and coastal regions. To constrain these types of uncertainties requires a more 

comprehensive appraisal of the conditions of the defence facilities and failure scenarios that 

are implemented in the flood simulating models. 

Apart from the aforementioned uncertainties due to assumptions, the data and model 

parameters can also result in more or fewer uncertainties that need to be identified as follows: 

• Because of the limited sample size of the hazards, uncertainties can exist in the fitted 

joint probability and return period distributions. These types of uncertainties are 

measurable according to the number of extreme events in the case study and can be 

reduced if a longer time series of hazard record is available.   

• The applied hydrodynamic model requires much fewer parameters than traditional 

hydrological models, which means the uncertainties from model parameters are 

significantly cut down. However, the two parameters employed in HiPIMS, Manning 

and infiltration coefficients, can contribute to the uncertainty of water depth and 

velocities in the outputs. The uncertainty from model parameters can be reduced by 

more specific model calibrations based on complete local observations.  

• A lot of factors are involved in the vulnerability analysis that relies on reported 

disaster loss and damage survey. The uncertainty of vulnerability curves corresponds 

to upper and lower estimation of the possible loss, which is a typical contributor to the 

uncertainties in the risk curves. The comprehensive data collection and analysis can 

help to refine the probability-damage functions and then reduce the related 

uncertainties. 
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• The uncertainties from the rainfall predictions can affect the output of flood 

inundation and are usually increasing with longer lead time. Ensemble outputs are 

provided by some numerical weather prediction models to give a probabilistic forecast 

instead of the traditional deterministic weather reports. To run all the probabilistic 

predictions of rainfall in the hydrodynamic is an effective way to constrain the 

uncertainties from weather model. 

8.3 Data and validation challenge 

The basic data requirements in this thesis include historical daily records of hazard intensities, 

high-resolution terrain and landcover data, numerical weather prediction data, and 

observations of flooding. For the risk assessment module, long time series (over 40 years) of 

rainfall, river flow, and tide height are essential for statistical analysis. For the forecasting 

module, the numerical rainfall predictions with high quality is the basis to accurately forecast 

flooding. It is also important to collect observations like river stages, flooded extent, and 

surface rainfall, which are useful for parameter adjustment and model calibration.  

The required datasets are not difficult to obtain in most catchments of the UK, Europe and 

some other developed countries with advanced disaster management and flood monitoring 

systems. Global flood forecasting models have become available in recent years thanks to 

advances in meteorological and hydrological modelling, increased data sources and quality, 

and improvements in computing efficiency and capacity (Bierkens, 2015). For example, the 

Global Flood Awareness System (GloFAS) has been operational at global scale covering 

world large river basins since 2011 (Alfieri et al., 2013). However, due to the lack of high-

resolution hydrodynamic models, GloFAS is designed for early warning purposes, rather than 

for quantitative discharge forecasting, let along for producing inundation predictions. It is still 

challenging to apply a fully quantitative and physically-based forecasting system in 

developing regions where the high-resolution NWP products, DEM and landcover data, and 

river and precipitation observations, are usually not available.  

In the proposed frameworks, the validation of hazard analysis is performed with observed 

data, which is a typical and straightforward way. However, the risk assessment aims to predict 

the probability of occurrence of future extremes. The validation of risk is always a big 

challenge as the extremes are typically rare and hard to be verified according to the current or 

near future data. A compromised way is to use historical loss data that was completely and 

consistently recorded in a long time, which is not very feasible in most cases. 
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8.4 Transferability of the framework  

The framework of the multi-hazard risk assessment is especially valuable to areas affected by 

dependent multiple water-related hazards. For example, cyclones in coastal regions bring 

heavy rain and strong winds that may cause the coincidence of pluvial and coastal flooding. If 

the cyclone is large enough to influence the upper-catchments, it may also lead to fluvial 

flooding. Coastal regions are intensively distributed worldwide, main areas exposed to 

typhoons and hurricanes, such as south-eastern China, and the north coast of the Gulf of 

Mexico. The risk assessment framework can be applied in these regions to better understand 

the disaster risk in consideration of multi-hazard dependence and interactions, if the required 

data is available. 

The transferability of the forecasting module is more flexible, which can be used to predict 

flooding due to either individual or multiple sources. The main limitations of transferability 

are weather prediction and computing capacity. The ideal form of rainfall prediction is grid-

based rainfall rates with high spatial and temporal resolutions and enough lead time. 

However, even without high-resolution weather forecast, the framework can still work based 

on coarse rainfall predictions but may result in the production of less accurate flood 

forecasting. Another limitation is the computing capacity that may confine the model domain 

to smaller areas or lower resolutions. With the current devices at Newcastle University, real-

time flood and risk forecasting is feasible for catchments with an area of thousands of square 

kilometres. For broader-scale simulations, like the entire Yangtze River catchment of 1.8 

million km2 much greater number of GPUs are required for real-time forecasting without 

sacrificing the spatial resolution. Fortunately, the computing requirement is increasing 

linearly rather than exponentially with the catchment area and the price of GPUs are much 

cheaper compared to the cost of supercomputers. Therefore, the proposed flood forecasting 

system is highly applicable in regions covered by rainfall forecast with enough computing 

resources. 

8.5 Trade-offs in risk analysis 

Countless multi-hazard events can be randomly generated based on the joint return period 

function. Greater number of simulations by the hydrodynamic model means more accurate 

results of the risk assessment, which also spend larger computational resources. In addition to 

the variation of defence failure scenarios, the computing time is even longer. So, the trade-off 
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between computing time and the number of simulated events and the considered scenarios is 

worth pondering. In the case study of this thesis, the performed simulations are confined to 

hundreds of times due to the limited computing capacity and time. However, if the framework 

is applied in a larger research project with more resources, the accuracy of risk assessment 

may be improved via more hydrodynamic simulations. 

For the module of flood and risk forecasting, a similar trade-off between accuracy and time 

also needs to be considered. A different issue is that the computing time is of great concern 

because a long enough lead time is critical to a forecasting system. The accuracy of 

forecasting can be improved by a higher spatial resolution, more scenarios about the status of 

defence facilities, and using ensemble rainfall forecasts to simulate floods. However, all these 

improvements must make sure the simulations are finished and the forecast is released before 

the real flood arrives. 

8.6 Future work 

• Multi-hazard assessment framework for other hazard groups 

The hazards considered in this thesis are the three water-related hazards. To date these have 

been analysed separately whereas, their physical interactions are simulated using a 

hydrodynamic model. In future work of the framework, the sequencing of multi-hazard 

events, cascading effect between hazards, frequency of hazard repetition (e.g. two events 

within one week which lead to higher river levels etc.) are interesting topics to explore. The 

framework could be extended to incorporate other hazard groups. This would require the 

simulation of relevant physical interactions, a further advancement for flood risk would be to 

incorporate groundwater flows. However, other substantively different hazards such as 

earthquakes, landslides, fire etc. would require incorporation of different physical simulation 

models, and considerations of the likelihood of events occurring coincidentally. 

• More efficient hydrodynamic model 

HiPIMS is very fast compared with most of the traditional 2D hydrodynamic models. 

However, the multi-hazard risk assessment requires numerous runs of the model to cover the 

3D hazard space for all the possible combinations. Especially in the urban area, the spatial 

resolution must be high enough to reflect the complex urban ground surface and thus requires 

enormous computing capacity. One way to improve the model efficiency is to employ non-
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uniform grid that can be denser in complex terrain and sparser in the flat ground. Thus, the 

number of cells in the research domain may be significantly reduced and therefore, so will the 

computing time. 

• More comprehensive vulnerability and exposure analysis 

The risk assessment in the research region is employed only for three types of exposures. 

There is still a lot of work to do to give a more detailed risk assessment to all the main 

regional elements at risk. For example, the more comprehensive vulnerability and exposure 

analysis that produce more detailed information of the internal and external attributes of the 

exposure and vulnerability functions under various scenarios. Furthermore, to consider the 

dynamic vulnerability characters in the multi-hazard environment is also a necessary way to 

improve the accuracy of vulnerability evaluation.  

• Ensemble flood and risk forecasting 

Ensemble weather forecasting has been developed in several platforms, which means the 

ensemble flood forecasting becomes feasible for hydrological models or small-scale 

hydrodynamic models. The ensemble flood forecasting provides probabilistic flood prediction 

that can be used to give probabilistic loss prediction. Currently, the main limitation for 

ensemble hydrodynamic forecasting is the computing speed as the forecast always requires a 

long lead time. But with the rapid development of computer hardware and the model 

efficiency, it will not be too long to provide ensemble flood and risk forecast according to the 

framework in this thesis. 

8.7 Implications of this research 

Multi-hazard disasters are a subsistent threat to human society. Flooding derived from 

multiple water sources is one of the most destructive and widespread of all natural disasters. 

The methodology and findings about risk assessment and forecast of multi-hazard flood are of 

interest to a broad range of sectors and stakeholders. 

Risk analyst: this work provides a new framework of quantitative risk assessment for 

multiple hazards with dependence of occurrence and physical interactions. The application of 

multivariate copula function provides a novel approach to generate three-dimensional joint 

probability and return period distributions for dependent triple hazards. Using a 2D 

hydrodynamic model for numerous simulations of multi-source flooding becomes practicable 
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for both probabilistic evaluation of multiple hazards and physical modelling of the hazards 

integrating. 

Flood modeller and forecaster: the flood and risk forecasting module has proposed a new 

structure for large-scale flood forecasting systems. A high-performance hydrodynamic model 

is the key module that provides high-accuracy and reduced time-consuming running flood 

simulations for the forecasting system. It can be a new norm to replace the traditional 

hydrological model-based systems used in catchment-scale forecasting in order to reduce the 

system complexity and improve its performance.  

Catchment manager and regulator: the framework provides risk assessment and forecasts 

for multi-source flooding in broad catchments. It can help catchment managers and regulators 

to take effective actions before and during flooding events, such as, to manage sluice gates 

and to adjust water storage in reservoirs. 

City planners and local authorities: the framework can assist local decision makers to 

assess multi-source flood risk in local regions. Planners can refer to the results of the risk 

assessment in city planning. The framework can also test the effectiveness of the facilities and 

strategies for flood mitigation, which is especially useful to local authorities of disaster 

prevention and risk management. 
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