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Abstract

The proliferation of stochastic renewable energy sources (RES) such as photovoltaic
and wind power in the power system has made the balancing of generation and demand
challenging for the grid operators. This is further compounded with the liberalization
of electricity market and the introduction of real-time electricity pricing (RTP) to
reflect the dynamics in generation and demand. Energy storage sources (ESS) are
widely seen as one of the keys enabling technology to mitigate this problem. Since ESS
is a costly and energy-limited resource, it is economical to provide multiple services
using a single ESS. This thesis aims to investigate the operation of a single ESS in a
grid-connected microgrid with RES under RTP to provide multiple services.

First, artificial neural network is proposed for day-ahead forecasting of the RES,
demand and RTP. After the day-ahead forecast is obtained, the day-ahead schedule of
energy storage is formulated into a mixed-integer linear programming and implemented
in AMPL and solved using CPLEX. This method considers the impact of forecasting
errors in the day-ahead scheduling. Empirical evidence shows that the proposed near-
optimal day-ahead scheduling of ESS can achieve a lower operating cost and peak
demand.

Second, a fuzzy logic-based energy management system (FEMS) for a grid-connected
microgrid with RES and ESS is proposed. The objectives of the FEMS are energy
arbitrage and peak shaving for the microgrid. These objectives are achieved by
controlling the charge and discharge rate of the ESS based on the state-of-charge (SoC)
of ESS, the power difference between RES and demand, and RTP. Instead of using a
forecasting-based approach, the proposed FEMS is designed with the historical data
of the microgrid. It determines the charge and discharge rate of the ESS in a rolling
horizon. A comparison with other controllers with the same objectives shows that the
proposed controller can operate at a lower cost and reduce the peak demand of the
microgrid.

Finally, the effectiveness of the FEMS greatly depends on the membership functions.
The fuzzy membership functions of the FEMS are optimized offline using a Pareto



iv

based multi-objective evolutionary algorithm, nondominated sorting genetic algorithm-
II (NSGA-II). The best compromise solution is selected as the final solution and
implemented in the fuzzy logic controller. A comparison was made against other
control strategies with similar objectives are carried out at a simulation level. Empirical
evidence shows that the proposed methodology can find more solutions on the Pareto
front in a single run. The proposed FEMS is experimentally validated on a real
microgrid in the energy storage test bed at Newcastle University, UK. Furthermore,
reserve service is added on top of energy arbitrage and peak shaving to the energy
management system (EMS). As such multi-service of a single ESS which benefit the
grid operator and consumer is achieved.
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Chapter 1

Introduction

1.1 Motivation

The motivation of this research is to investigate the feasibility of providing multiple
services using a single energy storage system (ESS) through computational intelligence
techniques.

The stability of the power system is maintained through the real-time balancing of
the generation and demand. With the increasing mix of stochastic renewable energy
sources (RES) such as photovoltaic and wind power in the power system, it posses a
serious challenge to the power system operator such as voltage and frequency deviation,
low-inertia and power quality issues due to the stochastic nature of RES [1, 2].

ESS is seen as one of the key enabling technology for integration of RES into
existing grid as it can provide instantaneous power [3, 4]. ESS also provides many
services to the power system operator such as: (i) ensuring reliable operation for critical
infrastructure during outages [5, 6], (ii) balancing supply and demand [6], (iii) reducing
transmission congestion [7], (iv) providing ancillary services [8], (v) local frequency
and voltage regulation [9, 10], (vi) shifting peak demand [11–13], (vii) operation of
ESS based on different electricity pricing strategies [14–17].

ESS is a costly and energy-limited resource. It is economical to provide multiple ser-
vices using a single ESS [18]. The energy storage management system must be designed
to consider multiple services. This can formulated as a finite-resource optimization
problem. This problem can be solved using two approaches.
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1. Mathematical optimization

2. Computational intelligence techniques

In the first approach, it can be further broken down into deterministic and nonde-
terministic mathematical optimization. The former requires all the decision variables
and constraints to be known at the time of solving. In this finite-resource optimization
problem under stochastic environment, additional forecasting techniques are required.
The latter considers a set of possible scenarios during the optimization. While rea-
sonably good results can be obtained, it is computational expensive to store all the
possible scenarios as it does not scale well to larger models [17]. Furthermore, having
multiple services means formulating a multi-objective optimization. This requires
additional steps such as formulating the other objective functions as constraints or
using a weighted sum approach.

In the second approach, fuzzy logic controller (FLC) are well-suited to operate
under stochastic environment and multiple services can be included in the design
of the FLC. Furthermore, multi-objective evolutionary algorithm (MOEA) such as
nondominated sorting genetic algorithm II (NSGA-II) can be used to tune the FLC
parameters.

1.2 Research Aim and Objectives

The aim of this thesis is to develop an energy management system (EMS) for storage
management using computational intelligence techniques. The EMS provides multiple
stream of benefits to the storage owner and grid operator. The services of the EMS
considered in this thesis are energy arbitrage, peak shaving and reserve services. When
providing these services, the energy storage management systems does not rely on any
demand side management techniques and solely rely on the operation of a single ESS.

This research proposes the use of computational intelligence techniques for energy
storage management system. This research aims to propose and validate the feasibility
of

• an EMS using computational intelligence

• a FLC for decision making in EMS

• the proposed EMS on a laboratory scale test bed
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The objectives are

• Forecasting of uncertain variables of the microgrid using computational intelli-
gence techniques

• Optimum operation of ESS through day-ahead scheduling

• Design a fuzzy logic-based energy management system (FEMS) to handle the
uncertainties and provide multi-service using a single ESS in real-time

• Enhanced the performance of the proposed EMS using computational intelligence
techniques

1.3 Main Research Contributions

The main contribution of this research is the conceptualization, development and
application of computational intelligence techniques for multi-objective optimization of
energy storage system in a grid-connected microgrid. The significant contributions of
this thesis are as follows.

• The development of a mathematical model for grid-connected microgrid with
renewable energies and energy storage system in MATLAB/Simulink environment.

• The uncertainty of RES, demand and real-time pricing (RTP) of electricity makes
the optimization of energy storage nondeterministic. This nondeterministic
problem is transform into a deterministic problem using day-ahead forecasting
of the uncertain variables. Artificial neural network (ANN) techniques are used
for day-ahead forecasting of the uncertain variables. A near-optimal day-ahead
scheduling of ESS is obtained using mixed-integer linear programming (MILP)
to minimize the operating cost and reduce the peak demand of the microgrid.

• A fuzzy logic-based energy management system (FEMS) was designed with
historical data of the microgrid hence omitting the need for forecasting. The FLC
parameters are designed to reduce the operating cost and peak demand of the
microgrid. Several performance evaluation indices are proposed in this thesis to
measure the effectiveness of the FLC. Since the effectiveness of the FLC greatly
depends on the fuzzy membership function. A uniformly distributed triangle
is usually chosen for simplicity purpose. However, it may not yield satisfactory
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performance when the standard deviation of the variable is high. In this thesis, a
median-σ method is proposed to design the membership function for the real-time
electricity market price as it is volatile and non-stationary due to the dynamic
market environment.

• The proposed FEMS are enhanced using MOEA, NSGA-II. The NSGA-II is used
to optimize the membership functions of the FLC. The objectives are minimizing
the operating cost and peak demand of the microgrid. Expert knowledge is
integrated into the design process of optimizing FEMS. Pareto optimal solutions
are found using NSGA-II, and the best compromise solution is selected without
the imprecise nature of the decision maker’s judgment. The proposed FEMS is
experimentally validated in the energy storage test bed (ESTB) in Newcastle
University, UK.

1.4 Outline of Thesis

The rest of this thesis is organized as follows.

• Chapter 2 provides a literature review of mathematical optimization and compu-
tational intelligence techniques and the background information of energy storage
control and management.

• Chapter 3 proposes a mathematical model of the grid-connected microgrid and
ESS. It also proposes the use of ANN for day-ahead forecasting, and mathematical
formulation of MILP for day-ahead energy storage scheduling. Furthermore, a
FEMS designed with expert knowledge is also proposed. On top of that, this
FEMS is enhanced using NSGA-II.

• Chapter 4 provides the simulation results and discussion for hyperparameters
tuning of the ANN for day-ahead energy forecast and MILP optimization of the
ESS for day-ahead scheduling.

• Chapter 5 provides the simulation results and discussion for the proposed FEMS
and enhanced FEMS. The enhanced FEMS is experimentally validated on the
ESTB in Newcastle University, UK.

• Chapter 6 concludes this thesis and future research directions for the field of this
thesis are discussed.



Chapter 2

Literature Review and Background
Information

2.1 Overview

This chapter presents the current state of knowledge in the domain of energy storage
control and management, energy forecasting, mathematical optimization and computa-
tional intelligence techniques. It also provides critical analysis, shortcoming and gaps
in the literature.

2.2 Control of Energy Storage Systems

The control of energy storage system (ESS) are broadly categorized into three control
levels. Hierarchical control strategy consists of three levels of control. They are
primary, secondary and tertiary. Primary control automatically maintains the voltage
and frequency at a preset level. Secondary control corrects the voltage and frequency
deviations caused by change in operation state. Tertiary control manages the power
flow between the main and microgrid. These levels of control are explained in the
subsections.

2.2.1 Primary Control

Primary controls are designed to operate and react to local event independently and
instantaneously in a predefined way without external sources or communication between
different controllers. It uses locally measured parameters to maintain strict voltage and
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frequency level as determine by grid operators. For instance, the Australian Energy
Market Operator (AEMO) specifies a maximum long-term frequency between 49.5 Hz
to 50.5 Hz [19] and voltage magnitude of -6% to +10% [20]. Power sharing between
multiple generation units [21] and frequency control [22] are also part of the primary
control due to their fast response time.

To maintain a balance between supply and demand at all times, the active and
reactive power must always be equal to the demand. A droop controller can passively
adjust and follow these changes.

f = f0 + kp(P0 − P ) (2.1)

V = V0 + kq(Q0 −Q) (2.2)

where subscripted variables are the reference value, non-subscripted variables are
the current value and kp, kq are the droop coefficient of the respective droop controller.

(a) Frequency Droop (b) Voltage Droop

Fig. 2.1 Characteristics of frequency and voltage droop

Fig. 2.1a show the frequency can increase from the reference value to increase the
active power and Fig. 2.1b shows the voltage can decrease from the reference value to
increase the reactive and vice-versa for both droop controller.

Droop control has several limitations when used in power sharing between multiple
ESS. The power shared is proportional to their power capacities rather than their
current state-of-charge (SoC). The ESS with a lower initial SoC will be depleted first.

A modified droop controller weights the power shared against their SoC. As such,
the ESS with a lower SoC will discharge at a lower rate and approach a balance state
as they empties. It also incorporates a frequency control between ESS and restoring
them to reference level while maintaining accurate power sharing [23]. This control
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strategy requires a neighbor to neighbor communication and improves both frequency
and voltage regulation when ESS begins with different energy levels.

For multiple storage with different characteristic, a dead-band droop controller is
proposed in [24]. It uses the SoC to set the power references of the storage system.

The limitations of a primary control are the limited reserves from the storage
systems and the deviation must be fairly equally distributed among the available
resources to prevent overloading of a single ESS.

2.2.2 Secondary Control

The secondary control can coordinate multiple primary controllers within the microgrid
for economical optimal operation. The objectives of the secondary control are to correct
the voltage and frequency deviation from its nominal values. It changes the set-point
of participating generating units or start non-participating generation units in primary
control. The secondary control is usually performed by automatic generation control
(AGC).

• If the frequency is lower than the nominal values, the generation unit set-point
have to be increase

• If the frequency is higher than the nominal value, the generation unit set-point
have to be decrease

Load shedding can be performed instead of changing the set-point of the generating
unit. Load shedding is an action which the power system operator (PSO) deliberately
takes to reduce the demand in an event when there is not enough generating units. It
is done to prevent a cascading collapse of the power system [25].

2.2.3 Tertiary Control

The highest level of control in power system operation. It operates at a slower response
time compared to secondary control. Tertiary control provides signal to secondary
control and typically operates in the orders of minutes onwards. It can consist of
multiple secondary controllers.

It can also be referred as Energy Management System (EMS). EMS is the process
of monitoring, controlling and conserving energy in a building, organization or a power
system [26]. It also determines and coordinates long term objective of the entire power
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system such as expansion and maintenance of the power system. The response time in
this level is slower than primary control due to several reasons such as (i) sampling and
communication of measured parameters between Primary and Secondary controller
and (ii) time taken for complex calculation. Remotely measured parameters are used
for optimizing tasks such as generation scheduling [27] and demand side management
[28].

Tertiary control enhances the system control accuracy by coordinating between
primary and secondary controllers. The voltage and frequency deviation, and power
sharing errors from primary level droop control are corrected in the secondary control
through adjustment of control set-points or load shedding.

Multiple ESS with different characteristic can be efficiently controlled [29]. The cost-
free power of renewable energy sources (RES) is capitalized by coordinating multilevel
control strategy instead of the traditional primary control. The primary control is used
to follow the schedule of the ESS while voltage deviations and power tracking errors
are compensated in secondary control. Furthermore, tertiary control limits the SoC
variation of ESS to extend its life cycle.

An example of tertiary control is proposed in [30]. A multi-agent system (MAS)
based power system comprises of different types of intelligent agent with different tasks
and objectives. A tertiary control strategy using MAS was proposed in [30]. It focuses
on generation scheduling and demand side management. A two-stage scheduling was
done in day-ahead and real-time. In addition to two-stage scheduling, a demand side
management performs load-shifting before day-ahead scheduling and load curtailment
in real-time. This multilevel control strategy maximizes the usage of distributed
generators and minimizes the operation cost.

The rapid advancement in technology and adoption of RES in the existing power
system urgently requires control strategy which is capable of multilevel coordination.
Apart from providing ancillary services, control strategies should aim to increase the
benefits for both grid operator and end-user. Such as reducing operating cost of
end-user through arbitrage operation or peak demand shaving to relief transmission
congestion for the grid operator.
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2.2.4 Charge and Discharge Methods for Energy Storage Sys-
tems

The different levels of control determine when to charge and discharge the storage
system. The command of charging or discharging is either in power, voltage or current
set points. The objective of charging and discharging an energy storage is to store
or release energy when required. Apart from charging and discharging, the control
methods also impact the battery performance, charging time, and overall life-span of
the storage system.

There are several methods of doing so and they are discussed in this subsection. To
avoid excessive repetition of "charging and discharging", it is only referred as "charging"
in this subsection.

2.2.4.1 Constant Current or Voltage Charging

Constant current or voltage charging is the simplest form of storing energy into the
storage device. It works by supplying a constant current or voltage to the storage
without considering other parameters of the storage such as temperature.

During constant current charging, it avoids high over-current of the initial charge
[31]. As voltage is not monitored in this method, it can cause overcharging and increase
in temperature which results in the degradation of battery life [32].

During constant voltage charging, its initial current is high. As the storage voltage
reaches the voltage limit, the charge current decreases. This results in long charging
time and increases the ESS temperature which can result in the degradation of the
storage lifespan [32, 33].

2.2.4.2 Intelligent Controller for Energy Storage

An intelligent controller for energy storage generally consists of some processor that is
capable of receive inputs, process and generate output. The inputs can be the storage
current characteristics and conditions and the output can be the voltage, current or
power set-point. For instance, the intelligent controller would monitor the current
capacity and temperature of the storage system [34].

Several intelligent controllers are proposed in the literature [35, 36, 10]. A rule-
based control strategy for dispatching ESS integrated with RES is proposed in [35]. It
considers the operating constraints of ESS, such as SoC limits, charge and discharge
rate, and total life-cycle.
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A power dispatch scheduling algorithm for the operation of ESS in a wind farm is
proposed in [36]. It considers the uncertainties in wind energy generation and energy
price to schedule the ESS dispatch.

Static and dynamic rule-based voltage control strategies are proposed and assessed
in [10]. Economic benefits are maximized when using dynamic control. Further-
more, dynamic rule-based also reduces the occurrence of voltage violation and energy
curtailment.

2.2.5 Summary of Control of Energy Storage

This section presents an overview of the primary, secondary and tertiary control of
ESS in the power system. Primary control is a passive approach of operation without
external sources or communication between different primary controllers to maintain
strict voltage and frequency levels. Secondary control corrects any deviation of voltage
and frequency from the primary control. Tertiary control coordinates the primary and
secondary control for long term objectives of the power system.

The charge and discharge methods of the storage system are also discussed in this
section. Degradation to ESS occurs during constant high over-current or over-voltage
charging. Intelligent controllers can provide additional benefits to the end-user and
grid operator at a tertiary control level.

2.3 Overview of Electricity Market

The electricity market can be broadly categorized into three parts:

1. Independent system operator

2. Utility companies

3. Consumers

The role of an independent system operator (ISO) focuses on monitoring and
coordinating the generation units of the utility companies and the consumers. The
ISO is also responsible for the reliability of the supply, operation of the power system
and ensure system security. To ensure long-term stability of the power system, the
ISO also carry out maintenance and expansion planning for the current infrastructure
through power system studies.
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The utility companies generally consist of generating companies (GENCOs), distri-
bution companies (DISCOs) and transmission companies (TRANSCOs). They may be
operated by a single company or multiple companies.

The GENCOs are responsible for operating and maintaining the power generation
plants. They can either sell power with other GENCOs or to the consumers through
DISCOs. They can also provide services such as voltage and frequency regulations or
spinning reserve.

The TRANSCOs transmits electricity in bulk from the GENCOs to DISCOs for
delivery to the consumers. They also own and maintain the transmission assets such as
overhead/underground cables, and transformers. They interconnect multiple generation
companies to the distribution network and finally consumers. They are also responsible
for expanding, maintaining and operating of the transmission infrastructure.

DISCOs distribute the electricity to the consumers in a certain geographical re-
gion. They are considered the "last-mile transport" for electricity where they connect
the consumers to the transmission lines. They are responsible for billing metering
infrastructure and responding to network outages and power quality issues.

The consumers are the end-user of the electricity. The energy consumption ranges
from large scale users such as heavy industrial factories to small scale residential
housing. These utility companies can be fully or partially owned and operated by the
ISO.

2.3.1 Deregulation of Electricity Market

Deregulation is the process of reducing or eliminating the influence of government
regulations in industries. In the past, the energy sector was monopolized and operated
by government bodies with a top-down hierarchy. In recent years, the deregulation of
electricity market allows more competition and offer consumers the options to choose
from various electricity retailer to meet their energy needs [37].

Electricity is unlike any other commodity which can be produce and store in
warehouse or shelfs like rice grains or electronic devices. It is not cost effective to solely
produce and store electricity in bulk. As such electricity are produced on demand even
in the deregulated energy market. They are being traded like any other commodity
under spot or derivative contracts. As such the decision making of consumers heavily
rely on the energy forecast. The cost of over or under contracting in the balancing
market can incur huge financial disadvantage to the utility companies.
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2.3.2 Pricing Strategies

Real-time operation of ESS in electricity market has gained popularity in the research
community in recent years due to the different electricity pricing strategies offered by
ISO. Instead of a flat tariff, grid operator can offer real-time pricing (RTP) of electricity
or time-of-use (TOU) tariff. RTP strategy employs different pricing based on the
time of the day and the demand. TOU tariff employs different fixed pricing based on
different periods of the day. Both RTP and TOU pricing strategies can incentivize
consumers and power system operator [38].

2.3.2.1 Fixed Tariff

Fixed tariff is a fixed rate for each kilowatt-hour used. This is the simplest form of
payment which usually applies to small-scale consumers.

2.3.2.2 Time-of-Use Tariff

Time-of-use tariff is the cost of electricity is based on the time of the day it was used.
These prices are set for a specific time period and are known to the consumers in
advance. This encourages the shift of demand from peak period, where the price is
higher, to off peak period, where the price is lower.

2.3.2.3 Real-Time Pricing

The reliability of the power system relies on the balancing between supply and demand
of power in real-time. However, the planned generation scheduled can differ in real-time.
Therefore, a real-time pricing market is established to meet this requirement.

The RTP accounts for real-time energy imbalances. These imbalances are met with
the spinning, non-spinning and other reserves which are readily available within a short
period of time for the ISO to dispatch.

2.4 Energy Storage Applications and Architectures

There are many applications for energy storage in the power system. The operating
time-scale for different application ranges from real-time to years ahead and are shown
in Table 2.1. Applications with similar time scales can be stacked and operated with a
single energy storage system [39, 40]. Some of the applications of energy storage are
discussed further in this section.
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Table 2.1 Examples of energy storage applications and time scales

Applications Time scales
Frequency regulation [41, 42] Less than 1s
Voltage support [43, 44] Less than 1s
Synthetic inertia [45] Few seconds to minutes
Energy arbitrage [14] Minutes to few hours
Renewable energy time shift [46] Minutes to few hours
Customer demand charge [47] Minutes to few hours
Reserve services [48] Few hours to days
Transmission congestion reduction [49] Few hours to days
Deferment of transmission and distribution infrastructure [7] Days to years

2.4.1 Energy Arbitrage

The proliferation of weather-dependent renewable energy sources has started to have
significant impact on the energy price in the wholesale electricity market [50]. As such,
the consumers can take advantage of this through energy arbitrage.

Energy arbitrage with ESS is a technique to charge the storage when the electricity
market price is low and discharge when the price is high, to take advantage of the
different in pricing. In the RTP of the electricity market, the prices usually correspond
to the demand of the consumers. High energy prices correspond to the high demand and
vice-versa. Energy arbitrage is to charge the storage when RTP is low and discharge
when RTP is high. In this manner the consumers can take advantage of the difference
in prices and profit from it.

2.4.2 Renewable Energy Time Shift

The peak generation of renewable energy sources may not coincide with the peak
demand of the consumers. This mismatch between the RES and demand must be met
by the grid.

For instance, in a microgrid with photovoltaic (PV) and residential load, the peak
of the consumers usually occurs between 0600 to 0800 hours, when majority of the
consumer begins to prepare for work. Whereas the peak generation of a PV usually
occurs between 1000 to late afternoon at 1700. The energy storage can charge during
the peak generation of the PV and discharge during the peak demand of the consumer.
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2.4.3 Peak Demand Shaving

Peak shaving or peak load reduction is a technique to reduce the instantaneous power
during period where the maximum demand occurs.

Similar to renewable energy time shift, peak demand shaving charges the storage
during non-peak period and discharge during peak period. Fig. 2.2 illustrates the
reduction of peak load. The base load generator power set-point is increased to charge
the storage system during off peak period and discharge during peak period. In this
manner, the operation of the costliest peaking generator is reduced.

Fig. 2.2 Peak demand shaving using energy storage system. 1

Furthermore, this can be useful to keep the transmission lines within its limits
and reduce the use of peak load generators [51]. It helps the PSO to reduce or defer
expensive infrastructure expansion and reduce the operating time of costly peaking
generators.

1Special thanks to Mr. Lee Sheng Ming for creating this figure.
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2.4.4 Reserve Service

Reserve service (RS) is traditionally being provided by the GENCOs to the ISO.
However, with the increase in RES and ESS at the distribution side, the consumers
can also participate in providing RS.

The exact requirements for RS differ in different markets. However, the contracts
usually consist of the following:

1. Quantity of power to be delivered (kW)

2. Availability window

3. Paid based on availability window and utilization

4. Penalties if the committed power is not delivered

Firstly, the provider of the reserve service will commit an amount of power to be
delivered. Secondly, the provider has to be on standby to provide the committed power
during the availability window. Thirdly, the payment from ISO for being available
during the availability window and the utilization of the commitment power. Finally,
the provider will incur penalties when the committed power is not delivered during the
availability window.

RS using ESS is based on forecasting and mathematical optimization to obtained
an optimal schedule for ESS are proposed in [52, 53]. A two-stage stochastic unit
commitment that considers energy arbitrage and RS for day-ahead market for ESS
[54]. Day-ahead coordination between building loads and energy storage for energy
arbitrage, primary and secondary reserve [55]. These methods are based on forecasting
or mathematical optimization and does not operating in real-time.

2.4.5 Energy Storage Architectures

Power is traditionally generated from large centralized location. The voltage is stepped
up and transmitted over a long distance and later stepped down to a lower voltage
at a substation before reaching the consumer. As such the network topology can be
separated into generation, transmission and distribution. ESS can be connected to
different parts of this network. When it is connected to the generation side, it can
be used for ancillary services, voltage/frequency regulation, spinning reserve or black
start. On the transmission level, it can provide congestion management, infrastructure
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deferment through reduction of peak demand and improving power quality. On the
distribution level, it is used for renewable energy power smoothing [56].

2.4.6 Summary of Storage Applications and Architectures

The applications of energy storage are discussed in this section. Instead of having a
single application for a single storage, multiple applications on a single storage is more
economical to the owner. A single energy storage can provide multiple applications
with similar operating time scales.

2.5 Energy Storage Model

ESS is capable of provide a wide spectrum of energy management solution through
meticulously designed control ranging from large-scale generation, transmission appli-
cations to small-scale microgrid, residential applications.

The choice of storage technology depends on the type of application. Storage
technologies can be classified according to their power and energy density. Power
density is the amount of power per unit volume expressed as W/m3. While energy
density is the amount of energy per unit volume expressed as J/m3. Since energy
storage comes in multiple forms including chemical, gravitational potential, electrical
potention or kinetic energy [57]. It can be difficult to quantify these properties into
the storage model.

Storage model can be broadly classified into two types: technology specific model
and generalized model. The former involves the modeling of the energy conversion
from one form to another. The latter generalized the technical characteristics of the
storage as follows:

1. Power/voltage/current rating

2. Energy capacity

3. Efficiency

4. Ramp rate

5. Self-discharge rate
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There are several methods of modeling these technical characteristics of an energy
storage. Each method has a similar aims of characterizing the energy storage in
terms of power, energy rating, and efficiency [58]. Furthermore, parameters such as,
self-discharge rate, storage aging and operating temperature of the storage can also be
included in the model. However, these parameters are difficult to quantify accurately
due to the nonlinear nature of energy storage, accurate mathematical models are overly
complex [59]. As such, there is a trade-off between accuracy and complexity.

2.5.1 Technology Specific Models

An equivalent electric circuit model and pumped hydroelectric energy storage model
are discussed in this subsection. The approach of modeling these two storage are
briefly discussed. The purpose is to demonstrate that while technology specific model
is more accurate, they are vastly different from another storage technology and non-
interchangeable.

2.5.1.1 Equivalent Electric Circuit Model of Supercapacitor

A supercapacitor (SC) is a capacitor that has much higher energy density while having
the same power density. Fig. 2.3 shows the equivalent electric circuit model. It is based
on the galvanostatic approach which are widely used for parameterizing equivalent
electric circuit model [57, 60].

Fig. 2.3 Equivalent electric circuit model with "n" number of R-C branches [61]

The terminal voltage, VT is calculated by appplying Kirchhoff’s voltage law in (2.3).
The first term, VOC is the open circuit voltage of the supercapacitor. The second term,
IRs is the voltage drop across the series resistance. The third term, VRC,j is the total
votage across n number of R-C branch.

VT = VOC + IRs +
n∑

j=1
VRC,j (2.3)
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The state-of-charge of the ideal capacitor is a linear function of the VOC and can
be estimated through coulomb counting in (2.4).

dSoC

dt
= I

CVmax

(2.4)

where C and Vmax is the total capacitance in farads and maximum voltage across
the cell at full charge.

dVRC,j

dt
= − 1

RjCj

VRC,j + I

Cj

(2.5)

where Rj and Cj are the resistance and capacitance of the jth RC branch.
The total energy stored in the SC is estimated from the VOC and Vmax. The capacity

of the SC is expressed as Ampere hours (Ah) and shown in (2.6) [61].

SC capacity = CVmax

3600 (2.6)

Instead of expressing the capacity in Ah, it can be expressed as SoC. SoC is a
percentage between 0 and 100.

Where 0 and 100 are fully discharged and charged respectively. The SoC of the SC
can be estimated from the VOC , Vmax and Vmin as shown in (2.7) [62].

SoC = VOC − Vmin

Vmax − Vmin

(2.7)

The characteristic of a SC is nonlinear and challenging to model [63]. Apart from the
parameters from (2.3) to (2.7), additional parameters such as frequency, temperature,
internal and external resistance also effects the accuracy of the model [64, 65].

2.5.1.2 Pumped Hydroelectric Energy Storage

Pumped hydroelectric energy storage (PHES) stores the energy in the form of gravita-
tional potential energy when the water is pumped from a lower elevation to a higher
elevation.

The total energy stored by the PHES is calculated from (2.8).

Total Energy = Potential Energy + Kinetic Energy + Pressure Energy (2.8)

The first term, mgh, is the potential energy.
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Potential Energy = mgh (2.9)

where m, g and h is the mass of water (kg), g is gravitational constant (9.81 m/s2)
and h is the height of elevation from the lower evaluation (m).

The second term, 1
2mv

2, is the kinetic energy.

Kinetic Energy = 1
2mv

2 (2.10)

where v is the speed of the water (m/s).
The third term, mP

ρ
, is the pressure energy.

Pressure Energy = mP

ρ
(2.11)

The total power of the PHES is calculated from (2.12).
where P and ρ is the pressure (N/m2) and ρ is the density of water (1000 kg/m3).

Power = HρgQη (2.12)

where Q is the flow rate (m3/s) and η is the efficiency of the turbine (0 < η < 1).
This subsection presented two technology specific storage models. Even though the

models are presented in different forms, these models can quantify the energy, power
capacity and efficiency.

The drawback of technology specific model is that these models are specifically
designed for a certain type of energy storage. These models are not interchangeable with
another storage technology. Each storage technology must be modeled individually.
From an operation point of view, a generalized storage model is favorable than a
technology specific model. Furthermore, the generalized storage model parameters can
be easily adjusted according to the storage technology during hardware implementation.

2.5.2 Generalized Storage Model

A generalized storage model is used in this thesis even though technology-specific
model is more precise as it is based on experimental data of the specific storage [2].
This generalized storage model is applicable to most storage technology.

As the aim of the thesis is the operation of ESS rather than modeling of ESS.
Modeling of specific ESS technology is beyond the scope of this thesis. Furthermore,
the proposed methodologies would not be limited to any specific storage technology.
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Even a highly detailed storage model requires some form of curve fitting or error
correction through experimental findings [61, 62]. In this thesis, a generalized storage
model with error correction lookup table strikes a balanced between a highly accurate
model and a generalized model. A lookup table can be obtained experimentally by
comparing between a generalized storage model and actual storage system. In this
manner, the model will have a higher accuracy without the need to design an overly
complex model and it can be easily applied to different storage technology.

2.5.3 Summary of Energy Storage Model

The technical characteristics of a storage model can be modeled using technology
specific model or generalized model. For instance, the current capacity of a storage
system can be quantify using ampere-hours, open circuit voltage or energy level of the
system. There is a trade-off between accuracy and complexity depending on which type
of storage model is used. The focus of this thesis is the operation of energy storage
hence a generalized storage model is considered.

2.6 Energy Forecasting

The energy sector landscape has been reshaped with the proliferation of intermittent
renewable energy sources and changing demand profiles. This phenomenon has made
accurate energy forecasting a challenge. Energy forecasting refers to the forecasting
in the energy sector. It includes but not limited to forecasting of demand, renewable
energy sources and price of electricity.

Forecasting horizon is how far ahead into the future which the variables are forecast.
They are loosely categorized into short-term, medium-term and long-term forecast.
There is no consensus in the literature on what the threshold of these horizons should
be. Stakeholders of the power system uses forecast of different horizons to ensure the
short and long-term reliability and security of the power system are met.

1. Short-term forecast ranges from minutes to day-ahead forecast. They are usually
used for real-time dispatch of generators or day to day market operation.

2. Medium-term forecast ranges from a few days to a few months ahead. They are
usually used for generation scheduling and maintenance planning.
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3. Long-term forecast ranges from months ahead to years ahead. They are usually
used for infrastructure planning and expansion.

There are two main approaches in forecasting, qualitative and quantitative. In
qualitative forecast, it is based on the expert knowledge in the variable of interest.
While quantitative forecast is based on the available historical data in the variable of
interest.

Qualitative forecasting is assuming that there is an underlying relationship or
pattern in the data and are expected to stay the same in the future. There are many
qualitative methods of forecasting such as weighted moving average, autoregressive
integrated moving average (ARIMA), and artificial neural networks (ANN).

An accurate forecasting model should include all the prevailing factors which impact
the variable of interest. For instance, in load forecasting, apart from load, other data
such as temperature, time of the day and day of the week should be included in the
model. However, these data are difficult to formulate into a mathematical model.
ANN are capable of including multiple variable in the model for forecasting [27, 66–69].
Some of these models are discussed in subsection 2.8.3.

2.7 Mathematical Optimization

Mathematical optimization (MO) methods have been used in solving finite resources
operation problems. For instance, facility layout planning, water pumps and timetable
scheduling [70–73]. MO consists of maximizing or minimizing a set of objective functions
within a set of equality and inequality constraints. It requires explicit modeling of
the process or system, which can be difficult to obtained. The objective function
and constraints must be mathematical formulated. If the problem is too complex,
the number of variables and constraints can be quite large. The decision variables
and constraints can either be predicted with certainty or cannot be predicted with
certainty. The former is classified as deterministic problems while the latter is classified
as nondeterministic problems.

MO can also be used to solve for multi-objective optimization by using a weighted
sum approach or by changing the other objective functions into constraints. In the
former approach, the selection of weight is difficult as it determines the importance of
each objective function. In the latter approach, the value of the constraints for the
objective functions must be selected as well. In both cases, only a single solution can
be obtain and trade-offs between objective functions cannot be examined properly.
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2.7.1 Deterministic Problem

Deterministic problem is where all constraints are known in advanced. It can be
formulated and solved using linear programming (LP) or MILP. For instance, in a day-
ahead generation scheduling problem, even though the day-ahead demand is uncertain,
they can be forecasted and considered as a known coefficient. Hence this problem can
be considered as a deterministic instead of nondeterministic since all the constraints
are known.

2.7.1.1 Linear Programming

LP is a mathematical optimization method. It can either be a maximizing or minimizing
linear function subject to linear constraints [74]. The cost function of LP is a linear
objective function, subject to linear equality and inequality constraints. The canonical
form of linear program is shown in (2.13).

Minimize cx (2.13a)

Subject to Ax ≤ b (2.13b)

x ≥ 0 (2.13c)

where c and b are vectors of known coefficients, which represents the objective
functions and constraints. x is a nonzero decision vector which must be determined. A
is a matrix of known coefficients.

2.7.1.2 Mixed Integer Linear Programming

MILP, is similar to LP in terms of linear and inequality constraints. However, some or
all of the decision variables are restricted to be integer as shown in (2.14d).

Minimize cx (2.14a)

Subject to Ax ≤ b (2.14b)

x ≥ 0 (2.14c)

and x ∈ Z (2.14d)

MILP is useful when there are states associated with the model. For instance, an ESS
can only charge or discharge at any one time and this can be represented by adding an
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integer decision variable to the model. In power system or energy storage operation,
LP and MILP are applied extensively for day ahead unit commitment problems for
generator or energy storage dispatching.

2.7.2 Nondeterministic Problem

Nondeterministic problem is where some or all the constraints are uncertain can be
solved with stochastic programming. An operation optimization problem is more
practical when uncertainties are modeled into the problem formulation. For instance,
in generation scheduling, the demand of the consumer is uncertain.

Stochastic programming an optimization problem where some of the decision
variables or constraints is uncertain [75]. These uncertainties are characterized by a
probability distribution. Stochastic programming is broken down into a two-stage
decision making approach based on the data available at the time of the decision. The
two-stage stochastic programming can be formulated as follows:

2.7.2.1 Stage 1: Linear Programming

The first stage of stochastic programming is similar to LP. However, the inequality
constraint b is uncertain. The probability of the possible outcomes can be expressed as
b.

Minimize cx (2.15a)

Subject to Ax ≤ b (2.15b)

x ≥ 0 (2.15c)

2.7.2.2 Stage 2: Recourse Problem

Recourse problem refers to the modification of current solution, x, to adapt after a
specific outcome of b is observed. From (2.16), after the value of b is known, a second
set of decision, y, is made in the presence of uncertainty. This is done to adjust the
first stage decision, x, to consider uncertainty.

Minimize qy (2.16a)

Subject to My = b− Ax (2.16b)

y ≥ 0 (2.16c)
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where y is the stage 2 decision variable. M is a matrix which describes the difference
between the stage 1 and stage 2 decision variables. q is the objective function.

While it is possible to consider many scenarios in stochastic programming, they are
computational inefficient to solve [75]. The total number of possible solutions can be
calculated using (2.17). Consider a problem with 10 discrete random variables with
only 3 discrete outcomes, the total number of possible solutions would be 310 = 59, 049.

Ω = ωb (2.17)

where Ω and ω represent the possible solutions and outcomes respectively.

2.7.3 Summary of Mathematical Optimization

Three mathematical optimization methods are presented in this section to solve
deterministic and nondeterministic problems. Deterministic problems are solved using
LP and MILP and nondeterministic problem are solved using stochastic programming.
While there are many other methods in solving operations of finite resources problem
other than LP, MILP and stochastic programming, they are beyond the scope of this
thesis.

In the operation of energy storage under the uncertainty of renewable generation,
energy price and demand, it is challenging to consider these in stochastic programming.
As the problem would be computational expensive to obtain a solution using stochastic
programming. As such, forecasting techniques are used to obtain the values of the
uncertain variables and the solution is solved using LP or MILP as a deterministic
problem in this thesis.

The MO methods mentioned in this section only deal with a single objective
function. However, many practical problems have more than one objective. Apart
from these methods, computational intelligence techniques such as fuzzy logic and
genetic algorithms are well-suited to deal with multi-objective problems with vague
and imprecise information [76–79]. These computational intelligence techniques are
further discussed in the next section.
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2.8 Computational Intelligence Techniques

Computational intelligence refers to the ability for the computer to learn from data
to do a specific task without explicitly programming it to do so. They are effective
in addressing real-world problems where the process is too complex for mathematical
model or collecting data is easier than understanding the relationship between the
input(s) and output(s).

There are five main paradigms of computational intelligence.

1. Fuzzy logic

2. Evolutionary computation

3. Artificial neural networks

4. Learning theory

5. Probabilistic methods

While the field of computational intelligence is wide and broad, this thesis only
focuses on the following:

1. Fuzzy logic- Mandami type fuzzy inference system

2. Evolutionary computation- Genetic algorithm and nondominated sorting genetic
algorithm-ii

3. Artificial neural networks- Extreme learning machine and deep belief network

Computational intelligence are discussed in the next subsections.

2.8.1 Fuzzy Logic

Fuzzy sets theory was first introduced by Zadeh [76]. It is based on the principle that
people make decisions based on imprecise or vague information which is difficult to
translate into a mathematical model. There are several advantages of using a fuzzy
inference system (FIS). Firstly, it is based on natural language, the control objectives
of a FIS can be implemented as If-Else statements. It can easily translate expert
knowledge into the design of FIS without complicated mathematical model. Secondly,
it is tolerant to imprecise information. All the input(s) and output(s) are given a degree
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of membership to quantify how much it belongs to a specific linguistic term. Finally, it
can be used as a real-time decision making controller under uncertain conditions as is
well-suited to handle vague and imprecise information.

The general diagram of a FIS is shown in Fig. 2.4. A Mamdani− type FIS is used
in this thesis.

Fig. 2.4 General diagram of fuzzy inference system

Firstly, the crisp inputs are fuzzified using the fuzzy membership functions and
are given a degree of truth or truth values. Secondly, these truth values evaluated
simultaneously using the fuzzy rules. Thirdly, depending on which rules are activated,
these values are applied to compute the output function. Finally, the output function
is defuzzified to obtain the crisp output.

2.8.1.1 Crisp Input and Fuzzifier

The numerical values of the inputs are crisp inputs. Fuzzifier is the process where crisp
or real input are mapped to linguistic term using membership function. Membership
function (MF) introduces nonlinearity to the input(s). The system’s designer chooses
the membership function.

2.8.1.2 Fuzzy Rules and Inference

Fuzzy rules are a set of linguistic statements based on a collection of IF-THEN
statement, which are typically based on human expert knowledge. It is easy to
interpret these rules as they are highly similar to natural human language. The
effectiveness of FIS is proportional to the knowledge of the designer.

IF antecedent, THEN consequent.

Inference is the process of using the IF-THEN rules to converts the fuzzy input to
fuzzy output through an aggregator. This work uses a mamdani fuzzy inference.
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2.8.1.3 Defuzzifier and Crisp Output

Defuzzifier converts the fuzzy output into a crisp output similar to how the crisp input
are converted into fuzzy input. There are many defuzzifier proposed in the literature
such as centroid of area, mean of maximum and largest of maximum. The defuzzifier
used in this work is centroid of area.

2.8.2 Evolutionary Algorithm

Evolutionary algorithm is a population-based metaheuristic optimization algorithm. It
is loosely inspired by the biological evolution. Generally, biological evolution consists
of reproduction, mutation, recombination and selection.

The solutions obtained from evolutionary algorithm are sufficiently good to the
optimization problem. It is suitable for problems where there is incomplete information
such as stochastic optimization where the solution depends on a set of random variables.

2.8.2.1 Genetic Algorithm

Genetic algorithm (GA) is loosely inspired by Darwin’s theory of evolution and the
survival of the fittest and first proposed by Holland [80]. It theorized that the weak
and unfit species within the population faces extinction by natural selection as the
stronger ones have a greater chance of survival. The stronger species have a higher
chance of reproducing and passing their genes to the next generation. Eventually, the
species carrying the stronger genes become dominant in the population. During the
passing of genes from one generation to another, random changes may occur and alter
the genes. These changes are kept if it provides an advantage to the new species and
eliminated if otherwise.

GA generates a population of possible solutions and searches through the solution
space by evaluation each of the solution. The quality of the solutions is measured
using a fitness function. The fitter solutions are selected for genetic operations, such
as crossover and mutation, while less fit solutions are discarded.

GA encodes the possible solutions of the problem into a vector called chromosomes.
Genes are contained in chromosomes. Each gene controls the traits of the chromosomes.
The genes can be encoded into the chromosomes as a string of binary or real numbers
[80, 81].

GA uses two genetic operators to generate new chromosomes from the existing
population: crossover and mutation. Before undergoing these operations, the fitter
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chromosomes must be selected first. The preference of selection is given to the fitter
chromosomes from the population. This can be achieved through various selection
techniques such as binary tournament selection, roulette wheel selection or rank
selection [82].

Elitism ensures that the fittest solution of the current generation survive to the
next generation. This can speed up the convergence of GA significantly and avoid the
loss of good solutions once they are found in the previous generations [83, 84].

The crossover operator takes the solution of the parent chromosome and exchange
parts of the solutions to create offspring chromosome. Typically, two chromosomes
are selected for crossover. While there are many methods of crossover, ranging from
simple one-point crossover to complicated simulated binary crossover. The goal of these
crossover methods is the same; to create solutions similar to the parent chromosome.

The mutation operator randomly changes the gene of the chromosomes. This is
typically done by having a probability of mutation, followed by replacing the gene of
the chromosome. This is to introduce diversity back to the population of chromosome
to promote diversity.

2.8.2.2 Multi-Objective Genetic Algorithms

Many complex real-life engineering problems involves multi-objective optimization
(MOO). It involves one or more objective functions to be optimized simultaneously.
The optimization process usually considers trade-off between two or more competing
objectives [77, 85–87]. When there is a trade-off between two or more competing
objectives, no single solution exists that simultaneously optimizes each objective.
However, there exist a set of Pareto optimal solutions. A solution is part of the Pareto
optimal set if none of the other objective functions can be improved without degrading
the other objective functions. Without any additional information, all Pareto optimal
solutions are considered equally good.

The classic approach to solve a multi-objective optimization problem using GA
is assigning a weight to each of the normalized objective function. The objective
functions are sum into a single figure of merit which yields a single solution. If multiple
solutions are required, the problem must be solved multiple times with different weight.
The assignment of weights itself is a difficult task as it affects the importance of each
objectives. This approach is straightforward and require minimum changes to GA.
However, to obtain a set of Pareto optimal solution requires many iterations of GA
with different weight assignments [84].
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Apart from the weighted sum approach, a Pareto front-based approach can be
used. Multi-objective Genetic Algorithm (MOGA) have been widely used to obtain the
Pareto optimal solutions in a single run [88]. There are many MOGAs proposed in the
literature [88]. The typical objectives of these Pareto front-based approach are [89]:

• to preserve non-dominated solutions in the objective space

• to make progress towards the Pareto optimal front in the objective space

• to maintain diversity in the non-dominated on the Pareto optimal front

• to provide the decision maker with a set of Pareto optimal solutions

Vector Evaluated Genetic Algorithms (VEGA) is one of the first notable work in
the attempt to find Pareto optimal solutions using MOGA [78]. Following the work
of [78], several other MOGA are proposed in the literature including Niched Pareto
genetic algorithm (NPGA) [90], Strength Pareto evolutionary algorithm (SPEA) [91]
and non-dominant sorting algorithm II (NSGA-II) [79]. These methods have been
used in induction machine design [92], generation and transmission expansion planning
[93, 94] and electric power dispatch problem [95–97].

In VEGA, population Pt is equally divided into p1, p2, ..., pk, where k is the kth

objective function. The solutions in sub-population pk are assigned a fitness value
based on objective function fk. For instance, if there are two objective functions, f1

and f2, then the population is divided into two sub-population p1 and p2. After that,
sub-population p1 is evaluated with f1 and p2 with f2. The implementation of VEGA
is straightforward, however in essence, it is still evaluating the solutions against a single
objective function. It tends to converge into the extreme points and does not maintain
diversity in the solutions.

In NPGA, it attempts to address the drawback of VEGA by introducing Pareto
domination tournaments during the selection process to promote diversity. The
solutions are assignment with a domination count. After that two solutions are picked
at random from the population. A comparison between the two candidates are done, if
one candidate dominates the other, the former is chosen for reproduction. If neither
candidate dominates the other, a new parameter, niche count is introduced. Niche
count estimates how crowded is the solution space. Without going into the details, the
user is required to select a sharing parameter, σshare, to determine the niche count.

In NSGA-II, it can find a more diverse solution on the Pareto-optimal front when
compared to other multi-objective evolutionary algorithms [79]. NSGA-II does not
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require additional parameters such as niche count or sharing to promote diversity on
the Pareto front. It is favorable as it does not require user intervention to determine
the additional parameters.

2.8.3 Artificial Neural Network

The ANN is loosely inspired by the biological architectural of the brain [98]. It is made
up of several layers of interconnected nodes. Fig. 2.5 shows a single layer feedforward
network. It consists of an input layer, hidden layer and output layer. Each layer is
interconnected through a weight.

Input1

Input2

Input3

Input4

1

2

3

4

1

2

3

4

Output1

Win11Win11Win11Win11

Win44Win44

Wout1

Wout4

Input
layer

Hidden
layer

Ouput
layer

Fig. 2.5 General diagram of the artificial neural network

ANN can be used for various tasks, including forecasting, classification and natural
language processing [99–101]. In order for ANN to "learn" these tasks, the process can
be broadly split into three parts.

1. Data pre-processing

2. Training of ANN

3. Testing of ANN

Firstly, in data preprocessing, the dataset is split into two or more sets. The dataset
is split into training, validating and testing set. In some cases, it is splitted into training
and testing set. After the dataset is split into the different sets, the ANN is presented
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with the input and expected output of the data. For instance, in forecasting, the input
data can be the lagged observation of the data and the output data is the expected
value for the current observation.

Secondly, in training of ANN, the model adjusts its weights using training algorithm.
The main objective of training algorithm is to adjust the weights in a manner which
minimizes the forecasting error. For instance, adjusting the weights to make the output
equals to the expected output. The value of these weights affects the effectiveness
of ANN. There are many methods of tuning of the weights such as back-propagation
[102], Quasi-Newton [103], Levenberg-Marquardt [104]. These iterative based training
algorithms are computationally intensive and does not guarantee a global minimal
solution [105]. Three training algorithms are considered in this thesis.

Finally, to test the performance of ANN, the model is presented with a new set
of data which are not used in training. In this manner the actual performance of the
ANN can be evaluated accurately.

There are different architectural of ANN apart from the single layer feed-forward
network in Fig. 2.5. The architectural of these ANN are different, but they contain
similar hyperparameters such as size and division of dataset, number of hidden nodes
and activation function. Two types of ANN are considered in this thesis. They are
extreme learning machine (ELM) and deep belief network (DBN). These ANNs have
been used in renewable energy forecast [27, 66–68].

2.8.3.1 Extreme Learning Machine

ELM is a fast and none iterative method to tune the weights of a single layer feed forward
has been proposed in [106]. This learning algorithm can overcome the shortcoming
of traditional gradient descent-based algorithm such as slow training speed, local
minimal and tuning of hyperparameters. Furthermore, ELM is also compared with
support vector machine and it has demonstrated that it can achieve a higher prediction
accuracy and shorter training time. Empirical evidence has shown that ELM is capable
of generalization and has universal approximation capability. ELM addressed the
long-standing problem of long training time of iterative training algorithms while
retaining its generalization and universal approximation capabilities.
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2.8.3.2 Deep Belief Network

Deep belief network (DBN) is a variant of deep neural networks with multiple hidden
layer in-between the input and output layer [107]. It is a fast and greedy learning
algorithm that can be fine-tuned in deep neural networks with many hidden parameters
and layers.

DBN consists of multiple layers of interconnected hidden nodes, but not within
each layer. It is made up of multiple Restricted Boltzmann Machine (RBM), where
the hidden layer is used as the visible input layer for the next hidden layer. Each layer
of the RBM are tuned using gradient-descent contrastive divergence algorithm.

2.8.3.3 Hyperparameters of Artificial Neural Network

There are several hyperparameters that repeatedly appears in the literature which
require user intervention before implementing any ANN.

• Size and division of dataset

• Number of hidden layer(s) and hidden nodes

• Activation functions

• Performance evaluators

The size and division of dataset are the ratio between training, validating and
testing set can be 80:10:10 or 80:20 if there are only training and testing set. The
optimal division of dataset remains an open question [108]. However, the literature
offers some guidance on this. Several approaches are proposed in the literature such as
trial-and-error and k-fold cross-validation [27, 109].

There is a trade-off between having more training set and testing set. A larger
training set can contain more information than a smaller dataset, however it may also
contain more noise. While a smaller training set would contain less information and
less noise. It is important that the training set have sufficient information to uncover
the underlying relationship between the input and output.

Regardless of the type of ANN, the size and division of dataset affect the performance
of the model. The size of dataset would determine the time taken to train the model.
The time taken to train a large dataset may not be feasible or provide a marginal
improvement over smaller dataset.
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The number of hidden layer and hidden nodes affects the performance of the ANN.
A single layer feedforward network is use as a universal approximator. The optimal
number of hidden nodes is difficult to determine. Too little hidden nodes and the model
will under-fit, it will not be able to approximate the function. Too many hidden nodes
and the model will memorize the function. There are many methods to determine the
number of hidden nodes such as trial-and-error, genetic algorithm, formulas. However,
this method also doesn’t scale well with data. Also, the lower and upper limit of the
number of hidden nodes remains a question as well.

For trial-and-error approach, some authors suggest incrementing the number of
hidden nodes from one to an upper limit to and plot the performance of the model
with each increment [66]. The main drawback of this method is it does not scale well
with data. As the number of training sample increases, the computation time will also
drastically increase.

Determining the number of hidden nodes using formula has been proposed in [110].
However, it does not guarantee an optimal number of hidden nodes and only serves as
a guide. The number of hidden nodes can be calculated from (2.18).

Lh = 1
2(Li + Lo) +

√
Lp (2.18)

where Lh, Li and Lo are the hidden, input and output nodes. Lp is the total number
of training samples.

Activation function introduced a degree of nonlinearity to the model. When an
activation function is nonlinear, then a single layer feedforward network has a universal
approximator capability [106]. It also has to be continuously differentiable for it to
work with gradient descent-based training algorithms. Several activation functions are
proposed in the literature. Most notably, logistic and hyperbolic tangent functions
[111].

Performance evaluators are used to measure the predictive accuracy of the ANN
models. Typical evaluators are root mean squared error or mean absolute percentage
error. They are used to tune the hyperparameters of the model or as a comparison metric
with other ANN models. The hyperparameters which requires user intervention depends
on which ANN is being implemented. A summary of the different hyperparameters
required by each ANN is shown in Table 2.2. For instance, ELM is a single layer
feedforward neural network. However, for DBN, the number of hidden layers has to be
determine experimentally.
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Table 2.2 Hyperparameters of different ANN

Hyperparameters ELM DBN
Size and division of dataset X X
No. of hidden layers X
No. of hidden nodes X X
Performance evaluation X X

2.8.4 Summary of Computational Intelligence

This section provides an overview of the computational intelligence paradigm. Firstly,
the procedure to design and implement a FIS are discussed. Fuzzy logic is well-suited
for problem with imprecise or vague information. The effectiveness of the fuzzy logic
controller is proportional to the knowledge of the system’s designer.

Secondly, single and multi-objective genetic algorithms are discussed. While MOO
can be solved using GA, it requires many iterations to obtain the Pareto optimal front
solutions. As such, MOGA are proposed to obtain the Pareto optimal front in a single
run. Notably, NSGA-II has a lower computational complexity, elitism is ensured and
does not require additional parameters to ensure diversity in the population.

Finally, the architectural and three variants of ANN are discussed. The procedure
to implement ANN is also discussed. ELM is able to generalize and have universal
approximation capability without having additional hyperparameters when compared
to iterative training algorithms. DBN consists of multiple RBNs which is trained with
a fast and greedy algorithm. The hyperparameters which requires user intervention
are identified in this section.

2.9 Research Gap in Energy Storage Management

Real-time operation of ESS in electricity market has gained popularity in the research
community in recent years due to the different electricity pricing strategies offered
by the independent system operators. Instead of a flat tariff, grid operator can offer
RTP or TOU tariff. RTP strategy employs different pricing based on the time of the
day and the demand. TOU tariff employs different fixed pricing based on different
periods of the day. Both RTP and TOU pricing strategies can incentivize consumers
and power system operator [112].
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The penetration of intermittent nature RES in power system are expected to
increase over the next few decades [113]. Furthermore, large scale application of energy
storage system remains an expensive option despite efforts and subsidies for storage
from the government. As such, energy management system needs to be designed to
reduce the average peak load and operating cost of the microgrid to remain attractive.

Several control strategies have been proposed for the energy management of ESS
to minimize the fluctuation of the power profile introduced by RES and the operating
cost. GA tuned fuzzy logic controller to reduce fluctuation introduced by wind power
generation is proposed in [114]. This method only reduces the fluctuation introduced by
wind power generation and does not reduce the operating cost. The ESS is used for wind
power smoothing with a fuzzy logic controller with predefined membership function
without considering operating cost is proposed in [115]. Similarly, the grid power profile
fluctuation is reduced by controlling the ESS is proposed in [116]. Arbitrage operation
and reducing peak load using expert knowledge FLC is proposed in [117]. A day-
ahead/week-ahead scheduling of ESS to maximize revenue with TOU tariff is proposed
in [14]. A bidding, scheduling and deployment of ESS solely for revenue maximization
using stochastic optimization without considering any renewable energy sources and
load is proposed in [118]. A daily cost minimization using convex optimization by
considering a time-of-use tariff and day-ahead forecast of photovoltaic is proposed in
[119].

2.9.1 Single Service of Energy Storage

Single service of energy storage has been proposed in the literature. The operation
of energy storage is a finite resource optimization problem. As the ESS can operate
on different time-scale depending on the type of service provided, e.g. minimizing the
fluctuation of RES [114, 115] or operating cost [14, 119, 118] with time-of-use tariff.

Fuzzy Logic Controller (FLC) in microgrid operation have been proposed in [115,
116, 120–124]. ESS operation using FLC for voltage/frequency control [120–124]. The
power difference between the demand and available renewable energy and, current
capacity of the ESS is considered [116, 124]. ESS is also used for wind power smoothing
without arbitrage operation [115].

Similar optimization approaches and objectives are taken into consideration, e.g.,
maximizing revenue / minimizing cost, power exchange between main grid and microgrid
[14, 15]. However, these studies focus on day-ahead and week ahead scheduling based
on forecasting of renewable energies, demand and electricity pricing to reduce the
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end-user electricity bill or to smoothen the variation introduced by renewable energy
sources [16, 115]. The electricity pricing considered is TOU rather than RTP which
is highly stochastic [119]. The FLC approach only considers the SOC and difference
between demand and RES and did not consider arbitrage operation as one of its
objective [116, 124, 115].

In a dynamic environment where demand, availability of RES, and RTP are
constantly changing, it is important that the control strategy is designed for arbitrage
opportunities in an electricity market apart from providing ancillary services since
ESS is costly and energy-limited resources. As such, many recent studies have been
done in the operation of energy storage system based on forecasting of RES, demand,
and pricing. Several methods such as MILP [14, 15, 125], quadratic programming [16],
adaptive dynamic programming [17], and convex optimization [119] are proposed.

2.9.2 Multi-Service of Energy Storage

Apart from a single service, multiple services can be provided by a single storage system.
In this case, it can be formulated as a multi-objective optimization or operation problem.

The multi-objective optimization proposed in [126–128] focuses on an aggregated
sum of objective functions or reducing the distance of the cost functions to a predefined
utopia point. As such only a single solution is found in a single iteration. Furthermore,
the design of the EMS is purely based on the MOEA without any expert knowledge
in the designing process which have a trade-off between accuracy and interpretability
of a fuzzy system [129]. The net cost of electricity and any applicable peak demand
cost vectors are reduced by minimizing the Euclidean distance to a predefined utopia
point in the solution space [126]. A fuzzy energy management system to reduce the
fluctuation of fuel cell current and hydrogen consumption of fuel cell and SC using a
weighted sum of objectives is proposed in [127]. A dynamic programming approach to
reduce economic cost and CO2 emission is proposed in [128]. NSGA-II has been used
for designing FLC parameters in MOO problems [130–133].



Chapter 3

Proposed Methodologies

3.1 Overview

This chapter presents the mathematical models of a grid-connected microgrid with
renewable energy sources (RES) and energy storage system (ESS). After that, two
methods are proposed in this chapter for the operation of ESS under the uncertainties
of the load, real-time pricing (RTP) and RES.

First, section 3.2 presents the mathematical model of a grid-connected microgrid
with RES and ESS.

Second, section 3.3 presents a day-ahead forecast and schedule of energy storage
system using artificial neural networks (ANN) and mixed-integer linear programming
(MILP) respectively. The objectives of MILP are minimizing of operating cost and
reduction of the peak demand of the grid-connected microgrid.

Third, section 3.4.1 proposed a multi-service fuzzy logic-based energy management
system (FEMS) for energy storage management. The proposed FEMS fuzzy rules and
membership functions are designed based on expert knowledge. The services are energy
arbitrage and peak shaving of the grid-connected microgrid.

Fourth, section 3.4.2 proposed an enhanced FEMS. The FEMS fuzzy membership
functions are tuned offline using nondominated sorting genetic algorithm-II (NSGA-II).
The fitness functions for the NSGA-II are energy arbitrage and peak shaving.

Finally, section 3.4.3 proposed an additional service on top of energy arbitrage and
peak shaving. A reserve service (RS) is added to the operation of ESS. The minimum
SoC of the ESS changes dynamically depending on different factors which are discussed
in detail in section 3.4.3.
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3.2 Grid-Connected Microgrid and Energy Storage
Models

This thesis considers the problem of operating an ESS which is connected to a
microgrid with renewable energy generation capability over a finite-time horizon,
t = 0,∆t, 2∆t, ..., T, where ∆t is the time step. The time interval is the electricity
market trading period. All system variables, constraints, and decisions are made at
discrete time intervals of equal and constant length. The remaining of this section
describes the mathematical model of microgrid and ESS.

3.2.1 Grid-Connected Microgrid Model

An overview of a grid-connected microgrid test system is shown in Fig. 3.1. The
system is similar to those considered in [124, 134, 117]. It consists of photovoltaic
(PV) and wind power, load and ESS. The RES and ESS are connected to a DC bus
via a unidirectional and bidirectional DC/DC converter. The DC bus is connected to
the AC bus via a bidirectional DC/AC converter. The AC bus is connected to the
main grid and the AC load. The DC/DC bidirectional conversion losses, for the energy
storage system, is considered in this paper.

RES

Storage AC Load

DC/
DC

DC/
DC

DC/
AC

To GridAC BusDC Bus

Fig. 3.1 Schematic of grid-connected microgrid

The power generated from wind turbine and PV are Pwind and Ppv respectively.
The total renewable power, Pres generated in the microgrid can be calculated from
(3.1).

Pres(t) = Pwind(t) + Ppv(t) (3.1)

Due to the stochastic nature of wind and PV, the power generated may be more or
less than actual load, Pload. The power difference between actual load and renewable
energy is expressed as Pbalance. A positive Pbalance means the actual load is more
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than renewable power generated and a negative Pbalance means the renewable power
generated is more than actual load from (3.2).

Pbalance(t) = Pload(t) − Pres(t) (3.2)

This difference is compensated by charging/discharging the ESS, Pess from (3.3).
Pgrid is the resultant power that has to be met by the main grid.

Pgrid(t) = Pbalance(t) + Pess(t) (3.3)

3.2.2 Energy Storage Model

A generalized storage model is proposed in this thesis. It considers the charge and
discharge efficiencies, output power limits and storage capacity of the ESS.

3.2.2.1 Charge and Discharge Efficiencies

The charge and discharge characteristics of the energy storage is shown from (3.4) to
(3.6).

Pess(t) = Pc(t) − Pd(t) (3.4)

Pc(t) = pc(t)
ηc

(3.5)

Pd(t) = pd(t).ηd (3.6)

where p, η and P are DC power, efficiency and AC power respectively. Subscripts c
and d denotes charging and discharging. The energy losses during conversion between
DC/AC and AC/DC is considered in (3.5) and (3.6). The net output power of ESS is
considered in (3.4) in kW.

3.2.2.2 Output Power Limits

The maximum rated power for the energy storage system is considered in (3.7) to (3.8)
in watt.

0 ≤ Pc(t) ≤ P̄c (3.7)

0 ≤ Pd(t) ≤ P̄d (3.8)
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where P̄c and P̄d are the maximum charge and discharge rate of the ESS

3.2.2.3 Energy Storage State-of-Charge

The state-of-charge (SoC) of the ESS can be expressed as follows using coulomb
counting technique:

SoCmin ≤ SoC(t) ≤ SoCmax (3.9)

SoCmodel(t) = SoCmodel(t− 1) + Pess(t)∆t
Emax

(3.10)

where ∆t is the discrete time interval for decision and SoCmodel(t) is expressed as a
percentage.

3.2.3 Summary of Grid-Connected Microgrid and Energy Stor-
age Models

This section presented a grid-connected microgrid model which considers RES, load and
ESS. A generalized storage model is also presented in this section. These mathematical
models are used for the rest of this thesis.

3.3 Day-Ahead Forecast and Scheduling of Energy
Storage

In this section, a method to determine the day-ahead schedule for the ESS is proposed.
The day-ahead energy forecast is obtained using ANN and the microgrid and storage
model are formulated into two optimization problems.

First, a single objective optimization of minimizing the operating cost of the
microgrid. Second, a multi-objective optimization of minimizing the operating cost
and peak load of the microgrid. The second optimization problem is achieved by
formulating one of the objective functions as an inequality constraint.

3.3.1 Day-Ahead Energy Forecasting

Extreme Learning Machine (ELM) and Deep Belief Network (DBN) are proposed for
the day-ahead energy forecast in this subsection. To determine which ANN is suitable,
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the day-ahead forecasting accuracy of load and computation time are used to determine
the hyperparameters and evaluate the ANN. After the suitable ANN is identified, it is
used to forecast the rest of the variables.

3.3.1.1 Extreme Learning Machine

ELM is a single-layer feedforward network as shown in Fig. 3.2. It consists of an input
layer, X, hidden layer H, and finally output layer T . It has a normally distributed
random input weight matrix, W .

...
...

...

X1

X2

Xn

H1

H2

Hk

T1

T2

Tn

WWWW g(H)βg(H)βg(H)βg(H)β

Input
layer

Hidden
layer

Ouput
layer

Fig. 3.2 Single layer feedforward network for training ELM
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To train the ELM, the lagged observations of the variable are used as the input
vector, X and expected output as the output vector, T . The output layer weights, β
are determined analytically through the Moore-Penrose pseudo inverse.

Algorithm 1: Training ELM
Initialize: Training input and expected output, X and T ;
Number of hidden nodes, k;
Activation function σ(.)

1. Generate a normally distributed weight matrix, W

2. Calculate the hidden layer weight matrix, H

3. Determine the output weight matrix analytically, β

4. Evaluate the forecasting accuracy of ELM

The input vector X represents the training dataset for ELM.
where n is the length of the lagged observation.

X =


X1
...
Xn


n×1

(3.11)

The input layer and hidden layer are connected by a weight matrix, W .
where k is the number of hidden nodes.

W =


W11 ... W1k

... . . . ...
Wj1 ... Wjk


j×k

(3.12)

To calculated the hidden layer matrix H, multiply the input layer and weight matrix
as shown in (3.13).

H = XW (3.13)

H =


X11W11 ... X1jW1k

... . . . ...
Xn1Wj1 ... XnjWjk


n×k

(3.14)
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After obtaining the hidden layer matrix, multiply it by the activation function to
get the hidden layer output matrix, Hout, where σ is the activation function.

Hout = σ(H) (3.15)

Finally, the output of a single layer feedforward network is T . The hidden layer
and output layer are connected by a weight matrix, β.

T̂ = Houtβ (3.16)

The hidden layer output matrix is nonsquare matrix, hence does not have an exact
solution. A Moore-Penrose pseudo inverse can guarantee least square solution.

There exist a β such that,

||Houtβ̂ − T || = min
β

||Houtβ − T || (3.17)

The smallest norm least squares solution can be obtained

β = H†
outT (3.18)

where H†
out is the Moore-Penrose pseudo inverse of Hout, which can be calculated

through orthogonal projection.

H†
out = (HTH)−1HT (3.19)

The actual output T is a 1 × n vector.

T =


T1
...
Tn


n×1

(3.20)

After the output layer weights β are determined, the ELM is evaluated with the
testing set. The input and hidden layer weights from the training are kept, while the
input vector is changed to the testing set. The predicted output, Ŷ of the ELM is
compared with the expected output, Y to evaluate the forecasting accuracy of the
ELM. The hyperparameter for ELM is the number of hidden nodes.
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3.3.1.2 Deep Belief Network

Figure 3.3 shows a two hidden layer DBN. Each hidden layer is treated as a restricted
Boltzmann machine (RBM). The input layer is treated as the visible layer. The weights
between the visible layer and next hidden layer are tuned with contrastive divergence
procedure. After the weights are tuned, another set of hidden nodes are "stacked" on
the first hidden layer. Now the first hidden layer is the visible layer. After all the
layers are trained, the target or desired output are added as the output layer. This
process is repeated until the desired stopping criterion is met.

Output Layer

Hidden Layer 2, H2

Hidden Layer 1, H1

Input Layer, V1

RBM 1

RBM 2

Fig. 3.3 Two hidden layer deep belief network

Algorithm 2: Training DBN
Initialize: Training input and expected output, X and T ;
Number of hidden nodes, k;
Activation function σ(.)

1. Initialize the visible layer to training input, X

2. Positive and negative phase for RBM

3. Adjust the weights between visible and hidden layer

4. Add the targets to the final layer of the DBN and train with backpropagation
algorithm.
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A contrastive divergence-based method is used to train the DBN. It consists of
two phases, a positive phase and a negative phase. During the positive phase, the
probability of P (H = 1|X),

P (H = 1|X) = σ(ak +
k∑
1
XnjWjk) (3.21)

where σ, a, X and W are the activation function, bias vector, input matrix and
hidden layer weight matrix. k, n and j are the number of hidden layer nodes, input
layer nodes and input variables.

During the negative phase, P (X = 1|H),

P (X = 1|H) = σ(bk +
k∑
1
HnjWjk) (3.22)

where b is the bias vector.
The goal of contrastive divergence is to reconstruct the visible layer input onto the

hidden layer output by making several forward and backward passes. Hence the error
between X and H is calculated from (3.23).

Error = X −H (3.23)

∆wjk = η(< XH >data − < X ′H ′ >recon) (3.24)

where η is the learning rate.
Once the RBN is trained, another layer of hidden nodes, H2 are added to the hidden

layer, H1 as shown in Fig. 3.3. Now H1 is used as the input layer and H2 is used as the
hidden layer. The new RBM is trained using the same contrastive divergence procedure.
This process is repeated until the stopping criterion is met. The hyperparameters for
DBN are the number of epochs, number of nodes in each hidden layer and the number
of RBM to be added in the DBN and learning rate.

3.3.1.3 Performance Evaluation for Forecasting

The forecasting accuracy is evaluated using mean absolute percentage error (MAPE)
and root mean square error (RMSE).

MAPE is used to measure forecasting accuracy of the model and expressed as a
percentage as shown in (3.25). The absolute difference between the estimated and
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actual values are divided by the actual value. These values are summed up and divided
by the total number of data points and finally converted into a percentage. A MAPE
is always non-negative and a value of 0% represents a perfect forecast.

Intuitively, it seems like MAPE is straightforward and can be used to compare the
forecasting accuracy of different methods. However, it cannot be used if there are zero
values in the data. For instance, PV have no generation in the night, hence 0 kW
would be the actual value, MAPE is unable to quantify this error in this case as there
is a division by zero.

MAPE = 100%
n

n∑
t=1

|yt − ŷt|
yt

(3.25)

where ŷt, yt and n are the estimated, actual values and total number of data points.
RMSE is used to measure the forecasting accuracy of the model as shown in (3.26).

A RMSE is always non-negative and a value of 0 represents a perfect forecast, where
the actual and estimated value are the same for every data points.

RMSE =
√∑n

t=1(ŷt − yt)2

n
(3.26)

where ŷt, yt and n are the estimated, actual values and total number of data points.

The value of RMSE is dependent on the scale of the data. It can be difficult to
compare the forecast accuracy across different datasets. For instance, there is little
meaning when comparing the forecast accuracy of demand data which is in kW range
and electricity pricing data which is in $/MWh. Furthermore, if the dataset has a
range of values from 0 to 1000, a RMSE of 10 would seem to be small, which signify a
high forecasting accuracy. However, if the dataset has a range from 0 to 10, a RMSE
of 10 would be large, which signify a low forecasting accuracy.

The size of the neural network and training data affects the computational time
and scalability of the model. The computational time taken to train the network is
also considered as a performance evaluation index.
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3.3.2 Mixed Integer Linear Programming for Day-Ahead Schedul-
ing of Energy Storage System

This thesis considers the problem of operating an ESS which is connected to a
microgrid with renewable energy generation capability over a finite-time horizon,
t = 0,∆t, 2∆t, ..., T, where ∆t is the time step. Each time step is fifteen minutes and
there are ninety-six time steps in a day.

Day‐ahead 
forecast 
using ANN

Solve for 
optimal 
schedule 
based on 
forecast 

using MILP

Use optimal 
schedule in 
real‐time

True Optimal 
Schedule

Near optimal 
schedule

Solve for 
optimal 

schedule of 
ESS based on 
actual values 
using MILP

t‐95
t

t+95

Fig. 3.4 Flow of day-ahead scheduling of energy storage system

The proposed near-optimal day-ahead scheduling of ESS is shown in Fig. 3.4.
From T = t− 95, the day-ahead values of Pload, Ppv, Pwind and Cp are forecast using
ANN. At T = t getting the day-ahead values of Pload, Ppv, Pwind and Cp, the optimal
day-ahead scheduling of ESS problem is formulated into a cost minimizing problem
and solved using mixed-integer linear programming. The near-optimal schedule based
on day-ahead forecast is used for the next day. The true optimal can be obtained by
solving the cost minimizing problem with the actual value at T = t+ 95.

The day-ahead schedule is near-optimal as there will always be error in the fore-
casting, which results in a near-optimal schedule. The true optimal schedule can be
obtained after the realization of the uncertain variables at T = t+ 95 and used as a
comparison to the near-optimal schedule.
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3.3.2.1 Minimizing Operating Cost

The grid-connected microgrid is operating under RTP and the total operating cost
can be calculated using (3.27). As the focus of this thesis is the operation of ESS, the
initial capital and maintenance cost are not considered.

f1 =
T∑

t=1
[Pbalance(t) + pc(t)

ηc

− pd(t).ηd]Cp(t),∀t ∈ T (3.27)

where Cp(t) is the current electricity price for time t.
By adding two binary variables, Uc(t) and Ud(t) to (3.7) and (3.8), and an additional

constraint (3.28), ensures that the status of ESS is either charge or discharge.

Ud(t) + Uc(t) ≤ 1,∀t ∈ T (3.28)

The decision variables for MILP are pc(t), pd(t), Uc(t) and Ud(t). MILP solves for
the value of these variables for every time step to minimize the objective function. The
MILP is formulated as follows:

min
T∑

t=1
[Pbalance(t) + pc(t)

ηc

− pd(t).ηd]Cp(t),∀t ∈ T

s.t. 0 ≤ pc(t)
ηc

≤ Pc,maxUc(t),∀t ∈ T

0 ≤ pd(t).ηd ≤ Pd,maxUd(t),∀t ∈ T

Ud(t) + Uc(t) ≤ 1,∀t ∈ T

SoCmin ≤ SoC(t) ≤ SoCmax,∀t ∈ T

SoCmodel(t) = SoCmodel(t− 1) + Pess(t)∆t
Emax

,∀t ∈ T

(3.29)

3.3.2.2 Peak Load Reduction

The peak load of the grid-connected microgrid can be reduced by adding a nonequality
constraint to Pgrid, from (3.3).

Pgrid(t) ≤ Pmax,∀t ∈ T (3.30)

where Pmax is a constant to ensure the maximum value of Pgrid is below this level.
Using the problem formulation in (3.29) and an addition inequality constraint

(3.30), the MILP will solve the value of pc(t), pd(t), Uc(t) and Ud(t) for every time step
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to minimize the objective function. The MILP is formulated as follows:

min
T∑

t=1
[Pbalance(t) + pc(t)

ηc

− pd(t).ηd]Cp(t),∀t ∈ T

s.t. 0 ≤ pc(t)
ηc

≤ Pc,maxUc(t),∀t ∈ T

0 ≤ pd(t).ηd ≤ Pd,maxUd(t),∀t ∈ T

Ud(t) + Uc(t) ≤ 1, ∀t ∈ T

SoCmin ≤ SoC(t) ≤ SoCmax, ∀t ∈ T

SoCmodel(t) = SoCmodel(t− 1) + Pess(t)∆t
Emax

,∀t ∈ T

Pgrid(t) ≤ Pmax,∀t ∈ T

(3.31)

The values of Pload(t), Pres(t) and Cp(t) from t = 0 to t = T is forecasted using
ANN. The solution obtained by MILP represents the optimal schedule for pc(t) and
pd(t) from t = 0 to t = T . The MILP formulation described here is implemented in
AMPL and solved using CPLEX [135].

3.3.3 Summary of Day-Ahead Scheduling of Energy Storage

Two ANNs are presented in this section for forecasting. The hyperparameters required
by each ANN are also identified. The performance evaluation methods are also presented
in this section.

The uncertainty of the microgrid variables can be forecast using ANN, hence
transforming the storage operation problem from a nondeterministic optimization to
a deterministic problem. The multi-objective optimization using MILP achieved by
changing one of the objective functions into a nonequality constraint.

Two deterministic optimization problem are proposed in this section. First, the
operating cost of the grid-connected microgrid is minimized. Second, the peak load
of the grid-connected microgrid is added as one of the nonequality constraint. The
near-optimal schedule is used for the next day for the operation of ESS.
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3.4 Multi-Service of Single ESS

In this section, a FEMS is designed with the historical data of the microgrid for energy
arbitrage and peak demand reduction using a single ESS. These services are choosen
as they operating in a similar time scales as shown in Table 2.1.

First, in subsection 3.4.1, instead of using a forecasting-based approach, the pro-
posed FEMS is designed based on expert knowledge. The FLC rules are designed
for energy arbitrage and to reduce the peak demand in the microgrid. The fuzzy
membership functions should represent the distribution of the historical data. A
uniformly distributed membership functions are usually chosen for simplicity purpose.
However, it may not yield satisfactory performance when the standard deviation of the
fuzzy variable is high. In this subsection, a median-σ method is proposed to design
the membership function for the electricity market price. As it is highly volatile and
non-stationary due to the dynamic market environment. Several performance evalua-
tion indices are proposed in this subsection to measure the effectiveness of the FEMS.
Furthermore, the proposed FEMS is compared with two benchmarking algorithms on
a simulation level.

Second, subsection 3.4.2, proposed an offline tuning of the FEMS fuzzy membership
functions using a Pareto based multi-objective evolutionary algorithm, NSGA-II. The
best compromise solution is selected as the final solution and implemented in the fuzzy
logic controller. A comparison with other control strategies with similar objectives are
carried out on a simulation level. The proposed FEMS is experimentally validated on
a real microgrid in the energy storage test bed at Newcastle University, UK.

Finally, subsection 3.4.3, the ESS provides an additional RS on top of the two
services mentioned in subsection 3.4.1.

3.4.1 Multi-Service of Single ESS: Energy Arbitrage and Peak
Shaving

In this subsection, a median-σ method is proposed to design the membership function
for the electricity market price as it is volatile and non-stationary due to the dynamic
market environment.

The main contributions of this section are listed as follows: 1) A decision making
controller for ESS control designed with historical data of the microgrid hence omitting
the need for forecasting. 2) End-user electricity bill and power exchange between main
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and microgrid are reduced while meeting the demand without any demand side manage-
ment techniques.

A Mamdani type fuzzy logic controller (FLC) is proposed as an energy management
system to control the active power of ESS based on the power difference between
RES and load, ESS SoC and electricity market pricing. An overview of the FEMS is
illustrated in Fig. 3.5.
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Fig. 3.5 Framework of proposed fuzzy logic-based energy management system

The proposed FEMS aims to:

1. Energy arbitrage operation of ESS

2. Reduce peak demand of the microgrid

3. Avoid over/under charging of ESS by maintaining its SoC within the upper/lower
boundaries

The first and second aims are achieved by discharging the ESS during high demand
or cost period and charge during low demand or cost period. The third aim is achieved
by operating the ESS within its upper and lower limits.

The proposed FEMS is designed to reduce the consumers’ electricity bill and reduce
the peak demand microgrid. To numerically evaluate the proposed FEMS, a set of
performance evaluation indices are proposed in the next subsection.



52 Proposed Methodologies

3.4.1.1 Design of Fuzzy Membership Functions

One important procedure in implementing a FLC is to determine the fuzzy membership
functions. In this thesis, triangle and trapezoid membership functions are used. A
uniformly distributed triangle membership functions are used for Pbalance, Pess and SoC.
The three inputs are divided into five linguistic terms, negative big (NB), negative
small (NS), zero (ZE), positive small (PS) and positive big (PB).

For Pbalance, NB means renewable generation is higher than actual load from (3.2).
ZE means renewable generation is equal to actual load and finally, PB means the load
is a lot higher than the renewable generation. For SoC, NB means the SoC is very low,
ZE means it is at half capacity, and PB means it is near full capacity. For Pess, NB
means a high discharging rate, ZE means idle, and PB means a high charging rate.
Historical data of Pres and Pload are used to calculate Pbalance. The range of Pbalance is
used to determine the range of the fuzzy membership function.

For Pess and SoC, the technical constraints from (3.7) to (3.9) of the ESS are
considered when designing the membership functions. For Pess, the range of the
membership function is from the maximum discharge rate to the maximum charge
rate. This ensures that the controller can quantify the output power limit of the ESS.
For SoC, the membership function ranges from the upper to lower operating boundary
of the ESS. This ensures that the controller operates the ESS within this limit.

For Cp, there are five linguistic terms for this input which is: negative (N), zero
(ZE), positive small (PS), positive big (PB), and positive big big (PBB). The standard
deviation of Cp is significantly higher than Pbalance. Instead of having a uniformly
distributed membership function for Cp, another approach is taken and explained in
details below.

From Table 3.1, the real-time electricity price has a much higher standard deviation
compared to Pbalance. As such, a uniformly distributed triangle membership function
does not represent the linguistic term properly.

Table 3.1 Pbalance and Cp parameters

Max Min Median Standard Deviation, σ
Pbalance (kW) 26.73 -16.74 5.05 6.65
Cp ($/MWh) 929.31 1.44 128.10 46.02
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The real-time electricity price for the year of 2014 is shown in Fig. 3.6. It is observed
that Cp experienced significant numbers of peak and abrupt changes throughout the
sampled period. The proposed method can be modified to suit different market data.

Fig. 3.6 Real-time electricity price for 2014, Cp

The median and standard deviation, σ, of Cp are used to design the membership
functions. For Cp, N means low price(−1σ from the median), ZE means median price
and PBB means extremely high price (+3σ from the median). A trapezoid membership
function is used to represent N and PBB while a triangle membership function is used
to represent ZE, PS, and PB. Firstly, the median price of Cp is used to represent the
peak of ZE. Secondly, since the majority of the price is within ±1σ, hence it is used to
represents the peak of N and PS respectively. Thirdly, the peak of PB is represented by
+2σ since the occurrence is significantly lower. Finally, the peak of PBB is represented
by any prices beyond +3σ.

3.4.1.2 Design of Fuzzy Rules

The proposed FLC has the liberty to buy(charge) and sell(discharge) power from the
main grid when Pbalance is zero to reduce the end user operating cost. This set of fuzzy
rules are designed to yield economic rewards by charging when Pbalance is zero and the
price is low and discharge when the price is high. In this manner, Pgrid will slightly
increase/decrease due to the additional charging and discharging of ESS when Pbalance



54 Proposed Methodologies

is zero. On top of this, to reduce the fluctuation of the grids’ power profile, the storage
discharges when renewable energy is absent and charges when there is an excess.

The ESS will operate in two different modes based on the value of Pbalance. The
Pbalance can take one of the three states; positive, negative or zero as mentioned in
Section 3.2.1. When Pbalance is zero, it will operate in arbitrage mode, and when Pbalance

is positive or negative, it will operate to reduce power exchange mode.
When Pbalance is zero, fuzzy rules number 51 to 75 enable the ESS to operate in

arbitrage condition. To discharge when the price is high, an example shown in Table
3.2, rule number 53 corresponds to:

IF Pbalance is ZE and SoC is PB and Cp is PS THEN Pess is NS.
There is no difference between the supply and demand, battery capacity is near its

maximum capacity, and the price is high, the ESS will discharge.
Similarly, to charge when the price is low, an example shown in Table 3.2, rule

number 71 corresponds to:
IF Pbalance is ZE and SoC is NB and Cp is N THEN Pess is PB.
There is no difference between the supply and demand, battery capacity is near its

minimum capacity, and the price is low, the ESS will charge.
When Pbalance is positive or negative, fuzzy rules number 1 to 50 and 76 to 125

reduces the power exchange between the main and microgrid. To reduce the peak
demand of the microgrid, in the example shown in Table 3.2, rule number 1 corresponds
to:

IF Pbalance is PB and SoC is PB and Cp is N THEN Pess is NB.
When the load is more than RES, and the battery capacity is near its maximum

capacity, the ESS will discharge at a high rate to compensate for the shortfall of
renewable.

Similarly, when Pbalance is negative, it means that there is a surplus of RES. In
example shown under Table 3.2, rule number 125 corresponds to:

IF Pbalance is NB and ESS is NB and Cp is PBB THEN Pess is PB.
This means that when there is a surplus of RES, and the battery capacity is near

its minimum capacity, the ESS will charge at a high rate to absorb the surplus RES.
Extending this reasoning to other linguistic terms results to the fuzzy rules in Table

3.2.
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Table 3.2 Proposed fuzzy logic controller rules
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3.4.1.3 Performance Evaluation Indices

To quantify the effectiveness proposed controllers, several performance evaluations
indices are proposed in this subsection.

Three performance evaluation indices to quantify the effectiveness of the proposed
controllers are defined in this subsection. They are standard deviation, σ, operating
cost and load factor.

3.4.1.4 Standard Deviation of Microgrid Power Profile

Standard deviation is used to measure the variation in Pgrid away from its mean. As
shown in (3.3), Pgrid is the resultant power that has to be met by the main grid. The
variation in the power profile is reduced by reducing the standard deviation, σ.

σ =
√∑T

t=1(Pgrid(t) − Pgrid, µ)2

T
(3.32)

where t is the tth sample and T is the total number of samples.

3.4.1.5 Operating Cost of Grid-Connected Microgrid

To quantify the amount economic benefits of the proposed controllers, (3.33) is used to
calculate the operating cost. It consists of Pbalance, Pc, and Pd. Which are the resultant
power of the microgrid, and charging and discharging rate of the ESS. The proposed
controllers consider real-time pricing, Cp, in $/MWh as one of its input to determine
the charge and discharge rate. This index should be reduced.

Cost =
T∑

t=1
[Pbalance + Pc(t) − Pd(t)]Cp(t) (3.33)

As the focus of this thesis is the operation of ESS. The initial capital and maintenance
cost of the ESS are considered in the planning phase of the microgrid hence it is omitted
in the operation phase [136]. Also, the arbitrage operation of ESS will not have a
considerable effect on the electricity market price. As such, the microgrid can freely
purchase and sell electricity from the main grid at time t at the same market price,
Cp(t).
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3.4.1.6 Load Factor of Microgrid Power Profile

Load factor calculates the ratio between average and peak load over a period of time,
τ .

LF = |Pgrid, µ.τ |
|Pgrid,max.τ |

(3.34)

where Pgrid, µ is the average power and Pgrid,max is the maximum power consumption
over the time period of interest, τ . Where τ is the monthly billing period.

The load factor (LF) is always less than one and a higher load factor signify the
load profile over the period of interest is close to constant. Low load factor signifies
an erratic power profile. The LF can be increased in two ways; decrease Pgrid,max

or increase Pgrid, µ. The former is favorable because operating cost increases when
Pgrid, µ increases.

The proposed FEMS is implemented in MATLAB/Simulink and executed on a
workstation with an Intel XEON E3-1271 CPU running at 3.60 GHz.

3.4.1.7 Implementation of Microgrid and ESS Model using Simulink

The proposed microgrid and energy storage model are implemented in MATLAB/
Simulink environment and are discussed in this subsection.

Fig. 3.7 shows the simulink diagram of the proposed grid-connected microgrid. The
historical data of Pload, Ppv, Pwind and Cp are imported from MATLAB workspace into
the simulink. The energy storage efficiency and SoC estimator blocks are shown in Fig.
3.8.

Fig. 3.8a shows the efficiency block for ESS according to (3.4). This block considers
a constant charge and discharge efficiencies for the storage. The constant block ηc and
ηd can be replaced with a lookup table for different efficiencies at different power levels.

Fig. 3.8b shows the SoC estimation block from (3.10). It considers the current
Pess(t) and previous SoC(t− 1) to estimate the current SoC(t).

The simulink models are created to read the microgrid data from the MATLAB
workspace to the simulink. These data are processed by the fuzzy logic block in the
simulink. The output of the fuzzy block is used to estimate the SoC of the storage
system and fed back as an input. Pgrid from the simulink model is used to evaluate
the effectiveness of the proposed FEMS using (3.32) and (3.34).
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Fig. 3.7 Simulink diagram of proposed microgrid
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(a) Energy storage efficiency block

(b) State-of-charge estimator block

Fig. 3.8 Simulink subsystem from Fig.3.7
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3.4.2 Enhanced Fuzzy Logic Based Energy Management Sys-
tem

The fuzzy membership functions and rules are designed by expert knowledge in the
previous subsection. The effectiveness of the proposed FEMS is satisfactory however
it can be improved by optimizing the fuzzy membership functions placement. This
subsection presents a MOEA method to tune the membership functions of the proposed
FEMS. To maintain interpretability, only the fuzzy membership functions are tuned in
this subsection while the fuzzy rules are determined through expert knowledge.

Conventionally, when using computational evolutionary algorithms to solve an
optimization problem, the solutions are usually randomly generated and refined over
many generations. However, in this proposed methodology, the expert knowledge is
added into the initial population of the genetic algorithm.

The main contributions of this subsection are listed as follows. (1) Minimizing
operating cost and average peak load (APL) of microgrid simultaneously by tuning
the proposed fuzzy logic-based energy management system using NSGA-II. (2) Expert
knowledge is integrated into the design process of optimizing FEMS (3) Pareto optimal
solutions are found using NSGA-II, and the best compromise solution is selected without
the imprecise nature of the decision maker’s judgment. (4) Real- time simulation and
experimental validation of the proposed controller.

The first and second aims are achieved by discharging the ESS during high demand
or cost period and charge during low demand or cost period. The third aim is achieved
by operating the ESS within the upper and lower limits. The proposed FLC is designed
to reduce the consumers’ electricity bill and peak demand of the microgrid.

NSGA-II is fast and efficient in finding the Pareto-front compared to other multi-
objective evolutionary algorithms such as Pareto-archived evolution strategy (PAES)
and strength Pareto EA (SPEA) [79]. NSGA-II is implemented and used offline to
optimize the location of the membership functions by minimizing the operating cost
and APL of the grid-connected microgrid while satisfying the constraints in Section
3.2.

Fig. 3.9 shows the computational flow of NSGA-II. Firstly, the initial population
which consists of chromosomes are randomly generated. Secondly, the fitness of each
chromosome is evaluated using fitness function. Thirdly, chromosomes are ranked
according to their domination count and crowding distance. Fourthly, chromosomes
with a lower domination count are selected. Finally, the selected chromosome undergo
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genetic operation to create the next generation of chromosomes. This process is
repeated until the maximum number of generations is reached.

Stop

Yes

Gen=Gen+1

Selection

No

Crowding distance

Start

Initialize population

Generation = 1

Evaluate fitness of 
population

Rank population

Maximum 
generation?

Crossover/Mutation

Combine parent and 
child chromosomes

Fig. 3.9 Computational flow of NSGA-II

3.4.2.1 Chromosomes Design

The type of encoding and the total number of membership functions determines the
length of each chromosome. The membership functions are coded as a string of real
numbers. As precision is lost when the solutions are coded in binary and incrementing
to a neighboring solution require many bits change [81].

Five membership functions are used to represent different linguistic term for each
input variable of the FLC. The membership functions tuned in this work are triangle and
trapezoid. The membership functions are encoded into chromosomes which represent
a potential solution.

Let chromosome be Cg
j,q,

Cg
j,q =

M1︷ ︸︸ ︷
x1, x2, x3, x4, ..., xn︸ ︷︷ ︸

M2

(3.35)

where q is the qth chromosome within generation g for jth variable.
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Fuzzy variable Pbalance, SoC and Pess consists of five triangles membership functions.
The triangle membership function is represented by a vector of three elements. From
(3.36), the left span, center and right span of the triangle are a, b and c respectively.

f(x, an, bn, cn) = max
(
min

(
x− an

bn − an

,
cn − x

cn − bn

)
, 0

)
(3.36)

Five triangle membership functions are used for Pbalance, SoC and Pess as shown in Fig.
3.10. From Table 3.3, the center, b1 and right span, c1 of the first linguistic term, M1

is equal to the left span, a2 and center b2 of the second linguistic term, M2. This is
to ensure that there is sufficient overlap between adjacent linguistic term. Continuity
is lost if the overlap is too small and linguistic term is redundant if overlap is too
big. In this manner, five triangle membership functions can be represented with seven
parameters, g1 to g7.

M1 M2 M3 M4 M5

g1 g2 g3 g4 g5 g6 g7

1

M1 M2 M3 M4 M5

g1 g3 g4 g5 g6 g7 g9

1

g2 g8

Fig. 3.10 Pbalance and ESS membership functions

A randomly generated vector of 7 elements, g1 to g7, can represent all the placement
of 5 membership functions for Pbalance and ESS as shown in Table 3.3.

Table 3.3 Chromosomes encoding of Pbalance and ESS

Cg
j,q g1 g2 g3 g4 g5 g6 g7

M1 a1 b1 c1
M2 a2 b2 c2
M3 a3 b3 c3
M4 a4 b4 c4
M5 a5 b5 c5

Table 3.4 shows an example of encoding the fuzzy variable, Pbalance. The range of
Pbalance from the historical data are 26.76 kW to -18.3 kW. These values are used to
denote the range of the fuzzy membership functions.
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Table 3.4 Encoding of Pbalance

Cg
j,q g1 g2 g3 g4 g5 g6 g7

M1 -18.3 -10.79 -3.28
M2 -10.79 -3.28 4.23
M3 -3.28 4.23 11.74
M4 4.23 11.74 19.25
M5 11.74 19.25 26.76

Fuzzy variable Cp consist of 3 triangle membership functions and 2 trapezoid
membership functions. The trapezoidal membership function is represented by a vector
of 4 elements. From (3.37), the left and right span are a and d and the "shoulders" of
the trapezoid are b and c.

f(x, an, bn, cn, dn) = max
(
min

(
x− an

bn − an

, 1, dn − x

dn − cn

)
, 0

)
(3.37)

Similar to the chromosome design of Pbalance and ESS, from Table 3.5, the "right
shoulder", c1 and right span, d1 of the first linguistic term M1 is equal to the left span,
a2 and center, b2 of the second linguistic term M2. In this manner, two trapezoid and
three triangle membership functions can be represented with nine parameters, g1 to g9.

M1 M2 M3 M4 M5

g1 g2 g3 g4 g5 g6 g7

1

M1 M2 M3 M4 M5

g1 g3 g4 g5 g6 g7 g9

1

g2 g8

Fig. 3.11 Cp membership function

A randomly generated vector of 9 elements, g1 to g9 can represent all the placement
of 5 membership functions for Cp as shown in Table 3.5.
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Table 3.5 Chromosomes encoding of Cp

Ck
j,q g1 g2 g3 g4 g5 g6 g7 g8 g9

M1 a1 b1 c1 d1
M2 a2 b2 c2
M3 a3 b3 c3
M4 a4 b4 c4
M5 a5 b5 c5 d5

3.4.2.2 Initial Population

The chromosomes are randomly generated and subjected to the following constraints:

SoCmin ≤ SoC(t) ≤ SoCmax (3.38)

Pbalance,min ≤ Pbalance(t) ≤ Pbalance,max (3.39)

Cp,min ≤ Cp(t) ≤ Cp,max (3.40)

(3.41)

Constraint (3.38) is the upper and lower allowable operating SoC of the ESS. By
operating the ESS within this boundary can prevent over and under charging [137].
Constraint (3.39) and (3.40) are the maximum and minimum values of Pbalance and Cp

which are obtained from the historical data.
The maximum and minimum boundaries of these constraints can be modified to

suit other storage technology, electricity market price and microgrid configuration
according to the available historical data.

3.4.2.3 Fitness Function

The fitness function evaluates the quality of each chromosome in the current generation.
A poorly designed fitness function will result in a weak solution. The objective of
the proposed FEMS is to reduce the overall operating cost and average peak load
by charging and discharging the energy storage at appropriate times. The overall
operating cost of the microgrid can be calculated by (3.42).

f1 =
T∑

t=1
Pgrid(t).Cp(t) (3.42)
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where Cp is the wholesale electricity price. The microgrid can freely purchase and sell
electricity from the main grid at time t at the same market price, Cp(t).

a) Pgrid(t) > 0 if electricity is purchased from the grid;

b) Pgrid(t) < 0 if electricity is sold back to the grid.

The average peak load of the power profile is calculated using (3.43).

f2 =
∑M

m=1 Pgrid,max(m)
M

(3.43)

where M is the total number of months.
The objective of NSGA-II is to tune the membership functions to minimize operating

cost, and average peak load. Hence (3.42) and (3.43) are used as the fitness function
to evaluate each chromosome.

There are two objective functions in this work, as such it can be formulated as a
multi-objective optimization problem. A multi-objective optimization problem can be
formulated as follows:

min (f1(x), f2(x), ..., fk(x))

s.t. ∀x ∈ X
(3.44)

where k is the objective function and x is the solution. For instance, this work
considers (3.42) and (3.43) as the objective functions.

Let the fitness functions f1, f2 be (3.42) and (3.43). Apart from the fitness function,
domination count and crowding distance are computed to further evaluate each solution.

3.4.2.4 Domination Count and Crowding Distance

In multi-objective optimization, when considering the quality of two solutions, p and q
with multiple objective functions, solution p is considered to dominate solution q iff:

1. fi(p) ≤ fi(q) for all indices i ∈ 1, 2, ..., k and

2. fj(p) < fj(q) for at least one index j ∈ 1, 2, ...k

where p and q are two different solutions and i and j are two fitness functions. When
solution p is compared with q, if the fitness function for all objectives for p is less than
or equal to q and p is less than q for at least one objective, p dominates q. If these
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criteria are not met, p and q are nondominant and they belong to the same Pareto
front.

All solutions not dominated by any other solutions are assigned a domination count
of 0. All solutions that are only dominated by solutions with domination count of 0
are assigned a domination count of 1. This process is repeated until all the solutions
have a domination count. All solutions with the same domination count are considered
equally good as they are on the same Pareto front. In order to further differentiate
the solution with the same domination count, a second entity, crowding distance is
introduced.

Within the same Pareto front, the crowding distance is calculated. A higher
crowding distance signifies a less crowded region, and vice-versa. When comparing
two solutions with the same domination count, the solution with a higher crowding
distance is the better solution. In this manner, the sorting algorithm favors a more
diverse solution and avoid clustering on the Pareto front.

3.4.2.5 Best Compromise Solution

After the domination count and crowding distance are computed, fuzzy set theory is
implemented to determine the best compromise solution from the set of Pareto optimal
solution [95]. For each solution in ith objective function, the respective fitness function
is fuzzified using (3.45).

µi =


1 fi ≤ fmin

i

fmaxi −fi
fmaxi −fmini

fmin
i < fi < fmax

i

0 fi ≥ fmax
i

(3.45)

For each minimizing objective function, the lowest objective is assigned a value of 1
from (3.45). The normalized membership function µk for each nondominant solution is
calculated using (3.46).

µk =
∑Nobj

i=1 µk
i∑M

k=1
∑Nobj

i=1 µk
i

(3.46)

where M is the total number of nondominant solution. The solution with the
highest value of µk is the best compromise solution.
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3.4.2.6 Selection of Parent Chromosomes

Parent chromosomes are selected using binary tournament selection based on domina-
tion count and crowding distance in MOO [138].

From Algorithm 3, binary tournament selection randomly chooses a pair of chromo-
somes from the population . The domination count of the selected pairs is compared
and the lower one is selected. If both chromosomes have the same domination count,
the one with the higher crowding distance is selected. Binary tournament selection
algorithm allows the less-fit chromosome to be chosen because the fitness is relative to
the other selected chromosome instead of the absolute fitness of the population.

Algorithm 3: Binary Tournament Selection
From population P , select λ = {s1, ..., sλ} ;
s = 1;
for s ≤ λ do

Randomly select two chromosomes;
Compare domination count and crowding distance;
Put fitter chromsome into λ;
s = s+ 1;

end

Elitism is ensured by selecting the solution with the lowest domination count and
highest crowding distance in the Pareto front and adding it to λ. Where λ is the total
number of selected chromosomes for crossover and mutation.

3.4.2.7 Crossover of Chromosomes

Crossover produces the next generation of chromosomes based on the fitter chromosomes
of the current generation. The literature proposed several methods for crossover and
mutation, and it depends on how the chromosomes are encoded. A Simulated Binary
Crossover (SBX) is used in this thesis [139]. Let Cg

j,1 and Cg
j,2 be the two fittest

chromosome of the gth generation and jth variable.
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Cg
j,1 = (c1, ..., ch, ..., cz) (3.47)

Cg
j,2 = (c′

1, ..., c
′
h, ..., c

′
z) (3.48)

Cg+1
j,1 = 1

2[(1 − β)Cg
j,1 + (1 + β)Cg

j,2] (3.49)

Cg+1
j,2 = 1

2[(1 + β)Cg
j,1 + (1 − β)Cg

j,2] (3.50)

β =


(2ϵ)

1
ψ+1 if ϵ ≤ 0.5

( 1
2(1−ϵ))

1
ψ+1 otherwise (3.51)

where ϵ is a randomly generated number between 0 and 1, ψ is a distribution index
which determines how similar the offspring is to the parent and β is the spread factor.
The offspring solution of a large ψ are close to the parent solution and the offspring
solution of a small ψ are away from the parent solution.

3.4.2.8 Uniform Mutation of Chromosomes

A uniform mutation operator replaces the value of the chosen gene with a value
generated between the upper and lower limit of the chromosome from (3.52). Whether
the chromosome will undergo a mutation is determined by mutation probability, ρm.
After the mutation occurs, sort the chromosome in ascending order for the fuzzy
membership functions to overlap.

ϵj = [(max−min)rand+min] (3.52)

where j is the jth variable.

3.4.3 Multi-Service of Single ESS: Reserve Service

After the membership functions of the FEMS are tuned using NSGA-II, an additional
RS is added to the operation of ESS. The proposed methodology in this subsection uses
a single energy storage to provide multiple streams of benefits: RS, energy arbitrage
and reduce peak demand of the microgrid.

Fig. 3.12 shows the operation of the FEMS. The operation mode depends on the
reserve signal, Preserve and SoC.
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Preserve dictates the amout of power to be delivered by the ESS to the main grid as
RS. As such the ESS will operated under Reserve Operation, else it will operate under
FEMS Operation, which is the FEMS proposed in the previous subsection.

The minimum operating SoC are different in reserve and FEMS operation. In
reserve operation, the minimum SoC is 10% while in FEMS operation, the minimum
SoC is 40%. This is to ensure that there will always be enough energy to meet the
reserve operation.

In an event where the minimum SoC is less than 40% after a reserve operation, the
ESS will operate in Recovery Operation, where it charges the ESS during low price
period. The details of each operation are discussed in the rest of this subsection.

Start

Preserve!=0

Reserve Operation FEMS Operation

Recovery Operation

40%<SoC

Yes No

No

Yes

Fig. 3.12 Different operation modes of ESS
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3.4.3.1 Reserve Operation Mode

Reserve operation mode provides a RS to the grid operator. Reserve service is a
contracted balancing service for the grid operator to manage the actual demand when
the demand is greater than forecast or generation unavailability. In this operation mode,
the controller will follow the protocol listed by the grid operator. The requirements for
STOR are as follows:

• A minimum of 90 % of the contracted reserve must be delivered

• A RS provider must be able to deliver at least 3 times per week

• Providers should be able to response to an instruction within a maximum of 240
minutes

• A RS provider must be able to sustain the response for a minimum of 2 hours
and have a recovery period of not more than 1200 minutes (20 hours)

The payment from the grid operator are as follows:

• Availability - Paid for the hours in which the service has been made available, in
$/kW/h

• Utilization Fee - Paid for the energy delivered when requested, in $/kWh

The availability window or reserve window is a period where the service provider
must be available to operate at the contracted power when requested. The grid operator
may not always have a RS request; however, the service provider should be ready when
required.

The utilization of the service is where the grid operator issues a RS request. The
service provider must start to provide the contracted power within the response time
and sustain for a minimum of 2 hours. The percentage of delivered reserve is calculated
using (3.53).

Percentage of delivered reserve = Delivered service request (kWh)
Service request (kWh) × 100% (3.53)

3.4.3.2 FEMS Operation Mode

The ESS operates in energy arbitrage and reduce peak demand when it is not providing
any reserve services. The detailed explanation of this operation mode is described in
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subsection 3.4.1 and 3.4.2. Instead of a constant minimum SoC, the minimum SoC of
the ES during normal mode changes dynamically depending on the time to reserve
window. As such the ES have a wider operating SoC during normal and recovery
operation and a narrower SoC during RS operation.

SoC FLC

FEMS FLC

Time to Service

Current Minimum SoC

Cp

Pbalance

SoC

Minimum SoC

Pess

Fig. 3.13 Dynamic minimum SoC during normal operation

Fig. 3.13 shows two FLC. The SoC FLC has two inputs and one output. They are
time to service (TTS), current minimum SoC and updated current SoC respectively.
This SoC FLC is used to determine the minimum SoC for the FEMS FLC. The linguistic
terms for TTS are far, moderate and near, current minimum SoC and updated minimum
SoC are low medium and high. For TTS, the linguistic terms are used to quantify
the time to the start of the contracted service period. The FLC rules are designed to
have a higher minimum SoC at the start of the service to ensure that there is sufficient
energy for the reserve request and a lower minimum SoC at the end of the service.

Table 3.6 shows the fuzzy rules for the first fuzzy logic controller. For instance,
from rule number 1, when the time to reserve window is far and current minimum SoC
is low, new minimum SoC will be low.

3.4.3.3 Recovery Operation Mode

If the SoC of the storage falls below the minimum SoC after a reserve request, the ESS
will operate in this mode. The focus of this mode is to prepare the ESS for the next
service request.

The controller only charges when the price is low. It also charges when Pbalance

is negative. Fuzzy rules 21-25 and 46-50 of Table 3.2 are modified for this operation
mode.
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Table 3.6 Fuzzy rules to determine minimum SoC

Fuzzy Rule Time to Service Current SoC New SoC
1 Far Low Low
2 Far Medium Low
3 Far High Low
4 Moderate Low Medium
5 Moderate Medium Medium
6 Moderate High Medium
7 Near Low High
8 Near Medium High
9 Near High High

3.4.3.4 Summary of Operation Modes

These three operation modes have different tasks and minimum SoC for the energy
storage and they are summarized in Table 3.7. During the reserve window, the FEMS
continues to operate in normal mode if there is no reserve request from the grid operator.
The ESS switches from FEMS operation mode to reserve operation mode when the
grid operator sends a reserve request.

Table 3.7 Summary of operation modes

Mode Minimum SoC (%) Task
Reserve service 10 Provide constant power for 2 hours when re-

quested during the contracted period
Normal 10 to 40 Provide energy arbitrage and reduce peak

demand
Recovery 10 Restore SoC to minimum level

3.4.4 Summary of Multi-Service of Single ESS

First, energy arbitrage and peak shaving are proposed as two services for the ESS in
Section 3.4.1. The design of the FEMS, performance evaluation indices and Simulink
models are presented as well.

Second, the membership functions of the FEMS are tuned using NSGA-II in Section
3.4.2. The performance evaluation indices from Section 3.4.1 are modified and used as
the fitness functions for NSGA-II.
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Finally, RS is added as the third service for the ESS. Instead of a constant minimum
SoC, a dynamic minimum SoC allows the ESS to be utilized more during normal
operation while having enough energy to meet the RS.

3.5 Summary of Proposed Methodologies

The results and discussions of the proposed methodologies in this chapter are shown in
the respective chapter or sections from Table 3.8.

Table 3.8 Summary of proposed methodologies

Proposed Methodology Service of ESS Results and
Discussions

Energy
Arbitrage

Peak
Shaving

Reserve
Service

Section 3.3 X X Chapter 4
Section 3.4.1 X X Section 5.2
Section 3.4.2 X X Section 5.3
Section 3.4.3 X X X Section 5.4





Chapter 4

Day-Ahead Forecast and
Scheduling of Energy Storage

4.1 Overview

This chapter presents a day-ahead scheduling of energy storage based on forecasting
and mixed-integer linear programming (MILP) proposed in Section 3.3. The day-ahead
values of load, renewable generation and real-time electricity price are forecast with
artificial neural network (ANN). The day-ahead forecasting performance of extreme
learning machine (ELM) and deep belief network (DBN) are evaluated in this chapter.
After the day-ahead energy forecast are obtained, this information is used to formulate
the scheduling of energy storage into a MILP problem. The schedule is used in real-time
operation of the energy storage system (ESS).

4.2 Day-Ahead Energy Forecast using Artificial Neu-
ral Network

This section compares the different methods of ANN forecast. The methods are ELM
and DBN. The hyperparameters of the ANNs are heuristically tuned for day-ahead
forecast of load. Day-ahead forecast of load is used as it is more predictable compared
to highly stochastic renewable energies and electricity price. After the method of
forecasting is determined, it is used to forecast PV, wind and electricity prices which
are highly stochastic compared to load.
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4.2.1 Hyperparameters Tuning for Artificial Neural Network

Among the hyperparameters mentioned in Table 2.2, only the number of hidden nodes
and hidden layers are tested in this section. For consistency during comparison between
different ANN models, the size and division of datasets and performance evaluators are
fixed. Apart from using MAPE and RMSE to measure the performance of the model,
the computation time taken to train the model is also considered.

Some of the parameters of the ANN models are randomly generated, for instance
the input layer weight matrix of ELM, the performance of the model may vary even
if the hyperparameters are the same. As such, after the hyperparameters of these
models are determine, 10 trials are conducted to investigate the effects of the randomly
generated parameters.

After the hyperparameters of these models are determined, the final model is
trained 10 times to understand the stability of the model. These parameters are used
to evaluate and conclude which ANN model are more suitable for forecasting.

The half hourly load data are obtained from Energy Market Authority [140], from
6 February 2012 to 6 February 2013. The data set consist of 17,520 data points. This
dataset is split into training and testing set with a ratio of 50:50. The training set is
used to heuristically tune the neural network hyperparameters while the testing set is
used to validate the model performance.

Having more than a year of data for training does not have significant improvement
in the forecasting accuracy [141]. Furthermore, having more training data will increase
the computational time when training the network.

ELM is implemented using MATLAB M-script. DBN is implemented using DeebNet
Toolbox in MATLAB from [142]. These models executed on a workstation with an
Intel XEON E3-1271 CPU running at 3.60 GHz with 32 GB of system memory.

4.2.2 Day-Ahead Forecast using Extreme Learning Machine

The hyperparameters of ELM are number of hidden nodes. The RMSE, MAPE and
computational time are recorded.

The number of hidden nodes is increase from 500 to 20000 with an increment of
500, the RMSE and MAPE of the model gradually decrease as shown in Fig. 4.1. From
7,500 to 15,000 hidden nodes, error fluctuates between 360 and 365 for RMSE and
4.9% and 5.1% for MAPE. The computational time increases drastically as the number
of hidden nodes increases, as such 7500 is chosen as the number of hidden nodes for
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ELM. This fluctuation in forecasting accuracy is due to the randomly generated input
weight matrix. The total computational time taken to increase the number of hidden
nodes from 500 to 20000 is 7463s.

(a) RMSE vs No. of Hidden Nodes (b) MAPE vs No. of Hidden Nodes

Fig. 4.1 RMSE and MAPE for ELM

When using the equation from [110], it shows unsatisfactory forecasting performance
as the number of hidden nodes is too small when compared to the training data size
which resulted in an underfit. Underfit is where the training error is larger than the
testing error. It suggests that the model have poor predicting power.

The number of hidden nodes is set as 7500 and the training of ELM is repeated for
10 times to investigate the effect of random input weights. Fig. 4.3 shows a similar
phenomenon as increasing the number of hidden nodes where the forecasting accuracy
fluctuates. The performance of ELM is stable on a wide range of hidden nodes as
shown in Fig. 4.1 and 4.3. The fluctuation is not large and is bounded between a
relatively small range. The time taken to train an ELM with 7500 hidden nodes is
215s.

4.2.3 Day-Ahead Forecast using Deep Belief Network

There are several hyperparameters for deep belief network to be determine. The number
of hidden nodes and layers are determined in this subsection. Similar to ELM, the
RMSE, MAPE and computational time are recorded.

First, the number of epochs for each layer is set to 200 for RBM and 500 for the
final layer. Second, another RBM is added to DBN and the number of hidden nodes is
increased from 100 to 2000 with an interval of 100. After the number of hidden nodes
is determined for the first layer, a second RBM is added and the number of hidden
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nodes is increased from 100 to 2000 with an interval of 100. This process is repeated
for the third RBM to investigate the effect of hidden nodes and number of RBM.

The results from the first RBM is shown in Fig. 4.2a and 4.2b. The RMSE and
MAPE are fairly consistent as the number of hidden nodes is increasing. From 100 to
2000 hidden nodes, the error fluctuates between 358.5 and 359.4 for RMSE and 4.85%
and 4.86% for MAPE. The total computation time taken to increase the number of
hidden nodes is 2506s. Since the lowest RMSE and MAPE occurs at 100 hidden nodes,
the number of hidden nodes is set as 100 for the first RBM.

The second RBM is added on top of the first RBM and the results are shown in
Fig. 4.2c and 4.2d. The RMSE and MAPE have a greater fluctuation as the number of
hidden nodes increases. From 100 to 2000 hidden nodes, the error fluctuates between
358 and 361.2 for RMSE and 4.83% and 4.85% for MAPE. The total computational
time taken is significantly higher at 7915s. The number of hidden nodes is set as 300
for the second RBM.

The third RBM is added on top of the second RBM and the results are shown in
Fig. 4.2e and 4.2f. The RMSE and MAPE are similar to a DBN with two RBM and
there is no significant improvement in forecasting accuracy by adding the third RBM.
As such two RBM is used as the final model.
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(a) RBM 1: RMSE vs no. of hidden nodes (b) RBM 1: MAPE vs no. of hidden nodes

(c) RBM 2: RMSE vs no. of hidden nodes (d) RBM 2: MAPE vs no. of hidden nodes

(e) RBM 3: RMSE vs no. of hidden nodes (f) RBM 3: MAPE vs no. of hidden nodes

Fig. 4.2 RMSE and MAPE for different RBM



80 Day-Ahead Forecast and Scheduling of Energy Storage

4.2.4 Comparison between ELM and DBN

After the hyperparameters of ELM and DBN are heuristically determine through
cross-validation, each model is trained 10 times to investigate the stability of the
models.

Fig. 4.3 shows the simulation results of ELM and DBN after 10 trials. The
forecasting accuracy are bounded within a certain range and does not have drastic
changes from the different trials. This shows that the randomly generated parameters
of each model during initialization is managed by tuning of the hyperparameters.

The training error for ELM and DBN are almost equal to the testing error. This
gives the model the ability to generalize. If the training error is smaller than testing
error, over-fitting occurs. This gives the model a poor generalizing performance. If the
training error is greater than the testing error, under-fitting occurs. This also gives a
poor generalizing performance.

(a) ELM: RMSE vs no. of trials (b) ELM: MAPE vs no. of trials

(c) DBN: RMSE vs no. of trials (d) DBN: MAPE vs no. of trials

Fig. 4.3 10 Trials for ELM and DBN
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The day-ahead forecasting results of the demand are shown in Fig. 4.4. The forecast
of ELM and DBN are relatively similar to the load pattern. During training, the model
is tuned to fit the training data while testing set is used to test the model. Hence
Fig. 4.4a closely resemblance the actual data while Fig. 4.4b is further away from the
actual data.

(a) Actual and forecast of training data (b) Actual and forecast of testing data

Fig. 4.4 Comparison of day-ahead demand forecast between ELM and DBN

4.2.5 Summary of Day-Ahead Energy Forecast

The forecasting performance of ELM and DBN are similar in terms of RMSE and
MAPE. Even though DBN has a slightly lower RMSE and MAPE, there are many
hyperparameters to be tuned. The time taken to choose these hyperparameters are
significantly higher than ELM.

ELM only requires the number of hidden nodes to be tuned. While DBN requires
the number of hidden nodes for each RBM. This excludes the tuning of the number
of epochs for each RBM and the final output layer. Since the improvement of DBN
is marginal over ELM, ELM is chosen for simplicity in implementation and good
generalization performance.

4.3 Day-Ahead Scheduling of Energy Storage

Many studies have been done in operation of energy storage system in the electricity
market. Several methods such as mixed integer linear programming (MILP) and
dynamic programming are proposed in [143, 144] respectively. However, [143] focuses
on a three-tier, on-peak, semi-peak and off-peak, time-of-use (TOU) tariff and [144]
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focuses on day-ahead pricing instead of real-time electricity price. The revenue is
maximized without reducing the power exchange between the main grid and microgrid
in [144]. The fluctuation introduced by RES are flattened in [145]. The cost associated
with the power exchange between the main grid and microgrid is modeled as a quadratic
cost function, and excess power from the microgrid cannot be sold back to the main
grid. The ESS capacity and charging/discharging rate are non-continuous (discretized).
Demand side management techniques require changes to the consumers’ usage pattern
[146].

Compared to the literature, this method considers a near-optimal day-ahead schedul-
ing of energy storage system using MILP to minimize the operating cost and reduce
the peak demand. This method also considers real-time electricity pricing in the MILP
formulation. The charge and discharge rate of the ESS are also continuous and require
no change to the consumers’ usage pattern.

First, the day-ahead energy forecast is obtained using ELM. Second, the forecast is
used for MILP scheduling with the operating cost of the microgrid as the cost function.
Finally, an additional inequality constraint is added to the MILP formulation to reduce
the peak demand. The forecast schedule is compared with a microgrid without ESS
and the optimal schedule (no error in forecast) to investigate the impact of forecasting
error in the scheduling.

The rating of the test system is shown in Table 4.1. The test data used in this
thesis are obtained from National Renewable Energy Laboratory (NREL) [147] and
wholesale electricity prices from Energy Market Company Singapore (EMCSG). A year
of data is used in this thesis and are sampled at a 15-minute interval. The resulting
dataset consists of 35040 data points.

Table 4.1 Microgrid parameters for test system

Parameter Values
PV Array 13.68 kWp
Wind Turbine 12 kWp
Load 26.8 kWp
t 0.25 (15 minutes)
T 2976 (31 days)
Energy storage capacity 90 kWh
Maximum charge and discharge rate 15kW
Upper and lower limit 90%, 4%
Charge and discharge efficiency, ηc, ηd 0.95
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4.3.1 Day-Ahead Energy Forecast using ELM

One year of historical data is used to train the ELM for day-ahead forecasting. The
day-ahead forecast can be obtain after the ELM is trained. The forecasting error
is calculated as root-mean-square error (RMSE). It should be noted that RMSE is
relative to the values of each data. The value of Cp is relatively smaller than the rest
of the parameters which resulted in a smaller RMSE.

Table 4.2 Day-ahead forecast RMSE

Variable Training RMSE Testing RMSE
Pload 1.8927 2.3754
Ppv 2.0383 2.5638
Pwind 4.4472 5.2223
Cp 0.0699 0.0526

From Table 4.2, the RMSE of Ppv and Pwind are higher than Pload even though
they are in similar range in terms of kW. This shows that it is difficult to obtain
accurate forecast of stochastic renewable energy sources. The day-ahead forecast of
these variables are used for MILP scheduling.

4.3.2 Day-Ahead Scheduling for Minimizing Operating Cost

The operation cost of the microgrid for a day is shown in Table 4.3. The forecast
schedule cost is $89.58 while the optimal schedule cost is $41.21. Even though the
difference in operating cost between the forecast and optimal schedule is $48.37, the
forecast schedule manages to reduce the operating cost by $37.98 when compared to
no ESS.

Table 4.3 Cost minimization

Cost ($) Pgrid,max(kW)
No ESS 127.56 20.75
Forecast schedule 89.58 32.78
Optimal schedule 41.21 36.54

The fluctuation of the microgrid power profile significantly increased when the
operating cost is minimized. Furthermore, the peak demand of the microgrid also
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Fig. 4.5 Pgrid for minimizing operating cost

increased from 20.75kW to 32.78kW and 36.54kW for actual and optimal respectively.
The operating cost is minimized at the expenses of a higher peak load.

From Fig. 4.5, the microgrids’ power profile experiences many peaks and trough
throughout the daily operation due to the forecast and optimal schedule. The increased
in fluctuation is unfavorable to the grid operator even though the operating cost is
reduced for the microgrid.

Fig. 4.6 Pess schedule for minimizing operating cost

From Fig. 4.6, the ESS experienced frequent charging and discharging at the
maximum rate. Not only does it greatly reduce the life-cycle of the ESS, but it will also
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increase the fluctuation on the microgrid. To reduce the usage of ESS and fluctuation
in power profile, the inequality constraint from (3.30) is introduced.

4.3.3 Day-Ahead Scheduling for Peak Load Reduction

From the historical data of the microgrid, the peak demand of the microgrid, Pgrid,max

is 20.75kW. An additional inequality constraint, Pmax , is formulated into the MILP
optimization for cost minimization. The value of Pmax is increased from 0 kW to 21
kW with an increment of 1 kW. From 0 kW to 6 kW, the MILP is unable to solve for a
solution. Hence 7 kW is the minimum value for Pmax.

Table 4.4 Peak load reduction

Cost ($) Pgrid,max(kW)
No ESS 127.56 20.75
Forecast schedule 90.60 24.67
Optimal schedule 45.84 7.00

When compared to the optimal schedule in Table 4.3, the optimal schedule with
peak load reduction has a slightly higher operating cost of $45.84 while a much lower
peak load of 7 kW. From the forecast schedule, the peak load is reduced from 32.78
kW to 24.67 kW even though it is still much higher than 7kW.

Fig. 4.7 Pgrid for peak load reduction
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The effect of forecasting error is more prominent when an additional inequality
constraint is added to the minimization problem. From Fig. 4.7, it is obvious that the
forecast schedule of ESS is unable to reduce the peak load to 7kW due to the error in
the forecast.

Fig. 4.8 Pess schedule for peak load reduction

By comparing the results from Table 4.3 and 4.4, in cost minimization, the optimal
schedule operating cost for the microgrid is $41.21. After adding inequality constraint,
Pmax, the operating cost increased to $45.84. The peak demand for the microgrid is
reduced from 36.54 kW to 7 kW at the expense of a slightly higher operating cost.
When comparing the operating cost of forecast schedule, the operating cost increased
from $89.58 to $90.60. The peak demand for the microgrid is reduced from 32.78 kW
to 24.67 kW.

Even though the forecast schedule is not the optimal schedule, it reduces the
operating cost and peak load of the microgrid when compared to a microgrid without
ESS. Furthermore, by adding an inequality constraint from (3.30) can reduce the
maximum peak load and life cycle of ESS.

4.3.4 Summary of Day-Ahead Scheduling of Energy Storage

A single solution is found using the MILP scheduling method. A MILP scheduling
for ESS scheduling based on the day-ahead forecast is investigated. A multi-objective
optimization using MILP are formulated. The first objective is minimizing of operating
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cost of the microgrid. This is achieved by using the operating cost as the cost function
of the MILP. The second objective, reduction of peak demand is added as an inequality
constraint during the MILP formulation. Empirical evidence shows that the proposed
methodology reduces the operating cost and peak demand of the microgrid. The
impact of forecasting errors resulted in a near-optimal solution rather than an optimal
solution.

4.4 Summary

This section evaluated the forecasting performance of two ANNs. The forecasting accu-
racy of DBN is marginally better than ELM. However, there are more hyperparameters
to be determine in DBN. Hence ELM is chosen as it requires less user intervention to
determine its hyperparameter.

The proposed methodology heavily relies on the accurate day-ahead energy forecast
which can be difficult to obtain. Furthermore, without introducing further parameters
such as weighted sum to the MILP formulation, multi-objective optimization cannot
be achieved. Multi-objective optimization can only be achieved by adding additional
constraints to the problem formulation. Also, the maximum value of the constraint is
determined heuristically.

The next chapter proposed a fuzzy logic-based energy management system which is
designed with the microgrid historical data and does not rely on forecasting techniques.
Furthermore, multi-objectives are considered in the design of fuzzy rules using expert
knowledge.





Chapter 5

Multi-Service of Single ESS

5.1 Overview

This chapter investigates the multi-service of single ESS proposed in Chapter 3.4.1, 3.4.2
and 3.4.3. The proposed methodologies are implemented and validated in simulation
using a test system.

The rating of the test system is shown in Table 5.1. The test data used in this
chapter are obtained from National Renewable Energy Laboratory [147] and wholesale
electricity prices from Energy Market Company Singapore (EMCSG). A year of data
was used in this paper and are sampled at a 15-minute interval. The resulting dataset
consists of 35040 data points. The test system is implemented using MATLAB/Simulink
and consists of photovoltaic, wind, ESS and load as shown in Table 5.1.

Table 5.1 Microgrid parameters for test system

Parameter Values
PV Array 13.68 kWp
Wind Turbine 12 kWp
Load 26.8 kWp
t 0.25 (15 minutes)
T 2976 (31 days)
Energy storage capacity 90 kWh
Maximum charge and discharge rate 15kW
Upper and lower limit 90%, 4%
Charge and discharge efficiency, ηc, ηd 0.95
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5.2 Multi-Service of Single ESS: Energy Arbitrage
and Peak Shaving

The first eleven months of data were used to design the fuzzy membership functions
and the last month of data is used to validate the proposed fuzzy logic controller. The
range of the fuzzy membership functions is shown in Table 5.2.

Table 5.2 Fuzzy membership functions range from historical data

Fuzzy Variables Min Max
Pbalance (kW) -18.3 26.76
ESS (kWh) 4.0 90.00
Cp ($/MWh) 1.44 929.31
Pess (kW) -15 15

The median-σ tuned Cp membership functions are shown in Fig. 5.1. The mem-
bership functions of Cp and histogram are superimpose for clarity. Even though the
difference between Cp,max and Cp,min is relatively large, majority of its distribution
falls within ±1σ.
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Fig. 5.1 Superimpose of Cp membership functions and histogram of Cp

The performance of the proposed fuzzy logic-based energy management system
(FEMS) is compared with a microgrid without ESS, SAEC, and MILP in terms of
operating cost, load factor and standard deviation.
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5.2.1 Benchmark Algorithms

The proposed FEMS is compared using the proposed performance evaluation indices
from Section 3.4.1.3, with two other controllers, self-adaptive ESS controller (SAEC)
and mixed-integer linear programming (MILP) scheduling.

5.2.1.1 Benchmark Algorithm I: Self-Adaptive ESS Controller

The proposed FEMS is compared against a Self-Adaptive ESS Controller (SAEC).
This controller is explained in detail here. The SAEC evaluates the requirement of the
microgrid and decides the charge or discharge rate of the ESS. This is achieved by the
following:

a) Determine the state of the ESS (Charge/Discharge/Idle)

b) Determine the charge or discharge rate

The controller determines the state of the ESS, whether to charge, discharge or idle.
If the state of the ESS is charge or discharge, the rate of charging or discharging is
determined.

Fig. 5.2 shows an overview of the control strategy of SAEC. The top half of the
diagram shows how the state of ESS is determined and the bottom half of the diagram
shows how the rate of charging/discharging is determined. For instance, if Pbalance

is positive, Pload is more than Pres, there is a need to discharge ESS to make up for
this shortfall. After deriving the state of ESS as "discharge", the discharging rate is
determined. For discharging rate, if Pbalance is more than the maximum discharging
rate, P̄d, then the discharging rate will be P̄d, else discharging rate will be equal to the
shortfall, Pbalance.

In this manner, the proposed controller can adequately compensate any surplus or
shortfall by charging or discharging at the required rate without exceeding the power
limits and capacity constraints in (3.7) to (3.9). The SAEC is also able to sell excess
power that is not required by the microgrid to the main grid to reduce the operating
cost. However, it is unable to exploit the arbitrage pricing as it does not consider the
electricity price as its input. The SAEC described in this section is implemented in
MATLAB as M-script.
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Fig. 5.2 Self-Adaptive ESS control (SAEC) strategy
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5.2.1.2 Benchmark Algorithm II: MILP Scheduling

The proposed FEMS is also compared against a MILP scheduling to find a single
optimum solution. This MILP scheduling is different from one proposed in the previous
chapter as it assumed that the values of Pload(t), Pres(t) and Cp(t) from t = 0 to t = T

can be forecast without any error. The mathematical model introduced earlier in
Section 3.3 is used to formulate into a MILP minimizing problem.

5.2.2 Comparison Between Proposed FEMS, SAEC and MILP

The last month of data is used to compare and validate the proposed controller. The
results of the test data are presented in this subsection. Fig. 5.3 and 5.4 shows the
grid power profile and ESS power, for the first day of the test data.

The grid power profile of a microgrid without ESS, SAEC, MILP, and the proposed
FEMS is shown in Fig. 5.3. It can be observed that the grid power profile of the
proposed controller is the smoothest compared to SAEC and MILP. The grid power
profile for MILP has many peaks and trough throughout the day which is undesirable
to the grid operator. In contrast, the proposed controller grid power profile is fairly
consistent compared to SAEC and MILP.

Fig. 5.3 Power profile for different control strategies

The peak demand increases under MILP which is even higher than a microgrid
without an ESS. This result in a trade-off between lower operating cost and a higher
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variation in power profile for MILP. The integration of RES and ESS should reduce
the operating cost and peak demand. Frequent abrupt changes in the power exchange
between main and microgrid are unfavorable to the grid operator. This is especially
important with the integration of high intermittent RES such as wind power. The
power profile of MILP and the proposed controller demonstrates the importance of a
controller specifically designed to reduce the peak demand.

From Table 5.4, when the proposed controller is compared to SAEC, the operating
cost and standard deviation is 1.87% and 22.79% higher than the proposed controller
respectively. The load factor is 10.34% lower than the proposed controller. In terms of
operating cost, load factor and standard deviation, the proposed controller can achieve
a lower operating cost and peak demand.

When the proposed controller is compared to MILP, it is important to reiterate
that the solution obtained from MILP is the optimum solution and assumes that all
the values Pload(t), Ppv(t), Pwind(t) and Cp(t) are known in advance. Even though the
operating cost is 13.69% lower than the proposed controller, the load factor of MILP is
37.5% lower than the proposed controller. The standard deviation is 187.27% higher.

The proposed FEMS can reduce the operating cost without increasing the peak
demand of the microgrid. Furthermore, it only requires the current values of Pload(t),
Ppv(t), Pwind(t) and Cp(t) to compute Pess instead of relying on the day-ahead forecast.

The charge and discharge rate of ESS, Pess is shown in Fig. 5.4. It can be observed
that MILP frequently charge and discharge at the maximum rate while the proposed
controller charge and discharge at a much lower rate.
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Fig. 5.4 Pess profile for different control strategies

The number of life cycle of ESS can be estimated with (5.1) and the results are
shown in Table 5.3.

Life cycle =
∑t=T

t=1 |Pess(t)|
ESS

(5.1)

where ESS is the full capacity of the storage system in kWh.
As shown in Table 5.3, the estimated life cycle of ESS under MILP is significantly

higher than the proposed controller even though the ESS is only used for a month.
Frequent charging and discharging at the maximum rate will have an adverse effect on
the energy storage lifespan.

Table 5.3 Estimated number of life cycle of ESS

Controller No. of life cycle
MILP 474.70
Proposed Controller 124.50

In a multi-objective optimization problem, each performance evaluation indices is
an objective function. It can be formulated as follows:

min (f1(x), f2(x), ..., fk(x))

s.t. ∀x ∈ X
(5.2)
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where k is the objective function and x is the solution. For instance, this subsection
considers (3.32), (3.34) and (3.42) as the performance evaluation indices. Let the
objective functions f1, f2 and f3 be (3.32), (3.34) and (3.42). As (3.34) is a maximizing
objective function, it can be change into a minimizing objective function by inverting
the objective function.

In general, there are two approaches for multiobjective optimization. The first
approach is using a weighted sum to sum up the two objective functions into a
single figure of merit. However, the weight of each objective function is heuristically
determined and may not guarantee an optimum solution compared to single objective
optimization. The second approach is finding the solutions on the pareto front. The
solutions are sorted into their respective Pareto front as discussed in [148].

Solution p is considered to dominate solution q iff:

1. fi(p) ≤ fi(q) for all indices i ∈ 1, 2, ..., k and

2. fj(p) < fj(q) for at least one index j ∈ 1, 2, ...k

The solutions of without ESS, SAEC, MILP and proposed controller are sorted
into their respective pareto front and shown in Table 5.4.

Table 5.4 Performance evaluation indices

Controller Cost($), f1
1

LF
, f2 σ, f3 Pareto Front

Without ESS 2205.54 3.45 7.84 3
SAEC 2182.06 3.45 7.02 2
MILP 1847.90 5.00 15.57 4
Proposed Controller 2141.23 3.12 5.42 1

Fig. 5.5 shows the search space for three objective functions. The optimum region
is located at the bottom center of the search space. From the Pareto front sorting,
the proposed controller belongs to the first Pareto front, which is considered to be the
optimum solution as it dominates all the other solutions. While SAEC, Without ESS
and MILP takes the second, third and last Pareto front respectively.
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Fig. 5.5 Three objective functions solution space

Fig. 5.6 shows one day operation of the proposed FEMS. From 0000 to 0800, the
energy storage is at half capacity, while Pbalance is close to zero and the electricity market
price is low. Hence the proposed controller capitalizes on this arbitrage opportunity to
charge the energy storage at a low price.

From 0800 to 1200, as the morning peak demand begins to ramp up, and the
electricity market price is high, the energy storage begins to discharge to reduce the
peak load. From 1600 to 2000, the electricity price increases with the evening peak
demand and the energy storage continue to discharge to reduce the operating cost. As
the energy storage capacity approaches the lower limits, the discharge rate gradually
reduces to zero to prevent it from over discharging. This process is repeated for the
day-to-day operation of the energy storage to reduce the operating cost and peak
demand of the microgrid.

The proposed controller is designed based on the historical data of Pload(t), Ppv(t),
Pwind(t) and Cp(t) and does not rely on forecasting. Compared to MILP scheduling,
which relies on accurate forecast. It is especially important to design a controller that
does not rely on forecasting as it is challenging to obtain an accurate forecast for highly
stochastic natured variables such as wind and electricity pricing [27]. In this highly
dynamic and uncertain operating environment, the proposed controller can reduce the
end-user operating cost without increasing its reliant on the main grid as shown in
Table 5.4.
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Fig. 5.6 One day operation of proposed FEMS. Top: ESS capacity and ESS power
output. Bottom: Pbalance, Pgrid of proposed controller and electricity market price

5.2.3 Summary of FEMS

In this subsection, a FEMS that considers the mismatch between supply and demand,
state-of-charge of ESS, and electricity price to determine the charge and discharge rate
of ESS has been proposed. The proposed controller aims to reduce the operating cost
and peak demand of the microgrid. The performance evaluating indices can accurately
quantify the aims of the proposed controller. The operation cost is calculated and the
power exchange between the main and microgrid can be measured with load factor
and standard deviation. A decrease in load factor and increase in standard deviation
signify a more erratic power profile. A comparison between SAEC and MILP using the
performance evaluating indices have shown that the proposed controller can achieve a
better solution.

5.3 Enhanced Fuzzy Logic Based Energy Manage-
ment System

The membership functions in the previous subsection are designed according to expert
knowledge can be added into the initial generation of NSGA-II for fine tuning. The
solution obtained by expert membership functions can guide NSGA-II to search and
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converge faster to the Pareto optimal front. The detailed implementation of NSGA-II
for fuzzy membership functions tuning are shown in this section.

5.3.1 Optimizing of Fuzzy Membership Functions using NSGA-
II

The proposed FEMS aims to minimize the operating cost and average peak load from
(3.42) and (3.43) of the grid-connected microgrid respectively by tuning the input fuzzy
membership functions using NSGA-II.

The proposed NSGA-II algorithm for tuning membership functions are implemented
using M-script file in MATLAB, and the FLC and grid-connected microgrid are
implemented in Simulink. All the parameters required by NSGA-II are determined
through a heuristic approach and shown in Table 5.5.

Table 5.5 NSGA-II parameters

P G λ ψ ρc ρm

Parameters 100 100 40 2 0.9 0.05

where P are the total number of chromosomes, G is the total number of generations,
λ is the number of selected chromosomes for crossover, ψ is the crossover parameter,
ρc and ρm is the crossover and mutation probability respectively.

Three case studies are presented in this section as follows:

1. Case study I: Minimizing operating cost

2. Case study II: Minimizing average peak load (APL)

3. Case study III: Multi-objective optimization

Case study I and II are done to find the extreme points of tradeoff on the solution
space with competing objective functions. Case study I and II investigates a single
objective optimization where cost or average peak load are minimized respectively.
In these cases, standard GA is implemented. Case study III is a multi-objective
optimization where cost and APL are minimized together. In this case, NSGA-II is
implemented.

For each case study, the FEMS is tuned offline with historical data from 1 January
2013, to 31 December 2013, and validated online with data from 1 January 2014 to 31
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March 2014. All case studies investigate the effect of adding the expert system fuzzy
membership functions into the initial generation of GA/NSGA-II. As such, each case
study is repeated twice, first with expert system fuzzy membership functions in the
initial population are labelled as Predefined and the second without any expert fuzzy
membership functions are labelled as Random.

An aggregated multi-objective GA is used as a comparison to NSGA-II. As a
comparison to NSGA-II for case study III, the two fitness functions, f1 and f2 from
(3.42) and (3.43) are normalized using (5.3) and sum into a single figure of merit using
(5.4). Normalizing both objective before summing them up gives an equal importance
to both objectives instead of using weighted sum where additional weights parameter
must be determined [149].

X ′ = X −min(X)
max(X) −min(X) (5.3)

fagg = f1 + f2 (5.4)

The results of aggregated multi-objective optimization is compared with NSGA-II.
Furthermore, an expert tuned FEMS from Section 5.2 is used as a comparison with
the proposed methodology in case study I and II. Case study I and II is to investigate
the extreme points of each objective function on the solution space.

5.3.1.1 Case study I: Minimizing Operating Cost

The offline tuning and online validation results are shown in Table 5.6a and 5.6b
respectively. In offline tuning, the operating cost is reduced by approximately 5.5% and
3.8% in predefined and random. The APL is reduced by 6.9% and 8.1% in predefined
and random respectively. GA with predefined membership functions in the initial
population produce a better solution than random membership functions in terms of
operating cost in this case study. Not only did it provide a lower operating cost, it
also has lower APL.

The population average fitness and fittest solution for each generation is shown
in Fig. 5.7. GA with predefined expert knowledge membership functions can find a
solution with a lower operating cost than a randomly initialized GA.
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Table 5.6 Offline and online results for case study I

(a) Offline tuning of FEMS for minimizing operating cost

FEMS Cost($) APL(kW) ∆Percentage (%)
Cost APL

Expert FEMS 19246.5 12.5 - -
GA Predefined 18188.1 11.6 -5.5 -6.9
GA Random 18507.9 11.5 -3.8 -8.1

(b) Online validation of FEMS for minimizing operating cost

FEMS Cost($) APL(kW) ∆Percentage (%)
Cost APL

Expert FEMS 4780.6 12.5 - -
GA Predefined 4632.9 11.8 -3.1 -5.8
GA Random 4684.5 12.1 -2.0 -3.6

Fig. 5.7 Offline tuning result, single objective optimization: cost
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5.3.1.2 Case study II: Minimizing Average Peak Load

From this subsection onwards, only the online validation results are shown. The
objective of case study II is to reduce the APL of the microgrid. The result of the
online validation is shown in Table 5.7. The APL is reduced by approximately 21.2%
and 11.4% for predefined and random respectively.

GA with predefined membership functions in the initial population produce a better
solution than random membership functions in this case study as well. Not only did it
provide a lower APL, it also reduced the operating cost.

Table 5.7 Online validation of FEMS for minimizing APL

FEMS Cost($) APL(kW) ∆Percentage (%)
Cost APL

Expert FEMS 4780.6 12.5 - -
GA Predefined 4796.8 9.9 -0.3 -21.2
GA Random 4822.4 11.1 -0.9 -11.4

Similar to case study I, GA with predefined expert membership functions can reach
a lower APL faster than a randomly initialized GA as shown in Fig. 5.8.

Fig. 5.8 Offline tuning result, single objective optimization: average peak load

In case study I, having the expert tuned membership functions in the initial GA
population yields better results. For instances, even though minimizing operating cost
is the objective function, it reduces the average peak load as well.
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It is important to note that in online validation, for case study I: minimizing
operating cost, the lowest operating cost is $4632.9 and the APL is 11.8kW. In case
study II: minimizing APL, the lowest APL is 9.9kW and the operating cost is $4796.8.
These two points are the extreme points in the solution space. By comparing the results
in single objective optimization from Table 5.6b and 5.7, both objectives functions are
in conflict. When the operating cost is minimized in case study I, the APL increases
and vice-versa in case study II.

In standard GA optimization, only a single solution can be found in a single
iteration. This gives a limited perspective on the trade-off relation between the two
objective functions. When comparing case study I and II, case study I have a lower
operating cost while case study II have a lower average peak load. This shows that
they are competing objective functions and cannot be minimized simultaneously.

5.3.1.3 Case study III: Multi-Objective Optimization

Case study III compares three FEMS namely; expert system, aggregated multi-objective
GA and NSGA-II. Similar to case study I and II, aggregated multi-objective GA and
NSGA-II are further separated into predefined and random.

Fig. 5.10 shows the results for case study III. The aggregated GA fittest solution
of each generation is plotted onto the scatter heat map as shown in Fig. 5.9a and Fig.
5.9b. Dark blue represents the first generation and, dark red represents the hundredth
generation. The optimum region is on the bottom left of the heat map. From the
first generation, the fittest solution of each generation improves and converges into the
bottom left through the genetic operators in aggregated GA.

In FEMS optimized using NSGA-II, by comparing Fig.5.10a and Fig.5.10b, the
NSGA-II predefined have a more diverse Pareto front compared to NSGA-II random.
NSGA-II predefined also have more solutions on the Pareto front. The best compromise
solution for NSGA-II are selected using (3.45) and (3.46).
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(a) Aggregated Predefined Multiobjective

(b) Aggregated Random Multiobjective

Fig. 5.9 Solution space for aggregated GA
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(a) NSGA-II predefined multiobjective

(b) NSGA-II random multiobjective

Fig. 5.10 Solution space for NSGA-II
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The fittest and best compromise solution from case study III are presented in Table
5.8. Multiple solutions are found in the Pareto front using the proposed NSGA-II
tuning of fuzzy membership functions. Whereas only a single solution is found using
the previous methods.

Table 5.8 Online validation of FEMS for multi-objective optimization

FEMS Cost ($) APL (kW) µ1 µ2 µk

Expert FEMS 4780.6 12.5 0.00 0.00 0.00
Aggregated Predefined 4666.2 12.5 1.00 0.00 0.22
Aggregated Random 4739.2 9.3 0.36 1.00 0.30
NSGA-II Predefined 4681.9 10.2 0.86 0.72 0.35
NSGA-II Random 4751.5 11.6 0.25 0.28 0.12

The solutions obtained by different FEMS are fuzzified using (3.45) and (3.46) to
obtain the best compromise solution. Among these solutions, NSGA-II Predefined is
the best compromise solution as it has the highest µ value. In the solution obtained
by NSGA-II Predefined, the operating cost and APL are decreased 2.1% and 18.4%
during online validation.

From Table 5.8, the solution obtained by Aggregated Predefined, Aggregated
Random and NSGA-II Predefined are on the same Pareto front. However, aggregated
multi-objective optimization can only obtain a single solution in a single run. To obtain
the Pareto front requires multiple iterations. NSGA-II can obtain multiple solutions
on the Pareto front in a single iteration.

The operating cost and average peak load of NSGA-II predefined is $4681.9 and
10.2kW respectively. By comparing with the best solution from case study I and II,
all three solutions belong to the same Pareto front. However, the best compromise
solution in case study III is also the best compromise solution between case study I to
III from Fig. 5.11.

In multi-objective optimization, NSGA-II converges faster to the Pareto-optimal
front when the initial population is initialized with expert membership functions.
NSGA-II with predefined initial population has higher diversity. While NSGA-II can
automatically generate all the membership functions for FEMS, empirical evidence
from Case I and II have shown that the initial population with predefined expert MF
can yield a more diversified Pareto front.

The fuzzy system can handle imprecise information, uncertainty and describe the
behavior of a complex system without a precise mathematical model. While it is
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Fig. 5.11 Solutions of case study I-III

attractive for MOEA to automatically generate all the fuzzy parameters, i.e., fuzzy
rules, membership function shape and membership functions, the trade-off between
high accuracy and high interpretability must be considered prudently.

If all the fuzzy parameters are automatically generated, the search space would be
vast and difficult to converge as each fuzzy parameter affect the other. The linguistic
terms must be relevant to the placement of the membership functions. For instance, for
fuzzy variable Pess, linguistic term negative big, the membership function placement for
this linguistic term would ideally be at the negative region and not the positive region.
Hence for NSGA-II to generate all the fuzzy parameters would make the problem
highly complex and takes a much longer computational time to get the Pareto solution.
Furthermore, from Case study III, even though the membership functions are randomly
generated in the initial population, NSGA-II have shown difficulty in finding diversity
in the solution space.

Electricity is costly during peak demand, by discharging during high price period
also reduces the peak demand. Reducing peak demand defer costly expansion of un-
derutilized peaking power plant, transmission infrastructure, and distribution network.
The average peak load is reduced by controlling the charging/discharging of the energy
storage. In this manner, the consumption of the consumer can remain the same. The
proposed methodology utilizes the real-time electricity pricing mechanism to enhance
the operation of the current asset without affecting the consumption pattern of the
consumer. It also does not require the intervention of the consumers to decide whether
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to buy or sell from the main grid. Furthermore, the proposed methodology utilizes
the available resources without any changes or expansion to the current infrastructure
of the microgrid. The proposed FEMS can be applied to other ESS operation as it is
designed with historical data and parameters of the ESS.

5.3.2 Experimental Validation on Energy Storage Test Bed

The proposed enhanced FEMS is experimentally validated in real-time using the energy
storage test bed (ESTB) at Newcastle University, UK. An overview of the ESTB is
shown in Fig. 5.12. The ESTB is connected to a 400V three phase network via two
bi-directional AC/DC power converter rated at 360kVA, which are connected onto the
Northern Power grid’s distribution network.

Fig. 5.12 Exerimental setup of energy storage test bed

5.3.2.1 400V Isolating Transformer

The ESTB is connected to the building network by a 400V transformer for isolation
and protection purposes.
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5.3.2.2 Engineering Station

The engineering station acts as a supervisory and control center for the ESTB. The
proposed FEMS is implemented as a MATLAB Simulink model. The engineering
station interfaces with the real-time target (RTT).

5.3.2.3 700V DC Busbar and Power Converters

The ESTB consists of two bi-directional AC/DC power converters rated at 360kVA and
three bi-directional DC/DC power converters rated at 90kW. These power converters
can accept voltage, current or power setpoints in real-time. These setpoints can be set
as a constant value, time-varying or from historical data. The power converters are
coupled to a 700V DC busbar.

5.3.2.4 Real-Time Target

The simulink model from the engineering station is compiled into C executed in the
RTT. The RTT controls the voltage and current levels of the AC/DC converters,
DC/DC converters and DC bus. This allow real-time control of the power converters
and ESS.

5.3.2.5 Energy Storage System

A super-capacitor with ratings of 90 kW and 2 kWh are used in this setup. The
operating voltage is between 300V to 650V. This ESS is connected to the DC/DC
converter which is then coupled to the 700 DC bus.

This ESTB setup allows experimental validation of the different control methodolo-
gies such as the proposed methodology and voltage/frequency control in real-time.

The proposed FEMS is implemented in Simulink and subsequently sent to RTT
where it runs in real-time. As the focus of this thesis is the operation of ESS, Pload,
Ppv and Pwind are replaced with data signal instead of a physical signal.

5.3.2.6 Estimating Efficiency of Power Converters and Storage System

The efficiencies of the power converters and storage system are different when it operates
at different power levels. As such, a constant efficiency does not accurately represent
the nonlinear efficiencies of the power converters and storage system. An experiment
is conducted to estimate the efficiencies for the power converters and storage system
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at different power levels. The efficiency curve is implemented as a lookup table in
Simulink for a better estimate of the SoC.

The SoC of the actual ESS is estimated from (5.5) [62, 150].

SoCactual = VOC − Vmin

Vmax − Vmin
(5.5)

where VOC, Vmax and Vmin are the open circuit, maximum and minimum operating
voltages.

From (3.10), assuming that the actual SoC is equivalent to the model SoC.

SoCactual(t) ≈ SoCmodel(t) (5.6)

The η from (3.5) and (3.6) are further broken down into converters and storage
efficiencies in (5.8). The charge and discharge efficiencies for power set-point p are
ηc(p) and ηd(p) respectively.

ηc(p) = η converter in(p) × η energy storage in(p) (5.7)

ηd(p) = η converter out(p) × η energy storage out(p) (5.8)

where p is the different power set-points. The lookup table will interpolate between
the power set-points and determine the efficiency.

Initially, the round-trip charge and discharge efficiencies for all power level, ηc(p)
and ηd(p), are assumed to be 1. The energy storage is charged and discharged at a
constant power set-point for 10s. The power set-points are increased from 1 kW to 15
kW for charging and -1 kW to -15 kW for discharging. The total energy stored and
released for each power set-point are calculated with (5.9).

The DC/DC converter for the energy storage is set to charge and discharge at a
different power setpoints for a fixed time interval of 10s. The total energy for power
set-point p are calculated from (5.9).

Total Energy(p) = Pess(t) × t (5.9)

where Pess(t) and t are the power setpoint and total time respectively.
Fig. 5.13 shows a comparison between the actual and model SoC with a constant

efficiency of 1. The model consistently has a higher maximum and minimum SoC.
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Fig. 5.13 Left axis, SoC of actual and model storage. Right axis, power set-point.
Efficiencies of power converters and storage system are assumed to be 1.

The total energy stored and released of the actual energy storage for each power
set-points can be obtained experimentally. These values are compared with the model.
The estimated efficiencies are calculated using (5.10).

η(p) = Model Energy Stored (p)
Actual Energy Stored (p) (5.10)

Table 5.9 shows the estimation of the power converters and storage efficiencies.
This table is implemented into the Simulink model as a lookup table to extrapolate
the efficiencies at different power levels.
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Table 5.9 Estimation of power converters and ESS efficiencies

(a) Total energy stored

Power Setpoint (kW) Actual Energy (kWh) Model Energy (kWh) ηc

1 0.0312 0.0278 0.89
2 0.0540 0.0556 1.03
3 0.0779 0.0833 1.07
4 0.1158 0.1111 0.96
5 0.1421 0.1389 0.98
6 0.1735 0.1667 0.96
7 0.1936 0.1944 1.00
8 0.2322 0.2222 0.96
9 0.2555 0.2500 0.98

10 0.2885 0.2778 0.96
11 0.3180 0.3056 0.96
12 0.3374 0.3333 0.99
13 0.3722 0.3611 0.97
14 0.3996 0.3889 0.97
15 0.4315 0.4167 0.97

(b) Total energy released

Power Setpoint (kW) Actual Energy (kWh) Model Energy (kWh) ηd

1 0.0256 -0.0278 1.09
2 0.0577 -0.0556 0.96
3 0.0800 -0.0833 1.04
4 0.1192 -0.1111 0.93
5 0.1454 -0.1389 0.95
6 0.1723 -0.1667 0.97
7 0.1999 -0.1944 0.97
8 0.2307 -0.2222 0.96
9 0.2593 -0.2500 0.96

10 0.2949 -0.2778 0.94
11 0.3176 -0.3056 0.96
12 0.3420 -0.3333 0.97
13 0.3776 -0.3611 0.96
14 0.4010 -0.3889 0.97
15 0.4001 -0.4167 1.04
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Mean absolute percentage error (MAPE) in (5.11) is used to quantify the agreement
between the simulation model and experimental results.

M = 1
m

m∑
t=1

|St − Et

St

| (5.11)

where m, St and Et are the total number of samples, simulation data and experimental
data for time t respectively.

From Table 5.10, the MAPE of SoC and Pess are 1.87% and 1.66% respectively.
This shows a good agreement between the model and experiment hence affirms the
feasibility of the model and controller operation in real-time.

Table 5.10 MAPE of simulation and experiment

MAPE (%)
SoC 1.87
Pess 1.66

Fig. 5.14 shows the difference between the actual storage system and the model
SoC. The experimental result shows that the SoC MAPE of the lookup table approach
is lower than a constant efficiency.

Fig. 5.14 Top, SoC of actual and model storage. Bottom, error between actual SoC
and model SoC. Efficiencies of power converters and storage system are based on Table
5.9
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The generalized energy storage model closely resemblance the SoC of an actual
storage system. The efficiencies for different power levels are obtained experimentally.
Empirically result shows that it better represents the actual storage instead of a
constant efficiency for all power levels.

The difference in SoC between the model and actual storage system is reduce with
an efficiency lookup table. The lookup considers the nonlinear characteristics of the
power converters and storage system. The values for the lookup table are obtained
experimentally using the SoC difference between the model and actual storage system.

The advantages of using a generalized energy storage model with lookup table are
as follows:

• This model can be applied to different storage technology

• The lookup is obtained experimentally from the actual storage technology

There are many methods to model an energy storage system, generally they consider
similar characteristic such as power and energy rating, and efficiency [59]. A generalized
model with lookup table is a compromise between high complexity and high accuracy.
As the aim of this thesis is the operation of a storage than modeling of storage, a
generalized model with lookup table would be suffice. The generalized model can be
applied to different types of storage technology during actual implementation. Whereas
a complex model only applies to that specific storage technology.

5.3.2.7 Experimental Results

Fig. 5.15 compares the simulation power profile of ESS and SoC with the experiment.
The SoC of the model can be accurately estimated using the generalized storage model
from (3.10) and the actual ESS can follow the power setpoints from the proposed
controller in real-time.
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Fig. 5.15 Comparison between experimental and simulation results of the proposed
FEMS

5.3.3 Summary of Enhanced FEMS

This section proposed a fuzzy based energy management system whose membership
functions are tuned using NSGA-II. The objectives for NSGA-II are to minimize the
operating cost and average peak load of the grid-connected microgrid with real-time
pricing. The minimization of operating cost and average peak load is formulated into
a multi-objective optimization problem with conflicting objective functions. Expert
knowledge is integrated into the initial population of NSGA-II to obtain a diverse
Pareto front in a single run. Three case studies were conducted in this section. Case
study I and II present a single objective optimization problem, where only operating
cost or average peak load is minimized using standard GA. Case study III presents a
multi-objective optimization using NSGA-II and compared with an aggregated multi-
objective GA. The results show that NSGA-II with expert knowledge in the initial
population of GA is effective for handling multi-objective optimization with conflicting
objective. NSGA-II is also able to obtain a diverse Pareto front. The proposed FEMS
can be deploy to other microgrid with ESS for similar objectives as it is designed based
on the historical data and not a specific storage technology. Furthermore, the proposed
FEMS is experimentally validated and shows good agreement with the simulation.
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5.4 Multi-Service of Single ESS: Reserve Service

This section presents the simulation results for an additional reserve service to the
FEMS. It consists of a randomly generated service request of 15 kW (the storage
maximum discharge rate for the energy storage) for 2 hours at different period of the
availability window.

In this service, the minimum SoC of the ESS depends on the time to service (TTS).
It has a dynamic minimum SoC which ensures that the ESS can provide a minimum
of 15kW for two hours at the start of the service.

Apart from the uncertainties of RES, load and electricity market price, the uncer-
tainty of the reserve request increases the complexity of the operation of ESS using
mathematical optimization methods. It is also challenging to ensure that the ESS have
enough energy at the start of the reserve window, a portion of energy is always reserve
in [151].

The proposed method does not require any forecasting of the uncertain variables or
a constant minimum SoC. It operates in real-time and have a dynamic minimum SoC.
It ensures that the ESS always have enough energy to meet the reserve request at the
start of the reserve window. Furthermore, the dynamic minimum SoC allows the ESS
to be fully utilize during FEMS operation mode.

5.4.1 Simulation Results

The reserve service availability window is shown in Table 5.11. It is assumed that
weekdays are working day and weekends are the non-working day. The service request
can be activated at any time during the available window by the grid operator.

Table 5.11 Reserve service availability window

Working Day Non-Working Day
Start Time End Time Start Time End Time

06:00 13:00 10:00 14:00
19:00 21:30 19:30 21:30

From Fig. 5.16, the ESS minimum SoC is always above 40% at the start of the
reserve window. At the end of each reserve request, if the ESS minimum SoC is less
than the minimum SoC, it will switch to the recovery operation mode which has a
minimum SoC of 10%.
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Fig. 5.16 Operation of energy storage with multiple services

The minimum SoC of the FLC will increase as it is approaching the reserve window
from 10% to 40%. As such the energy storage will always have a minimum SoC of 30%
to meet the reserve request of 15 kW for 2 hours. The reserve service request is met
96.4% of the time during the simulation period.

The reserve service of the ESS occurs during the peak period of the day hence it
will greatly reduce the energy arbitrage opportunities as priority is given to fulfilling
the reserve service. Furthermore, as the number of services for the ESS increases, it
decreases the benefits of other services. For instance, when more reserve service is
requested by the grid operator means less energy arbitrage and peak shaving for the
consumer.

5.4.2 Summary of Multi-Service of Single ESS: Reserve Ser-
vice

This section presented a multi-service operation of single ESS. It demonstrated the
feasibility of having multiple services which benefits both storage owner and grid
operator.
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5.5 Summary

First, an expert designed FEMS is proposed in Section 5.2. The performance of the
FEMS is compared with two benchmarking algorithm and empirical evidence shows
that the proposed FEMS have a better solution on the Pareto front. Second, the
membership functions of the FEMS is enhanced using NSGA-II in Section 5.3. The
performance of the FEMS is further improved in this section. Finally, the feasibility of
a multi-service operation of a single ESS is evaluated in Section 5.4.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

Energy storage system (ESS) has the potential to provide services which supports
the short- and long-term integration of stochastic renewable energy sources and grid
operation. There is an urgent need to develop energy management systems that
can efficiently utilize the potential of the ESS. In this direction, this thesis proposed
and investigates numerous control strategies for multi-service of single ESS using
computational intelligence techniques.

This thesis proposed a mathematical model for a grid-connected microgrid and
ESS. The models are used to investigate the proposed methodologies for multi-service
of a single ESS. These models can be modified to suit other microgrid configuration
and storage technology. Furthermore, it allows rapid development, evaluation and
comparison between different control strategies.

A forecasting-based methodology is proposed and investigated. The hyperparame-
ters of the artificial neural networks (ANN) are tuned with the historical demand data.
The mean absolute percentage error (MAPE) for extreme learning machine (ELM)
is between 4.92% to 5.01% with a computation time of 7463s. The MAPE for deep
belief network (DBN) is between 4.83% to 4.87% with a computational time of 10421s.
Since the improvement is marginal compared to the increase in computation time,
ELM is used as the forecasting method. After the forecast are obtained, the day-ahead
operation of the ESS is formulated into a deterministic multi-objective optimization
problem. The operation cost is used as the objective function and the peak demand
is formulated as one of the inequality constraints. In this manner, the mixed integer
linear programming (MILP) considers both services during the optimization process.
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The operating cost is reduced from $127.56 to $89.58, with a peak demand of 32.78
kW when minimizing the operating cost. The true-optimum operating cost is $41.21
with a peak demand of 36.54 kW for minimizing operating cost. When peak demand
is added as an inequality constraint, the operating cost is slightly increased to $90.60
and the peak demand is reduced to 24.67 kW. The true-optimum operating cost is
$45.84 with a peak demand of 7 kW for peak demand reduction. The drawback of this
forecasting-based approach is the reliance on accurate day-ahead forecast. Furthermore,
MILP can only obtain a single solution and not a set of Pareto solutions to investigate
the trade-off relation between different objectives.

Multi-objective optimization using MILP requires additional changes to the problem
formulation. This is achieved by modifying all but one of the objective functions into
constraints or using a weighted sum approach. Among these approaches, Pareto optimal
solutions cannot be obtained from MILP in a single run. Modifying all but one of the
objective functions into constraints requires the user to determine the upper or lower
limit of the constraints. A weighted sum approach requires testing different values of
weight.

The uncertainties of the stochastic variables are considered using a fuzzy logic-based
energy management system (FEMS). The FEMS is designed based on the historical
data of the microgrid and does not rely on any forecast. The multi-services of a
single ESS are considered in the designing of fuzzy rules. Empirical evidence from a
comparison between FEMS and MILP shows that the FEMS is a dominant solution.
The operating cost and standard deviation of Pgrid are reduced from $2205.54 to
$2141.23 and 7.84 to 5.42 respectively. The load factor is increased from 0.28 to 0.32
which signify a smoother power profile for Pgrid. The FEMS is enhanced by using
NSGA-II to tune its fuzzy membership functions. The operating cost and average peak
load (APL) are reduced from $4780.6 to $4681.9 and 12.5 kW to 10.2 kW respectively.
The best compromise solution is chosen from the Pareto optimal set and used in the
experimental validation on the energy storage test bed (ESTB) in Newcastle University,
UK. The difference between the ESS model and ESTB are validated using MAPE. It
has a MAPE of 1.87% and 1.66% for state-of-charge estimation and Pess. This shows a
good agreement between the ESS model and ESTB.

An additional reserve service is added on top of the energy arbitrage and peak
demand shaving service of the ESS. The minimum SoC of the ESS varies according
to the time-to-service. Hence the controller ensures that there will be enough SoC at
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the start of the service to provide a minimum of 15kW for two hours. The proposed
controller is able to meet the RS 96.4% of the time.

While it is attractive to add more services to a single ESS it must be considered
prudently. The multi-service of single ESS makes the mathematical formulation and
quantifying the benefits challenging. Furthermore, it would drastically increase the life
cycle of the ESS which is not considered during the planning phase.

The complexity and dimension of the problem drastically increase with the additional
of more services. It is challenging to solve with mathematical optimization methods.
Computational intelligence techniques such as fuzzy logic controller and multi-objective
evolutionary algorithm are well-suited in this context where a good enough solution is
sufficed.

6.2 Future Works

In this thesis, two approaches for multi-service of single ESS are proposed. In the first
approach, a forecasting-based MILP scheduling is proposed. In the second approach, a
FEMS enhanced with NSGA-II is proposed. While there has been significant progress,
there are several areas requiring additional research.

• Storage capacity fading are not considered in this thesis, however it does not have
a huge impact compared to the financial benefits it obtained from the energy
arbitrage operation. Sizing of ESS for multi-service of single ESS. Short-term
benefits with its provision of service and long-term cost associated with its effect
on capacity degradation.

• For a higher accuracy forecast, the data can be clustered using clustering tech-
niques such as k-nearest neighbor (k-NN). For instance, k-NN can be used to
classify the load data into working day and nonworking day or photovoltaic power
into seasonality. These data can be used to train different ANN models designed
specifically to forecast the different data.

• In this research, it is assumed that the energy arbitrage operation of the ESS
would not have a significant impact on the real-time electricity market price. This
is applicable when the numbers of grid-connected microgrid is small. When there
are a large number of grid-connected microgrid operating in this manner, it is
important to develop an advance market mechanism to study this phenomenon.
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• Following this direction, the alteration of the demand profile after multi-service of
single ESS needs to be studied. The power flow, voltage and frequency deviation,
transmission constraints of the power system under multiple grid-connected
microgrids needs to be thoroughly investigate.
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