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Abstract

Massive Multiple-Input Multiple-Output (M-MIMO) is a state of the art technology
in wireless communications, where hundreds of antennas are exploited at the base
station (BS) to serve a much smaller number of users. Employing large antenna
arrays can improve the performance dramatically in terms of the achievable rates
and radiated energy, however, it comes at the price of increased cost, complexity,
and power consumption.

To reduce the hardware complexity and cost, while maintaining the advantages of
M-MIMO, antenna selection (AS) techniques can be applied where only a subset of
the available antennas at the BS are selected. Optimal AS can be obtained through
exhaustive search, which is suitable for conventional MIMO systems, but is pro-
hibited for systems with hundreds of antennas due to its enormous computational
complexity. Therefore, this thesis address the problem of designing low complexity
AS algorithms for multi-user (MU) M-MIMO systems.

In chapter 3, different evolutionary algorithms including bio-inspired, quantum-
inspired, and heuristic methods are applied for AS in uplink MU M-MIMO sys-
tems. It was demonstrated that quantum-inspired and heuristic methods outperform
the bio-inspired techniques in terms of both complexity and performance.

In chapter 4, a downlink MU M-MIMO scenario is considered with Matched Filter
(MF) precoding. Two novel AS algorithms are proposed where the antennas are
selected without any vector multiplications, which resulted in a dramatic complex-
ity reduction. The proposed algorithms outperform the case where all antennas are
activated, in terms of both energy and spectral efficiencies.

In chapter 5, three AS algorithms are designed and utilized to enhance the per-
formance of cell-edge users, alongside Max-Min power allocation control. The
algorithms aim to either maximize the channel gain, or minimize the interference
for the worst-case user only.

The proposed methods in this thesis are compared with other low complexity AS

schemes and showed a great performance-complexity trade-off.
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Chapter 1

Introduction

1.1 Why massive MIMO?

Since the start of the new millennium, the demand for mobile devices has increased enormously,
and the growth of data traffic over wireless channels has followed Moore’s law. For over two
decades, researchers have shown that using systems with multiple antennas, known as Multiple-
Input Multiple-Output (MIMO), can enhance the performance dramatically, and since then,
MIMO systems have been part of many communications standards. However, for most of to-
day’s MIMO systems, the Base Station (BS) is equipped with only few antennas (less than 10),
and although the use of conventional MIMO systems has shown great performance advantages,
it is very unlikely to cope with the fast increasing demand for higher throughputs.

The exponential growth over data traffic during the last decade predicts that the number of
connected devices is expected to reach 25 billion by the year 2020 [1], out of which 15 billion
are phones, tablets, PCs, and laptops [2]. To meet the demands of such high data traffic, large
scale MIMO, also known as Massive MIMO (M-MIMO), systems were first introduced in [3],
where a BS with tens to hundreds of antenna elements is assigned to serve a much smaller
number of users in the same time-frequency resources. Since then, M-MIMO systems have
gathered the attention of researchers from all over the globe, and it was shown that employing
very large number of antennas have tremendous advantages. For example, with massive arrays,
the radiated power can be reduced dramatically, and the energy transmitted per bit vanishes
when the number of antennas grows to infinity. Furthermore, the effect of uncorrelated noise
as well as the small-scale fading are eliminated, and near optimal performance can be obtained

using simple linear signal processing techniques.



1.2 Aims and motivation

1.2 Aims and motivation

Although there are tremendous theoretical advantages of using M-MIMO, there are many se-
rious practical considerations that limit the applications of such systems. For example, using
massive number of antennas at the BS at once means that each antenna must be connected to a
separate Radio Frequency (RF) chain, and unlike the antenna elements, RF chains are expen-
sive, since each RF chain consists of Low Noise Amplifier (LNA), mixer, and Analog to Digital
Converter (ADC) [4]. More importantly, RF chains are highly power demanding elements, and
they consume 50%-80% of the total trasceiving power [5]. Therefore, activating large number
of RF chains at the same time will degrade the energy efficiency performance of the system
dramatically.

One way to reduce the cost, complexity, and power consumption while preserving the great
advantages offered by M-MIMO systems, is through applying Antenna Selection (AS) tech-
niques, where massive number of antenna elements are placed at the BS with limited number
of RF chains.

For over a decade, AS has been a widely studied topic in conventional MIMO systems
[6-20]. It was first introduced as a tool to reduce the hardware complexity at the transmitter
and the receiver of multiple antenna systems. Moreover, dedicating a separate RF chain for
each radiating element was found to be the main reason behind causing higher and unstable
power consumption. However, the work originated on AS in conventional MIMO systems have
proven not to be suitable to apply for M-MIMO, due to their enormous complexity requirement
for systems with massive arrays.

In addition, Power Allocation (PA) schemes can be applied at the BS for many reasons,
such as: minimizing the total transmission power under a certain Quality of Service (QoS),
maximizing the total sum rate, increasing the fairness among the users, or maximizing the

Energy Efficiency (EE) of the system.

1.3 Challenges and solutions in M-MIMO systems

As explained above, employing large number of RF chains will impose extremely high hard-
ware complexity and cost, while degrading the energy efficiency performance of the system
dramatically. In addition, the existing algorithms for AS in conventional MIMO systems are
not suitable to be applied in M-MIMO, due to their enormously high computational complexity

requirement for systems with massive number of antenna elements.

2



1.4 Literature review on AS and PA in M-MIMO systems

It is worth to mention that compared to the uplink case, performing AS in the downlink
scenario gives more options for performance improvement, especially when linear methods are
applied such as Matched Filter (MF) for signal processing. The reason behind this is that the
BS knows the effect of activating each antenna on the Signal to Interference plus Noise Ratio
(SINR) for each user. In contrast, and for the uplink case, the received signal at each antenna is
a combination of signals transmitted from all users, and therefore it is more difficult to decide
which antenna is suffering from the highest interference, as well as to separate the interference
from different users.

Furthermore, in practical scenarios the users are uniformly distributed and have different
distances from the BS. Therefore, to increase the fairness among the users, and to ensure that
each user meet a predefined threshold of QoS, max-min PA techniques can be applied at the
BS, where more power is allocated for users who are located far away from the BS.

Accordingly, in this thesis we design low complexity AS methods for MU M-MIMO sys-
tems in both uplink and downlink transmission scenarios. Different methodologies have been
adopted in our work, and the proposed methods target both high performance and low imple-
mentation complexity in terms of floating point operations (FLOPs). Furthermore, max-min PA
in a single-cell M-MIMO is also applied to enhance the rate for the worst case user and increase

the fairness between users.

1.4 Literature review on AS and PA in M-MIMO systems

Since our work in this thesis involves both PA and AS, we carry an extensive survey on the

related work on these subjects in the following subsections.

1.4.1 Related work on AS in M-MIMO systems

There has been a considerable amount of work recently on AS in M-MIMO systems. for exam-
ple, tshe authors in [21,22] proposed low complexity AS methods for energy efficient M-MIMO
systems, however, their algorithms were designed for point to point case, i.e. only one user is
scheduled to be served at a given time instant. In contrast, the authors in [23] proposed an
energy efficient AS method for Multi-User (MU) M-MIMO downlink transmission. However,
maximizing the EE results in poor spectral efficiency, and vice versa, therefore in this thesis
we address the problem of maximizing the SINR for any arbitrary number of selected anten-

nas. The authors in [24] proposed a novel iterative AS method for an uplink point to point
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M-MIMO with Maximum Ratio Combining (MRC) receiver, under spatially correlated chan-
nels. Their work focused on minimizing the Mean Square Error (MSE) of the received signal
to improve the error rate performance for a single user scenario. For capacity maximization in
an interference-free scenarios, the authors in [25] proposed a Rectangular Maximum-Volume
(RMYV) theory based AS, for downlink M-MIMO systems, while the authors in [26] proposed
a Branch And Bound (BAB) based AS for an uplink M-MIMO transmission. Although their
methods demonstrate high performance, they suffer from relatively high complexity. Further-
more, the authors in [27, 28] applied AS in M-MIMO systems on measured channels using
both linear and cylindrical arrays equipped with 128 antennas, to maximize the sum rate with
Zero Forcing (ZF) precoder. In [29, 30], the authors designed an AS algorithm with quartic
complexity in point to point M-MIMO systems. While in [31], the authors designed a joint AS
and user scheduling in downlink MU M-MIMO systems with ZF precoder, while in [32] the
authors designed a joint antenna and user selection for M-MIMO with non-orthogonal multiple
access (NOMA) systems. Moreover, the authors in [33] studied the trade-off between energy
and spectral efficiencies under random AS in MU M-MIMO downlink systems. In addition,
the authors in [34, 35] proposed a novel AS by exploiting the known constructive interference
at the BS for downlink transmission. However, their method works efficiently only on low
modulation Phase Shift Keying (PSK) signalling, and it is data dependent, which means that
extremely fast RF switching are required. Furthermore, the same authors proposed in [36,37]
a novel joint precoding and AS scheme relying on the constructive interference. In [38], the
authors proposed a joint AS and user scheduling scheme under ZF precoder. In [39] the authors
proposed a two-steps AS method for point to point M-MIMO systems, where in the first step
the algorithm focus on selecting the antennas that has the least spatial correlation between them,
followed by the second step which focuses on the performance. Moreover, in [40], the authors
proposed sub-optimal AS methods for multi-cell cooperative M-MIMO systems, their methods
focused on maximizing the Signal to Noise Ratio SNR while maintaining low computational
complexity. The authors in [41] proposed an AS method for power minimization in MU down-
link M-MIMO systems, under a predefined QoS requirement. Furthermore, in [42] the authors
proposed a bidirectional branch and bound method for AS in M-MIMO, although their method
demonstrates high performance, it suffers from large complexity requirement. In [43], the au-
thors proposed an AS under interference alignment, where the interference is forced to zero
through transmitter-receiver beamforming. Finally, the authors in [44], proposed joint AS and

PA schemes for MU downlink M-MIMO systems with linear precoding techniques.
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1.4.2 Literature review on PA in M-MIMO

The authors in [45] considered an uplink MU M-MIMO system, and proposed an optimal power
control that jointly selects the training duration, training pilots power, and data power. Their
results show that at low SNR, higher power needs to be adopted for training pilots than at high
SNR. Furthermore, they showed that the optimal training duration is always equal to the num-
ber of users regardless of the SNR regime. In [46], the authors studied joint PA and pilots
assignment to maximize the EE of a multi-cell MU M-MIMO system with pilot contamination.
Moreover, the authors in [47] investigated PA strategies for multi-cell MU M-MIMO system
for sum rate maximization in both uplink and downlink transmission, under ZF equalizer and
precoder. Their work demonstrated that optimal PA can highly improve the system performance
for practical number of antennas at the BS (e.g., tens to hundreds), however, for a fixed number
of users, equal PA becomes optimal as the number of antennas at the BS tends to infinity. Joint
PA and user association was proposed in [48] for multi-cell M-MIMO downlink system, under
both Maximum Ration Transmission (MRT) and ZF precoding techniques. The authors aimed
to minimize the total power transmission by optimizing the subset of BSs to serve each user.
Furthermore, the authors in [49] proposed a pilot power allocation (PPA) through user group-
ing, in a multi-cell M-MIMO systems. An EE PA method was proposed in [50] for downlink
M-MIMO with MF precoding. Their work showed an improved EE with reduced transmission
power compared to other PA schemes that ignores the interuser interference. While in [51], the
authors proposed an optimal PA schemes for MU M-MIMO systems under ZF detector. In their
work, an optimal power control was carried on both pilot and data signals based on the large
scale fading to maximize the total sum rate. The authors in [52] proposed a pilot design with
uplink PA for multi-cell MU M-MIMO systems to mitigate the pilot contamination problem,
and max-min power control was applied to ensure fairness between users. In [53], an uplink
power control was investigated in multi-cell MU M-MIMO systems, where the BS is equipped
with large but finite number of antennas, with Minimum Mean Square Error (MMSE) receivers,
under pilot-contaminated channel estimation. In addition, the authors in [54] developed a low
complexity PA scheme for EE MU M-MIMO systems with ZF processing, and they proposed
a joint PA, number of antenna elements, and user scheduling, assuming a Time Division Du-
plex (TDD) downlink scenario. In [55], the authors applied optimal PA for multi-pair amplify
and forward (AF) M-MIMO relaying under imperfect Channel State Information (CSI). Also
with AF M-MIMO relaying, the authors in [56] proposed an EE PA scheme, where the EE

performance was theoretically analysed by employing random matrix theory and large system
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analysis. Finally, in [57], the authors applied PA for M-MIMO with decode and forward (DF)

relaying, assuming MMSE channel estimation and ZF transceivers.

1.5 Thesis organization and contribution

The aim of this thesis is to design and investigate novel AS schemes in MU M-MIMO systems,
in both uplink and downlink scenarios, as illustrated in Fig. 1.1. In the uplink case, the motiva-
tion was to optimize the sum rate capacity, i.e. the capacity that can be obtained by employing
successive interference cancellation (SIC) methods. For the downlink case, the motivation was
to maximize the SINR under MF precoding, in both cases when the users are equidistant to the
BS, and for uniformly distributed users.

This chapter presents the motivation behind employing M-MIMO systems, and the key role
of AS in reducing the cost and complexity of such systems. In addition, an extensive survey is
carried out about the previous work on AS as well as PA in M-MIMO systems.

Chapter 2 introduces the required background knowledge on the signal processing tech-
niques for MIMO systems, such as: different methods of linear and non-linear equalization and
precoding techniques. Moreover, the idea of AS in both uplink and downlink cases is explained,
with some benchmark methods of AS in conventional MIMO systems. In addition, a brief sum-
mary of the main challenges in employing M-MIMO systems are also briefly explained in both
time and frequency division duplex.

In Chapter 3, an uplink M-MIMO system is considered, and several evolutionary methods
for AS are applied to maximize the sum rate capacity. We design a classical Tabu Search (CTS)
method, and also apply a Quntum-inspired TS (QTS) for AS and compare our techniques with
well known bio-inspired algorithms, such as: Genetic Algrotihm (GA), Artificial Bee Colony
(ABC), as well as Particle Swarm Optimization (PSO). The proposed methods outperform the
bio-inspired techniques in terms of both performance and complexity requirements.

In Chapter 4, we aim to achieve a further reduction in complexity, in terms of both precoding
and AS schemes. Accordingly, a MF precoder is applied in MU M-MIMO downlink transmis-
sion, with equidistant users. Two novel AS schemes are proposed to maximize the SINR, and
hence maximizing the sum rate. Both algorithms achieve dramatic complexity reduction by
avoiding vector multiplications during the iterative selection process. Our results demonstrate
that the proposed methods can achieve higher sum rate and energy efficiency with a subset of
the available antennas than activating the full antenna subset.

In Chapter 5, a uniformly distributed users were assumed in a downlink M-MIMO scenario
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with MF precoding. Three low complexity AS methods were proposed to maximize the SINR
for the cell-edge users. The first algorithm aims to maximize the channel gain for the worst-case
user, while the second method focuses on minimizing the interference, and the last method aims
to minimize the highest interference terms between any two given users. Furthermore, a max-
min power control is carried out to further enhance the achievable rate of the worst-case-users,
and hence higher fairness is achieved.

Chapter 6 concludes this thesis, and few conclusions are derived from each chapter to sum-
marize the work in this thesis. Furthermore, many interesting directions for future work are also

briefly explained.
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Chapter 2

MIMO Communications systems:
Detection, Precoding, and Antenna

Selection techniques

2.1 MIMO systems

The term MIMO simply refers to a system where multiple antennas are used at the transmitter
and receiver ends. Considering a system with /V; transmit antennas and NV, receive antennas,

The received signal can be given as

y=Hx +n, @.1)

where y € CM*! is the received signal by the N, antennas, H € CNrxMe

is the independent
and identically distributed (i.i.d) wireless channels between the transmitter and receiver, with
zero mean and unit variance. x € CM**! is the transmitted information symbols vector, and
n € CV*! is the AWGN noise vector at the receiver with zero mean and variance of o2, i.e.

n ~ CN(0, 021y,). In a vector form, the equation in (2.1) can be expressed as

U1 h171 e e hLNt I ny

o 0 Y B

YN, th,l thNt TN, nn,
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where h; ; represents the channel coefficient between the i receive and the j transmit anten-

nas.

2.1.1 Point-to-Point MIMO systems

In point to point MIMO systems, two different approaches can be employed to either enhance
the signal reliability, or the throughput. Consider a single-input single-output (SISO) system,
i.e. both transmitter and receiver are equipped with only one antenna, if the channel between the
transmitter and the receiver is experiencing a deep fade, the received signal will likely contain
errors. One way to improve the communication reliability is by sending the same signal through
different antennas, as long as these antennas have enough separation to obtain independent
channels, and at least one of the channels is strong. This technique is known as diversity gain
[58]. On the other hand, MIMO systems can be employed to increase the throughput of the
system via spatial multiplexing [58], where different data streams can be transmitted through

different antennas, and separated at the receiver end, using either linear or non-linear detection

methods.
H
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Figure 2.1: Point-to-Point MIMO systems.

2.1.2 Multi-User MIMO systems

In MU MIMO systems, multiple users communicate simultaneously with the BS using the same
time-frequency resources as shown in Fig. 2.2. However, since the mobile users do not have
the same computational capacity to run the same amount of processing as the BS, it is desirable

that the BS will handle most of the processing, in both uplink and downlink scenarios.
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Figure 2.2: Multi-User MIMO systems.

2.2 Detection methods in MIMO systems

Consider a K single-antenna users transmitting their data to a BS equipped with /N antennas,
i.e. uplink transmission with spatial multiplexing scenario. These data streams will be com-
bined at the receiver side, and therefore need to be separated to obtain the original data sent by
the different users. The detection methods are applied at the BS to obtain an estimate of the
unknown transmitted vector x, for a given channel matrix H, and received vector y. There are

two different types of detection methods: Linear and Non-linear detectors.

2.2.1 Non-linear detection methods

Non-linear detectors are known for their high performance, and they are able to achieve the
MIMO capacity [9], which for an uplink case with perfectly known channel at the BS and an

SNR of v, can be given as [59]

12
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Cm::bgykm(Lw—%%§I{HH). 2.3)
t

However, that comes at the price of high complexity. In the following section, we will

review two well known non-linear detection schemes: Maximum likelihood (ML), and SIC.

2.2.1.1 ML detector

In any communications system, the presence of the AWGN is inescapable, and therefore errors
are likely to occur. However, ML detector provides the optimum estimate of the transmitted vec-
tor x [60,61]. Let M represents the constellation set that contains the M — PSK or M — QAM
signals, where QAM refers to Quadrature Amplitude Modulation. For a system with K single-
antenna users, the number of different candidates for the transmitted vector x is M %, where M
is the size of the set M. For example, for system with 2 users transmitting a Quadrature PSK
(QPSK) signal, there will be 16 candidate solutions as demonstrated in Table 2.1.

ML detector aims to minimize the Euclidean distance of the noise, by carrying an exhaustive

search over all possible vector candidates in the following form

% = arg min_|ly — Hx|. (2.4)
xeMK

Although ML detector provides optimal solution, it suffers from an enormous complexity
that grows exponentially with increasing the number of users or the size of the constellation
set M, which makes it only applicable for systems with small number of users, and small

constellation sets.

2.2.1.2 SIC detection

SIC detection methods are also non-linear techniques, and they rely on performing a linear
equalization techniques to remove the effect of the channel first, and then detect one stream of

data at each step. The procedure of SIC can be explained as follow [60]

e At the beginning, the strongest symbol in a given data stream is detected using a linear
detector such as Zero Forcing, referred to as ZF-SIC. The received streams from different

users are ordered based on their received SNRs.
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Table 2.1: ML candidate solutions when K = 2, with QPSK constellation.

Candidate index Candidate Solution Candidate index Candidate Solution
1 1 1 1 1 1 1 1

1 7§+j7§,7§+]7§ 9 —754—]75,75—}-]75
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o After detecting the strongest data, the BS estimates the interference caused by the detected

symbol, and then subtract the interference caused by it from the received signal.

e The output signal after subtracting the interference will then be used to detect the next
strongest symbol and subtract its interference and so on. The interference cancellation

will run until detecting the weakest received data stream.

It should be noted that although SIC methods have less complexity than ML, they still
impose high complexity requirement for system with large number of users or antennas, and
therefore they are unsuitable solutions for M-MIMO systems. Instead, simple linear detection
methods can achieve near optimal solutions when the BS is equipped with very large number

of antenna elements.

2.2.2 Linear detection techniques

Linear detectors in general require low complexity, and therefore they are highly used with
systems with high dimensions, such as M-MIMO. The main idea behind these techniques is to
equalize the effect of the channel at the receiver side first, then find the minimum euclidean
distance between the equalized symbols and the correspondent constellation. Two different

linear detectors are presented in this section, which are ZF and MF.
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2.2.2.1 Matched filter detector

MF represents the simplest form of linear detection, where the received signal is multiplied
at the BS with the Hermitian transpose of the channel matrix H. However, MF does not null
the interference between different users, and it treats it merely as a noise. Assuming K single
antenna users transmitting their data to a BS with N antennas, the received signal in (2.1) can

be re-written as

y = Hx+n

K
i=1 N

= hga, + Y hag +n, (2.5)

=1
i#k

To estimate the signal sent by the k'™ user, the BS multiplies the received signal with hi’ [60],

i.e.

= hi'h, + > hi'hz; + hin, (2.6)

where the first term in the right hand side of (2.6) represents the desired signal, the second term
represents the interference, while the last term is the noise. A hard decision will then be made to
map 7y, to the nearest symbol in the alphabet of the utilized modulation set. In a general vector

form, MF detection can be expressed as follow

)A(]\/[F = HHy (27)

The downside of the MF detector is the interuser interference, which becomes the dominant
degradation factor at high SNRs. However, with M-MIMO, the increase in the interuser inter-
ference term is smaller than the gain for the desired signal, therefore as the number of antennas

goes to infinity, the simple MF becomes a near optimal solution.
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2.2.2.2 Zero forcing detector

The ZF is another form of linear detection, and it eliminates the interuser interference by mul-
tiplying the received signal with the pseudo inverse of the channel matrix, H', which can be

given as [60]

H' = (H'H)'HY, (2.8)

let g, be the k' row of HT, the signal sent by the £*" user can be estimated as follow

Ty = 4Ry
= q,(Hx+n)

= X+ qgn. (2.9)

In a general vector form, the ZF solution can be expressed as follow
%z = Hly. (2.10)

Although ZF cancels the interference, it does amplify the noise, i.e. it causes noise enhancement

at the receiver side [59,61, 62].

2.3 Precoding methods in MIMO systems

In the downlink scenario, the BS transmit its data to the users simultaneously, and precoding
schemes need to be applied to convert the K symbols message vector into an /N data vector,
where /V and K are the number of antennas at the BS and the number of users, respectively. The
maximum achievable capacity in the downlink scenario, with perfect knowledge of the channel

matrix and equal power allocation among the antennas, can be given as [7]

Ca = log, det (IK i HHH> 2.11)

Precoding can be applied via either linear or non-linear methods, where the latter achieve

higher throughput at the cost of increased complexity.
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2.3.1 Non-linear precoding schemes

Although the purpose behind applying precoding techniques is mainly to reduce the complexity
at the receiver end, the complexity of Non-linear schemes might be infeasible to apply even at
the BS due to its high complexity. However, in this section we explain the optimum precoding
scheme in terms of the achievable sum rate capacity, i.e. “dirty paper coding”, in the following

subsection.

2.3.1.1 Dirty paper coding

In order to achieve the sum rate capacity of MU MIMO systems giving in 2.11, Dirty Paper
Coding (DPC) needs to be applied [63—66], where the BS selects codewords for each user to
eliminate the effect of interuser interference.

The name “dirty paper coding” refers to the fact that transmitting signal through a channel
with interference is similar to writing on a paper with dirt spots. Assume that we have the
message “Hello World” that we aim to transmit to the receiver through the interfering channel,
as shown in Figs. 2.3a, and 2.3b, respectively. One way to transmit the signal is by avoiding the
dirt spots as much as possible, however some dirt will remain in the message and the receiver
might recover the original message with errors as shown in Fig. 2.3c. The optimum way
to transmit the message without being affected by the dirt spots, is through DPC, where the
transmitter and receiver agree upon a certain codeword that can adopt perfectly to the dirt spots,
as if they did not exist, as shown in Fig. 2.3d.

Although DPC proves to be optimum in terms of performance, its implementation impose
a significant complexity which makes it a prohibited approach for practical scenarios. Instead,
linear precoding techniques can be applied which have sub-optimal performance with affordable

complexity.

2.3.2 Linear precoding schemes

In practical scenarios, the mobile user does not have the knowledge of the channels between
the BS and other users, therefore, precoding techniques are applied at the BS to maximize the
SNR at the receiver end. In other words, in both uplink and downlink, the aim is to perform the
complex signal processing at the BS rather than at the mobile user. Two main linear precoding

techniques are presented in this section, MF and ZF.
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Figure 2.3: Writing on dirty paper: (a) "Hello World” is the original message that we aim to
transmit, (b) The paper with dirt spots that we need to write our message on, (c) The transmitter
aims to avoid the dirt spots, however, some dirt still exist, (d) The transmitter and receiver agree
on a codeword that will adopt to the dirt spots and null the interference completely.

2.3.2.1 Matched filter precoding

MF precoding is the simplest form of linear precoding, and for a user £, it can be expressed as

h;
MF k
W = , (2.12)
‘ [ |

where the term in the denominator of (2.12) is the scaling factor, and used to prevent the BS

from exceeding the power limit. The received signal at the k' user can be given as
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K
?J/ﬁ;VIF = . /pkhfw,inxk + Z \/Eh;;FWZMFxZ + nyg, (2.13)

=1
i1#£k

where /py. is the power allocated for the k" user, and the second term in the right hand side of
(2.13) represents the interuser interference.
2.3.2.2 Zero forcing precoding

The precoding matrix utilizing the ZF precoder can be expressed as
W2 =~ pHT(HH") ™, (2.14)

where v, is the scaling factor that is needed to satisfy the total power constraint, and it can be
given as [67]
1

NGO

The data symbols are multiplied by the precoding matrix before being transmitted through

(2.15)

the channel, and the received signal by the K users can be given as

yZr = HW#'x +n. (2.16)

The main advantage of ZF over MF precoding, is that it can null the interuser interference
at the receiver end. However, there are many disadvantages for this type of precoding. One
of the main limitations of ZF is that when the number of users grows large for a fixed number
of antennas at the BS, ZF precoder suffers from a sum rate loss. For example, in [27], the
authors showed that when the BS was equipped with 16 antennas, the sum rate achieved with
4 users was higher than that with 16 users. The reason behind this is that ZF wastes large
amount of the available power just to null the interference, which results in low signal power.
Moreover, ZF suffers from degraded performance when there are users located on the cell-edge,
also known as the “near-far problem”. In addition, ZF precoder is very sensitive to different
types of distortions such as unmodeled interference [68, 69]. In contrast, MF precoding has
lower complexity and can accommodate more users than ZF, however, its performance is limited

by the interuser interference especially at high SNR regime.
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2.4 MIMO systems with limited number of RF chains

There is no doubt that employing multiple antennas can increase the capacity and reliability of
any communication system. However, employing large number of antennas, at the transmitter
or receiver, comes at the price of increased hardware complexity, cost, and power consumption,
which is caused by the demand for increased number of RF chains. Each RF chain consists
of power amplifier, ADC, LNA, and mixers [70], [71]. For those reasons, and unlike the an-
tenna elements, RF chains are not only expensive, but also highly power demanding elements.
Accordingly, reducing the number of RF chains can dramatically improve the EE of the com-
munication systems.

Two main methods have been proposed to employ MIMO systems with reduced number
of RF chains. The first approach is AS, where only the subset of antennas that maximize a
given performance metric is selected. The second approach is called Spatial Modulation (SM),
where the index of the antenna that is transmitting the signal is also carrying information. In

the following, we present the two aforementioned approaches.

2.4.1 Spatial modulation

In SM, the transmitter is equipped with multiple antennas, however, only one of them is acti-
vated in a given time instance. The main difference between the spatial modulation and spatial
multiplexing is depicted in Fig. 2.4, for a system equipped with two transmit antennas and two
BPSK symbols to be transmitted in a single channel use.

On one hand, transmitting the two symbols utilizing spatial multiplexing concept will lead
to each antenna being allocated one information symbol to transmit. Consequently, both RF
chains need to be activated at the transmitter, which can result in poor EE performance for the
system. On the other hand, SM can be utilized, where the first symbol can be assigned to one
antenna, while the second symbol determines the transmit antenna index. In other words, the
first and second information symbols are explicitly and implicitly transmitted, respectively, in a
single channel use utilizing only one RF chain.

In general, assuming that the transmitter is equipped with N antenna elements, and the
cardinality of the PSK constellation set equals to M, the achievable rate of SM system can be

given as follow [72-75]

Rsnr = logy N + log, M. 2.17)

20



2.4 MIMO systems with limited number of RF chains
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Figure 2.4: The concept of spatial multiplexing and spatial modulation

2.4.2 Generalized spatial modulation

The generalized spatial modulation (GSM) is an extension of the SM system, however, here
the transmitter can be equipped with multiple RF chains, that can be activated simultaneously
instead of only one RF in the SM. Although GSM suffers from higher detection complexity
than SM, it offers higher achievable rates for two reasons: First, the number of activated RF
chains is higher than that in SM. Second, the number of implicitly encoded bits is higher due to
the increased number of activated antenna subsets. The achievable rate for system employing

GSM can be given as follow

N
Rasar = logy \\(NRF>J + Ngrlog, M. (2.18)

However, one of the main challenges for both SM and GSM is the fast RF switching required
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2.4 MIMO systems with limited number of RF chains

due to their encoding mechanism. In other words, SM and GSM both require RF switching that
operates at the symbol rate, with low insertion losses. In addition, and for the GSM techniques,
low complexity detection methods are essential due to the prohibited complexity of ML detector

for higher number of transmit antennas.

2.4.3 Antenna selection

Another way to maintain the advantages offered by MIMO systems while reduce the cost, com-
plexity, and power consumption is through applying AS techniques, where only a subset of the
antennas are activated. AS techniques can be applied at both transmitter and receiver, whether
its an uplink or a downlink scenario.

Although SM can achieve higher rates than AS, there are many advantages for applying
AS over SM. For example, the detection of the activated antennas when SM is applied impose
higher complexity at the receiver side. However, no such a problem exist in AS. Moreover,
SM requires extremely fast RF switching since it is data dependent technique, while AS can
be performed over several channel realizations, especially when dealing with slow time varying
channels.

Optimal AS can be obtained via exhaustive search, where all the different combinations of
antenna subset are tested, and the subset that gives the best performance metric will be selected.
However, with large number of antennas, this method becomes prohibited, due to its enormous
complexity requirement. Therefore, suboptimal solutions with lower complexity should be
applied.

AS methods can be applied in both MU MIMO systems, or point to point MIMO systems, as
demonstrated in Figs 2.5 and 2.6, respectively. In point to point MIMO systems, the AS can be
applied at the transmitter, receiver, or both at the same time. While in MU MIMO systems, AS
is usually applied at the BS since, in most scenarios, the mobile users are equipped with only
one antennas. AS methods can be applied to optimize different performance metrics. Most of
the work on AS has focused to improve one of the following metrics: maximizing the capacity,
minimizing the error rate, or to maximize the EE of a communication system. However, in this
section, we focus on AS methods to maximize the capacity of MIMO systems.

The idea behind the capacity maximizing AS is to select the subset of antennas that achieve
the maximum capacity with reduced dimensional systems. Different algorithms have been pro-

posed, and some benchmark techniques are given in the next sections.
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2.4 MIMO systems with limited number of RF chains

2.4.3.1 Optimal AS for capacity maximization

As mentioned earlier, optimal AS can be applied by evaluating the capacity for all different
antenna subset combinations, which for an uplink system with K single antenna users and N

antennas at the Bs, can be expressed as the following optimization problem

. hd H)
maximize log, det (IN + I AHH

subject to

A, €{0,1}, (2.19a)
N

> Apn =N, (2.19b)
n=1

where N, is the number of selected antennas at the BS. Although this method provides
the optimal solution, it has a binomial coefficient of ( ]]VV ) different combinations, therefore it
becomes prohibited for large values of N and N;.

Two well known methods that have near optimal performance in terms of capacity, known
as: Incremental AS and Decremental AS, were proposed by [12] for spatial multiplexing MIMO

systems, and are explained in the following subsections.

2.4.3.2 Incremental AS for capacity maximization

The incremental AS method starts with an empty set of antennas, and then at each iteration,
the antenna that will maximize the capacity will be selected. Assume that after n iterations,
the antennas indexed with {si, s, ..., s, } have been selected, and Hgs represents the n x K
submatrix of H, where S is a set containing the indices of selected antennas at a given iteration.

Appending the (n*)"" antenna yields to

C(Hs,h,-) = logydet (Ix +y(HYHs + hllh,.))
= log,det (IK + v HgHS)

+ log, (14 ~h,-(Iy + yHEHs) 'hL). (2.20)
Therefore, selecting the antenna n* that will lead to maximizing the capacity can be expressed
as

Sn+1 = argmaxhy. (v 'Ix + H{Hs) ' hl

n*»

(2.21)
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2.4 MIMO systems with limited number of RF chains

Algorithm 1 Incremental AS algorithm

1: Input N, Ny, v, and H,

2: Initialize

3 A =71k, S =01xn,

4: 51 = argmaxi<p+<n |[hp- ||2,
5: S, =1,

6: forn=1— N, -1
7 update A < A — Ahi(l + hS"Ahi)_th"A,
8 Sp+1 = argmaXy«gs—1 h,-AhZ

9 Ssnin

0: end for

1: Olltpllt [Hj]jGS:la

:1’

The selection process in (2.21) requires large number of matrix inversions, which leads to
an extremely high complexity. Therefore, a recursive update approach based on the matrix
inversion lemma can be applied to reduce the required complexity [76]. Let A denotes ann X n
positive definite matrix, and a be an n x 1 vector, then the inverse of (A+aaH ) can be computed

as follow [12]

(A+aa®)y' =A" - Ata(l +a’ A ta) tal’ AL (2.22)

By employing the selection rule in (2.21) and the update in (2.22), the incremental AS
method can be applied as shown in Algorithm 1. This algorithm is an attractive solution when
the number of selected antennas is relatively small compared to the number of antenna at the BS.
Furthermore, this algorithm is designed to maximize the sum rate capacity, which can only be
obtained through SIC in the uplink, or DPC in the downlink scenarios. Therefore, for systems
with MF detection/precoding, applying this algorithm will result in poor performance, since it
ignores the interference which becomes the dominant degradation factor, especially at moderate
to high SNRs.

As demonstrated in [44], when MF precoding scheme is utilized, there are antennas that will
cause more interference than desired signal gain. Therefore, applying an algorithm that does
not take the interference into account, such as the incremental AS described above, when MF is
applied will not lead to the selection of the desired antennas, i.e. the antennas that lead to high

SINRs.

2.4.3.3 Decremental AS for capacity maximization

When the number of selected antenna is close to the number of receive antennas at the BS,

the decremental method becomes more attractive approach than the incremental selection. The
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2.5 MIMO systems with massive antenna arrays

Algorithm 2 Decremental AS algorithm

Input N, N,, v, and H,
Initialize
A=y '"Ixg +H'H)™', S = 11xn,
s =argminj<p«<n hn*Ahf*,
S=8\s,
forn=1—-N-N;,—1
update A < A + AhZ (1 — h