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Abstract

The tetrablock is the set

E = {x ∈ C3 : 1− x1z − x2w + x3zw 6= 0 whenever |z| ≤ 1, |w| ≤ 1}.

The closure of E is denoted by E . A tetra-inner function is an analytic map

x from the unit disc D to E whose boundary values at almost all points of

the unit circle T belong to the distinguished boundary bE of E . There is a

natural notion of degree of a rational tetra-inner function x; it is simply the

topological degree of the continuous map x|T from T to bE .

In this thesis we give a prescription for the construction of a general

rational tetra-inner function of degree n. The prescription makes use of a

known solution of an interpolation problem for finite Blaschke products of

given degree in terms of a Pick matrix formed from the interpolation data.

Alsalhi and Lykova proved that if x = (x1, x2, x3) is a rational tetra-inner

function of degree n, then x1x2−x3 either is equal to 0 or has exactly n zeros

in the closed unit disc D, counted with an appropriate notion of multiplicity.

It turns out that a natural choice of data for the construction of a rational

tetra-inner function x = (x1, x2, x3) consists of the points in D for which

x1x2 − x3 = 0 and the values of x at these points.

We also give a matricial formulation of a criterion for the solvability

of a µDiag-synthesis problem. The symbol µDiag denotes an instance of the

structured singular value of 2 × 2 matrix corresponding to the subspace of

diagonal matrices in M2×2(C). Given distinct points λ1, ..., λn ∈ D and target

matrices W1, ...,Wn ∈ M2×2(C) one seeks an analytic 2 × 2 matrix-valued

function F on D such that

F (λj) = Wj for j = 1, ..., n, and

µDiag(F (λ)) < 1, for all λ ∈ D.
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Chapter 1

Introduction and historical

remarks

1.1 Introduction

The unit circle {z ∈ C : |z| = 1} in C will be denoted by T , the open unit disc

{z ∈ C : |z| < 1} will be denoted by D , the closed unit disc {z ∈ C : |z| ≤ 1}
will be denoted by D, and Mm×n(C) will be the set of complex m×n matrices.

The symmetrized bidisc Γ and the tetrablock E have attracted considerable

interest in recent years [1, 3, 2]. The symmetrized bidisc Γ is a domain in C2

defined as

Γ = {(z + w, zw) : |z| ≤ 1, |w| ≤ 1} ⊂ C2.

and the tetrablock E is a domain in C3 defined as

E = {x1, x2, x3 ∈ C3 : 1− x1z − x2w+ x3zw 6= 0 whenever |z| < 1, |w| < 1}.

An E-inner function is an analytic map x from the unit disc D to E whose

boundary values at almost all points of the unit circle T belong to the dis-

tinguished boundary of E . The degree of x = (x1, x2, x3) is defined to be the

topological degree of x|T as a continuous map from T to the distinguished

boundary of E . It was known to Nevanlinna and Pick that an n-point in-

terpolation problem for functions in the Schur class is solvable if and only

if it is solvable by a rational inner function of degree at most n. We shall

consider the analogue for rational tetra-inner functions of a problem about

rational inner functions ϕ from D to D solved by W. Blaschke [19]. By the
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1.2. Main results

Argument Principle, a rational inner function ϕ of degree n has exactly n

zeros in D, counted with multiplicitity. From this fact one deduces that ϕ is

a finite Blaschke product

ϕ(λ) = c
n∏
j=1

λ− αj
1− αjλ

where |c| = 1 and α1, ..., αn are the zeros of ϕ. In a similar way, we would

like to write down the general rational E-inner function of degree n. It was

shown in [12] that if x = (x1, x2, x3) is a rational E-inner function of degree

n, then x1x2−x3 has exactly n zeros in the closed unit disc D, counted with

multiplicity.

The royal variety

RE = {(x1, x2, x3) ∈ E : x3 = x1x2}

plays a special role in the function theory of E . For a rational E-inner function

x = (x1, x2, x3), the zeros of x1x2 − x3 in D are the points λ ∈ D such that

x(λ) ∈ RĒ . We call them the royal nodes of x. If σ ∈ D is a royal node of x,

so that x(σ) = (η, η̃, ηη̃) for some η, η̃ ∈ D, then we call η, η̃ the royal values of

x corresponding to the royal nodes of x. In this thesis we give a prescription

for the construction of a general rational tetra-inner function of degree n with

the aid of a solution of an interpolation problem for finite Blaschke products

(Theorem 1.2.7). The data for the construction of a rational tetra-inner

function x consists of the royal nodes and royal values of x.

1.2 Main results

To describe our main results (Theorems 4.1.1, 4.2.5, 1.2.7) on the construc-

tion of a general rational tetra-inner function we need to recall some defini-

tions and results on the Blaschke interpolation problem.

Definition 1.2.1. [6, Definition 1.2] Let n ≥ 1 and 0 ≤ k ≤ n. By Blaschke

interpolation data we mean a triple (σ, η, ρ) where

(i) σ = (σ1, σ2, ..., σn) is an n-tuple of distinct points of D such that σj ∈ T
for j = 1, ..., k and σj ∈ D for j = k + 1, ..., n;

2



1.2. Main results

(ii) η = (η1, η2, ..., ηn) where ηj ∈ T for j = 1, ..., k and ηj ∈ D for j =

k + 1, ..., n;

(ii) ρ = (ρ1, ρ2, ..., ρk) where ρj > 0 for j = 1, ..., k.

Problem 1.2.2. (The Blaschke interpolation problem) For given Blaschke

interpolation data (σ, η, ρ), find if possible a rational inner function ϕ on D

(that is, a finite Blaschke product) of degree n with the properties

ϕ(σj) = ηj for j = 1, ..., n (1.1)

and

Aϕ(σj) = ρj for j = 1, ..., k (1.2)

where Aϕ(eiθ) denotes the rate of change of the argument of ϕ(eiθ) with

respect to θ.

There is a criterion for the existence of a solution of the Blaschke interpo-

lation problem, Problem 1.2.2, in terms of an associated “Pick matrix”, and

there is a parametrization of all solutions ϕ by a linear fractional expression

in terms of a parameter ζ ∈ T. There are polynomials a, b, c and d of degree

at most n such that the general solution of Problem 1.2.2 is

ϕ =
aζ + b

cζ + d

where the parameter ζ ranges over a cofinite subset of T.

Definition 1.2.3. Let n > 1, and 0 ≤ k ≤ n. By royal tetra-interpolation

data with n nodes and k boundary nodes we mean a four-tuple (σ, η, η̃, ρ)

where

(i) σ = (σ1, σ2, ..., σn) is an n-tuple of distinct points such that σj ∈ T for

j = 1, ..., k and σj ∈ D for j = k + 1, ..., n;

(ii) η = (η1, η2, ..., ηn) where ηj ∈ T for j = 1, ..., k and ηj ∈ D for j =

k + 1, ..., n;

(iii) η̃ = (η̃1, η̃2, ..., η̃n) where η̃j ∈ T for j = 1, ..., k and η̃j ∈ D for

j = k + 1, ..., n.

(iv) ρ = (ρ1, ρ2, ..., ρk) where ρj > 0 for j = 1, ..., k.

3



1.2. Main results

Problem 1.2.4. (The royal tetra-interpolation problem) Given royal

tetra-interpolation data (σ, η, η̃, ρ), find if possible a rational E-inner function

x = (x1, x2, x3) of degree n such that

x(σj) = (ηj, η̃j, ηj η̃j) for j = 1, ..., n

and

Ax1(σj) = ρj for j = 1, ..., k.

In [12] Alsalhi and Lykova gave description of rational E-inner function

x = (x1, x2, x3) of degree n. They showed that if such x = (x1, x2, x3) of

degree n are given, then there exist polynomials E1, E2, D such that

(i) deg(E1), deg(E2), deg(D) ≤ n,

(ii) D(λ) 6= 0 on D,

(iii) E1(λ) = E∼n2 (λ), for all λ ∈ T, where E∼n2 (λ) = λnE2(
1

λ
),

(iv) |Ei(λ)| ≤ |D(λ)| on D, i = 1, 2,

(v) x1 = E1

D
on D,

(vi) x2 = E2

D
on D,

(vii) x3 = D∼n

D
on D, where D∼n(λ) = λnD(

1

λ
).

Definition 3.3.3. Let x = (x1, x2, x3) be a rational tetra-inner function of

degree n. The royal polynomial of x is

Rx(λ) = D(λ)D∼n(λ)− E1(λ)E2(λ).

where E1, E2 and D are as described above.

Definition 3.3.8 . Let x = (x1, x2, x3) be a rational E-inner function such

that x(D) * RE and let Rx be a royal polynomial of x. If σ is a zero of Rx

of order l, we define the multiplicity #σ of σ (as a royal node of x) by

#σ =

l if σ ∈ D
1
2
l if σ ∈ T.
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1.2. Main results

We define the type of x to be the ordered pair (n, k), where n is the sum of

the multiplicities of the royal nodes of x that lie in D, and k is the sum of

the multiplicities of the royal nodes of x that lie in T. We denote by Rn,k

the collection of rational E-inner functions of type (n, k).

Definition 1.2.5. [1, Definition 2.1] For x = (x1, x2, x3) ∈ C3 and z ∈ C
we define

Ψ(z, x) =
x3z − x1

x2z − 1
when x2z − 1 6= 0, (1.3)

and, for ω ∈ T,

Ψω(x) =
x3ω − x1

x2ω − 1
when x2ω − 1 6= 0. (1.4)

Note that when x3 = x1x2, then

Ψ(z, x) =
x1x2z − x1

x2z − 1
=
x1(x2z − 1)

x2z − 1
= x1.

Definition 1.2.6. [6, Definition 3.10] Let (σ, η, ρ) be Blaschke interpolation

data, with n distinct interpolation nodes of which k lie in T. Suppose that

Problem 1.2.2 is solvable. We say that

ϕ =
aζ + b

cζ + d

is a normalised linear fractional parametrization of the solutions of Problem

1.2.2 if

(i) a, b, c, d are polynomials of degree at most n;

(ii) for all but at most k values of ζ ∈ T, the function

ϕ(λ) =
a(λ)ζ + b(λ)

c(λ)ζ + d(λ)
(1.5)

is a solution of Problem 1.2.2;

(iii) for some point τ ∈ T \{σ1, ..., σk},[
a(τ) b(τ)

c(τ) d(τ)

]
=

[
1 0

0 1

]
;

5



1.2. Main results

(iv) every solution ϕ of Problem 1.2.2 has the form (1.5) for some ζ ∈ T.

The main theorem of this thesis is the following.

Theorem 1.2.7. For royal tetra-interpolation data (σ, η, η̃, ρ) the following

two statements are equivalent:

(i) The royal tetra-interpolation problem (Problem 1.2.4) with data (σ, η, η̃, ρ)

is solvable by a rational E-inner function x such that x(D) * RE ;

(ii) The Blaschke interpolation problem (Problem 1.2.2) with data (σ, η, ρ)

is solvable and there exist x◦1, x
◦
2, x
◦
3 ∈ C such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, x◦1 = x◦2x
◦
3,

and
x◦3c(σj) + x◦2d(σj)

x◦1c(σj) + d(σj)
= η̃j for j = 1, ..., n,

where a, b, c and d are the polynomials in the normalized parametriza-

tion ϕ =
aζ + b

cζ + d
of the solution of Problem 1.2.2.

The theorem follows from Theorems 4.1.1 and 4.2.5.

Theorem 4.1.1. Let x = (x1, x2, x3) be a rational E-inner function of type

(n, k) having distinct royal nodes σ1, σ2, ..., σn, where σ1, σ2, ..., σk ∈ T and

σk+1, ..., σn ∈ D, and corresponding royal values η1, .., ηn and η̃1, ..., η̃n, that

is, x(σj) = (ηj, η̃j, ηj η̃j). Let ρj = Ax1(σj) for j = 1, 2, .., k.

(1) There exists a rational function ϕ that solves the Blaschke interpolation

Problem 1.2.2 for (σ, η, ρ) that is, such that deg(ϕ) = n.

ϕ(σj) = ηj for j = 1, ..., n (1.6)

and

Aϕ(σj) = ρj for j = 1, ..., k. (1.7)

Any such function ϕ is expressible in the form ϕ = Ψω ◦ x for some

ω ∈ T.

(2) There exist polynomials a, b, c, d of degree at most n such that a

normalized parametrization of the solutions of Problem 1.2.2 is

ϕ =
aζ + b

cζ + d
, for ζ ∈ T.

6



1.2. Main results

(3) For any polynomials a, b, c, d as in (2), there exist x◦1, x
◦
2, x
◦
3 ∈ C such

that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, (1.8)

x◦1 = x◦2x
◦
3, (1.9)

and

x1 =
x◦1a+ b

x◦1c+ d
(1.10)

x2 =
x◦3c+ x◦2d

x◦1c+ d
(1.11)

x3 =
x◦2b+ x◦3a

x◦1c+ d
. (1.12)

Theorem 4.2.5. Let (σ, η, ρ) be Blaschke interpolation data with n distinct

interpolation nodes of which k lie in T, and let (σ, η, η̃, ρ) be royal tetra-

interpolation data, where η̃j ∈ T, j = 1, ..., k and η̃j ∈ D, j = k + 1, ..., n.

Suppose that Problem 1.2.2 with these data is solvable and the solutions ϕ of

Problem 1.2.2 have normalized parametrization

ϕ =
aζ + b

cζ + d
.

Suppose that there exist scalars x◦1, x
◦
2, x
◦
3 ∈ C such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, x◦1 = x◦2x
◦
3,

and
x◦3c(σj) + x◦2d(σj)

x◦1c(σj) + d(σj)
= η̃j for j = 1, ..., n. (1.13)

Then there exists a rational tetra-inner function x = (x1, x2, x3) given by,

x1(λ) =
x◦1a(λ) + b(λ)

x◦1c(λ) + d(λ)
(1.14)

x2(λ) =
x◦3c(λ) + x◦2d(λ)

x◦1c(λ) + d(λ)
(1.15)

x3(λ) =
x◦2b(λ) + x◦3a(λ)

x◦1c(λ) + d(λ)
, (1.16)

for λ ∈ D, such that

7



1.3. Basic materials

(i) x ∈ Rn,k, and x is a solution of the royal tetra-interpolation problem

with the data (σ, η, η̃, ρ), that is,

x(σj) = (ηj, η̃j, ηj η̃j) for j = 1, ..., n,

and

Ax1(σj) = ρj for j = 1, ..., k,

(ii) for all but finitely many ω ∈ T, the function Ψω ◦ x is a solution of

Problem 1.2.2.

The proofs of these theorems are given in Section 4.1 and Section 4.2

respectively.

The connection between the solution sets of the royal E-interpolation

problem and the Blaschke interpolation problem can be made explicitly with

the aid of Ψω functions.

Corollary 4.2.6. Let (σ, η, ρ) be Blaschke interpolation data. Suppose that

x is a solution of Problem 1.2.4 with (σ, η, η̃, ρ) for some η̃j ∈ D, j = 1, ..., n,

and that x(D) 6⊂ RE . For all ω ∈ T\{η̃1, ..., η̃k}, the function ϕ = Ψω ◦
x is a solution of Problem 1.2.2 with Blaschke interpolation data (σ, η, ρ).

Conversely, for every solution ϕ of the Blaschke interpolation problem with

data (σ, η, ρ), there exists ω ∈ T such that ϕ = Ψω ◦ x .

1.3 Basic materials

The complex conjugate transpose of a matrix A = (aij)
n,m
i,j=1 will be written

A∗, and so A∗ = (a∗ij),where a∗ij = aji for all i, j.

Definition 1.3.1. [9, Definition 1] A finite Blaschke product is a function

B on D of the form

B(z) = c
n∏
j=1

z − αj
1− αjz

for z ∈ D,

and for some c ∈ T and α1, α2, ..., αn ∈ D. A Blaschke factor is a function

on D of the form Ba(z) =
a− z
1− az

, where a ∈ D.

8



1.4. The µ-synthesis problem

Definition 1.3.2. Let Ω be an open set in C and (X, ||.||X) be a Banach

space. Then we say a map f : Ω→ X is analytic on Ω if, for every z◦ ∈ Ω,

there is f ′(z◦) ∈ X such that

lim
z→z◦

∣∣∣∣∣
∣∣∣∣∣f(z)− f(z◦)

z − z◦
− f ′(z◦)

∣∣∣∣∣
∣∣∣∣∣
X

= 0.

Definition 1.3.3. Let Y be a domain in Cn. For every domain Ω in C,

Hol(Ω, Y ) is the space of analytic functions from Ω to Y .

Definition 1.3.4. H∞(D) is the Banach space of bounded analytic functions

f on D with supremum norm

||f ||∞ = sup
z∈D
|f(z)|.

1.4 The µ-synthesis problem

The structured singular value µ(A) of a matrix A relative to a space of

matrices was introduced by J. C. Doyle and G. Stein in 1980 [23, 24]. The µ is

a refinement of the usual operator norm of a matrix. However, its behaviour

is different from the operator norm; µ is not a norm in general. The µ-

synthesis problem is an interpolation problem for analytic matrix functions.

It is a generalization of the classical problem of Nevanlinna-Pick. For any

A ∈Mk×l(C) and for any subspace E of Ml×k(C) we define,

µE(A) = (inf {||X|| : X ∈ E, 1− AX is singular })−1,

where µE(A) = 0 in the case that 1 − AX is nonsingular for all X ∈ E.

There are two extreme examples of µ. If E = Ml×k(C), then µE(A) = ||A||.
Another example is when k = l and E is chosen to be the space of the scalar

multiples of the identity matrix: then µE(A) = r(A), where the spectral

radius r of a matrix A is given by

r(A) = max{|λ| : λ is an eigenvalue of A}.

Note that, for any E, µE(A) ≤ ||A||. If k = l and E contains the identity

matrix, then µE(A) > r(A) [31]. In particular, there is a special case of the

9



1.5. Description of results by sections

µ-synthesis problem which is the spectral Nevanlinna-Pick problem (see [10],

[11]):

Problem SNP Given distinct points λ1, ..., λn ∈ D and k × k matrices

W1, ...,Wn, construct an analytic k × k matrix function F on D such that

F (λj) = Wj, 1 ≤ j ≤ n,

and

r(F (λ)) ≤ 1 for all λ ∈ D.

In this thesis we study the following µ-synthesis problem which was intro-

duced in [1]. In this case E is the space Diag of 2× 2 diagonal matrices

Diag =

{[
z 0

0 w

]
: z, w ∈ C

}
,

and, for A ∈M2×2(C),

µDiag(A) = (inf{||X|| : X ∈ Diag, 1− AX is singular})−1.

where µDiag(A) = 0 in the case that 1−AX is nonsingular for all X ∈ Diag.

The µDiag-synthesis problem : given distinct points λ1, ..., λn ∈ D and

target matrices W1, ...,Wn ∈M2×2(C) such that µDiag(Wk) < 1, k = 1, ..., n,

find, if possible, an analytic 2× 2-matrix-valued function F on D such that

F (λj) = Wj for j = 1, ..., n, and

µDiag(F (λ)) < 1 for all λ ∈ D.

1.5 Description of results by sections

In Chapter 2 we describe the results of Agler, Lykova and Young from [6].

In their paper they give an explicit construction of rational Γ-inner functions

with the aid of a solution of an interpolation problem for finite Blaschke prod-

ucts. In Section 2.1 we state the criteria for the solvability of the Blaschke

interpolation problem from [6]. In Section 2.2, we show their construction of

the rational Γ-inner functions h = (s, p) of degree n with n zeros of s2 − 4p

10



1.5. Description of results by sections

prescribed. We state the royal Γ-interpolation problem and the main theo-

rem in [6] which connects the solvability of the royal Γ-interpolation problem

and the Blaschke interpolation problem.

In Chapter 3 we describe the tetrablock and its distinguished boundary

bE . In Section 3.2, for a rational E-inner function x = (x1, x2, x3) : D → E ,

we consider the rational functions ψω : D → D and Υω : D → D which are

given by

ψω(λ) = Ψω ◦ x(λ) =
ωx3 − x1

x2ω − 1
(λ), x2(λ)ω − 1 6= 0 for all λ ∈ D.

Υω(λ) = Υω ◦ x(λ) =
x3ω − x2

x1ω − 1
(λ), x1(λ)ω − 1 6= 0 for all λ ∈ D.

respectively. We calculate the phasar derivatives of Ψω ◦ x and Υω ◦ x. In

Section 3.3 we define rational tetra-inner functions x and royal polynomials

of x, and we introduce the notions of a royal node σ of x and royal values

η, η̃ corresponding to the royal node.

In Chapter 4 we show how to construct rational E-inner functions with

prescribed royal nodes and values. In this chapter, with the aid of a solu-

tion of an interpolation problem for finite Blaschke products, we construct

rational E-inner functions of degree n with the n zeros of x1x2 − x3 pre-

scribed. In Section 4.1 we prove Theorem 4.1.1 for the given Blaschke in-

terpolation data (σ, η, ρ) which shows that the existence of a solution x for

the royal tetra-interpolation problem allows us to construct a solution for

the Blaschke interpolation problem including the support Lemma 4.1.2. In

Section 4.2 we prove Theorem 4.2.5 which gives us the construction of a

solution of the royal E-interpolation problem with data (σ, η, η̃, ρ) for some

η̃ = (η̃1, ..., η̃n) in terms of a normalized parametrization of solutions of the

corresponding Blaschke interpolation problem with given Blaschke interpo-

lation data (σ, η, ρ). To prove Theorem 4.2.5, we start with some important

propositions in that section.

In Chapter 5 we summarize the steps in the solution of the royal E-

interpolation problem, and in Section 5.2 we give some examples of Problem

1.2.4.

In Chapter 6 we give a matricial formulation of the solvability criteria of

a µDiag-synthesis problem from [3].

11



1.6. Historical remarks

1.6 Historical remarks

The original Pick problem is the following. Given n distinct points λ1, ..., λn

in the unit disk D and n points ω1, ..., ωn in D, find, if possible, an analytic

function ϕ : D→ D such that

ϕ(λj) = ωj for j = 1, ..., n. (1.17)

A necessary and sufficient condition to solve this problem was found by G.

Pick in 1916 [16], and R. Nevanlinna in 1919 independently [18].

Theorem 1.6.1 (Pick). There is a function ϕ in Hol(D,D) that satisfies the

interpolation conditions (1.17) if and only if the Pick matrix(
1− ωiωj
1− λiλj

)n

i,j=1

is positive semi-definite. Moreover, the function ϕ is unique if and only if

the Pick matrix has rank r strictly less than n. In this case, ϕ is a Blaschke

product of degree r.

The tetrablock is one of domains in C3 which is connected to a µ−synthesis

problem.

In [1] Abouhajar, White and Young introduced the tetrablock E , and they

determined the distinguished boundary of E and some geometric properties

of E . A Schwarz lemma for the tetrablock is one of the main results of this

paper. They explain the connection between E and µDiag- synthesis.

In [33], it was shown that the tetrablock E is inhomogeneous. In this

paper, Young gave the full group of automorphisms of E . Also, he proved a

Schwarz lemma for the tetrablock.

In [26], Edigarian and Zwonek describe all complex geodesics in the tetra-

block passing through the origin. Their paper includes some extremals for

the Lempert function and some geodesics. The results in their paper may be

recognised as a continuation of [1].

In [25], the authors talk about Lempert theorem, which is the equality

between the Lempert function and the Carathéodory distance. They showed

that the Lempert theorem holds in the tetrablock, a bounded hyperconvex

domain that is neither C-convex nor biholomorphic to a convex domain.
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1.6. Historical remarks

For the symmetrised bidisc and for the tetrablock, Brown, Lykova and

Young study in [22] the structure of interconnections between the matricial

Schur class, the Schur class of the bidisc, the set of pairs of positive kernels

on the bidisc subject to a boundedness condition, and the set of analytic

functions from the disc into the given inhomogeneous domain. They use the

theory of reproducing kernels and Hilbert function spaces in these connec-

tions. They also give a solvability criterion for the interpolation problem

that arises from the µ-synthesis problem related to the tetrablock.

In [34] N. J. Young gave a criterion for the solvability of a 2 × 2 spec-

tral Nevanlinna-Pick problem with two interpolation points. The goal is to

construct an analytic 2× 2 matrix function F on the unit disc with a finite

number of interpolation constraints and a bound on supλ∈Dµ(F (λ)), where µ

is an instance of the structured singular value. This problem is equivalent to

the interpolation problems in Hol(D,Γ), where Γ is the closed symmetrised

bidisc.

In [5] the authors analyze the 3-extremal analytic maps from the unit

disc D to the open symmetrized bidisc G. These are the maps in Hol(D,G)

whose restriction to any 3-point set yields interpolation data that are only

just solvable. In their paper, they identify a large class of 3-extremal maps

in Hol(D,G); they are rational functions of degree at most 4, and they are

G-inner functions. There are two qualitatively different classes of rational G-

inner functions of degree at most 4, that they call aligned and caddywhompus.

The aligned ones are 3-extremal. They give a method for the construction

of aligned rational G-inner functions. With the aid of this method, they

reduce the solution of a 3-point interpolation problem for aligned analytic

maps from D to G to a collection of classical Nevanlinna-Pick problems with

interior and boundary interpolation nodes.

During the last ten years, several more domains in Cn were introduced in

the connection with a various µ-synthesis problems.

The pentablock P is introduced in [4] by Agler, Lykova and Young. They

address the complex geometry of pentablock P . Their paper describes a

lot of characterisations of P , its distinguished boundary, and a 4-parameter

group of automorphisms of the pentablock P . They show the connections

between the new case of µ-synthesis problem and the pentablock P . They

also introduced some linear fractional functions which play a significant role

13



1.6. Historical remarks

in the paper. In [28], L. Kosinski showed that this group of automorphisms

is the full automorphism group of the pentablock.

In [35], Zapalowski studied the geometric properties of a large family

of domains which is called the generalized tetrablocks, related to the µ-

synthesis. It contains both the family of the symmetrized polydiscs and the

family of the µ1,n–quotients En, n ≥ 2, introduced recently by G. Bharali in

[15]. Zapalowski proved that the generalized tetrablock cannot be exhausted

by domains biholomorphic to convex ones. Moreover, it is shown in this paper

that the Carathéodory distance and the Lempert function are not equal on

a large subfamily of the generalized tetrablocks En, n ≥ 4. This paper has

also a number of geometric properties of the generalized tetrablocks En.

In [8], the authors defined the norm-preserving extension property. A

set V in a domain U in Cn has the norm-preserving extension property if

every bounded analytic function on V has a analytic extension to U with

the same supremum norm. They prove that an algebraic subset of the open

symmetrized bidisc G has the norm-preserving extension property if and only

if it is either a singleton, G itself, a complex geodesic of G, or the union of the

set {(2z, z2) : |z| < 1} and a complex geodesic of degree 1 in G. They also

prove that the complex geodesics in G coincide with the nontrivial analytic

retracts in G. They show that there exist sets in G which have the norm-

preserving extension property but are not analytic retracts of G. They give

applications to von Neumann-type inequalities for Γ-contractions. They find

three other domains that contain sets with the norm-preserving extension

property which are not retracts: they are the spectral ball of 2× 2 matrices,

the tetrablock and the pentablock.
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Chapter 2

The finite Blaschke

interpolation problem

2.1 Criteria for the solvability of the Blaschke

interpolation problem

The Blaschke interpolation Problem 1.2.2 (σ, η, ρ) as described in [6] is an

algebraic variant of the classical Pick interpolation problem. One seeks a

Blaschke product of a given degree n satisfying n interpolation conditions,

rather than a Schur-class function, and one admits interpolation nodes in

both the open unit disc and the unit circle. There is a criterion for the

solvability of the Blaschke interpolation problem in terms of positivity of a

Pick matrix formed from the interpolation data.

Definition 2.1.1. The Schur class is the set of analytic functions S from

D to D̄, S : D→ D̄.

Definition 2.1.2. A function f : D → D is inner if it is an analytic map

such that the radial limit

lim
r→1−

f(rλ) exists and belongs to T

for almost all λ ∈ T with respect to Lebesgue measure.

Definition 2.1.3. The Pick matrix associated with Blaschke interpolation

15



2.1. Criteria for the solvability of the Blaschke interpolation problem

data (σ, η, ρ) is defined to be the n× n matrix M = [mij]
n
i,j=1 with entries

mij =

ρi, if i = j ≤ k.
1− ηiηj
1− σiσj

, otherwise.

Definition 2.1.4. The Pick matrix M = [mij]
n
i,j=1 is minimally positive if

M ≥ 0 and there is no positive diagonal n× n matrix D, other than D = 0,

such that M ≥ D.

The following is a refinement of the Sarason Interpolation Theorem [32].

Theorem 2.1.5. [6, Theorem 3.3] Let M be the Pick matrix associated with

Blaschke interpolation data (σ, η, ρ).

(i) There exists a function ϕ in the Schur class such that

ϕ(σj) = ηj for j = 1, ..., n, (2.1)

and the phasar derivative Aϕ exists and satisfies

Aϕ(σj) ≤ ρj for j = 1, ..., k, (2.2)

if and only if M > 0;

(ii) if M is positive semi-definite and of rank r < n then there is a unique

function ϕ in the Schur class satisfying conditions (2.1) and (2.2) above,

and this function is a Blaschke product of degree r;

(iii) the unique function ϕ in statement (ii) satisfies

Aϕ(σj) = ρj for j = 1, ..., k, (2.3)

if and only if M is minimally positive.

In [6] the authors described their strategy for the construction of the

general solution of Blaschke interpolation problem (Problem 1.2.2). Their

strategy is to adjoin an additional boundary interpolation condition ϕ(τ) = ζ

where τ ∈ T \ {σ1, ..., σk} and ζ ∈ T. This augmented problem will have a

unique solution. All the solutions of Problem 1.2.2 will be obtained in terms

of a unimodular parameter.
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2.1. Criteria for the solvability of the Blaschke interpolation problem

Lemma 2.1.6. [6, Lemma 3.4] If C is an n×n positive definite matrix, u is

an n× 1 column, ρ = 〈C−1u, u〉 and the (n+ 1)× (n+ 1) matrix B is defined

by

B =

[
C u

u∗ ρ

]
,

then B is positive semi-definite, rank(B) = n and

B

[
−C−1u

1

]
= 0.

The Pick matrix Bζ,τ of the augmented problem is the (n+ 1)× (n+ 1)

matrix,

Bζ,τ =

[
M uζ,τ

u∗ζ,τ ρζ,τ

]
, (2.4)

where

ρζ,τ = 〈M−1uζ,τ , uζ,τ 〉.

and M is the Pick matrix associated with Problem 1.2.2, uζ,τ is the n × 1

column matrix defined by

uζ,τ =


1−η̄1ζ
1−σ̄1τ

...
1−η̄nζ
1−σ̄nτ

 . (2.5)

Theorem 2.1.7. [6, Proposition 3.6] If the Pick matrix M associated with

Problem 1.2.2 is positive definite then, for any τ ∈ T \ {σ1, ..., σk} and

ζ ∈ T, there is at most one solution ϕ of Problem 1.2.2 for which ϕ(τ) = ζ.

The jth standard basis vector in Cn will be denoted by ej.

Theorem 2.1.8. [6, Proposition 3.7] If the Pick matrix M associated with

Problem 1.2.2 is positive definite, if τ ∈ T \ {σ1, ..., σk} and ζ ∈ T and

〈M−1uζ,τ , ej〉 6= 0 (2.6)

for j = 1, . . . , k, then there exists a unique solution ϕ to Problem 1.2.2

such that ϕ(τ) = ζ.
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2.1. Criteria for the solvability of the Blaschke interpolation problem

The exceptional set Zτ for Problem 1.2.2 is defined as

Zτ = {ζ ∈ T : for some j, 1 ≤ j ≤ k, 〈M−1uζ,τ , ej〉 = 0} (2.7)

Define n× 1 vectors xλ and yλ for λ ∈ D\{σ1, ..., σk} by

xλ =


1

1−σ̄1λ
...
1

1−σ̄nλ

 , yλ =


η̄1

1−σ̄1λ
...
η̄n

1−σ̄nλ

 , (2.8)

so that

uζ,τ = xτ − ζyτ (2.9)

Theorem 2.1.9. [6, Proposition 3.8]

(i) For any τ ∈ T \ {σ1, ..., σk} if

〈xτ ,M−1ej〉 = 0 = 〈yτ ,M−1ej〉 for some j, 1 ≤ j ≤ k,

then Zτ = T.

(ii) There exist uncountably many τ ∈ T\ {σ1, ..., σk} such that

〈xτ ,M−1ej〉 = 0 = 〈yτ ,M−1ej〉

does not hold for any j, 1 ≤ j ≤ k. Moreover, for such τ , the set Zτ

consists of at most k points.

Theorem 2.1.10. [6, Theorem 3.9] Let the Pick matrix M for Problem 1.2.2

be positive definite, and let τ ∈ T\{σ1, ..., σk} be such that the set

Zτ = {ζ ∈ T : uζ,τ⊥M−1ej for some j, 1 ≤ j ≤ k}

contains at most k points, where uζ,τ is defined by equation (2.5).

(i) If ζ ∈ T\Zτ , then there is a unique solution ϕζ of Problem 1.2.2 that

satisfies ϕζ(τ) = ζ.

(ii) There exist unique polynomials aτ , bτ , cτ , and dτ of degree at most n

such that [
aτ (τ) bτ (τ)

cτ (τ) dτ (τ)

]
=

[
1 0

0 1

]
(2.10)
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2.1. Criteria for the solvability of the Blaschke interpolation problem

and, for all ζ ∈ T, if ϕ is a solution of a Problem 1.2.2 such that

ϕζ(τ) = ζ, then

ϕ(λ) =
aτ (λ)ζ + bτ (λ)

cτ (λ)ζ + dτ (λ)
(2.11)

for all λ ∈ D.

(iii) If ã, b̃, c̃, d̃ are rational functions satisfying the equation[
ã(τ) b̃(τ)

c̃(τ) d̃(τ)

]
=

[
1 0

0 1

]
(2.12)

and such that for three distinct points ζ in T\Zτ , the equation

aτ (λ)ζ + bτ (λ)

cτ (λ)ζ + dτ (λ)
=

ã(λ)ζ + b̃(λ)

c̃(λ)ζ + d̃(λ)
(2.13)

holds for all λ ∈ D, then there exists a rational function X such that ã

= Xaτ , b̃ = Xbτ , c̃ = Xcτ and d̃ = Xdτ .

In the light of Theorem 2.1.10, we can define what we mean by a parametriza-

tion of the solutions of a Blaschke interpolation problem.

Definition 2.1.11. [6, Definition 3.10] Let (σ, η, ρ) be Blaschke interpolation

data, with n distinct interpolation nodes of which k lie in T. Suppose that

Problem 1.2.2 is solvable. We say that

ϕ =
aζ + b

cζ + d

is a normalised linear fractional parametrization of the solutions of Problem

1.2.2 if

(i) a, b, c, d are polynomials of degree at most n;

(ii) for all but at most k values of ζ ∈ T, the function

ϕ(λ) =
a(λ)ζ + b(λ)

c(λ)ζ + d(λ)
(2.14)

is a solution of Problem 1.2.2;
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2.2. The Blaschke interpolation problem and the royal Γ-interpolation
problem

(iii) for some point τ ∈ T \{σ1, ..., σk},[
a(τ) b(τ)

c(τ) d(τ)

]
=

[
1 0

0 1

]
;

(iv) every solution ϕ of Problem 1.2.2 has the form (2.14) for some ζ ∈ T.

From Definition 2.1.11 and Theorem 2.1.10, we can obtain the following.

Corollary 2.1.12. [6, Corollary 3.12] Let (σ, η, ρ) be Blaschke interpolation

data, with n distinct interpolation nodes. Suppose the Pick matrix M of

this problem is positive definite. There exists a normalized linear fractional

parameterization

ϕ =
aζ + b

cζ + d

of the solutions of Problem 1.2.2. Moreover

(i) at least one of the polynomials a, b, c, d has degree n,

(ii) the polynomials a, b, c, d have no common zero in C;

(iii) |c| ≤ |d| on D.

2.2 The Blaschke interpolation problem and

the royal Γ-interpolation problem

Definition 2.2.1. The open symmetrized bidisc is the set

G = {(z + w, zw) : |z| < 1, |w| < 1} ⊂ C2. (2.15)

The closed symmetrized bidisc is the set

Γ = {(z + w, zw) : |z| ≤ 1, |w| ≤ 1} ⊂ C2. (2.16)

Definition 2.2.2. [3, Definition 3.2] The function Φ is defined for (z, s, p) ∈
C3 such that zs 6= 2 by

Φ(z, s, p) =
2zp− s
2− zs

= −1

2
s+

(p− 1
4
s2)z

(1− 1
2
sz)

. (2.17)
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2.2. The Blaschke interpolation problem and the royal Γ-interpolation
problem

Theorem 2.2.3. [11, Theorem 2.3] G is polynomially convex but not convex.

The proof that Γ and G are polynomially convex is found in [11]. Since

Γ is polynomially convex, there is a distinguished boundary bΓ of Γ. By [11,

Theorem 2.4],

bΓ = {(z + w, zw) : |z| = |w| = 1}.

It is shown there that, topologically, bΓ is a Möbius band.

Definition 2.2.4. A Γ-inner function is an analytic function h : D → Γ

such that, for almost all λ ∈ T (with respect to Lebesgue measure) the radial

limit

lim
r→ 1−

h(rλ) exists and belongs to bΓ, (2.18)

In [6] the authors explicitly constructed the rational Γ-inner functions

h = (s, p) of degree n with n zeros of s2 − 4p prescribed. They used a

solution of the associated Blaschke interpolation problem. They explain that

there is a a simple criterion for the existence of a solution of Problem 1.2.2

in terms of an associated “Pick matrix,” and there is parametrization of all

solutions of ϕ by a linear fractional expression in terms of a parameter ζ ∈ T.

The general solution of Problem 1.2.2 is

ϕ =
aζ + b

cζ + d
, (2.19)

where a, b, c and d are polynomials of degree at most n and ζ ∈ T.

Problem 2.2.5. (The royal Γ-interpolation problem) Given Blaschke

interpolation data (σ, η, ρ) (Definition 1.2.1) with n interpolation nodes of

which k lie in T, find if possible a rational Γ-inner function h=(s,p) of degree

n such that

h(σj) = (−2ηj, η
2
j ) for j = 1, ..., n

and

Ap(σj) = 2ρj for j = 1, ..., k.

Theorem 2.2.6. [6, Theorem 1.5] For Blaschke interpolation data (σ, η, ρ)

the following two statements are equivalent.

(i) Problem 2.2.5 with data (σ, η, ρ) is solvable by a rational Γ-inner func-

tion h such that h(D) 6⊂ RΓ ;
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2.2. The Blaschke interpolation problem and the royal Γ-interpolation
problem

(ii) Problem 1.2.2 with data (σ, η, ρ) is solvable and there exist s0, p0 ∈ C
such that

|s0| < 2, |p0| = 1, s0 = s̄0p0,

and

s0a− 2b+ 2p0d = 0,

where a, b, c and d are the polynomials in the normalized parametriza-

tion (2.19) of the solutions of Problem 1.2.2 .

In the next chapters we will give the construction of a general rational

tetra-inner function with the aid of solutions of the associated Blaschke in-

terpolation problem.
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Chapter 3

The tetrablock E and

tetra-inner functions

3.1 Introduction to the tetrablock

Definition 3.1.1. The open tetrablock is the domain

E = {(x1, x2, x3) ∈ C3 : 1−x1z−x2w+x3zw 6= 0 whenever |z| ≤ 1, |w| ≤ 1}.
(3.1)

Definition 3.1.2. The closed tetrablock is the domain

E = {(x1, x2, x3) ∈ C3 : 1−x1z−x2w+x3zw 6= 0 whenever |z| < 1, |w| < 1}.
(3.2)

Observe that the closed tetrablock is the closure of the open tetrablock.

The tetrablock was introduced in [1], and it is related to the µDiag-synthesis

problem.

Theorem 3.1.3. [1, Theorem 2.9] E ∩ R3 is the open tetrahedron with

vertices (1, 1, 1), (1,−1,−1), (−1, 1,−1) and (−1,−1, 1).

The following definition is very important in the study of E .

Definition 3.1.4. [1, Definition 2.1] For x = (x1, x2, x3) ∈ C3 and z ∈ C
we define

Ψ(z, x) =
x3z − x1

x2z − 1
when x2z − 1 6= 0, (3.3)
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3.1. Introduction to the tetrablock

For ω ∈ T, let

Ψω(x) =
x3ω − x1

x2ω − 1
when x2ω − 1 6= 0. (3.4)

Υ(z, x) =
x3z − x2

x1z − 1
when x1z − 1 6= 0, (3.5)

D(x) = sup
z∈D
|Ψ(z, x)| = ||Ψ(., x)||H∞ . (3.6)

Hence,

D(x) =


|x1 − x2x3|+ |x1x2 − x3|

1− |x2|2
if |x2| < 1

|x1| if x1x2 = x3

∞ otherwise.

(3.7)

Note that, when x3 = x1x2, then

Ψ(z, x) =
x1x2z − x1

x2z − 1
=
x1(x2z − 1)

x2z − 1
= x1,

and

Υ(z, x) =
x1x2z − x2

x1z − 1
=
x2(x1z − 1)

x1z − 1
= x2.

Theorem 3.1.5. [1, Theorem 2.2] For x ∈ C3 the following are equivalent.

(i) x ∈ E;

(ii) ||Ψ(., x)||H∞ < 1 and if x1x2 = x3 then |x2| < 1;

(iii) ||Υ(., x)||H∞ < 1 and if x1x2 = x3 then |x1| < 1;

(iv) |x1 − x̄2x3|+ |x1x2 − x3| < 1− |x2|2;

(v) |x2 − x̄1x3|+ |x1x2 − x3| < 1− |x1|2;

(vi) |x1|2 − |x2|2 + |x3|2 + 2|x2 − x̄1x3| < 1 and |x2| < 1;

(vii) −|x1|2 + |x2|2 + |x3|2 + 2|x1 − x̄2x3| < 1 and |x1| < 1;

(viii) |x1|2 + |x2|2 − |x3|2 + 2|x1x2 − x3| < 1 and |x3| < 1;

(ix) |x1 − x̄2x3|+ |x2 − x̄1x3| < 1− |x3|2;
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3.1. Introduction to the tetrablock

(x) there exists a 2 × 2 matrix A = [aij] such that ||A|| < 1 and x =

(a11, a22, detA);

(xi) there exists a symmetric 2× 2 matrix A = [aij] such that ||A|| < 1 and

x = (a11, a22, detA);

Theorem 3.1.6. [1, Theorem 2.4] For x ∈ C3 the following are equivalent.

(i) 1− x1z − x2w + x3zw 6= 0 for all z, w ∈ D;

(ii) x ∈ Ē;

(iii) ||Ψ(., x)||H∞ ≤ 1 and if x1x2 = x3 then |x2| ≤ 1;

(iv) ||Υ(., x)||H∞ ≤ 1 and if x1x2 = x3 then |x1| ≤ 1;

(v) |x1 − x̄2x3|+ |x1x2 − x3| ≤ 1− |x2|2 and if x3 = x1x2, then |x1| ≤ 1;

(vi) |x2 − x̄1x3|+ |x1x2 − x3| ≤ 1− |x1|2 and if x3 = x1x2, then |x2| ≤ 1;

(vii) |x1|2 − |x2|2 + |x3|2 + 2|x2 − x̄1x3| ≤ 1 and |x2| ≤ 1;

(viii) −|x1|2 + |x2|2 + |x3|2 + 2|x1 − x̄2x3| ≤ 1 and |x1| ≤ 1;

(ix) |x1|2 + |x2|2 − |x3|2 + 2|x1x2 − x3| ≤ 1 and |x3| ≤ 1;

(x) |x1 − x̄2x3|+ |x2 − x̄1x3| ≤ 1− |x3|2 and if |x3| = 1 then |x1| ≤ 1

(xi) there exists a 2 × 2 matrix A = [aij] such that ||A|| ≤ 1 and x =

(a11, a22, detA);

(xii) there exists a symmetric 2× 2 matrix A = [aij] such that ||A|| ≤ 1 and

x = (a11, a22, detA);

Theorem 3.1.7. [1, Theorem 2.9] Ē is polynomially convex.

The royal variety of Ē is RĒ = {(x1, x2, x3) ∈ Ē : x3 = x1x2}.
Since Ē is polynomially convex, there is a smallest closed boundary bĒ

of E , which is called the distinguished boundary of E . If there is a function

g ∈ A(E) and a point p ∈ Ē such that g(p) = 1 and |g(x)| < 1 for all

x ∈ Ē\{p}, then p must be in bE . We call p a peak point of Ē and the

function g is called a peaking function for p.
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3.1. Introduction to the tetrablock

Theorem 3.1.8. [1, Theorem 7.1] For x ∈ C3 the following are equivalent.

(i) x1 = x̄2x3, |x3| = 1 and |x2| ≤ 1;

(ii) either x1x2 6= x3 and Ψ(., x) is an automorphism of D or x1x2 = x3

and |x1| = |x2| = |x3| = 1;

(iii) x is a peak point of Ē;

(iv) there exists a 2× 2 unitary matrix U such that x = π(U)

where

π : C2×2 → C3 : U = [uij] 7→ (u11, u22, detU);

(v) there exists a symmetric 2× 2 unitary matrix U such that x = π(U);

(vi) x ∈ bĒ;

(vii) x ∈ Ē and |x3| = 1.

Corollary 3.1.9. [1, Corollary 7.2] bĒ is homeomorphic to D× T.

For the map D×T→ bĒ : (x2, x3) 7→ (x̄2x3, x2, x3) is a homeomorphism.

Theorem 3.1.10. [1, Theorem 9.2] Let λ1, ..., λn be distinct points in D and

let

Wj =

[
wj11 wj12

wj21 wj22

]
, j = 1, ..., n,

be 2× 2 matrices such that wj11w
j
22 6= detWj and

µDiag(Wj) < 1, j = 1, ..., n.

The following conditions are equivalent.

(i) There exists an analytic 2× 2 matrix function F on D, such that

F (λj) = Wj for j = 1, ..., n

and

sup
λ∈D

µDiag(F (λ)) < 1; (3.8)
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3.1. Introduction to the tetrablock

(ii) there exists an analytic function φ ∈ Hol(D, E) such that

φ(λj) = (wj11, w
j
22, detWj) for j = 1, ..., n. (3.9)

Lemma 3.1.11. Let (x1, x2, x3) ∈ E be such that x1x2 6= x3. For ω ∈ T,

|Ψω(x1, x2, x3)| = 1 if and only if 2ω(x2 − x1x3) = 1− |x1|2 + |x2|2 − |x3|2.

Proof.

|Ψω(x1, x2, x3)| = 1⇔
∣∣∣∣x3ω − x1

x2ω − 1

∣∣∣∣ = 1

⇔ |ωx3 − x1|2 = |x2ω − 1|2

⇔ (ωx3 − x1)(ωx3 − x1) = (x2ω − 1)(x2ω − 1)

⇔ |ω|2|x3|2 − ωx3x1 − x1ωx3 + |x1|2 = |ω|2|x2|2 − x2ω − x2ω + 1

⇔ |x3|2 − 2Re(ωx3x1) + |x1|2 = |x2|2 − 2Re(x2ω) + 1

⇔ |x1|2 − |x2|2 + |x3|2 − 2Re(ωx3x1) + 2Re(ωx2) = 1

⇔ |x1|2 − |x2|2 + |x3|2 + 2Re(ω(x2 − x1x3)) = 1

⇔ 2Re(ω(x2 − x1x3)) = 1− |x1|2 + |x2|2 − |x3|2. (3.10)

Since (x1, x2, x3) ∈ E , by Theorem 3.1.6 (vii),

2|x2 − x̄1x3| ≤ 1− |x1|2 + |x2|2 − |x3|2,

and |x2| ≤ 1. Therefore,

2Re(ω(x2−x1x3)) ≤ 2|x2−x1x3| ≤ 1−|x1|2+|x2|2−|x3|2 = 2Re(ω(x2−x1x3)).

Thus

2Re(ω(x2 − x1x3)) = 2|x2 − x1x3| = 1− |x1|2 + |x2|2 − |x3|2.

Hence, for ω ∈ T, |Ψω(x1, x2, x3)| = 1 if and only if

2ω(x2 − x1x3) = 1− |x1|2 + |x2|2 − |x3|2.
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3.2. The phasar derivatives of Ψω ◦ x and Υω ◦ x

Definition 3.1.12. An Ē-inner function is an analytic function ϕ : D→ E
such that the radial limit

lim
r→1−

ϕ(rλ) ∈ bE

for almost all λ ∈ T.

We will also use the terminology tetra-inner function for an Ē-inner func-

tion.

3.2 The phasar derivatives of Ψω ◦x and Υω ◦x

Recall, for x = (x1, x2, x3) ∈ C3 and ω ∈ T, we have defined

Ψω(x) =
x3ω − x1

x2ω − 1
and Υω(x) =

x3ω − x2

x1ω − 1
.

For a rational E-inner function x = (x1, x2, x3) : D → E , we consider the

rational functions ψω : D→ D and Υω : D→ D given by

ψω(λ) = Ψω ◦ x(λ) =
ωx3 − x1

x2ω − 1
(λ), x2(λ)ω − 1 6= 0 for all λ ∈ D.

Υω(λ) = Υ ◦ x(λ) =
x3ω − x2

x1ω − 1
(λ), x1(λ)ω − 1 6= 0 for all λ ∈ D.

respectively. The phasar derivative is defined in Definition A.2.1.

Let us recall that σ ∈ T is a royal node for a rational tetra-inner function

x = (x1, x2, x3) if x3(σ)− x1(σ)x2(σ) = 0.

Lemma 3.2.1. Let x = (x1, x2, x3) be a rational tetra-inner function and let

σ ∈ T be a royal node of x. Then σ is a zero of the function x3 − x1x2 of

multiplicity at least 2.

Proof. If λ ∈ T, we have x3(λ) − x1(λ)x2(λ) = 0 if and only if λ is a royal

node of x.

For λ ∈ T, since x is a tetra-inner function, by Theorem 3.1.8,

x3(λ)(x3(λ)− x1(λ)x2(λ)) = x3(λ)x3(λ)− x3(λ)(x1(λ)x2(λ))

= |x3(λ)|2 − x3(λ)(x2(λ)x3(λ))x2(λ)

= 1− |x3(λ)|2|x2(λ)|2, since |x2(λ)| ≤ 1 on T,

= 1− |x2(λ)|2 ≥ 0.
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3.2. The phasar derivatives of Ψω ◦ x and Υω ◦ x

By assumption, x3(σ)− x1(σ)x2(σ) = 0. Hence the function

f(θ) = x3(eiθ)(x3(eiθ)− x1(eiθ)x2(eiθ) = 1− |x2(eiθ)|2 ≥ 0

has a local minimum at ξ where σ = eiξ. Therefore ξ is a critical point of f ,

and
d

dθ
(1− |x2(eiθ)|2)|ξ = 0.

Thus,

0 =
d

dθ
(1− |x2(eiθ)|2)|ξ

=
d

dθ
(x3(eiθ)(x3(eiθ)− x1(eiθ)x2(eiθ))|ξ

=
d

dθ
(x3(eiθ))|ξ(x3(eiθ)− x1(eiθ)x2(eiθ))|ξ + x3(eiθ)|ξ

d

dθ
(x3(eiθ)− x1(eiθ)x2(eiθ))|ξ

= x3(eiξ)

[
d

dθ
x3(eiθ)|ξ −

d

dθ
(x1(eiθ)x2(eiθ))|ξ

]
= x3(eiξ)

[
ieiξx′3(eiξ)− (x1(eiξ)ieiξx′2(eiξ) + ieiξx′1(eiξ)x2(eiξ))

]
.

Note that |x3(eiξ)| = 1, hence x′3(σ) = x1(σ)x′2(σ) + x′1(σ)x2(σ). Here we

have x3(σ) − x1(σ)x2(σ) = 0 and (x3(σ) − x1(σ)x2(σ))′ = 0. Therefore σ is

a zero of (x3 − x1x2) of multiplicity at least 2.

Proposition 3.2.2. Let x = (x1, x2, x3) be a rational E- inner function. Let

σ ∈ T be a royal node of x. Suppose x(σ) = (η, η̃, ηη̃), ω ∈ T and ωη̃ 6= 1

Then

A(Ψω ◦ x)(σ) = Ax1(σ).

Proof. Since x is a rational E-inner function, then for almost all λ ∈ T, x(λ) ∈
bE , and, by Theorem 3.1.8, for almost all λ ∈ T, x1(λ) = x2(λ)x3(λ), |x3(λ)| =
1 and |x2(λ)| ≤ 1 . By Proposition (A.2.2), for every z ∈ T, and every ra-

tional inner function ϕ,

Aϕ(z) = z
ϕ′(z)

ϕ(z)
.
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3.2. The phasar derivatives of Ψω ◦ x and Υω ◦ x

For σ ∈ T such that x(σ) ∈ RE and ωη̃ 6= 1,

A(Ψω ◦ x)(σ) = A(ωx3 − x1)(σ)− A(x2ω − 1)(σ)

= σ
(ωx3 − x1)′(σ)

(ωx3 − x1)(σ)
− σ (x2ω − 1)′(σ)

(x2ω − 1)(σ)

=
σ

ωη̃ − 1

(ωx′3(σ)− x′1(σ)

η
− ωx′2(σ)

)
Since x3(σ) ∈ RĒ , we have x3(σ) = x1(σ)x2(σ), and, by Lemma 3.2.1, σ is a

zero of x3 − x1x2 of multiplicity at least 2. Thus (x3 − x1x2)′(σ) = 0 and

x′3(σ) = x1(σ)x′2(σ) + x2(σ)x′1(σ) = ηx′2(σ) + η̃x′1(σ). (3.11)

Thus, by equation (3.11), we have

A(Ψω ◦ x)(σ) =
σ

ωη̃ − 1

(ω(ηx′2(σ) + η̃x′1(σ))− x′1(σ)

η
− ωx′2(σ)

)
=

σ

ωη̃ − 1

(ωηx′2(σ) + ωη̃x′1(σ)− x′1(σ)

η
− ωx′2(σ)

)
=

σ

ωη̃ − 1

(ωηx′2(σ) + x′1(σ)(ωη̃ − 1)− ηωx′2(σ)

η

)
= σ

(x′1(σ)

η

)
= σ

(x′1(σ)

x1(σ)

)
= Ax1(σ).

Proposition 3.2.3. Let x = (x1, x2, x3) be a rational E- inner function. Let

σ ∈ T be a royal node of x. Suppose x(σ) = (η, η̃, ηη̃), ω ∈ T and ωη 6= 1.

Then

A(Υω ◦ x)(σ) = Ax2(σ).

Proof. Since x is a rational E-inner function, then for almost all λ ∈ T, x(λ) ∈
bE , and, by Theorem 3.1.8 (i ), for almost all λ ∈ T, x1 = x̄2x3, |x3| = 1 and

|x2| ≤ 1. By Proposition (A.2.2), for every z ∈ T, and every rational inner

function ϕ,

Aϕ(z) = z
ϕ′(z)

ϕ(z)
.
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3.3. Rational tetra-inner functions and royal polynomials

For σ ∈ T such that x(σ) ∈ RĒ , and ωη 6= 1,

A(Υω ◦ x)(σ) = A(ωx3 − x2)(σ)− A(ωx1 − 1)(σ)

= σ
(ωx3 − x2)′(σ)

(ωx3 − x2)(σ)
− σ (x1ω − 1)′(σ)

(x1ω − 1)(σ)

=
σ

ωη − 1

(ωx′3(σ)− x′2(σ)

η̃
− ωx′1(σ)

)
Since x3(σ) ∈ RĒ , we have x3(σ) = x1(σ)x2(σ), and, by Lemma 3.2.1, σ is a

zero of x3 − x1x2 of multiplicity at least 2. Thus (x3 − x1x2)′(σ) = 0 and

x′3(σ) = x1(σ)x′2(σ) + x2(σ)x′1(σ) = ηx′2(σ) + η̃x′1(σ). (3.12)

Thus, by equation (3.12), we have

A(Υω ◦ x)(σ) =
σ

ωη − 1

(ω(ηx′2(σ) + η̃x′1(σ))− x′2(σ)

η̃
− ωx′1(σ)

)
=

σ

ωη − 1

(ωηx′2(σ) + ωη̃x′1(σ)− x′2(σ)

η̃
− ωx′1(σ)

)
=

σ

ωη − 1

(ωηx′2(σ) + x′1(σ)ωη̃ − x′2(σ)− η̃ωx′1(σ)

η̃

)
=

σ

ωη − 1

(x′2(σ)(ωη − 1)

η̃

)
= σ

(x′2(σ)

η̃

)
= σ

(x′2(σ)

x2(σ)

)
= Ax2(σ).

3.3 Rational tetra-inner functions and royal

polynomials

In this section we will show how to construct rational Ē-inner functions with

prescribed royal nodes and values. To describe this construction we need sev-

eral theorems and definitions from O. M. Alsalhi’s PhD thesis [12]. Detailed

proofs of these statements are given in [12].
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3.3. Rational tetra-inner functions and royal polynomials

Theorem 3.3.1. [12, Theorem 4.3.1] If x = (x1, x2, x3) is a rational Ē-inner

function of degree n, then there exist polynomials E1, E2, D such that

(i) deg(E1), deg(E2), deg(D) ≤ n,

(ii) D(λ) 6= 0 on D,

(iii) E1(λ) = E∼n2 (λ), for all λ ∈ T, where E∼n2 (λ) = λnE2(
1

λ
),

(iv) |Ei(λ)| ≤ |D(λ)| on D, i = 1, 2,

(v) x1 = E1

D
on D,

(vi) x2 = E2

D
on D,

(vii) x3 = D∼n

D
on D, where D∼n(λ) = λnD(

1

λ
).

Remark 3.3.2. Consider a rational Ē-inner function x = (x1, x2, x3). Let

E1, E2, D be as in Theorem 3.3.1, and let Rx(λ) be the polynomial defined by

Rx(λ) = D(λ)2(−x1(λ)x2(λ) + x3(λ)).

Then, by Theorem 3.3.1,

Rx(λ) = D(λ)2

(
D∼n(λ)

D(λ)
− E1(λ)

D(λ)

E2(λ)

D(λ)

)
= D(λ)D∼n(λ)− E1(λ)E2(λ).

Definition 3.3.3. Let x = (x1, x2, x3) be a rational tetra-inner function of

degree n. The royal polynomial of x is

Rx(λ) = D(λ)D∼n(λ)− E1(λ)E2(λ),

where E1, E2, D be as in Theorem 3.3.1.

Remark 3.3.4. For a rational tetra-inner function x, since D(λ) 6= 0 on D,

zeroes of Rx are zeroes of the function x3 − x1x2. As we defined above they

are called the royal nodes of x.
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3.3. Rational tetra-inner functions and royal polynomials

Remark 3.3.5. Let σ ∈ D̄ be a zero of Rx(σ). By Theorem 3.3.1, D(λ) 6=
0 on D̄. Thus,

Rx(σ) = D(σ)2(x3(σ)− x1(σ)x2(σ)) = 0 if and only if x3(σ) = x1(σ)x2(σ).

Let x1(σ) = η and x2(σ) = η̃, then

x3(σ) = x1(σ)x2(σ) = ηη̃.

Therefore, if σ ∈ D̄ is a royal node of x, then x(σ) = (η, η̃, ηη̃) for some

η, η̃ ∈ D̄.

We call (η, η̃, ηη̃) the royal value of x at σ.

Lemma 3.3.6. Let x = (x1, x2, x3) be a rational E-inner function, and σ ∈ D̄
is a royal node of x. If σ ∈ T, then |x1(σ)| = 1 and |x2(σ)| = 1.

Proof. Since x is E-inner function, by Definition 3.1.12, x(σ) ∈ bE for σ ∈
T. By Theorem 3.1.8, x1(σ) = x2(σ)x3(σ) and |x3(σ)| = 1, |x2(σ)| ≤ 1.

By assumption σ is a royal node of x. Thus by Definition 3.3.4, x3(σ) =

x1(σ)x2(σ) which implies that |x1(σ)| = 1 and |x2(σ)| = 1 since |x3(σ)| =

1.

Proposition 3.3.7. [12] Let x be a rational E-inner function of degree n and

let Rx be the royal polynomial of x. Then Rx is 2n-symmetric and the zeros

of Rx on T have even order or infinite order.

Definition 3.3.8. Let x = (x1, x2, x3) be a rational Ē-inner function such

that x(D) * RE and let Rx be the royal polynomial of x. If σ is a zero of Rx

of order `, we define the multiplicity #σ of σ (as a royal node of x) by

#σ =

` if σ ∈ D
1
2
` if σ ∈ T.

We define the type of x to be the ordered pair (n, k), where n is the sum of

the multiplicities of the royal nodes of x that lie in D̄, and k is the sum of

the multiplicities of the royal nodes of x that lie in T.

Definition 3.3.9. We denote by Rn,k the collection of rational Ē-inner func-

tions of type (n, k).
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3.3. Rational tetra-inner functions and royal polynomials

Definition 3.3.10. [12] The degree of a rational E-inner function x, denoted

by deg(x) is defined to be x∗(1), where x∗ : Z = π1(T) → π1(bE) is the

homomorphism of fundamental groups induced by x when x is regarded as a

continuous map from T to bE.

Proposition 3.3.11. [12] For any rational E-inner function x, deg(x) is the

degree deg(x3) (in the usual sense) of the finite Blaschke product x3.

Theorem 3.3.12. [12] If x ∈ Rn,k is non-constant, then the degree of x is

equal to n.

Theorem 3.3.13. [12] Let x be a non-constant rational E-inner function of

degree n. Then, either x(D) = RE or x(D) meets RE exactly n times.

Proposition 3.3.14. Let x = (x1, x2, x3) be a non-constant rational E-inner

function and let ω ∈ T be such that ωx2(λ)− 1 6= 0 for all λ ∈ D. Then the

rational function Ψω ◦ x =
ωx3 − x1

x2ω − 1
has a cancellation at ζ ∈ D if and only

if the following conditions are satisfied : ζ ∈ T, ζ is a royal node of x and

ω = x2(ζ).

Proof. Let ζ ∈ T be a royal node of x such that x(ζ) = (η, η̃, ηη̃). By Lemma

3.3.6, |η| = 1 and |η̃| = 1. If ω = η̃ ∈ T, then

ωx3(ζ)− x1(ζ) = η̃ηη̃ − η = |η̃|2η − η = η − η = 0,

and

x2(ζ)ω − 1 = η̃η̃ − 1 = |η̃|2 − 1 = 0.

Thus, Ψω ◦ x =
ωx3(λ)− x1(λ)

x2(λ)ω − 1
has at least one cancellation at such ζ ∈ T.

Conversely, by assumption Ψω ◦ x has a cancellation at ζ ∈ D, and so

(ωx3 − x1)(ζ) = 0 = (x2ω − 1)(ζ).

Therefore, x2(ζ)ω = 1 and ωx3(ζ) = x1(ζ). Since x2(ζ)ω = 1, it implies

that x2(ζ) = ω ∈ T, so |x2(ζ)| = 1. Since x2 : D → D rational and analytic

function with |x2(ζ)| = 1, by the maximum principle theorem, ζ ∈ T, or

x2(λ) = ω for all λ ∈ D. By assumption, ωx2(λ)−1 6= 0 for all λ ∈ D. Hence

the function x2 6= ω on D. Therefore, ζ ∈ T.
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3.3. Rational tetra-inner functions and royal polynomials

Note

ωx3(ζ) = x1(ζ) =⇒ x2(ζ)x3(ζ) = x1(ζ)

=⇒ x3(ζ) = x1(ζ)x2(ζ).

Thus, ζ ∈ T is a royal node for x, and ω = x2(ζ).

35





Chapter 4

Prescribing the royal nodes and

values

In this chapter we will show how to construct rational E-inner functions with

prescribed royal nodes and values, with the aid of a solution of an inter-

polation theorem for finite Blaschke products. The connection between the

solution sets of the royal E-interpolation problem and the Blaschke interpo-

lation problem can be made explicitly with the aid of the functions Ψω. The

main aim of this chapter is to prove Theorem 4.1.1 and Theorem 4.2.5.

4.1 From the royal tetra-interpolation prob-

lem to the Blaschke interpolation prob-

lem

In this section we show that for the given Blaschke interpolation data (σ, η, ρ)

the existence of solution x for the royal tetra-interpolation problem (σ, η, η̃, ρ)

for some η̃j ∈ D allows us to construct a solution for the Blaschke interpola-

tion problem.

Theorem 4.1.1. Let x = (x1, x2, x3) be a rational Ē-inner function of type

(n, k) having distinct royal nodes σ1, σ2, ..., σn where σ1, σ2, ..., σk ∈ T and

σk+1, ..., σn ∈ D and corresponding royal values η1, .., ηn and η̃1, ..., η̃n, that

is, x(σj) = (ηj, η̃j, ηj η̃j). Let ρj = Ax1(σj) for j = 1, 2, .., k.
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4.1. From the royal tetra-interpolation problem to the Blaschke
interpolation problem

(1) There exists a rational inner function ϕ that solves the Blaschke inter-

polation Problem 1.2.2 for (σ, η, ρ), that is, such that deg(ϕ) = n,

ϕ(σj) = ηj for j = 1, ..., n (4.1)

and

Aϕ(σj) = ρj for j = 1, ..., k. (4.2)

Any such function ϕ is expressible in the form ϕ = Ψω ◦ x for some

ω ∈ T.

(2) There exist polynomials a, b, c, d of degree at most n such that a

normalized parametrization of the solutions of Problem 1.2.2 is

ϕ =
aζ + b

cζ + d
, ζ ∈ T.

(3) For any polynomials a, b, c, d as in (2), there exist x◦1, x
◦
2, x
◦
3 ∈ C such

that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, (4.3)

x◦1 = x◦2x
◦
3, (4.4)

and moreover,

x1 =
x◦1a+ b

x◦1c+ d
(4.5)

x2 =
x◦3c+ x◦2d

x◦1c+ d
(4.6)

x3 =
x◦2b+ x◦3a

x◦1c+ d
. (4.7)

Proof. (1) For ω ∈ T and for a given rational E-inner function x = (x1, x2, x3) :

D→ E , we consider the rational function ψω : D→ D

ψω(λ) = Ψω ◦ x(λ) =
x3ω − x1

x2ω − 1
(λ). (4.8)

Then, if ω 6= η̃1, ...., η̃k,

ψω(σj) =
x3(σj)ω − x1(σj)

x2(σj)ω − 1
=

ηj η̃jω − ηj
η̃jω − 1

= ηj
ωη̃j − 1

η̃jω − 1
= ηj for j = 1, ..., n.

(4.9)
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4.1. From the royal tetra-interpolation problem to the Blaschke
interpolation problem

We claim that, for ω ∈ T\{η̃1, ...., η̃k}, the function ϕ = ψω is a solution of

Problem 1.2.2. Let us check that ϕ is an inner function from D to D. For

any λ ∈ T,

ϕ(λ) = ψω(λ) =
ωx3(λ)− x1(λ)

x2(λ)ω − 1
.

Since x is a rational E-inner function, x(λ) ∈ bE for almost all λ ∈ T, and,

by Theorem 3.1.8, x1(λ) = x2(λ)x3(λ) and |x3(λ)| = 1 for almost all λ ∈ T.

Thus, for almost all λ ∈ T,

ϕ(λ) = ψω(λ) =
ωx3(λ)− x2(λ)x3(λ)

x2(λ)ω − 1
=
x3(λ)(ω − x2(λ))

ωx2(λ)− 1
.

Hence, for λ ∈ T,

|ϕ(λ)| = |x3(λ)|

∣∣∣∣∣ ω − x2(λ)

ωx2(λ)− 1

∣∣∣∣∣.
Since |x3(λ)| = 1, |ω| = 1 and |ω − x2(λ)| = |ω − x2(λ)|, we have, for almost

all λ ∈ T, ∣∣∣∣∣ω(ω − x2(λ))

ωx2(λ)− 1

∣∣∣∣∣ =

∣∣∣∣∣ 1− x2(λ)ω

−(1− x2(λ)ω)

∣∣∣∣∣ = 1.

Therefore, for almost all λ ∈ T, |ϕ(λ)| = 1. Hence ϕ is rational inner func-

tion.

The equation (4.9) shows that ψω takes the required values at σ1, ..., σn.

By Proposition 3.2.2,

A(Ψω ◦ x)(σj) = Ax1(σj) = ρj for j = 1, 2, ..., k. (4.10)

It is also true that deg(ψω) = n for ω 6= η̃1, ...., η̃k. By Theorem 3.3.1, for a

rational E-inner function x = (x1, x2, x3) such that deg(x3) = n and if D is

the denominator when x3 is written in its lowest terms then x1 and x2 can

also be written with denominator D. It follows that

deg(ψω) = deg(x3)−#{cancellations between ωx3−x1 and x2ω−1} (4.11)

By Proposition 3.3.14, such cancellations can occur only at the royal nodes

σj ∈ T, j = 1, ..., k, and then only when ω = x2(σj) = η̃j, j = 1, ..., k. Hence

there are no cancellations in equation (4.11), and so deg(ψω) = n.
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(2) Since Problem 1.2.2 is solvable, its Pick matrix is positive definite and

so, by Theorem 2.1.10, there exist polynomials a, b, c, d of degree at most n

which parametrise the solutions of Problem 1.2.2. Let us choose a particular

such 4-tuple of polynomials, as described in Theorem 2.1.10. By Theorem

2.1.9, there exists τ ∈ T\{σ1, ..., σk} such that the exceptional set Zτ for

Problem 1.2.2 which defined as

Zτ = {ζ ∈ T : for some j, 1 ≤ j ≤ k, 〈M−1uζ,τ , ej〉 = 0} (4.12)

consists of at most k points. Fix such a τ ∈ T\{σ1, ..., σk} such that Zτ

consists of at most k points, then there exist unique polynomials aτ , bτ , cτ , dτ

of degree at most n such that[
aτ (τ) bτ (τ)

cτ (τ) dτ (τ)

]
=

[
1 0

0 1

]
(4.13)

and, for all ζ ∈ T \ Zτ , the function

ϕ =
aτζ + bτ
cτζ + dτ

(4.14)

is the unique solution of Problem 1.2.2 that satisfies ϕ(τ) = ζ. Moreover,

the general 4-tuple of polynomials that parametrises the solutions of Problem

1.2.2 is expressible in the form

(a, b, c, d) = (Xaτ , Xbτ , Xcτ , Xdτ ) (4.15)

for some rational function X.

(3) For τ ∈ T \ {σ1, ..., σk} as above, let x◦1 = x1(τ), x◦2 = x2(τ), x◦3 =

x3(τ). Since x is tetra-inner, by Theorem 3.1.8, |x◦3| = 1 and x◦1 = x◦2x
◦
3. Since

τ is chosen not to be a royal node of x, |x◦1| < 1, |x◦2| < 1. Thus the equations

(4.31) and (4.32) hold.

Lemma 4.1.2. Let x◦1, x
◦
2, x
◦
3 ∈ C such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, (4.16)

x◦1 = x◦2x
◦
3. (4.17)

Let Zτ define as in (4.12), let τ ∈ T\{σ1, ..., σk} such that Zτ consists of at

most k points, and let

Z∼τ =
{ η̃1x

◦
3 − x◦1

x◦2η̃1 − 1
,
η̃2x

◦
3 − x◦1

x◦2η̃2 − 1
, ...,

η̃kx
◦
3 − x◦1

x◦2η̃k − 1

}
.
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If ζ ∈ T \ Z∼τ then the function

ϕ =
(x◦2x1 − x3)ζ + x◦1x3 − x1x

◦
3

(x◦2 − x2)ζ + x◦1x2 − x◦3
(4.18)

is a solution for Problem 1.2.2 and satisfies ϕ(τ) = ζ.

Proof. Observe that, by equation (4.8), for any ω ∈ T, ψω(τ) =
ωx◦3−x◦1
x◦2ω−1

,

which is well defined since |x◦2| < 1. We have, for ζ ∈ T,

ψω(τ) = ζ ⇔ ωx◦3 − x◦1
x◦2ω − 1

= ζ ⇔ ω =
−ζ + x◦1
x◦3 − ζx◦2

.

Hence, as long as
−ζ + x◦1
x◦3 − ζx◦2

6= η̃1, ...., η̃k, (4.19)

the function

ϕ(λ) = ψω(λ) = ψ −ζ+x◦1
x◦3−ζx

◦
2

(λ)

=

x3(λ)x◦1 − x3(λ)ζ

x◦3 − x◦2ζ
− x1(λ)

x2(λ)x◦1 − x2(λ)ζ

x◦3 − x◦2ζ
− 1

=
x3(λ)x◦1 − x3(λ)ζ − x1(λ)x◦3 + x1(λ)x◦2ζ

x2(λ)x◦1 − x2(λ)ζ − x◦3 + x◦2ζ

=
(x1(λ)x◦2 − x3(λ))ζ + x◦1x3(λ)− x1(λ)x◦3

(x◦2 − x2(λ))ζ + x◦1x2(λ)− x◦3
.

is a solution of Problem 1.2.2 which satisfies ϕ(τ) = ζ. Condition (4.19) can

equally be written as, for j = 1, 2, ..., k,

ζ 6= x◦1 − η̃jx◦3
1− x◦2η̃j

=
η̃jx
◦
3 − x◦1

x◦2η̃j − 1

or equivalently ζ /∈ Z∼τ .

For ζ ∈ T \ (Zτ ∪Z∼τ ) where Z∼τ is defined in Lemma 4.1.2, we have two

expressions for the unique solution of Problem 1.2.2 for which ϕ(τ) = ζ, to

wit the equations (4.14) and (4.18). Note that[
x◦2x1(τ)− x3(τ) x◦1x3(τ)− x1(τ)x◦3
x◦2 − x2(τ) x◦1x2(τ)− x◦3

]
=

[
x◦2x

◦
1 − x◦3 x◦1x

◦
3 − x◦1x◦3

x◦2 − x◦2 x◦1x
◦
2 − x◦3

]

= (x◦1x
◦
2 − x◦3)

[
1 0

0 1

]
.
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Since the set (Zτ ∪Z∼τ ) is finite, the linear fractional transformations in equa-

tions (4.14) and (4.18) are equal at infinitely many points, hence coincide.

On taking account of normalising condition we obtain[
aτ bτ

cτ dτ

]
=

1

x◦1x
◦
2 − x◦3

[
x◦2x1 − x3 x◦1x3 − x1x

◦
3

x◦2 − x2 x◦1x2 − x◦3

]
. (4.20)

Suppose that a, b, c and d are polynomials that parametrise the solutions of

Problem 1.2.2, as in Theorem 4.1.1 (2). By the observation (4.15), there

exists a rational function X such that

Xa = x◦2x1 − x3, (4.21)

Xb = x◦1x3 − x1x
◦
3, (4.22)

Xc = x◦2 − x2, (4.23)

Xd = x◦1x2 − x◦3, (4.24)

Let us find connections between x1, x2, x3 and the polynomials a, b, c, d. Equa-

tions (4.23) and (4.24) for x2 and X could be written as

Xc+ x2 = x◦2
Xd− x◦1x2 = −x◦3.

(4.25)

Then, the solution of the system (4.25) is

X =

∣∣∣∣∣ x◦2 1

−x◦3 −x◦1

∣∣∣∣∣∣∣∣∣∣c 1

d −x◦1

∣∣∣∣∣
=
x◦1x

◦
2 − x◦3

x◦1c+ d
(4.26)

and

x2 =

∣∣∣∣∣c x◦2
d −x◦3

∣∣∣∣∣∣∣∣∣∣c 1

d −x◦1

∣∣∣∣∣
=
x◦3c+ x◦2d

x◦1c+ d
. (4.27)

Equations (4.21) and (4.22) give us the system

x◦2x1 − x3 = Xa

−x◦3x1 + x◦1x3 = Xb.
(4.28)
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Then, the solution of the system (4.28) is

x1 =

∣∣∣∣∣Xa −1

Xb x◦1

∣∣∣∣∣∣∣∣∣∣ x◦2 −1

−x◦3 x◦1

∣∣∣∣∣
=

∣∣∣∣∣∣∣
x◦1x

◦
2a− x◦3a
x◦1c+ d

−1

x◦1x
◦
2b− x◦3b
x◦1c+ d

x◦1

∣∣∣∣∣∣∣∣∣∣∣∣ x◦2 −1

−x◦3 x◦1

∣∣∣∣∣
=

x◦1
2x◦2a− x◦1x◦3a+ x◦1x

◦
2b− x◦3b

x◦1c+ d

x◦1x
◦
2 − x◦3

=

x◦1a(x◦1x
◦
2 − x◦3) + b(x◦1x

◦
2 − x◦3)

x◦1c+ d

x◦1x
◦
2 − x◦3

=
x◦1a+ b

x◦1c+ d

and

x3 =

∣∣∣∣∣ x◦2 Xa

−x◦3 Xb

∣∣∣∣∣∣∣∣∣∣ x◦2 −1

−x◦3 x◦1

∣∣∣∣∣
=

∣∣∣∣∣∣∣
x◦2

x◦1x
◦
2a− x◦3a
x◦1c+ d

−x◦3
x◦1x

◦
2b− x◦3b
x◦1c+ d

∣∣∣∣∣∣∣∣∣∣∣∣ x◦2 −1

−x◦3 x◦1

∣∣∣∣∣
=

x◦1x
◦
2

2b− x◦2x◦3b+ x◦1x
◦
2x
◦
3a− x◦32a

x◦1c+ d

x◦1x
◦
2 − x◦3

=

x◦2b(x
◦
1x
◦
2 − x◦3) + x◦3a(x◦1x

◦
2 − x◦3)

x◦1c+ d

x◦1x
◦
2 − x◦3

=
x◦2b+ x◦3a

x◦1c+ d
.

Thus x1, x2, x3 are given by equations (4.33), (4.34) and (4.35). The proof of

Theorem 4.1.1 is complete.

Note that we can also prove a result similar to Theorem 4.1.1, using the

function Υω instead of Ψω, where

Υω(x1, x2, x3) =
x3ω − x2

x1ω − 1
,
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which is defined for every (x1, x2, x3) in C3 such that x1ω − 1 6= 0. .

Theorem 4.1.3. Let x = (x1, x2, x3) be a rational Ē-inner function of type

(n, k) having distinct royal nodes σ1, σ2, ..., σn where σ1, σ2, ..., σk ∈ T and

σk+1, ..., σn ∈ D and corresponding royal values η1, .., ηn and η̃1, ..., η̃n, that

is, x(σj) = (ηj, η̃j, ηj η̃j). Let ρj = Ax2(σj) for j = 1, 2, .., k.

(1) There exists a rational inner function ϕ that solves the Blaschke inter-

polation Problem 1.2.2 for (σ, η, ρ) that is, such that deg(ϕ) = n.

ϕ(σj) = ηj for j = 1, ..., n (4.29)

and

Aϕ(σj) = ρj for j = 1, ..., k. (4.30)

Any such function ϕ is expressible in the form ϕ = Υω ◦ x for some

ω ∈ T.

(2) There exist polynomials a, b, c, d of degree at most n such that a

normalized parametrization of the solutions of Problem 1.2.2 is

ϕ =
aζ + b

cζ + d
, ζ ∈ T.

(3) For any polynomials a, b, c, d as in (2), there exist x◦1, x
◦
2, x
◦
3 ∈ C such

that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, (4.31)

x◦1 = x◦2x
◦
3, (4.32)

and moreover,

x1 =
x◦1a+ b

x◦1c+ d
(4.33)

x2 =
x◦3c+ x◦2d

x◦1c+ d
(4.34)

x3 =
x◦2b+ x◦3a

x◦1c+ d
. (4.35)
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4.2 From the Blaschke interpolation problem

to the royal tetra-interpolation problem

In this section we will prove Theorem 4.2.5. This theorem shows that, if

Blaschke interpolation data (σ, η, ρ) are given and the Problem 1.2.2 is solv-

able, then we are able to construct a solution for the royal tetra-interpolation

problem (σ, η, η̃, ρ), for some η̃ = (η̃1, ..., η̃n). We will start with some tech-

nical lemmas.

Lemma 4.2.1. Let a, b, c, d, x◦1, x
◦
2, x
◦
3 ∈ C, and suppose that |x◦3| = 1, x◦1 =

x◦2x
◦
3, x
◦
1c 6= −d and |x◦1| < 1, |x◦2| < 1. Let

x2 =
x◦3c+ x◦2d

x◦1c+ d
.

Then

(1) |x2| ≤ 1 if and only if |c| ≤ |d|,

and

(2) |x2| < 1 if and only if |c| < |d|.

Proof. (1)

|x2| ≤ 1 ⇔

∣∣∣∣∣x◦3c+ x◦2d

x◦1c+ d

∣∣∣∣∣ ≤ 1

⇔ |x◦3c+ x◦2d|2 ≤ |x◦1c+ d|2

⇔ (x◦3c+ x◦2d)(x◦3c+ x◦2d) ≤ (x◦1c+ d)(x◦1c+ d)

⇔ |x◦3|2|c|2 + x◦3cx
◦
2d+ x◦2dx

◦
3c+ |x◦2|2|d|2 ≤ |x◦1|2|c|2 + x◦1cd+ dx◦1c+ |d|2

⇔ |c|2 + 2Re(x◦3cx
◦
2d) + |x◦2|2|d|2 ≤ |x◦1|2|c|2 + 2Re(x◦1cd) + |d|2

⇔ |c|2 + |x2|2|d|2 − |x◦1|2|c|2 − |d|2 ≤ 0 (since x◦1 = x◦2x
◦
3)

⇔ (1− |x◦1|2)(|c|2 − |d|2) ≤ 0

⇔ |c| ≤ |d| (since (1− |x◦1|2) > 0)

⇔ |c| ≤ |d|.

(2) The same calculation leads to |x2| < 1 ⇐⇒ |c| < |d|.
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Lemma 4.2.2. Let a, b, c, d, x◦1, x
◦
2, x
◦
3 ∈ C, and suppose that |x◦3| = 1, x◦1 =

x◦2x
◦
3, and x◦1c 6= −d, and |x◦1| < 1, |x◦2| < 1. Let

x1 =
x◦1a+ b

x◦1c+ d
.

Then

|x1| < 1 if and only if |x◦1|2(|a|2−|c|2)+(|b|2−|d|2)+2Re(x◦1(ab−cd)) < 0.

Proof.

|x1| < 1 ⇔

∣∣∣∣∣x◦1a+ b

x◦1c+ d

∣∣∣∣∣ < 1

⇔ |x◦1a+ b|2 < |x◦1c+ d|2

⇔ (x◦1a+ b)(x◦1a+ b) < (x◦1c+ d)(x◦1c+ d)

⇔ |x◦1|2|a|2 + x◦1ab+ x◦1ab+ |b|2 < |x◦1|2|c|2 + x◦1cd+ dx◦1c+ |d|2

⇔ |x◦1|2|a|2 + 2Re(x◦1ab) + |b|2 < |x◦1|2|c|2 + 2Re(x◦1cd) + |d|2

⇔ |x◦1|2|a|2 + 2Re(x◦1ab) + |b|2 − |x◦1|2|c|2 − 2Re(x◦1cd)− |d|2 < 0

⇔ |x◦1|2|a|2 + |b|2 − |x◦1|2|c|2 − |d|2 + 2Re(x◦1(ab− cd)) < 0

⇔ |x◦1|2(|a|2 − |c|2) + (|b|2 − |d|2) + 2Re(x◦1(ab− cd)) < 0.

Proposition 4.2.3. Let a, b, c, d be polynomials in the indeterminate λ and

suppose that x◦1, x
◦
2, x
◦
3 ∈ C satisfy x◦3 6= x◦1x

◦
2 and x◦1c 6= −d. Let rational

functions x1, x2, x3 be defined by

x1(λ) =
x◦1a(λ) + b(λ)

x◦1c(λ) + d(λ)
, x2(λ) =

x◦3c(λ) + x◦2d(λ)

x◦1c(λ) + d(λ)
, x3(λ) =

x◦2b(λ) + x◦3a(λ)

x◦1c(λ) + d(λ)
.

(4.36)

and define a rational function ζ in the indeterminate ω by

ζ(ω) =
ωx◦3 − x◦1
x◦2ω − 1

. (4.37)

Then, as rational functions in (ω, λ),

ωx3(λ)− x1(λ)

x2(λ)ω − 1
=
a(λ)ζ(ω) + b(λ)

c(λ)ζ(ω) + d(λ)
.
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This algebraic relation has implications for rational maps from D to E .

Proof. Let x1, x2, x3 be defined by equations (4.36).

Then

ωx3(λ)− x1(λ)

x2(λ)ω − 1
=

ωx◦2b(λ) + ωx◦3a(λ)

x◦1c(λ) + d(λ)
− x◦1a(λ) + b(λ)

x◦1c(λ) + d(λ)

ωx◦3c(λ) + ωx◦2d(λ)

x◦1c(λ) + d(λ)
− 1

=
ωx◦2b(λ) + ωx◦3a(λ)− x◦1a(λ)− b(λ)

ωx◦3c(λ) + ωx◦2d(λ)− x◦1c(λ)− d(λ)

=
a(λ)(ωx◦3 − x◦1) + b(λ)(ωx◦2 − 1)

c(λ)(ωx◦3 − x◦1) + d(λ)(ωx◦2 − 1)

=

a(λ)

(
ωx◦3 − x◦1
ωx◦2 − 1

)
+ b(λ)

c(λ)

(
ωx◦3 − x◦1
ωx◦2 − 1

)
+ d(λ)

=
a(λ)ζ(ω) + b(λ)

c(λ)ζ(ω) + d(λ)
,

where ζ(ω) =
ωx◦3 − x◦1
ωx◦2 − 1

.

Proposition 4.2.4. Let a, b, c, d be polynomials having no common zero

in D, and satisfying |c| ≤ |d| on D . Suppose that x◦1, x
◦
2, x
◦
3 ∈ C satisfy

x◦1c 6= −d, |x◦3| = 1, |x◦1| < 1, |x◦2| < 1 and x◦1 = x◦2x
◦
3. Let rational functions

x1, x2, x3 be defined by

x1(λ) =
x◦1a(λ) + b(λ)

x◦1c(λ) + d(λ)
, x2(λ) =

x◦3c(λ) + x◦2d(λ)

x◦1c(λ) + d(λ)
, x3(λ) =

x◦2b(λ) + x◦3a(λ)

x◦1c(λ) + d(λ)
,

(4.38)

and let

ψζ(λ) =
a(λ)ζ + b(λ)

c(λ)ζ + d(λ)
. (4.39)

(i) If, for all but finitely many values of λ ∈ D,

|ψζ(λ)| ≤ 1 (4.40)

for all but finitely many ζ ∈ T, then x◦1c + d has no zero in D and

x = (x1, x2, x3) is an analytic map from D to E.
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(ii) If, for all but finitely many ζ ∈ T, the function ψζ is inner, then either

x(D) ⊆ RE or x = (x1, x2, x3) is a rational tetra-inner function.

Proof. (i) By hypothesis there is a finite subset E of D such that, for all

λ ∈ D\E, there is a finite subset Fλ of T such that the inequality (4.40)

holds for all ζ ∈ T\Fλ. We claim that the denominator x◦1c + d of x1, x2, x3

has no zeros in D. Suppose that α ∈ D is a zero of (x◦1c+ d). Since |c| ≤ |d|
on D,

|x◦1c(α) + d(α)| ≥ |d(α)| − |x◦1c(α)|
≥ |d(α)| − |x◦1||d(α)|
= (1− |x◦1|)|d(α)|.

Thus,

0 = |x◦1c(α) + d(α)| ≥ (1− |x◦1|)|d(α)|.

Since |x◦1| < 1, (1− |x◦1|) 6= 0, and so d(α) = 0, Then

0 = x◦1c(α) + d(α) = x◦1c(α)

implies that c(α) = 0.

Choose a sequence αj in D\E such that αj → α. For each j, for ζ ∈
T\F (λj), we have |ψζ(λ)| ≤ 1 on D\E. Hence for all but finitely many

ζ ∈ T ( that is, for ζ ∈ T\ ∪j F (λj))∣∣∣∣a(αj)ζ + b(αj)

c(αj)ζ + d(αj)

∣∣∣∣ ≤ 1.

Since c(αj)ζ + d(αj)→ 0 uniformly almost everywhere for ζ ∈ T as j →∞,

the same holds for a(αj)ζ + b(αj). Hence a(αj) → 0 and b(αj) → 0. Thus

a(α) = b(α) = 0. Hence a, b, c, d all vanish at α, contrary to hypothesis. So

x◦1c + d has no zeros in D. Thus x1, x2, x3 defined by equations (4.38) are

rational functions having no poles in D.

Consider λ ∈ D\E. By Proposition 4.2.3,

Ψω(x1(λ), x2(λ), x3(λ)) =
ωx3(λ)− x1(λ)

x2(λ)ω − 1
=
a(λ)ζ(ω) + b(λ)

c(λ)ζ(ω) + d(λ)
(4.41)

whenever both sides are defined, that is, for all ω ∈ T\Ωλ where

Ωλ = {ω ∈ T : ωx2(λ) = 1 or c(λ)ζ(ω) = −d(λ)}.
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Ωλ contains at most two points. On combining the relations (4.39), (4.40)

and (4.41), we deduce that, for λ ∈ D\E,

|Ψω(x1(λ), x2(λ), x3(λ))| ≤ 1 (4.42)

for all ω ∈ T such that ω /∈ Ωλ ∪ ζ−1(Fλ), hence for all but finitely many

ω ∈ T. By Theorem 3.1.6, (x1(λ), x2(λ), x3(λ)) ∈ E . Sine this is true for all

but finitely many λ ∈ D, and x1, x2, x3 are rational functions without poles

in D, (x1, x2, x3) maps D into E .

(ii) Suppose that for some finite subset F of T, the function ψζ is inner

for all ζ ∈ T\F . By part (i), (x1, x2, x3) maps D into E and therefore extends

to a continuous map of D into E . Consider λ ∈ T. By Proposition 4.2.3 and

equation (4.39),

Ψω(x1(λ), x2(λ), x3(λ)) = ψζ(ω)(λ) (4.43)

whenever both sides are defined, that is, for all ω ∈ T\Ωλ where

Ωλ = {ω ∈ T : ωx2(λ) = 1 or c(λ)ζ(ω) = −d(λ)}.

Ωλ contains at most two points. For ω ∈ T\ζ−1(F ) the function ψζ(ω) is

inner.

Hence, for ω ∈ T\(ζ−1(F ) ∪ Ωλ),

|Ψω(x1(λ), x2(λ), x3(λ))| = |ψζ(ω)(λ)| = 1. (4.44)

Case 1. Suppose that for all λ ∈ D, x1(λ)x2(λ) = x3(λ). Then, for all λ ∈ D,

Ψω(x1(λ), x2(λ), x3(λ)) =
ωx3(λ)− x1(λ)

x2(λ)ω − 1
=
ωx1(λ)x2(λ)− x1(λ)

x2(λ)ω − 1

=
x1(λ)(ωx2(λ)− 1)

x2(λ)ω − 1
= x1(λ).

Thus x(D) ⊆ RE .
Case 2. Suppose that for some λ ∈ D, x1(λ)x2(λ) 6= x3(λ). To prove that

x = (x1, x2, x3) is rational E-inner function, by Theorem 3.1.8, we need to

show that (x1, x2, x3)(λ) ∈ bE for almost all λ ∈ T, that is,

(i) |x3(λ)| = 1 for almost all λ ∈ T,

48



4.2. From the Blaschke interpolation problem to the royal
tetra-interpolation problem

(ii) |x2| ≤ 1 on D,

(iii) x1(λ) = x2(λ)x3(λ) for almost all λ ∈ T.

For (ii), by Lemma 4.2.1, we showed that |x2(λ)| ≤ 1 for λ ∈ D. By Lemma

3.1.11, for any ω ∈ T and any point x = (x1, x2, x3) ∈ E such that x1x2 6= x3,

|Ψω(x1, x2, x3)| = 1 if and only if 2ω(x2 − x1x3)) = 1− |x1|2 + |x2|2 − |x3|2.

Thus, for λ ∈ T such that x1(λ)x2(λ) 6= x3(λ) , equation (4.44) implies

2ω(x2(λ)− x1(λ)x3(λ))) = 1− |x1(λ)|2 + |x2(λ)|2 − |x3(λ)|2.

Hence, for λ ∈ T, if |Ψω(x1(λ), x2(λ), x3(λ))| = 1 for two distinct ω ∈ T, say

ω1 6= ω2, we have the linear system

2ω1(x2(λ)− x1(λ)x3(λ)) = 1− |x1(λ)|2 + |x2(λ)|2 − |x3(λ)|2

2ω2(x2(λ)− x1(λ)x3(λ)) = 1− |x1(λ)|2 + |x2(λ)|2 − |x3(λ)|2.
(4.45)

Thus, for λ ∈ T,

2ω1(x2(λ)− x1(λ)x3(λ))− 2ω2(x2(λ)− x1(λ)x3(λ)) = 0

=⇒(x2(λ)− x1(λ)x3(λ))(ω1 − ω2) = 0

=⇒x2(λ) = x1(λ)x3(λ). (4.46)

By equations (4.45), for λ ∈ T,

1− |x1(λ)|2 + |x2(λ)|2 − |x3(λ)|2 = 0. (4.47)

Note for λ ∈ T, since x2(λ) = x1(λ)x3(λ),

(4.47) holds ⇔ 1− |x1(λ)|2 + |x1(λ)x3(λ)|2 − |x3(λ)|2 = 0

⇔ 1− |x1(λ)|2 + |x1(λ)|2|x3(λ)|2 − |x3(λ)|2 = 0

⇔ 1− |x1(λ)|2 − |x3(λ)|2(1− |x1(λ)|2) = 0

⇔ (1− |x1(λ)|2)(1− |x3(λ)|2) = 0

⇔ |x3(λ)| = 1 or |x1(λ)| = 1.
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Case 1. If |x1(λ)| = 1 and x2(λ) = x1(λ)x3(λ), we have x3(λ) = x1(λ)x2(λ)

for almost all λ ∈ T. Then since xi are rational functions for i = 1, 2, 3, and

x3(λ) = x1(λ)x2(λ) for λ ∈ T, it imples that

x3(λ) = x1(λ)x2(λ) for all λ ∈ D.

Then, for all λ ∈ D,

Ψω(x1(λ), x2(λ), x3(λ)) =
ωx3(λ)− x1(λ)

x2(λ)ω − 1
=
ωx1(λ)x2(λ)− x1(λ)

x2(λ)ω − 1

=
x1(λ)(ωx2(λ)− 1)

x2(λ)ω − 1
= x1(λ).

Thus x(D) ⊆ RE .
Case 2. If for almost all λ ∈ T, |x3(λ)| = 1, then

x2(λ) = x1(λ)x3(λ) =⇒ x2(λ)x3(λ) = x1(λ)

=⇒ x1(λ) = x2(λ)x3(λ).

Thus, for almost all λ ∈ T, |x3(λ)| = 1 and x1(λ) = x2(λ)x3(λ) that proves

(i) and (iii) respectively. Therefore, the point (x1(λ), x2(λ), x3(λ)) for almost

all λ ∈ T is in the distinguished boundary bE of E . Hence x = (x1, x2, x3) is

a rational E-inner function in this case.

Theorem 4.2.5. Let (σ, η, ρ) be Blaschke interpolation data with n distinct

interpolation nodes of which k lie in T, and let (σ, η, η̃, ρ) be royal tetra-

interpolation data where η̃ = (η̃1, η̃2, ..., η̃n), η̃j ∈ T, j = 1, ..., k and η̃j ∈
D, j = k + 1, ..., n. Suppose that Problem 1.2.2 with (σ, η, ρ) is solvable and

the solutions ϕ of Problem 1.2.2 have normalized parametrization

ϕ =
aζ + b

cζ + d
.

Suppose that there exist scalars x◦1, x
◦
2, x
◦
3 in C such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, x◦1 = x◦2x
◦
3,

and
x◦3c(σj) + x◦2d(σj)

x◦1c(σj) + d(σj)
= η̃j, j = 1, ..., n. (4.48)
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Then there exists a rational tetra-inner function x = (x1, x2, x3) given by

x1(λ) =
x◦1a(λ) + b(λ)

x◦1c(λ) + d(λ)
(4.49)

x2(λ) =
x◦3c(λ) + x◦2d(λ)

x◦1c(λ) + d(λ)
(4.50)

x3(λ) =
x◦2b(λ) + x◦3a(λ)

x◦1c(λ) + d(λ)
, (4.51)

for λ ∈ D, such that

(i) x ∈ Rn,k, and x is a solution of the royal tetra-interpolation problem

with the data (σ, η, η̃, ρ), that is,

x(σj) = (ηj, η̃j, ηiη̃j) for j = 1, ..., n,

and

Ax1(σj) = ρj for j = 1, ..., k,

(ii) for all but finitely many ω ∈ T, the function Ψω ◦ x is a solution of

Problem 1.2.2.

Proof. By Corollary 2.1.12 (3), |c| ≤ |d| on D. Hence
∣∣∣d(λ)
c(λ)

∣∣∣ ≥ 1 for λ ∈ D.

By assumption |x◦1| < 1. We claim that x◦1c 6= −d on D. Suppose that

x◦1c = −d =⇒|x◦1c| = |d|
=⇒|x◦1||c| = |d|

=⇒|x◦1| =
|d|
|c|
,

which is a contradiction since
∣∣∣d(λ)
c(λ)

∣∣∣ ≥ 1 for all λ ∈ D, and |x◦1| < 1 on D.

Therefore, x◦1c 6= −d on D. By Proposition 4.2.4, either x(D) ⊆ RE or x is

a rational E-inner function. Since a, b, c, d are polynomials of degree at most

n, the rational function x has degree at most n.
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By Definition 2.1.11 of normalised linear fractional parametrization of the

solutions of Problem 1.2.2, for some point τ ∈ T\{σ1, ..., σk},[
a(τ) b(τ)

c(τ) d(τ)

]
=

[
1 0

0 1

]
.

Thus it is easy to see that

x1(τ) =
x◦1a(τ) + b(τ)

x◦1c(τ) + d(τ)
=
x◦1
1

= x◦1, (4.52)

x2(τ) =
x◦3c(τ) + x◦2d(τ)

x◦1c(τ) + d(τ)
=
x◦2
1

= x◦2, (4.53)

x3(τ) =
x◦2b(τ) + x◦3a(τ)

x◦1c(τ) + d(τ)
=
x◦3
1

= x◦3. (4.54)

By assumption, |x◦3| = 1, |x◦1| < 1 and |x◦2| < 1, and hence x3(τ) 6= x1(τ)x2(τ).

Therefore, x(D) is not in the royal variety RE .
By assumption, x2 is defined by (4.53). Hence

x2(σj) =
x◦3c(σj) + x◦2d(σj)

x◦1c(σj) + d(σj)
= η̃j for j = 1, ..., n.

We want to show that x satisfies the interpolation conditions

x(σj) = (ηj, η̃j, ηiη̃j) for j = 1, ..., n, (4.55)

which is to say that σj, j = 1, ..., n, is a royal node of x with corresponding

royal value (ηj, η̃j). By hypothesis, there is a finite set F ⊂ T such that, for

all ζ ∈ T\F , the function

ϕ(λ) = ψζ(λ) =
a(λ)ζ + b(λ)

c(λ)ζ + d(λ)

is a solution of Problem 1.2.2, and so

ψζ(σj) = ηj for j = 1, ..., n (4.56)

and

Aψζ(σj) = ρj for j = 1, ..., k (4.57)
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for all ζ ∈ T\F . By Proposition 4.2.3,

ψζ(ω)(λ) =
a(λ)ζ(ω) + b(λ)

c(λ)ζ(ω) + d(λ)
=
ωx3(λ)− x1(λ)

ωx2(λ)− 1
= Ψω ◦ x(λ) (4.58)

whenever both sides are defined, that is, for all ω ∈ T\Ωλ where

Ωλ = {ω ∈ T : ωx2(λ) = 1 or c(λ)ζ(ω) = −d(λ)}.

Ωλ contains at most two points. Thus, (4.58) holds as rational functions in

(ω, λ), where ζ(ω) =
ωx◦3 − x◦1
x◦2ω − 1

. Hence, for ω ∈ T\(ζ−1(F ) ∪ Ωλ), Ψω ◦ x is a

solution of Problem 1.2.2, so this proves statement (ii).

For any λ ∈ D, equation (4.58) holds whenever both denominators are

nonzero, hence for all but at most two values of ω ∈ T. On combining

equations (4.56) and (4.58) (with λ = σj) we infer that, for j = 1, ..., n and

for all but finitely many ω ∈ T,

ωx3(σj)− x1(σj)

ωx2(σj)− 1
= ψζ(ω)(σj) = ηj.

Therefore, for almost all ω ∈ T,

ωx3(σj)− x1(σj) = ηj(ωx2(σj)− 1). (4.59)

Recall that x2(σj) = η̃j for j = 1, ..., n. Hence from (4.59) it follows that

x1(σj) = ηj and x3(σj) = ηj η̃j, j = 1, ..., n, and so the interpolation condi-

tions (4.55) hold.

We have already observed that x is a rational E-inner function, deg(x) ≤ n

and that x(D) is not in RE . Thus by Theorem 3.3.12, the number of royal

nodes of x is equal to the degree of x. Therefore x has at most n royal nodes.

Since the points σj, j = 1, ..., n are royal nodes, they contain all the royal

nodes of x and deg(x) = n. Precisely k of the σj lie in T, and so x has

exactly k royal nodes in T. Thus x ∈ Rn,k.

Next we show that Ax1(σj) = ρj for j = 1, ..., k. Fix j ∈ {1, ..., k}. By

Proposition 3.2.2 , for ω ∈ T, ωη̃j 6= 1,

A(Ψω ◦ x)(σj) = Ax1(σj). (4.60)

There is also a set Ωj containing at most one ω ∈ Ωj such that c(σj)ζ(ω) +

d(σj) = 0 for ω ∈ Ωj. Hence if ω ∈ T\({η̃j} ∪ Ωj), it follows from equation
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(4.58) that ψζ(ω) = Ψω ◦ x in a neighbourhood of σj, and consequently, for

such ω,

Aψζ(ω)(σj) = A(Ψω ◦ x)(σj). (4.61)

Each of the equations (4.60), (4.61) and (4.57) hold for ω in cofinite subset

of T. Hence, for ω in the intersection of these cofinite subsets,

Ax1(σj) = A(Ψω ◦ x)(σj) = Aψζ(ω)(σj) = ρj

Thus, (i) holds.

Corollary 4.2.6. Let (σ, η, ρ) be Blaschke interpolation data. Suppose that

x is a solution of Problem 1.2.4 with (σ, η, η̃, ρ) for some η̃j ∈ D, j = 1, ..., n,

and that x(D) 6⊂ RĒ . For all ω ∈ T\{η̃1, ..., η̃k}, the function ϕ = Ψω ◦ x
is a solution of Problem 1.2.2 with Blaschke interpolation data (σ, η, ρ) .

Conversely, for every solution ϕ of the Blaschke interpolation problem with

data (σ, η, ρ), there exists ω ∈ T such that ϕ = Ψω ◦ x .

Proof. (=⇒) Consider Blaschke interpolation data (σ, η, ρ). If x = (x1, x2, x3)

is a solution of Problem 1.2.4 with (σ, η, η̃, ρ) for some η̃j ∈ D, j = 1, ..., n,

and that x(D) 6⊂ RĒ , then, by Theorem 4.1.1 (1), for all ω ∈ T\{η̃1, ..., η̃k},
there exists a rational ϕ = Ψω ◦x that solves Blaschke interpolation problem

(Problem 1.2.2) with Blaschke interpolation data (σ, η, ρ).

(⇐=) Let ϕ be a solution of the Blaschke interpolation problem (Problem

1.2.2) with data (σ, η, ρ). Then, by Theorem 4.1.1 and Theorem 4.2.5 (ii),

there exists ω ∈ T such that ϕ = Ψω ◦ x.
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Chapter 5

The Algorithm and Examples

5.1 The algorithm

In this section we summarize the steps in the solution of the royal E-interpolation

problem in the form of a concrete algorithm.

Let (σ, η, η̃, ρ) be royal interpolation data for the tetrablock as in Defini-

tion 1.2.3. Here there are n prescribed royal nodes σj, of which the first k

lie in T and the remaining n− k are in D. One can consider the associated

Blaschke interpolation data (σ, η, ρ) as in Definition 1.2.1. To construct a

rational E-inner function x : D → E of degree n having royal nodes σj for

j = 1, ..., n, royal values ηj, η̃j, and phasar derivatives ρj at σj for j = 1, ..., k,

we proceed as follows.

(1) Form the Pick matrix M = [mi,j]
n
i,j=1 for the data (σ, η, ρ), with entries

mi,j =

ρi if i = j ≤ k
1− ηiηj
1− σiσj

otherwise.
(5.1)

If M is not positive definite then the interpolation problem 1.2.2 is not solv-

able. Otherwise, we introduce the notation

xλ =


1

1−σ1λ
...
1

1−σnλ

 , yλ =


η1

1−σ1λ
...
ηn

1−σnλ

 , (5.2)

as in equations (2.8)
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(2) Choose a point τ ∈ T\{σ1, σ2, ..., σk} such that the set of ζ ∈ T for

which

〈M−1xτ , ej〉 = ζ〈M−1yτ , ej〉 for some j ∈ {1, ..., n}

(where ej is the jth standard basis vector in Cn) is finite.

(3) Let

g(λ) =
n∏
j=1

1− σjλ
1− σjτ

, (5.3)

and let polynomials a, b, c, d be given by

a(λ) = g(λ)(1− (1− τλ)〈xλ,M−1xτ 〉), (5.4)

b(λ) = g(λ)(1− τλ)〈xλ,M−1yτ 〉, (5.5)

c(λ) = −g(λ)(1− τλ)〈yλ,M−1xτ 〉 (5.6)

d(λ) = g(λ)(1 + (1− τλ)〈yλ,M−1yτ 〉). (5.7)

Note that [
a(τ) b(τ)

c(τ) d(τ)

]
=

[
1 0

0 1

]
. (5.8)

(See Theorem 3.9 in [6]).

(4) Find x◦1, x
◦
2, x
◦
3 ∈ C such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, and x◦1 = x◦2x
◦
3,

and
x◦3c(σj) + x◦2d(σj)

x◦1c(σj) + d(σj)
= η̃j, j = 1, ..., n.

If there is no (x◦1, x
◦
2, x
◦
3) satisfying these conditions, then by Theorem 4.2.5,

the royal E-interpolation problem is not solvable.

(5) If there are such (x◦1, x
◦
2, x
◦
3) ∈ C, we define

x1(λ) =
x◦1a+ b

x◦1c+ d
(λ),

x2(λ) =
x◦3c+ x◦2d

x◦1c+ d
(λ),

x3(λ) =
x◦2b+ x◦3a

x◦1c+ d
(λ), for λ ∈ D.
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It is easy to see that, since the equation (5.8) is satisfied,

x1(τ) = x◦1, x2(τ) = x◦2 and x3(τ) = x◦3.

Then, by Theorem 4.2.5, x = (x1, x2, x3) is a rational E-inner function

of degree at most n such that x(σj) = (ηj, η̃j, ηj η̃j) for j = 1, ..., n, and

Ax1(σj) = ρj for j = 1, ..., k. By assumption, |x◦3| = 1, |x◦1| < 1 and |x◦2| < 1,

and hence x3(τ) 6= x1(τ)x2(τ). Therefore, x(D) is not in the royal variety

RE and the degree of x is exactly n.

The following comments relate the steps of algorithm to results in the

report.

(i) If the royal E-interpolation problem with data (σ, η, η̃, ρ) for some

η̃j ∈ D is solvable, then by Theorem 4.1.1, the Blaschke interpola-

tion problem with data (σ, η, ρ) is solvable. By [6, Proposition 3.2],

M > 0.

(ii) The conditions that |x◦3| = 1, |x◦1| < 1, |x◦2| < 1, and x◦1 = x◦2x
◦
3 are

equivalent to (x◦1, x
◦
2, x
◦
3) ∈ bE and |x◦2| < 1.

(iii) The equations for x1, x2 and x3 are equations (4.49), (4.50) and (4.51)

respectively.

5.2 Examples

Lemma 5.2.1. Let σ1 ∈ D, and η, η̃ ∈ C. Let m ∈ Aut(D) be such that

m(σ1) = 0. Suppose there exists a rational E-inner y : D → E such that

y(0) = (η, η̃, ηη̃). Then x = y ◦m is a rational E- inner function such that

x(σ1) = (η, η̃, ηη̃).

Proof. By assumption, the function y : D→ E is such that y(0) = (η, η̃, ηη̃).

The Blaschke factor m : D→ D such that m(z) =
z − σ1

1− σ1z
moves σ1 to 0.

Note that (y ◦m)(σ1) = y(m(σ1)) = y(0) = (η, η̃, ηη̃).

It is easy to see that the composition x = y ◦ m is a rational E- inner

function, x : D→ E such that x(σ1) = (η, η̃, ηη̃).

Example 5.2.1. Consider the case n = 1, k = 0 of Problem 1.2.4. There

are prescribed a single royal node σ1 ∈ D and a royal value (η, η̃, ηη̃), where
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η, η̃ ∈ D, and we seek a E-inner function x of degree 1 such that x(σ1) =

(η, η̃, ηη̃). By composition with an automorphism on D, we may reduce our

problem to the case that σ1 = 0.

Step 1. Choose an arbitrary τ ∈ T. The normalized parametrization of

the solution set of the associated Blaschke interpolation problem is given by

ϕ(λ) =
a(λ)ζ + b(λ)

c(λ)ζ + d(λ)
, λ ∈ D, and some ζ ∈ T,

where a, b, c, d are given by equations

a(λ) = g(λ)(1− (1− τλ)〈xλ,M−1xτ 〉),
b(λ) = g(λ)(1− τλ)〈xλ,M−1yτ 〉,
c(λ) = −g(λ)(1− τλ)〈yλ,M−1xτ 〉
d(λ) = g(λ)(1 + (1− τλ)〈yλ,M−1yτ 〉),

and xλ, yλ, g and M are given by equations (5.2), (5.3) and (5.1) respectively.

Note that since σ1 = 0, g(λ) =
1− σ1λ

1− σ1τ
= 1, and M =

1− ηη
1− σ1σ1

= 1− |η|2.

Thus, M−1 =
1

1− |η|2
. Recall that, for λ ∈ D, we define xλ and yλ by

xλ =
1

1− σ1λ
, yλ =

η1

1− σ1λ
.

Here xλ =
1

1− 0λ
= 1 and yλ =

η

1− 0λ
= η. Thus, polynomials a, b, c and d

are defined by

a(λ) = g(λ)(1− (1− τλ)〈xλ,M−1xτ 〉)

= 1− 1− τλ
1− |η|2

=
1− |η|2 − 1 + τλ

1− |η|2

=
τλ− |η|2

1− |η|2
, (5.9)

b(λ) = g(λ)(1− τλ)〈xλ,M−1yτ 〉
= 1(1− τλ)

η

1− |η|2

=
η(1− τλ)

1− |η|2
, (5.10)
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c(λ) = −g(λ)(1− τλ)〈yλ,M−1xτ 〉

= −1(1− τλ)
η

1− |η|2

=
−η(1− τλ)

1− |η|2
, (5.11)

d(λ) = g(λ)(1 + (1− τλ)〈yλ,M−1yτ 〉)

= 1(1 + (1− τλ)
ηη

1− |η|2
)

= 1 +
(1− τλ)|η|2

1− |η|2

=
1− |η|2 + |η|2 − τλ|η|2

1− |η|2

=
1− |η|2τλ

1− |η|2
. (5.12)

Step 2. The next step is to determine whether there exist x◦1, x
◦
2, x
◦
3 ∈ C

such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, and x◦1 = x◦2x
◦
3,

and

x◦3c(0) + x◦2d(0)

x◦1c(0) + d(0)
= η̃.

Here,

a(0) =
−|η|2

1− |η|2
, b(0) =

η

1− |η|2
,

c(0) =
−η

1− |η|2
, d(0) =

1

1− |η|2
.
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Let x◦3 = ω for ω ∈ T. Now

x◦3c(0) + x◦2d(0)

x◦1c(0) + d(0)
= η̃ ⇔

ω

[
−η

1− |η|2

]
+ x◦2

[
1

1− |η|2

]

x◦1

[
−η

1− |η|2

]
+

[
1

1− |η|2

] = η̃

⇔

−ωη
1− |η|2

+
x◦2

1− |η|2
−x◦1η

1− |η|2
+

1

1− |η|2
= η̃

⇔ −ωη + x◦2
−x◦1η + 1

= η̃

⇔ −ωη + x◦2 = −x◦1ηη̃ + η̃

⇔ x◦2 = −x◦1ηη̃ + η̃ + ωη.

Since x◦1 = x◦2x
◦
3 and x◦3 = ω, we have the system


x◦3 = ω

x◦1 = x◦2ω

x◦2 = −x◦1ηη̃ + η̃ + ωη.

(5.13)

For given η, η̃ ∈ D, we want to find a solution x◦1, x
◦
2, x
◦
3 of the above system

such that |x◦1| < 1, |x◦2| < 1. Thus we want to find ω ∈ T and x◦1 ∈ C : |x◦1| < 1

such that

x◦1 = ω(−x◦1ηη̃ + η̃ + ωη),

that is,

x◦1 + x◦1ωηη̃ = ωη̃ + η. (5.14)

One can show that there are ω ∈ T and x◦1 ∈ D such that equation (5.14) is

satisfied.

Step 3. For the given data, 0→ (η, η̃, ηη̃), take x◦1 ∈ C, |x◦1| < 1, x◦3 = ω ∈ T
such that the equation (5.14) satisfied, and x◦2 ∈ C given by x◦2 = −x◦1ηη̃ +

60



5.2. Examples

η̃ + ωη, the solution of the problem will be, define, for λ ∈ D,

x1(λ) =
x◦1a+ b

x◦1c+ d
(λ)

=

x◦1

[
τλ− |η|2

1− |η|2

]
+

[
η(1− τλ)

1− |η|2

]

x◦1

[
−η(1− τλ)

1− |η|2

]
+

[
1− |η|2τλ

1− |η|2

]

=
x◦1(τλ− |η|2) + η(1− τλ)

−x◦1η(1− τλ) + 1− |η|2τλ
, (5.15)

x2(λ) =
x◦3c+ x◦2d

x◦1c+ d
(λ)

=

x◦3

[
−η(1− τλ)

1− |η|2

]
+ x◦2

[
1− |η|2τλ

1− |η|2

]

x◦1

[
−η(1− τλ)

1− |η|2

]
+

[
1− |η|2τλ

1− |η|2

]

=
−x◦3η(1− τλ) + x◦2(1− |η|2τλ)

−x◦1η(1− τλ) + 1− |η|2τλ
, (5.16)

x3(λ) =
x◦2b+ x◦3a

x◦1c+ d
(λ)

=

x◦2

[
η(1− τλ)

1− |η|2

]
+ [x◦3]

[
τλ− |η|2

1− |η|2

]

[x◦1]

[
−η(1− τλ)

1− |η|2

]
+

[
1− |η|2τλ

1− |η|2

]

=
x◦2η(1− τλ) + x◦3(τλ− |η|2)

−x◦1η(1− τλ) + 1− |η|2τλ
. (5.17)

Let us check that x(0) = (η, η̃, ηη̃). By equation (5.15), we have

x1(0) =
−x◦1|η|2 + η

−x◦1η + 1
=
η(−x◦1η + 1)

−x◦1η + 1
= η.
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By equation (5.16), since x◦2 = −x◦1ηη̃ + η̃ + ωη, we have

x2(0) =
−ωη + x◦2
−x◦1η + 1

=
−ωη − x◦1ηη̃ + η̃ + ωη

−x◦1η + 1

=
−x◦1ηη̃ + η̃

−x◦1η + 1

=
η̃(−x◦1η + 1)

−x◦1η + 1
= η̃.

By equation (5.17), since x◦2 = −x◦1ηη̃ + η̃ + ωη, we have

x3(0) =
(−x◦1ηη̃ + η̃ + ωη)η − ω|η|2

−x◦1η + 1

=
−x◦1ηη̃η + η̃η + ω|η|2 − ω|η|2

−x◦1η + 1

=
ηη̃(−x◦1η + 1)

−x◦1η + 1
= ηη̃.

One can easily check that x = (x1, x2, x3) defined by equations (5.15), (5.16)

and (5.17) is a E-inner function of degree 1 satisfying x(0) = (η, η̃, ηη̃).

Example 5.2.2. Let n = 1, k = 0. Let σ1 = 1
2
, η = 0, η̃ =

1

2
i. There are

prescribed a single royal node σ1 = 1
2

and a royal value (0, 1
2i
, 0), and we seek

a E-inner function y of degree 1 such that y(σ1) = (η, η̃, ηη̃). Let m ∈ Aut(D)

such that m(1
2
) = 0, that is, for σ1 = 1

2
, the Blaschke factor m : D→ D such

that m(z) =
z − σ1

1− σ1z
moves σ1 = 1

2
to 0. By Lemma 5.2.1, the solution y is

equal to y = x ◦m, where x is the solution to the problem with data σ1 = 0

and the royal value (0, 1
2
i, 0) as in Example 5.2.1.

Let us follow steps of Example 5.2.1.

Step 1. Let τ ∈ T. By equations (5.9), (5.10), (5.11) and (5.12) since

η = 0,

a(λ) =
τλ− |η|2

1− |η|2
=
τλ

1
= τλ.
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b(λ) =
η(1− τλ)

1− |η|2
= 0.

c(λ) =
−η(1− τλ)

1− |η|2
= 0.

d(λ) =
1− |η|2τλ

1− |η|2
= 1.

Step 2. Let us determine whether there exist x◦1, x
◦
2, x
◦
3 ∈ C such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, and x◦1 = x◦2x
◦
3, (5.18)

and
x◦3c(0) + x◦2d(0)

x◦1c(0) + d(0)
= η̃. (5.19)

For ω ∈ T the equation (5.14) will be

x◦1 + 0 = ω(−1

2
i) + 0 =⇒ x◦1 = (−1

2
iω).

Thus, we have the one-parameter family of (x◦1, x
◦
2, x
◦
3) such that equations

(5.18) and (5.19) hold, given by
x◦3 = ω

x◦1 = −1
2
iω

x◦2 = 1
2
i

(5.20)

Thus, by equations (5.15), (5.16) and (5.17), the solution of the problem

of the finding a E-inner function x = (x1, x2, x3) with the single royal node

σ = 0 and the royal value (0, 1
2
i, 0) will be, for η = 0, η̃ = 1

2
i,

x1(λ) =
x◦1(τλ− |0|2) + 0(1− τλ)

−x◦10(1− τλ) + 1− |0|2τλ
= x◦1τλ, (5.21)

x2(λ) =
−x◦30(1− τλ) + x◦2(1− |0|2τλ)

−x◦10(1− τλ) + 1− |0|2τλ
= x◦2, (5.22)

x3(λ) =
x◦20(1− τλ) + x◦3(τλ− |0|2)

−x◦10(1− τλ) + 1− |0|2τλ
= x◦3τλ. (5.23)
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Note that at 0,

x1(0) = 0,

x2(0) = x◦2 =
1

2
i,

x3(0) = 0.

The solution to the problem of the finding a E−inner function y of degree

1 such that y(1
2
) = (0, 1

2
i, 0) is a one-parameter family of rational E−inner

function y(λ) = x ◦m(λ):

y(λ) = x ◦m(λ)

= (x1(m(λ)), x2(m(λ)), x3(m(λ)))

=
(
− 1

2
iωτm(λ),

1

2
i, ωτm(λ)

)
=

(
− 1

2
iωτ

λ− 1
2

1− 1
2
λ
,
1

2
i, ωτ

λ− 1
2

1− 1
2
λ

)
=

(
− 1

2
iκ
λ− 1

2

1− 1
2
λ
,
1

2
i, κ

λ− 1
2

1− 1
2
λ

)
, (5.24)

where κ = ωτ ∈ T. Note that y(1
2
) = (0, 1

2
i, 0). Therefore, since κ = ωτ is a

general point of T, we obtain a one-parameter family of E−inner function y

of degree 1 satisfying y(1
2
) = (0, 1

2
i, 0).

Example 5.2.3. Consider the case n = 1, k = 1. Suppose σ = 1. The

points η, η̃ ∈ T and ρ > 0 are prescribed, and we seek a E-inner function

x = (x1, x2, x3) of degree 1 such that x(1) = (η, η̃, ηη̃) and Ax1(1) = ρ.

Step 1. Choose τ ∈ T \{1}. The normalized parametrization of the

solution set of the associated Blaschke interpolation problem is given by

ϕ(λ) =
a(λ)ζ + b(λ)

c(λ)ζ + d(λ)
for λ ∈ D, and some ζ ∈ T, (5.25)

where a, b, c, d are given by the equations

a(λ) = g(λ)(1− (1− τλ)〈xλ,M−1xτ 〉),
b(λ) = g(λ)(1− τλ)〈xλ,M−1yτ 〉,
c(λ) = −g(λ)(1− τλ)〈yλ,M−1xτ 〉
d(λ) = g(λ)(1 + (1− τλ)〈yλ,M−1yτ 〉).
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and xλ, yλ, g and M are given by equations (5.2), (5.3) and (5.1) respectively.

Note that since σ = 1, g(λ) =
1− σλ
1− στ

=
1− λ
1− τ

.

Here M = ρ, since k = 1. Thus, M−1 =
1

ρ
, and xλ =

1

1− λ
and

yλ =
η

1− λ
.

Therefore, polynomials a, b, c and d are defined by

a(λ) = g(λ)
(

1− (1− τλ)〈xλ,M−1xτ 〉
)

=
1− λ
1− τ

(
1− (1− τλ)〈 1

1− λ
,

1

ρ(1− τ)
〉
)

=
1− λ
1− τ

(
1− (1− τλ)(

1

ρ(1− τ)

1

1− λ
)
)

=
1− λ
1− τ

(
1− 1− τλ

ρ(1− τ)(1− λ)

)
=

1− λ
1− τ

− (1− λ)(1− τλ)

ρ|1− τ |2(1− λ)

=
1− λ
1− τ

− (1− τλ)

ρ|1− τ |2

b(λ) = g(λ)(1− τλ)〈xλ,M−1yτ 〉

=
1− λ
1− τ

(1− τλ)〈 1

1− λ
,

η

ρ(1− τ)
〉

=
1− λ
1− τ

(1− τλ)(
η

ρ(1− τ)(1− λ)
)

=
η(1− τλ)

ρ|1− τ |2

c(λ) = −g(λ)(1− τλ)〈yλ,M−1xτ 〉

= −(
1− λ
1− τ

)(1− τλ)〈 η

1− λ
,

1

ρ(1− τ)
〉

= −(
1− λ
1− τ

)(1− τλ)(
1

ρ(1− τ)

η

1− λ
)

= −η(1− τλ)

ρ|1− τ |2
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d(λ) = g(λ)
(

1 + (1− τλ)〈yλ,M−1yτ 〉
)

=
1− λ
1− τ

(
1 + (1− τλ)〈 η

1− λ
,

η

ρ(1− τ)
〉
)

=
1− λ
1− τ

(
1 + (1− τλ)(

|η|2

ρ(1− τ)(1− λ)
)
)

=
1− λ
1− τ

+
1− τλ
ρ|1− τ |2

.

Step 2. The next step is to determine whether there exist x◦1, x
◦
2, x
◦
3 ∈ C

such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, and x◦1 = x◦2x
◦
3,

and

x◦3c(1) + x◦2d(1)

x◦1c(1) + d(1)
= η̃.

Here,

a(1) =
1− τ

ρ|1− τ |2
, b(1) =

η − ητ
ρ|1− τ |2

,

c(1) =
−η + ητ

ρ|1− τ |2
, d(1) =

1− τ
ρ|1− τ |2

.
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Let x◦3 = ω for ω ∈ T. Now

x◦3c(1) + x◦2d(1)

x◦1c(1) + d(1)
= η̃ ⇔

ω

[
−η + ητ

ρ|1− τ |2

]
+ x◦2

[
1− τ

ρ|1− τ |2

]

x◦1

[
−η + ητ

ρ|1− τ |2

]
+

[
1− τ

ρ|1− τ |2

] = η̃

⇔

−ηω + ητω

ρ|1− τ |2
+
x◦2 − x◦2τ
ρ|1− τ |2

−ηx◦1 + ητx◦1
ρ|1− τ |2

+
1− τ

ρ|1− τ |2
= η̃

⇔ −ηω + ητω + x◦2 − x◦2τ
−ηx◦1 + ητx◦1 + 1− τ

= η̃

⇔ −ηω + ητω + x◦2 − x◦2τ = −ηx◦1η̃ + ητx◦1η̃ + η̃ − τ η̃
⇔ x◦2(1− τ) = −ηx◦1η̃ + ητx◦1η̃ + η̃ − τ η̃ + ηω − ητω

⇔ x◦2 =
−ηx◦1η̃ + ητx◦1η̃ + η̃ − τ η̃ + ηω − ητω

1− τ

⇔ x◦2 =
−ηx◦1η̃(1− τ) + η̃(1− τ) + ηω(1− τ)

1− τ
⇔ x◦2 = −ηx◦1η̃ + η̃ + ηω.

Since x◦1 = x◦2x
◦
3 and x◦3 = ω, we have

x◦3 = ω

x◦1 = x◦2ω

x◦2 = −ηx◦1η̃ + η̃ + ηω.

(5.26)

For given η, η̃ ∈ T, we want to find a solution x◦1, x
◦
2, x
◦
3 of the above system

such that |x◦1| < 1, |x◦2| < 1. Thus we want to find ω ∈ T and x◦1 ∈ C : |x◦1| < 1

such that

x◦1 = ω(−ηx◦1η̃ + η̃ + ηω),

that is

x◦1 + x◦1ωηη̃ = ωη̃ + η. (5.27)

Step 3. For the given data, 1 → (η, η̃, ηη̃), in the case that there are

x◦1, x
◦
2, x
◦
3 ∈ C such that
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(i) |x◦1| < 1, x◦3 = ω ∈ T,

(ii) x◦1 = x◦2ω,

(iii) x◦2 = −ηx◦1η̃ + η̃ + ηω.

the solution of the problem will be an E−inner function x = (x1, x2, x3)

where, for λ ∈ D,

x1(λ) =
x◦1a+ b

x◦1c+ d
(λ)

=

x◦1

[
1− λ
1− τ

− (1− τλ)

ρ|1− τ |2

]
+

[
η(1− τλ)

ρ|1− τ |2

]

x◦1

[
−η(1− τλ)

ρ|1− τ |2

]
+

[
1− λ
1− τ

+
1− τλ
ρ|1− τ |2

]

=
x◦1[(1− λ)ρ(1− τ)− (1− τλ)] + η(1− τλ)

x◦1[−η(1− τλ)] + ρ(1− τ)(1− λ) + (1− τλ)
, (5.28)

x2(λ) =
x◦3c+ x◦2d

x◦1c+ d
(λ)

=

x◦3

[
−η(1− τλ)

ρ|1− τ |2

]
+ x◦2

[
1− λ
1− τ

+
1− τλ
ρ|1− τ |2

]

x◦1

[
−η(1− τλ)

ρ|1− τ |2

]
+

[
1− λ
1− τ

+
1− τλ
ρ|1− τ |2

]

=
x◦3[−η(1− τλ)] + x◦2[ρ(1− τ)(1− λ) + (1− τλ)]

x◦1[−η(1− τλ)] + ρ(1− τ)(1− λ) + (1− τλ)
, (5.29)

x3(λ) =
x◦2b+ x◦3a

x◦1c+ d
(λ)

=

x◦2

[
η(1− τλ)

ρ|1− τ |2

]
+ x◦3

[
1− λ
1− τ

− (1− τλ)

ρ|1− τ |2

]

x◦1

[
−η(1− τλ)

ρ|1− τ |2

]
+

[
1− λ
1− τ

+
1− τλ
ρ|1− τ |2

]

=
x◦2η(1− τλ) + x◦3[ρ(1− τ)(1− λ)− (1− τλ)]

x◦1[−η(1− τλ)] + ρ(1− τ)(1− λ) + (1− τλ)
. (5.30)
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Let us check that x(1) = (η, η̃, ηη̃). By equation (5.28), we have

x1(1) =
x◦1(−1 + τ) + η(1− τ)

−x◦1η(1− τ) + (1− τ)

=
−x◦1 + η

−x◦1η + 1
=
η(−x◦1η + 1)

−x◦1η + 1
= η.

By equation (5.29), since x◦2 = −x◦1ηη̃ + η̃ + ωη, we have

x2(1) =
−x◦3η(1− τ) + x◦2(1− τ)

−x◦1η(1− τ) + (1− τ)

=
−ωη + x◦2
−x◦1 + 1

=
−ωη − ηx◦1η̃ + η̃ + ηω

−x◦1 + 1

=
η̃(−x◦1 + 1)

−x◦1 + 1
= η̃.

By equation (5.30), since x◦2 = −x◦1ηη̃ + η̃ + ωη, we have

x3(1) =
x◦2η(1− τ) + ω(−1 + τ)

−x◦1η(1− τ) + (1− τ)

=
x◦2η − ω
−x◦1η + 1

=
−ηx◦1η̃η + η̃η + ηωη

−x◦1η + 1

=
ηη̃(−x◦1η + 1)

−x◦1η + 1
= ηη̃.

One can easily check that x = (x1, x2, x3) defined by equations (5.28), (5.29)

and (5.30) is a E-inner function of degree 1 satisfying x(1) = (η, η̃, ηη̃).

Let us check that Ax1(1) = ρ. By Proposition 3.2.2 and Proposition 4.2.3,

Ax1(1) = A(Ψω ◦ x)(1) = Aϕ(1).

By Proposition (A.2.2), for every λ ∈ T and for every rational inner function

ϕ,

Aϕ(λ) = λ
ϕ′(λ)

ϕ(λ)
.

Recall that

ϕ(λ) =
a(λ)ζ + b(λ)

c(λ)ζ + d(λ)
.
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We aim to show that Aϕ(1) = 1
ϕ′(1)

ϕ(1)
= ρ. One can easily check that, for

λ ∈ D,

a(λ) =
ρ(1− τ)(1− λ)− (1− τλ)

ρ|1− τ |2
, a′(λ) =

−ρ(1− τ) + τ

ρ|1− τ |2
, (5.31)

and so

a(1) =
−1 + τ

ρ|1− τ |2
, a′(1) =

−ρ(1− τ) + τ

ρ|1− τ |2
; (5.32)

b(λ) =
η(1− τλ)

ρ|1− τ |2
, b′(λ) =

−ητ
ρ|1− τ |2

, (5.33)

and so

b(1) =
η(1− τ)

ρ|1− τ |2
, b′(1) =

−ητ
ρ|1− τ |2

; (5.34)

c(λ) =
−η(1− τλ)

ρ|1− τ |2
, c′(λ) =

ητ

ρ|1− τ |2
, (5.35)

and so

c(1) =
−η(1− τ)

ρ|1− τ |2
, c′(1) =

ητ

ρ|1− τ |2
; (5.36)

d(λ) =
ρ(1− τ)(1− λ) + (1− τλ)

ρ|1− τ |2
, d′(λ) =

−ρ(1− τ)− τ
ρ|1− τ |2

, (5.37)

and so

d(1) =
1− τ

ρ|1− τ |2
, d′(1) =

−ρ(1− τ)− τ
ρ|1− τ |2

. (5.38)

By the equations (5.32), (5.34), (5.36) and (5.38),

ϕ(1) =
a(1)ζ + b(1)

c(1)ζ + d(1)

=

[
−1 + τ

ρ|1− τ |2

]
ζ +

η(1− τ)

ρ|1− τ |2[
−η(1− τ)

ρ|1− τ |2

]
ζ +

1− τ
ρ|1− τ |2

=
(−1 + τ)ζ + η(1− τ)

−η(1− τ)ζ + (1− τ)

=
−ζ + η

−ηζ + 1
=
η(1− ηζ)

1− ηζ
= η. (5.39)
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Let us find ϕ′(λ). Note that, for λ ∈ D,

ϕ′(λ) =
(u
v

)′
(λ) =

u′v − uv′

v2
(λ),

where u(λ) = a(λ)ζ + b(λ) and v(λ) = c(λ)ζ + d(λ) .

It is easy to see that u′(λ) = a′(λ)ζ + b′(λ) and v′(λ) = c′(λ)ζ + d′(λ). By

equations (5.32) and (5.34),

u′(1) = a′(1)ζ + b′(1) =
−ρ(1− τ)ζ + τζ − ητ

ρ|1− τ |2
, (5.40)

and

u(1) = a(1)ζ + b(1)

=
−ζ + τζ + η(1− τ)

ρ|1− τ |2

=
(1− τ)(−ζ + η)

ρ|1− τ |2
=

η − ζ
ρ(1− τ)

. (5.41)

By equations (5.36) and (5.38),

v′(1) = c′(1)ζ + d′(1) =
ητζ − ρ(1− τ)− τ

ρ|1− τ |2
, (5.42)

and

v(1) = c(1)ζ + d(1)

=
−ηζ(1− τ) + (1− τ)

ρ|1− τ |2

=
(−ηζ + 1)

ρ(1− τ)
=
η(−ζ + η)

ρ(1− τ)
. (5.43)

Therefore,

u′(1)v(1) =

[
−ρ(1− τ)ζ + τζ − ητ

ρ|1− τ |2

][
η(η − ζ)

ρ(1− τ)

]
, (5.44)

and

u(1)v′(1) =

[
η − ζ
ρ(1− τ)

][
ητζ − ρ(1− τ)− τ

ρ|1− τ |2

]
, (5.45)
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and

v2(1) =

(
η(η − ζ)

ρ(1− τ)

)2

=
η2(η − ζ)2

ρ2(1− τ)2
. (5.46)

Thus by equations (5.44) and (5.45), we have

u′(1)v(1)− u(1)v′(1) =
1

ρ(1− τ)ρ|1− τ |2
(η − ζ)

[
η(−ρ(1− τ)ζ + τζ − ητ)

− (ητζ − ρ(1− τ)− τ)

]

=
(η − ζ)

ρ(1− τ)ρ|1− τ |2

[
(−ηζ + 1)ρ(1− τ)

]

=
(η − ζ)(−ηζ + ηη)

ρ(1− τ)2

=
η(η − ζ)2

ρ(1− τ)2
. (5.47)

Thus, by equations (5.47) and (5.46),

ϕ′(1) =
u′(1)v(1)− u(1)v′(1)

v2(1)

=
η(η − ζ)2

ρ(1− τ)2

ρ2(1− τ)2

η2(η − ζ)2

=
ρ

η
= ρη. (5.48)

Hence

Aϕ(1) = 1
ϕ′(1)

ϕ(1)
=
ρη

η
= ρ.

By Proposition 3.2.2, Ax1(1) = Aϕ(1) = ρ.

Example 5.2.4. Let n = 1, k = 1. Let η = i, η̃ = −i. Suppose σ1 = 1.

The points η = i, η̃ = −i ∈ T and a ρ > 0 are prescribed, and we seek a

E-inner function x = (x1, x2, x3) of degree 1 such that x(1) = (i,−i, 1), and

Ax1(1) = ρ.

Let us follow steps of Example 5.2.3.
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Step 1. Let τ ∈ T\{1}. By equations (5.26), (5.26), (5.26) and (5.26) since

η = i and η̃ = −i,

a(λ) =
1− λ
1− τ

− (1− τλ)

ρ|1− τ |2

b(λ) =
i(1− τλ)

ρ|1− τ |2

c(λ) = −−i(1− τλ)

ρ|1− τ |2

d(λ) =
1− λ
1− τ

+
(1− τλ)

ρ|1− τ |2
.

Step 2. Let us determine whether there exist x◦1, x
◦
2, x
◦
3 ∈ C such that

|x◦3| = 1, |x◦1| < 1, |x◦2| < 1, and x◦1 = x◦2x
◦
3, (5.49)

and
x◦3c(0) + x◦2d(0)

x◦1c(0) + d(0)
= η̃. (5.50)

By the above equations (5.26 ) and (5.27), we need to find a solution of the

following system: 
x◦3 = ω

x◦1 = x◦2ω

x◦2 = −ηx◦1η̃ + η̃ + ηω

(5.51)

such that |x◦1| < 1, |x◦2| < 1, ω ∈ T.
For the given data 1→ (i,−i, 1), the system (5.51) is equivalent to

x◦3 = ω

x◦1 = x◦2ω

x◦2 = ix◦1(−i) + (−i) + (−i)ω
(5.52)

with |x◦1| < 1, |x◦2| < 1, ω ∈ T.
Let take ω = −1 ∈ T. Then 

x◦3 = −1

x◦1 = −x◦2
x◦2 = x◦1

(5.53)
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where |x◦1| < 1, |x◦2| < 1.

Thus, x◦1 = −x◦1, and so x◦1 = ib, where b ∈ R and |b| < 1.

Therefore, 
x◦1 = ib

x◦2 = ib

x◦3 = −1,

(5.54)

where b ∈ R and |b| < 1, satisfy equations (5.49) and (5.50).

Hence, by equations (5.28), (5.29) and (5.30), the solution of the problem of

finding a degree 1 E−inner function such that x(1) = (i,−i, 1) and Ax1(1) =

ρ will be,

x1(λ) =
ib[(1− λ)ρ(1− τ)− (1− τλ)] + i(1− τλ)

ib[i(1− τλ)] + ρ(1− τ)(1− λ) + (1− τλ)
, (5.55)

x2(λ) =
(−1)[i(1− τλ)] + ib[ρ(1− τ)(1− λ) + (1− τλ)]

ib[i(1− τλ)] + ρ(1− τ)(1− λ) + (1− τλ)
, (5.56)

x3(λ) =
ib(i)(1− τλ) + (−1)[ρ(1− τ)(1− λ)− (1− τλ)]

ib[i(1− τλ)] + ρ(1− τ)(1− λ) + (1− τλ)
. (5.57)

Hence at 1,

x1(1) =
ib(−1 + τ) + i(1− τ))

ib(i)(1− τ) + (1− τ)
=
−x◦1 + i

x◦1i+ 1
=
i(x◦1i+ 1)

x◦1i+ 1
= i,

x2(1) =
−i(1− τ) + ib(1− τ)

ibi(1− τ) + 1− τ
=
−i+ ib

ib(i) + 1
=
−i(ib(i) + 1)

ib(i) + 1
= −i,

x3(1) =
ib(i)(1− τ) + (1− τ)

ib(i)(1− τ) + (1− τ)
=
ib(i) + 1

ib(i) + 1
= 1.

We have shown for the general case in Example 5.2.3, that Ax1(1) = ρ.
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Chapter 6

Matricial formulations of the

solvability criterion for

tetra-interpolation problems

6.1 Introduction

Recall that the µDiag-synthesis problem: given distinct points λ1, ..., λn ∈ D
and target matrices W1, ...,Wn ∈ M2×2(C) such that µDiag(Wk) < 1, k =

1, ..., n, find if possible an analytic 2× 2 matrix-valued function F on D such

that

F (λj) = Wj for j = 1, ..., n, and

µDiag(F (λ)) < 1, for all λ ∈ D.

Abouhajar, White and Young showed in [1] that the solvability of µDiag-

synthesis problem is equivalent to the solvability of an interpolation problem

from D to E . In 2016, Brown, Lykova and Young [22] proved the following

theorem, see also [21].

Theorem 6.1.1. [22, Theorems 1.1 and 8.1] Let λ1, ..., λn be distinct points

in D, and let

Wj =

[
wj11 wj12

wj21 wj22

]
∈M2×2(C).

be such that µDiag(Wj) ≤ 1 and wj11, w
j
22 6= det Wj for j = 1, ..., n. Let

(x1j, x2j, x3j) = (wj11, w
j
22, det Wj) ∈ E for j = 1, ..., n. Then the following
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are equivalent.

(i) There exists an analytic function F : D→M2×2(C) such that F (λj) =

Wj for j = 1, ..., n, and µDiag(F (λ)) ≤ 1 for all λ ∈ D;

(ii) There is an x ∈ Hol(D, E) such that x(λj) = (x1j, x2j, x3j) for j =

1, ..., n;

(iii) for every distinct points z1, z2, z3 ∈ D, there exist positive 3n-square

matrices N = [Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1

such that, for 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3,

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1
= (1− zlzk)Nil,jk + (1− λiλj)Mil,jk; (6.1)

(iv) for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-square ma-

trices N = [Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1

such that[
1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1

]
≥ [(1− zlzk)Nil,jk] + [(1− λiλj)Mil,jk].

(6.2)

Theorem 6.1.2. [27, Theorem 7.5.2] If A ∈Mn×n(C) is positive semidefinite

matrix of rank k, then A may be written in the form

A = v1v
∗
1 + v2v

∗
2 + ...+ vkv

∗
k

where each vi ∈ Cn and the set {v1, ..., vk} is an orthogonal set of nonzero

vectors.

6.2 Matricial formulations of the solvability

criterion for tetra-interpolation problems

A matricial formulation of a solvability criterion for the spectral Nevanlinna-

Pick problem was given in [3]. The next theorem presents a matricial formu-

lation of a criterion for the solvability of a µDiag-synthesis problem.
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Theorem 6.2.1. Let λ1, ..., λn be distinct points in D, and let

Wj =

[
wj11 wj12

wj21 wj22

]
∈M2×2(C).

be such that µDiag(Wj) ≤ 1 and wj11, w
j
22 6= det Wj for j = 1, ..., n. Let

x1j = wj11, x2j = wj22 and x3j = det Wj for each j. Let the 3n-square matrix

Λ be defined by

Λ = diag{λi}n,3i=1,`=1, (6.3)

The following conditions are equivalent.

(i) There exists an analytic function F : D→M2×2(C) such that

F (λj) = Wj for j = 1, ..., n

and

µDiag(F (λ)) ≤ 1 for all λ ∈ D;

(ii) For some distinct points z1, z2, z3 ∈ D, there exist positive 3n-square

matrices N = [Ni`,jk]
n,3
i,j=1,`,k=1, M = [Mi`,jk]

n,3
i,j=1,`,k=1 such that rank

N ≤ 1 and

X ≥ N − Z∗NZ +M − Λ∗MΛ, (6.4)

where 3n-square matrices X and Z are defined by

X =
[
1− z`x3i − x1i

x2iz` − 1

zkx3j − x1j

x2jzk − 1

]n,3
i,j=1,`,k=1

, (6.5)

Z = diag{z`}n,3i=1,`=1; (6.6)

(iii) For every choice of distinct points z1, z2, z3 ∈ D, there exist positive

3n-square matrices N = [Ni`,jk]
n,3
i,j=1,`,k=1, M = [Mi`,jk]

n,3
i,j=1,`,k=1 such

that rank N ≤ 1 and

X = N − Z∗NZ +M − Λ∗MΛ, (6.7)

where X and Z are defined by equations (6.5) and (6.6) ;
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(iv) For some distinct points z1, z2, z3 ∈ D, there exist a positive 3n-square

matrix M , a 1× 3n vector γ, and a matrix P of type 3n× 2 such that−1 0 0

0 1 0

0 0 X

 ≥ [I2 0

P I3n

]−1 0 γ

0 1 γZ

γ∗ Z∗γ∗ M − Λ∗MΛ

[I2 P ∗

0 I3n

]
,

(6.8)

where X and Z are defined by equations (6.5) and (6.6) ;

(v) For every distinct points z1, z2, z3 ∈ D, there exist a positive 3n-square

matrix M , a 1× 3n vector γ, and a matrix P of type 3n× 2 such that−1 0 0

0 1 0

0 0 X

 =

[
I2 0

P I3n

]−1 0 γ

0 1 γZ

γ∗ Z∗γ∗ M − Λ∗MΛ

[I2 P ∗

0 I3n

]
,

(6.9)

where X and Z are defined by equations (6.5) and (6.6) .

Note that in N,M,Λ and Z the rows are indexed by the pair (i, `) and

the columns by the pair (j, k), where i and j run from 1 to n, and ` and k

run from 1 to 3.

Proof. It is easy to see that (6.2) and (6.1) can be written as equations (6.4)

and (6.7) respectively. If X = [Xi`,jk]
n,3
i,j=1,`,k=1, then by (6.1),

Xi`,jk = Ni`,jk − z`Ni`,jkzk +Mi`,jk − λiMi`,jkλj

where 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3.

The proof has the following structure:

(i) ⇐⇒ (ii) ⇐⇒ (iii)

m m
(iv) (v)

The equivalences (i)⇐⇒ (ii)⇐⇒ (iii) follow from Theorem 6.1.1.

(ii) =⇒ (iv). Suppose (ii). Since N has rank 1 and N ≥ 0, by Theorem

6.1.2, there exists a 1× 3n vector γ such that N = γ∗γ. Consider the Schur

complement identity[
A B

B∗ D

]
=

[
I2 0

B∗A−1 I3n

][
A 0

0 D −B∗A−1B

][
I2 A−1B

0 I3n

]
(6.10)
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where A,D are of types 2× 2, 3n× 3n, respectively. Now choose

A =

[
−1 0

0 1

]
, B =

[
γ

γZ

]
, D = M − Λ∗MΛ.

We can write identity (6.10) as−1 0 γ

0 1 γZ

γ∗ Z∗γ∗ M − Λ∗MΛ


=

 1 0 0

0 1 0

−γ∗ Z∗γ∗ I3n


−1 0 0

0 1 0

0 0 M − Λ∗MΛ + γ∗γ − Z∗γ∗γZ


1 0 −γ

0 1 γZ

0 0 I3n

 .
(6.11)

Let

P = −B∗A−1 =
[
γ∗ −Z∗γ∗

]
∈ C3n×2.

Thus (6.11 ) becomes−1 0 γ

0 1 γZ

γ∗ Z∗γ∗ M − Λ∗MΛ


=

[
I2 0

−P I3n

] −1 0 0

0 1 0

0 0 M − Λ∗MΛ + γ∗γ − Z∗γ∗γZ

 [I2 −P ∗

0 I3n

]
.

(6.12)

By pre- and post-multiplying by the inverses of the first and third matrices

on the right-hand side and using the relation (6.4) we obtain the relation

(6.9):

[
I2 0

P I3n

] −1 0 γ

0 1 γZ

γ∗ Z∗γ∗ M − Λ∗MΛ

 [I2 P ∗

0 I3n

]

=

−1 0 0

0 1 0

0 0 M − Λ∗MΛ + γ∗γ − Z∗γ∗γZ

 ≤
−1 0 0

0 1 0

0 0 X

 . (6.13)
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Now, we prove (iv)=⇒(ii).

The inequality (6.8) can be expressed as[
I2 0

−P I3n

] [
A 0

0 X

] [
I2 −P ∗

0 I3n

]
≥

[
A B

B∗ M − Λ∗MΛ

]
.

It follows that

0 ≤

[
A −AP ∗

−PA PAP ∗ +X

]
−

[
A B

B∗ M − Λ∗MΛ

]

=

[
0 −AP ∗ −B

−PA−B∗ PAP ∗ +X −M − Λ∗MΛ

]

Hence P ∗ = −AB and

0 ≤ PAP ∗ +X −M − Λ∗MΛ

= B∗A3B +X −M − Λ∗MΛ

=
[
γ∗ Z∗γ∗

] [−1 0

0 1

] [
γ

γZ

]
+X −M − Λ∗MΛ

= −γ∗γ + Z∗γ∗γZ +X −M − Λ∗MΛ.

Thus,

X ≥ γ∗γ − Z∗γ∗γZ +M + Λ∗MΛ.

So, (ii) holds with N = γ∗γ.

In the similar way as we have shown that (ii) ⇐⇒ (iv), we can prove that

(iii)⇐⇒ (v).

Let λ1, ..., λn be distinct points in D, and let

Wj =

[
wj11 wj12

wj21 wj22

]
∈M2×2(C).

be such that µDiag(Wj) ≤ 1 and wj11, w
j
22 6= det Wj for j = 1, ..., n, and let

x1j = wj11, x2j = wj22 and x3j = det Wj for each j. By [1, Theorem 9.2], µDiag-

synthesis problem reduces to the solution of the E-interpolation problem to

find

x ∈ Hol(D, E) such that x(λj) = (x1j, x2jx3j) for j = 1, ..., n.
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To determine with the aid of Theorem 6.2.1 whether the µDiag-interpolation

problem with these data is solvable, we may test conditions (ii) of Theorem

6.2.1. That is, we must ascertain whether there exist positive matrices N of

rank 1 and M satisfying (6.4). The following theorem shows that a search

over a compact set of pairs of matrices (N,M) suffices.

Theorem 6.2.2. [22, Theorems 9.2 ] Let λ1, ..., λn be distinct points in D,

and let (x1j, x2j, x3j) ∈ E be such that x1jx2j 6= x3j for j = 1, ..., n . Let

z1, z2, z3 be distinct points in D. The E-interpolation problem

λj ∈ D 7→ (x1j, x2j, x3j) ∈ E

for j = 1, ..., n, is solvable if and only if there exist positive 3n-square matrices

N = [Ni`,jk]
n,3
i,j=1,`,k=1 of rank 1 and M = [Mi`,jk]

n,3
i,j=1,`,k=1 that satisfy[

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1

]
≥ [(1− zlzk)Nil,jk] + [(1− λiλj)Mil,jk], (6.14)

and

|Ni`,jk| ≤
1

(1− |x2i|)(1− |x2j|)
and

|Mi`,jk| ≤
2

|1− λjλj|

√
1 +

1

(1− |x2i|)2

√
1 +

1

(1− |x2j|)2
.
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Appendix A

Background Materials

A.1 Basic definition

Definition A.1.1. [9, Definition 1] A Blaschke factor is a Möbius transfor-

mation that is positive at 0,

Ba(z) =
a

|a|
a− z
1− az

,

where a ∈ D.

Definition A.1.2. The polynomially convex hull of a compact subset S of

CN , denoted by Ŝ, is defined as

Ŝ = {z ∈ CN : |p(z)| ≤ max
s∈S
|p(s)| for all polynomials p}.

Definition A.1.3. A domain Ω is said to be polynomially convex if for each

compact subset S of Ω , the polynomial hull Ŝ of S is contained in Ω.

Definition A.1.4. Let Ω be a domain in Cn with closure Ω, and let A(Ω)

be the algebra of continuous scalar functions on Ω which are analytic on Ω.

A subset C of Ω is a boundary for Ω if every function in A(Ω) attains its

maximum modulus on C.

From the theory of uniform algebras [20, Corollary 2.2.10], it follows

that when Ω is polynomially convex, there is a smallest closed boundary of

Ω, contained in all the closed boundaries of Ω and called the distinguished

boundary of Ω or Shilov boundary of A(Ω). When the distinguished boundary

of Ω exists, we denote it by bΩ.
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A.2. The phasar derivatives

A.2 The phasar derivatives

Definition A.2.1. [6, Definition 2.3] For any differentiable function f :

T→ C \ {0} the phasar derivative of f at z = eiθ ∈ T is the derivative with

respect to θ of the argument of f(eiθ) at θ. We denote it by Af(z).

Here are some useful elementary properties of phasar derivatives from [2].

Proposition A.2.2. (i) For differentiable functions ψ, ϕ : T → C \ {0}
and for any c ∈ C \ {0},

A(ψϕ) = Aψ + Aϕ and A(cψ) = Aψ. (A.1)

(ii) For any rational inner function ϕ and for all z ∈ T,

Aϕ(z) = z
ϕ′(z)

ϕ(z)
. (A.2)

(iii) If α ∈ D and

Ba(z) =
z − α
1− ᾱz

,

then

ABα(z) =
1− |α|2

|z − α|2
> 0 for z ∈ T.

(iv) For any rational inner function p,

Ap(z) > 0 for all z ∈ T.

A.3 Positive definite matrices

Definition A.3.1. A matrix A = (aij) ∈ Mn×n(C) is said to be Hermitian

if A = A∗.

Definition A.3.2. A matrix A is said to be positive semi-definite if 〈x,Ax〉 ≥
0 for all x ∈ Cn, and positive definite if 〈x,Ax〉 > 0 for all vectors x 6=
0, x ∈ Cn.
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A.3. Positive definite matrices

Note: A positive semi-definite matrix is positive definite if and only if it

is invertible. There are some conditions that characterize positive matrices.

They are proved in [17].

• A is positive if and only if it is Hermitian and all its eigenvalues are

nonnegative. A is strictly positive if and only if all its eigenvalues are

positive.

• A is positive if and only if it is Hermitian and all its principal minors

are nonnegative. A is strictly positive if and only if all its principal

minors are positive.

• A is positive if and only if A = T ∗T for some upper triangular matrix

T . Further, T can be chosen to have nonnegative diagonal entries. If

A is strictly positive, then T is unique. A is positive if and only if T is

nonsingular.

Definition A.3.3. A matrix A is minimally positive if A ≥ 0 and there is

no positive diagonal n× n matrix D, other than D = 0, such that A ≥ D.

Definition A.3.4. The spectral radius of a square matrix A, which is denoted

by r(A), is the nonnegative real number

r(A) = max{|λ| : λ is an eigenvalue of A}.

A.3.1 Automorphisms of D

Let Ω be a domain in Cn. An automorphism is an analytic bijective map

from a domain Ω to itself. The automorphism group of Ω will be denoted by

Aut(Ω).

For any point a ∈ D, there is an automorphism of the disc

ha(z) :=
a− z
1− az

,

a conformal bijection of D that interchanges a and 0.

All automorphisms f of D have the form

f(z) = eiθha(z)

for some point a in D and some real number θ ∈ [0, 2π). Automorphisms of

D are called Mobius transformation [9].
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Appendix B

Construction of kernels N and

M for the tetrablock

Here are some well known definitions and results from [9] and [13].

Definition B.0.1. [13, p. 344] Let X be a set and k : X × X → C be a

function. Then k is a positive semidefinite function if for all x1, ..., xn ∈ X
and c1, ..., cn ∈ C,

n∑
i,j=1

cjcik(xj, xi) ≥ 0.

Definition B.0.2. [9, Definition 2.22] A kernel on a set X is a hermitian

symmetric positive semidefinite function k : X × X → C, where hermitian

symmetric means k(x, y) = k(y, x) for all x, y ∈ X.

Theorem B.0.3. [22, Theorems 1.1 and 8.1] Let λ1, ..., λn be distinct points

in D, and let

Wj =

[
wj11 wj12

wj21 wj22

]
∈M2×2(C).

be such that µDiag(Wj) ≤ 1 and wj11, w
j
22 6= det Wj for j = 1, ..., n. Set

(x1j, x2j, x3j) = (wj11, w
j
22, det Wj) ∈ E for j = 1, ..., n. Then the following

are equivalent.

(i) There exists an analytic function F : D→M2×2(C) such that F (λj) =

Wj for j = 1, ..., n, and µDiag(F (λ)) ≤ 1 for all λ ∈ D;
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(ii) for every distinct points z1, z2, z3 ∈ D, there exist positive 3n-square

matrices N = [Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1

such that, for 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3,

1− zlx3i − x1i

x2izl − 1

zkx3i − x1j

x2jzk − 1
= (1− zlzk)Nil,jk + (1− λiλj)Mil,jk; (B.1)

Proof. (i) =⇒ (ii): Suppose there is an analytic function x = (x1, x2, x3) :

D → E such that xλj = (x1j, x2j, x3j) for all j = 1, ..., n. By [22, Theorem

7.1], since x1jx2j 6= x3j for j = 1, ..., n, there is an analytic function

F =

[
x1 f1

f2 x2

]
: D→M2×2(C)

such that f2 6= 0, ||F (λ)|| ≤ 1 for all λ ∈ D, and

1− Ψ(ω, x(µ))Ψ(z, x(λ)) = (1− ωz)γ(µ, ω)γ(λ, z) + (1− µλ)η(µ, ω)∗

I − F (µ)∗f(λ)

1− µλ
η(λ, z) (B.2)

for all z, λ, ω, µ ∈ D, where

γ(λ, z) = (1− x2(λ)z)−1f2(λ) and η(λ, z) =

[
1

γ(λ, z)z

]
.

Let z1, z2, z3 be any distinct points in D. Then, in particular, for 1 ≤ i, j ≤ n

and 1 ≤ l, k ≤ 3 we have

1− Ψ(zl, x1i, x2i, x3i)Ψ(zk, x1j, x2j, x3j) =

(1− zlzk)γ(λi, zl)γ(λj, zk) + (1− λiλj)η(λi, zl)
∗ I − F (λi)

∗F (λj)

1− λiλj
η(λj, zk).

(B.3)

Since F ∈ S2×2 with f2 6= 0, by [22, Proposition 5.1],

γ(µ, ω)γ(λ, z) and η(µ, ω)∗
I − F (µ)∗f(λ)

1− µλ
η(λ, z)

are kernels on D2. Hence the 3n-square matrices

N = [Nil,jk]
n,3
i,j=1,l,k=1 :=

[
γ(λi, zl)γ(λj, zk)

]n,3
i,j=1,l,k=1
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and

M = [Mil,jk]
n,3
i,j=1,l,k=1 :=

[
η(λi, zl)

∗ I − F (λi)
∗F (λj)

1− λiλj
η(λj, zk)

]n,3
i,j=1,l,k=1

are positive for all 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3 . Moreover, N is of rank 1

and for all 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3,

1− Ψ(zl, x1i, x2i, x3i)Ψ(zk, x1j, x2j, x3j) = (1− zlzk)Nil,jk + (1− λiλj)Mil,jk.

Thus, (i) =⇒ (ii).

The proof of (ii)=⇒(i) can be found in [22, Theorem 8.1].
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