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Abstract 

In this project, a non-thermal plasma dielectric barrier discharge (“DBD”) reactor was used to 

reduce the concentration of tar in the product gas, and its performance was evaluated at 

different reaction conditions. Toluene and benzene were used as tar model compounds. The 

effects of reaction parameters such as the residence time, concentration, wall temperature and 

plasma power on tar removal were studied in a tubular dielectric barrier discharge (DBD) 

plasma reactor at ambient pressure. The percentage removal of tar increased with increasing 

plasma power and residence time to as high as 99% in various carrier gases (CO2, H2, and N2) 

and gas mixtures. However, the decomposition of tar analogue compounds decreased with 

increasing concentration. It was found that most of the toluene converted into solid residue 

due to the polymerization of hydrocarbon radicals produced in the plasma system at ambient 

temperature in all carrier gases (CO2, H2, N2, and mixtures). The other products were lower 

hydrocarbons, CO, and H2, depending upon the type of carrier gas. The synergetic effect of 

power and temperature was investigated to decrease the unwanted solid deposition. It was 

observed that selectivity to lower hydrocarbons increased to 99% at 400 oC and 40 W, with 

the non-thermal plasma. In these conditions solid formation was completely prevented. The 

maximum selectivities to methane were 60 % and 81% for toluene and benzene, respectively. 

However, in other carrier gases (N2 and CO2), the selectivity did not increase beyond 15 %, 

even with increasing temperature, and solid formation was observed even at elevated 

temperatures. However, in the gas mixtures, solid formation was significantly reduced when 

increasing the temperature due to presence of H2. Therefore, the plasma power and 

surrounding temperatures can be used to control the product distribution in the presence of H2 

carrier gas. 
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Chapter 1. Introduction 

1.1 Biomass and its conversion technologies 

Organic material derived from plants (including, trees and crops) is known as “biomass”. 

Green plants convert sunlight into plant material by a photosynthetic process and produce 

biomass. The organic matter produced is usually considered to be a source of renewable 

energy, because it releases the solar energy stored in chemical bonds. The biomass can release 

stored energy by breaking these chemical bonds through combustion, digestion or 

decomposition (McKendry, 2002a). Hence, biomass has always been considered as a main 

source of renewable energy for human being.  

There are different ways to obtain biomass, such as cultivation of “energy crops”, harvesting 

plants and forestry residues, and from organic wastes. After collection of the biomass, it is 

transported and stored for selection of suitable energy conversion process. The energy from 

the biomass can be extracted by various processes. The conversion process of biomass 

depends upon many factors, such as quantity and nature of feedstock, environmental 

regulations, the required energy form, requirements for end use, and economic conditions. In 

many cases the required form of energy decides the process path (McKendry, 2002b).  

There are three major products usually produced from biomass: transportation fuel, 

heat/power generation and chemical feedstock. The first two types of products are energy 

related, and could be produced from biomass through thermo-chemical technology. There are 

four different conversion processes available within thermo-chemical technology. These 

processes are combustion, gasification, pyrolysis and liquefaction. In combustion, biomass is 

burned in air and the temperature of the hot gases reaches 800–1000 oC. The stored energy of 

the biomass is converted to heat, electricity or mechanical power via various downstream 

steps. The combustion of the biomass is only feasible when the moisture contents are below 

50%.  However, the conversion efficiencies of biomass to bioenergy vary from 20–40 % and 

the fuel produced from combustion is not appropriate for use in a gas turbine (Bridgwater and 

Evans, 1993; Rampling and Gill, 1994; Livingston et al., 1997). 

Pyrolysis is the process of heating biomass to 500 oC in the absence of air. It produces liquid, 

gaseous and solid products. It can be used for the production of bio-oi, through flash 

pyrolysis, resulting in a yield near 80% (Bridgwater and Evans, 1993; Bridgwater et al., 
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1996). The product oil has its applications in turbines and engines and can be used in 

refineries as a feed stock. However, the major problems associated with bio-oil are corrosivity 

and low thermal stability. Therefore, it is necessary to upgrade bio-oils by reducing the 

oxygen percentage and eliminating alkalis though e.g. catalytic cracking and hydrogenation 

(McKendry, 2002b). 

Biomass gasification is a method for producing alternative, eco-friendly fuels for power 

generation and transport. It is an indirect combustion process in which solid biomass is 

converted to valuable synthesis gas (H2 + CO) or gaseous fuel by partial oxidation at high 

temperatures (Basu, 2010). The partial oxidation of biomass can be performed in air, oxygen 

or steam. 

Air gasification does not produce high quality gas in terms of heating value (higher heating 

value ranges from 4–7 MJ m-3), so is not suitable for pipeline distribution due to its low 

energy density. However, it is good for turbines, engines and boiler operations. Higher gas 

qualities are achieved when using oxygen as the gasifying medium (10–18 MJ m-3), which is 

better for limited pipeline transportation and for conversion of synthesis gas to valuable 

chemicals, such as methanol and gasoline. Steam gasification can also be used to produce 

higher quality gas, with the process energy possibly provided by the combustion of by-

product char in another reactor. The twin fluid bed system is the typical example of this. 

However, air is widely used as a gasifying medium because of the costs and hazards 

associated with the oxygen gasification; and the complexity and cost of multiple reactors are 

the drawbacks of steam gasification (Bridgwater, 1995). 

As shown in Figure 1.1, during gasification, biomass is decomposed according to the 

following sequence: drying, pyrolysis and partial oxidation of solid char and pyrolysis 

products. Pyrolysis takes place at 423–673 K, and the biomass decomposes into char, gases 

(non-condensable) and volatile hydrocarbons (Ruiz et al., 2013). Then, these products react 

with the oxidizing agent to produce CO, CO2, H2 and smaller amounts of lower hydrocarbon 

gases (C1–C4). CO and CO2 are produced by the oxidation of carbon in char, whereas H2 is 

produced through water gas shift reaction. There are many factors, such as moisture contents, 

composition of feed, and reaction temperatures, which affect the composition of product gas. 
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Figure 1.1. Process steps in gasification (Ruiz et al., 2013). 

Final product gas contains tar compounds due to incomplete conversion of the liquid products 

produced from the pyrolysis. This happens due to chemical limitations of reactions and 

geometrical limitations of reactors. These tar compounds tend to be refractory due to the 

higher temperatures involved in gasification than pyrolysis. So, it becomes very difficult to 

remove these tar compounds by physical, thermal or catalytic process (Bridgwater, 1995). 

Generally, decomposition of tar is applied after the gasifier and there are a variety of methods 

that can be used to eliminate tar compounds, such as mechanical separation, thermal cracking 

and catalytic cracking. In mechanical separation, tar is removed by: Venturi scrubbers, water 

scrubbers, ESP, rotational particle separators or cyclones. However, these methods only 

remove or capture the tar from producer gas, causing secondary pollution. Moreover, the 

chemical energy associated with tars is also wasted (Richardson et al., 2012). Thermal and 

catalytic cracking can be used to decompose tar compounds, but these technologies also have 

disadvantages: operating cost, for instance, is significantly increased by maintaining high 

temperature in thermal cracking (Chen et al., 2009). Catalytic cracking is a good way to 

decompose tar into valuable products and operates at lower temperatures than thermal 

decomposition of tar (Chen et al., 2015). However, various catalysts may be poisoned due to 

their high affinity for sulphur and chlorine. Fouling, which arises due to coking, is another 

problem, and it is difficult to control unless the feed of the gasifier is well tested. The major 

contaminants of the product gas are chlorine, sulphur and nitrogen compounds (Chun and 

Lim, 2012). Hence, it is a significant challenge to decompose the tar completely, due to its 

complex nature and the unavailability of proven, efficient technology. 

Downstream non-thermal plasma (NTP) treatment of tar is a possible solution due to its high 

removal efficiency and compact design. The NTP produces high energy electrons (1–10 eV) 

that decompose the carrier gas and generate reactive species at normal temperature (Yan et 

al., 2002). It consists of many active species, which cause electron impact excitation, light 

excitation, dissociation excitation, ionization, radiative recombination and atomic 

photoionization, etc. These phenomena or combinations of them can convert the tar into 

lighter hydrocarbons. 
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1.2 Aims and objectives 

The main aims of this work are 

1. To investigate the feasibility of treating biomass gasification tars with non-thermal 

plasmas. 

2. To develop a dielectric barrier discharge reactor as novel technology to decompose 

heavy hydrocarbons to lower hydrocarbons.  

 

To this end, the following objectives have been defined: 

1. To investigate the applications of non-thermal plasmas dielectric barrier discharge 

reactor for different tar analogues (benzene and toluene). 

2. To study the effects of various reaction parameters, such as residence time, discharge 

power, concentration of tar compounds and wall temperature on the performance of 

DBD reactor and products distribution.  

3. To study the effect of different carrier gases individually and collectively towards the 

tar conversion and products distribution.  

4. To develop a non-thermal plasma based technology to eliminate residue and toxic 

compounds formation by controlling the reaction parameters. 

1.3 Thesis structure 

Most researchers in the field of non-thermal plasma processing have focused on the 

decomposition of tar analogue compounds in N2 carrier gas. However, product gas from 

gasifiers contains various different gases (CO2, H2, N2, CO and CH4), all of which may 

influence the performance of the plasma system. Therefore, it is very important to investigate 

the effect of individual carrier gases to study the contribution towards the products 

distribution and tar decomposition.  

Toluene and benzene were selected as tar analogue compounds. Toluene was selected due to 

its simple structure, high thermal stability and low boiling point. Its simple structure aids 

understanding of the mechanism involved in the cracking of tar under non-thermal plasma 

conditions at low temperatures and ambient pressure. For these reasons many studies have 

used toluene as a tar analogue to investigate the performance of the system (Taralas et al., 

2003; Zhu et al., 2016; Liu et al., 2017a; Liu et al., 2017b; Sun et al., 2017). Benzene has a 

higher thermal stability than toluene. It was reported that high temperatures are required 
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(>760 oC) for ring opening products to be formed during the decomposition of benzene 

(Brooks et al., 1979). Therefore, to investigate the performance of the DBD reactor benzene 

was also used as a tar model compound. 

Chapter 2 explains the background of the study. 

Chapter 3 explains all materials and methods used in this research. 

In Chapter 4, the role of CO2 was studied by varying different parameters such as, power, 

residence time, concentration and temperature. CO2 is present in significant amount in the 

gasifier product gas, ranges from 15–25% depending upon gasification conditions. Therefore, 

it was necessary to investigate the contribution of CO2 towards the product distribution and 

decomposition of toluene.  

In Chapter 5, the contribution of H2 was studied, as it has an even higher percentage (25-

50%) than CO2 in “real” product gas from gasifier.  

If air was used as a gasifying medium, then N2 is the most significant component of typical 

biomass gasifier product gas (around 50%) (Narvaez et al., 1996). Therefore, N2 was used as 

a carrier gas in Chapter 6. Various percentages (15–25%) of H2 were added to N2 carrier gas 

to try to increase the selectivity to LHC (C1-C6), rather than solid residues. 

In Chapter 7, a mixture of gases (CO2: 30%; CO: 20 %; H2: 50%) was used, as a “synthetic 

product gas”. The typical mixture was selected because, in steam gasification, the gasifier 

product gas is a mixture of CO2, H2, CO, and various by-products (Luo et al., 2009).  

Benzene has relatively high thermal stability than toluene. It has been reported that soot 

formation occurred when benzene is used as a tar representative (Jamróz et al., 2018).  

Therefore, benzene was used as a model compound to test H2 and CO2 at elevated 

temperature in Chapter 8. A parametric study (power, residence time, concentration and 

temperature) was also conducted to investigate the performance of DBD reactor. 

In Chapter 9, methane was used as an additive to observe its effect on product selectivity 

during the decomposition of benzene and toluene. This was of interest, as methane 

percentages can increase to as high as 12% at lower gasification temperatures (700–800 oC) 

(Luo et al., 2009) 

 Chapter 10 summarises the conclusions and proposes future work. 
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Chapter 2. Tar formation 

2.1 Tar formation and its drawbacks 

Lignin, cellulose and hemicellulose are the major components of biomass. Lignin is the only 

fraction of the biomass that is aromatic in nature and a precursor for polycyclic aromatic 

hydrocarbons (Palma, 2013). Lignin is the most difficult to crack of the biomass components. 

Lignin pyrolysis produces tars consisting of phenolic compounds of various molecular 

weights (Jegers and Klein, 1985). Cellulose and hemicellulose are responsible for the 

production of    acetic acid, formic acid, furfural, methanol and acetone (Hosoya et al., 2008; 

Palma, 2013) 

Experiments were performed to compare steam gasification, pyrolysis and partial oxidation 

conditions by using hinoki cypress sawdust (Zhang et al., 2010). It was observed that primary 

tar compounds were produced at 600 oC. These compounds include methanol, acetaldehyde, 

acetic acid, methyl furfural, and small quantities of aromatic compounds (toluene, phenol and 

benzene). However, at higher temperatures (900–1000 oC), fewer oxygenated compounds 

(phenol and benzo furan) were produced during steam gasification and pyrolysis. The main 

compounds produced at this temperature included benzene, toluene, styrene, naphthalene, 

indene and pyrene. Most tar compounds were decomposed by partial oxidation at temperature 

above 1100 oC, except for stable aromatic hydrocarbons (toluene, phenol and naphthalene) 

(Zhang et al., 2010). 

A typical composition of biomass tars is shown in Table 1. It can be observed from the figure 

that tars are complex mixtures of aromatic hydrocarbons. It shows that the one ring aromatic 

hydrocarbons are found in maximum concentration in tars.  

Tar formation is a significant problem in gasification systems. It causes problems, such as 

blocking of pores of filters due to formation of coke and plugging in cold spots due to 

condensation. Moreover, the condensation of tar components can foul the turbines and 

engines downstream. If the tars are dealt with correctly, their associated energy can be 

recouped by converting them to producer gas as CO, hydrogen and methane. Hence, selection 

of the most suitable method for removing tar is a significant challenge to the utilization of 

syngas (Han and Kim, 2008). 
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Compound name Percentage (weight) 

Benzene 37.9 

Toluene 14.3 

Other single ring aromatic compounds 13.9  

Naphthalene 9.6  

Other two-ring aromatic compounds 7.8 

Heterocyclic compounds 6.5 

Phenolic compounds 4.6 

Three ring aromatic compound 3.6 

Four ring aromatic compounds 0.8 

Others 1.0 

Table 2.1: Biomass gasification tar composition (Milne et al., 1998). 

 

Application Particles Size of particle tars Alkali metals 

 mg/Nm3 µm mg/Nm3 mg/Nm3 

Gas turbine <30 <5 <40 0.24 

Gas engine <50 <10 <100  

Table 2.2: Quality of gas required for power generation (Stassen, 1993; Milne et al., 

1998). 

2.2 Tar Removal Techniques 

There are many approaches which can be employed to reduce the amount of tars in product 

gas. The selection of the suitable method is based on economic feasibility, efficiency for tar 
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removal and minimum effect on gaseous products. The available tar removal methods can be 

classified as primary methods and secondary methods. 

2.2.1 Primary Methods 

In primary methods, tar formation is reduced by controlling the operation parameters during 

the gasification step. Operating conditions, bed additives and design of the gasifier were the 

main factors to control the quality of producer gas. Pressure, temperature, residence time and 

gasifying medium have been shown to be the most important parameters affecting the product 

gas quality (Devi et al., 2003). In a study, pyrolysis of birch wood was performed in a free-

fall reactor to investigate the effect of temperatures on the process and it was noted that higher 

temperatures favoured the production of gaseous species. It was observed that tar could be 

eliminated by maintaining high temperatures in a fluidized bed gasifier. The yield of the tar 

decreased by up to 40 % by increasing the temperature from 700–900 oC (Yu et al., 1997). 

The amount of oxygen-containing hydrocarbons and aromatic compounds (1 and 2 ring) 

significantly decreased when increasing the temperature. However, the production of 3-ring 

and 4 ring aromatic compounds increased with temperature. In another study, nearly complete 

removal of phenol and 50 % removal of toluene was observed at high temperature during the 

pyrolysis of birch wood. However, a significant increase in naphthalene and benzene was 

observed as the temperature increased from 700–900 oC (Brage et al., 2000). Kinoshita et al. 

(1994) also found that the amount of tar decreased by increasing the temperatures in a fixed 

bed gasifier during the gasification of sawdust. Significant quantities of compounds 

containing oxygen (cresol, phenol and benzo furan) were observed at temperature <800 oC. It 

has also been reported that decomposition of aromatic tar compounds decreases at 

temperatures >850 oC. However, there are many other factors like, char conversion, risk of 

sintering and gas heating value that limit the range of operating temperature (Fig. 2.1) 

(Hallgren, 1997).  

The effect of pressure on biomass gasification has been well-studied. Knight (Knight, 2000) 

studied the effect of pressure on the gasification of chips of Wisconsin whole tree and noted 

that when increasing the pressure up to 21 bar the amount of the polycyclic aromatic 

hydrocarbons also increased (Knight, 2000). In another study, it was noted that concentration 

of tars and LHC (lower hydrocarbons as compared to naphthalene) decreased by increasing 

the pressure during gasification with 100 % conversion of carbon (Wang et al., 2000). 
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It has been reported that amount of tar decreases to 2 g/m-3 quickly as the equivalence ratio 

increases and also affects the products composition when air was used as a gasifying medium 

(Narvaez et al., 1996). The concentration of CO2 increased, whereas H2 and CO concentration 

decreased at high values of equivalence ratio, which ultimately reduced the heating value of 

the product gas. It was reported that the availability of O2 increased at high equivalence ratio, 

which increased oxidation of the products. At 700 oC, almost 30 % of the tar concentration 

decreased by increasing the equivalent ratio from 0.22 to 0.32 (Kinoshita et al., 1994; 

Narvaez et al., 1996). However, the low gas quality and lower heating value limit the 

significant increase in equivalent ratio. 

 

 

Figure 2.1. Effect of temperature changes on various factors (Hallgren, 1997). 

 

The use of catalysts as bed additives to reduce tar compounds has been reported in literature. 

Several experiments were performed using limestone (bed additive) in a gasifier (fluidized 

bed) to improve the quality of gasification. The bed material was the mixture of silica sand 

(75 wt %) and limestone (25 wt %). This was used to investigate the gasification (steam) of 

manure and alpha cellulose (Walawender and Fan, 1981; Walawender et al., 1985). It was 

observed that heating value, yield and gas composition were affected by the presence of 

limestone. In another study, it was reported that the tar amount decreased from 6.5 wt% to 1.3 

wt% by using the calcined dolomite in the gasifier (Corella et al., 1988) . Narvaez et al. 
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(Narvaez et al., 1996) observed that the 40 % decrease in the tar when adding 3 % of calcined 

dolomite of the biomass. However, carryover of the fine particles and catalysts deactivation 

are the major drawbacks of using bed additives. 

2.2.2 Secondary Methods 

These methods are employed for the treatment of product gas from the gasifier. They can be 

divided into physical and chemical treatments. In mechanical/physical methods, cyclones, 

fabric filters, scrubber, electrostatic filters and ceramic filters are used (Han and Kim, 2008), 

whereas in chemical treatments, cracking of tar compounds can be performed by using high 

temperatures (thermally) or catalysts (catalytically) at the outlet of the gasifier. It has been 

found that secondary methods are very useful in terms of tar reduction. In additions, these 

methods are also found to be efficient for ammonia reduction (Simell et al., 1997a; Simell et 

al., 1997b) 

Mechanical/Physical methods. 

Physical methods are mainly used to remove particles from the product gas. However, it was 

reported that these methods were effective to capture tar as well as particles physically 

(Thambimuthu, 1993). Bakers et al. (1986) suggested that tar could be found in two different 

forms, depending upon the exit temperature from the gasifier (Baker et al., 1986). At higher 

temperatures, tar could be observed as vapour, whereas it might be present in the gas as 

entrained droplets of liquid where the temperature is low. So, at higher temperatures, tar and 

particle removal could be decoupled. At lower temperatures, if tar and oil condensed together 

then their removal could not be separated from particulate removal. Mechanical methods are 

classified as wet gas cleaning and dry cleaning. Wet gas cleaning was used after the cooling 

of gas (20-60 oC), whereas dry cleaning was employed before the gas cooling where the 

temperature was higher than 500 oC (Anis and Zainal, 2011).  

Dry Gas Cleaning 

Various types of equipment can be used for dry gas cleaning, including cyclones, fabric 

filters, rotating particle separators, sand bed filters, and activated carbon based absorbers. 

There is not enough data to analyse the tar removal efficiency of these equipments from 

gasification of biomass (Anis and Zainal, 2011). However , the efficiency of coal tar removal 

was  about 50-90 % in a cyclone/humidifier combination downstream of a coal gasifier 

(Baker et al., 1986). Similarly , the removal efficiency of tar was found to be 0–50 % and 30–

70 % in fabric filters and rotating particles separator (RPS) after the exit from fixed bed 
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biomass gasifier (Hasler and Nussbaumer, 1999), respectively. It was reported that RPS and 

fabric filters were not efficient at removing tars independently and extra tar reduction 

technology was required.  In another study, it was reported that the concentration of tar 

decreased from 8 g/Nm3 to 4.5 g/Nm3 using RPS (Rabou et al., 2009). Glass fibre and quartz 

ceramic filters were used to clean hot gases and significant removal of tar (75.6 to 78.9 %) 

was observed in both types of ceramic filters (de Jong et al., 2003). However due to high 

investment and their complexity, ceramic filters are not considered as an alternative to capture 

the tar. The sand filters can also be used for tar removal. It has also been reported that 50–

97 % of tar removal could be achieved using sand filters (Hasler and Nussbaumer, 1999). 

Meanwhile, the deposition of the tars on the filters causes plugging, which cannot be cleaned 

easily. 

Equipment Tar removal 

(%) 

Drawback Ref 

RPS 30-70 Additional tar removal 

necessary 

(Hasler and 

Nussbaumer, 

1999) 

Fabric filters 0-50 Additional tar removal 

necessary 

(Hasler and 

Nussbaumer, 

1999) 

Ceramic filters (quartz) 75.6-94 Expensive and complex (de Jong et 

al., 2003) 

Sand filters 50-97 Plugging difficult to clean (Hasler and 

Nussbaumer, 

1999) 

Ceramic filters (glass) 77-97.4 Expensive and complex (de Jong et 

al., 2003) 



 

 

13 

 

Humidifier/cyclone 

combination 

50-90  (Baker et al., 

1986) 

Table 2.3:  Methods for tar removal 

Catalytic filters have been used to clean gasifier product gases. Cracking of tar using catalysts 

and removal of particles with the help of filtration were accomplished in one step. The 

method was effective for removal of tar and particles (Engelen et al., 2003). A nickel-based 

catalyst was used in the support body of ceramic candle filter (Draelants et al., 2000). 

Draelants et al. (2000) found that the performance of the candle filter improved above 850 oC 

in terms of benzene and naphthalene conversion. Figure 2.2, below, shows a schematic 

representation of catalytic candle filter (Draelants et al., 2000). 

 

  

Figure 2.2. Schematic Diagram of a Catalytic Candle Filter (Draelants et al., 2000). 

Wet Gas Cleaning 

Wet gas technology can remove particles and tar droplets effectively. It was demonstrated that 

99 % of the particles and 40-70 % of tar were removed using a wet electrostatic precipitator 

(ESP) for different types of gasifiers, including updraft and downdraft (Van Paasen et al., 

2004). A corona discharge ionizes the gas as it passes through the grounded electrode and 

high voltage electrode. The tar droplets or dust particles and water attached with ions and 

attracted towards the grounded electrode in an electric field.  The capital cost and large size of 

the wet ESP are the major disadvantages of this technology (Kumar et al., 2009).  
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Figure 2.3. Steam gassification with wet gas scrubbing and dry dust removal in Gussing, Austria 

(Lettner et al., 2007). 

Wet scrubbers can also be used to clean product gas. Water was used in wet scrubbers to 

remove tars and particles. Venturi scrubbers were found to be the most effective for tars and 

particles removal and their tar removal efficiency could be as high as 90% to clean product 

gas from the gasification of rice husk  (Hasler et al., 1997). Figure 2.3 shows the industrial 

application of wet gas scrubbing and dry dust removal in steam gasification plant in Gussing, 

Austria (Lettner et al., 2007). 

Gas cleaning technology Tar removal (%)  Particle removal (%) 

Wash tower 10-25 60-98 

Wet electrostatic precipitator 0-60 >99 

Rotational particle separator 30-70 85-90 

Wash tower 10-25 60-98 

Venturi scrubber 50-90  

Table 2.4 Removal of tar by various methods of wet gas cleaning (Hasler and 

Nussbaumer, 1999). 

There are many problems associated with the use of water as a scrubbing medium, including 

low solubility of hydrocarbons, plugging of apparatus, saponification, and the cost of 
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treatment of water (Lettner et al., 2007). Moreover, there was salt formation on the parts of 

scrubber which could result in fouling and clogging (Lee et al., 2008). In addition, the cost of 

the treatment of sludge also made it uneconomical. 

Chemical methods 

The chemical removal of tar usually performs inside a secondary reactor. Unlike mechanical 

techniques, chemical removal methods do not produce any residual waste stream. The 

successful application of chemical techniques produces combustible species such as CO and 

H2 and increases the calorific content of the syngas (Basu, 2010).  Chemical removal methods 

can be categorised as thermal decomposition, catalytic decomposition and plasma 

decomposition. 

Thermal decomposition 

Thermal decomposition of tar compounds involves the cracking of compounds into lighter 

gases by the effect of temperature alone. The elevated temperature affects the stability of tars, 

cracking them into lighter components. In a gasifier (two-stage), pyrolysis of pinus pinaster 

was performed and it was noted that increasing residence time and temperature improved gas 

production, tar decomposition and quality of char (Fassinou et al., 2009). In another process, 

88 % conversion of the tar was observed at 900 oC from the pyrolysis of woodchips (Morf et 

al., 2002). El-Rub et al (2008) investigated the thermal cracking of phenol at 700-900 0C, and 

only 6.3 % conversion was observed at 7000C, and it increased up to 98% at 900 0C (El-Rub 

et al., 2008). In another study, it was reported that 78 % of the tar converted to lighter 

hydrocarbon gases at 800 0C (Phuphuakrat et al., 2010). 

It has been reported that adding air or oxygen to the gasifier product gas effectively cracks the 

tar compounds through partial oxidation. However, the partial oxidation of the components of 

the product gas reduced heating value possibly leading to further complications when using 

the gas in conventional gas turbines or engines (Fjellerup et al., 2005).  

It was investigated that the quality of char, the amount of lighter gases, and the conversion of 

tar improved by increasing the residence time and temperature in a two-stage gasifier 

(Fassinou et al., 2009). Fagbemi et al. (2001) performed the pyrolysis of three different 

biomasses (coconut shell, wood and straw) and investigated the thermal decomposition of tars 

from 400 to 900 oC. It was reported that effective removal of tar required higher reaction 

temperatures (> 7000C) (Fagbemi et al., 2001). Bridgwater et al (1995) reported that biomass-

derived tar was very hard to crack by thermal methods alone, and additional process 

modifications were required, such as the use of catalysts, or reactor modifications that result 
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in an increased residence time of the syngas (Bridgwater, 1995). Furthermore it was reported 

that in addition to high operational costs (associated with high temperature operations), 

thermal cracking could also increase soot formation, which increased particulate load on 

processing equipment, requiring further clean-up (Fjellerup et al., 2005).  

Catalytic Cracking 

Secondary catalytic cracking is performed to decompose tar compounds after the exit from the 

gasifier in a separate process unit. Catalysts reduce the activation energy for tar 

decomposition, therefore the required temperatures for tar cracking is significantly lower than 

that of thermal cracking alone. 

In downstream reactors, different types of catalysts have been employed to decompose tars. 

These include metallic, natural minerals and metal oxide synthetic catalysts. These catalysts 

can be categorized into four groups: alkali metal catalysts, nickel catalysts, novel metal 

catalysts and dolomite catalysts (Han and Kim, 2008). 

There are many types of catalyst that can be used for decomposition of tar compounds (Milne 

et al, 1998). The criteria for the selection of catalysts was summarized by Sutton et al. (2001) 

(Sutton et al., 2001; Anis and Zainal, 2011), as follows: 

• the catalyst should be efficient in removing tar 

• it must be resistant to deactivation due to deposition of carbon 

• regeneration should be inexpensive and facile 

• it must be inexpensive 

• the catalyst should cause a suitable syngas ratio. 

 

Figure 2.4. Strategy of Catalytic Tar removal (Schmidt et al., 2011). 

In the petrochemical industry, Ni-based catalysts are widely used for methane and naphtha 

reforming (Bridgwater, 1984; Strom et al., 1985; Ekstrom et al., 1988; Aznar and Delgado, 

1992; Marino et al., 1998; Hepola et al., 1999; Coll et al., 2001; Dayton, 2002; Lappas et al., 

2002; Dou et al., 2003; Engelen et al., 2003; De Filippis et al., 2004; Taralas and 

Kontominas, 2004; Zhang et al., 2004; Furusawa and Tsutsumi, 2005; Han and Kim, 2008). 
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Nickel catalysts were successfully used for both hot gas cleaning and in bed conversion of tar 

(Anis and Zainal, 2011). One of the major advantages of using nickel-based catalysts is the 

ability to use commercially available steam reforming catalysts, thus reducing cost. These 

catalysts can efficiently convert any CH4 presents, to syngas (H2, CO), increasing the  quality 

of product gas (Kinoshita et al., 1995; Skoblia et al., 2015). Furthermore, it was reported that 

nickel catalysts are very effective in decomposing heavy hydrocarbons such as naphthalene or 

toluene (Sutton et al., 2001) 

Zhang et al. (2004) investigated the decomposition of tar from product gas using three nickel 

based catalysts, Z409, ICI46-1, and RZ409, all of which have the active component nickel 

oxide, in a gasification product stream having 51.2 % N2, 14.2 % CO2, 15.7 % CO, 6.5 % 

hydrogen, 4.8 % methane and  4%  heavy hydrocarbons. It was noted that 99 % of the tar 

decomposed in all catalysts, at temperatures up to 800 oC. The reactivity and performance of 

the tar decomposition system did not measurably diminish during 12–18 hours of experiments 

(Zhang et al., 2004). However, it was noted that small pores in the catalysts were converted to 

larger pores due to the high temperature operation. 

It has been found that alkali metal catalysts are also effective for cracking of tars (Sınaǧ et al., 

2006; Jiménez et al., 2008; Yanik et al., 2008; Huang et al., 2009; Xie et al., 2009; Wang et 

al., 2010). The decomposition of lignin, hemicellulose and cellulose has been shown to be 

substantial in the presence of K2CO3. It increased the yield of gaseous products and reduced 

the formation of liquid products due to secondary reactions. It was observed that the yield of 

alkane and phenols increased by adding 17.7 wt.% of K2CO3, whereas formation of acids, 

alcohols and aldehydes reduced (Wang et al., 2010). 

It was reported that dolomite-type catalysts were efficient in cracking tar compounds (Pérez et 

al., 1997; Seshadri and Shamsi, 1998; Corella et al., 1999; Gil et al., 1999; Myrén et al., 

2002; He et al., 2009; Li et al., 2009; Yu et al., 2009b). Gusta (2009) reported that dolomite 

enhanced tar decomposition by an average of 21% over thermal cracking at 750 oC (Gusta et 

al., 2009). Tar conversion and water-gas shift reaction were promoted due to presence of iron 

contents in dolomite. In other research it was shown that a modified dolomite (Fe2O3 mixed 

with natural dolomite) increased the decomposition of tar up to 97% (Wang et al., 2005). 

Novel metal catalysts (Rh, Ru, Pd, Pt, etc.) have been developed to decrease tar from biomass 

gasification. Several studies showed that theses catalysts were efficient in decomposing tars 

into fuel gas (Asadullah et al., 2002; Asadullah et al., 2003; Polychronopoulou et al., 2004; 

Tomishige et al., 2004; Miyazawa et al., 2005; Ammendola et al., 2009). However, these 
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catalysts are more expensive than nickel catalysts or conventional catalysts (Anis and Zainal, 

2011). 

Catalytic cracking is a good way to decompose tar into valuable products and operates at 

lower temperatures than thermal decomposition of tar (Chen et al., 2015), thus it has 

significant advantages when considering operational costs. However, the complexity of the 

process increases when using catalysts, along with other operational challenges such as 

fragmentation, poisoning, fouling and carbon deposition (Bosmans, 2013).  

2.3 Plasma   

Plasma is a fully or partially ionized gas. It can be produced by several methods, such as 

flames, combustion, electric furnace, shocks (electrically, chemically and magnetically 

driven) and electric discharges (glow, corona, microwave, arc, electron beam, etc.) of matter 

(Liu et al., 1999). It is highly reactive and conductive due to the presence of excited 

molecules, atoms, radicals, ions and neutral particles. Plasmas can be classified as thermal or 

non-thermal.  

2.3.1 Thermal plasma 

In thermal plasmas, the temperature of the background gas is very high and all neutral and 

charged particles are in thermal equilibrium. It has been observed that chemical reactions 

significantly increase in a hot medium due to presence of reactive species, such as electrons, 

ions and radicals. However, the consumption of energy is very high (Petitpas et al., 2007). It 

has been reported that non-thermal plasmas consume less energy as compared to thermal 

plasma to produce comparable yield of H2 (Bromberg et al., 2001). 

Thermal plasmas are commonly used for the treatment of solid or municipal wastes. It is 

similar to thermal degradation techniques, as the waste is degraded by raising the temperature 

of the entire plasma. However, useful energy can be extracted from these wastes when using 

plasma gasification. H2O/Ar plasma torches have been applied to convert waste plastic and 

wood into product gas. High concentrations of CO and H2 (90 %) were produced with very 

low contents of condensable tar, but the high energy use made it uneconomical (Hlina et al., 

2014). The production of high quality syngas was studied in a two-stage steam plasma 

system. In the first stage, steam and small concentrations of hydrogen and CO2 were produced 

using contact glow discharge electrolysis of an electrolyte. These gases were used to gasify 
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the biomass in a second stage. It was observed that the production of hydrogen was higher 

than in conventional gasification processes (Diaz et al., 2015). 

In  another study, plasma was used in a two-stage fluidized bed gasifier to convert solid waste 

into syngas (Materazzi et al., 2016). The carbon conversion efficiency and syngas 

composition were investigated in this process. It was observed that the two-stage gasifier was 

efficient in reducing the concentration of tar. The plasma converter helped to 

reduce/decompose the condensable tar. The synergic effect of high temperature and plasma 

converted the residual carbon to CO which ultimately increased the yield of the process. 

Interest in applying plasma for the decomposition of biomass has been continuously 

increasing because it can, in principle, produce tar-free syngas. The smaller size of equipment, 

and handling of a wide range of hazardous and heterogeneous materials are advantages of this 

process (Kim, 2004b). Thermal plasma was used in a gasification reactor to enhance the 

quality of the syngas. It was observed that the yield of CO and H2 were increased by the 

application of thermal plasma (Cho et al., 2015). However, it was viewed as too complex 

system for the reduction of condensable tar. A significant amount of energy is required to 

clean the large volumes of gases which makes this technology uneconomical for cleaning 

purposes. 

2.3.2 Non thermal plasmas (NTPs) for treatment of biomass gasification tars 

NTPs have been used for treatment of fuel gas and for production of valuable organic 

compounds due to highly non-equilibrium conditions and requirement of low power. The 

plasma has the ability to initiate reactions (physical and chemical) at lower temperatures, 

whereas the electron temperature can reach to 104-105 K (Petitpas et al., 2007; Tao et al., 

2013). Due to the very high temperatures of the electrons generated, thermodynamically 

unfavourable reactions can occur. Hence, thermal equilibrium does not exist in non-thermal 

plasmas, as the electron temperature is not the same as the ambient temperature. The most 

common examples of NTPs are dielectric barrier discharge, microwave, radio frequency, and 

corona plasma. 

Pulsed corona discharge 

The pulse corona discharge NTP reactor has proved useful in various industrial applications, 

for example, in cleaning of liquid and gas exhaust streams, and in surface treatments (Chang 

et al., 1991; Bellakhal et al., 1997). It produces significant numbers of reactive species 

(radicals and atoms) at ambient conditions. In this technique, weakly luminous discharge 
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appears near the thin wires or sharp edges where the strength of electric field is highest 

(Fridman et al., 2005; Moreau et al., 2008). Therefore, these discharges are non-uniform, as 

high strength of electric field, luminosity and ionization are located near just the one 

electrode. The electric circuit is completed by movement of charged particles from electrode 

to electrode in a weak electric field. Fig. 2.5 shows a wire cylinder configuration of pulsed 

corona discharge with preheating. 

 

 

Figure 2.5. Wire cylinder configuration of pulsed corona discharge with preheating (Fridman et 

al., 2005). 

Pulse voltages are applied below the frequency of ions, which implies that motion of ions 

restricted to reduce the energy loss and only electrons followed the applied electric field. It is 

difficult to scale up this reactor, because the electrode system’s impedance is proportional to 

the size of reactor (Urashima and Chang, 2000). Therefore, investigation is required to 

increase the strength of local electric field by matching the impedance and electrode shapes.  

However, the corona discharge system is better, in terms of chemical efficiency, than other 

non-thermal plasma processes (Yamamoto and Futamura, 1998). The high cost of the pulsed 

power devices is the greatest drawback of this technology (Nair et al., 2003a). 

Nair (2004) investigated the decomposition of tar using pulsed corona discharges. He used 

different mixture of gases to identify the primary processes involved in the 

decomposition of tar compounds. Fig. 2.6 below presents the energy consumption 
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in different mixtures for the removal of naphthalene. It can be observed that in 

the presence of moisture less energy was required to decompose the naphthalene. 

The primary processes involved for the decomposition of naphthalene are as 

follows. 

CO2→CO+ O (2.1) 

H2O→OH+H (2.2) 

Tar +O→ products (2.3) 

CO+M+O→M+CO2 (2.4) 

Where M is the background gas 

Nair also investigated the decomposition of  different tar analogue compounds in pure N2 

and fuel gas mixtures (CO:20%, CO2:12%, H2:17%, CH4:1%, rest N2) (Nair et al., 2003b). 

They showed that removal of tar compounds required less energy in N2 than in fuel gases, 

due to termination reactions of radicals (eq. 2.5 and 2.6). Figure 2.7 below shows that single 

ring compounds need higher energy than two-ring aromatic compounds. It was reported that 

this is due to the higher reaction rate constant for naphthalene decomposition as compared to 

phenol. For toluene, there was a chance of re-formation of toluene due to recombination 

reactions of fragments. 

R + M→ B (2.5) 

R.+ R→ C (2.6) 

Where R-Radical produced, B and C show intermediates. 
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Figure 2.6. Energy consumed to decompose Napthalene. Conc., 500-600 ppm; T, 200-210oC 

(Nair et al., 2003c). 

 

 

Figure 2.7. Tar removal in pure N2. Phenol, 1000 ppm; Naphthalene 500-600 ppm; Toluene, 

700 ppm (Nair et al., 2003a). 

Pemen et al. (2003) investigated the kinetics of tar cracking (toluene, phenol and naphthalene) 

in a mixture of the product gas (CO2 (12%), CO (20%), H2 (17%), CH4 (1%)), and balance 
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N2) using a pulsed corona discharge. The study was conducted to investigate the possible 

reaction routes, mechanisms and kinetics occurring within NTP for tar decomposition. It was 

reported that decomposition of tar compounds was governed by oxidation reaction, due to the 

presence of CO2 (reaction 2.7 and 2.8) generating O radicals: 

e + CO2→ e + CO + O
.
 (2.7) 

O
.
+ Tar→ Products (2.8) 

It was observed that the overall conversion efficiency of tar increased with increasing 

concentration of CO2 in the product gas. The study also reported that the tar cracking 

efficiency was negatively affected by the presence of CO as a carrier gas, which terminated 

the reactions of O radicals via the reverse reaction of 2.7.   

CO+O+M→CO2+ M (2.9) 

The chemical kinetics of the removal of naphthalene in synthetic fuel gas by using pulsed 

corona discharge at 200 oC have also been studied (Nair et al., 2004). They reported the 

following reactions as being more sensitive to the overall process for tar (naphthalene) 

removal.  

CO+O+M→CO2+ M (2.10) 

H2+O→H + OH (2.11) 

CH2O+O→OH+ HCO (2.12) 

HCO+HCO→CO+ CH2O (2.13) 

M+HCO→CO+ M+H (2.14) 

CO+ M+H→M+HCO (2.15) 

CH2O+H→H2+HCO (2.16) 

 

Nair reported that reactions 2.10-2.13 and 2.15 reduced the rate of decomposition of 

naphthalene, whereas reaction 2.14 and 2.16 increased it (Nair et al., 2004). He concluded 

that the major reaction for decomposition of tar was via oxidation 
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Naphthalene + O→ Products (2.17) 

Tao et al. (2013) studied the plasma-assisted catalytic decomposition of a tar analogue 

(toluene) in a He carrier gas using DC (direct current) non-thermal pulsed plasma (Tao et al., 

2013). He observed that using plasma before the catalytic steam reforming reactions increased 

the cracking of toluene. The amount of tar cracked increased from 32 % to 57 % when using 

NTP before the catalyst bed (Tao et al., 2013). Fig. 2.8 shows that the cracking of toluene 

increases in the following order: direct decomposition (DD) < plasma assisted decomposition 

(PD) <catalytic reforming (CR) < plasma enhanced catalytic reforming (PCR) (Yang and 

Chun, 2011). 

 

Figure 2.8. Toluene decomposition. T, 773 K; He, carrier gas (Tao et al., 2013). 

Dielectric barrier discharge (DBD) reactor  

In a DBD, the dielectric barrier is used in the discharge gap to stop the electric currents and 

eliminates the production of sparks (Moreau et al., 2008).The dielectric barrier consists of one 

or more layers of dielectric, which is placed between the metal electrodes. The dielectric 

material must have high breakdown strength and low dielectric loss. Glass ceramics and 

quartz are mostly used as dielectric materials and the typical discharge gap ranges from 0.1 

mm to several centimetres.  The operating frequency usually ranges from 0.05 to 500 kHz and 

the required operating voltage is about 10 kV if the discharge gap is few millimetres (Fridman 

et al., 2005). DBD discharges operate at atmospheric pressure and have strong non-

equilibrium conditions, without using expensive pulsed power supplies. For this reason, this 

technique has various industrial applications, for example, CO2 lasers, ozone generation, and 

UV source in excimer lamps. In addition, many researchers have investigated using this 
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technique for the removal of VOCs and tars. Planar and cylindrical configurations of DBD 

reactor are shown in Figure 2.9. 

Kim et al. (2004) compared the performance of different NTP technologies for the cracking of 

tar. The study investigated the performance of a Pulsed Corona Discharge, DBD, a 

ferroelectric pellet packed bed reactor, a plasma-driven catalytic reactor (PDC), and a surface 

discharge reactor (SD). Benzene was used as a model compound to investigate the 

performance of various reactors in N2/O2 carrier gas. Fig 2.10 shows the decomposition of 

benzene with respect to specific input energy. 

 

 

Figure 2.9. Common dielectric barrier discharge configurations (Kogelschatz, 2003) 

 

Figure 2.10. NTP Benzene Degradation Comparison (Kim, 2004a) 
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It can be observed that nearly 75% conversion of benzene obtained at 600 J/L in the DBD 

reactor. In addition, it can be noted that increase in SIE promotes the conversion of benzene 

directly (Kim, 2004a). Kim et al. (2004) discussed the selectivity to CO and CO2 in the 

presence of oxygen, produced from the decomposition of benzene. The surface discharge 

reactor and DBD reactors exhibited similar selectivity for CO (40 %) and CO2 (40 %), 

whereas the remainder was aerosols. The PDC (plasma driven catalyst) showed 28% and 

72 % selectivity to CO and CO2 respectively, and formation of aerosols completely 

disappeared. However, it was noted that selectivity to CO2 remained constant with respect to 

SEI. 

The plasma-assisted catalytic steam reforming of a tar analogue (toluene) was performed in a 

DBD reactor using Ni/Al2O3 (Liu et al., 2017b). It was shown that the synergetic effect of Ni 

catalysts and plasma increased the decomposition of toluene and yield of hydrogen, and 

reduced the generation of unwanted by-products. It is shown in Fig. 2.11 that increasing the 

Ni percentage increased the decomposition efficiency and energy efficiency. 

Fig. 2.12 below shows the effect on the yield of products. It is evident from figure that the 

yield of permanent gases and lower hydrocarbon increases with increasing the Ni loading. 

Therefore it was concluded that reaction route shifted from oxygenation or dehydrogenation 

of methyl group to opening of aromatic ring, which increased the yield of products (Liu et al., 

2017b) 
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Figure 2.11. Toluene decomposition and energy efficiency. Power, 35 W; toluene concentration, 

17.7 g/Nm3 (Liu et al., 2017b). 

 

Figure 2.12. The yield of gaseous products. Power, 35 W; toluene concentration, 17.7 g/Nm3 (Liu 

et al., 2017b). 

It was reported that two different mechanisms were involved in the decomposition of toluene.  

They were direct impact of electrons, and collision of gas-phase radicals (HO., .OH, O., H.,) 

with toluene (Liang et al., 2013). Reaction route 1 is initiated by collisions between toluene 

molecule and energetic electrons in the plasma discharge zone, resulting in the production of 

intermediate radicals (phenyl and benzyl). These unstable intermediates lead to the formation 

of several aliphatic carbonyls by rupture of the aromatic ring. The CO2 formation occurred 

due to series of oxidation reactions with O and OH radicals.  
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Reaction route 2 is initiated by collision of reactive radicals (O and OH) with toluene. 

Initially, cresol formation occurred due to the addition of OH radicals, or the abstraction of H 

from methyl group of toluene by .OH radicals formed benzyl alcohol. This was further 

oxidized to benzaldehyde and later onto benzoic acid, further undergoing a Photo-Kolbe 

reaction, to form CO2 and benzene. Similar to route 1, rapid opening of the aromatic ring 

takes place followed by a series of hydroxylations of the aromatic ring to produce several 

hydroxylated intermediates, which are slowly mineralized to CO2. 

 

 

Figure 2.13. Suggested Toluene Decomposition Pathway (Liang et al., 2013) 

Liang et al. (2013) provide a good insight into the potential pathways and mechanisms for 

toluene cracking, showing that both electrons and radicals contribute to the tar analogue 

decomposition process (Liang et al., 2013) 

Gliding arc discharge 

Conventional non thermal and thermal plasmas are not able to simultaneously provide high 

electron temperatures, high densities of electrons and a highly non-equilibrium systems. 

Many plasma–chemical applications need a high level of non-equilibrium and a high power. 

The high power helps to increase the reactor productivity, whereas non-equilibrium 

conditions are necessary for selectivity of chemical processes. Therefore, it is very important 

to combine the advantages of thermal and non-thermal discharges, which can be used for 

large-scale pollution control, exhaust gas cleaning, conversion of fuel, surface treatment and 

hydrogen production. 

The gliding arc discharge (GAD) has the properties of both thermal and non-thermal plasmas 

(Czernichowski, 1994; Fridman et al., 1994; Fridman et al., 1999). The GAD is highly non-
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equilibrium in nature, with a relatively high electron density. Therefore, GAD is very efficient 

for the above mentioned applications. The GAD discharge is organized in a gas flow between 

two divergent electrodes (figure 2.14) and is produced at the minimum distance between the 

electrodes, then moves with the flow of the gas, and the arc column length increases 

simultaneously with the voltage. 

 

Figure 2.14. Photo image of the gliding arc discharge in the parallel flow reactor (Fridman et al., 

2005) 

The thermodynamic equilibrium state of the plasma becomes difficult to sustain, when heat 

loses from the plasma column stared to increase as compared to energy transferred by the 

source. Thereby, a quick transition of equilibrium to non-equilibrium phase takes place. The 

plasma discharge cools suddenly to gas temperature, and the conductivity of plasma is 

maintained by a high electron temperature: Te ∼ 1 eV. After this transition, the evolution of 

GAD continues under non-equilibrium conditions (Tgas << Te) (Fridman et al., 2005). The 

losses due to heat in this phase are much lower than in equilibrium phase (numerically nearly 

three times lower). After the termination of this phase (non-equilibrium), the evolution repeats 

from the initial breakdown.  

A study by Chun et al. (2002) investigated the decomposition of benzene as a tar analogue in 

a gliding arc plasma. The maximum removal of tar compound was 82.6 %. He also studied 

parameters such as, benzene concentration, steam flow rate, electrode gap, nozzle diameter 

and specific input energy. Fig. 2.15 (a) shows the effect of concentration on the 

decomposition of benzene and energy efficiency. It was observed that increasing the 

concentration reduces removal efficiency and increases the energy efficiency of the process. 

At constant power, the plasma-generated reactive species react with the benzene to 
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decompose it. However, when the concentration is increased whilst keeping the others 

parameters constant, the relative amount of benzene molecules increases with respect to 

reactive species. Therefore, as the concentration of benzene increases, the ratio of plasma-

activated reactive species to benzene molecules will decrease, which will reduce the benzene 

conversion 

 

 

Figure 2.15. Effect of benzene concentration (Chun et al., 2013) 

The experimental results (Fig. 2.16) showed that with increasing total gas flow rate removal 

of benzene slightly decreased, the energy efficiency increased (Chun et al., 2013). At higher 

flow rates, the tar compound and carrier gas are subjected to plasma discharge zone for 

shorter residence times, which can decrease the number of collisions between reactive species 

and tar compounds. Yang and Chun (2010) investigated the cracking of naphthalene as tar 

analogue in gliding arc plasmas (Yang and Chun, 2011). The maximum conversion and 

energy efficiency were 79 % and 47 g/kWh respectively. 

Fig. 2.17 shows that the decomposition efficiency of naphthalene increases with increasing 

the specific input energy, while energy efficiency decreases with respect to SEI. A similar 

trend was reported previously in many publications (Guo et al., 2006; Chun and Lim, 2012; 

Nunnally et al., 2014). The plasma power played a key role in the decomposition of the tar 

analogue compounds. It was reported that plasma power increased the electron density, 

electric field and gas temperature (Tu and Whitehead, 2012) 
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Figure 2.16. Effect of total gas flow rate (Chun et al., 2013). 

. 

 

Figure 2.17. Effect of specific energy input(Yang and Chun, 2011). 

The effect of electrode length (Fig. 2.18) was also studied and results showed that with 

increasing electrode length, both destruction efficiency and energy efficiency increased. 

This was possibly due to increase in the length of discharge, which ultimately increased 

the residence time of the gas.  
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Figure 2.18. Effect of various electrode length (Yang and Chun, 2011) 

In another study, decomposition of naphthalene was studied in a two-stage gliding arc 

plasma. It was reported that decomposition of tar (naphthalene) could be achieved in the 

range of 70-95% in a single stage reactor. However, complete removal was achieved 

using two stages (Tippayawong and Inthasan, 2010). 

The gliding arc plasma was used to investigate the decomposition of benzene and 

naphthalene as tar surrogates. It has been noted that removal efficiency and energy 

efficiency of benzene were 95% and 120 g/kWh respectively, whereas for naphthalene 

these were 79% and 68 g/kWh (Chun and Lim, 2012). It was observed that increasing the 

power increased the removal of tar compounds, whereas energy efficiency decreased. A 

similar effect of power was reported by Nunnally et al. (2014) who used gliding arc 

plasma to perform oxidative steam reforming of toluene and naphthalene in simulated fuel 

gas (Nunnally et al., 2014). However, tar concentration also plays an important role in the 

performance of the plasma process. It was reported that at low concentration (30 g/m3) 

more than 90% of toluene and naphthalene were decomposed, whereas at high 

concentration (75 g/m3) it reduced to nearly 70%. A study by Zhu et al. (2016) explored 

steam reforming of toluene as a biomass tar analogue using gliding arc discharge reactor 

(Zhu et al., 2016). The conversion of toluene in N2 carrier gas reached 95%.C2H2 and H2 

were the major gaseous products having selectivity 27% and 39.35% respectively. Further, it 

was observed that removal efficiency of toluene reduced with increasing the concentration. 

However, energy efficiency was shown to increase with increasing concentration. Similar 



 

 

33 

 

behaviour with regard to concentration was reported in many other studies (Chun et al., 

2013; Wang et al., 2017b). 

The externally oscillated plasma reformer (EOPR) was constructed to study the 

decomposition of benzene as tar analogue. The device was attached to a gliding arc 

plasma to produce oscillation to increase the discharge area. It was reported that the 

destruction efficiency of benzene was higher (90.7 %) in the presence of external 

oscillations. The major products were permanent gases (CO, H2 and CO2), lower 

hydrocarbons (methane, C2H4 and C2H6) and carbon black. As shown in Fig. 2.19(a), the 

decomposition efficiency increases with increasing the oscillation amplitude, which also 

increases the energy efficiency. It was reported that oscillation amplitude increased the 

neutral, positive and negative ion, which may contribute to the decomposition of benzene 

(Šícha et al., 1968; Chun et al., 2012). Fig. 2.19(b) shows that the concentration of CO, 

CO2 and H2 is low, due to low concentration of benzene. The concentration of CO2 and H2 

was unaffected by the oscillation amplitude. However, concentration of CO slightly 

increased with oscillation amplitude, whereas the lower hydrocarbons were not detected.  

 

 

Figure 2.19. Effect of the oscillation amplitude (Chun et al., 2012) 

It has been reported that cracking efficiency of tar compounds can be increased by addition of 

steam (Chun et al., 2012; Chun et al., 2013; Liu et al., 2017a; Sun et al., 2017; Jamróz et al., 

2018). The steam cracking of toluene was explored in a gliding arc discharge reactor using N2 

carrier gas. It was reported that the formation of OH radicals through plasma produced new 

reaction pathways to oxidize the toluene and its intermediates, which significantly increased 

the decomposition efficiency and energy efficiency. 
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Microwave discharge 

Microwave discharges are mostly used for production of non-equilibrium and quasi 

equilibrium plasmas, for various applications. They can be produced at incident powers from 

several Watts to 100s of kW, at pressures as low as 10-5 Torr, to ambient pressure. The 

electromagnetic waves of frequency above 300 MHz produce microwave discharges. 2.5 GHz 

is usually used in industrial and scientific applications (Lebedev, 1998; Lebedev, 2010; 

Ferreira and Moisan, 2013). The one of the main advantage of this plasma system is the 

electrodeless setup (Jamróz et al., 2018). The presence of particles or oxidizers can limit the 

application of many plasma systems, due to erosion of electrodes. Hence, the microwave 

plasma system has a distinct advantage. 

  

Plasma type Current 

A 

Voltage 

V 

Frequency 

Hz 

Pressure drop Efficiency 

% 

Dielectric 

barrier 

discharge 

10-3 to 10 5x103-2x104 10 to 105 large 30 to 80 

Microwave 

discharge 

10-3 to 1 100 to 500 >109 small 30 to 60 

Arc 

discharge 

10-100 100-500 dc middle 70-90 

Pulsed 

corona 

10-2 to 1 3 x104-2x105 10-1000 middle 20-70 

Table 2.5; Properties of different plasma discharges (flow rate/channel) (Urashima and 

Chang, 2000) 

The removal of toluene has been investigated in microwave discharges. The removal 

efficiency of toluene was more than 90% and the products included gases (H2, CH4, and 

C2H2) and solid carbon. The solid carbon could be removed by adding steam into the 

discharge reactions (Sun et al., 2017). The microwave plasma has also been employed to 

decompose toluene, benzene and 1-methyl naphthalene in N2 carrier gas. The reactor was 

able to remove 98% of the tar compounds (Jamróz et al., 2018). However, the conversion 

efficiency decreased with increasing concentration and flow rate (Jamróz et al., 2018). In 

another study, microwave plasma was used to investigate the decomposition of tar from 

pine pyrolysis. Commercial grade ethanol was used to decrease the viscosity of the tar 

compounds. It was noted that tar completely decomposed into CO, solid carbon, H2 and 
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O2. The formation of CO increased as residence time decreased, whereas O2 formation 

increased at high residence time (Eliott et al., 2013). However, the formation of solid 

carbon produced operational problems. The formation of  problematic deposits has been 

widely reported (Demidiouk et al., 2003; Magureanu et al., 2006; Chen et al., 2009; 

Magureanu et al., 2011; Gandhi et al., 2013; Karatum and Deshusses, 2016). Jamroz et al. 

(2018) stated that the addition of steam increased the conversion of tar compounds and 

decreased the formation of benzene derivatives and soot (Jamróz et al., 2018). Osman and 

Marc (2016) measured the time required to produce significant blocking in the reactor by 

measuring the pressure drop (Fig. 2.20) (Karatum and Deshusses, 2016). It was stated that 

formation of these deposits increased with decreasing residence time.  

 

Figure 2.20. Pressure drop measured with respect to time. SIE, 360J/L; Gas flow rate, 6.6 

L/min; conc., 100 ppmv (Karatum and Deshusses, 2016). 

Many researchers reported the formation of solid residue and heavy hydrocarbons during the 

treatment of tar compounds and their formation inhibited either by adding the steam or by 

using the catalyst which may increase the operational cost of the process. Therefore, it is 

necessary to investigate the suitable conditions to convert the tar compounds to lower 

hydrocarbons. 
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Chapter 3. Materials and methods 

3.1 Chemicals and gases 

Toluene and benzene (sigma Aldrich, 99.8%), CO2 (99.8%), H2 (99.99%), N2 (99.99%), CO 

and CH4 (100%) (BOC, UK). 

3.2  Experimental setup 

Fig.1 shows a schematic of the experimental setup. The coaxial dielectric barrier discharge 

(DBD) reactor consisted of two coaxial quartz tubes one inside the other. The two metal 

electrodes, one outside the external cylindrical quartz tube (330 mm length, 18 mm outer 

diameter, 15 mm inner diameter) and the other inside the inner tube (outer diameter 12 mm, 

inner diameter 10 mm). The inner and the outer metal mesh electrodes were made from 316 

stainless steel. The length of the external mesh was 45 mm resulting in a discharge region of 

about 2.86 cm3. The plasma was produced in the annular space between the coaxial 

cylindrical tubes. A variac was used to control the input voltage of the plasma generator 

which delivers power to DBD reactor. The power supplied to the reactor was measured before 

the plasma generator using power meter. This is also known as input power. In this study, the 

power supplied/delivered to the DBD reactor was varied from 5 to 40 W. Power can also be 

measured after the plasma generator which is known as deposited power. The voltage time 

dependence was sinusoidal. 

Computer-controlled mass flow controllers regulated the flow rate of different gases. The 

carrier gas was saturated with toluene by passing through a bubbler (see Fig.3.1). The bubbler 

was placed in an ice bath to minimize the effect of diurnal fluctuations in ambient temperature 

on the rate of evaporation of toluene. For benzene, bubbler was placed inside water bath. The 

gas flow rate was varied from 40.6 ml/min to 120 ml/min. To monitor the change of flow rate 

as a consequence of plasma chemical reactions, a constant flow of nitrogen (6.0 mL/min) as 

reference gas was added to the exit of the reactor. All values are stated at STP.  To study the 

effect of temperature on the performance of plasma chemical reactions, the plasma reactor 

was placed inside a furnace which can adjust the temperature between ambient and 400 oC. 

The calibration of GC was performed to measure concentration of toluene /benzene. The 

known concentrations (82, 60, 41, 20 and 5 g/Nm3) of toluene/benzene were injected to GC to 

measure the corresponding area of peaks. Then, obtained area were plotted against known 
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concentrations to make calibration curve. The product compositions were monitored by a 

Varian 450-GC equipped with a TCD (Thermal conductivity detector) to measure CH4 and 

H2, and a FID (Flame ionization detector) to measure lighter hydrocarbons (LHC) including 

C1, C2 (C2H4, C2H6), C3 (C3H6, C3H8), C4 (C4H8, C4H10), C5 (C5H10, C5H12), and C6H6. 
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Figure 3.1. Schematic diagram of the experimental setup. 

3.3 Experimental procedure 

1. First of all, plasma reactor was placed inside the fume cupboard. Then, clips of the 

power system were attached with the plasma system, one with the top end and other 

with the metallic mesh around the glass tube.  

2. The appropriate gas cylinder for carrier gas (CO2, H2, N2, CO etc.) was opened, which 

connected with the bubbler through mass flow controller. The gas was bubbled 

through the toluene bottle at a specific flow which entrained the tar analogue before 

entering into the reactor. Online GC was connected with the outlet of plasma reactor to 

analyse the concentration of various compounds. 

3. Another direct connection was made from nitrogen cylinder to GC through mass flow 

controller. It was used as nitrogen reference stream to calculate changes in total flow 

rate. 

4. After establishing all connections, the DBD reactor was continuously purged (for 30 

minutes) by the desired carrier gas (CO2, H2, N2 or mixture) to remove air from the 
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system (confirmed by GC analysis). After that flow rate of a specific gas was settled 

by a computer controlled mass flow controller.  Flow was checked, after stabilizing, 

with the help of digital bubbler flowmeter to concise with the settled value.  

5. When the flow rate was stabilized, the blank run was completed to measure the initial 

peak area of toluene, CO2 or H2, and nitrogen. The plasma power was off in the blank 

run to obtain the initial toluene’s concentration in the absence of any reaction. The 

blank run can also help to identify any noise within the GC interface. The blank run 

was completed at least twice after getting stable reading before each set of 

experiments.  

 

6. After getting the stable reading of toluene concentration. The power of the plasma 

system was turned on, and adjusted at a certain wattage with the help of variac at least 

5-10 minutes to eliminate the variation in power. The power delivered to the reactor 

was continuously monitored by using energy meter. The sample was injected to GC 

when the reading of power was stable on the energy meter. 

 

7. Then the plasma power was turned off after four minutes of injection of the sample 

into GC. The analysis of the sample took 15 minutes to get GC chromatogram.  

 

8. When significant amount (visible) of solid residues appeared inside the reactor, then it 

was replaced by new reactor and steps 4-7 were repeated. The used reactor was placed 

inside the furnace for 4 hours for cleaning at 700 oC. 

 

9. To study the effect of concentration, output stream from bubbler was diluted with the 

same carrier gas to change the concentration of toluene in the DBD reactor. The 

changes in the concentration was monitored by GC chromatograms. The variation of 

the peak areas was less than 2 % in consecutive readings. 

10. The series of experiments were performed by changing the level of power as well as 

residence time, each experiment was performed two times to produce the consistency 

in data. 

11. After completing the experiments, plasma system was turned off, and flow reduced to 

zero from control system. 

12. Cylinders were closed and all the connection disassembled from GC as well as reactor.  
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3.4 Definitions   

The decomposition efficiency of toluene and CO2 were defined as: 

dT=
moles of toluene in input stream-moles of toluene in outlet stream

moles of toluene in input stream
×100 

CO2 decomposition =
moles of CO2 converted

moles of CO2 input
×100 

The selectivity of different products were defined as follows:  

H2 selectivity (%)=
moles of  H2  produced

4×  Moles of C7H8 converted 
×100 

 

CO selectivity (%)=
 moles of CO produced

7× Moles of C7H8 converted + moles of CO2 converted
×100 

 

LHC selectivity (%)=
∑ (m × moles ofCmHy)

 7× Moles of C7H8 converted
×100 

 

The yield of products was defined as: 

H2 yield (%)=
moles of H2  produced

4 × total moles of C7H8 inlet stream
×100 

 

CO yield (%)=
moles of CO  produced

7 × moles of C7H8 input + moles of CO2 input
×100 

 

The energy efficiency was calculated using the following formula: 

 

Energy efficiency (
g

kWh
) =

grams of toluene converted per min

P (W) × 60/3600000
 

 

The carbon balance was defined as: 

 

Carbon balance=
∑ C measured

∑ Cfeed

× 100 

Benzene conversion is defined as: 
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dB=
[𝐶6H6]𝑖𝑛 - [𝐶6H6]𝑜𝑢𝑡

[𝐶6H6]𝑖𝑛
×100 

The following formulae were used to calculate the selectivity of different products using 

benzene as tar analogue 

LHC selectivity (%)=
∑ (m × moles ofCmHy)

 6× Moles of C6H6 converted
×100 

 

H2 selectivity (%)=
moles of  H2  produced

3×  Moles of C6H6 converted 
×100 

 

CO yield (%)=
[moles of CO ]𝑜𝑢𝑡

[6 × C6H6 moles]𝑖𝑛 + [CO
2 

moles]𝑖𝑛 
×100 

 

Specific input energy (
kJ

L
) =

P (W) × 60/1000

Flow rate total (L/min)
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Chapter 4. The role of CO2 in the conversion of toluene as a tar surrogate 

4.1 Introduction 

Various plasma techniques have been used to crack biomass gasification tars, using toluene as 

a tar surrogate. The results obtained so far were generated by plasma-enhanced catalytic 

steam reforming, where it has been found that the removal efficiency of toluene can be 

increased from 37% to 57% using non-thermal plasma. The selectivity towards CO and H2 

has been shown to increase in the presence of Ni/SiO2 (Tao et al., 2013).  

Nair used pulsed corona discharge plasma for the removal of tar from product gas (Nair et al., 

2003a). It was demonstrated that the cracking of naphthalene in nitrogen is more economical 

than cracking in product gas. It had been observed that the energy requirement for this process 

was very high, as 20% of the output energy of the biomass gasification was consumed to 

remove the tar from fuel gas (Nair et al., 2003a). The efficiency, at 95%, was higher than 

thermal or catalytic cracking. 

An atmospheric dielectric barrier discharge (DBD) reactor is a more attractive method for 

conversion of tar compounds. It has been widely studied for the removal of volatile organic 

compounds to address environmental problems (Karatum and Deshusses, 2016). It has been 

demonstrated that the removal efficiency increases with increasing residence time and specific 

input energy. In another study, a wire plate dielectric barrier discharge was used with 

alumina/nickel foam/manganese oxide catalyst to investigate the decomposition of toluene at 

ambient pressure and temperature (Guo et al., 2006). The complete removal of toluene was 

shown to be possible. Manganese catalysts and a DBD reactor were used to decompose the 

toluene in air as carrier gas (Magureanu et al., 2006). 

In this study, a DBD was used to decompose the toluene in CO2 carrier gas. The role of CO2 

in product selectivity and decomposition of tar analogues was investigated as it makes up a 

significant proportion (15%-25%) of the gasifier effluent (Parthasarathy and Narayanan, 

2014). It can help to understand the mechanism of  tar decomposition in actual product gas 

from gasifiers, which mainly consists of  CO2, H2, CO and N2 (Parthasarathy and Narayanan, 

2014). The effects of power, residence time, concentration and temperature on the removal of 

toluene and towards the selectivity of various compounds. 



 

 

44 

 

4.2 Results and discussion 

4.2.1 Effect of Power 

Plasma power is an important factor affecting NTP reactions. Toluene decomposition 

products include CO, H2, lighter hydrocarbons (LHC) including C1-C5, and heavier 

hydrocarbons. Fig.4.1 (a) shows the effect of input plasma power on decomposition of 

toluene. It was observed that toluene decomposition efficiency increased with increasing 

plasma power. The maximum removal of toluene was 99 %, achieved at 40 W and a residence 

time of 4.23 s. Previous experimental studies showed that increasing plasma power increased 

the electron density, electric field and gas temperature (Tu et al., 2011), which could increase 

the conversion of toluene. Moreover, the formation of active species, such as ions, radicals, 

and excited molecules can also enhance the cracking of toluene.    
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Figure 4.1. Effect of plasma power on the (a) conversion of toluene, (b) selectivity of CO, H2 and 

LHC at residence time 4.23 s, (c) yield of CO and H2 at 4.23 s, and (d) decomposition of CO2. 

Reaction conditions: gas flow rate, 40.6 ml/min; concentration, 82g/Nm3; temperature, ambient; 

and residence time, 4.23 s. 
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Fig. 4.1(a) also shows that the energy efficiency decreases from 22 g/kWh to 5 g/kWh with 

increasing plasma power from 5 W to 40 W. Similar results were reported for destruction of 

toluene in  gliding arc discharge (Chun et al., 2013). 

Fig. 4.1(b) shows the selectivities of various gaseous products as a function of the discharge 

power at a residence time of 4.23 s. The selectivity to CO slightly increases from 5 to 10 W, 

after which it rises exponentially up to 30 W. This is because the dissociation of CO2 also 

increases at high power, which increases the selectivity of CO exponentially. The selectivity 

to H2 increases linearly with power, whereas the selectivity of lower hydrocarbons remains 

below 4 % at various levels of power. 

Fig. 4.1(c) presents the relationship between yield of valuable gases and discharge power .The 

yield of both products (CO and H2) shows a linear relationship with power. The yields of CO 

and H2 reach 17 and 21% respectively, at 40 W and 4.23 s. Clearly, increasing plasma power 

is beneficial for improving the yield of CO and H2.  

The effect of power on the decomposition of CO2 is shown in Fig. 4.1(d). The graph shows 

that decomposition of CO2 increases with the rise of plasma power, and the maximum 

decomposition of CO2 (14%) is obtained at 40 W and 4.23 s. This is consistent with previous 

experimental results regarding CO2 decomposition (Yu et al., 2012). 

In NTP, the cracking of CO2 may take place through electroionization dissociation channels 

and electron impact dissociation: 

 CO2+ e →CO + O + e (4.1) 

 CO2+ e →CO + O
+
+ 2e (4.2) 

 CO2+ e →CO
+
+ O + 2e (4.3) 

 CO2+ e →C
+
+ O2+ 2e (4.4) 

The threshold energy requirement for electron impact dissociation (Reaction (4.1)) is 5.5 eV 

(Zhang et al., 2017), whereas the other three channels (Reactions 4.2-4.4) require electron 

energies from 19 to 40 eV (Locht and Davister, 1995). The electron energy is in the range of 

1-10 eV in DBD plasma. Therefore, the main reaction for CO2 decomposition is likely to be 

the electron impact dissociation. The dissociated  O and CO can combine to produce CO2 or 

O2 (Cenian et al., 1995), as follows: 

 O+CO→CO2                               (4.5) 

 O+O→O2                                                                  (4.6) 
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4.2.2 Effect of concentration 

The decomposition of toluene was studied at various concentrations (20 g/Nm3, 32 g/Nm3, 60 

g/Nm3 and 82 g/Nm3), to observe the effect on the conversion of toluene. Fig. 4.2(a) shows 

that the removal efficiency of toluene decreased from 94% to 77% when increasing the 

concentration to 82 g/Nm3. The decomposition efficiency of toluene decreased as the 

concentration increased. This has also been observed in rotating gliding arc discharges (Zhu et 

al., 2016). 

Fig. 4.2(b) presents the selectivity of different gaseous compounds, it can be seen that the 

selectivity of CO decreases from 78% to 36% as the concentration increases. The selectivities 

to hydrogen and LHC also decrease with increasing the concentration of toluene 
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Figure 4.2. Effect of concentration on the (a) conversion of toluene, (b) selectivity of CO, H2 and 

LHC at 10 W, (c) decomposition of CO2, and (d) energy efficiency. Reaction conditions: gas flow 

rate, 40.6 ml/min; residence time, 4.23 s; concentration, 82g/Nm3; and Temperature, ambient. 
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Fig. 4.2(c) represents that, at 20 W, the percentage decomposition of CO2 increases from 

5.4% to 7.8 % with changing the concentration from 20 g/Nm3 to 82 g/Nm3. This may be due 

to increasing collisions between O radicals and toluene radicals rather than CO, which 

increases the consumption of O, thereby shifting the CO2 decomposition equilibrium to the 

product side. 

Fig. 4.2(d) shows the effect of concentration of toluene on the energy efficiency of plasma. 

The energy efficiency increases from 5 g/kWh to 16 g/kWh by changing the concentration 

from 20 g/Nm3 to 82 g/Nm3. This is because the quantity of cracked toluene increased, 

whereas the plasma input energy and flow rate were kept constant. This agrees with previous 

work in which GAD (Gliding arc plasma) plasma (Chun et al., 2013) and RGD (Rotating 

gliding arc discharge) plasma (Zhu et al., 2016) were used. However, the efficiencies are 

higher: GAD plasma (3.6g/kWh) (Yu et al., 2009a) and microwave plasma (4.52 g/kWh) 

(Eliott et al., 2013). 

4.2.3 Effect of residence time 

Tar decomposition is strongly influenced by residence time. Figure 4.3(a), below, shows that 

the decomposition of toluene increases with increasing residence time. At 40 W, 

decomposition of toluene increases continuously from 71% to 99%, as the residence time 

increases from 0.47 s to 4.23 s. Similar results were reported for the decomposition of toluene 

by GAD (Chun et al., 2013). 

The selectivities toward the various gaseous products are shown in Fig. 4.3(a). H2 and CO are 

two major gaseous products that form during the decomposition of toluene. The selectivity of 

both products increased with increasing residence time, and the maximum selectivity reached 

73.5% for CO and 21.9% for H2, at 4.23 s and 40 W of power. This may be due to the 

increase in the residence time in the plasma discharge, which increases collision frequency 

between toluene molecules, electrons and reactive radicals (O). It has previously been 

observed that O radicals are produced from the dissociation of CO2 in plasma reactor (Yu et 

al., 2012). They react with toluene fragments to produce CO and hydrogen (Guo et al., 2006). 

The hydrogen is probably formed from toluene by H-extraction, because initially, hydrogen 

atoms come from the methyl group, as the C-H bonds in CH3 are the weakest bonds in the 

C7H8 molecule (Szwarc, 1948). As for CO and LHC, they are probably formed by the 

decomposition of C-C bond , as it has been suggested that toluene is decomposed in plasma 

by two types of reaction: (1) abstraction of methyl group (2) cracking of benzene ring 
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(Urashima et al., 1997). LHC could be produced by decomposition of C-C bond with reaction 

energy values less than 8 eV (Blin-Simiand et al., 2008).  The selectivity to lower 

hydrocarbons, which slightly increases with increasing residence time. However, it remains 

lower than 4 % at all tested conditions, which is consistent with previous experimental results 

(Zhu et al., 2016).  

 

Figure 4.3 Effect of residence time on the (a) conversion of toluene and towards selectivity of 

CO, H2 and LHC (C1-C5), (b) decomposition of CO2 and towards yield of CO and H2. Reaction 

conditions; temperature, ambient; gas flow rate, 40.6-120 ml/min; concentration, 82g/Nm3; and 

Power, 40 W. 
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Fig. 4.3(b) shows that the yield of CO and H2 also increased with residence time, which 

would ultimately increase the production of valuable syngas. It was reported that 

decomposition of toluene could be achieved via three routes: (a) dissociation through electron 

impact, (b) radical reactions, and, (c) ion-molecule reactions (Blin-Simiand et al., 2008). It 

was noted that the most important channel for the initial reactions in toluene cracking was 

electron impact. The 2nd important mechanism for toluene decomposition was radical attack. 

However, the direct ion process does not have a significant effect on destruction of toluene 

(Lee and Chang, 2003). Fig.4.3 (b) also shows the effect of residence time on the 

decomposition of CO2. The trend of the graph shows that the decomposition of CO2 increased 

linearly with residence time from 7% to 14%, with increasing residence time, from 0.47 to 

4.23 s, at 40 W. It is similar to Yu et al (2012), who reported CO2 decomposition in a DBD 

reactor. The expected toluene destruction process is represented in Fig. 4.4. Decomposition of 

toluene can take place via impact of high energy electrons. It is probably initiated through 

hydrogen abstraction from the methyl group (because it has the minimum bond dissociation 

energy, 3.7 eV), producing hydrogen and benzyl radicals (Urashima and Chang, 2000). A 

second electron impact can removes hydrogen from the aromatic ring. The aromatic 

intermediates can react with each other to produce oligomers/polymers (Wang et al., 2017a). 

High energy electrons and excited species can also attack the aromatic ring to produce ring-

opening products (C1-C6) (Zhu et al., 2011). Decomposition of CO2 produces oxygen atoms, 

which oxidize the intermediates to CO2 and H2O ultimately (Wang et al., 2017a) . 

During the treatment of toluene, formation of a solid, black deposit was observed inside the 

plasma zone.  It was noted that the solid residue showed agglomerating tendencies. The 

formation of solid deposits decreases with increasing the residence time. The mass of the 

residue was determined by measuring the weight of the reactor before and after the reaction. It 

was more than 35wt. % of the decomposed toluene. This value is not accurate, because some 

amount of solid carbon was also carried out into the downstream equipment’s and pipes, 

which was difficult to measure. It was observed that, at 40 W and 4.23 s, the formation of 

solid residue increased with decreasing residence time. Guo et al. (2006) reported that the 

formation of solid residue increased in limited supply of oxygen (Guo et al., 2006). The 

deposits was dark brown and tarry. Similar deposits have been described as polymeric 

substances, or carbonaceous deposits (Magureanu et al., 2011). It was difficult to perform 

carbon balance due to presence of CO2 carrier gas. The CO may be produced either by 

decomposition of CO2 or via oxidation reactions of toluene. Therefore, it was hard to predict 

that how much amount of toluene converted to CO. Secondly, significant amount of solid 
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residues also formed inside the reactor. These solid residues are complex mixture of heavy 

hydrocarbons and difficult to quantify each of compound. 

These solid residues can clog the reactor if not managed properly. These deposits can be 

removed from the surfaces of the DBD reactor by converting them into CO, CO2 and lower 

hydrocarbons. It was reported that in the presence of excess oxygen, almost all decomposed 

toluene were transformed to CO2 and CO (Guo et al., 2006). Moreover, the presence of other 

gases like CO2, CO, N2 and H2 in the product gas from gasifier can contribute towards the 

removal of solid residues (Parthasarathy and Narayanan, 2014). It has previously been 

demonstrated that the solid deposition problem could also be resolved by increasing the 

plasma volume and placing additional dielectric tubes (Zhang et al., 2014b). 
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Figure 4.4. Reaction mechanism 
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4.2.4 Effect of Temperature 

Experiments were performed to determine the dependence of decomposition efficiency of 

toluene and product distribution, on temperature and plasma power, at a specific residence 

time (4.23 s). Fig. 4.5(a) shows that conversion of toluene slightly decreases with increasing 

temperature, from 200 oC to 400 oC, due to the increasing rate of the recombination reaction 

of the CO and O radicals, which reduces the amount of reactive species (Cenian et al., 1995). 

Consequently, the conversion decreases from 99% to 88%, at 40 W. This contrasts with Song 

et al., who reported high removal rates of toluene from air at elevated temperature (Song et 

al., 2002). 

 

Figure 4.5. Effect of temperature on (a) the conversion of toluene, (b) selectivity of CO, H2 and 

LHC (C1-C5), and (c) the yield of CO, H 2 and decomposition of CO2. Reaction conditions: input 

power, 40 W; gas flow rate, 40.6 ml/min; concentration, 82g/Nm3; and residence time, 4.23 s 
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Elsewhere, it was shown that elevated temperature increased the removal efficiency of VOC. 

This was explained by the increased kinetic reaction of O radicals with tar compounds (Hsiao 

et al., 1997). However, in those experiments air was used as a carrier gas instead of CO2 to 

decompose VOC. It was found that decomposed O and CO radicals could be combined to 

form CO2 and O2  and reduced the concentration of reactive species in the plasma zone 

(Cenian et al., 1995). Elevated temperature favours recombination reactions. Fig. 4.5(c) 

shows that the decomposition of CO2 decreases with increasing temperature (due to 

recombination reactions of dissociative radicals). 

A possible reason for decreasing the conversion of toluene at elevated temperature in CO2, is 

the re-association of O and CO radicals rather than O radicals reacting with toluene. In this 

way, the overall conversion of toluene is reduced in CO2 carrier gas at elevated temperature. 

Fig. 4.5, (b) and (c) shows the selectivity and yield of CO, H2 and LHC .The selectivities of 

CO and H2 decrease from 73.5% to 49% for CO, and from 21.9% to 12.6% for H2, by 

increasing the temperature to 400oC. However, selectivity to LHC increases gradually from 

3.5 to 12.8% with the increase of temperature. A possible reason is the hydrocracking of 

toluene at elevated temperature , leading to a higher concentration of lower hydrocarbons (C1-

C5) (Amano et al., 1972; Castaño et al., 2008). 

4.3 Conclusions 

The cracking of toluene in non-thermal plasmas was studied in a CO2 carrier gas (15% - 25% 

of the gasifier effluent) (Parthasarathy and Narayanan, 2014) of the gasifier , to study the 

effects of this component of gasifier producer gas in isolation. The effects of plasma power 

and residence time on the selectivities of various gaseous products, at room temperature and 

elevated temperature, were investigated. The major findings can be summarized as follows: 

i. Toluene conversion increases with power and residence time. The maximum 

conversion (99%) was obtained at 40 W and 4.23 s of residence time (the highest 

levels used). The major products are H2, CO and solid residue. 

ii. Lower hydrocarbons (C1-C4) are also produced during the cracking of toluene. They 

remain below 3.5% at ambient temperature, but increased up to 12.8% as the 

temperature was increased to 400 oC. 

iii. At elevated temperature toluene conversion decreases due to reactions of O and CO 

radicals, selectivity. The yields of H2 and CO also decrease.   

iv. Solid deposits were observed inside the reactor.  
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Toluene can be decomposed completely in CO2 carrier gas using a DBD reactor, but the 

formation of solid residue is a negative outcome and needs to be resolved. However, other 

gases in the typical mixture from gasifier may have a role in removing/converting the 

residues.  
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Chapter 5. Decomposition of toluene as a tar analogue in H2 carrier gas 

5.1 Introduction 

Non-thermal plasma (NTP) is an attractive method for decomposing biomass gasification tars. 

In this chapter, the removal of toluene (as a gasification tar analogue) was investigated in a 

dielectric barrier discharge (DBD) reactor at ambient and elevated temperatures with 

hydrogen as the carrier gas. In previous studies, it has been observed that removal and energy 

efficacy of tar compound increases by adding the steam (Chun et al., 2012; Chun et al., 2013; 

Liu et al., 2017a; Liu et al., 2017b). The decomposition efficiency of toluene increased due to 

oxidation of toluene through OH radicals, which can provide new reaction routes for the 

direct and indirect removal of toluene (Liu et al., 2017a). However, addition of steam 

increases the operational cost and process complexity.  

In this study, a DBD reactor was used to remove toluene in H2 carrier gas. In previous chapter 

(see 4.2.1) we reported almost complete conversion of tar (toluene) in CO2 carrier gas, but 

with significant formation of problematic solid residue occurred. Toluene decomposition in 

H2 has not been reported in the literature, even though the product gas from gasification 

contains significant amounts of H2 (25.2-49.5%) (Luo et al., 2009). Therefore, for a better 

understanding of tar removal from product gas, it is necessary to study the effect of H2 on 

toluene conversion and product selectivity in the NTP. This study demonstrated that higher 

temperature in the presence of a DBD opens up new (thermal) reaction pathways to increase 

the selectivity to lower hydrocarbons via DBD promoted ring-opening reactions of toluene in 

H2 carrier gas 

The performance of the DBD reactor was also studied by varying power, toluene 

concentration, temperature, and residence time. The present study reveals that the operation 

temperature plays an important role in toluene conversion to lower hydrocarbons in H2 carrier 

gas under NTP conditions. 

5.2 Results and Discussion 

5.2.1 Effect of Power 

The effect of power on the removal efficiency of toluene is shown in Fig. 5.1. Plasma power 

was varied from 5 to 40 W (SIE =7.39-59.11 kJ/L). The initial concentration of toluene was 

33 g/m3, and the residence time was 4.23 s. It was found that toluene decomposition 
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efficiency increased with increasing plasma power, and the maximum removal of toluene was 

99.5% at 40 W and 4.23 s. The similar effect of power on the decomposition of toluene  was  

reported in previous experimental study (Wang et al., 2017a). 

The energy efficiency and selectivity to LHCs are also shown in Fig. 5.1. The energy 

efficiency of the plasma decomposition clearly decreases with increasing plasma power. 

There are diminishing returns as the input power is increased. Similar trends have been 

reported for the decomposition of tar analogue (Chun et al., 2013). However, the overall 

selectivity of LHC increases from 11.20 to 20% as the power was increased from 5 to 40 W, 

which suggested that the aromatic ring was broken down at higher plasma power.  Fig. 5.2 

demonstrated that the selectivity of LHCs (C1-C5) increased with increasing plasma power 
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Figure 5.1. Effect of plasma power on the conversion, energy efficiency and selectivity to LHC; 

bars represent standard deviation. Reaction conditions: concentration, 33 g/Nm3; Temperature, 

ambient; flow rate, 40.6 ml/min; residence time, 4.23 s; and SIE, 7.39-59.11 kJ/L. 

In a DBD plasma, the mean electron energy is in the range of 1-10 eV. The Maxwellian 

electron energy distribution function (EEDF) shows the higher the average electron energy is, 

the more electrons with higher energy will be produced (Michelmore et al., 2013). These 

energetic electrons can generate active radicals, ionic and excited atomic and molecular 

species through electron-impact dissociation, ionization, and excitation of the source gases, 

i.e., H2 and toluene, which can initiate plasma assisted toluene decomposition/hydrocracking 

in H2 carrier gas. The bond dissociation energy of H2 is 4.5 eV (Darwent, 1970). In a toluene 

molecule, the C-H bond dissociation energy (3.7 eV) of the methyl group is lower than the 

dissociation energy of the C-H bond, C-C and C=C of the aromatic ring (Darwent, 1970). The 

bond dissociation energy of the C-C bond between the aromatic ring and the methyl group is 
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also higher (4.4 eV) (Kohno et al., 1998; Urashima and Chang, 2000).Therefore, initially, the 

toluene could be decomposed via H-abstraction from methyl group , because the C-H bond in 

the methyl group has lower bond dissociation energy. Moreover, the energetic electrons could 

break the C-C bond between benzene ring and methyl group, generating phenyl and methyl 

radicals (Liu et al., 2017a). 
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Figure 5.2. Selectivity of different LHC at 4.23 s. Reaction conditions: concentration, 33 g/Nm3; 

Temperature, ambient; residence time, 4.23 s; and SIE, 7.39-59.11 kJ/L. 

The benzyl and phenyl radicals could agglomerate to form solid residue. Meanwhile, these 

radicals (phenyl, and methyl radicals) could combine with H radicals or react with H2 to 

produce methane and benzene, respectively.  The agglomeration of methyl radicals can form 

higher hydrocarbons (such as C2, C3, C4, C5 hydrocarbons) (Zhang et al., 2002; Zhang et al., 

2015).  Another route for the decomposition of toluene is the cleavage of the aromatic ring, 

which can produces LHCs (<C6) directly by plasma assisted hydrocracking of aromatic ring 

in an NTP (Blin-Simiand et al., 2008). Therefore, both H radicals and energetic electrons 

contribute to the decomposition of toluene in H2 carrier gas. In an NTP, the formation of these 

chemically reactive species is necessary for the tar decomposition/hydrocracking reactions. In 

the cracking of a toluene molecule, the removal of methyl group, and the decomposition of 

aromatic ring are important (Blin-Simiand et al., 2008). An increase in plasma power/voltage 

can increase the electric field strength and the electron energy, which increases the number of 

reactive species in a DBD plasma. The increased electric field strength, the electron density, 

and the higher energetic electrons at high power/voltage could all contribute to the enhanced 

toluene conversion and the increased selectivity of LHCs in an NTP. 
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It was observed that the NTP reactions strongly depended upon input energy.  Hence, the 

specific input energy (SIE) is the main factor affecting the performance of the plasma process. 

It is reported that, even at 725 oC, the toluene conversion remains below 20%, although the 

complete decomposition occurs by 900 oC (Taralas et al., 2003). It was observed that the most 

favourable required temperatures for toluene conversion was above 650 oC (Swierczynski et 

al., 2008).  

The decomposition of toluene with respect to SIE can be written as  

 

𝑟 = −1/𝑛 ×  𝑑[𝐶7𝐻8]/ 𝑑𝑆𝐼𝐸 = 𝑘𝑆𝐼𝐸[𝐶7𝐻8]𝑛 (5.1) 

  

Here n shows the reaction order and kSIE is the energy constant in the given reaction. The 

natural log of remaining fraction of the toluene with respect to SIE in H2 carrier gas is shown 

in Fig. 5.3. It can be observed that the cracking of toluene in H2 carrier gas can be represented 

by the following equation.  

𝑙𝑛
[𝐶7𝐻8]

[𝐶7𝐻8]0
=  −𝑘𝑆𝐼𝐸 × 𝑆𝐼𝐸 

 

(5.2) 

The values of the R2 here is 0.96. Therefore, the cracking of toluene in dielectric barrier 

discharge reactor as a function of SIE exhibits first order behaviour and the value of the 

energy constant (kSIE) is 0.16 (L/kJ). It was reported that electron impact plays a key role in 

NTPs in similar reactions (Urashima et al., 1997; Kohno et al., 1998). The rates for radical 

reactions were very low, in the range of 10-22 -10-12 cm3/s (Miziolek et al., 1994). However, 

charge transfer reactions of toluene with ions and recombination of electrons and toluene’s 

were significant (10-10-10-7), but densities of ions were much lower (4-5 orders of magnitude) 

as compared to radical densities (Miziolek et al., 1994; Kohno et al., 1998). The electron 

density is significantly high (1012 cm-3) in the discharge channel (Uraahima et al., 1995), 

whereas the rate of reactions is about 10-6 cm3/s and a function mean energy of electrons 

(Miziolek et al., 1994). Therefore, energetic electrons played a significant role in the 

decomposition of toluene due to high density and reaction rate. The equation 5.2 can be used 

to obtain the value of energy constant which can be used to compare systems and to determine 

the removal of tar compounds in NTPs reactors. However, scale up study is necessary to 

validate this equation because of complex nature of chemical reactions involved in non-

thermal plasmas. 
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Figure 5.3. Effect of specific input energy (SIE) on the remaining fraction of toluene (Reaction 

conditions: concentration, 33 g/Nm3; Temperature, ambient; and residence time, 1.43 s). 

5.2.2 Effect of concentration 

The toluene concentration was varied between 20 and 82 g/Nm3, to observe the effect on the 

conversion of toluene. Fig. 5.4 shows that the removal of toluene decreased from 98.5% to 

78% by increasing the concentration from 20 to 82 g/Nm3. The trend is consistent with 

previous experimental results in which decomposition efficiency of toluene decreased with 

increasing the concentration in a DBD plasma (see 4.2.2), and that for benzene in a gliding arc 

plasma (Chun et al., 2013).  

At constant power, the plasma-generated reactive species react with the toluene to decompose 

it. However, when the concentration is increased whilst keeping the others parameters 

constant, the relative amount of toluene molecules increases with respect to reactive species. 

Therefore, as the concentration of toluene increases, the ratio of plasma-activated reactive 

species to toluene molecules will decrease, which will reduce the toluene conversion. Due to 

this reason, the selectivity to LHCs also decreases with increasing the concentration of 

toluene (Fig. 5.4). Fig. 5.4 also shows the effect of the concentration of toluene on the energy 

efficiency of plasma. The energy efficiency increases from 4.79 g/kWh to 15.6 g/kWh by 

changing the concentration from 20 g/m3 to 82 g/Nm3. As the concentration is increased, it 

also increases the total amount of decomposed toluene, and so the energy efficiency of the 

plasma process. 
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Figure 5.4. Effect of concentration on the conversion of toluene and energy efficiency of the 

plasma process; bars represent standard deviation. Reaction conditions: input power, 10 W; 

residence time, 4.23 s; flow rate, 40.6 ml/min; ambient temperature; and SIE, 14.77 kJ/L. 

5.2.3 Effect of residence time 

The removal efficiency of toluene is also influenced by residence time. Fig. 5.5(a) shows the 

effect of residence time on the conversion of toluene at 20 W. It can be observed that 

decomposition of toluene increases with increasing residence time. The removal of toluene 

continuously increases from 67 % to 98 % as the residence time increases from 1.43 s to 4.23 

s at 20 W (SIE: 10-29.6 kJ/L).  

At high residence time, the tar compound and carrier gas are subjected to plasma discharge 

zone for longer time, which can increase the collision between reactive species and tar 

compound. Therefore, increasing residence time promotes the conversion of toluene due to 

high number of collision between tar compounds and reactive species (Zhu et al., 2016). The 

maximum conversion attained was 98% at the highest residence time used here (4.23 s).  
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Figure 5.5. Effect of residence time (a) on the conversion of toluene, energy efficiency and 

selectivity to LHC; bars represent standard deviation, and (b) selectivity to individual lower 

hydrocarbons. Reaction conditions: concentration, 33 g/Nm3; flow rate, 40.6-120 ml/min; 

Temperature, ambient; and Power, 20 W; and SIE, 10-29.6 kJ/L. 

The energy efficiency and selectivity towards the lower hydrocarbons (C1-C5) are shown in 

Fig. 5.5(a). The energy efficiency of the process decreases with increasing residence time. It 
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can be seen that energy efficiency decreases from 7.9 g/kWh to 3.9 g/kWh with increasing 

residence time from 1.43 s to 4.23 s. A similar trend of decreasing flow rate has been reported 

on the conversion of benzene (Chun et al., 2013).The residence time is associated with the 

flow rate, and for high residence time flow rate needs to be reduced. At low flow rate, the 

amount of tar compound subjected to plasma reactor also decreases, which decreases the total 

amount of decomposed toluene. Therefore, at high residence time, energy efficiency of the 

system decreases due to reduction in the total amount of decomposed toluene.  Fig. 5.5(b) 

shows that selectivity of LHC (C1 –C5) increases with residence time. The H2 carrier gas 

spends more time in the plasma discharge with increasing residence time, which produces 

more H reactive radicals. These H radicals may contribute to increases the selectivity of lower 

hydrocarbons by reacting with toluene and its fragments.  

During the decomposition of toluene, a solid yellow residue was found inside the plasma 

zone. Guo et al. (2006) studied the decomposition of toluene in catalytic wire plate dielectric 

barrier discharge reactor with N2 and O2 as a carrier gas (Guo et al., 2006). They found that 

the formation of solid residue increased at lower oxygen concentrations. In some reports, 

these deposits were described as polymeric substances, or carbonaceous deposits (Magureanu 

et al., 2011; Karatum and Deshusses, 2016). It was also reported that solid particles formed 

during the cracking of toluene in air, leading to the formation of solid deposits on the surface 

of the catalyst, thereby decreasing catalytic activity (Demidiouk et al., 2003). Moreover, 

formation of these solid residues can also clog the reactor. Therefore, it is very important to 

avoid the deposition of solid residue. However, in current study we have observed that the 

formation of solid residue completely disappeared at elevated temperature in the presence of 

H2 carrier gas. 

5.2.4 Effect of temperature 

Experiments were conducted to investigate the effect of temperature on product distribution 

and solid residue formation, at various powers (5-40 W) and a specific residence time (4.23 

s). Fig. 5.6(a), below, shows that removal of toluene is not affected by increasing the 

temperature. However, Song et al., reported that decomposition of toluene increased at 

elevated temperatures (Song et al., 2002).  In other research, it was demonstrated that elevated 

temperature increased the removal efficiency of VOC in a non-thermal plasma reactor, and it 

was explained on the basis of increased kinetic reaction rate of O radicals (Hsiao et al., 1997).  
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Figure 5.6. Effect of temperature on (a) the conversion of toluene, (b) total selectivity LHC; (c) 

selectivity to various LHCs at 10 W, (d) selectivity to various LHCs at 20 W, (e) selectivity to 

various LHCs at 30 W, and (f) selectivity to various LHCs at 40 W. Reaction conditions: 

concentration, 33 g/Nm3; flow rate, 40.6 ml/min; residence time, 4.23 s; and SIE, 14.77-59.11 

kJ/L. 
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However, in those experiments air was used as the carrier gas instead of H2. In this research, 

at 40 W, almost complete removal of toluene was obtained at all temperatures. 

Fig. 5.6(b) shows the effect of temperature on the total selectivity to lower hydrocarbons at 

various levels of power and 4.23 s, it can be seen that total selectivity significantly increases 

with increasing temperature at each level of power. At 400oC and 40 W, the selectivity rises 

from 20 % to 99.97 %, without the formation of solid residue. At 400 oC and 4.23 s, the 

minimum selectivity towards LHC reaches to 81 % even at 10 W, which shows the high 

conversion of toluene to LHC, at high temperature, in the presence of H2 carrier gas. There 

are three different types of reaction involve in hydrocracking of aromatics: (a) hydrogenation-

dehydrogenation (b) isomerization and (c) cracking. 

The cracking reaction can be categorized as primary (ring-opening), secondary and tertiary 

(Arribas and Martınez, 2002). Hydrogenation and isomerization take place at lower 

temperature because of lower activation energy, whereas the rate of cracking (ring-opening) 

increases with increasing temperature (Castaño et al., 2008).  

Fig. 5.6 (c), (d), (e), and (f) show the effect of temperature on the selectivity of individual 

LHCs at 10, 20, 30 and 40 W, respectively. Fig. 5.6 (c) shows that, at 10 W, selectivity of 

benzene and methane reaches 50 % and 21 % respectively, with increasing temperature up to 

400 oC. However, the selectivity of C2 (C2H6 + C2H4) and C3 (C3H8+C3H6) remains below 

11%. It has been reported that formation of benzene increases rapidly when increasing the 

temperature to 400oC (Amano et al., 1972). The high selectivity to the aromatic compounds 

may be due to a radical exchange reactions during the hydrocracking of toluene at high 

temperature (Amano et al., 1965). It can be observed from Fig. 5.6 (f) that the selectivity of 

methane increases to 60%, whereas selectivity of benzene reduces to 28%, at 40 W and 

400oC. This happened due to the high population of energetic electrons at high power. In the 

absence of plasma, the selectivity of methane was reported to be nearly 10% at 450 oC by 

hydrocracking of toluene (Castaño et al., 2008). It was reported that higher temperatures 

(>850 oC) are required to produce CH4 and C2H4 as the major gaseous products (Jess, 1996; 

Gai et al., 2015). However, in this study, selectivity to methane reaches 60% at 400 oC, due to 

the additional effect of non-thermal plasma. 

The selectivity of C2 (C2H6 + C2H4) increases to 16.3% by increasing the temperature up to 

300oC, afterwards it decreases to 9.93 % at 400 oC. Similarly, the selectivity to C3 

(C3H8+C3H6) increased when increasing the temperature from ambient to 200 oC, after which 

it decreased, from 200 to 400 oC. This occurred because of formation of methane in the 
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presence of excess H2 at high temperature (Freel and Galwey, 1968). Hence, the synergetic 

effect of plasma and temperature enhance the selectivity to lower hydrocarbons rather than 

solid residue. Plasma causes the production of reactive H radicals which hydrocrack toluene 

into lower hydrocarbons, when operating at elevated temperatures. It has been reported that 

adding steam reduces the formation of solid carbon and heavy hydrocarbons (Jamróz et al., 

2018), which increase the operational cost and process complexity. However in this study, it 

was noted that problem can instead be resolved using hydrogen gas, which is already present 

(27-53%) (He et al., 2009) in fuel product gas. 

5.3 Conclusions 

In this study, the decomposition of toluene was studied in a dielectric barrier discharge (DBD) 

reactor using H2 as carrier gas, as a proxy for biomass gasification tars. For the first time, this 

study investigated that elevated temperature in the presence of a DBD opens up new (thermal) 

reaction pathways to raise the selectivity to lower hydrocarbons via DBD promoted ring-

opening reactions of toluene. H2 was selected as a carrier gas because it is the major 

component in most steam gasifier effluents. Experiments were performed at various levels of 

power (5-40 W) and residence time (1.43-4.23 s), at ambient and elevated temperature (20-

400 oC), to determine the conversion and selectivity towards valuable gaseous products. 

The main findings are as follows: 

i. The removal efficiency of toluene can be as high as 99.5% in this design of DBD 

reactor. The toluene is converted to lower hydrocarbons (C1-C6) and solid residue. 

ii. The rate of decomposition of toluene increases with power input and residence time.  

At ambient temperature, solid residue was formed in the reactor, which would create 

various problems over time.  

iii. Toluene conversion is not a function of temperature, but the selectivity is under 

plasma conditions, which is different from conventional chemical process. The 

selectivity towards lower hydrocarbons increases with increasing temperature, 

reaching 99.9 % at 400oC, without formation of solid deposits and heavy 

hydrocarbons (>C6).  

iv. Formation of methane, C2 (C2H6 + C2H4) and benzene increases with increasing 

temperature. Here, the maximum selectivities observed were 60%, 9.93% and 28%, 

respectively, at 400 oC and 40 W (the highest values used). 
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Clearly, there are benefits of combining thermal and non-thermal effects in this particular 

application. Here, adding in thermal effects allowed high selectivity to LHCs, without solid 

residue formation: both desirable outcomes. It seems that, for this application at least, 

combinations of non-thermal plasma and thermal phenomena can have advantages. 
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Chapter 6. Removal of toluene as a tar analogue in a N2 carrier gas using a 

non-thermal plasma dielectric barrier discharge (DBD) reactor 

6.1 Introduction 

The main drawback of NTP technology is the formation of organic by-products and solid 

residues, and it has proven very difficult to eliminate the formation of these unwanted by-

products (Guo et al., 2018). These by-products may be toxic and/or environmentally malign, 

and they may create operational problems (Zhu et al., 2016). Therefore, the complete 

conversion of targeted compounds to non-toxic and valuable products is desirable. Guo et al 

(2018) studied the decomposition of toluene in a DBD reactor to investigate by-product 

formation. They reported that a spectrum of organic compounds were formed, including 

formaldehyde, acetaldehyde, methanol, benzene, acetic acid, benzaldehyde, formic acid, 

benzoic acid. However, the risks associated with these organic products were sometimes 

higher than that of the parent VOC (Guo et al., 2018). The formation of solid deposits is 

widely reported and can cause an array of problems. For the long-term stable operation of 

plasma discharges, solid carbon must be removed (Sun et al., 2017).  Jamroz et al (2018) 

stated that during decomposition of benzene, soot presented in significant amounts (Jamróz et 

al., 2018). Osman and Marc (2016) measured the time required to produce significant 

blocking in a reactor by measuring the pressure drop (Karatum and Deshusses, 2016). The 

increase in pressure drop due to such deposits could produce leakages or cracks in dielectric 

tubes, and eventually cause blockage of the pipes. 

N2 is the most significant component of typical biomass gasifier product gas (around 50%) 

(Narvaez et al., 1996). Many researchers investigated the decomposition of tar analogue 

compounds in N2 carrier gas. However, formation of soot and heavy hydrocarbons was 

observed (Zhu et al., 2016). Therefore, in this study N2 was used as a carrier gas to investigate 

the decomposition of toluene (as a tar analogue) in a DBD reactor, and H2 was also added into 

N2 carrier gas at elevated temperature to evaluate its role in reducing solid residue formation. 
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6.2 Results and discussion 

6.2.1 Effect of power and residence time 

Plasma power plays a key role in the reactions in non-thermal plasmas. A range of products 

are produced when toluene is cracked, including H2, lighter hydrocarbons (C1-C6), and 

heavier hydrocarbons (>C7). The effect of input power on the conversion of toluene is shown 

in Fig. 6.1 below. Initially, the concentration of toluene was maintained at 33 g/Nm3. The 

results show that high input power favours the cracking of toluene, and nearly complete 

removal of toluene is obtained at 40 W and residence time of 4.23 s.  
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Figure 6.1. Effect of plasma power on the conversion of toluene. Reaction conditions: ambient 

temperature; Concentration, 33 g/Nm3; flow rate, 40.6 ml/min; residence time, 4.23 s; carrier 

gas, N2; and SIE, 7.39-59.11 kJ/L. 

The conversion of toluene increased because at high power electron density, the electric field 

is stronger, producing more reactive species, such as radicals, ions, and excited molecules. In 

a non-thermal plasma, the mean electron energy is in the range of 1-10 eV (Petitpas et al., 

2007). The Maxwellian electron energy distribution function (EEDF) shows the higher the 

average electron energy is, the more electrons with higher energy will be produced 

(Michelmore et al., 2013). These energetic electrons are the hottest species and play a key 

role for the decomposition of tar compounds. 
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Figure 6.2. Effect of plasma power on selectivity of gaseous products.  Reaction conditions:  

ambient temperature; toluene concentration, 33 g/Nm3; flow rate, 40.6 ml/min; residence 

time,4.23 s; carrier gas, N2; and SIE, 7.39-59.11 kJ/L. 

Fig. 6.2 presents the effect of power on the selectivity to gaseous products and the energy 

efficiency.  The selectivity of H2 gradually increases from 5% to 39% with increasing power 

from 5 W to 40 W. At lower power the average energy of an electron is not high enough to 

abstract the hydrogen from the aromatic ring, so the hydrogen originates in the methyl group 

(Szwarc, 1948). However, at higher powers, H2 increases due to the breakage of the aromatic 

ring. This also increases the selectivity to lower hydrocarbons, which reach 5.5% at 40 W. 

However, the energy efficiency decreases with increasing the power, and decreases from 15 

g/kWh to 2 g/kWh as the power increases from 5 W to 40 W. A similar trend was reported for 

the removal of tar analogue (see 5.2.1). 
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Figure 6.3. Effect of residence time on the conversion and towards the selectivity of gaseous 

products. Reaction conditions: input power, 20 W; ambient temperature; concentration, 33 

g/Nm3; carrier gas, N2; and flow rate,40.6-120 ml/min. 

The effect of residence time on the product selectivity is shown in Fig. 6.3. With an increase 

in residence time, the removal efficiency of toluene increased from 93% to 99% at 20 W. This 

was simply because the toluene molecules spent more time in the plasma discharge zone, so 

the number of collisions with reactive species (ions, radicals and electrons) and toluene 

molecules increased (Bo et al., 2008). The energy efficiency of the system decreases with 

increasing residence time. This is possible because at high residence time flow rate decreases, 

which also reduces the molar flow rate of toluene into the system. Therefore, the amounts of 

decomposed toluene decrease. Moreover, the toluene conversion for residence times of more 

than 2 s was almost 100%. Therefore, in this area, additional energy input reduced the 

apparent energy efficiency. 

The selectivity of H2 increased from 4% to 18% as the residence time increased from 1.43 s to 

4.23 s. The decomposition of aromatic rings increased with increasing residence time due to 

the increase in the collision frequency of reactive species. However, the selectivity to lower 

hydrocarbons remained below 1% at different residence times. Figures 6.2 and 6.3 show that 

without any hydrogen in the initial carrier gas, the H2 selectivity increases with increasing 

power and residence time. However the content of LHC remains very low. Hence, under these 

conditions the formation of oligomer/polymer compounds seems to be the main process. 

From a stoichiometric point of view, the formation of lower hydrocarbons from toluene is 
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probably due to hydrogen consumption. However the formation of simple alkanes such as 

methane, ethane, propane, butane etc. is a hydrogen-consuming process. Therefore, the 

formation of larger amounts of hydrogen is only possible by the deposition of solid residues. 

The reaction scheme below shows the steps involved during the formation of various 

products. It shows that the decomposition of toluene can take place via high energy electrons 

or excited species (Step 1). It is probably initiated through hydrogen abstraction from the 

methyl group (as it has the minimum bond dissociation energy), producing benzyl and 

hydrogen radicals. The aromatic intermediates can react with each other to produce 

oligomer/polymer compounds (Zhu et al., 2011).Step 2 shows that benzene can be produced 

through radical substitution reactions. Meanwhile high energy electrons and excited species 

can also attack the aromatic ring (Step 3) to produce ring- opening products (C1-C6) (Zhu et 

al., 2011). H2 and methane are produced by the combination of radicals (Step 4 and 5). N2* 

shows the excited states of N2 due to impact of electrons. 
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6.2.2 Effect of toluene concentration 

The concentration of toluene affects the conversion as well as the selectivity (see Figure 6.4, 

below). Clearly, cracking decreases with increasing toluene concentration. The maximum 

toluene conversion (97%) was obtained at the minimum toluene concentration: 20 g/Nm3. 

Conversion then decreased monotonically up to 82 g/Nm3, where it was 91%. All conditions 

except toluene concentration were fixed, meaning that a constant number of reactive species 

were produced (Chun et al., 2013).Therefore, with increasing the concentration of toluene, the 

relative amount of reactive species decreased. The energy efficiency of the process, however, 

increased with concentration, from 4.7 g/kWh to 18 g/kWh. This was because the production 

rate of decomposed toluene increased with concentration, whereas the input power and other 

parameters were kept constant (Szwarc, 1948). Similar behaviour was reported before in 

which toluene decomposition studied using N2 and steam (Liu et al., 2017a; Jamróz et al., 

2018). 
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Figure 6.4. Effect of concentration on the conversion and energy efficiency. Reaction conditions: 

input power, 10 W; ambient temperature; flow rate, 40.6 ml/min; residence time, 4.23 s; carrier 

gas, N2; and SIE, 14.77 kJ/L. 

Fig. 6.5, below, shows the changes in selectivity to gaseous products with respect to 

concentration. It can be observed that the selectivity of hydrogen decreases from 10.5% to 

6.3% with increasing concentration. Note that the selectivity to lower hydrocarbons remains 

below 1% at all tested concentrations. This is due to low input power (10W). 
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Figure 6.5. Effect of concentration on the selectivity of gaseous products. Reaction conditions: 

input power, 10 W; ambient temperature; flow rate, 40.6 ml/min; carrier gas, N2; and residence 

time, 4.23 s. 

In current study, the significant amount of solid residue (67-78 wt. % of the input toluene) 

was formed inside the discharge zone during the plasma cracking of toluene. In fact, some 

solid residue was swept into the downstream pipes, the yield of solid residue should be high, 

and implying the yield of hydrocarbons should be very low. These solids were referred to as 

polymeric substances, or carbonaceous deposits (Magureanu et al., 2011). In previous study, 

it was reported that solid carbon formation occurred and constituted 85 to 90% of the toluene 

input (Sun et al., 2017). 

 In another study, formation of solid particles was reported during the removal of the tar 

analogue in air that deposited on the catalyst, reducing its efficiency (Demidiouk et al., 2003). 

In addition, the production of these residues can block the reactor. Therefore, it is very 

important to avoid the formation of unwanted solid residue. They can often be controlled by 

improving operating procedures. For instance, it was reported that production of solid residue 

could be minimized by increasing the plasma discharge volume and using additional dielectric 

tubes (Zhang et al., 2014b). 
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6.2.3 Effect of temperature  

Fig. 6.6(a) presents the effect of temperature on the conversion of toluene and energy 

efficiency. It can be seen from fig. 6.6 (a) that the conversion and efficiency are not affected 

when increasing the temperature from 20 oC to 300 oC . This was partially because nearly 

complete removal of tar took place at 40 W .However, the decomposition of toluene started to 

decrease after 300 oC and reduced to 87 % at 400 oC. It has been reported that the 

decomposition of toluene decreases due to decrease in quartz electric insulativity  which 

affected the plasma characteristics and formation, and reduced the intensity of the discharge 

(Liu et al., 2018). Similarly, the decrease in conversion of toluene was observed in CO2 

carrier gas at elevated temperatures (see 4.2.4). On the contrary, the decomposition of toluene 

did not decrease at elevated temperatures in H2 carrier gas and solid formation completely 

disappeared due to conversion into lower hydrocarbons. Therefore, the decrease in the 

conversion of toluene in other carrier gases may be possible due to presence of solid 

residue/soot which influences the plasma properties.    

The elevated temperature had a significant influence on the chemistry of the products. Fig. 

6.6(b) presents the effect of temperature towards the selectivity of lower hydrocarbons at 

different H2 concentrations and it shows that selectivity to lower hydrocarbons increased from 

5.5% to 10% in the pure N2.   

The different concentrations (15-35%) of hydrogen were added to eliminate the problematic 

solid formation. It can be seen that selectivity of LHC increases from 14.5% to 45% using 

15% hydrogen at 400 oC, and it reaches 57 % by increasing the hydrogen concentration to 

35%. At high temperatures, hydrocracking of aromatics is responsible for the increase in 

selectivity of lower hydrocarbons (Castaño et al., 2008). In the presence of hydrogen, 

hydrogenation and isomerization reactions occur at lower temperatures at the lower activation 

energies, whereas cracking requires high temperatures (Arribas and Martınez, 2002).The 

following reactions take place at elevated temperature in the presence of  hydrogen. 
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Figure 6.6. Effect of temperature on (a) the conversion of toluene, (b) total selectivity to LHCs 

formation (C1-C6), (c) selectivity to individual LHCs, 15% H2, (d) selectivity to individual  LHCs, 

25% H2, and (e) selectivity to individual LHCs , 35% H2. Reaction conditions: input power, 40 

W; and concentration, 33g/Nm3; and residence time, 4.23 s; and SIE, 14.77-59.11 kJ/L. 
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Figure 6.7 Reaction mechanism at high temperature 

Fig. 6.6(c) presents the selectivity of individual lower hydrocarbons. It can be seen that the 

selectivity of methane gradually increases from 10% to 20% with increasing the temperature 

from ambient to 400oC. The selectivity to C2-C3 decreased at higher temperatures due to 

cracking to CH4. The production of methane increased due to cleavage of aromatic and 

aliphatic compounds in the presence of plasma at elevated temperatures (see 5.2.4). However, 

the formation of benzene occurred at high temperature and its selectivity reached 14 % at 

400oC. This was because radical exchange reactions took place at high temperature in the 

presence of hydrogen (Arribas and Martınez, 2002). Fig. 6.6(e) shows that selectivity to 

methane increased to 44 % by raising the H2 concentration to 35% at elevated temperature 

(400 oC). This occurred due to plasma assisted hydrocracking conversion of hydrocarbons in 

the presence of excess H2 at elevated temperatures (see 5.2.4). 

6.3 Comparative decomposition of toluene in different carrier gases 

Figure 6.8 compares the effect of different parameters on the conversion of toluene and 

selectivity to lower hydrocarbons in individual carrier gases. It shows that the conversion of 

toluene increases in the following order, CO2 < H2 < N2. The maximum conversion was 

obtained in N2 carrier gas. It was noted that the decomposition of toluene in N2 occurred due 

to energetic electrons and excited molecular states of nitrogen, (N2 (𝐴3∑𝑢
+) ,N2 (B

3∏g) and N2 

(C3∏u)) (Zhang et al., 2014a; Zhu et al., 2016). It was reported that reactions of N2 (𝐴3∑𝑢
+) 

(metastable nitrogen) with tar molecules played an important role for decomposition of tar 

molecules (Bityurin et al., 2009).  
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Figure 6.8. Effect of (a) power on the conversion of toluene, (b) power on the total selectivity to 

LHC; (c) RT on the toluene conversion, (d) concentration on toluene conversion, (e) temperature 

on toluene conversion , and (f) temperature on the selectivity to LHCs at 40 W. Reaction 

conditions: concentration, 33 g/Nm3. 
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It was further revealed that the decomposition of naphthalene initiated with nitrogen excited 

states, whereas the effect of energetic electrons was not significant (Yu et al., 2009a; Yu et 

al., 2010; Abdelaziz et al., 2013). Therefore, all other carrier gases gave lower conversion 

than N2 carrier gas.  

The voltage required to initiate the plasma discharge is known as breakdown voltage. It has 

been reported that number of electrons increases per unit discharge length at a lower value of 

breakdown voltage (Fridman, 2008). Hence, electron energy distribution function may vary 

with changing the carrier gas, because each gas has different breakdown voltage. It was 

reported  that the minimum breakdown voltage for N2 and H2 was 251 and 273 respectively 

(Chen, 2016). Therefore, N2 gave maximum conversion than H2 and CO2. The value of 

minimum breakdown voltage for CO2 was 420 (Chen, 2016), due to this reason CO2 shows 

less conversion among all carrier gases. 

It can be seen (Fig. 6.8 b) that the selectivity of LHC is maximum in hydrogen carrier gas and 

it increases with increasing power. It was reported that thermal cracking of toluene produced 

methane and benzene in H2 carrier gas at 750 oC (Burr et al., 1964) . It was suggested that 

hydrogen reacted with benzyl, methyl and phenyl radicals and acted as a scavenger for these 

radicals. However, in current study, reactive species produce H radicals at ambient conditions, 

which react with intermediates to produce lower hydrocarbons.  The formation of reactive 

species also increases with increasing power. For N2 and CO2 carrier gases, the selectivity to 

lighter hydrocarbons does not increase above 6 % due to polymerisation of the fragments of 

toluene. It can be observed that significant amount of carbon is missing in all carrier gases. It 

is possible due to substantial amount of solid residues formation in all carrier gases. The 

colour of the solid residues was black in N2 carrier gas, light yellow in hydrogen carrier gas, 

brown in CO, and black and brown in CO2. The destruction of toluene was investigated in 

non-oxidative atmosphere, which ultimately enhanced the deposition of solid carbon (Zhu et 

al., 2016).  

It can be observed (Fig. 6.8 e) that conversion of toluene decreases in CO2 and N2 carrier 

gases when increasing temperature up to 400 oC. It was reported that conversion of toluene 

decrease because local thermal runaway of quartz tube take place and impurities present in the 

quartz become moveable at high temperature, which ultimately reduce the electric insulativity 

of quartz. This phenomena affects the formation of plasma and characteristics, and reduces 

the intensity of discharge (Liu et al., 2018). High temperature can also affect the breakdown 

voltage.  
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The Paschen’s law tells that the breakdown voltage of a gas changes (non-linear) with respect 

to product of pressure and discharge gap. The higher temperature affects the pressure and 

density of gases which ultimately influences the breakdown voltage. However, in current 

study, conversion is not affected by temperature in H2 carrier gas. Therefore, it may be 

possible due to presence of solid residues which affect the discharge properties. 

Fig. 10.1(f) shows that with increasing temperature the selectivity to lower hydrocarbons 

increases. For CO2, and N2 it remains below 18%, but in H2 carrier gas selectivity to LHC 

reaches to nearly 100%. At high temperature, movement of excited species and free radicals 

and their collisions frequency are accelerated, which increases selectivity to lower 

hydrocarbons.  H2 carrier gas showed nearly complete conversion of toluene to lower 

hydrocarbons. From a stoichiometric point of view, the formation of lower hydrocarbons from 

toluene is likely due to hydrogen consumption. Exceptions would be the formation of 

hydrocarbons such as acetylene, cyclopropene, propyne, propadiene etc. which formation 

process is very energy consuming or less likely. However the formation of simple alkanes as 

methane, ethane, propane, butane etc. is a hydrogen consuming process. Therefore, nearly 

complete conversion of toluene to C1-C5 was observed at elevated temperature due to 

presence of H radicals in H2 carrier gas. 

6.4 Conclusions 

In this study a DBD reactor was used to decompose a biomass gasification tar analogue 

(toluene). The performance of the reactor was studied as a function of process conditions: 

power (5-40 W), residence time (1.43-4.23 s), concentration (20-82 g/Nm3), and temperature 

(ambient-400 oC).  

The key findings from the experimental results can be summarized as follows: 

1. Almost complete removal of tar was achieved, at 20 W and 4.23 s. The main products 

were hydrogen, lower hydrocarbons and solid residue. 

2. The decomposition efficiency of toluene depends upon power, residence time and 

concentration. It increases with power and residence time. The maximum conversion 

here was obtained at 40 W and 4.23 s (the highest level used). The conversion 

decreased slightly with increasing toluene concentration. 

3. At ambient conditions, the selectivity to lower hydrocarbons remained below 6%. 

However, it increased to 10% by increasing the temperature to 400oC.  
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4. Solid deposition took place inside the reactor. This is generally an undesirable effect, 

but it can be substantially reduced by introducing H2.  

5. At elevated temperatures in the presence of H2, the selectivity to lower hydrocarbons 

increased with increasing hydrogen concentration. It reached 57 % at a concentration 

of 35% of H2 at 400 oC. The main product in these conditions was CH4, formed from 

decomposition of the aromatic ring. Its proportion increased with increasing 

temperature and power to as high as 44 %. 

The addition of H2 has been demonstrated to significantly reduce solid residue formation at 

elevated temperatures, which would allow longer operation and reduced maintenance of 

gasifiers, if this result could be extrapolated to “real world” systems.  H2 is present in 

significant amounts in real fuel product gas streams. Therefore, the installation of a DBD 

reactor at a suitable location after the gasifier exit, where the temperature was high enough, 

could substantially reduce tar formation. 
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Chapter 7. Plasma-assisted decomposition of toluene in a mixture of gases 

7.1 Introduction 

In previous chapters (4-6), the performance of a DBD reactor was investigated in individual 

carrier gases. It has been observed that nearly complete removal of toluene is possible in each 

carrier gas. However, the product selectivity was strongly dependent on nature of gas. In all 

carrier gases, significant amount of solid residues formation occurred at ambient temperature.  

At elevated temperature, these residues successfully converted to lower hydrocarbons in H2 

carrier gas. The major products were methane and benzene. However, these solid residues did 

not disappear in N2 and CO2 carrier gases even at elevated temperature. These residues create 

significant operational problems. These gases present in significant amount in actual product 

gas from gasifier. Therefore, it is very important to investigate the performance of DBD 

reactor in the mixture of carrier gases 

The typical composition of product gas from gasifier depends upon gasifying medium (air, 

steam, and oxygen). The N2 presents as major component if air is used as a gasifying agent, 

whereas H2 constitutes high percentage in product gas in case of steam gasifying agent.  In 

steam gasification, the gasifier product gas is a mixture of CO2, H2, CO, and various by-

products (Luo et al., 2009).  

Hence, in this work, the performance of a DBD was investigated for cracking toluene in 

synthetic fuel gas (CO2: 30%; CO: 20 %; H2: 50%). The variables investigated were power, 

temperature, residence time and concentration. The length of the external electrode was 30 

mm in this experiment. 

7.2 Results and discussion 

7.2.1 Effect of Power 

Figure 7.1(a) clearly demonstrates that toluene removal increases with the power input to the 

DBD. This behaviour was expected: as power increases, the number of higher energy 

electrons increases, which increases the rate of activation of the reactant molecules by 

formation of free radicals and ions. 
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Figure 7.1. Effect of plasma power on (a) the conversion and energy efficiency of toluene, (b) the 

selectivity and yield of different gaseous products, and (c) individual lower hydrocarbons. 

Reaction conditions: Concentration, 33g/Nm3; residence time, 2.82 s; flow rate, 40.6 ml/min; 

SIE, 2.05-16.4 kWh/m3; and Temperature, ambient. 

The effect of power on the energy efficiency of the system is also shown in Fig. 7.1(a). The 

energy efficiency decreases with increasing power, from 13 g/kWh to 1.9 g/kWh as the power 

is increased from 5 to 40 W. Essentially, this is due to “diminishing returns” as the conversion 

approaches 100%.  Similar trends have been reported for the removal of tar analogues (Chun 

et al., 2013). It was observed that at 10 W more than 93% of the tar analogue is decomposed.  

 

Fig. 7.1(b) shows that the yield of CO gradually increases from 2.6% to 8.8% as the power 

increases from 5 to 40 W, and the selectivity to C2-C6 increases from 7.3 to 18%. It can be 

observed from Fig. 7.1(c) that the selectivity and yield of lower hydrocarbons increased with 

power. At lower powers, the average electron energy is not high enough to crack aromatic C-

C bonds, hence a greater proportion of lower hydrocarbons is observed at higher powers. In 

addition, in this case it is clear that the formation of active species, such as radicals, ions, and 
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excited molecules can also increase selectivity to CO and LHCs. It has previously reported 

that dissociation by electron impact played a significant role in the decomposition of aromatic 

compounds (Kohno et al., 1998; Urashima and Chang, 2000; Lee and Chang, 2003).  
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Figure 7.2 Reaction mechanism 

It was reported that the bond dissociation energy of different bonds in toluene decreases in the 

following order: C=C and C-C in aromatic ring > C-H in aromatic ring (4.5 eV) > C-C 

between methyl and aromatic ring (4.4 eV) > C-H bond in methyl group (3.7 eV) (Darwent, 

1970; Kohno et al., 1998; Urashima and Chang, 2000). For this reason, decomposition of 

toluene could begin with abstraction of an H-atom from the methyl group, as the bond 

dissociation energies of these C-H bonds are the lowest (Huang et al., 2011), via electron 
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impact, excited species or radicals and the reaction scheme is shown in Fig. 7.2. The 

abstraction of H atom produces H radicals and benzyl radicals. The aromatic ring containing 

intermediate compounds can self-polymerise. The reactive species can separate the methyl 

group from toluene to produce benzene and methyl radicals. These radicals can react with H 

radicals to produce methane. Meanwhile ring opening products (C1-C5) form due to impact of 

high energy electrons which directly start the cleavage of the aromatic ring 

7.2.2 Effect of residence time 

The effect of residence time is also clear (Fig. 7.3(a)) since decomposition increases with the 

residence time, as would be expected. Understanding the combined effects of these 2 

variables (residence time and power) is part of the development of a design protocol for 

plasma reactors for this application, based on the relative costs of increasing residence time 

(thereby increasing the size of the reactor and therefore capital cost for a given duty) and 

increasing power (thereby increasing operating cost). As evident in Fig. 7.3(a), with 

increasing residence time, the conversion of toluene increased from 76% to 96% at 20 W, as 

the number of opportunities for  collision between active species, energetic electrons and 

toluene’s molecules increased (Chun et al., 2013) However, the energy efficiency decreases 

with increasing residence time. To increase the residence time the flow rate needs to be 

reduced, which also decreases the flow rate of toluene. Therefore, the energy efficiency is 

reduced at high residence time due to a decrease in the total amount of decomposed toluene. 

These results are consistent with a previous experimental study in which decomposition of 

toluene was investigated in a DBD reactor (see 4.2.3). The selectivity and yield of different 

gaseous products are shown in fig. 7.3 (b) and (c). The yield of CO increases from 1.9 % to 

5.7 %, and selectivity of C2-C5 increases from 3 to 11% with the increasing residence time. 

Similarly, Fig. 7.3(c) shows that the yield of methane gas and selectivity of C2-C5 also 

increase with residence time. This is possibly due to the cleavage of the aromatic ring due to 

high number of collisions between tar analogue and reactive species, or second phase 

reactions.  
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(c) 

Figure 7.3. Effect of residence time (a) on the conversion and energy efficiency of toluene, (b) on 

the selectivity and yield of different gaseous products, and (c) on individual lower hydrocarbons. 

Reaction conditions: concentration, 33g/Nm3; Power, 20 W; flow rate, 40.6-120 ml/min; and 

Temperature, ambient. 

7.2.3 Effect of concentration 

The concentration of toluene was varied from 20 to 82 g/Nm3. Fig. 7.4(a) shows the effect of 

concentration on the conversion and energy efficiency. It can be observed that the conversion 

of toluene decreased with increasing toluene concentration. The maximum conversion was 

obtained at 20 g/Nm3 (95.5%), then decreased monotonically when increasing the 

concentration up to 82 g/Nm3 (68%). At constant power, the plasma-generated reactive 

species react with the toluene to decompose it. However, when the concentration is increased 

whilst keeping the others parameters constant, the relative amount of toluene molecules 

increases with respect to reactive species and the conversion is reduced. However, the energy 
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efficiency of the process increased with increasing concentration, as the number of molecules 

of toluene converted increased. Here, the value increased from 4.6 g/kWh to 13.5 g/kWh over 

the range studied here. The similar effect of concentration has been reported previously in 

gliding arc discharge (Zhu et al., 2016). Fig.7.4, (b) and (c) shows the changes in selectivity 

and yield of gaseous products with respect to concentration. The yields of CO, LHC (C2-C6) 

and CH4 decrease with increasing concentration.  
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Figure 7.4. Effect of concentration (a) on the conversion and energy efficiency of toluene, (b) on 

the selectivity and yield of different gaseous products, and (c) on individual lower hydrocarbons. 

Reaction conditions: residence time, 2.82 s; power, 10 W; flow rate, 40.6 ml/min; and 

temperature, ambient. 

This  behaviour is consistent with previous experimental results in which the effect of 

concentration has been studied on the removal of tar analogue (Liu et al., 2017a). It was also 

observed that solid residue was produced in the discharge zone during the cracking of tar 

analogue at ambient temperature.  Yellowish deposits have been previously reported when 
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operating in limited oxygen (Guo et al., 2006). Here, in an attempt to mitigate this effect, the 

synergetic effect of temperature and plasma was studied to avoid the formation of hazardous 

solid residue (see 7.2.4). 

7.2.4 Effect of temperature 

The performance of DBD reactors was studied at elevated temperatures. The effect of 

temperature and power on the conversion of toluene is shown in Fig. 7.5(a). It can be noted 

that the decomposition of toluene does not change when increasing the temperature over the 

power range 20 to 40 W.    

However, at 10 W, it varied from 82% to 91%. It may be decreased due to formation of solid 

deposits in the plasma zone. This is also possible due to the radical termination reaction of 

CO and O to form CO2 (Cenian et al., 1995). 

It was reported that the decomposition of toluene in CO2 carrier gas decreased with increasing 

temperature in DBD reactor (see 4.2.4). However, toluene conversion is not significantly 

affected by increasing the temperature at higher powers (20-40 W). This is because the 

reaction is mainly a function of the number of energetic electrons and excited species 

generated by the plasma. The influence of elevated temperature on the selectivity and yield of 

products is shown in Fig. 7.5(b) at 20 W. It shows that the selectivity to lower hydrocarbons 

(C2-C6) increased with increasing temperature up to 400 oC at 20 W. This is possibly due to 

hydrocracking of  toluene into lower hydrocarbons (C1-C6) becoming significant at elevated 

temperatures (Amano et al., 1965; Amano et al., 1972). However, the yield of CO slightly 

decreases with increasing temperature, probably because of the recombination reactions of 

CO and O radicals. Hydrocracking of toluene could occur through three different routes: (a) 

isomerization, (b) hydrogenation-dehydrogenation, and (c) cracking reactions (Arribas and 

Martınez, 2002). The first two types of reactions can occur at lower temperatures because of  

their low activation energy, while cracking reactions of aromatics require higher temperatures 

(Castaño et al., 2008). These cracking reaction can take place through primary (ring opening) 

secondary and tertiary cracking (Arribas and Martınez, 2002). 

Fig. 7.5(c) shows the effect of temperature on the selectivity to lower hydrocarbons (C2-C6) 

and the yield of methane at 10 W. It can be observed that the selectivity of each individual 

lower hydrocarbons increases with increasing the temperature. The selectivities to C2 and 

benzene reach 9.5 and 21.7 % at 400oC, respectively. However, the selectivity to C2+ alkanes 

and alkenes remains below 10%.  
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(f) 

Figure 7.5. Effect of temperature on (a) the conversion of toluene, (b) total selectivity and yield 

of LHC and CO at 20 W; selectivity and yield of different LHC at (c) 10 W, (d) 20 W, (e) 30 W, 

and (f) 40 W. Reaction conditions: concentration, 33 g/Nm3; residence time, 2.82 s; flow rate, 

40.6 ml/min. 
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The yield and selectivity of lower hydrocarbons increases with temperature because of 

cracking reactions at high temperatures, while for benzene this occurs via radical substitution 

reactions (Amano et al., 1972). It has previously been reported that the production of methane 

and aromatics increases with increasing the temperature in the presence of H radicals (Amano 

et al., 1972; Castaño et al., 2008). 

The effect of power on yield and selectivity of lower hydrocarbons at elevated temperature 

can be observed from Fig. 7.5(c to f). Clearly, the yield of methane increases with increasing 

power, whereas the selectivity to benzene exhibits a clear decrease due to impact of reactive 

species. The yield of methane increases from 1.04% to 7.5% with increasing the temperature 

at 40 W. This is because the presence of H radicals at elevated temperature promotes the 

formation of methane (Freel and Galwey, 1968). In addition, at high power, the fragmentation 

of the benzene ring because of energetic electron and excited species increase the yield of 

methane as well. 

CH3

H2 Radical substitution
CH4

CH3

Ring opening

CH3

Lighter hydrocarbons

e
 At high temperature

 

Figure 7.6 Reaction mechanism at elevated temperature 

The selectivity to benzene decreases to 8% at 40 W. This occurs because the electrons 

produced at 40 W are energetic enough to decompose the aromatic carbon-carbon bonds. It 

was reported that the formation of methane increases to 10% when increasing the temperature 

up to 450 oC in the presence of a catalyst (Castaño et al., 2008). 

The effect of temperature on the production of C2-C5 species at 40 W can be observed in Fig 

7.5(f). The selectivity to C2 hydrocarbons increases with increasing temperature up to 300 oC 

and after that decreases at 400oC, while for >C3 it started to decrease at 200 oC. This was due 

to hydrocracking of theses hydrocarbons into methane. It has previously been reported that 

cracking of C2 to C4 increased with increasing temperature and converted to methane (Freel 

and Galwey, 1968). It has been observed that cracking of ethane increases with increasing 
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temperature from 260 to 322 oC producing methane, while cracking of C3 increased even at 

lower temperature range (206-240 oC) and produced methane (Freel and Galwey, 1968).  
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Figure 7.7. Effect of (a) power on the conversion of toluene (b) power on the total selectivity to 

C2-C5, (c) residence time on the conversion of toluene at 20 W, and (d) temperature on the 

conversion and selectivity at 40 W. Reaction conditions: concentration of toluene, 33 g/Nm3 

 

Fig. 7.7 compares the conversion of toluene in two different mixture of gases. Mixture 2 

shows lower conversion due to presence of CH4, which produces CH3 radicals. Theses 

radicals terminate H radicals due to combination reactions of CH3 and H radicals. However, 

mixture 2 shows higher selectivity to C2-C6 than mixture 1. The presence of CH4 in carrier 

gas mixture promoted formation of C2-C5 hydrocarbons. It was reported that electron impact 

with methane in non-thermal plasma produces CH3, CH2 and CH radicals, which can combine 

to form lower hydrocarbons (Xu and Tu, 2013; Chiremba et al., 2017). 
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7.3 Conclusions 

In this study, decomposition of toluene as a tar surrogate was evaluated in a dielectric barrier 

discharge (DBD) reactor using a synthetic fuel gas mixture (H2: 50%, CO2: 30% and CO: 

20%). Power (5-40 W), temperature (20-400 oC), concentration of toluene (20-82 g/Nm3) and 

residence time (0.95-2.82 s) were varied to investigate the performance of the DBD reactor 

and its selectivity towards valuable gaseous products. 

The main findings were: 

1. The conversion of toluene can be as high as 99% and the latter was converted to CO, 

lower hydrocarbons (LHC) and solid residue. 

2. The conversion increases with both power and residence time.  

3. At ambient temperature, solids appeared inside the reactor, which would create 

problems due to fouling and blockages over time. However, here we demonstrated that 

this problem can be eliminated by increasing the wall temperature. A further benefit of 

increasing the temperature was that it increased both the selectivity and yield of the 

lower hydrocarbons. 

4. Formation of methane increased with increasing the temperature and power. The 

highest yield of methane in this study was 7.5%, at 400 oC and 40 W of power. 

Overall, this work demonstrates that toluene can be  completely converted to smaller 

molecules  by a DBD non-thermal plasma, and that a degree of control can be established by 

varying power, residence time and temperature, including eliminating the problem of solid 

residue formation. 
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Chapter 8. Decomposition of benzene as a tar analogue in CO2 and H2 

carrier gases, using a non-thermal plasma. 

8.1 Introduction 

Various types of non-thermal plasmas have been investigated to decompose tar compounds. 

Jamroz et al. (2018) investigated the steam reforming of tar representative compound in 

microwave plasma. Tar compounds were converted to CO, CO2 and hydrogen in the presence 

of steam (Jamróz et al., 2018). The performance of a gliding arc discharge reactor was studied 

by Zhu et al. (2016). They reported 95% conversion of the toluene, and the major products 

were acetylene and hydrogen (Zhu et al., 2016). In another study, the decomposition of 

toluene as a biomass tar representative was studied in gliding arc discharge reactor. It was 

reported that conversion and energy efficiency of toluene increased by adding the steam (Liu 

et al., 2017a). In many studies, the dielectric barrier discharge (DBD) reactor was used for 

cleaning gases (Lee and Chang, 2003; Blin-Simiand et al., 2008; Karatum and Deshusses, 

2016; Wang et al., 2017a). It was observed that 74 % of the toluene is converted at specific 

input energy of 360 J/L (Karatum and Deshusses, 2016). However, the conversion decreased 

with increasing flow rate and concentration (see 5.2). 

In this study, a DBD reactor was used to investigate the decomposition of benzene in CO2 and 

H2 carrier gases. Benzene was selected as a model compound due to its thermal stability and it 

has been reported as a tar representative in many experimental studies (Simell et al., 1997a; 

Simell et al., 1999; Zhang et al., 2007; Park et al., 2010; Chun et al., 2012; Chun and Lim, 

2012; Chun et al., 2013). Therefore, this study was conducted to test the performance of DBD 

reactor for more stable compound. Moreover, the effect of each carrier gas on the product 

selectivity was also studied. CO2 and H2 are present in significant amounts (62-75%) in 

product gas (He et al., 2009). Therefore, for a good understanding of tar removal in NTP to 

clean the product gas, it was very important to study the effect of both carrier gases 

individually. The effect of different parameters (SIE, residence time, concentration and 

temperature) was also investigated to study the performance of DBD reactor. 
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8.2 Results and discussion 

8.2.1 Effect of carrier gas and SIE 

Figure 8.1(a) shows the effect of changing the specific input energy (SIE) in CO2 and H2. The 

conversion of benzene was similar for each type of carrier gas at high SIE (above 30 kJ/L). 

The SIE was increased by increasing the input power (5-40 W). It has been reported that the 

most of the energy supplied by providing electric fields is absorbed by electrons rather than 

heavy species (ions, molecules and gas atoms) (Kortshagen et al., 2016).  
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Figure 8.1. Effect of carrier gas and SIE on (a) the conversion and energy efficiency of benzene, 

(b) selectivity of products in H2 carrier gas, (c) selectivity of products in CO2 carrier gas, and (d) 

detailed selectivity to LHC. Reaction conditions: concentration, 36 g/Nm3; temperature, 

ambient; and residence time, 4.23 s. 
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At higher powers, the number of high energy electrons increases, so the probability of 

decomposing benzene (by electron impact) increases. Energy efficiency generally decreases 

with increasing SIE.   Similar behaviour has been reported in previous experimental studies 

(see 4.2.1). 

Below 35 kJ/L, the conversion in the H2 carrier gas was higher than that for the CO2. This 

may be due to production of more reactive H radicals at lower powers, as the bond dissection 

energy of H2 (4.53 eV) is lower than that of CO2 (5.5 eV) (Darwent, 1970). 

e*+ CO2→O + CO + e (8.1) 

e*+ H2→H. + H. + e (8.2) 

Fig. 8.1(a) also shows the energy efficiency of the process. It can be observed that, below 30 

kJ/L, the higher energy efficiency is obtained in H2 carrier gas. At higher SIE (>35 kJ/L), the 

energy efficiencies converge. In the absence of plasma, the decomposition of benzene was not 

observed even at 400 oC. It was reported that only 2-3 % conversion of benzene was observed 

in a sand bed at 650 oC. However, the complete conversion occurred at same temperature in 

the presence of H2 and Fe2O3 catalyst (Tamhankar et al., 1985). However, in the absence of 

catalyst, only 40 % of benzene conversion was observed even above 1200 oC, and the 

reactivity of benzene was minimum as compared to toluene and naphthalene. The non-thermal 

plasma produces reactive species due to impact of electrons, which have mean energy in the 

range of 1-10 eV. The reactive atmosphere of active species play a vital role for the 

decomposition of aromatic compounds. 

Fig. 8.1(b) shows the selectivity to hydrocarbons in H2 carrier gas. It can be seen that the 

selectivity to LHC (C1-C5) increases with specific input energy, but heptane and heptane 

decrease. The selectivity to cyclohexane increased up to 14.7 kJ/L and then decreased. 

Equation 8.2 shows that H radicals (4.5 eV) produced in the plasma discharged due to the 

impact of energetic electrons (Darwent, 1970). These reactive H radicals are responsible for 

the hydrogenation reactions of benzene. However, with increasing SIE, due to the increased 

abundance of electrons, cyclic and long chain compounds began to be converted into lower 

hydrocarbons. Hence, it can be observed in Fig. 8.1 (d) that the selectivity to C1-C3 

significantly increased with increasing SIE. 

In CO2 carrier gas, the main products were, CO, H2, LHCs and solid residue. Fig. 8.1(c) 

shows the selectivity and yield of gaseous products. The selectivity to lower hydrocarbons 
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remained below 2% at all tested powers due to the presence of O radicals which promote CO 

and H2 formation (see 4.2.1). It can be observed that the selectivity and yield of H2 and CO 

also increased with SIE due to increase in the number of reactive species with power. 

It was found that formation of solid residue occurred in both carrier gases. The colour of the 

solid residue was light yellow in hydrogen carrier gas, and black and brown in CO2.   The 

solid residue formation occurred due to oxygen deficit environment. These solid residues will 

eventually foul the DBD reactor, and are not desired products. Conversion to these residues 

must be decreased for plasma processing to present a feasible solution to this problem (tar 

production). Fig. 8.2 shows the proposed mechanisms of benzene decomposition under 

plasma conditions: 

e

Oligomers

CO2 e COO

e     Cracking Recombination Lower hydrocarbons

Oxygenated compounds
Carbon/H2O,

H

H2 H     H  
e

e

CxHy
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 Figure 8.2  General Mechanism for benzene decomposition 

The first impact of the electron or excited species can abstract the H atom from benzene, as 

the C-H bond dissociation energy (4.5 eV) is the minimum in the benzene molecule (Darwent, 

1970). Therefore, cracking of benzene could begin through this route and produce the phenyl 

radicals. These radicals react together to produce solid residue/benzene derivatives. The 

hydrogenation of benzene through H radicals can also produce cyclohexane. The second 

impact of high energy electrons may decompose the aromatic ring and cyclic compound to 
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produce straight chain hydrocarbons (path 6). Two mechanisms have been reported for the 

decomposition of aromatic compounds: direct impact of electrons, and due to collision of gas-

phase radicals with aromatic compounds (Liang et al., 2013). Reaction mechanism 1 is 

initiated by collisions between benzene molecules and energetic electrons in the plasma 

discharge zone in both carrier gases, resulting in the production of intermediate radicals 

(phenyl).  

Reaction route 2 is initiated by collision of reactive radical (produced due to impact of 

electrons) and benzene molecules. In Fig. 8.2, route 2 and 5 shows that reactive radicals react 

with benzene directly to initiate the decomposition process. However, these reactive radicals 

also can react with intermediates to produce final stable product. Route 3 and 4 shows that O 

radicals can also react with intermediate to produce oxygenated compounds. 

 Therefore, in the CO2 carrier gas, due to presence of oxygen atoms, the intermediates can 

oxidize to CO and H2. 

8.2.2 Effect of residence time. 
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(b) 

Figure 8.3. Effect of residence time on (a) the conversion and energy efficiency of benzene, and 

(b) selectivity and yield of products, in H2 and CO2. Reaction conditions: concentration, 36 

g/Nm3; temperature, ambient; and plasma power, 20 W. 

 

The effect of residence time on the conversion of benzene in both carrier gases is shown in 

Fig. 8.3(a). The effect of changing the residence time on conversion in each carrier gas is the 

same: increasing with increasing residence time. At high residence time, the benzene 

molecules spend more time in discharge zone, which allow them to interact with the reactive 
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species for longer. In this way, higher residence time promotes the conversion of benzene due 

to the increased number of collision between tar analogue and discharge species (see 5.2.3). 

Fig. 8.3(a) shows the effect of residence time on the energy efficiency of the plasma process. 

As Residence time and conversion increase, the energy efficiency decreases.  To enhance the 

energy efficiency of the process, the residence time and power need to be optimized for the 

desired conversion of benzene. 

Fig. 8.3(b) shows the selectivity of lower hydrocarbons (LHC). It can be noted that hydrogen 

gives maximum selectivity due to the rich environment of H radicals which combine with the 

fragments of benzene. The selectivity shows increasing trend with respect to residence time in 

H2. The reason may be that the number of collisions between H radicals and aromatic 

intermediate species increases when increasing residence time. Therefore, the selectivity of 

lower hydrocarbons increases due to high collision frequency of these species with H radicals. 

However in CO2 the selectivity of lower hydrocarbons does not increase above 2% due to 

presence of oxygen which oxidizes the intermediate compounds into CO and H2  

The selectivity and yield of H2 and CO are shown in Fig. 8.3(b). It can be observed that both 

the selectivity and yield of products increase with increasing residence time. The trend is 

consistent with previous experimental studies in which the decomposition of toluene was 

studied in a rotating gliding arc discharge reactor (Zhu et al., 2016). 

8.2.3 Effect of Concentration 

Fig. 8.4(a) shows the effect of concentration on the conversion and energy efficacy of 

benzene in CO2 and H2 carrier gases. It can be observed from the figure that the removal 

efficiency of benzene decreases with increasing concentration. This is because the number of 

molecules in the discharge zone increases with concentration, while all the other parameters 

(power, residence time, discharge length) remain constant. Therefore, the chances of 

unconverted benzene molecules escaping the discharge zone increases. Fig. 8.4(a) shows that 

the energy efficiency of the process increases in both carrier gases with increasing 

concentration. This is because when the input concentration of benzene increases, it also 

raises the total no. of decomposed molecules. 
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(b) 

Figure 8.4. Effect of concentration in each carrier gas on (a) the conversion and energy 

efficiency of benzene, and (b) products selectivity and yield. Reaction conditions: SIE, 14.7 kJ/ 

L; temperature, ambient; and power, 10 W. 

Fig. 8.4(b) shows the selectivity of different products in each carrier gas. As concentration 

increases, selectivity to LHCs and cyclohexane decreases. This is probably due to decrease in 

the relative amount of reactive species with respect to benzene molecules. At higher 

concentration the relative amount of toluene molecules increases with respect to reactive 

species. Thereby, the selectivity to lower hydrocarbons decreases when increasing the 

concentration.  

8.2.4 Effect of temperature 

The effect of temperature on the conversion of benzene can be observed in Fig. 8.5(a). It can 

be seen that the conversion of benzene is not influenced by temperature up to 300 oC, whereas 

after that it decreases with increasing temperature up to 400 oC in CO2. This may be due to 

radical termination reactions of CO and O, which reduce the reactive species in plasma 

discharge (Cenian et al., 1995). 

However, the decomposition of benzene gradually decreases with increasing temperature up 

to 400 oC. A possible route is that plasma produces phenyl radicals by abstracting H from 

benzene, as the C-H has the minimum bond dissociation energy. These benzyl radicals 

polymerize and produce solid residue at ambient temperature. However, as the temperature is 

increased, due to presence of excess reactive H radicals in H2 carrier gas, it may react with H 

radicals and reproduce the benzene (Harding et al., 2005). 
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Clearly, (fig. 8.5 a) the decomposition of benzene decreases with increasing temperatures. 

However, it previously been noted that the conversion of toluene did not change when 

increasing the temperature at 40 W. Fig. 8.5 (a) also shows that the energy efficiency of the 

process decreases due to the decrease in the conversion of benzene, which ultimately reduces 

amount of decomposed toluene. 
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Figure 8.5. Effect of temperature and carrier gas on (a) the conversion and energy efficiency of 

benzene, (b) selectivity to lower hydrocarbons, and (c) selectivity to individual LHC in H2 

carrier gas .Reaction conditions: concentration, 33 g/Nm3; residence time, 4.23 s; power, 40 W; 

and SIE, 59.1 kJ/L. 
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Fig. 8.5(b) shows the selectivity to LHC (C1-C5) with respect to temperature. It can be 

observed that the selectivity in CO2 carrier gas slightly increases with increasing the 

temperature, but in H2 carrier gas, it increases significantly from 20% to 91% with increasing 

the temperature from ambient to 300 oC. Hence, it is clear that the H2 carrier gas promotes the 

ring opening reactions and promotes the formation of lower hydrocarbons and eliminates the 

solid residue formation. This is possible because the plasma discharge produces reactive H 

radicals which react with benzene fragments and intermediates to produce lower 

hydrocarbons at elevated temperatures. In a previous study, the synergetic effect of plasma 

and temperature was studied on the hydrocracking of toluene using a dielectric barrier 

discharge reactor (see 5.2.4). It was observed that nearly complete conversion of toluene to 

lower hydrocarbons (C1-C6) occurred at elevated temperatures under plasma conditions. 

However, significant amounts of benzene (28%) were observed at elevated temperatures 

along with methane (60%) depending upon power. It was reported that hydrogen radicals 

promote the ring opening products at elevated temperatures in the presence of plasma (see 

7.2.4).  

 Fig. 8.5(c) shows the detailed selectivity to lower hydrocarbons.  It can be seen that the 

selectivity to methane increases from 14 to 80 % with increasing the temperature. For C2, 

selectivity increases up to 300 oC and after which it decreases, while for C3-C5, selectivity 

started to decrease even after 200 oC. Therefore, increasing the temperature under plasma 

conditions promotes the formation of methane from benzene at elevated temperature instead 

the production of >C2. 

It has been reported that thermal decomposition of aromatic compounds requires temperatures 

in the range 500-1200 oC (Jess, 1996; Fagbemi et al., 2001). It has been observed that the 

yield of methane doubles (11.7 to 23.8 wt. %) with increasing the temperature from 800 to 

850 oC, whereas  the yield of C2H4 and C3H8 decreases (Gai et al., 2015) . Therefore, it could 

be suggested that increasing temperature favours the conversion of C2H4 and C3H8 to CH4. 

However, in this study, these reactions took place at lower temperature ranges (20-400 oC). 

It was noted that the input energy played a key role in the decomposition of the benzene. The 

rate equation for the cracking of benzene with respect to SIE can be written as  

 

𝑟 = − 𝑑[𝐶6𝐻6]/ 𝑑𝑆𝐼𝐸 = 𝑘𝑆𝐼𝐸[𝐶6𝐻6]𝑛 (8.3) 
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Here kSIE is an energy constant and n is a reaction order. Fig. 8.6 a plot of ln (C/Co) exhibits a 

straight line in both carrier gases. Therefore, the benzene removal in both carrier gases can be 

written as 

𝑙𝑛
[𝐶6𝐻6]

[𝐶6𝐻6]0
= −𝑘𝑆𝐼𝐸 × 𝑆𝐼𝐸 

(8.4) 
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Figure 8.6 Effect of specific input energy (SIE) on the remaining fraction of benzene. Reaction 

conditions: concentration, 36 g/Nm3; Temperature, ambient; and residence time, 4.23 s. 

 

In CO2 and H2, the value of R2 are 0.98 and 0.99 respectively. Hence, the decomposition of 

benzene in DBD reactor with respect to SIE shows first order kinetics.  The equations can be 

used to determine the energy constant which is important to compare systems and to predict 

the decomposition of tar compounds in non-thermal plasma reactors. 

8.3 Conclusions 

In this study, a DBD reactor was used to investigate the conversion of benzene, acting as a tar 

analogue, in CO2 and H2 carrier gases. The parameters studied were SIE (7-59 kJ/L), 

residence time (1.41-4.23 s), concentration (20-102 g/Nm3) and temperature (ambient-400 

oC).  

The main findings were: 
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1. At high SIEs, the conversion of benzene was similar in both carrier gases, due to the 

high population of reactive species. However, at lower SIEs (<30 kJ/L), there was a 

clear difference, and the H2 exhibited significantly higher conversions of benzene than 

the CO2. This is due to the higher reactivity of the H free radical. 

2. The decomposition of benzene increased with increasing SIE and residence time in 

either carrier gas, and decreased with increasing concentration. The quantification of 

these effects should allow NTP DBD reactor design  

3. The wall temperature of the reactor was identified as an important parameter in 

controlling the product distribution. Importantly, it was noted that solid formation 

completely disappeared in H2 carrier gas at 400 oC, and the selectivity to LHC was as 

high as 91 %. The presence of H radicals at elevated temperatures in the presence of 

plasma promoted the new reaction route to crack the aromatic ring and intermediates 

to lower hydrocarbons .Therefore these reactors can be operated without solid residue 

formation in the presence of H2 carrier gas at elevated temperatures along with NTP.  

4. At higher powers and temperatures (40 W and 400 oC) selectivity to methane 

increased from 15 to 81% in H2 carrier gas, whereas, the selectivity to C2-C4 decreased 

from 38% to 12% with increasing temperature from 300 to 400 oC at 40 W. Clearly, 

hydrocarbon chain length can be controlled by judicious choice of wall temperature: 

chain length decreases as temperature increases.  

These results illustrate the opportunities for combining thermal effects with non-thermal 

plasma effects for operation of gas phase reactors. In this case, judicious choice of 

temperature could be used to operate the reactor such that no solid residue was formed, and 

the “tar” was largely converted into methane. 
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Chapter 9. Role of methane in the product gas towards the formation of 

lower hydrocarbons during the decomposition of different tar analogues 

9.1 Introduction 

Chapter 7 reports the decomposition of toluene in a mixture of CO2, CO, and H2. Formation 

of solid residue was shown to be completely eradicated at elevated temperature. The major 

products were methane and C2-C6. Similarly, it was noted that methane showed maximum 

selectivity in both tar analogue compounds (toluene and benzene) at elevated temperature in 

H2 carrier gas (see 5.2.4 and 8.2.4). Hence, most of the tar compounds were converted to 

methane instead of any other hydrocarbon. These studies were conducted in the absence of 

methane. However, real product gas from a gasifier, contains 4 to 14% methane, depending 

upon the gasification conditions. 

Many studies have been conducted to investigate the conversion of methane to H2 and C1-C5 

hydrocarbons. It was reported, for instance, that the methane converted predominantly to >C1 

hydrocarbons in a non-thermal plasma dielectric barrier discharge reactor (Tu and Whitehead, 

2014). Hence, the presence of methane in a mixture of carrier gas can affect the product 

distribution. Therefore, this chapter concerns the addition of methane to model product gas 

(H2: 41%, CO: 23.5%, CO2: 23% and CH4: 12.5%), to study the effect on product selectivity. 

The effect of specific input energy (SIE) (2.05-16 kWh/m3), residence time (0.95-2.82 s), and 

temperature (20-400 oC) were studied. 

9.2 Results and discussion 

9.2.1 Effect of SIE 

Figure 9.1(a) clearly shows that removal of both tar analogues increases when increasing the 

specific input energy (SIE). The number of electrons with higher energy increases as the input 

plasma power is increased, which increases the rate of cracking of the tar representative 

compounds at high power. Moreover, it can be observed that at high SIE (>7 kWh/m3) the 

two tar model compounds have very similar conversions. 
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Figure 9.1. Effect of SIE on (a) the conversion and energy efficiency of tar representatives, (b) 

the selectivity and decomposition of gaseous products (benzene), and (c) the selectivity and 

decomposition of gaseous products (toluene). Reaction conditions: concentration, 33g/Nm3; 

residence time, 2.82 s; flow rate, 40.6 ml/min; SIE, 2.05-16.4 kWh/m3; and temperature, 

ambient. 

At lower powers (< 7 kWh/m3) the conversion of toluene is higher than that of benzene. This 

is because the minimum bond dissociation energy of C-H in an aromatic ring is 4.5 eV, 

whereas the bond dissociation energy of methyl group in toluene is 3.7 eV (Darwent, 1970). 

Hence, the decomposition of toluene can proceed via the abstraction of H from the methyl 

group at lower input SIE. However, at high power the differential in bond dissociation 

energies makes little difference as there is a plentiful supply of electrons with sufficient 

energy to break aromatic bonds. Equations 9.1-9.5 show the reactions involved during the 

decomposition of toluene: 

C7H8 + e∗or Reactive species→C7H7 + H. (9.1) 

C7H
8
+e*or Reactive species→C6H

5
 + CH3

.  (9.2) 
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CH3+H.→CH4
.   (9.3) 

C7H7 + C6H5 → Polymerize (9.4) 

C7H
7
 or C6H

5
 or C7H

8
+e*or Reactive species→ Cracking to LHC (C1-C6) (9.5) 

 

Similarly, the conversion of benzene can occur via the following reactions 

𝐶6H
6
+e*or Reactive species→𝐶6H

5
+H. (9.6) 

𝐶6H
5
+CH2→𝐶7H

7
  (9.7) 

C7H
7
+C6H

5
→Polymerize (9.8) 

𝐶7H
7
 or 𝐶6H

5
+e*or Reactive species→ Cracking to LHC (C1-C5) (9.9) 

𝐶7H
7
 or 𝐶6H

5
 or 𝐶6H

6
+e*or Reactive species → Cracking to LHC (C1-C6) (9.10) 

 

The energetic electrons also produce reactive species from the background gas, which can 

play important roles in determining the product distribution: 

CO2 + e*→CO + O + e (9.11) 

H2 + e*→H. + H. (9.12) 

CH4 + e*→ CH3
. + H. (9.13) 

 

The SIE effect on the energy efficiency is also shown in Fig. 9.1(a). The energy efficiency 

decreases with increasing SIE. Essentially, this is due to “diminishing returns” as the 

conversion approaches 100%.  Similar trends have been reported for the removal of tar 

analogues in which decomposition of toluene was studied in H2 carrier gas (see 5.2.1). 

Figure 9.2 shows how the LHC product distribution and the conversion of the product gas 

species varies as a function of SIE. 

Fig. 9.2, (a) and (b) show that the product distribution (selectivity) of the lower hydrocarbons 

is influenced by the SIE. It has previously been observed that the selectivity to lower 

hydrocarbons was 18% at 40 W (see 7.2.1). In this study, the selectivity of LHC reaches 32% 

under same condition. This is probably due to the presence of CH4 additive in the product gas: 

some of the lower hydrocarbons will be produced via cracking of aromatic ring, but some will 

be produced via reactions of CH3 radicals produced in the decomposition of CH4. 
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Figure 9.2. Effect of SIE on (a) the individual selectivity to C2-C5 (toluene), (b) the individual 

selectivity to C2-C5 (benzene), (c) composition of permanent gas (toluene), and (d) the 

composition of permanent gases (benzene). Reaction conditions: concentration of benzene and 

toluene, 33 g/Nm3; residence time, 2.82 s; flow rate, 40.6 ml/min; SIE, 2.05-16.4 kWh/m3; and 

temperature, ambient. 

It has been reported that electron impact produces CH3, CH2 and CH radicals, which can 

combine to produce lower hydrocarbons (Xu and Tu, 2013; Chiremba et al., 2017) via the 

following reactions:  

CH3+CH3 → C2H6 (9.14) 

C2H6+e- → C2H5+ H. (9.15) 

C2H5
. +CH3

.
 → C3H8 (9.16) 

C2H5
. + C2H5

. → C4H10 (9.17) 

C3H8+e- → C3H7+H.  (9.18) 

C3H7
. + C2H5

. → C5H12 (9.19) 
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Fig. 9.2, (c) and (d) show that the decomposition of CO2 and CH4 increases with increasing 

specific input energy for all species. The reason is that with increasing the power 

decomposition of CO2 to CO and O increases (Yu et al., 2012), while CH4 decomposition 

promotes the agglomeration of, CH3, CH2, and CH radicals (Chiremba et al., 2017). In 

addition, it has previously been shown that dry reforming of CH4 and CO2 can cause 

decomposition of  these two gaseous compounds (Tu and Whitehead, 2012). 

CH4+ CO2→ 2H2+2CO (9.20) 
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Figure 9.3. Effect of specific input energy (SIE) on the remaining fraction of toluene and 

benzene. Reaction conditions: concentration, 33 g/Nm3; temperature, ambient; and residence 

time, 2.82 s. 

It has been observed that the non-thermal plasma processes are energy dependent instead of 

time dependent due to very quick plasma chemical reactions (within 0.1ms) (Yu et al., 2012). 

Figure 9.3 shows that the decomposition reactions of benzene and toluene in non-thermal 

plasmas are clearly energy dependent. It shows that the natural log of the remaining fraction 

of toluene and benzene with respect to SIE follows a straight line trend. Therefore, it can be 

concluded that the decomposition of the tar analogues benzene and toluene in this DBD 

reactor exhibits first order behaviour with respect to SIE 

The value of the energy constants for toluene and benzene were found to be 0.37 and 0.36 

m3/kWh respectively. 
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ln
[C]

[C]
0

= -kSIE×SIE 
(9.21) 

 

The decomposition of benzene and toluene produced a significant amount of light yellow 

solid residue. The decomposition of toluene could be initiated through the abstraction of an H 

atom from methyl group, which produces the benzyl radicals. These radicals can react 

together in the presence of CH2 and phenyl radicals to form solid residue. Similarly, the 

formation of solid residue also occurred in benzene due to reactions between phenyl radicals.  

These solid residues would produce operational problems, via fouling and eventual blockage 

of pipework. Therefore, it is very important to resolve this problem. It has been observed that 

increasing temperature in the presence of H could eliminate the formation of solid residue 

(see 7.2.4). 

Carrier 

gas 

Tar conversion 

(%) 

Gaseous 

Products 

Solid residue at  

20 oC 

Solid residue at 

400 oC 

CO2 >98 CO,H2 and LHC Black and brown Black 

H2 >98 LHC Light yellow Disappeared 

N2 >98 H2 and LHC Black Black 

Mixture 1 >98 LHC Yellowish Disappeared 

Mixture 2 >98 LHC Yellowish Disappeared 

Table 9.1: Formation of products in different carrier gases. 

9.2.2 Effect of residence time 

Figure 9.4(a) shows how the conversions of the various species vary with residence time.  

Generally, the decomposition of tar representatives increases with increasing residence time 

because of high number of collisions with reactive species. However, the energy efficiency 

decreases, as the production rate per unit energy input decreases, due to the lower flowrate. 

The trends are consistent with previous experimental studies of decomposition of tar 

analogues using DBD reactors (see 7.2.2). 

Fig. 9.4(b) shows the effect of residence time on the decomposition of CO2 and CH4. It can be 

seen that decomposition of methane and CO2 increases from 2.8 to 9.5% and 2.25 to 4.76% 

respectively, as the residence time increases. 
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Figure 9.4. Effect of residence time on (a) the conversion of toluene, benzene and energy 

efficiency, (b) Decomposition of CO2 and CH4 and selectivity to LHC, (c) Individual selectivity to 

LHC for benzene, and (d) individual selectivity to LHC for toluene; bars represent standard 

deviation. Reaction conditions: concentration, 33 g/Nm3; flow rate, 40.6-120 ml/min; ambient 

temperature; and power, 20 W. 

Fig. 9.4 (c) and (d) show the selectivities to lower hydrocarbons (C1-C5) in benzene and 

toluene respectively. It can be noted that the selectivity to conversion to lower hydrocarbons 

increases with increasing residence time. At lower flow rates, the probability of ring-opening 

products increases due to the higher number of collisions with more reactive species. 

Moreover, the decomposition of methane also increases with time, and it was reported that 

methane decomposition produces C2-C5 hydrocarbons (Chiremba et al., 2017). Therefore, at 
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higher residence times, the cracking of aromatic rings and the decomposition of methane both 

contribute to lower hydrocarbon formation. 

9.2.3 Effect of temperature 

The synergistic effect of temperatures and input discharge power was studied on the product 

distribution as well as the tar removal efficiency. Fig. 9.5 shows the conversion of tar 

representatives with respect to temperature at 40 W. It can be observed that conversion of 

toluene is not affected by temperature. However, for benzene, it decreases with increasing 

temperature. This may be due to recombination reactions of phenyl radicals and H atoms. In 

previous study, it was observed that formation of benzene increased with increasing 

temperatures under constant plasma power during the decomposition of toluene (see 5.2.4). 

The benzene formation occurred due to reactions of H radicals with phenyl radicals. 

Therefore, the decomposition efficiency has decreased at elevated temperatures, due to 

formation reactions of benzene. 
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Figure 9.5. Effect of temperature on the conversion of toluene and benzene. Reaction conditions: 

concentration, 33 g/Nm3; residence time, 2.82 s; flow rate, 40.6 ml/min, SIE, 16.40 kWh/m3. 

Fig.  9.6 (a) and (b) show the effect of temperature on the decomposition of CH4 and CO2. It 

can be observed that the decomposition of methane decreases with increasing temperature. 
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This is probably due to the formation of CH4 from the decomposition of aromatic compounds 

in the presence of plasma at elevated temperatures (see 7.2.4). It has previously been reported 

that selectivity to methane increases to 60 % during the plasma-assisted decomposition of 

toluene in H2 carrier gas at elevated temperature (see 5.2.4). The decomposition of CO2 also 

decreases with increasing temperature. This may be due to the recombination reactions of O 

and CO radicals (Cenian et al., 1995). 
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Figure 9.6. Effect of temperature on (a) the products distribution (toluene), (b) the product 

distribution (benzene) ;(c) the individual selectivity to LHC (toluene); (d) the individual 

selectivity to LHC (benzene). Reaction conditions: concentration, 33 g/Nm3; residence time, 2.82 

s; flow rate, 40.6 ml/min. 

It can be observed from Figures 9.6 (a) and (b) that the selectivity of C2-C6 increases to nearly 

77% for both benzene and toluene. However, in a previous study it was observed that 

selectivity to C2-C6 decreases with increasing the temperature due to formation of methane 
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(see 5.2.4). The study was conducted in the absence of methane and it was observed that 

conversion of C2-C6 to methane took place at 400 oC at 40 W (see 7.2.4). In this study, 

methane was present, and it has been previously reported that methane decomposition can 

lead to formation of C2-C5 hydrocarbons (Chiremba et al., 2017). Therefore, the total 

production of C2-C5 depends upon the decomposition of the benzene and toluene and CH4 

decomposition.  

Fig.9.6 (c) and (d) show that the selectivity to C2 (C2H6+C2H4) increases with increasing 

temperature. However, in a previous study it was observed that selectivity to C2 decreases 

after 300 oC in pure H2 carrier gas (see 5.2.4). This, again, perhaps implies that methane is 

acting as a source of C2. The selectivity to C3-C5 started to decrease after 300 oC due to 

cracking into lower hydrocarbons. However, formation of benzene increased to 13 % at 400 

oC during the cracking of toluene. It is possible due to radical substitution reactions at 

elevated temperature (Amano et al., 1972). 

9.3 Conclusions 

Cracking of benzene and toluene as analogues for gasification tars was investigated in a non-

thermal plasma DBD reactor using a mixture of simulated product gas (H2:41%, CO2:23% 

and CO:23.5%, CH4: 12.5%). The performance was investigated as a function of: SIE (2.05– 

16.4 kWh/m3), residence time (0.95-2.82 s) and temperature (20-400 oC). 

 

The main findings were: 

i. At lower SIE<7 kWh/m3, toluene had a higher conversion than benzene. However, at 

high SIE >7 kWh/m3 both gave same conversion about 98%.  

ii. Significant formation of solids was observed for both benzene and toluene at normal 

temperature. However, it was shown that this could be eliminated by increasing the 

operating temperature up to 400 oC.  

iii. The presence of methane in the mixture of carrier gases significantly increased 

(>32%) the selectivity to C2 (C2H6+C2H4) hydrocarbons when increasing the 

temperature up to 400 oC at constant power. 

iv. Decomposition of methane decreased to nearly 2 % with increasing temperature due to 

formation of methane at elevated temperatures. 

v. Selectivity to lower hydrocarbons (<C7) increased to about 77 % as the temperature 

was increased to 400 oC.  
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The results demonstrate that high temperature eliminates the formation of solid residues and 

convert them largely into C2-C5. Hence, the coupling of temperature and plasma effects could 

resolve the problem of formation of solid residue. 
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Chapter 10. Conclusions and Further Work 

10.1 Conclusions 

The cracking of toluene and benzene in non-thermal plasmas was studied in various carrier 

gases and gas mixtures to study the effects on the decomposition of tar analogue compounds 

and the resultant product distributions. It was observed that the conversion of both tar 

analogues (toluene and benzene) increased with increasing power and residence time in all 

carrier gases, and selectivities to gaseous products (CO, H2, and LHC) also showed increasing 

trend due to increase in reactive species and collision frequency at high power and residence 

time. 

In CO2 carrier gas the major products were lower hydrocarbons (“LHC”: C1 - C6), CO and 

solid residues. At elevated temperature (400 oC) toluene conversion decreased due to 

recombination reactions of O and CO radicals, which reduced the amount of reactive species.  

The yields of H2 and CO also decreased. However, selectivity to lower hydrocarbons 

increased (3.5 to 12.8%) with increasing temperature. The significant amount of solid 

formation occurring when operating in CO2 carrier gas was a negative outcome and must be 

resolved. However, it should be noted that the presence of other gases, such as CO, N2, and 

H2, reduces the solid residue. 

In H2 carrier gas at ambient temperature, solid residues and lower hydrocarbons were also 

formed in the reactor. It was observed that the toluene conversion was not a function of 

temperature when increasing the temperature from 20 to 400 °C. This was partially because 

nearly complete removal of tar took place at 40 W. However, it should be noted that in the 

absence of plasma, no decomposition of toluene was observed at these temperatures. The 

selectivity to lower hydrocarbons increased with increasing temperature, reaching 99.9 % at 

400 oC, without formation of solid deposits or heavy hydrocarbons (>C6). At higher 

temperatures (200-400oC), hydrocracking caused increased selectivity to lower hydrocarbons.  

Hydrogen could work as a scavenger for methyl, benzyl and phenyl radicals. The major 

products were methane (60%) and benzene (28%) at 40 W and 400 oC. Clearly, there are 

benefits to combining thermal and non-thermal effects in this particular application. Here, 

“adding in” thermal effects allowed high selectivity to LHCs, without solid residue formation, 

which are both desirable outcomes.  
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Using N2 as a carrier gas, at ambient conditions, the selectivity to lower hydrocarbons reached 

a maximum of only 6%. However, it increased to 14.5% when the temperature was increased 

to 400 oC. Solid deposits were again formed inside the reactor. This is generally an 

undesirable effect, but it can be substantially reduced by introducing H2. At elevated 

temperatures in the presence of H2, the selectivity to lower hydrocarbons increased with 

increasing hydrogen concentration. It reached 57 % at a concentration of H2 of 35% at 400 oC. 

The main product in these conditions was CH4, which reached a maximum selectivity of 

45 %. This occurred due to plasma-assisted hydrocracking of hydrocarbons in the presence of 

excess H2 at elevated temperatures.  

In synthetic fuel gas mixtures (CO2: 30 %; CO: 20 %; H2: 50 %), the conversion of toluene 

was as high as 99%. The major products were CO, lower hydrocarbons (LHC) and solid 

residues. Again, as for H2, solid formation could be eliminated by increasing the wall 

temperature. A further benefit of increasing the temperature was that it increased both 

selectivity and yield of the lower hydrocarbons. Formation of methane increased with 

increasing temperature and power. The highest yield of methane in this study was 7.5 %, at 

400 oC and 40 W. 

The conversion of benzene, as another tar analogue, was also investigated in the DBD reactor, 

in CO2 and H2 carrier gases. At high SIEs, the conversion of benzene was similar in both 

carrier gases. However, at lower SIEs (<30 kJ/L), there was a clear difference: the H2 

exhibited significantly higher conversions of benzene than the CO2. This was due to the 

higher reactivity of the H. free radical. The wall temperature of the reactor was identified as 

an important parameter in controlling the product distribution. Importantly, it was noted that 

solid formation completely disappeared in H2 carrier gas at 400 oC, and the selectivity to LHC 

was as high as 91%. The presence of H. radicals at elevated temperatures in the presence of 

plasma promoted a new reaction route: cracking of the aromatic ring and intermediates to 

lower hydrocarbons. Therefore these reactors can be operated without solid residue formation 

in the presence of H2 carrier gas at elevated temperatures along with NTP. At higher powers 

and temperatures (40 W and 400 oC) selectivity to methane increased from 15 to 81 % in H2 

carrier gas, whereas, the selectivity to C2-C4 decreased from 38% to 12% with increasing 

temperature from 300 to 400 oC at 40 W. Clearly, hydrocarbon chain length can be controlled 

by judicious choice of wall temperature and power: chain lengths decrease as temperature and 

power increases.  
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Comparative decomposition of benzene and toluene as tar representatives was investigated in 

a non-thermal plasma DBD reactor using a mixture of synthetic “product gas” (H2:41%, 

CO2:23% and CO: 23.5%, CH4: 12.5 %). At lower SIE<7 kWh/m3, toluene exhibited greater 

conversion than benzene. However, at high SIE (>7 kWh/m3) both gave similar conversions 

(about 98%). The products included lower hydrocarbons and solid residues. Solid formation 

occurred in both benzene and toluene at normal temperature. However, the problem of 

formation of solid residue could be resolved by increasing the reactor wall temperatures. 

Decomposition of methane decreased with increasing temperature. Selectivity to lower 

hydrocarbons (<C7) increased to about 77 % as the temperature was increased to 400 oC.  

These results illustrate the opportunities for combining thermal effects with non-thermal 

plasma effects for operation of gas phase reactors. In this case, judicious choice of 

temperature, atmosphere and power could be used to operate the reactor such that no solid 

residue was formed, and the “tar” was largely converted into lower hydrocarbons (C1-C6). 

10.2 Future recommendations 

10.2.1 Kinetic and scale up study 

The results (chapter 5-9) have shown that the synergetic effect of temperature and plasma 

power promotes the conversion of tar analogues (benzene and toluene) to lower hydrocarbons 

in the presence of hydrogen. The conversion of aromatics to lower hydrocarbons at elevated 

temperatures (20-400 oC) was studied at constant residence time. It should also be studied at 

different residence times by changing flow rates to investigate the activation energy and rate 

constants of lower hydrocarbons formation in a non-thermal plasma dielectric barrier 

discharge reactor at elevated temperature. Kinetic information could be used to feed into 

pragmatic reaction engineering design issues, such as scale up studies. Suitable chemical 

kinetic models could then be developed to allow design of dielectric barrier discharge reactors 

in order to obtain maximum conversion of tar at minimal cost. Scale-up is a considerable 

challenge for the successful application of this technique. Understanding the impact of reactor 

hydrodynamics in the performance of the process is also an important step to overcoming this 

problem. The chemical engineering concepts could be applied to investigate the impact of 

reactor configurations and flow regimes (laminar/turbulent) on the performance of dielectric 

barrier discharge reactor. 
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10.2.2 Formation of valuable lower hydrocarbons (C1-C5) 

In conventional hydrocracking, the conversion of heavy oils to light fuels in petroleum 

refineries requires catalyst and significant high temperatures. However, the synergetic effect 

of plasma and temperature could be used to convert heavy oils without catalyst and the 

attendant operational difficulties of using catalysts (particularly with ill-defined feedstocks). 

In Chapter 2, it was observed that an aromatic compound (toluene) could be completely 

converted to lower hydrocarbons (C1-C6), and that the product distribution strongly depended 

upon plasma power and wall temperature. At lower power and temperature, the major 

products were >C1, whereas methane was present in significant amount (60 %) at high 

temperatures (400 oC) and powers (40 W). Therefore, further study could be conducted to 

control the product distribution by changing power and wall temperature. A similar study 

could be performed for the conversion of heavy oils to light fuels by using non-thermal 

plasma dielectric barrier discharge reactor. 

10.2.3 Synthesis of nano crystals and valuable solid products using Non-thermal plasmas 

At ambient conditions significant amounts of solid residue formed due to polymerization 

reactions in all carrier gases at ambient conditions. The analysis of solid residues could be 

performed to investigate the properties and nature of these by products. It has been reported 

that plasma processes produce different types of carbon products including, carbon fibre 

amorphous carbon and polymers. The decomposition of chloroform via NTP polymerization 

in double dielectric barrier discharge reactor was studied at atmospheric pressure (Gaikwad et 

al., 2018). It was observed that addition of additives (methane and hydrogen) increased the 

yield of non-cross linked polymer. Therefore, by changing/adding the reactants, the formation 

of useful polymers could be studied in the current system. In addition, nano crystals can be 

produced in non-thermal plasmas. These nanocrystals showed wide range of applications. It 

has been observed that Silicon nanocrystals produced in a NTP have luminescent properties 

with remarkable photoluminescence quantum yields (60-70 %) (Jurbergs et al., 2006). 
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