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Abstract

The English grain aphid (Sitobin avenae) is one of the most damaging pests of wheat
(Triticum aestivum), causing damage both by the abstraction of nutrients and, more
importantly, as a vector of viral diseases. Changing agricultural conditions are leading to
insect pests becoming a more serious threat to sustainable crop production and therefore
understanding the molecular basis of endogenous tolerance to aphid infestation will help
mitigate shortfalls in global crop yield. Limiting nitrogen input in wheat increases aphid
tolerance, but reduces yield. The present study investigated the response of two commercial
winter wheats (Triticum aestivum, Var. Cordiale and Grafton) to biotic (Sitobion avenae) and
abiotic (nitrogen) stress. Different growth measurement parameters, including plant height,
leaf area, chlorophyll content, NOs™ ion accumulation and relative water content (RWC) were
positively correlated with nitrogen level (Chapter 2). Both wheat genotypes exhibited
significantly (p < 0.01) greater levels of resistance to aphids at low levels of nitrogen input
(2.25 mM) than at intermediate (5.25 mM) or high (7.5 mM) nitrogen, with aphid fecundity
reduced from 58 and 61 to 19 and 32 nymphs per adult for Cordiale and Grafton, respectively
(Chapter 2). The role of changes in expression of genes for WRKY transcription factors in the
stress response was studied in Var. Cordiale over time by RT-gPCR. TaWRKY3 showed large
changes in gene expression under aphid and nitrogen stress, suggesting a novel role for this
TF in stress (Chapter 3). At 7.5 mM nitrogen maximum expression of TaWRKY3 occurred 6 h
after exposure to aphids, returning to basal by 9 h. At 5.25 mM nitrogen, expression occurred
earlier and at higher levels than at 7.5 mM nitrogen, but again returned to basal at 9 h. The
lowest nitrogen supply resulted in the same rapid onset of gene expression but the magnitude
of the response (4-fold) was higher than with high nitrogen. In addition, the response was
maintained for a longer period. To investigate the role of WRKY3 in the stress response
TILLING lines with mutations to the WRKY3 gene were grown under dual stress. As in the
control plants, aphid fecundity on most mutant lines was greater at 7.5 mM than at 2.25 mM
nitrogen. However, the mutant 1996 was more resistant than the WT at 7.5 mM nitrogen, and
showed no difference between high and low nitrogen, suggesting that WRKY3 may play a
role in the link between nitrogen stress and aphid tolerance (Chapter 4). In control plants,
concentrations of jasmonic acid (JA) isomers increased as a result of aphid infestation,
whereas the concentration of salicylic acid (SA) fell and there was little change in abscisic
acid concentration. In the mutant lines, the SA concentration was initially lower than in
control plants but increased in line 1996, the concentration of SA was relatively high in line
1171, and the concentration of JA isomers was initially higher than in control plants,
increased at 3 h, then decreased (Chapter 4). Protein-DNA interaction assays showed binding
of the Wild Type WRKY 3 protein to W-box elements (TaPR1-23 flanking sequence, PcPR1-
1 promoter and synthetic) and that the mutation in TILLING line 1996 disrupts binding
(Chapter 5). Regulation of PR1 gene expression is important for activation of plant defence
responses. The present work suggests that TaWRKY3 may regulate this response through
binding to W-box elements in PR1 genes. The data suggest that low nitrogen conditions may
prime the defence of wheat against insect attack via a regulatory network of WRKY
transcriptions factors. These results provide new knowledge and insight to help inform the
effort to produce crops able to be grown under reduced nutrient input.
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Chapter 1. General Introduction

1.1 Challenges to improving crop tolerance

Cereal crops are a major staple of people’s diets across the world, and the continued
cultivation of such crops is a major factor in a country’s food security. The definition of food
security by the Food and Agriculture Organization (FAO) is “having sufficient access and
availability to healthy food that is nutritious and helps people to stay fit and active” (Fig.1-1)
(Rahimifard et al., 2018).

Although standards of living have risen in many countries with the increase of globalisation,
there are still significant threats to food security. As the world’s population is set to reach nine
billion by 2050, an increase of 2.3 billion from current levels, demand for food will inevitably
increase, by as much as 70%, which will mean that yields from agriculture will have to rise by
50% to meet the higher demand (FAO, 2015b; Adenle et al., 2018). Another factor to take
into consideration is the amount of available land for crop production, which has been
decreasing, meaning that production on existing agricultural land will have to intensify. An
important aspect of this is efficient irrigation, which has raised productivity on a quarter of the
world’s agricultural spaces (Rufin et al.,, 2018). If there is better access to water,
intensification of production is easier to achieve because fallow spells are shorter and the land
can be cultivated more often (Gaur et al., 2008; Doménech, 2015). A further threat is that of
climate change, which entails an unknown capacity to endanger the production of food across
the world (Schleussner et al., 2018). Existing research has noted the effect that climate change
has already had on crop yields; the most spectacular of such effects have been droughts and
heat waves (Moore and Lobell, 2015; Lesk et al., 2016). Climate change does not just affect
crop productivity; it also adversely impacts the metabolism and physiology of plant life, the
richness of soil and the microbial constitution of plants; it may alter the primary metabolic
defences of plants and their ability to combat stresses, both biotic and abiotic (Noctor and
Mhamdi, 2017).
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Figure 1-1. The UN Food and Agricultural Organisation FAO (2017c) has drawn up a list of what it
considers to be the four pillars of global food and nutrition security. These are as follows: 1)
availability: placing focus on production of sufficient quantities of food; 2) access: concerns over
access to food in low-income families; 3) utilisation: feeding practices; and 4) stability: how likely it is
that food will be available (Rahimifard et al., 2018).

In practice, crops sustain several different stresses, whether biotic or abiotic. The factors
involved in environmental or abiotic stresses include salinity, drought, high temperatures,
stress from oxidation and a deficiency of nutrients. These can lead to a reduction in yield of >
50% (Wang et al., 2003). Biotic or biological stresses can result from pests, pathogens and
insects that are herbivorous, causing losses of between 10 and 20 per cent (Ferry et al., 2004).
Working to improve the way that plants counter stress and still yield a good harvest is a key
feature of food security worldwide, and involves the understanding of the molecular processes
involved, as regards both genetic manipulation and traditional agriculture (Takeda and
Matsuoka, 2008). Genetic improvement through breeding is one especially favoured
technique for making crops more resistant to stress. Genetic engineering (GE), or genetic
modification (GM), has expanded the possibilities for crops to produce greater yields in
challenging environments and has been shown to be an asset to world food security (Ferry
and Gatehouse, 2009). Understanding regulatory molecular networks that help plants cope
with various levels of stress — and the different interactions between stresses — will provide

targets and routes that might be exploited.

Most agriculture across the world sustains damage from pests and pesticide chemicals are
often applied to combat them. As resistance to agrochemicals increases among pests and
pathogens, it is essential that we develop new ways of controlling them, so that future losses
can be minimised. An alternative approach is to enhance endogenous host-plant resistance,

but the effectiveness of this is not certain, because of the lack of information about which
2



Chapter 1

genes confer resistance. To make control systems more effective, it is better to ascertain
which genes have a controlling influence on the yield and concentrate on which molecular
procedures are prominent in the interactions between plants, insects and pathogens. In order to
do so, we must gain a deeper understanding of plant-insect interactions and in respect of this

study, wheat-aphid interactions.

1.2 Wheat as a crop

Over thousands of years, wheat has been one of the most prolific crops in the world (Shiferaw
et al., 2013). Over 730 million tonnes are produced each year and the amount increases year
on year. It is the third most prolific crop, behind rice and maize, and it amounts to an average
of 20% of people’s daily protein and calories (Shiferaw et al., 2013). However, to meet future
demand and to heighten world food security, the annual harvest needs to rise by 70% (FAO,
2015b).

The type of wheat that is produced most is bread wheat (Triticum aestivum), which accounts
for 95% of wheat production and is able to flourish in numerous different climates. The
genome size is around 16,000 Mb in hexaploid species (6x) which have 21 pairs of
chromosomes (2n = 42), comprising three different ancestral genomes (termed A, B, and D)
with seven chromosome pairs in each genome forming seven homoeologous groups
(AABBDD) (Fig.1-2) (Petersen et al.,, 2006). This happened because of polyploid
hybridisation (Uauy et al., 2009).

Wheat production is crucial in meeting world food needs, and agriculture must be sustainable
on an ongoing basis in order to guarantee food security. Different strains of wheat and rice
must be developed that generate increased yield, quality and stability, and have greater
capacity to combat biotic and abiotic stress. To do this there has to be progress in genetic
science that must amount to nothing less than a paradigm shift. The genome sequence of
wheat can be used as a reference in developing and breeding new varieties of wheat, and this
genetic knowledge can also be adapted for other major crops like rice, sorghum, and maize

(International Wheat Genome Sequencing, 2014).

Wheat is important to Great Britain. It yields more tonnage per hectare than any other cereal
crop, constituting 67% of the UK’s production of cereals (DEFRA, 2015). There are

numerous ways to raise the ‘agricultural footprint’ to help increase the crop yield, and this
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will be a big part of future food strategy. As part of this question, we also need to look at the

availability of nitrogen.
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Figure 1-2. Schematic diagram of the polyploidisation within different wheat genomes.

The circles enclose the names and nomenclature for the genomes and provide a schematic
representation of the chromosomal complement for each species to produce allohexaploid Triticum
aestivum (2n=6x=42, AABBDD), which includes bread wheat (International Wheat Genome
Sequencing, 2014).
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1.3 Effect of stress on crop production

1.3.1 Effects of nitrogen stress in plants

Particularly costly methods employed by farmers to achieve target yields for their crops are
fertilisers made from chemicals. In 2018, the amount of fertiliser being deployed on arable
land was around 200 million tons globally (FAO, 2019). One of plants’ most vital nutrients is
nitrogen (N). As the population of the world swells possibly by two to three billion by 2050,
the need for suitable agricultural land and nitrogen-based fertilisers will increase markedly
(Zhang et al., 2015). Increased numbers of plants will also mean more pathogens and
insects, so careful stewardship of nitrogen stocks will be essential to service a rising

population while also looking after the environment and people’s health levels.

Nitrogen shortages negatively affect plant sustainability or even survival, so to enable good
yields of crops, large quantities of nitrogen fertiliser are needed (Frink et al., 1999). One of
the major disadvantages from the over-use of nitrogen fertiliser has been resultant
environmental impacts, such as nitrate contamination in groundwater (Socolow, 1999). It is
therefore very important to ascertain plant tolerance systems and how they respond to low
inputs of nitrogen fertiliser; when this is understood, it may be possible to reduce levels of
nitrogen fertiliser. At present, plants have responded adaptively to low N levels by restricting
growth, reducing photosynthesis, moving N to new organs and accumulating anthocyanins in
large quantities (Ono et al., 1996; Ding et al., 2005; Diaz et al., 2006). This is the basis of the
Defence vs Growth hypothesis, whereby the growth-differentiation balance (GDB) structure
combines theories of life history and phenotypic theories, which come together to create an
overarching system that elucidates and predicts plant defence procedures and all the
competing interactions in terms of ecology and evolution. The principle is that the plant has a
finite amount of energy available to it, which can be distributed either towards growth or
towards ensuring it is well prepared in the case of attack by pests or pathogens. The whole
GDB idea of how plants defend themselves is based on a balance between the mechanisms of
growth and differentiation. Treatments which increase the expression of defence related genes
have been shown to down-regulate those associated with growth. The way in which these
physiological trade-offs interact with competition, abiotic stress and herbivory illustrates how

plants have evolved their defence mechanisms (Herms and Mattson, 1992).
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Both plants and herbivorous insects respond to the process of nitrogen fertilisation, and the
physiological and molecular bases of these responses remain elusive (Gao et al., 2018). How
the grain aphid’s (Sitobion avenae) fecundity and associated regulatory signalling routes
affect the way it feeds on commercial wheat cultivars at varying levels of nitrogen availability
has been explored in this study. The level of tolerance of wheat to aphids is an important

ongoing economic problem.

1.3.2 Impact of aphids on crop production

Economically, aphids (Hemiptera) are among the most important agricultural pests due to
their particular feeding habits and high capacity for reproduction (Guerrieri and Digilio,
2008). Because of parthenogenesis and vivipary, aphids can multiply very quickly (Agarwala
et al.,, 2012), and they migrate and disperse over huge distances (Ali et al., 2018). It is
estimated that across the world hundreds of millions of dollars are lost annually due to aphid
damage (Morrison and Peairs, 1998; Blackman and Eastop, 2000). In our quest to develop
innovative approaches to pest control, it is important that we have an in-depth understanding
of the impacts of aphids impact on their hosts. Such knowledge should enable us to exploit
the insect resistance mechanisms that already exist within plants, thus facilitating successful

breeding strategies.

Sitobion avenae (Fabricius) (Fig. 1-3), commonly known as the English grain aphid,
constitutes one of the most serious pests of wheat in the UK. Crop losses can run between
20% and 80%, through the aphids feeding on phloem sap and the transmission of plant viruses
such as barley yellow dwarf virus (BYDV) (Fereres et al., 1988; Blackman and Eastop, 2000;
Zhang et al., 2018).
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Figure 1-3. The English grain aphid (Sitobion avenae). Source: Influentialpoints.com (2018).

The feeding mode of aphids is highly specialised, and not like most other insect pests: they
consume plant phloem by inserting a stylet in the cells. From here their stylets need to
puncture the epidermis, the mesophyll and the vascular tissue, penetrate the phloem in a
vascular bundle and select a suitable sieve element. The instant that the aphid comes into
contact with the plant tissue, it secretes saliva containing effectors into its host to manipulate
host cell processes and promote infestation. This carries on during the process of probing and
feeding. Several authors have highlighted similarities between the roles of aphid effectors and
the ways in which plant pathogens infect plants (Moreno et al., 2011; Jaouannet et al., 2014).
To achieve this, effectors or saliva proteins are placed within the host, where they carry out a
number of different tasks. As the effectors start to work, the plant’s resistance may be
activated, but several effector proteins have been shown to raise or lower virulence, while the
activation or restraining of the defences of a plant may result from the effectors that the
aphids’ saliva holds (Fig. 1-4).

The way in which plants defend themselves against aphids is modified by viruses that the
aphids transmit (Nalam et al., 2019). Several distinct elements play their part in how effective
aphids are as plant virus vectors, including: (i) the way in which a number of aphid types are
polyphagous, such as Myzus persicae, which enables them to feed on numerous plant hosts,
which is a major factor in spreading viruses amongst a wide range of species of plants; (ii) the
capacity to reproduce parthenogenetically, thereby allowing masses of offspring to be
produced very quickly; (iii) the existence of a stylet with a point like a needle, that can
puncture the walls of plant cells and thus impregnate the host cell with viruses. The aphid’s
capacity for acting as a vector will be influenced by the way in which it chooses a host plant
and the way in which it feeds on the host plant. How much dissemination of the virus is
affected — positively or negatively — as a result of these three elements is dependent on the

7
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individual virus and the manner in which it is transmitted. In terms of applied research,
developing comprehension of the ways in which viral diseases are disseminated needs an
appreciation of the constituents of the vector and how it behaves; the dissemination of vectors

is fundamental in epidemiology (Ng and Perry, 2004).

Trichomes

‘j ~Companliin,c‘ells

Figure 1-4. The pathway of the plant-aphid interface. The mouthparts of the aphid are not affected by
plant defences such as wax and trichomes, and are able to penetrate the surface of the leaf.

The aphid stylets probe in order to find the phloem. Most cells along the stylet pathway are punctured,
including the phloem cells. The aphid secretes saliva (which contains effectors) into the different cells
and the apoplast. Honeydew is also secreted onto the surface of the leaf, which may act upon the
plant’s defence responses (Jaouannet et al., 2014).

1.3.3 Current strategies for control of phytophagous insect pests

The harm caused by aphids is frequently combated by insecticides that are chemical-based,
but these insecticides pollute the environment (Ali et al., 2018). Additionally, the use of these
treatments over a long period has increased insects’ capacity to resist them (Sonoda and lgaki,
2010; Xu et al., 2017). The life of a grain aphid is short (Nalam et al., 2019) but highly
fecund, and they proliferate rapidly, which makes it hard to contain their infestation of plants
(Xu et al., 2017). Additionally, the insecticides used to control aphids are usually harmful to
the various predators and parasitoids that specifically attack aphids, as well as to polyphagous
predators, which indicates that a more cost-effective and environmentally friendly method of
control may be to use crops that exhibit natural resistance (Stoger et al., 1999). Furthermore,
currently, consumers increasingly want organically grown food and crop produce that is free
of residues, which drives a need to understand the natural mechanisms of insect resistance.

Genes of Triticum turgidum, T. tauschii, T. speltoides, Secale cereale (rye) and related species
have been transferred across species effectively by natural crossing (Friebe et al., 1995; Saidi

and Quick, 1996). Through surmounting the obstacle of crossing between more distantly

8
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related species, transgene technology provides additional places from which to source
resistance genes and thereby provides an alternative method of long-lasting protection for
crops (Gatehouse et al., 1993). There have been many useful developments in the production
of insect-resistant crops, such as those that express Bt endotoxins (Ferry et al., 2004;
Gatehouse et al., 2011).

A particular and recent focus in research on genetic manipulation for the control of aphids is
RNAI (plant-mediated RNA interference). Xu et al. (2014), for instance, utilised plant-
mediated RNAI in wheat to target carboxylesterase (CarE) activity in the grain aphid via
knockdown in gene expression, thus rendering the aphids less tolerant to the organophosphate
pesticide phoxim and considerably less fecund.

1.4 Plant induced defence responses

Another approach currently being explored for crop protection is to enhance endogenous
defence through improving our knowledge as to which genes in the crop are differentially
expressed in response to aphid infestation. This strategy would form part of an integrated pest

management method, which could be both cost-effective and effective.

A number of wound response and plant defence pathways are instigated by herbivores; such
pathways create particular signals, or elicitors, that stimulate both synthesis of volatile
compounds and changes in gene expression (van de Ven et al., 2000; Gatehouse, 2002).
Phloem-feeding insects that pierce or suck come into contact with plant cells on a continuous
basis, activating defence mechanisms. EXisting research suggests that the defence-alerting
pathways that are induced by such insects are similar to those induced by pathogens of a
bacterial, fungal or viral nature (Walling, 2000). The initial responses for plant defence

against insects are illustrated in Fig. 1-5.
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Figure 1-5. A model of plants’ induced defence responses to aphids. Plant cells use plasma
membrane-localised pattern recognition receptors (PRRS) to perceive conserved herbivore-associated
molecular patterns (HAMPS) to activate pattern-triggered immunity (PTI). Effectors secreted into the
host plant’s cytoplasm interact with targets to modulate host cell processes. Aphid whole body extracts
can stimulate plant defences. Bcl-2 homologous antagonist killer (BAK1), which functions as a co-
receptor interacting with PRRs in PTI, is required for the induction of defences by aphid extracts.
These include the formation of callose and reactive oxygen species (ROS) production. Aphid feeding
also induces a signalling cascade, a MAPK pathway, which promotes the expression of genes to
activate defences. In Effector-Triggered Immunity (ETI), effectors are recognised by the changes they
cause to their target protein or by direct recognition. Plant can respond with more transcriptional
changes which confer the Effector-Triggered Immunity (ETI). Changes in gene expression are
mediated by the action of distinct transcription factors such as WRKY TFs, which in ETI can be
triggered by effector activation of R-proteins. Figure adapted from Jaouannet et al. (2014); (Nalam et
al., 2019)

1.4.1 Recognition

Some of the systems whereby plants combat pathogens, which are described by the gene for
gene model, which subsequently evolved into a multi-layered zig-zag model (Jones and
Dangl, 2006), resemble the interaction between plants and herbivores (Hogenhout and Bos,
2011; Kaloshian and Walling, 2016). Following such models, the receptors in the plant that
govern immunity detect elements that are derived from pests, a process that leads to immune
reactions being evoked. Pattern recognition receptors (PRRs) have been developed by plants
to detect molecular structures that are retained over a large group of organisms. Damage-
associated molecular patterns (DAMPSs) are endogenous molecules that the plant generates
after infection; they are also recognised by PRRs as being elements that kick-start defensive
reactions (Boller and Felix, 2009). Effector proteins can help pathogens to bypass such innate
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immune responses because they subdue PTI when they are transported into the host cell.
Disease resistance (R) proteins in certain plant genotypes detect pathogen effectors, which
leads to effector-triggered immunity, or ETI (Jones and Dangl, 2006). Although some
researchers consider the PTI/ETI model to be too simplified (Thomma et al.,, 2011),
conclusions have been able to be made concerning precise recognition in the interactions of
plants and pathogens because relevant ligands and receptors have been identified molecularly:
PTI is generally based on the non-specific detection of standard microbial molecules, while
very pathogen-specific compounds are the trigger for ETI (Fig. 1-6) (Dodds et al., 2006). One
protein that induces PTI to aphids is the GroEL protein of the endosymbiotic bacterium
Buchnera aphidicola, which has been identified in aphid saliva and is recognised by a
multitude of plant hosts. The Bcl-2 homologous antagonist killer protein (BAK1), which is a
co-receptor in PTI, is also needed in GroEL-induced resistance to aphids. GroEL induces
callose deposition and an oxidative burst, suggesting that some molecular components are
shared between plant defences elicited by pathogens and aphid-associated microbes
(Chaudhary et al., 2014).

The ways in which some highly resistant plants react to attack by aphids resemble the
reactions to pathogens; this is called a gene-for-gene interaction, the reactions being founded
on aphid-derived elicitors, the signalling molecule SA mediating the reaction (Smith and
Boyko, 2007). Another reaction is that genes can be up-regulated from wounding as a result
of cross-talk. Experiments by Moran and Thompson (2001) showed that genes induced by
salicyclic acid (SA) were expressed when green peach aphids (Myzus persicae) fed on
Arabidopsis; these genes are linked to reactions to pathogens, in addition to those genes that
are engaged in the jasmonic acid mediated response pathway (see section 1.4.4). The
experiment’s outcomes indicate activation of pathways involved in responses to herbivores
and pathogens. The plant’s reactions to aphid herbivores demonstrate widespread
reprogramming of gene expression (Moran and Thompson, 2001).

Insects, as opposed to pathogens, are extremely intricate organisms: they are multicellular,
with diverse lifestyles and modes of behaviour. The plant may use the cues that result from
these patterns to detect danger from herbivory and activate suitable defensive strategies (Erb
et al., 2012). Chemical defences such as defensins, various antimicrobial compounds and a
broad span of enzymes accumulate in defensive reactions to hinder pathogenesis or combat
consequent stresses in the plant cell (Freeman and Beattie, 2008). For example, plant

chitinases, which are known to be involved in plant-pathogen interactions, show promise as a
11
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low-cost biotech application for controlling fungal pathogens; furthermore, since insect
cuticle is composed of chitin, this approach may also be viable for aphid control using
chitinase-producing fungi such as Trichoderma as biological control agents (BCAs) (Chavan
and Deshpande, 2013). Another approach is to express genes encoding these enzymes in

plants for greater tolerance to a number of biotic stresses.
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Figure 1-6. Plants’ molecular recognition of pathogens and herbivores. 1. Microbe-, pathogen- and
damage-associated molecular patterns (MAMPs, PAMPs and DAMPs) are recognised by pattern
recognition receptors (PRRs), resulting in PAMP-triggered immunity (PTI). 2. PTI is suppressed by
pathogen effectors. 3. Effectors are recognised by resistance gene products, resulting in effector-
triggered immunity (ETI). 4. Unknown receptors recognise oviposition-associated compounds, which
activate defensive responses. 5. Receptors recognise putative herbivore-associated molecular patterns
(HAMPs), which results in herbivore-triggered immunity (HTI). 6. DAMPs are released by wounding,
which also triggers wound-induced resistance (WIR). 7. Suppression of HTI and WIR can be caused
by insects’ effector-like molecules. Broken lines denote uncharacterised elements (Erb et al., 2012).
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1.4.2 Insect Effectors

Insect effectors are instrumental in the majority of interactions between plants and insects, in
adaptation to PTI (PAMP triggered immunity) and ETI (effector triggered immunity) (Elzinga
and Jander, 2013; Rodriguez and Bos, 2013). With regard to aphids, scientists have
discovered a number of possible salivary effector proteins that have the capacity to regulate
plant defence, although only a small number have been characterised in terms of function
(Wang et al., 2015a). In aphid saliva, for example, effector proteins that have the ability to
bind calcium have been identified; these may halt any sealing of the sieve element while
feeding is taking place (Will et al., 2007; Medina-Ortega and Walker, 2013). The process of
colonisation is advanced by a number of effectors, although this only happens in particular
interactions between the aphid and the host.

The C002 protein produced by aphids has been researched several times; being aphid-specific,
it seems to be able to function as a salivary effector protein. In Nicotiana benthamiana,
RNAI-silencing or over-expression of the C002 protein respectively lowered fitness or raised
reproduction levels of aphids (Elzinga et al.,, 2014). Studies with the potato aphid
Macrosiphon euphorbiae have revealed that various aphid effectors can influence the
interactions of plants and aphids. Expression of the effectors Me10 and Me23, which originate
from the potato aphid, in N. benthamiana raised aphid fertility (Atamian et al., 2013). Wang
et al. (2015a) proposed that the Armet protein, which is widespread in animals, is also an

aphid salivary effector protein.

With aphid candidate effectors being identified for a rising tally of aphid species
(encompassing types that affect monocot and dicot plants), there is a growing urgency to
produce tools that can be used to assay such proteins. As described earlier, successful
identification of effector actions has been made with transgenic Arabidopsis lines and
transient over-expression systems in N. benthamiana and tomato. Also, newer transient
expression systems like the P. fluorescens Effector-to-Host Analyzer (EtHAnN) system, in
which there is engineering of non-pathogenic bacteria to express the P. syringae type Il
secretion system (TTSS), can be deployed to identify aphid candidate effectors in crops that
come under a non-model heading — barley, wheat, and possibly even legumes (Jaouannet et
al., 2014).

A good method to work out which effectors are most useful in promoting susceptibility is to

introduce high-throughput screening for the pertinent effector actions. In research that has
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sought to discover S. avenae effectors, the structural sheath protein (SHP) has been shown to
increase virulence on barley. To date, though, this is the only S. avenae effector identified
(YYates and Michel, 2018).

1.4.3 Effector Triggered Immunity (R genes/ETI)

In the field of resistance (R) gene mediated defence, R-proteins recognise effectors called
avirulence (Avr) gene products; these exist in pests and pathogens, and the consequence of
this recognition is effector-triggered immunity (ETI) and increased resistance, as shown in
Fig. 1-7 (Gururani et al., 2012).

‘WW A | )
@I — QPO — 7 . s
S8 TR e e

l{ R-gene
R- proteins

7\
Plant ‘;ystem Q :%
ﬁ :2&;31'\ Q

ki s %@’f" oy

Avr gene

Avr- proteins

Figure 1-7. Schematic picture of R-gene mediated defence activated when plants and aphids interact.
HR = hypersensitive response. Picture adapted from Gururani et al. (2012).

Eight types of plant R-gene have been identified. The majority of identified plant R-genes
encode nucleotide-binding site — leucine-rich repeat (NBS-LRR) proteins and confer defences
against pathogens or insects (Jones and Dangl, 2006; Hogenhout and Bos, 2011). There has
been isolation of two aphid R-genes so far. One of these is the Mi-1.2 gene, which was
identified in tomato; it resists particular biotypes of M. euphorbiae. Melon was the source of
the Vat gene; it confers enhanced resistance to the melon-cotton aphid (Aphis gossypii) (Smith
and Chuang, 2014). Both genes come from the NBS-LRR resistance gene family. Although
aphid effectors recognised by Mi-1.2 and Vat, as well as by the products of the mapped but
not cloned genes APR, AKR and Rag, in plants have still to be identified, great strides have
been taken in working out the mechanism of signalling related to Mi-1.2 that helps tomato
plants resist potato aphids (Nalam et al., 2019). Particular genes engaged in ETI to microbes

are needed for Mi-1.2 in order to defend against the potato aphid (Bhattarai et al., 2007).

There are multiple interactions between different transcription factors (TFs) and between TFs

and additional nuclear proteins, such as co-activators/-repressors and elements of the general
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transcriptional mechanisms to regulate the context-dependent expression of genes. One class
of such TFs is the WRKY TFs (see below). Some WRKY factors negatively influence plant
defence and others act positively; this implies that there is a link between these TFs and
distinct regulatory complexes (Eulgem and Somssich, 2007; Shen et al., 2007). The responses
of plants subsequent to ETI signalling, with major transcriptional changes and especially the
engagement of WRKY proteins, have been very involved in this procedure and are thought to
be highly possible candidates for involvement of common molecular players, with vital
functions in regulating stress signalling cross-talk (Fujita et al., 2006; Shen et al., 2007). The

end-results of such signalling pathways are the plant’s reactions to combinations of stresses.

Resistance can be classified either as qualitative or quantitative. “Qualitative”, “major gene”
and “vertical” resistance are alternative terms for R-based resistance; these terms imply
extremely high levels of specific resistance. The drawback of this resistance form is that it is
only activated by species housing the avirulence gene products (effectors). The defence,
therefore, does not work on aphid biotypes that do not have the avirulence protein.
Quantitative (polygenic; horizontal) resistance, on the other hand, is where several genes are
involved in the observed resistance. This method is more durable but it is often not
particularly powerful and it is harder to identify the genes that contribute to the resistance. An
important line of investigation is to identify genes that are engaged in quantitative resistance
in the wheat crop (Faris et al., 1999).

Aphid resistance genes in wheat

Sources of resistance to aphids are rare. The resistance that has been established as definite
has been found in wild accessions or connected forms, or in unimproved landraces, making
the procedure of building resistance into cultivated forms a long and drawn-out affair in terms
of breeding. A total of 40,000 wheat accessions have been assessed for reactions to a strain of
the Russian wheat aphid Diuraphis noxia; 300 have exhibited reactions that could be
labelled as partly or fully resistant. Of these, only a handful — mostly in wheat-related crops —
are presently being used in the breeding process and adopted into elite germplasm (Berzonsky
et al., 2003). A more recent development has aimed to find resistance to the highly virulent
biotype 2 of the Russian wheat aphid. The number of accessions that were resistant totalled a
mere 8%: these were from particular phylogenetic subgroups, which implies the prospective
identification of previously undiscovered genes or alleles (Collins et al., 2005; Peng et al.,
2009). Although numbers of resistant accessions are fairly high, resistance to aphids is

normally dependent on just a few genes with a small number of resistance alleles. Further
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genetic research is needed to discover if new resistance genes can be sourced from these

accessions.

The future of worldwide food security will be hugely affected by expanding our knowledge of
the wheat/S. avenae interaction, as insect control is essential to prevent crop loss. This will be
more significant as climate change takes more effect and populations expand (Dogimont et
al., 2010). To date, relatively few studies have investigated the molecular responses of wheat
to S. avenae infestation. Ferry et al. (2011) demonstrated that the response of commercial
wheat, which exhibits only very low levels of resistance to this insect pest, was similar to the
basal non-specific stress response at the proteome level. However, Guan et al. (2015) showed
the presence of stress proteins and oxidative stress proteins in a resistant diploid line, but only

in response to aphid infestation.

The present thesis focuses on identifying genes involved in the plant-aphid interaction to
elucidate potential mechanisms which confer resistance to aphids. The variety of identified
aphid-induced plant sequences to date suggests that many different pathways are involved

and that defence is highly complex.

1.4.4 Role of plant hormones in signalling

Signalling pathways including ethylene, jasmonic acid (JA), salicylic acid (SA), abscisic acid,
oligogalacturonic acid and hydrogen peroxide (Fig. 1-8) are used by plants to trigger induced
defence systems, both at the site of attack and systemically. ABA is a plant stress hormone
that is ever-present in plants; it stimulates abiotic stress reactions through activating how
abiotic stress-related genes are expressed as they fulfil their function, and it performs as an
internal signal that allows plants to withstand severe environmental effects such as extreme
cold, drought and salt (Keskin et al., 2010). Additionally, ABA has been demonstrated to
perform vital tasks in connection with vulnerability to disease, as well as having the ability to
help fight infection from pathogens and interact with a range of biotic stress reactions that are
mediated by hormones (Yasuda et al., 2008). By contrast, salicylic acid (SA), jasmonic acid
(JA) and ethylene (ET) have crucial roles in signalling pathways against biotic stress
(Pieterse et al., 2001). The observation has been made that SA-mediated resistance actively
counteracts biotrophic pathogens, while JA, or reactions that are ethylene-mediated,

principally combats necrotrophic pathogens and herbivorous insects (Spoel and Dong, 2008).
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A further area of research into the hormonal cross-talk present in plant defence is how the
pathways dependent on SA and JA can interact (Hunter, 2000). When plants are subjected to
assaults from insects, activation of the JA pathway can adversely affect resistance to
pathogens by stifling the SA pathway, while if there are assaults from a pathogen, the JA
pathway can be stifled, thereby reducing defences against insects. Such findings suggest that
there is a trade-off in the respective SA and JA reactions (Pieterse et al., 2001). Such negative
cross-talk does not always occur, though: it seems to depend on particular combinations of
plants, insects and pathogens. It is also affected by the characteristics of the stress, as well as
by its timing and its strength (Singh et al., 2011). Alternative research, however, has posited
that if plants are infected by a pathogen, opposition to insect herbivores may be enhanced,
which implies positive cross-talk (Hunter, 2000). When the rust fungus Uromyces rumicis
infects dock (Rumex), for example, the Chrysomelid beetle Gastrophysa viridula’s
reproductive capacity, growth, and even its survival, are threatened (Hunter, 2000).
Additionally, research into Rumex suggests that the opposition to pathogens that is triggered
by herbivores is also effective against different types of pathogens in the field (Hunter, 2000).
Microarray analysis by Schenk et al. (2000) showed that Arabidopsis contains integrated
plant defences, particularly among SA and JA pathways, which can display positive

interaction.

Aphid effectors are recognised via receptors; these trigger a signal transduction route that is
regulated by a range of cellular messengers, mainly stress hormones, calcium and ROS
(Moreno et al., 2011; Lei et al., 2014). Aphids, though, tend to regulate many hormonal
signalling pathways in order to give an advantage to the insect. Whilst phytohormones are
known to be involved in the defence response, their roles are not completely understood.
Nonetheless, various studies have indicated that SA has a prominent function when aphid
infestation begins; it mediates potential antagonistic cross-talk with JA-signalling pathways
and consequent defence against insects (Coppola et al., 2018). These phytohormones also
have a central role in the cross-talk between abiotic and biotic stress signalling (Fujita et al.,
2006).
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Figure 1-8. The wounding response; this is an overall view of the plant’s response to wounding and
the signalling molecules that are able to regulate it. Pathways that are needed for insecticidal proteins’
local and systemic induction are illustrated. The abbreviations are: ABA, abscisic acid; SA, salicylic

acid (Ferry et al., 2004).
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1.5 WRKY transcription factors: key regulators of plant processes

1.5.1 WRKY transcription factors

The initial stage in gene expression is transcription, which is modulated by transcription
factors (TFs) that either activate or repress genes (Eulgem et al., 2000). There is a domain in
the TF that binds to a specific DNA sequence leading to formation of a transcriptional
complex, thereby modulating gene expression (Mitsuda and Ohme-Takagi, 2009; Cui and
Luan, 2012). TFs in wheat are classified into numerous groups depending on what the
conserved domain is, such as the WRKY superfamily. WRKY (which are individual amino
acid letters that represent tryptophan, arginine, lysine and tyrosine) transcription factors are
part of an extended superfamily of WRKY-GCM1 TFs (Satapathy et al., 2018). They
constitute a group of plant-specific transcription factors that are involved in numerous biotic
and abiotic stress reactions, in addition to plant development (Rushton et al., 2010). Many of
the WRKY family members have been identified and characterised in terms of function in

numerous species, including Arabidopsis, rice, barley, cotton and soybean (Ding et al., 2016).

Recently, the whole genome sequence of wheat has become available. A search of the
genome has identified 171 TaWRKY genes (Ning et al., 2017). Their products are
comparable to 1113 WRKY TFs identified in 20 plant species representing the nine major

evolutionary lineages of plants, as shown by several methods of analysis.

1.5.2 WRKY domain and W-box

WRKY proteins are particularly noteworthy for their WRKY domain, which is composed of
around 60 amino acids and contains an extremely conserved WRKYGQK heptapeptide
sequence and a zinc finger-like motif (Satapathy et al., 2018). The arrangement of the zinc
finger-like motif is either CX4.5CX22-23HXH or CX7CX23HXC, where ‘X’ is any amino acid
(Rushton et al., 2010). The WRKY domain is the DNA-binding domain. WRKY TFs bind to
W-box elements, which have the sequence TTGAC(C/T) (Eulgem et al., 2000; Ciolkowski et
al., 2008; van Verk et al., 2008). Nevertheless, the selectivity of binding of WRKY TFs to
DNA depends on the flanking sequences that are beyond the W-box motif. Binding of WRKY
proteins to their W-boxes is typical of reactions to biotic and abiotic stress (Satapathy et al.,
2018).

WRKY TFs have been grouped into three classes, depending on the number of WRKY

domains and the forms of zinc finger-like motifs. Group | contains proteins that possess two
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WRKY domains, while one-domain WRKY proteins are allocated to group Il or IlI,
according to the form of zinc finger-like motif (Eulgem et al., 2000). The zinc finger motif
structure of CoHz (CXs5CX22-23HXH), together with the N-terminal WRKY sequence, is
identified as a protein—protein interaction interface in Group I. Sequence-specific binding of
WRKY proteins in Group | to target DNA sequences depends on the C-terminal WRKY
domain, while the role of the N-terminal WRKY domain is yet to be clarified; this could
enhance the affinity and/or specificity of binding to target sequences. Group Il WRKYsS,
meanwhile, contain just one WRKY domain with a comparable C2H> zinc finger motif (the
same as the C-terminal domain of Group 1), this having been recognised from phylogenetic
analysis. A further sub-division into a total of five sub-groups (lla—lle), using the WRKY
domains’ phylogenetic relationships as a base, is as follows: Illa (CXsCX23sHXH), llb
(CXsCX23HXH), llc (CX4CX23HXH), 1ld (CXsCX23HXH) and lle (CXsCX23HXH). Group
11 WRKY proteins have a solitary WRKY domain, which has the zinc finger motif structure
CoHC (CX7CX23HXC) (Eulgem et al., 2000). Further phylogenetic analysis founded on
comparisons between the WRKY gene sequences in Arabidopsis (Arabidopsis thaliana), rice
(Oryza sativa) and other species has shown that the classification into groups is widely
applicable (Wu et al., 2005; Zhang and Wang, 2005).

1.5.3 The effects of stress on WRKY TF gene expression

There has been much documentation regarding the involvement of WRKY proteins in both
biotic and abiotic stresses (Zhu et al., 2013). An individual WRKY protein may regulate
transcriptional reprogramming that is linked to many different plant processes; there are
numerous inputs and outputs from the dynamic signalling network in which WRKY proteins
function (Rushton et al., 2010).

WRKY TFs have crucial functions in mediating various plant stress responses, but discovery
of their participation in reactions to abiotic stress has not made as much progress as its biotic
counterpart. However, one example of the role of WRKYs in abiotic stress is that of
AtWRKY75, which is significantly induced under very low phosphate (Pi); at the same time, if
the expression of WRKY75 is suppressed, there will be an increased risk of Pi stress and a
lower uptake of Pi in mutant plants (Devaiah et al., 2007). More examples of the roles of
WRKY proteins in abiotic stress include those involved in drought, salt and osmotic stress.
When TaWRKY44 is over-expressed in tobacco, these transgenic lines exhibit improved
tolerance to abiotic stress, either through successful eradication of ROS via triggering cellular

antioxidant systems, or the galvanising of stress-linked gene expression (Wang et al., 2015b).
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In relation to biotic stress, WRKY proteins have been demonstrated to have vital functions in
the resistance of plants to various pathogens. For example, the knockdown of the rice
transcription factor OSWRKY45 reduces SA-induced resistance to fungal and bacterial
pathogens (Wang et al., 2015b).

WRKY proteins regulate gene expression of pathways linked to biotic and abiotic stress in
either a positive or a negative way. Controlling WRKY -dependent signalling pathways is
extremely intricate; the process includes transcriptional regulation, DNA-binding affinity
and post-translational regulation (Ishihama and Yoshioka, 2012; Chi et al., 2013). WRKY
genes respond to stimuli of both an internal and an external nature, which amalgamate the
signals and activate expression of target genes via binding to the W-boxes in their promoters
(Eulgem and Somssich, 2007; Rushton et al., 2010). WRKY gene promoters themselves can
contain W boxes. WRKY transcription factors can attach to their own promoters and to the
promoters of other WRKY transcription factor genes; this is known as auto-regulation or
cross-regulation. Research using chromatin immunoprecipitation (ChIP) has shown that
PcWRKY1 protein of parsley (Petroselinum crispum) binds to the W boxes of its native
promoter and the PCWRKY3 promoter (Turck et al., 2004). In Electrophoretic Mobility Shift
Assays (EMSA), the W-box sequences upstream of the AtWRKY60 gene promoter were
recognised by AtWRKY18 and AtWRKY40, with both triggering AtWRKY60 expression in
protoplasts. This suggested that AtWRKY18’s and AtWRKY40’s target gene in ABA
signalling may be AtWRKY60 (Chen et al., 2010). Experiments involving the ChIP-qPCR
assay have indicated that by direct attachment to its own promoter, AtWRKY3 may be able
to control its own expression (Mao et al., 2011).

Additionally, WRKY TFs are downstream in the chain from MAPK cascades and are
phosphorylated by MAPKS, raising their propensity to attach to the promoters of the target
genes that are engaged in the defence of plants and reactions to environmental stress (Shen et
al., 2012).

The modulation of WRKY TFs is a complex process, as WRKY TF/partner interactions make
up a network that is dynamic and efficient. WRKY proteins modulate and regulate the
expression of key genes in the defence of plants, thereby confirming them as highly suitable
candidates to understand the connections between various stresses; this may be the underlying

factor in the connection between S. avenae and nitrogen input.
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A lack of nitrogen has a major effect on the leaf transcriptome, to the extent that there is an
over-abundance of transcripts associated with cell wall formation, sugar and nutrient
signalling, protein degradation and secondary metabolism. When there is a lack of nitrogen,
there is a consequent re-configuration of leaf metabolism and gene expression; this activates
defences that guard the metabolite-rich nitrogen-deficient leaves of barley against attack by
M. persicae (Comadira et al., 2015). Comparable patterns were seen in gene expression
profiles of N-deficient barley leaves and Arabidopsis leaves infested with M. persicae
(Comadira et al., 2015). As an illustration, there was a major induction of transcripts encoding
WRKY 18, 33, 40, 51 and 53 after nitrogen limitation in barley and after Arabidopsis leaves
were infested by aphids. In contrast, although the information from the transcripts illustrated
that nitrogen limitation led to greater amounts of flavonoid metabolism transcripts being
present in barley, M. persicae feeding in Arabidopsis leaves stifled flavonoid metabolism
(Comadira et al., 2015). In each stress circumstance, there was an abundance of transcripts
that encoded wall-associated kinases (WAKSs) and DUF26 (domain of unknown function 26)
kinases. These findings support the hypothesis that WAKSs, DUF26 kinases and WRKY
transcription factors have significant functions in basal resistance to aphids (Comadira et al.,
2015).

1.5.4 Future prospects for use of TFs in wheat breeding

Innovative technologies must be advanced to progress productivity by creating better
genotyping and phenotyping methods and by increasing the diversity of genes in breeding
germplasm (Tester and Langridge, 2010). Genetic engineering of transcription factors is a
promising approach to the goal of developing crops that have improved agronomic traits,
including tolerance to cold, heat, drought, and salt stress as well as tolerance to pests and
pathogens. Transcription factors have vital functions, from perceiving stress signals to
inducing expression of stress-responsive genes, so they have become potent tools for
increasing the levels of tolerance to stress by manipulating intricate metabolic pathways in
crops such as wheat (Hu and Xiong, 2014). For this to be successful, fundamental knowledge
of the appropriate networks — at the physiological, biochemical and gene regulatory levels is
crucial, as this will assist in our understanding of pleiotropic effects caused by the over-
expression of transcription factors. A vital challenge in experiments involving genetic
engineering is to limit transcription factor activity in order to restrict deleterious

consequences. For example, over-expression of DREB1/CBF in transgenic rice lines caused
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growth retardation under unstressed normal growth conditions, but tolerance under conditions
of cold, drought and high salinity compared to the WT Ito et al. (2006).

Work with transgenic Arabidopsis has demonstrated that WRKY proteins from other species
can transfer desirable characteristics. For example, transgenic Arabidopsis plants that over-
express TaWRKY2 or TaWRKY19 exhibit better tolerance to salt, drought and/or freezing
stresses than WT plants (Niu et al., 2012). Qin et al. (2015) showed that TaWRKY93 can
positively regulate responses to abiotic stress, being able to increase levels of salinity, drought
and low temperature stress tolerance by the augmentation of osmotic adjustment, retaining
membrane stability and increasing transcription of stress related genes. Over-expression of
TaWRKY33 in Arabidopsis increased germination rates, promoted root growth under various
stresses and resulted in enhanced tolerance to heat stress (He et al., 2016).

Essentially, then, deciphering the functions of TF genes in wheat and their roles in ability to
tolerate biotic stresses, as well as distinguishing the genes for TFs that are engaged in
pathogen/pest responses, are vital current endeavours that are likely to contribute significantly
in wheat breeding programmes to increase endogenous resistance, thereby decreasing losses
(Hong et al., 2018). Innovative breeding techniques, or transgenesis, may enable the
expression of WRKYSs to create wheat cultivars that exhibit increased tolerance to S. avenae
under low nitrogen conditions, even in times when other growth conditions are at their

optimum level.

1.6 Research Rationale

This study explores the potential beneficial effects of reduced nitrogen input in wheat using
various complementary approaches. This includes use of molecular genetics to identify genes
that confer resistance to aphids, with the eventually aim of producing crops with reduced

nutrient input.
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Research Hypotheses

It is hypothesised that:

Limiting nitrogen input in wheat increases aphid tolerance, but reduces plant growth.

. A subset of WRKY transcription factor genes is differentially expressed in plants in

response to growth at reduced nitrogen levels and aphid infestation.

Mutations in a differentially-expressed WRKY gene will affect the interaction
between nitrogen supply and aphid fecundity.

Loss of binding by the one mutant line reduces the aphid population and negates the
differentiation between population increases relative to nitrogen availability.

1.8 Project Aims

The present project seeks to investigate the interaction the between response of wheat to
the grain aphid Sitobion avenae and reduced nitrogen availability, and to study the role of
WRKY transcription factors in cross-talk via the regulatory network in this interaction

(Fig. 1-9). The specific objectives are to:

Investigate the effect of reduced nitrogen availability at a physiological level on
wheat-aphid performance.

Determine whether plant defence responses are primed at low nitrogen availability.

. Assess the expression of WRKY genes during periods of single and dual abiotic and

biotic stress.

Establish whether there is a role for TaWRKY transcription factors in the responses to
nitrogen level and aphid infestation.

Evaluate the effects of mutations within the WRKY binding domain on aphid
performance.

Identify which gene sequences a TaWRKY protein binds to using DNA-protein
binding studies.

Determine how a mutation to a WRKY3 gene affects the binding of the TaWRKY

protein to W-box elements.
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2 Chapter 2. Effects of Reduced Nitrogen Availability on Performance of
Wheat and Subsequent Response to Aphid Infestation

2.1 Abstract

Food production must increase by 70% to feed an additional 2.3 billion people by 2050.
Wheat (Triticum aestivum) is the third most produced crop after rice and maize in the world.
During the growth and development of plants both biotic and abiotic stress result in great loss
to crop productivity. However, many plants developed their responses to stress as they
evolved. The aim of the present study is to investigate the response of wheat (Triticum
aestivum) to both nitrogen input and aphid (Sitobion avenae) infestation, by using single and
combined stresses, to understand the impact of stress and cross tolerance in wheat. Further
experiments assessed the response of wheat to nitrogen single stress at the physiological level.
Two wheat cultivars with different levels of tolerance to aphids (Cordiale and Grafton) were
grown with different nitrogen levels. Changes were observed in both genotypes for all
physiological parameters and were directly related to nitrogen input. High nitrogen
availability (7.5 mM) significantly increased plant height, leaf area, chlorophyll content, NOs"
ion accumulation and relative water content. However, the numbers of leaves and tillers did
not differ significantly at different levels of nitrogen. Fecundity of aphids on the two wheat
varieties was measured with different nitrogen inputs. Aphid fecundity was significantly
reduced on plants grown with low nitrogen (2.25 mM), with total fecundity reduced to 20 and
31 nymphs per adult on Cordiale and Grafton, respectively. Increased nitrogen could change

the quality and reduce the resistance of wheat to aphids.

Key words: wheat / abiotic / biotic / aphid performance
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2.2 Introduction

2.2.1 Wheat nutrition: nitrogen

Wheat (Triticum aestivum) is one of the most important crops in the world with a total annual
production of 722 million tonnes (Mt) of grain (FAO, 2015b). Environmental stresses can
reduce the production of wheat, while crop yield can be increased by adding mineral
fertilisers (Borlaug and Dowswell, 1993). Crop yields are becoming a growing area of
concern and research effort, as there is an urgent need to increase wheat production in order to
meet the demands of a growing population, while at the same time the amount of land
available for agriculture is declining (Khan and Mohammad, 2016). One of the ways to
increase crop yields is to increase levels of nitrogen available to crops.

Nitrogen (N) is one of the most important factors in the growth and development of plants and
plant quality. There has been a tendency to maximise N fertilisation in order to increase crop
yield to its maximum (Hirel et al., 2007); however, the over- or under-use of N fertilisers is
not cost effective. An increased nitrogen input significantly raises grain yield and protein
concentration in wheat but it has negative environmental impacts. For example, the
administration of too much N will result in it leaching into groundwater or running off the
land in surface water, and the atmosphere can become polluted by ammonia volatilisation and
NOx gases, which are a by-product of denitrification (Conley et al., 2009). There is the
greatest risk of this happening when fertilisation rates come close to or exceed the ‘economic
optimum level’. This level is calculated from the known response of the crop to N fertilisers
(Delin and Stenberg, 2014). At the other end of the scale, if N fertilisers are under-utilised,
then crop yields fall, meaning that their production is not cost effective, and populations
dependent on the crop will be malnourished (Dawson et al., 2008; Khan and Mohammad,
2016).

Therefore, it is necessary to develop improved cultivars so that yield can be increased while
adhering to the requirements of food quality and safety, and protection of the environment. In
this regard, minimising the amount of N input requires N-efficient crops that need less N
fertiliser yet maintain current yields; this has become one of the most important objectives of
applied research in agriculture, along with minimising the negative environmental effects
(Tedone et al., 2018). N use efficiency has been observed by several approaches in the
literature, with different objectives (Moll et al., 1982).
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In this study, it was hypothesised that nitrogen content in leaves and plant performance would
increase with increasing nitrogen availability, since reduced levels of nitrogen generally lead
to decreased photosynthesis and root growth. Based on the above, the present study was
initiated to consider plant productivity and the accumulation of nitrogen in relation to N input
when two winter wheat genotypes (Triticum aestivum, Cordiale and Grafton) were grown
with three nitrogen regimes: high (7.5 mM NOs"), moderate (5.25 mM NO3’) and low (2.25
mM NOz3’). The aim was to determine whether improvements could be made to most
physiological parameters with a standard nitrogen input. The finding was that growth is

limited by low nitrogen levels with a range of adaptive responses.

2.2.2 Nitrogen-aphid interaction

The English grain aphid (Sitobion avenae) is the object of study. It is one of the most
damaging pests of wheat (Triticum aestivum), and changing conditions in agriculture are
leading to insect pests becoming a more serious threat to sustainable crop production globally
(Castex et al., 2018). Aphids are plant phloem sap feeders, causing damage to plants via
depleting photoassimilates, manipulating growth and nutrient partitioning, and transmitting

plant viruses (Thompson and Goggin, 2006).

Although phloem sap is composed mainly of amino acids and sugars, its composition
varies depending on the species of plant, the stage of development of the plant, abiotic
factors, for example the available levels of water and nitrogen, as well as temperature
(Ponder et al., 2000), and biotic stress such as aphid infestation (Sandstrom et al., 2000). In
response to environmental and biotic stress, plants have evolved a number of complex

defence mechanisms (Fujita et al., 2006).

It is still not entirely clear how aphid fecundity is affected by the levels of nitrogen available
to a plant. Only a small number of studies have examined how nitrogen levels affect aphids
(Jansson and Smilowitz, 1986) using N application rates that are actually utilised in
practice, and just a few have directly investigated fecundity (Awmack and Leather, 2002).
A study that investigated the fecundity of cereal aphids (Duffield et al., 1997) on winter
wheat with three different application levels of N (0, 190 and “Canopy Management” with
130-220 kg N/ha) found that as nitrogen levels increased, so did the population of
Metopolophium dirhodum. Another studied example with wheat found that the lowest aphid
population occurred at the lowest dose of urea fertiliser, and with increased application of

urea the population increased (Wagan et al., 2015). The link between aphids and N levels in
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the soil comes from the fact that nutrient levels affect aphids’ diet and the plant’s response to
attack, as they influence the composition of secondary metabolites. It is well known that
increased inputs to crops affect the fecundity of herbivores via the nutritional value of host
plants. When the influence of varying nitrogen fertiliser levels applied to different wheat
cultivars on the fecundity of cereal aphids was examined, it was found that higher nitrogen
fertiliser increased aphid population density by increasing fecundity and by decreasing the
time to maturity (Aqueel and Leather, 2011).

The initial aim of this chapter was to study the link between nutrient availability (nitrogen)
and aphids’ performance on wheat. The level of resistance to aphids was assessed using the
aphids’ fecundity on the selected wheat cultivars (Triticum aestivum, Cordiale and Grafton)

with varying nitrogen levels.

2.2.3 Aims and objectives

The aim of this study is to improve our understanding of plants’ responses to simultaneous
stress conditions and to study the effect of nitrogen availability stress on wheat-aphid

performance interactions.
The specific objectives of this study:

1. To investigate the response of wheat to nitrogen treatment at a physiological level.
2. To investigate the response of wheat to nitrogen and aphid infestation (bioassay). This
is assessed by measuring the aphids’ fecundity on winter wheat (Triticum aestivum,

Cordiale and Grafton) at three different nitrogen levels.
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2.3 Materials and Methods

2.3.1 Experimental Design

The experiment was designed to investigate the effects of wheat response to reduced nitrogen
availability on aphid fecundity. Three nitrogen regimes — 7.5 mM, 5.25 mM and 2.25 mM —
were applied to two winter wheat genotypes, Cordiale and Grafton. Under each nitrogen

condition, aphid tolerance was evaluated through aphid fecundity (Fig. 2-1).

Two commercial wheat lines
(Cordiale and Grafton)

| 7.5 mM | | 5.25 mM | | 2.25mM |

| Hoagland’s solution with three Nitrogen levels |

Q | 4t Jeaf stages | g

Study 1 Smdy2
Physiological parameters including: Aphid (8. avenae) performance
. Shoc;t height Parameters measured:
Leafarea Total fecundity
Chlorophyll content +  Daily fecundity
* Nitrate content Cumulative nymph production
RWC

Figure 2-1. Experimental framework for applying nitrogen and aphid infestation stress to wheat, with
three nitrogen regimes: standard condition which is 7.5 mM concentration and two lower levels of
nitrogen, 5.25 and 2.25 mM.

2.3.2 Plant materials and growth conditions for physiological assessment

The experiment was conducted on two varieties of winter wheat, Cordiale and Grafton,
supplied by KWS-UK. Silver sand was used to facilitate controlling the amount of nutrient
solution, removal of plants and harvesting. Seeds were washed with deionised water and
soaked in 30 ml deionised water in a screw cap centrifuge tube for 4 hours at room
temperature. Seeds were transferred to petri dishes (15 seeds/dish) with two sheets of filter
paper and supplied with deionised water for germination. The petri dishes were sealed with
Parafilm and were kept at 28 °C to allow the seeds to germinate. After 2-3 days, the seeds

were transferred to pots (diameter 9 cm and height 9 cm) with a piece of mesh at the base and
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filled with silver sand (washed, dried and autoclaved) to avoid contamination. The treatment
used for irrigation is described in section 2.3.4, Hoagland’s solution and watering system.
Four seedlings were sown in each pot to give four replicates per genotype for each nitrogen
concentration. To inhibit algal growth, pots were covered with foil sheets after the 5th day,
with holes for growth of plants. Plants were grown to the four leaf stage under the following
conditions: fluorescent light 16 h light: 8 h dark, at 25 °C in light, 19 °C in darkness and 250-
300 umol m™ s™! illumination. Plants were harvested after 3 weeks and the effects of growth

with different nitrogen levels were assessed.

2.3.3 Plant materials and growth conditions for aphid infestation

Single seedlings were grown to the three-leaf stage in sand under the following conditions:
fluorescent light 16 h light: 8 h dark, at 25 °C in light, 19 °C in darkness and 250-300 pumol
m~2 s7! illumination. Plants were watered with half strength Hoagland’s solution (see section
2.3.4) every two days for six weeks. Plants were transferred to a controlled environment
chamber with 16 h light (22 °C) / 8 h dark (17 °C) with 300 pmol m™ s™! illumination. Wheat
was grown to the four leaf stage and the bioassay was started. Aphids (Sitobion avenae) were
obtained from a laboratory culture and maintained in a 45 x 45 x 50 cm Perspex cage at 20
°C, 55% R.H. under 16 h:8 h L: D light regime. New plants were supplied weekly. Two adult
aphids were placed on the leaf number 2 with a paint brush. These adults were allowed to
produce nymphs for 24 h then the adults were removed. The nymphs became adults after 10-
12 d. Plants were exposed to aphids over 21 d, with reproduction recorded daily. Clip cages
were used to allow nymphs to reproduce and for ease of counting them. Overall 36 potted

plants (18 plants per genotype) were used in this experiment.

2.3.4 Hoagland’s solution and watering system

The wheat plants were provided with nutrients via irrigation with half-strength modified
Hoagland’s solution (pH 5.5) (Hoagland and Arnon, 1950) for 3 weeks. Stock solution was
prepared as shown in Table 2-1. Plants were supplied with 70 or 100 ml of solution every two
days. N was supplied as Ca (NO3)2.4H20 and KNOs at high (7.5 mM), moderate (5.25 mM)
and low (2.25 mM) concentrations (Table 2-2).
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Table 2-1. The various chemicals utilised in the preparation of modified half-strength Hoagland’s
solution, with equivalent grams/litre. 1 litre of each main solution and 200 ml of each “micronutrient”
were made. FeEDTA was dissolved with KOH in water, and the pH was adjusted to 5.5 using HCI
(aqg). Finally, EDTA.2H,0 and FeSO4.7H,0 were added.

Chemical Stock / M g It required
Ca(NO3)2.4H,0 1 236.1
CaCl, 1 111
KNO3 1 101.1
K2SO4 1 87.13
KH2PO4 0.5 136.1
MgS04.7H;0 1 2465

To prepare Micronutrients:

Chemical Stock Conc. /g It g/ 200 ml required
H3BOs 2.86 0.572
MnC1..4H20 181 0.362
ZnS04.7H,0 0.22 0.044
CuS04.5H,0 0.051 0.0102
NaMo004.2H20 0.12 0.024
FeEDTA:

KOH 56.1 11.22
EDTA.2H.0 104 2.08
FeSO4.7H20 7.8 1.56
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Table 2-2. Volume (in cm?®) of each stock solution added per litre of final solution containing three
different concentrations of nitrogen. 2.5 | of solution was made, so 2.5 times the given volumes were
added to 2475 cmd deionised water.

Stock Solution 7.5mM N 5.25mMN 2.25mM N
1 M Ca(NO3)2.4H,0 2.5 1.75 0.75

1 M CaCl; 0 0.75 1.75

1 M KNOs 2.5 1.75 0.75

1 M K2SOq 0 0.75 1.75
0.5 M KH2POq4 1 1 1

1 M MgSQO4.7H20 1 1 1
Micronutrients 0.5 0.5 0.5

2.3.5 Physiological measurements

Chlorophyll content and leaf area

Chlorophyll content was measured by using a handheld chlorophyll meter (Opti-Sciences
CCM-200, USA) from the middle of leaf number 3.

Leaf area (LA) of leaf number 3 was estimated according to Gardner et al. (2003) by
measuring the width (W) and length (L) and following the equation:

LA= W*L*0.75.
Relative water content

After 20 days of growth, a sample consisting of leaf numbers 3 and 4 was used for measuring
the fresh weight (FW). In order to obtain the turgid weight (TW), leaves were immersed in
distilled water for 4 h at room temperature, and turgid weight (TW) was recorded after
blotting off the excess water. Then the leaf samples were dried in an oven at 80 °C for 24 h
and weighed to give dry weight (DW). All the mass measurements were made using a balance
(Barrs and Weatherley, 1962). Values of FW, TW and DW were used to calculate RWC,

using the formula:

RWC% = [(FW-DW) / (TW-DW)] X 100
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Nitrate content
The nitrate content of leaves was measured using the Nitratest kit (Palintest).

Nitrate calibration curve: Distilled water was used to prepare three 1 ml samples with
varying amounts of nitrate stock solution (4 mM, 2 mM and 1 mM KNQOg) in screw cap tubes.
More distilled water was added to make the samples 20 ml each, and then one flat spoonful of
zinc reductant and one nitrate tablet were added. The solution was mixed for 1 min and then
10 ml of clear solution was pipetted into a screw cap tube, and a crushed Nitricol tablet was

added. After 10 to 15 min, the absorbance of each sample was read at 540 nm.
Plant extracts:

One gram of each leaf sample was prepared, with each sample comprising two leaves
(numbers three and four). The leaves were sliced and then put into boiling tubes to which 9 ml
distilled water was added. This was brought to boiling point and then left to cool. One

millilitre of extract was prepared as for the nitrate calibration.

2.3.6 Data analysis

The data analysis was performed using IBM SPSS Statistics and data were submitted to two-
way analysis of variance (2-Way ANOVA) to study the main effects of genotype and
treatments and their interaction. To detect significant differences between treatments, means

were compared by Tukey's post—hoc test at p < 0.05.
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2.4 Results

2.4.1 Nitrogen effects on plant growth

Shoot height (SH)

Plant height (cm) was taken by measuring four plants per pot from the foil to the tip of the
most extended leaf. Plants grown with 7.5 mM nitrogen were the tallest, with average plant
height 38.5 cm in Cordiale (Fig. 2-2). Average heights were 34.5 cm in Cordiale and 24.5 cm
in Grafton with 5.25 mM nitrogen. Minimum height was observed at 2.25 mM nitrogen with
average shoot height 16.5 cm in Grafton. The effects of different levels of nitrogen were
significant at p = 0.001. There was a significant interaction between the effects of wheat
variety and nitrogen concentration [p = 0.038 (< 0.05)] on plant height.
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Figure 2-2. Effect of different nitrogen levels on plant height.

Wheat plants (Cordiale and Grafton) were grown for 21 d with three different levels of nitrogen: 7.5
mM, 5.25 mM and 2.25 mM. Data are shown as mean values £ SE (n = 4). For each cultivar, different
letters represent statistically different means (Tukey test; p <0.05).
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Leaf area (LA)

Leaf area is an important physiological determinant of crop yield. There were significant
differences for both varieties among the nitrogen levels. The highest leaf area was observed in
the genotype Cordiale (29.06 cm?) compared with Grafton (24.4 cm?) in the treatment with
7.5 mM N, whereas the lowest leaf areas in both Cordiale and Grafton were found with 2.25
mM N (7 cm? and 6 cm?, respectively) (Fig. 2-3).

m7.5mM

B m35.25 mM

m2.25 mM

Average leaf area (cm?)

Cordiale Grafton
Wheat genotypes

Figure 2-3. Effect of different nitrogen levels on leaf area.

Wheat plants (Cordiale and Grafton) were grown for 21 d with three different levels of nitrogen: 7.5
mM, 5.25 mM and 2.25 mM and. Data are shown as mean values = SE (n = 4). For each cultivar,
different letters represent statistically different means (Tukey test; p <0.05).
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Leaf number

Nitrogen gave no significant difference (p > 0.05) in the number of leaves with both
genotypes. Furthermore, there was no interaction effect between wheat variety and nitrogen
concentration [F = 0.50, p = 0.615 (>0.05)]. However, at low nitrogen availability leaf number
was reduced for Cordiale. Mean numbers of leaves on control plants were 6.5 and 4.5 in
Cordiale and Grafton respectively, whereas plants exposed to 5.25 mM nitrogen had mean
values of 5.7 and 4.75 in Cordiale and Grafton respectively (Fig. 2-4).

A m 7.5 mM
7 A B5.25 mM
=225 mM

d

Average number of leaves

Cordiale Grafton
Wheat genotypes

Figure 2-4. Effect of nutrients on leaf numbers of two wheat genotypes.

Wheat plants (Cordiale and Grafton) were grown for 21 d under three different levels of nitrogen: 7.5
mM, 5.25 mM, and 2.25 mM. Data are shown as mean values + SE (n = 4). For each cultivar, means
are not statistically different (Tukey test; p > 0.05).
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Chlorophyll content

At day 21 the chlorophyll content per leaf increased significantly with increasing nitrogen
input in both genotypes. Grafton had higher chlorophyll content with the average 16 SPAD
units at standard nitrogen, while for Cordiale the corresponding value was slightly lower at 14

SPAD units. Chlorophyll contents were lower in Grafton and Cordiale (7.6 and 6 SPAD units,

respectively) under low nitrogen levels (Fig. 2-5).
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Figure 2-5. Effect of nitrogen supply on chlorophyll content.

Mean chlorophyll contents measured in leaf 4 of Cordiale and Grafton grown for 21 d with three
different levels of nitrogen: 7.25 mM, 5.25 mM and 2.25 mM. Data are shown as mean values + SE (n
= 4). For each cultivar, different letters represents statistically different means (Tukey test; p < 0.05).
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NOs3™ accumulation

Nitrogen treatment significantly affected (p < 0.05) nitrate concentration in leaves. The
highest nitrogen input gave the highest nitrate content with average 8 and 7.5 mg g7,
respectively, in Cordiale and Grafton. The nitrate content was 4.3 and 4 mg g* in Cordiale
and Grafton, respectively, at 5.25 mM N. The nitrate content at 2.25 mM N was similar in
Cordiale (2.25 mg g1) and Grafton (2.60 mg g*). At higher nitrogen levels (7.5 mM), wheat
accumulates nitrogen in the greatest quantities and leaves have a dark green colour. At low
nitrogen levels (2.25 mM) leaves were lighter green and nitrate content was decreased for
both genotypes. The two varieties did not differ significantly in nitrate content (p = 0.0775)
and the interaction was not significant (p = 0.851) (Fig. 2-6).
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Figure 2-6. Effect of nitrogen supply on leaf nitrate content.

Plants (Cordiale and Grafton) were grown for 21 d with three different levels of nitrogen: 7.5 mM,
5.25 or 2.25 mM. Samples were taken from leaves 3 and 4. Data are presented as mean values + SE (n
= 4). For each cultivar, different letters represent statistically different means (Tukey test; p < 0.05).

Correlations between chlorophyll content and leaf nitrogen content are shown in Fig. 2-7a and
b. There was a positive linear relationship between chlorophyll content index (CCI) and leaf

nitrate in both Grafton and Cordiale (R2 = 0.998 and R2 = 0.948, respectively).
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Figure 2-7. Relationship between chlorophyll content and nitrate concentration.

The linear correlation between chlorophyll meter reading SPAD in leaf number 3 and nitrate
concentration in shoot number 3 and 4 of wheat genotypes (a) Cordiale and (b) Grafton. Values for
individual plants are shown, according to the figure legend as mean values £ SE (n=4). Plants were
grown with 7.5 mM, 5.25 mM and 2.25 mM N, for 21 d.
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Relative water content (RWC)

With 7.5 mM nitrogen, RWC was 94.8% in Cordiale and 87.7% in Grafton. RWC showed a
slight decrease with 5.25 mM N compared to 7.5 mM. RWC was higher in Cordiale (93.7%)
than in Grafton (82%) The lowest RWC in leaves was observed with 2.25 mM N at 72% and
70% for Cordiale and Grafton, respectively. The RWC for Grafton was below that for
Cordiale for all three nitrogen concentrations (Fig. 2-8). The relative water content increased
significantly but slightly with increasing N input, for both genotypes [p = 0 .01 (< 0.05)].
Moreover, there is significant interaction between the effects of wheat variety and nitrogen
concentration on RWC [p =0.017 (p < 0.05)].
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Figure 2-8. Effects of nitrogen supply on relative water content.

Wheat plants (Cordiale and Grafton) were grown for 21 d on Hoagland’s solution containing 5.25 and
2.25 mM compared to 7.5 mM. Samples were taken from leaves 3 and 4. Data are represented
according to the figure legends as mean values = SD (n = 4). For each cultivar, different letters
represent statistically different means (Tukey test; p < 0.05).
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2.4.2 Performance of S. avenae on two wheat cultivars grown with different nitrogen

levels

Aphid performance

Fecundity of aphids (S. avenae) on two winter wheat cultivars (Cordiale and Grafton) grown
with different levels of nitrogen was studied in order to assess the effect of the nutrient on
aphids’ performance. Three different parameters were measured: aphids’ total fecundity, daily
fecundity and reproduction rate.

2.4.3 The influence of nitrogen input on aphid total fecundity

Total fecundity

The total fecundity of the aphids was measured by the mean total number of nymphs
produced by each adult over 21 days. Total aphid fecundity was significantly different
between the genotypes (p < 0.004) and nitrogen levels (p <0.0001). However, the interaction
between these two factors was not significant. The maximum nymph production occurred
with high nitrogen input (7.5 mM) on Grafton, with total fecundity 60.8 nymphs, while that of
Cordiale was 58 nymphs and this difference was significant (p = 0.004). For plants grown at
5.25 mM nitrogen, there were more nymphs produced on Cordiale, with total fecundity 54.5
nymphs, than on Grafton, and this difference was significant. Aphid fecundity was
significantly reduced at 2.25 mM N (p < 0.01) for both wheat varieties relative to their growth
on control plants (7.5 mM N), with total fecundity 20 nymphs and 31 nymphs on Cordiale and
Grafton respectively (Fig. 2-9a).

Multiplication ratio

Aphid multiplication was the slowest on both cultivars at 2.25 mM nitrogen input (p < 0.001).
By 21 days the mean number of aphids was 19 and 31.8 for Cordiale and Grafton,
respectively, equivalent to an MR* of 10 and 16.4. The resistance of plants with a moderate N
level was only moderate; the number of aphids increased, reaching 59 (MR = 29.5) and 50.8
(MR = 25.6) at 21 days on Cordiale and Grafton, respectively. However, with the control N
treatment, by day 21, the number of aphids was 58 and 60.8 on Cordiale and Grafton,
respectively. The high N level therefore resulted in the highest fecundity for both cultivars,
with MRs of 30.4 and 30.9 respectively (Fig. 2-9b).
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*MR= Ni/NO, where NO was the initial number of aphids inoculated, and Ni was the number

of aphids counted at each time point (He et al., 2011).

2.4.4 Daily aphid fecundity

The greatest number of nymphs produced per day was recorded on the two wheat cultivars
which were treated with 7.5 mM nitrogen. Treatment with low levels of nitrogen (2.25 mM)
reduced the daily nymph production. In the low nitrogen conditions, aphids produced an
average of 9.1 and 5.5 nymphs per day on the six plants of genotypes Grafton and Cordiale,
respectively, whereas aphids on the two other concentrations (7.5 and 5.25 mM) produced
16.5 and 16.9 nymphs per adult on Cordiale, and aphids on Grafton produced 17.4 and 14.5
nymphs per adult per day, respectively. On both varieties, aphid daily fecundity was therefore
lowest at the lowest level of nitrogen (p < 0.001) (Fig. 2-10).
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Figure 2-9. Aphid performance parameters on two genotypes, Cordiale and Grafton, grown with three
nitrogen levels.(a) Total fecundity (measured as mean total number of nymphs per plant over 21 days,
mean £ SE; n = 6). (b) Aphid multiplication ratio. MR: Multiplication ratio of aphids; mean = SE; n =
6. (c) Mean daily fecundity (measured as mean total number of nymphs produced per day on 6 plants;
mean £ SE; n = 6) on the two wheat genotypes.
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2.4.5 Relative reproductive rate

The rate at which aphids reproduced was noted and analysed over time. On high-nitrogen
Cordiale on day two the aphids produced 7 nymphs per plant. The rate of nymph production
decreased then on day 9 increased to 4.5. By day 17 fecundity decreased to <1 per day and the
low productivity continued over the remainder of the production period. On moderate
nitrogen on day one the aphids produced 5.6 nymphs per plant, decreasing to 4.2 on day 8.
Fecundity decreased on day 16 to 1.6 nymphs, then increased slightly on day 18 to 2.2
nymphs. On low nitrogen 2.2 nymphs per plant were produced on day 1. The production of
nymphs decreased to <1.2 on most of days 2 to 21 (Fig. 2-10a). On Grafton grown on high
nitrogen aphids produced 11.6 nymphs per plant on day 2 and fecundity increased slightly to
4.3 nymphs on day 3. However, fecundity decreased to 2.2 on day 12 and the fecundity on the
last five days was < 1 nymph per day. At 5.25 mM nitrogen the aphids’ fecundity on the first
day was 5.3 nymphs. On days 5 and 7 they produced 2.8 nymphs and production continued to
decrease to <1 nymph per day. On low nitrogen aphids produced 4.2 nymphs on the first day,
decreasing to 2.8 on day 5 and decreasing thereafter to 1 or fewer from day 9 onwards (except
day 19) (Fig. 2-10b).
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Figure 2-10. Aphid performance parameters on two genotypes, Cordiale and Grafton, grown with
three nitrogen levels. (a and b) Aphids were monitored daily for reproduction/nymph production until
the end of the bioassay on the two wheat genotypes at three nitrogen levels. Columns headed by
different letters for the same cultivar are significantly different (Tukey test, p < 0.05).
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2.4.6 The influence of nitrogen input on cumulative nymph production

The cumulative nymph production of aphids was significantly affected by nitrogen treatment
(p = 0.001); however, the interaction between nitrogen treatment and wheat genotype was not
significant. The total number of nymphs produced by adults was strongly and positively
correlated with the increasing number of days that the host plant was grown. The rate of
nymph production was lowest at 2.25 mM, so fewer were produced over time. Increasing
nitrogen levels (5.25 and 7.5 mM) caused an increase in cumulative nymph production for

both genotypes. The difference was greater with increasing age of plants (Fig. 2-11).

Three weeks after the nymphs started to reproduce the bioassay was terminated. The reason
for this was that the different nitrogen inputs were clearly having a large effect. Regression
analysis was therefore employed to obtain predictions of aphid numbers at later dates. There
was a positive correlation between the total number of nymphs produced in the three weeks
and the ages of the adult aphids feeding on the two wheat genotypes. Using quadratic
regression (Gao et al., 2012), it was predicted that an increase in aphid age to 30 days,
commencing from nymph production, would have resulted in an increase in the abundance of
nymphs by an average 22 and 24 total nymphs on Cordiale and Grafton, respectively, at 7.5
mM N. At moderate N levels (5.25 mM) nymph production was predicted to increase by an
average 19.20 and 17.5 total nymphs on Cordiale and Grafton, respectively. However, using
the regression function it was predicted that the decrease in nymph production at low levels of
N (2.25 mM) would have resulted in a decrease in the total number of nymph by an average —

4.6 and -8.0 total nymphs on Cordiale and Grafton, respectively.
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Figure 2-11. Cumulative numbers of nymphs produced over 21 days on Cordiale (a) and Grafton (b)
with different levels of nitrogen: 7.5 mM (red line), 5.25 mM (green line) and 2.25 mM (blue line); **
indicates significant differences in treatment means at P < 0.01 according to Tukey’s test. (n = 6).
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2.5 Discussion

Nitrogen input affects plant growth through physiological parameters. However, in plants
infested with aphids, it was observed that low nitrogen levels can have a positive effect,
depending on the defence response and according to the environmental conditions. In
accordance with this, a low nitrogen input can induce a higher level of insect resistance. The
main determinant of fecundity in herbivorous insects is the quality of the host plant’s phloem
sap (Awmack and Leather, 2002) and several studies have reported that applying nitrogen can
affect the development and reproduction of cereal aphids. Bird cherry-oat aphids
(Rhopalosiphum padi) were kept in clip cages on hydroponically grown barley seedlings with
8 mM NH4NOs or without nitrogen (Ponder et al., 2000). Those plants with no nitrogen input
had much lower concentrations of non-essential amino acids and consequently, the aphids that
fed on them increased at a much lower rate. Similarly, Wagan et al. (2015) found that high
infestation of wheat with Russian wheat aphids is correlated with the high use of nitrogenous

fertilisers.

2.5.1 Plant nitrate content

This study investigated the effect of nutrient input on plant growth and nitrate distribution in
the shoot. The results showed that there was a significant difference in nitrate content among
the three levels of nitrogen, with higher nitrate correlating with high nitrogen input. This
might elucidate the relationship between plant growth and nitrate accumulation. This is in
agreement with the results obtained by Chen et al. (2004), who reported that plants grown
with a high nitrate supply exhibited higher nitrate concentrations.

2.5.2 Leaf chlorophyll content

One of the aims of the experiment was to assess correlation between chlorophyll content and
nitrogen status in leaves. The coefficient of determination (r?) between chlorophyll content in
SPAD units and nitrogen concentration (Fig. 2.7) was high for both the Cordiale and Grafton
cultivars (r2 = 0.948 and r? = 0.998, respectively) across all N levels This finding confirms
that level of N is strongly and positively correlated with chlorophyll content. A previous study
reported the correlation between nitrogen concentration and chlorophyll SPAD 502 readings
(rz2=0.693) in tobacco leaves (Kowalczyk-Jusko and Koscik, 2002). This is in agreement with
the findings of other researchers (Richardson et al., 2002; Chang and Robison, 2003; Van den
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Berg and Perkins, 2004), who observed a linear relationship between chlorophyll and N

content in sugar maple (r2 = 0.64), green ash (r?2 = 0.73) and in mangrove leaves (r? = 0.95).

The amount of nitrogen in leaves is correlated with the colour of the leaf. In the present study,
leaves of plants grown with high N levels were dark green, whereas they were light green at
low N levels. This indicates that the colour of the leaves is affected by the N input because N
is required for synthesis of chlorophyll and proteins and the formation of chloroplasts
(Bojovi¢ and Markovi¢, 2009).

2.5.3 Relative water content

Relative water content (RWC) plays an important role in physiological functions and growth.
It is a measure of the total amount of water in a plant (Waraich and Ahmad, 2010). N input
greatly increased growth and development. Moreover, the results of this study regarding leaf
RWC have shown that plants grown under high N conditions have higher RWC. The results
of the present study are in agreement with Waraich and Ahmad (2010), who reported
increases in RWC of wheat at two nitrogen supply levels from 83% to 93% and from 87% to
92%. However, decreases in RWC were recorded from 80% to 77% with low N levels. This
finding is consistent with previous studies in which reduced RWC was seen as a result of
water deficit (Gollojeh and Ranjbar, 2012). However, opposite results have been presented —
that a decreased RWC in response to water deficit causes a decreased phytosynthetic rate via
reduced stomatal conductance to CO. and photosynthetic metabolism (Ribaut et al., 2009).
RWC measurements are used to assess the amount of water and to predict the resistance level
in plants water deficit, which may depend on the type of plants and the environmental
conditions (Van Loon, 1981; Gollojeh and Ranjbar, 2012)

2.5.4 Aphid fecundity

The present experimental results demonstrated the influence of available nitrogen on aphid
performance over 21 days. Two commercial winter wheat varieties (Cordiale and Grafton)
were screened for aphid performance by using a technique to measure antibiosis via the
nymph count (Tolmay et al., 1999). Recent studies showed that aphid fecundity and
developmental time affected aphid performance (Taheri et al., 2010). There were significant
differences in fecundity of aphids with different nitrogen levels. Differential nitrogen levels

were used to identify putative defence responses in commercial winter wheat to aphid
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feeding. The study provides a novel, interesting finding for future attempts to improve the

resistance of wheat by changing the environmental stress on aphids.

For a number of years, the preferred method for controlling a variety of plant pests has been
plant resistance (Tolmay, 2001). This strategy has the advantage of requiring less pesticides,
which are known to be injurious to human health and to the environment, costs are therefore
reduced and it facilitates the maintenance of a sustainable agriculture system that also does
not target non-detrimental insects (Tolmay, 2001). Plant resistance to insects can be described
as one plant’s ability to either tolerate and avoid or recover from an insect attack that would
greatly damage another plant of the same species (Snelling, 1941). A plant uses three
mechanisms for resistance against aphids: tolerance, antixenosis and antibiosis (Tolmay,
2001). There are several reports of wheat lines that are resistant to the Russian wheat aphid
Diuraphis noxia (Tolmay, 2001). Several aspects of this type of resistance have been
identified, such as the general vigour of the plant, the ability to quickly heal wounds,
compensatory growth, mechanical support in tissues and organs and alterations to
photosynthetic partitioning. Tolmay (2001) reports that tolerance to aphids can be more

affected by environmental factors than other kinds of resistance.

A low nitrogen supply could adversely affect fecundity of aphids via nutrient deprivation, a
beneficial effect on plants’ ability to resist aphids by antibiosis or other means, or both.
Antibiosis is defined as a host plant’s negative impact on the biology of an insect that tries to
use it as a host. The measure for antibiosis resistance used in many studies examining host
plant resistance to the Russian wheat aphid Diuraphis noxia has been aphid fecundity
(reviewed in Tolmay et al., 1999). In this research, the fecundity of the aphids, measured as
daily/cumulative nymph production, was used to investigate whether antibiosis might be
occurring; this is a technique supported by previous studies (Tolmay et al., 1999). However,
research has shown that measures other than fecundity, for example nymph longevity and
development time, are also important indices for determining wheat lines’ resistance to aphids
(Ozder, 2002). Some researchers, e.g. Scott et al. (1991), propose using the total colony
counts of all aphids produced on a single plant as a more accurate measure of antibiosis than

nymph counts.

Increased nitrogen input to crops led to a positive effect on the growth and fecundity of S.
avenae. Fecundity and growth rate of aphids are influenced by the nutrient levels of the host
plant, moreover, Cisneros and Godfrey (2001) found that plant quality could change because

of increasing nitrogen in plants, leading to an increase in the damage caused by aphids in
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cotton. This is in accordance with a study by Bentz et al. (1995), which observed that

increasing nitrogen levels increases the concentration of protein-nitrogen in the leaves.

This study demonstrated that on both wheat genotypes S. avenae had the lowest fecundity at a
low level of nitrogen; it can thus be hypothesised that plants at this level exhibited high levels
of antibiosis resistance. On the other hand, aphids on both genotypes growth with moderate
and standard nitrogen levels experienced high fecundity, suggesting that the host plants
exhibited intermediate and low levels of antibiosis. Moreover, previous studies on aphids
found that low population growth was related to increased antibiosis resistance levels under
salinity stress(Khan, 2014).

Total aphid fecundity decreased with low nitrogen levels to 20 and 31 nymphs per adults on
Cordiale and Grafton, respectively. Increased nitrogen had the opposite effect, increasing the
fecundity of S. avenae. The results were in accordance with those of Duffield et al. (1997),
which showed that increasing nitrogen levels cause an increase in the natural population of S.
avenae. In general, many studies have reported that nitrogen increases herbivores’
performance on crops under controlled conditions and it increases the rate of nymph
reproduction (Vereijken, 1979; Zhou and Carter, 1991; Honek, 1992; Thompson et al., 1993).
In contrast to these studies, the number of aphids on cotton did not appear to be affected by
fertiliser conditions (Slosser et al., 1997). Another study showed that the rate of multiplication
of Rhopalosiphum padi increased with high levels of nitrogen, compared to low nitrogen
input in wheat (Khan and Port, 2008). The findings of this study are in agreement with other
studies that reported that the link between plant nitrogen and aphid infestation is complex, and
transcripts associated with common signalling pathways involved in resistance to aphids were

up-regulated under low nitrogen (Comadira et al., 2015).

In this study, abiotic stress interacts positively with grain aphid stress. The herbivore S.
aveane had a reduced ability to feed on wheat leaves stressed by low nitrogen supply, which
may have contained a higher level of defence. Similarly, drought stress decreased the growth
of Spodoptera exigua on tomato leaves, as it enhanced resistance levels (English-Loeb et al.,
1997). Different stresses in combination could be considered a positive or negative interaction
and the effect of abiotic stress on insects or pathogens depends on the timing, nature and

severity of the stress (Atkinson and Urwin, 2012).

A low level of nitrogen resulted in the lowest aphid fecundity. Correspondingly, the highest
level of nymph production occurred with high levels of nitrogen. This factor may be useful

for reducing the rate of increase of aphids. We can conclude that lower nitrogen availability
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limits aphid populations. In addition, several previous studies have found that population
growth in aphids may be linked to plant nutrient requirements, leaf age and leaf surface
(Finlay and Luck, 2011).
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2.6 Conclusions

Increasing crop productivity to meet global needs for food on existing agricultural land needs
a high rate of application of nitrogen fertilisers (McLellan et al., 2018). N assimilation in
plants is needed for growth and grain yield. This study compared different levels of N input
and their effect on the physiological parameters of wheat crops. In the present study, the
nitrogen availability affected the physiological characteristics and growth of wheat. Two
commercial winter wheats (Cordiale and Grafton) had maximum resistance to aphids at the
lowest levels of nitrogen input. Different growth measurement parameters, including the
height of the plant, leaf area, chlorophyll content, RWC and leaf area, showed a significant
and positive relationship with N input for the growth of wheat for 21 days. Based on this, the
wheat genotype Cordiale appeared to have a more positive relationship between N input, and
plant height, leaf area, chlorophyll content and N content, which could also be considered as
N tolerance.

Based on the above, those aiming to improve crop yields should therefore focus on improving
the control of nutrient management and developing more resistant crops or pesticides via
breeding. The main aim of this study was to use a combination of nitrogen availability
(abiotic) and S. avenae (biotic) stress. This provided us with a starting point for building a
picture of the defence response to aphids, and how this may be linked to nitrogen. Based on
this, future research should focus on investigating the mechanism of wheat tolerance and N
input for breeding programmes. Two wheat genotypes were characterised to determine the
effect of nitrogen availability on the plant aphid Sitobion avenae’s performance over 21 days.
The data presented here show the effect of N on plant-aphid performance in genotypes
Cordiale and Grafton through fecundity. Reduced levels of N caused significant reduction in
aphid fecundity. The plants were treated with low nitrogen levels to be more resistant to
aphids; however, with a high nitrogen content, the number of aphids increased, making the
plant more susceptible. These plants had high nitrogen accumulation.

Future studies and additional assessment need to use a single stress and a combination of
stresses to link this phenotype to the molecular basis of these effects. We were able to narrow
down our target (TaWRKY in this study) and focus on only one gene. This knowledge can be
used to inform a directed strategy for plant breeding for enhanced tolerance via identification
and verification of molecular markers. This will be achieved by identifying differentially

expressed genes under both stresses at the transcriptional level underpinned by the availability
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of the wheat genome. The results of the investigation into the gene expression profile in wheat
variety Cordiale in response to nitrogen availability and aphid infestation will be presented in
Chapter 3.
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3 Chapter 3. Changes in WRKY Gene Expression in Response to
Nitrogen Availability and Aphid Infestation

3.1 Abstract

The English grain aphid (Sitobion avenae), a phloem-feeding insect, is one of the most
damaging pests of wheat (Triticum aestivum), which is the third most produced crop globally.
Wheat productivity is significantly reduced by biotic and abiotic stress. Like most plants,
wheat has endogenous mechanisms to protect against insect attack. This chapter investigates
the link between reduced nitrogen availability (abiotic stress) and Sitobion avenae infestation
(biotic stress), focusing on specific transcription factors (TFs), which are known to play
important roles in the defence response in plants. WRKY TFs have been shown to be
involved in the induced defence of barley; however, there is little information on the role of
these TFs in wheat in responses to nitrogen levels and aphid infestation. The winter wheat
cultivar Cordiale was grown in the presence of varying levels of nitrogen. At the 3" to 4™" leaf
stage, the plants were infested with aphids, after which shoots were collected and analysed for
the expression of TaWRKY 3, 8, 19, 37, 45 and 46. RT-gPCR showed a positive correlation
between nitrogen availability and WRKY gene expression. Expression of the same genes
increased overall during the initial stages of infestation by S. avenae, reversing the
suppression of gene expression induced by the biotic stress factor. At the lowest nitrogen
availability the speed and magnitude of this response were both greater than for the optimal
condition. These studies allow a more comprehensive understanding of defence dynamics in
wheat, suggesting that low nitrogen conditions may prime the defence of wheat against insect
attack via the regulation of WRKY transcription factors, whilst aphid infestation results in an
increase in the expression of defence genes. Of particular interest was the differential

expression of WRKY genes under reduced nitrogen availability and aphid stress.

Key words: wheat / nitrogen / Sitobion aveanae / transcription factor WRKY
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3.2 Introduction

From the results described in Chapter 2, it can be seen that limiting nitrogen input in wheat
increases aphid tolerance, but that a low nitrogen input reduces the growth of the plant. Crop
production can be achieved through the control of nutrient management and by developing
more resistant crops or using pesticides. Here, the effects of cross-talk between biotic and
abiotic stress responses in wheat, whereby the response of the regulatory network of
transcription factors in the presence of one or more initial stresses may prime a plant to mount
a more rapid and prolonged response to subsequent stress, are reviewed with an emphasis on

explaining the molecular mechanisms involved (Bi et al., 2007; Rejeb et al., 2014).

Pest damage to wheat can be caused by phloem-feeding aphids such as Sitobion avenae, due
to their propensity to vector numerous viruses, damage plants by depleting photoassimilates,
and manipulate growth and nutrient partitioning (Thompson and Goggin, 2006). Changing
agricultural conditions are leading to insect pests becoming a more serious threat to
sustainable crop production (Hilder and Boulter, 1999; Tito et al., 2018), and therefore
understanding the molecular basis of endogenous tolerance to aphid infestation will help

mitigate shortfalls in crop yields.

Transcription factors (TFs) are involved in the regulation of gene expression, including the
responses of the plant to environmental factors and biotic stress (Eulgem et al., 2000; Singh et
al., 2002). In response to abiotic stresses in plants such as drought, salinity and cold,
expression of WRKY genes was shown to be differentially both increased and decreased (Niu
et al., 2012; Zhu et al., 2013). In contrast, by analysing the expression of WRKY genes in
response to aphid infestation in barley and A. thaliana, only up regulation was shown
(Comadira et al., 2015). Thus, the focus of this project is to identify whether there is a
regulatory link between reduced nitrogen and aphid infestation through WRKY TFs, which

play a role in the defence response in plants.

WRKY proteins are defined by the conserved amino acid sequence WRKYGQK at the N-
terminal end with a zinc-finger motif showing a binding site for the DNA cis-acting element
W box (C/T TGAC). They have a regulatory function in response to many stress factors,
which result in the concerted activation of a large variety of genes (Zhu et al., 2013). Cross-
talk by WRKY TFs regulates the expression of other TFs such as MY Bs, which regulate the
ABA response (Rushton et al., 2012). Okay et al. (2014) have identified ninety-two WRKY

family members in wheat. The genetics of TaWRKY are not well documented and few have
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been identified as having specific roles in relation to biotic and abiotic stress. WRKY
orthologues in wheat and rice are similar to those in Arabidopsis (Niu et al., 2012). It is thus
helpful to study homologues using the best characterised model plants such as Arabidopsis,
because little is known about functions of WRKY genes and domain sequences in wheat. Six
wheat orthologues of Arabidopsis WRKY genes were selected based upon their known
response to multiple abiotic stresses such as drought and cold, and biotic stresses such as

fungi in Arabidopsis.

The cross-talk regulates the expression of WRKY genes by binding of WRKY proteins to the
W-box elements in the promoter regions (Eulgem et al., 2000). Previous work demonstrates
that TaWRKY1 and TaWRKY 33 bind to drought-related cis-acting elements, allowing TFs to
bind within the promoters (He et al., 2016). However, little is known about the roles of most

WRKY transcription factors with regard to nitrogen and resistance to aphids in wheat.

In the present study, wheat variety Cordiale was analysed by RT-gPCR to identify WRKY
transcription factors (TFs) regulated by a single stress (nitrogen) or a dual stress (aphids and
nitrogen), including the selection of target genes associated with reference genes used to
standardise mRNA levels between various samples, the expression levels of which were
assessed for their consistency across different tissues following stress. Here we provide more
knowledge of six TaWRKY TFs from the expression profiles in RT-qPCR regarding the

response to nitrogen availability and aphid infestation.
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3.2.1 Aim and objectives

To identify wheat genes which are linked to tolerance towards both reduced nitrogen input
and S. avenae infestation, focusing on WRKY transcription factors (TFs). This was achieved

by the following objectives:

1. Selection of wheat WRKY genes homologous to known WRKY stress response

genes in Arabidopsis.

2. Assessing the expression status of WRKY genes during periods of single and dual
stress, to determine the regulatory link between nitrogen input and the wheat

response to aphid infestation.

3. Demonstrate priming of plant defence response under low nitrogen availability.
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3.3 Materials and methods

3.3.1 Experiment Design

For this study, wheat variety Cordiale plants were grown to the 4" leaf stage in the presence
of 7.5, 5.25 or 2.25 mM available nitrogen. Replicated plants were infested with 20 S. avenae
adults, while non-infested plants (control TO) were kept in a separate bread bag. Leaves were
harvested at 0, 3, 6, and 9 h post-infestation and leaves from the control plant were collected

at the same time points. Four individual plants were used as biological replicates (Fig. 3-1).

4t Jeaf stages of wheat ( Titicum aestiviun L., variety Cordiale)

W ‘ Nitrogen stress + aphid infestation ‘
- e S {combination stress)

‘ RINA Extraction

Time points (3h -6 h- 9 h) ‘ PCR

RT-gPCR

Figure 3-1. Experimental design used to assess the effect of biotic and abiotic stress on the expression
of WRKY transcription factor genes in Cordiale.

3.3.2 Plants for Gene Expression

Wheat variety Cordiale supplied from KWS-UK was used for the gene expression analysis.
Seeds were soaked in distilled water for 4 h and germinated on wet filter paper for 2 d at 28
°C then transferred to pots containing washed silver sand. Plants were supplied with three
different levels for nutrient treatment (Hoagland’s containing 7.5, 5.25 and 2.25 mM nitrogen,
see Chapter 2.3.4) and harvested at the 4™ leaf stage. The room used for growing the wheat

plants was maintained at 25 °C with 16 h: 8 h light: dark conditions. Twelve plants were
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assessed for each level of nitrogen stress. To see the effect of aphid on the plant over time at
the 4™ leaf stage, the plants were sampled at four different time points (0, 3, 6 and 9 h) after
infestation. Thirty-six plants were assigned to aphid infestation and 20 adult aphids were
randomly placed on each pot using a fine paint brush, and the plants were covered with bread
bags to isolate individual plants. The TO plant was grown under identical conditions, but

without aphids.

3.3.3 RNA Extraction

Leaf tissue was frozen in liquid nitrogen on collection and subsequently freeze dried. 100 mg
tissue was ground to a fine free-flowing powder using a Qiagen TissueLyser Il. Total RNA
was extracted using the PureLink™ RNA Mini Kit following the manufacturer’s instructions.
RNA concentration and purity were determined by analysing samples with a Nanodrop
spectrophotometer (Labtech, ND-1000). The Azso, A2g0 and Azso values of the RNA samples
were measured. Samples with Axeo:Azgo ratios between 1.8 and 2.0 were taken forward for

cDNA synthesis. RNA was stored at -80 °C to prevent degradation.

3.3.4 cDNA Synthesis

cDNA synthesis was performed by reverse transcribing 1000 ng RNA using the
SensiFAST cDNA synthesis kit (Bioline, Catalogue Number: BIO-65054). Reactions were
performed in a final reaction mixture volume of 20 pl following the manufacturer’s
instructions. To ensure accurate temperature regulation the reactions were performed in a
thermal cycler at 25 °C for 10 min, then 42 °C for 15 min, and 85 °C for 5 min. The cDNA
obtained was kept at -20 °C until required for PCR.

3.3.5 Polymerase Chain Reaction (PCR)

a. Primers

Primers for 6 TaWRKY genes were used (Tablel). Primer3 Plus software was used to design
the RT-gPCR primers. Primers for WRKY3, WRKY8 and WRKY37 had previously been
designed using the same software, and had successfully been used for g°PCR on wheat-derived
cDNA (Edwards, personal communication). The primer sequences for WRKY19 and
WRKY45 were described previously (Bahrini et al., 2011; Niu et al., 2012). Primers for
WRKY46 were identified using the wheat sequence and Primer3/BLAST software
(https://primer3plus.com/) Wheat elongation factor 1 alpha 1 (EF) was used as a reference

61


https://primer3plus.com/

Chapter 3
gene and the primer sequences have previously been described elsewhere (Metz et al., 1992).

All primers were ordered from Sigma Life Science with concentrations of 100 pM.

Table 3-1. List of primers designed to amplify 6 different WRKY cDNAs plus the reference cDNA
(EF1a) for real-time g-PCR

Gene Accession Specific primers for Real time PCR Expected

number Forward primer (5°-3%) Reverse primer (5°-3") size (bp)
TaWRKY3 EU665432 GTGCTGGACGACGGATACAA TAGCTCCTGGGATGAAGGCT 79bp
TaWRKYS DQ323885 CCTACTTCCGGTGCTCCTTIC CGCCACGAGTATGGTICTTIGT 83bp
TaWRKY19 EU665430 | AGGGAAGCATACGCATGACGTGC | GGCGAGATCGTTCAGAATGGCTG 160bp
TaWRKY37 EU665452 GCCAGAAGGCAGTTAAGGGT CTTAACTGGACAGCTCGCCT 77bp
TaWRKY45 EF397613 CATGAGGAGCTTGGAGGACG AGGCCTTTGAGTGCTTGGAG 80pb
TaWRKY46 EF368365 CGAGCACAACCAACCAACAG GTGGACAGACACATCACCGT 72bp
EF1 M90077 ACCTGAAGAAGGTCGGCTACAA ATCTGGTCAAGCGCCTCAAG 139%bp

Reference gene

b. Taqg Polymerase PCR and Gel Electrophoresis

50 ul PCR reactions used 25 pul PCR Master Mix (2X) (Thermo Scientific), 1 uM forward
primer, 1 UM reverse primer, 1 ul template DNA and nuclease-free water to 50 pl. Reactions
were run in a thermal cycler at 95 °C for 3 min, followed by 40 cycles with 95 °C for 30 s.
The annealing temperature was tested by a gradient PCR arranged from 60° to 58 °C for 30 s
and 72 °C for 10 s, with a final extension at 72 °C for 10 min. PCR products were separated
by electrophoresis on 1% agarose (Melford, Ipswich, UK) and gels were made depending on
the size of the product by using 1x TAE buffer with 0.5 pg/ml ethidium bromide (Fisher
Scientific). The samples were run at 100 V in a tank of 1x TAE with 15 pl of each sample
mixed with 5 pl loading dye (5X). The standard was 5 pul of 100 Hyperladder (Bioline).

3.3.6 Quantitative real-time PCR

The cDNAs from Cordiale were used as templates, and qRT-PCR was performed using the
Qiagen Rotor Gene Platform, and 2x Rotor Gene SYBR Green PCR Master Mix solution
(Qiagen BIO-98020). 50 pl reactions containing 25 pl 2x SYBR Green, 2 mM forward
primer, 2 mM reverse primer, 2 mM template cODNA and 19 pl RNase-free water were run
using the standard conditions of 95 °C for 60 s, 40 cycles of 95 °C for 5 s, and annealing and
extension at 60 °C for 10 s. In order to validate the primers, a standard curve based on serial
dilution of cDNA was made to determine primer annealing efficiencies, the presence of

primer dimers was assessed and the production of a single PCR product was verified.
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3.3.7 Distance analysis

A distance tree was constructed based on comparisons of amino acid sequences of nineteen
WRKY genes in wheat (Triticum aestivum) and sixty-seven AtWRKY proteins. All the
TaWRKY gene sequences have been submitted to GenBank with accession numbers
(http://www.ncbi.nim.nih.gov/genbank). WRKY domain sequences were identified and
aligned using the NCBI multiple sequence alignment tool. The tree was constructed from the
aligned sequences using the UPGMA method in MEGA7 with default settings.

3.3.8 Data Analysis

Relative expression was calculated according to the 224¢+ method (Livak and Schmittgen,
2001):

1. ACt = Cr (Target gene) - Ct (EF1a reference gene)
2. AACt = ACt (Test condition) - ACt (Control condition)
3. Fold change = 224C+

Four biological replicates with three technical replicates were used for each time point. The
average Ct values (number of cycles required to achieve critical fluorescence) for the EFla
reference gene and the target gene were calculated from the Ct value for each technical
replicate for that biological sample, to give a set of Ct values. The mean ACt value (equation
1) was then calculated for each biological replicate, and then for each condition (by taking the
mean of the three biological replicates under that condition). This was carried out for all
treatments and the control condition. The ACt for the control was then subtracted from the
ACr of each treatment condition to give a AACt value for the treatment condition (equation
2). The 2"24C+ value (equation 3) represents the change in gene expression of the target gene,
taking into account changes in overall levels of gene expression, which may vary from plant
to plant regardless of treatment. For normalisation the elongation factor 1 alpha-subunit
(EF1a) gene was used as the reference gene as it has been shown to be appropriate for this
function. The ACt values were calculated for each gene in all treatments and in the control
condition. Standard deviations of these values were then utilised to create a range of £ 1
standard deviation of the mean AC+. This range was then used to calculate a range of gene

expression + 1 standard deviation either side of the mean fold change.
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3.4 Results

3.4.1 Analysis of sequence similarity

To gain a better understanding of the role of wheat WRKY TFs, domain consensus sequences
were obtained by a BLAST search from wheat and compared with the model plant
Arabidopsis, because WRKY genes are well characterised in this species. For this,
Arabidopsis WRKY protein sequences were taken from GenBank. This information was used

to generate a distance tree for selected wheat and Arabidopsis WRKY proteins (Fig. 3-2).

WRKY proteins belonged to three different groups depending on the number of WRKY
domains and the zinc-finger structure. WRKY proteins in group | had two WRKY domains.
Groups Il and Il had one WRKY domain. The WRKY domains of group | and Il had the
same zinc finger motif (C2H2 motif); in contrast, group Il had a C;HC motif (Okay et al.,
2014).

In order to explore regulation of WRKY genes by nitrogen and aphids, we evaluated the
relationships of the sequences of WRKY proteins regulated by stress to previously reported
WRKY proteins (Fig. 3-2). Six WRKY genes were selected for expression analysis. WRKY 3,
a group Il WRKY gene, showed homology to AtWRKY13 (Li et al., 2016) (Fig. 3-2). The
function of AtWRKY13 is not well understood, and little information is available. WRKY8
from group Il, which showed homology to AtWRKY40, has been shown to be a central
negatively regulated protein in the ABA signalling pathway (Chen et al., 2012). Expression of
TaWRKY19 has previously been shown to differ in response to abiotic stress including
drought, cold and salinity. It showed homology to AtWRKY58 and to proteins with two
WRKY domains that have N-terminal and C-terminal WRKY domains from group | (Niu et
al., 2012). TaWRKY37 in group Il showed homology to AtWRKY4, which plays a role in
plant immunity (Pandey and Somssich, 2009). However, full sequences for TaWRKY45 and
TaWRKY46, both in group Il, showed no direct homology with WRKY proteins from
Arabidopsis. TaWRKY45 has been shown to play a role in disease resistance in wheat to

pathogens such as Fusarium head blight ( (Bahrini et al., 2011).
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Figure 3-2. Distance tree of WRKY TFs in A. thaliana and T. aestivum constructed using the
UPGMA method. The amino acid sequences are selected to evaluate lineages of WRKY TFs. Products
of genes tested in this thesis are highlighted in yellow.
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3.4.2 Verification of primers for g°PCR

To ensure accurate quantification of gene expression it is vital that primers only amplify the
target amplicon and give abundant product at an annealing temperature of 60 °C. All primer
pairs used in this study gave products of the expected size for each gene. The PCR products
for the reference gene elongation factor 1 alpha-subunit (TaEFla) (139 bp) and for
TaWRKY3 (79 bp), TaWRKY8 (83 bp), TaWRKY19 (160 bp), TaWRKY37 (77 bp),
TaWRKY45 (80 bp) and TaWRKY46 (72 bp) started to appear from 58° to 60 °C, after 40
cycles. Obviously, there are seven PCR products between the reference and the six TaWRKY

genes, according to the corresponding size of these products and the specific annealing

temperature (Fig. 3-3).

(a) (b) (c)
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Figure 3-3. Agarose gels run at 100 V for 45 min of amplified DNA in samples of Triticum aestivum
var. Cordiale using reference gene (TaEF) and 6 WRKY genes. (a) Elongation factor 1 alpha-subunit
(TaEFla) (b) TAaWRKY3 (c) TaWRKY8 (d) TaWRKY19 (e) TaWRKY19 and 37 (f) TaWRKY45 (g)
TaWRKY46. Primers were tested with different annealing temperatures as shown.
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3.4.3 Confirmation that TaEFla is a suitable reference gene

It is essential to employ an endogenous control in quantitative analysis. In this case, the
control was employed to make sure that comparisons could be made between different
samples by testing the total amount of relevant cDNA present. TaEFla was tested in this
study for use as the endogenous control in order to normalise the gene expression analysed
and to check the efficiencies of reverse transcription in the different samples from gene
expression studies. It has previously been used to analyse WRKY expression for studying

viral infections in cereals (JaroSova and Kundu, 2010) (Fig. 3-4).
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Figure 3-4. Elongation factor 1 alpha-subunit was tested for its suitability for gene expression across
nitrogen inputs at 7.5 mM, 5.25 mM and 2.25 mM, and for dual nitrogen and aphid infestation stress.
The data is represented as mean Ct values + SE (n=4).

67



Chapter 3

3.4.4 Effect of reduced nitrogen on WRKY gene expression in wheat variety

Cordiale

The expression of six WRKY TFs in wheat plants grown with reduced nitrogen availability
was determined by using qRT-PCR. WRKY3, WRKY8 and WRKY19 were identified from
the GenBank NCBI database (https://www.ncbi.nlm.nih.gov/genbank/) as being
evolutionarily close to AtIWRKY13, AtWRKY40 and AtWRKY58, which play important
roles in responses to biotic or abiotic stress. TaWRKY37 and TaWRKY45 are known to
regulate stress tolerance to improve plant performance under different abiotic stresses and
biotic stress respectively. Overall, the results show down-regulation of WRKY gene
expression in response to the lowest level of nitrogen availability (Fig. 3-5), whereas the
response of the six genes was more complex at the intermediate nitrogen availability (5.25
mM) with two of the six genes showing possible up regulation, one gene showing marginal

down regulation and the remaining three being down regulated more than two fold.

The expression of WRKY3 at 5.25 mM nitrate was only marginally less, <0.25 fold, than the
expression observed in plants grown with the optimal (7.5 mM) nitrogen availability.
However, at the lowest level of nitrate availability (2.25 mM) expression of this gene was
reduced by 4-fold compared to the optimum. At 5.25 mM nitrate, WRKY8 seemed to be
expressed at a greater level, > 1.5 fold, than the optimum, whereas at 2.25 mM nitrate
expression was reduced by 4.5 fold The expression of WRKY19 was down-regulated less,
<0.5 fold, in low nitrogen conditions, but there was little difference at 5.25 mM from the high
nitrogen level. Both levels of nitrogen (5.25 mM and 2.25 mM) resulted in similar down-
regulation of WRKY37 and WRKY46 genes but the difference seen with WRKY46 was
greater than with WRKY37. The expression of WRKY45 showed down-regulation under both
low and intermediate nitrogen conditions, but the change with low nitrogen was less than with

intermediate nitrogen (Fig. 3-5).

The link between gene expression and nitrogen conditions is that each gene is expressed
differently from the others, with gene expression responding to the level of nitrogen input.
WRKY8 and WRKY19 were the only ones whose expression appeared to increase at 5.25
mM, although this was only a very small change.
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Figure 3-5. WRKY expression profiles relative to TaEF1a in response to different levels of nitrogen
availability (5.25 mM and 2.25 mM), normalised to expression at 7.5 mM N in Cordiale wheat. Error
bars represent standard deviations.

3.45 Time course of expression of WRKY genes induced during simultaneous
stress from aphid infestation and reduced nitrogen availability

The expression of the six target WRKY genes was investigated at 3, 6 and 9 hours after aphid
infestation at 7.5, 5.25 and 2.25 mM nitrogen availability. Overall, the expression of WRKY
genes was up-regulated 3 hours after infestation. Expression either continued to increase or
plateaued through the sixth hour after infestation and then decreased at the ninth hour. Each
WRKY gene displayed individual expression characteristics within the time frame and these

will be described below.
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Triticum aestivum WRKY gene expression increases on infestation

Expression of TaWRKY3

Expression of WRKY3 at 7.5 and 5.25 mM nitrate responded in a similar manner. Gene
expression increased from 3 hours after infestation to a maximum at 6 hours and then returned
to near-basal levels by 9 hours after infestation. Although the response was similar the
magnitude of response was greater at 5.25 mM for all time points with relative expression
levels being typically approximately twice those at 7.5 mM N. At the lowest level of nitrogen,
2.25 mM, the expression of WRKY3 was initially 4-fold lower than in non-infested plants at
7.5 mM N. After 3 hours of infestation the relative expression of this WRKY gene increased
64-fold resulting in a 16-fold higher expression compared to the reference condition. This
magnitude of response was the greatest seen for this gene in the experiment. High expression

was then maintained for longer than for the other two conditions (Fig. 3-6).
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Figure 3-6. Results of qRT-PCR analyses of TaWRKY3 gene expression profiles relative to TEFla
under three different nitrogen conditions (7.5 mM, 5.25 mM and 2.25 mM) in winter wheat at different
time points before (0 h) and after S. avenae infestation (3 h, 6 h, 9 h). All values are relative to time 0
h at 7.5 mM.Error bars represent standard deviations.
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Expression of TaWRKY8

The expression of WRKY8 increased in response to aphid infestation at all nitrogen levels.
At 7.5 mM nitrogen, maximum expression of this gene was 9 hours after exposure to aphids.
At 5.25 mM nitrogen, expression of TaWRKY8 occurred sooner and it was expressed at a
higher level 6 hours after infestation. The lowest level of nitrogen resulted in the same rapid
onset of gene expression. The response was highest 3 hours and 9 hours after infestation, but
the relative expression of this gene decreased slightly at 6 hours (Fig. 3-7).
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Figure 3-7. Result of gRT-PCR analyses of TaWRKY8 gene expression profiles relative to TEFla
under three different nitrogen conditions (7.5 mM, 5.25 mM and 2.25 mM) in Cordiale wheat at
different time points before (0 h) and after S. avenae infestation (3 h, 6 h, 9 h). All values are relative
to time 0 h at 7.5 mM. Error bars represent standard deviations.
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Expression of TaWRKY19

WRKY19 showed little expression change at all nitrate conditions. At 7.5 mM nitrogen,
expression of this gene decreased at 3 hours after infestation then increased to a maximum at
9 hours. The response was greater at 5.25 mM for 3 hours infestation with expression twice,
but the expression of this WRKY decreased at 9 hours after infestation, that of the optimal
conditions. At the lowest level of nitrogen maximum expression of WRKY19 was 3 hours
after infestation. Expression of WRKY19 decreased at 6 hours then returned to increase at 9

hours after infestation (Fig. 3-8).
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Figure 3-8. Results of gRT-PCR analyses of TaWRKY 19 gene expression profiles relative to TEFla
under three different nitrogen conditions (7.5 mM, 5.25 mM and 2.25 mM) in Cordiale wheat at
different time points before (0 h) and after S. avenae infestation (3 h, 6 h, 9 h). All values are relative
to time 0 h at 7.5 mM. Error bars represent standard deviations.
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Expression of TaWRKY 37

Relative expression of WRKY37 increased in response to aphid infestation. At high nitrogen
gene expression increased from 3 hours after infestation to a maximum 16-fold at 9 hours
after infestation. Although the response was similar at 2.25 mM, the magnitude of response
was greater for 3 hours and 6 hours with expression levels being higher than at 7.5 mM.
Expression also returned to a lower level 9 hours after infestation. With the moderate level of
nitrogen, 5.25 mM, the expression of WRKY 37 was slightly down-regulated. The expression
of this gene was up-regulated after 3 hours of infestation, but decreased to basal levels at 9

hours of infestation compared to the reference condition (Fig. 3-9).
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Figure 3-9. Result of gRT-PCR analyses of TaWRKY37 gene expression profiles relative to TEFla
under three different nitrogen conditions (7.5 mM, 5.25 mM and 2.25 mM) in Cordiale wheat at
different time points before (0 h) and after S. avenae infestation (3 h, 6 h, 9 h). All values are relative
to time 0 h at 7.5 mM. Error bars represent standard deviations.
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Expression of TaWRKY45

WRKY45 showed very different expression patterns between the different levels of nitrogen
over time. With 7.5 mM nitrogen, the relative expression of WRKY45 increased at 6 hours
and 9 hours after infestation. At 5.25 mM nitrogen, relative expression increased at 3 hours
after exposure to aphids. Expression then returned to basal level at 9 hours after infestation.
Under the lowest level of nitrogen, 2.25 mM, the maximum expression of this gene was after
3 hours of infestation compared to the reference condition (Fig. 3-10).
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Figure 3-10. Result of qRT-PCR analyses of TaWRKY45 gene expression profiles relative to TEFla
under three different nitrogen conditions (7.5 mM, 5.25 mM and 2.25 mM) in Cordiale wheat at
different time points before (0 h) and after S. avenae infestation (3 h, 6 h, 9 h). All values are relative
to time Oh at 7.5 mM. Error bars represent standard deviations.
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Expression of TaWRKY46

Relative expression of TaWRKY46 increased over time at 5.25 and 2.25 mM. With 7.5 mM,
there was a similar rapid increase in gene expression, but the magnitude of the response was
higher for the 3 hours and 6 hours time points. Expression then returned to the basal level at 9
hours after infestation. At 5.25 mM nitrogen relative expression was greater than at 7.5 mM,
Expression also decreased slightly after 9 hours infestation. At the lowest level of nitrogen,
the expression of WRKY46 was lower at time zero than in the reference conditions. After 6
hours infestation the relative expression of this WRKY gene increased 16-fold compared to

the reference conditions (Fig. 3-11).
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Figure 3-11. Results of qRT-PCR analyses of TaWRKY 46 gene expression profiles relative to TEFla
under three different nitrogen conditions (7.5 mM, 5.25 mM and 2.25 mM) in winter wheat at different
time points before (0 h) and after (S. avenea) infestation over time (3 h, 6 h, 9 h). All values are
relative to time Oh at 7.5 mM. Error bars represent standard deviations.
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3.5 Discussion

The WRKY gene sequences for bread wheat (T. aestivum) were downloaded from GenBank,
the NCBI database (https://www.ncbi.nlm.nih.gov/genbank/). From the results of alignments
and distance trees, six genes from Triticum aestivum coding for WKRY transcription factors
were chosen for expression analysis during nitrogen availability and aphid infestation stress.
Complete sequences of WRKY domains of these six genes were obtained with accession
numbers as shown in Table 3-1. The distance tree revealed that most WRKY TFs belonged to
groups I, I, and I1l. TaWRKY3, TaWRKY8 and TaWRKY 37 were identified in groups lla,
I1b and llc respectively, shown to be relatives to group I, and TaWRKY19 was found to be a
close relative of group I. TaWRKY45 and TaWRKY46 were identified in group Ill. Recent
investigations have revealed that most WRKYs in these studies function in drought, salinity,
cold and fungi in many species. For example, TaWRKY19 responds to drought and salt
stress in transgenic Arabidopsis plants (Niu et al., 2012). Similarly, AtWRKY57 responds to
drought in Arabidopsis (Jiang et al., 2012). Moreover, TaWRKY45 was closely homologous
to AtWRKY54, identified as group 11, and this responds to fungi (Bahrini et al., 2011).

In this study, WRKY gene expression in wheat leaves from plants grown with differing
nitrogen levels and infested with S. avenae was standardised to expression of the elongation
factor 1 alpha-subunit (TaEF1la) gene based on its consistency for use as an endogenous
control for WRKY gene expression (Fig. 3-4). As hypothesised, it was found that infestation
by aphids and reduced nitrogen levels resulted in differential expression of the WRKY genes.
A reduction in available nitrogen levels led to down-regulation of expression of most of the
WRKY genes studied, whereas most were up-regulated over time in response to aphid
infestation. This was consistent with the results in response to low levels of nitrogen, as it is
believed that this level of nitrogen plays an important role in the defence against aphid
infestation. Considering the large genome of wheat and the relatively little that is known
about how responses to nitrogen stress and interactions with phloem-feeding insects affect the
plant, the identification of nitrogen-aphid tolerance mechanisms is still challenging. The data

demonstrated that the relationship between the two stresses is complex.
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3.5.1 WRKY genes responding to nitrogen input

The low level of nitrogen (2.25 mM) resulted in down-regulation of all the WRKY genes
tested (Fig. 3-5). These results suggest that down-regulation of WRKY genes with low
nitrogen treatment may lead to an up-regulation of defence response genes. This would be
consistent with the ‘growth versus defence' hypothesis, where a decrease in nutrient
availability results in an increase in expression of defence-related genes, thereby potentially
conferring resistance or increased tolerance to insects. Reduced growth was seen in Chapter 2.
It is expected that WRKY proteins play roles as activators of signalling pathways by directly
or indirectly regulating the expression of genes, which provide of plants growth conditions;
growth is therefore limited and a large number of growth genes are down-regulated,
prompting tissue senescence. Several members of the WRKY transcription factor family are
believed to be involved with senescence (Eulgem et al., 2000). For example, TaWRKY53
coordinates the expression of a wide of WRKY and other stress induced genes (Van Eck et
al., 2014). Moreover, senescence has been seen to increase with limited nitrogen levels,
which also decrease the transcription of many genes responsible for the synthesis of amino
acids, proteins, nucleotides, and chlorophyll (Peng et al., 2007).

In aphid-infested plants, there was a similar rapid onset of expression of the WRKY 3 gene at
all nitrogen levels, but the magnitude of the response (64-fold) was higher with 2.25 mM
nitrogen than with the other two conditions. Results for WRKY8 were similar to those for
WRKY3 under the reduced nitrogen conditions. In uninfested plants, WRKY37 was down-
regulated 3-fold at the lowest nitrogen levels and up-regulated in response to infestation at all
nitrogen levels; similar patterns were obtained for WRKY46, but up-regulation in response to
infestation was much less. Gene expression of WRKY45 was lower with reduced nitrogen
availability and there was less change in expression in response to aphid infestation. However,
WRKY19 showed little or no difference in expression at moderate and low nitrogen

conditions and little response to aphid infestation.

As a result of cross-talk via the regulatory network of transcription factors, the presence of
one or more initial stresses may prime a plant to mount a more rapid and prolonged response
to subsequent stress. In this case, it is necessary to consider how the reduced WRKY gene
expression with low levels of nutrients would prime the defence of wheat (Fig. 3-12).
Although there is still much to learn about the molecular basis of priming, some studies have
advanced our knowledge of this field and it is now understood that the establishment of a

primed state is influenced by the accumulation of latent defence-related transcription factors
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(Van der Ent et al., 2009), MAP kinases (Beckers et al., 2009) and secondary metabolites and
volatile organic compounds (Heil and Bueno, 2007). Typically, for plants grown under
conditions of reduced nitrogen availability, priming takes the form of accelerated defence-
related gene expression, which is observed when primed plants are under attack by a pathogen
or insect. This response increases the plant’s resistance to the attacking organism and
therefore has a potential for use in agriculture. Priming is a mechanism that plants can use

effectively and quickly to counter attacks, and it is used as a response to both biotic and

abiotic stresses (Conrath et al., 2006).
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Figure 3-12. Priming or defence activating molecules.
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3.5.2 WRKY genes responding to aphid infestation

Little is known about the molecular response in wheat (Triticum aestivum L.) to phloem sap
feeding by insects. This plays a key role in the expression of defence-related genes and
therefore in explaining the molecular basis of endogenous tolerance to aphid infestation to
help mitigate shortfalls in global crop yields. Here, | provide an overview to explain the role
of WRKY TFs in controlling tolerance to aphids. Chapter 2 described the response of wheat
seedlings grown under different nitrogen availabilities and how this affected the population
dynamics of S. avenae. In the present chapter, the differential expression of WRKY genes
under these two stress conditions is reported. From this it can be concluded that there is
increasing evidence that TF genes play an important role in the regulation of gene expression
in plant defence responses against phloem-feeding insects (Fig. 3-13).
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Figure 3-13. Outline of possible signalling pathways involving six WRKY TFs and their effects on
defence gene expression, in response to aphid infestation. Adapted from several studies using
phylogenetic AtWRKY analysis.
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Compared to the gene expression seen in plants subjected to nutrient stress, aphid stress
resulted in an overall up-regulation of the set of WRKY transcription factor genes studied. A
multitude of transcriptional responses are activated at 3, 6 and 9 hours after aphid feeding.
The different time points of aphid probing cause increased transcriptional changes and
activate more genes. An interesting expression pattern was seen at two time points (3 h or 6 h)
after aphid infestation, where the genes were generally more up-regulated than at 9 h
infestation. This observation is consistent with Khan (2014), who used microarrays to show
that wheat WRKY genes were up-regulated after 6 h of aphid infestation. These data suggest
that the expression of various genes was triggered by the damage caused by aphids feeding on

plants under different nitrogen conditions.

Plants’ responses to aphids indicate that aphids activate plant defence signalling pathways due
to salicylate and jasmonate signalling molecules (Smith and Boyko, 2007). TFs are known to
play a direct role in plant-aphid interaction, and they may also mediate defence responses
indirectly by controlling the development and growth of plants through photosynthesis, the
formation of cell walls, and carbon metabolism. A number of factors could be responsible for
this and future work will be required to better understand it. It is also possible that low
nitrogen conditions with aphid infestation increase the expression of WRKY genes in
response to aphids. This would be the first example of such a finding about a crop’s response

to the effect of a combination of nitrogen and aphid stresses.

Increased expression of pathogenesis-related (PR) genes, which are related to defence against
pathogens, has been demonstrated in response to green peach aphid (Myzus persicae) feeding
in Arabidopsis (Moran and Thompson, 2001). Furthermore, the fungus Ascochyta rabiei and
salinity increased the expression of PR genes in chickpea plants (Mantri et al., 2010).
Previous studies have shown high expression of WRKY genes associated with activation of
SA, PR and JA signalling pathways in wheat plants infested with the aphid Diuraphis noxia
(Smith et al., 2010). Ballini et al. (2013) observed an increased expression of the rice defence-
related marker gene Pil after Magnaporthe oryzae infection at high nitrogen levels, and this
was linked to an increased number of cells invaded by the fungus, which triggered the defence
mechanism. A multitude of transcriptional responses are activated at 3, 6 and 9 hours after
aphid feeding. The different time points of aphid probing cause transcriptional changes and

activate more genes.
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3.6 Conclusion

This work shows that nitrogen and aphids induce different gene expression changes in wheat
and this is linked to reduced nitrogen conditions. It is therefore possible to evaluate how a
limited nitrogen supply under controlled conditions relates to well-known decreased levels of
insect performance in plants (Chapter 2), and how changes in gene expression play an
important role in the plant’s induced defence response (Chapter 3).

To improve understanding of the molecular mechanisms that confer resistance, it is necessary
to build on the current results and increase our understanding of the role that WRKY proteins
play in controlling resistance. In order to achieve this, the results from nitrogen stress and
aphid infestation were compared. This study has provided evidence that there are functional
links between WRKY gene expression, aphid infestation and nitrogen availability, using
interspecific homologies and studies of gene expression to identify TFs that are likely to be
directly responsible for tolerance and involved in regulating the cross-talk between responses
to biotic and abiotic stress (Fig. 3-13). This knowledge can be used to inform a directed
strategy for plant breeding for enhanced tolerance via identification and verification of
molecular markers. This can be achieved by identifying differentially expressed genes at both
the transcriptional and proteomic levels underpinned by the availability of wheat EST
databases and the rice and wheat genome projects.

The gene expression profiles demonstrate that TaWRKY3 is a stress-inducible wheat
transcription factor, and it responds differently to aphids at high and low nitrogen levels.
These data suggest that it may be useful to study the role of this gene in the response to
interacting stresses by using TILLING lines with mutated WRKY genes. Evidence from
TILLING lines could show whether TaWRKY 3 enhances nitrogen and aphid stress tolerance.
Studies of over-expression in wheat or in transgenic Arabidopsis plants could also be

informative.
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4 Chapter 4. TaWRKY3 is a key regulator in aphid defence
(TILLING lines and LC/MS-MS)

4.1 Abstract

Limiting nitrogen input in wheat (Triticum aestivum) increases aphid tolerance, but reduces
yield. Although direct damage caused by phloem-feeding aphids such as Sitobion avenae is
minimal, their propensity to vector numerous viruses means they are one of the most
damaging pests of wheat. Changing agricultural conditions are leading to insect pests
becoming a more serious threat to sustainable crop production and therefore understanding
the molecular basis of endogenous tolerance to aphid infestation can help mitigate shortfalls
in global crop yield. WRKY transcription factors that regulate gene expression play important
roles in the response to biotic and abiotic stresses. Previous work demonstrated that the
expression of TaWRKY3 changed in response to aphid and reduced nitrogen stress. To
investigate the role of WRKY3 in the stress response, TILLING lines with mutations in the
WRKY3 gene were grown at different nitrogen concentrations and were also infested with
aphids. In contrast to the wild-type plants, aphid fecundity on one mutant line showed no
difference between high and low nitrogen levels, suggesting that WRKY3 plays a role in the
link between nitrogen stress and aphid tolerance. Accumulation of jasmonic acid, salicylic
acid and abscisic acid increased as a result of aphid infestation. Maximum concentrations of
each phytohormone were identified at different times after infestation. The results suggest that
low nitrogen conditions may prime the defence of wheat against insect attack as a result of
cross-talk via a regulatory network of WRKY transcription factors. These results provide new
knowledge and valuable resources that should be useful in the effort to produce crops with

reduced nutrient input.

Key words: Wheat TILLING lines / WRKY3/ Bioassay /Jasmonic acid/ Salicylic acid/
Absisc acid
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4.2 Introduction

The gene expression data collected in Chapter 3 identify TaWRKY3 as a target involved in
the interaction between reduced nitrogen conditions and aphid infestation. The aim of the
present chapter is to verify the role of TaWRKY?3 in the plant’s defence against biotic and
abiotic stress. The understanding of this function in wheat will be important for this project.
Due to the difficulties in generating transgenic wheat to either over- or under-express
TaWRKY3, TILLING lines carrying mutations within the WRKY3 gene were selected.
Although the TILLING lines may carry mutations in other genes, they are available

immediately and are commonly used as a source of novel gene rearrangements.

WRKY proteins are a set of plant-specific protein transcription factors that contain a
conserved WRKYGQK DNA-binding domain of 60 amino acids. They are commonly
differentially expressed in response to stress. They control the transcription of the target genes
by binding to promoter regions that contain a DNA element called the W-box with the core
sequence TTGACY (where Y is C or T) (Eulgem et al., 2000). In this chapter, the importance
of the conserved sequences in and adjacent to the WRKYGQK sequence within one WRKY

domain was tested.

Mutations are beginning to be used in wheat to develop its nutritional value and to generate
additional variability in genes in order to improve wheat’s adaption to any environment
(Krasileva et al., 2017). To better understand the function of the WRKY3 gene in common
wheat, WRKY3 mutants were selected from hexaploid wheat in a Targeting Induced Local
Lesions IN Genomes (TILLING) population (Avni et al., 2014; Krasileva et al., 2017). The
TILLING method is useful for both functional genomics and crop improvement (Chen et al.,
2012). It has been developed for several crops such as maize, barley, soybean and rice. In
wheat, TILLING has been applied to both tetraploids and hexaploids. The seeds of wheat var.
Cadenza and mutants in the WRKY3 gene supplied by the John Innes Centre. The effects of
WRKY3 mutations on responses to stress from low nitrogen input and aphid infestation were

investigated.

Aphid fecundity was recorded at different nitrogen availabilities. Resistance to aphids
depends on the specific combination of nitrogen levels and aphids. Plants have evolved
complex network mechanisms of regulatory and hormone-mediated pathways, which are
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thought to be regulated via the transcriptional activation of a complex regulatory network in
the cell nucleus (Wang et al., 2015).

Expression of TaWRKY 3 is strongly induced by aphid infestation of plants grown at reduced
nitrogen levels (Chapter 3). Because WRKY proteins are linked to responses to
phytohormones, concentrations of three important phytohormones that are known defence
signalling compounds were measured: jasmonic acid (JA), salicylic acid (SA) and abscisic
acid (ABA). These hormones may have a central role in controlling defence gene expression
and inducing the resistance response in wheat. Many studies have investigated cross-talk
between their signalling pathways in crops, but few have conducted studies on mutants. The
hormones were experimentally analysed using LC-MS/MS, in order to establish how insect
behaviour is influenced by the JA, SA and ABA status of the host plant. Phytohormone levels
were measured in leaf tissue of two mutants and compared with levels in wild-type plants
(Forcat et al., 2008), using the facility at Newcastle University. The response to wounding
and herbivore-specific signals supports the hypothesis that WRKY3 helps plants to
differentiate mechanical wounding from herbivore attack, mediating a plant’s herbivore-
specific defenses. Differences in responses to single and multiple elicitations indicate an
important role of WRKY3 in potentiating and/or sustaining active JA levels during

continuous insect attack.

This study is the first detailed analysis of the effects of mutations within the DNA binding
domain of WRKY3 on the development and fecundity of cereal aphids (S. avenae) at low and
high levels of nitrogen input. It provides new insights into the processes potentially involved

in plants’ defence against aphids.
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4.2.1 Aim and objectives

To determine whether TaWRKY 3 has a role in the stress response. This was achieved through

the following objectives:

1. Evaluate the effects of mutations within the WRKY binding domain (TILLING
lines) on aphid performance (bioassay) under optimal and sub-optimal nitrogen
availability.

2. Quantify changes in phytohormone production as a consequence of mutations within
the WRKY gene (see Fig. 4-1).

Genomics

Genetic resource . . .
. Using functional genomics,

Introgression lines to identify gene products in

g . | wheat that are directly
TILLING lines website | responsible for tolerance to
A -nitrogen and aphids stress

Figure 4-1. Scheme of the overlap between plants of TILLING lines and WRKY3 mutation and
transcription. Molecular genetics was used to identify genes that could be valuable in either non-
transgenic (TILLING) or transgenic approaches for cultivating crops with improved tolerance and
potential for high yield.
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4.3 Material and Methods

4.3.1 Experiment design

The experiment was designed to investigate the role of wheat WRKY3 in responses to
reduced nitrogen availability and aphid stresses (see Fig. 4-2).

Study (1): Use of TILLING lines with the WRKY3 mutation to investigate the interactions
between the effects of mutations in plants and nutrients on aphid fecundity, measuring the
daily and accumulative nymph production over time. This is similar to the first bioassay
presented in Chapter 2.

Study (2): To investigate the involvement of jasmonic acid, salicylic acid and abscisic acid in
wheat resistance to aphids, using LC/MS-MS as a quantitative method to detect the hormones

in wild-type and mutant plants.

| Low nitrogen 2.25 mM + aphid infestation (combination stress) |

Fecundity ‘
W _..-'F—r;"%
Study2: 4™ leaf stage of wheat | a - e . . Quantitative
ine 1006 — fine 1171- control aphid infestation over times points (0-3 b-6 h and 9 h) ‘ Samples .‘ MS/MS ‘ ‘ (JASA and ABA)

Figure 4-2. Flow chart to study the interactions of WRKY 3 directly, through three approaches. 1. The
mutants of WRKY3 in wheat were tested to study the effect of nutrients on mutant plants’ populations
of the aphid S. avenae (bioassay). 2. Changes in endogenous phytohormones (JA, SA and ABA) were
measured at different time points of the infestation.

4.3.2 Plant material and treatments

Seven TILLING lines (0259, 0202, 1449, 1171, 1231, 1996 and 0877) containing mutations
within WRKY3 and the wild type cultivar (Cadenza) were selected for this study, from the
wheat TILLING database (http://www.wheat-tilling.com/) and supplied by Germplasm

Resources Unit, John Innes Centre (UK). Plants were grown from the seeds supplied and

seeds for experimentation were harvested from those plants. Plants were grown to the 4™ leaf
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stage with high (7.5 mM) and low (2.25 mM) nitrogen levels. Plants were irrigated 3 times
with 70 ml weekly as described in section 2.3.3 and infested with aphids. Overall 64 (8 plants

per line) potted single seeds were planted for use in this experiment.

4.3.3 Insect bioassay (aphid infestation)

Grain aphid (Sitobion avenae) bioassays against the TILLING lines were performed and

analysed in exactly the same way as described in section 2.3.6.

434 LC/MS-MS

a. Preparation of standard solution
The internal standard was prepared with high-purity jasmonic, salicylic acid and abscisic acid

(more than 98.5%). The standard stock (400 pg ml™t) was obtained by dissolving 10 mg of
individual standard in deionised water (DW). Mixed working solutions of SA, ABA and JA
standards over the concentration range 0.031-10 pg ml~* were prepared from stock solutions
with water. The standard solutions used were 0, 12.5, 25, 50, 75, 100, 125 and 150 nM and
the volume injected was 200 pl. The solutions were stored at 4 °C (Huang et al., 2015).

b. Sample preparation
Wheat lines 1171, 1996 and the control (wild type Cadenza) were grown in soil until the 4™

leaf stage and infested with aphids (20 adults + nymphs). Samples were taken at 0 h, 3 h, 6 h
and 9 h after infestation. Overall 24 plants (two replicates of four plants each per line,
including the control) were assigned to aphid infestation. The extraction and analysis of plant
hormones was performed with two biological replicates. The leaves were harvested from the
plants, frozen in liquid nitrogen and freeze dried, then ground with liquid nitrogen. The tissue
powder (20 mg) was added to 400 pl of 10% methanol + 1% acetic acid and then internal
standards were added to this suspension (Forcat et al., 2008). The samples were transferred to
a microcentrifuge tube and kept on ice for 30 min before being centrifuged at 4 °C for 10 min.
The pellet was collected and re-extracted with 400 pl of 10% methanol + 1% acetic acid. This
was kept on ice for 30 min, then centrifuged and the supernatants pooled. Two extractions
achieved 90-95% recovery (Forcat et al., 2008).
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c. LC-MS/MS conditions
150 pl samples were submitted to LC/MS-MS carried out on a Acquity Uplc BEH 1.7 um

C18 100 mm x 2.1 column, at 35 °C. The solvent gradient used was 100% A (94.9% H20: 5%
CH3CN: 0.1% CHOOH) to 100% B (5% H20: 94.9% CH3CN: 0.1% CHOOH) for 20 min.
Solvent B was held at 100% for 5 min then the solvent returned to 100% A for 5 min
equilibration prior to the next injection and held at 100% A for 10 min equilibration (Forcat et
al., 2008).

The MS was operated in the negative mode using a Zspray ESI probe (Waters) as the ion
source. Optimal conditions were determined using the Electrospray lonisation Intellistart
feature of mass spectrometry software both by infusing standards into the MS by syringe

pump and injecting standards into a 200 pl/min flow of 50% Solvent A/50% Solvent B.

The optimised conditions were as follows: temperature 200 °C, ion source gas 7 bar, ion spray
voltage 4 V, core voltage 33 V, CAD gas setting 5; the DP (-25 V), EP (-9) and CEP (-2)
were held constant for all transitions with source offset 50 V. Data were acquired and
analysed using Masslynx version 4.1 software (Waters Inc.).

4.3.5 Data analysis

Data from the aphid bioassay were analysed using the general linear model of Minitab 17,
Data were submitted to a two-way analysis of variance (ANOVA). Mean separation was
assessed by Tukey’s multiple comparison tests at P < 0.05. The influences of infestation and
genotype on phytohormone concentrations were analysed using ANOVA and significant

differences between time points were determined by Tukey’s test at P < 0.05.
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4.4 Results

44.1 Wheat TILLING platform

There are two wheat TILLING populations available: Cadenza and Kronos. The winter wheat
Cadenza was selected in order to link the research to all my winter wheat studies. The Wheat
TILLING website (http://www.wheat-tilling.com) and BLAST searching with the TaWRKY3

sequence were used to obtain mutant alleles in this gene which could be utilised to investigate

the role of WRKY3 in the aphid-induced defence response. Several missense mutations that
are predicted to affect WRKY3 protein activity were identified and selected. Mutations of
interest are shown in Table 4-1. Het/Hom in Table 4-1 identifies whether the sequenced
individual in the original population was heterozygous or homozygous for the particular SNP
position (the position of the EMS mutation). If the WT sequence was found in less than 15%
of the sequence reads, then the SNP is called as homozygous in the mutant line. Otherwise the
SNP is called heterozygous. The selected mutants with the positions of changes in the amino

acids are shown in Fig. 4-3.

Table 4-1. Selected WRKY3 mutations. Het/Hom refers to whether the sequenced individual in the
original population was heterozygous or homozygous for the particular SNP position (the position of
the EMS mutation). The mutations are in the homeologous WRKY3 genes on chromosomes 2A, 2B
and 2D.

WRKY Database gene Line het/hom | Genome | pino Acid change
name

WRKY3 IWGSC _CSS 2DL_scaff 99906833 0259 Hom D R176W
WRKY3 IWGSC CSS 2DL scaff 99906833 0202 Hom D V1641
WRKY3 IWGSC _CSS 2DL_scaff 99906833 1449 Hom D GS82D
WRKY3 IWGSC_CS8S 2AL scaff 6437167 1171 Hom A R130W
WRKY3 IWGSC CSS 2AL scaff 6437167 1231 Hom A G82E
WRKY3 IWGSC_CSS 2BL scaff 7976862 1996 Het B Y160D
WRKY3 IWGSC_CSS_2BL_scaff 7976862 0877 Het B GI0D
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()

TaWRKY3 (EU665432)

MEGGSQLGACLPSLYALDPYASPPLLAPLPNQHKLHQLPLVLOQEQPGNH
GVMFSSDHGGGLYPLEPGIPFCHSAAACEKSTGFAPLGGTGEAGTSAARA
GNEFASATTTTTASCHGPSSWWKGAEKGKMKVRRKMREPRFCFQTRSE
VDVLDDGYKWRKYGQKVVKNSLH PRSYYR@THSN@RVKKRVER LSEDC
(b) RMVITTYEGF@T@iTPCSDDDAGGDHTGSCAFTSF
TawWRKY3 GFAPLGGTGEAGTSAARAGNEFASATTTTTASCHGPSSWWEGAEEKGEMEVEEREEME.
EPREFCFQTESEVDVLDDGYEWEEY GOVMVENSLHPESYYE

, GFAPLGGTPEAGTSAAR AGNEFASATTTTTASCHGPSSWWEGAFKGEMEVEREME.
Line 0B77 EppFCFQTRESEVDVLDDGYEWEREY GOVVENSLHPESYYE

Line 1231 EFAPLGGTGEAGTSAARAGNEFASATTTTTASCHGPSSWWEGAEKGEMEVEEREME.
EPEFCFOTESEVDVLDDGYEWEEY GOVVENSLHPESYYE

Line 1005 OFAPLGGTGEAGTSAAR AGNEFASATTTTTASCHGPSSWWEGAEKGEMEVEEREME.
EFEFCFQTESEVDVLDDGYEWEEDGOVVENSLHPESYYE

Line 1171 CFAPLGGTGEAGTSAARAGNEFASATTTTTASCHGPSSWWEGAEKGEMEVEREME
EPWFCFQTESEVDVLDDGYEWEREYGOVVENSLHPESYYE

lineozsg CGFAPLGGTGEAGTSAARAGNEFASATTTTTASCHGPSSWWKGAEKGKMKVRRKMR
ne EPRFCFQTESEVDVLDDGYEWREY GOVVENSLHPESYYW

Line 1449 CGFAPLGDTGEAGTSAARAGNEFASATTTITASCHGPSSWWEGAEFKGEMEVEEEME.
EPEFCFQTESEVDVLDDGYEWEEY GOVVENSLHPESY YR

Line 0202 GFAPLGGTGEAGTSAARAGNEFASATTTTTASCHGPSSWWEGAEKGEMENVEEREME.
EFEFCFQTESEVDVLDDGY KWEEY GOIVENSLHPESYYE ~

Figure 4-3. (a) The protein sequence of TaWRKY3 (GenBank EU665432). The black oval indicates
the WRKY domain, while the amino acids in red ovals form the zinc finger. Available mutations in
Cadenza are highlighted in blue, while those in Kronos are green.

(b) Comparison of TaWRKY3 with the seven TILLING mutants. The red letters show changes in
amino acids caused by the mutations. The mutated amino acids are highlighted in blue in the
TaWRKY 3 sequence.
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4.4.2 Performance of S. avenae on TILLING lines with high and low nitrogen

availability
Aphid performance

Aphid performance on the seven different TILLING lines of winter wheat (Cadenza) and
control were assessed under high and low nitrogen levels, in terms of fecundity. Four different
parameters were measured: total fecundity, daily fecundity, reproduction rate and cumulative

number of nymphs over three weeks.

4.4.3 Effect of wheat on total fecundity

a. Total fecundity

The total fecundity of the aphids was measured by the mean total number of nymphs
produced by both adults per plant over 21 days. The results showed that aphids’ total
fecundity was highly significantly different between the mutant lines (p < 0.001) and nitrogen
treatments (p < 0.001), except that total aphid fecundity on mutant line 1996 showed no
difference between high and low nitrogen levels. At 7.5 mM nitrogen, aphids on lines 1231,
0259 and 0877 produced averages of 48.5, 45 and 40 nymphs, significantly more than on lines
1171 (p < 0.01) and 0202 (p <0.01). For plants grown at 2.25 mM nitrogen, there were fewer
nymphs produced on line 1171 than on plants at 7.5 mM nitrogen (p < 0.001), with total
fecundity reduced to 14.8 nymphs per adult. Aphids on lines 0202 and 1449 produced 32.8
and 26 nymphs at 7.5 mM nitrogen (p < 0.001), while total aphid production at 2.25 mM
nitrogen was 23.6 and 15.6 nymphs, respectively. There were no differences between these
two nitrogen levels for line 1996, with total fecundity 26 nymphs per adult at both levels (Fig.
4-4 a).

b. Multiplication ratio

Nymphs produced by two adult aphids were counted every day over a period of 21 days.
Multiplication ratio (MR*) was calculated.

*MR= Ni/NO, where NO was the initial number of aphids inoculated, Ni the number of aphids
at the final time point (He et al., 2011).
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Aphid multiplication was slowest at 2.25 mM available nitrogen input (p < 0.001).The
multiplication ratios on lines 1171 and 1449 were 17.5 and 13.4, respectively. The resistance
of WRKY3 mutant plants at 7.5 mM nitrogen was moderate. The most susceptible of the lines
were 1231 and 0259 with MR values of 24.6 and 23. On lines 0877 and 0202 at 7.5 mM
nitrogen, the MR values were 20 and 16.5, respectively, while the resistance of both lines at
2.25 mM nitrogen was moderate and the MR values were 14.6 and 12.5 respectively on day
21 (Fig. 4-4b).

C. Daily aphid fecundity

The average number of nymphs produced per plant per day was recorded on Cadenza and the
seven WRKY3 mutants. There were significant effects of nitrogen availability and mutant
genotype (p < 0.001). All mutant plants grown with low nitrogen (2.25 mM) had lower
average daily nymph production than the control plants, except that mutant line 1996 showed
no difference between high and low nitrogen levels. In the high nitrogen conditions (7.5 mM),
aphids produced 9.2, 8.5 and 5 nymphs per adult per day on genotypes 1231, 0259 and 1449,
respectively. However, at low levels of nitrogen (2.25 mM) for these genotypes, adults
produced significantly lower numbers of nymphs: 6.2, 4.2 and 3 nymphs per day,
respectively. Aphids on the two lines 0877 and 0259 produced 7.7 and 8.5 nymphs per day at
7.5 mM nitrogen. There were significant differences on lines 1231, 1171 and 0259 - between
the two nitrogen levels (p < 0.001). Overall, daily fecundity was lower at the low level of

nitrogen, except that line 1996 produced 5 nymphs per day at both nitrogen levels (Fig. 4-5).
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Figure 4-4. Aphid performance parameters on seven wheat TILLING lines of WRKY3.

(a) Total fecundity (measured as mean total number of nymphs per plant 21 days after infestation,
mean £ SE; n = 4).

(b) Aphid multiplication ratio on seven wheat TILLING lines of WRKY3.

Aphids were recorded on plants grown at two nitrogen levels for 5 weeks. Columns headed by
different letters are significantly different (2-Way ANOVA to study the main effects of genotype and
treatments followed by Tukey’s test, p < 0.05).
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m 7.5 mM
m2.25 mM
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Control line 0877 line 1231 line 1996 line 1171 line 0259 line 1449 line 0202

2]
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Average daily fecundity
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Figure 4-5. Aphid daily fecundity (number of nymphs produced per day on four plants of each line;
means = SE) on seven wheat TILLING lines of WRKY3.

Aphids were recorded on plants grown at two nitrogen levels for 21 days. Columns headed by
different letters are significantly different (2-Way ANOVA to study the main effects of genotype and
treatments followed by Tukey’s test, p < 0.05).
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4.4.4 Relative reproductive rate

The rate at which aphids reproduced was noted and analysed over 21 days in the WRKY3
mutant plants. At the high nitrogen level (7.5 mM), aphids on control plants on day one
produced 16 nymphs, then fecundity decreased to 5 nymphs on days 7 and 8, and decreased
further on day 18 to 2 nymphs. Fecundity was lower on plants grown at low nitrogen (2.25
mM), where aphids produced 6 nymphs on day 1 and the rate of nymph production was lower
at 1 nymph on days 6 and 7, increased again to 7 nymphs on day 16 and decreased to 1
nymph on day 21. Aphids on genotype 0877 grown with 7.5 mM nitrogen produced 18
nymphs on day one, then fecundity decreased to 11 nymphs on day 8 and continued to
decrease to 5 per day on day 17. However, fecundity was lower on plants grown at 2.25 mM
nitrogen, with a production of 3 nymphs on days 9 and 14 and thereafter 2 nymphs on day 21.
For line 1231 more than 50 nymphs were produced on the first day at 7.5 mM and numbers
decreased to 5 nymphs on days 4 and 5. By day 15, fecundity increased to 7 nymphs and
decreased to 2 nymphs on day 19. At 2.25 mM nitrogen, aphids produced 3 nymphs on day 1,
increasing to 4 nymphs on day 18. On genotype 0259 aphids produced 45 nymphs on day 1
and fecundity decreased to 8 nymphs on days 4 and 5, then decreased on day 10 to 2 nymphs.
At 2.25 mM nitrogen aphids produced 20 nymphs on day 1 and fecundity decreased to 1 on
day 7 then increased again to 3 nymphs on days 13 and 15. For line 1171 at 7.5 mM, 15
nymphs were produced on the first day and thereafter the number decreased to 5 nymphs on
day 6, increased again to 12 nymphs on day 12 and decreased to 4 on day 21. At 2.25 mM
nitrogen aphids produced 4 nymphs on day 1; the number decreased to < 2 nymphs over time
for 21 days. On line 0202 at 7.5 mM nitrogen, aphids produced 45 nymphs on day 1,
thereafter decreasing to 9 nymphs on days 12 and 15, and decreasing again to 6 nymphs on
day 20. At 2.25 mM nitrogen, aphids produced 30 nymphs on day 1, decreasing to 6 nymphs
on day 17. For genotype 1449, aphids on plants grown at 7.5 mM N produced 20 nymphs on
the first day. Fecundity decreased to 4 on day 6, again decreasing to 2 nymphs on day 15.
However, aphids produced 10 nymphs on day 1 at 2.25 mM, decreasing to 1 nymph on day
18. Aphids on plants of genotype 1996 grown with 7.5 mM nitrogen produced 20 nymphs on
day 1, decreasing to 10 nymphs on day 13 and decreasing to 2 nymphs on day 21. At 2.25
mM nitrogen, aphids produced 27 nymphs on day 1, decreasing to 3 nymphs on days 15 and
16 and increasing again to 5 nymphs on day 18 (Fig 4-6).
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445 Cumulative increase in aphid population on wheat TILLING lines

The cumulative nymph production of aphids was significantly affected by nitrogen
availability (p < 0.001). The total number of nymphs produced by aphids feeding on N-treated
plants was strongly positively correlated with the increasing number of days that the host
plant was grown. Four TILLING lines (0877, 1171, 0202 and 1449) exhibited a reduction in
the cumulative number of nymphs at the high nitrogen level of 7.5 mM, in contrast to the
control (see Figure 4-5). The rate of nymph production in line 0259 at 7.5 mM changed over
time similarly to the control. However, there were no differences observed in the total nymph
production on the line 1996 plants, under both nitrogen conditions (see Figure 4-5g).

The aphid bioassay showed that TILLING lines 0877, 1231, 0259, and 0202 supported greater
aphid growth associated with reduced nitrogen treatment (2.25 mM). In addition, nymph
production was higher than on control plants, which showed a higher level of resistance to
aphids.
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Figure 4-6. Cumulative numbers of nymphs produced over 21 days on the four plants of each of the
seven WRKY3 TILLING mutant lines and wild type with two levels of nitrogen availability: 7.5 mM
(red line) and 2.25 mM (blue line) n= 4 (a) line 0877, (b) line 1231, (c) line 0259, (d) line 1171, (e)
line 0202, (f) line 1449 and (g) line 1996.
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4.4.6 The phytohormone extraction method

a. Optimisation of chromatography and mass spectrometry conditions

C18 100 mm x 2.1 columns were used for the separation and detection of the target
compounds. It was found that a good separation of the phytohormone compounds SA, ABA
and JA was achieved. Each compound was identified using selected ion monitoring (SIM) and
Multiple Reaction Monitoring (MRM) scan modes. Identification of the compounds was
based on appropriate Multiple Reaction Monitoring (MRM) of ion pairs for endogenous JA,
SA and ABA using the following mass transitions: JA 209 > 59, SA 137 > 93, ABA 263 >
153 (Fig. 4-6) (Huang et al., 2015).

Table 4-2. MS parameters for analysis of three compounds (standard)

Compounds Retention time Identification Quantification
(min) (m/z) (m/z)
Salicylic acid 8.06 137 =93 137
Jasmonic acid isomer 1 9.69 209 =59 209 =59 (209)
Abscisic Acid 8.34 263 > 153 263

MRM transitions for SA and JA were consistent with SIM scans, giving comparable retention
times. Major ions of each compound obtained from standard solution are shown in Table 4-2.
Two peaks were observed for ABA using SIM mode. However, only the peak eluting at
approximately 8.32 min could be seen in MRM mode. Therefore, this peak was assumed to be
the major isomer of ABA. SA and ABA were quantified using selective ion monitoring (SIM)
at 137 and 263, respectively, whereas JA was quantified using the MRM described above
(Fig. 4-7).
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Figure 4-7. SIM (a, b, c and d) and MRM (g, f, g and h) chromatograms from 150 pl of standard
solution of hormones: (a) and (e), jasmonic acid isomer 1; (b) and (f), abscisic acid; (c) and (g),
salicylic acid; (c) and (h), total ion.
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Sample analysis was carried out using the same conditions. In each case a greater number of
peaks were observed in both SIM and MRM modes, with all compounds eluting within 15

min (Fig. 4-8). Therefore, identification of each compound was based on the retention time of

the standard compounds (Fig. 4-9).

JA could not be detected in the samples using SIM mode. Therefore, quantification was based

on the corresponding MRM signal, whereas both SA and ABA were quantified using the SIM

signal (Table 4-3).

Table 4-3. MS parameters for analysis of three compounds (samples)

Compounds Retention time Identification Quantification
(min) (m/z) (m/z)
Salicylic acid 8.06 13793 137
Jasmonic acid isomer 1 962 209 =59 209 =59 (209)
Abscisic Acid 8.37 263 = 159 263
Jasmonic acid Isomer2 792 209 = 59 209
Jasmonic acid Isomerd 10.09 209> 59 209
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Figure 4-8. Typical chromatograms of defence chemicals of wheat TILLING lines 1171, 1996 and

control leaves infested by S. avenae.
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Figure 4-9. Identification (MRM) of each compound was based on the retention time of the standard
compounds as shown by SIR. Top three chromatograms are SIR chromatogram as standards; bottom
three are MRM chromatograms for line 1996 at 6 h as an example.

Isomers of jasmonic acid (Fu et al., 2012) could be detected in the samples using MRM

mode. There were much greater concentrations of isomers 2 and 4 than of isomer 1 in all

samples (Fig. 4-10).
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Figure 4-10. MRM chromatograms showing peaks comparable to jasmonic standard solution for line
1996 at 3 h.

4.4.7 Phytohormones

a. Sample analysis

The aim of this study was to investigate the effect of herbivory on concentrations of the plant
hormones JA, SA and ABA in wild-type and mutant plants, to help elucidate the molecular
link between WRKY proteins and aphid resistance. Hormone concentrations were measured

after the application of aphid infestation over time at the 4™ leaf stage.

As can be seen in Fig. 4-11a, the changes in SA level after exposure to aphids were striking (p
< 0.05). With aphid infestation, the concentration of SA in mutant line 1996 plants increased
to 29.6 nM and 30.5 nM and 31.5 nM at 3, 6 and 9 h after infestation. The concentration of
SA decreased in mutant line 1171 plants to 21.5 nM and 20 nM in infested plants at 6 and 9 h.
The SA concentrations at different periods of infestation in the mMWRKY3 line 1996 plants
(from 22.6 nM to 31.5 nM) differed greatly from the control.

The highest concentrations of ABA were found in the mMWRKY3 line 1171 plants at 0, 3 and
9 h and were significantly greater than in the control plants (p < 0.05) (Fig. 4-11b). After
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infestation with S. avenae, the ABA concentration in line 1171 plants fell to 1.3 nM at 6 h
after infestation. The concentrations of ABA also were similar with exposure to aphids in line

1996 and control plants, which had similar concentrations of SA at all-time points.

Changes in the concentration of JA isomer 1 in leaves infested by S. avenae are shown in Fig.
4-11c. The JA isomer 1 concentration increased greatly after 9 hour infestation in the
MWRKY3 line 1996 (up to 5.9 nM), similarly to the control. In contrast, the concentration of
JA isomer 1 fell significantly in the mMWRKY3 line 1171 between 0 and 3 h after infestation,

then remained constant.
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Figure 4-11. Changes in concentrations of salicylic acid (a), abscisic acid (b) and jasmonic acid (c) in
the two mutant wheat lines (1171 and 1996) and Cadenza control incubated with Sitobion avenae. *
represents significant difference compared with control at P < 0.05 level.
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b. Jasmonic acid isomers

There are eight isomers of jasmonic acid (Fig. 4-12a), of which the naturally occurring ones
are (-)-jasmonic acid and (+)-7-iso-jasmonic acid (Fu et al., 2012). Isomers of jasmonic acid
were identified by comparing a daughter ion scan of the standard compound (Fig. 4-12b) to
the daughter ion scans obtained from potential isomer peaks observed during sample analysis
(Fig. 4-12c-d). Several characteristic fragments were observed (m/z = 59; 83; 163; 165 and
191) that indicate the observed peaks are due to JA isomers. The isomers were quantified in
all samples using daughter ion scans (Fig. 4-12). Levels of isomers 2 and 4 (Table 4-4) were
significantly higher than others. Therefore, isomers 2 and 4 are probably (-)-JA and (+)-7-iso-
JA. However, it was not possible to determine the identities of the isomers conclusively.
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Table 4-4. Analysis of levels of stereoisomers of jasmonic acid in wheat infested by S.avenae at 3, 6,
and 9 hours. Hormone extraction reproducibility was tested with two biological replicates of extracts.
The numbers in parentheses are the standard errors based on the two biological replicates.

Infection of Compounds
S. avenae Jasmonic acid Isomer 2 Jasmonic acid Isomer 4
Mean Concentration (nM) Mean Concentration (nM)
Control Line 1171 Line 1996 Control Line 1171 Line 1996
TOh 67 33 218 47 264 1217
(+7) (£538) (+10) (t19.4) (t19) (x72)
T3h 174 135 236 1134 2869 2454
(+92) (+12) (+23) (24 (*16) (£25)
T6h 105 394 149 50.22 75.07 1442
(+10) (3 (5.7 (+22) (+17) (*15)
T9h 211 83 60 1057 196.6 103 4
(+17) (6 (+2.9) (+28) (+20) (+19)

(@)

Jasmonic Acid cis-lsomers

(Y

4

A
H.C

OH
0
o

0
H:C

Jasmonic Acid: trans-lsomesrs
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Figure 4-12. (a) The structures of the eight sterecisomers of jasmonic acid. (b) Isomers of jasmonic
acid were identified by comparing a daughter scan of the standard compound with daughter scan
spectra of m/z = 209 fragments of jasmonic acid isomers. Examples shown are (c) Control and line
1996 at 6 h and (d) Line 1171 at 9 h and line 1996 at 3 h.

The concentration of JA isomer 2 was significantly higher (p < 0.05) in the line 1996 plants
than in the other two genotypes, but decreased at 6 and 9 hour after exposure to aphid
infestation. At the early stage of infestation in the control and line 1171 plants, the level of JA
isomer 2 increased (p < 0.05). The values were 174 nM and 135 nM, respectively, at 3 h and
211 nM and 83 nM, respectively, at 9 h after infestation, but lower at 6 h (Fig. 4-12a).

The highest level of JA isomer 4 in the line 1171 plants occurred sooner and was higher (up to
286 nM) at 3 h after infestation than in the other two genotypes (p < 0.05), then decreased to a
much lower level 6 h after infestation, then increased at 9 h. The changes in the level of JA
isomer 4 in the line 1996 plants were remarkably higher than in the control, and the peak
value was 245 nM at 3 h, then it decreased at 6 h, when it was slightly higher than that in the
control (Fig. 4-12b).
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Fig. 4-13 compares the changes in concentration of the five phytohormones tested (ABA, SA,
JA Isomers 1, 2 and 4) in each genotype. The highest concentrations were those of JA Isomers
2 and 4, which were from less than 100 nM to 286 nM in all three lines (Fig. 4-13a— b and c).

(a) —— Control (Wild Type) — mWRKY3 line 1996 —— mWRKY3 line 1711
400 -
350 - Isomer 2
300 -
250 - *
200 1 *
150 -
100 -
50 4

Jasmonic acid concentration (ni)

Oh 3h &h gh

Time after infestation
(b)

—— Control (Wild Type] ——mWRKY3 line 1996 —— mWRKY3 line 1171

400
350 - * Isomer 4
300
250
200 *
150
100

Jasmonic acid concenration (n)

oh 3h &6h 9h

Time after infestation

Figure 4-13. Changes in concentrations of (a) jasmonic acid isomer 2 and (b) jasmonic acid isomer 4
in lines 1171 and 1996 and Cadenza control incubated with Sitobion avenae. Data are represented as
mean values + SE (n = 2). * represents significant difference from the control determined by Turkey’s
test at P < 0.05.
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Figure 4-14. Changes in concentrations of the five compounds in the wheat Cadenza as a control (a),
mWRKY 3 line 1996 (b) and line 1711 (c) incubated with Sitobion avenae. Data are presented as mean
values + SE (n = 2).
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All compound measurements gave highly reproducible quantitation as determined by the

mean concentrations of hormone. Table 4-5 summarises the patterns of changes.

Table 4-5. Recovery of five signal phytohormones from leaf samples at different periods of
infestation. (+ and — show increases and decreases respectively for each line and time compared to WT
at 0 h).

Line Time Summary
Oh 3h 6h 9h
WT JA isomer 1 JA isomer 1 JA isomer 1 JA isomer 1 The levels
JA izomer 2 JA i1somer 2 + JA isomer 2 + JA isomer 2 + varied
JA izomer 4 JA 1somer 4 + JA 1somer 4 - JA i1somer 4 - greatly after
SA SA+ SA- SA- Jhof
ABA ABA + ABA - ABA + infestation
1171 JA 1zomer 1 JA isomer 1 JA 1somer 1 JA isomer 1 The levels
JA 1somer 2 - JA 1somer 2 + JA tsomer 2 + JA 1somer 2 + varied
JA isomer 4+ JA isomer 4 + JA isomer 4 - JA isomer 4 - greatly after
SA+ SA+ SA - SA - Jhof
ABA + ABA+ ABA - ABA + infestation
1996 JA isomer 1 JA isomer 1 JA isomer 1 JA isomer 1 The levels
JA 1somer 2 + JA i1somer 2 - JA 1somer 2 - JA 1somer 2 - varied
JA isomer 4 - JA isomer 4 + JA isomer 4 + JA isomer 4 + | greatly after
SA - SA - SA+ SA+ Ohof
ABA + ABA + ABA - ABA - infestation
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4.5 Discussion

This study on WRKY3 and the mutant lines is the first study of its kind conducted on a
member of the WRKY subgroup II, which is implicated by the results in Chapter 3 in
tolerance of wheat to Sitobion avenae, to evaluate the effects of mutations within the WRKY
domain. To establish whether WRKY3 has a role in the stress response TILLING lines with
mutations to the WRKY3 gene were grown under different nitrogen concentration and were
also infested with aphids. Aphid fecundity on one mutant line showed no difference between
high and low nitrogen levels. The results suggest that WRKY3 TFs plays a role in the link
between nitrogen stress and aphid tolerance in wild type plants and possibly a central role in

the cross-talk between environmental nitrogen and aphids and hormone signalling.

Collectively, the results suggest that there is an association between mutations in the WRKY
domain of TaWRKY3 and the production of two isomers of JA and that these isomers may
coordinate responses to Sitobion avenae infestation under reduced nitrogen conditions. Plants
change transcription factors in response to changes in growing conditions (Ferry et al., 2011).
Aphid fecundity (Fig. 4-5) was higher with 7.5 mM than with 2.25 mM nitrogen. One
mutation in line 1996 was in the conserved WRKY domain and therefore this is almost

certainly non-functional.

Furthermore, the low nitrogen conditions may prime the defence of wheat against insect
attack. Aphid fecundity, along with the difference in concentration of plant hormones assayed
directly by LC/MS-MS between mutant lines and WT, may contribute to the resistance of
wheat to insect attack as a result of cross-talk via a regulatory network of WRKY

transcription factors.

In addition, this study measured the concentrations of three phytohormones in two mutant
lines (1171 and 1996), which have substitutions R139W and Y 160D respectively, and in wild
type plants infested with S. avenae at different time points (0 h, 3 h, 6 hand 9 h). In line with
the role they play in response to stress from aphids it was found in this study that signalling
mechanisms may be mediated by the stress hormones salicylic acid (SA), jasmonic acid (JA)
and abscisic acid (ABA).
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45.1 Aphid fecundity

This experiment was designed to assess how varying levels of nitrogen input applied to
mutants of wheat, a common host plant of S. avenae, affected the performance of this aphid
species. The major effect of nitrogen availability was on aphid fecundity. Karowe and Martin
(1989) hypothesised that insect numbers are affected by the quality of the phloem sap, in
which nitrogen content varies, due to a link between nitrogen input and phloem quality. Thus
the most important finding from this investigation relates to the effect of lowering nitrogen
availability on aphid fecundity (also observed in Chapter 2). A higher supply of nutrients may
promote the reproduction of aphids by retaining photosynthates and amino acids, while low
levels of nitrogen may limit aphid reproduction due to the reduced quantity of amino acid and
sugars available for the aphids (Zebitz and Kehlenbeck, 1991).

Increased nitrogen inputs to crops have a positive effect on the growth and fecundity of S.
avenae (Aqueel and Leather, 2011). This higher aphid fecundity may be due to the plant’s
quality when grown at 7.5 mM nitrogen; such plants are healthy and the phloem sap, which
the aphids feed on, is high quality (Zebitz and Kehlenbeck, 1991). It has been observed in
many studies performed in controlled conditions that plant performance increases with
increasing levels of nitrogen (Aqueel and Leather, 2011). Similarly to our results, Lu et al.
(2007) found that aphid populations were higher under optimal conditions because aphids

assess the plant’s quality by probing the leaf tissue.

The decrease in aphid fecundity with reduced nitrogen input at 2.25 mM is in agreement with
other studies which reported that the link between plant nitrogen and aphid infestation is
complex and acclimation to low nitrogen confers aphid resistance (Comadira et al., 2015) and
that nitrogen input can have a strong effect on aphid fecundity (Gash, 2012). Low levels of
nitrogen have a large impact on the leaf transcription profile. Effects of plants in reducing
aphid fecundity have been associated with antibiosis reactions in the nymph, which may
account for aphid performance (Tolmay et al., 1999). It has been previously observed that the
link between signalling pathways and triggers is involved in cross tolerance between stresses
(Foyer et al., 2016).

The WRKY3 mutant line 1996 is notable in that there were similar numbers of aphids on this

mutant line at both nitrogen levels. In particular, it can be proposed that the mutation in line
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1996 within the WRKY binding domain reduces the rate at which aphid population increases
and negates the differentiation between population increases relative to nitrogen availability.
In the WRKYGQK sequence, Tyr 160 is important in binding to DNA as shown by the effect
of a mutation to Asp (Chapter 5).

The results show that pathways involved in resistance mechanisms may be affected by the
relationship between host plants and aphids under different nitrogen treatments. As with the
wild-type plants, a nitrogen level of 7.5 mM increased the fecundity of all TaWRKY3 mutant
lines except line 1996. However, fecundity was lower on some of the mutant lines than on the

wild-type.

In order to improve the spatial and temporal management of aphids, it would be useful to
explore how they affect the composition of phloem, as represented by leaf exudates, under
different environmental conditions, with different levels of nitrogen and in different plant
varieties, with consequential effects on the number of nymphs (Sandstrom et al., 2000; Khan
and Port, 2008).

4.5.2 Contrasting mechanisms of SA-JA and ABA defence against insects

In this experiment, it was possible to identify and quantify JA, SA and ABA in extracts of
leaves by LC/MS-MS from two mutant wheat WRKY3 lines (1171 and 1996) and control
(wild type) plants. Concentrations of these hormones were found to change markedly after S.
avenae infestation. Levels of ABA were highest in leaves of line 1171. Aphid also performed
more poorly on line 1171 than on wild-type plants. It has been proposed that in Arabidopsis
ABA accumulation is beneficial to aphids because aphid feeding elicits an ABA-dependent
decoy response (Hillwig et al., 2016) that could interfere with effective defences and make
plants more suitable for aphid colonisation. However, the patterns of ABA accumulation
observed here suggest that this hypothesis does not apply to the interaction between wheat

and S. avenae.

The study results also demonstrate that after aphid infestation, SA levels rose in line 1996,
suggesting that SA is produced in response to aphid damage. The lowest aphid fecundity was

observed on line 1171 plants. Salicylic acid can also cause physiological effects in plants. For
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example, research has revealed that it may act as a key signal molecule generated by systemic

acquired resistance (Pieterse and van Loon, 1999).

Jasmonic acid can also cause a variety of physiological and morphological effects. When
plants are attacked by pathogens or herbivores, they are able to put their defence systems into
motion by triggering changes in endogenous JA levels (Huang et al., 2015). Jasmonates are
known to stimulate a number of defensive and physiological processes and the amino acid
conjugates of jasmonic acid are involved in several plant developmental processes (Farmer
and Ryan, 1992). Jasmonic acid is synthesised by the octadecanoid pathway. The structure of
volicitin, an octadecatrienoate conjugated to an amino acid, suggests that the octadecanoid
pathway interacts with elicitor molecules in herbivore-damaged plants (Farmer and Ryan,
1992). In the plants in this study, higher levels of total JA were produced when aphids were
feeding on the wheat leaves in both mutant plants, compared to the control, and this may
explain the lower aphid numbers on the mutant plants during the early stage of infestation
(Fig. 4-12). The results are consistent with other evidence that JA plays a significant role in
the interaction of plants with insects, but differ from the generalisation that the basal
resistance to necrotrophic organisms is founded on JA-related mechanisms, while biotrophic
or hemibiotrophic basal resistance is based on SA-related mechanisms (Segarra et al., 2006).
However, the results indicate a role of JA in the functions of WRKY3; changes in JA due to
the action of WRKY proteins will allow a model of wheat defence response to be built,
elucidating any molecular link.
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4.6  Conclusions

The mutant WRKY lines identified provided additional insights into the coordination of the
high/low nitrogen responses of plants. A putative low-nitrogen regulatory element may reduce
the aphids’ fecundity in response to low nitrogen levels in the plant. A better understanding of
the complex regulatory network of the nitrogen-aphid response will help to develop

transcription factor strategies to improve low nitrogen use.

In the current project, a ‘loss of function” mutation was identified in WRKY3 mutant line
1996. The mutant and wild type lines were grown with high and low nitrogen levels, and the
effect of the nutrient supply on aphids’ performance on these mutant lines was analysed.
There was no difference in performance between high and low nitrogen levels in mutant 1996.
This result provides evidence that WRKY3 plays a role in the interaction between nitrogen

stress and aphid tolerance in wild type plants.

The mutation found in TILLING line 1996 is expected to affect binding to the W-box element
in target gene promoters. Gel shift experiments and protein-DNA interaction assays were used
to analyse interactions of wheat WRKY transcription factors with the W-box element in

several promoters in Chapter 5.
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5 Chapter 5. WRKY transcription factors require the archetypal
WRKYGQK domain to bind to promoter cis-elements

5.1 Abstract

WRKY transcription factors play an important role in induced plant defence by regulating
gene expression in response to external stimuli. WRKY transcription factors contain a region
binding to one particular DNA element — the W-box. In the present study, genes encoding
wild-type TaWRKY3 and the mutated form found in TILLING line 1996, which has a
tyrosine to aspartate substitution in the invariant WKRYGQK sequence, were successfully
expressed in E. coli in order to test WRKY3 and the mutant form for their binding to W-box
elements (TaPR1-23 in the downstream flanking region, PcCPR1-1 promoter and synthetic W-
box repeated sequence). DNA binding was disrupted by the mutation in the TILLING line,
indicating that this sequence is required for proper DNA binding. The regulation of PR gene
expression is important for the activation of plant defence responses; the present work
provides evidence that TaWRKY3 may regulate this important response by binding to the
W-box element in the promoter. This will enhance our understanding of the molecular basis
of the mode of action of WRKY3 in wheat.

Key words: Parsley promoters /TaWRKY transcription factors/ W-box element/ DNA-binding
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5.2 Introduction

Changing agricultural conditions are leading to insect pests becoming a more serious threat to
sustainable crop production (Castex et al., 2018). Therefore, it is important to understand the
increase in aphid fecundity under high nitrogen (standard) conditions, believed to be
controlled at least partly by WRKY genes. Better understanding of the molecular basis for this

link could help allow optimal nitrogen availability without compromising tolerance to aphids.

WRKY transcription factors (TFs) are involved in the regulation of gene expression in plants
in response to biotic and abiotic stresses (Eulgem et al., 2000). WRKY proteins are defined
by the conserved amino acid sequence WRKYGQK at their N-terminal end and by a zinc-
finger and have a regulatory function which helps with the concerted activation of a large
variety of genes (Zhu et al., 2013). The expression of target genes is modulated by DNA-
binding transcription regulators and other components for normal development and proper
response to environmental stimuli. The W-box sequence TTGAC is required for specific DNA
binding of WRKY proteins to DNA (de Pater et al., 1996; Rushton et al., 1996; Wang et al.,
1998; van Verk et al., 2008).

The promoter region for PR1-1 has been identified in many monocotyledon plant species
including wheat and also in dicotyledon species such as parsley. The regulation of PR1-1
gene expression is important for the activation of plant defence responses (Van Loon and
Van Strien, 1999). The present work demonstrates that TaWRKY3 may regulate this
important response by binding to the W-box element in these promoters. As the WRKY
family is large within a given species, and as these proteins bind to the W-box, some
specificity may be granted by additional nucleotide sequences flanking W-box elements in

promoters.

In Chapter 3, the TaWRKY3 gene was identified as being involved in the link between
nitrogen availability and S. avenae fecundity. Gene expression profiles using qPCR analysis
during periods of single and dual stress gave evidence for the priming of plant defence
responses under low nitrogen availability. Chapter 4 analysed the function of WRKY3, using
TILLING lines with mutations in WRKY3, and it evaluated the effects of mutations within
the WRKY binding domain on aphid performance. Aphid fecundity on a line with a mutation
in the WRKYGQK sequence (line 1996) showed no difference between high and low nitrogen
levels, suggesting that WRKY3 plays a role in the link between nitrogen stress and aphid
tolerance in wild type plants. In order to examine this further, protein-DNA interaction assays
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were used. WRKY3 wild type and the mutant protein in line 1996 were tested for their
binding abilities in vitro to different W-box elements and promoter sequences containing a W-

box. This analysis revealed clear differences in binding.

Moreover, it was demonstrated through the DNA-protein assay that TTGAC acts as a binding
site for WRKY3 in the cis-sequence under study. This binding site, referred to as the WT-
box, is rich in promoters of the genes up-regulated to WRKY proteins. A non-radioactive
Electrophoretic Mobility Shift Assay (EMSA) was used in the present study to assess the
binding activity of WRKY3. In order to elucidate the binding sites of transcription factors,
DNA sequences were end-labelled with biotin [5' TAGCATATGCTA 31.

5.2.3 Aim and Objectives

To investigate the impact of a mutation in the WRKY domain, specifically how it affects

binding to W-box. This was achieved by the following objectives:

1. Purification of recombinant wild-type and mutant WRKY 3.

2. Investigation of TaWRKY3 binding to synthetic and whole promoter W-box
elements. The whole promoter W-box elements are from the parsley PR1-1 and
wheat PR1-23 genes. The parsley sequence tested is the W2 sequence, which was
one of the first sequences shown to bind to WRKY proteins (Rushton et al., 1996)
and was used by Ciolkowski et al. (1998) to study the DNA binding specificity of
Arabidopsis WRKY proteins.

3. Investigation of how the mutation in TILLING line 1996 affects the binding
of TaWRKY 3 to W-box elements.
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5.3 Materials and methods

5.3.1 Experimental design

Proteins for electromobility shift assays (EMSASs) were expressed in E. coli and purified. All
experiments were performed using total soluble E. coli proteins with pETSUMO constructs
containing an N-terminal 6xHis tag and SUMO fusion protein. EMSAs were performed to
verify DNA binding specificity of TaWRKY3 proteins following the manufacturer’s
instructions for LightShift™ Chemiluminescent EMSA kit (Thermo Fisher Scientific) (Fig. 5-
1).

1. WRKY can be expressed in E. coli strain
BL21(DE3)

2. His-tagged WRKY3 and mWRKY3 can
be purified using Ni+ AC

Loading Binding to

supernatant the column Wash Elution

Incubate without
protein

OVOVORVORVONOVOT
o

3. Electrophoretic mobility shift assay
(EMSA)

Figure 5-1. Experimental framework used to assess the binding of recombinant transcription factor
proteins to promoter elements. Recombinant WRKY3 and mutant expressed in bacteria have identical
binding properties. 1. Recombinant proteins were produced in E. coli. 2. WRKY proteins were
isolated using NIAC under native conditions as described in section 5.3.5. 3. EMSA of WRKY
binding to DNA fragments containing each of the W-box sequences indicated by chemiluminescence
in section 5.3.6.
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5.3.2 Cloning

a. pET SUMO plasmid construction
Ligation reactions were set up as follows: 2 pl pET SUMO vector (25 ng pl?) (Invitrogen)
was added to 2 pl of fresh PCR product , 1 pl 10x Ligation Buffer, 4 ul nuclease-free water

and 1 pl T4 DNA ligase to a final volume of 10 pl. This was mixed and incubated at 15 °C
overnight.

Table 5-1. Primers for cloning of TaWRKY 3 genes

Gene Specific primers for cloning
Forward primer (5'-3') Reverse primer (5°-3')
TaWRKY3 (CDS) AGATTCTTGTACGACGGTATTAG TAGTTATTGCTCAGCGGTGG

b. E. coli Transformation

The Machl1™-T1R E. coli strain was used for the production of plasmid DNA, and strain
BL21 (DE3*) was used for protein expression. A similar protocol was used for both.
Chemically competent E. coli cells were put on ice. 2 pl of vector was added and the cells
were incubated for 30 min. The cells were heat shocked at 42 °C for 1 min then transferred to
ice. 250 | of S.0.C. medium (Super Optimal broth with Catabolite repression) was added and
incubated with shaking at 37 °C for 1 h 30 min. 100 ul was spread onto LB agar plates
containing 50 pg ml? kanamycin antibiotic and they were left overnight to incubate at 37 °C.

Putative transformants were screened for the presence and directionality of TaWRKY3 by
colony PCR. 48 pul of the PCR High Fidelity Mixture (Invitrogen) was added with either 1 pl
of SUMO Forward primer and 1 pl of the WRKY3 reverse primer or 1 pl of T7 reverse
primer and 1 pl of the WRKY3 forward primer to give a final volume of 50 pl. Ten colonies
were resuspended individually in 50 pl PCR reaction mix and incubated for 10 min at 94 °C
to lyse the cells followed by 30 cycles of amplification and incubation at 72 °C for 10 min for
the final extension. This was done to confirm that the gene is in the correct orientation and in
frame with the N-terminal tag by agarose gel electrophoresis. Sequence analysis was
performed in order to confirm that the wild-type and mutant coding sequences were in the

correct orientation and in frame with the N-terminal tag.

For long-term storage, single colonies were picked from the plates and suspended in 10 ml LB

liquid broth with the antibiotic kanamycin. They were kept overnight at 37 °C with shaking.
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250 pl of the culture was then mixed with 250 pl 50% glycerol and the stock was stored at -80
°C.

5.3.3 Protein Expression

All constructs to be expressed as protein were transformed into E. coli strain BL21 (DE3*)
(5.3.2b Transformation). A stock culture (0.5 ml) was added to 10 ml LB liquid medium
containing 50 pg ml™ kanamycin and 1% glucose and the culture was grown overnight at 37
°C with shaking. 1 ml of this culture was added to 50 ml fresh LB with kanamycin and grown
at 37 °C with shaking. The optical density at 600 nm of the culture was checked with a
spectrophotometer. Once 0.6 was reached, the culture was split into two samples and IPTG
(Fisher Scientific) was added at a final concentration of 1 mM to one culture, giving one
induced and one uninduced culture. Post-induction samples were taken at regular time points.
After 12 hours’ growth at 37 °C, the cells were collected by centrifugation at 4600 x g for 10
min at 4 °C. For each time point, the pellet was resuspended in 1.5 ml BugBuster HT Protein
Extraction Reagent (Merck) for 30 min with gentle shaking then centrifuged at 16,000 x g for
20 min at 4 °C. The supernatant containing the soluble protein fraction was transferred to a
fresh tube with 20 pl 2x SDS-PAGE loading buffer (5.3.4 a. SDS-PAGE). This could then be
used in the protein purification system. The insoluble fraction (pellet) was resuspended in 80
pl 1x SDS-PAGE loading buffer. For long-term storage at -20 °C, all samples were heated to
100 °C for 5 min. 15 pl of the supernatant and the pellet were loaded onto an SDS-

polyacrylamide gel and electrophoresis was performed.

5.3.4 Protein Analysis

a. SDS-PAGE
Polyacrylamide gels for electrophoresis were prepared with stacking gels containing 5%

acrylamide in 0.125 M Tris-HCI, pH 6.8, 0.1% ammonium persulphate, 0.01% TEMED.
Separating gels contained 6% or 10% acrylamide in 0.375 M Tris-HCI, pH 8.8, 0.1%
ammonium persulphate, 0.005% TEMED.

All samples were run for 1 hour at 80 V then at 120 V for 1 hour in a tank containing 1x

running buffer (25 mM Tris, 192 mM glycine).
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b. Coomassie Blue staining
Gels were stained overnight in Coomassie Blue Stain (0.25% Brilliant Blue, 50% methanol,

10% glacial acetic acid) and destained for an hour in Destain (40% methanol, 70% glacial

acetic acid).

c. Western Blotting
Gels were blotted onto 0.45 pm nitrocellulose membranes for 1 hour at 50 mA. All blocking,

probing and washing was carried out in 1x PBS (137 mM NaCl, 2.7 mM KCI, 10 mM
Na2HPO4 and 1.8 mM KH2PO4 with adjusted pH 7.4) with shaking, as follows.

e Membranes were soaked in 5% Semi-skimmed milk in PBS buffer with 1% Tween 20
for 1 hour.

e The membranes were probed with 1:2000 primary anti-His Tag antibody raised in
mouse (ThermoFisher) in PBS overnight at 4 °C with shaking.

e The membranes were washed with 1x PBS and 0.1% Tween20 for 5 min (x3).

e 1:2000 diluted peroxidase-conjugated goat anti-mouse secondary antibody (Bio-Rad)
was applied and the membrance was shaken gently for three hours at room
temperature.

e The membrane was washed with 1x PBS for 5 min (x3).

e Substrate solution (Chemiluminescent Western Blot Detection) (ThermoFisher) was
prepared by mixing equal volumes of Luminol/Enhancer Solution and Stable Peroxide
Solution, added to the membrane and incubated for 1 min. X-ray film (Kodak) was

exposed to the membrane for 5 to 20 min then developed, washed and fixed.
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5.3.5 Protein Purification

All experiments were performed using total soluble E. coli proteins (Fig. 5-2).

AA
A A

A
- . A
NI NI NI NI NI NI NI NI NI NI NI NI
= A
A

( Loading W ( Binding to the W ( Wash W ( Elution 1
supernatant column

Figure 5-2. Schematic of Nickel lon Affinity chromatography. Total protein including recombinant
protein with 6xHis tag is added to the columns containing Ni?* ions. The recombinant protein binds to
the column. All non-specifically bound proteins can be removed by washing with 25 mM imidazole.
The recombinant protein is eluted with 250 mM imidazole.

Protein was isolated using Nickel lon Affinity chromatography (Thermo Scientific) using the

following protocol:
Buffers for native conditions:

e Equilibration Buffer: 20 mM sodium phosphate, 300 mM sodium chloride (1x PBS)
with 10 mM imidazole; pH 7.4

e Wash Buffer: PBS with 25 mM imidazole; pH 7.4
e Elution Buffer: PBS with 250 mM imidazole; pH 7.4

Buffers for denaturing conditions:

e Equilibration Buffer: PBS with 8 M urea and 10 mM imidazole; pH 7.4
e Wash Buffer: PBS with 8 M urea and 25 mM imidazole; pH 7.4

e Elution Buffer: PBS with 8 M urea and 250 mM imidazole; pH 7.4
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HisPur Ni-NTA spin columns (3 ml) were used for purifications. Columns were centrifuged
for 2 min at 700 x g and the fraction was collected in a centrifuge tube. The bottom plug was
placed in the column and the prepared protein extract was added. It was mixed with an end-
over-end mixer for 30 minutes at room temperature. The bottom plug was removed and the
column was centrifuged at 700 x g for 2 minutes, collecting the flow-through in a centrifuge
tube. The resin was washed with two resin-bed volumes of wash buffer and centrifuged at 700
x g for 2 minutes and the fraction was collected in a centrifuge tube. This step was repeated
two more times collecting each fraction in a separate centrifuge tube. His-tagged proteins
were eluted from the resin by adding one resin-bed volume of elution buffer and
centrifugation at 700 x g for 2 minutes. This step was repeated two more times, collecting
each fraction in a separate tube. The eluted protein could then be directly analysed by SDS-
PAGE.

5.3.6 In Vitro Protein-DNA Binding Assay

The electrophoretic mobility shift assay was performed using LightShift™ Chemiluminescent
EMSA (Thermo Fisher Scientific) with purified WRKY3 and mMWRKY3 (5.3.5) (Fig. 5-3).
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Figure 5-3. There are 3 steps in a gel shift assay: (1) binding reactions, (2) electrophoresis, (3) probe
detection (ThermoFisherScientific, 2018).
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Procedure Protocol

a. Lightshift EMSA Optimisation to Anneal Complementary Pairs of

Oligonucleotides

The DNA probes (Table 5-2) were prepared by annealing complementary oligonucleotides
containing the 60 bp biotin end-labelled sequences. Probe was prepared at a concentration of
1 pmol plIt with forward and reverse sequences in a 1:1 molar ratio and the final
concentration of 1 pmol It was achieved by adding buffer containing 10 mM Tris-HCI, 1
mM EDTA, and 50 mM NaCl (pH 8.0). Oligonucleotides were annealed by incubating the
tube in a water bath for 5 min. It was then left at room temperature to cool and the probes

were stored at -20 °C.

Table 5-2. Probes for gel shift assay

Probes Oligo Primer sequence with probe sequence
(5-3) Forward primer (5-3') Reverse primer(¥-3)
PcPR1-1 promater and Synthetic
TAGCATATGCTA [Btn] TTATTCAGCCATCAAAAGTTGACCAATAAT | [Btn]ATTATTGGTCAACTTTTGATGGCTGAATAA
TTATTCAGCCATCAAAAGTTGACCAATAAT ATTATTGGTCAACTTTTGATGGCTGAATAA
TaPR1-23 gene and synthetic
TAGCATATGCTA [Btn]CGCTTCCTCACGCCATCGTTGACCCCCGCT | [Bin]AGCGGGGGTCAACGATGGCGTGAGGAAGLG
CGCTTCCTCACGCCATCGTTGACCCCCGLT AGCGGGGGTCAACGATGGCGTGAGGAAGCG
Wh synthetic TAGCATATGCTA [Btn] CGTTGACCTTGACCTTGACTTT [Btn] AAAGTCAAGGTCAAGGTCAACG
CGTTGACCTTGACCTTGACTTT AAAGTCAAGGTCAAGGTCAACG
mWh synthetic TAGCATATGCTA [Btn] CGTTGAACTTGAACTTGAATTT [Btn] ABATTCAAGTTCAAGTTCAACG
CGTTGAACTTGAACTTGAATTT AAATTCAAGTTCAAGTTCAACG
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b. TaPR1-23 gene of the downstream fragment
Primers were designed and synthesised according to the TaPR1-23 (HQ700377.1)
downstream flanking sequence in wheat (Table 5-2). The sequences are identical to a region
of the wheat PR1-23 gene containing one W-box, which was selected as follows. The AtPR1
gene from GenBank (with accession number NM_127025.3) was submitted to Ensembl wheat
genome Blast (https://plants.ensembl.org/). The region containing the most similar WRKY
sequence in wheat (TaPR1-23) was identified (TGACV1-scaffold-457095-5DS:39.367-
39.995). Predicted Oryza sativa (as the most similar species to wheat) transcription factor
binding sites in the flanking region (37367 to 39369) were located using the PlantPAN 2.0
program (http://plantpan2.itps.ncku.edu.tw) (Fig. 5-4).
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Figure 5-4. Nucleotide sequence of the downstream flanking region of the TaPR1-23 (HQ700377.1)
gene. The one potential candidate W-box is the sequence 1484-1489, which is a predicted binding site
for Oryza sativa WRKY proteins identified by using the PlantPAN (Plant Promoter Analysis
Navigator) 2.0 program (http://plantpan2.itps.ncku.edu.tw). The W-box is highlighted.
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c. DNA-binding protein reagents
Following the EMSA manufacturer’s instructions (Thermo Fisher Scientific) the control
Epstein Barr nuclear antigen (EBNA) system was generated using a binding reaction.
The WRKY3 and mutant test was optimised by altering other components and noting how
they affected the shift assay (see Table 5-3).

Table 5-3. Three reactions for the TaWRKY3 and mTaWRKY3 were performed

Component Reactions
1 2 3 &5
Ultrapure Water 12wl Sul Bl 10 pl
1X binding buffer 2ul 2ul 2l 2ul
50% Glycerol 1w 1w 1 1l
Smi MgCl- 1w 1w 1 1l
50 ngful paly (d.dC) 1w 1w 1 1l
0.05% ngful 1w 1w 1 1l
0.5 nM Unlabeled Target - - 2 ul -
DMA
- 4ul 4 4 ul
2 pg Protein Extract
(Bradford assay was used)
0.5 nM Biotin End- Labeled 2ul 2ul 2l -
Total Volume 20l 20l 20 pl 20l

All the reactions were incubated for 20 min at room temperature. 5 pl of 5x Loading Buffer
was added to each 20 pl binding reaction, and 20 pl of each sample was loaded on a 5%
polyacrylamide gel in 0.5x Tris Borate EDTA buffer (TBE) cooled to 4 °C. The gel was run
for 1 hour at 100 V.

Nylon membrane was soaked in 0.5x TBE for 10 min with gentle shaking. Next the
membrane was blocked after sandwiching the gel, using 0.5x TBE at 380 mA for 1 hour
cooled at 6 °C.

Membranes were cross-linked using a commercial UV light with 254 nm bulbs at 120 MJ
cm2for 45s.
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d. Detection of biotin-labelled DNA by chemiluiminescence

The membrane was blocked with 20 ml blocking buffer and incubated for 20 min with
shaking. The membrane was probed with 100 pl stabilised streptavidin-horseradish
peroxidase conjugate in 30 ml blocking buffer at 1:300 dilution for 20 min with gentle
shaking. Three washes were performed 5 times for 5 min each in 20 ml of 4X wash buffer
with gentle shaking. 30 ml of substrate equilibration buffer was added to the membrane for 5
min with gentle shaking. The substrate solution was made using 6 ml Luminol to 6 ml stable
peroxide; this was added to the membrane for 5 min on a flat surface. Membranes were placed
in a film cassette and exposed to X-ray film for 15 s to 2 min. The film was developed and
fixed using Kodak reagents.
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5.4 Results

5.4.1 Amplification of WRKY Coding Sequences by PCR

To generate the material required to construct the recombinant expression vectors the coding
sequences for both TaWRKY3 and mTaWRKY3 were amplified using PCR. Bands of the
PCR product the expected size (695 bp) were found after agarose gel electrophoresis (Fig. 5-
5).

M L1 L2

695 bp . .

Figure 5-5. Agarose gel (0.8%) electrophoresis of amplified PCR products was performed with both
WRKY3 and mMWRKY3 with full-length sequences 695 bp. M, marker 1 kb DNA Ladder. L1 and L2
represent products from WRKY3 and mWRKY 3.

5.4.2 Cloning of WRKY3 and mMWRKY 3 sequences

The fresh PCR (amplification) products were ligated with a 1:1 molar ratio of vector:gene to
create the best ligation efficiency (5.3.2a). The genes were cloned into pET SUMO vector and
transformed into Mash1-T1R chemically competent E. coli (5.3.2b).

Colony PCR was used to confirm that TaWRKY3 and mTaWRKY3 coding sequences were
the expected size (Fig. 5-6).

Transformed clones were sequenced to verify the integrity and orientation of the WRKY3
coding sequence. Furthermore, the sequencing data confirmed correct orientation of the
cloned coding sequence with the SUMO fusion and the N-terminal 6xHis tag (Fig. 5-7).
Sequencing data showed the 695 bp fragment corresponding to both the wild type and mutant

forms.
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Figure 5-6. Colony PCR products of (a) WRKY3 and (b) mWRKY 3 full coding sequences (expected
size 695 bp) on 0.8% agarose gels.
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(D)

HisG epitope

ATGGGCAGCAGE| CATCATCATCATCAC |GCAGCGOCCTEOTCCCGCGEEECAGIES

SUMO fusion protein
TAGCATGTCGGACTCAGAAGTCAATCAACAAGCTAAGCCACGAGGTCAAGCCAGAAGTCA

AGCCTGAGACTCACATCAATITAAAGGTGTCCGATGCATCTICAGAGATCTICTICAAGA

TCAAAAAGACCACTCCTTTAAGAAGGCTGATGGAAGCGTTCGCTAAAACGACAGGCTAAG
SUMO forward primer

GAAATGGACTCC‘[TA[ AGATTCTTCTACCACCCTATTAG  [ATTCAAGCTGATCAGACCCCT

M

GAAGATTTGGAGCATAACCATATTATIGAGGCTCACAGAGAACAGATIGCTGCTTGC

WRKY3
BGAAGGGGETAGCCAGCTGEGEEOGTGCCTICCCAGCCTCTACGCGCTCGATCCGTACG
CATCCCCTCCCCTCCTCGCTCCATIGCCGAACCAGCACAAGCTICACCAGCTGCCECTGG
TCCTCCAAGACCACGCCAGGCAACCACGCCOTCATCTICTCCTCGCACCATCCCCCAGEE
CTGTACCCECTECTICCCCECATCCCCTICTECCACTCCGCCECCELCTECCAGAAGTCEL
ACCGGGTICGCGCCCTIGCECEECACCGGUGA GEOECECACATCCECCECCAGAGCEEE
CAACGACGTTTGCTACTGCTACTACTACCACCACAGCCAGCTCCCATCETCCCAGCTCATCG
CTGCAAGCGCCCCGCACAAGCCAA ACATCGAAGCTCAGCAGCA ACATGAGGCAGCCGCG
GTICTGCTICCAGACCAGGAGCGAAGTGGACGTCCTGCACCACGGATACAAGTGGAGGA
WT base
AGTACGGCCAGAAGGTTGTCAAGAACAGCCTTCATCCCAGGAGCTACTACCGGTGCACC
CACAGCAACTGCCGOGTGAAGAAGCGTGTGCAGCCECTCTCGCAGCACTGCCGCATGET
GATCACCACCTACGAAGGUCGCCACACCCACACCCCCTGCAGCCACCACCACGTOGECE
GCCACCACACCEECAGCTCCECCTICACTICCTICTCA
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(E)

HisG epitope

ATGGGCAGCAGCAGCC-GCC’!‘GGTCCCGCGCGGC.-\GCGC

SUMO fusion protein
TAGCATGTCGGACTCAGAAGTCAATCAACAAGCTAAGCCAGAGGTCAAGCCAGAAGTCA
AGCCTGAGACTCACATCAATITAAAGGTGTCCGATGGATCTICAGAGATCTICTICAAGA
TCAAAAAGACCACTCCTTTAAGAAGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAG

SUMO forward primer
GAAATGGACTCCTT, AI AGATTCTTGTACGACGGTATTIAG  [ATTCAAGCTGATCAGACCCCT

M

GAAGATTTGGAGGATAACCATATTATIGAGGCTCACAGAGAACAGATTGGTGGTTGCI

WRKY3
BCAAGGCGGTAGCCAGCTEGOCCOETGCLTTCCCAGCCTCTACGOGCTCGATCCGTACE
CATCCCCTCCCCTCCTCOCTCCATIGCCCAACCAGCACAAGCTICACCAGCTGCOGCTCG
TGCTCCAACAGCAGCCAGGCGAACCACCECCTCATGTICTCCTCCCACCATCGCCRAGET
CTGTACCCECTECTICCGGGCATCCCCTICTECCACTCCGCCCCCGOCTGCCAGAAGTCC
ACCGGGTICCCCCCCTTCGOCCECACCCECCAGCOCCGCACATCCGCCECCCACGAGCEGE
CAACGAGTTTGCTAGTGCTACTACTACCACCACAGCCAGCTGCCATGCTCCGAGCICATG
CGTGGAAGCGCECCCAGAACCCAA AGATCAACCTCACCAGCA ACATCAGGCAGCCECG
GTICTGCTICCAGACCAGGAGCCGAAGTCCACGTCCTGGACCACGCATACAAGTGGAGGA
Mutated base
AGCGACGGCCAGAAGCTTGTCAACGAACAGOCTICATCCCAGGAGCTACTACCGGTGCACC
CACAGCAACTGCCGOCTGAAGAAGCCTCTCCAGCGGCTCICGGAGGACTCCCGCATGGT
GATCACCACCTACGAAGGCCGOCACACCCACACCCCCTGCAGUGACCACGACGCOGGLG
GCGACCACACGGGCAGCTGCCCCTICACTICCTICTGA

Figure 5-7. (A) TaWRKY3 expression cassette cloned into pET SUMO, also showing the position of
the mutation T/G (* = TILLING line 1996) and 6x His tag. (B) Sequence alignment showing 100%
identify between cloned insert (Query) and WRKY3 (Shjct), in reverse orientation; (C) sequence
alignment showing 99% identity between cloned insert (Query) and mWRKY3 (Shjct), in forward
orientation. Black rectangle shows position of the mutation in the cloned sequence. (D and E)
Sequences coding for the fusion proteins in the pET SUMO vector. TaWRKY3 and mTaWRKY
sequences up to 695 bp are highlighted in grey with the start codon in red. The His tag and SUMO
forward priming sites are shown in boxes. Sequences coding for the SUMO fusion protein are in
yellow. The T/G mutation is shown in red.

5.4.3 Heterologous Expression of WRKY3 and mMWRKY3 in BL21 (DE3*) E. coli

The expression of WRKY3 and mWRKY3 in transformed E. coli lines containing pETSUMO
vector was initiated by the addition of 1 mM IPTG to bacterial cultures. The resulting proteins
were analysed by SDS-PAGE. Native WRKY3 (and hence mMWRKY?3) is a 25 kDa protein.
Due to the fusion with the SUMO region and the addition of a 6xHis-tag the recombinant
proteins had an increased molecular mass of 38 kDa (Fig. 8A).

Anti-His Tag antibodies were used to confirm the expression of proteins by western blot
analysis (5.3.4). Figure 5-8.B shows that when the control BSA fusion protein (internal
control for antibody binding) and TaWRKY3 and mTaWRKY3 lanes were probed with an

anti-His Tag antibody, a band of the correct size was present for the control (70 kDa),
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TaWRKY3 (38 kDa) and mutant (38 kDa), suggesting that the correct fusions have been
made (Fig. 5-8B).

(B)

Control TaWRKY3 mTaWRKY3

70kDa

38kDa

13kDa

Figure 5-8. (A) SDS PAGE gel of protein in eight cultures of E. coli strain lane BL21 (DE3*)
containing pET SUMO with WRKY3 and mWRKY3. Total extract (lanel), uninduced cultures (lanes
2, 4,7, 10) and induced cultures (lanes 3, 5, 8, 9). (B) Western blotting of TaWRKY . Western blotting
with anti-His antibody shows the control BSA fusion protein with the molecular mass of 70 kDa, and
TaWRKY3 and mTaWRKY3 recombinant proteins at approximately 38 kDa with the N-terminal
peptide containing the 6x His-tag and SUMO fusion protein at approximately 13 kDa.
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5.4.4 Purification of WRKY3 and mWRKY3

An assay was designed to test in vitro whether TaWRKY3 and mTaWRKY3 specifically
bound to DNA. The His-tag WRKY3 and mWRKY3 proteins were purified using NI-NTA
under both native and denaturing conditions (data only shown for native conditions). The
presence of the recombinant protein in the elution fractions demonstrates the correct
translation of the His-tag and binding to the nickel affinity column. The purified protein
should be in native condition for use in electrophoresis mobility shift assays (Fig. 9A). The
eluted proteins can be directly analysed by western blotting (Fig. 9B). Protein yield was

measured via a Bradford assay (Bio-Rad) and the amount of protein was adjusted to 2 to 4 ug.

(A)
TaWRKY3 MTAWRKY3
&
o“‘\Q '@@ o
¢ Q’G) \‘,\’és‘\ 0\)
M
kDa
Higher 180 Higher
L curiy . ~—  purity
e
Fractions . Fractions .

Figure 5-9. (A) Purification of WRKY3 and mWRKY3 using NIAC under native conditions. His-
tagged protein was present in Competitive-total cell lysate and was detected in elution. Three stages of
the purification. (1) Equilibration - run off after incubation with His-tag, (2) wash - flow through after
washing (3) elution - His tag elution. (B) The eluted WRKY3 and mMWRKY 3 are detected with anti-
His antibody by western blotting.
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5.4.5 DNA binding specificity of TaWRKY protein

To test whether WRKY3 could directly bind to specific DNA sequences and to determine
how the mutation in TILLING line 1996 affects this binding the recombinant proteins were
used in an electrophoretic mobility shift assay (EMSA). Recombinant proteins were incubated
with DNA sequences representing repeating W-box elements or 30 bp regions of promoters

from parsley PR1-1 and wheat PR1-23 genes containing one W-box.

a. Control Epstein Barr nuclear antigen (EBNA) system
The light shift chemiluminesecent EMSA kit optimised the control protocol for shift assay;
three reactions were subjected to electrophoresis, transferred and detected. The results of the
control EBNA system are shown in Fig. 5-10. Each line was generated through binding

reactions prepared with biotin or unlabelled EBNA DNA.

Figure 5-10. Electrophoretic mobility shift assays (EMSAs) were performed as described in the
manufacturer’s instructions for the control system. (1) Biotin labeled band was detected by
chemiluminescent nucleic acid detection module, no protein extract for DNA to bind; an unshifted
probe band. (2) The biotin labeled DNA probe was incubated with EBNA Extract containing target
protein to effect binding and shift of the labeled DNA. (3) Biotin labeled DNA + EBNA Extract +
unlabeled EBNA DNA, giving an unshifted probe band.
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b. DNA Binding of Wheat WRKY Factors

DNA fragments containing the W-box (TTGAC) element in the region of the promoter
sequences from parsley (PcPR1-1), wheat (TaPR1-23) and synthetic oligonucleotides
containing three tandem TTGAC repeats or mutants with TTGAA were used as probes for
mobility gel shift assays (Table 5-2).

In the first set of experiments, an oligonucleotide was synthesised with end labelled biotin and
an unlabelled probes annealed to generate double-stranded oligonucleotide (5.3.6 a. Anneal
complementary). WRKY3 and mWRKY 3 proteins purified by HisPur Ni-NTA spin columns
(5.4.4 protein purification) are shown in Fig. 5-9A, and the quantity of these proteins was

measured using a Bradford assay with 2 to 4 ug purified protein.

The protein-DNA interactions were separated by electrophoresis and exposed to X-ray film.
In the case of WRKY3, binding of the recombinant protein to the oligonucleotides resulted in
a retardation of the migration of the labelled probe through the polyacrylamide gel. This was
observed by a shift in the detected band from the bottom of the resulting image to a position
higher up the gel. Furthermore, the binding activity increased the intensity of the related band
in all cases by competition with high amounts of protein and probe. Figure 5-11 A and B
show that a recombinant wild type TaWRKY3 protein was able to bind cis-DNA elements
from wheat TaPR1-23 (A) and parsley PR1-1 promoter (B), whereas the single amino acid
mutation in mTaWRKY 3 resulted in complete loss of binding to both promoter regions.

In Figure 5-11 C and D, in order to analyse TaWRKY 3 binding to the W-box, synthetic single
stranded oligonucleotides with three TTGAC repeats or TTGAA repeats for the mutant W-
box within 22 bp were annealed to generate double strand oligonucleotides and end labelled
by biotin. The WRKY3 protein bound to this element. The mutant W-box, however, also
bound to WRKY3, so that WRKY proteins may be able to bind to more than one sequence.
The mWRKY3 line 1996 did not bind to either oligonucleotide region (Wb and mWhb).
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Pc PRI-1
(A) TTATTCAGCCATCAAAGTTGACCAATAAT
Protein WRKY3 - + * + +
(-50pg) (25pg)  (1.5pg)
Mutant WRKY3 & . + - . -
. (2.5pg)
Biotin probe + + + + + + 4

Unlabelled probe

+ + - - -

Free probe

Free probe

5000

4000

3000

2000

1000

Absorbance Density

WRKY3 mWRKY3

Figure 5-11. Binding site preference of TaWRKY 3 to W-box.

(A) Sequence of the parsley PcPR1-1 promoter regions containing the W-box (in red letters).
Biotinylated DNA fragment, expressed (TaWRKY3 or mTaWRKY3) protein, unlabelled competitor
DNA. Absorbance densities were measured by densitometry using Image Lab software (Bio-Rad).
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TaPR1-23
(B)
CGCTTCCTCACGCCATCGTTGACCCCCGCT

. - + - + + + -
Protein WRKY3 (1.5pg) (2.5pg) (0.5ug)
Mutant WRKY3 + - + - - - -

(2.5ug)

Biotin probe + + + + + + +
Unlabelled probe + ) ) ) . )

Free probe —

5000
4000
3000

2000

Absorbance Density

1000

WRKY3 mWRKY3

Figure 5-12. Binding site preference of TaWRKY3 to W-box.

(B) Sequence of the wheat TaPR1-23 containing the W-box (in red letters). Biotinylated DNA
fragment, expressed (TaWRKY3 or mTaWRKY3) protein, unlabelled competitor DNA. Absorbance
densities were measured by densitometry using Image Lab software (Bio-Rad).
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W-box synthetic
©)
CGTTGACCTTIGACCTTIGACTTT
Protein WRKY3 - + + £ - + o=
(2.5pg) (0.5pg) (1.5 pg)
Mutant WRKY3 | ; . ) i - )
Biotin probe (2.5 1g)
- - + - - + o+
Unlabelled probe
- + - - - ” "
Free
probe

5000

4000

3000

2000

Absorbance Density

1000

WREKY3 mWERKY?3

Figure 5-13. Binding site preference of TaWRKY 3 to W-box.

(C) Sequence of the W-box oligonucleotide containing three tandem W-box repeats (in red letters).
Biotinylated DNA fragment, expressed (TaWRKY3 or mTaWRKY3) protein, unlabelled competitor
DNA. Absorbance densities were measured by densitometry using Image Lab software (Bio-Rad).
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mW-box synthetic

D)
CGTTGAACTTGAACTTGAATTT
. - + + + = + -
Protein WRKY3 (2.5pg) (1.5pg) (1.5ug)

Mutant WRKY3 .

- - - + - =
Biotin probe (2-518)
+ & + + + + o+
Unlabelled probe

~ - - - - - -

Free probe —

5000

4000

3000

2000

Absorbance Density

1000

WEREKY3 mWRKY3

Figure 5-14. Binding site preference of TaWRKY 3 to W-box.

(D) Sequence of the mW-box synthetic sequence containing three tandem W-box repeats with a C to
A substitution (in red letters). Biotinylated DNA fragment, expressed (TaWRKY3 or mTaWRKY3)
protein, unlabelled competitor DNA. Absorbance densities were measured by densitometry using
Image Lab software (Bio-Rad).

143



Chapter 5

5.5 Discussion

Several species of plant have been shown to contain DNA-binding proteins containing the
WRKY domain (Dong et al., 2003). The interactions between DNA and proteins are
important for the regulation of gene expression and key biological processes. For
transcriptional regulation, TFs bind to specific DNA sequences. This results in genes being
either expressed or repressed (Satapathy et al., 2018). However, further research is required
on DNA-protein docking as this interaction is still relatively unexplored and it therefore

remains a challenge in the field of structural bioinformatics.

5.5.1 A modified method

The pET SUMO cloning vector was selected to implement the expression system with a
6xHis tag at the N-terminus. This was intended to help purify the proteins, which was
believed to be essential for EMSA. The vector was successfully transformed into BL21
(DE3*) cells to detect the expression of the WRKY3 protein after 1 mM IPTG and 1%
glucose induction, which was performed with the soluble E. coli proteins. It is important to
obtain WRKY3 as a soluble protein, because attempts to refold WRKY proteins from
inclusion bodies have been unsuccessful (Ciolkowski et al., 2008). In order to use the
recombinant WRKY3 and mWRKY3, after native protein extraction and purification (via Ni-
NTA column), binding in EMSA was used to detect the complex of protein with its promoter
cis-element, namely the W-box. A labelled DNA probe (biotinylated) from Lightshift EMSA
Optimisation module was used — the system can detect 0.5 nmol of the probe to assess the

binding specificity of the transcription factors (Table 5-3).

5.5.2 Function of TaWRKY3 in DNA-binding

The results of Chapter 4 show that TaWRKY 3 plays an important role in aphid resistance; the
effects of mutations within the WRKY binding domain on aphid performance were evaluated.
It can be concluded that the mutation in line 1996 reduces aphid populations and negates the
differentiation between population increases relative to nitrogen availability. From this it can
be predicted that the mutation in the TILLING line 1996 affects the binding of TaWRKY3 to

W-box elements.

In this study, recombinant wild-type and mutant TaWRKY3 protein were examined in an E.

coli assay system in order to determine whether they were able to bind to promoter regions.
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WRKY proteins have been found to bind to the W-box and the WRKYGQK sequence is very
important for DNA-binding activity.

The gel shift assay showed that TaWRKY3 can bind to the conserved W-box element,
TTGAC (Fig. 5-11). In contrast, the mutation found in the TILLING line disrupted binding to
the W-box, showing that the replacement of Tyr 160 with Asp decreases the DNA-binding
activity of TaWRKY3 (Fig. 5-11). The mutation changes residue tyrosine (Tyr — Y), which is
polar with ability to form hydrogen bonds, to aspartic acid (Asp — D), which is a negatively
charged amino acid that makes salt bridges (Karadaghi, 2019). Amino acid residues were
found within WRKY proteins that may be important for formation of the correct zinc-finger
structure and DNA binding was reduced significantly if each of the amino acid residues in the
WRKYGQK sequence was replaced with alanine (Hayashi et al., 2001).

This is the first study of its kind in which the involvement of TaWRKY 3 binding to W-boxes
has been observed. The mutant WRKY3 line 1996 reduces aphid populations and negates the
differentiation between population increases relative to nitrogen availability (Fig. 4-5g in
Chapter 4), and the mutation in its WRKY sequence results in a dramatic loss of binding to
W-box elements. Thus, the binding change implies that TaWRKY 3 is a negative regulator of
tolerance, and it may act to initiate the response to aphid infestation (Fig. 2-6a in Chapter 2),
most likely by binding to the W-boxes in target genes (Fig. 5-12). Evidence for such a
function includes the reduced level of basal resistance to insects under high nitrogen levels
and the increased expression of TaWRKY 3 in the short term. When the mutant 1996 line was
infested with aphids, aphid fecundity was similar with low and high nitrogen levels. A
number of previous studies have reported genes taking on the role of negative regulators as
part of the defence against pathogens (Zeng et al., 2004; Wang et al., 2006). For example, the
rice gene spotted leafll, which encodes a U-box/armadillo repeat protein, is a negative
regulator of plant cell death and defence (Zeng et al., 2004). Similarly, in Arabidopsis, Wang
et al. (2006) reported that WRKY58 is a negative regulator of defence. When plants were
treated with suboptimal concentrations of benzothiadizole (BTH), it was observed that a
mutation in WRKY58 increased resistance to a pathogen (Wang et al., 2006). It is thought that
there are two possible functions of these negative regulators: preventing unnecessary
activation of defence responses when suboptimal concentrations of signal molecules are
present, or turning off SAR when a pathogen attack has been successfully overcome (Wang et
al., 2006).
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Niu et al. (2012) showed that TaWRKY?2 and TaWRKY19 proteins bind to the W-box
sequence TTGACC. They identified W-box sequences from the promoter regions of STZ,
DREB2A, RD29B, Cor6.6 and RD29A and found that TaWRKY2 or TaWRKY'19 could bind
specifically to some of these sequences by gel shift assay (Niu et al., 2012). Moreover, it has
been reported that in Arabidopsis WRKY 33 is a pathogen-inducible transcription factor and is
phosphorylated by MAPKs MPK3 and MPKG6. Phosphorylation of AtWRKY33 by MPK3 or
MPK6 was necessary for its activity, but performing an electrophoresis mobility shift assay
with AtWRKY 33 showed that phosphorylation did not affect its binding to the W-box (Mao
etal., 2011).

5.5.3 Significance of TaWRKY3 binding to PR1 genes

There have been a number of cases where W-box elements adjacent to each other have been
noted in gene promoters (Eulgem, 1999; Yang et al., 1999; Yu et al., 2001; Chen and Chen,
2002; Zhang et al., 2004). For example, in PCWRKY1, the effect on transcription of the
presence of these multiple sites seems to be a synergistic one (Eulgem, 1999), while Hv-
WRKY38, found in barley, requires two W-boxes that are closely adjacent for DNA binding
to be efficient (Mare et al., 2004).

This study used a DNA regions derived from the PcPr1-1 and TaPR1-23 genes and synthetic
tandem W-box repeats; this made it possible to demonstrate that the sequence environment
that the W-box elements are embedded into is able to affect protein binding. Previous
researchers have found closely adjacent W-box elements in several gene promoters
(Ciolkowski et al., 2008). Based on the results, the recombinant wild type TaWRKY3 was

able to bind to single W-box elements in parsley and wheat genes.

WT and WRKY3 mutant plants exhibit different levels of tolerance to different stresses; this
could be a reflection of the specificity of the WRKY protein with regard to DNA binding and
the regulation of downstream genes. PR genes, which are defence marker genes, are known to
enhance tolerance to stress (Zuo et al., 2007). The wild type WRKY 3 protein binds to the W-
box in the PR1-23 gene and DNA binding is disrupted by the mutation found in the
TILLING line. From the effect of the mutation on aphid fecundity, it is hypothesised,
therefore, that TaWRKY3 is a negative regulator of resistance. Maybe WRKY3 represses
transcription of PR1-23. Negative regulation by WRKY proteins has been reported

previously: pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and
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enhances plant susceptibility to Pseudomonas syringae (Kim et al., 2006). This results

suggest that WRKY7 is a negative regulator of plant defence.

Studied defence-related genes such as PR genes and most of the defence-regulated WRKY
genes from Arabidopsis are rapidly induced in pathogen-infected plants (Dong et al., 2003).
Regulation of PR1 gene expression is an important part of the activation of plant defence
responses (de Pater et al., 1996; Rushton et al., 1996); the present work suggests that
TaWRKY3 may regulate this important response by binding to the W-box element in the

promoter.

Within the 2100 bp sequence of the TaPR1-23 (HQ700377.1) gene downstream flanking
region there are distinct regions containing relevant cis-acting elements. The one potential
candidate W-box among the relevant elements is the sequence TCGTTGACCC (1484-1489)
(Fig. 5-4), which has a binding site for Oryza sativa WRKY proteins identified by using the
PlantPAN 2 program. Figure 5-11B shows that this W-box element is able to bind to
WRKY 3, whereas the single amino acid mutation in mTaWRKY3 results in a complete loss
of binding. Moreover, WRKY binding is not caused by just the presence of the W-box
element in the DNA region. The results clearly show that TaWRKY3 can bind to W-box
element in both promoters and to a sequence that differs by single base from the consensus
W-box sequence. However, this research has also demonstrated that we need better
knowledge of DNA elements and the cognate DNA-binding factors required for transcription

regulation in wheat.
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5.6 Conclusions

In summary, the EMSA assays indicate that WRKY3 can effectively bind to several
sequences containing a W-box, including sequences in PR1 genes. Studies on a mutant of
WRKY3 show that it has lost the ability to bind to these sequences. These results combined
suggest that the WRKY 3 transcription factor is important for a signal transduction pathway
that leads from elicitor perception to PR1 gene activation. Carrying out further work to
understand which genes are under the control of which WRKY protein will allow a model of
wheat defence response to be built, elucidating any molecular link between nitrogen input and

aphid tolerance.
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6 Chapter 6. General discussion

This study examined the effects of reduced nitrogen input and grain aphid (Sitobion avenae)
infestation to determine how commercial winter wheat cultivars Cordiale and Grafton
responded to a combination of stresses. WRKY -type transcription factors (TFs) regulate gene
expression and are involved in stress responses across the plant kingdom; this study provides
the first evidence to link WRKY TFs with the stress responses seen under conditions of
reduced nitrogen and aphid infestation in commercial winter wheat. Furthermore, this study
investigated the potential cross-talk interactions via a regulatory network involving WRKY
TFs in response to stress. Further research needs to be done to clarify WRKY TF targets in
wheat, but it has been shown that in Arabidopsis WRKY proteins regulate the expression of
many genes associated with defence. Moreover, there is evidence that AtWRKY70 behaves as
a molecular switch that influences the balance between JA- and SA-mediated signalling
(Eulgem and Somssich, 2007). These phytohormones are known to regulate gene expression
in response to various pathogens in dicotyledonous plants, for example Arabidopsis. Attack
by biotrophic pathogens generally induces SA-mediated signalling, whereas there is a close
association between JA-mediated signalling and attack by necrotrophic pathogens; both
responses have been found to act antagonistically against each another in dicotyledonous
plants. In contrast, it has been proposed that in rice, a model monocotyledonous plant, JA and
SA activate a common defence system (Tamaoki et al., 2013). WRKY proteins could
potentially serve as signalling molecules that are an essential part of a plant’s defence against
pathogens via these pathways. Pandey and Somssich (2009) have reported that the differential
expression of WRKY genes can have a direct influence on the resistance of Arabidopsis to
disease. A line where the expression of AtWRKY3 and AtWRKY4 had been knocked out was
shown to be much more susceptible to Botrytis cinerea, whereas over-expressing AtWRKY4
resulted in higher levels of susceptibility to Pseudomonas syringae. This illustrates how one
WRKY protein can regulate a plant’s defence against a number of pathogens, in both a

negative and positive way.

The grain aphid is one of the major wheat pests in many regions, causing direct damage by
feeding and indirect damage by the transmission of plant viruses (Zhang et al., 2013; Scorsetti

et al., 2017). Plant responses to aphid feeding are rapid, and these feeding-induced resistance
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responses are seen in wheat. During this response WRKY genes are regulated. To establish a
role for WRKY TFs in the defence response of wheat, TILLING lines with mutations in the
TaWRKY3 gene were selected. During bioassays these lines supported different populations of
aphids, demonstrating the effect that these mutations have on the in vivo function of the
WRKY 3 transcription factor.

6.1 Effects of reduced nitrogen on aphid performance

Chapter 2 assessed how varying the availability of nitrogen to the commercial winter wheat
varieties Cordiale and Grafton affected the performance of S. avenae. The results showed that
increased nitrogen input had a positive effect on the growth and fecundity of S. avenae. Under
control conditions (7.5 mM) nitrogen increased herbivore performance, and at the lowest
nitrogen levels (2.25 mM) insect fecundity was significantly reduced. Similar findings were
suggested by Gash (2012), who demonstrated that aphid performance was influenced by
differences in nitrate accumulation. This finding is also consistent with other studies which
reported that the protein-nitrogen contents increased with increased nitrogen levels (Aqueel
and Leather, 2011).

The relationship between aphid performance and host plant nitrogen input is complex, as the
responses to these factors are largely controlled by different hormone signalling pathways.
However, the low nitrogen conditions may prime the defence of wheat against insect attack as
a result of cross-talk via a regulatory network involving WRKY transcription factors. In
addition, Comadira et al. (2015) showed that leaf transcriptome profiles are affected by
nitrogen deficiency, with transcripts associated with sugar and nutrient signalling, protein
degradation and secondary metabolism being over-represented in leaves. Relatively little is
known about how the response to nitrogen stress and interactions with phloem feeding insects
(PFIs) affect the plant. As a result, further investigations using RT-qPCR analysis were
carried out on the variety Cordiale, which was subjected to a combination of reduced nitrogen

availability and aphid infestation.
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6.2 TaWRKYs are involved in the interaction between nitrogen and aphids in wheat

In Chapter 3, RT-gPCR showed a correlation between low nitrogen availability and reduced
WRKY gene expression in Cordiale, with 6 WRKY genes responding in a dose-dependent
manner. These experiments showed that reduced levels of nitrogen result in the down-
regulation of all WRKY genes investigated (Fig. 3-5). In contrast, analysis of the expression of
WRKY genes in response to aphid infestation over time showed an increased expression of
most WRKY genes tested (Fig. 3-6). WRKY3, for example, showed down-regulation under low
nitrogen (2.25 mM) but up-regulation during aphid infestation at all nitrogen availabilities.
Compared to the other two levels of nitrogen, the lowest level of nitrogen resulted in the same
rapid increase of gene expression but the magnitude of the response was higher for all time
points during the infestation. In addition, the response was maintained for a longer period,

staying above the basal level throughout the assay period.

Plant have developed a wide range of defence responses to pathogens, pests and sub-optimal
growing conditions (Deslandes et al., 2002). The present results suggest that the down-
regulation of WRKY genes during low nitrogen treatment may lead to an up-regulation of
defence response genes, whilst aphid infestation also results in an increase in expression of
defence genes. In previous studies using microarray-based analysis, Foyer et al. (2014)
showed that N-deficient barley plants were resistant to aphids and that the resistance may be
the result of the activation of similar signalling cascades. The data identified high levels of
WAK (wall-associated kinase) and WRKY transcription factor transcripts in the low N
transcriptome and the transcriptome from plants exposed to aphids. Another study comparing
the aphid induced transcriptome and that induced by salinity and Sitobion avenae infestation
showed that among 39 transcripts of WRKY genes identified, transcripts representing 2
different WRKY genes (TaWRKY18 and TaWRKY41) were strongly up-regulated by salt
stress at 24 h but down-regulated by aphid stress at 24 h and by the combined stresses at 6 h
(Khan, 2014)

In the present study, the regulation of plant WRKY gene expression was different between
the two stresses, but the results did suggest that WRKY3 was involved in the wheat defence

against both biotic and abiotic stress (Chapter 4 and 5). Further investigation of this dual
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response would be a priority in the continuing efforts to improve understanding of aphid

tolerance in wheat.

6.3 Investigation of the Role of TaWRKY3 using TILLING lines (TILLING — EMSA)

Currently, mutagenesis is being used to target wheat transcription factor (TF) genes of interest
to improve crop adaptation to changing environments. Most mutant lines resulting from
insertional methods are similar to knockout mutants, and as such lose gene function, and thus
will not produce the range of mutations needed for crop improvement (Chen et al., 2012). In
Chapter 4, when plants were grown under dual stresses, aphid populations were greater on
most wheat lines with mutations to the WRKY3 gene than on WT plants, showing that most of
the TILLING lines exhibited increased susceptibility to S. avenae at reduced levels of
nitrogen. Uniquely, the TILLING mutant line 1996 was also more resistant than WT at high
nitrogen plants and showed no difference in aphid populations at different nitrogen levels,
suggesting that WRKY3 may play a role in the cross-talk between tolerance to different
stresses in WT plants. The mutation in TILLING line 1996 is the only one in the highly
conserved and essential WRKY gene sequence and so is the most likely to eliminate the
WRKY3 function. The effect of the mutation was confirmed when wild-type and mutant
recombinant WRKY proteins were used in protein-DNA binding assays with known W-box

elements, as it eliminated binding to the W-box.

In the present study, three compounds involved in plant signalling pathways (jasmonic acid,
salicylic acid and abscisic acid) were extracted from wheat leaves (WT and TILLING mutant
lines 1171 and 1996) after they were infested with aphids; these compounds were investigated
via LC/MS-MS-based analysis. The role of JA in the defence response of these plants was
examined the concentration of JA isomer 1 increased in WT plants and mutant line 1996 at 9
h of aphid infestation. However, the concentration in the line 1171 mutant was initially high
and decreased at 3 h aphid infestation. The comparatively high concentrations of jasmonic
acid isomers 2 and 4 suggest that these are the main naturally occurring isomers, (-)-jasmonic
acid and (+)-7-iso-jasmonic acid and indicate a significantly up-regulated defence response at
0, 3 hand 9 h of aphid infestation. Differences in the patterns in the mutant lines suggest an
association between mutations in the WRKY domain of WRKY3 and the production of these
two isomers of JA. On the other hand, levels of SA increased in TILLING line 1996 after
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aphid infestation (see Table 4-5). WT plants had decreased concentrations of SA at 6 h and 9
h of aphid infestation. The results reported in this study with regard to JA and SA are broadly
in line with previous research; for example, Huang et al. (2015) reported that in Ulmus pumila
leaves the levels of SA and JA increased after the plant had been infested by the gall-aphid
Tetraneura akinire. The study found that the maximum values for SA and JA were in the
early stage and middle stage of gall development, respectively. Dubey et al. (2018) studied
promoters of Arabidopsis genes whose expression had been found to respond to aphids and
whiteflies. They found that promoters of two genes that responded to aphids also responded to
JA but not to SA and that there was a positive correlation between the presence of conserved
cis-regulatory elements and the activation of promoters by phytohormones (Dubey et al.,
2018). JA-dependent plant defences are generally thought to be activated by necrotrophic
pathogens and chewing insects, whereas SA-dependent defences are often triggered by
biotrophic pathogens. JA and SA signalling usually act antagonistically, but synergism
between these two phytohormones has also been observed. These responses to pathogen
attack require large-scale transcriptional reprogramming, including those of TF families such
as WRKY genes (Pandey and Somssich, 2009).

Chapter 5 investigated the binding of TaWRKY3 specifically to the W-box (TTGACC) of
TaPR1-1 and PcPR1-1 promoters and to synthetic sequences. The interesting aspects of this
study include investigating the binding of TaWRKY3 to the W-box in the downstream
flanking region of the wheat PR1-23 (HQ700377.1) gene with recombinant WRKY TFs. The
target promoters of WRKY3 and consequently the pathways it regulates can be used to
identify genes under the transcriptional regulation of this important TF. However, the
mutation of the WRKY3 line 1996 in the invariable WRKYGQK sequence reduced DNA
binding to W-box elements. A number of previous studies have demonstrated that DNA-
binding proteins containing a WRKY domain are involved in the transcription regulation of
different sets of genes (Ciolkowski et al., 2008; Niu et al., 2012), giving a regulatory network

that is activated in response to external stress factors.

With past developments in wheat breeding, yields have risen, but they have now started to
level off; with the increasing demand due to rises in the global population, it is therefore
essential to find new ways to develop varieties with higher yields. One of the ways to do this

is through the genetic manipulation of elite wheat varieties (Alotaibi et al., 2018). The use of
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dicot promoters in wheat and rice has been investigated, but they have been found to be
ineffectual (Alotaibi et al., 2018). Recent findings by Alotaibi et al. (2018) identified two
promoters that can be used to drive transgene expression in elite wheat cultivars. Such
promoters offer new possibilities for expressing genes in transgenic wheat. It is common to
employ constitutive promoter studies on plants when the genes of interest need to be over-

expressed.
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6.4 Research limitations

Transformation

To analyse the role of the TaWRKY3 gene in plants, an attempt was made to express wild-type
and mutant forms of this gene in Arabidopsis. Unfortunately, expression was not seen in the
transformation experiments, so that it was not possible to test whether they affect the ability
of Arabidopsis to resist nitrogen and aphid stresses. In any case, however, it is difficult to
predict what will occur in plants through transgenic experiments, as the TaWRKY may not
function correctly in Arabidopsis and the orthologous WRKY protein in the Arabidopsis

(AtWRKY13) may mask the action of the recombinant molecule.

As no Arabidopsis plants were obtained from transgenic experiments to investigate the
protective role of expressing a WRKY gene with known involvement in stress responses, no
further analysis could be undertaken to examine either nitrogen or S. avenae infestation stress
tolerance in transgenic plants. There was insufficient time available to analyse the

transformants generated in this experiment, and this could therefore form part of future work.

6.5 Conclusions

The studies carried out in this thesis have given insights into the roles played by WRKY
proteins, in particular providing evidence that WRKY3 regulates the link between reduced
nitrogen availability and aphid infestation tolerance. Most notably, the results indicate that
loss of WKRY 3 binding to W-box sequences causes a large decrease in fecundity of aphids at
high nitrogen, implying that WRKY3 moderates wheat plants’ response to aphids when they
are well supplied with nitrogen. This knowledge has the potential to help improve global food
production to meet the demands of the world’s increasing population. This current study
opens new avenues of investigation, particularly with WRKY3 and the possible interaction
between stresses, to elucidate mechanisms that confer resistance to insects without reducing

yields (see Fig. 6-1).
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Figure 6-1. Outline model of the interaction network linking responses to reduced nitrogen and aphids

to TaWRKY3 and other defence genes.
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6.6 Future work: suggestions

The mechanisms by which reduced nitrogen availability influences aphid performance remain

largely unknown, particularly the consequences of WRKY TF interactions for wheat and

agricultural productivity more generally. Future studies that would extend the findings

reported here by studying the link between nitrogen and aphids in wheat through the proposed

interaction involving WRKY 3 include:

Investigating whether expression of selected WRKY genes in transgenic plants
confers multiple stress tolerance, i.e. whether they enhance tolerance to nitrogen and
aphid stress in transgenic Arabidopsis plants.

Quantifying the activity of the plant’s immune system by measuring callose deposition
in TILLING mutant plant line 1996 under different nitrogen growth conditions and in
response to aphids. If the mutation directly affects the resistance response, mutant
plants can be expected to show different cellular responses relative to the wild-type
with regard to callose deposition, which are likely to correlate with differences in
aphid fecundity.

Determining which genes are under the transcriptional control of WRKY3, and
whether expression of these genes responds directly to aphids. This can be done by
testing how TFs are involved in a plant’s response to aphids, for example through
GSL glucan synthase-like genes, which code for callose synthases (Jacobs et al.,
2003). Assessing the changes in WRKY expression in response to a variety of insects
would enable us to determine which genes play specific roles, and which are
differentially expressed in response to multiple stresses. This may help to assign more
detailed functions to both the WRKYs, and the genes under their transcriptional
regulation.

Using the system of Virus Induced Gene Silencing (VIGS). This has the potential to
create regulated knockdowns of target genes to provide useful functional information,
and, if combined with transcriptome level analysis in the form of microarrays or RNA-
Seq, may start to build a knowledge base of the molecular-level effects of specific
WRKY proteins in wheat, especially TaWRKY3, as this gene was identified as being
likely to play a key role in the response to both low nitrogen and aphid infestation

stresses.
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