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Protein phosphorylation is one of the most abundant forms of post-

translational modification and regulates nearly every aspect of cell biology. 

Understanding the function of a particular phosphorylation event depends to a 

great extent on identifying the kinase responsible for catalysing it. However, 

while advances in mass spectrometry based phosphoproteomics have seen 

an explosion in the ability to detect phosphorylation events occurring in cells, 

methodological limitations make identifying the kinase responsible for specific 

phosphorylation events challenging.  

 

This thesis explores this problem, beginning with a discussion of the 

determinants of kinase-substrate specificity in a cell. This is followed by a 

review of methodologies currently available for identifying kinases responsible 

for specific phosphorylation events, and a chapter exploring the utility of one of 

these techniques (siRNA kinome screening) for identifying kinases required for 

specific histone phosphorylation events in mitosis. 

 

We then report the development of KiPIK screening (Kinase Inhibitor Profiling 

to Identify Kinases), a novel general method for identifying the kinase 

responsible for a phosphorylation event of interest. The method exploits the 

fact that in recent years large numbers of kinase inhibitors have been profiled 

for inhibitory activity on near-kinome-wide panels of recombinant kinases. The 

method treats the inhibitory information for each kinase as a ‘fingerprint’ for 

the identification of kinases acting on target phosphorylation sites in cell 

extracts. In this thesis we detail the development of the technique and validate 

it on diverse known kinase-phosphosite pairs, including two mitotic histone 

phosphorylations carried out by Haspin and Aurora B, EGFR 

autophosphorylation, and the phosphorylation of integrin 1 by Src-family 

kinases. Finally, we use it to identify the kinase responsible for an as yet 

unassigned mitotic phosphosite on the Chromosomal Passenger Complex 

component INCENP.  
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KiPIK screening is broadly applicable and technically straightforward. In 

addressing the methodological insufficiency in this fundamental area, it has 

the potential to benefit research widely.    
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Chapter 1. Introduction 

 

 Overview  

 

In recent years advances in mass spectrometry-based phosphoproteomics have led 

to an explosion in the detection of phosphorylation events occurring in cells (von 

Stechow et al., 2015). However, understanding the biology controlled by a particular 

phosphorylation event depends to a great extent on being able to identify the kinase 

responsible for catalyzing it. Unfortunately, the methods available for assigning 

kinase-phosphosite dependencies are limited. Consequently, our ability to benefit 

from our expanding knowledge of cellular phosphorylation events is severely 

hampered.  

 

The problem of assigning kinases to identified phosphorylation sites is the focus of 

this thesis.  

 

The sections of this Introduction include: a general introduction to protein 

phosphorylation in the cell; an overview of the mechanisms by which kinase-

substrate specificity is achieved in the cell; and a review of available methodologies 

for determining physiological kinases for specific substrates.  

 

  Protein phosphorylation in the cell 

 

 Overview 

 

Protein phosphorylation is one of the most abundant forms of post-translational 

modification and regulates nearly every aspect of cell biology. By some estimates, 

more than 75% of the human proteome undergoes phosphorylation (Sharma et al., 

2014).  Acting as a reversible molecular switch, it serves to modulate the biology of 

individual proteins and the cellular processes in which they are involved. It regulates 

protein-protein interactions, activation states, serves as the main conduit in many of 
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a cell’s signalling processes, and facilitates the transformations in cellular biology 

required as a replicating cell moves through the cell cycle.  

  

 Mechanism 

 

Protein phosphorylation is the post-translational modification of a protein by 

covalent attachment of a phosphoryl group to one (or more) of its amino acid 

residues. In a cell, phosphorylation comes about as the result of an enzymatic 

reaction catalysed by a specialised family of proteins known as kinases.   

 

Kinases are a diverse family of proteins (see 1.2.4) but share a conserved catalytic 

core which contains an ATP binding cleft and substrate binding site. Kinases 

catalyse the transfer of -phosphate from a donor ATP molecule onto their 

substrate; resulting in the release of ADP and a phosphorylated substrate protein 

(de Oliveira et al., 2016). In eukaryotes, protein phosphorylation is typically 

restricted to serine, threonine and tyrosine residues (Ubersax and Ferrell, 2007).  

 

 Functional consequences   

 

Phosphoryl groups are dianionic at physiological pH and capable of forming 

extensive hydrogen bond networks. Consequently phosphorylation can have  

profound effects on the structure and function of proteins (Johnson and Lewis, 

2001).  

 

Conformational changes 

 
One common result of phosphorylation is the alteration of molecular interactions 

within a protein, which can cause extensive conformational change in the 

phosphorylated protein.  Kinases themselves are often regulated in this manner. A 

highly conserved feature of protein kinases is an ‘activation loop’ whose 

phosphorylation is usually critical in inducing a conformational change around the 

active site of the kinase. This conformational change repositions catalytically 
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important residues in the kinase active site crucial for its enzymatic activity (Kornev 

et al., 2006).   

 

Protein-protein interactions 

 

Phosphorylation induced changes in protein conformation and charge can also 

extensively modulate protein-protein interactions (Child and Mann, 2006).  

Moreover, there are conserved phosphorylation binding domains (PBDs) found in 

hundreds of proteins in the cell. PBDs typically recognise and bind specific short 

linear amino acid motifs in a phosphorylation dependent manner, thereby 

functioning as phosphorylation recognition modules for the proteins in which they 

are found (Yaffe and Elia, 2001) (Schlessinger and Lemmon, 2003). 

  

Systemic effects 

 

By regulating the conformation and interactions a protein makes, phosphorylation 

facilitates dynamic changes in the function of proteins and the larger cellular 

processes in which they are involved.  

 

 The human kinome 

 
The human kinome comprises more than 500 genes. This number represents 

almost 2% of the genome and underlines the importance of kinases in regulating 

cellular processes (Manning et al., 2002).  

 

The kinome has been divided into 7 major subfamilies through phylogenetic 

analysis: AGC, CAMK, CK1, CMGC, STE, TK, TKL. These groupings were arrived 

at primarily by sequence comparison of their catalytic domains. Consequently, there 

are often similarities in substrate binding preferences between kinases with similar 

subfamily groupings (see 1.3.2). In addition there are a number of atypical protein 

kinases which lack sequence similarity in their catalytic domain but have 

demonstrated protein kinase activity (Taylor and Kornev, 2011).  
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 Phosphatases and dephosphorylation 

Protein phosphorylation events can be reversed through the dephosphorylating 

activity of phosphatases. The dynamic nature of protein phosphorylation is essential 

to its utility in the cell; consequently the state of most phosphorylation events 

depends on a balance between competing kinase and phosphatase activities 

(Hornberg et al., 2005, Shi, 2009).  
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      Factors determining kinase-substrate specificity  

 

 Overview 

 
When approaching the problem of which kinase is responsible for phosphorylating a 

particular phosphorylation site it is important to first understand the factors that 

determine the substrate specificity of kinases in a cell.  

 
The factors that determine kinase-substrate specificity can broadly be grouped into 

two major categories: structural differences in the catalytic domain between 

kinases, and regulation of local substrate concentrations (Johnson, 2011, de 

Oliveira et al., 2016, Ubersax and Ferrell, 2007, Miller and Turk, 2018).  

 

 Structural differences around kinase catalytic sites 

 

Structural differences around the catalytic site between kinases is an important 

determinant of substrate specificity. These differences typically include variations in 

the shape, charge and hydrophobicity of the substrate binding site; and have the 

effect of greatly increasing the binding potential of substrates with complementary 

characteristics while excluding others (see Figure 1.2). 

 

Most phosphorylation sites occur in relatively unstructured regions of proteins 

(Zanzoni et al., 2011). Consequently, it is these unstructured regions which have to 

accommodate themselves to a kinase’s catalytic site for phosphorylation to take 

place.  As such, the characteristics determined by the linear amino acid sequence 

directly flanking the phosphorylated residue are of great importance in determining 

substrate specificity. For each kinase particular peptide sequences are more or less 

optimal for binding to the active site and undergoing phosphorylation.  

 

Efforts to characterise which linear sequences are more of less suited to 

phosphorylation by particular kinases have been underway for some time with the 

hope that rules for substrate binding could be determined for each kinase. 

Experiments with libraries of peptides have aided in determining optimum peptide 
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sequences for a number of kinases (Songyang et al., 1994, Hutti et al., 2004). 

However, the cellular substrates of particular kinases can deviate extensively from 

these optimal motifs and from each other (Miller and Turk, 2018).  

 

Work from Mok et al. (2010) used a ‘positional scanning peptide library’ to identify 

individual substrate residues that were particularly important or required for 

phosphorylation by 61 recombinant kinases. The library consisted of 200 distinct 

short peptide mixtures spotted onto a membrane. The peptides consisted of a fixed 

phospho acceptor residue flanked by 4-5 residues either side. Each of the 200 

separate mixtures had in addition to the phosphoacceptor one fixed residue in a 

flanking position, whilst all the other flanking residues were degenerate mixtures. 

The results of in vitro kinase reactions with the recombinant kinases on the library 

peptides indicated that only a few kinases had stringent requirements for particular 

amino acids at multiple residue positions. Most kinases had few or even no 

absolutely required residues in fixed positions but displayed subtle variations in 

phosphorylation efficiency between peptide mixtures containing particular fixed 

residues (Mok et al., 2010).  

 

A key problem in our understanding of how substrate linear sequences contribute to 

specificity is the difficulty in measuring and defining how combinations of different 

residues contribute to catalytic site binding. In a study by (Joughin et al., 2012) the 

authors sought to address this issue by examining interpositional dependence 

between flanking residues in several sets of experimentally verified substrates (of 

specific kinases). Interpositional dependence was examined by measuring the 

frequency of co-occurrence of pairs of amino acids at particular flanking positions 

(within substrates of the same kinase) and comparing this to what would be 

expected by chance. Strikingly only a handful of statistically significant co-

occurrences were detected.  The authors propose that either kinases largely 

recognise each amino acid separately (which they deem biophysically implausible), 

or that individual co-occurrences contribute an energetic effect size to substrate 

binding that is too small for detection on the limited set of substrates the authors 

had available (Joughin et al., 2012). 
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Currently the proportion of kinase-substrate specificity which is conferred by 

substrate linear sequence around the binding site is a matter of debate (Miller and 

Turk, 2018, de Oliveira et al., 2016). Whether a sufficiently detailed understanding 

of the contribution of specific substrate residues, or residue combinations to 

catalytic domain binding for each kinase would allow accurate predictions of kinase-

phosphosite dependencies is unclear. 
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 Regulation of local concentrations of kinases and substrates  

 

Another important determinant of kinase-substrate specificity in cells is the local 

concentration of substrate and kinase. This is affected at the whole cell level by 

overall protein abundance of both kinase and substrates - broadly determined by 

rates of synthesis and degradation of each. Differences in sub-cellular localisation 

can also have a decisive effect on whether particular kinases have access to 

particular substrates. Membrane-bound organelles for example can sequester or 

exclude particular proteins thereby facilitating or limiting the contact between 

particular proteins. The exclusion of mitotic kinases from the nucleus prior to 

nuclear envelope breakdown is a prominent example (Fields and Thompson, 1995).  

 

The regulation of protein-protein interactions hardwired into a cell via protein-protein 

interaction domains also has profound effects on the subcellular localisation of 

kinases and their substrates. 

 

Docking domains 

Besides the substrate binding mediated by interactions at the catalytic site kinases 

frequently have additional binding sites that further regulate their protein-protein 

interactions (Ubersax and Ferrell, 2007, de Oliveira et al., 2016, Miller and Turk, 

2018). In some instances, these can increase kinase-substrate binding directly by 

providing additional interaction sites between them. Mitogen activated protein 

kinases (MAPKs), for example, share a common docking (CD) domain which 

recognise specific motifs found in their substrates (Peti and Page, 2013, Tanoue et 

al., 2000). Another prominent example is the polo-box domain (PBD) shared by 

polo-like kinases.  The PBD of polo kinases functions as a phosphoserine/threonine 

binding domain and plays an important role in substrate recognition and subcellular 

localisation of the polo kinases (van de Weerdt et al., 2008).  

 

Adaptor proteins  

The binding domains of kinases also frequently promote kinase-substrate 

interactions by means of intermediary binding partners. For example, a conserved 

mechanism of substrate recruitment by cyclin dependent kinases (CDKs) is through 
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remote interactions with their cyclin partners. A hydrophobic patch found on cyclins 

mediates CDK/cyclin interactions with substrates containing an RXL motif sequence 

(Brown et al., 1999) .  

 

 

Multi-protein complexes 

Kinase binding domains are also important in the formation of multi-protein 

complexes. These complexes often consist of multiple adaptor and scaffolding 

proteins which coordinate the enzymatic activity of the kinase by the integration of 

their own protein binding properties into the multi-protein complex.  

 

The effect that multi-protein complex inclusion can have on substrate selection by 

kinases can be profound. A dramatic example of this is found with the kinase 

mTOR. mTOR is found in two distinct complexes in cells, mTORC1 and mTORC2. 

Remarkably, despite sharing the same catalytic subunit unique adaptor proteins in 

the 2 complexes result in phosphorylation of entirely distinct substrates (Tatebe et 

al., 2017, Wullschleger et al., 2006).  

 

Similarly, despite sharing a highly conserved catalytic domain the Aurora kinases 

(Aurora A and Aurora B) have very distinct localisations and functions in mitosis. 

Their divergent N termini mediate inclusion into the chromosomal passenger 

complex (CPC) in the case of Aurora B (Carmena et al., 2012), while association 

with the microtubule binding protein TPX2 results in centrosomal localisation of 

Aurora A throughout mitosis (Kufer et al., 2002). The distinct localisation of the two 

kinases results in distinct substrate selection despite the similarity of their catalytic 

domains. Indeed Li et al. (2015) demonstrated that the catalytic domain of each 

could substitute for the mitotic functions of the other by generating chimeric proteins 

(Carmena et al., 2009, Li et al., 2015).   

 

In mitosis, precise and dynamic control of the localisation of multiple kinases is 

essential (Alexander et al., 2011).  The CPC, for example, positions Aurora B at 

multiple locations as cells progress through mitosis via association with several 

different scaffolding/adaptor proteins; in each of these locations Aurora B 

preferentially phosphorylates distinct substrates. Early in mitosis chromatin arms 
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serve as a scaffold for the CPC via interactions of CPC subunits with HP1α (Liu et 

al., 2014, Ruppert et al., 2018, Wang et al., 2010); here extensive phosphorylation 

of H3S10 and H3S28 by Aurora B occurs (Crosio et al., 2002, Fischle et al., 2005). 

As mitosis progresses, the CPC becomes concentrated at centromeres due to the 

H3S10ph induced displacement of HP1 from chromosome arms (Nozawa et al., 

2010) as well as the concentration of CPC binding sites H3T3ph and SGO1 at the 

centromere (Kawashima et al., 2010, Wang et al., 2010) (Yamagishi 2010, Kelly 

2010). In this location, Aurora B phosphorylates numerous targets associated with 

its role in regulating kinetochore-microtubule attachments (DeLuca et al., 2011, 

Carmena et al., 2012). At the onset of anaphase, the CPC is dramatically 

relocalised to the spindle midzone via association with Mklp2 and microtubules (van 

der Horst et al., 2015, Gruneberg et al., 2004) (See Chapter 5 for more detail). This 

relocalisation again favours preferential phosphorylation of a different subset of 

Aurora B substrates.  

 

The function and delineation of classical intracellular signalling pathways also 

depend on the formation of multi-protein complexes for the necessary coordination 

and association of their components. Typically, multi-domain scaffolding proteins 

facilitate co-localisation of pathway components concentrating kinases and their 

substrates and allowing efficient signal transduction (Scott and Pawson, 2009, 

Good et al., 2011).  

 

Substrate availability as determined by abundance and localisation clearly has a 

substantial effect on kinase-substrate selection and phosphorylation efficiency. 

Some have even suggested that regulated protein-protein interactions could be a 

primary determinant in a cell for which proteins are phosphorylated by a particular 

kinase – with the specificity conferred by kinase catalytic site characteristics serving 

the subsidiary role of defining which residues within interacting proteins are 

phosphorylated (Miller and Turk, 2018).  
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      Identifying the kinase responsible for a specific phosphorylation event 

 

 Introduction 

 

Most of the experimental techniques that have been developed to assign kinase-

phosphorylation site dependencies focus on identifying candidate substrates for a 

particular kinase.  

 

Methods that allow an experimenter to identify the kinase responsible for a 

particular phosphorylation site are much more limited. Indeed, we are not aware of 

a method that has found widespread use that can selectively identify direct 

upstream kinases for any substrate. Broadly, existing approaches can be divided 

into three categories: (i) in silico predictions; (ii) screens in intact cells, and (iii) 

biochemical methods, often using cell extracts or recombinant kinases. 

 

 

 In silico prediction 

 

In silico methods attempt to make kinase-phosphorylation site dependency 

predictions by integrating information from datasets of known kinase-

phosphorylation site relationships. Most of these methods base their predictions 

upon the short linear amino acid sequences surrounding phosphosites and 

therefore rest on the assumption that kinase catalytic site recognition of these 

sequences is the primary determinant substrate specificity (as discussed in 1.3.2).  

 

Early approaches for kinase-phosphorylation site prediction took the form of simple 

consensus motifs compiled from the literature. A consensus motif is a simple 

description of amino acids frequently present at particular positions around the 

phosphorylation sites of a particular kinase. ‘S/T-P-X-R/K’ for example is a 

frequently described consensus motif for CDK1 (Amanchy et al., 2007). These 

motifs are appealing in their simplicity but, because of their low information content, 
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have limited use as predictive tools. Frequently a phosphorylation site motif could 

potentially fit the consensus motif of several kinases (many are not mutually 

exclusive), and genuine substrates often only partially fulfil the motif of the 

phosphorylating kinase.  

 

More recently a number of groups have developed machine-learning based tools to 

predict kinase-phosphosite dependencies. Broadly these machine learning 

approaches work by training computer systems on curated datasets of substrates 

classified by phosphorylating kinase. The system generates a multi-dimensional 

predictive model which best-fits the training data into the classifications it has been 

given. Once trained, query data (phosphorylated sites) can be fed into the model 

and assigned a classification (kinase). 

 

The largest repository of curated phosphorylation sites with experimentally verified 

kinases is Phospho.ELM (Puntervoll et al., 2003). With very few exceptions, the 

linear sequence data of substrates with assigned kinases (found on PhosphoELM) 

forms the basis of the training datasets used by machine learning based kinase-

substrate prediction tools. However, a roadblock in the development of powerful 

machine-learning algorithm trained predictive models is the low number of 

experimentally verified phosphorylation sites assigned to many kinases; because of 

this many of the current models are limited in their kinome coverage. 

 

PPSP is a prominent example of a machine-learning based tool for predicting 

kinase specific phosphorylation sites. Using kinase-phosphosite assigned data from 

PhosphoELM PPSP bases its predictions on the 8 amino acids surrounding a 

phosphorylated residue. Substrate sequences (for training or query) are first 

converted by a substitution matrix known as BLOSUM62 which scores amino acids 

based on biophysical similarity (consequently substrate sequences that are more 

biophysically similar are recognised as such by their machine learning algorithm).  

After BLOSUM62 substitution the authors implemented a Bayesian decision theory 

(BDT) algorithm for training predictive models on the PhosphoELM data and were 

able to train models covering 70 protein kinase groups (Xue et al., 2006).  
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In another study Miller et al. (2008) describe the development of NetPhorest, a 

predictive tool based primarily on machine-learning models developed using an 

artificial neural network algorithm (ANN). The authors used a kinase phylogenetic 

tree as a basis for selecting and organising the training data they extracted from 

PhosphoELM. Curating the limited assigned kinase-phosphosite data (from 

PhosphoELM) in this way allowed them to scale back the resolution of their 

predictions in some instances to kinase families rather than individual kinases – 

thereby increasing kinome coverage (but decreasing resolution). It also allowed 

them in other cases (where more assigned kinase-phosphosite data was available) 

to select negative control examples from kinases within the same family; increasing 

the resolution of their predictive models at these parts of the kinome.  For example, 

when training a model to discriminate PKC family substrates, all PKC family 

assigned phosphosites would be used as positive control examples and all non-

PKC assigned phosphosites as negative examples. While, when training models to 

specifically discriminate PKCα substrates all non-PKCα yet PKC family substrates 

were used as negative controls (if sufficient interfamily assigned sites were 

available). The authors also integrated motif predictions from in vitro experiments 

using positional scanning peptide libraries (PSPL) (as described in 1.3.2) to 

increase the kinome coverage of their tool (NetPhorest), selecting the best 

performing classifier (ANN trained or PSPL) for a kinase when there was overlap. 

Overall they were able to generate predictors for 60 subfamilies of kinases 

(covering 179 kinases in total) (Miller et al., 2008)  

 

In a subsequent study from the same group the authors sought to improve on 

NetPhorest by integrating information from STRING (a database of known and 

predicted protein-protein interactions). Most kinase-substrate interactions are very 

transient and therefore few have been demonstrated experimentally (Xue et al., 

2013). Nevertheless by combining likelihood ratios derived from NetPhorest and 

those from STRING the authors report a statistically significant improvement in 

prediction accuracy over NetPhorest (Horn et al., 2014) 

 

A novel tool developed by Brinkworth et al. (2003) takes a different approach to 

kinase-phosphorylaton site specificity prediciton. The basis of this tool (known as 

Predikin) is the conserved nature of the catalytic domains of Ser/Thr kinases. By 



16 
 

analysis of crystal structures the authors determined that clusters of residues in 

conserved positions in the catalytic domains of Ser/Thr kinases make interactions 

with the 3 residues upstream and downstream of a substrate phosphosite 

(Brinkworth et al., 2003). Predikin first identifies these specificity determining 

residues (SDRs) by sequence alignment (for any Ser/Thr kinase).  It then calculates 

for each SDR cluster the probability of each amino acid occurring in the substrate 

(at the position that SDR cluster interacts with). To do this, the program identifies 

kinases with similar SDR clusters and their substrates from experimentally 

determined database entries. The substrates are used to construct a position 

weighted matrix describing the predicted amino acid frequencies occurring in 

substrates at each SDR interacting position (-3 to +3 positions relative to the 

phosphosite) (Brinkworth et al., 2003, Ellis and Kobe, 2011). This technique has the 

advantage that large numbers of verified substrates are not required for each 

kinase in order to infer specificities of further substrates. The known substrates of 

divergent kinases that share similar SDRs in particular positions can be used to 

infer on a position by position basis the likely substrate amino acids for a query 

kinase.  However, the fact that it calculates substrates on a position by position 

basis is also a weakness as information on interpositional dependence is lost (as 

discussed in 1.3.2).  

 

Computational approaches present great advantages in terms of cost and 

scalability for kinase-phosphosite prediction. However, as they are based on 

inference rather than experimentation their accuracy and utility is highly dependent 

on the quality and quantity of training data available. The current lack of 

experimentally verified substrates for many kinases leads to major limitations in 

terms of kinome coverage for computational approaches. It is also clear that at their 

current state of development false positives and negatives are frequent, even when 

combined with contextual information such as protein-protein interaction data.  

Clearly these approaches can only become more powerful as more experimentally 

verified high-confidence kinase-phosphosite dependencies are defined and 

available as model training data.  
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 Screens in intact cells 

This category includes techniques such as kinome-wide RNAi, CRISPR/Cas9 or 

overexpression screens. Such screens are tremendously useful to biologists, but 

they often identify pathways or networks of kinases that are indirectly required for 

phosphorylation of a particular substrate rather than (or in addition to) the direct 

kinase(Friedman and Perrimon, 2006, Ramakrishnan and Rice, 2012, 

Papageorgiou et al., 2015, Azorsa et al., 2010) Indeed, these indirect effects can 

make it difficult to identify the direct kinase for a particular phosphorylation site. For 

example, if RNAi for a kinase impedes cell cycle progression, it is difficult to 

determine whether its effect on a substrate is direct (Moffat et al., 2006) 

 

 Biochemical methods 

 

In the third category are the handful of biochemical approaches that have been 

developed to identify the kinases of specific substrates.  

 

One approach is to screen recombinant kinases in vitro for their ability to 

phosphorylate a purified substrate of interest. Although kinases often display 

substrate promiscuity in a purified in vitro reaction (Peck, 2006, Cheng et al., 1993), 

by screening several kinases on the same substrate, differences in ability or 

efficiency of phosphorylation can be directly compared. Jansson et al. (2008) 

purified 180 GST-tagged human kinases and performed head-to-head kinase 

reactions on a peptide substrate containing a residue of interest (which undergoes 

phosphorylation in vivo). They were able to successfully identify 2 kinases from the 

same family which phosphorylated the peptide with good efficiency and 

subsequently demonstrated that this role was conserved in vivo (Jansson et al., 

2008). However, the broad utility of this approach is limited by concerns of 

specificity, expense and kinome coverage. 

 

Another approach to kinase identification is tracking the kinase activity of interest 

through chromatographic separation of cell lysate. Ji et al. (2010) sought to identify 

the kinase responsible for an important activating phosphorylation on PLK1 

(T210ph) by this means. Beginning with 7-8 x10¹º cells they performed multiple 
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rounds of chromatography on fractions of cell lysate able to phosphorylate a kinase-

dead mutant Plk1 substrate. Subsequently they sent proteins in their final fraction 

for mass spectrometric analysis and identified several candidate kinases (Ji et al., 

2010).  

 

A number of strategies have also been developed that are designed to allow 

upstream kinases to be co-purified with a substrate of interest. Kinase-substrate co-

purification is usually very difficult because of the transient nature of the kinase-

substrate interaction. Following phosphorylation the negative charge of the added 

phosphate group often repels the phosphorylating kinase, quickly disrupting the 

interaction with the substrate (Xue et al., 2013).  

 

Dedigama-Arachchige and Pflum (2016) present a relatively simple strategy to 

cross-link substrates to nearby proteins following phosphorylation. The technique 

known as K-CLASP (Kinase Catalyzed CrossLinking And Streptavidin 

Purification) utilises an ATP analogue ATP-ArN3 (ATP-arylazide) which is accepted 

as a co-substrate by diverse kinases.  The -phosphate of ATP-ArN3 functions as a 

cross-linker when stimulated with UV.  To co-purify proteins interacting with a 

substrate of interest, a biotinylated substrate of interest is subject to a kinase 

reaction in cell lysates in the presence of ATP-ArN3 and UV. Phosphorylation of the 

substrate adds the cross-linker to the phosphorylated site which causes UV induced 

cross-linking to proteins nearby (including the phosphorylating kinase). This 

substrate can then be streptavidin purified and interacting proteins analysed by MS. 

Although the authors were able to co-purify the phosphorylating kinase of a peptide 

they tested the specificity was low; 324 proteins were enriched in total (Dedigama-

Arachchige and Pflum, 2016).  

 

Another approach developed by Maly et al. (2004) and later by Statsuk et al. (2008) 

utilises two modified components to chemo-selectively link a substrate to its 

phosphorylating kinase. The serine/threonine of a phosphorylated site of interest is 

replaced by a cysteine residue, which is capable of crosslinking with proximal 

lysines. Selectivity of the crosslinking with the phosphorylating kinase is ensured by 

the addition of a kinase ATP site binding chemical crosslinker. The crosslinker 
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composes a general protein kinase inhibitor moiety and a cross-linking heterocyclic 

dialdehyde moiety. When a cysteine substituted substrate binds to the active site of 

its phosphorylating kinase the in situ crosslinker catalyses the covalent crosslinking 

of the substrate with a lysine in the kinase active site. Substrate bound proteins can 

then be detected following co-purification. However, while the authors were able to 

demonstrate the effectiveness of this approach in vitro with purified components, 

detection limits of their cross-linking reaction prevented their demonstrating its utility 

in cell lysates. Therefore, significant further development is required before this 

approach could be utilised for non-biased kinase identification.  

 

Zeng et al. (2017) describe a newly developed approach utilising bimolecular 

fluorescence complementation (BiFC) to facilitate co-purification of substrates with 

interacting kinases. In BiFC, 2 fragments of a fluorescent GFP molecule are fused 

to candidate interacting proteins. When expressed together in the same cell, any 

physiological interactions that occur between the fusion proteins will bring together 

the 2 GFP fragments. The GFP fragments readily bind when in proximity forming a 

complete GFP molecule; resulting in a stable interaction between the candidate 

proteins and emitting fluorescence. To adapt this technology for kinase 

identification, the authors co-expressed one fragment of GFP fused to their 

substrate of interest and the other fragment to each kinase in an overexpression 

vector library of 559 kinases. The authors pooled the library of overexpression 

vectors and purified fluorescence complemented complexes using a GFP antibody 

which only detected reformed GFP molecules. Subsequent MS analysis allowed 

them to identify kinases whose interaction was enriched in substrate co-expressing 

cells relative to control co-expressing (background determined by SILAC).  Via this 

methodology, the authors identified 23 interacting kinases for their substrate of 

interest (Zeng et al., 2017). A major limitation of this technique is that it is not 

phosphosite specific. Moreover, kinases can be detected that interact with proteins 

yet have no role in phosphorylating them (for example downstream kinases in a 

signalling cascade). Another concern is that overexpression of proteins can lead to 

false positives.  
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 Chemical genetic approaches for Identifying substrates of specific kinases 

A notable chemical genetic strategy developed in the Shokat lab has proven 

successful in assigning kinase-substrate specificities from the other direction – that 

is by starting with a query kinase and identifying its direct substrates. This approach 

relies on 2 innovations to allow the differential tagging and isolation of 

phosphorylated substrates of a known kinase. The first of these is the mutation of 

sterically important residues within the ATP binding pocket of the query kinase that 

allow it to accommodate bulky ATP analogs which cannot be used by the rest of the 

kinome (Shah et al., 1997). In order to allow efficient isolation of the direct 

substrates of this so-called AS kinase (analog sensitive) the ATP analog used is 

further modified by substituting the terminal oxygen of the γ-phosphate with sulphur. 

In this way, when bulky, sulphur modified ATP (A*TPγS) is provided, direct 

substrates of the AS kinase are thiophosphorylated, whilst substrates of non-AS 

kinases are not. The reactive sulphur (in place of oxygen) on direct AS substrates 

serves as a differentiating starting point for the isolation of these substrates from 

other cellular proteins. In one approach, P-nitrobenzylemesylate (PNBM) is used to 

alkylate the thiophosphate (and other cellular nucleophiles), creating a unique 

cellular epitope (thiophosphate ester) on direct AS kinase substrates. An antibody 

that specifically recognises thiophosphate esters is then used to isolate the AS 

kinase substrate proteins (Allen et al., 2007). An alternative enrichment strategy 

developed by the same group allows the identification of specific phosphopeptides 

phosphorylated by query AS kinases. In this approach, following A*TPγS mediated 

thiophosphorylation, trypsin is used to digest all proteins, and peptide products 

allowed to react with iodacetyl-agarose beads. Thiol-containing groups form 

covalent bonds with these beads and unbound peptides are then washed away. 

Thiophosphopeptides are then specifically liberated by oxidation using the peroxide 

agent Oxone (whereas other thiol containing peptides such as thioether remain 

stable). Phosphopeptide substrates of the AS kinase can then be detected by mass 

spectrometry (Blethrow et al., 2008). AS mutants have been successfully developed 

for numerous kinases and this approach represents a powerful method to 

confidently identify their direct substrates (Hertz et al., 2010). A major limitation of 

this approach is that the toxicity of thiophosphates (they cannot be removed by 

phosphatases) limits its use in intact cells or organisms. As with all 
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phosphoproteomic approaches detection of low abundance phosphorylation events 

is also a challenge (Blethrow et al., 2008).  

 

In another chemical genetic approach developed by the same group mutations are 

introduced in highly conserved ’gatekeeper’ residues to confer sensitivity to specific 

kinase inhibitor analogues (Bishop et al., 2000). The mutations introduced allow 

inhibition of query kinases with bulky inhibitor analogues at low nanomolar 

concentrations (85-fold to 400-fold greater sensitivity than the most sensitive wild 

type kinases). The rapid, monoselective inhibition of specific kinases that this 

method facilitates can be used to explore of confirm the dependency of particular 

phosphorylation events on query kinases. A strength of this approach is that it can 

be used in cells without toxicity; however a cell line in which the endogenous gene 

has been replaced is required for complete inhibition of the target kinase with this 

method.  

 

 

  Mitotic phosphorylation events as test cases in the analysis of methodologies 

for assigning kinase-phosphorylation site relationships 

 Overview  

Throughout this thesis mitotic phosphorylation events are used as test cases in the 

analysis of methodologies for identifying kinases-phosphosite dependencies. Mitotic 

phosphorylation is dynamically regulated by the interdependent actions of multiple 

mitotic kinases. This interdependence can complicate the identification of direct 

kinase-phosphosite dependencies and highlights some of the strengths and 

weaknesses of the methodologies assessed herein.  

 

It is becoming increasingly clear that phosphorylation of the chromatin itself is a key 

facilitator of cell division and, in many instances, phosphorylated histones form key 

components of the regulatory signalling networks governing mitotic progression. 

Below we review some of the roles and regulation of important mitotic histone 

phosphorylation events, several of which are explored in the results sections.  

 

 Histone Phosphorylation in Mitosis 
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Several histone phosphorylation events occur in mitosis, most of which are first 

detected in late G2 or early prophase and decline rapidly in anaphase, but which 

have distinctive localizations on chromosomes. These include H3T3ph catalyzed by 

Haspin, which originates on chromosome arms but becomes focused at inner 

centromeres as mitosis progresses; H3S10ph and H3S28ph catalyzed by Aurora B, 

which first appear at centromeres but spread over the chromosome arms; 

H2AT120ph produced by BUB1, which is found in chromatin beneath the 

kinetochores; and CENP-AS7ph generated by Aurora kinases at centromeres (Hsu 

et al., 2000, Wang and Higgins, 2013, Crosio et al., 2002, Goto et al., 2002, Dai et 

al., 2005, Kawashima et al., 2010, Zeitlin et al., 2001, Kunitoku et al., 2003). Aurora 

B, interestingly, as well as being a direct kinase for H3S10, H3S28 and CENP-AS7, 

appears to act as a “master regulator” of histone kinases in mitosis, as it has roles 

in coordinating the activity of other mitotic histone kinases including Haspin and 

perhaps BUB1 (Wang et al., 2011, Brittle et al., 2007). Below we have described 

known histone phosphorylation modifications in more detail and provided functional 

context. 

 

Displacement 

 

A notable event in the early stages of mitosis is the displacement from 

chromosomes of many of the proteins found on chromatin during interphase. 

Recent studies have implicated several of the histone phosphorylation marks that 

occur during mitosis as causal agents contributing to this displacement. 

For example, early mitosis is notable for widespread repression of transcription, and 

Varier et al. present evidence that a phospho-methyl switch contributes to this 

repression by preventing transcription initiation around phosphorylated H3T3 during 

mitosis (Varier et al., 2010). They show that, in vitro, H3T3ph causes inhibition of 

the interaction between the reader protein TAF3 and its histone target, H3K4me3. 

TAF3 is a subunit of the transcription factor complex TFIID (itself a component of 

the preinititation complex of RNA pol II) and so inhibition of its binding to chromatin 

would be predicted to inhibit transcription. In line with this, ectopic overexpression of 

the H3T3 kinase Haspin, which increases global H3T3ph in interphase (Dai et al., 

2005), causes inhibition of TAF3 mediated transcription activation, and depletion of 

Haspin causes retention of TFIID on chromosomes during mitosis (Varier et al., 
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2010). The purpose of transcriptional repression during cell division is currently 

unresolved but it may be required to allow proper chromosome condensation, or to 

provide a window for resetting of gene expression programs (Egli et al., 2008, 

Wang and Higgins, 2013). Interestingly, in vitro studies indicate a potent displacing 

effect of H3T3ph on other proteins that bind the N-terminal tail of H3 surrounding 

H3K4 (when either methylated or unmethylated, suggesting that a similar 

mechanism may remove multiple proteins from chromatin during cell division (Wang 

and Higgins, 2013). 

 

There is evidence that the archetypal mitotic histone modification, H3S10 

phosphorylation, also operates as part of a phospho-methyl switch. H3S10ph, 

catalyzed by Aurora B, appears in late G2 or early mitosis and is strong throughout 

the chromatin by late prophase. The neighboring residue H3K9 when di- or 

trimethylated, can recruit the Heterochromatin Protein HP1 via its chromodomain 

(Bannister et al., 2001, Nakayama et al., 2001). HP1 recruitment is crucial for 

heterochromatin formation but the bulk of HP1 is displaced in mitosis, despite no 

detectible loss of H3K9 methylation. H3S10ph can weaken HP1 binding to 

methylated H3K9 in vitro, and mitotic displacement of HP1 from chromosomes in 

mammalian cells is prevented by Aurora B inhibition. This suggests that a phospho-

methyl switch operates in mitosis to cause the displacement of HP1 from most of 

the chromatin via H3S10ph (Figure 1.3) (Fischle et al., 2005, Hirota et al., 2005). 

 

Less well established is the function of H3S28ph in mitosis, another modification 

generated by Aurora B that, notably, is found within the same ARKS motif as 

H3S10. Trimethylation of the neighbouring residue H3K27 recruits the Polycomb 

Repressive Complexes PRC1 and PRC2, and a similar phospho-methyl switch 

mechanism might promote the dissociation of these proteins during mitosis. 

However, the evidence for this is more indirect, relying on studies performed during 

interphase and in vitro (Fonseca et al., 2012, Gehani et al., 2010, Lau and Cheung, 

2011). Nevertheless, there are interesting functional implications of such 

mechanisms. For example, the transcriptional status of repressed Polycomb target 

genes may need to be maintained through mitosis from one cell generation to the 

next to maintain cell lineage identity. H3S28ph, and indeed other mitotic marks (e.g. 

H3T3ph), may serve as temporary countermarks through mitosis; allowing the 



24 
 

displacement of transcription factors and other proteins, while retaining underlying 

epigenetic signals (e.g. H3K27me3) required to re-establish transcriptional 

programs following mitotic exit (Wang and Higgins, 2013). 
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Although appealing, phospho-methyl switching might be more complicated than first 

envisioned. For example, phosphorylation may be required, but insufficient, to 

displace HP1 and PRC1: in some experiments H3S10ph or H3S28ph do not 

decrease HP1 or PRC1 binding to H3K9me2/3 or H3K27me3 in vitro (Mateescu et 

al., 2004, Vermeulen et al., 2010). It is possible that the binding of these proteins to 

chromatin involves domains other than their methylation-specific chromodomains 

(Hale et al., 2006, Terada, 2006), and H3K14ac may also contribute to the release 

of HP1 from H3K9me3 (Mateescu et al., 2004). Histone phosphorylation may also 

influence the extent of adjacent methylation in cells, for example by altering the 

recognition of target sites by histone methyltransferases. Further work is needed to 

fully understand the workings of these proposed molecular switches. 

 

Landmarks 

 

Histone phosphorylation marks have roles in defining landmarks on the chromatin. 

During mitosis this is particularly important at the centromere where differential 

phosphorylation helps to define different regions in and around the centromere and 

kinetochore. The establishment of this phosphorylation pattern enables key 

regulatory proteins to be recruited to the right places and at the right times. 

 

The main function of the centromere during cell division is as the site of attachment 

for microtubules of the mitotic spindle. The Aurora B kinase, which functions as part 

of a multi-protein complex known as the Chromosomal Passenger Complex (CPC), 

is fundamental to this process, with key roles in establishing kinetochore structure, 

ensuring the fidelity of microtubule-kinetochore attachments and in mitotic 

checkpoint signalling. Recent studies have demonstrated that H3T3ph functions as 

a direct binding site for the CPC via the BIR domain of its subunit Survivin (Figure 

1.3) (Wang et al., 2010, Kelly et al., 2010, Yamagishi et al., 2010). H3T3ph 

becomes enriched at inner centromeres during mitosis and it is believed that the 

H3T3ph-recruited population of Aurora B contributes to erroneous microtubule 

attachment correction and mitotic checkpoint signalling (Wang et al., 2012, De 

Antoni et al., 2012). 
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The mechanisms that focus the H3T3ph signal at inner centromeres during cell 

division are complicated and not yet fully understood. H3T3ph is restricted to 

mitosis as Haspin activation depends on a priming phosphorylation on residue T128 

by the master mitotic regulator Cyclin B-CDK1. This phosphorylation provides a 

docking site for the Polo-like-kinase PLK1 which performs the multiple further 

phosphorylations of Haspin apparently necessary to fully activate the kinase on 

chromosomes (Zhou et al., 2014, Ghenoiu et al., 2013).  Another important 

component in generating the H3T3ph signal is a positive feedback loop established 

by Aurora B recruitment to H3T3ph. Wang et al.(2011) demonstrated that, while 

Haspin recruits and helps activate Aurora B on chromatin, Aurora B functions to 

activate Haspin through phosphorylation (Wang et al., 2011, Wang et al., 2012). 

Moreover, Aurora B also can function in a complementary manner to prevent 

dephosphorylation of H3T3 by antagonizing the chromosomal binding of the 

phosphatase Repo-Man-PP1 (Qian et al., 2011). These amplification loops drive 

robust H3T3ph generation on chromatin in mitosis, though they do not in 

themselves explain how H3T3ph (or the CPC) accumulates at centromeres. 

 

H2AT120ph is thought to act together with H3T3ph to guide the CPC to 

centromeres (Figure 1.3). The kinetochore kinase BUB1 generates H2AT120ph in 

distinctive patches underlying each kinetochore (Kawashima et al., 2010). The 

H2AT120ph signal draws the Shugoshin protein to the centromere (possibly 

through indirect means), and Shugoshin directly binds the CPC (Kawashima et al., 

2010, Tsukahara et al., 2010). The H2AT120ph region underlying kinetochores 

partially overlaps with inner centromeric H3T3ph and one proposal is that the area 

of intersection between the two marks specifically localizes the CPC (Yamagishi et 

al., 2010). Alternatively the BUB1-H2AT120ph-Shugoshin pathway may trigger the 

Haspin-H3T3ph-CPC feedback loop more strongly at centromeres to provide an 

increased CPC localization signal at the centromere (Wang et al., 2011). In either 

case, this provides an interesting example of how crosstalk between modifications 

on two different histones defines a specific chromosomal domain.      
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Building the kinetochore  

 

The location of centromeres in many organisms is not determined by DNA 

sequence, but rather is determined epigenetically by the presence of nucleosomes 

containing the H3 histone variant CENP-A. CENP-A therefore defines the location 

at which the microtubule-binding outer kinetochore is built. Interestingly the 

deposition of CENP-A into chromosomes happens, unlike canonical histones, 

independently of replication. In human cells, mRNA and protein levels of CENP-A 

peak during late G2 but CENP-A is not integrated into chromatin until mitotic exit. 

Deposition relies on the activity of the assembly factor HJURP, which acts as a 

molecular chaperone for pre-nucleosomal CENP-A (Stellfox et al., 2012). Yu et al. 

demonstrated recently that phosphorylation of CENP-A at S68 by CDK1 inhibits the 

interaction of CENP-A with HJURP (Figure 1. 3). This mechanism ensures that 

integration of CENP-A is delayed until mitotic exit when CDK1 levels fall (Yu et al., 

2015). 

 

Other studies indicate roles for CENP-A phosphorylation in centromere structure 

and function. Bailey et al. report phosphorylation of S17 and S19 in human CENP-A 

and present evidence that these modifications promote the formation of 

intramolecular bridges between CENP-A tails that prevent hypercondensation of 

CENP-A nucleosomes. Overexpression of CENP-A S17A/S19A mutants in cells 

resulted in mitotic defects, and it was proposed that these phosphorylations are 

important for kinetochore integrity (Bailey et al., 2013). The kinase responsible is 

currently unknown.  

 

“Orphan” histone phosphorylation marks in mitosis 

 

A number of other “orphan” histone phosphorylations occur during cell division, for 

which the kinases required and functions are unknown. For example, H3.3S31ph 

shows a strong increase in signal at pericentromeric regions during mitosis (Hake et 

al., 2005). Chang et al. recently showed a role for CHK1 in H3.3S31ph in cancer 

cells displaying alternative lengthening of telomeres (ALT). However, H3.3S31ph 

has an unusual distribution in these cells, covering the whole of the chromosome 

arms in mitosis rather than being restricted to pericentromeric regions. Interestingly, 
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while CHK1 depletion resulted in significant loss of this erroneous H3.3S31ph 

distribution, the typical pericentromeric population remained intact, indicating CHK1 

is unlikely to be the usual mitotic kinase (Chang et al., 2015).  

 

H3T11ph is another modification with a strong mitotic centromeric signal but, 

although a candidate kinase has been proposed, this has never been confirmed in 

cells (Preuss et al., 2003). A yeast study by Govin et al. reveals a role for H3T11ph 

in meiosis: H3T11A mutation compromises sporulation. The kinase responsible 

appears to be the CAMK-family kinase Mek1 (Govin et al., 2010), but this is 

meiosis-specific and does not have a known homologue in metazoans, leaving 

open the identity of cell division H3T11 kinases in higher organisms (Discussed 

further in 3.1.5). Nevertheless, it seems certain that these understudied histone 

phosphorylation events will have important functions during cell division. 

 

 Aims of this Project 

The aims of this project are as follows: 

1. Explore the utility of traditional genetic screens for identifying the kinase 

responsible for specific phosphorylation events 

2. Develop an alternative methodology for identifying the kinase responsible for 

specific phosphorylation events that overcomes some limitations of current 

techniques. 
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Chapter 2. Materials and Methods 

 

2.1 siRNA screens 

Hela cells were grown in 384 well clear-bottomed plates and treated with an siRNA 

kinome library (Dharmacon). Interferin-HTS was used for transfection, according to 

the manufacturer’s instructions. 42 hours after siRNA transfection, cells were 

accumulated in mitosis for 6 hours by addition of 200 nM Nocodazole or 300 nM 

Taxol, and immunofluorescently stained. Average fluorescence intensity 

(integrated) for mitotic cells (defined as cells positive for either stained mitotic 

histone mark) was measured using a widefield Nikon microscope (Eclipse Ti-E) 

equipped with High-Content Analysis software. Experiments were carried out in 

quadruplicate and Excel was used to calculate the standard score for each repeat 

(n=4); p-values were calculated using one-sample t-test for each siRNA treatment. 

Appoximately 300 cells were measured for each siRNA treatment.  

 

2.2 Other high-content imaging-based quantitation of cell populations 

HeLa cells were grown in 96 well clear-bottomed plates. Following treatment as 

described in the relevant section, they were imaged using a widefield Nikon 

microscope (Eclipse Ti-E) equipped with High-content analysis software. Average 

fluorescence intensity (integrated) for mitotic cells (defined as cells positive in either 

stained mitotic histone mark). 

 

2.3 Immunoblotting 

HeLa cells were lysed, or in vitro kinase reactions stopped, in NuPAGE LDS sample 

buffer and boiled at 95°C for 5 minutes. Samples were then loaded onto 4-12% 

NuPAGE Bis-Tris gels and run for 1 hour at 180V. Proteins were then transferred 

onto a PVDF membrane in transfer buffer (1 hour, 70V, wet transfer). The 

membrane was then blocked with 2.5% milk in PBS-Tween for 1 hour, and then 

incubated with the appropriate primary antibodies overnight at 4°C (diluted in 2.5% 

milk in PBS-Tween). Next, the membrane was washed 3 times for 5 minutes with 

PBS-Tween, and then incubated for 1 hour with appropriate secondary antibodies 

(diluted in 2.5% milk in PBS-Tween). This was followed by 3 more washes with 
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PBS-Tween and 1 wash with PBS (all 5 minutes). ECL western blotting substrate 

was then applied to the membrane and signal detected with X-ray film.   

 

2.4 Peptide ELISA 

Pierce High Capacity Streptavidin coated 384-well plates were used. Prior to 

biotinylated peptide addition, plates were washed 3x with 60 µl/well TBS-Tween. 

Biotinylated peptides were then added and incubated at room temperature for 2 

hours, then washed 3x with 60 µl/well TBS-Tween. Then primary antibodies added, 

40 µl/well, diluted in TBS-Tween with 0.1% BSA, then incubated at room 

temperature for 2 hours. Then plates were washed 3x with 60 µl/well TBS-Tween. 

40 µl/well of secondary antibodies in TBS-Tween with 0.1% BSA was then added, 

and incubated for 1 hour at room temperature. Then plates were washed 3x with 60 

µl/well TBS-Tween, and 40 µl/well TMB substrate was added and blue colour 

change allowed to develop (for at least 10 minutes). Colour development was 

stopped by addition of 20 µl/well of 2N H2SO4. 

 

2.5 Cell extract preparation 

Mitotic extract  

Cells were grown to confluence in T300 tissue culture flasks and treated with 300 

nmol Nocodazole for 12 hours. Mitotic cells were collected by shake off, washed 1x 

with PBS and lysed in chilled P buffer on ice (1 ml of P buffer/ T300 flask of mitotic 

cells). Lysate was immediately flash frozen in liquid nitrogen.  

 

A431 extract (EGF stimulated) 

A431 cells were grown to confluence in T300 tissue culture flasks. Cells were 

trypsinised and then collected in prewarmed DMEM media supplemented with 50 

ng/ml of human EGF (Cell signalling). Cells were then returned to a 37ºC incubator 

for a 5 minute incubation with EGF. Cells were then spun down at 1200 rpm, 

washed with 1x prewarmed PBS, and lysed in chilled P Buffer on ice (1 ml of P 

buffer/ T300 flask). Lysate was immediately flash frozen in liquid nitrogen. 

 

2.6 KiPIK extract calibrations 
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All pipetting was performed with a Biomek FX liquid handling robot (Beckman 

Coulter). Reactions were performed in 384 well microplates. 

 

384 well reaction plates are prepared as in 2.7, but no inhibitors were added to 

wells. Instead, wells were prepared either with or without peptides, after which 5, 2, 

1 or 0.5% cell extract (final concentration) was added synchronously from the same 

solution of freshly thawed cell extract in KiPIK buffer. Different % extract was 

applied to different wells by the addition of different volumes, reciprocal amounts of 

KiPIK buffer were preloaded into well before extract addition, bringing the final 

volume to 35 µl per well (final concentration: +/- 0.1 µM Peptide; 0.2 mM ATP; 5, 2, 

1 or 0.5% cell extract; diluted in KiPIK buffer). 

 

After extract addition, reaction plates were immediately transferred to a 30°C 

incubator, and incubated for 30 minutes. 

 

During the incubation Pierce High Capacity Streptavidin coated 384-well plates 

were washed 3x with 60 µl TBS-Tween per well. After this, 10 µl of 500 mM EDTA 

diluted in dH2O was added to each well of the Streptavidin plate. 

 

After the 30 minute incubation, the reaction plate solution was transferred into the 

Streptavidin coated plate and an ELISA performed (described in 2.4) to measure 

phosphorylation levels.  

 

2.7 KiPIK screen 

All pipetting was performed with a Biomek FX liquid handling robot (Beckman 

Coulter). Reactions were performed in 384 well microplates. 

 

First 10 µl of kinase inhibitors were plated into the 384-well microplates in duplicate, 

diluted to 35 µM in Kinase reaction buffer. Next, 10 µl of KiPIK buffer with 0.35 µM 

peptide and 0.7 µM ATP were added to each well. Plates were then placed on ice. 

Next, cell extract was thawed and diluted into chilled kinase reaction buffer (at 2.3x 

the appropriate final % extract concentration, determined by calibration), vortexed 

briefly, and 15 µl added synchronously to each well of the peptide, inhibitor, and 
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ATP-containing reaction mix, bringing the total volume to 35 µl (final concentration: 

10 µM inhibitor, 0.1 µM peptide, 0.2 mM ATP, % cell extract determined by 

calibration, diluted in KiPIK buffer). Each plate also included DMSO (60 wells) 

(DMSO instead of inhibitor added) and EDTA control wells (10 µl of 500 mM EDTA 

in place of 10 µl inhibitors). After extract addition, reaction plates were immediately 

transferred to a 30°C incubator, and incubated for 30 minutes. 

 

During the incubation, Pierce High Capacity Streptavidin coated 384-well plates 

were washed x3 with 60 µl TBS-Tween per well. After this, 10 µl of 500 mM EDTA 

diluted in dH2O was added to each well of the Streptavidin plate. 

 

After the 30 minute incubation, the reaction plate solution was transferred into the 

Streptavidin coated plate and an ELISA performed (described in 2.4) to measure 

phosphorylation levels.  

 

Following ELISA, a standard score was calculated for each inhibitor treatment in 

Excel (using the mean of duplicates). Standard score = (Inhibitor absorbance - 

mean absorbance of DMSO controls)/ standard deviation of DMSO controls. Next 

% change (% inhibition) of each inhibitor was calculated with the lowest standard 

score on the plate defined as 100% inhibition (either EDTA control wells or the 

lowest scoring inhibitor) (calculation: %inhibition = (inhibitor standard score / lowest 

standard score)*100). % inhibition scores for all inhibitors were then compiled as 

the inhibition ‘fingerprint’ of the phosphorylation event probed.  

 

Using Prism (GraphPad), Pearson’s correlation was then calculated for this 

‘fingerprint’ against the inhibition profiles of each of the kinases which were profiled 

in vitro against that inhibitor library.  

  

2.8 Cell culture 

HeLa Kyoto or A431 cells were grown in DMEM medium supplemented with 5% 

(v/v) FBS and 100 U/ml Penicillin-Streptomycin, at 37⁰C and 5% CO2 in a humid 

incubator. Cells were passaged as required every few days with trypsin.  
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2.9 Indirect immunofluorescence  

2.9.1 Sample preparation 

HeLa cells were grown on polylysine-coated glass coverslips (Poly-L-Lysine, 

Sigma, or on Greiner uClear 384 well microplates for Kinome siRNA screens (2.1), 

or uClear 96 well microplates for other high-content assays (2.2).  

 

Cells were fixed for 10 minutes with 2% paraformaldehyde in PBS. They were 

washed twice in PBS, and then permeabilized for 2 minutes with 0.5% Triton (in 

PBS). After washing twice in PBS, the cells were incubated for 1 hour in blocking 

buffer (5% milk in PBS-Tween) at room temperature with shaking. They were then 

incubated for 1 hour with primary antibodies at 37⁰C (as indicated) diluted in 

blocking buffer. After washing twice with PBS-Tween, the plates were washed twice 

with PBS, then incubated for 45 minutes with secondary antibodies at 37⁰C (as 

indicated) diluted in blocking buffer. After washing twice with PBS tween, twice with 

PBS, and once with milliQ H2O, coverslips were mounted on microscope slides (or 

in 384 well microplates, where appropriate) using Prolong gold (for cover slips) 

(Invitrogen) or Fluoromount-G with DAPI (for microplates) (Invitrogen).  

  

2.9.2 Imaging 

Cells grown on coverslips were imaged with a Zeiss Axio Imager microscope using 

a Plan-Apochromat 100x/1.40 Oil objective. Optical sections were acquired every 

0.1 µM using an AxioCam MR R3 camera. Image stacks are displayed as maximum 

intensity projections.  

 

2.9.3 High-content imaging 

High content imaging was carried out using a Nikon Eclipse Ti-E inverted 

microscope utilising the Nikon High Content Analysis (HCA) software package.   

 

2.10 RNA interference 

siRNA kinome screens utilised Interferin-HTS transfection reagent (PolyPlus) 

according to the manufacturer’s instructions. 

 



35 
 

All other siRNA transfections were carried out using Lipofectamine RNAiMAX 

(Invitrogen), according to manufacturer’s instructions, and at a concentration of 50 

nM. Cells were harvested for immunoblotting or fixed for immunofluorescence 48 

hours post siRNA treatment.  

 

2.11 In vitro kinase reactions 

Reactions were carried out in 50 µl Kinase reaction buffer with 0.25 µg of each 

substrate, and 0.05 µg of recombinant kinase  

 

2.12 Buffers 

“P” buffer 

50 mM Tris, 0.25 M NaCl, 0.1% Triton X100, 10 mM MgCl2, 2 mM EDTA, 1 mM 

DTT, pH7.5 (+ 1/1000 protease inhibitor cocktail [Sigma P8340], 1 mM PMSF, 0.1 

µM okadaic acid, 10 mM NaF, 20 mM -glycerolphosphate), phosphostop tablets 

(Roche)(1 tablet / 10 ml). PMSF added just before use. Phosphostop was added 

just before use. 

 

KiPIK buffer 

50 mM Tris, 10 mM MgCl2, 1 mM EGTA, 10 mM NaF, 20 mM -glycerolphosphate, 

pH to 7.5 with HCL. Just before use (with cell extract), 1mM PMSF, 1 tablet of 

Phosphostop / 10ml, pH 7.5 

 

Kinase reaction buffer 

20mM HEPES, 0.14 M NaCl, 3 mM KCl, 1 mM ATP, 5 mM MgCl2  pH 7.4 

 

Transfer buffer 

PBS-Tween 

TBS-Tween 

 

2.13 List of peptides 

INCENP peptide. Biotin-GPREPPQSARRKRSY 

EGFR peptide. Biotin-ADEYLIPQQ 
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H3 1-21 peptide C-terminal biotin. Epicypher 

H3 21-44 peptide C-terminal biotin. Eurogentec 

Integrin β1 tail peptide. Biotin-GGKSAVTTVVNPKYEGK. Eurogentec 

2.14 List of antibodies 

Primary Antibodies 

Target (name) Species Source Dilution 

H3T11ph (Fw_B) Rabbit  1:2000(IF/WB) 

1:10K (KiPIK 

ELISA) 

H3S10ph (3H10) Mouse Millipore (05-806) 1:2000 

H2BS6ph Rabbit  1:1000  

H3T3ph (16B2) Mouse (monoclonal) H. Kimura. Tokyo 

Inst. Technology 

1:2500 (IF) 

H3T3ph (8634) Rabbit Higgins Lab 1:2000 (ELISA) 

DDR2  Goat R&D systems 

(AF2538) 

1:1000 

β-Actin Mouse (monoclonal) Sigma-Aldrich 

(A2228) 

1:2000 

ACA Human  1:2000 

H3S28 Mouse (monoclonal) H. Kimura. Tokyo 

Inst. Technology 

1:2000 

phospho-Tyrosine Mouse (monoclonal) Cell Signalling 

(9411S) 

1:10,000 

INCENP S446ph Rabbit JM Peters. IMP 

Vienna 

1:2000 

(IF)1:1000(WB) 

INCENP TSSph Rabbit M. Lampson. Univ. 

Pennsylvania 

1:1000 

Aurora B (SAB.1) Sheep S. Taylor. Univ. 

Manchester 

1:2000 
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Secondary Antibodies 

 

Target species Source Dilution 

Rabbit (Alexa 

Fluor 488) 

Invitrogen 1:2000 

Mouse (Alexa 

Fluor 594) 

Invitrogen 1:2000 

Mouse (HRP-linked 

IgG) 

Cell Signalling 1:1000 

Rabbit (HRP-linked 

IgG) 

Cell Signalling 1:1000 

Goat (HRP-linked 

IgG) 

R&D systems 1:1000 

Sheep (Alexa Fluor 

647) 

Invitrogen 1:1000 

Human (Alexa 

Fluor 647) 

Invitrogen 1:1000 

 

2.15 Recombinant proteins 

CDK1/CycB Kinase. purified full length GST fusion protein. #7518 Cell Signalling. 

Aurora B active kinase. 14-835 Millipore 

Purified recombinant fragment INCENP (369-583 aa) NBP2-37471. Novus Bio.  

INCENP-GST (826-919 aa). 12-534. Upstate  

INCENP-HIS (1-405 aa). Produced in Higgins lab by Debasis Patnaik.  

 

2.16 siRNA 

DDR2 mission siRNA #1. SIHK0565 Sigma-Aldrich 

DDR2 mission siRNA #2. SIHK0566 Sigma-Aldrich 

NT5M mission siRNA #1. SIHP0373 Sigma-Aldrich 

NT5M mission siRNA #2. SIHP0374 Sigma-Aldrich 

MAPKAPK3 mission siRNA #2. SIHK1232 Sigma-Aldrich 

BUB1B mission siRNA #1. SIHK0210 Sigma-Aldrich 

TTK siRNA. J-004105-12-0002 GE healthcare 
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human GSG2 siRNA duplex. IDT 

Negative control no. 2 siRNA. AM4637. Life Technologies 

 

2.17 Inhibitor profiling datasets 

PKIS1 (as described in (Elkins et al., 2016)) 

PKIS2 (as described in (Drewry et al., 2017)) 
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Chapter 3. Kinome-wide siRNA screening as a method to identify mitotic 
histone kinases 

 

 

3.1 Introduction 

3.1.1 Overview 

We were interested in identifying the kinases responsible for unassigned mitotic 

histone phosphorylation events and decided to test the utility of siRNA screening in 

intact cells as a means to this end.  

 

3.1.2 High-content imaging based siRNA library screening to identify genes 

involved in the regulation of specific phosphorylation events 

Microscopy based high-content imaging siRNA screens have been used by several 

research groups to investigate genes involved in phosphorylation events of interest 

(Azorsa et al., 2010, Papageorgiou et al., 2015, Boutros et al., 2015).   

As a genetic screen performed in intact cells, this type of approach has the 

advantage that it deals with phosphorylation events occurring in their physiological 

context. We decided to explore the utility of this approach for identifying kinases 

involved in specific mitotic histone phosphorylation events. 

 

3.1.3  H3T3ph and H3S10ph  

As covered earlier (see 1.5.2) the mitotic kinase of H3T3ph has been identified as 

Haspin (Dai et al., 2005), while Aurora B is responsible for mitotic H3S10ph (Hirota 

et al., 2005). We used these 2 phosphorylation sites as positive control cases for 

our siRNA screens below.  

 

3.1.4 H2BS6ph 

H2BS6ph is a novel histone phosphorylation site recently identified by our 

collaborators (M. Seibert, L. Schmitz, Justus-Liebig-University, Giessen, Germany). 

They report a strong H2BS6ph signal between prophase and anaphase with 

enrichment at inner centromeres. An siRNA kinome screen was performed (below) 

in hopes of gaining further insight into the regulation of H2BS6ph by mitotic kinases.  
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3.1.5 H3T11ph 

H3T11ph in mitosis 

Phosphorylation of H3T11 was first reported by Preuss et al. (2003). Using an in 

vitro kinase reaction, they observed the serine/threonine kinase Dlk (death-

associated protein (DAP)-like kinase) was capable of phosphorylating core histones 

H3, H4 and H2A, and via phosphoamino acid analysis determined that in all 3 

cases this occurred on threonine rather than serine residues. They determined by 

sequence analysis that on Histone 3 only Thr11 fulfilled the requirement for a Dlk 

phosphorylation site and subsequently raised antibodies against this mark using a 

synthetic phosphopeptide (Preuss et al., 2003).  

 

They then used this antibody to probe the in vivo relevance of H3T11ph and 

determined by western blotting that it did occur in cells but seemed restricted to 

mitosis, evidenced by massive enrichment in nocodazole arrested cells (Preuss et 

al., 2003). They followed this up with immunofluorescence analysis and observed 

H3T11ph particularly between prophase and early anaphase. Furthermore, they 

report enrichment of the signal around the centromere. Finally, they investigated the 

localisation of Dlk and observed a similar pattern of chromatin localisation during 

mitosis as with H3T11ph. They argue that this, combined with the in vitro kinase 

data, strongly suggest a role for Dlk as a centromere-specific histone H3 kinase 

(Preuss et al., 2003). However, they present no experiments demonstrating a 

dependence of H3T11ph on Dlk activity in cells. Additionally, there have not been 

any follow up papers further exploring or confirming a role for Dlk in mitotic 

H3T11ph. Consequently, the identity of the H3T11ph mitotic kinase is in doubt.   

 

H3T11ph in interphase 

Subsequent reports on H3T11ph have confirmed its biological relevance but 

focused instead on interphase functions and its role in disease states. 

Prominent among these is a paper by Shimada et al. (2008) which, contrary to initial 

reports (Preuss et al., 2003), identified phosphorylation of H3T11 throughout the 

cell cycle, not just restricted to mitosis. They determined this by immunoblotting 

synchronized cells over a period of 24 hours and found significant H3T11ph 
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throughout the cell cycle. They went on to identify Chk1 as a kinase capable of 

phosphorylating H3T11 in vitro and found a close correlation between H3T11 

phosphorylation in cells and Chk1 chromatin association. Depleting Chk1 by cre/flox 

recombination resulted in loss of H3T11ph in both untreated and serum starved 

quiescent cells but, interestingly, not in nocodazole treated cells. Moreover, they 

demonstrate rapid H3T11ph loss alongside release of Chk1 from the chromatin 

following DNA damage by UV irradiation. They go on to show increased affinity of 

the acetyltransferase GCN5 for a phosphorylated H3T11 peptide in vitro and 

correlate decreased H3T11ph upon UV treatment with decreased H3K9 acetylation 

in cells. Finally they demonstrate, by ChIP analysis, decreased GCN5 residency 

and H3K9ac at CDK1 and Cyclin B promoters following Chk1 depletion.  They 

propose a model whereby DNA damage causes reduced H3T11ph due to release 

of Chk1 from chromatin, resulting in decreased GCN5 recruitment and acetylation 

of H3K9 at the promotor regions of CDK1 and Cyclin B (Shimada et al., 2008).  

 

Another report identifies a role for H3T11ph in androgen receptor (AR) signalling 

(Metzger et al., 2008). The authors demonstrate that PRK1 is able to phosphorylate 

H3T11 on bacterially expressed H3 fragments and isolated nucleosomes. PRK1 

associates with androgen receptor target promotors upon ligand activation. Using 

ChIP and a PRK1 kinase inhibitor, the authors demonstrate that PRK1 specifically 

phosphorylates H3T11 at these sites in vivo. Similar to the paper by Shimada et al. 

(2008), they propose that this modification impacts the modifications of 

neighbouring H3K9 and H3K14 residues resulting in changes in AR target 

transcription.  

 

More recently, a report from Yang et al. (2012) indicates the tumour cell specific 

kinase PKM2 phosphorylates H3T11 in response to epidermal growth factor (EGF) 

signalling. The authors describe in vitro phosphorylation of H3T11 by PKM2 and 

demonstrate EGF induced H3T11 phosphorylation dependent on catalytically active 

PKM2 in vivo (Yang et al., 2012). They follow this up with experiments supporting a 

model similar to the previous papers in which H3K9ac is enhanced by the 

displacement of histone deacetylase driven by H3T11ph. 
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With the mitotic kinase for H3T11ph in doubt, we decided to perform an siRNA 

screen to identify kinases involved specifically in the mitotic phosphorylation of 

H3T11ph (described below).  

 

3.1.6 Aims 

1. To investigate the effectiveness of kinome-wide siRNA library screening as a 

method for identifying kinases involved in specific histone phosphorylation 

events. 

2. Identify kinases involved in the phosphorylation of H3T11 in mitosis 

3. Identify kinases involved in the phosphorylation of H2BS6 in mitosis 

 

3.2 Results 

3.2.1 siRNA screen design 

We designed our siRNA screening approach such that each screen included 2 

distinct mitotic histone phosphorylation marks; one for which the mitotic kinase was 

well established (either H3T3ph or H3S10ph), and the other an ‘orphan’ 

modification whose mitotic kinase was unknown (H3T11ph and H2BS6ph). 

Consequently, for each screen presented, the 2 modifications serve as an internal 

control for each other.  

 

Figure 3.1 outlines the methodology. Briefly, cells were plated in 384 well plates and 

transfected with an siRNA kinome library the following day (1 kinase per well). 42 

hours after siRNA treatment, Nocodazole or Taxol (see figure legends) was added 

and the cells were incubated for a further 6 hours, during which time a large mitotic 

population accumulated. Cells were then fixed in 2% PFA, DAPI stained and 

immunofluorescently stained for the 2 histone phosphorylation marks. Widefield 

images were then collected at 3 wavelengths corresponding to DAPI and each of 

the histone phosphorylation signals. 

 

These images were then processed by image analysis software to measure the 

average integrated intensity of mitotic cells in each siRNA knockdown treated well, 

for each of the histone phosphorylation fluorescence signals. For the purposes of 
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automated image analysis, a binary mask over each image was first created to 

define ‘cells’ by thresholding objects by DAPI intensity and size. We found that the 

most robust way to automatically define ‘mitotic cells’ was as ‘cells’ with above 

background levels of either histone phosphorylation mark fluorescence signal. 

Finally, an average integrated intensity of ‘mitotic cells’ was calculated for each 

siRNA treatment and p-values determined by one sample t-test for 4 repeats.   

 

The screens are displayed below as volcano plots indicating, for each kinase, the 

effect its knockdown had on average mitotic cell intensity (x-axis: displayed as 

standard deviations from the screen mean) and the p-value results of one sample t-

tests (y-axis: p values displayed as –log).  
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3.2.2 H3T3ph and H2BS6ph siRNA screen 

 

Kinome screen 

First, we performed an siRNA kinome screen to probe for kinases involved in the 

phosphorylation of H3T3 or H2BS6 in mitosis. For staining H3T3ph, we used a 

mouse monoclonal antibody that has been verified for specificity in our lab and 

others (16B2, a gift from Hiroshi Kimura, Tokyo Institute of Technology, Japan). Our 

collaborators (M. Seibert, L. Schmitz, Justus-Liebig-University, Giessen, Germany) 

raised a rabbit polyclonal antibody against H2BS6ph peptides and verified its 

specificity on peptides and immunoprecipitated H2B (data not shown). An siRNA 

screen was performed and costained with both antibodies.  

 

H3T3ph siRNA screen results 

The majority of kinases had a relatively small effect on average H3T3ph intensity in 

arrested mitotic cells following siRNA knockdown; with the majority falling within 2 

standard deviations of the mean (as expected for 95% of samples if assuming a 

normal distribution) (Fig 3.2).  

 

The screen indicated GSG2 (gene name for Haspin kinase) knockdown caused the 

greatest reduction in H3T3ph. While knockdown of DDR2 and Aurora B were the 

next most effective in reducing H3T3ph. Haspin is well established as the H3T3 

mitotic kinase (Dai et al., 2005), providing confidence in the utility of the screening 

approach. Furthermore, Aurora B has been shown both to have an essential role in 

the activation of Haspin (Wang et al., 2011) and a role in preserving H3T3ph from 

dephosphorylation by phosphatases (Qian et al., 2013). The effect of DDR2 

knockdown on H3T3ph was unexpected as there are no reports of a role for DDR2 

in H3T3ph in the literature. 

 

siRNA knockdown of BUBR1 caused a large increase in the intensity of H3T3ph, 

although this was just below the 0.05 level of significance,  
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H2BS6ph siRNA screen results 

 

The mitotic kinases Aurora B and BUBR1 were unambiguously highlighted by the 

siRNA screen (Fig 3.3). Their knockdown caused a clear reduction in H2BS6ph 

intensity, resulting in mean mitotic cell intensities more than 4 standard deviations 

lower than the average for the screen.  Knowing that both Aurora B and BUBR1 

have highly significant roles in mitosis and were unbiasedly highlighted by the 

screen increased our confidence in these hits. 

 

Follow up on the results of the screen by our collaborators also led to interest in the 

role of CDK1 (gene name CDC2) in H2BS6ph (see discussion 3.3.2). 
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3.2.3 Further investigation of DDR2 knockdown effects on H3T3ph 

 

The prominence of DDR2 as a hit in the H3T3ph screen led us to investigate the 

possible role of DDR2 in mitotic phosphorylation of H3T3. To confirm the results of 

the screen, we repeated the siRNA knockdown of DDR2 (with a new different 

siRNA: siDDR2 #1) and measured the integrated intensity for a population of mitotic 

cells (defined by detectable levels of H3S10ph or H3T3ph) (Fig 3.4 A). The effect 

size we observed was small in comparison to GSG2 knockdown, although it was 

statistically significant (unpaired t-test). Conversely DDR2 knockdown had no 

significant effect on H3S10ph intensity in the same cell population.  

 

To ensure we had knocked DDR2 down effectively, we performed a western blot of 

cells treated in the same way (Fig 3.4 B) and probed for DDR2. Although it was 

clear we had dramatically reduced the amount of DDR2, the effect size on H3T3ph 

was again very small. As DDR2 is a receptor tyrosine kinase whose activating 

ligand is collagen (Leitinger, 2011) we also investigated whether growing cells on 

collagen might amplify a DDR2 knockdown effect (Fig 3.4 C). Curiously we 

observed not only a larger effect on H3T3ph but also a clear reduction in H3S10ph. 

The lack of effect of Dasatanib (an inhibitor of DDR2 kinase activity) was curious, 

although possibly a result of the very slow and sustained kinetics of DDR2 kinase 

activity following collagen binding (Vogel et al., 1997). 
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3.2.4 H3S10ph and H3T11ph siRNA screen 

 

Analysis of H3T11ph antibodies  

 

To aid our investigations into H3T11ph we had a polyclonal antibody raised in 

rabbits against a H3T11ph modified peptide (antibody Fw_B). Prior to beginning our 

investigations, it was important to verify the specificity of the new antibody. The 

need for this was particularly underlined by a report demonstrating broad cross-

reactivity across a range of H3 tail modifications for another commercially available 

H3T11ph antibody (Natalya Nady, 2008). Our approach was to set up a synthetic 

peptide array of immobilized H3 N-terminal tail peptides corresponding to a range of 

H3 modifications and combinations of modifications. We then probed our untested 

H3T11ph primary antibody against the array to assess the titre and any cross-

reactivity with other H3 tail modifications by ELISA.  

 

The results indicated a high titre for the antibody. Additionally, they indicated no 

non-specific cross-reactions with any of the peptide modifications tested. 

Importantly, the antibody appears uninhibited in H3T11ph recognition by concurrent 

phosphorylation of the neighbouring H3S10 residue.  

 

Western blotting with the antibody also resulted in a strong band at the expected 

size of Histone 3 when cells were arrested in mitosis, and no signal was detectable 

in asynchronous cells (data not shown). Immunofluorescence in fixed cells revealed 

an unusual pattern of mitotic staining for H3T11ph. While H3T3ph and H3S10ph is 

observable in all mitotic cells from late G2 up until anaphase (at which point they 

both decline), H3T11ph staining was very inconsistent in unperturbed mitotic cells. 
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Small numbers of intensely stained mitotic cells were observable but in most mitotic 

cells H3T11ph was undetectable by immunofluorescence. In contrast if cells were 

treated with inhibitors which arrest cells in mitosis (nocodazole or taxol) H3T11ph 

became observable in almost all mitotic cells.  H3T11ph staining was significantly 

enriched around the centromere, but varied substantially in intensity between 

mitotically arrested cells (Figure 3.5 C) 
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Kinome screen  

An siRNA kinome screen was then carried out to assess the impact of knockdown 

of each kinase in the human kinome on H3T11ph (Figure 3.7) and H3S10ph (Figure 

3.6) in Taxol arrested mitotic cells. Cells were costained with FW_B and a well 

validated commercial monoclonal antibody against H3S10ph (05-806, Millipore). 

 

H3S10ph siRNA screen results 

The changes we measured in H3S10ph were within a narrower range than for the 

other histone phosphorylation marks screened. Only PI4KII caused a greater than 2 

standard deviations change in H3S10ph and scored a P value <0.05 by one sample 

t-test (Figure 3.6) 

 

Surprisingly, siRNA knockdown of Aurora B, which has been well characterised as 

a direct kinase of H3S10ph in mitosis, caused a detectable but only modest decline 

in H3S10ph intensity measurements (Hsu et al., 2000, Crosio et al., 2002).  
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H3T11ph siRNA screen results 

The siRNA screen revealed several genes which had a clear impact on H3T11ph 

intensity relative to the rest of the kinome. Of those with a statistical significance of 

p=<0.05, knockdown of BUB1B, CDC2 and TTK (genes encoding for BubR1, 

CDK1, MPS1 respectively) caused the greatest reduction in H3T11ph. Interestingly, 

these 3 genes are well known mitotic regulators. These were therefore considered 

our primary candidates as potential H3T11ph regulators.  

 

Also if interest, based on statistical significance and deviation from the standard 

range, were NT5M, TNK1, MAPKAPK3 and IKBKE.  

 

Genes whose knockdown caused an upregulation in H3T11ph included another 

prominent mitotic regulator, PLK1. Additionally, it was interesting to note that ASK 

and STK17A, whose knockdown also resulted in high confidence increases in 

H3T11ph, both have proposed pro-apoptotic functions (discussed in 3.3.4).  
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3.2.5 Follow up on H3T11ph hits 

 

Primary candidates (BUBR1, CDK1, MPS1) 

The siRNA screen highlighted BUBR1 as our top candidate for a H3T11ph 

regulating kinase. However, while BUBR1 is well established as having important 

functions in mitosis, Suijkerbuijk et al. (2012) present strong evidence that in 

humans it functions as a pseudokinase with no catalytic activity. It therefore seemed 

likely that BUBR1 was indirectly regulating H3T11ph. Both BUBR1 and MPS1 (gene 

name TTK) have central roles in the formation of the mitotic checkpoint complex. 

We therefore suspected that the highlighting of both BUBR1 and MPS1 in H3T11ph 

regulation could be due to their role in the mitotic checkpoint.  

 

Taxol induces a mitotic arrest by stabilising microtubules and preventing the spindle 

assembly checkpoint (SAC) being satisfied; it therefore relies on the mitotic 

checkpoint complex to mediate this arrest. We therefore suspected that both 

BUBR1 and MPS1 knockdown were compromising our Taxol induced mitotic arrest. 

Confirming this, it was clear that far fewer mitotic cells were being detected in 

BUBR1 or MPS1 siRNA treated wells (approx. 25% and 50% of screen mean 

respectively). However our image analysis parameters ensured that although fewer 

cells were being measured these cells were in mitosis (H3S10ph or H3T11ph 

positive).  

 

To see if the effect of BUBR1 or MPS1 knockdown on H3T11ph could be separated 

from their roles in the SAC, we repeated the siRNA knockdown of MPS1 and 

BUBR1 but arrested cells in either nocodazole, taxol or MG132. In contrast to 
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nocodazole and taxol, MG132 causes cells to arrest in mitosis in a SAC 

independent manner. The strong loss of H3T11ph observed in our screen was 

repeated when cells were arrested in either nocodazole or taxol but, in contrast, a 

dramatic rescue of H3T11ph intensity was observed if MG132 was used (Figure 

3.8). We therefore concluded that the reduction in H3T11ph caused by knockdown 

of these genes was indirect and likely a result of their central roles in the mitotic 

checkpoint (discussed further in 3.3.4). 
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We were curious that such a dramatic difference in H3T11ph intensity was 

observed following BUBR1 or MPS1 knockdown despite the fact that the cells we 

were measuring were still in mitosis (had not yet exited due to SAC compromise). It 

occurred to us that in addition to reduced mitotic cell numbers rapid mitotic exit due 

to BUBR1 or MPS1 loss would also result in a population of mitotic cells which had 

spent less time in mitosis.   

 

To explore if this effect on time spent in mitosis could account for the reduced 

H3T11ph intensity, we arrested cells in taxol for increasing lengths of time and 

analysed the mitotic population by high-content imaging. There was a clear 

increase in H3T11ph intensity across the population of mitotic cells as time spent in 

taxol arrest increased (Figure 3.9). Moreover, when performing the same 

experiment using MG132 to arrest cells (which prevents the entry into mitosis of 

new mitotic cells) it was clear that the entire population was increasing in H3T11ph 

intensity as mitotic arrest time increased. Interestingly, it appears evident when 

plotting individual cell intensities in rank order (from the taxol arrest experiment) that 

this increase in H3T11ph is linear and in direct proportion to time spent in mitotic 

arrest (Figure 3.9 B). Costaining the same cells for H3T3ph revealed that this 

intensity increase over time was unique to H3T11ph; in fact, H3T3ph appeared to 

decrease in cells at 210 minutes or 330 minutes compared to initial mitotic arrest 

levels (30 mins in Taxol). Interestingly conversely to H3T11ph the time induced 

change in intensity of H3T3ph were rescued by MG132 (Figure 3.9 A) (see 

discussion).  

 

Based on this finding we suspected that CDK1 (gene name CDC2) was also being 

highlighted in our screen due to its knockdown shortening the length of mitotic 
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arrest (see discussion). To rule out a direct role we tested in mitotic cell extracts if 

CDK1 inhibition would prevent H3T11ph phosphorylation (see Chapter 4: Figure 

4.2), and determined that it did not.  
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Secondary candidates (NT5M, TNK1, MAPKAPK3 and IKBKE) 

As we were unable to identify a direct kinase responsible for H3T11ph from our 

primary candidates we subsequently investigated possible roles for other kinases 

less prominently highlighted by the screen.  

 

We repeated the screen parameters with different siRNA against NT5M and 

MAPKAPK3 (Figure 3.10). The effects on H3T11ph appeared relatively modest 

compared to GSG2 on H3T3ph - we therefore determined that they were unlikely to 

be direct kinases for H3T11ph. Follow up experiments on TNK1 and IKBKE have 

yet to be performed but as TNK1 is a tyrosine kinase and the effect of IKBKE in the 

screen was modest they are unlikely to have a direct role in H3T11ph.  
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3.3 Discussion 

3.3.1 siRNA screen identification of kinases regulating H3T3ph in mitosis  

Haspin (gene name GSG2) is well established as the kinase directly responsible for 

mitotic phosphorylation of H3T3ph (Dai et al., 2005). The results of our unbiased 

siRNA screen of the kinome were in line with this, clearly identifying Haspin 

knockdown as causing greatest reduction in H3T3ph levels. The unambiguous 

identification of the direct kinase for H3T3ph indicates that the screen was 

performing well. 

 

Aurora B and BUBR1, kinases with prominent roles in mitosis, were also highlighted 

by the screen (although with converse effects on H3T3ph). Aurora B has been 

shown to regulate H3T3ph indirectly through an essential role in the activation of 

Haspin (Wang et al., 2011) and a role in preserving H3T3ph from 

dephosphorylation by phosphatases (Qian et al., 2013). The reduction in H3T3ph 

upon Aurora B knockdown fits well with these reports.   

 

The reasons for increased H3T3ph signal upon BUBR1 knockdown are less clear 

as an inhibitory role for BUBR1 on H3T3ph has not been reported. The results of 

(Figure 3.9) indicate that H3T3ph is susceptible to dephosphorylation in an 

extended mitosis. It was clear that BUBR1 knockdown was compromising our 

mitotic arrest (only 25% of mitotic cell numbers counted compared to screen mean); 

therefore the cells measured in this siRNA treatment will have spent less time in 

mitosis and not incurred H3T3ph dephosphorylation as a result of extended mitosis. 

The reasons for an extended mitosis causing decreased H3T3ph (and increased 

H3T11ph) are unknown but in the case of H3T3ph is presumably reflective of 

increased phosphatase activity on H3T3 relative to kinase activity. In line with 

reports that slow cyclin B destruction occurs during an active checkpoint (in a 

proteasome dependent manner) (Brito and Rieder, 2006), the decrease in H3T3ph 

was rescued if mitotic arrest was induced by the proteasome inhibitor MG132 rather 

than by spindle poisons (Figure 3.9A). CDK1/Cyclin B has an important role in the 

activation of Haspin (Ghenoiu et al., 2013) and also inhibits the H3T3ph 

phosphatase PP1-RepoMan (Qian et al., 2015), therefore its slow degradation over 

an extended mitosis might be expected to cause a reduction in H3T3ph.  
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Another possible contribution to increased H3T3ph levels (following BUBR1 siRNA) 

could be due to BUBR1’s role as a binding site for the phosphatase PP2A-B56 

(Suijkerbuijk et al., 2012). Although PP1γ/Repo-Man is thought to be the major 

H3T3ph phosphatase in mitosis (rather than PP2A)(Qian et al., 2011), PP2A has an 

essential role in targeting Repo-Man to chromatin through dephosphorylation of an 

Aurora B phosphosite on Repo-Man (S893) which when phosphorylated prevents it 

binding chromatin (Qian et al., 2013). Possibly, if this PP2A binding site was lost 

due to BUBR1 knockdown, less dephosphorylated PP1γ/Repo-Man would be 

available for H3T3ph dephosphorylation and H3T3ph would therefore be increased. 

Follow up experiments using MG132 or degradation resistant Cyclin B could be 

performed to assess if BUBR1 siRNA contributed to increased H3T3ph by a 

mechanism other than shortening mitosis through compromising the SAC. 

 

The effect of DDR2 on H3T3ph was unexpected and has not been reported 

previously. The t-test performed on the siRNA screen results indicated a very high 

level of confidence in a difference in DDR2 siRNA treated H3T3ph levels (compared 

to screen average). Moreover, a DDR2 siRNA induced reduction in H3T3ph 

intensity was reproducible using a different siRNA, although the effect size was 

small in comparison to Haspin knockdown. Interestingly, if cells were grown on 

collagen (the ligand for DDR2) the effect of DDR2 siRNA on H3T3ph levels 

appeared much more pronounced. However, there was also a clear effect on 

H3S10ph in this case. The fact H3S10ph was also reduced could indicate that 

proliferation rate and therefore % of cells in mitosis was reduced by DDR2 

knockdown. In line with this there are several studies in the literature reporting a 

role for DDR2 in proliferation (Labrador et al., 2001, Olaso et al., 2002, Marquez 

and Olaso, 2014).   

 

3.3.2 siRNA screen identification of kinases regulating H2BS6ph in mitosis  

Our investigations into H2BS6ph were part of a collaborative study led by Markus 

Seibert and Lienhard Schmitz at Justus-Liebig-University, Giessen, Germany. Their 

further work has confirmed the importance of the top hit in our screen, Aurora B, for 

regulating H2BS6ph in cells.  They determined that Aurora B has a crucial but 
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indirect role in facilitating H2BS6ph through the inhibition of PP1 – in fact Aurora B 

was dispensable for H2BS6ph if PP1 phosphatases were depleted by RNAi (Seibert 

et al. 2019). This is in line with several reports in the literature describing a role for 

Aurora B phosphorylation in preventing PP1 chromatin binding (Qian et al., 2013, 

Nasa et al., 2018).  

 

Interestingly, Seibert and Schmitz identified CDK1 (gene name CDC2) as the likely 

direct kinase responsible for H2BS6 phosphorylation in mitosis. In our screen CDC2 

was #14 in kinases whose knockdown caused reduction in H2BS6ph. Because 

CDK1/Cyclin B is necessary for cells to enter and maintain a mitotic state (Vassilev 

et al., 2006) the cells we measured had necessarily an incomplete knockdown of 

CDK1, possibly accounting for its relative lack of prominence in H2BS6ph reduction. 

Cells in which CDK1 was knocked down very effectively would have been unable to 

enter or maintain mitosis, and therefore were not measured.    

 

BUBR1 siRNA also significantly reduced H2BS6ph intensity. We hypothesize that 

this could also be due to BUBR1 siRNA’s effect of shifting our mitotic population to 

cells that more recently entered mitosis (via compromising the SAC). Early in 

mitosis Aurora B is observable along the length of the chromosome arms, and 

becomes concentrated at centromeres as mitosis progresses (Hindriksen et al., 

2017). BUBR1 RNAi, in shifting our mitotic population to cells that more recently 

entered mitosis (via compromising the SAC), might be skewing the cells we 

measure to those where a PP1 inhibiting critical mass of Aurora B has not yet 

accumulated at the centromere (where H2BS6ph is observed). In line with this 

immunofluorescence staining of a population of mitotic cells reveals a strikingly 

close relationship between Aurora B accumulation at the centromere and H2BS6 

phosphorylation (data not shown). 

 

3.3.3 siRNA screen identification of kinases regulating H3S10ph in mitosis  

The results of our H3S10ph screen were within a much narrower range than for the 

other phosphorylation sites screened. Knockdown of only one kinase caused a 

change in H3S10ph intensity of more than 2 SD from the screen mean (PI4KII). 

While knockdown of the well-established direct kinase for H3S10ph in mitosis, 



71 
 

Aurora B, resulted in a reduction in H3S10 intensity by 1.4 SD (Crosio et al., 2002, 

Fischle et al., 2005). Among known Aurora B substrates, H3S10ph, in our hands 

and others, is difficult to knockdown by Aurora B siRNA (Girdler et al., 2006), 

although it can be depleted with Aurora B targeting small molecule inhibitors (data 

not shown). The apparent favourability of H3S10 as a substrate of Aurora B likely 

accounts for our seeing an effect of Aurora B depletion on H3T3ph and H2BS6ph, 

yet not for H3S10ph. In the absence of prominent effects, it was difficult to conclude 

anything about the regulation of H3S10ph by kinases in mitosis based on our 

screen.  

 

3.3.4 siRNA screen identification of kinases regulating H3T11ph in mitosis  

The most prominent hits from the siRNA screen (BUBR1, TTK, and CDC2) 

appeared to be regulating H3T11ph indirectly by reducing the length of mitotic 

arrest. BUBR1 and MPS1 (gene name TTK) are both required for proper functioning 

of the spindle assembly checkpoint (Stucke et al., 2002) (Sudakin et al., 2001). 

Their knockdown would therefore compromise a taxol mediated mitotic arrest 

(which depends on SAC signalling). In confirmation of their indirect role in regulating 

H3T11ph we observed a rescue of H3T11ph signal in BUBR1 or TTK siRNA treated 

cells when MG132 was used to arrest cells in mitosis (it causes a mitotic arrest 

independent of the SAC). Similarly, CDK1 activity (gene name CDC2) is also 

necessary for the SAC (Rattani et al., 2014).  

 

Having established that H3T11ph has the interesting characteristic of slowly 

accumulating in intensity during an extended mitosis, several other kinases 

highlighted by the screen may also have arisen due to this feature. Several groups 

have demonstrated that extending mitosis for several hours leads to apoptosis in 

increasing numbers of cells (apoptotic death begins after about 5 hours), as a result 

of the gradual degradation of anti-apoptotic protein MCL-1 (Haschka et al., 2015, 

Topham and Taylor, 2013). Consequently, as H3T11ph appears to increase in a 

linear manner in an extended mitosis, and our siRNA screen entailed a 6 hour taxol 

arrest, one might expect knockdown of kinases which contribute to this apoptotic 

response to cause a net increase in H3T11ph in our experimental setup (as cells 

would survive for longer). In line with this supposition, both ASK and STK17A have 
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known apoptotic functions. ASK induces apoptosis via JNK and p38 signalling 

pathways both of which are known to lead to phosphorylation-induced ubiquitin 

mediated degradation of MCL-1 (Topham and Taylor, 2013). Furthermore, Taxol 

arrest has specifically been shown to induce ASK dependent apoptosis (Wang et 

al., 1999).  STK17A has been much less studied but also induces apoptosis by a 

mechanism that is not yet clearly defined (Inbal et al., 2000, Oue et al., 2018). The 

highlighting of STK17A in our screen suggests that it could also play a role a role in 

the pathways that lead to cell death in an extended mitosis (Topham and Taylor, 

2013).  

 

The increase in H3T11ph after PLK1 siRNA might also be due to it causing an 

alteration in the mitotic arrest time of cells recorded in our screen. While a complete 

absence of PLK1 activity prevents mitotic entry (Gheghiani et al., 2017), incomplete 

inhibition (as might be expected by siRNA knockdown) leads to a prometaphase 

arrest of mitotic cells via the SAC (Petronczki et al., 2008). Consequently, it is likely 

that a great proportion of PLK1 siRNA treated cells in our screen became arrested 

in mitosis prior to taxol addition and therefore had been in mitosis longer. As a 

H3T11ph upregulating hit, PLK1 is by definition an indirect regulator of H3T11ph. 

The veracity of this explanation could be explored by repeating PLK1 inhibition in a 

SAC-depleted background (such as Mad2 deficient cells) and using MG132 for 

mitotic arrest. This would prevent PLK1 siRNA inducing a mitotic arrest and thereby 

ensure that any effects of PLK1 on H3T11ph were not the result of differences in 

time spent in mitosis.  

 

The other kinases that we identified as secondary candidates (NT5M, TNK1, 

MAPKAPK3, IKBKE) would require further work to understand their possible roles in 

H3T11ph regulation.  

 

In conclusion, although we gained insight into the regulation of H3T11ph we were 

unable to identify a clear candidate for the mitotic H3T11ph kinase by siRNA 

kinome screening.  
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Chapter 4. KiPIK screening: a novel method to identify the kinase 
responsible for a phosphorylation event of interest 

 
  Introduction 

 Overview 

We were disappointed by the limitations in available techniques for identifying the 

direct kinase of a phosphorylation site of interest. We devised a novel methodology 

to overcome some of these limitations and assessed its efficacy.    

 

 Small molecule kinase inhibitors  

Small molecules that inhibit the enzymatic activity of kinases have been the focus of 

extensive research and development over the past 30 years. Most commonly these 

inhibitors function by occupying the adenosine binding pocket (required for ATP 

binding) of the kinases they target and are therefore termed ATP competitive 

inhibitors. Non-ATP-competitive inhibitors which exert inhibitory effect by binding 

outside the ATP binding site also exist but account for less than 1% of reported 

kinase inhibitors (Dar and Shokat, 2011, Breen and Soellner, 2015).   

 

 Specificity and profiling of kinase inhibitors 

Because small molecule kinase inhibitors have almost all been developed to target 

the ATP binding site, and this is highly structurally conserved between kinases, 

polypharmacology is common in kinase inhibitors. In recent years improvements in 

the availability and kinome coverage of panels of recombinant kinases have allowed 

researchers to profile the specificity of large numbers of kinase inhibitors against 

hundreds of kinases in vitro (Bain et al., 2007, Davis et al., 2011, Elkins et al., 

2016).  
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 Potential of kinase Inhibitor specificity information for identifying kinase 

involvement in specific phosphorylation events 

 
We wondered whether the expanding profiling information on kinase inhibitor 

specificities might allow kinase inhibitors to be used as exploratory tools for 

identifying kinases responsible for specific phosphorylation events. In an ideal 

situation, monospecific kinase inhibitors would be available for every kinase in the 

kinome and one could identify the kinase acting on a phosphosite of interest by 

seeing which of these inhibitors depleted the phosphorylation. Although 

monospecific inhibitors are not available, quantitative inhibitory profiling information 

for hundreds of inhibitors (across hundreds of in vitro kinases) is available (as 

described in 4.1.3). If one were able to test large numbers of these profiled 

inhibitors for inhibitory action against a specific phosphorylation event their detailed 

specificity information might allow identification of the phosphorylating kinase by 

triangulation or correlation.   

 

However, if kinase inhibitors were applied in vivo as a screening tool to identify 

kinases one would encounter the problems associated with indirect effects inherent 

in all screening approaches in intact cells (see 1.4.3 and chapter 3). Moreover, the 

non-specificity of each inhibitor would likely undergo convolution as a result of 

interaction with the indirect effects inherent in screens in intact cells; greatly 

complicating subsequent attempts to identify the direct kinase with the inhibitor 

profiling data.  

 

To mitigate these concerns, we decided to focus on developing a technique using 

cell extracts rather than intact cells. There is good evidence that kinase reactions 

using cell extracts preserve physiological kinase-phosphosite dependencies (Yu et 

al., 2009, Deibler and Kirschner, 2010, Wang et al., 2011). Therefore, if we could 

identify the kinase directly responsible for a phosphorylation event in extracts it 

seemed likely these would reflect in vivo dependencies; a notion we intended to test 

on several positive controls.  
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 The KiPIK method 

 

The method we have developed, and termed KiPIK screening (Kinase inhibitor 

Profiling to Identify Kinases), proceeds in brief as follows (see 2.7 for detailed 

methodology). Cell conditions in which phosphorylation of the protein residue of 

interest is robust are identified. For example, cells at a particular cell cycle stage 

can be enriched (e.g in mitosis, see 4.2.1 below), or signalling pathways leading to 

phosphorylation can be triggered (e.g. EGF stimulation, see 4.2.9). Whole cell 

extracts of these cells are prepared in the presence of phosphatase inhibitors to 

“freeze” kinases in their active state. These cell extracts are then used as a source 

of all potentially relevant kinases for in vitro kinase reactions in the presence of a 

substrate (containing the phosphorylation target residue of interest). Multiple of 

these in vitro reactions are performed in parallel using the same preparation of cell 

lysate, each in the presence of one member of a profiled panel of kinase inhibitors. 

This yields a unique pattern of inhibition (of the phosphorylation event of interest) 

that can be compared to the known inhibition patterns of all kinases tested in the 

profiling panel.  

 

We have used biotinylated peptides encompassing phosphosites of interest as 

substrates and found these sufficient to recapitulate the in vivo phosphosite 

dependencies tested.  

  

The development and validation of KiPIK screening is detailed below. 

 
 

 Aims 

1. Develop an assay that utilises kinase inhibitor profiling data to provide 

information on kinases acting on specific phosphorylation sites. 

2. Assess the effectiveness of this assay by testing it on characterised kinase-

phosphosite pairs 
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 Results 

 Cell extract can be used to phosphorylate peptides on residues 

corresponding to known in vivo phosphorylation sites 

 
We began by assessing the feasibility of using cell extracts to generate 

phosphorylation on peptides which corresponded to in vivo phosphorylated regions 

of Histone H3. Briefly, mitotic cell extracts were prepared and kinase reactions 

carried out by incubating the extract in kinase reaction buffer with unphosphorylated 

peptides. After the kinase reaction, peptides were immobilised on streptavidin 

coated plates and phosphorylation levels determined by ELISA. 

 

Our ELISA results (Figure 4.1) indicated clear extract dependent phosphorylation of 

H3T3, H3T11 and H3S28. For both H3T3 and H3T11, the phosphorylation signal 

was also wholly dependent on the presence of the H3 1-21 peptide substrate. For 

H3S28, the background signal was higher – with an increase in detected 

phosphorylation with increasing extract independent of the peptide substrate. This 

was likely due to an imperfect wash procedure for removing extract proteins from 

the immobilised biotinylated peptide substrate. Nevertheless, the H3S28ph signal 

measured with the addition of peptide substrate was higher, indicating that the 

peptide was being phosphorylated by the kinases in the cell extract. In general, the 

highest signal to noise ratio was found when 5% of the kinase reaction was extract. 

 

We had therefore established that we could use cell extract as a source of kinases 

for generating de novo phosphorylation on peptide residues analogous to multiple 

known in vivo phosphorylation sites on Histone H3.  
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 Kinase Inhibitors can indicate target kinase involvement (or not) in a cell 

extract based kinase reaction  

 

Next we sought to determine whether the phosphorylation generated on peptides 

could be inhibited with small molecule kinase inhibitors. To assess this, we 

challenged each of our kinase reactions (as in Figure 4.1, 5% extract for all) with 

increasing concentrations of 3 small molecule kinase inhibitors (Figure 4.2). 

ZM447439 is a potent Aurora B kinase inhibitor (Ditchfield et al., 2003), and can be 

used in cells to inhibit phosphorylation of known Aurora B regulated phosphosites 

such as H3S28ph. 5-Iodotubericidin is a potent inhibitor of Haspin (De Antoni et al., 

2012, Wang et al., 2012). RO-3306 is a potent CDK1 inhibitor but also has strong 

inhibitory activity against Haspin (Patnaik and Higgins, unpublished; LINCS 2018). 

 

The H3T3ph signal was highly sensitive to the addition of 5-Iodotubericidin or RO-

3306, in line with their known inhibitory activity against Haspin. H3S28ph had little 

response to these inhibitors (except perhaps RO-3306 at very high concentrations), 

yet was clearly potently inhibited by ZM447439. H3T11ph appeared uninhibited by 

any of the 3 compounds tested (as discussed earlier (3.1.5), the mitotic kinase for 

H3T11ph is unknown).  

  

The sensitivity of H3T3ph and H3S28ph specifically to inhibitors of their known in 

vivo kinases indicated that these specificities were being retained in the extract 

assay. Therefore, if we could determine the kinases acting on other phosphorylation 

sites in this type of ex vivo assay, then we would have a method to identify the in 

vivo kinases for “orphan” phosphorylation sites.  
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 Screening panels of kinase inhibitors in parallel produces distinct and 

reproducible patterns of inhibition for specific phosphorylation events 

 

A screening approach based on inhibitor profiling data would be far more powerful if 

multiple kinase inhibitors could be compared. To obtain comparable inhibition data 

for multiple kinase inhibitors, it is important that ex vivo assays are performed in 

parallel using the same cell extract. For this purpose, a Biomek FX liquid handling 

robot was used to enable large numbers of ex vivo assays to be performed in 

parallel using the same freshly thawed batch of cell extract.  

 

For a pilot study, a small array of 46 kinase inhibitors was assembled (with multiple 

DMSO controls) and parallel ex vivo kinase reactions were performed on the H3 1-

21 peptide in the presence of each inhibitor. Phosphorylation levels of H3T3ph and 

H3T11ph were determined by ELISA as described earlier. Notably as H3T3 and 

H3T11 are both within a short region of H3 the same peptide substrate was used in 

each case. 10 µM was chosen as the inhibitor concentration as this appeared the 

minimum required to achieve significant inhibition with all 3 inhibitors tested thus far.   

 

A unique and reproducible pattern of inhibition was produced for each of these 

phosphorylation events (Figure 4.3B). For H3T11ph there were 4 compounds which 

were clearly able to inhibit the phosphorylation: Staurosporine, SU1438, CHR6494 

and NSC-95397. H3T3 phosphorylation was inhibited by a much broader range of 

the compounds tested. Interestingly the majority of the compounds which inhibited 

H3T3ph are known Haspin inhibitors. Harmine, harmol and relative LDN211898 are 

known Haspin inhibitors, as is LDN192960 (Cuny et al. 2012) (Cuny et al. 2010). 
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RO-3306 is a potent CDK1 inhibitor but also has strong inhibitory activity against 

Haspin (Patnaik and Higgins, unpublished; LINCS 2018). H89 has IC50 of 0.47 M 

for Haspin, and Cdk1 inhibitor III has 0.59 M IC50 (Patnaik and Higgins, 

unpublished). 

 

Thus the results of our test array were consistent with the notion that the same 

kinase acting on H3T3 in vivo (Haspin) was also responsible for the phosphorylation 

occurring in our ex vivo assay. 

 



82 
 

  



83 
 

 

  



84 
 

 Correlation analysis between ex-vivo kinase reactions and large kinase 

inhibitor profiling datasets can identify known in vivo kinases 

 
 Published Kinase inhibitor set (PKIS 1) 

The results of our test array indicated that our assay was successfully highlighting 

compounds that inhibit Haspin, and that Haspin was the kinase phosphorylating 

H3T3 on our H3T3 1-21 peptide in our ex-vivo assay. We therefore reasoned that, 

using a large library of inhibitors which had been profiled on multiple kinases 

(including Haspin), it should be possible to pick Haspin out ‘blind’ as the kinase 

phosphorylating H3T3.  

 

To test this possibility, we acquired PKIS 1, a set of small molecule kinase inhibitors 

assembled by the Structural Genomics Consortium from published GlaxoSmithKline 

compounds (Elkins et al., 2016). We received 317 compounds which had been 

profiled in vitro on 2 panels of recombinant kinases, the Nanosyn enzyme assay 

panel and a ‘DSF’ (differential scanning fluorimetry) panel (the Nanosyn assay 

assesses inhibition of enzymatic activity by in vitro kinase assays; whereas the DSF 

assay is a binding assay based on thermal denaturation). The Nanosyn enzyme 

panel contains 196 unique members of the human protein kinome; these were each 

assayed with all 317 inhibitors at 2 concentrations of 0.1 µM and 1 µM. The DSF 

panel (assayed at 1 µM) contains 68 kinases (32 of which are in common with the 

Nanosyn panel), giving a total coverage of 232 kinases (Fig 4.4). 
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 KiPIK screening identifies Haspin as H3T3ph kinase  

We performed parallel ex vivo kinase reactions on our H3 1-21 peptide in the 

presence of the 317 small molecule kinase inhibitors of PKIS 1. For each compound 

we calculated a % inhibition where 100% inhibition was defined by the signal 

measured in the wells of the most inhibitory compound (or EDTA), and 0% 

determined by the signal measured in control wells where DMSO was added rather 

than a PKIS 1 compound. Calculated this way, 34 compounds inhibited our H3T3ph 

signal >50% while the majority had little effect. Based on the results of our test array 

we reasoned that the PKIS 1 compounds giving high inhibition scores were likely to 

be Haspin inhibitors; whilst those causing no reduction in H3T3ph signal in our 

assay were likely to be compounds that did not inhibit Haspin. If this were true we 

reasoned that the pattern of inhibition produced by our ex vivo screening of the 

PKIS 1 compounds ought to be more similar to their in vitro inhibition profile for 

Haspin than for the other kinases they were profiled on.    

 

To test this, we performed a Pearson’s test of correlation between our ex vivo 

generated inhibition scores and the inhibition profiles the same compounds 

produced for each kinase they were tested on in vitro. 

 

The highest correlation calculated for our experimentally generated inhibition 

dataset across the kinase inhibition profiles for both recombinant kinase panels was 

for Haspin (Figure 4.5B). Of note, the Nanosyn panel did not contain Haspin. 

Haspin is well established as the H3T3ph kinase in vivo (Dai et al., 2005, Eswaran 

et al., 2009)  
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 KiPIK screening identifies Aurora (B) as H3S28ph kinase  

 

We performed the same screening technique for H3S28ph. Unfortunately, a 

systematic pipetting error occurred during the ELISA stage of this assay, the 

compromised wells had to be discarded from the results (118 inhibitors) leaving us 

with data for 199 of the 317 inhibitors in our PKIS1 panel. Despite this reduced 

dataset, Pearson’s correlation clearly identified the Aurora kinases (from the 

Nanosyn panels) as most likely responsible for the phosphorylation signal (Figure 

4.6). Note that the DSF panel does not contain Aurora kinases. Aurora B is well 

established as the H3S28 kinase in mitosis (Crosio et al., 2002, Goto et al., 2002). 

 

A repeat screen was performed (this time with all 317 inhibitors). As before the 

Aurora kinases were clearly identified as most likely responsible for the H3S28 

phosphorylation signal (Figure 4.6).   
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 KiPIK screening works on phosphorylation sites regulated by diverse kinases 

and site-specific antibodies are not a requirement  

 
It was important to test if KiPIK screening would work on phosphorylation sites 

regulated by different types of kinases. As both test cases thus far were histone 

sites phosphorylated by mitotic serine/threonine kinases, we decided to test KiPIK 

screening on phosphorylation sites regulated by tyrosine kinases. The next test 

cases we screened are reportedly regulated by a membrane bound receptor 

tyrosine kinase (autophosphorylation of EGFR at Y1016ph) and a cytosolic non-

receptor tyrosine kinase (Src family kinase phosphorylation of Integrin β1A Y795). 

 

Additionally, a limitation to our method was the need for a phospho-specific 

antibody against the phosphorylation site being screened. Producing such an 

antibody can be costly and time consuming so we wanted to assess if a generic 

phospho antibody could be used. A generic phospho-Tyrosine antibody (P-Tyr-100, 

Cell signalling) was used for both the EGFR Y1016 and Integrin β1A Y795 screens 

below. 

 
 KiPIK screening identifies EGFR as EGFR Y1016ph kinase 

 
We acquired a biotinylated peptide corresponding to residues 1013-1021 of EGFR. 

This peptide contained a single Tyrosine corresponding to Y1016, which is 

reportedly an EGFR autophosphorylation site (Walton et al., 1990, Rotin et al., 

1992). To generate a robust phosphorylation signal, we decided to use A431 cells 
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and to stimulate them with EGF for 5 minutes prior to harvesting the cells for cell 

extract. A431 cells express high levels of EGFR.  

 

We performed a calibration experiment to determine the optimum concentration of 

A431 extract to use for our screening, and to ensure a clear phosphorylation signal 

could be detected.  The results of this calibration indicated a robust tyrosine 

phosphorylation signal which increased with extract concentration. However, it was 

also clear that a large fraction of this signal was EGFR peptide substrate 

independent (Figure 4.7A). We were concerned that this background signal might 

distort the results but reasoned that if it composed a mixture of residues bound to 

the plate (due to imperfect extract wash-off), then our relatively dominant peptide 

phosphorylation signal may be resolvable.  

 

The results of the screen clearly identified EGFR as the most likely phosphorylating 

kinase (Figure 4.7C). ERBB2 and ERBB4 were the next most correlated hits. As 

these 2 kinases are the phylogenetically nearest of all kinases to EGFR, and their 

small molecule inhibition profiles are similar, it is probable that their high correlation 

scores are a reflection of this rather than their direct involvement in phosphorylating 

this EGFR autophosphorylation site.  

 

The resolution from the rest or the kinome in terms of correlation scores was very 

good, adding to our confidence of this result. Additionally, strong correlation is clear 

from a visual inspection of the scatter plot of ex vivo inhibition scores vs in vitro 

inhibition scores (Figure 4.7D).  
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 KiPIK screening identifies SRC kinases as Integrin β1A Y795 kinase  

 

To further test our screening approach, and verify the viability of non-specific 

phospho-antibodies, we next tried KiPIK screening on a peptide encompassing an 

Integrin β1A phosphosite at Y795, thought to be a substrate of Src family kinases 

(Calderwood et al., 2013, Sakai et al., 2001).  

 

The best correlating kinases were found in the Nanonsyn 1 µM library. Of those 

scoring a Pearson’s r value >0.5, 6 out of 7 were Src family kinases. Interestingly, 

although the screen clearly identified Src family kinases as expected, EGFR was 

also among the top correlating kinases with r = 0.5235 (note EGF stimulated A431 

cells had been used as a source of cell extract) (Figure 4.8C). (Note SRC kinases 

are not present in the DSF assay panel) 
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 In silico inhibitor subsampling can aid KiPIK screen analysis 

 

The high correlation score of EGFR in the Integrin β1A Y795 screen was 

unexpected. We reasoned that it was either a consequence of similarity in the 

inhibition profiles of our inhibitor set between SRC and EGFR kinases (in which 

case EGFR high correlation was probably an artefact of high SRC correlations); or 

could represent a genuine and distinct phosphorylation signal occurring in our 

lysate.  

 

To probe whether the EGFR correlation could be separated from SRC kinases we 

tried sub-sampling in silico the inhibitors we included in our correlation analysis. 

First we tried stripping out all inhibitors that inhibited EGFR >25% in the Nanosyn 

screening panel at 1 µM concentration (55 compounds removed of 317 total). This 

resulted in a significant increase in the correlation score of SRC (r = 0.51 increases 

to r = 0.57) and LYN kinases. Interestingly when the removed inhibitors were 

highlighted on the correlation plot for SRC (Figure 4.9B), it was clear that the bulk of 

these sat around 50% on the X-axis (KiPIK screen inhibitory %) and very low on the 

Y-axis (Nanosyn profiling % inhibition). The result of stripping these inhibitors out 

was therefore to ‘clean up’ the correlation. When the complementary procedure was 

applied (removing compounds that inhibit SRC > 25%; 76 compounds removed of 
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317 total), the effect on EGFR correlation was similarly striking (r = 0.52 increases 

to r = 0.61). SRC inhibitor stripping had the effect of dramatically ‘cleaning’ the 

EGFR correlation plot of compounds that were weakening the correlation due to 

high KiPIK inhibitory scores and low Nanosyn profiling scores (Figure 4.9B).  

 

It therefore seems likely that distinct activity from both SRC kinases and EGFR 

were contributing to the phosphorylation signal we were measuring. As we used a 

generic phospho-tyrosine antibody to detect phosphorylation in this assay, and 

observed a strong peptide independent signal in our calibration, it is possible that 

this peptide independent background is the source of EGFR dependent signal. A 

site-specific antibody to the Integrin peptide phosphosite could be used to confirm 

this. Notably, the extract used was from A431 cells stimulated with EGF, so EGFR 

was likely hyperactivated in these extracts. EGFR has also been reported to 

activate SRC family kinases in some cell types so it is also possible that 

hyperactivated EGF is contributing to SRC activation in our lysates (Furcht et al., 

2015, Bromann et al., 2004).  

 

It also cannot be ruled out that EGFR was contributing to phosphorylation of the 

Integrin peptide.  
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 Investigating H3T11ph with KiPIK 

 

We also carried out KiPIK screening on H3T11ph using mitotic extracts. First, we 

tried KiPIK screening with the PKIS1 library. However we found that strikingly few 

compounds were capable of inhibiting the H3T11ph signal. Of the library of PKIS1 

compounds tested, only two were capable of inhibiting the phosphorylation >50%. 

Although non-inhibition can also be informative when correlating kinases by KiPIK, 

none of the kinases in the PKIS1 profiled kinase had strong correlations with our 

H3T11ph signal.  To gain more insight, we decided to KiPIK screen H3T11 

phosphorylation with a larger inhibitor library which had been profiled on more 

kinases.  We obtained PKIS2, which consists of 645 inhibitors which have been 

profiled on 392 unique protein kinases (all at 1 µM on the DiscoverX assay, a 

competitive binding assay). 

 

We completed a partial screen of PKIS2 on H3T11ph (447 compounds). As we had 

seen with PKIS1, compounds which inhibited H3T11ph >50% were rare (11 total) 

(Figure 4.10A). Resulting correlations with PKIS2 profiled kinases were also low 

(Figure 4.10B) and the range of correlations across the kinome was very narrow in 

comparison to previous screens. This was particularly evident when plotting the 

results of the screen onto the kinome tree. Unlike in previous screens, the highest 

hitting kinases were not clustered to a particular region of the tree (which would 

indicate phylogenetic similarity) (Figure 4.10C). 

 

NEK10 had the highest correlation but it was clear from the compound scatter plot 

that a significant portion of compounds which inhibited NEK10 >50% in the 
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Nanosyn assay were not reducing our H3T11ph signal; many were even increasing 

H3T11ph. As discussed below, we determined that Aurora kinase inhibition was 

increasing our H3T11ph signal. This effect would therefore shift all compounds 

which significantly inhibited Aurora kinases towards the left side of the x-axis (lysate 

reaction inhibition) in our correlation scatter plots – distorting correlations based on 

H3T11ph signal inhibition.  To prevent this distortion of our correlation results we 

removed, in silico, compounds which inhibited Aurora B >45% from our correlation 

calculations. This improved the correlation of NEK10 and several other kinases. It 

also improved a visual assessment of their correlation by removing compounds 

which increased the H3T11ph signal in our assay (those with a negative inhibitory 

score), yet inhibited the kinases (NEK10 and PHKG2) in the DiscoverX assay 

(Figure 4.10D). After this adjustment the top 2 candidates were PHKG2 and NEK10 

with correlation scores of 0.42 and 0.41 respectively. Follow up of these candidates 

in cells is ongoing.  

  



115 
 

 

 

 

  



116 
 

 



117 
 

  



118 
 

  



119 
 

 

 

Inverse correlation with Aurora B 

Interestingly the screen indicated an inverse correlation with both Aurora A and B. 

This negative correlation was clearly evident upon visual inspection of the 

compound scatter plot of Aurora B (vs H3T11 lysate signal) (Figure 4.11A), 

indicating that compounds which inhibited Aurora B increased the signal of 

H3T11ph in our lysate reactions.  As a major substrate of Aurora B is the 

neighbouring residue of H3S10, we hypothesized that phosphorylation of H3S10 

was inhibitory to phosphorylation of H3T11. To test this hypothesis, we tested the 

ability of mitotic lysate to phosphorylate another H3 peptide on which H3S10 was 

pre phosphorylated (Figure 4.11B). Strikingly, in contrast to an unmodified H3 

peptide, we detected no H3T11 phosphorylation, suggesting that pre-existing 

H3S10 phosphorylation prevents phosphorylation of H3T11. Importantly in figure 

3.5 (chapter 3) we established that our H3T11 antibody was only modestly reduced 

in binding affinity for H3T11ph when neighbouring H3S10 was also phosphorylated. 

This suggests that the unknown H3T11 kinase competes with Aurora kinases for H3 

peptides in our lysates, thereby accounting for the inverse correlation with Aurora A 

and B in our KiPIK screen (reflecting an increase in H3T11 phosphorylation in 

lysates with Aurora inhibitors). 

 

We were interested in whether this phenomenon could be preserved in vivo. 

H3S10ph is strong throughout mitosis so we reasoned that if we depleted H3S10ph 

by inhibiting Aurora B we might see an increase in H3T11ph. To test this, we 

probed the effect of Aurora B inhibition (with ZM-447439) on H3T11ph levels in 
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Hela cells.  Cells were treated with either Nocodazole alone (6 hours), Nocodazole 

and ZM-447439 (6 hours), or Nocodazole for 5 hours followed by addition of ZM-

447439 for 1 hour.   

 

ZM-447439 addition consistently resulted in a spreading of the H3T11ph 

immunofluorescence signal from a somewhat punctate signal, strongest around the 

centromeres, to a uniform signal covering the entire chromatin. Strikingly this signal 

was significantly brighter when ZM-447439 was added for one hour at the end of a 

Nocodazole arrest rather than at the beginning (Figure 4.11C) (discussed further in 

4.3.2).  
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 Discussion 

 KiPIK screening is effective for identifying direct kinases of phosphorylation 

sites of interest 

 

KiPIK screening was able to unambiguously identify the established direct kinases 

for 4 diverse phosphorylation sites tested, indicating that we have developed a 

generally applicable method for identifying the direct kinases of phosphorylation 

sites of interest.  

 

The KiPIK screen measuring H3T3 phosphorylation clearly identified Haspin as the 

phosphorylating kinase, in line with the literature (Dai et al., 2005). Other high 

scoring kinases included DYRK and PIM kinases. A conserved feature among 

many Haspin inhibiting compounds is activity against the DYRK kinases, 

presumably reflective of similarities in the structure of their active sites (Cuny et al., 

2010, Cuny et al., 2012). Similarly, when we carried out hierarchical clustering of 

kinases based on their inhibition profiles across profiled inhibitor datasets (such as 

PKIS2) the PIMs (along with DYRKs) consistently cluster with Haspin, reflecting that 

they share similar inhibition profiles (See Appendix A for an example hierarchical 

clustering; of PKIS1 Nanosyn 1 µM). This feature of KiPIK screening means that 

superior correlation scores will often be found for kinases with pharmacological 

similarity to the genuine substrate phosphorylating kinase. For this reason, 

examination of phylogenetic trees (as illustrated multiply in this chapter), or a 

hierarchical clustering tree of the inhibitor panel (which are often strikingly similar to 

phylogenetic trees), can be useful when considering the results of a KiPIK screen.  
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The KiPIK screen for the H3S28 phosphorylating kinase highlighted Aurora kinases 

as responsible for this phosphorylation event, again in line with the literature (Crosio 

et al., 2002). The correlation scores were considerably lower than for the H3T3ph 

screen, likely a consequence of having to discard a considerable portion of the data 

due to a technical error (4.3.7). Aurora kinases have highly conserved catalytic 

domains and subcellular localisation is thought to facilitate differences in the 

substrates they target in cells (Carmena et al., 2009, Li et al., 2015). It is therefore 

possible that all expressed Aurora kinases phosphorylated our H3 peptide in the ex 

vivo KiPIK reactions. Despite the similarity of Aurora kinases, several of the 

compounds in the PKIS1 set differ quite significantly in their inhibition of each 

Aurora kinase; this could potentially contribute to reduced correlation scores for 

each Aurora kinase if, in the lysate reaction, they are all contributing to the 

phosphorylation of H3S28.    

 

KiPIK screening of EGFR Y1016ph, an autophosphorylation site (Walton et al., 

1990, Rotin et al., 1992), clearly highlighted EGFR as the phosphorylating kinase. A 

generic phospho-tyrosine antibody was used for signal detection in this assay 

indicating that a site specific antibody is not required for KiPIK screening (when 

using ELISA as the detection method) (see 6.6 for discussion of alternative 

detection methods).  The background signal detected with the phospho-tyrosine 

was higher than for the screens using phosphorylation site specific antibodies. 

Despite this, the correlation scores for EGFR were very high. 

 

The Integrin β1A Y795 KiPIK screen also used a generic phospho-tyrosine 

antibody. This phosphorylation site is thought to be the target of SRC family kinases 

(Calderwood et al., 2013, Sakai et al., 2001). Consistent with this, 6 of the top 7 

(and 10 of the top 11) correlating kinases in our screen were from the Src family. 

The receptor tyrosine kinase EGFR was also among the top correlating kinases, but 

is rather distinct from the src kinases phylogenetically. Because of this (and as the 

extract had been stimulated with EGF) we suspected that the EGFR signal was a 

distinct signal, rather than it having high correlation as a consequence to SRC 

family kinase similarity.  To explore this possibility, we investigated whether it was 

possible to separate the two signals by sub sampling our dataset. In silico sub 
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sampling to remove EGFR hitting inhibitors significantly increased the correlation of 

some Src family kinases (SRC and LYN), while reducing the correlation of others 

(YES). It also seemed to clean the SRC correlation plot specifically of inhibitors that 

were reducing correlation. Performing the inverse sub sampling had an even 

greater effect on EGFR, strengthening the correlation from 0.52 to 0.61, and 

‘cleaning’ the correlation plot dramatically. While this approach was far from 

unbiased, the observation that removing each set of inhibitors seemed to ‘clean’ the 

correlation plots, combined with the increases in correlation scores, supports the 

notion that the EGFR signal was distinct (possibly a consequence of using the 

generic phospho-tyrosine antibody and imperfect plate washing; or the interplay of 

EGFR and Src kinase signalling in cells). Rerunning the KiPIK screen with a site 

specific phospho antibody could help to determine this.  

 

 KiPIK screening of H3T11 phosphorylation in mitosis 

 
KiPIK screening results 

We also KiPIK screened H3T11ph, for which the mitotic kinase is unknown. 

H3T11ph was potently inhibited by only 2 compounds in the PKIS1 inhibitor set, 

which led to very poor correlations with all the kinases profiled on PKIS1 (data not 

shown). The PKIS1 compounds were assembled from published GlaxoSmithKline 

small molecule inhibitors. Although the authors avoided overpopulating PKIS1 with 

compounds from particular chemotypes there are biases in the inhibitory coverage 

of the set (likely over representing kinases that have received more drug-

development attention). Of the 224 kinases profiled on the PKIS1 set 18 kinases 

were not inhibited >50% by any of the compounds (at 1 µM) (Elkins et al., 2016). 

This suggests that the H3T11ph kinase is not within the kinases profiled on PKIS1, 

and that it could be an unusual or understudied kinase. 

 

We then tried KiPIK screening H3T11ph using the PKIS2 inhibitor set (which is 

larger and more diverse than PKIS1) (Drewry et al., 2017). 11 compounds inhibited 

H3T11ph >50%. After removing compounds which inhibited Aurora B >45% 

(discussed below and in 4.2.12), PHKG2 and NEK10 correlated most strongly with 

our H3T11ph signal. Investigation of these kinases in vivo is ongoing.  
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KiPIK screening reveals an antagonistic role for Aurora B on H3T11 

phosphorylation in mitosis 

The PKIS2 KiPIK screen of H3T11ph also revealed an inverse correlation with 

Aurora kinases. As the neighbouring residue H3S10 is a prominent Aurora B 

substrate we suspected that competing phosphorylation of this residue could be the 

source of the inhibitory role of Aurora kinase activity on H3T11ph. In agreement 

with this we found that a pre-phosphorylated H3 peptide (H3S10ph) could not be 

phosphorylated at H3T11 in a mitotic lysate kinase reaction. Additionally, we 

observed that Aurora B inhibition in vivo led to a spreading of the H3T11ph signal 

on mitotic chromosomes following a 6 hour nocodazole arrest (from a usual 

centromerically enriched signal to an evenly spread signal across the chromosome 

arms). Interestingly, when Aurora B was inhibited during mitotic arrest, the H3T11ph 

signal was both spread and much more intense. It therefore seems likely that 

H310ph antagonises or prevents phosphorylation of H3T11 by the H3T11 kinase.  

 

Interestingly, when Aurora B was inhibited for 1 hour at the end of a mitotic arrest 

rather than at the beginning, the increase and spreading of the H3T11ph signal was 

greater. The reason for this is unclear.  It could be related to Aurora B’s role in 

inhibiting the mitotic phosphatase PP1 (Nasa et al., 2018) which is thought to have 

an indirect role in dephosphorylating H3T11ph in mitosis (Qian et al., 2011). 

Another possible explanation is that an Aurora B activity at the beginning of mitosis 

also facilitates H3T11ph by some means. One possible (though speculative) model 

of this is that HP1 bound to the adjacent H3K9 residue (when di or tri methylated) 

also antagonises phosphorylation of H3T11. As discussed in the introduction (1.5.6) 

H3S10ph is required for the removal of HP1 from di or tri methylated H3K9 at the 

beginning of mitosis. An important difference in our two Aurora inhibitor treatments 

could be that they have significantly different HP1 occupancy levels on H3K9.  If 

cells enter mitosis without Aurora B activity, HP1 is not displaced and remains on 

the chromatin (Fischle et al., 2005). Whereas, if Aurora B is inhibited for 1 hour after 

cells have already been in mitosis for some time, H3S10 undergoes 

dephosphorylation (we observed loss of H3S10ph, data not shown), but HP1 has 

already been displaced – potentially allowing greater H3T11 phosphorylation.    
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Chapter 5. Using KiPIK screening to identify the kinase responsible for 
an unassigned phosphorylation site on INCENP 

 

5.1  Introduction 

5.1.1 Identifying Kinases for an unassigned phosphorylation site 

We were interested to see if we could use KiPIK screening to identify kinases for 

unassigned phosphorylation sites.  

 

In a phosphoproteomic study of mitotically enriched cells, Dephoure et al. (2008) 

categorised the identified phosphosites by motif analysis and concluded that the 

majority could be assigned to the consensus motifs of known mitotic kinases. 

Interestingly, however, they identified two unique motifs and suggested that there 

were undiscovered mitotic kinases (Dephoure et al., 2008). Among proteins which 

were phosphorylated on these unique motifs, we identified an appealing candidate: 

INCENP (residue S446).  

 

Interestingly, this phosphorylation site was also detected in a study by Hegemann et 

al. (2011). These authors carried out phosphoproteomic analysis on mitotic cells 

that they had treated with small molecule kinase inhibitors and identified INCENP 

S446ph as among the phosphorylation sites that were sensitive to Hesperadin. On 

the basis of Hesperadin sensitivity they propose that INCENP S446ph is regulated 

by Aurora B and potentially a direct substrate (Hegemann et al., 2011). Although 

Hesperadin is known to have strong inhibitory effect against Aurora kinases it is a 

very promiscuous inhibitor (Bamborough et al., 2008); the sequence around 

INCENP S446 is also not similar to known Aurora phosphosites. We therefore 

decided to screen INCENP S446ph with our KiPIK methodology to see if a direct 

kinase could be determined.  

 

Importantly, a phospho-specific antibody to INCENP S446ph was available, which 

would make in vivo validation and functional analysis more straightforward.   
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5.1.2 Aims 

1. Use KiPIK screening to identify the kinase responsible for INCENP S446 
phosphorylation  

 

5.2 Results 

5.2.1 INCENP S446 phosphorylation does not require Aurora B kinase activity 

 

As INCENP S446ph in cells had been reported to be sensitive to 100 nM 

Hesperadin (a potent inhibitor of Aurora B), it has been proposed that it is 

dependent on Aurora B activity and is potentially a direct substrate (Hegemann et 

al., 2011). To explore this possibility, we acquired a phospho-specific antibody 

against INCENP S446ph (a gift from Jan-Michael Peters, IMP, Vienna) and 

examined whether it was possible to generate INCENP S446ph in the absence of 

Aurora B activity in vivo.  

 

Staining Hela cells with the antibody revealed an exclusively mitotic signal and clear 

co-localisation with Aurora B (Figure 5.1). To assess whether the signal was 

dependent on Aurora B we treated asynchronous cells for 20 minutes with 

ZM447439 (a potent Aurora B inhibitor, which has been profiled on numerous 

protein kinases and has good selectivity (LINCS 2018) (Ditchfield et al., 2003). Cells 

were costained for H3S10ph (a well-known Aurora B substrate), Aurora B and 

INCENP S446ph. We saw no evidence of a reduced INCENP S446ph signal, but, 

as expected, there was a substantial reduction in H3S10ph intensity in mitotic cells. 

Strikingly, we were able to observe multiple prophase cells with unimpaired 

INCENP S446ph signal but a complete absence of detectable H3S10ph (Figure 

5.1B). These cells had almost certainly entered mitosis in the presence of inhibited 

Aurora B, yet had phosphorylated INCENP S446. We therefore concluded that 

Aurora B was not required for INCENP S446ph.   
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5.2.2 KiPIK screening identifies Cyclin B/CDK1 as the INCENP S446ph kinase 

In order to identify the kinase responsible for INCENP S446 phosphorylation, we 

performed a KiPIK screen on a short unphosphorylated peptide corresponding to 

residues 438-453 of INCENP.  

 

We used mitotic cell extract as a source of kinase activity and the INCENP S446ph 

antibody for the detection of phosphorylation by ELISA. An initial kinase reaction 

calibration was carried out by titrating increasing concentrations of mitotic HeLa cell 

extract in the presence or absence of the peptide (note antibody was also titrated, 

the concentration with best signal-to-noise is presented). We observed a strong 

peptide dependent signal that increased with increasing extract, indicating 

extensive de novo phosphorylation of the peptide.  

 

After establishing that we were able to generate and detect de novo 

phosphorylation of the peptide, we proceeded with a KiPIK screen using the PKIS1 

inhibitor set. A subset of the inhibitors was able to inhibit the phosphorylation 

potently (Figure 5.2B). Pearson’s correlation of our INCENP S446ph signal 

inhibition profile with the inhibition profiles of kinases in the Nanosyn and DSF 

datasets indicated a very strong correlation with CDKs, with CDK1/cyclin B scoring 

the strongest correlation at r = 0.805 (Figure 5.2C). 
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5.2.3 CDK1/Cyclin B phosphorylates INCENP S446 in-vitro 

To verify the findings of the KiPIK screen we next tested whether CDK1/Cyclin B 

could phosphorylate INCENP S446 in vitro.    

 

CDK1/Cyclin B and Aurora B were both tested for ability to phosphorylate INCENP 

S446. In vitro kinase assays were conducted on a mixture of 3 fragments of 

recombinant INCENP (see figure legend), only one of which covered the region 

containing S446 (at 68 kDa). The results of the reactions were detected by western 

blotting with the INCENP S446ph antibody and revealed clear phosphorylation of 

the S446 containing fragment by CDK1/Cyclin B. Aurora B, in contrast, appeared to 

result in little if any phosphorylation of S446 in vitro (Figure 5.3).  
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5.2.4 INCENP S446ph is lost within minutes of acute CDK1/Cyclin B inhibition in 

mitotically arrested cells 

 

We next sought to confirm that INCENP S446ph is phosphorylated by CDK1/Cyclin 

B in cells. CDK1 substrates are difficult to demonstrate in vivo because disrupting 

CDK1 activity entirely both prevents cells from entering mitosis and leads to rapid 

exit from mitosis (Vassilev et al., 2006). For this reason, identifying direct 

CDK1/Cyclin B substrates from substrates that depend on CDK1/Cyclin B indirectly 

(i.e. essentially all phosphorylation events that depend on cells being in mitosis) is 

challenging.  

 

To limit the problem of mitotic exit occurring upon CDK1/Cyclin B inhibition, we 

examined whether INCENP S446ph was susceptible to acute inhibition of 

CDK1/Cyclin B in cells that were already in mitosis. As an additional control, we 

also examined phosphorylation levels of the C-terminal TSS motif of INCENP 

concurrently to further ensure any response to cyclin B/ CDK1 inhibition was 

specific to S446ph, and not an indirect effect on INCENP phosphorylation levels 

broadly. (INCENP TSSph antibody was a gift from Michael Lampson, as described 

in (Salimian et al., 2011), the two serines of this motif are Aurora B substrates).  

 

Briefly, cells grown in 96 well plates were treated with MG132 for 1 hour. This was 

followed by inhibitor treatment for either 0, 3, 6 or 9 minutes, after which cells were 

fixed in formaldehyde and immunofluorescently stained. For detection we used 

high-content imaging, collecting fluorescence intensity measurements for INCENP 

S446ph / INCENP TSSph, Aurora B and H3S10ph in >250 mitotic cells for each 

time point and condition. Mitotic exit that might be induced by the inhibitors was 

further controlled by using positive H3S10ph (commonly used as a mitotic marker) 

as a filter to ensure the cells we were selecting for intensity measurement were still 

mitotic.  

 

INCENP S446ph was acutely inhibited by RO-3306, a potent CDK1/Cyclin B 

inhibitor, and reduced to less than 50% of initial intensity levels after 6 minutes. 

Roscovitine, which also inhibits CDK1/Cyclin B, had a less potent effect but S446ph 
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levels were reduced to 68% after 9 minutes. ZM447439 appeared to cause an 

increase in S446ph intensity although this was accompanied by a small increase in 

Aurora B intensity and is therefore possibly the result of a spreading of the Aurora B 

immunofluorescence signal rather than increased phosphorylation (in the absence 

of Aurora B activity the CPC has a diffuse localisation across all of the chromatin 

rather than a predominantly centromeric localisation (Wang et al., 2011)).  

 

INCENP TSSph responded quite differently, exhibiting no loss in intensity due to 

either CDK1/Cyclin B inhibitor (RO-3306 or Roscovitine). In contrast Aurora B 

inhibition by ZM447439 caused a dramatic drop to around 25% of initial intensity 

after 3 minutes treatment (in line with the reported direct role of Aurora B in 

phosphorylating this site (Bishop and Schumacher, 2002)).  

 

 

 

 

 



139 
 

  



140 
 

 

 

 

5.3 Discussion 

5.3.1 Identification of CDK1/Cyclin B as the direct kinase for INCENP S446 by KiPIK 

screening 

Here we report using KiPIK screening to identify the direct kinase responsible for 

INCENP S446ph in cells. The correlation scores following KiPIK screening with the 

PKIS1 inhibitor library clearly identified the CDK family of kinases as responsible for 

phosphorylation in our lysate reactions. CDK1/cyclin B had the strongest 

correlation, in agreement with the observation that INCENP S446ph is enriched in 

mitosis.  

 

To confirm the results of the KiPIK screen we assessed in vitro and in cells whether 

CDK1/cyclin B could be responsible for INCENP S446 phosphorylation. In 

agreement with the screen, INCENP S446 was readily phosphorylated in vitro with 

purified CDK1/cyclin B. Furthermore, we demonstrated in cells that pre-established 

INCENP S446ph was acutely sensitive to CDK1 inhibitors, diminishing by more 

than 50% after 6 minutes of RO-3306 treatment.  

 

In further support of a direct role for CDK1/cyclin B in INCENP S446 

phosphorylation, it was recently shown that CDK1/cyclin B phosphorylates a 

number of non-canonical (non-Ser/Thr-Pro) motifs (Suzuki et al., 2015). The peptide 

sequence around S446 corresponds exactly to this alternative CDK1/cyclin B motif: 

P-x-S-x-R/K-R/K-R\K-R\K. Using Arg/Lys scanning peptide libraries, Suzuki et al. 

(2015) report that this motif is even more efficiently phosphorylated than a x-S-P-x 

containing peptide mixture (Suzuki et al., 2015).  
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We have therefore demonstrated the effectiveness of KiPIK screening in identifying 

the kinase responsible for an ‘orphan’ phosphorylation site.  

 

The identification of this non-canonical CDK1/cyclin B mediated phosphorylation 

event in mitosis underlines the power of KiPIK screening as an unbiased approach 

for uncovering novel biology. We subsequently tested 8 in silico prediction methods 

to assess their ability to predict CDK1/cyclin B mediated regulation of this event. 

Only Scansite (which can only make predictions for 31 kinases) and NetworKIN 3.0 

(which integrates information from the STRING database) indicated CDK1 as the 

most likely kinase (see Appendix D).  
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Chapter 6. Discussion 

 

6.1 Purpose of the study 

 

Our motivation for carrying out this research stems from the current methodological 

challenge in identifying the kinase directly responsible for a phosphorylation event 

of interest. Indeed, we are not aware of a method that has found widespread use 

that allows researchers to selectively identify direct upstream kinases for any 

substrate. As regulation by phosphorylation plays a fundamental role in cell biology, 

a methodological advance addressing this difficulty would be of great benefit.  

 

In exploring this problem, we began with a study assessing the utility of siRNA 

kinome screening for identifying upstream kinases (detailed in chapter 3). While we 

had some success with this approach, limitations associated with indirect effects 

were also apparent (discussed further in section 6.2).  

 

In chapters 4 and 5, we detail the development of a novel methodology for 

identifying direct kinases for specific phosphorylation sites. We validated this 

method on diverse known kinase-substrate pairs and used it to identify the kinase 

for an as yet unassigned phosphorylation site on INCENP. The approach, which we 

have termed KiPIK screening, represents a technically straightforward and broadly 

applicable strategy to identify kinases responsible for phosphorylation events of 

interest. In addressing the methodological insufficiency in this fundamental area it 

has the potential to benefit research widely. 

 

In this chapter we begin with a review of the findings from chapter 3 and discuss 

how these relate to the strengths and limitations inherent in genetic screens in intact 

cells (for upstream kinases; section 6.2). 

 

We then go on to discuss the results of chapters 4 and 5 and what these can tell us 

about the KiPIK screening method (section 6.3), This is followed by a conceptual 

discussion of the factors that contribute to the effectiveness of KiPIK screening in 

light of the determinants of kinase–substrate specificity in a cell (section 6.4). The 
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strengths and limitations are discussed (section 6.5), followed by propositions for 

the further development of KiPIK screening (section 6.6).  

 

6.2  Kinome-wide siRNA screening as a method for identifying mitotic histone 

kinases 

6.2.1 Overview 

In chapter 3, we carried out kinome wide siRNA screens to identify upstream 

kinases for 4 mitotic histone phosphorylation marks, H3T3ph, H3S10ph, H2BS6ph 

and H3T11ph. 

 

Screen results 

The H3T3ph screen performed well, clearly identifying Haspin (GSG2) as the 

kinase of greatest importance in determining H3T3 phosphorylation levels, in line 

with its role as the direct H3T3ph kinase in mitosis (Dai et al., 2005). The screen 

also provided useful information on the indirect regulation of H3T3ph in mitosis. 

Aurora B was highlighted, which has important roles in activating Haspin and 

preserving H3T3ph from dephosphorylation (Qian et al., 2013). The screen also 

indicated an increase in H3T3ph levels when BUBR1 levels were reduced. We 

propose that this could be due to a proportionate increase in newer mitotic cells in 

our experimental setup, preventing the proteasome dependent decline in H3T3ph 

we observed over an extended mitosis (which probably occurs as a result of Cyclin 

B destruction (Brito and Rieder, 2006)). Alternatively, it could be related to BUBR1’s 

role in the recruitment of mitotic phosphatases (Suijkerbuijk et al., 2012) (as 

discussed in 3.3.1).  

 

In contrast, the effect of DDR2 on H3T3ph was an unexpected. Follow up 

experiments confirmed a modest effect of DDR2 knockdown on H3T3ph levels in 

mitosis. Interestingly the relative effect size of DDR2 knockdown appeared 

enhanced when cells were grown on collagen, the DDR2 receptor ligand. However, 

we also observed a similar decrease in H3S10ph in this condition, possibly 

suggesting that the enhanced effect of DDR2 knockdown on both these mitotic 

marks could be due to a broader role for DDR2 in regulating proliferation generally 

(Labrador et al., 2001, Olaso et al., 2002, Marquez and Olaso, 2014). It would be 
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interesting to carry out further immunofluorescence experiments to examine the 

impact of collagen and DDR2 knockdown on H3T3ph levels in individual mitotic 

cells.  

 

The H2BS6ph screen prominently highlighted Aurora B as necessary for normal 

phosphorylation levels. This led us to establish that Aurora B has a crucial but 

indirect role in facilitating H2BS6ph through the inhibition of PP1 (Seibert et al. 

2019). BUBR1 was also highlighted. As in the H3T3ph and H3T11ph screens, we 

think this may be attributable to a shortening of the arrest time in mitosis of the cells 

we measured (see section 3.3.2). Further work from our collaborators identified 

CDK1/Cyclin B as the likely direct kinase for H2BS6ph. In our screen, CDK1 

(CDC2) was ranked #14 in kinases whose reduction caused diminished H2BS6ph; 

the indirect effects mediated by Aurora B and BUBR1 were significantly more 

prominent (discussed further in section 6.2.2.).  

 

Our screen for H3S10ph regulating kinases was less informative. Knockdown of 

Aurora B, well established as the direct kinase for H3S10ph in mitosis (Crosio et al., 

2002, Fischle et al., 2005), caused only a 1.4 standard deviation reduction in 

H3S10ph, and the effect size of all kinases was minimal. H3S10 is a very robust 

substrate of Aurora B and has proved difficult to reduce by Aurora B siRNA in our 

hands and others (Girdler et al., 2006). Work from Xu et al. (2010) indicates that 

different Aurora B substrates require different levels of Aurora B activity for robust 

phosphorylation to occur (Xu et al., 2010), potentially accounting for our ability to 

detect more pronounced effects from Aurora B knockdown for H2BS6 and H3T3.  

However, it also seems likely that the methodological alteration in mitotic arrest 

agent we made between screen 1 (H3T3ph and H2BS6ph, nocodazole) and screen 

2 (H3T11ph and H3S10ph, taxol) was a mistake and contributed to the small effect 

on H3S10ph we observed from Aurora B knockdown. Ditchfield et al. (2003) 

demonstrate that potent inhibition of Aurora B (with ZM447439) quickly 

compromises a taxol mediated mitotic arrest by preventing error correction and 

allowing the SAC to become satisfied, leading to exit from mitosis (a nocodazole 

arrest is much more resistant) (Ditchfield et al., 2003). Therefore, more potently 

Aurora B depleted cells in our siRNA screen would have quickly exited mitosis in 

our taxol arrest (in screen 2). Consequently the cells we measured H3S10ph and 
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H3T11ph intensities for were biased to those with less efficient Aurora B depletion, 

likely significantly accounting for the apparent low effect of Aurora B knockdown on 

H3S10ph. Interestingly, the number of mitotic cells we recorded in Aurora B 

knocked down wells was 97% of the screen mean, suggesting that perhaps only the 

most potently Aurora B depleted cells escaped our taxol arrest, and that mitotic exit 

caused by Aurora B knockdown was not widespread in our screen.  

 

The results of our H3T11ph screen appear dominated by kinases with indirect roles 

in regulating the phosphorylation site. Indeed, the most prominent appear 

attributable to the unusual dependence of H3T11ph levels on time spent in mitotic 

arrest (or perhaps simply in mitosis). In support of this, BUBR1 and MPS1’s effects 

on H3T11ph were rescued when mitotic arrest was independent of the SAC (which 

their knockdown would likely compromise). Similar to BUBR1 and MPS1, CDK1 

reduction through siRNA could also be expected to reduce the length of a taxol 

dependent mitotic arrest. Rattani et al. (2014) report that CDK1 catalytic activity is 

necessary for SAC functioning (through an as of yet undetermined mechanism) 

(Rattani et al., 2014). In agreement with an indirect role for CDK1 in H3T11ph, we 

found that CDK1 was not responsible for H3T11 phosphorylation in lysates. 

 

Kinases whose knockdown caused a prominent increase in H3T11ph can also be 

understood through this explanatory model of H3T11 phosphorylation. It has been 

established that an extended mitosis causes a gradual increase in apoptotic cells 

(increasing with time spent in mitosis), due to the gradual degradation of anti-

apoptotic protein MCL-1 (Haschka et al., 2015, Topham and Taylor, 2013). In line 

with this, two of the most prominent kinases whose knockdown caused an increase 

in average H3T11ph intensity are regulators of apoptosis (ASK and STK17A). Their 

knockdown could likely suppress this apoptotic process allowing cells to survive a 

longer extended mitosis (and therefore accumulate greater H3T11ph levels).   

 

Similarly, PLK1 knockdown induced upregulation of H3T11ph. This could be due to 

the prometaphase arrest that incomplete PLK1 inhibition reportedly causes 

(Petronczki et al., 2008). This Taxol-independent arrest would result in an extension 

of the mitotic arrest in our experiment (as arrest would begin prior to Taxol addition 

and therefore be in effect for a longer time period).  
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Identifying more direct regulators of H3T11ph from those that simply shorten or 

extend a Taxol induced mitotic arrest might be possible with a different 

experimental design (see 6.2.2).  

 

General conclusions 

siRNA screening for kinases involved in specific mitotic histone phosphorylation 

marks provided significant insight into their regulation (except perhaps for 

H3S10ph).   

 

Although the H3T3ph screen clearly identified Haspin (the direct kinase) as centrally 

important, for the other screens performed indirect effects were dominant. 

Information as to the indirect regulation of a phosphorylation event can be useful as 

it can provide greater understanding of the roles and regulation of a specific 

phosphorylation event (as we saw with H2BS6ph). However, if indirect effects are 

too dominant they can prevent or obscure identification of direct regulators.  

 

Although indirect regulation is an inherent feature of screens in intact cells, the 

relative strength of indirect (compared to direct) regulatory factors revealed by a 

genetic screen will clearly vary between specific phosphorylation events. It will be 

determined not just by the type of indirect regulation naturally governing a particular 

phosphorylation event in a cell, but also by how and which of these regulatory 

factors intersect with or are elicited by the experimental design of the screen. 

 

With sufficient knowledge of the indirect regulatory factors impacting a particular 

phosphorylation event it might be possible in some cases to mitigate/control for 

these factors by changes in experimental design, with the aim increasing the 

strength and detectability of direct regulators.  

 

 

 

 

6.2.2 Screen design alterations to mitigate indirect effects 
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Prominent indirect effects and were evident in our H2BS6ph and H3T11ph screens. 

Here we discuss potential reasons for this and possible adjustments that could be 

made to experimental design in light of our discoveries about the nature of their 

indirect regulation.   

 

In the case of H2BS6ph, subsequent work from our collaborators leads us to 

believe that CDK1/Cyclin B is the direct kinase (Seibert et al. 2019). Because 

CDK1/Cyclin B is necessary for cells to enter and maintain a mitotic state, siRNA 

screening (or any genetic method) are poor tools for identifying mitotic 

phosphorylation events directly regulated by CDK1/CyclinB activity. In all of our 

siRNA screens, the CDK1 siRNA knocked down cells we measured were 

necessarily those that incurred an incomplete knockdown of CDK1. Cells in which 

CDK1 was knocked down very effectively would have been unable to enter or 

maintain mitosis, and therefore were not measured.    

 

In the H3T11ph screen we were unable to identify the direct kinase, and its identity 

remains unknown. Unlike for H2BS6ph, it is unclear why the direct kinase was not 

prominent in our screen results.  

 

H3T11ph evidently develops relatively (and unusually) slowly in an extended 

mitosis (over a number of hours). The most straightforward explanation for this is 

that the activity level of the direct H3T11 kinase (on H3T11) is very low; either 

because it is in very low abundance, is very inactive, or that H3T11 is a very bad 

substrate for it. However, in either of these cases one would expect knockdown of 

the phosphorylating kinase to dramatically reduce H3T11ph levels. 

 

Another explanation for this slow and linear development over time is almost 

perfectly balanced activity levels of the phosphorylating kinase and 

dephosphorylating phosphatase (slightly favouring the kinase). However, one would 

also expect in this case that knockdown of the phosphorylating kinase to 

dramatically reduce H3T11ph levels, especially as an unbalancing of these 

hypothetical kinase – phosphatase levels would be compounded by time (and our 

arrest time was 6 hours), which was not evident in our screen. 
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If these possibilities are rejected, another explanation is that the rate of H3T11 

phosphorylation depends on another process (which occurs slowly over time) to a 

much greater extent than it does H3T11 direct kinase activity levels. Indeed, if 

H3T11 develops very slowly over time at a rate limited by an external other than 

H3T11 direct kinase activity rate then the H3T11ph kinase might only require very 

low levels of activity or abundance to keep up with this other rate limiting feature – 

it’s siRNA knockdown might therefore not reduce the direct kinase levels below a 

level that allows it to ‘keep up with’ the other rate limiting factor.  

 

We hypothesise that dephosphorylation of the neighbouring reside H3S10, could be 

this rate limiting factor. In our KiPIK investigations of H3T11ph, we determined that 

its phosphorylation by mitotic lysate was inversely correlated with Aurora kinase 

activity (Aurora B is the H3S10ph kinase). Moreover, pre-existing H3S10ph on a H3 

peptide prevented H3T11 phosphorylation with mitotic lysate. Additionally, we 

observed in cells an increase in intensity and clear spreading along the 

chromosome arms of H3T11ph when Aurora B activity was inhibited with the 

inhibitor ZM-447439. 

 

In view of the features of H3T11ph exposed by our investigations (development 

over time in extended mitosis, inverse correlation with Aurora in lysates and 

probable inhibition by H3S10ph), a further siRNA screen could be designed to 

mitigate the contribution of indirect effects and potentially expose the role of the 

direct H3T11ph kinase.  

 

Because H3T11ph develops over an extended mitosis it is indirectly susceptible to 

siRNA inhibition that cuts short the length of mitotic arrest. The arrest induced by 

taxol is dependent on the SAC, so can be cut short by indirect effects which 

compromise SAC signalling. For this reason, taxol was a poor choice for mitotic 

arrest inducer in our screen.  

 

To overcome this, we could use MG132 to induce mitotic arrest, as it does so in a 

SAC independent manner. Although MG132 would reduce the number of mitotic 

cells we accumulated (it prevents mitotic entry) it would also ensure that the cells 
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measured will have been in mitosis for a similar time period; potentially 

advantageous in normalizing H3T11ph levels in the cells measured. 

 

The other proposed cause of indirect effects could potentially be mitigated by 

preventing or removing H3S10 phosphorylation, and therefore preventing the 

proposed dependence of H3T11 phosphorylation on H3S10 dephosphorylation.  As 

siRNA seemed ineffective in knocking Aurora B down sufficiently to significantly 

reduce H3S10ph levels the Aurora B inhibitor ZM447439 could be used instead.  

 

A screen could be carried out where, after a 48 hour siRNA kinome library 

treatment, ZM447439 is added in addition to MG132 (optimum timings to be 

determined experimentally). This would remove H3T11 phosphorylation 

dependence on the SAC and potentially expose the activity of the H3T11 direct 

kinase as (hopefully the most) prominent factor in the H3T11ph levels recorded. 

 
6.3   The KiPIK screening method  

Screen results 

In chapters 4 and 5 we detailed the development of KiPIK screening and used it to 

identify direct kinases responsible for the phosphorylation of diverse sites in cells. 

We were able to identify the established direct kinases for H3T3ph, H3S28ph, 

EGFR Y1016ph and Integrin β1A Y795ph. We also tested 2 ‘orphan’ 

phosphorylation sites, H3T11ph and INCENP S446ph. H3T11ph was inhibited by 

remarkably few small molecule inhibitors, possibly suggesting it is phosphorylated 

by an unusual or understudied kinase. Our KiPIK screen with the larger PKIS2 

inhibitor set identified interesting candidate kinases which we are currently 

investigating for a role in H3T11ph. In contrast our KiPIK screen of INCENP S446ph 

very clearly identified CDK1/Cyclin B as the phosphorylating kinase in our extract 

reaction. Our follow up investigations in cells support the notion that CDK1/Cyclin B 

in the direct kinase for INCENP S446ph in vivo.  

 

Resistance to indirect effects 

We have designed KiPIK screening to diminish indirect effects and promote 

identification of the direct kinase responsible for phosphorylating the site of interest. 
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KiPIK screening incorporates several features which contribute to this aim. Firstly 

the use of small-molecule inhibitors allows the timeframe of inhibition to be kept 

short (unlike in genetic screens where long timeframes potentiate indirect effects).  

In addition, KiPIK screening makes use of lysates rather than intact cells. The loss 

of cellular context and increasing in dilution is very likely to disrupt and dampen 

cellular signalling networks and pathways which would give rise to indirect effects in 

cells. Furthermore lysates are prepared from cells where the phosphorylation 

activity of interest is robust, and therefore the kinase responsible is active. This 

active state is preserved from indirect effects associated with dephosphorylation 

(and then the requirement for reactivation by upstream kinases for example) by 

including phosphatase inhibitors at every stage of KiPIK screening, thereby 

“freezing” kinases in their active state. Moreover an inherent feature of our KiPIK 

screen correlation coefficients is that their resistance to indirect effects is 

determined by the relative effect size between signals, an indirect effect contributing 

to 20% of a phosphorylation signal is unlikely to ‘throw off’ a robust correlation 

score.  

 

In the H3T3ph KiPIK screen, Aurora B, which is known to be an important upstream 

regulator in cells (Wang et al., 2011), was not highlighted (no Aurora kinase in the 

top 40 correlations) consistent with the notion that upstream regulatory effects are 

diminished and direct kinase identification favoured.  

 

It was also notable in the INCENP S446ph screen that we were able to identify 

CDK1/Cyclin B with great prominence by KiPIK screening. As discussed 

CDK1/Cyclin B is essential to entry and maintenance of mitosis (Vassilev et al., 

2006). This makes identification and separation of its effects on individual 

substrates from its essential roles in mitosis difficult by genetic screening methods.  

 

A very specific type of indirect regulation which KiPIK is susceptible to was 

highlighted in the H3T11ph screen. It was clear from this screen that Aurora B 

activity on the neighbouring residue (H3S10) was indirectly impacting H3T11 

phosphorylation. It is therefore worth considering the possible impact of post-

translational modifications on adjacent residues when selecting substrates to probe 

with KiPIK screening.   
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6.4  Why does KiPIK screening work? 

In this section we discuss important component parts of KiPIK screening and how 

these may contribute to the effectiveness of the technique.   

 

For KiPIK screening to successfully identify the in vivo kinase for a specific 

phosphorylation site, two things are essential. Firstly, it must be able to successfully 

identify the kinase phosphorylating the substrate residue in question within the 

lysate reaction. Secondly, the kinase phosphorylating the substrate residue within 

the lysate reaction must be the same kinase responsible for phosphorylation of this 

site in cells.  

 

It is clear, and perhaps unsurprising, that the inhibitor specificities collected by 

profiling on in vitro recombinant kinases are highly conserved in our ex vivo KiPIK 

reactions (which constitute whole cell lysate diluted in kinase buffer), for all known 

kinases tested; Haspin, Aurora B, EGFR and Src kinases. Consequently, as KiPIK 

screening demonstrates, correlating the inhibitory effect of all inhibitors in a panel 

functions as a powerful diagnostic approach for identifying a dominant kinase signal 

acting on a probed substrate.   

 

Comparability both within and between the profiled dataset and our KiPIK reactions 

is essential for tight correlations to be possible. Great care has been taken by the 

developers of commercial recombinant kinase screening panels to ensure 

comparability in the published inhibitory datasets. In our KiPIK reactions tight 

comparability between reactions is achieved by using the same freshly thawed cell 

lysate and a liquid handling robot to carry out all reactions in parallel. 

 

For the kinases identified by KiPIK to be the in vivo kinases the lysate reactions 

need to preserve enough of the factors which determine in vivo kinase-substrate 

specificities. 

  

In the introductory chapter, we discussed the linear sequence around a 

phosphorylated residue and the regulation of local concentrations of kinases and 
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substrates as key determinants of kinase-substrate specificity in a cell. The peptide 

substrates we have been using thus far for KiPIK screening preserve the linear 

sequence of the substrate, but it is doubtful that the factors which regulate local 

concentrations of particular kinases and substrates in a cell are operating effectively 

in the homogenised diluted lysate of our ex vivo reactions. Furthermore, our short 

peptides are unlikely to incorporate all the features of the cognate protein which 

facilitate its protein-protein interactions in a cell.   

 

However, while the potency of local concentration regulating specificity 

determinants is likely diminished, in providing the substrate peptide well in excess 

of physiological concentrations, it also seems likely that the necessity for them is 

diminished; the rate of interaction between kinases and the substrate will be high 

via diffusion. 

 

Importantly, in addition to preserving the contribution of linear substrate sequence, 

KiPIK screening also maintains activation states of kinases characteristic of the 

cells from which the lysates were prepared. As discussed earlier, an important 

component of a KiPIK screen is preparing lysate from cells which have high levels 

of the phosphorylation being investigated. For example preparing mitotic cell lysate 

when investigation a mitotic phosphorylation event; or receptor stimulated lysate 

when investigating a phosphorylation event known to be downstream of a particular 

cell surface receptor.  

 

In essence, the lysate reactions are essentially a competition of phosphorylation 

efficiency between all kinases in the lysate. If a kinase stands out above the rest in 

terms of efficiency with which it phosphorylates the query substrate it will be 

responsible for the bulk of the phosphorylation signal detected.  

 

For this reason, one can also imagine KiPIK screening being resistant to small 

amounts of erroneous substrate phosphorylation by kinases which would not 

usually interact with the query substrate in a cell. Successful kinase identification by 

KiPIK screening may only require that the rate of phosphorylation being carried out 

on the substrate by the genuine in vivo kinase is greater than that of other kinases 

by a significant factor. To be identified, the genuine kinase would likely just have to 
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be responsible for a more significant bulk of substrate phosphorylation than the next 

most efficient kinases.   

 

In conclusion, KiPIK in its present form essentially answers the question: 

in this cell lysate, which kinase most efficiently phosphorylates a substrate with this 

linear sequence? Although this might not always be the same as the kinase 

responsible for phosphorylating a substrate in an intact cell, on the basis of the 

screens performed thus far it often is.  

 

6.5  KiPIK screening in context 

6.5.1 Advantages of KiPIK screening over currently available techniques 

In the introductory chapter, we discussed the techniques that are currently available 

for the identification of upstream kinases for specific phosphorylation sites. Here we 

compare KiPIK screening to these techniques and discuss the advantages of this 

new methodology. 

 

As discussed in the introduction (1.4.3), in silico approaches for kinase prediction 

base their predictions upon the short linear amino acid sequences surrounding 

phosphosites and therefore rest on the assumption that recognition of these 

sequences by the substrate binding site of kinases is the primary determinant of 

substrate specificity (as discussed in 1.3.2). KiPIK screening is similar in this regard 

as it also queries the ability of kinases to phosphorylate a particular substrate based 

primarily on the short linear sequence around a phosphorylation site (although as 

discussed in 6.6 there is no reason that recombinant proteins could not be used as 

substrates for KiPIK screening, thereby potentially integrating more in cell 

interaction determining factors). However, while most in silico approaches utilise 

primary sequence alone, KiPIK screening has the advantage that it also 

incorporates the contextual information of relative kinase activity levels of the cells 

from which the cell lysate is derived. 

 

The major weakness of in silico approaches for kinase prediction is that they are 

highly dependent on the quality and quantity of training data available. The current 

lack of experimentally verified substrates for many kinases leads to major limitations 
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in terms of kinome coverage and accuracy for current computational approaches. A 

recent paper by Song et al. (2017) illustrates this point: for the training of their 

phosphorylation prediction algorithm they limited their coverage to kinases (or 

kinase families) for which at least 50 experimentally verified phosphorylation sites 

were available (in the PhohphoELM database), applying this filter allowed them to 

train models for only 9 kinases and 3 kinase families (Song et al., 2017). KiPIK 

screening in contrast is not reliant on the presence and quality of past data and can 

in principle identify any kinase for which sufficient profiling data is available 

(discussed in 6.5.2). When compared with a spectrum of in silico methods, including 

those that attempt to incorporate information on biological context, KiPIK was the 

most reliable approach for identifying the kinases responsible for the five substrates 

examined in here (see appendix D).  

 

Screens in intact cells (such as siRNA screens, CRISPR/Cas9 or overexpression 

screens) allow complete kinome coverage and retain the regulatory features 

governing phosphorylation in the cell. However, the combination of the long 

treatment timeframes of genetic methods and intact cellular pathways and networks 

predisposes these approaches to indirect effects. Another concern, particularly with 

overexpression screens, is the potential for both direct and indirect phosphorylation 

artefacts resulting from artificially high (or low) levels of examined genes. Artificially 

high concentrations of a kinase are likely to cause less stringent substrate selection 

as well as over activation (or inhibition) of downstream kinases or processes. KiPIK 

screening conversely limits the possibility for indirect effects by acute inhibition 

timescales and disrupted cellular pathways and networks.  

 

A further limitation of screens in intact cells that rely on genetic disruption of normal 

kinase expression levels is the requirement for efficient transfectability of the cells 

or tissues under study.  KiPIK screening has the advantage that any cells or tissue 

can be used as a source of lysate.  

 

The available biochemical methods we discussed in the introductory chapter (1.4) 

can be divided into 3 types: in vitro recombinant screens, co-purification strategies, 

and purification of catalytic activity by chromatography.  
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In vitro recombinant screens with purified components are not susceptible to 

indirect effects and in principle, like KiPIK screening, allow the efficiency of 

phosphorylation of a substrate to be compared between kinases. However 

abnormal substrate promiscuity is common in situations in which purified kinases 

are exposed to purified substrates (Peck, 2006, Cheng et al., 1993). Importantly, 

KiPIK screening has the major advantage that lysate kinases are present in 

abundancies and activation states reflective of the cells from which they are 

derived. It is therefore far more likely to reflect the kinase-substrate specificities 

found in a cell. The cost of preparing and screening panels of recombinant kinases 

can also be prohibitive, while KiPIK screening is very inexpensive.  

 

Several methods have also been developed that attempt to stabilize transient 

kinase–substrate interactions to allow co-purification of substrates with upstream 

kinases (Dedigama-Arachchige and Pflum, 2016, Maly et al., 2004, Zeng et al., 

2017) (Statsuk et al., 2008). Strategies involving crosslinker addition to ATP or to a 

substrate of interest have both been developed with the aim of capturing kinase-

substrate interactions (Dedigama-Arachchige and Pflum, 2016, Maly et al., 2004, 

Statsuk et al., 2008). However, while these approaches had some success in vitro, 

in cells their specificity proved too low for viable non-biased kinase identification. 

Another approach to kinase-substrate co-purification utilises bimolecular 

fluorescence complementation (BiFC) (Zeng et al., 2017). However this strategy 

also has specificity concerns as it detects interactions per se rather than specifically 

those that result in the phosphorylation of a particular residue. It also requires 

overexpression of kinase and substrate (potentially causing artefacts), is protein- 

rather than phosphosite-specific, and requires subsequent mass spectrometry.  

KiPIK screening in contrast informs of catalytic events occurring on specific 

phosphorylation sites. Detection is straightforward and relative kinase abundancies 

are intact.  

 

The purification of catalytic activity via chromatography has historically, and more 

recently, also been reported as a strategy for identifying the kinase of a specific 

phosphorylation event(Rubin and Rosen, 1975, Downward et al., 1984, Kubota et 

al., 2009, Ji et al., 2010). Similar to KiPIK screening, this approach uses cell lysate 

as a source of catalytic activity. However, this methodology requires an enormous 
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quantity of cells as starting material (7-8 x10¹º cells), followed by multiple rounds of 

chromatographic purification, kinases assays, and finally mass spectrometric 

identification of isolated kinases. It is therefore poorly suited as a generic approach 

for kinase identification.  

 

In contrast, KiPIK screening allows identification of a specific kinase activity in cell 

lysate without a requirement for purification. Typical screens can be performed with 

lysate from 7-8 x107 or fewer cells and require one round of kinase reactions (rather 

than multiple). Consequently, it is far less labour intensive, and much more practical 

as a generic approach for kinase identification.  

 

 
6.5.2 Limitations of KiPIK screening 

The coverage and resolution across the kinome of a KiPIK screen is limited by the 

characteristics of the inhibitor set used and how much of the kinome this set has 

been profiled upon.  

 

The extent of inhibitor profiling is limited by the number of kinases for which activity 

assays have been developed, a recent report identified commercially available 

assays for 436 kinases (Drewry et al., 2017). Several large libraries of commercially 

available compounds have been profiled on a large proportion of the kinome. The 

largest of these include PKIS1 (Elkins et al., 2016), in which 367 inhibitors were 

profiled on 196 unique protein kinases, and PKIS2, in which 645 inhibitors were 

profiled on 392 unique protein kinases (Drewry et al., 2017).Consequently with 

currently available compounds and profiling datasets KiPIK screening has coverage 

for nearly 80% of the human kinome.  

 

Effective resolvability of kinases by KiPIK requires that the library of inhibitors being 

used has sufficient diversity such that there are distinguishable differences in the 

inhibition profile (or pattern) for each kinase across the set of inhibitors.  Kinases 

from different families will generally have many small-molecule inhibitors that 

differentiate them. Potential issues with resolvability arise with kinases that are very 

phylogenetically similar, as there will generally be fewer inhibitors which inhibit them 
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to substantially varying degrees. In practice it is very unusual to find kinases that 

are not significantly resolved by some of the inhibitors in reasonably diverse sets of 

100 or more inhibitors. One way of describing the resolution of an inhibitor set is by 

calculating the Euclidian distance between kinases across all inhibitors in a set. See 

appendix A for the Euclidian distances of kinases in PKIS1 (arranged by 

hierarchical clustering based on Euclidian distances). 

 

Another potential weakness of KiPIK screening is that it measures reactions taking 

place in cell lysate rather than intact cells.  The results we have generated so far 

indicate that KiPIK screening integrates sufficient specificity determining factors to 

reflect in-cell specificities (discussed in 6.4). However, there are several closely 

related kinases which have evolved differences primarily in their regulatory rather 

than catalytic domains. This likely limits the resolvability of these kinases by both 

inhibitor sets and intrinsically in lysate reactions due to loss of the determinants of 

sub cellular localisation which separate their functions in cells. As discussed in the 

introduction, Aurora A and B share highly conserved catalytic domains and 

divergent regulatory domains. The divergent regulatory domains mediate dramatic 

differences in subcellular localisation in a cell, which is thought to account for their 

distinct substrate selection (Carmena et al., 2009, Li et al., 2015).  Although a 

technical error likely contributed to the poorly resolved correlation scores in this 

particular experiment, our H3S28ph screen results in chapter 4 reflect the difficulty 

of differentiating between the three Aurora kinases (); Aurora A, B and C all were 

top hits in this experiment. Nevertheless, the ability to unambiguously identify 

member(s) of the Aurora kinase family as responsible for H3S28ph is a significant 

step when there are more than 500 kinases in the human genome. 

 

Although not intrinsic to the KiPIK method, antibody-based detection imparts further 

limitations to the methodology described here. Antibodies to specific 

phosphorylation sites are not always available, although as we demonstrated in 

chapter 4, generic (phospho-tyrosine) antibodies can be used. If generic antibodies 

are required it potentially limits the scope of the phosphorylation sites that can be 

screened. Flanking residues of the same type around a query phosphorylation site 

could result in mixed signals if these flanking sites are also phosphorylated. If 
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phosphorylation site specific antibodies are not available it also complicates in cell 

verification of the results of a screen.  

 

6.6  Future development of KiPIK screening 

There are several avenues which could be explored to increase the power and 

versatility of KiPIK screening.  

 

Firstly, gaps in coverage and resolution could be filled with an expanded and 

optimised inhibitor set to allow complete kinome coverage by KiPIK screening. The 

recently described PKIS2 set goes a long way towards this goal. Moreover, the 

authors of this paper are in the process of compiling a 1000-1500 compound 

“comprehensive kinase chemogenomic set” (KCGS) which they also intend to 

profile on nearly 400 kinases. They intend to make these compounds freely 

available to the research community, suggesting near complete kinome coverage 

by KiPIK screening will be achievable in the near future (Drewry et al., 2017) 

 

Another way in which KiPIK screening could be made more versatile would be 

through integrating and optimising mass spectrometry based detection into the 

methodology. This could allow any phosphorylation site to be screened by KiPIK, 

regardless of antibody availability or surrounding sequence suitability. One strategy 

for this would be to make use of the “absolute quantification” (AQUA) strategy 

described by Kirkpatrick et al (2005). This approach allows precise quantitation of 

phosphorylated peptides by mass spectrometry via spiking a peptide mixture (after 

the kinase reaction in the case of KiPIK) with a known concentration of a synthetic 

internal standard peptide (Kirkpatrick et al., 2005).  

 

Another potential development to KiPIK screening would be to utilise recombinant 

whole proteins as substrates rather than short peptides. We have experimented 

with this recently and were able to conduct a KiPIK screen with a recombinant 

MEK1 protein for phosphorylation on S221. The assay is still being developed, and 

the concentration of recombinant MEK1 we used was clearly sub-optimal, but our 

preliminary screen identified 3 Raf proteins in the top 6 results, in line with the 

literature (Park, 2014) (data not shown). Utilising recombinant proteins rather than 
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peptides might improve the specificity of some KiPIK screens as whole proteins 

potentially incorporate more in-cell specificity determining factors.  

 

If mass spectrometric detection and recombinant proteins are both integrated into 

the KiPIK methodology it may be possible to screen multiple phosphorylation sites 

simultaneously on a single recombinant protein.  

 

KiPIK screening could also be further developed by experimenting with different 

types of cell extract. Stock batches of extract from different cell lines or tissues 

and/or treated with different compounds that arrest cells at particular stages or 

stimulate particular pathways could be prepared and tested on query substrates of 

interest prior to KiPIK screening. Lysates which produce the phosphorylation of 

interest with the best signal to noise could then be taken forward for screening. 

Similarly, sub-cellular fractionation could also be explored in order to separate 

different parts of the cell and potentially mimic the in-cell kinase-substrate 

accessibility determined by these factors.  

 
If inhibition times were kept short (to minimize indirect effects), it might also be 

possible to perform KiPIK screens in intact cells using changes in endogenous 

protein phosphorylation as a readout. Immunofluorescent detection could be utilised 

as in the siRNA screens in chapter 3. Alternatively, quantitation by mass 

spectrometry might be possible. At the extremes of technical ambition, it is 

conceivable that a great number of endogenous phosphorylation sites could be 

screened simultaneously (with mass spectrometric detection). Calibrating the 

minimum acute inhibition time sufficient to cause robust changes in direct substrate 

phosphorylation with inhibitors across multiple representative phosphorylation sites 

would be a good starting point in this endeavour. However, any such acute in-cell 

approach would rely on endogenous phosphatase activity that acted more swiftly 

than indirect effects.  

 

If in-cell KiPIK were attempted, and indirect effects were preventing clear signals 

being detected, some kind of in silico deconvolution might be feasible to separate 

mixed signals. A basic approach to probe for separable signals could be the 

systematic application of the inhibitor stripping described in 4.2.11. 
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6.7  Further potential applications for KiPIK screening 

An important feature of the KiPIK screening methodology is that the lysate used as 

a source of kinases can be derived from any cell line (or tissue). A report by Huttlin 

et al (2010) describes extensive tissue specific phosphorylation occurring in 

different mouse tissue types (Huttlin et al., 2010). KiPIK screening could have 

extensive application in exploring kinases responsible for important tissue specific 

phosphorylation events. There could be similar utility for KiPIK screening in 

developmental biology. Importantly, the catalytic domains of mouse kinases are 

97% conserved with humans on average (Caenepeel et al., 2004) so it seems likely 

that a lot of inhibitor profiling data would be accurate for kinases across similar 

species.  
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