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Abstract 

Background. In 2010, the launch of the Malaysian Economic Transformation Programme (ETP) 

changed the agriculture sector in Malaysia from “traditional” agriculture into an agribusiness 

sector. The National Key Research Area (NKRA) in the agriculture sector focuses on raising the 

status of local herbs for potential commercialisation. Application of local herbs in the 

cosmetics industry seems to be a promising investment with the current high demand for 

natural and organic cosmetics worldwide. Given this scenario, this study focused on 

investigating the anti-ageing properties of selected medicinal plants which are considered as 

underutilised in Malaysia, as scientific evidence to support their traditional and cosmetic 

usages is lacking. 

Aim. This project aims to add agricultural and commercial value to the selected medicinal 

plants; Moringa oliefera Lam., Centella asiatica (L.) Urban, Clitoria ternatea L. and Cosmos 

caudatus Kunth. which were investigated for their anti-ageing properties (antioxidant, anti-

collagenase, anti-elastase and anti-tyrosinase activities) and their protective effects against 

oxidative-stress induced by hydrogen-peroxide and UV radiation in vitro.  

Methods: Two extracts per plant species were prepared using water and 70% ethanol to 

mimic either the traditional methods or industrial extract preparations. The total phenolic 

content (TPC) was determined by the Folic Ciacalteau method. High-performance liquid 

chromatography-mass spectrophotometry was performed to characterise the individual 

components of the extracts and to chemically authenticate the plant samples. Antioxidant 

activities were determined using diphenyl-picryl hydrazine (DPPH), 2, 2'-azino-bis (3-

ethylbenzothiazoline-6-sulphonic acid (ABTS). The results are expressed as Trolox equivalent 

(mg/g dried extract) and IC50 (µg/mL). The anti-collagenase and anti-elastase activities were 

measured by fluorescence assays and anti-tyrosinase activity using a colourimetric assay. The 
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results are expressed as percentage inhibition (%) compared to control (untreated enzymes). 

HaCaT cells (human keratinocytes) were used to investigate the protective effect against H2O2-

induced cytotoxicity by measuring the percentage cell viability of HaCaT treated with plant 

extracts compared with the control (untreated HaCaT). The protective effect against UV 

radiation was evaluated using polymerase chain reaction (PCR) targeting mitochondrial DNA 

(mtDNA) damage as a biomarker. 

Results: In the antioxidant assays. M. oliefera ethanol extract (MOE) showed the highest 

antioxidant compared with other extracts, with 941 µM/mg, 135 µM/mg, 312 µM/mg of 

Trolox equivalent (TE)/mg dried extract in the ABTS, DPPH and FRAP assays respectively. Other 

plant extracts also demonstrated antioxidant activities, but at different levels between assays. 

The correlation analysis of TPC vs. antioxidant activities of all plant extracts showed a strong 

positive correlation (R=0.74), which suggests that phenolics might be responsible for the 

observed activities. 

The collagenase, elastase and tyrosinase assays showed that C. caudatus and C. ternatea 

extracts were able to inhibit the enzymes in a dose-dependent manner. At the highest 

concentration tested (1 mg/mL), C. caudatus water extract (CCW) inhibited collagenase, 

elastase and tyrosinase activities by 48.7%, 64% and 72.6% respectively, while its ethanolic 

extract (CCE) inhibited collagenase and elastase by 46.7% and 26% respectively. C. ternatea 

extracts (CTW and CTE) inhibited collagenase, whereas CTE showed higher inhibition 

compared with CTW (70.1% vs. 82.1% respectively). Both extracts also inhibited elastase with 

28% and 24 % inhibition for CTW and CTE respectively. C. asiatica extract showed collagenase 

inhibition, where its ethanol extract (CAE) inhibited collagenase at 77.4%. Meanwhile, M. 

oliefera extracts exhibited very low (6-22%) or no activity against the enzymes. 
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In the H2O2-induced cytotoxicity assay, only the water extracts of M. oliefera (MOW), C. 

asiatica (CAW) and C. ternatea (CTW) demonstrated significant protective effects (p<0.05). 

Such activity was absent in the ethanol extracts of the plant species, mainly due to the lower 

concentrations that had to be used since the ethanol extracts were more toxic to HaCaT 

compared with the water extracts. Similar results were observed in the UV-induced mtDNA 

damage assay where the water extracts showed significant protective effects compared to the 

ethanol extracts. In the UV filter experiment, the water extracts of C. asiatica, C. ternatea, C. 

caudatus (CAW, CTW, CCW) and MOE showed significant protective effects against UV-

induced mtDNA damage (p <0.05). The UV spectra of each plant extract demonstrated UV 

absorbing properties, which may explain the protective effect observed. Other than that, the 

antioxidant properties of the extracts could also play a role by lowering UV-induced ROS level 

in the cells. This is further supported by the comparison of potency, which showed that MOE 

exerted protective effects in both UV filter and pre-incubation experiments, where MOE was 

shown to have the highest antioxidant activities in comparison with the other extracts in the 

DPPH, ABTS and FRAP assays. 

Conclusion.  The findings in this study demonstrate that the prepared extracts of the selected 

medicinal plants have high potential to be developed into antioxidant, anti-wrinkle, 

hypopigmentation agents and UV-filters. Significant protective effects against the targets of 

interest were observed that may provide a scientific explanation for the putative traditional 

and commercial use of the plants. These findings should therefore increase the value of these 

underutilised medicinal plants. 
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Introduction 

1.1 Introduction  

The agricultural sector in Malaysia has been in transition to become an agribusiness sector 

since the launch of the Malaysian Economic Transformation Programme (ETP) in 2010. One of 

the main agenda in the agriculture National Key Economic Area (NKEA) policy is to uplift the 

status of local herbs for commercialisation (Ministry of Agriculture Malaysia, 2010). 

Applications of local herbs in the cosmetics industry may represent a promising investment, 

given the current worldwide trend for natural and organic cosmetics. The estimated market 

for natural and organic cosmetic is predicted to grow from USD 8 billion in 2013 to 

approximately USD 16 billion by 2020 (Grand View Research, 2016). At the national level, the 

emerging trend of “halal” cosmetics in compliance with Sharia law contributes to the further 

relevance of the use of herbs in the cosmetics industry. The “halal 1” cosmetic industry in the 

Southeast Asia region was valued at USD 945.8 million in 2015 and is expected to expand to a 

compound annual growth rate (CAGR) of 10.2% (Future Market Insight (FMI), 2015; Hassali et 

al., 2015). Malaysia is at an advantage for the industry in terms of this industry because the 

Malaysian tropical rainforest has been predicted to harbour more than 2000 species of flora,  

representing a rich source of exotic and unique natural ingredients (Burkill, 1966).  

Local traditional ethnobotanical knowledge suggests that many herbs possess remarkably high 

medicinal value, and some herbs have been utilised in traditional skin care or as cosmetics. 

For example, a specific plant or plant parts, commonly known as “ulam” by local people, is 

believed to promote a younger looking skin complexion and to prolong age. “Ulam” usually 

falls within the group of vegetables that contain high-value phytochemicals, such as the 

                                                      
1 The term “halal” originated from an Arabic word meaning lawful or permissible, and “halal” cosmetics must 
not contain porcine or non-Sharia law compliance animal by-products and are typically alcohol free. 
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phenolics that are known to have beneficial effects on health and the skin. “Ulam” may be 

referred to as “Malaysian herbs”, “vegetable salad” or “Malay salad” in the scientific 

literature, and it has been reported to have high antioxidant potential (Huda-Faujan et al., 

2007; Liliwirianis et al., 2011; Reihani and Azhar, 2012). Meanwhile, antioxidants have been 

postulated to play a significant role in the management of oxidative stress-related skin agieng. 

In the present study, four medicinal plants were selected to be investigated for their anti-

ageing properties with potential exploitation as cosmetic ingredients. These are considered to 

be underutilised in Malaysia and lacking in scientific evidence to support their traditional and 

cosmetic usages. The selected medicinal plants are Moringa oliefera Lam., Centella asiatica 

(L.) Urban, Clitoria ternatea L. and Cosmos caudatus Kunth. 
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 Literature Review 

2.1 Malaysian agriculture: from agriculture to agribusiness  

The agricultural sector plays a significant role in Malaysia’s economic development. It provides 

rural employment, increases rural incomes and ensures national food security. In 2009, the 

sector contributed merely 4 % of Malaysia’s gross national income and was traditionally 

known as the poor man’s sector. In 2010, the agriculture sector was identified as a Malaysian 

National Key Economic Area (NKEA) in the national Economic Transformation Programme 

(ETP). The launch of the Malaysian ETP initiated the transformation of the sector from 

“traditional” agriculture to an agribusiness sector. The sector continues to expand, and in 2015 

provided a contribution of 8.9 % to the national income. The Agriculture NKEA, as identified 

in the ETP focuses on selected sub-sectors which have high-growth potential, and the herbal 

industry is one of the 16 entry point projects (EPPs) that have been identified as the sources 

of national economic growth (Ministry of Agriculture Malaysia, 2010).  

2.2 The cosmetics industry provides a global market for local herbs 

In response to the transition of the Malaysian agriculture sector to agribusiness, the use of 

local herbs in the cosmetics industry seems to be very promising. Recent trends in global and 

national cosmetic markets indicate a huge market for local herbs, and the market for organic 

cosmetics is predicted to grow from approximately USD 8 billion in 2013 to  USD 16 billion by 

2020 (Grand View Research, 2016), and this figure doubles to USD 32 billion when natural 

cosmetics are included (Kline Group, 2015). Moreover, the Asian Pacific remains the fastest 

growing region for the cosmetics industry in the recent years, with a market value estimation 

of USD 60 billion (US Department of Commerce, 2015). In 2013, the total trade volume in 

cosmetics and toiletries, both import and export, in Malaysia was approximately USD 407 
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million (Department of Statistic Malaysia, 2013).  The new emerging “halal” cosmetic market 

which was valued at USD 945.8 million in the Southeast Asia region in 2015 (Future Market 

Insight (FMI), 2015). This market segment is believed to contribute to the  reductions in 

cosmetic imports and to promote local cosmetic manufacturing in Malaysia (Hassali et al., 

2015). Factors such as the large Muslim population, public awareness and rising concerns 

about the source of cosmetics ingredients among Muslim and other concerned consumers 

contribute to increasing demand for plant-based cosmetics, which further supports the 

relevance of the utilisation of local herbs in the cosmetics industry. 

2.3 Phytocosmetics: a beauty secret from the past 

The term phytocosmetics is relatively new in the cosmetic industry. However, the use of plants 

in cosmetics has been known since time immemorial, as evidenced in historical 

documentation such as Eber’s and Smith’s papyri from the Ancient Egyptian civilization (Leake, 

1952), and the “De Materia Medica”2, “De compositione medicamentorum secundum locos”3 

and “De compositione medicamentorum per genera”4 from the Greek and Roman empires 

(Staub et al., 2016; Grivas, 2017). Cosmetics recipes and ingredients are mentioned in detail 

in historical texts and are mostly derived from herbs. In Egypt, the traditional practice of using 

herbs or natural ingredients for cosmetic purposes has continued until the present day, as 

evidenced in a recent case study of 376 Alexandrian women (Elansary et al., 2015).  

Traditional Malaysian knowledge also includes valuable information on the usage of plants for 

cosmetics and medicine. The current Malaysian population consists of Malays (67.4%), Indians 

(24.6%), Chinese (7.3%) and other minorities (0.7%) (Department of Statistic Malaysia, 2010). 

Of the minorities, one group of indigenous people called the “orang asli” are believed to have 

                                                      
2 De Materia Medica = “On the Medical Material”. 
3 De compositione medicamentorum secundum locos = “On the Composition of Drugs by Parts”. 
4 De compositione medicamentorum per genera = “On the Composition of Drugs by Type.” 
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great influence on the traditional practices in Malaysia (Alsarhan et al., 2014). Their knowledge 

of plants for food and medicine is extensive, mainly because they live very close to nature and 

most “orang asli” villages are located near the edges of the national rainforests in Kelantan, 

Pahang, Negeri Sembilan and Kedah (Jeba et al., 2010). Plant species with medicinal properties 

as used by the “orang asli” have been reported in several studies, such as: 146 species of 

plants used by local traditional practitioners in Kelantan (Ong and Nordiana, 1999); 62 plant 

species used by the “orang asli” in Perak (Jeba et al., 2010); 39 species plants used by the 

Kensiu tribe of the “orang asli” in Kedah (Mohammad et al., 2012); and 25 plant species used 

in postpartum practices in Perak and Negeri Sembilan (Othman et al., 2014). Although there 

is no specific compilation of herbs for cosmetics recorded based on traditional Malaysian 

knowledge, the previously mentioned study by Ong and Nordiana (1999) has reported an 

“ulam” called Curcuma longa L. (synonym Curcuma domestica Valeton), which should be 

consumed fresh to improve skin complexion.  The beneficial effects of “ulam” on the skin are 

well-known by locals, and this knowledge has been passed on orally across the generations.  

2.4 “Ulam” as a source of cosmetics ingredients 

In Malaysia, “ulam” refers to certain parts of or the whole plant, which is consumed as a 

vegetable salad. Some “ulam” is cooked or partly cooked before eating, but most of the time 

it is eaten raw and fresh. Some popular “ulam” are being studied mainly for their antioxidant 

properties and are referred to as “Malaysian herbs”, “vegetable salad” or “Malay salad” in the 

literature (Huda-Faujan et al., 2007; Liliwirianis et al., 2011; Reihani and Azhar, 2012). The 

antioxidant properties of “ulam” have been linked to the presence of phenolic compounds 

which are known to have beneficial health effects and to reduce the risk of many chronic 

diseases such as diabetes, heart disease, cancer and ageing (Balasundram et al., 2006). The 

use of “ulam” as cosmetics ingredients is highly relevant given the current trends demanding 
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organic, natural and “halal” cosmetics as supported by the market analysis described in the 

previous section. Moreover, natural ingredients from herbs, fruit and vegetables are expected 

to provide fuel for the cosmetics industry, as they are excellent sources of antioxidants (Grand 

View Research, 2016). 

2.5 The medicinal plants selected for the study 

Given the Malaysian agriculture NKEA and the current trends in the cosmetics industry as 

previously discussed, four medicinal plants were selected for this study. The selected plants 

were M. oliefera Lam., C. ternatea L., C. asiatica (L.) Urb. and C. caudatus Kunth., as shown in 

Figure 2.1. These plants are underutilised in Malaysia and scientific evidence supporting their 

traditional and cosmetic usages is lacking. The criteria for selection were as follows. 

 Potential mass cultivation  

All the selected plants are listed as agriculturally important plant species in the Malaysian 

NKEA with high potential for mass cultivation due to their high resistance to disease and 

drought. This is critically important to balance the demand and supply of raw materials for 

industrial applications. Therefore, further research on the potential commercial application of 

the plants is needed.  

 Ethno-pharmacological benefits for the skin  

All the selected plants or plant parts used in the study are in the category of “ulam” based on 

their ethnopharmacologically defined benefits for the skin either by consumption or 

application on the skin as a paste. Additionally, the application of food plants in cosmetics 

products is usually perceived as safer by consumers. 
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 Limitations in the scope of the study (anti-ageing properties) 

An extensive literature search was performed to further support the selection of plants in this 

project. The literature search was performed using the keywords of each plant’s scientific 

name, and later was narrowed down by adding the keywords “ageing” or “aging” and “skin 

ageing” or “skin aging” to the search terms. As expected, very few research studies were found 

for these plant species in the anti-ageing studies, except for C. asiatica which has been 

relatively well-researched in this area. 
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Figure 2.1: Figure shows the selected plant species in the study. The English and local names 

for each of the plants are: horseradish tree/kacang kelor (A); butterfly pea/bunga telang (B); 

gotu kola/pegaga (C); and wild cosmos/ulam raja (D). Images A,B,C and D retrieved from   

Crasto ( 2014), Aruna (2009), Anon (2014) and  Morad (2011) respectively. 

  



Moringa oleifera Lam. 

Moringa oliefera Lam. (Moringaceae) is a perennial softwood tree growing to approximately 

5 to 10 m in height (Palada, 1996). It originates from the south of Asia, where it grows in the 

Himalayan foothills and is believed to be native to India, Pakistan, Bangladesh and Afghanistan 

(Paliwall et al., 2011). Nowadays, the plant has spread to South and Central America, Mexico, 

Hawaii and the Asian wider region, where it is commercially grown due to its economic and 

commercial value (Palada, 1996; Paliwall et al., 2011). M. oliefera is referred to with various 

names, such as the horseradish tree, drumstick tree, benzolive tree, kelor, remunggal, 

marango, mlonge, moonga, mulangay, nébéday, saijhan, sajna or ben oil tree, depending on 

region of cultivation (Farooq et al., 2012). The medicinal potential of M. oliefera has long been 

recognised in the Ayurvedic and Unani medicinal system. Almost all parts of the plant (root, 

bark, gum, leaf, fruit (pods), flowers, seed and seed oil) are used in the indigenous medicine 

to treat various ailments and diseases, including as an abortifacient, an antidote for centipede, 

scorpion or spider bites or stings, bactericide, diuretic,and a tonic (Palada, 1996; Mishara et 

al., 2011). Although the cultivation of M. oliefera is increasing, the plant is still considered to 

be  underutilised in Southeast Asian countries (Andarwulan et al., 2012). In Malaysia, the 

traditional usage of M. oliefera focus on the leaves. A survey by Nordiana and Ong (1999) 

recorded the use of M. oliefera for constipation (cooked leaves) and swollen breasts due to 

childbirth (pounded leaves). However, the most common use of the leaves is as a salad or 

“ulam”, particularly to benefit the skin. The consumption of M. oliefera leaves is also typical 

in Indonesia and Africa due to its high nutritional content. It has been reported that the 

powdered leaves are used as a supplement for pregnant and breastfeeding women and as an 

alternative and inexpensive solution to treat malnutrition (Sambou Diatta, 2001; Fuglie, 2005). 

The high antioxidant potential of M. oliefera leaves is attributed to phenolics, flavonoids and 

vitamins, and can play a role in defence against skin ageing as believed by the elderly  

10 
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(Sreelatha and Padma, 2009; Vongsak, Sithisarn, Mangmool, et al., 2013; Vongsak et al., 2014). 

However, the scientific evidence of the protective effect of the leaves against skin ageing is 

still lacking based on the extensive literature search performed. Some of the 

phytoconstituents present in M. oliefera leaves are as shown in Figure 2.2. The leaves of M. 

oliefera consist of ascorbic acid (1), beta-carotene (2), caffeic acid (3), calcium, choline, 

copper, fiber, iodine, iron, kaempferol (4), oxalic acid (5) and phosphorus (Duke, 1999). 

Flavonols such as quercetin (6) and kaempferol are the most commonly detected flavonoids 

in the leaves extract, where their 3-O-glucosides were found; isoquercetin (7) and astragalin 

(8), together with crypto-chlorogenic acid (9) (Vongsak et al., 2013; Vongsak, Sithisarn and 

Gritsanapan, 2013; Vongsak et al., 2014). The leaves also contain α- and γ-tocopherol (10 and 

11) (Sanchez-Machado et al., 2006).
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Figure 2.2: Chemical structure of major phytoconstituents in M. oliefera leaves. 

Clitoria ternatea L. 

Clitoria ternatae L. (Leguminosae) or the butterfly pea originates from tropical Asia and was 

later distributed to South and Central America, the East and West Indies, China and India (Devi 

et al., 2003). There are at least 60 species in the genus Clitoria, and Clitoria ternatea L. is the 

most frequently reported species (Devi et al., 2003). The plant is perennial and easily identified 

by its conspicuous blue and white flower resembling a conch-shell (Mukherjee et al. 2008). 

The traditional usage of C. ternatea are extensive, from medicinal to food dyes for its naturally 

vivid blue colour. There have been many pharmacological activities reported for the plant, 

such as antimicrobial, antipyretic, anti-inflammatory, anticonvulsant, diuretic, anaesthetic, 

antidiabetic and insecticidal (Mukherjee et al., 2008; Kosai et al., 2015). Previous research has 

focused on the roots, seeds and leaves of the plants for its common uses as a laxative and a 

brain and nerve tonic in the Ayurvedic medicinal system. The root juice is mixed with honey 

and ghee to improve mental health and memory in children or it is used as a laxative when 
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combined with ginger (Mukherjee et al. 2008). However, there is a lack of research on the 

biological activities of the flowers to explain their traditional and potential uses. Apart from 

ornamental purposes, the flowers have traditionally been consumed in a salad or prepared as 

an herbal tonic drink to promote younger looking skin complexion and a defence against skin 

ageing (Kaisoon et al. 2011; Lijon et al. 2017). Although a few authors have reported the use 

of C. ternatea flower extract as a cosmetics ingredient (Tantituvanont, 2008; Kamkaen and 

Wilkinson, 2009; Lijon et al., 2017), comprehensive studies of the C. ternatea flowers with 

respect to skin ageing are lacking. The flowers have been reported to have antioxidant 

activities, mainly due to anthocyanin content (Kamkaen and Wilkinson, 2009; Kaisoon et al., 

2011; Iamsaard et al., 2014; Chayaratanasin et al., 2015). Anthocyanins are polyphenols with 

known antioxidant potential that play a significant role in the prevention of diseases such as 

cancer and cardiovascular diseases as well as defence against skin ageing (Miguel 2011). The 

plants are also used as forage for livestock, as they are highly palatable and nutritive (Gomez 

and Kalamani, 2003). The anthocyanin derivatives of ternatins, a group of (poly)acylated 

anthocyanins such as the delphidinins are the compounds that cause the bluish color of this 

species. Figure 2.3 shows the ternatins C1-C5 (1-5) and preternatins A3 (6) and C4 (7) that 

have been isolated from a young C. ternatea flowers (Terahara, 1998; Kazuma et al., 2003a).  
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Figure 2.3: Anthocyanins present in the flowers of C. ternatea. 

Other than that, flavonol glycosides of kaempferol, quercetin and myricetin, including  three 

malonylated flavonol glycosides; kaempferol 3-O-(2″-O-α-rhamnosyl-6″-O-malonyl)-β-

glucoside, quercetin 3-O-(2″-O-α-rhamnosyl-6″-O-malonyl)-β-glucoside, and myricetin 3-O-

(2″-O-α-rhamnosyl-6”-O-malonyl)-β-glucoside also have been found in the flower petals, as 

shown in Figure 2.4 (Kazuma et al., 2003b). 
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Figure 2.4: Flavonols glycosides present in the flowers of C. ternatea. 1, kaempferol 3-O-(2”-
O-α-rhamnosyl-6”-O-malonyl)-glucoside; 2, quercetin 3-O-(2”-O-α-rhamnosyl-6”-O-malonyl)-
β-glucoside; 3, myricetin 3-2G-rhamnosylrutinoside; 4, quercetin 3-2G-rhamnosylruti- noside;
5, kaempferol 3-2G-rhamnosylrutinoside; 6, kaempferol 3-neo- hesperidoside; 7, quercetin 3-
neohesperidoside; 8, myricetin 3-neohesperidoside; 9, kaempferol 3-rutinoside; 10, quercetin
3-rutinoside; 11, myricetin 3-rutinoside; 12, kaempferol 3-glucoside; 13, quercetin 3-
glucoside; 14, myricetin 3-glucoside. Structures adapted from Kazuma et al.(2003b).
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Cosmos caudatus Kunth. 

Cosmos caudatus Kunth. (Asteraceae) is an annual herb originating from Latin and Central 

America, which later spread to the Asian region via the Philippines (Moshawih et al., 2017). 

The usages of the plant are quite extensive, from ornamental and culinary to medicinal. In 

Asian countries such as Malaysia and Indonesia, the plant is believed to have anti-ageing 

properties that can promote a younger looking skin complexion. C. caudatus is called “Ulam 

Raja” by locals in Malaysia, which is translated as the ‘King’s Salad’. The belief is followed with 

the traditional practice of eating the plant’s leaves and young shoots as a salad, either cooked 

or fresh, to defend against skin ageing. The pharmacological activities of the plant can be 

antioxidant, anti-microbial, anti-fungal, anti-diabetic, anti-hypertensive, and anti-

inflammatory, as well having bone protective effects (Cheng et al., 2015). Among these 

activities, the antioxidant property has often been reported (Shui et al., 2005; Andarwulan et 

al., 2010; Sumazian et al., 2010; Ahmad; Hassan et al., 2012; Mediani et al., 2012; Mediani et 

al., 2013; Mohamed et al., 2013; Javadi et al., 2015). The antioxidant capacity of C. caudatus 

has been reported to be the highest among 21 tropical plant extracts studied, and comparable 

to the synthetic antioxidants (Mustafa et al., 2010). This is believed to be attributable to its 

phenolic, flavonoid and vitamin C content (Andarwulan et al., 2010). Some of the individual 

bioactive compounds in the plant extracts are hydroxycinnamic acid derivatives (chlorogenic 

(1), neochlorogenic (2), crypto-chlorogenic, caffeic and ferulic acids (3)) and flavonoids 

(quercetins, pro-anthocyanidin (4), catechin (5), rutin (6), myricetin (7), luteolin (8), 

epicatechin (9), naringenin (10), kaempferol and apigenin (11)), as shown in Figure 2.5. The 

extensive literature search indicated that there is, nevertheless, a paucity of data on this 

species (Shui et al., 2005; Ahmed; Mediani et al., 2012; Andarwulan et al., 2012; Javadi et al., 

2014). 
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Figure 2.5: Major phytoconstituent in C. caudatus. 

Centella asiatica (L.) Urb. 

Centella asiatica (L.) Urb. is a creeping, perennial plant from the Apiacaeae family and a well-

recognised medicinal herb in Asia. It is commonly known as Gotu-kola, Asian pennywort, 

Indian pennywort or tiger herb. In traditional Asian medicine, C. asiatica has been used for 

dermatological conditions such as to improve small wounds, burns, for wound healing and as 
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an anti-inflammatory agent for eczema (Bylka et al., 2013). In Malaysia, C. asiatica is usually 

eaten as “ulam” and is believed by older folks to promote young looking healthy skin. The 

functional properties of this plant species were reviewed by Seevaratnam and  Banumathi 

(2012), and  antioxidant activity was most frequently reported. In comparison to the other 

plant species selected in this study,  there is a relatively well-established literature on its 

benefits to the skin, mainly for wound healing (Somboonwong et al., 2012; Wu et al., 2012); 

but comprehensive studies of C. asiatica with respect to defense against skin ageing are still 

lacking. The main active compounds present in Centella asiatica are pentacylic triterpenes 

such as asiatic acid (1), madecassic acid (2), and their respective glycosides derivatives; 

asiaticoside (3) and madecassoside (4), where a trisaccharide moiety are linked to its aglycone, 

as shown in Figure 2.6 (Inamdar et al., 1996; James and Dubery, 2009; Rumalla et al., 2010). 

These compounds are used as biomarkers to authenticate the plant species, and responsible 

for many of its bioactivities (Maquart et al., 1990; Hashim, 2011; Bylka et al., 2013). 

Figure 2.6: Major phytoconstituents present in C. asiatica. 
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2.6 Overview: skin ageing 

This thesis focuses on potential applications of plant extracts in cosmetic product 

development. “Anti-ageing” properties, with respect to skin ageing and cosmetic products, 

include skin lightening and the reduction of skin spots, skin renewal and stimulation, plumping 

to give smoother skin and moisturising (Center for the Promotion of Imports from Developing 

Countries (CBI), 2016). Skincare products with “anti-ageing” effects are the most sought after 

by consumers for their multiple activities.  

2.7 Skin ageing (intrinsic and extrinsic) 

There are two distinct types of skin ageing: intrinsic and extrinsic skin ageing. Intrinsic ageing 

is a consequence of chronological ageing and is determined by the individual genetic profile 

and the passage of time. Meanwhile,  extrinsic skin ageing, also termed as “photo-ageing”, is 

caused by external factors such as ultraviolet light, smoking, the effects of chemicals, 

nutrition, and pollution (Fisher et al., 2002; Farage et al., 2008; Situm and Sjerobabski-Masnec, 

2010). Both types of ageing are characterized by the loss of the  structural integrity of the skin, 

and particularly the loss of skin elasticity, the reduction of local vascularization and the 

appearance of conspicuous lines and wrinkles on the skin surface. However, photo-ageing 

involves worse conditions of coarse wrinkles with the presence of hyperpigmentation and 

inflammation (Farage et al., 2008). 

2.8 Anatomy of the skin 

The human skin consists of three layers, the epidermis, dermis and hypodermis, as illustrated 

in Figure 2.7A and further described below.  
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Figure 2.7: Cross-section of the skin and its appendages (A), the layers of the epidermis (B), 
the epidermal melanin unit (C) and melanosome (D). Images retrieved from Cichorek et al. 

(2013). 

 The epidermis  

The epidermis is the outer layer of the skin that provides a barrier to the external environment. 

It consists of two main cell types, which are keratinocytes (95%) and melanocytes (5%) 

(Kolarsick et al., 2011). The epidermis is arranged into four sub-layers as shown in Figure 2.7B. 

The stratum corneum or horny layer is the outermost layer of the epidermis and is exposed to 

the environment. This layer of the epidermis protects the underlying tissue from infection, 

dehydration, chemical and mechanical stress. It contains nonviable cells (corneocytes) and 

keratin scale (5-10 layers) that are continuously shed and replaced by the underlying layers 

through the differentiation (cornification) of the living keratinocytes into corneocytes 

(Tagami, 2008; Calleja-Agius et al., 2011). In the process, the cell membrane is replaced by a 
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layer of ceramides which is covalently bonded to structural proteins making the stratum 

corneum a compact barrier membrane (Tagami, 2008; Amen et al., 2013). 

The stratum granulosum or granular layer is a thin layer of 1-3 cells thickness of granulated 

squamous cells containing sulphureted proteins rich in the amino acid cysteine (Burlando et 

al., 2010; Eckhart et al., 2013). The keratinocytes in this layer also contain enzymes that have 

the potential to degrade vital cell organelles such as the nuclei, so that the cells can gradually 

differentiate into the corneocytes of the stratum corneum (Eckhart et al., 2013).  

The stratum spinosum or spinous layer contains multilayered cuboidal cells in 5-15 layers 

found between the stratum granulosum and stratum germinativum (basal layer). The 

keratinocytes in this layer synthesise several types of keratins that aggregate to form 

intermediate filaments, and later produce cell membrane connecting structures called 

desmosomes (Haftek et al., 1997). The filamentous structures are anchored to desmosomes 

that strengthen the adhesion among cells and provide the resistance of the skin to frictional 

forces. 

The stratum germinativum/basale or basal layer is the deepest layer of the epidermis that 

contains a single layer of cuboidal cells. The keratinocytes in this layer possess all typical cell 

organelles and the only layer that is capable of proliferating (Burlando et al., 2010). These are 

the stem cells of the epidermis. Melanocytes reside in the basal layer of the epidermis forming 

the epidermal melanin unit, shown in Figure 2.7C surrounded by approximately 30-40 

keratinocytes which favour the transport of melanosomes from the melanocytes to 

keratinocytes (Cichorek et al., 2013), as shown in Figure 2.7D. Other specialised cells present 

in this layer are Langerhan cells, which form part of immune response, and Merkel cells, which 

are involved in the touch response (Kolarsick et al., 2011). 
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 The dermis 

The dermis is the second compartment beneath the epidermis and is 3-5 mm thick. It is 

characterized by an extensive extracellular matrix (ECM) containing the matrix proteins 

collagen and elastin that provide strength, firmness and elasticity to the tissue. It also contains 

hair follicles, sweat glands, capillaries and nerves that provide the senses of touch and heat 

(see Figure 2.2A). Fibroblast cells are the primary cell type in the dermis that can move across 

the tissue and produce precursors of the extracellular matrix that self-assemble to form 

collagen and elastin fibres. The integrity of the extracellular matrix depends on the equilibrium 

of the deposition of collagen, elastin and other matrix protein such as proteoglycans and 

glycosaminoglycan and the degradation processes caused by matrix-metalloprotein (MMP) 

released from the fibroblasts and keratinocytes. 

 The hypodermis 

The hypodermis or subcutaneous tissue is located below the dermis and is not part of the skin. 

Its purposes are to provide insulation, a reserve energy fuel for metabolism, and a cushion or 

padding for potentially damaging or traumatic events because the hypodermis contains 

mainly adipose tissue and fat. It also consists of blood and lymphatic vessels. 

2.9 Five anti-ageing theories in personal care and the cosmetics industry 

Many anti-ageing theories have been proposed, but no single theory can explain all of the 

mechanisms involved in skin ageing. In the personal care and cosmetics industries, five well-

known theories are accepted (Wilson, 2008).  

 The wear-and-tear theory 

This was first introduced by Dr. August Weismann, a German biologist, in 1882 (Winther, 

2001). This theory proposes that accumulated damage to the vital parts of the cells, tissues 

and organs will wear them out, leading to death (Jin, 2010; Goldsmith, 2014). 
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 The neuroendocrine theory 

The neuroendocrine theory was proposed by Dr. Vladimir Dilman in 1954 (Dilman and Dean, 

1992). It suggests that the hypothalamus loses its ability to precisely regulate the release of 

hormones which regulate certain metabolic cascades and autonomic activities of the body 

(Tosato et al., 2007; Mitteldorf, 2013). The dysregulation of stress mediator hormones such 

as cortisol could affect the expression of ECM enzymes through binding domains on gene 

promoter regions or direct interactions with transcription factors such as Activating Protein 1 

(AP-1) and the nuclear factor- κB (NF- κB), resulting in the increased breakdown of collagen 

(Fisher et al., 2002; Chen and Lyga, 2014). 

 The cross-linking theory 

This theory was first introduced by Dr. Johan Bjorksten in 1941 (Bjorksten, 1942, 1968). 

According to this theory, the progressive linking together of large vital molecules causes 

impairment of intracellular transport, slowing the biological process and therefore, reduces 

the safety margins of vital functions (Bjorksten and Tenhu, 1990). The cross-linking of skin 

protein collagen has been shown to be partly responsible for wrinkles and other age-related 

changes in the skin (Gkogkolou and Böhm, 2012; Snedeker and Gautieri, 2014).  

 The telomere theory 

This concept was developed by Alexei Olovnikov and John Watson in 1972 (Olovnikov, 1971, 

1973; Watson, 1972). Telomeres are nucleic acid sequences located at the end of 

chromosomes, and they provide extra buffer protection to the DNA from enzymatic 

degradation or fusion (Kosmadaki and Gilchrest, 2004). With the continuation of cell division, 

telomeres eventually shorten, and the cells cease to divide themselves leading to cell death 

(Ning et al., 2003; Dellambra and Dimbri, 2008; Jin, 2010). This theory is supported by the 

phenomenon of cellular senescence, a dormant state in which cells remain alive but can no 
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longer divide, which was discovered by Dr. Leonard Hayflick (Hayflick, 1965; Shay and Wright, 

2000).  

 The free radical theory 

 This was first introduced by Harman (1956), based on the chemical nature and ubiquitous 

presence of free radicals in living systems. Any molecule that possesses a free electron and is 

highly reactive is known as a “free radical”, and it can steal electrons from paired electrons in 

neighbouring molecules and thereby other reactive species are created, which may be either 

reactive oxygen species (ROS) or reactive nitrogen species (RNS) (Halliwell, 2006; El-Bahr, 

2013). The accumulation of oxidative damage in cells, DNA, proteins and lipids is believed to 

be a major contributor to ageing (Harman, 1992). 

2.10 Oxidative stress and skin ageing 

Of all of these theories, the free radical theory is the most deeply rooted and widely accepted 

(Harman, 1991; Alfredo et al., 2014). Oxidative stress, a condition where the oxidant is surplus 

over the antioxidant, is another concept associated with this theory. In this condition, the 

innate antioxidant defense system is unable to maintain the redox balance within cells 

(Rinnerthaler et al., 2015; Ahsanuddin et al., 2016).  

 The role of UVR  

One of the major environmental factors causing extrinsic or photo-ageing is ultraviolet 

radiation (UVR). Both UVA (320 nm-400 nm) and UVB (290-320 nm) radiation are equally 

responsible for skin damage because UVA (long wavelength) penetrates deeper into the skin 

compartments of the epidermis and dermis and UVB (short wavelength) photons are more 

active than UVA photons, despite their penetration being limited to the epidermis (Krutmann 

and Humbert, 2011). Whenever UVR hits the skin, some of the photons are absorbed the 

natural chromophores such as porphyrins and flavins, vitamin K and B6 derivatives, bilirubin, 
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urocanic acid, advanced glycation end (AGE) products, and even DNA (Young, 1997) but, 

following an excitation phases the chromophores become electron donors that react with 

other electron acceptors to form free radicals.  Free radicals or ROS generated from UVR such 

as the superoxide anion (O2
•-), hydroxyl radical (•OH), or singlet oxygen (1O2) (Fisher et al., 

2002; Krutmann and Humbert, 2011; El-Bahr, 2013) can cause oxidative damages to DNA, 

lipids and proteins, which may result in altered protein expression and reduced cellular 

function (Finkel and Holbrook, 2000; Sinha and Häder, 2002). It is also known that UV can 

cause direct damage to DNA, including DNA strand breaks and the formation of pyrimidine- 

and purine-dimers (Sinha and Häder, 2002; Rastogi et al., 2010). 

 The role of mitochondria 

Mitochondria are organelles found within the cytoplasm, which function to generate energy 

for the cell in the form of adenosine triphosphate (ATP) (Fawcett, 1981; Krutmann and 

Schroeder, 2009). The mitochondria consist of an outer membrane, an inner membrane 

folded into cristae, and their own circular 16 kb double-stranded DNA, present in multiple 

copies attached to the inner membrane (Fawcett, 1981). Mitochondrial DNA (mtDNA) 

encodes the gene for 13 polypeptide subunits, which are part of the oxidative phosphorylation 

or electron transport chain (ETC) that produces energy and free radicals (Hüttemann et al., 

2007). It is estimated that up to 1% of mitochondrial ETC leads to the formation of O2
•-  from 

the leakage of electrons (Turrens, 2003; El-Bahr, 2013). The electrons fed into complexes I and  

II are transferred to complex III, and finally to complex IV where intermediate molecules are 

retained until four electrons are deposited at the molecular oxygen to produce water (Turrens, 

2003; Hüttemann et al., 2007; El-Bahr, 2013). However, the electrons can leak prematurely 

from complexes I and III before reaching complex IV and produce O2
•-, the precursor of most 

ROS (Boveris and Cadenas, 2000; Liu et al., 2002; Turrens, 2003). Under normal conditions, 
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O2
•- dismutates into hydrogen peroxide (H2O2) spontaneously or is catalysed by manganese 

superoxide dismutase (MnSD), and later converted into water by catalase and glutathione 

peroxidase to lower O2
•- levels (Aguilar et al., 2016). However, the conversion is not entirely 

efficient, and H2O2 may be partially reduced into extremely reactive hydroxyl radical (OH•) 

(Halliwell, 2006; Krutmann and Schroeder, 2009; El-Bahr, 2013). It is suggested that ROS 

production from the respiratory chain can cause damage to mtDNA, and as mtDNA encodes 

polypeptides subunits for the respiratory chain, this can lead to errors in gene expression 

resulting in dysfunctional subunits (Harman, 1956; Bandy and Davidson, 1990; Sanz and 

Stefanatos, 2008). The dysfunctional subunits later contribute to further leakage, and this 

increases oxidative damage (Bandy and Davidson, 1990). Furthermore, mtDNA has limited 

repair mechanisms, and has a higher mutation rate due to its close proximity to ETC, and 

mitochondria are lacking in protective histones (Birch-Machin et al., 2013).  

 The role of ECM enzymes and tyrosinase 

Oxidative stress induced by UV, mitochondrial-produced-ROS or any other oxidants has also 

been shown to affect the levels of extracellular matrix (ECM) enzymes (Pittayapruek et al., 

2016), and melanin-producing-tyrosinase.  

 Matrix metalloproteinases or MMPs 

Matrix metalloproteinases  (MMPs) are zinc-dependent enzymes involved in the remodelling 

and degradation of extracellular matrix proteins (Philips et al., 2011). There are 23 different 

forms of human MMPs and they are divided into six major groups: collagenases, gelatinases, 

stromelysins, matrilysins, membrane-type matrix metalloproteinases (MT-MMPs) and others 

(Konttinen et al., 1999; Visse and Nagase, 2003). MMPs are categorised according to their 

peptide domain, substrate specificity and sequence similarity as shown in Table 2.1 (Snoek-

van Beurden and Von Den Hoff, 2005). In human skin, the MMPs responsible for collagen 
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degradation are secreted by epidermal keratinocytes and epidermal fibroblasts, and their 

activity is regulated by the tissue inhibitors metalloproteinases (TIMPs) (Philips et al., 2009, 

2011; Bourboulia and Stetler-Stevenson, 2010). However, substantial evidence has suggested 

that UV radiation elevates at least three different MMPs in human skin in vivo, which are the 

interstitial collagenase (MMP-1), stromelysin-1 (MMP-3), and 92kDa gelatinase (MMP-9) 

(Fisher et al., 1996, 1998, 2002; Brenneisen et al., 2002). The levels of these enzymes 

significantly increase after 24 hours of UV exposure (Fisher et al., 1996), together with the 

upregulation of the transcription factor AP-1 that stimulate the expression of MMPs genes 

(Fisher et al., 1996, 1998). UV-induced MMP-1 initiates the cleavages of fibrillary collagen type 

I and type II, which are later further degraded by elevated levels of MMP-3 and MMP-9 

(Sternlicht and Werb, 2009). The combined actions of MMP-1, 3, and 9 have the capacity to 

degrade most of the proteins that comprise the dermal extracellular matrix. In the absence of 

perfect repair, the accumulation of MMP-mediated collagen damage contributes to the 

phenotype of photoaged skin. 
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Table 2.1: Members of the MMP family and their substrates. (Snoek-van Beurden and Von 

Den Hoff, 2005). 

 

 Elastase 

Elastase is an enzyme capable of breaking down elastin, which is an insoluble elastic fibrous 

protein that together with collagen determines the elasticity of the skin (Mecham et al., 1997). 

There are at least two types of dermal elastases available in the skin, which are neutrophil 

elastase and skin fibroblast elastase (Szendroi et al., 1984; Redini et al., 1988). It has been 

evidenced that elastase activity is upregulated during the ageing process, where an age-

dependent increase of dermal elastase activity is observed in mice of different age (Imokawa 

and Ishida, 2015). Similarly, repeated exposure to UV also stimulates the skin-fibroblast-

derived elastase, where higher elastase activity has been observed in vivo in the UV-irradiated 

skin compared with the  non-irradiated skin (Tsuji et al., 2001; Imokawa and Ishida, 2015). 
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 Tyrosinase 

Photo-aged skin is characterized by the presence of age spots and hyperpigmentation. These 

characteristics are the result of an excess or overproduction of melanin (skin pigment) by the 

melanocytes, which is primarily caused by excessive exposure to the sun, ROS and 

inflammatory mediators produced in the skin when exposed to UV (Hearing, 1999; Costin and 

Hearing, 2007; Hakozaki et al., 2010). Many targets have been identified to control the 

hyperpigmentation of the skin, and the most classic target is the inhibition of enzymes 

involved in melanin synthesis (Ebanks et al., 2009; Hakozaki et al., 2010). Melanin synthesis or 

melanogenesis is initiated with tyrosine oxidation to dopaquinone by the tyrosinase in the 

melanosome, and later proceeds spontaneously through a series of oxidation reactions to 

form eumelanin or pheomelanin, as illustrated in Figure 2.8 (Chang, 2009). While the three 

enzymes tyrosinase, TRP-1 and TRP-2 are involved in melanogenesis, tyrosinase is the key 

enzyme in catalyzing the synthesis, and it therefore becomes the target in the control of 

hyperpigmentation (Chang, 2012). Furthermore, the regulation of tyrosinase activity and 

melanin production has also been shown to be controlled by a post-translational regulation 

of pre-existing enzymes (Iozumi et al., 1993). So, in view of applications in the cosmetics 

industry, tyrosinase inhibitors are the most popular and widely used hypopigmentation agents 

(Pillaiyar et al., 2017). 



 

31 
 

 

Figure 2.8: Biosynthetic pathway of melanogenesis. TYR, tyrosinase; TRP; tyrosinase related 

protein; dopa, 3, 4-dihydroxyphenylalanine; DHICA, 5, 6-dihydroxyindole-2-carboxylic acid; 

DHI, 5, 6-dihydroxyindole; ICAQ, indole-2-carboxylic acid-5, 6-quinone; IQ, indole- 5, 6-

quinone; HBTA, 5-hydroxy-1, 4-benzothiazinylalanine. Image obtained from Chang (2009). 

2.11 Skin anti-ageing strategies 

Therapies for skin ageing can be divided into invasive and noninvasive procedures. Invasive 

approaches include chemical peeling, rejuvenation using visible light devices and the injection 

of rejuvenating agents, fillers and implants that involve surgery (Ganceviciene et al., 2012). 

 Chemical peeling  

Chemical peeling is a method used to cause the chemical ablation of defined skin layers to 

induce an even and tight skin from the regeneration process. It can be classified into 

superficial, medium-depth and deep peeling, depending on the substances and 

concentrations used (Velasco et al., 2004; Fischer et al., 2010; Shehnaz Z, 2015). Although 

chemical peeling can give a significant improvement of the skin over a short period, the 

treatment can have adverse effects such as irritation, redness, inflammation and 
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hyperpigmentation (Handog et al., 2012; Nikalji et al., 2012). Complications arise from an 

improper use of phenol in deep peeling, which can result in even worst conditions including 

cardiac arrhythmia and kidney damage. These chemicals are also  toxic to all cells (Velasco et 

al., 2004). 

 Laser treatment 

Laser treatment using visible light devices can be classified into ablative and non-ablative 

resurfacing (Preissig et al., 2012; Ibrahimi et al., 2015). Ablative laser treatment results in 

significant outcomes promoting collagen formation and tightening the skin, as the treatment 

vapourises skin tissue by heating water molecules into gas and giving a skin peeling effect 

(Preissig et al., 2012). Ablative resurfacing removes the epidermal layer, but non-ablative 

treatment keeps the epidermal intact and is less invasive, thus producing a gentler effect of 

dermal collagen stimulation. However, both ablative and non-ablative laser resurfacing can 

cause side effects such as scarring, discolouration or hyperpigmentation, postoperative 

erythema and infections (Tanzi and Alster, 2003; Hunzeker et al., 2009). Fractionated laser 

resurfacing has been introduced for both ablative and non-ablative treatments to minimise 

complications while maintaining the efficacy of treatment (Manstein et al., 2004), and initial 

reports of non-ablative fractionated devices emphasise an almost complete absence of 

prolonged side effects (Fisher and Geronemus, 2006; Graber et al., 2008). Nonetheless, 

fractionated ablative lasers have been reported to cause severe complications like those from 

traditional non-fractionated devices (Avram et al., 2009; Hunzeker et al., 2009; Ramsdell, 

2012). 

 Injections of dermal fillers 

Fillers are products injected within or beneath the skin to rejuvenate it and  to improve its 

physical features (Haneke, 2006). There are at least three types of fillers: short-term, long-
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term and permanent fillers. These are categorized based on their durability  in the tissue 

(Haneke, 2006; Ahn and Rao, 2014). Some fillers such as hyaluronic acid (HA) derived fillers 

are able to imitate the function of skin HA to hold water and provide improved structural 

properties in the skin, as well as being able to stimulate fibroblasts to express Col-1, MMP-1 

and TIMP-1 (Tammi et al., 2002; Wang et al., 2007; Jäger et al., 2012). Other types of fillers 

such as calcium hydroxylapatite (CaHA) create a long-term filling effect by stimulating 

endogenous collagen production, while polymethyl methacrylate (PMMA) provides a 

scaffolding for the dermis to recover its original thickness (Ahn and Rao, 2014). Although the 

substances used for fillers are usually non-immunogenic, complications such as pain, bruising 

and edema commonly occur following the procedures, and more serious complications can 

include visual impairment (Rzany et al., 2009; Li et al., 2015; Townshend, 2016). 

 Topical cosmeceutical products 

A moderate and noninvasive approach such as the application of topical cosmeceutical 

products are generally preferred and are perceived as a safer option ( Ayob et al., 2016). 

Antioxidants such as vitamins, polyphenols and flavonoids are the main anti-ageing agents 

usually employed in a cosmeceutical product that acts by reducing or neutralizing  free 

radicals, later affecting skin ageing through various mechanisms as explained in section 2.10. 

Vitamin C (L-ascorbic acid) stimulates and regulates collagen synthesis, influences the  

expression of antioxidant enzymes  and stimulates MMP-1 inhibitors (Nusgens et al., 2001; 

Pullar et al., 2017). Vitamin B3 (niacinamide) also stimulates collagen synthesis, prevents 

oxidative damages and reduces hyperpigmentation in the skin (Matts et al., 2002; Ortonne 

and Bissett, 2008), while vitamin E (α-tocopherol) prevents oxidative damage and 

inflammation, downregulates MMP-1 through AP-1 binding, and suppresses melanogenesis 

(Nachbar and Korting, 1995; Wu et al., 2008; Kamei et al., 2009). Polyphenols, which are 
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abundant in fruit and vegetables, usually have multi-action effects on skin ageing. 

Epigallocatechin gallate (EGCG), for example, reduces UVB-induced MMP-1, MMP-8 and 

MMP-13. It also suppresses as well as modulates immune responses and  assists in wound 

healing (Katiyar et al., 1999; Hsu et al., 2003; Bae et al., 2008). Most polyphenols have the 

ability to absorb UV, and thus could prevent the molecular and cellular damage caused by UV, 

and are also able to inhibit MMP-1 and elastase that regulate skin matrix degradation (Thring 

et al., 2009; Nichols and Katiyar, 2010; Zillich et al., 2015). 

2.12 Summary and conclusion 

From all of the above, the use of local herbs in the cosmetics industry seems to be relevant 

and able to add commercial value to under utilised medicinal plants and to provide novel 

cosmeceuticals application to exploit the plants. This potential is further supported by the high 

market demand for plant-based cosmetics worldwide and the preference for topical skin 

ageing management. Further exploration of the potential application of the plants selected as 

cosmetics ingredients is needed, including as antioxidants, anti-wrinkle, anti-

hyperpigmentation and sunscreen agents.  

2.13 Aim and Objectives 

 Problem statement  

The herbal and cosmetics industries foresee a huge market for medicinal plants especially with 

increasing preference for organic and natural products. The application of the local herbs as 

cosmetic ingredients is very promising. However, the common challenge in the 

commercialization of the local herbs are the lack of supply of raw materials and the paucity of 

data giving scientific validation of the pharmacological effects of plants against skin ageing. 
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 Aim and objectives of the project 

This project aims to investigate the anti-ageing properties of the selected medicinal plants for 

potential application as cosmetics ingredients. The objectives of this study are: 

1. To evaluate the antioxidant activity and its correlation with TPC in each of the plant 

extracts (Chapters 3 and 4) 

2. To investigate the inhibitory activities of the extracts against enzymes implicated in the 

reduction of skin elasticity and the declining aesthetic appearance of the skin, which 

includes anti-collagenase, anti-elastase and anti-tyrosinase activity (Chapter 5) 

3. To investigate the protective effect of the plant extracts against hydrogen peroxide 

(H2O2)-induced cytotoxicity in HaCaT cells (Chapter 6) 

4. To investigate the protective effect of the plant extracts against UV-induced 

mitochondrial damage (mtDNA) in HaCaT cells (Chapter 7) 
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Chapter 3 
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 Phytochemical analysis of the plant extracts 

3.1 Introduction 

Most of the preparation of the ethno-medical plants use water for the extraction of the plant 

material, either by boiling or infusion. It has been reported that 69.2 % of herbal preparations 

by locals in Malaysia was by decoction (Mohammad et al., 2012). However, in laboratory 

settings and at a larger industrial scale, organic solvents are usually employed in extraction 

procedures, due to their efficiency. Ethanol is the most commonly employed solvent in plant 

extraction because it is easily available in high purity, low in cost, completely biodegradable 

and GRAS (generally recognized as safe) in the food industry (Rodriguez-Perez et al., 2016). 

Sometimes, a co-solvent such as 70% ethanol is used in the extraction of plant materials to 

target compounds with mid-polarity. Several studies using co-solvent systems have shown 

that 70% ethanol extraction results in high yields, the maximum presence of phytochemicals 

and high activity levels such as antioxidant (Paulucci et al., 2013; Vongsak, Sithisarn, 

Mangmool, et al., 2013; Wei et al., 2015). 

Medicinal plants contain a mixture of different compounds, and there are no universal 

extraction methods that are suitable for all plants. An extensive review of the literature was 

performed to select suitable extraction methods, taking into consideration the following 

factors. Firstly, an efficient extraction time is needed for the appropriate experimental 

procedures without affecting the extracted compounds. Secondly, an efficient extraction 

temperature to avoid the oxidation and degradation of thermo-labile compounds; and finally, 

the choice of an efficient extraction solvent should take into consideration for safe application 

at the industrial level and optimum extraction yields. Therefore, two extracts (water and 70% 

aqueous ethanol) of each plant species were prepared for this study to mimic the traditional 

and potential industrial application. 
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 Objectives 

The aim of this chapter is to investigate the major phytochemical components of the plant 

extracts. The objectives of this chapter are as below: 

1) To prepare two extracts (water and 70% ethanol) to mimic traditional and industrial 

preparations 

2) To determine and compare the TPC of the prepared extracts 

3) To determine the TAC in the C. ternatea extracts 

4) To determine potentially active compounds in the plant extracts 
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3.2 Materials and methods 

 Plant materials 

Dried leaves of M. oliefera and C. asiatica were purchased from G. Baldwins & Co., UK. The 

dried leaves of C. caudatus and the dried flowers of C. ternatea were purchased from Selangor 

Herbs, Malaysia and Siam Herbarium, Thailand respectively. All sample vouchers were 

deposited in the Medicinal Plants Research Group’s Herbarium at Newcastle University. 

 Extraction  

 70% ethanol extraction 

The previously used method of extraction was adapted with modifications (Vongsak, Sithisarn, 

Mangmool, et al., 2013). The dried M. oliefera, C. asiatica, C. ternatea and C. caudatus were 

pulverized into fine powder using an electrical blender. Each powdered sample (100 g) was 

macerated with 500 mL of 70% ethanol for 72 h at room temperature with occasional shaking. 

The extract was vacuum-filtered using Whatman no.1 filter paper and the marc was rinsed 

with 70% ethanol (100 mL). The marc was discarded. The extract was further filtered at least 

three times followed by rotary evaporation (Rotavapor® R-210, Buchi) at 40 °C to remove 

excess ethanol. The remaining extract was freeze-dried and stored at -20 ° C until further used. 

The final freeze-dried sample was weighed for yield calculation (see section 3.2.3). Dried 

samples were labelled as MOE, CAE, CTE and CCE for M. oliefera, C. asiatica, C. ternatea and 

C. caudatus extracts respectively. 

1.1.1.1 Water extraction 

The previously used methods were followed with modifications (Thring et al., 2009; Islam et 

al., 2014). Powdered samples of each of M. oliefera, C. asiatica, C. caudatus and C. ternatea 

(50 g) were weighed and extracted in 500 mL of freshly boiled de-ionised water for 30 minutes. 

The extract solutions were allowed to cool down with frequent shaking before sonication for 
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15 minutes. Each extract was vacuumed-filtered using a Whatman no.1 filter paper at least 

three times and the marc was discarded. Finally, the extract was freeze-dried and stored at -

20 °C until further used. The final freeze-dried sample was weighed for yield calculation (see 

section 3.2.3). Dried samples were labelled as MOW, CAW, CTW and CCW for M. oliefera, C. 

asiatica, C. ternatea and C. caudatus extracts respectively. 

 Extraction yield formula 

Percentage yield was calculated using the formula below: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑦𝑖𝑒𝑙𝑑 (%) =
𝐹𝑖𝑛𝑎𝑙 𝑙𝑦𝑜𝑝ℎ𝑖𝑙𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑔𝑟𝑎𝑚𝑠

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑜𝑤𝑑𝑒𝑟𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑔𝑟𝑎𝑚𝑠
 𝑋 100 

( 3.1) 

 

The yield was also expressed as (weight) grams per 100 g of dried plant materials. 

 Qualitative analysis of the phytochemicals 

The qualitative analysis of the phytochemicals was followed from the previous method as 

described in Table 3.1 (Khanam et al., 2014). The presence and/or absence of alkaloids, 

saponins, terpenoids, phenolics and flavonoids was evaluated based on the presence of 

precipitation, bubble foam formation, presence of coloured rings/solutions and the 

disappearance of coloured reagents. 
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Table 3.1: Protocols for qualitative phytochemicals analysis 

Tests Compounds Protocols 

Dragendorff’s reagent Alkaloids  

 

The extract (10 mg) was stirred with 2 mL of Dragendorff 

reagent (Sigma Aldrich, UK). The formation of opaque 

precipitate in the golden yellow solution showed the 

presence of alkaloid. 

Froth test Saponin The extract (10 mg) was diluted with 2 mL of water and 

made up to 5 mL. The suspension was shaken in a test 

tube for 15 minutes. The development of foam indicated 

the presence of saponins. If the bubbles remain after 15 

minutes to one hour, the test is positive for saponins. The 

height of bubbles that remain after 30 minutes was 

measured. 

Salwoski test 

 

Terpenoid The extract (10 mg) was added with 2 mL of chloroform 

followed by 2 mL concentrated sulphuric acid (12 M) to 

form a layer. Reddish-brown colour at the interface 

indicated the presence of terpenoids. 

Ferric Chloride test 

(FeCl3) 

Phenolic The extract (10 mg) was dissolved in 2 mL of distilled 

water and a few drops of 5% ferric chloride were added. 

Bluish black colour indicated the presence of phenolic 

compounds. 

Alkaline reagent test 

 

Flavonoid A few drops of sodium hydroxide (0.5 M) were added to 

the extracts (1 mg/mL) to give an intense yellow colour. 

The disappearance of colour after the addition of dilute 

hydrochloride acid (6 M) showed the presence of 

flavonoid. 
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 Total phenolic content  

TPC was determined using the Folin-Ciocalteu (F-C) method in a 96-well plate 

(Chattuwatthana and Okello, 2015). In the assay, either gallic acid (GA) standards solution (20 

µL), plant samples (20 µL) or solvents (20 µL) for blanks were mixed with 10 % (v/v) F-C working 

solution (100 µL) at room temperature and then left for 5 minutes. Later, 7.5% (w/v) sodium 

carbonate solution (80 µL) was added to the assay wells, and the microplate was incubated in 

the dark for 60 minutes. The absorbance of the solution in the assay wells was read at 750 nm 

using a microplate reader (SpectraMax Plus384, Molecular Device Corporation). Background 

reading was corrected by subtracting the absorbance value of the blank. TPC was expressed 

as GA equivalent in 1 mg of plant extract. 

 GA equivalent µg/mg extract calculation 

The GA standard absorbance values were plotted against the final concentration of GA in the 

well to obtain the GA standard equation (y = ax) that crosses the origin. GA equivalent µg/mg 

extract was calculated as below: 

𝐺𝐴 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 
µ𝑔

𝑚𝑔
 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 =

𝑦

𝑎
 𝑥 𝐷𝐹  ( 3.2 ) 

 

where y is the absorbance value, a is the coefficient and DF is the dilution factor to achieve 1 

mg. 

The selected absorbance values should lie within the GA standard regression, as an over-

concentrated sample may reach the limit of the instrument (OD 4.0). If necessary, the sample 

was diluted accordingly to obtain a suitable absorbance level for the calculation. 

 Total anthocyanin content 

The TAC for C. ternatea was determined using a pH-differential method using prepared 

reagents as described in Table 3.2 (Lee et al., 2005). The method was modified accordingly to 
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suit a 96-well plate measured using a micro plate reader (SpectraMax Plus384, Molecular 

Device Corporation). Two sets of test sample (50 µL) were pipetted into the 96-well plate in 

triplicates. One set was added with buffer with pH 1.0 (250 µL) and the other set was added 

with buffer with pH 4.5 (250 µL). The plate was shaken for 15 s before reading at 500 nm and 

700 nm. The readings from blank (water) were subtracted before TAC calculation. 

 (Note: The OD readings of the samples were determined prior to assay to ensure that the 

values were within the limit of the instrument (OD = 4.0). Otherwise, appropriate dilution was 

made). 

Table 3.2: Protocol for TAC buffers  

Buffer Protocol 

a) pH 1.0 buffer 

(potassium chloride, 

MW:74.55 g/mol, 0.025 

M) 

1.86 g KCl was weighed into a beaker and 980 mL of distilled 

water was added. The solution was mixed, and pH was 

measured, and adjusted to pH 1.0 (± 0.05) with 6.3 mL of 

HCl. The volume was made up to 1L with distilled water to 

obtain 0.025 M potassium chloride pH 1.0. 

b) pH 4.5 buffer (sodium 

acetate, MW:82.03 

g/mol, 0.4 M): 

54.43 g CH3CO2Na·3H2O was weighed in a beaker, and 960 

mL of distilled water was added. The solution was mixed, 

and pH was measured, and adjusted to pH 4.5 (± 0.05) with 

20 mL of HCl. The volume was made up to 1L with distilled 

water to obtain 0.4 M sodium acetate pH 4.5. 

 

 TAC calculation 

TAC was calculated using the formula below: 

TAC= (A x MW x DF1 x DF2 x 1000)/ ε, ( 3.3 ) 
 

where, A = (A520nm – A700nm) pH1.0 – (A520nm – A700nm) pH 4.5; MW (molecular weight) 

= 449.2 g/mol for cyanidin-3-glucoside (cyd-3-glu); DF1 = dilution factor to correct for the 

working concentration, DF2 = dilution factor for any pre-dilution made to obtain the working 
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concentration, ε = 19170 molar extinction coefficients, in L x mol–1x cm-1, for cyd-3-glu; and 

1000 = factor for conversion from g to mg. 

The final concentration of the extract in the well was 200 µg/mL, therefore DF1 = 5. The ratio 

between the test samples and the buffer should be 1 to 4 parts, so that the buffer capacity is 

not affected. For that reason, DF1 should always be 5. If the sample was pre-diluted, TAC 

should be multiplied by DF2 (reciprocal of the dilution made to obtain the working 

concentration). 

Note: The molar extinction coefficient was recalculated to correct the difference in path-

length between a cuvette and a microplate’s well (see Appendix A). 

 High resolution liquid chromatography-ultraviolet-mass spectrometry (LC-UV-MS) 

The samples were sent for analysis at Kews Garden, London. The extracts were reconstituted 

in the extraction solvent at 10 mg/mL prior to chemical characterisation using LC–UV–MS/MS 

analysis. Analyses were performed on a Thermo Scientific system consisting of an ‘Accela’ U-

HPLC unit with a photodiode array detector and an ‘LTQ Orbitrap XL’ mass spectrometer fitted 

with an electrospray source (Thermo Scientific, Waltham, MA, USA). Chromatography was 

performed on 5 µl sample injections onto a 150-mm x 3-mm, 3 µm Luna C-18 column 

(Phenomenex, Torrance, CA, USA). The mobile phase gradients for each plant species were as 

follows: 

 M. oliefera extracts: 400 µL/min mobile phase gradient of H2O/CH3OH/CH3CN + 1% 

HCOOH: 90:0:10 (0 min), 90:0:10 (5 min), 0:90:10 (60 min), 0:90:10 (65 min), 90:0:10 

(67 min), 90:0:10 (70 min) followed by return to starting conditions and equilibration 

in starting conditions for 5 min before the next injection. 

 C. asiatica extracts: 400 µL/min mobile phase gradient of CH3CN/H2O/CH3CN + 1% 

HCOOH: 0:90:10 (0 min), 0:90:10 (5 min), 80:10:10 (60 min), 80:10:10 (65 min), 0:90:10 



 

45 
 

(67 min), 0:90:10 (70 min) followed by return to starting conditions and equilibration 

in starting conditions for 5 min before the next injection. 

 C. ternatea extracts: 400 µL/min mobile phase gradient of H2O/CH3OH/CH3CN + 1% 

HCOOH: 90:0:10 (0 min), 90:0:10 (5 min), 0:90:10 (60 min), 0:90:10 (65 min), 90:0:10 

(67 min), 90:0:10 (70 min) followed by return to starting conditions and equilibration 

in starting conditions for 5 min before the next injection. 

 C. caudatus extracts: 400 µL/min mobile phase gradient of H2O/CH3OH/CH3CN + 1% 

HCOOH: 90:0:10 (0 min), 90:0:10 (5 min), 0:90:10 (60 min), 0:90:10 (65 min), 90:0:10 

(67 min), 90:0:10 (70 min) followed by return to starting conditions and equilibration 

in starting conditions for 5 min before the next injection. 

The ESI source was operated with polarity switching and the mass spectrometer was set to 

record high resolution (30 k resolution) MS1 spectra (m/z 125–2000) in positive mode using 

the orbitrap and low resolution MS1 spectra (m/z 125– 2000) in negative mode and data 

dependent MS2 and MS3 spectra in both modes using the linear ion trap. Detected 

compounds were assigned by comparison of accurate mass data (based on ppm), and by 

available MS/MS data with reference to the published compound assignment system 

(Schymanski et al., 2014) and with supportive UV spectra.  

 Phytochemical databases search 

Two accessible phytochemical databases were used to search for the potential active 

phytochemicals from the plant extracts.  

(a) Dr. Duke’s Phytochemical and Ethnobotanical Databases: 

https://phytochem.nal.usda.gov/phytochem/search 



 

46 
 

(b) MAPS/MPD3 Medicinal Plants Database for Drug Design: 

http://bioinform.info/search.html 

The searches were cross-referenced with manual searches using other literature databases 

such as Scopus.com and ScienceDirect which were not covered by the databases. MAPS 

includes data from PubMed, PubPubmed Central, Pubchem, NPACT , Drug Bank and PhytAmp 

(Ashfaq et al., 2013). Meanwhile, Dr.Duke’s database is from the U.S. Department of 

Agriculture from 1999-2016 based on the Handbook of Phytochemical constituents of GRAS 

Herbs and Other Economic Plants (U.S. Department of Agriculture, 2016). 

  



 

47 
 

3.3 Results  

 Higher yield observed from extraction with water compared to 70 % ethanol  

Higher yields were observed from the water extraction in comparison to the 70% ethanol, as 

shown in Figure 3.1, except for C. caudatus extracts where similar yields were obtained 

between CCW and CCE. The percentage yields for each plant extracts were: MOW 33%, CAW 

22%, CTW 74%, CCW 8.4%, MOE 11%, CAE 7%, CTE 15% and CCE 4%.  
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Figure 3.1: Extraction yield. Figure shows the yield for water and 70% ethanol extraction for 

each of the plant species expressed as g/ 100 g dried weight. Abbreviations: MO= M. oliefera, 

CA: C. asiatica, CT: C. ternatea and CC: C. caudatus. 
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 Qualitative analysis 

The qualitative phytochemical analysis suggested the presence and absence of the following 

compounds in the water and 70 % ethanol extracts (Table 3.3). Phenolics and flavonoids were 

present in all extracts, saponins were absent in both M. oleifera extracts but present in the 

other plant extracts, and terpenoids were only found in the 70% ethanol extracts of C. asiatica, 

C. ternatea and C. caudatus. Meanwhile, alkaloids were absent or below the detection limits 

in all plant extracts. The qualitative analysis indicates that more of the groups of compounds 

are present in the 70% ethanol extracts as compared to the water extracts. 

Table 3.3: Qualitative analysis of phytochemicals presents in the plant extracts. 

TEST TEST COMPOUND 

Water extracts 70% ethanol 

MO CA CT CC MO CA CT CC 

Dragendorff Alkaloids (-) (-) (-) (-) (-) (-) (-) (-) 

Froth's Saponins (-) (+) (+) (+) (-) (+) (+) (+) 

Salwoski Terpenoids (-) (-) (-) (-) (-) (+) (+) (+) 

FeCl3 Phenolics (+) (+) (+) (+) (+) (+) (+) (+) 

Alkaline reagent Flavonoids (+) (+) (+) (+) (+) (+) (+) (+) 

 

For the froth test; bubbles that remain after 15 minutes are considered (+) for saponin. 

Abbreviations: MO (M. oliefera), CA (C. asiatica), CT (C. ternatea) and CC (C. caudatus). 
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 GA standard regression lines  

The regression lines for GA dissolved in water and in 70% ethanol were plotted individually to 

find the best fit line. Data for GA in water and in 70% ethanol were pooled together to get the 

final standard regression line used to determine the TPC. Data were pooled together as no 

significant difference was observed in the slopes of the two regression lines (y = 0.067x and y 

= 0.065x) for GA in water and 70% ethanol. Hence, the equation from the pooled data (y = 

0.062x) was used to calculate the TPC of all samples (Figure 3.2). Gallic acid standard curve

(y=0.062x)

f = a*x

GA concentration (µg/mL)
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Figure 3.2: GA standard regression line. The figure shows the regression line for GA standard 

(6.25-50 µg/mL) passing through the origin. Data represent the mean ± SD of pooled data. 

(N=6 for each concentration). 
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 Total phenolic content (TPC) 

The values of TPC were higher in the ethanolic extracts compared with water extracts for all 

plant species (see Figure 3.3). MOE had the highest TPC of all extracts with the lowest 

observed in CAW and CCW. The TPC values from the highest to lowest were MOE > CTE, MOW 

> CCE > CTW, CAE > CCW, CAW.   
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Figure 3.3: Comparison of total phenolic content (TPC). The figure shows the TPC comparison 

between water and 70% ethanol extracts expressed as Gallic acid equivalent (GAE) mg/g 

extracts. Data represent the mean ± SD of three replicates. Different letters indicate data with 

significant differences at p<0.05.  
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 Similar values of TAC observed in C. ternatea extracts (CTW and CTE) 

C. ternatea flower extracts were assessed for the TAC. There was no significant difference 

between the TAC in the two extracts. The TAC values for both water and ethanolic extracts 

were ~3.5 mg cyd-3-glu equivalent/g extracts. 

 

 

Figure 3.4: Total anthocyanin content (TAC) for CTW and CTE. Different letters indicate 

significant mean differences (p<0.05 considered as significant). Data represent mean ± SD of 

three replicates. 
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 Compounds characterised by high resolution liquid chromatography-ultraviolet-

mass spectrophotometry (LC-UV-MS)/MS 

 Moringa oliefera Lam. 

The compounds detected in M. oliefera extracts were chlorogenic acids derived from -O-

coumaryl-, caffeoyl-, and feruloyl-ester, apigenin flavone glucosides (vicenin-2, vitexin and 

isovitexin) and flavonol glycosides of quercetins, kaempferols and isorhamnetins (see Table 

3.4). Marumoside A, a nitrogen-containing phenolic glycoside, was observed at a retention 

time of 3.7 min with m/z value of 298.12, and this has been previously isolated from M. 

oliefera leaves as glycosides of 4’-hydroxyphenylethanamide (Sahakitpichan et al., 2011). 

Several isomers of niazimins (thiocarbamates) were detected at retention times of 29.2, 32.0 

and 36.9 min in MOE, but these were absent or below the detection limit in MOW. These 

compounds were the first natural carbamates known to be present in M. oliefera species, thus 

chemically-authenticating the plant samples (Faizi et al., 1992, 1994).  

Table 3.4: Compounds assigned from LC-UV-MS/MS analysis of MOW and MOE. 

No. Assigned compound# 
(or isomer) 

Retention 
time 
(min) 

Molecular 
formula (m/z) Ion 

MOW 
ppm# 

MOE 
ppm# 

1. Phenylalanine 2.9 C9H11NO2 166.086 [M + H]+ 2.259 0.994 
2. Marumoside A 3.7 C14H19NO6 298.129 [M + H]+ 0.893 3.576 
3. Tryptophan 4.3 C11H12N2O2 205.097 [M + H]+ 1.776 0.459 
4. 3-O-Coumaroylquinic acid 6.7 C16H18O8 339.109 [M + H]+ 2.082 1.640 
5. 5-O-Coumaroylquinic acid 6.9 C16H18O8 339.108 [M + H]+ 0.667 1.640 
6. Caffeoylquinic acid 8.0 C16H18O9 355.103 [M + H]+ 0.680 1.975 
7. Feruloylquinic acid 8.7 C17H20O9 369.118 [M + H]+ 0.484 2.063 
8. Benzyl hexosyl-pentoside 10.9 C18H26O10 420.187 [M + NH4]+ 0.018 2.779 
9. 4-O-Coumaroylquinic acid 12.2 C16H18O8 339.108 [M + H]+ 0.578 1.817 
10. Vicenin-2 12.5 C27H30O15 595.165 [M + H]+ 0.263 1.585 
11. Hexenyl dihexoside 12.8 C18H32O11 442.230 [M + NH4]+ 2.041 1.544 
12. Butyl pentosyl-hexoside 14.0 C16H30O10 400.218 [M + NH4]+ 0.668 1.792 

13. 
Phenylethyl pentosyl-
hexoside 16.0 C19H28O10 434.202 [M + NH4]+ 0.328 2.988 

14. Hexenyl pentosyl-hexoside 16.6 C17H30O10 412.219 [M + NH4]+ 1.013 2.056 
15. Vitexin 18.6 C21H20O10 433.114 [M + H]+ 2.163 3.363 
16. Hexenyl pentosyl-hexoside 19.1 C17H30O10 412.218 [M + NH4]+ 0.503 1.983 
17. Hexenyl pentosyl-hexoside 19.2 C17H30O10 412.218 [M + NH4]+ 0.649 2.929 
18. Isovitexin 19.4 C21H20O10 433.114 [M + H]+ 1.401 3.641 

19. 
Quercetin hexosyl-
rhamnoside 19.7 C27H30O16 611.162 [M + H]+ 1.078 2.665 

20. Quercetin hexoside 20.4 C21H20O12 465.103 [M + H]+ 0.124 1.306 
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No. Assigned compound# 
(or isomer) 

Retention 
time 
(min) 

Molecular 
formula (m/z) Ion 

MOW 
ppm# 

MOE 
ppm# 

21. Quercetin malonyl-hexoside 22.2 C24H22O15 551.103 [M + H]+ 0.007 2.112 
22. Quercetin malonyl-hexoside 22.3 C24H22O15 551.103 [M + H]+ 0.102 2.783 
23. Quercetin malonyl-hexoside 22.9 C24H22O15 551.103 [M + H]+ 0.551 3.436 
24. Hexanol, pentosyl-hexoside 23.2 C17H32O10 414.234 [M + NH4]+ 0.790 3.518 
25. Kaempferol hexoside 23.7 C21H20O11 449.109 [M + H]+ 2.343 0.240 
26. Isorhamnetin hexoside 24.2 C22H22O12 479.120 [M + H]+ 2.186 3.126 

27. 
Kaempferol malonyl-
hexoside 25.5 C24H22O14 535.109 [M + H]+ 0.090 0.763 

28. 
Kaempferol malonyl-
hexoside 25.6 C24H22O14 535.108 [M + H]+ 0.651 1.293 

29. 
Isorhamnetin malonyl-
hexoside 26.5 C25H24O15 565.119 [M + H]+ 0.077 1.794 

30. 
Niazimicin A or B 29.2 

C16H23NO6

S 358.133 [M + H]+ Nd 3.114 

31. 
Niaziminin A or B 32.0 

C18H25NO7

S 400.144 [M + H]+ Nd 4.750 

32. 
Niaziminin A or B 36.9 

C18H25NO7

S 400.144 [M + H]+ Nd 3.226 

All compounds assigned by comparison of accurate mass data (based on ppm#), and by interpretation 

of available MS/MS and/or UV spectra. nd = not detected or below detection limit. 
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 C. asiatica (L.) Urb. 

The constituents detected in C. asiatica extracts were phenolic compounds and triterpene 

saponins (see Table 3.5). The phenolics detected were assigned as chlorogenic acids derived 

from caffeoyl-, dicaffeoyl, caffeomalonyl, dicaffeomalonyl-, ferulyl- and syringoyl-esters, 

which were observed in both CAW and CAE. Flavonols such as quercetin and kaempferol 

eluting at 22.7 and 26.2 min were detected in CAE only. The triterpene saponins detected in 

the extracts consisted of various derivatives and isomers of asiaticosides, centellosides, 

centoic acids and madasiatic acids, which has been used as biomarker components for quality 

assessment and authentication for this species (Inamdar et al., 1996; Chong and Aziz, 2011; 

Seevaratnam and Banumathi, 2012). While chlorogenic acids were detected in both CAW and 

CAE, the flavonols and the madasiatic acids were detected only in CAE.  

Table 3.5: Compounds assigned from LC-UV-MS/MS analysis of CAW and CAE. 

No. 
Assigned compound# 

(or isomer) 

Retention 
time  
(min) 

Molecular 
formula 

(m/z) Ion 
CAW 

ppm# 

CAE 

ppm# 

1.  Caffeoylquinic acid 3.8 C16H18O9 353.087 [M - H]- 1.958 1.788 

2.  3-O-Caffeoylquinic acid 4.3 C16H18O9 353.088 [M - H]- 2.298 2.751 

3.  
Caffeoyl-O-malonylquinic 
acid 

5.5 C19H20O12 439.088 [M - H]- 1.384 2.568 

4.  5-O-Caffeoylquinic acid 7.6 C16H18O9 353.088 [M - H]- 1.449 1.364 

5.  4-O-Caffeoylquinic acid 8.5 C16H18O9 353.088 [M - H]- 2.383 1.619 

6.  
Caffeoyl-O-malonylquinic 
acid 

11.1 C19H20O12 439.088 [M - H]- 2.135 1.520 

7.  Feruloylquinic acid 13.0 C17H20O9 367.103 [M - H]- 2.646 2.074 

8.  Syringoylquinic acid 13.2 C16H20O10 371.098 [M - H]- 1.123 2.074 

9.  
Trihydroxy-lupanedioic acid 
O-[hexosyl-rhamnosyl-
hexoside] ester 

15.4 C48H78O21 1035.502 
[M + 

HCOO]- 
1.125 1.367 

10.  Quercetin hexuronide 15.8 C21H18O13 477.067 [M - H]- 1.243 0.937 

11.  
Trihydroxy-lupenedioic acid 
O-[hexosyl-rhamnosyl-
hexoside] ester 

16.5 C48H76O21 1033.487 
[M + 

HCOO]- 
1.389 1.863 

12.  Di-O-caffeoylquinic acid 17.3 C25H24O12 515.119 [M - H]- 0.996 1.082 

13.  Di-O-caffeoylquinic acid 17.5 C25H24O12 515.119 [M - H]- 1.082 0.597 
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No. 
Assigned compound# 

(or isomer) 

Retention 
time  
(min) 

Molecular 
formula 

(m/z) Ion 
CAW 

ppm# 

CAE 

ppm# 

14.  
Dicaffeoyl-malonoylquinic 
acid 

18.0 C28H26O15 601.119 [M - H]- 0.073 0.643 

15.  Di-O-caffeoylquinic acid 18.3 C25H24O12 515.119 [M - H]- 1.082 0.102 

16.  
Dicaffeoyl-malonoylquinic 
acid 

19.0 C28H26O15 601.120 [M - H]- 2.302 1.387 

17.  
Dicaffeoyl-malonoylquinic 
acid 

19.3 C28H26O15 601.119 [M - H]- 0.771 1.487 

18.  

Asiaticoside A 
(madecassoside), 
asiaticoside B, or asiaticoside 
G 

19.8 C48H78O20 1019.506 
[M + 

HCOO]- 
0.255 0.255 

19.  
Asiaticoside, centellasaponin 
A, centellasaponin C, 
centellasaponin D, or isomer 

20.1 C48H78O19 1003.512 
[M + 

HCOO]- 
0.702 0.703 

20.  
Centelloside D, or 
centellasaponin B 

20.4 C42H68O16 873.448 
[M + 

HCOO]- 
0.456 0.525 

21.  
Asiaticoside, centellasaponin 
A, centellasaponin C, 
centellasaponin D, or isomer 

21.0 C48H78O19 1003.512 
[M + 

HCOO]- 
0.762 0.095 

22.  
Asiaticoside, centellasaponin 
A centellasaponin C, 
centellasaponin D, or isomer                                         

21.3 C48H78O19 1003.512 
[M + 

HCOO]- 
0.215 0.882 

23.  
Dicaffeoyl-succinoylquinic 
acid 

21.7 C29H28O15 615.135 [M - H]- 0.721 0.819 

24.  Asiaticoside E 21.9 C42H68O15 857.454 
[M + 

HCOO]- 
1.508 1.508 

25.  Quercetin 22.7 C15H10O7 301.035 [M - H]- Nd 1.598 

26.  

Asiaticoside, centellasaponin 
A, centellasaponin C, 
centellasaponin D, or isomer 

23.5 C48H78O19 1003.512 
[M + 

HCOO]- 
0.822 1.061 

27.  
Asiaticoside C, Asiaticoside, 
centellasaponin A, 

23.7 C50H80O20 1045.524 
[M + 

HCOO]- 
2.066 1.597 

28.  

Asiaticoside, centellasaponin 
A, centellasaponin C, 
centellasaponin D, or isomer 

23.9 C48H78O19 1003.512 
[M + 

HCOO]- 
1.429 1.240 

29.  

Asiaticoside, centellasaponin 
A, centellasaponin C, 
centellasaponin D, or isomer 

24.1 C48H78O19 957.506 [M - H]- 1.550 0.463 

30.  Centelloside E 24.2 C48H76O19 1001.496 
[M + 

HCOO]- 
1.882 0.663 

31.  

Asiaticoside, centellasaponin 
A, centellasaponin C, 
centellasaponin D, or isomer 

24.3 C48H78O19 1003.512 
[M + 

HCOO]- 
1.429 0.393 
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No. 
Assigned compound# 

(or isomer) 

Retention 
time  
(min) 

Molecular 
formula 

(m/z) Ion 
CAW 

ppm# 

CAE 

ppm# 

32.  

Asiaticoside, centellasaponin 
A, centellasaponin C, 
centellasaponin D, or isomer 

24.6 C48H78O19 1003.511 
[M + 

HCOO]- 
1.240 0.094 

33.  Triferulic acid 25.1 C30H26O12 577.135 [M - H]- 0.914 1.018 

34.  Asiaticoside D, or F 26.0 C48H78O18 987.518 
[M + 

HCOO]- 
2.045 2.045 

35.  Kaempferol 26.2 C15H10O6 285.040 [M - H]- Nd 1.949 

36.  
Centoic acid, terminolic acid, 
madecassic acid, or 
isothankunic acid 

30.0 C30H48O6 549.343 
[M + 

HCOO]- 
Nd 1.284 

37.  
Centoic acid, terminolic acid, 
madecassic acid, or 
isothankunic acid 

30.5 C30H48O6 549.342 
[M + 

HCOO]- 
2.267 0.173 

38.  

Centoic acid, terminolic acid, 
madecassic acid, or 
isothankunic acid 
  

30.7 C30H48O6 549.342 
[M + 

HCOO]- 
1.830 0.282 

39.  
Centoic acid, terminolic acid, 
madecassic acid, or 
isothankunic acid 

31.7 C30H48O6 549.343 
[M + 

HCOO]- 
Nd 1.830 

40.  

Madasiatic acid, 2,3,23-
trihydroxy-20-ursen-28-oic 
acid, centellasapogenol A, or 
ursen-28-oic acid, 
centellasapogenol A, or 2,3-
dihydroxy-5-
(hydroxymethyl)-24-
norolean-12- en-28-oic 

32.0 C30H48O5 487.343 [M - H]- Nd 1.804 

41.  

Madasiatic acid, 2,3,23-
trihydroxy-20-ursen-28-oic 
acid, centellasapogenol A, or 
ursen-28-oic acid, 
centellasapogenol A, or 2,3-
dihydroxy-5-
(hydroxymethyl)-24-
norolean-12-en-28-oic 

33.6 C30H48O5 533.348 
[M + 

HCOO]- 
Nd 1.162 

42.  

Madasiatic acid, 2,3,23-
trihydroxy-20-ursen-28-oic 
acid, centellasapogenol A, or 
ursen-28-oic acid, 
centellasapogenol A, or 2,3-
dihydroxy-5-
(hydroxymethyl)-24-
norolean-12-en-28-oic 

34.2 C30H48O5 975.693 
[2M - 

H]- 
Nd 1.235 
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No. 
Assigned compound# 

(or isomer) 

Retention 
time  
(min) 

Molecular 
formula 

(m/z) Ion 
CAW 

ppm# 

CAE 

ppm# 

43.  

Madasiatic acid, 2,3,23-
trihydroxy-20-ursen-28-oic 
acid, centellasapogenol A, or 
ursen-28-oic acid, 
centellasapogenol A, or 2,3-
dihydroxy-5-
(hydroxymethyl)-24-
norolean-12-en-28-oic 

34.4 C30H48O5 533.348 
[M + 

HCOO]- 
Nd 2.081 

44.  

Madasiatic acid, 2,3,23-
trihydroxy-20-ursen-28-oic 
acid, centellasapogenol A, or 
ursen-28-oic acid, 
centellasapogenol A, or 2,3-
dihydroxy-5-
(hydroxymethyl)-24-
norolean-12-en-28-oic 

38.0 C30H48O5 533.349 
[M + 

HCOO]- 
Nd 2.193 

All compounds assigned by comparison of accurate mass data (based on ppm#), and by interpretation 

of available MS/MS and/or UV spectra. nd = not detected or below detection limit. 
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 Clitoria ternatea Lam. 

The constituents detected in C. ternatea extracts were flavonol glycosides consisting of the 

aglycones of quercetin, myricetin and kaempferol and which included three malonylglycosides 

of kaempferol eluting with retention times of 22.4 min, 22.8 min and at 25.6 min (see Table 

3.6). The detection of glycosides and malonylglycosides of kaempferol, quercetin and 

myricetin in the extracts are in agreement with the known constituents of C. ternatea flowers 

(Kazuma et al., 2003a, 2003b). The other main constituents detected were assigned as 

acylated delphinidin glycosides, which included a series of ternatins known to occur in the 

flowers of C. ternatea (Kazuma et al. 2003b), thus supports the chemical authentication of the 

plant material in this study. Other detected constituents included coumaroyl-sucrose and -

glucose, observed from their [M + NH4] + ions.  

Table 3.6: Compounds assigned from LC-UV-MS/MS analysis of CTW and CTE. 

No. 
Assigned compound# 

Retention 
time 

Molecular 
 

(m/z) 
Ion CTW CTE 

(or isomer) (min) formula   ppm# ppm# 

1. Phenylalanine 2.9 C9H11NO2 166.086 [M + H]+ 0.752 1.414 

2. Coumaroylsucrose 3.5 C21H28O13 506.188 
[M + 

NH4]+ 
2.259 2.141 

3. Tryptophan 4.4 C11H12N2O2 205.097 [M + H]+ 0.418 1.832 

4. Coumaroylglucose 7.7 C15H18O8 344.134 
[M + 

NH4]+ 
0.921 1.357 

5. Ternatin A3 or C2* 9.6 C66H75O39 1491.391 M+ 2.006 1.188 

6. 
Myricetin rhamnosyl-
rhamnosyl-glucoside 

13.5 C33H40O21 773.214 [M + H]+ 1.132 2.387 

7. Ternatin B4 or C1* 14.3 C60H65O34 1329.337 M+ 1.862 3.148 

8. 
Myricetin 
neohesperidoside 

16.0 C27H30O17 627.157 [M + H]+ 2.143 2.143 

9. 
Quercetin hexosyl-
rhamnosyl-rhamnoside 

16.4 C33H40O20 757.222 [M + H]+ 4.028 2.575 

10. 
Quercetin hexosyl-
rhamnoside 

17.6 C27H30O16 611.163 [M + H]+ 3.074 2.469 

11. Ternatin B2 or B3* 18.1 C75H81O41 1637.429 M+ 2.328 2.628 
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No. 
Assigned compound# 

Retention 
time 

Molecular 
 

(m/z) 
Ion CTW CTE 

(or isomer) (min) formula   ppm# ppm# 

12. 
Kaempferol hexosyl-
rhamnosyl-rhamnoside 

18.8 C33H40O19 741.225 [M + H]+ 2.435 3.015 

13. 

Delphinidin 3-O-[4-
hydroxycinnamoyl- 
rhamnosyl-glucoside], 5-
O-(6-O-malonyl- 
glucoside), bis-O-[3,4-
dihydroxycinnamoyl- 
glucoside] 

19.2 C75H81O42 1653.422 M+ 1.692 1.692 

        

14. 
Quercetin hexosyl-
rhamnoside 

19.8 C27H30O16 611.162 [M + H]+ 1.765 2.567 

15. 
Kaempferol hexosyl-
rhamnoside 

20.1 C27H30O15 595.167 [M + H]+ 2.089 3.736 

16. 
Kaempferol hexosyl-
rhamnoside 

20.2 C27H30O15 595.167 [M + H]+ 3.316 3.736 

17. Quercetin hexoside 20.4 C21H20O12 465.104 [M + H]+ 2.747 2.618 

18. Ternatin B2 or B3* 21.3 C75H81O41 1637.429 M+ 2.847 2.554 

19. Ternatin B4 or C1* 21.7 C60H65O34 1329.339 M+ 2.689 2.96 

20. Ternatin B1* 22.2 C90H97O48 1945.520 M+ 3.022 2.775 

21. 
Kaempferol rhamnosyl-
malonyl-glucoside 

22.4 C30H32O18 681.168 [M + H]+ 2.686 2.774 

22. 
Kaempferol rhamnosyl-
malonyl-glucoside 

22.8 C30H32O18 681.168 [M + H]+ 3.405 3.317 

23. 
Kaempferol hexosyl-
rhamnoside 

23.3 C27H30O15 595.167 [M + H]+ 2.812 2.409 

24. Kaempferol hexoside 23.6 C21H20O11 449.109 [M + H]+ 2.677 3.078 

25. Ternatin D1* 24.9 C84H87O43 1783.468 M+ 3.826 3.074 

26. 6ʹʹ-Malonylastragalin 25.6 C24H22O14 535.109 [M + H]+ 1.567 1.567 

27. Quercetin 28.7 C15H10O7 303.051 [M + H]+ Nd 2.808 

All compounds assigned by comparison of accurate mass data (based on ppm#), and by interpretation 

of available MS/MS and/or UV spectra. nd = not detected or below detection limit. 
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 Cosmos caudatus Kunth.  

The compounds detected in the C. caudatus leaf extracts by high resolution LC-UV-MS/MS in 

the positive ionisation mode were assigned as amino acids, flavonol glycosides, including 

those derived from quercetins and kaempferols, and flavone C-glycosides derived from 

apigenins (vicenin-2 and vitexin) (see Table 3.7). Flavonoids and amino acids have been shown 

to occur in this plant species, especially in the leaves (Abas et al., 2003; Andarwulan et al., 

2010, 2012; Mediani et al., 2013). Other compounds detected in the extracts of this plant 

species were assigned as glycosides of hydrocarbon alcohols, including a digycoside of 1-

octen-3-ol. 

Table 3.7: Compounds assigned from LC-UV-MS/MS analysis of CCW and CCE. 

No. 
Assigned compound# 

(or isomer) 

Retention 
time 
(min) 

Molecular 
formula 

(m/z) Ion 
CCW 

ppm# 

CCE 

ppm# 

1. Phenylalanine 2.9 C9H11NO2 166.087 [M + H]+ 3.160 2.016 

2. 
Alanylleucine, 
leucylalanine, 

3.0 C9H18N2O3 203.140 [M + H]+ 3.451 2.368 

 isoleucylalanine       

3. Phenylalanylalanine or 4.0 C12H16N2O3 237.124 [M + H]+ 4.180 2.366 

 alanylphenylalanine       

4. Tryptophan 4.3 C11H12N2O2 205.098 [M + H]+ 2.759 2.954 

5. 
Leucylvaline or 
Valylleucine 

4.4 C11H22N2O3 231.171 [M + H]+ 3.119 3.638 

6. 
Glutamylleucine, 
glutamylisoleucine or 

5.5 C11H20N2O5 261.145 [M + H]+ 2.802 1.768 

 leucylglutamic acid       

7. Glutamylphenylalanine or 6.9 C14H18N2O5 295.130 [M + H]+ 3.191 2.276 

 phenylalanylglutamic acid       

8. 
Leucylleucine or 
leucylisoleucine 

7.4 C12H24N2O3 245.187 [M + H]+ 3.266 1.839 

9. 
Leucylleucine or 
leucylisoleucine 

9.3 C12H24N2O3 245.187 [M + H]+ 2.818 1.88 

10. Vicenin-2 12.5 C27H30O15 595.167 [M + H]+ 1.888 2.409 

11. Vitexin 18.6 C21H20O10 433.115 [M + H]+ 4.772 4.079 

12. Quercetin hexoside 19.7 C21H20O12 465.104 [M + H]+ 3.478 3.284 

13. Quercetin hexoside 20.3 C21H20O12 465.104 [M + H]+ 4.338 2.747 
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No. 
Assigned compound# 

(or isomer) 

Retention 
time 
(min) 

Molecular 
formula 

(m/z) Ion 
CCW 

ppm# 

CCE 

ppm# 

14. Quercetin pentoside 21.3 C20H18O11 435.094 [M + H]+ 4.510 4.579 

15. Quercetin pentoside 21.9 C20H18O11 435.094 [M + H]+ 4.441 3.522 

16. Quercetin pentoside 22.7 C20H18O11 435.094 [M + H]+ Nd 4.717 

17. Quercetin rhamnoside 23.6 C21H20O11 449.109 [M + H]+ 2.944 1.653 

18. 
Di-O-Isopropylidene-C-
methyl-O-methyl- 

25.2 C14H24O6 289.166 [M + H]+ 5.551 5.343 

 hexose       

19. Kaempferol rhamnoside 27.0 C21H20O10 433.115 [M + H]+ 4.079 3.571 

20. 
Heptanol pentosyl-
hexoside 

27.4 C18H34O10 428.251 
[M + 

NH4]+ 
5.785 2.632 

21. 
Di-O-Acetyl-di-O-
isopropylidene-glycero- 

28.4 C17H26O9 392.193 
[M + 

NH4]+ 
4.263 3.932 

 hexo-heptose       

22. 
1-Octen-3-ol pentosyl-
hexoside 

29.8 C19H34O10 440.251 
[M + 

NH4]+ 
4.514 4.309 

All compounds assigned by comparison of accurate mass data (based on ppm#), and by interpretation 

of available MS/MS and/or UV spectra. nd = not detected or below detection limit. 
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3.4 Discussion 

The consumption of fruits and vegetables rich in polyphenols has been epidemiologically 

correlated with reduced risk of many chronic diseases, such as cardiovascular disease, 

diabetes, cancers, as well as ageing (Arts and Hollman, 2005; Pandey and Rizvi, 2009; Vauzour 

et al., 2010; Lima et al., 2014). Phenolic acids and flavonoids are the two main groups of 

polyphenols, which are abundant in fruits, cereals and vegetables (Lima et al., 2014), and they 

are excellent antioxidants due to their unique structure that can accept electron, thus 

neutralizing and reducing the amount of damaging free radicals in tissue (Losada-barreiro and 

Bravo-díaz, 2017). The application of polyphenols together with other natural active 

compounds as active ingredients in the cosmetic industry has attracted attention for its 

beneficial effects on the skin (Mukherjee et al., 2011; Zillich et al., 2015).  

In this study, the TPC of the medicinal plants investigated was quantified and compared. 

Additionally, individual compounds were analysed using high resolution LC-UV-MS/MS to 

determine other potentially active compounds in the plant extracts. MOE had the highest TPC 

with 67.3 mg GAE/g dried extracts, while MOW contained 52.8 mg GAE/g dried extract. 

Similarly, a previous study to maximize the TPC extraction from M. oliefera leaves has 

suggested that 70% ethanol extraction results in the highest TPC (Vongsak, Sithisarn, 

Mangmool, et al., 2013). The HPLC-MS analysis detected the presence of chlorogenic acids of 

-O-coumaryl-, caffeoyl-, and feruloyl-ester, apigenin flavone glucosides and flavonol 

glycosides of quercetin and kaempferol derivatives, believed to be the active phenolics and 

flavonoids in M. oliefera leaves (Vongsak et al., 2014), and this is supported by a database 

searched (U.S. Department of Agriculture, 2016). Other potentially active compounds in M. 

oliefera could be marumoside A and niazinamins, which are unique to the plant species (Faizi 

et al., 1992, 1994; Sahakitpichan et al., 2011). 
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CAW had the lowest TPC with 25.7 mg GAE/g of dried extract, while CAE had significantly 

higher TPC with 40.1 mg GAE/g dried extract. The analysis of individual compounds showed 

the presence of chlorogenic acid derivatives and the flavonols quercetin and kaempferol. 

However, the flavonols were detected in CAE only, which is consistent with the findings of 

higher TPC quantified in CAE compared with CAW (see Figure 3.3). A study comparing the TPC 

between various parts of the plant species has also shown that the leaves have the highest 

TPC compared with the roots or petiole (Zainol et al., 2003). Its other active compounds are 

the pentacyclic triterpenes detected either as glycosides or saponins of their respective 

triterpenes, triterpenic acids and their glycosides derivatives. Apart from the phenolics, many 

of the activities exhibited by this plant species are due to the triterpenes (Maquart et al., 1990; 

Tang et al., 2011; Somboonwong et al., 2012; Zahara et al., 2014). 

C. ternatea flower extracts (CTW and CTE) were investigated for their TPC and TAC. The TPC 

for CTE was significantly higher than CTW with 53.0 mg GAE/g vs. 38.5 mg GAE/g, while the 

TAC of the two extracts, expressed as cyd-3-glu equivalent/g extracts showed no significant 

difference (3.5 ± 0.2 vs. 3.6 ± 0.7 mg/g). Rabeta and An Nabil (2013) showed similar higher TPC 

values of extract obtained with an organic solvent (methanol) compared to the aqueous 

extracts of the flowers, with 61.7 mg GAE/g and 20.7 mg GAE/g respectively, which is in accord 

with the current finding. Previously reported TAC values for the aqueous C. ternatea flower 

extract were lower than the findings in this study (Chayaratanasin et al., 2015). The individual 

phenolic constituents of C. ternatea extracts consisted of flavonol glycosides and 

anthocyanins, and acylated delphinidin glycosides, including a series of ternatins. The 

anthocyanins are potentially the most active flavonoids in the flowers of C. ternatea as many 

of the reported activities are due to these compounds. 
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The TPC of C. caudatus extracts (CCW and CCE) were 28.5 mg GAE/g vs. 43.0 mg GAE/g dried 

respectively. C. caudatus is the least studied plant species of all the selected plants; however, 

its TPC has been reported in several studies. A methanolic extract of C. caudatus was 

measured to contain 70.4 mg GAE/g dried extract, which was higher than the measured TPC 

in this study (Mustafa et al., 2010). Meanwhile, other reported TPC levels in 80% methanol 

and 80% ethanol extracts of C. caudatus were 22.3 and 19.3 g GAE/100 dried weight 

respectively (Mediani et al., 2013). These findings were lower compared with the results in 

the present study, where the TPC of the water and ethanol extracts were equivalent to 239.4 

and 172.0 g GAE/100 g dried weight respectively. The LC-MS analysis showed the presence of 

flavonoids such as flavonol glycosides of quercetins and kaempferol derivatives, and flavone 

glucosides, which are in agreement with findings in previous studies (Abas et al., 2003; 

Andarwulan et al., 2010; Ahmad; Mediani et al., 2012; Mediani et al., 2013). 

The comparison of the two extracts showed that extraction yield and TPC are strongly 

dependent on the extraction methods used. However, it is also important to consider other 

factors associated with the plant samples, including environmental and genetic factors which 

may also influence the chemical composition of the extracts (Coelho et al., 2016; Boneza and 

Niemeyer, 2018; Di Vittori et al., 2018; Escriche and Juan-Borrás, 2018). Other than that, the 

presence of other potentially active compounds should also be considered to influence the 

investigated anti-ageing properties; hence the importance of LC-MS analysis in this study. 

3.5 Conclusion 

The plant extracts prepared in this study showed the presence of phenolics such as flavonoids 

in the 70% ethanol extracts, which contained higher total phenolic content than the water 

extracts. However, water extraction is a better method to obtain higher yield per dried sample 

weight. The findings in this chapter are important as they will provide an understanding of the 
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potential active constituents that may cause the protective effects investigated in this study, 

and the data are significantly important for future pharmacological and clinical test. 
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Chapter 4 
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 Antioxidant activities of the plant extracts and their 
correlation with total phenolics content 

4.1  Introduction 

Antioxidants play a significant role in the prevention of skin ageing due to their ability to 

neutralise and reduce free radicals in the skin. Skin cells, like other cells in the body utilise 

oxygen for aerobic respiration. It has been shown that, under normal physiological conditions, 

aerobic respiration contributes to the production of reactive oxygen species (ROS) (Turrens, 

2003; Hüttemann et al., 2007; El-Bahr, 2013). The effects of other environmental factors then 

lead to further increases in ROS in the skin, resulting in a condition called oxidative stress when 

the innate defence system becomes deficient (Trenam et al., 1992; Stojiljković et al., 2014; 

Rinnerthaler et al., 2015; Ahsanuddin et al., 2016).  Given an understanding of the role of ROS 

and other reactive species in causing damage to the skin, antioxidants have been included as 

functional active ingredients in skin care products as a part of the management of skin 

(Augustyniak et al., 2010; Pouillot et al., 2011; Pandel et al., 2013). Polyphenols found in the 

roots, stems, flowers and leaves of plants are synthesised as metabolites which protect against 

infection and ultraviolet radiation (Harborne and Williams, 2000; Ferdinando et al., 2014). The 

chemical structures of these compounds which can accept free radicals make them excellent 

antioxidants. Therefore, plant extracts have been evaluated for their antioxidant activities, 

and the correlation of such properties with total phenolic content analysed. 

 Generation of ROS in the skin 

Free radicals can be divided into two types; reactive oxygen and reactive nitrogen species as 

shown in Table 4.1  (El-Bahr, 2013; Nimse and Pal, 2015). Under normal physiological 

conditions, ROS are generated from the uptake of oxygen and the leakage of electrons in the 

mitochondrial ETC (Turrens, 2003). The generation of ROS and RNS is elaborated below to 
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provide a more detailed understanding of the mechanism of action and of assays used for the 

evaluation of the antioxidants. 

Table 4.1: Classification of free radicals 

Reactive oxygen species (ROS) Reactive nitrogen species (RNS) 

1. Singlet oxygen (1O2) 
2. Superoxide anion radical (O2

•-) 
3. Hydroxyl radical (•OH) 
4. Alkoxyl radical (RO•) 
5. Peroxyl radical (ROO•) 
6. Hydrogen peroxide (H2O2); a precursor 
7. Lipid hydroperoxide (LOOH) 

1. Nitric oxide (NO•) 
2. Nitric dioxide (NO•

2) 
3. Peroxynitrate (OONO-) 

 

Apart from the mitochondrial ETC, ROS are produced when the skin is exposed to external 

stimuli such as ultraviolet light, responses to infection, and wound healing, as well as possible 

underlying pathological conditions (Cals-Grierson and Ormerod, 2004; Rinnerthaler et al., 

2015). These stimuli activate the immune system to produce appropriate responses. For 

example, the invasion of the skin by microorganisms such as bacteria, viruses and fungi 

stimulates phagocytic cells to undergo respiratory bursts (Trenam et al., 1992). During this 

process, NADPH oxidase is activated which produces superoxide anions (O2
•-) as a preventive 

measure (Fu et al., 2014). The O2
•- is then converted into hydrogen peroxide (H2O2) by 

superoxide dismutase (SOD). These reactions are as shown in equations 4.1 and 4.2. 

2O2 + NADPH 
𝑜𝑥𝑖𝑑𝑎𝑠𝑒
→      2O2

•- + NADP+ H+   ( 4.1) 

 

2O2 + 2H+ 
𝑆𝑂𝐷
→    H2O2 + O2 ( 4.2) 

 

 

Then, the H2O2 can react with reduced transition metals to produce a highly reactive hydroxyl 

radical (•OH) via the Fenton reaction, as shown in equation 4.3 (Winterbourn, 1995; El-Bahr, 

2013). 
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H2O2 +Fe2+ → •OH + -OH +Fe3+ 
 

 ( 4.3) 

 
Radical species, and especially those capable of abstracting hydrogen, will attack the 

polyunsaturated fatty acid (PUFA) and initiate a lipid peroxidation chain reaction (Halliwell and 

Gutteridge, 1985). The oxidation of PUFA generates a fatty acid radical (L•) that can react with 

O2 to form a fatty acid peroxyl radical (LOO•), as shown in equations 4.4 and 4.5, where PUFA is 

referred as LH. The peroxyl radicals can further oxidize PUFA and initiate new chain reactions 

producing lipid hydroxyperoxide (LOOH), which usually breaks down to aldehydes as shown in 

equations 4.6 and 4.7. 

LH + R• → L• +RH 
 

( 4.4 ) 

 
L• +O2 → LOO• 

 
( 4.5 ) 

 
LOO• +LH  → LOOH + L•  

 
( 4.6 ) 

 
LOOH → LO• + LOO• + aldehydes + electrons 

 
( 4.7 ) 

 
Meanwhile, RNS such as nitric oxide (NO•) are produced by nitric oxide synthase (NOS) from 

arginine, and the NO• and O2
•- can react together to produce peroxynitrite (ONOO-), as shown 

in equation 4.8 and 4.9.  

 L-Arg + O2 + NADPH 
𝑁𝑂𝑆
→  NO• + citrulline 

 

( 4.8 ) 

 
 NO•+O2

•- → ONOO- 
 

( 4.9 ) 
 

 Mechanism of antioxidants 

Antioxidants are substances that can delay or prevent the oxidation damage caused by ROS 

or RNS. They can be classified as endogenous or exogenous antioxidants. Endogenous 

antioxidant systems in the skin are either enzymatic antioxidants, such as superoxide 

dismutase (SOD), catalase (CAT) and GSH-peroxidase (GSH-Px), or non-enzymatic antioxidants 

such as glutathione (GSH), α-tocopherol, ascorbate, β-carotene and melanin (Sun, 1990; 
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Steenvoorden and Beijersbergen Van Henegouwen, 1997). The SOD catalyses the dismutation 

of O2
•- to O2 and H2O2, as previously described in equation 4.2, and the H2O2 is converted to 

water and O2 to prevent the formation of toxic OH• by CAT, as shown is equation 4.10 (Sun, 

1990). Meanwhile, GSH-Px reduces H2O2 and organic hydroperoxides using glutathione (GSH) 

as a substrate to produce glutathione disulphide (GSSG) and water, as shown in equations 

4.11 and 4.12.  

 2H2O2 

𝐶𝐴𝑇
→   2H2O + O2 

 

( 4.10 ) 
 

 H2O2 + 2GSH 
𝐺𝑆𝐻−𝑃𝑥
→      GSSG + H2O 

 

( 4.11 ) 
 

 ROOH + 2GSH 
𝐺𝑆𝐻−𝑃𝑥
→      GSSH + ROH + H2O 

 

( 4.12 ) 
 

The non-enzyme endogenous antioxidants include low molecular weight antioxidants and 

metal binding proteins such as ferritin, myoglobin, metallothionein, coenzyme Q10, 

gluthathione, melatonin, polyamines, transferrin, lactoferrin, albumin, ceruplasmin, uric acid 

and bilirubin (Mironczuk-Chodakowska et al., 2018). These proteins protect the skin from 

reactive species by either rapidly deactivating radicals and oxidants or inhibiting the formation 

of new reactive species by binding transition metal ions. Exogenous antioxidants such as 

ascorbic acid, vitamin E, carotenoids and polyphenols are supplied to the skin either by 

consumption or topical application, and also exert their activity against free radicals via similar 

mechanisms (Nimse and Pal, 2015).   

 Antioxidant assays 

Many antioxidant assays have been employed to measure the antioxidant capacities of plant 

and food components (Moon and Shibamoto, 2009). However, the most commonly used 

methods in the literature which are employed in this study are described below.  
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1.1.1.1 2,2'-Diphenyl-1-picrylhydrazyl assay  

 The 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay is the most commonly used antioxidant assay 

due to its feasibility and ease of use. A synthetic, purple-blue and stable free radical of DPPH● 

is formed by dissolving the DPPH in organic solvents such as methanol or ethanol overnight. 

This free radical changes into yellow in the presence of antioxidants (see Figure 4.1) which are 

measurable at a wavelength of 571 nm. The antioxidant capacities are either expressed as 

IC50, Which is the concentration capable of scavenging 50% of the free radicals present or 

compared to a standard equivalent such as Trolox or vitamin C (Floegel et al., 2011). 

 

Figure 4.1: Reaction of the stable free radical DPPH● with an antioxidant (AOH). Image 

retrieved from Oliveira et al., 2014. 

1.1.1.2 2, 2’-Azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay 

The 2, 2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assay was originally based 

on the activation of metmyoglobin with hydrogen peroxide in the presence of ABTS to produce 

radical cations (Re et al., 1999). An improved assay applicable to both lipo- and hydrophilic 

compounds was then developed in which the radical cation is formed without intermediates, 

and the preformed radical is more stable compared to that from the traditional method (Re 

et al., 1999). The blue-green ABTS●+ cation is preformed from the oxidation of ABTS salt with 

potassium persulfate (see Figure 4.2) and later is reduced or becomes colourless in the 

presence of antioxidants (Oliveira et al., 2014). The maximum absorption is measured at 734 
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nm, and the antioxidant capacities are again either expressed as IC50 or the standard 

equivalent such as Trolox or vitamin C.  

 

Figure 4.2: Oxidation of ABTS by potassium persulfate to generate ABTS●+ and its reaction 
with an antioxidant. Image retrieved from Oliveira et al., 2014. 

1.1.1.3 Ferric reducing antioxidant power assay 

The ferric reducing antioxidant power (FRAP) assay was developed by Benzie and Strain 

(1996). The method is based on the reduction of the ferric 2, 4, 6-tripyridyl-s-triazine complex 

(Fe3+-TPTZ) to the intensely blue ferrous form (Fe2+-TPTZ) and the intensity is measurable at 

593 nm (see Figure 4.3). The method is inexpensive, simple and highly reproducible (Benzie 

and Strain, 1996). The redox potential of Fe (III) salt is comparable to that of ABTS, and the 

two assays are quite similar, except that the FRAP assay is performed under acidic conditions 

while the ABTS assay is at neutral (Huang et al., 2005). 
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Figure 4.3: FRAP reaction. Image retrieved from Huang et al., 2005. 

 Objectives 

The objective of this chapter is to investigate the antioxidant activities of the plant extracts 

and their correlation with the measured TPC in Chapter 3. Several methods of antioxidant 

measurements were employed to ensure the consistency of the activities exhibited, which 

include DPPH, ABTS and FRAP assays.  
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4.2 Materials and methods 

 Plant extracts and Trolox preparation 

Trolox standard (1000 µM): 6.3 mg Trolox (MW: 250.29 g/mol) was weighed and dissolved in 

25 mL of either water or 70% ethanol to obtain 1000 µM of Trolox stock. The stock was serially 

diluted at 1:1 dilution to obtain working concentrations of 500, 250, 125 and 62.5 µM.  

Plant extract stock (30mg/mL): 300 mg of freeze-dried plant extracts was dissolved in 10 mL 

of either water or 70% ethanol to obtain 10 mL of 30 mg/mL stock. The stock was serially 

diluted to prepare working solutions of the plant extracts. Appropriate working 

concentrations were prepared for the DPPH, ABTS and FRAP assays to achieve final 

concentrations of 1000, 500, 250, 125 and 62.5 µg/mL in the wells. 

 DPPH assay 

 DPPH reagent preparation 

a) DPPH stock (0.24 mg/ mL): 24 mg of DPPH powder was weighed and dissolved in 100 mL 

of methanol to obtain 100 mL of 0.24 mg/mL DPPH stock. The stock was kept overnight in the 

dark at 4 °C to allow the complete dissolution of DPHH. The DPPH radical prepared was stable 

for at least 2-7 days but needed to be freshly diluted every day. 

b) DPPH working solution: The prepared DPPH stock solution was diluted at a ratio of 1:5 with 

methanol to achieve a DPHH working solution with a final absorbance of approximately 1.0-

1.2.  

 DPPH assay protocol 

The previous protocols were followed with some modifications using the prepared DPPH 

reagents (Pyrzynska and Pękal, 2013; Chattuwatthana and Okello, 2015). In a 96-well plate, 

Trolox (15 µL), plant samples (15 µL) and water or 70% ethanol (15 µL) as controls were added 

with DPPH working solution (285 µL) and properly mixed. The plate was incubated in the dark 
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at 30 °C for 30 minutes before a reading was taken at a wavelength of 517 nm using a 

microplate reader SpectraMax Plus384 (Molecular Device Corporation). All experiments ware 

performed in triplicates. Background absorbance was corrected by subtracting the 

absorbance value of a blank (water or 70% ethanol alone). The DPPH radical scavenging 

activity was expressed as Trolox equivalent (TE) in µM/ mg of extracts obtained from the 

Trolox standard curve. The final Trolox concentrations in the reaction mixture were 50, 25, 

12.5, 6.25 and 3.33 µM (15 µL in 300 µL mixture: 1/20). 

 ABTS assay 

 ABTS reagent preparation 

a) 5 mM phosphate buffered saline (PBS), pH 7.4: 9.0 g of sodium chloride (NaCl: 58.44 

g/mol), 0.37 g of sodium dihydrogen phosphate (NaH2PO4: 119.98 g/mol) and 0.74 g of 

disodium hydrogen phosphate (Na2HPO4.12H2O: 141.96 g/mol) were weighed and dissolved 

in deionised water. The volume was made up to 1 L and the pH was adjusted to 7.4 using 

hydrochloric acid (HCl) or sodium hydroxide (NaOH). 

b) 15 mM ABTS: 80 mg of the ABTS salt (MW: 514.62 g/mol) was weighed and dissolved in 10 

mL of deionised water. A light turquoise green solution was obtained. 

c) 5 mM potassium persulfate (K2S2O4): 13.2 mg of potassium persulfate (MW: 270.32 g/mol) 

was weighed and dissolved in 10 mL of deionised water. A clear solution was obtained. 

d) ABTS stock: The previously prepared 15 mM ABTS (5 mL) was added to 5 mM potassium 

persulfate (5 mL) to initiate a reaction, as ABTS radical is obtained from a 1:1 chemical reaction 

between 7 mM ABTS and 2.45 mM potassium persulfate. The solution was kept in the dark at 

4 °C and remained stable for at least two days. 

e) ABTS working solution: The preformed ABTS radical (1 mL) was diluted with 5-mM PBS (49 

mL) to obtain a 50-mL working solution with an absorbance value of approximately 0.7-1.0 at 

734 nm. The 50-mL working solution was sufficient for a full 96-well plate. 



 

76 
 

 ABTS assay protocol 

The previous protocol was followed with some modifications using the prepared reagents 

(Chattuwatthana and Okello, 2015). In a 96-well plate, either Trolox standard solution (10 µL), 

plant sample (10 µL) or a solvent (10 µL) for control were thoroughly mixed with ABTS working 

solution (290 µL) in the assay wells. The microplate was subsequently incubated in the dark at 

37°C for 6 minutes. All experiments were performed in triplicate. The absorbance of the 

solution in each assay well was determined using a microplate reader (SpectraMax Plus384, 

Molecular Device Corporation) at a wavelength of 734 nm. Background absorbance was 

corrected by subtracting the absorbance value of blank (water/70% ethanol). The ABTS radical 

scavenging activity was expressed as Trolox equivalent (TE) µM/mg extracts obtained from 

the Trolox standard curve. The final Trolox concentrations in the assay were 33.3, 16.7, 8.3, 

4.2 and 2.1 µM (10 µL in 300 µL mixture:1/30) 

 FRAP assay  

 FRAP reagent preparation 

a) 0.2 M sodium acetate buffer: 27.2 g of sodium acetate trihydrate, C2H3O2Na.3H2O (MW: 

136.1 g/mol) was dissolved in deionised water and brought up to 1 L to obtain a 0.2 M sodium 

acetate buffer. 

b) 40-mM HCl: 12.5 M concentrated HCl (320 µL) was made up to 100 mL using deionised 

water to obtain 40 mM HCl. 

c) 10 mM 2, 4,6-tri [2-pyridyl]-s-triazine (TPTZ): TPTZ (31 mg) was weighed and dissolved in 

10 mL of 40 mM HCl. The solution was heated up in a water bath (~50 °C) to facilitate the 

dissolution. This reagent was made fresh on the day of the experiment. 
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d) 20 mM ferric chloride (FeCl3): 54 mg of FeCl3.6H20 (MW: 270.29 g/mol) was weighed and 

dissolved in 10 mL of deionised water. The reagent was made fresh on the day of the 

experiment. 

e) FRAP working reagents: FRAP reagent was prepared by mixing 25 mL of acetate buffer, 2.5 

mL of TPTZ solution and 2.5 mL of FeCl3 to make 75 mL of FRAP reagent. The reagent remained 

stable for one day. 

 FRAP assay protocol 

The previously described method was followed with some modifications using the prepared 

reagents (Settharaksa et al., 2014). In a 96-well plate, either Trolox (30 µL), sample (30 µL) or 

solvent (30 µL) was added to FRAP working reagent (270 µL) and mixed well. The plate was 

incubated for 30 minutes at room temperature before reading at 593 nm. Background 

absorbance was corrected by subtracting the absorbance value of blank (water or 70% 

ethanol). The FRAP activity was expressed as Trolox equivalent (TE) in µM/ mg of extract 

obtained from the Trolox standard curve. The final Trolox concentrations in the reaction 

mixture were 100, 50, 25, 12.5 and 6.25 µM (10 µL in 300 µL mixture: 1/10). 

 Percentage inhibition (%) 

The percentage inhibition (%) of the free radicals in each assay was calculated using the 

formula below.  

Percentage inhibition (%) = (1 -  
(S)

(C)
 ) x 100 ( 4.13) 

 
 

where, S is the sample corrected absorbance value, and C is the corrected absorbance value 

of the control.  
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 Trolox standard for DPPH, ABTS and FRAP assays 

DPPH and ABTS assays: The Trolox equivalent for DPPH and ABTS assays were either obtained 

from the regression lines constructed from percentage inhibition (%) vs. Trolox standard 

concentrations (µM). As the concentration of Trolox increases, the percentage inhibition 

against DPPH● or ABTS● also increases. So, the regression line from this graph results in a 

positive slope (y= ax).  

FRAP assay: Trolox standard was obtained from the regression lines of OD 593 nm against 

concentration. With increasing Trolox concentration, the absorbance value at 593 nm also 

increases, resulting in a positive slope of the regression line (y= ax). 

 Trolox equivalent µM/mg extract for each assay 

The Trolox equivalent µM/mg extracts for each DPPH, ABTS and FRAP assays were calculated 

as below: 

x= (y/a) x DF1 x DF2 

 
( 4.14 ) 

 
where y is the OD value of the sample, a is the slope of the Trolox regression line, DF1 is the 

dilution factor for either DPPH (DF=20), ABTS (DF=30) and FRAP (DF=10) assay and DF2 is the 

dilution factor used to achieve the value for 1 mg extracts from the working concentration.  

It is essential to make sure that the sample absorbance value is not outside the range of Trolox 

standard. lies within the Trolox standard regression line. Sample absorption values that lie 

outside the regression line needs to be diluted, and the Trolox equivalent should be corrected 

by multiplying with the DF2.  
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4.3 Results 

 ABTS assay; Trolox equivalent (TE) 

The IC50 of Trolox was 25.8 µM, and the values are Trolox equivalent (TE) in µM/mg were as 

shown in Figure 4.4. MOE had the highest TE, while both C. asiatica extracts (CAW and CAE) 

had the lowest. TE values for all extracts from highest to lowest were MOE (941 µM/mg) > CTE 

(764 µM/mg) > CTW (738 µM/mg) > MOW (599 µM/mg) > CCW (586 µM/mg) > CCE (386 

µM/mg) > CAW (325 µM/mg) > CAE (285 µM/mg). 

 DPPH assay; Trolox equivalent (TE) 

The IC50 for Trolox was 13.2 µM, and the Trolox equivalent (TE) in µM/mg extracts for all plant 

extracts are shown in Figure 4.5. MOE had the highest TE followed by CCW, while other 

extracts showed no significant mean differences between each other. TE values of all extracts 

from highest to lowest were MOE (135 µM/mg) >CCW (95 µM/mg)>CAE (67 µM/mg)>CAW 

(65 µM/mg)>CTE (63 µM/mg)>CCE (61 µM)>CTW (60 µM/mg)>MOW (58 µM/mg). 

 FRAP assay; Trolox equivalent (TE) 

The Trolox standard regression line and the Trolox equivalent (TE) in µM/mg extract for all 

plant extracts are as shown in Figure 4.6. TE values of all extracts from highest to lowest were 

MOE (312 µM/mg) >MOW (234 µM/mg)>CCW (222 µM/mg)>CTW (209 µM/mg)>CCE (197 

µM/mg)>CTE (182 µM)>CAE (182 µM/mg)>CAW (164 µM/mg).  
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Figure 4.4: ABTS assay; Trolox regression line (A) and Trolox equivalent (TE) for all extracts 
(B): ABTS assay. Different letters indicate significant mean differences with p<0.05 considered 

as significant. Data are the mean ± SD of triplicates.  

 



 

81 
 

0 5 10 15 20 25 30

0

20

40

60

80

100

Concentration (µM)

P
e

rc
e

n
ta

g
e

 i
n

h
ib

it
io

n
 (

%
)

y=3.79 x

R2=0.99

IC50=13.2 µM

A.

M
O

C
A C

T
C
C

0

25

50

75

100

125

150

T
E

 µ
M

/m
g

 e
x

tr
a

c
ts

Water

70% ethanol

a

b

c
ccc

c c

B.

 

Figure 4.5: DPPH assay; Trolox regression line (A) and Trolox equivalent for all extracts (B). 

Different letters indicate significant mean differences with p<0.05 considered as significant. 

Data are the mean ± SD of triplicates.  
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Figure 4.6: The Trolox regression line (A) and Trolox equivalent for all extracts (B). Different 

letters indicate significant mean differences with p<0.05 considered as significant. Data are 

the mean ± SD of triplicates.   
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 Correlation analysis 

A strong positive correlation was observed between total antioxidant activity vs. TPC (r= 

0.742), and between antioxidant activity measured using individual antioxidant assays vs. TPC, 

as shown in Figure 4.7. 

 

 

Figure 4.7:  Positive correlation between TPC and antioxidant activities. a) Correlation 

between TPC and total antioxidant, and b) Correlation between TPC and antioxidant activity 

measured by each assay. Each data point is the mean of triplicates.   
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 Dose response and IC50: ABTS and DPPH assay 

 Moringa oliefera Lam. 

The IC50 values for MOW and MOE in both assays were as shown in Table 4.2. MOE was more 

potent than MOW with lower IC50 values observed in both assays. The free radical scavenging 

activities of both extracts were concentration-dependent, and the best-fitted regression lines 

were used to obtain IC50 values in both assays (see Figures 4.8 and 4.9).  

Table 4.2: IC50 values for M. oliefera extracts. 

Samples ABTS IC50 (µg/mL) DPPH IC50 (µg/mL) 

MOW 63.9 172.4 

MOE 34.5 94.2 
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Figure 4.8: Dose-response and IC50 of MOW and MOE in ABTS assay.  A and B show the dose-

response, and C and D the regression lines for MOW and MOE. Data represent the mean ± SD 

of triplicates. 
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Figure 4.9: Dose-response and IC50 of MOW and MOE in DPPH assay.  A and B show the dose-

response and C and D the regression lines for MOW and MOE. Data represent mean ± SD of 

triplicates. 
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 Centella asiatica (L.) Urb. 

The IC50 values for CAW and CAE in both assays were as shown in Table 4.3. CAE was more 

potent than CAW with lower IC50 values observed in both assays. The free radical scavenging 

activities for both extracts were concentration-dependent, and the best-fitted regression lines 

were used to obtain IC50 values in both assays (see Figures 4.10 and 4.11). 

Table 4.3: IC50 values for C. asiatica (L.) Urb. extracts. 

Samples ABTS IC50 (µg/mL) DPPH IC50 (µg/mL) 

CAW 112.0 196.4 

CAE 111.4 182.0 
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Figure 4.10: Dose-response and IC50 of CAW and CAE in ABTS assay. A and B show the dose-

response and C and D the regression lines for CAW and CAE. Data represent mean ± SD of 

triplicates. 



 

89 
 

31 63 12
5

25
0

50
0

10
00

0

20

40

60

80

100

120

A. CAW

Concentration (µg/mL)

P
e
rc

e
n

ta
g

e
 i
n

h
ib

it
io

n
 (

%
)

31 63 12
5

25
0

50
0

10
00

0

20

40

60

80

100

120

B. CAE

Concentration (µg/mL)

P
e
rc

e
n

ta
g

e
 i
n

h
ib

it
io

n
 (

%
)

0 50 100 150 200 250 300

0

20

40

60

80

100

120

C. CAW

Concentration (µg/mL)

P
e
rc

e
n

ta
g

e
 i
n

h
ib

it
io

n
 (

%
)

IC50=196.4 µg/mL

0 50 100 150 200 250 300

0

20

40

60

80

100

120

D. CAE

Concentration (µg/mL)

P
e
rc

e
n

ta
g

e
 i
n

h
ib

it
io

n
 (

%
)

IC50=182.0 µg/mL

 

Figure 4.11: Dose-response and IC50 of CAW and CAE in DPPH assay.  A and B show the dose-

response and C and D the regression lines for CAW and CAE. Data represent mean ± SD of 

triplicates. 
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 Clitoria ternatea L. 

The IC50 values for CTW and CTE in both assays were as shown in Table 4.4. CTE was more 

potent than CTW with lower IC50 values observed in both assays. The free radical scavenging 

activities for both extracts were concentration-dependent, and the best-fitted regression lines 

were used to obtain IC50 values in both assays (see Figures 4.12 and 4.13). 

Table 4.4: IC50 values for C. ternatea L. extracts. 

Samples ABTS IC50 (µg/mL) DPPH IC50 (µg/mL) 

CTW 42.9 195.5 

CTE 37.8 188.9 
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Figure 4.12: Dose-response and IC50 of CTW and CTE in ABTS assay.  A and B show the dose-

response and C and D the regression lines for CTW and CTE. Data represent mean ± SD of 

triplicates. 
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Figure 4.13: Dose-response and IC50 of CTW and CTE in DPPH assay.  Figure A and B show the 

dose-response and C and D the regression lines for CTW and CTE. Data represent mean ± SD 

of triplicates. 

  



 

93 
 

 Cosmos caudatus Kunth. 

The IC50 values for CCW and CCE in both assays were as shown in Table 4.5. CCW was more 

potent than CCE with lower IC50 values observed in both assays. The free radical scavenging 

activites for both extracts were concentration-dependent, and the best-fitted regression lines 

were used to obtain IC50 values in both assays (see Figures 4.14 and 4.15). 

Table 4.5: IC50 values for C. caudatus Kunth. extracts. 

Samples ABTS IC50 (µg/mL) DPPH IC50 (µg/mL) 

CCW 57.2 163.6 

CCE 73.4 197.7 
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Figure 4.14: Dose-response and IC50 of CCW and CCE in ABTS assay.  A and B show the dose-

response and C and D the regression lines for CCW and CCE. Data represent mean ± SD of 

triplicates. 
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Figure 4.15: Dose-response and IC50 of CCW and CCE in DPPH assay.  A and B show the dose-

response and C and D the regression lines for CCW and CCE. Data represent mean ± SD of 

triplicates.  
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 Summary of antioxidant activity (IC50 values) 

The IC50 values of all the plant extracts were summarised and compared as shown in Table 4.6. 

In comparison to other extracts, MOE showed the highest antioxidant capacities in both ABTS 

and DPPH assays, as shown by the IC50 values. However, the observed IC50 values of all extracts 

were lower than of Trolox standard, which were as expected due to the difference in purity 

between Trolox and the extracts. 

Table 4.6: Comparison of IC50 values of all plant extracts. 

Plant 

species/Standard 

Samples ABTS IC50 (µg/mL) DPPH IC50 (µg/mL) 

Positive control Trolox 6.51 3.32 

M. oliefera MOW 63.9 172.4 

MOE 34.5 94.2 

C. asiatica CAW 112.0 196.4 

CAE 111.4 182.0 

C. ternatea CTW 42.9 195.5 

CTE 37.8 188.9 

C. caudatus CCW 57.2 163.6 

CCE 73.4 197.7 
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4.4 Discussion 

Epidermal and dermal antioxidant enzymes such as superoxide dismutase (SOD), catalase 

(CAT), and glutathione peroxidase (GSH-Px), as well as non-enzymatic antioxidants such as α-

tocopherol, ubiquinol-9, ubiquinone-9, ascorbic acid and dehydroascorbic acid, are 

significantly decreased after UV irradiation (Shindo et al., 1993). Thus, one of the strategies 

use to combat skin ageing is the inclusion of active ingredients in cosmetics products to 

augment the depleted antioxidant defense system.    

In this study, plant extracts were evaluated for their antioxidant potential using three different 

antioxidant assays. Plant extracts contain a mixture of compounds that exert antioxidant 

activity through different mechanisms, and thus it is necessary to make comparisons  of the 

activities exhibited in each assay to ensure consistency (Moon and Shibamoto, 2009). A 

correlation analysis performed between TE vs. TPC (see Figure 4.7) showed a positive 

correlation. Similar correlations have also been shown in several other studies, suggesting that 

phenolics may have been responsible for the activity (Li et al., 2009; Mustafa et al., 2010; 

Piluzza and Bullitta, 2011; Mello and Quadros, 2014). 

In all of the DPPH, ABTS and FRAP assays, MOE exhibited the highest levels of antioxidant 

activity, while the other plant extracts did showed variation between assays. Factors such as 

variability in the phytochemical components in the extracts may explain these results. 

Although the antioxidant activities of M. oliefera have previously been reported (Sreelatha 

and Padma, 2009; Vongsak, Sithisarn, Mangmool, et al., 2013), a comparison between the 

plants selected in this study has not been reported, and there is variability in the results of 

other studies due to the assays and samples used. M. oliefera 70% ethanol was investigated 

by Vongsak et al., (2013) and was also shown to exhibit the highest antioxidant activities in 

comparison to water extracts. The active antioxidant compounds in M. oliefera leaves such as 
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crypto-chlorogenic acid, isoquercetin and astragalin may have contributed to the 

demonstrated antioxidant activities (Vongsak et al., 2014). 

Both C. asiatica extracts (CAE and CAW) exhibited the lowest antioxidant capacities in 

comparison with all other extracts.  In Chapter 3, it was shown that the TPC values of both 

extracts were also the lowest, which may have contributed to the lower antioxidant activity. 

Several studies comparing the effect of extraction solvents have demonstrated that C. asiatica 

extracted using a co-solvent system of water-ethanol exhibited higher antioxidant activity and 

TPC in comparison with 100% ethanol and water extracts (Hamid et al., 2002; Rahman et al., 

2013), which is in agreement with the results in this study. A dose-dependent effect was 

observed in both assays for CAW and CAE, which suggests that, despite the lower antioxidant 

activities, there are compounds in the extracts that possess antioxidant potential (Singh et al., 

2014). 

There are at least 60 species of the genus Clitoria, but the blue-flowered C. ternatea contains 

high levels of anthocyanins, which are excellent antioxidants (Sivaprabha et al., 2008; Nair et 

al., 2015). In Chapter 3, the values of TAC of C. ternatea extracts (VTW vs. CTE) were found to 

not significantly differ. However, measurement of their antioxidant activity showed that CTE 

had higher antioxidant levels compared with CTW. This result may be explained by the 

presence of quercetin in CTE, whilst in CTW this compound was not present or was below the 

detection limit (see Table 3.5). However, these results contradict those of Kamkaen and 

Wilkinson (2009) where the aqueous extract of C. ternatea had higher antioxidant capacity 

than that of the ethanol extract. In this study, a co-solvent system of 70% ethanol was used 

instead of pure ethanol, which has a higher polarity and is a better solvent for polar 

compounds, thus perhaps explaining the contradictory result (Vongsak, Sithisarn, Mangmool, 

et al., 2013). 
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In comparisons with the other plant extracts, CCW had significantly higher antioxidant 

activities than CCE, despite the higher TPC observed in CCE (see Chapter 3). Studies of this 

plant species are very limited in number but several which have evaluated the antioxidant 

potential suggest that they are good source of antioxidants (Shui et al., 2005; Mustafa et al., 

2010; Ahmad; Mediani et al., 2012; Hassan et al., 2012). A study by Mustafa et al., (2010) 

comparing the antioxidant activity of 21 selected tropical plants showed that C. caudatus had 

the highest IC50 value, at levels statistically comparable to those of a synthetic antioxidant. 

Several other studies comparing Malay vegetables or “ulam” also showed C. caudatus to rank 

among those with the highest antioxidant levels (Abas et al., 2006; Reihani and Azhar, 2012; 

Chan et al., 2014). 

The results in this chapter suggest that all of the prepared plant extracts can scavenge free 

radicals and are able to reduce metal ions through reduction-oxidation (redox) mechanisms 

(López-Alarcón and Denicola, 2013). These properties are important in modulating the 

protective antioxidant effect in the skin by inhibiting the initiation of free radicals (a reaction 

chain breaker) or by interrupting the Fenton reaction (a metal ion chelator) (Gorinstein et al., 

2013).  

4.5 Conclusion 

The levels of antioxidant activity of the plant extracts are positively correlated with the total 

phenolic content, suggesting that phenolics are responsible for the antioxidant activities 

exhibited. In this study, all of the ethanolic extracts of the plant species were shown to have 

better antioxidant potential, except for C. caudatus. Although their potency differs, the 

antioxidant activities demonstrated suggest that all of the prepared plant extracts can 

scavenge free radicals, which may be useful in the management of skin ageing since they are 

potential sources of natural antioxidants.  
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Chapter 5 
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 Protective effects against extracellular matrix enzymes: 
anti-collagenase, anti-elastase and anti-tyrosinase activities of the 
plant extracts  

5.1 Introduction 

The enzymes involved in the degradation of extracellular matrix (ECM) and melanogenesis and 

are more specific targets compared with molecular approaches. Thus, the inclusion of 

inhibitors for these enzymes as active ingredients in cosmetics formulations is preferred in the 

cosmetics industry. Studies to explore novel natural inhibitors for these enzymes are 

increasing (Lee et al., 2001; Thring et al., 2009; Moon et al., 2010; Kacem, 2013; 

Chattuwatthana and Okello, 2015), and  commonly used assays for screening and evaluation 

are discussed below. 

 Anti-collagenase assay 

One of the most effective types of therapy to improve the structure of type-1 collagen in the 

ECM is by inhibiting collagenase activity (Mukherjee et al., 2012). Collagenase acts by cleaving 

the X-gly bond of collagen. It also has the ability to cleave similar bonds in synthetic peptide 

that contains the sequence of –Pro-X-Gly-Pro, where X could be almost any amino acid,  

provided that the amino terminus is blocked (Van Wart and Steinbrink, 1981). Collagenase 

from the bacteria Clostridium histolyticum is commonly used in the assessment of an anti-

collagenase agent, since the bacterial collagenase degrades collagen in both physiological and 

in vitro conditions (Thring et al., 2009; Roy et al., 2013). The substrates used with the enzyme 

are either a fluorescence-labelled-collagen or a synthetic peptide such as N-[3-(2-

Furyl)acryloyl]-Leu-Gly-Pro-Ala (FALPGA) (Van Wart and Steinbrink, 1981; MolecularProbes, 

2001; Thring et al., 2009). In the fluorescence assay, the labelled substrate is digested in the 

presence of collagenase, and the labelled fragments fluoresce at 485 ± 10 nm excitation and 
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530 ± 10 nm emission with Ex/Em5 optimal at 495/515 nm. Lower fluorescent readings are 

observed in the presence of an inhibitor (MolecularProbes, 2001). Meanwhile, a collagenase 

assay using FALPGA shows maximum absorption at 345 nm (Van Wart and Steinbrink, 1981), 

with lower optical density suggesting higher collagenase activity on FALPGA (BioVision, 2016). 

 Anti-elastase assay 

Elastin is one of the ECM proteins that provides elasticity to the connective tissues, and any 

damage to elastin leads to declining skin resilience (Robert et al., 1984; Mecham et al., 1997; 

Daamen et al., 2007). Elastases, which are enzymes that are involved in the breakdown of 

elastin, have also been shown to increase with ageing and after UV irradiation and further 

cause reduction in skin resilience, thus also needing to be taken into account in skin aging 

management (see Chapter 2: 2.10.3.2). There are two commonly used assays to evaluate 

inhibitors for this enzyme, where a commercially available porcine elastase is used with either 

a fluorescent-labelled substrate or a synthetic peptide called N-Succ-(Ala)-3-nitroanilide 

(SANA). In the fluorescent assay, the digested substrates release fluorescent fragments that 

fluoresce at  485 ± 10 nm excitation and 530 ± 10 nm emission with Ex/Em optimal at 495/515 

nm which correlates with elastase activity (MolecularProbe, 2001). Similarly, the release of p-

nitroaniline from the digested SANA changes the reaction mixture from colourless to yellow, 

which is measurable at 410-495 nm using a spectrophotometer (Lee and Choi, 1999).   

 Anti-tyrosinase assay 

An overproduction of skin melanin that causes facial hyperpigmentation is aesthetically 

undesirable. Another target enzyme in the formulation of cosmetics products to manage this 

problem is the tyrosinase, which catalyses the biosynthesis of melanin (see Chapter 2: 

2.10.3.3). A commercially available mushroom tyrosinase is usually used in the anti-tyrosinase 

                                                      
5 Ex/Em = Excitation/Emission 
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assay in the evaluation of potential tyrosinase inhibitors (Chang et al., 2007; Khan, 2007; 

Vardhan et al., 2014; Zeitoun et al., 2016). This assay uses either L-DOPA or L-tyrosine as a 

substrate, in which the L-DOPA is oxidized into L-DOPA-quinone and water by tyrosinase, 

whilst the L-tyrosine is oxidized into L-DOPA, and then the same reaction proceeds. The 

intensity of L-DOPA-quinone is measurable at 475-495 nm using a spectrophotometer.     

 Chapter objectives 

This chapter aims to investigate potential applications of the plant extracts as anti-wrinkles 

and anti-hyperpigmentation agents. The objectives of this chapter are further elaborated 

below: 

 To investigate the anti-collagenase activity of the prepared plant extracts 

 To investigate the anti-elastase activity of the prepared plant extracts 

 To investigate the anti-tyrosinase activity of the prepared plant extracts  

  



 

104 
 

5.2 Materials and methods 

 Anti-collagenase assay 

 Materials and reagent preparation 

An EnzChek Gelatinase/Collagenase Assay kit was purchased from ThermoFisher Scientific, UK 

(Code: E-12055; Lot#:1717422). The kit was supplied with 1 vial of lyophilized collagenase 

purified from C. histolyticum (500 units/vial), 1 vial of 1-10 phenantroline, monohydrate (MW: 

198.22, 30 mg/vial), 5 vials of DQ gelatine from pig skin conjugated with fluorescein (1 mg/vial) 

and 50 mL of 10 X reaction buffer (0.5 M Tris-HCl, 1.5 M NaCl, 50-mM CaCl2 and 2 mM sodium 

azide, pH 7.6). The kit was stored in -20 °C upon receipt. Reagents were prepared according 

to the protocols from the manufacturer with modifications as described in Table 5.1. 

Table 5.1: Reagents preparation for collagenase fluorescence assay 

No. Reagent Protocol 

1. 1 mg/mL DQ 

gelatine stock 

solution 

1 mL of deionised water was added directly to one of five vials. 

The mixture was agitated and sonicated in a water bath at 50 

°C for 5 minutes to facilitate dissolution.  

Working concentrations (200 µg/mL): The stock solution was 

added to 4.0 mL of the 1x reaction buffer to obtain 5 mL of 200 

µg/mL working solution. The working solution was stored at 4 

°C in the dark. Freezing and thawing were avoided as 

background fluorescence increases.  

2. 1x reaction buffer 20 mL of the 10x reaction buffer was diluted in 180 mL of 

deionised water. The 200-mL 1X reaction buffer was enough for 

all assays.  

3. 500 units/mL 

collagenase stock 

The content of the collagenase vial was added to 1.0 mL 

deionised water. The reconstituted collagenase was stored in 

small vials at -20 °C until needed. The frozen enzyme was stable 

for up to 6 months without any loss of activity. 

Working concentration (0.8 units/mL): 80 µL of collagenase 

stock was made up to a total volume of 50 mL using the 1X 

reaction buffer to obtain 0.8 units/mL of collagenase working 

solution.  
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No. Reagent Protocol 

4. 1, 10-

phenanthroline 

inhibitor (1,10-

PNT) 

1 mL of ethanol was added to the 1, 10-PNT vial. Later, the 

solution was made up to 15 mL using the 1x reaction buffer to 

obtain 10 mM 1, 10-phenanthroline inhibitor. 

Working concentrations: 400 µL of the 10 mM 1, 10-PNT 

inhibitor was added to 1.6 mL of 1X reaction buffer to obtain 2 

mM 1, 10-PNT. Later, the 2 mM was serially diluted to obtain 

0.5, 0.25, 0.125 and 0.0625 mM solutions. The final 1, 10-PNT 

concentrations were 0.5, 0.25, 0.125, 0.0625 and 0.0325 mM 

respectively in 200 µL reaction mixture. 

5. Plant extract 

preparation 

Plants extracts were prepared in either water or 70% ethanol 

at 20 mg/mL as stock and stored at -20 °C. The working 

concentrations were prepared appropriately depending on the 

required final concentrations. 

 

 Collagenase assay protocol 

The protocol was followed according to the manufacturer’s suggestions with some 

modifications. In a 96 well-plate, 50 µL of collagenase (0.8 units/mL) was added to 50 µL 

samples or inhibitor and allowed to react for 15 minutes at 37 °C. After pre-incubation, 100 

µL of substrate was added to the reaction well. The plate was further incubated for 120 

minutes at 37 °C and fluorescence was measured every 15 minutes at Ex/Em of 485 ± 10/530 

± 15 nm emission, where interval measurements were obtained to ensure the enzyme was 

active. Control and treatments were compared at t=60 min, expressed as percentage 

inhibition compared to the control (see section 5.2.5).  

Table 5.2: Volume of reagent pipetted into each well in collagenase fluorescence assay. The 

final concentrations of collagenase and DQ-gelatine in the wells were 0.2 units/mL and 100 

µg/mL. 

 Control 
(C) 

Samples/standard 
inhibitor 

(µL)  

Blank 
(µL) 

Collagenase, 0.8 units/mL 50 50 0 
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Treatment(s) 50 
(water) 

50 
(samples/inhibitor) 

50 
(solvent) 

1 X Working buffer 0 0 50 

Substrate, 400 µg/mL 100 100 100 

Total volume (µL) 200 200 200 

 

 Anti-elastase assay 

 Materials and reagent preparation: colormetric assay 

Elastase type-1 from porcine pancreas (E1250-25mg; Lot#: SLBN4280V, SucAla3-pNA (SANA) 

(Sigma: S4760-25 mg; Lot #: SLBM 7561V), Trizma base (T1503-250 mg; Lot #: SLBM7135V), 

and EGCG (E4268-100mg) were purchased from Sigma Aldrich, UK. Reagents were prepared 

as suggested by the manufacturer as described in Table 5.3. 

Table 5.3: Reagents preparation for anti-elastase colorimetric assay. 

Reagent Protocol 

Working buffer, 

100 mM Tris-HCl 

buffer  

12.1 g of Trizma-base (MW: 121.14 g/mol) powder was weighed 

and added to 1 L of water. The buffer was mixed until fully dissolved 

and the pH was adjusted to 8.0 at 25 °C with 1M of HCl. The buffer 

was stored at room temperature until required. 

Substrate, 

4.4 mM SANA  

20 mg of SANA (MW: 451.43 g/mol) was weighed and dissolved in 

10 mL of working buffer at with increasing temperature (~30 °C) and 

frequent stirred for 30 minutes to completely dissolve the SANA. 

The substrate solution was aliquoted in 5 small vials containing 2 mL 

each. The vials were stored in the fridge at 2-8 °C until required or 

at -20 °C for longer storage. 

Elastase working 

solution, 0.34 

unit/mL 

 

100 µL of the elastase solution (*68 units/mL) was diluted in 19.9 

mL of cold buffer (2-8 °C) to obtain 0.34 units/mL working elastase. 

The working solution was aliquoted into 10 small vials containing 2 

mL each. The elastase vials were stored in the fridge at 2-8 °C until 

required. 

*Data was obtained from Supplier’s Certificate of Analysis (CAS) for 

the product. 
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 Pre-experiments investigating effect of enzyme concentrations and solvent 

Enzyme concentration: Elastase working solutions of varying concentrations were prepared 

appropriately from the enzyme stock to achieve final enzyme concentrations of 0.01, 0.02, 0.1 

and 0.2 units/mL in assay wells. In a 96-well plate, a volume of 10 µL from each of the elastase 

working solutions was added to 4 mM SANA (20 µL), and the reaction volume was made up to 

final a reaction mixture of 300 µL with the working buffer. Enzyme activity was measured 

every 10 minutes for 60 minutes at 410 nm wavelength using a spectrophotometer. Enzyme 

activity was plotted against time. 

Solvent: Water (10 µL) or 70% ethanol (10 µL) was allowed to react with 0.3 unit/mL elastase 

(selected based on previous assay) for 15 minutes. After the preincubation, 4 mM SANA (20 

µL) was added and the reaction volume was made up to 300 µL with the reaction buffer. The 

absorbance reading was measured at 410 nm using a spectrophotometer and percentage 

activity of treated elastase at minute 60 was compared to control, untreated or buffer (see 

section 5.2.5). 

 Anti-elastase colormetric protocol 

In a 96-well plate, elastase (10 µL) was preincubated with treatments (20 µL) for 15 minutes. 

Later, reaction buffer (250 µL) and 4 mM SANA were added to make a total volume of 300 µL 

reaction mixture. The plate was further incubated for 60 minutes and an absorbance reading 

was measured at 410 nm. Blank was subtracted from the readings and percentage inhibition 

compared to control was calculated (see section 5.2.5). 

  

EGCG working 

solution, 1.0 mg/mL 

5.0 mg of EGCG (MW: 458.37) was weighed and dissolved in 5 mL 

of either water to obtain 1.0 mg/mL of EGCG. The solution was 

aliquoted into small vials and stored at -20 °C until required. 
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Table 5.4: Volume for each reagent in elastase colorimetric assay. The final concentration for 

elastase and SANA in the wells were 0.1 units/mL and 0.29 mM SANA.  

Working reagent Control 

 (µL) 

Samples/standard 

inhibitor 

(µL)  

Blank 

(µL) 

Elastase, 0.34 units/mL 10 10 0 

Treatment(s) 20 20 20 

100-mM Tris-HCl buffer 250 250 260 

Substrate, 4.4 mM SANA 20 20 20 

Total volume (µL) 300 300 300 

 

 Materials and reagent preparation: fluorometric assay 

An EnzChek® Elastase Assay Kit (E-12056) containing three vials of 1 mg DQ elastin from bovine 

neck ligament-conjugated with fluorophore, 30 mL of 10X reaction buffer (1 M Tris-HCl with 2 

mM sodium azide, pH 8.0), 1 vial of elastase from pig pancreas and 1 vial of 500 µg N-

Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethyl (MAAPV) ketone was purchased from 

ThermoFisher Scientific, UK. Reagents were prepared as suggested by the manufacturer as 

described in Table 5.5. 
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Table 5.5: Reagent preparation for anti-elastase fluorescence assay. 

 Anti-elastase fluorescence assay protocol 

This assay was performed according to the suggestions by the manufacturer with some 

modifications (MolecularProbe 2001). Porcine pancreatic elastase (100 µL) was allowed to 

react with each plant samples (50 µL) in a 96-well plate in the dark at 25 °C for 15 minutes. 

After the preincubation, the elastin working solution (50 µL) was added to each well to make 

a final reaction volume of 200 µL, and the microplate was further incubated in the dark at 25 

°C for 120 minutes. Fluorescence were measured every 15 minutes at Ex/Em of 485 ± 10/530 

± 15 nm emission to ensure the enzyme was active. Controls and treatments were compared 

at t=60 min, expressed as percentage inhibition compared to control (see section 5.2.5). 

  

Reagent Protocol 

DQ elastin substrate 

(1mg/1mL) 

1 mL of water was pipetted into the vial of 1 mg of DQ elastin 

substrate and mixed thoroughly to dissolve. Reconstituted DQ 

elastin (1mg/mL) was stored in aliquots at 4-8 °C until use or at -20° 

C for longer storage. Repeated freezing and thawing was avoided as 

it can increase background fluorescence readings. 

1X reaction buffer 18 mL of the 10X reaction buffer was diluted with 162 mL of water 

to obtain 180 mL of 1X reaction buffer. The buffer was enough for 

the reactions of six 96-well plates with sufficient excess to prepare 

dilutions and working concentrations. 

DQ elastin substrate 

working solution 

(100 μg/mL)  

The stock substrate (1 mg/mL) was diluted by adding 9 mL of 1X 

reaction buffer to obtain 10 mL of 100 g/mL DQ elastin.   

Elastase stock (100 

units/mL) 

500 μL was pipetted into the enzyme vial to obtain 100 units/mL 

enzymes. The enzyme was stored in aliquots at -20°C for longer 

storage up to 6 months. 

Elastase working 

solution (0.5 

units/mL) 

100 μL of the elastase stock was diluted with 19.9 mL of 1X 

reaction buffer to obtain 20 mL of elastase working solution. This 

working solution was enough for 200 reactions. 
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Table 5.6: Volume of reagents pipetted into each well for fluorescence assay. The final 

concentration for elastase and substrate were 0.25 units/mL and 0.25 µg/mL respectively.  

Working reagent Control 
 (µL) 

Samples/standard 
inhibitor 

(µL)  

Blank 
(µL) 

Elastase, 0.5 units/mL 100 100 0 

Treatment(s) or positive 
controls (MAAPV and 
EGCG) 

50 
(water) 

50 
(samples/inhibitor) 

100 
(1:1 of buffer: water) 

Substrate, 100 µg/mL 50 50 50 

Total volume (µL) 200 200 200 

 

 Anti-tyrosinase assay 

 Materials and reagent preparation 

Tyrosinase (T3824-25 KU; 5771 units/mg solid), L-tyrosine were purchased from Sigma Aldrich, 

UK. Reagents were prepared as described in Table 5.7. 

Table 5.7: Reagent preparation for tyrosinase assay pre-experiment. 

Reagent Protocol 

A buffer, 0.1 M sodium 

dihydrogen phosphate 

(NaH2PO4) 

1.19 g of NaH2PO4.H2O (MW; 119.98 g/mol) was weighed and 

dissolved in 100 mL of water. The mixture was stirred for 10 

minutes to completely dissolve the compound. The final 

concentration of A buffer was 0.1 M. 

B buffer, 0.1 M disodium 

hydrogen phosphate 

dihydrate 

(Na2HPO4.2H2O) 

1.77 g of Na2HPO4.2H2O (MW; 177.99 g/mol) was weighed and 

dissolved in 100 mL of water. The mixture solution was stirred 

for 10 minutes to completely dissolve the compound. The final 

concentration of stock B buffer was 0.1 M. 

Working buffer, 50 mM 

phosphate buffer (pH 

6.8) 

51 mL of A buffer stock was added to 49 mL of B buffer stock to 

produce 0.1 mM of sodium phosphate buffer. Later, the solution 

was made up to 200 mL with water. The final concentration of 

the buffer solution was 50 mM, pH 6.8. The final pH was 

confirmed with a pH meter. 

Tyrosinase stock (53 670 

units/mL) 

The tyrosinase powder (9.3 mg with 5771 units/mg solid) was 

dissolved with 1 mL of working buffer to obtain 53 670 units/ mL 
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*Note: An aluminum weighing boat instead of plastics was used because the plastic weighing 

boat tend to create electrostatic reaction upon contact with L-tyrosine. 

 Pre-experiments investigating effect of enzyme concentration, substrate 

concentration, temperature and solvent 

Enzyme concentration: Tyrosinase working solutions of varying concentrations were 

prepared appropriately to achieve tyrosinase final concentrations of 30, 60 and 120 units/mL 

in the wells (see Table 5.7). In a 96-well plate, a volume of 20 µL from each of the tyrosinase 

working solutions was added to 1 mM L-tyrosine (160 µL) and 50-mM phosphate buffer (20 

µL) to make a total volume of 200 µL reaction mixture. Blank contained L-tyrosine (160 µL) 

and reaction buffer (40 µL). Enzyme activity was measured every 10 minutes-interval for 60 

minutes at 450 nm wavelength using a spectrophotometer. The corrected OD readings were 

plotted against time. 

Substrate concentration: In a 96-well plate, a 20 µL of 300 units/mL tyrosinase (selected based 

on the assay above) was added to 2 mM L-tyrosinase (160 µL) and 50 mM phosphate buffer 

tyrosinase solution. The enzyme stock was stored at -20 °C and 

was stable for at least 6 months without any significant loss in 

activity. Required tyrosinase working solution was prepared 

from this stock. 

Tyrosinase working 

solution (300, 600 and 

1200 units/ mL) 

Tyrosinase stock (44.8 µL) was diluted with the working buffer 

(19.95 mL) to obtain 20 mL of 2400 units/mL tyrosinase. The 

other tyrosinase working solution was prepared by serial 

dilution (1:1). 

1 mM L-tyrosine working 

solution 

18.1 mg of L-tyrosine (MW: 181.19 g/mol) was weighed* and 

dissolved in 100 mL of working buffer to obtain 1-mM L-

tyrosine. The mixture was stirred for 30 minutes to completely 

dissolve the L-tyrosine. The final concentration of L-tyrosinase 

in the reaction mixture was 0.8 mM. 

2 mM L-tyrosine working 

solution 

36.2 mg of L-tyrosine (MW: 181.19 g/mol) was weighed* and 

dissolved in 100 mL of working buffer to obtain 2-mM L-

tyrosine. The mixture was stirred for 30 minutes to completely 

dissolve the L-tyrosine. The final concentration of L-tyrosinase 

in the reaction mixture was 1.6 mM. 
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(20 µL) to make a total volume of 200 µL reaction mixture. Blank contained L-tyrosine (160 µL) 

and reaction buffer (40 µL). The final concentrations of tyrosinase and L-tyrosine were 30 

units/mL and 1.6 mM respectively. The absorbance reading was measured at 450 nm at 25 °C 

using a spectrophotometer and percentage activity of treated elastase at minute 60 was 

compared to control, untreated or buffer (see section 5.2.5). 

Temperature: The protocol above for substrate concentration was repeated. One experiment 

proceeded with tyrosinase activity at 25 °C and the other one at 37 °C. After 60 minutes of 

reactions, the absorbance readings were measured at 450 nm and percentage activity (see 

5.2.5) was calculated and compared. The final concentrations of tyrosinase and L-tyrosine 

were 30 units/mL and 1.6 mM respectively.  

Solvent: Water (20 µL) or 70% ethanol (20 µL) was allowed to react with 300 units/mL 

tyrosinase for 15 minutes. After the preincubation, 2 mM L-tyrosine (160 µL) and reaction 

buffer (20 µL) were added to make a total of 200 µL reaction volume. The reaction proceeded 

for 60 minutes at 25 °C before an absorbance reading was measured at 410 nm using a 

spectrophotometer. The final concentrations of tyrosinase and L-tyrosine were 30 units/mL 

and 1.6 mM respectively. Percentage activity of treated tyrosinase at minute-60 was 

compared to control, untreated or buffer (see 5.2.5). 

 Anti-tyrosinase assay 

The previous protocol was modified according to the optimal experimental conditions 

investigated in the pre-experiments (Moon et al., 2010). In a 96-well plate, samples (20 µL) 

and kojic acid at varying concentrations (20 µL) were treated with 300 units/mL tyrosinase (20 

µL) for 15 minutes. After preincubation, 2 mM L-tyrosine (160 µL) and reaction buffer (20 µL) 

was added to make a total volume of 200 µL reaction mixture, and further incubated for 60 

minutes at 25 °C. The enzyme activity was measured every 10 minutes-interval at 450 nm to 
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ensure the enzyme was active throughout the incubation period. Percentage inhibition 

compared to control was calculated and compared (see section 5.2.5). Control and blank were 

prepared as in Table 5.8. 

Table 5.8: Volume of reagent pipetted in the tyrosinase assay. The final concentration of 

tyrosinase and substrate were 30 units/mL and 1.6 mM. 

Reagents Control 
(µL) 

Standard 
compound 

(µL) 

Sample 
(µL) 

Blank well 
(µL) 

 

Tyrosinase (300 units/mL) 20 20 20 - 

Treatments 20 
(water) 

20 
(kojic acid) 

20 
(samples) 

20 
(water) 

Substrate, L-tyrosine (2 
mM) 

160 160 160 160 

Working buffer (50 mM 
phosphate buffer) 

0 0 0 20 

Total volume (µL) 200 200 200 200 

  

 Percentage inhibition and activity 

The percentage inhibition and activity of collagenase, elastase and tyrosinase were calculated 

using the formulae below: 

Enzyme percentage inhibition (%) =  
OD control−OD sample

OD control
 x 100 

 

( 5.1 ) 

 

Enzyme percentage activity (%) = 
OD sample

OD control
 x 100 

 

( 5.2 ) 
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5.3 Results 

 Anti-collagenase: pre-experiment assay 

 Correlation of collagenase activity with digested gelatine 

The activity of collagenase was measured by the amount of product produced from the 

digestion of gelatine attached with a fluorophore. The activity of collagenase over time was 

demonstrated to be correlated with the fluorescent unit (Figure 5.1).  
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Figure 5.1: Collagenase activity over time. Data are mean ± SD of triplicates. 
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 Effect of solvent on collagenase activity 

Water showed no effect on the collagenase activity, but 70% ethanol had a significant 

inhibitory effect (Figure 5.2). Thus, to reduce the effect of ethanol in the experiment, the 

ethanolic plant samples were prepared at a higher concentration and later diluted to ensure 

the final concentration of ethanol in the samples was the lowest (< 0.05%). 
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Figure 5.2: Inhibitory effect of 70% ethanol on collagenase activity. Data are mean ± SD of 

triplicates. 
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 Collagenase inhibition and IC50: 1,10-PNT and EGCG positive controls 

1, 10-PNT exhibited a dose-dependent inhibition of collagenase activity, where 100% 

inhibition was observed at 63 to 500 µM (see Figure 5.3 A). A standard regression line was 

constructed from the 2.0-31.3 µM data, R2=0.97 with IC50 obtained at 16.3 µM (see Figure 

5.3.1 B). Similarly, EGCG also showed a dose-dependent collagenase inhibition with 100% 

inhibition observed at 62.3-500 µg/mL (see Figure 5.3 C). An IC50 of 13.2 µg/mL was obtained 

from a nonlinear best fitted line at 7.8-62.5 µg/mL, R2=0.98 (see Figure 5.3 D). 
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Figure 5.3:1,10-PNT and EGCG collagenase inhibition and IC50. Dose response and IC50 graphs 

for 1,10-PNT (A and B) and EGCG (C and D). Data represent mean and SD of triplicates. 



 

117 
 

 Anti-elastase: pre-experimental assay 

 Enzyme’s concentrations and solvent effect: colormetric assay 

Studies on the colormetric anti-elastase assay use varying experimental conditions (Thring et 

al., 2009; Moon et al., 2010; Sahasrabudhe and Deodhar, 2010; Azmi et al., 2014), and thus 

the optimal enzyme concentration was investigated in the pre-experimental assay. Final 

elastase concentrations of 0.1 and 0.2 units/mL were shown to have rapid reactions where all 

substrates were digested within 10 minutes, whilst 0.01 and 0.02 units/mL elastase seemed 

to have optimal OD readings of 1.0-1.5 after 60 minutes reaction (Figure 5.4 A). A 0.01 unit/mL 

elastase concentration was used in the inhibitory assay so as to allow the proper observation 

of the potency of elastase inhibition. Water was shown to increase elastase activity, but 70% 

ethanol showed an inhibitory effect as compared to control (buffer), as shown in Figure 5.4 B. 

Therefore, appropriate dilutions were made for the ethanolic extracts to minimize the effect 

of ethanol on enzyme activity. 
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Figure 5.4: Colorimetric assay; effect of elastase concentration (A) and solvent on enzyme 
activity (B). Data are the mean ± SD of triplicates.   
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 EGCG dose-response and IC50: colormetric assay 

EGCG was used as the positive control in the colormetric assay and it was shown to exhibit 

significant elastase inhibition at 330 and 670 µg/mL with 22.9 and 53.7% inhibition 

respectively (Figure 5.5 A). An IC50 of 636 µg/mL was obtained from the best fit regression line, 

R2=0.99, as shown in Figure 5.5 B. However, a preliminary assay showed that this method is 

not suitable with one of the plant species (C. ternatea) in the study as the plant’s pigment 

masked elastase inhibitory activity. Therefore, a fluorescence assay was used to evaluate all 

of the plant samples for anti-elastase activity. 
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Figure 5.5: EGCG dose response (A) and IC50 (B) in anti-elastase colorimetric assay. Data are 

the mean ± SD of triplicates. 
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 Elastase activity over time and solvent effect: fluorescence assay 

The fluorescence assay showed that elastase activity over time correlates with the 

fluorescence emitted (Figure 5.6 A). Similar effects were observed with water and 70% ethanol 

on elastase as those in the colormetric assay, where water increases but the 70% ethanol 

inhibits the enzyme activity (Figure 5.6 B). Therefore, appropriate dilutions were made for the 

ethanolic extracts to minimize the effect of ethanol on enzyme activity. 
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Figure 5.6: Elastase activity over time (A) and the effect of solvent on enzyme activity (B) in 
fluorescence assay. Data are the mean ± SD of triplicates. ***p <0.001 and ****p <0.0001. 
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 EGCG and MAAPV standards: fluorescence assay 

EGCG and MAAPV showed concentration-dependent inhibition of elastase activity, with IC50 

487 µg/mL and 0.79 µg/mL respectively as shown in Figure 5.7. MAAPV was demonstrated to 

be a more potent inhibitor than the EGCG standard of green tea origin. 
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Figure 5.7: Fluorescence assay; EGCG (A) and MAAPV (B) standards. Data are the mean ± SD 

of triplicates. 

 

  



 

121 
 

 Anti-tyrosinase: pre-experiment assay 

 Effect of enzyme’s and substrate’s concentration 

Tyrosinase activity was concentration-dependent, where at 120 units/mL the reaction was to 

rapid and lower reaction rates were observed at 60 and 30 units/mL (Figure 5.8 A). This result 

also suggest that a higher concentration of substrate is required to achieve optimal 

experimental conditions, as with 1 mM L-tyrosine all the substrate was utilised within 10 

minutes. Subsequent experiment of 30 units/mL tyrosinase with 2 mM L-tyrosinase were 

shown to be better conditions for the assay, as the final absorbance reading was at 

approximately 1.0 (Figure 5.8 B). 
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Figure 5.8: Tyrosinase activity at different concentrations on 1 mM L-tyrosinase (A) and, 
tyrosinase activity (30 units/mL) on 2 mM L-tyrosine (B). Data are the mean of triplicates. 
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 Effect of temperature and solvent on tyrosinase activity 

Temperatures of 25 and 37 °C have been reported in the anti-tyrosinase studies (Lee et al., 

2009; Moon et al., 2010; Azmi et al., 2014; Vardhan et al., 2014), and thus the effect of 

temperature on tyrosinase activity was investigated. A reaction temperature of 25 °C was 

shown to provide better condition for tyrosinase as compared with 37 °C (Figure 5.9 A), and 

this temperature accords with the suggested optimal temperature for the enzyme’s activity. 

Meanwhile, 70% ethanol was demonstrated to cause a significant 20% inhibitory effect on 

tyrosinase activity compared with the control (Figure 5.9 B), and thus appropriate sample 

preparation for the ethanolic extracts were made to ensure the final ethanol concentration in 

the well was the lowest. Water was shown to have no significant effect on the enzyme’s 

activity.    
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Figure 5.9: Effect of temperature (A) and solvent on tyrosinase activity (B). Data are the 

mean and SD of triplicates. Different letters indicate significant mean difference at p<0.05. 
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 Kojic acid standard 

Kojic acid standards dissolved in 70% ethanol and water showed dose-dependent tyrosinase 

inhibition, where 100% inhibition was observed at 156-625 µg/mL, as shown in Figure 5.10 A 

and B. Kojic acid in both 70% ethanol and water showed almost similar IC50 values, at 79.2 and 

77.8 µg/mL respectively. The regression lines used to interpolate the IC50 were as shown in 

Figure 5.10 C and D. 
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Figure 5.10: Kojic acids tyrosinase inhibition (A and B) and IC50 (C and D). Data are the mean 

and SD of triplicates.  
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 Moringa oliefera Lam. 

Anti-collagenase: The anti-collagenase assay showed a lack of dose-dependent activity in both 

MOW and MOE extracts, where no inhibitory activity was observed from 62-250 µg/mL by 

MOW and from 62-500 µg/mL by MOE (see Figure 5.11 A and B). A significant reduction (5%) 

in activity compared to control was observed in MOW, and both extracts inhibited collagenase 

activity at 1000 µg/mL. The values of percentage inhibition for both extracts (MOW and MOE) 

at 1000 µg/mL were 22.7% and 12.6% respectively, which are very low compared with 1-10 

PNT collagenase inhibitor (62.5 µM), as shown in Figure 5.11 C. 
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Figure 5.11: Anti-collagenase activity and percentage inhibition of MOW and MOE. Data are 

mean ± SEM of triplicates. *p< 0.5 and ****p< 0.0001 represent significant mean differences 

compared with control (untreated) in A and B or 1,10-PNT in C.  
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Anti-elastase: In both extracts, a lack of a dose-dependent effect was observed, where low 

inhibition was observed at 500 and 1000 µg/mL in MOW and at 1000 µg/mL in MOE (Figure 

5.12 A and B). A comparison of percentage inhibition showed that MOW and MOE to inhibit 

elastase with 12 % and 7% inhibition respectively (Figure 5.12 C).  

C
ontr

ol
62

.5
12

5
25

0
50

0

10
00

0

20

40

60

80

100

120

A. MOW

Concentration (µg/mL)

E
la

s
ta

s
e
 a

c
ti

v
it

y
 (

%
)

**
****

C
ontr

ol
62

.5
12

5
25

0
50

0

10
00

0

20

40

60

80

100

120

B. MOE

Concentration (µg/mL)

E
la

s
ta

s
e
 a

c
ti

v
it

y
 (

%
)

**

EG
C
G

M
O

W
M

O
E

0

20

40

60

80

100

120

C. Elastase inhibition
(1000 µg/mL)

E
la

s
ta

s
e
 i

n
h

ib
it

io
n

 (
%

)

********

 

Figure 5.12: Anti-elastase activity and percentage inhibition of MOW and MOE.  Data are 

mean ± SEM of triplicates. **p< 0.01 and ****p< 0.0001 represent significant mean 

differences compared with control (untreated) in A and B or EGCG in C. 
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Anti-tyrosinase: MOW showed no inhibition of tyrosinase, while MOE inhibited tyrosinase at 

the highest concentration, 1000 µg/mL (Figure 5.13 A and B). The level of tyrosinase inhibition 

exhibited by MOE was 6.0%, which is very low compared with kojic acid, as shown in Figure 

5.13 C.  
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Figure 5.13: Anti-tyrosinase activity and percentage inhibition of MOW and MOE.  Data are 

mean ± SEM of triplicates. **p< 0.01 and ****p< 0.0001 represent significant mean 

differences compared with control (untreated) in A and B or kojic acid in C. 
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 Centella asiatica (L.) Urb. 

Anti-collagenase: CAW showed a lack of dose-dependent inhibition, while CAE showed strong 

dose-dependent inhibition activity against collagenase activity (Figure 5.14 A and B). 

Comparison of percentage inhibition at 1000 µg/mL showed that CAE has higher collagenase 

inhibition compared with CAW, with 77.4% and 29.0% respectively (Figure 5.14 C). 
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Figure 5.14: Anti-collagenase activity and percentage inhibition of CAW and CAE.  Data are 

mean ± SEM of triplicates. *p< 0.5 and ****p< 0.0001 represent significant mean differences 

compared with control (untreated) in A and B or 1,10-PNT in C.  
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Anti-elastase: In both extracts, no dose-dependent effects were observed. Very low elastase 

inhibition was observed at 1000 µg/mL, while no inhibitory activity was observed in CAE at 

any concentrations (Figure 5.15 A and B). CAW at 1000 µg/mL showed 5% elastase inhibition, 

which is very low compared with EGCG (Figure 5.15 C). 
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Figure 5.15: Anti-elastase activity and percentage inhibition of CAW and CAE.  Data are mean 

± SEM of triplicates. *p< 0.5 and ****p< 0.0001 represent significant mean differences 

compared with control (untreated) in A and B or EGCG in C. 
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Anti-tyrosinase: CAW showed a concentration-dependent tyrosinase inhibition at 62.5-1000 

µg/mL, but CAE lacked dose-dependent effect inhibition where very low inhibition was 

observed at 1000 µg/mL ( Figure 5.16 A and B). The percentage inhibition exhibited at 1000 

µg/mL were 12.4% and 5.2% for CAW and CAE respectively (Figure 5.16 C). 
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Figure 5.16: Anti-tyrosinase activity and percentage inhibition of CAW and CAE.  Data are 

mean ± SEM of triplicates. *p< 0.5 and ****p< 0.0001 represent significant mean differences 

compared with control (untreated) in A and B or kojic acid in C. 
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 Clitoria ternatea L. 

Anti-collagenase: Both C. ternatea extracts (CTW and CTE) extracts showed a dose-dependent 

inhibition against collagenase at 62.5-1000 µg/mL (Figure 5.17 A and B). A comparison of 

percentage inhibitions between CTW and CTE showed CTE to be a better collagenase inhibitor 

(82.1%) than CTW (70.1 %), as shown in Figure 5.17 C. 

C
ontr

ol
62

.5
12

5
25

0
50

0

10
00

0

20

40

60

80

100

120

A. CTW

Concentration (µg/mL)

C
o

ll
a
g

e
n

a
s

e
 a

c
ti

v
it

y
 (

%
)

*

****
****

****

****

C
ontr

ol
62

.5
12

5
25

0
50

0

10
00

0

20

40

60

80

100

120

B. CTE

Concentration (µg/mL)

C
o

ll
a
g

e
n

a
s

e
 a

c
ti

v
it

y
 (

%
)

**

****

****

****

*

1-
10

 P
N
T

C
TW

C
TE

0

20

40

60

80

100

120

C. Collagenase inhibition
(1000 µg/mL)

C
o

ll
a
g

e
n

a
s
e
 i
n

h
ib

it
io

n
 (

%
)

****

****

 

Figure 5.17: Anti-collagenase activity and percentage inhibition of CTW and CTE.  Data are 

mean ± SEM of triplicates. *p< 0.5, **p< 0.01 and ****p< 0.0001 represent significant mean 

differences compared with control (untreated) in A and B or 1,10-PNT in C. 
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Anti-elastase: Both extracts of C. ternatea (CTW and CTE) showed a dose-dependent 

inhibition of elastase at 125-1000 µg/mL (Figure 5.18 A and B). Elastase activity was inhibited 

by 28 % and 24 % by CTW and CTE treatments respectively (Figure 5.18 C).  
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Figure 5.18: Anti-elastase activity and percentage inhibition of CTW and CTE.  Data are mean 

± SEM of triplicates. **p< 0.01 and ****p< 0.0001 represent significant mean differences 

compared with control (untreated) in A and B or EGCG in C. 
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Anti-tyrosinase: Neither C. ternatea extract (CTW or CTE) exhibited any inhibitory activity 

against tyrosinase (Figure 5.19 A and B). 
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Figure 5.19: Anti-tyrosinase activity of CTW and CTE.  Data are mean ± SEM of triplicates.  
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 Cosmos caudatus Kunth. 

Anti-collagenase: CCW showed dose-dependent inhibition of collagenase, but CCE showed no 

increase in inhibition at 250-1000 µg/mL (Figure 5.20 A and B). A comparison of collagenase 

inhibition at 1000 µg/mL between CCW and CCE showed collagenase inhibition of 48.7% and 

46.7 % respectively (Figure 5.20 C). 
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Figure 5.20: Anti-collagenase activity and percentage inhibition of CCW and CCE.  Data are 

mean ± SEM of triplicates. *p< 0.5, ***p< 0.001 and ****p< 0.0001 represent significant mean 

differences compared with control (untreated) in A and B or 1,10-PNT in C. 
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Anti-elastase: CCW showed a strong dose-dependent inhibitory effect on elastase activity 

compared to CCE, where inhibition was observed at 500 and 1000 µg/mL (Figure 5.21 A and 

B). A comparison of percentage inhibition at 1000 µg/mL showed CCW to have higher elastase 

inhibition than CCE with 64 % and 26 % inhibition respectively (Figure 5.21 C).  
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Figure 5.21: Anti-elastase activity and percentage inhibition of CCW and CCE.  Data are mean 

± SEM of triplicates. *p< 0.5, **p< 0.01 and ****p< 0.0001 represent significant mean 

differences compared with control (untreated) in A and B or EGCG in C. 
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Anti-tyrosinase: A dose-dependent inhibitory effect was observed in CCW, but no inhibitory 

effect was observed of tyrosinase when treated with CCE (Figure 5.22 A and B). The calculated 

percentage inhibition of CCW at 1000 µg/mL showed 72.6% tyrosinase inhibition (Figure 5.22 

C).  
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Figure 5.22: Anti-tyrosinase activity and percentage inhibition of CCW and CCE.  Data are 

mean ± SEM of triplicates. * ****p< 0.0001 represents significant mean differences compared 

with control (untreated) in A and B or kojic acid in C. 
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5.4 Discussion 

Skin ageing can be noticed according to several key signs such as fine lines and wrinkles, 

changes in skin tone and texture, dullness of the skin surface, visible pores, blotchiness, age 

spots and dryness (Farage et al., 2013). Of these characteristics, the appearance of fine line 

and wrinkles is the most common and prominent sign of skin ageing due to the degradation 

of the extracellular matrix (ECM) proteins such as collagen and elastin (Sander et al., 2006). 

The synthesis of these proteins is reduced with progressing age but their breakdown also 

occurs at  higher rates, especially in photoaged skin with the induction of matrix 

metalloproteinases that make the skin condition even worse (Jin et al., 2001). Other than that, 

hyperpigmentation due to the excessive synthesis of melanin on the face and neck is one of 

the skin problems that is aesthetically undesirable. Apart from its protective role, melanin has 

been shown to react with DNA and act as a photosensitizer that produces ROS after UV 

radiation (Kvam and Tyrrell, 1999). Skin ageing therapies such as dermal fillers, laser treatment 

and chemical peeling are some of the methods used to manage wrinkles and 

hyperpigmentation but, although these methods can give immediate results, they come with 

serious health complications (see Chapter 2:2.11). Therefore, a moderate approach such as 

the inclusion of anti-wrinkle and hypopigmentation agents in cosmetic products is usually 

preferred as the effects are usually limited to the site of application and are considered to be 

safer due to their specificity. In this chapter, plant extracts were evaluated for potential 

application as anti-wrinkle and hypopigmentation agents. 

 M. oliefera: low anti-collagenase, anti-elastase and anti-tyrosinase 

In the anti-collagenase assay, it was shown that both MOW and MOE had very low anti-

collagenase activity with a lack of dose-dependent effects. Similar trends were observed in 

anti-elastase and anti-tyrosinase assays where both extracts showed either very low or no 
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activity against the enzymes. Shin (2015) found that M. oliefera aqueous and ethanol extracts 

inhibited collagenase activity of 33.3% and 41.0% respectively at 1000 µg/mL. However, in this 

study the extracts were demonstrated to exhibit only 12.6% (MOE) and 22.7% (MOW) 

collagenase inhibition at the same concentration. Although higher activity was reported by 

Shin, (2015), the activity was measured using a colormetric assay, which may be affected by 

background readings from the extract’s pigment, as compared to the fluorescence assay used 

in this study. An in vitro study using NHDF6 cells showed no inhibitory activity of M. oliefera 

aqueous and ethanol extracts against MMP-2 and MMP-9 enzymes (Watthanaudomchai et 

al., 2012). Meanwhile, Zeitoun et al. (2016) showed that M. oliefera ethanol extract inhibits 

tyrosinase activity of 65%, which is quite high compared to the 5% inhibition observed in this 

study. Their extract preparation was similar to that in this study, but the inclusion of the stem 

as well as the source of the plant may have affected level of activity. There are very limited 

studies which present data on direct enzyme inhibition using M. oliefera extract. Its active 

compounds such as quercetin, myricetin and kaempferol have been shown to exhibit 

tyrosinase inhibition but these are considered as weak inhibitors compared with the kojic acid 

standard (Chang, 2012). Therefore, the plant extracts may not be active as inhibitors of 

collagenase, elastase and tyrosinase. 

 C. asiatica: a potential inhibitor of collagenase and tyrosinase 

C. asiatica, as an extract or isolated compound (asiaticoside, madecassoside, asiatic acid and 

madecassic acid), has been reported to stimulate fibroblast proliferation and collagen 

synthesis and to assist in wound healing processes (Maquart et al., 1990; Somboonwong et 

al., 2012; Wu et al., 2012; Bylka et al., 2013). In this study, C. asiatica extracts were shown to 

inhibit collagenase and tyrosinase, where significant dose dependent inhibitory effects were 

                                                      
6 NHDF = Normal Human Dermal Fibroblast 
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observed in CAE treated collagenase and CAW treated tyrosinase (Figure 5.17 and 5.18). 

However, very low or no activity was observed in the anti-elastase assay for both extracts. A 

study using asiaticoside-enriched fractions of C. asiatica extracted using n-butanol and 

methanol also showed significant inhibitory activity against MMP-1 (collagenase) (Nema et al., 

2013). The same study also showed that enriched C. asiatica significantly inhibited elastase, 

suggesting that asiaticoside might be responsible for both activities. Aqueous extracts of C. 

asiatica have been shown to exhibit very low levels of anti-collagenase activity at 5% (Thring 

et al., 2009),  which is similar to the findings in this study. An in vitro study using human skin 

fibroblasts suggested that C. asiatica extract may exert an anti-wrinkle effect through the 

indirect regulation of collagenase and elastase by enhancing the expression of TIMP-17 mRNA 

(Wu et al., 2012). The enhancement of this protein expression inhibits MMPs activity in 

degrading the skin’s connective tissue (Bourboulia and Stetler-Stevenson, 2010). Meanwhile, 

the anti-tyrosinase activity of CAW is thought to be attributed to flavonols and hydrocinnamic 

acids, which have been detected in the extracts, rather than the active triterpenoids (see 

Chapter 3). A study by Puttarak et al. (2016) showed that pentacyclic triterpene-enriched C. 

asiatica extract inhibited tyrosinase with an IC50 value of 104.8 µg/mL, while the individual 

active compounds (asiatic acid, madecassic acid, asiaticoside, and madecassoside) themselves 

showed no anti-tyrosinase activity. Flavonols are weak tyrosinase inhibitors (Chang, 2012), but 

hydroxycinnamic acid and its derivatives have been shown to inhibit melanin synthesis 

through various mechanisms including the inhibition of tyrosinase, suggesting potential 

synergy in the activity observed. Dicaffeoylquinic acids isolated from coffee beans, which are 

also detected in C. asiatica extracts (see Chapter 3), have been shown to have twofold anti-

tyrosinase activity compared with arbutin and ascorbic acid standards (Iwai et al., 2004). This 

                                                      
7 TIMP=Tissue Inhibitor Matrix Metalliproteinase 
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is further supported by Tabassum et al. (2016), who found that 4,5-O-dicaffeoylquinic acid 

significantly reduced melanin synthesis and tyrosinase activity in a dose-dependent manner 

in melanocytes with no cytotoxicity effect observed in vivo. Thus, it can be postulated that the 

anti-collagenase and anti-tyrosinase activity exhibited by CAW and CAE are due to the 

presence of pentacyclic triterpenes and hydrocinnamic acids respectively. 

 C. ternatea: potential inhibitor of collagenase and elastase  

Both C. ternatea extracts showed dose-dependent effects in anti-collagenase and anti-

elastase activity, but no activity was observed in the anti-tyrosinase assay. C. ternatea extract 

from the leaves has been shown to possess both anti-collagenase and anti-elastase activity 

(Mukherjee et al., 2012). However, an extensive literature search suggests that this is the first 

report of anti-collagenase and anti-elastase activity of the flowers of C. ternatea. The presence 

of different classes of flavonoids such as flavonols and anthocyanins in both extracts, as shown 

in Chapter 3, may have caused the observed activity. Quercetin, a flavonol, has been shown 

to significantly inhibit collagenase as well as elastase (Melziq et al., 2001; Sin and Kim, 2005). 

Similarly, delphinidin, kaempferol and myricetin have also been shown to exhibit both 

collagenase and elastase activity, but at lower levels than quercetin (Sartor et al., 2002). 

However, C. ternatea extracts (CTW and CTE) did not show the expected tyrosinase inhibition. 

Anthocyanins have been shown to inhibit both mushroom and human tyrosinase (Jhan et al., 

2016). Therefore,  the issue of the stability of the compounds in experimental conditions at 

different values of pH and temperature may have diminished the anticipated activity (Devi et 

al., 2012; Hellström et al., 2013; Oancea and Drǎghici, 2013). This is further supported by a 

study by Hwang et al. (2013) which showed that liposome-encapsulated anthocyanin, which 

is more stable and has a longer half-life is able to increase the inhibition of melanin synthesis 
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in human A375 melanoma cells through the enhancement of tyrosinase inhibition. This may 

explain the absence of anti-tyrosinase activity found in this study.  

 C. caudatus: potential inhibitor of anti-collagenase, anti-elastase and anti-tyrosinase  

Both C. caudatus extracts showed significant dose-dependent inhibition against collagenase, 

elastase and tyrosinase, except in the anti-tyrosinase assay where CAE did not show any 

activity. An extensive literature search shows that these activities have not yet been reported 

for C. caudatus extracts (Cheng et al., 2015; Chan et al., 2016; Moshawih et al., 2017). 

Flavonols glycosides of quercetin and kaempferol derivatives, and two apigenins (vicenin-2 

and vitexin) are the flavonoids detected in both extracts. These compounds, as previously 

discussed, have been shown to inhibit collagenase and elastase activity (Melziq et al., 2001; 

Sartor et al., 2002; Sin and Kim, 2005), while apigenins may contribute to anti-collagenase 

activity as the compounds were shown to inhibit collagenase in RAW 264.7 macrophage cells 

(Lee et al., 2007). In the anti-tyrosinase assay, CCW exhibited the highest tyrosinase inhibition 

of 72.6% at 1000 µg/mL compared with all other extracts. The flavonoids detected, as 

previously mentioned, may be responsible for the observed activity. Quercetin has been 

shown to be a competitive tyrosinase inhibitor able to inhibit melanin production dose-

dependently in B16 melanoma cells (Chen and Kubo, 2002; Fujii et al., 2009). Although some 

conflicting results have been reported on the role of quercetin in melanogenesis (Choi and 

Shin, 2016), it is postulated that the inhibitory activity of quercetin is strictly dependent on 

the dosage introduced, where the inhibitory activity against tyrosinase would then be 

observed as shown by Yang et al. (2011).  

5.5 Conclusion 

The anti-collagenase, anti-elastase and anti-tyrosinase activity of the plant extracts varies 

irrespective of the TPC. M. oliefera extracts were shown to have the highest TPC but, neither 
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extracts were active as inhibitors of the enzymes investigated. In general, flavonoids such as 

flavonols, flavanes and anthocyanins are the compounds responsible for the anti-collagenase, 

anti-elastase, and anti-tyrosinase activity exhibited by the extracts.  
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Chapter 6 
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 In vitro protective effect against hydrogen peroxide-
induced cytotoxicity in HaCaT cells 

6.1 Introduction 

In Chapter 4, plant extracts were demonstrated to have antioxidant activities that may play a 

role in providing a protective effect against induced-oxidative stress in the skin. These 

antioxidant properties are further investigated in cell cultures, where oxidative stress is 

induced by hydrogen peroxide. In the presence of transition metals, hydrogen peroxide can 

generate a hydroxyl radical, which is the most reactive free radical through the Fenton 

reaction (see equation 4.3). Hydrogen peroxide has been extensively used to induce oxidative 

stress in cell culture, and has been shown to be cytotoxic  at ≥ 50 µM depending on cell type 

and experimental conditions (Ines et al., 2010; Kumar et al., 2010; Liu et al., 2012). 

 HaCaT as an in vitro model to study skin ageing 

HaCaT cells are a spontaneously immortalized aneuploid8 human keratinocyte cell line derived 

from adult human skin (Boukamp et al., 1988). The cell line is widely used in scientific research 

due to its ability to proliferate and maintain the capacity for epidermal differentiation. With a 

transformed phenotype, the cell line is immortal and clonogenic like cancer cells, but it is non-

tumorigenic. In comparison to keratinocytes of rodent origin, which are prone to 

transformation and spontaneous neoplastic9 conversion (Sanford and Evans, 1982), HaCaT is 

relatively resistant. Boukamp et al. (1988) demonstrated that the cell line’s DNA fingerprint 

remains unaffected by continuous culturing, transformation or chromosomal alteration. Given 

these properties of HaCaT, this cell line is suitable for skin research, representing 80-95% of 

the human keratinocytes in the epidermal layer of the skin (Kolarsick et al., 2011). It is the first 

                                                      
8 A condition with an abnormal chromosome number compared to the wild type 
9 Abnormal new growth of tissue; often tumorigenic 
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line of defense against various factors implicated in the ageing of the skin. Normal human 

epidermal keratinocytes (NHEK) are another commonly used cell model for keratinocyte 

research, but issues such as ethics, donors and ease of maintenance make HaCaT a better 

option for this study (Ines et al., 2010; Liu et al., 2012, 2016; Park et al., 2012).   

 Principles of the assay 

The principles of the methods used in this chapter are described below. 

 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay 

MTT is the most commonly used method to measure cell viability, because it is simple, fast 

and economical. The mitochondrial oxidoreductase in the cells cleave the MTT dye and 

produce insoluble formazan (Figure 6.1). Formazan is soluble in organic solvents and will 

produce a deep purple colour measurable at 570 nm. 

 

Figure 6.1: Reduction of MTT (yellow) to formazan (purple) by mitochondrial reductase. 

 

 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) assay 

The MTS assay has the same principle as the MTT assay. MTS has advantages over MTT 

because the formazan produced is soluble in the cell culture medium and no organic solvent 

is needed. An additional step to dissolve the formazan, as with MTT, is not required in this 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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assay. In both assays, the optical density (OD) measured at 570 nm (MTT) and 490 nm (MTS) 

is directly proportional to the number of living cells. 

 Chapter aim and objectives 

This chapter aims to investigate the protective effect of the plant extracts against hydrogen 

peroxide-induced cytotoxicity in HaCaT cells. However, some interference was observed using 

the MTT assay for this experiment and the MTS assay was later considered. Therefore, the 

objectives of this chapter are outlined as below: 

 To evaluate the suitability of both MTT and MTS assays for the experiment 

 To determine the optimal hydrogen peroxide concentration for the experiment 

 To investigate the protective effect of the plant extracts against hydrogen peroxide-

induced cytotoxicity 
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6.2 Materials and Methods 

 Cell culture 

Preparation of reagents and materials: Dulbecco’s modified eagle media (DMEM), containing 

4.5 g/L glucose, (+) L-glutamine and (-) pyruvate, trypsin and foetal calf serum (FCS), was 

purchased from Lonza, UK. Phosphate buffered saline (PBS) and dimethyl sulfoxide (DMSO) 

were purchased from Sigma Aldrich, UK. General reagents for cell culture maintenance were 

as described in Table 6.1. 

Table 6.1: Preparation of general cell culture reagents. 

 Culturing, splitting, maintenance and freezing 

Culturing and splitting: A confluence HaCaT in a T-75 flask was received from the Newcastle 

University Medical School at passage 6 (P-6). Under a sterile fume hood, the medium used 

was aspirated, and cells were gently rinsed with PBS (10 mL). Later, trypsin (2 mL) was added 

to the flask and incubated for 5 minutes at 37 °C to facilitate the activity of trypsin on HaCaT. 

After incubation, the flask was gently tapped, and cells were observed under the microscope 

to ensure that they had detached from the flask. Under the hood, complete DMEM (5 mL) was 

added and the cell mixture was equally divided into three new T-175 flasks. The volume in 

each flask was made up to 15 mL with complete DMEM (see Table 6.2 for reference). The flask 

was further incubated at 37 °C with 5% CO2 until confluent. 

Reagent Protocol 

Complete DMEM Complete DMEM was prepared by adding 50 mL of FCS and 5 mL 
of pen-strep to obtain complete DMEM with 10% FCS and 1% 
pen-strep. The complete DMEM was used in culturing, 
maintenance of HaCaT and assays. 

Freezing medium The FCS used for freezing the HaCaT cells contained 10% DMSO 
to reduce the formation of ice crystals that can puncture the 
plasma membrane. 45 mL of FCS was added to 5 mL of sterile 
DMSO and mixed. The medium was added to the cells to be 
frozen. 
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Table 6.2: Flask size with volume of PBS, trypsin and DMEM for maintenance. 

Flask (size) PBS (mL) Trypsin (mL) Complete DMEM (mL) 

T25 (25 cm2) 5 1 7 

T75(75 cm2) 10 2 15 

T175 (150 cm2) 15 5 35 

Freezing: Confluent T-175 flasks (P-7) were observed under the microscope to ensure the cells 

were free from contamination and infection. Under the hood, the media used was aspirated 

and cells were rinsed with PBS (10 mL). One flask was passaged as previously described (see 

culturing and splitting). For freezing cells, the media used was aspirated, rinsed with PBS (10 

mL) and added with trypsin (5 mL). The flask was incubated for 5 minutes in the incubator. 

After incubation, cells were added with complete DMEM (5 mL) and transferred in equal 

amounts into two universal tubes. The tubes were centrifuged for 5 minutes at 15000 

rpm/min. After centrifugation, the media was carefully removed without disturbing the cell 

pellets. The cell pellet in each tube was added with 3 mL of freezing medium (see Table 6.1) 

and combined. Cells in the freezing medium were equally divided into cryotubes (1mL/tube), 

labelled (with the cells’ name, date, and passage number) and frozen at –80 °C overnight in a 

container containing propanol to facilitate freezing. The cryotubes were transferred into a 

nitrogen tank for storage. 

Thawing: The cryotubes from the nitrogen tank were brought to room temperature. Cells 

were transferred into a universal tube, complete DMEM (5 ml) was added and centrifuged for 

5 minutes at 1500 rpm/min. The medium was removed and the protocol for culturing cells 

was followed. 

 Cell counting 

Cell counting involved three steps: preparation of the cell suspension, mounting on the 

haemocytometer and counting. 
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Cell suspension preparation: Confluent cells were trypsinised and made up to 10 mL using 

complete DMEM. A sample of the cell solution (0.5 mL) was pipetted into an Eppendorf tube. 

Later, the cells (100 µL) were gently mixed with 0.4% trypan blue (100 µL) in a new Eppendorf 

tube. Trypan blue causes dead cells to appear blue while living cells appear clear. 

Cell mounting: A coverslip was carefully placed on a sterile haemocytometer. The cells treated 

with trypan blue were pipetted (20 µL) into a small groove on the haemocytometer and 

subsequently drawn by capillary action to fill the counting chamber under the coverslip (see 

Figure 6.2 A). 

Cell counting: The counting grids have 9 large squares with 1 mm2 area and 0.1 mm depth. 

Hence, the total counting grid had a total volume of 0.9 mm3 (3 mm x 3 mm x 0.1 mm), as 

shown in Figure 6.2 B. Cells were counted in four large corner squares and the central square 

where the cells that fall on the top and left of the grid were counted “in” and those on the 

bottom and right were counted “out” (see Figure 6.2 C). The totals of cells counted were 

summed and averaged. 

 Total cell calculation 

The formula used to calculate cell total is: 

Total cells = (
Total cells counted

# of squares
 ) x Dilution factor x 104 cells/mL x volume (mL)  

 

( 6.1 ) 
 

For example, 325 cells were counted in 4 corner squares and the central big squares. Samples 

were diluted 1:1 with trypan blue. The total cell volume was 5 mL. 

 Total cells = (325 cells/5) x 2 x 10,000 cells/mL x 5 mL = 650 x 10 4 cells 



 

149 
 

 

Figure 6.2: Hemocytometer (A), counting grid (B) and counting system (C). 

 

 MTT assay 

Preparation of reagents and materials: The MTT yellow powder (M5655-500MG) and 

hydrogen peroxide were purchased from Sigma Aldrich, UK. The MTS solution was purchased 

from Promega, UK. Reagents for the MTT assay were prepared as suggested by the 

manufacturer (see Table 6.3), while the MTS solution was used as supplied. 

Table 6.3: MTT reagents preparation. 

Reagent Protocol 

MTT stock (5 mg/mL) The MTT yellow powder was weighed (50 mg) in a beaker and 

dissolved in 10 mL of PBS. The solution was sonicated for 5 

minutes and filtered through a 0.2 µM filter to obtain a 
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 MTT assay protocol 

After overnight incubation, the phenol-free DMEM was carefully aspirated using an 

automated aspirator from the 96-well plate. The cells were rinsed with PBS (100 µL) and fresh 

DMEM was added (100 µL). Later, MTT-DMEM working reagent (100 µL) was pipetted into 

each well using a multi-channel pipette. The plate was further incubated for 4 h at 37 °C. After 

incubation, the medium was aspirated and 100 µL of DMSO: ethanol (1:1) was added. The 

plate was read at 570 nm using a plate reader and the percentage cell viability was calculated 

(see 6.2.4). 

 MTS assay protocol 

After overnight incubation, the phenol-free DMEM was aspirated from the 96-well plate. Cells 

were rinsed with PBS (100 µL) and added with fresh complete DMEM (100 µL). Later, the MTS 

One Solution Cell Proliferation reagent (20 µL) was added to each well and the plate was 

incubated for 4 h at 37 °C. After incubation, the OD reading was measured at 490 nm and the 

percentage cell viability was calculated (see 6.2.4).  

 Percentage cell viability 

Cell viability was calculated using the following formula. 

        Cell viability (%) =
Treatment (OD treated well)

 Control (OD nontreated well)
 x 100 

 

( 6.2 ) 

OD treatment and control are the corrected values of absorbance from blank. 

homogenous cell culture grade reagent. The stock was aliquoted 

in small 1-2 mL vials and frozen at 20 °C until further use. 

MTT-DMEM working 

reagent (0.5 mg/mL) 

1 mL of the MTT stock was diluted in 9 mL of phenol-free 

complete DMEM.  
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 Pre-experiment to determine the experimental conditions 

 Effect of phenol red on HaCaT growth 

A preliminary experiment showed that phenol red interfered with the MTT assay (data not 

shown). An experiment to investigate the effect of DMEM with and without phenol on HaCaT 

growth was performed. A confluent T-175 flask was passaged (1:3) into two new flasks. One 

flask was grown in complete DMEM (1% pen-step and 10% FBS) with phenol red, and the other 

flask was grown in complete DMEM without phenol red. Any morphological changes when the 

cells reached confluency were observed. 

 Determination of optimal cell concentration and incubation time 

HaCaT (100 µL) at different cell concentrations (10 000, 25 000, 50 000 and 100 000 cells/ well) 

was seeded in a 96-well plate. Three sets of plates with these cell concentrations were 

prepared. The plates were left in an incubator overnight at 37 °C in a humidified environment, 

where the outer well of the 96-well plate was filled with PBS (100 µL) to avoid evaporation of 

DMEM. Then, the plate was placed in a loosely covered sterile plastic container, and a sterile-

folded blue rolled wet with PBS was placed on the bottom of container. After 24 h, a plate was 

performed with the MTT assay, whilst the other were changed with fresh DMEM and further 

incubated. The same procedures were repeated until all plates were performed with the MTT 

assay.  

 Experiment to compare the efficiency of MTT vs. MTS assay 

HaCaT (100 µL) at different concentrations was seeded in the 96-well plate (5000, 10,000, 

15,000, 20,000 and 25,000 cells/well) and allowed to settle overnight in a humidified 

environment. Two sets of cell concentrations were seeded in the 96-well plate, one set for the 

MTT assay and the other for MTS. Four plates with the same experimental set-up were 
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prepared. After each 24 h, MTT/MTS assays were performed. OD values at 570 nm/490 nm at 

each cell concentration were plotted against time (24, 36, 48 and 72 h). 

 Effect of hydrogen peroxide at different concentrations on HaCaT 

The hydrogen peroxide reagents were prepared as shown in Table 6.4. 

Table 6.4: Hydrogen peroxide reagent preparation. 

 

Experimental protocol: HaCaT (100 µL) was seeded in a 96-well plate at 10,000 cells/well and 

allowed to settle overnight. The next day, the medium was aspirated and fresh complete 

phenol-free DMEM (100 µL) was pipetted into each well. Later, hydrogen peroxide working 

reagents (20 µL), as prepared in Table 6.4, were pipetted into the wells to obtain final 

concentrations of 0, 5, 10, 25, 50, 100, 200, 250 and 300 µM (DF = 6). After 24 h, the medium 

was aspirated and rinsed with PBS (100 µL). The MTS assay was performed as previously 

described. The experiment was repeated for 48 and 72 h of incubation. 

Reagent Protocol 

1 M H2O2 5.67 mL of the 30 % H2O2 (8.82 M) was diluted with 44.33 mL 

sterile water to obtain 50 mL of 1 M H2O2. The solution was 

filtered through a 0.2 µM filter to obtain a cell culture grade 

reagent. 

2000 µM H2O2 20 µL of 1 M H2O2 was diluted with 9.98 mL of sterile water to 

obtain 10 mL of 2000 µM H2O2 solution. The solution was used as 

a stock to make the working H2O2 reagents (30, 60, 150, 300, 600, 

1200, 1500 and 1800 µM). All the reagents were kept at 4 °C.  

1200 µM H2O2 24 mL of 1000 µM H2O2 was diluted with 16 mL of water to obtain 

40 mL of 1200 µM H2O2. 20 µL of this working reagent was added 

to 100 µL volume of medium in the 96 wells plate to reach 200 

µM of H2O2 as the final concentration (DF = 6). 
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 Protective effect of the plant extracts in H2O2-induced cytotoxiciy 

HaCaT (100 µL) at 10 000 cells/well were plated and allowed to settle overnight at 37 °C.  The 

medium was aspirated and fresh-complete DMEM was added (100 µL). Plant extracts at 

appropriate concentrations (20 µL) were added and the plate was incubated for 24 h. The 

medium was aspirated, cells were rinsed with PBS (100 µL) and added with fresh complete 

DMEM (100 µL). Later, 20 µL of 1200 µM H2O2 was added to induce toxicity, except in the 

positive control wells where water (20 µL) was added. The plate was further incubated for 24 

h before the MTS assay was performed. The final concentration of hydrogen peroxide in the 

well was 200 µM (DF = 6). The percentage cell viability compared to the control was calculated 

(see 6.2.4). The experimental sequence is illustrated in  Figure 6.3. 

 

Figure 6.3: Experimental design.  On day 1, treatment with the plant extracts were introduced 

to HaCaT. On Day 2, cytotoxicity was induced with hydrogen peroxide and on day 3 cell 

viability was measured. This experimental design was modified from Kumar et al. (2010). 
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6.3 Results 

 Phenol red has no effect on HaCaT growth 

HaCaT cultured in regular DMEM vs. phenol-free DMEM reached confluency at the same time 

(2-3 days after splitting). There was no morphological difference between the two sets of 

HaCaT, suggesting that phenol red has no significant effect on its growth (see Figure 6.4). 

Therefore, all subsequent experiments were performed using phenol-free DMEM to reduce 

background interference. 

A. +phenol B. -phenol

 

Figure 6.4: Effect of DMEM with (A) and without phenol red (B) on HaCaT growth.  

 Determination of optimal cell number and incubation time 

Cell number: Cell concentration at 10,000 cells/well and 25,000 cells/well showed linear 

growth from 24-72 h as compared with cells at higher concentrations (50,000 and 100,000 

cells/well) (see Figure 6.5). Optimal cell number was deduced to be in the range of 10,000-

25,000 cells/well. 

Incubation time: Incubation times (24 h and 48 h) seem to be the optimal incubation time for 

10,000 and 25,000 cells/well because after 72h the OD readings reached the limit of the 

spectrophotometer (OD 4.00). 
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Figure 6.5: OD readings at 570 nm after 24, 28 and 72 h at different cell concentrations. 

Different letters indicate significant mean differences (p<0.05). Data are the mean ± SD of four 

replicates. 

 Comparison of MTT and MTS assays 

The formazan produced in the MTT assay was sometimes aspirated with the medium used 

prior to the addition of MTT solvent, which affected the final readings of the experiment. In 

this experiment, the MTS assay showed consistent readings with small standard deviations 

(SDs) at all incubation times compared to the MTT assay (Figure 6.6). At higher cell 

concentrations, discrepancies between readings were observed (with large SDs) in the MTT 

assay, particularly after 72h and 96 h of incubation. 
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Figure 6.6: Comparison of MTT vs. MTS optical density (OD) readings.  Figures show 
measurements at 5000 (A), 10 000 (B), 15 000 (C), 20 000 (D) and 25 000 (E) cells/well. Data 

are the mean ± SD of six replicates.  
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 Cytotoxicity of hydrogen peroxide on HaCaT induced at 24, 48 and 72 h 

Figure 6.7 A, B and C shows the results for toxicity induced at days 1, 2 and 3 respectively. 

Toxicity induced at day 1:  H2O2 concentrations of 5-50 µM were non-toxic to HaCaT. At 100 

and 150 µM, H2O2 induced cell cytotoxicity causing 33.7 ± 3.46 and 75.8 ± 7.86 % cell death 

respectively. At higher concentrations of H2O2 (200-300 µM), 85-90% cell death was observed.  

Toxicity induced at day 2:  H2O2 concentrations of 5-100 µM were non-toxic to HaCaT. 

Significant reductions in cell viability were observed in HaCaT treated with 150, 200, 250 and 

300 µM of H2O2 compared with the control well. The percentages of cell death observed at 

the respective concentrations were 20.4 ± 7.23 % (150 µM), 30.8 ± 8.20 % (200 µM), 54.8 ± 

8.43 % (250 µM) and 67.2 ± 2.26 % (300 µM).  

Toxicity induced at day 3: H2O2 concentrations of 5-150 µM were non-toxic to HaCaT. 

Treatment with 200, 250 and 300 µM caused 31.2 ± 7.98 %, 52.33 ± 10.15% and 68.9 ± 6.87 % 

cell death respectively. This experiment showed the concentration- and time-dependence of 

the effect of H2O2 on HaCaT.  

Therefore, an H2O2 concentration of 200 µM (~30% cell death) induced at day 2 was selected 

as the most appropriate concentration for the experiment. 
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Figure 6.7: Cytotoxicity effect of hydrogen peroxide on HaCaT after 24 h (A), 48 h (B) and 72 
h (C). Data are the mean ± SEM of two experiments performed in six replicates for each 

treatment. ****p<0.0001. 

 Effect of solvent on HaCaT 

Figure 6.8 shows that ethanol concentrations of < 1% did not cause significant cell death 

compared with the untreated control group. Therefore, ethanolic samples were prepared 

appropriately to ensure that the final concentration of ethanol was <1 %.  
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Figure 6.8: Cytotoxicity of ethanol on HaCaT.  Data are the mean ± SD (n=8) and ***p <0.001. 

 

 Cytotoxicity effect of the plant extracts on HaCaT 

Table 6.5 shows the cytotoxicity effect of the extract alone on HaCaT. All the plant extracts 

have different cytotoxicity effects on HaCaT. MOE is more toxic than MOW, CAE is more toxic 

than CAW, CTE is more toxic than CTW and CCE is more toxic than CCW. In general, all the 

ethanol extracts from each plant species were more toxic than the aqueous extract.  

Table 6.5: Cytotoxic and non-cytotoxic concentrations of the plant extracts on HaCaT. The 
marked (*) concentrations showed significant reductions in percentage viability compared 
with control (untreated HaCaT) and are considered cytotoxic to HaCaT at *p<0.05.  

Plant species Extracts Concentration  

(µg/mL) 

Highest nontoxic 

concentration 

(µg/mL) 

M. oliefera 

Lam. 

MOW 10, 25, 50, 100, 200, 400, 600, 800*, 

1000* 

600 

MOE 10, 25, 50, 100, 200, 400, 600*, 800*, 

1000* 

400 

C. asiatica (L.) 

Urban. 

CAW 250, 500, 1000, 1500*, 2000*, 2500*, 

3000* 

1000 

CAE 50, 100, 250, 500, 500*, 600*, 800*, 

1000*, 2000* 

250 

C. ternatea L. CTW 50, 100, 250, 500, 1000*, 1500*, 

2000*, 2500*, 3000* 

500 
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CTE 50, 100, 200, 300, 400, 600*, 800*, 

1000*, 1500* 

400 

C. caudatus 

Kunth 

CCW 500, 1000, 2000, 3000, 4000, 5000, 

6000, 7000, 8000 

8000 

CCE 20, 40, 60, 80, 100*, 125*, 250*, 500* 80 

 

 Protective effect against hydrogen peroxide-induced cytotoxicity 

 M. oliefera Lam. 

MOW and MOE (10-400 µg/mL) did not show any protective effect against H2O2-induced 

cytotoxicity in HaCaT, except for MOW at 400 µg/mL where significantly high cell viability 

(94%) was observed compared with the negative control (NC), as shown in Figure 6.9. At 600 

µg/mL, both MOW and MOE were toxic to HaCaT. 
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Figure 6.9: Protective effect of MOW (A) and MOE (B) against H2O2-induced cytotoxicity (200 
µM). The mean differences between positive control (PC) and treatments were compared 
with negative control (NC). Data are the mean and SEM of three experiments with *p<0.05 
and ****p< 0.0001. 
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 C. asiatica (L.) Urban 

HaCaT treated with CAW at 1000 µg/mL showed significantly higher percentage viability (98 

%) than NC (79 %). Meanwhile CAE treatment did not show any protective effect (see Figure 

6.10 A and B). 
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Figure 6.10: Protective effect of CAW (A) and CAE (B) against H2O2-induced cytotoxicity (200 
µM).  The mean differences of positive control (PC) and treatments were compared with 
negative control (NC). Data are the mean and SEM of three experiments with *p<0.05 and 
****p<0.0001. 
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 C. ternatea L. 

As shown in Figure 6.11 A, CTW concentrations of 100, 200 and 250 µg/mL protect HaCaT 

against hydrogen peroxide-induced cytotoxicity with significantly higher percentage viability 

observed (99 %, 104 % and 103 % respectively) compared with NC (79 %). CTW concentration 

of 50 µg/mL seemed to protect HaCaT, with 87 % cell viability but this figure was not 

significantly different from the NC. CTE treatment did not show any protective effect (see 

Figure 6.11 B). 
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Figure 6.11: The effect of CTW (A) and CTE (B) against H2O2-induced cytotoxicity (200 µM). 
The mean differences between positive control (PC) and treatments compared with negative 
control (NC) were determined using ANOVA. Data are the mean and SEM of three experiments 
with *p<0.05 and ****p< 0.0001. 
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 C. caudatus Kunth. 

HaCaT treated with 500, 1000 and 4000 µg/mL seemed to protect HaCaT against hydrogen 

peroxide with higher cell viability observed (95 %, 93 % and 96 % respectively) but the 

differences were not significant when compared with NC (see Figure 6.12 A). CCE did not show 

any protective effect at any concentration (see Figure 6.12 B). 
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Figure 6.12: The effect of CCW (A) and CCE (B) against H2O2-induced cytotoxicity (200 µM). 
The mean differences between positive control (PC) and treatments compared with negative 
control (NC) were determined using ANOVA. Data are the mean and SEM of three experiments 
with **p<0.01 and ****p< 0.0001. 
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6.4 Discussion 

 Determination of optimal experimental conditions 

MTT vs. MTS: Initially, the MTT assay was used to determine cell viability. However, the 

replicates within the same sample showed a lack of precision in the absorbance readings, 

which affects the statistical significance of the experimental results. In the MTS assay the 

variation between replicate readings was reduced and this assay was used for the experiment. 

Other methods to determine cell viability were also considered, such as the trypan blue 

exclusion assay (Wang et al., 2010), but MTS and MTT were faster and more time-efficient.   

Solvent effect: Most organic solvents were cytotoxic, including ethanol. In the experiment, the 

use of ethanol in the well was limited to concentrations <1% as this level was determined to 

be non-cytotoxic to HaCaT. Although DMSO has been widely used in cell and tissue culture to 

dissolve samples with concentrations ranging from 0.5% to 10% (Da Violante et al., 2002; 

Alerico et al., 2015), ethanol was used in this study to obtain homogenously soluble extract 

solutions because the ethanol was used during the extraction of plant materials.  

Hydrogen peroxide dose: The cytotoxic effect of H2O2 has been shown to be dependent on 

cell type, cell number, length of exposure and the concentration used (Halliwell et al., 2000; 

Gülden et al., 2010; Ines et al., 2010; Kumar et al., 2010). An initial experiment using 100 µM 

of H2O2 to induce oxidative stress in HaCaT showed that the rate of cell proliferation can 

diminish the cytotoxic effect under the present experimental design (data not shown). 

Therefore, a pre-experiment to investigate the effect of different H2O2 concentrations on cell 

viability was performed (see Figure 6.7), and a stronger concentration of H2O2 (200 µM) 

inducing ~30% cell death was used in the later experiments.  
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 Protective effect of the plant extracts against hydrogen peroxide-induced 

cytotoxicity 

Hydrogen peroxide is a physiological constituent of living cells and is continuously produced 

via diverse cellular pathways. The effects of H2O2 have been widely found to cause cellular 

oxidative damage such as apoptosis, loss of cell viability, morphological and nuclear damage, 

and lipid peroxidation, as well as changes in the levels of catalase, SOD and GPx antioxidant 

enzymes (Wijeratne et al., 2005; Prasanna and Sreelatha, 2014). In this experiment, the 

protective effect of plant extracts against H2O2-induced cytotoxicity was investigated, and 

MOW, CAW and CTW showed significant protective effects. 

The aqueous extract of M. oliefera (MOW) showed a significant protective effect against H2O2-

induced oxidative stress in HaCaT, but the effect was only observed at the highest non-toxic 

concentration of MOW, which is at 400 µg/mL. Meanwhile, the ethanol did not show any 

protective effect at any concentration. Extracts of M. oliefera leaves have been described as 

ameliorating oxidative stress in several in vitro and in vivo studies (Jaiswal et al., 2013; 

Prasanna and Sreelatha, 2014; Abdul Hisham et al., 2018), but studies using human 

keratinocytes are very limited. In a study by Prasanna and Sreelatha (2014), M. oliefera 

ethanol extract was shown to provide a protective effect against H2O2-induced oxidative 

stress, with significant improvements in cell proliferation, suppression of apoptotic events and 

lipid peroxidation, and significant enhancement of antioxidant enzymes. An in vivo study by 

Jaiswal et al. (2013) also showed improvements in antioxidant enzymes and significant 

reductions in lipid peroxidation with aqueous M. oliefera extract treatment in diabetic-

induced oxidative stress. Another study by Abdul Hisham et al. (2018) suggests a potential 

synergy of hydro-ethanol extracts of M. oliefera and C. asiatica in modulating the protective 

effect against H2O2-induced oxidative stress in human fibroblast cells. These studies provide 
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evidence for the protective effect of M. oliefera extracts against oxidative stress, mainly due 

to its phenolic content, which supports the finding of a protective effect exhibited by MOW. 

However, the mechanism of action may be different for MOE, such as increase in antioxidant 

enzymes or suppression of apoptotic and lipid peroxidation events, thus explaining the result 

observed. 

C. asiatica is a well-known medicinal plant in the Southeast Asian countries for its medicinal 

properties in treating various ailments, including dermatological conditions (Bylka et al., 2013; 

Zahara et al., 2014). In this experiment, HaCaT treated with CAW at the highest concentration 

(1000 µg/mL) exhibited a protective effect against H2O2-induced cytotoxicity with 98% cell 

viability compared with non-treated samples. Meanwhile, no protective effect was observed 

with CAE treatment. The protective effect of C. asiatica against H2O2-induced oxidative stress 

has been shown in vitro and in vivo (Hussin et al., 2009; Kim et al., 2011; Mahanom et al., 

2011; Abdul Hisham et al., 2018). An in vitro study by Kim et al. (2011) showed that pre-

treatment of human fibroblast cells with hydro-ethanolic extracts of C. asiatica is able to 

provide a protective effect against H2O2-induced premature senescence, with decreased 

levels of p53 protein and the expression of genes involved in apoptosis, cell growth, 

transcription, senescence and DNA replication observed in treated cells. Meanwhile, in vivo 

studies have showed that C. asiatica reduces H2O2-induced oxidative stress by modulating 

lipid peroxidation observed with lower malonaldehyde (MDA) levels or low density lipids 

(Hussin et al., 2009; Mahanom et al., 2011; Ayala et al., 2014). C. asiatica has also been shown 

to synergistically improve antioxidant enzymes in H2O2-induced oxidative stress in human 

dermal fibroblast when combine with M. oliefera (Abdul Hisham et al., 2018). These studies 

support the protective effect of CAW found in this study, whilst CAE may exert its activity 
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against oxidative stress through different mechanisms, such as modulating gene expression at 

molecular levels (Kim et al., 2011). 

In this experiment, CTW showed a dose-dependent protective effect against H2O2-induced 

cytotoxicity, with higher cell viability observed at 100, 250 and 500 µg/mL, while CTE did not 

show any such activity. Studies on the use of the flowers of C. ternatea against skin ageing are 

very limited, but their ability to provide protection against oxidative stress has been shown in 

several studies. The aqueous extract of C. ternatea flowers was shown to inhibit protein 

glycation and oxidation in vitro due to scavenging activity against different form of free 

radicals (Chayaratanasin et al., 2015).  The glycation of protein forming advanced glycation 

end products (AGEs), especially at the early stages, could generate free radicals and cause 

oxidative damage (Smith and Thornalley, 1992), and this reaction can occur in collagen to 

eventually produce wrinkles, as previously mentioned in the cross-linking theory of skin ageing 

(see Chapter 2, section 2.9.3). Moreover, the aqueous extract of C. ternatea flowers has also 

been shown to inhibit lipid peroxidation and suppress ROS (Phrueksanan et al., 2014; Yimdee 

et al., 2014; Nair et al., 2015). The potential protective effect of C. ternatea against skin ageing 

is further supported by a study by Kolakul and Sripanidkulchai (2017) investigating the anti-

ageing potential of the flowers of Lagerstroemia speciosa and Lagerstroemia floribunda, 

where similar anti-ageing properties were investigated as in this study. In their study, the 

ethanolic extracts of L. speciosa and L. floribunda flowers exhibited cytoprotective effects 

against H2O2-induced cytotoxicity in human keratinocytes, where higher cell viability and 

lower numbers of apoptotic cells were observed in treated HaCaT. Like C. ternatea, these 

flowers also contain high levels of phenolics, such as phenolic acids flavonoids and 

anthocyanins. 
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The extracts from C. caudatus (CCW and CCE) did not show any significant protective effect in 

this experiment. Although higher cell viability was observed at several non-toxic 

concentrations of CCW, the differences were not statistically significant. Its scavenging 

activities against different forms of free radicals is well established (Andarwulan et al., 2010; 

Mustafa et al., 2010; Sumazian et al., 2010), and has been shown in Chapter 4. Therefore, it 

should also be considered that the protective effect exhibited by extracts of this plant may be 

different than the investigated effect in this study. In comparison to its respective water 

extract, the ethanolic extracts of the plant species have higher toxic effects on HaCaT, thus 

limiting the range of concentrations that can be tested. 

6.5 Conclusion 

M. oliefera, C. asiatica and C. ternatea water extracts were able to provide protective effects 

against H2O2-induced cytotoxicity in HaCaT. The absence of a protective effect with C. 

caudatus extracts and other ethanolic extracts needs further investigation. A more detailed 

mechanistic study is necessary to further support the observed results and to clarify the 

absence of activity in the respective plant extracts. 
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Chapter 7 
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 Protective effect against UV-induced mitochondrial DNA 
(mtDNA) damage 

7.1 Ultraviolet radiation, mitochondria and skin ageing 

The role of ultraviolet (UV) radiation and mitochondria in skin ageing have been previously 

discussed (see Chapter 2, sections 2.10.1 and 2.10.2). UV radiation has been shown to cause 

molecular and cellular damage, oxidative stress, inflammation and suppression of the immune 

system in the skin (Finkel and Holbrook, 2000; Fisher et al., 2002; Sinha and Häder, 2002; 

Farage et al., 2008; Rastogi et al., 2010). Meanwhile, the mitochondrial electron transport 

chain (ETC) can leak, producing superoxide radicals (O2
•-) which are later converted into other 

oxidants such as hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) (Halliwell, 2006; 

Krutmann and Schroeder, 2009). UV may interact with mitochondria either by generating ROS 

or directly causing damage to mtDNA which produces dysfunctional ETC subunits that later 

further increase oxidative stress in the skin (Bandy and Davidson, 1990). In this chapter, the 

plant extracts were investigated for their protective effects against UV-induced mtDNA 

damage. 

 Mitochondrial DNA (mtDNA) as a biomarker for skin ageing 

In this chapter, UV-induced mtDNA damage was used as a biomarker for skin ageing. The 

mtDNA suffers more damage than nuclear DNA because it lacks protective histone, and is 

located very close to ETC at the inner membrane that continuously produces ROS (Birch-

Machin et al., 2013). Moreover, mtDNA has only limited repair mechanisms, and therefore 

accumulates damage and oxidative stress is further increased. The principle of the method 

used is described below. 

 



 

171 
 

 Principle of mtDNA damage using polymerase chain reaction (PCR) 

The principle of the qPCR assay of DNA damage is based on the fact that any kind of DNA lesion 

can slow down or impede the progression of DNA polymerase, resulting in lower amplification 

(Hunter et al., 2010; Furda et al., 2014). Therefore, the control and treated DNA samples will 

be amplified to different extents and those with less damage will be amplified to a greater 

extent compared to those with more damaged DNA. The principle of the method is further 

explained by the qPCR amplification plot shown in Figure 7.1. Ct value or the number of cycles 

when the amplified DNA crosses a threshold will differ between intact and damaged DNA. 

Intact DNA will have a low Ct value (or high copy number) but the damaged DNA will have a 

high Ct value (or low copy number) because the intact DNA will be amplified faster than the 

damaged DNA, thus giving a higher Ct value and vice versa. 

 

Figure 7.1: The qPCR amplification plot. The plot shows two samples run in triplicate, as 

shown by the coloured lines, one with low mtDNA damage and one with high mtDNA damage. 

 Benefits of qPCR 

The qPCR method is beneficial because the mtDNA can be amplified from the total nuclear 

DNA without any need for isolation or purification (Hunter et al., 2010; Furda et al., 2014). 

Only a very small amount of sample is needed for the qPCR reaction (1-2 ng) (Hunter et al., 
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2010), which is significantly important when the samples are of limited quantity. A rapid, gene-

specific and simplified real time PCR protocol has been developed to accurately quantify 

mtDNA lesions induced by oxidative stress based on the interference of DNA polymerase 

activity (Rothfuss et al., 2010). The method was modified accordingly to suit our experimental 

design. The efficiency of the method is illustrated in Figure 7.2, showing that it is a less time-

consuming method that could be performed within 3 hours. Additionally, the method allows 

the amplification of a very small region of mtDNA lesions up to a size of 1000 bp amplicon. 

 

 

Figure 7.2: Experimental flow chart for qPCR methods damage assay. The timing chart for 

the qPCR method consists of DNA isolation, qPCR and data evaluation that can be performed 

within 3 hours after the damage assay. Image from Rothfuss et al. (2010). 

 

 Chapter aim and objectives 

The aim of this chapter is to investigate the protective effect of the plant extracts against UV-

induced mtDNA damage. The specific objective of this chapter is to investigate the role of 

plant extracts (UV filters and antioxidants) in providing a protective effect against UV-induced 

mtDNA damage. 
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7.2 Materials and methods 

 Materials and instruments 

A QIAamp genomic and RNA kit (50 DNA preps) for the purification of up to 50 kb genomic 

DNA was purchased from Qiagen, UK. The kit includes 50 QIAamp Mini Spin Columns, QIAGEN 

Proteinase K, buffers and 2 mL collection tubes. 2X SensiMix Hi‐ROX containing hot-start DNA 

polymerase, SYBR Green I dye, dNTPs, stabilizers and 5-carboxy-X-rhodamine, succinymidyl 

ester (ROX) was purchased from Bioline, UK, and a MicroAmp Fast Optical 96-Well Reaction 

Plate was purchased from ThermoFisher Scientific, UK. The primers were designed and 

supplied by Eurofins, UK. 

The instruments used in this study were seven 6-foot (ft) iSOLde Cleo performance 100 W-R 

lamps (Cleo) (iSOLde, Germany) fitted to a sun bath machine as a source of UV, a DMc150 

Monochromator (Bentham Instrument Ltd., UK) to measure UV irradiance, a SpectroMax 250 

microplate reader for absorbance reading and a Nanodrop machine for DNA quantification. 

 Samples 

The freeze-dried samples were prepared in the same solvents used in the extraction process. 

For the 70% ethanol extract, the samples were prepared at higher concentration and diluted 

with water. 

 Determination of non-toxic concentration of the plant extracts on HaCaT 

10,000 cells/well were seeded in a 96-well plate and allowed to acclimatize overnight. The 

media used was removed, rinsed with PBS (100 µL) and fresh new media (100 µL) was added 

to the control well, while plant extracts at varying concentrations were added to the 

treatment wells. The plate was further incubated for another 24 h at 37 °C. The MTS assay was 

performed the next day as described in Chapter 6, section 6.2.3. 
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 Cell culture and plating  

All the cell culture work was performed according to the cell culture general protocols as 

described in Chapter 6 unless otherwise stated. 

Cell plating and treatments: Confluent-cultured HaCaT was trypsinised and counted into 2.5 

x 105 cells/3 mL which were plated in the petri dish and allowed to settle overnight. The DMEM 

used was removed and the cells were rinsed with 1.5 mL PBS. Later, 2 mL of fresh phenol-free 

DMEM with 1% pen-strep was added. Phenol-free DMEM without FCS was used because 

phenol and FCS were shown to affect the assays. 

 Calculation of UV irradiance and exposure time  

The UV lamp (Cleo lamp) was turned on to warm up for 10-15 minutes. The appropriate lamp 

to be used was checked and the UV radiation was measured using a UV-detector. The UV 

irradiance from the Cleo lamp for each UVA, UVB and UVC was determined as in Table 7.1.  

The irradiance and exposure time of UV in minutes were calculated using the formula below: 

            Irradiance = meter reading x calibration factor ( 7.1 ) 
 

           Time (min) of exposure for each SED =  
𝑆𝐸𝐷

(𝑆𝐸𝐷/𝑚𝑖𝑛 𝑜𝑓 𝑈𝑉 𝑑𝑜𝑠𝑒)∗
  ( 7.2 ) 

 

           SED/min of UV dose* = UV dose X Cleo lamp calibration factor for SED/min ( 7.3 ) 

 

For example, a meter reading of 8.84 resulted in the UVA irradiance calculation of: 

Irradiance = 8.84 x 1.19 mW/cm2 = 10.51 mW/cm2 

And the total time of exposure to result in 2.0 standard erythema damage10 (SED) is: 

Time of exposure (min) = 2 SED/ (8.93-2 SED/min) = 22.3 min 

                                                      
10 Standard erythema damage (SED) is a weighted measure of radiant exposure equivalent to 100 Jm-2 (Lucas et 
al., 2006) . 
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Table 7.1: Calibration factors for Cleo lamp. These factors are used to determine irradiance 

for each UVA, UVB and UVC from the lamp, with the calculated irradiance and SED per minute 

for a meter reading of 8.84. 

  Calibration factor 
Irradiance 
(mW/cm2) 

Total UV 1.20+00 1.06+01 

UVC (250-280 nm) 0.00+00 0.00+00 

UVB (280-315 nm) 8.50-03 7.51-02 

UVA (315-400 nm) 1.19+00 1.05+01 

Weighted 1.70-03 1.50-02 

SED / min 1.01-02 8.93-02 

 

 MtDNA extraction, collection and quantification 

 Collection of cells 

The media used was removed from the UV-exposed HaCaT and the cells were rinsed with PBS 

(1 mL). Trypsin (1.5 mL) was added to each petri dish which was then incubated at 37 °C for 5 

minutes. After incubation, cells were observed under the microscope to make sure that all the 

cells were lifted and DMEM with 10 % FCS and 1% pen-strep (1.5 mL) was added to stop the 

activity of trypsin. A cell-scraper was used to remove all attached cells and to facilitate their 

collection. Cells were transferred to a 15 mL test tube and centrifuged for 5 min at 1200 rpm 

to collect the cell pellet. The media was removed, and the cell pellet was collected in a 1.5 mL 

Eppendorf tube. The cell pellets were stored at -20 °C until DNA extraction. 

 DNA extraction 

The protocols for total nuclear and mitochondrial DNA extraction and collection were followed 

as described and suggested by the manufacturer (Qiagen, 2016). The collected cell pellet was 

resuspended with PBS (200 µL) and transferred to a centrifuge tube. Later, Proteinase K (20 

µL) was added to the tubes and mixed to degrade any protein present. Lysis buffer of buffer 

AL from the kit (200 µL) was added to the samples to facilitate the lysis of the cell membrane. 

Samples were vortexed for 15 s and incubated at 56 °C for 10 minutes to lyse the samples. 
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Following incubation, ethanol (200 µL) was added to the samples to assist in DNA purification, 

and each sample was vortexed for 15 s before collection. 

 DNA collection and purification 

The DNA solution in ethanol was later added to a QIAamp Spin Column and centrifuged at 

8000 rpm for 1 minute to allow the DNA to adsorb to the spin column. The flow-through 

solution was discarded, and washed buffer or buffer AW1 (500 µL) was added to wash the 

column, and the column was centrifuged at 8000 rpm for 1 minute. The flow-through was 

discarded, and the column was washed with another wash buffer or buffer AW2 (500 µL) and 

centrifuged at 14 000 rpm for 3 minutes. The flow-through was again discarded and the 

column was spun at 14000 rpm for 1 minute to remove any remaining buffer AW2. 

 DNA elution and quantification 

Later, elution buffer or buffer AE (60 µL) was added to the column, and the samples were 

incubated at 20 °C for 5 minutes and centrifuged for 1 minute at 8000 rpm to elute the DNA 

from the membrane into a 1.5 mL Eppendorf tube. This was repeated using the eluted flow-

through to increase DNA yield. The DNA was stored at 4 °C until use or at -20 °C for long-term 

storage. DNA concentrations were determined using a ND-1000 NanoDrop 

Spectrophotometer (Thermo Scientific, UK) at a wavelength of 260 nm. The tip of the 

NanoDrop Spectrophotometer was cleaned with buffer AE (blank) without touching the tip. 

Later, the extracted DNA sample (1.5 µL) was added. The total DNA was calculated by 

multiplying the concentration obtained (ng/µL) by the total volume of extracted DNA (60 µL). 

The DNA quality was assessed using NanoDrop at 260/280 and 260/230 absorbance ratios, 

where a pure sample has values of absorbance ratios of approximately 1.8-2.0 and 2.0+ 

respectively. 
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 Polymerase chain reaction (PCR): amplifying 1 kb fragment of mtDNA  

The PCR hood was sterilized with 70% ethanol and RNase/DNase free water was treated with 

UV under the PCR hood for 20 minutes to sterilize the reagent and working environment. After 

sterilisation, the UV lamp was switched off prior to placing the samples under the hood. In the 

meantime, the PCR machine was switched on to warm up. DNA template and Mastermix 

preparation for PCR were prepared using the sterilized RNase/DNase free water. 

 Preparation of DNA template and PCR mastermix 

DNA samples were thawed at room temperature and vortexed for 15 s to mix. In the PCR 

hood, the DNA solution was diluted in water to obtain sufficient volume, at approximately 1 

mL in volume and at 6 ng/µL in concentration. Later, PCR mastermix was prepared on ice. The 

forward (AL4) and reverse primer (AS1) stocks were diluted with water at 1:10 to obtain 10 

µM of each forward and reverse primer working solutions. The sequences for the forward 

(AL4) and reverse (AS1) primers are CTGTTCTTTCATGGGGAAGC and 

AAAGTGCATACCGCCAAAAG respectively (Rothfuss et al., 2010). Sufficient volumes required 

for 2X SensiMix Hi-ROX reagent, forward (AL4) and reverse primers (AS1) were prepared for 

the number of reactions performed. The 2X SensiMix Hi-ROX reagent, forward primer (AL4), 

reverse primer (AS1), water and samples were assembled to a final volume of 20 µL/well in a 

MicroAmp Fast Optical 96-well reaction plate. The volumes of each component were as shown 

in Table 7.2. The final concentrations for 2X SensiMix Hi-ROX Reagent, primers and DNA 

samples in the wells were 1x, 0.25 µM and 1.2 ng/µL respectively. 
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Table 7.2: Mastermix components for 1x PCR per 20 µL volume reaction.    

Component 1x (per 20ul reaction) 

2X SensiMix Hi-ROX Reagent 10 

Forward primer (10 µM) 0.5 

Reverse primer (10 µM) 0.5 

Water 7.0 

Sample 2.0 

 

 PCR conditions 

The following conditions were used for the qPCR run: pre-incubation phase of 10 min at 95 °C 

followed by 30 cycles each of 98 °C for 15 seconds, 60 °C for 15 seconds, and 72 °C for 55 

seconds; and a final stage of 72 °C for 7 minutes. Melting curves for all DNA samples were 

added immediately after the reactions. All real-time qPCR runs for the analysis of mtDNA 

damage were performed using a StepOnePlus Real-Time PCR System (Applied Biosystems, UK) 

with the results viewed using StepOne Software V2.3 (Applied Biosystems, UK). 

 Pre-experiment assay: effect of UV on mtDNA damage 

An assay was carried out prior to the actual experiments. 1.5 x 105 cells in 3 mL of complete 

DMEM were added to a dish and allowed to settle overnight. The control and UV-treated 

dishes were prepared in duplicate. The next day, the media used was removed, cells were 

rinsed with PBS (1.5 mL) and fresh phenol free DMEM with 1% pen-strep (3 mL) was added. 

The dish covers were removed, and the controls were covered with aluminium foil, while the 

UV-treated dishes were left uncovered. The reading of the UV lamp was obtained using the 

DMc150 Monochromator and the time to cause 2.0 SED was determined as previously 

described (see section 7.2.5). Later, the dishes were covered with the lids and transported to 

the cell culture lab. The media was removed, and cells were rinsed with PBS (1.5 mL) and 

trypsin (1.5 mL) was added to each dish. After 5 minutes of incubation (37 °C), complete 

DMEM (1.5 mL) was added and the cells were scraped off using a circular motion and 
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transferred to a 15 mL test tube. Each dish was rinsed with complete DMEM (2 mL) to obtain 

a total of 5 mL cells solution. The 15 mL tubes were centrifuged to pellet the cells at 1200 rpm 

for 5 minutes. Later, the media was aspirated, and a small volume was left to make sure that 

the pellet was not disturbed. The samples were either stored at -20 °C until further use or 

extracted for mtDNA analysis. The same procedures were repeated for all dishes. 

 Investigating the role of plant extracts as UV absorbers in providing a protective 

effect against mtDNA damage  

 Protective effect of the plant extracts at 2 SED 

2.5 x 105 cells/mL of HaCaT were plated in the 35 mm dish and settled overnight. A higher cell 

number was used to increase the total yield of DNA as compared to the pre-experiment assay, 

where 1.5 x 105 cells/mL was plated per dish. The next day, the medium used was removed, 

cells were rinsed with PBS and phenol-free DMEM with 1% pen-strep (3 mL) was added for UV 

treatment. The cells were irradiated with the Cleo lamp for ~20 minutes or at 2 SED (refer to 

section 7.2.5). Later, the DNA was extracted, and qPCR was performed as described in sections 

7.2.6 and 7.2.7. The experimental set-up during UV exposure to evaluate the physical 

protective effect  of the extracts against UV-induced mtDNA damage is as illustrated in Figure 

7.3, which was modified from the previous method used by Bruge et al. (2014). Plant extract 

(3 mL) was placed in a quartz dish placed on top of the dish containing the cells. Water was 

used as a negative control and cells were covered with foil for the positive control. 
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Figure 7.3: Experimental set-up to evaluate physical protective effect of the extracts against 
UV-induced mtDNA damage. 

 

 UV absorption by the plant extracts 

Plants extracts were prepared at the required concentrations, and 3 mL of each sample 

solution was pipetted into a glass cuvette.  Absorbance readings from 190-800 nm 

wavelengths were taken using a Cary UV-Visible Spectrophotometer (Varian Inc., USA), with 

the output viewed using the Cary WinUV Kinetics Application (Varian, Inc.). The blank (water) 

was subtracted from the UV scan for each sample reading. 

 Determination of HaCaT viability at different SEDs 

10, 000 cells/well HaCaT was plated in a 96-well plate and allowed to settled overnight. The 

next day, the media used was removed, and the cells were rinsed with PBS (100 µL) and 

phenol-free DMEM with 1% pen-strep (100 µL) was added. An initial reading of UV irradiance 

from the sunbath machine was taken prior to the experiment and the time needed for each 

SED was calculated using the formula given in section 7.2.5. The exposure times for each SED 

are tabulated in Table 7.3. During the assay, the control wells were covered with foil and the 
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foil was moved to the next row after each exposure time (for example, after 10.5 min, the foil 

was moved to cover the rows adjacent to the control). These steps were repeated for all SEDs. 

After the UV treatment, the media was removed, cells were rinsed with PBS (100 µL) and fresh 

complete phenol-free DMEM (100 µL) was added. MTS solution (20 µL) was added to each 

well and the plate was incubated for 4 h before reading at 490 nm using the Spectromax260 

plate reader. 
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Table 7.3: Calculated exposure time for each SED with UV dose of 9.36. 

   mJ/cm2 

SED 

Meter 

Reading 

Time 

(min) 

Total 

unweighted 

UV 

Total 

weighted 

UV UVC UVB UVA  

0.99 9.36 10.5 7046.68 10.02 0.00 50.12 6993.60 

2.01 9.36 21.3 14294.69 20.34 0.00 101.68 14187.03 

4.00 9.36 42.3 28388.04 40.38 0.00 201.92 28174.24 

5.99 9.36 63.4 42548.50 60.53 0.00 302.65 42228.05 

7.99 9.36 84.5 56708.96 80.67 0.00 403.37 56281.87 

9.99 9.36 105.7 70936.54 100.91 0.00 504.57 70402.29 

 

 UV filtering experiment: protective effect of the plant extracts against UV-induced 

mtDNA damage at 4 SED 

2.5 x 10 5 cells/dish were plated in the 35 mm dishes and left to settle overnight at 37 °C with 

5% CO2. The next morning, the medium used was removed, cells were rinsed with PBS (1.5 

mL) and phenol-free DMEM with 1% pen-strep (3 mL) was added for UV treatment. Plant 

extracts (3 mL) at the required concentrations were added to the quartz dish placed on top of 

the dish containing cells (see Figure 7.3). The neagtive control (water) and positive control (foil 

covered dish) were exposed to UV concurrently with those cells physically covered with plant 

extracts. The cells were irradiated with Cleo lamps for 4 SED exposure time. Later, the cells 

were collected, the DNA was extracted, and qPCR was performed as described in sections 

7.2.6 and 7.2.7.  

 Investigating the role of plant extracts as antioxidants in providing protective effect 

against mtDNA damage 

 Pre-incubation experiment 

2.5 x 10 5 cells were plated in the 35 mm dishes and left to settle overnight. The next day, the 

medium used was removed, and the cells were rinsed with PBS (1.5 mL) and plant extracts 
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made up in complete DMEM were added at the required concentrations (3 mL). The dishes 

were further incubated for another 24h at 37 °C. After 24h of pre-incubation, the cells were 

irradiated with Cleo lamps for 4 SED exposure time. Later, the cells were collected, the DNA 

was extracted, and qPCR was performed as described in sections 7.2.6 and 7.2.7. 
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7.3 Results 

 Pre-experiments: UV causes significant mtDNA damage at 2 SED 

A pre-experiment assay was performed to evaluate the efficiency of the method. In the 

experiment, a UV exposure of 2 SED or 20 minutes causes significant mtDNA damage to 

exposed-HaCaT as compared to the foil-covered HaCaT (see Figure 7.4). The DNA sample from 

the foil-covered sample was amplified more rapidly than the UV-exposed samples due to the 

lower level of damage, resulting in a higher Ct value (see Figure 7.5 A), and all of the DNA 

samples were shown to be melted at the same temperature (84 °C), suggesting the specificity 

of the reactions (see  Figure 7.5 B). Therefore, the experiment proceeded with the same 

conditions. 
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Figure 7.4: MtDNA damage caused by UV radiation in exposed HaCaT. Significant mtDNA 

damage (***p<0.001, t-test analysis) is shown in the exposed HaCaT. NC=Negative control and 

PC=positive control. 
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Figure 7.5: PCR amplification plot of DNA samples from UV-exposed and foil-covered HaCaT 
(A) and PCR melt curves of the DNA samples (B).   
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 Toxicity effect of the plant extracts on HaCaT 

The effect of the plant extracts alone on HaCaT was determined prior to the assay. The plant 

extracts showed different toxic effects on HaCaT, where all the ethanolic extracts were more 

toxic than the water extracts. The cytotoxic and non-cytotoxic concentrations of each of the 

plant extracts are shown in Table 7.4, and the selected concentrations for the UV assay shown 

in Table 7.5, are the highest non-toxic concentrations of the extracts on HaCaT. An average of 

the highest two non-toxic concentrations were selected if the highest non-toxic concentration 

showed lower cell viability than the previous concentration, such as observed in MOW and 

CTE. For CCW, the highest non-toxic concentration tested was selected due to limited sample 

availability. 
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Table 7.4: Cytotoxic and non-cytotoxic concentrations of the plant extracts on HaCaT. The 

marked (*) concentrations showed significant reductions in percentage viability compared 

with control (untreated HaCaT) and are considered cytotoxic to HaCaT at *p<0.05.   

Plant species Extracts Concentration  

(µg/mL) 

Highest nontoxic 

concentration 

(µg/mL) 

M. oliefera 

Lam. 

MOW 8, 16, 31, 63, 125, 250, 500, 1000*, 

2000*, 4000* 

500 

MOE 8, 16, 31, 63, 125, 250, 500*, 1000*, 

2000*, 3000*, 4000* 

250 

C. asiatica (L.) 

Urban. 

CAW 8, 16, 31, 63, 125, 250, 500, 500, 1000, 

2000, 4000* 

4000 

CAE 8, 16, 31, 63, 125, 250* 125 

C. ternatea L. CTW 8, 16, 31, 63, 125, 250, 500, 1000, 

1500, 2000*, 2500*, 3000*, 4000* 

1500 

CTE 8, 16, 31, 63, 125, 250, 500, 1000*, 

2000*, 3000*, 4000* 

500 

C. caudatus 

Kunth 

CCW 8, 16, 31, 63, 125, 250, 500, 

1000, 2000, 4000, 5000, 6000, 7000, 

8000, 9000, 10,000 

10, 000 

CCE 8, 16, 31, 63, 125*, 250* 63 

 

Table 7.5: Selected non-toxic concentrations for UV treatment.  

Toxicity level on 

HaCaT 

Samples extracts Nontoxic concentration for 

UV assays (µg/mL) 

 CCE 63 

CAE 125 

MOE 250 

CTE 375 

MOW 375 

CTW 1000 

CAW 1500 

CCW 10000 

 

Decreases 
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 Investigation the role of plant extracts as UV filters in providing a protective effect 

against mtDNA damage  

 Protective effect against UV-induced mtDNA damage at 2 SED 

In this experiment, all the water extracts of each plant species (MOW, CAW, CTW and CCW) 

provide significant protective effects against UV-induced mtDNA damage when compared 

with UV-exposed HaCaT (see Figure 7.6). Meanwhile, none of the ethanolic extracts of the 

plant species (MOE, CAE, CTE and CCE) provided any protective effect. A further experiment 

at higher SED was performed to further confirm the protective effect. 
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Figure 7.6: Protective effects of the plant extracts against UV-induced mtDNA damage at 2 
SED (UV filter experiment). NC= negative control and PC= positive control. Data are the mean 

and SD of triplicates (n=3). 
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 HaCaT viability at different SED  

In this experiment, UV exposure at 1, 2 and 4 SED (10.5, 21.3 and 42.3 minutes respectively) 

did not cause any significant cell death to HaCaT, as shown in Figure 7.7. Meanwhile at higher 

SED of 6, 8 and 10 or UV exposure for 63.4, 84.5 and 105.7 minutes respectively caused 

significant cell death compared with the control. This experiment suggests that 4 SED is the 

maximum UV exposure which can be used for the UV-induced mtDNA damage assay, and this 

level was investigated in the subsequent experiment. 
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Figure 7.7: HaCaT viability at different SED of UV exposure.  Data represent the mean and SD 

(n=6). 

 

 Comparison of UV-induced mtDNA damage at 2 SED vs. 4 SED 

Longer UV exposure to HaCaT resulted in higher mtDNA damage, where a larger difference in 

Ct was observed between UV-exposed vs. foil-covered HaCaT at 4 SED (see Figure 7.8). At 2 

SED, the observed Ct difference between the negative control (NC) and positive control (PC) 
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was approximately 1 Ct, whereas a difference of 3 Ct was observed at 4 SED. A larger Ct 

difference between the NC and PC can reduce a false negative result, and therefore the 

subsequent experiment was conducted at 4 SED to further confirm the protective effect of 

the plant extracts against UV-induced mtDNA damage. 
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Figure 7.8: Comparison of UV-induced mtDNA damage at 2 SED vs. 4 SED. Data represent 

mean and SEM of two independent experimental runs with three technical PCR replicates for 

each DNA sample. NC= negative control and PC= positive control, where **p<0.01 and 

****p<0.0001. 

 

 Protective effect against UV-induced mtDNA damage at the highest non-toxic 

concentrations and at 63 µg/mL 

The water extracts of C. asiatica (CAW), C. ternatea (CTW), C. caudatus (CCW) and the M. 

oliefera ethanol (MOE) extracts showed significant protective effects against UV-induced 

mtDNA damage (see Figure 7.9 A). None of the ethanol extracts showed any protective effect 

against UV-induced mtDNA damage. A comparison of the potency of the plant extracts was 

performed at 63 µg/mL, which is the lowest non-toxic concentration for all plant extracts, and 
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only MOE provided a significant protective effect against UV-induced mtDNA damage of 

p<0.05 compared to UV-exposed HaCaT (see Figure 7.9 B). At this concentration, none of the 

other extracts showed any protective effect, suggesting a dose-dependent protective effect 

of the plant extracts. 
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Figure 7.9: UV filter experiment: protective effect against UV-induced mtDNA damage at the 
highest non-toxic concentration (A) and at 63 µg/mL (B).  Data are the mean and SEM of two 

experiments with three PCR technical replicates for each DNA samples with p<0.05 considered 

as significant. NC= negative control and PC= positive control.  
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 UVA, UVB and UVC filtering ability of the plant extracts 

The plant extracts exhibited different values of UVA (320-400 nm), UVB (290-320 nm) and UVC 

(200-290 nm) absorptivity. The absorption spectra of each of the plant extracts at the highest 

non-toxic concentrations are shown in Figure 7.10 with the peak details tabulated in Table 7.6. 

At each of the concentrations, the MOW showed UVC absorption, while the MOE showed UVC 

and UVA absorption. Both CAW and CAE showed UVA absorption. C. ternatea extracts (CTW 

and CTE) showed absorption in the visible light, UVB and UVC ranges. No absorption peak was 

shown by CCE, but the CCW completely blocked UV and visible light. Comparison of the UV 

absorption profiles of all extracts at lower concentrations (63 µg/mL) showed similar 

absorption patterns, but with fewer peaks identified for both water and ethanol extracts (see 

Figure 7.11 and Table 7.7). All identified peaks were in the UVC range shown by MOW, CTW, 

MOE, CAE and CTE, and in the visible light range shown by CTW and CTE. 
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Figure 7.10: UV absorption by the water (A) and ethanol (B) extracts at the highest non-toxic 
concentration. Peak details (wavelength and absorption) for A and B are summarized in Table 

7.6.
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Figure 7.11: UV absorption of the water (A) and ethanol (B) extracts at 63 µg/mL. The 

patterns of absorption at 63 µg/mL were similar to those at higher concentrations for all the 

extracts, with fewer identified peaks observed. Peak details (wavelength and absorption) for 

A and B are summarized in Table 7.7. 
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 Investigation of the role of plant extracts as antioxidants in providing a protective 

effect against UV-induced mtDNA damage 

 Vehicles (solvents) had no significant effect on UV-induced mtDNA damage 

The effect of vehicles alone on mtDNA damage in UV-treated HaCaT was investigated and the 

results showed that neither water nor ethanol had any significant effect (see Figure 7.12). In 

this experiment, the pre-treatment of HaCaT with water and ethanol (1%) for 24 h did not 

show significant effects on UV-induced mtDNA damage. Therefore, the pre-treatment of 

HaCaT with the plant extracts indicate the effect of the extracts rather than the vehicles. 
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Figure 7.12: Effect of vehicle (solvent) on mtDNA damage: preincubation experiment. Data 

are the mean and SEM of two independent experimental runs in three technical replicates for 

each DNA sample with ***p<0.001 compared with control. 
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 Pre-incubation experiment: protective effect of the plant extracts against UV-

induced mtDNA damage  

A comparison of potency at 63 µg/mL showed that only MOE and CCE protected HaCaT against 

UV-induced mtDNA damage (see Figure 7.13 A). None of the water extracts gave any 

significant protective effect to HaCaT. However, at the higher concentration (250 µg/mL), 

MOW and CTW showed significant protective effects, while MOE showed a higher protective 

effect at this concentration suggesting a dose-dependent effect (see Figure 7.13 B). Further 

experiments on other extracts were not performed either due to limitations in sample 

availability or cytotoxicity effects of the extracts on HaCaT. 
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Figure 7.13: Pre-incubation experiment: protective effect of the plant extracts against UV-
induced mtDNA damage at 63 µg/mL (A) and 250 µg/mL (B). Data represent mean and SEM 

of two independent experiments with three technical PCR replicates. NC=negative control and 

PC=positive control with **p< 0.01 and ***p<0.001 compared with NC. 
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7.4 Discussion 

Many sunscreen creams incorporate organic and inorganic compounds such as avobenzone, 

zinc oxide and titanium dioxide in their formulations to absorb, reflect or scatter UV, thus 

reducing its harmful effect on the skin (Beasley and Meyer, 2010). However, these compounds 

can also cause adverse effects such as contact and photocontact dermatitis, and some are 

cosmetically unacceptable because of their opaque quality that causes the skin to appear 

white (Gasparro et al., 1998; Yap et al., 2017). Antioxidants are sometime used in sunscreen 

formulations to complement or boost the protective effect of UV filters (Galanakis et al., 

2017). Therefore, the plant extracts considered in this research were investigated for their 

ability to provide protective effects against UV-induced mtDNA damage in HaCaT for potential 

application as either UV-filters or antioxidants. In this chapter, a novel method of assessment 

was utilised evaluating the protective effect of the plant extracts against photoageing. 

 Pre-experiment assay: proof of concept of the use of qPCR to assess mtDNA damage 

as a biomarker for skin ageing 

The use of qPCR to assess DNA damage has been extensively used, as this method has been 

shown to have many benefits (Hunter et al., 2010; Furda et al., 2014). In the pre-experiment 

assays, UV was shown to induce mtDNA damage in HaCaT as compared with non-exposed 

cells, expressed as mean in qPCR Ct values (see results in section 7.3.1). The results were also 

graphically presented in amplification plots of the DNA samples which showed that the intact 

DNA sample was amplified faster compared with damaged DNA samples, with PCR melt curves 

showing that all the samples were melting at the same temperature. This assay provides proof 

of concept of the principle behind the method used, where any damage to the DNA will 

impede or slow down the progression of DNA polymerase (Hunter et al., 2010; Furda et al., 

2014), and comparisons between intact and damaged DNA can be performed as the reaction 
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starts at the same time, as shown by the melt curves. However, the initial UV filter experiment 

showed that at 2 SED UV exposure (20 minutes), only the water extracts exhibited protective 

effects against UV-induced mtDNA damage (see Figure 7.6). These results may be explained 

by the fact that at the concentrations used, all the water extracts were non-toxic to HaCaT 

and higher concentrations were used in comparison to the ethanol extracts, where lower 

concentrations had to be used due to the cytotoxicity effect. However, to avoid any false 

negative results, UV exposure at 4 SED (40 minutes) with higher Ct difference between the 

negative and positive controls (exposed vs. covered HaCaT) were used in the subsequent 

experiments. Longer UV exposure to HaCaT induces higher level of damage as shown by a 

comparison of Ct differences between negative and positive controls at 2 SED and 4 SED, 

where differences of 1 Ct vs. 3 Ct respectively were observed (see Figure 7.8).  

 UV filter experiment: potential application of the plant extracts as UV filters 

In the UV filter experiment, the water extracts of C. asiatica, C. ternatea, C. caudatus (CAW, 

CTW, CCW) and the ethanol extract of M. oliefera (MOE) showed significant protective effects 

against UV-induced mtDNA damage (see Figure 7.9 A). These extracts showed different levels 

of protective effect, mainly due to the concentrations used. However, a comparison of 

potency at similar concentration between all extracts showed that only MOE exhibited a 

significant protective effect (see Figure 7.9 B), suggesting a potential dose-dependent effect 

of the plant extracts. 

A review of the photo-protection given by herbal extracts as an alternative to synthetic UV-

filters by Radice et al. (2016) showed that the photo-protective activity of the plant extracts 

considered in this study has not yet been reported. Therefore, the results in this experiment 

may provide a potential novel application of extracts from these plant species as UV filters. In 

comparison to the extracts from leaves, studies on the photo-protection given by of M. 
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oliefera species have been limited to the seed, and particularly the lipid fraction (Gaikwad and 

Kale, 2011). However, it is possible that the protective effect exhibited by MOE is due to its 

ability to absorb UV radiation, and particularly UVA and UVC (see results section 7.3.3.5), thus 

reducing the amount of UV exposure to the cells which causes damage. Similarly, CAW and 

CTW also showed either UVA, UVB or UVC absorption. Meanwhile, CCW completely blocked 

UV radiation at the concentration used. This is further supported by the phytochemical 

analysis of the extracts, showing the presence of photoprotective compounds that can screen 

UV, such as phenolic acids and flavonoids (see Chapter 3). These compounds are known to be 

natural UV filters that work either by filtering, absorbing or blocking the UV (Pereira et al., 

2009; Agati et al., 2013; Radice et al., 2016; Galanakis et al., 2017). For example, flavonoids 

such as quercetin and rutin have been shown to have strong absorption peaks in the UVA 

range (373 nm and 341 nm respectively), and their investigated sun protective factors (SPFs) 

have been shown to be similar to that of homosalate, which is a reference compound used to 

establish FDA standard sunscreen agents (Choquenet et al., 2008).  The same study also 

showed that the effectiveness of quercetin and rutin against UV is influenced by the 

concentrations used, with a dose-dependent effect observed. This supports the results of the 

present study. Phenolic acids such as caffeic, ferulic, p-coumaric, p-hydroxybenzoic and 

chlorogenic acids, which are present in almost all of the plant extracts studied, as well as 

anthocyanins (C. ternatea) and triterpenoids (C. asiatica), have been shown to have maximum 

absorption in the UVA, UVB and UVC range (Burdulis et al., 2007; Spagnol et al., 2015; Rojas 

et al., 2016). Therefore, the protective effect against UV-induced mtDNA damage exhibited by 

the plant extracts in this experiment may have been contributed by their UV absorption 

properties. 
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 Pre-incubation experiment: protective effect against UV-induced mtDNA damage 

In the previous chapter, some of the plant extracts were shown to have protective effects 

against H2O2-induced oxidative stress (see Chapter 6), and the protective effect exhibited is 

suggested to be due to their antioxidant activity. In this chapter, UV was used as a source of 

oxidative stress and the protective effect against UV-induced mtDNA damage was 

investigated. A comparison of potency at 63 µg/mL showed that only MOE and CCE protected 

HaCaT from UV-induced mtDNA damage, whilst none of the water extracts showed any 

protective effect. At higher concentration (250 µg/mL), C. ternatea extracts (CTW and CTE) 

were selected to be compared with M. oliefera extracts (MOW and MOE) due to the positive 

activity exhibited in the previous chapter. At this concentration, MOW, MOE and CTW 

exhibited significant protective effects against UV-induced mtDNA damage, suggesting a 

potential dose-dependent protective effect. 

Excessive UV exposure to the skin is known to cause oxidative damage to lipids, proteins and 

DNA, either directly or indirectly through ROS generation (Fisher et al., 2002; Farage et al., 

2008; Ahsanuddin et al., 2016). An extensive literature search showed that no studies have 

been published on the protective effect of M. oliefera, C. caudatus and C. ternatea extracts 

against UV-induced mtDNA damage. However, the plant extracts have been shown to have 

anti-radical and metal ion chelating properties mainly due to their phenolic content (see 

Chapter 4), which may play a role in modulating the protective effect displayed in this 

experiment. Phenolics have been shown to play a role in the prevention of UV-induced skin 

damage (Svobodová et al., 2003), and their mechanisms of action include prevention of DNA 

damage and regulation of DNA repair (Afaq and Katiyar, 2011). It is possible that pre-

treatment of HaCaT with the plant extracts reduces the effect of UV not only by absorbing UV 

radiation (Radice et al., 2016), but also by interfering with the generation of ROS in the cells 
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(see Chapter 4), thus reducing mtDNA damage. The inhibition of ROS generation can occur 

either through the inhibition of lipid peroxidation, hydrogen peroxide, nitric oxide production 

or the depletion of antioxidant enzymes (Katiyar and Mukhtar, 2001; Sharma et al., 2007). The 

pre-treatment of keratinocytes with an antioxidant has also been shown to reduce the 

formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in mtDNA (Lee et al., 2013), which 

is formed via oxidative damage to the DNA. Other than that, the topical application of 

polyphenols in vivo has been shown to reduce the formation of cyclobutene pyramidine 

dimers (CPD), and to promote the repair of UV-induced CPDs in a dose-dependent manner 

through an IL-12-dependent DNA repair mechanism (Schwarz et al., 2005; Meeran, Mantena 

and Katiyar, 2006; Meeran, Mantena, Elmets, et al., 2006). In a different study, polyphenol 

supplementation has been shown to successfully restore D-loop mutations in mtDNA, with an 

increase in the levels of antioxidant enzymes in alcoholic rats (Reddyvari et al., 2017). 

Although the damage was not induced by UV, the assessment of D-loops was similar to that 

in this study. All the studied extracts contain high TPC, and the fact that MOE has the highest 

TPC with the highest potency of the protective effect exhibited accords with these speculated 

mechanisms. Further potential mechanisms of action which may be exerted by various groups 

of polyphenols have been discussed by Svobodová et al. (2003) and Nichols and Katiyar (2010). 

 Limitations 

The qPCR mtDNA damage assay is a rapid and sensitive method with many strengths (Meyer, 

2010). However, the exact mechanisms of action of the extracts in exerting their protective 

effect need further specific assays. Since the assay can detect all types of damage based on 

the impairment of DNA polymerase progression (Hunter et al., 2010; Furda et al., 2014), it 

cannot distinguish between different types of DNA damage, but this knowledge may be useful 

in understanding the potential mechanisms of action involved.  
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7.5 Conclusion 

The plant extracts studied have high potential to be developed into UV-filters and antioxidant 

agents in commercial cosmetic products. MOE showed the highest potency of protective 

effect against UV-induced mtDNA damage in both UV-filter and antioxidant experiments, 

while some of the water extracts showed significant activity at higher concentrations. The 

protective activity may be due to the phenolic content, but more specific assays are needed 

to understand the potential mechanisms of action involved. 
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Chapter 8 
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 General discussion and conclusion 

This study was designed in response to the Malaysian Economic Transformation Programme 

(ETP) in the agricultural sector, where one of the main items in the agriculture National Key 

Economic Area (NKEA) agenda is to raise the status of local herbs for commercialisation 

(Ministry of Agriculture Malaysia, 2010). There are many herbal products available in the 

market now; however, their application in the cosmetics industry may represent a more 

promising investment according to the current trends and the demand for natural and organic 

cosmetics (Future Market Insight (FMI), 2015; Hassali et al., 2015). This study aims to add 

agricultural and commercial value to the selected medicinal plants. Therefore, four medicinal 

plants (M. oliefera Lam., C. asiatica (L.) Urban, C. ternatea L. and C. caudatus Kunth.) were 

selected for an investigation of their anti-ageing properties with potential exploitation as 

cosmetics ingredients. These plants are considered to be underutilised in Malaysia and 

scientific evidence to support their traditional and cosmetic usages is lacking. 

Skin ageing is a complex degenerative process of the skin caused by many factors such as 

genetics, nutrition, chemical agents and exposure to UV radiation (Farage et al., 2008; Situm 

and Sjerobabski-Masnec, 2010; Farris and Krol, 2015; Lephart, 2016). It can be classified into 

two types, intrinsic and extrinsic skin ageing, which differ in causal factors and the 

characteristics of the aged skin (Raschke and Elsner, 2010; Situm and Sjerobabski-Masnec, 

2010; Farage et al., 2013). The exact mechanisms involved in the pathogenesis of skin ageing 

are yet to be fully understood, but substantial evidence suggests that they share similar 

fundamental potential mechanisms of action (Fisher et al., 2002).  

Many theories have been proposed to explain the pathogenesis (Jin, 2010; Mercado-Sáenz et 

al., 2010; Alfredo et al., 2014), and the accumulation of oxidative cellular damage to skin cells, 

proteins, lipids and DNA as proposed in the free radical or oxidative stress theory of skin ageing 
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is widely accepted (Rinnerthaler et al., 2015; Ahsanuddin et al., 2016). Additionally, most of 

the skin ageing targets relevant to cosmetics applications have also been shown to be 

associated with oxidative stress in the skin. “Anti-ageing” properties with respect to skin 

ageing and cosmetic products include skin lightening and the reduction of skin spots, skin 

renewal and stimulation, plumping for smoother skin and moisturising (Center for the 

Promotion of Imports from Developing Countries (CBI), 2016). Hence, this thesis examines the 

anti-ageing properties of medicinal plants relevant to cosmetics applications, which include 

their anti-oxidant, anti-collagenase, anti-elastase and anti-tyrosinase activities. Their 

protective effects against H2O2-induced cytotoxicity and UV-induced mtDNA damage in HaCaT 

cells (keratinocytes) are also investigated. 

8.1 Potential application as antioxidant, anti-wrinkle, hypo-pigmentation 

and UV filter agents 

Antioxidants are any molecules that are capable of being oxidizing in preference to other 

molecules, and they can interact with free radicals and terminate the chain reaction (Oroian 

and Escriche, 2015). In plants, polyphenols are excellent antioxidants found in roots, stems, 

leaves, flowers and leaves which are capable of protecting themselves from oxidative stress 

induced by UV or other environmental factors (Pouillot et al., 2011). Natural antioxidants such 

as vitamins, phenolic acids and flavonoids are used in the cosmetics industry as a preventive 

measure against skin ageing due to oxidative stress (Costa and Santos, 2017). Therefore, the 

two extraction methods used in this study also targeted polyphenols, where extraction in 

water was used to mimic the traditional preparation and 70% ethanol extraction was used due 

to its feasibility and because it is recognized as safe in industrial applications. 

In Chapter 4, the plant extracts studied were investigated for their antioxidant potential, 

where their properties to scavenge diverse types of free radicals and their ability to chelate 
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metal ions were assessed. The correlation of the antioxidant activities of the extracts with 

their respective TPC was also assessed. The antioxidant assays showed that all the plant 

extracts can scavenge free radicals (DPPH and ABTS) and chelate metal ions, suggesting the 

potential application of the plant extracts as antioxidant agents in cosmetics products. The 

antioxidant activities vary depending on the extraction methods used to prepare the plant 

extracts, and aqueous ethanol extracts have higher antioxidant potential than water extracts. 

In the experiments, MOE showed the highest potential compared with all other extracts in all 

of the assays employed (DPPH, ABTS and FRAP). Although the scavenging activities of the plant 

species have been reported (Zainol et al., 2003; Kamkaen and Wilkinson, 2009; Sreelatha and 

Padma, 2009; Mustafa et al., 2010; Vongsak, Sithisarn, Mangmool, et al., 2013), these 

activities may differ due to factors associated with the plant samples, such as processing and 

extraction methods, and genetics (Coelho et al., 2016; Boneza and Niemeyer, 2018). 

Therefore, the comparison between the water and ethanol extracts of the plant species that 

showed different results than those previously reported further enhances the importance of 

the experiments conducted in this study. 

In the assessments for potential collagenase, elastase and tyrosinase inhibition, no pattern of 

differences in activity was observed between the water and ethanol extracts. M. oleifera 

extracts (MOW and MOE) either showed very low or no inhibition against collagenase, 

elastase and tyrosinase. C. asiatica extracts (CAW and CAE) showed inhibition against 

collagenase and tyrosinase, while C. ternatea extracts (CTW and CTE) inhibited collagenase 

and elastase, but not tyrosinase. Meanwhile, C. caudatus extracts (CCW and CCE) showed 

potential application as inhibitors against all enzymes. Targeting these enzymes is significant 

in cosmetics applications for anti-wrinkle and hypo-pigmentation agents, which are preferable  

due to their localized effects (Tsuji et al., 2001; Brenneisen et al., 2002; Hakozaki et al., 2010). 
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Of all the plant species, C. caudatus and C. ternatea showed the highest potential due to their 

activities against collagenase, elastase and tyrosinase. The observed activities of C. caudatus 

and C. ternatea extracts against these enzymes could be attributed to the presence of 

flavonoids such as quercetin and kaempferol that have been shown to inhibit collagenase, 

elastase and tyrosinase in similar assays or cell cultures (Melziq et al., 2001; Chen and Kubo, 

2002; Sin and Kim, 2005; Fujii et al., 2009). Anthocyanins, which are present in C. ternatea 

extracts, have also been shown to inhibit collagenase, elastase and tyrosinase (Sartor et al., 

2002; Jhan et al., 2016). More importantly, to the best of the present author’s knowledge 

these are the first reports of the activity of these plant species against those enzymes; 

therefore, suggesting that these are novel findings relevant to their application in the 

cosmetics industry and indicating that the plants will have high agricultural value for mass 

cultivation. 

In the cell culture experiments described in Chapter 6, the plant extracts were investigated for 

their protective effects against H2O2-induced cytotoxicity in HaCaT. Previously, all the ethanol 

extracts of all plant species have been shown to have higher scavenging and metal chelating 

activities compared to their respective water extracts. However, in this experiment only the 

water extracts of M. oliefera, C. asiatica and C. ternatea showed significant protective effects 

(p< 0.05), whereas none of the ethanol extracts did. These results may be explained by the 

high toxicity of the ethanol extracts to HaCaT, and lower concentrations were used compared 

with the water extracts. In general, several studies have shown a protective effect of M. 

oliefera, C. asiatica and C. ternatea extracts against oxidative stress, which supports the 

observed results in this chapter. M. oliefera extracts show improvements in cell proliferation, 

the suppression of apoptotic events and lipid peroxidation, and a significant enhancement of 

antioxidant enzyme levels in vitro and in vivo (Jaiswal et al., 2013; Prasanna and Sreelatha, 
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2014; Abdul Hisham et al., 2018). C. asiatica has been shown to decrease the p53 protein and 

the expression of genes involved in apoptosis, cell growth, transcription, senescence and DNA 

replication in fibroblast cells (Kim et al., 2011), and lower malonaldehyde (MDA) levels or low 

density lipids in vivo (Hussin et al., 2009; Mahanom et al., 2011; Ayala et al., 2014). Meanwhile, 

C. ternatea was shown to inhibit lipid glycation and lipid peroxidation and to suppress ROS 

(Phrueksanan et al., 2014; Yimdee et al., 2014; Chayaratanasin et al., 2015; Nair et al., 2015). 

However, few studies have been conducted on their protective effect against oxidative stress 

in HaCaT cells; hence, pointing to the significance of this experiment. 

The protective effect of the plant extracts against UV-induced mtDNA damage was also 

investigated, where the role of plant extracts as UV filters and antioxidants was assessed. In 

the UV filtering experiment, the observed protective effect shown by the plant extracts (CAW, 

CTW, CCW and MOE) was potentially dose-dependent, where only MOE showed protective 

effects at the lowest non-toxic concentration. It is suggested that the flavonoids, which are 

natural UV filters that are present in the extracts, contributed to the protective effect in this 

experiment by reducing the amount of UV reaching the HaCaT cells (Pereira et al., 2009; Agati 

et al., 2013; Radice et al., 2016; Galanakis et al., 2017). This conclusion is further supported by 

the UV spectra for each of the plant extracts showing the ability to absorb UV; thus, suggesting 

potential applications of the plant extracts as UV filters. Additionally, it is also possible that 

the plant extracts modulate the protective effect against UV-induce mtDNA damage through 

their anti-radical and metal-chelating properties (see Chapter 4), which were exhibited by 

MOE, CCE and CTW in the pre-incubation experiment. Phenolics have been shown to play a 

role in the prevention of UV-induced skin damage through various mechanisms (Svobodová 

et al., 2003), and it is possible that the extracts interfere with UV-induced ROS generation in 

HaCaT (Katiyar and Mukhtar, 2001; Sharma et al., 2007).  
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8.2 Strengths and limitations 

This thesis has shown the potential application of the plant extracts as antioxidants, and anti-

wrinkle, hypo-pigmentation and UV filter agents, where some of the activities found are the 

first reports to the best of the author’s knowledge. For example, the anti-collagenase, anti-

elastase and anti-tyrosinase activities of C. caudatus extract have not previously been 

reported, and neither have the anti-collagenase and anti-elastase activities of C. ternatea 

extracts. Although the protective effect of the plant extracts against oxidative stress has been 

shown, studies using HaCaT cells and assessment of UV-induced mtDNA damage are limited. 

This suggests that further research is required for cosmetics application of the plant species 

studied. Other than that, this thesis has also shown that the enzymatic colorimetric assays, 

which are commonly used, are not suitable for the assessment of plant extracts with coloured 

pigment. This will be particularly important in future research assessing other plant species of 

agricultural importance. 

As for the limitations of this study, further specific assays are required to elucidate the 

potential mechanism of action of the plant extracts in more detail. In the cell culture assays, 

limited range of concentrations can be tested for the ethanol extracts due to their toxic effect 

to HaCaT; hence, no protective effect was observed (Chapter 6). The activity of individual pure 

active compounds has not been investigated in this thesis because the extracts contain more 

than one active compound that could work in synergy or antagonistically. However, the LC-

MS data for each of the plant extracts provide important clues for the future standardization 

of the extracts. 

Another point that needs to be considered is the concentrations used in the experiments were 

in the higher range (Chapters 4 and 5). In Chapters 4 and 5, the selected concentrations range 

was from 63-1000 µg/mL, so that the samples with weak activity level could be investigated. 
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However, in the case of extracts with potent antioxidant level; the concentration range may 

affect the IC50 values obtained. Although the IC50 values were shifted from the regression line 

in certain extract samples, the results did not affect the comparison between samples and 

standard (Trolox) because the level difference was apart. This limitation could be overcome 

by selecting a lower range of concentrations for the extracts with high antioxidant potential.  

This issue is also observed in the experiments in Chapters 6 and 7, where high concentrations 

were selected for certain samples that have low cytotoxicity level on HaCaT. Therefore, these 

samples should be further investigated at lower concentrations for their observed their 

protective effects against H2O2-induced cytotoxicity and UV-induced mtDNA damage. Their 

application as active ingredients need further investigation to properly develop an effective 

and sustainable formulation. The most commonly used concentrations of an active in a 

formulation is from 1-5% and sometimes can be up to 10% depending on the potency and 

activity of the active ingredient (FDA, 2018). Further optimisation of the extracts for proper 

final product development such as extraction procedures for optimal active extracts or 

isolation of active compounds will resolve the issue. The intended use or function of the 

extract may also influence the concentration used in a formulation, in which a UV absorber 

agent (zinc oxide and titanium dioxide) may comprise up to 25% of the total formulation (FDA, 

2018) suggesting that the high concentration used may be benefited for other usage. 

It should also be noted that the antioxidant assays used (Chapter 4) were based on the 

chemical reaction between an antioxidant and a pre-formed radical. These assays are widely 

used to evaluate antioxidant activities of plant-based extracts (Moharram and Youssef, 2015; 

Djouonzo et al., 2018; Lim et al., 2019; Samsonowicz et al., 2019; Sridhar and Linton, 2019). 

Despite the strength of the assays used (see Chapter 4, section 4.1.3), there are also limitation 

that need to be considered (Huang et al., 2005; Pinchuk et al., 2012; Schaich et al., 2015; Apak 
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et al., 2016). Since these radicals are pre-formed in vitro, the reported activity may not 

represent the actual activity in vivo; but the assays suggest their ability to react and participate 

in a redox reaction that could represent the mechanism involved in lowering oxidative stress 

in the skin. This is supported by the results in Chapters 6 and 7 in experiments using HaCaT 

cells, where significant protective effects were observed in H2O2-induced cytotoxicity and UV-

induced mtDNA damage of some of the prepared extracts that correlate with their antioxidant 

activities as measured in Chapter 4. Though the assays are very simple, fast and convenient, 

lack of standardization of the experimental procedures in the literature causes discrepancy in 

standard values for comparison (Apak et al., 2016). It is very crucial to have a positive standard 

in each experiment runs for comparison to ensure the reproducibility and consistency of the 

standard values. 

In Chapters 4 and 5, the positive controls used were Trolox (antioxidant activity), EGCG (anti-

collagenase and anti-elastase) and kojic acid (anti-tyrosinase). These controls had shown 

potent antioxidant and inhibition against the studied enzymes compared to the extracts. The 

IC50 values of Trolox in DPPH and ABTS assays were 3.32 and 6.51 µg/mL (see Table 4.6), 

whereas the extracts had less potent activities. Similarly, the IC50 values for EGCG in the anti-

collagenase and anti-elastase fluorescence assays were 13.2 and 487 µg/mL, while kojic acid 

in the tyrosinase assay was 79.2 µg/mL. Though the extracts had lower activity than the 

positive control, it should be considered that extracts preparation has not being optimised; 

thus the results. With proper optimisation of the extracts preparation, an optimal activities 

comparable with the controls may be achieved. As previously mentioned, lack of 

standardization in the in vitro assays results in variation in the gold standard values of the 

control for comparison (Moon et al., 2010; Abdul Wahab, 2014; Azmi et al., 2014; Himamura 

et al., 2014; Mandrone et al., 2015). Therefore, it is very important to run a positive control 
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for each of the assay replicates. Despite the limitation, the results in these in vitro assays are 

crucial in screening samples prior to cell culture and in vivo studies. 

8.3 Conclusion 

In conclusion, the results presented in this thesis suggest that the selected medicinal plants 

have potential to be developed as cosmetic ingredients. Their respective target of actions may 

differ depending on the extraction methods used to prepare the extracts and some extracts 

may have multi-action activities. Of all the extracts studied, the M. oliefera and C. ternatea 

extracts showed the highest potential to be developed as antioxidant ingredients, with 

significant protective effects observed in terms of H2O2-induced cytotoxicity and UV-induced 

mtDNA damage in HaCaT cells. C. ternatea flower extracts also exhibited significant inhibition 

against collagenase and elastase activities, suggesting potential application as anti-wrinkle 

ingredients.  Other extracts such as C. asiatica exhibited low antioxidant activities, but with 

potential application as collagenase and tyrosinase inhibitors.  Meanwhile, the C. caudatus 

extracts have multi-action activities such as antioxidant, anti-collagenase, anti-elastase and 

anti-tyrosinase activities. Therefore, the results in this study represent potential commercial 

value and future agricultural potential in terms of mass cultivation of the selected medicinal 

plants. Their putative traditional usages are also supported with scientific evidence.  However, 

it should be noted that further optimisation in extract preparations are required to obtain 

extract with high potency. Other than that, additional experiments are required to further 

elucidate the mechanism of the protective effects observed. 
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Chapter 9 
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 Future direction and recommendation 

This study focuses on the evaluation of the extracts from medicinal plants with agricultural 

potential for application as cosmetic ingredients. The results obtained provide significant data 

on the potential development of each of the plant extracts as antioxidant, anti-wrinkle, hypo-

pigmentation and UV filter agents. Most of the plant extracts have exhibited multi-action anti-

ageing activities, which are sought after by consumers of cosmetics. Future directions and 

recommendations for further research area are suggested as follows: 

The comparison between the water and aqueous ethanol extracts of each of the plant species 

has showed that their activities depend on the extraction methods used to prepare the 

extracts. Therefore, an evaluation of different methods to prepare the plant extracts should 

be performed to obtain more potent and stable extracts with high extraction yields. This is 

particularly important in balancing the supply and demand chain of the raw materials and 

cosmetics applications. The phytochemical analysis data presented in Chapter 3 provides an 

important basis of solvent selection for future research. The identification, fractionation and 

isolation of individual phytoconstituents from each of the plant extracts are also required to 

gain fuller understanding of the role of individual compounds responsible for the activities 

measured.  

The process of skin ageing in humans is complex (eg. differs between ethnic groups, 

environment and life-style) and may involve multiple pathways. This study focuses on various 

anti-ageing properties of the plant extracts; however, specific mechanistic assays are required 

to elucidate and further understand the mechanisms of action involved in each of the 

exhibited anti-ageing properties. For example, assessment of proteins involved in the 

hypothesized pathways will allow further elucidation of the mechanisms of action in H2O2-

induced cytotoxicity and UV-induced mtDNA damage experiments.  
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Anti-collagenase, anti-elastase and anti-tyrosinase activities require further investigation 

using cell culture experiments, which will provide information on the effect of cellular 

interactions with the plant extracts on the anti-ageing properties exerted. Some of the 

suggested cells for the assays are fibroblast cells (HDFn) for anti-collagenase and anti-elastase 

activities, and B16 melanoma cells for anti-tyrosinase activity. 

Another interesting aspect that needs further investigation is the stability of the plant extracts 

and their active components. In general, polyphenols at very high concentrations are also 

prone to auto-oxidation which could reduce the observed activity. Some of the active 

components in the plant species investigated, such as anthocyanins in C. ternatea, are 

sensitive to light and pH changes, which will affect the activity exerted. Although most cream 

formulations include stabilizers or preservatives to solve such problem, studies on this aspect 

may explain the absence of activity in some of the plants investigated. 

With further research, the selected medicinal plants will be shown to have high potential for 

commercialisation as cosmetic ingredients. This will also lead towards a positive impact on the 

Malaysian agriculture sector. 
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Appendix A 

The total anthocyanin was expressed as cyd-3-glu mg/g extract and calculated using the 

formula below (Lee et al., 2005).  

TAC= A x MW x 1000)/ ε, (A.1) 

where A= (A520nm – A700nm) pH1.0 – (A520nm – A700nm) pH 4.5; MW (molecular weight) 

= 449.2 g/mol for cyanidin-3-glucoside (cyd-3-glu); ε = 2600 molar extinction coefficient, in L 

x mol–1x cm-1, for cyd-3-glu; and 1000 = factor for conversion from g to mg.  

The molar extinction for cyanidin-3 glucoside at 1 cm path length was 26900 L x mol–1 (Lee et 

al., 2005) was determined based on the path length travelled through regular 1 cm cuvette 

(polystyrene) from side to side (see Figure A.1 a). However, for the 96-well plate read by the 

Spectromax384 microplate reader, the wavelength travelled vertically (Figure A.1 b). Hence, 

the path total path length travelled using the plate was equal to the volume contained in the 

well, with the assumption of no effect of plate height travelled on absorption.  

 

Figure A.1: Comparison of wavelength movement using cuvette and plate reader.   
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Determination of path length travelled: The path length was determined based on the 

microplate profile provided from the supplier (Figure A.2). Hence; the height of volume (path 

length travelled) was calculated as below: 

If 384 µL (total volume/well) =10.9 mm, then for 250 µL,  

The height travelled = (250 µLx 10.9 mm)/384 µL= 7.13 mm 

 

 

Figure A.2: Well profile of flat bottom microplate. Figure shows the well profile of flat bottom 

clear microplate in mm. The maximum volume for each well is 382 µL. Image obtained from 

www.gbo.com/bioscience. 

Molar absorptivity for 7.13 mm path length: From the Lambert-Beers law of absorption 

(Equation A.2), the absorption of light in a sample solution is dependent on the concentration 

c of the dissolved molecule, the specific molar extinction coefficient ε at a defined wavelength 

λ and the path length d. 

Equation A.2: Lambert-Beer’s Law 

Aλ = -log10 = αλ • c • d 

Hence, the molar extinction coefficient is: 

Equation A.3: Molar extinction coefficient equation 

 αλ= Aλ /c.d 

From the equation for molar extinction coefficient (Equation A.3), the path length is 

inversely correlated with αλ or ε, which is as the path length decreases, the ε increases. 

http://www.gbo.com/bioscience
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Hence, if the A and C are constants, the molar extinction coefficient at 7.13 mm could be 

determined as below: 

If the ε was 26900 L. mol-1= 1 cm, hence at 7.13 mm, the ε was; 

The ε at 7.13 mm= (7.13 mm x 26900 L.mol-1)/10 mm 

= 19179 L.mol-1 
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