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Abstract

Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic
and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion
reported in 2017. A popular framework widely used in pharmaceutical industries for designing
manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured
and systematic approach in investigation and screening process parameters that might influence
the product quality. However, due to the large number of product quality attributes (CQASs) and
process parameters that exist in an mAb process platform, extensive investigation is needed to
characterise their impact on the product quality which makes the process development costly
and time consuming. There is thus an urgent need for methods and tools that can be used for
early risk-based selection of critical product properties and process factors to reduce the number
of potential factors that have to be investigated, thereby aiding in speeding up the process

development and reduce costs.

In this study, a framework for predictive model development based on Quantitative Structure-
Activity Relationship (QSAR) modelling was developed to link structural features and
properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and
expressed mADb yield from HEK cells. Model development was based on a structured approach
for incremental model refinement and evaluation that aided in increasing model performance

until becoming acceptable in accordance to the OECD guidelines for QSAR models.

The resulting models showed that it was possible to predict HIC retention times of mAbs based
on their inherent structure. Further improvements of the models are suggested due to
performance being adequate but not sufficient for implementation as a risk assessment tool in
QbD. However, the described methodology and workflow has been proven to work for retention
time prediction in a HIC column and is therefore likely to be applicable to other purification

columns.
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containing IGKC refer to the kappa isotypes while allele names containing

IGLC refer to the lambda isotypes (adapted from Lefranc and Lefranc
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Figure 3.4.
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Figure 4.3. PCA analysis of V. and C. descriptors from the PSD1 descriptor set. (a) Score

plot of the first two principal components (PCs). The isotype kappa is

coloured red and lambda is coloured green. (b) Loadings of the first PC. .........

Figure 4.4. PCA scores of the first and second principal components (PCs) from V4 and

Figure 4.5.

VL domain descriptors of PSD1. (a) chimeric (red), human (green) and

humanised (blue) samples. (b) I LC isotypes kappa (red) and lambda (green) ..

ROC curves and AUC for chimeric (red line), human (green line) and
humanised (blue line) samples developed on prediction data from the cross-
validation of PSD3 in (a) PLS-DA and (b) SVC. The black dashed line
represents the AUC value of 0.5 where no discrimination between classes can
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Figure 5.1. General summary of mAbs in the dataset from Jain et al. (2017) according to

(a) the light chain isotypes, (b) species origins and (c) clinical phase

QIS OULION. e

Figure 5.2. Overview and placement consideration of the V-WSP algorithm in regards to

the data splitting and the variable selection (VS). (a) Placement of V-WSP
reduction prior to structured sample splitting results in a biased selection of
descriptors due to influence from all samples. (b) Structured splitting
performed before V-WSP reduction results in an unbiased selection of
descriptors due to being independent from the test set samples. Vertical

arrows represent selection of descriptors in the test set to match the calibration
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Figure 5.3. Sequential model development and evaluation for investigation of changes in

Figure 5.4.

Figure 5.5.

performance with descriptor reduction and selection methods. Three models
are developed on 1) all available descriptors, 2) the V-WSP reduced

descriptor set and 3) the descriptor set after supervised variable selection
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Decision tree for statistical testing of response data based on normality and

number of available levels for the investigated factor. ............cccccevvv i,
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Figure 5.8.
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variables developed from the V-WSP reduced descriptor sets of (a) PSD1, (b)

PSD2, () PSD3 and (d) PSDA. .......ocooiiieiieeieseee e e

Impact of species on PLS models developed using the HIC retention times as
the modelled response where chimeric samples are coloured red, human
samples in green and humanised in blue. PLS Influence plots for PSD1 (a),
PSD2 (c), PSD3 (e) and PSD4 (g). PLS scores (T) for the individual samples

for PSD1 (b), PSD2 (d), PSD3 (f) and PSD4 (). crrvvvvveeoeeeeeeees e

HIC retention time predictions of 45 IgG1-kappa humanised mAbs with PLS
model (3 LVs) developed on the PSD1 descriptor set after reduction with V-
WSP and selection with GA. (a) Measured versus predicted plot with

calibration (grey) and test (red) samples. (b) Predicted and measured HIC

retention times of test Set SAMPIES. ......ccvvveeiieii i

Regression coefficients of the PLS model (3 LVs) developed on the PSD1

descriptor set after reduction with V-WSP and selection with GA. ...................

mADb yield predictions of 55 1gG1-kappa humanised and chimeric mAbs with
PLS model (3 LVs) developed on the PSD4 descriptor set after reduction with
V-WSP and selection with GA. (a) Measured versus predicted plot with
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retention times Of test Set SAMPIES. .....ooviiiiiiiii

Distance restraint of cysteines in adalimumab generated. Structure coloured
as orange depicts the light chain and structure coloured as blue depicts the
heavy chain (a) Homology model without added distance restraints to the
interchain cysteines. (b) Homology model with restraint between the

INEEICNAIN CYSTRINES. ....viiiiitieite ettt e reeste e nres

DOPE score for generated model (orange line) and template (green line) for
the light chain (a) and heavy chain (b) for the aligned residues. Positions of
CDR loops regions are marked by name and arrows in both the heavy and
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Potential dynamics of a protein. (a) A simplified energy landscape for an
arbitrary protein. Environmental changes can drastically change the
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Figure 6.4.

Figure 6.5.

different conformation occupying the energy minima. (b) The time scale
needed to observe local as well as global conformational changes in a protein
(adapted from Henzler-Wildman and Kern (2007) and Adcock and

MCcCammOon (2006)). ...cveeeeiieriierie e e ese e nreas

The relationship between the system size and possible simulation times for
QM, atomistic and coarse-grained simulations. Loss of information is
inevitable when moving to simplified estimation of the system such as

atomistic and coarse-grained representation which are illustrated by the green

and orange graphs, respectively (adapted from Kmiecik et al. (2016)).............

(a) The bonded interactions originating from bond stretching, angle bending
and bond torsion (rotation). (b) The non-bonded interactions originating from

electrostatic and van der Waals potentials (adapted from Allen (2004) and
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Figure 6.6. Potential energy of bonded interactions. (a) An approximation of the potential

Figure 6.7.

energy in the bond stretching using Hooke’s law as a function of the distance
between two bonded atoms. (b) The potential energy from angle bending as
a function of the angle between two connecting bonds and approximated with
Hooke’s law. (c) Approximation of the potential energy from bond torsion as
a function of the bond angle. Highest potential is observed in eclipsed
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GROMACS MaNUal 5.1.4). ..ot

Potential energy of non-bonded interactions. (a) The electric potential as a
function of distance between two charged points. (b) The van der Waals
potential approximated with Lennard-Jones potential (green line) as a
function of the distance between two non-bonded atoms. Consists of one

repulsion (orange dashed line) and one attraction (orange full line) component

(adapted from the GROMACS manual 5.1.4). ......ccoccveieiiieieee e

Figure 6.8. Four steps of the global MD algorithm. Step 1) Positions and initial velocities

are assigned and a force field chosen. Step 2) Calculation of resulting forces
on all atoms in the system. Step 3) Updates the positions and velocities of all
atoms in the system. Step 4) Saves specified information to a log file (adapted
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Figure 6.9. The application of the periodic boundary condition in a simulation. (a)
Movement of particles out of the simulation box will enter the opposite. (b)
Depicts the cut-off radius for long-range interactions as the dashed red circle
and the importance of choosing a proper box size in order to avoid overlap
and self-interaction (adapted from Gonzalez (2011)).......cccccveveiveeiveiesierieennn 155

Figure 6.10. A system coupled to a virtual heating bath illustrating the heat exchange
between the heat bath and the system of interest (adapted from Ghiringhelli
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Figure 6.11. Workflows for modification of environment and protein structure. (a)
Preparation workflow of a co-solvent compound from a SMILE structure to
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Figure 6.12. Impact of pH on the electrostatic surface of adalimumab Fab fragment. At a
pH of 2 the surface is predominately positively charged (blue) and shift to
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Figure 6.13. Outline of protein structure prediction, protein dynamics simulation and
descriptor generation. Structure was predicted with MODELLER and
distance restraints for cysteines involved in disulphide bridges. MD
simulations were performed with GROMACS where environmental factors
such as pH and co-solvents could be added. Descriptor generation was
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Figure 6.14. MD simulation result for adalimumab. (a) The conformational change of
adalimumab evolving over time in the production run. (b) The average
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Figure 7.1. RMSD plots of GROMACS simulations where (a) mAbs have reached
conformational stability and (b) mAbs that have not reached conformational
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Figure 7.2. Displacement of the Vi domain (blue arrow) in the simulation of eldelumab
from the domains original position captured at (a) 25 ns to its new placement
captured at (b) 35 ns. The heavy chain is coloured blue while the light chain
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Figure 7.3. PCA score plots of the first two components calculated from the light chain
descriptors from MSD1 (a), MSD2 (b) and MSD3 (c) where kappa and
lambda samples are coloured red and green, respectively. ........cccccocvvvrennnnnnn.
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Figure 7.5. Predictions of mAb yield with a PLS-GA model developed on the MSD3
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Introduction

Monoclonal antibodies (mAbs) are therapeutic proteins that have gained increasing popularity
and importance over the last three decades mainly due to their clinical specificity and safety as
treatments, but also because they can be applied to a wide spectrum of different ailments. The
Process Analytical Technology (PAT) initiative and the Quality by Design (QbD) paradigm
have become an integral part of process development of mAbs in today’s pharmaceutical
industries with the goal of increasing process understanding and control in order to deliver a
consistent product quality (Rathore, 2014, Zurdo et al., 2015). Continuous improvements are
constantly being made to increase the effectiveness and applicability of these frameworks for
the production of biopharmaceuticals (Glassey et al., 2011). However, many challenges still
impede the successful implementation of QbD due to limited process and product
understanding in early process development. This has led to an increased need of tools to aid in
risk assessment of mAb candidates in order to speed up process development but also to

evaluate their manufacturing feasibility.

In the last decade, much focus has been directed to the development of in silico methods that
can aid in risk assessment and speed up the process development. The Quantitative structure-
activity relationships (QSAR) framework, which can use knowledge from previous mAb
production processes, appears to be one of the most promising frameworks for the development
of predictive tools. The main strength of the QSAR framework is its ability to effectively link
structural properties and features of the protein structure, which are commonly known as
descriptors, to those of the biological response or mAb behaviour in unit operations. This
therefore has the potential of increasing the product understanding of new mAb candidates in
early process development by aiding in the risk assessment and process route selection and

allowing for a more efficient process development.

The aim of this project was therefore to explore the available methods in the QSAR framework
that could be used to address the lack of process and product knowledge in early process

development. A list of project objectives has been presented below:



1. Generation and exploration of suitable structural descriptors that can be used for
predictive QSAR models.

2. Development of a robust and structured framework with critical evaluation of
classification and regression methods to determine their applicability in relevant process
development settings.

3. Testing the proposed modelling framework and descriptors generation workflow on
relevant process development data. In this research HIC retention times and mAb yields

of 137 mAbs was used and acquired from a data set published by Jain et al. (2017).

Thesis structure

The thesis starts with an extensive review of the QbD and QSAR frameworks in Chapter 1.
Methodology and implementation of predictive modelling methods and techniques are
overviewed in Chapter 2. The remaining chapters of the thesis can logically be divided into two
parts based on the methodology used to acquire structural descriptors that were used in the
predictive modelling. The first part investigates structural descriptors derived directly from the
primary sequence (amino acid sequences) of the mAbs and is described in Chapter 3, Chapter
4 and Chapter 5. The second part investigates structural descriptors derived from the 3D

structure of the mAbs and is described in Chapter 6 and Chapter 7.

Chapter 1: Literature Review

The literature review provides a background of the current state-of-the-art in process
development of mAbs according to the QbD paradigm. Attrition and current challenges in the
paradigm are addressed which mainly originates in the limited knowledge of both the process
and product available in early process development. The QSAR methodology was proposed for

predictive model development of mAb behaviour in unit operations.

Chapter 2: Modelling Development and Assessment

This chapter provides an overview of the multivariate techniques used in this research to
develop and test predictive QSAR models. Examples of successful implementation of these
methods and their applicability to specific problems are highlighted and reviewed.

Chapter 3: Primary Sequence-based Descriptors

In this chapter the structure and sources of sequence variation in a mAb are assessed and
reviewed. The methodology for generating descriptors based on the primary sequence is

presented with the corresponding software used in this research.



Chapter 4: Impact of mAb isotypes and species origins on primary sequence-based

descriptors

The generated descriptors from Chapter 3 are investigated with exploratory methods with
regards to structural variations related to the heavy and light chain isotype as well as the species
origins. This provided insight into sources of variations that were present in the primary
sequence-based descriptors sets and was used for identifying systematic structural variation that
negatively impacted model performance in Chapter 5.

Chapter 5: QSAR model development: Primary sequence-based descriptors

In this chapter the applicability of the primary sequence-based descriptors in predictive
modelling of HIC retention times and mAb yields was assessed. A statistical analysis
investigating the impact of the heavy and light chain isotypes as well as species origins on the
two responses was performed. The statistical analysis coupled with the exploratory analysis in
Chapter 4 was used as a foundation for sample selection in order to reduce systematic variation
in the descriptors that was detrimental to the performance of the developed models.

Chapter 6: 3D Structure Descriptors

In this chapter a methodology for generating descriptors from the 3D structure of mADs is
presented. To this end, methods for generating 3D structures from the primary sequence is
assessed as well as options for protein dynamics simulations for structure relaxation and

modifications are reviewed and covered in detail.

Chapter 7: QSAR model development: 3D Structure Descriptors

The applicability of the 3D structure descriptors from Chapter 7 is assessed in predictive
modelling of HIC retention times and mADb yields. Exploration of structural variations related
to the light chain isotypes as well as the species origins are performed to investigate potential
systematic variation that may be detrimental to the performance of the developed models. A
comparison between models developed using the primary sequence-based descriptors and the

3D structure descriptors was carried out to evaluate their applicability in an industrial setting.

Chapter 8: Conclusion and Future Perspectives

This chapter concludes the work presented in this thesis as well as providing suggestions for
improvement with regards to both predictive modelling and descriptor generation for future

applications.






Chapter 1

Literature review

1.1 Antibody Market

The increasing popularity of mAbs can be seen in Figure 1.1a where the number of approved
mAbs by the European Medicine Agency (EMA) in EU (blue line) and the Food and Drug
Administration (FDA) in US (green line) has drastically increased over the last 30 years
(ACTIP, 2017, May 15, Reichert, 2012). In the last five years a new trend has emerged where
manufacturing of generic mAbs, known as biosimilars, has gained more attention due to the
expiration of patents on mAbs introduced to the market earlier. The first biosimilar of
infliximab (better known as Remicade) was first approved and then marketed in 2013 by the
EMA and later approved by FDA in 2016, thus opening the door for manufacturing of generic
mADbs. As of 2017, a total number of 11 biosimilars has been approved by either EMA, FDA or
both. These are biosimilars of infliximab, adalimumab, trastuzumab and rituximab (Grilo and

Mantalaris, 2019). A list of currently approved mAbs is presented in Table A.1 in Appendix A.

The market sales have enjoyed an increasing growth ever since the first mAb was launched in
1986. Recent reports on the mAb market show an increase in revenue from around $39 billion
in 2008 to around $89 billion in 2017 illustrated in Figure 1.1b, making mAbs one of the fastest
growing bioproduct groups (Ecker et al., 2015, Grilo and Mantalaris, 2019). The market is
expected to grow further with a predicted worldwide revenue of between $130-200 billion by
2022 (EvaluatePharma®, 2018, Grilo and Mantalaris, 2019).
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Figure 1.1. Approval and market trends of mAbs. (a) History of approved mAbs by EMA (blue) and FDA (green)
annually (bars) and cumulative (lines) as well as approved biosimilars by either EMA, FDA or both shown in red.
(b) History of market revenue from 2008 to 2018 (green bars) and prognosis of the expected market revenue
between 2019 and 2022 (red bars) where an optimistic revenue prognosis has been included (grey bars). Based on
market data from EvaluatePharma® (2018) and Grilo and Mantalaris (2019).

Due to their popularity and market revenue, many advances in improving the mAb
manufacturing processes have been made including process optimisation (Fischer et al., 2015,
Kunert and Reinhart, 2016) and process control (Karst et al., 2017). Frameworks, such as QbD,
have gained popularity during recent years due to their ability to expedite the process
development of mAbs through increased process understanding (Rathore et al., 2018).
However, the manufacturing of mAbs is cost-intensive due to the high product quality and
regulatory requirements that must be met to make the product clinically safe. This is especially
pronounced in the downstream processes due to the need of high product purity of the end
product (Hammerschmidt et al., 2014, Hou et al., 2011). Industries still struggle with the
development of the manufacturing processes due to high complexity of both the underlying
6



biological system and the behaviour of the mAb molecules, which hampers the implementation
of PAT and QbD (Krummen, 2013, Mercier et al., 2014). In particular, the sensitivity of the
product quality in mAbs to changes in the processing conditions requires a high level of
understanding of the product and process in order to implement effective control. There is thus
an increased need for better tools to aid process development. Due to its popularity in
pharmaceutical industries, the QbD framework is reviewed in detail in this chapter and some

of its limitations and challenges are highlighted.

1.2 State of the Art in mAb manufacturing

In 2004, FDA introduced a new regulatory initiative called Process Analytical Technology
(PAT) with the aim to design and develop well understood processes that consistently ensure a
predefined quality of a drug at the end of the manufacturing process (U.S. Department of of
Health and Human Services, 2004). The PAT principles are used to gain information relating
to physical, chemical and biological attributes of the product to increase process understanding
to create a foundation for the implementation of monitoring, optimisation and control of the
process (Glassey et al., 2011). The QbD paradigm was introduced in 2004 and is a systematic
approach that aligns with the PAT principles and aims to build quality into the product through
product and process understanding. The framework is especially useful for process
development of mAbs, which consists of many different steps (unit operations). A typical mAb
process can be divided into two parts: The upstream (USP) or the cell culture where the mAbs
are expressed and the downstream (DSP) or purification where the mAbs are isolated and
contaminants removed. Typically, a mAb process will consist of between 15-20 different unit
operations which must be characterised in order to deliver consistent quality and safety of use
(Rathore et al., 2018). The guideline for implementation of QbD is outlined in the International
Conference on Harmonisation Guidelines: ICH Q8 (ICH Harmonised Tripartite Guideline,
2009), ICH Q9 (ICH Harmonised Tripartite Guideline, 2005) and ICH Q10(ICH Harmonised
Tripartite Guideline, 2008). The general outline and the nomenclature of the QbD methodology

are illustrated in Figure 1.2 and is discussed further in this chapter.
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Figure 1.2. General outline of the QbD methodology. The process design space is shown as the dashed box where
the effects of process parameters and raw material input (blue box) on the product quality is characterised. Steps
highlighted in red indicate risk assessment of either product quality attributes, process parameters or raw materials.
The green box indicates availability of clinical data which can be used to better define the QTPP (adapted from
Chatterjee (2012)).

1.2.1 Implementation of QbD

The implementation of QbD starts by defining the Quality Target Product Profile (QTPP) which
forms the basis of the design for the development and contains information about the drug
quality criteria such as delivery mechanisms, intended use, route of administration for the
intended product to ensure clinical safety and efficacy. The QTPP is generated from knowledge
based on literature research, clinical trials and existing experience from industry or academia
(Herwig et al., 2015, Rathore, 2014). For mAbs, the QTPP relates to the product’s intended use
and properties that can affect patients and need to be clearly stated in order to avoid adverse
effects in patients. These should include antigen binding, pharmacokinetics, effector function,
stability and half-life of the mAb (Rathore, 2009, Alt et al., 2016). However, much of this
information does not become available until later when clinical data has been obtained. Thus,
instead many aspects of the QTPP are based on prior knowledge in early process development
of an mADb. Recently, computational prediction and simulation of the mAb structure have been
shown to be a valuable tool for mAb design due to their ability to provide estimates of behaviour
and protein stability which can aid in more accurate QTPP specification (Yamashita, 2018,
Tiller and Tessier, 2015).

Based on the QTPP, the Critical Quality Attributes (CQAS) are identified from a list of Quality
Attributes (QAs) using risk-based analysis in accordance with the ICH Q9 guideline to



investigate properties that might affect product quality. The CQAs are physical, chemical or
biological properties of the drug product that need to be within appropriate ranges to ensure the
desired product quality. These ranges, similarly to the generation of QTPP, are obtained through
literature research, clinical data and previous experience but they are also updated during the
process development as new information from characterisation studies becomes available. The
most frequently used method for risk assessment in industries is Failure Mode and Effect
Analysis (FMEA) where the impact of different unit operations in the process on the QAs are
listed. Each effect is ranked according to a Severity rating (S), an Occurrence rating (O) and a
Detectability rating (D). A final Risk Priority Number (RPN) is calculated by multiplying the
ratings which are then ranked to identify the effects that potentially affect the product quality
and efficacy (Zimmermann and Hentschel, 2011, Harms et al., 2008). Tailored risk assessment
methods have also been proposed for biopharmaceuticals by Zalai et al (2013) where the authors
argued that traditional methods do not take into account the “complexity” of how a process
might affect the product or the “uncertainty” which includes the quality of the input material as
a possible source of risk and which need to be added as additional factors to the risk assessment
(Zalai et al., 2013). A list of potential CQAs adapted from the work of Alt et al (2016) is
presented in Table 1.1 which gives a non-exhaustive overview of the different structural
variants that can occur in mAbs and can affect their structure, stability and activity. It is
therefore important that the CQAs are controlled in order to achieve the desired product quality
(Altetal., 2016).

All categories of variants in Table 1.1, except the “structure” category, are caused by so-called
post-translational modifications (PTMs). This means that modifications of the protein structure
occurs after the mAb has been expressed in the cells and which are therefore highly dependent
on the environment (Yang et al., 2013). For clarification, a few of the PTMs are described in
more detail. The low molecular weight species (LMW) is an incomplete mAb structure where
a part or parts of the structure are missing. This is most commonly caused by missing disulphide
bonds between chains (see Section 3.1 for description of mAb structure) or enzymatic/non-
enzymatic cleavage of the amino acid sequence (Wang et al., 2018). Additionally, if cleavage
occurs at the C-terminal residue, which is most often a lysine in mAbs, a basic charge variant
will be produced as well, due to loss of a basic residue. However, other charge variants can still
occur without the sequence cleavage. For example, deamidation of sterically free asparagine
into aspartate is one such PTM which is promoted if the asparagine is followed by a glycine
(Khawli et al., 2010). It is important to remember that the majority of the PTMSs require the site
or the residue that is modified to be accessible on the surface of the mADb structure and therefore
in contact with the solvent (Sydow et al., 2014). It should be noted that Table 1.1 does not take
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into consideration the quality of the input material and its effect on the product quality as well

as various process related QAs, such as contaminants e.g. host cell proteins (HCPs) and DNA,

which also need to be characterised.

Table 1.1. List of potential CQAs related to common structural variants in mAbs (adapted from Alt et al. (2016)).

Category

Quality Attribute

Size related

Acidic Charge Variants

Basic Charge Variants

Oxidation

Fc Glycosylation

Structure

High Molecular Weight Species (HMWs)

Low Molecular Weight Species (LMWSs)
Deamidation in CDRs regions

Deamidation in non-CDR regions

Glycation in CDR regions

Glycation in non-CDR regions

Aspartic Acid isomerisation in CDR regions
Aspartic Acid isomerisation in non-CDR regions
C-terminal Lysine cleavage

N-terminal leader sequence

N-terminal pyroglutamic acid

Oxidation of Methionine and Tryptophan in CDR regions
Oxidation of Methionine in non-CDR regions
Afucosylation

Galactosylation

High-Mannose

Sialylation

Non-glycosylated Heavy chain

Cysteine variants

Sequences variants

Protein structure

Once the CQAs have been selected, a process design space is defined by screening process

parameters (PPs) for each of the unit operations in the process that have a significant effect on

the CQAs. PPs that have a significant impact on the CQAs are called Critical Process

Parameters (CPPs) and are identified and controlled through the use of the following steps:

1. Similar to identification of CQAs, risk analysis methods, such as FMEA, are used to

reduce the large number of PPs to those that may affect CQAs.

2. Systematic experimental studies using Design of Experiments (DoE) over a range of PP

settings are carried out in small scale to obtain experimental data for process

characterisation to identify CPPs and their optimal ranges which. This is referred to as

the control space.
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3. Multivariate data analysis (MVDA) is used for implementation of appropriate real-time
monitoring and control strategies needed for the defined CQAs and CPPs to ensure
product quality. Movement outside of the defined control space would cause the product
quality to drop below that of the desired quality stated in the QTPP.

The use of statistical DoE is preferred in process development of pharmaceuticals over
univariate analysis as it can generate qualitative and quantitative information about important
process parameters and their impact on the product quality (Leardi, 2009). Response Surface
Modelling (RSM) and leverage plots are often used on generated DoE data to investigate the
significance of PPs on the explored CQAs as well as define allowed ranges for the identified
CPPs (Rathore, 2016). Several different experimental designs exists and selecting an
appropriate design is critical in order to maximise the information gained from the experiments.
Kumar et al. (2014) compared different experimental designs for the DoE of downstream unit
operations to demonstrate how these affect the response surface of each unit operation (Kumar
etal., 2014). Taietal. (2015) showed that a well-chosen experimental design can lead to diverse
and informative data about the system and when combined with high-throughput

experimentation techniques, can be a powerful tool when defining the process design space.

Process validation is performed when the design space has been characterised to demonstrate
that the desired product quality is delivered when operated within the design space and is
usually performed on larger scale. In order to ensure consistent quality, the CQAs need to be
within the defined control space of the process. This is done through monitoring and control of
identified CPPs that have a dynamic behaviour and effect on the CQAs e.g. pH, temperature,
flow rates etc. (Read et al., 2010, Golabgir et al., 2015). MVDA methods such as Principal
Component Analysis (PCA) and Partial Least Square (PLS) are commonly employed in order
to monitor and control CQAs (Ferreira and Tobyn, 2015). For examples of MVDA
implementations for monitoring and control, refer to “modelling based approaches” under
Section 1.2.3. However, implementation of monitoring and control strategies is usually not
necessary for all CPPs e.g. trace elements in the basal media might need to be characterised,
depending on the product, to achieve the desired product quality, but they do not necessarily
need to be monitored in real time. The control of the CPPs should always be in the form of a
dynamic control scheme to ensure that product quality is kept constant, even if there is
variability introduced by the input raw materials used in the process. The QbD framework is an
iterative process where the QTTP, CQAs and CPPs need to be constantly revaluated in order to

characterise all sources of variability that can impact the final product quality.
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As mentioned previously, many aspects of the QTPP might not be known in early process
development and only become available once clinical trials have been performed. This means
that the process development is closely linked to the clinical phases, as illustrated in Figure 1.3.
Once clinical data becomes available, better decisions regarding the potential redesign of the
product and re-evaluation of the QTPP, CQAs and CPPs can be made (Cooney et al., 2016). A
short summary of investigation goals and scope of each trial phase is presented in Table 1.2
which was based on the ICH E8 guidelines for clinical trials (ICH Harmonised Tripartite
Guideline, 1997a).

BLA (FDA)
MAA (EMA)
~46% Failure ~43% Failure ~10% Failure
Rate Rate Rate
S ) O O O
clinical
QTPP, COA QTPP, CQA QTPP, CQA QTPP, CQA QTPP, CQA
and CPP and CPP and CPP and CPP and CPP
update update update update update

QbD Process Development

+ Cell Line Development * Process Development * Process Scale-up

* Early Process and Optimisation * Process transfer
Development * Formulation * Characterisation and
+ Early Formulation Development Validation
Development « Analytical
Development

Figure 1.3. Overview of the parallelisation between the clinical trials and the process development (adapted from
Li and Easton (2018) as well as Mercier et al. (2013))

Generally, early process development always starts in small scale and is subsequently scaled
up as the mAb advances through the different clinical phases which provides two benefits: 1) it
provides an economic safety if the mAb product fails in the clinical trial and termination of the
drug candidate is likely, 2) it is more cost-effective due to the early clinical trials (pre-clinical
and phase 1) not requiring large quantities of the mAb for clinical testing. Process knowledge
gained from earlier trials is used to build a foundation of process understanding and is applied
when scaling up the process which aids in reducing uncertainty in subsequent process
characterisation steps. Control and monitoring strategies for characterised CQAs and CPPs also

starts to be implemented in Phase Il and I11 (Li and Easton, 2018). If a mAb passes Phase 11 in
12



the clinical trials, enough evidence is usually available to start a Biologics Licensing
Application (BLA) in the US or a Market Authorisation Application (MAA) in the EU. The
process is then transferred to full production, which is also known as Phase VI or manufacturing
phase and is implemented according to Good Manufacturing Practice (GMP). Additional
clinical data is gathered after the mAbs have been marketed in order to investigate additional

adverse effects that were not apparent during the Phase | to Phase I1lI.

Table 1.2. Overview of the clinical phases for an mAb candidate with their corresponding research goals and scope
(adapted from the ICH E8 guidelines).

Phase Goals Scope

Pre-clinical Animal Testing Laboratory and animal studies
Assessment of safety
Estimation of biological activity

| human Pharmacology 20-100 (healthy or with
Assessment of tolerance and safety disease/condition)
Estimation of biological activity
Estimation of pharmacodynamics and
pharmacokinetics.
I Therapeutic Exploratory Hundreds (with condition/disease)
Estimate dosage for subsequent studies
Further assessment of safety and efficacy
Side effects

1l Therapeutic Confirmatory 300-3000 (with condition/disease)
Confirmation of efficacy
Establish safety profile
Establish dose-response relationship
Provide basis for benefits and risks to support
licensing
VI (M) Therapeutic Use Thousands (with condition/disease)
Refine understanding of benefits and risks
Identify less common side effects
Refinement of dosage

Throughout the process development it is important to note that scale-up can have an impact
on the product quality. More generally, CPPs that have been identified to have an effect on
product quality in small scale might not necessarily have that same effect in larger scale and
may therefore impact the product quality differently. This was thoroughly investigated in the
works of Le et al. (2012) and Mercier et al. (2013), where scale dependent effects on CPPs were
characterised and had a significant effect on the product quality. This shows that the importance
and the ranges of CPPs determined in smaller scales cannot necessarily be transferred to larger
scales directly. Consequently, this implies that characterisation of these CPPs needs to be

performed every time the scale is increased.
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A case study of QbD implementation was published in 2009 by CASSS and ISPE on A-mAb
bioprocess development (CASSS and ISPE, 2009). The study gave a broad overview from
identification and risk assessment of CQAs to the construction of the design space for both
upstream and downstream unit operations. It presented a systematic approach to designing a
well-controlled process which assures high product quality and has been used as a foundation
for applying the QbD framework to other biopharmaceutical products. Further details on the
implementation of QbD in biopharmaceutical manufacture can be found in literature (Rathore
and Winkle, 2009, Rathore, 2009, Rathore, 2014, Sadowski et al., 2016).

1.2.2 Challenges in QbD implementation

Effective implementation of QbD and PAT is still a significant challenge in biopharmaceutical
industries due to the complex relationships between PPs and product quality. This becomes
more apparent when considering the potential structural variants presented in Table 1.1 that
commonly occur during the process development. It is therefore important that sources causing
structural variability are investigated in order to minimise the risk of harmful effects on patients.
However, this requires extensive experimental studies to characterise the CPPs and ranges
(Eon-Duval et al., 2012, Mercier et al., 2014).

The glycan in the mAb structure is a good example of this due to being very important for the
efficacy and stability of the protein. It is therefore important to determine the impacting factors
which need to be monitored and controlled, but this proved to be challenging (Boyd et al., 1995,
Raju and Jordan, 2012, Costa et al., 2014). It has been shown that the glycan structure can be
controlled through changing the composition of the basal and feed media (Kildegaard et al.,
2016, Rathore et al., 2015) or optimisation of the mammalian cell line used for expression (del

Val et al., 2010) in order to drive the glycosylation towards the desired structure.

As previously described, heuristic approaches are often used by industries for process
development based on experience gained from previous process implementations. However,
these rarely succeed in delivering good correlation between PPs and QAs (Zalai et al., 2015).
An example of this was the QbD application filing of the mAb Perjeta (pertuzumab) at the end
of 2012 by Genentech & Roche (Krummen, 2013). This application was rejected due to the

design space not being properly characterised as demonstrated by the following:

1. Not all CQAs, such as the effect of different glycosylation patterns on the Antibody-
Dependent Cell-mediated Cytotoxicity (ADCC) which introduced residual clinical risks

from different glycosylation variants, were identified. This was mainly due to the
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previous ranges from an existing mAb process being used and other CQAs not being
considered.

2. Not all CPPs were identified and the effects on the glycosylation profile could not be
determined.

3. The proposed control strategy for the CQASs was not appropriate.

Another challenge for pharmaceutical industries is the high failure rates of mAb candidates in
the clinical trials coupled together with the high development costs. DiMasi et al. (2016) state
that the failure rates of all mAb candidates in the clinical phases I, Il and 111 were around 46%,
43% and 10%, respectively, as illustrated in Figure 1.3. An estimation of total investment
needed for a mAb to reach the market was calculated to be around $2.558 billion which includes
purchase of necessary equipment and facilities. Of this, $1.098 billion was expected to be
invested in the pre-clinical phase and includes discovery and testing of several candidates. The
remaining $1.460 billion is invested in the process development and clinical trials (Figure 1.3).
This means that the revenue of successful mAb candidates is used to drive the development of
other potential candidates making the approved mAbs usually very expensive for the consumer.
There is therefore a growing need for additional tools to aid in both clinical assessment and

process development of mAbs in order to bring development costs and times down.

1.2.3 Current Focus and Improvements in Process Development

To address the challenges presented in Section 1.2.2, many different approaches and advances
have been developed as briefly discussed in the following sections.

Cell-line and media considerations:

Grainger and James (2013) argued that a cell line selection should include product quality such
as the glycosylation and not focus only on cell growth and product yield. They illustrated the
possibility of choosing cell line and customising the media to achieve high product quality.
However, as the glycosylation is cell line specific, no one media composition fits all, but needs
to be characterised for each cell line which requires a significant number of experiments.
Bruhlmann et al. (2015), who investigated the effects of media supplements on QAs of mAbs
(i.e: post-translational modifications such as glycosylation, glycation, deamidation,
isomerisation, oxidation, aggregation, LMW species, C- and N-terminal modifications) argued,
that media development could greatly increase the quality of the product without the need for
extensive cell line engineering. However, the number of media components that need to be
characterised requires extensive experimentation to understand the impact of the components

on the CQAs. In the case of Genentech & Roche, not carrying out exhaustive studies or risk
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assessment analysis to identify CQAs and CPPs had a negative impact on the process
understanding of how the CPPs affected the CQASs, e.g. the effect of the glycosylation profile.
Due to these reasons the highest level of PAT and QbD in the form of product and process

understanding for complex pharmaceuticals has not been reached yet (Mercier et al., 2014).

High-throughput approaches:

Sustained effort has gone into the development of more efficient high-throughput screening
methods for both upstream and downstream processing to reduce use of resources, costs and to
speed up process development (Bhambure et al., 2011). This includes high-throughput
screening of cell lines across different fed-batch scales (Rouiller et al., 2016), high-throughput
media development for increased cell growth, viability and product yield for both basal and
feed media (Rouiller et al., 2013), high-throughput screening of basal media and feed
component effects on post-translational modifications (Rouiller et al., 2014), high-throughput
process development in upstream by using parallel small scale reactor systems (Tai et al., 2015),
model-based high-throughput screening to find optimal ion exchange chromatography columns
by using both mechanistic models and experimental designs to bring down the amount of
experiments (Khalaf et al., 2016) or high-throughput screening of an ion chromatography step
for process characterisation (Bhambure and Rathore, 2013).

DSP platform orientation and streamlining:

Over the last decade, the mAb DSP have become more platform oriented and also shifted
towards continuous processing in order to reduces bottlenecks in production. Several
purification strategies used by large pharmaceutical companies, such as Amgen (Shukla et al.,
2007), Genentech (Trexler-Schmidt et al., 2009), Biogen (Ghose et al., 2013) and KBI
Biopharma (Shukla et al., 2017), indicate a general layout of the DSP platforms for mAbs that

are very similar, as illustrated in Figure 1.4.

Protein A * b e Viral Polishing
Inactivation Step 1l Filtration Step 2

Figure 1.4. General overview of platform-oriented purification of mAbs. The black boxes represent
chromatographic columns and steps that are always included, whereas the red boxes represent chromatographic
polishing steps that change depending on the behaviour and quality requirements of the mAb. The order of the
second polishing step and the viral filtration can be switched (adapted from Shukla et al. (2017)) .
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As illustrated in Figure 1.4, Protein A chromatography is used almost exclusively as the first
step in the DSP due to its high specific binding to IgG1, 1IgG2 and IgG4 mAbs where the protein
A ligand binds primarily to the region between the CH2 and CH3 domains in the Fc part of the
antibody (see section 3.1 for more information on the antibody structure). Due to its high
binding specificity towards mAbs, protein A chromatography is able to remove the majority of
impurities such as HCPs, DNA and viruses from the cell culture supernatant. A monomeric
mADb purity between 90-95% can thus be expected in many cases where protein A
chromatography has been used (Shukla et al., 2007). Elution of the mAbs from the protein A
column is performed by lowering the pH (to 2.5 - 4.0), thereby disrupting the binding between
the protein A ligands and the mAbs.

A natural step after the protein A chromatography is the viral inactivation step, as illustrated in
Figure 1.4, due to the low pH which effectively inactivates enveloped virus particles. An
important factor in this step is the hold time which is usually around two hours in order to
inactivate the majority of the retained virus particles (Mattila et al., 2016). However, it has been
shown that low pH can promote aggregation of mAbs and it is therefore important to thoroughly
characterise both the protein A chromatography step and the viral inactivation step in order to

minimise the loss of mAb product (Mazzer et al., 2015).

Additional chromatographic steps, also known as polishing steps, are used after the viral
inactivation for further removal of contaminants and undesired mAb variants. However,
selection of chromatographic columns for polishing is very dependent on the characteristics of
the desired mAb product and remaining contaminants in order to maximise retention of the final
drug product. Commonly used columns are cation exchange chromatography (CIEX) and anion
exchange chromatography (AIEX) which can separate mAb variants according to charge and
weight as well as facilitate the additional removal of HCPs, DNA and viruses (Liu et al., 2010).
More specifically, the CIEX column contains ligands that are negatively charged and bind more
efficiently to positively charged proteins, whereas the AIEX column contains positively
charged ligands which bind more efficiently to negatively charged proteins. Therefore,
depending on the charge of the mAb, the column can be selected to promote binding. Another
commonly used polishing step is a hydrophobic interaction chromatography (HIC) which can
be used to reduce high molecular weight species and host cell proteins. The HIC column
contains hydrophobic ligands that bind to hydrophobic patches on the surface of the protein.
The binding is promoted further by adding salts, such as ammonium sulphate, that lower the
protein stability and allow for hydrophobic residues to surface (Gagnon, 1996a).
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The viral filtration step illustrated in Figure 1.4 is performed to remove the majority of the
remaining viral particles from the product in order to reduce the risk of viral infection in patients
(ICH Harmonised Tripartite Guideline, 1997b). This step is placed towards the end of
purification in order to avoid fouling of the filtration membrane as the majority of larger
particles, such as aggregates and DNA, have been removed in earlier steps. This allows for the
desired mAb product to pass through the membrane while larger virus particles are retained in
the membrane pores or on the retention side of the membrane (Kern and Krishnan, 2006). In
the final step, ultrafiltration/diafiltration (UF/DF), as illustrated in Figure 1.4 is applied in order
to concentrate the final mAb as well as to exchange the buffer for increased stability and shelf
life time (Liu et al., 2010).

Modelling based approaches:

The use of MVDA methods for process development and monitoring of QAs increased
significantly during the last years. This gives increased insight into correlation between PPs and
QA s that might otherwise go undetected. Mercier et al. (2013) showed with PCA and PLS that
the scalability had a significant effect on performance which was not considered before.
Ivarsson et al. (2015) showed how the metabolic flux inside of the cells shifted with different
pH and how it affected growth and production rate by using Flux Metabolic Analysis (FMA)
which is especially important in scale-up where compartmentalisation of the reactor is likely to
happen. Sokolov et al. (2016) illustrated how process characterisation could be performed for
biosimilars with the use of PCA and Decision Trees (DT) on characterisation data to find
optimal set points in order to get as close as possible to quality specifics of the originator.
Rathore et al. (2015) used PCA and PLS to link PPs and amino acids concentrations in the
media to their impact on the glycosylation in batch, fed-batch and fed-batch with microaeration.
In a similar study by Green and Glassey (2015), the authors illustrated how the amino acid
concentrations in the growth media as well as process parameters could be used to predict the
glycosylation forms of mAbs with PLS. Another approach is to use knowledge-based
modelling, such as presented by Khalaf et al. (2016) where the authors used mechanistic model
whose parameters were estimated from experimental data to create a high-throughput screening
of ion exchange columns. This is similar to hybrid modelling in process monitoring and control
that is based on mechanistic models but whose parameters are estimated from a DoE data set
(Glassey and Von Stosch, 2018). The advantage is that compared to other mechanistic models
with static parameters, the hybrid models can dynamically adjust the parameters from the DoE
data set (von Stosch et al., 2014). The cause for the slow integration of other MVVDA methods
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into industries can be speculated, but one of the main reasons is the broadly formulated

framework of QbD and the lack of a clear implementation path to follow.
Product understanding:

The fundamental principle of the QbD framework is to increase process understanding in terms
of the effect that PPs have on product quality. Zurdo (2013) suggested that the QbD framework
needed to be extended to incorporate product understanding in terms of the developability of
the pharmaceutical which would include manufacturability, safety, pharmacology and
biological activity. The author argued that by using in silico risk assessment tools based on
structural features of the mAbs and historic development data, predictions concerning
manufacturability of an mAb could be made. In a later publication two case studies were
presented where structural properties of mAbs were successfully linked to CQAs related to
aggregation and half-life (Zurdo et al., 2015). Such tools can add great value to early process
development of mAbs when implementing the QbD framework where very little is known about
both the process and product. Thus, a more in-depth investigation of Quantitative Structure-
Activity Relationship (QSAR) framework and its potential benefits for QbD integration is

explored here.

1.3 Quantitative Structure-Activity Relationship

The QSAR framework relates structural properties and features (also known as descriptors) of
a compound to biological or physicochemical activity (Dehmer et al., 2012, Dudek et al., 2006).
This methodology was first introduced by Hammet in the 1930s and was later refined by Hansch
and Fujita and has become a standard tool for small drug discovery (Du et al., 2008). A method
derived from QSAR, referred to as Quantitative Sequence-Activity Modelling (QSAM), has
been introduced in recent years and focuses on relating structural descriptors of proteins,
peptides and nucleic acids to activity (Zhou et al., 2010). The only difference between QSAR
and QSAM is the development of descriptors whereas the guidelines for the predictive model
development remain the same. Given the proteinaceous character of the mAbs, the QSAM
methodology for descriptor generation will be of more relevance and the workflow described

below will therefore focus more on protein based rather than small molecule based QSAR.

1.3.1 Descriptor generation

One of the most important steps in QSAR is how the structures of the pharmaceuticals in
question can be described numerically in order to use them in correlation studies with prediction
outputs of interest. For proteins, such as mAbs, two approaches to generate descriptors are

discussed here: 1) descriptors generated from the amino acid primary sequence and 2)
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descriptors generated from three-dimensional models of the mAbs. It has been shown that a
combination of both physicochemical and 3D structure descriptors works best and also ensures
that the model is not overly reliant on a single type of a descriptor (Hechinger et al., 2012).

Amino acid composition-based descriptor generation:

Extensive research has been carried out to develop new informative descriptors for peptides
and proteins generated from their primary sequence (Zhou et al., 2008). This was first
introduced by Sneath (1966) who derived amino acid descriptors for the 20 naturally occurring
amino acids from qualitative data. Later on, Kidera et al. (1985) used 188 properties of the 20
naturally occurring amino acids, which were converted into ten orthogonal new descriptors to
describe the amino acids. Later the Z-scale, which consists of 3 new amino acid descriptors
derived by applying PCA to 29 physiochemical properties (Hellberg et al., 1986, Hellberg et
al., 1987a), was introduced. Other amino acid scales, which were also derived through PCA,
include the extended Z-scale and T-scale (Sandberg et al., 1998, Tian et al., 2007). Other
descriptors include the so called isotropic surface area (ISA) and the electronic charge index
(ECI), which are derived from the 3D structures of the amino acids (Collantes and Dunn, 1995).
All these descriptors were tested and performed well in respective studies on small peptides. In
a two-part review by van Westen et al (2013a, 2013b) many of the existing amino acid scales
were benchmarked and compared. The authors demonstrated that the different scales described
different physiochemical and topological properties which is useful when deciding on which
scales to use (van Westen et al., 2013a, van Westen et al., 2013b). Doytchinova et al. (2005)
applied the Z-scales descriptors to successfully predict ligand binding of peptides and
Obrezanova et al. (2015) used several such amino acid scale to predict mAb aggregation
propensity based on the primary sequence. However, even though amino acid descriptors
explain the differences in the primary sequence, they do not take into consideration potential
interaction between the amino acids in or between primary chains. It has been argued that this
simplification can lead to a loss of information concerning properties of secondary and tertiary

structure in larger proteins (Zhou et al., 2008).

Descriptors can also be generated by using empirical equations on the entire primary sequence
to infer protein properties such as the isoelectric point, hydrophobicity, molecular weight,
physico-chemical properties and secondary structure content, to name a few. Many such tools
and applications are available on bioinformatics sites, such as EXPASy (Gasteiger et al., 2005)
and EMBL-EBI (Li et al., 2015).
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Homology modelling and molecular dynamics for descriptor generation:

Descriptors capturing structural and surfaces properties can be generated by using existing
crystal or NMR structures or by building models using homology modelling. The latter is
performed by finding proteins with existing 3D structures that have a high level of similarity to
the primary sequence of the protein of interest. These proteins are then used as templates to
predict the likely structure of the queried protein (Liao et al., 2011). This has been successfully
used in many publications where information such as surface areas, angles and surface
properties were extracted (Sharma et al., 2014, Sydow et al., 2014, Buyel et al., 2013). The
method is especially useful when no crystal structure exists. Caution needs to be exercised,
however, as the homology models are only predicted structures. Breneman et al. (1995)
introduced a methodology for generating 2D surface descriptors, also called transferable atom
equivalent (TAE) descriptors, by reconstructing the electronic surface properties of the
molecular structures from a library of atomic charge density components. This has the
advantage of representing surface variations such as hydrophobicity and charge distributions
numerically, which is of great importance when studying for example protein binding to an
anion exchange chromatographic column packing using different salts (Tugcu et al., 2003).
Breneman et al. (2003) later introduced the Property-Encoded Surface Translator (PEST)
algorithm which is a further development to better describe the surfaces of the proteins when
applying the TAE molecular surface descriptors. However, it is important to note that the PEST
algorithm need 3D models in order to generate the descriptors of interest. PEST, together with
TAE descriptor, has been successfully applied in a QSAR study where the generated model was
able to accurately predict protein separation from HCPs (Buyel et al., 2013). Robinson et al.
(2017) used the TAE descriptors to relate the structural differences between several Fab
fragments to predict column performance between different chromatographic systems. It has
been argued, however, that caution needs to be exercised when using library-based descriptors
as these are usually directly related to a specific state of a compound that was measured in a
unique environment. This means that these descriptors should only be applied if experiments
were carried out in an identical or similar environment. Otherwise, this might cause the
descriptors to be biased (Hechinger et al., 2012). Other structural properties, such as molecular
angles and solvent accessible surface areas extracted from homology models, were used by
Sydow et al. (2014) to determine the risk of degradation of asparagine and aspartate in mAbs
as PTMs. Similarly, Sharma et al. (2014) investigated the risk of oxidation of surface accessible

tryptophans.
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Due to the flexibility and size of the mAbs it is very difficult to produce good 3D structures
based on X-ray crystallography and NMR. Instead, homology modelling has proven to be a
good alternative to circumvent this problem. However, due to the size and the many flexible
parts, such as loops, in the mAbs, pure homology models might not give a sufficiently accurate
representation of the reality. Molecular dynamics (MD) is a useful tool that can be used to
minimise the energy of the entire protein and to simulate the dynamics of the protein of interest
in different environments (Brandt et al., 2010). MD simulations have also shown very high
similarities in the internal dynamics of mAbs when comparing the simulated results to those
observed in reality (Kortkhonjia et al., 2013). It can therefore be argued that MD simulation
should be applied to all homology models before descriptors are generated to mimic the
environment of the samples that are used in QSAR studies.

1.3.2 QSAR for protein behaviour prediction

The QSAR framework has been applied to a diverse range of challenges where structural
properties of pharmaceuticals have been used directly for the prediction of different process
related aspects such as the prediction of isotherm parameters in ion-exchange chromatography
(Ladiwala et al., 2005), ligand-binding in ion-exchange chromatography under high salt
concentrations (Yang et al., 2007a), binding of proteins in ion-exchange chromatography under
different pH conditions (Yang et al., 2007b), protein surface patch analysis for the choice of
purification methods (Insaidoo et al., 2015), chromatographic separation of target proteins from
HCPs (Buyel et al., 2013), viscosity, clearance and stability prediction for mAbs (Sharma et al.,
2014) and degradation prediction of asparagine and aspartate in mAbs (Sydow et al., 2014) to
mention a few. This also showcases one of the main strengths of the QSAR/QSAM framework
with its ability to link structural features to many different forms of prediction outputs. It is
important to note, however, that identical experiments must have been performed on different
pharmaceuticals in order to compare the differences in structure and their effect on the output.
Equally important is that sufficient excitation is present in the output data in order for the effects

to be linked to the corresponding structural feature (Bishop, 2006).

1.4 Towards mAb process development by bridging QbD and QSAR

There have been significant advances in computational prediction methods and they are starting
to become more common in process development (Jiang et al., 2011). As mentioned by Zurdo
et al (2015), the ability to predict product related characteristics that strongly relate to the QTPP
and/or CQAs can greatly simplify process development, especially in the early stages when the
product or process knowledge is limited. The implementation of QSAR in process related areas,

such as protein purification, has been researched extensively (Chen et al., 2008, Yang et al.,
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2007a, Yang et al., 2007b, Ladiwala et al., 2005, Woo et al., 2015a, Hou et al., 2011, Robinson
et al., 2017). Though not all the mentioned examples concern mAbs specifically, the outlined
methodology used in the different research articles is still applicable. Given the significant
proportion of mAb development cost that is incurred during downstream processing,
considerable advantages can be gained by being able to predict the performance of
chromatographic columns and their effect on product quality early in the process development.
In the case of mAbs much of the cost is incurred during the purification due to the strict
regulations surrounding clinical safety of the end product (Hammerschmidt et al., 2014, Farid,
2007). Examples of regulations for mAbs include removal of harmful structural variants, such
as those presented in Table 1.1, while retaining the desired structure based on evidence from
clinical trials. The removal of contaminants, such as HCPs, DNA and viruses, is also necessary
in order to avoid undesired immune responses in patients. Thus, for therapeutic use, a mAb
purity of >99% is required in the final formulation (European Medicines Agency, 2016).
Therefore, the integration of QSAR into QbD is proposed based on the valuable insight that
QSAR can provide in early process development and is illustrated in Figure 1.5 which also
shows how the QbD framework can add to and improve the QSAR modelling with addition of

new data.

Two main approaches of integrating the QSAR framework into the QbD paradigm can be
considered. The first approach is by only using generated structural descriptors for development
of models able to predict protein behaviours. An example of this was published by Obrezanova
et al. (2015) where the authors developed a model with the adaBoost algorithm based on
decision trees that was able to predict the probability of mAb aggregation based on the structure
of the primary sequence. The method is however more constrained as it requires data generated
from identical experimental setups, and therefore identical PP settings in order to assume that
the observed effect is caused only by the differences in structure between the proteins.
Therefore, models developed this way are better for assessing the manufacturing feasibility
and/or potential CQAs before starting the process development. The second approach is to use
the PPs of interest, taken from previous mAb processes to use directly in the model development
by either 1) adding the PPs together with the generated structural descriptors as inputs
(Rodrigues de Azevedo et al., 2017) or 2) structural descriptors are calculated to be dependent
on the PPs, meaning that the values of the descriptors will change with changing values of the
PPs (Yang et al., 2007b). The latter is easiest done by generating descriptor from MD
simulations where changes in the soluble environment can be implemented. This however
requires that data is gathered from similar experimental setups where only the PPs of interest

have been varied. This would usually not be a problem when gathering historic data generated
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from the QbD paradigm as it will often conform to experimental designs based on DoEs where
the experimental environment is strictly controlled. The added benefit of this approach is that
the developed model will be able to account for both the structural differences as well as the
impact from the studied PPs when predicting protein behaviour. This can potentially have great
value in process development of new mAbs as PP ranges can be assessed in silico and therefore

greatly aid in reducing the number of needed experiments, seen as grey arrows in Figure 1.5.

The methods described above provide a reference for further risk assessment and
characterisation to be performed in the QbD framework, as they provide information, such as
the behaviour of the product in different scenarios and increase the product understanding. As
additional information from new mAb processes becomes available, models can be improved
by expanding the data sets used in the model development. This in turn will aid in providing
more accurate predictions due to lowering the sparsity by incorporating more protein structures.
Available characterisation research studies can also be used as additional sources of data in
order to improve the models by expanding the data set for model development.

QbD (Process Understanding)

1
1
1
1 Define Define Refine
Identify ‘ : product process process
QTPP 1 design design design
1 space

Define

Control
Strategy

Process Data
Transfer

Antibody Behaviour
Predictions

Data Descriptor
mining generation

Model
Refinement

QSAR (Product Understanding)

Figure 1.5. Proposed integration of QSAR into QbD where the upper half illustrates the simplified framework of
QbD (blue) and the lower half illustrates a simplified version of the QSAR framework (black). Transfer of
characterisation data from previous mAb processes can be used directly for model development using QSAR.
Depending on the purpose of the developed QSAR model, it can be used to directly aid in assessing CQAs or
provide insight into PPs and ranges.

1.5 Scope of this study

This study focused on developing a QSAR framework that could aid in early stage process

development of monoclonal antibody therapeutics to facilitate rapid developability. The
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application of QSAR for proteins other than mAbs is not new and has been reported extensively
in the past. An example of this is prediction of chromatographic performance of CIEX columns
(Ladiwala et al., 2003, Malmquist et al., 2006), AIEX columns (Song et al., 2002, Tugcu et al.,
2003), HIC columns (Ladiwalaet al., 2006, Chen et al., 2007, Chen et al., 2008) and multimodal
columns (Chung et al., 2010, Woo et al., 2015a, Woo et al., 2015b). In the listed examples, the
proteins used in the studies were all of unique sizes, structures and functions. However, the
implementation of QSAR for the prediction of mAb behaviour in process related settings is still
relatively new where areas such as aggregation propensity (Lauer et al., 2012, Obrezanova et
al., 2015), chromatography performance of HIC (Robinson et al., 2017), chromatography
performance of CIEX (Kittelmann et al., 2017) and degradation of solvent accessible asparagine
and aspartate in the variable regions of the mAb structure (Sydow et al., 2014) have been

explored recently.

It is important to note that descriptor generation of mAb focused research have adhered to
workflows used for QSAR models developed for the prediction of general protein behaviour
where proteins were of different sizes, properties and functions such as those examples
mentioned in the beginning of this section. However, due to the high sequence and structure
similarities between mAbs, such descriptors might not necessarily capture the more subtle
differences between mAbs that might be needed for accurate prediction with QSAR. For this
reason, descriptors in this research were developed based on structural features and properties
inherent to all mAbs as presented in Chapter 3 and Chapter 6 for primary sequence-based
descriptors and 3D structure descriptors, respectively. Also, to date, no exploration of structural
variations originating from different mAb isotypes and species origins has been performed.
These structural variations were therefore explored in order to characterise their effect on
generated descriptors (Chapter 4) and their potential impact on model performance in terms of

a response of interest (Chapter 5 and Chapter 7).

Another concern with previously published research is the lack of mAb samples used for model
development, which was in many cases below 40 samples (Robinson et al., 2017, Kittelmann
et al., 2017). Due to the large structural variability of mAbs, a smaller dataset will be limiting
and might not necessarily contain the structural variability needed for accurate model
prediction. In this study, a larger dataset published by Jain et al. (2017) was used, consisting of
137 unique mAbs with 12 experimental assays performed for each mAb. This allowed for
greater structural variation between mADbs to be included in the model development compared
to previously published research. Out of the 12 experimental assays provided by Jain et al.

(2017), HIC retention time and mAb yield were selected as responses to be used in model
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development due to representing important factors of the DSP and USP, respectively, in
industrial process development of mAbs. As mentioned previously in Section 1.2.3, HIC is a
common polishing step in mAb purification but also allows for the investigation of their
stability based on retention times as more hydrophobic mAb would elute later (Haverick et al.,
2014). As for the mAb yield, this parameter is important in order to ensure that enough product
can be extracted cost effectively, given of course that the majority of the expressed mAb
structures fulfils the QTPP and CQA requirements for the intended drug.

The potential impact of successful prediction of mAb behaviour based on their structure is
invaluable in biopharmaceutical industry as it can provide critical information pertaining to
their stability (Obrezanova et al., 2015), behaviour in operational units (Robinson et al., 2017)
and potential structural variants (Sydow et al., 2014), to mention a few. This can aid in early
process development of new mAb candidates and in turn in a more informed risk assessment
and process route selection, thereby reducing the number of required experiments to
characterise the process, resulting in lower development costs and lead times.

1.6 Summary

Due to the high efficacy and safety of the mAbs, their market has grown considerably during
the last three decades. This has led to an increased focus on improvement and optimisation of

the process development in order to manufacture mAbs cheaper and faster.

The QbD framework was reviewed as a means to increases the process understanding through
characterisation of PPs and their effect on the product quality. However, due to the numerous
PPs that need to be characterised, the QbD framework still faces challenges in implementation.
Much research has been performed in areas such as high-throughput platforms and process
optimisation to reduce attrition in the process development. More importantly, one of the
biggest problems with QbD is the lack of knowledge about both the process and product in

early process development where the manufacturability of an mAb might not be possible.

The use of in silico methods for prediction of protein and mAb behaviour in different unit
oprations has proven to be efficient to increase product knowledge. Based on the QSAR
framework, historic process data from established and failed mAb processes can be used and
linked with structural properties of the mAbs in order to investigate potential behaviour during
processing. Different strategies for generating structural properties or descriptors of an mAb
have been suggested and reviewed based on the amino acid composition, homology modelling

and MD simulation.
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The integration of QSAR and QbD frameworks is therefore proposed here to increase product

and process understanding which is especially important in early process development.
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Chapter 2

Modelling Development and Assessment

In this Chapter, an overview of some of the current and more traditional techniques used for
data exploration, classification and regression is presented. The theory of each method is
explained with references to further detailed literature and some examples of applicability are
highlighted. Model training and validation with cross-validation in particular are reviewed and
their importance in model training and validation is critically discussed. The material in this
chapter acts as a foundation for all model development performed in this thesis and it also
provides a useful overview of the tools for tackling a wide variety of different modelling

problems in other disciplines and industrial sectors.

2.1 Matrix, vector and index notations

For consistency and to avoid confusion, specific naming conventions is used throughout for the
independent and dependent variables in this chapter to describe the structure of vectors and
matrices used in the different multivariate techniques explained below. Additional matrix,
vector or index notations specific to individual methods are specified and explained in

connection with the method in question.

2.1.1 Independent data

The independent data will be referred to as X shown in eq.(2.1) where the rows correspond to
individual samples and the columns to individual independent variables. The term structural

descriptors defined in QSAR modelling is equivalent to that of the independent variables

Y11 X2 Xim
X21 X2 X1m

X=1 " o (2.1)
XN1  XN2 o XM
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Index notation for samples in this thesis will usei,j =1, ..., N where i and j are individual
arbitrary samples and N is the total number of samples in the data set. Index notation for
variables/descriptors will use k,l=1,..,M where k and [ are individual arbitrary
variables/descriptors and M is the total number of variables/descriptors in X. Small letter x in
bold in this chapter indicates either a column vector for a single variable eq.(2.2) or a row vector
for a single sample eq.(2.3) and can be identified based on the index notation belonging to either

the variables or the samples.

X1k
X2k

X =| : (2.2)
XNk

x;=[Xi1 Xz v Xim] (2.3)

2.1.2 Dependent data

The dependent variables or response variables will be referred to as ¥ shown in eq.(2.4) where

the rows correspond to individual samples and the columns to the individual response variables.

Y11 Y12 Y1ip
Y21 Y22 Yip

Y = : - : (2.4)
YN1 YN2 -+ YnDp

Index notation for response variables will use f, g,h = 1, ..., D where f, g and h are individual
arbitrary responses and D is the total number of response variables in Y. Small letter y in bold
in this chapter indicates either a column vector for a single response eq.(2.5) or a row vector
for a single sample eq.(2.6) and can be identified based on the index notation belonging to either

the variables or the samples.

le
fo

yr=|: 2.5)
fo

yi=Di1 Yiz  Yip] (2.6)
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2.2 Exploratory Data Analysis

Exploratory data analysis (EDA) is applied to better understand the main characteristics of a
data set and can therefore provide an overview of the variables and samples in a study used to
identify similarities/dissimilarities, systematic trends and outlies (Biancolillo and Marini,
2018). EDA is therefore a crucial step prior to any predictive modelling in order to identify
sources of variation that can potential impact on model performance. In this research, Principal
Component Analysis (PCA) has been reviewed due to being one of the most commonly used
techniques EDA.

2.2.1 Principal Component Analysis

PCA is one of the oldest and most widely used data exploration tools in fields of statistics,
biology and chemometrics. The idea behind PCA was first introduced by Pearson in 1901 who
proposed the that lines could be placed in a high dimensional variable space that had a best fit
to a set of sample points. The direction of the lines in the original variable space were placed in
such a way that the correlations between the lines and the original variables were maximised,
thus ensuring that most of the variation in the data was captured (Pearson, 1901). The method
was later improved upon by Hotelling in 1933 who instead of using lines, used linear
transformations to transform the data to a new coordinate system where the new axes were

linear combinations on the original variables (Hotelling, 1933).

2.2.1.1 Theory

Given a data matrix, e.g. X, a new set of variables called Principal Components (PCs) are

calculated which describe the variation of the original variables according to:

X=TP" +E = t,p] + t,p5 + -+ tzp} + E,

r=1,..,R (2.7)
whereT = [t; ... tg] (NxR)isthe sample score matrix and R is the number of components,
t, (N x 1) is the score vector of componentr, P = [P1 .- Pr] (M XR) is the loadings matrix,

pr (M x 1) is the loading vector of component r and E (N x M) is the residual error matrix not

explained by the PCs.

The loading vectors are linear combinations of the original variables are pair-wise orthogonal.
When stronger correlations between the original variables are present, fewer PCs are required

to explain the majority of the variation in X. Also, due to the orthogonality, each PC has an
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individual contribution to the explained variation according to eq.(2.8). Thus, increasing the

number of PCs will in turn increase the total variation explained.

2 2 2
ITPT|12 = ||t,p]||” + [|t205]]” + - + ||trPR|” = 8)
= |IX||% — ||E||? '
PCA relies on the calculation of the covariance matrix, X, as it describes the covariance between

pairs of variables in X. The covariance between two variables is calculated according to:

N
1
cov(xy, x;) = mZ(xik — %) (xyy — %1), 29)
i=1 .

ki=1,..,M

The full covariance matrix, X, is defined in eq.(2.10) where the diagonal elements become the
variances for the individual variables, cov(xy,x;) = g2. Eq.(2.10) can be simplified as

according to eq.(2.11) by first mean-centring the X block (see Section 2.7).

of cov(xy, X3) cov(xy, Xp)
5 = | cov(xz, x1) o2 cov(xz, Xp) (2.10)
cov(xy, x1)  cov(xy,x;) - O
1 T
L= mXCentXCent (2.11)

In order to find the directions and importance of the PCs, the eigenvalues, 1;, and eigenvectors,
v, (M x 1), are calculated from X. For details on calculation and properties of eigenvalues and
eigenvectors, refer to Appendix D.1. The eigenvectors calculated from covariance matrix play
a central role in the calculation of the PCs as they are pair-wise orthogonal and represent the

directions in the original variable space in which the data variations are the highest.

The eigenvalues on the other hand determines the importance of their corresponding
eigenvector where a higher eigenvalue indicates a larger data variation in the direction of the
eigenvector. The covariance matrix, X, can then be decomposed using the eigenvectors and

eigenvalues which is known as eigen-decomposition according to:
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T =VAVT (2.12)

where V = [V V; .. Vpy] is the eigenvector matrix and A = diag(44,4,,...,4y) is a
diagonal matrix consisting of the eigenvalues where A, > A, = --- = 4,,. Based on the
definition of PCA stated in eq.(2.7), the PC loadings are equal to the eigenvector matrix due to
their orthogonality according to eq.(2.13). An example of the placement of two eigenvectors
is illustrated in Figure 2.1c. The PC scores are then calculated as the product of the mean centred
X matrix and the loadings, P, according to eq.(2.14). Figure 2.1d illustrates the new placement
of samples on two PCs where the red and blue dashed lines represents the scores on the first PC

and second PC for sample i. The representation is also known as a score plot.

P=V (2.13)

T = XcentV = Xcent P (2.14)

Alternatively, the principal components can be calculated using Singular Value Decomposition
(SVD) which is present in Appendix D.2.
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Figure 2.1. Overview and critical steps of data decomposition with PCA in two dimensions. (a) The raw data is
first (b) pre-treated by mean centring the samples around the origin. (c) Linear combinations of the original
variables, x; and x,, known as eigenvectors are then calculated where the first eigenvector, v, (red), lies in the
direction of the greatest data variation and the second eigenvector, v, (blue), in the direction of the second greatest
data variation. (d) Final transformation of samples to the PC; (red line) and PC; (blue line) axes where each sample
is represented by its individual scores (adapted from O'Malley (2008))

2.2.1.2 Applicability of PCA in this research

PCA is a very useful tool for visualisation and exploration of high dimensional data set due to
its ability to reduce the variable dimensionality and to capture strong correlations between
variables which might otherwise be difficult to explore. PCA also has powerful diagnostic
capabilities for detection of outliers based on residual values and the calculation of Hotelling
T2 (Hotelling, 1933). This provides evidence for characterisation of not only ill-fitted samples
with high residual values, but can be used to identify extreme samples that are forcing the
direction of the PCs. Thus, PCA aids in the identification of samples which require further
investigation due to different behaviour compared to the other samples in the data set (Bro and
Smilde, 2014).

PCA has been extensively used over the years within bio-related research for applications
ranging from the effects of raw material variations in media composition (O’Kennedy, 2016),
characterisation of fermentation process (Sokolov et al., 2016, Rathore et al., 2015), fault
detection in fermentation (Gunther et al., 2006) and effects of scalability on bioprocesses
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(Mercier et al., 2013) to mention a few. In all applications, PCA was shown to be an effective
method used to identify sources of variation that impacted upon the individual problem
statements. The authors also highlighted the importance of selecting the right number of

components in order to filter out noise and keep application related variation.

The selection of the number of PCs to use when decomposing X depends mainly on the problem
statement as well as the data. In the visualisation of the scores, class information can be
incorporated by colouring samples according to the available classes which might aid in
determining the number of PCs needed to find a good separation class separation (Biancolillo
and Marini, 2018, Bro and Smilde, 2014). However, due to being unsupervised and depending
only on the data variation in X, PCA will not necessarily lead to a good separation of classes if
the data variation is not directly correlated to the class information. Alternatively, a scree test
can be performed where the eigenvalues or the captured variation are plotted against their
corresponding PCs. The number of PCs are chosen based on when the decrease in eigenvalues
becomes linear, indicating that the model is starting to capture noise (D'Agostino Sr and
Russell, 2005). Another method is the Broken stick method where a line based on the broken
stick distribution is added to the scree plot (MacArthur, 1957). The line mimics the behaviour
of eigenvalues calculated from a completely randomised data set, thus effectively representing
noise. If eigenvalues in the PCA model lies above the line this is an indication that the PC
capture structured variation. The last reviewed approach is to define a limit for the minimum

total explained variance which must be captured by the PCA model (Bro and Smilde, 2014).

In this research, a limit for the minimum total explained variance was used due to two reasons:
1) The components in PCA are additive, meaning that even if extra components are added to
the model, the structure of the initial components will remain unchanged. 2) PCA was only used
for exploration and therefore a strict number of components does not need to be defined. Bro
and Smilde (2014) argued that this allows for greater exploration of the behaviour in the
individual components. However, it is mportant to remember that it also inadvertently increases

the chances of including components that only capture noise.

It is important to note that PCA will only perform well if the relationship between correlated
variables is linear, meaning for non-linear correlations PCA will not be able to capture the

correlation between variables.

2.3 Classification

When distinct classes exist in the data set and clear discrimination is needed, dedicated

classification methods may be more appropriate for the task and can be used to investigate
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potential correlation between variables in X and the sample classes. The theory of the popular
classification methods PLS-DA and SVC has been covered in this research and their

applicability assessed.

2.3.1 Partial Least Square — Discriminant Analysis

PLS-DA like the name implies, is a combination of Partial Least Squares (PLS) and Linear
Discriminant Analysis (LDA). However, only LDA will be covered in this section due to being
the classifier whereas PLS is strictly a regression method (see section Section 2.4.1). As for the
LDA algorithm, Bayes decision rule was used in this research due to being better suited to the

problem statement (see Section 2.3.1.2). The method theory has been covered below

2.3.1.1 Theory

Before describing the theory of the Bayes™ method, it is important to understand the structure
of the input data into the DA algorithm. Prior to the classification, a PLS regression model will
be trained with X and Y. The matrix ¥ (N x C) contains the class memberships of the samples
and is represented in the form of dummy variables. An example of Y in a binary classification
problem (D = 2) with classes C; and C, is presented in Figure 2.2a. Two dummy variables have
been generated as column vectors representing each class where the class membership of each
sample, x;, is assigned with values of either one and zero. A value of one indicates membership
to the class represented in the dummy variable while a value of zero indicates membership to

another class, e.g. if y;; = 1 then the sample x; € C;.

However, the predictions from the PLS model, ¥, will not be predicted perfectly as ones and
zeros but will instead have predictions close to the original values of Y. An example of PLS

predictions is presented in Figure 2.2b.
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(a) (b)

Figure 2.2. The structure of the response vector Y in a binary classification problem used in PLS-DA. (a) Dummy
variables are used to construct ¥ and assign class memberships of samples to either C; (blue) and C, (red). (b)
Example predictions from the PLS regression.

A Dbinary classification problem however will not need two dummy variables in order to
represent the classes due to all samples being listed as either ones or zeros in each column. The
PLS-DA algorithm will build two classifiers based on each dummy variable. The solutions of
these classifiers however will be identical due to the class membership of the samples being
retained regardless of which column in Y is used as well as the individual class means and
variances of C; and C, being identical in both columns (Brereton and Lloyd, 2014). Therefore,
in order to avoid confusion, Bayes method will be explained in relation to the second column

in ¥ which, for convenience, will be referred to as 9 = (51, 95, ..., Pn)-

Bayes” theorem for discrimination of two classes can be formulated according to:

P(yilcc)P(Cc)
P(:)

P(Cc|p) = o P(§;|C.)P(C.) (2.15)

P(C.|¥;) is the posterior probability of a sample i belonging to class C, given a particular value
of 9; where ¢ = 1,2. The P(y;|C.) term is the likelihood or the probability of observing y;
given C.. The P(C,) term is the prior probability of class C., or more specifically, the
probability of observing class C.. P(¥;) is the probability of observing y;. The posterior
probability is directly proportional to the numerator in eq.(2.15) due to that P(y;) will not

change regardless of the class defined in the posterior.

The likelihood, P(¥;|C,), can be defined as a gaussian function according to:
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1 Ai - _c 2
P(3ilC) = = exp <— (ya—zy)> (2.16)

2mo;

where g, is the standard deviations of samples belonging to class C, and ¥ is the sample mean
of class C.. An example of the likelihood functions is illustrated in Figure 2.3a for class C; (blue
line) and C, (red line) where the predicted values are centred around zero and one, respectively.
The prior class probabilities are calculated as the ratio of samples belonging to a specific class

and all samples in the data set according to:

N,
DY PC=1  PC)=7 (2.17)

where N, is the number of samples belonging to class C.. The sum of all priors needs to be
equal to one. The probability of observing ¥; is the sum of the likelihoods weighted by their
corresponding class priors according to:

2
P@) = ) PGHICIP(CS (2.18)
c=1

An example of the distribution of P(y;) is illustrated in Figure 2.3a as the grey dashed line and
it can be observed that the peaks of the likelihoods are preserved in the distribution which was
weighted with P(C;) = P(C,) = 0.5 in order for the distribution area to become equal to one.
The posterior probabilities for class C; and C, are illustrated in Figure 2.3b as the blue and red
line, respectively. It can be observed that samples around zero on the y axis will be classified
as C; while samples around one be classified as C,. A point of interest is where P(C,|y) =

P(C,|¥), which is known as the decision boundary, d.
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Figure 2.3. Probability distributions used in Bayes theorem. (a) Examples of the likelihood distributions of §
belonging to class C; (blue line) and C, (red line) centred around zero and one, respectively. The distribution of §
(dashed grey line) with equal samples sizes, P(C;) = P(C,) = 0.5. (b) The posterior probabilities of a sample
belonging to either to class C; (blue line) or C, (red line) based on § with the decision boundary, d (dashed black
line) (adapted from Pérez et al. (2009)).

Two options exist for classification of samples once the posterior probability functions have
been calculated: 1) the decision boundary can used directly to determine the class of a sample
i based on y; from the PLS model, or 2) the probabilities of a sample i is calculated using the
posterior probability function according to eq.(2.15) and the class with the highest probability

is assigned to the sample. In this research, the latter option has been used.

2.3.1.2 Applicability of PLS-DA in this research

If the goal is to investigate discrimination between sample classes, PLS-DA will be much more
useful compared to PCA due to the maximisation of covariance between X and Y (Ballabio and
Consonni, 2013).Numerous PLS-DA algorithms with different decision boundary rules and
their application in the PLS algorithm have been developed in the past (Povey et al., 2014, Chen
et al., 2018). It is therefore important to consider the different aspects and choices available for
PLS-DA with regards to the problem statement in order to develop meaningful models. Several
decision rules exist which can be used in PLS-DA to generate the decision boundary where the
two most common ones are: 1) Fisher’s LDA which minimises the variance in the individual
classes while maximising the distance between the class means and assumes Gaussian
distribution and equal variance between classes (Barker and Rayens, 2003). 2) Bayes decision
rule which allows for prior class probabilities to be used. Bayes rule applies Gaussian
distribution fit to the individual classes, but does not assume the class variances to be equal
(Indahl et al., 2007, Pérez et al., 2009). For LDA, class imbalances have a negative impact on
the model due to that the decision boundary will be moved closer to the class containing the
most samples which consequently can cause a higher misclassification rate if the class variance

is large (Brereton and Lloyd, 2014). This is however not a problem with Bayes rule due to
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assignment of class weights based on the prior probabilities of the class occurrence within the
data set as seen in eq. (2.15). As a result, Bayes decision rule will modify and place the decision
boundary in the centre between the two classes (Indahl et al., 2007). For this reason, Bayes
decision rule was therefore chosen in this research as the data set available from Jain et al.

(2017) demonstrated uneven class representation.

Kjeldahl and Bro (2010) as well as Gromski et al. (2015) reported on a common misconception
about PLS-DA where many publications report model performance based on R? and Q? (see
Section 2.6.1). This is often misleading as these describes the model fit with regards to
regression and give no information pertaining to correct classification and misclassification of
asample. In this research, performance metrics conforming to classification problem statements

are strictly used (see Section 2.6.2).

Another important aspect to consider is the contribution of random chance-correlation between
X and Y in PLS-DA. Perez and Narasimhan (2018) showed that the accuracy of PLS-DA fitted
on randomly generated variables increased when the number of variables became much greater
than the number of samples in the data set (M > N). This is caused by random chance-
correlation between X and Y, thus making it appear as if PLS-DA resulted in a clear
discrimination of classes but where in reality, none should exist. Perez and Narasimhan (2018)
as well as Westerhuis et al. (2008) highlighted the importance of rigorous cross-validation (see
Section 2.5) in order to ensure that PLS-DA captures the true underlying pattern in the data.

In reviews by Gromski et al. (2015) and Brereton and Lloyd (2014), the authors stated that PLS-
DA is often outperformed by other classification methods such as Support Vector Machines for
classification (SVC). PLS-DA might therefore not be the optimal choice of classifier to apply
in many problem statements. However, PLS-DA has unparalleled diagnostic capabilities
compared to other methods due to the PLS component in the algorithm which can assess sample
and variable contributions to the predictions (see Section 2.4.1 for more information).
Therefore, PLS-DA should be seen as an intermediate step in classification model development
to be used for outlier detection and investigation of highly contributing variables prior to model

development with an alternative classifier (Brereton and Lloyd, 2014, Gromski et al., 2015).

2.3.2 Support Vector Machines for Classification

Support Vector Machines (SVM) for classification (SVC) were first introduced by Boser et al.
(1992) as a linear or non-linear classification method that maximises the separation of classes

through calculation of optimal placement of the decision boundary. The method is based on the
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original work of Vapnik who first introduced the method in 1963 as the “generalised portrait

algorithm” (Vapnik and Lerner, 1963).

The aspect that the SVC algorithm addresses, that many classification techniques do not, is that
of over-fitting. As previously discussed, when training a classifier to maximise correct
classification it is possible to fit the classifier over-fit to the training set. This has the effect of
degrading the performance of the classifier when presented with unseen data. In a binary
classification problem, the SVC algorithm trains a decision function that maximises the
generalisation between the classes. In doing so, this makes the algorithm more robust.

In literature, the abbreviations of SVM and SVC are used interchangeably so in order to avoid
confusion, this research uses SVC to distinguish SVM for classification from that of SVM for

regression (SVR) which has also been applied in this research (see Section 2.4.2).

2.3.2.1 Theory

In a binary classification problem that is linearly separable, for any given data set, e.g. X, where
each sample is assigned a class according to y; € {—1,1}, the SVC algorithm will always find

3

the largest margin or the “widest street” that separates the two classes. The separation is
illustrated in Figure 2.4a of positive samples (red dots) and negative samples (blue dots)

according to a defined hyperplane shown as the black line.

. Support vectors

(a) (b)

Figure 2.4. SVC placement of the decision boundary (black line) generated from selected samples that act as
support vectors (black circles) which maximises class discrimination in a problem that is (a) linearly separable and
(b) not linearly separable. The SVC constraints for separating positive and negative class samples are shown as
the red dashed line and blue dashed line, respectively (adapted from Boser et al. (1992))

The SVC algorithm defines the boundaries for each class according to:
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w-xf+b=>1 (2.19)

w'x; +b< -1 (2.20)

where w = (w4, Wy, ..., wy) (M x 1) is the normal vector of the desired hyperplane, b is the
distance from the origin to the hyperplane and is parallel to w, x; are samples for which y; = 1
and x; are samples for which y; = —1. For simplicity, eq.(2.19) and eq.(2.20) can be rewritten

as a single expression through multiplication of y; according to:

yi(w-x;+b)—-1=20 (2.21)

The orientation and placement of the hyper plane in the variable space is defined by a subset of
samples, positive and negative, called support vectors (SVs) that defines the boundaries

according to:

ysv(@- x5y +b)—1=0 (2.22)

The maximal width of the margin is defined by the SVs and will always be equal to 2/||wl||,
where ||w]|, is the magnitude of w. Therefore, in order to maximise the separation of samples,
|lw||, needs to be minimised. Based on the defined width of the margin and the decision

boundary in eq.(2.21), the primal optimisation problem can be formulated according to:

mimise = |||
minimise — ||l
w,b 2 2

(2.23)
subjectto  y;(w-x;+b)—1=0

where %llwll% is the objective function for which w and b are the variables that needs to be

optimised and eq.(2.21) has been added as linear constraints. As can be observed, the original
minimisation of ||w]||, has been slightly modified to ||w||5 instead which transforms the
optimization into a quadratic programming (QP) problem, meaning that the solution space
becomes convex and a global solution can always be produced. The primal can be solved
directly using QP designed solvers to find the minimum value in the objective function.

However, solving the primal can be computationally cumbersome if M is large which is usually
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the case where data sets today can consist of thousands of variables. The QP problem in
eq.(2.23) can instead be reformulated by using Lagrange Multipliers to define the dual problem
according to:

N N
. 1
maX}Zmlse W(a) = Z a; — E Z aiajyl-iji . x]-
i=1 i,j=1
subjectto a; =0, i=1,..,N (2.24)
N
z a;y; =0
i=1

where W (a) is the new optimisation function called Wolf’s dual and a = (a4, a5, ..., ay) (N
x 1) are multipliers for the constraints in expression eq.(2.23). For detailed formulation of the
dual with Lagrange Multipliers (see Appendix D.3). It can be observed in expression eq.(2.24)
that the dual is only dependent on the samples in the data set to form of the inner product
between pairs of samples. This is an especially beneficial quality of the dual formulation due
to N « M in many data sets today. For support vectors, the values of a; will be non-zero and
x; € xgy While samples laying further away from the boundaries will have «; equal to zero.
The optimal solution for a is obtained by using the Sequential Minimal Optimisation (SMO)
algorithm which is specially designed to handle QP problems in SVC for both classification
and regression (Platt, 1998, Shevade et al., 2000). The variables w and b can then be solved

using the identified support vectors.

Class prediction of an unknown sample, x,,, can then be performed according to:

N
D(x) = sign(w - x + b) = sign (Z ayixX; - Xy + b) (2.25)

i=1

where D (x) is the decision function for a sample x. Substitution of w has been performed with
eg.(D.13) in the last equality of eq.(2.25). This also shows that the solution of the hyper plane
is dependent only on the samples.

2.3.2.2 Soft Margin

So far only cases that are linearly separable have been discussed. For non-separable
classification problems such as the example illustrated in Figure 2.4b where a positive sample
(red) is mixed in with the negative samples (blue) the QP problem in eq.(2.23) will fail. Cortes
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and Vapnik adjusted for this by introducing slack variables, &;, to allow for some
misclassification and is known as soft margin classifier (Cortes and Vapnik, 1995). The QP

problem in eq.(2.23) then becomes:

N
1
minimise 5 lwll3 + CZ ¢i
i=1

w,b,§

(2.26)
subjectto  y;(w-x; +b)=1-¢;

=0

where C is the cost parameter which is a regularisation term used to penalise the QP problem
and must be greater than zero. The second term in the objective function of eq.(2.26) is known
as the loss function and controls the misclassification of samples. It can be observed from the
constraints in eq.(2.26) that samples now are allowed to fall inside of the margin, &; < 1, as
well as to be misclassified, &; > 1. The cost parameter, C, controls the flexibility where a small
value introduces more slack, meaning more samples will have &; > 0 and therefore allows for
more misclassification. A large value of C on the other hand forces the slack variables to
become closer to zero and classification becomes stricter. If C is set to infinity the QP problem
in eq.(2.26) becomes equivalent to eq.(2.23) which appropriately is known as a hard margin
classifier.

Formulation of the Lagrange dual in eq.(2.26) then becomes:

N N
- . 1
maX}xmlse L(a) = z a; — > z a;q;yyjXi - Xj
i=1

ij=1
subjectto 0<a; <C, i=1,..,N (2.27)
N
z a;y; =0
i=1

where can be observed that only the constraints for ; has changed and now has an upper limit
of € when compared to the dual of the hard margin QP problem in eq.(2.23). The solution of a
is obtained using the SMO algorithm.
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2.3.2.3 Kernel Trick for non-linearity

For non-linear application of SVC, the so-called Kernel trick can be used to transform the
samples from the original variable space to a higher dimensional feature space with the use of

a Kernel function, K, according to:
K(xi,%7) = 9(x) - o(x;) (2.28)

where ¢ (x;) = (@1 (x;), 2 (x)), ..., @, (x;)) is called the feature map of x; and L is the number
of features for which L > M. An example of a non-linear mapping from a two-dimensional to
a three-dimensional feature space is illustrated in Figure 2.5 where the classification problem

becomes linearly separable.
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Figure 2.5. Transformation with a non-linear mapping function, ¢ (x), from a two-dimensional variable space to
a three-dimensional feature space where the positive samples (red) become linearly separable from the negative
samples (blue).

A requirement of the Kernel function is that the corresponding gram matrix, I, shown in
eq.(2.29) must be symmetric, e.g. K(x4, x,) = K(x,, x1), and positive semi-definite (Shawe-
Taylor and Cristianini, 2004).

K(xy,x1) KCp,x)  K(xg,xy)
T K(xZﬁxl) K(thxZ) K(XZE' xN) (229)
KCey, x1)  K(xy,x2) - K(xy, xy)

Two popular kernels often used in research are the polynomial kernel in eq.(2.30) where d is
the polynomial degree and the radial basis function (RBF) kernel in eq.(2.31) where o is the
peak spread. For convenience, the kernel parameter will be referred to as y throughout this
thesis.
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da

K(xix;) = (% - x; + 1)d = (Z XixXjy + 1) (2.30)

=1

- X
K(xi, x]) = exp (—% = exp _FZ(xik_xjk)z (231)
=1

Cortes and Vapnik showed in 1995 that the dot products in the dual formulations of the hard
margin in eg.(2.24) and the soft margin in eq.(2.27) classifiers could effectively be replaced
with a kernel function, K, in order to train the SVC algorithm (Cortes and Vapnik, 1995). The
decision boundary function in eq.(2.25) can then be reformulated to include the non-linear
hyper plane for classification of the samples according to:

N
D(x) = sign (2 a;y; K(x;, x) + b) (2.32)

i=1

2.3.2.4 Applicability of SVC in this research

The main strength of SVC is that the method is robust in high-dimensional problems where the
placement of the decision boundary is decided by a small subset of samples (support vectors).
This results in better generalisation performance compared to that of PLS-DA (Gromski et al.,
2015). However, a disadvantage of SVC is that the interpretation of important variables is
difficult due to lack of supporting statistics of variable contribution to the response and can only
be assessed based on the magnitude of the weights, w. This becomes even more difficult if a
non-linear kernel is applied due to the generation of extra variables and the non-linear nature
of the decision boundary (Maldonado and Weber, 2009).

Multiple toolboxes exist for implementation of SVM. In a study by Steinwart and Thomann
(2017), the authors compared to execution times and performances of several popular SVM
toolboxes that are available for free. In this research, the LibSVM toolbox was applied, though
not being the fastest, is has been extensively documented and continuously updated in order to

provide more robust solutions (Chang and Lin, 2011).

Similar to that of PLS-DA, class imbalances present in the data set of interest need to be
considered when using soft-margin SVC. Several strategies exist to approach this where
separate cost values, C, for each class can be applied, similar to that of prior probabilities in
PLS-DA discussed in Section 2.3.1.2 (Akbani et al., 2004). Alternatively, a higher loss penalties
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can be assigned to the minority class samples, thus effectively changing the optimal solution to
the QP problem to accept less misclassification of the minority class (Hsu et al., 2003). In this
research, the former approach was used due to being similar to that of Bayes rule used in PLS-

DA, thus allowing for a fairer comparison between the classification methods.

Another important consideration is the selection of the cost parameter C and potential kernel
parameters which greatly affects the performance of the model. Several alternatives for
optimisation of are available but where the grid search method (Hsu et al., 2003) and Bayesian
optimisation (Cawley and Talbot, 2007, Czarnecki et al., 2015) are most commonly used. In
the grid search approach, ranges containing several values for each of the parameters are
defined to form a grid of different parameter permutations which are validated via cross-
validation in order to identify the best parameters (see Section 2.5). The Bayesian optimisation
on the other hand uses the information available from previous parameter evaluations as well
as local gradient approximations which allows the algorithm to find a parameter solution with
relatively few evaluations and thus resulting in being faster than the grid search approach
(Snoek et al., 2012). However, due to the fact that the solution space of the parameters is often
non-convex, the Bayesian optimisation approach is at risk of selecting a local solution. The grid
search approach was therefore used in this research due to being more robust and extensive in

evaluation of parameter permutations (Hsu et al., 2003).

2.3.3 Multiclass Classification Problems

Many classification problems usually consist of more than two classes which need to be
separated. However, many classification techniques, including SVC, will only work for binary
classification problems. To circumvent this problem, two approaches referred to as “One versus
Rest” (OvR) and “One versus One” (OvO) are often applied in research (Statnikov et al., 2004,
Galar et al., 2011).

In the OvO strategy, illustrated in Figure 2.6a, an individual classification model is developed
for each unique class-pair. This results in a total of%c(c — 1) models where c is the number of

classes in the data set. Class assignment of samples is decided by the number of times a class
has been chosen in the developed models. This method tends to work best with an odd number
of classes due to a lower risk of a sample being unassigned if the sample proves difficult to

classify.

In the OVR strategy, illustrated in Figure 2.6b, an individual model is developed for each class
with the remaining classes pooled together which results in a total of ¢ models being developed.

Class assignment can be performed using the intrinsic properties of the used classification
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method. For PLS-DA, class assignment can be performed using the generated posterior
probabilities which will be closer to one in the model representing the class of interest while
being closer to zero in the remaining models. In SVC, class assignment can be performed using
the generated decision values which will be positive in the model representing the class of

interest while having negative values in the remaining models.

In a study performed by Hsu and Lin (2002), both OvR and OvO were extensively tested on
several different data set with SVC. It was observed that both strategies had comparable
performance thus making it difficult to identify the superior strategy. In this research, the OvR
strategy was selected due to two reasons: 1) Each class is represented by an individual model,
thus making the evaluation of the individual classes simpler due to that none of the samples
will be unassigned a class. 2) There is less risk of over-fitting of the model due to lack of

samples (see Section 2.5).
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Figure 2.6. Classification strategies for multiclass problems with (a) One versus One and (b) One versus Rest.
Decision boundaries are shown as dashed black lines (adapted from Statnikov et al. (2004)).

2.4 Regression

QSAR model development linking the measurements of the selected response data to the
structural descriptors of mAbs was performed with dedicated regression methods. In this
research, the theory of PLS and SVR have been covered and their applicability to QSAR

modelling have been reviewed.

2.4.1 Partial Least Square Regression

PLS is one of the most widely used regression tools in the field of chemometrics due to its
simplicity and strong diagnostic capabilities. PLS was first introduced by Wold as a method to
model the relationship between X and ¥ through matrix decomposition similar to that of PCA
(Wold et al., 1984). Unlike Multiple Linear Regression (MLR), PLS will still work even if the
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variables are more numerous than the samples (N > M), the variables are correlated and noisy.
The PLS algorithm is also able to model several response (dependent) variables in Y (D > 1)
simultaneously (Wold et al., 2001). Two common algorithms used to perform PLS modelling
are NIPALS (Geladi and Kowalski, 1986) and SIMPLS (De Jong, 1993). In this section, PLS

implementation will be explained according to the NIPALS algorithm.

2.4.1.1 Theory

Like PCA, PLS will find a set of new variables which are linear combinations of the original
variables in X and the response variables in ¥ according to eq.(2.33) and eq.(2.34), respectively.
These new variables are called Latent Variables (LVs) but will be referred to as components

throughout this section.

R
X=TP"+E= z t,pT +E (2.33)
r=1
R
Y=UQ"+H=) uql+H (2.34)
r=1

where T (N x R) and U (N x R) are the score matrices of X and Y, respectively, and where t,
(N x 1) and u,- (N x 1) are the individual scores for component r, P (M x R) and Q (D x R) are
the loading matrices of X and Y, respectively, where p,. (M x 1) and q,- (D x 1) are the individual
loadings for component . E (N x M) and H (N x D) are the residual matrices of X and Y,
respectively. In order to have good prediction of ¥, the corresponding components in the score
matrices, T and U, needs to be calculated in such a way so that the relationship between them

becomes linear and is illustrated in Figure 2.7 for the first component.
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Figure 2.7. Correlation of scores of the first component from the decomposed X and ¥ blocks with PLS.

Eq.(2.34) can then be reformulated according to:

R
Y=TQ" +F = Z t.qr +F (2.35)

r=1

T + XP (2.36)

where F (N x D) is the new residual matrix of Y. This means that the X-loadings, p,- and the
Y-loadings, q,., of a component r needs to be calculated so that the captured variation in X is
correlated to the captured variation in Y. Thus, T cannot be calculated in the same was as in
PCA eq.(2.36). Instead, PLS introduces a new variable, W (M x R), which are known as weights
that describes the relationship between X and Y. The weights of the first component, w,, are
calculated as the first eigenvector, v,, from XTYYTX which is proportional to the product of

the combined covariance matrix, Xy, (M X D) according to:
Ty Xk = ;XTYYTX « XTYyY’X
XYExy = N _1)2 (2.37)

Eq.(2.37) is only valid if both X and Y have been centred prior to the calculation (see Section
2.7). For more information on eigenvectors, refer to Appendix D.1. It can be shown that the

calculation of w, can be simplified by using Xy directly according to:

XTY;
Wy = o——
Py (2.38)
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where Y is the response variable with the largest magnitude when D > 1. If only one response
variable is available (D = 1), then Y, =Y. The X-scores, t;, can be calculated once w,

according to eq.(2.39). The X-loadings can then be acquired by projecting X onto ¢, according
to (2.40).

t, = Xw, (2.39)
XTt,
P = e, (2.40)

Trough substitution of eq.(2.39) into eq.(2.35), the Y-loadings and Y-scores can be calculated

by projection of ¥ onto ¢; and q, according to expression (2.41) and (2.42), respectively.

Y't,
ql - t'{tl (241)
YT‘h
U, = 2.42
' qlq, (2.42)

X and Y are then deflated in order to calculate following components according to eq.(2.43)
and eq.(2.44), respectively.

E,=X-tp] (2.43)

F,=Y—uqf (2.44)

Where E, and F; are the residual matrices of X and Y, respectively after deflation with the first
component. The weights for the second component are then calculated according to eq.(2.45)
where t,, p,, q, and c, are calculated as previously shown with regards to E; and F, instead
of Xand Y.

ETF,
W, = ————
2 = ETF41I, (2.45)
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However, due to the deflation of X, the individual component weights, w,., will not be directly
related to X but instead related to the corresponding residual matrix from the previous
component, E,_;. The weights can however be transformed to directly relate to X according

to:
w*=w(P'w)? (2.46)

where W* (M x R) is directly related to X. The X-scores in expression (2.39) can then be

reformulated to:
T =XW*=Xw/P'w)! (2.47)
The prediction of Y in eq.(2.35) can then be rewritten to the more formal expression:
Y=XB+F (2.48)
where the regression coefficients, B, are estimated according to:

B=WwW(/PTW) QT (2.49)

2.4.1.2 Applicability of PLS in this research

The main strength of PLS is its simplicity and diagnostic capabilities. Due to being a
decomposition method, the diagnostic capabilities that are inherent in the PCA are also a feature
of PLS (Bro and Smilde, 2014). This greatly aids in identification of outliers and samples that
need to be further investigated. Contribution of variables to the prediction can be directly
assessed in the PLS model with Variable Importance in Projection (VIP) and Selective Ratio
(SR) (Farres et al., 2015). It is, however important to remember that both VIP and SR are linked
to the performance of the model and therefore if low, the resulting VIP and SR values will be
meaningless (Andersen and Bro, 2010). Alternatively, the contributions from individual
components can be explored based on the corrected weights, W*, as they represent the linear

combinations of variables related to the scores, T.

A common problem when PLS is used in QSAR applications is the sheer number of

independent variables that are used as input. This can be potentially detrimental and PLS
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models can become over-fitted due to chance-correlation between redundant or noisy
descriptors in X and the response, Y (Faber and Rajko, 2007). Therefore, in many QSAR
instances, variable selection strategies become necessary in order to reduce the number of
redundant or noisy variables (see Section 2.9). Bauer et al. (2017)applied PLS for prediction of
protein diffusion coefficients used to understand protein-protein interactions based on
independent variables generated from protein crystal structures. The authors used the VIP
Scores to select highly contributing descriptors in order to increase model performance to a R?
value of 0.9, thus indicating high correlation between X and Y (refer to Section 2.6.1 for more
information on R?). In another study, Mazza et al. (2001) applied PLS for prediction of retention
times in ion-exchange chromatography based on independent variables generated from protein
crystal structures (Mazza et al., 2001). The authors applied Genetic Algorithm to reduce the
number of noisy independent variables which resulted in a model performance of R? value
around 0.94. Application of PLS in this research was therefore performed with variable
reduction (see Section 2.8) and variable selection (see Section 2.9) in order to reduce noise and

redundancy able to affect model performance.

2.4.2 Support Vector Machines for Regression

SVM for regression (SVR) is an extension of SVC which was first introduced by Drucker et al.
(1997). This method applies the same fundamental principles that were used in SVC and does
not depend on the variable dimensionality but only on the samples that are presented to the

algorithm.

2.4.2.1 Theory

The theory for SVR is very similar to that of SVC (see Section 2.3.2.1). The main difference is
that instead of defining the largest margin used to separate the samples, SVR will define a tube
in which the majority of the samples will be located. The tube is defined by the two constraints
shown in eq.(2.50) and eq.(2.51) and illustrated in Figure 2.8 as the dashed blue line and the

dashed red line, respectively.

yi—w'x;—b<e (2.50)

o'x;+b-y <e (2.51)

€ is called the insensitive loss where € > 0 and is set be the user. As can be observed in Figure

2.8, the width of the tube is defined by the insensitive loss and will be equal to 2¢. In SVR,
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slack variables (¢ and &;) are commonly introduced due to noise normally being present in

both X and Y which can be difficult for a hard margin regressor to fit.

vi=wlx;+b+e
i = wa!_ +b

yi=w'x;+b—¢

Support vectors

Y

Figure 2.8. Placement of regression tube in SVR defined by two constraints (red and blue dashed lines) that
encompasses the majority of the samples and where samples falling outside of the tube are penalised by the slack
variables & and &;. Support vectors are indicated as the filled black circles and the green vector perpendicular to
the black regression line represents the support vector weights, w (adapted from Drucker et al. (1997)).

A QP problem can then be formulated according to eq.(2.52) which is very similar to the QP
problem stated in eq.(2.26) for SVC. The only difference is the addition of an extra constraint

in order to penalise samples on either side of the tube.

N
1
minimise = [||1Z + CZ(fi + &)
w,b,§ 2 L
=1
subjectto w’x;+b—vy; <e+§ (2.52)
yi_wai_bSE-l_E;

fiiflﬁk =0

For samples that are placed above or below the tube the slack variables &; and & respectively,
will become non-zero. For samples placed inside of the tube, &; and &; will equal zero and thus
not affect the loss and is known as hinge or [;-loss (Rosasco et al., 2004). The Lagrange dual

to eq.(2.52) then becomes:
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N N
maximise W(a,a*) = —EZ(QZ‘ +a;)+ Zyi(a;‘ + a;)
i=1 i=1

a,a*
N
SN (af + @) af + )
—_ = a; a;)a; a;)Xx; 'x]'
52 (2.53)
subjectto 0<a;a; <C, i=1,..,N

N N
Su-$
i=1 i=1

where a; and «; are the Lagrange multipliers to the constraints in eq.(2.50) and eq.(2.51),
respectively, and will both consist of N elements. For more information on Lagrange
Multipliers, refer to Appendix D.3. The SMO algorithm is commonly used to solve for a and
a” due to being a QP problem (Platt, 1998). Similar to SVC, samples with non-zero values in
a; or a; in the solution will be support vectors and used to define w and b. Prediction of an

unknown sample, x,,, can then be performed according to eq.(2.54) for linear regression.

N
fOa) =@y +b =) (@ +ax 2, +b (2.54)

=1

Or according to (2.55) for non-linear regression with a Kernel (see Section 2.3.2.3).
N
flx) =wo(x,)+b= Z(al?* + a;))K(x;,x,) + b (2.55)
i=1

2.4.2.2 Applicability of SVR in this research

Many of the listed strengths and caveats presented for SVC will apply to SVR. This means that
SVR has a high generalisation performance due to the selection of a small subset of samples
that act as support vectors which also makes the method robust in high-dimensional problems.
This makes SVR a popular choice in QSAR applications and it has been used extensively for
prediction of chromatographic column performance (Robinson et al., 2017, Ladiwala et al.,
2006, Chen et al., 2008, Woo et al., 2015a, Woo et al., 2015b, Chung et al., 2010). However,
the authors highlighted that an initial variable selection step is necessary in order to reduce the

number of non-correlated descriptors in order to increase performance.
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Like the PLS method, the performance of SVR will suffer if too many redundant variables are
present in data set, thus masking the independent variables that are correlated to the response.
It has therefore been suggested to use variable selection techniques in order to reduce the
number of redundant variables in high-dimensional data when using Support Vector Machine
based methods (Zhang et al., 2016).

Determination of model parameters (C, y and €) in SVR can be performed through grid search
with predefined ranges just as described in Section 2.3.2.4 for SVC. However, defining the
range for e is more complex due to being related to the intrinsic variation in the data. This is
easier understood when observing the width of the tube in Figure 2.8 where the majority of
samples are placed within the tube. More intuitively, this requires knowledge about the
distribution of the residual values, ¢;, pertaining to any given prediction according to eq.(2.56)

and should conform to £;~N (0, g,.).

yi=Yite (2.56)

Cherkassky and Ma (2004) proposed that a linear model could be fitted to the data prior to
applying SVR in order to investigate the distribution of the residuals (Cherkassky and Ma,
2004).

2.5 Cross Validation

Larson (1931) discovered that when training a model through “resubstitution” where all
samples in a data set are used for both training and performance validation, the resulting model
became heavily biased due to memorising the noise present in the data which led to extremely
poor predictions of future samples. In order to circumvent this issue, cross-validation was
introduced which provided a framework to train and validate models more robustly. Cross-

validation has two main goals to achieve (Raschka, 2018):

1. Estimation of the generalisation error, i.e. the predictive performance of the model on
future (unseen) data.

2. Model selection or tuning of the model complexity to increase model performance. This
refers to the number of components to use in PCA, PLS and PLS-DA as well as selection
of C, € and kernel parameters in SVC and SVR to achieve optimal model performance.
In literature, model complexity is also commonly referred to as the model
hyperparameters. However, throughout this thesis the term model complexity will be

used.
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The core philosophy of cross validation (CV) lies in the practise of splitting the available data
in order to train and validate a model. The core concepts will therefore first be explained with

regards to the generalisation error and then how CV can be used to select model complexity.

2.5.1 Generalisation Error

One of the simplest and most commonly used technique to estimate the generalisation error of
a model is the hold-out method. The method effectively splits the available data set into two
parts where one is used to train the model and the other is used for validation. These will be
referred to as the calibration set and test set illustrated in Figure 2.9 and will contain N,; and

Nrese SAMples, respectively.

Model Validation (N...)
Model training (N,

~ * Y
Calibration Test

“~ ]

v

Available Samples [N)

Figure 2.9. Splitting of all available samples in a data set into a calibration set for training (dark box) and a test set
for model validation (red box) (adapted from Raschka (2018)).

Generally, the generalisation error can be estimated as the mean squared error (MSE) for

regression problems which is presented in expression eq.(2.57) and illustrated as the red line in
Figure 2.10a.

NTest

MSErese =7— ) (=9 257)
i=1

N Test

In eq.(2.57), y; = f(x;), and is the predicted value of y; based on a defined function such as
one generated from PLS or SVR. For a classification problem, the generalisation error can be
estimated based on the error rate presented in eq.(2.62) in Section 2.6.2 for methods such as
PLS-DA and SVC. Similarly, the calibration error can be estimated by using the calibration
samples instead and is shown as the black line in Figure 2.10a. As can be observed, the error of
the test set will be large if the model complexity is to low which in turn also results in high
calibration error. This usually occurs when the model fails to capture the correlation between
X and Y. Alternatively, the error of the test set will be high when the model is fitted to noise or

redundant variables in the calibration samples, thus generating a small calibration error.
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Figure 2.10. (a) Behaviour of the test or generalisation error (red line) compared to the fitted model error (black
line) with regards to increasing model complexity. (b) Decomposition of the generalisation error (red line) into the
two components model variance (green line) and model bias (blue line) (adapted from Hastie et al. (2009a)).

Eq.(2.57) can be further decomposed into the irreducible error (gZ,), the variance of the error

(Var,) and the bias of the error (Bias,) according to:
Errorqes; = 07, + Var, + Bias? (2.58)

The irreducible error is inherent to the available data and cannot be removed from the model
whereas the variance and bias are dependent on the model complexity as is illustrated in Figure
2.10b. More specifically, the bias is directly related to the fit of the model where a high bias
means that the model fails to capture the relation between X and Y and the model becomes
under-fitted. The variance, on the other hand, gives an estimation of the error related to
fluctuations in samples where a high variance means that the model has been fitted to random
noise and is therefore over-fitted. When selecting the model complexity, both the variance and
bias should be as low as possible which is usually indicated as the minimum value of the error
versus the model complexity illustrated as the red line in Figure 2.10b. This is more specifically
referred to as the variance-bias trade-off and implies that a model cannot be trained perfectly

and will always include some bias and variance (Hastie et al., 2009a).

It should be noted that the generalisation error is heavily dependent on the samples in the test
as well as the sample sizes of the calibration and test sets. This is better understood when

considering the resubstitution method investigated by Larson in 1931 where the model became
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heavily biased due to being trained and validated with the same samples. If most of the samples
are kept for model training, the test set might no longer be representative of the full sample
population which might cause the model to become over-fitted. This is more commonly referred
to as optimistic bias. Alternatively, if the majority of samples is placed in the test set for
validation, then the model training might be negatively impacted due to lack of variability as
the calibration set no longer represents the full sample population. This is more commonly
referred to as pessimistic bias. The number of samples to use in the test and calibration set is
widely discussed but a usual rule of thumb is to keep the majority of samples in the calibration
set, thereby including most of the data variability for training. Usual calibration/test splits are
70/30 and 80/20 (Raschka, 2018).

In classification problems, it is important to consider the class distributions in the test and
calibration sets which preferably should be conserved in the test and calibration sets when
compared to the full sample set. This is known as sample stratification which ensures that class
distributions are conserved in the test and calibration set. Not using sample stratification can
have a negative impact on the model performance due to misrepresentation of available classes
which becomes especially critical in unbalanced data sets where big difference in sample sizes
can be present between specific classes. In the worst case, this might mean that a class is left
out entirely from the test set and model validation based on the generalisation error becomes
biased (Shahrokh and Dougherty, 2013).

Several strategies exist for splitting the available samples into calibration and test sets (Martin
et al., 2012). One of the most common methods is random splitting where samples for the
calibration and test sets are selected at random and only the number of samples belonging to
each set needs to be specified. For the purposes of this research, the structured splitting
approach of the Kennard-Stone algorithm (CADEX) has been applied due to being better suited
to QSAR modelling problems compared to random splitting (Kennard and Stone, 1969, Martin
etal., 2012). The CADEX algorithm selects samples based on the Euclidean distance between
pairs of samples over the variable space of X. Pair-wise samples with high distances are placed
in the calibration set while pair-wise samples that have a short distance will have one sample
placed in the test set and the other in calibration set. Thus, the CADEX algorithm ensures that
most of the variability in the variable space is presented to the model during training as well as
that selected test samples are represented by similar samples in the calibration set (Kennard and
Stone, 1969).
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2.5.2 Selection of Model Complexity

As mentioned previously, the calibration set is used to train the model. This means that selected
calibration samples are explicitly used to tune the model complexity. This has an added benefit
of model tuning being separate from the estimation of the generalization error and thus having
lower risk of generating a biased model. Similar to the splitting of the full data set into a
calibration and test set, the calibration set is further divided into smaller subsets or splits which
are used to train the model and is known as re-sampling. An example of re-sampling for model
training based on the K-fold method is presented in Figure 2.11. As can be observed the
available samples in the calibration set is split into K smaller subsets. A sub-model is generated
on all subsets except one (shown in red in Figure 2.11) which instead is used to validate the
sub-model in the same way as the test set is used to estimate the generalization error described
previously. This is repeated until all subsets have been used for validation once, thus resulting
in K sub-models and K error estimations. The described repletion of sub-model development
and validation is usually referred to as the inner cross validation loop. An average is usually
calculated from the sub-model errors and represents the model performance for a specific
selection of model complexity. The estimated error will behave similarly to the generalisation
error illustrated in Figure 2.10a and Figure 2.10b and can be decomposed in the same way as
shown in eq.(2.58). This means that both the bias and variance can be controlled explicitly
through choice of the model complexity where the optimal model parameter set will have the
lowest error illustrated in Figure 2.10b as the red line. It is important to note, however, that the
minimum of the test error and the minimum of the cross-validation error is not guaranteed to
overlap with each other with regards to the model complexity. This is a complex problem which
is very dependent on the splitting of samples into calibration and test sets as well as the re-

sampling method used for training the model.
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Figure 2.11. K-fold cross-validation resampling of the calibration samples for model training (adapted from
Raschka (2018)).

Several strategies for the inner cross validation loop exist where some of the most commonly
used are Leave-One-Out (LOO), K-fold and repeated K-fold (Wong, 2015).
2.6 Model Validation Metrics

In order to accurately evaluate trained models, several metrics for both regression and

classification have been presented below.
2.6.1 Regression Metrics

The root mean squared error (RMSE) represents the variation of the error observed between the
measured and predicted responses and is shown in eg.(2.59). The RMSE is commonly used to
assess the model complexity due to direct evaluation of the differences between measured and
predicted values.

N[ =

RMSE = (MSE)% = GZ()&- - 37i)2> (2.59)

The squared Pearson Correlation coefficient (R?) provides a measure of the correlation between
the measured and predicted responses and is presented in eq.(2.60). The R? metric can take on
values between zero and one where a value closer to zero represents low correlation and poor

model fit while a zero closer to one indicates strong correlation and a good model fit.
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The coefficient of determination (Q?) provides a measure of well the model is able to explain
the variation in the response vector and has been presented in eq.(2.61). Q2 can attain negative
values which is an indication that the model performs worse than if all responses would have
been predicted as the mean of the measured responses, in which case the Q2 would attain a
value of zero. A value closer to one indicates good model fit and that high correlation between
XandY.

Qz =1 SSres -1 2?:1(% - yi)z
T - 2 2.61
S 3, —ED)) (2.61)

2.6.2 Classification Metrics

Validation of classification models are fundamentally different from regression models where
instead the performance is evaluated based on the number of correctly classified and
misclassified samples. In a binary classification problem, the classes are usually referred to as
positive and negative. The predictions can therefore be categorised according to four definition
depending on the true class of the samples: True positives (TP) are the number of positive
samples that were correctly classified, False positives (FP) are the number of negative samples
incorrectly classified as positive, True negatives (TN) are the number of negative samples
correctly classified as positive and False negatives (FN) are the number of positive samples
incorrectly classified as negative. These four values lie at the core of all model evaluation for
classification problem and is usually presented in the form of a confusion matrix. For evaluation
of a multiple classification problems, the OVR strategy can be implemented in order to generate
a confusion matrix for each class. An example of this is presented in Figure 2.12a in which the

predictions of three classes have been presented in a confusion matrix. By defining Class 1 as
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the positive class and the negative class as Class 2 and Class 3, a binary representation for the

predictions of class 1 can be evaluated which is illustrated in Figure 2.12b.

(a) Actual (b) Actual
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Class 2 1 4 1

Predicted
Predicted

Class 3 0 2 7

Figure 2.12. Representation of a confusion matrix as an overview of model performance for (a) multiple classes
of (b) two classes (adapted from Fawcett (2006)).

A common classification metric used in research is the Error rate (ER) which represents the
proportion of samples which were incorrectly classified and can take a value between 0 (all
samples misclassified) and 1 (all samples correctly classified). Calculation of ER was

performed according to eq.(2.62).

FP + FN

BR = P TN T FP+ FN

(2.62)

The Sensitivity (Sen) represents the proportion of positive cases that were correctly identified
and can take a value between O (all samples misclassified) and 1 (all samples correctly

classified). Calculation of Sen was performed according to eq.(2.63).

cen— TP
en =5 EN (2.63)

The Specificity (Spec) represents the proportion of negatives cases that were classified correctly
and can take a value between one (all samples correctly classified) and zero (all samples

misclassified). Calculation of Spec was performed according to eq.(2.64).

TN

TN + FP (2.64)

Spec =
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The Matthews Correlation coefficient (MCC) considers all aspects of the confusion matrix (TP,
TN, FP and FN) and is regarded as a balanced measure that can be used even if the sample sizes
of the different classes are very different (Jurman et al., 2012, Gorodkin, 2004). MCC can take
a value between -1 and 1 where a value of 1 means that all samples have been correctly
classified and a value between -1 to 0 means that all samples have been misclassified. For a

binary confusion matrix, the MCC was calculated according to eq.(2.65).

. TP +TN — FP + FN
~ J(TP + FP)(TP + FN)/(TN + FP)(IN + FN) (2.65)

The MCC metric can be extended for use on multiple classes according to eq.(2.66).

Yietm CrkCmi — CikCrm
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MCC =

Individual class performances were also evaluated with receiver operating characteristics
(ROC) curves which explores the separation of the classes according to the predicted class
distributions. More specifically, the “area under the curve” (AUC) can be used as a performs
metric of the class separation where a value of one indicates perfect classification and a value
of 0.5 which indicates that no separation of the classes have been observed (Fawcett, 2006). In
PLS-DA, the class distributions can be defined based on the calculated posterior probabilities
in eqg.(2.18) while in SVC, the distributions can be defined according to the calculated decision
values in eq.(2.25). The ROC curve is calculated by sliding a threshold boundary over the class
distributions thus allowing for the TP, TN, FP and FP which results in differing values of the
sensitivity and specificity depending on the threshold value. For classes that are well separated
as illustrated in Figure 2.13a, the resulting ROC curve will take on a shape as illustrated Figure
2.13b where the AUC value is close to one. In cases where class distributions are harder to
separate as illustrated in Figure 2.13c, the resulting ROC curve will be closer the dashed black

line indicating a AUC value closer to 0.5 which is illustrated in Figure 2.13d.
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Figure 2.13. ROC curve development for two classes. The number of TP, TN, FP and FN changes depending on
to the placement of the threshold which is less drastic in a problem with (a) well-separated class distributions
compared to a problem with (b) overlapping class distributions. ROC curves from (b) well separated class
distributions and (d) overlapping class distributions where the black dashed line represents the AUC value of 0.5
(adapted from Marini (2017)).

2.6.3 Y-Randomisation

Due to the large number of descriptors often used in QSAR modelling, it is important to
evaluate if the correlation between X and Y captured by the model is related to the true
underlying pattern or if it was caused by chance correlation of noisy descriptors. Y-
Randomisation is a tool used in validation of QSAR models which compares the performance
of models trained with randomised response vectors to that of a model trained with an unaltered
response vector (Rucker et al., 2007). A number of randomised models are usually developed
and the performance metric of interest is then averaged. If the averaged performance metric
shows good performance, the trained model was likely fitted to noisy and redundant descriptors
and can therefore not be used. For regression the metrics Q2 and R? are often used while in
classification the metrics ER of MCC can be used. In this research 50 models were developed

on individually randomised response vectors where the metric of interest was then averaged.
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2.7 Data Pre-treatment

As previously mentioned in the theory of PCA and PLS, it is important to mean-centre X and
Y prior to developing the model in order for these methods to work. More generally, an action
that modifies the data prior to model development is called pre-treatment or pre-processing and
is used to increase the interpretation of the data sets (van den Berg et al., 2006). This is more
simply understood when considering the influence of the variables in model development. As
an example, when evaluating untreated data set each individual variable will conform to some
specific distribution (normal distribution was used in this example) where x, ~N (u, ) where
Uy F py F - # Uy and o2 # o2 # -+ # o, which is illustrated in Figure 2.14a. For PCA and
PLS, mean centring is a required step due to that the methods being dependent on the calculation
of the covariance, which assumes that the data is centred around the origin. If models are
developed on an uncentred data set with PCA or PLS, the first component will always be placed
so it points from the origin to the centre of the data in the variable space in order to correct for
the offset (Bro and Smilde, 2014). The effect will not be as pronounced for SVC or SVR which
can adjust for uncentred data by correcting with the offset variable, b, of the hyperplane or the
tube, respectively. An example of a set of the mean centred variables is illustrated in and Figure

2.14b where the distribution of each variable now conforms to x;~N (0, 67).

(a) (b) (c)

Figure 2.14. The effect of pre-treatment on variables on a data set. (a) Raw or untreated data set. (b) Mean centred
data set. (c) Mean centred and scaled data set (adapted from van den Berg et al. (2006)).

Another important factor is the scaling of the descriptors. Commonly in many data sets, the
ranges in the variables will be very different when compared to each other. This gives variables
with a larger variation a bigger chance to influence the model compared to variables with a
much smaller variation (Bro and Smilde, 2014). Thus, all variables are commonly scaled to
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have equal variation or range in order for them to equally impact the model structure. In this
research, the autoscaling method was used for pre-treatment of all data except class labels. The
method both mean centres all variables as well as scales them according to the standard
deviation of each variable according to eq.(2.67). This means that all variables in the data set

will conform to x;, ~N(0,1).

(auto) _ Xik — Xk _ Xix — Xk

ik -
Ok 1 _
\/N _ 12?1:1(3@]( - xk)z

(2.67)

In eq.(2.67), x2***) is an auto-scaled element in X, %, and oy are the mean and the standard

deviation of variable k. An example of autoscaled variables is presented in Figure 2.14c.

2.8 Variable Reduction

Due to the large number of variables (descriptors) that are generated in QSAR modelling, it is
often beneficial to use unsupervised methods to remove collinear variables prior to further
variable selection or model development. The V-WSP algorithm was applied to the X block in
order to select a representative set of variables. This V-WSP algorithm works by replacing a
group of variables with high multi-collinearity with a single variable from the group if the
correlation between the variables is larger than a predefined threshold (Ballabio et al., 2014).
The Procrustes index was used to evaluate the loss of information between the non-reduced and
the reduced X block. The Procrustes index takes on values between zero and one where a value
of zero indicates that no information loss has occurred while a value closer to one indicates that

the majority of information in X has been lost (Peres-Neto and Jackson, 2001).
2.9 Variable Selection

Supervised variable selection methods were applied in this research to further reduce the
number of variables in order to increase correlation between X and Y. Three different methods

were applied for which short descriptions have been given below.

2.9.1 Recursive Partial Least Squares

The Recursive Partial Least Squares (rPLS) is a variable selection method which iteratively
reweights the variables in X through multiplication with a matrix A in which the diagonal
elements ay, = |by| from the regression coefficients vector B generated from the PLS model.
A new PLS model is developed on reweighted X and this is repeated until a minimum in the

cross-validation error has been reached. By iteratively updating B and X as described, the
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regression coefficients of variables with small contributions to the predictions will be forced to
zero whereas those for variables with high contribution become larger. The stopping criterion
in rPLS is based on the calculated cross-validation error at each iteration which will be forced

to stop once the error start rising (Rinnan et al., 2014).

The method is however reliant on the model performance prior to variable selection. This means
that if the model performance is poor prior to selection, the rPLS algorithm will not be able to
select the correct variables. This is similar to that of variable evaluation with VIP and SR in
PLS (Andersen and Bro, 2010).

2.9.2 Genetic Algorithm

The genetic algorithm (GA) is based on the evolutionary principle of “survival of the fittest”
(Leardi, 2007). GA works by generating subsets of variables where each subset usually contains
between 30-50% of all available variables in the data set. Such a subset can be seen as a logical
vector consisting of M elements, identical to that of the number of variables, where an element
value of one or zero indicates inclusion or exclusion, respectively, of the variable in the subset.
Each subset is often referred to as chromosome or individual and all the generated subsets is
referred to as a population. An individual model is trained on each chromosome and evaluated
according to the cross-validation error as an estimation of the fitness. A new population
(generation) is then produced through crossover illustrated in Figure 2.15 where two
chromosomes (parents) are used to generate two new chromosomes (children). Many methods
for selecting the parent chromosomes exist but where the Roulette Wheel is one of the most
commonly used. The parent chromosomes are selected at random but where chromosomes with
a better fit have a higher chance of being selected (Pandey et al., 2014). The parent selection
and crossover are repeated until the number of children equals that of the original population

size. New models are trained on the children chromosomes and the full process is iterated.

Parent A Offspring C

[ofs]sfofofs]-[o]s]a] [2[ofafofo]s|[o]s]a]
@ n

Parent B S :> Offspring D

[2lofs]ofofa|~[2]s]0] lofs]s]ofofaf[a]a]0]

Figure 2.15. Crossover of variables between two parent chromosomes A and B resulting in two new variable
permutations in the form of child C and D. The red line indicates the crossover site which is selected at random by
the GA method (adapted from Pandey et al. (2014)).

One of the main strengths of GA is the ability to test many different variable permutations and

select variables highly correlated to the response. However, one of the biggest drawbacks with
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the method is the low reproducibility of generated results due to many aspects of the algorithm
is based on random selection. A common method to increase reproducibility is to repeat the GA
for several iterations in order to find variables that are most commonly selected. It has also been
suggested that no more than 200 variables should be used in GA due to potential over-fitting
(Leardi, 2000). Another drawback with the method is defining the many parameters such as:
population size, single or double crossover, mutation rate and number of variables to include in

the initial chromosome to mention a few.

The modelling method used in GA is commonly referred to as the fitness function which is not
restricted to any particular method and can be either a classification or regression method.
However, the fitness function should be sufficiently fast to train due to the numerous models
that needs to be developed in order for GA to not become to computationally intensive (Niazi
and Leardi, 2012).

2.9.3 Sparse L1-SVR

L1-SVR or more commonly referred to as LASSO-SVR is based on similar theory to that of
SVR discussed in Section 2.4.2. The main difference is that the minimisation problem in
eq.(2.52) uses the L1-norm, ||w||, instead of the squared L2-norm, ||w||5. This, however, has
a significant effect on the normal vector, w, which will become sparse. Meaning that many
elements in w will attain a value of zero. This is easier understood using Figure 2.16 for a
regression problem with two variables. The red ellipses illustrated in the figure indicate the loss
function or the error between the predicted and measured responses. First, considering the L2-
norm illustrated in Figure 2.16a, the possible solutions for w will take the shape of a circle seen
in green, the radius of which is determined by the constraints and the value of C. It can be
observed that the optimal solution consists of non-zero values in w, meaning that both variables
will contribute to the prediction. In the case of the L1-norm, the solutions for will take the shape
of a diamond illustrated as the green area in Figure 2.16b. Because of this shape, the optimal
solution with the smallest error will be where w, is non-zero and w, is equal to zero (Zhu et
al., 2004).
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(a) (b)

Figure 2.16. Comparison of solutions for (a) L2-norm and (b) L1-norm. The red ellipses represent the error
between the predicted and measured responses in the samples set while the green areas represent the allowed
solutions for w (adapted from Zhu et al. (2004)).

It is important to remember when using LASSO that the so-called “irrepresentable condition”
must hold true which indicates that correlation between redundant and important variables must
be low (Zhao and Yu, 2006).

2.10 Summary

This chapter laid the foundation of the multivariate methods and techniques used in this thesis.
From the literature review of the methods in this chapter, it is apparent that each method has
associated advantages and limitations. However, considerations regarding their application,
training and validation have been made in order to increase the chance for successful

implementation.

As discussed, the classification methods were selected to better handle uneven class balances
that were present in the data set from Jain et al (2017). For this purpose, PLS-DA with Bayes
decision rule and SVC with defined cost function values for each class were selected. The two
methods are also complementary to each other, where PLS-DA can provide insight to potential
outliers and have higher transparency in regards to variable contribution to the response
whereas SVC usually have higher generalisation performance due to only using a subset of

samples as support vectors.

Similarly, all regression methods in this chapter were reviewed and evaluated in order to
conform to QSAR modelling. The two methods, PLS and SVR were selected due to having
been applied successfully in similar QSAR implementations as have been demonstrated in
literature. The methods are also complementary to each other where PLS have higher
transparency in regards to sample and variable contribution and SVR a higher generalisation

performance.

70



Due to the large number of descriptors needed to capture the structural information of the mAb
structures, it became clear that variable reduction and selection techniques had to be applied.
The unsupervised reduction method V-WSP was reviewed and included model development
process in order to reduce the number of highly correlated descriptors. In addition, three
variable selection methods: rPLS, GA and LASSO were reviewed, and their strengths and
weaknesses listed. These methods were selected due to being slightly different in how they
select variables. The rPLS and LASSO algorithms are highly dependent on the number of
redundant variables in the descriptor set which can greatly decrease their performance if to
many redundant variables are present. The GA algorithm instead selects variables based on a

brute-force approach were multiple variable subsets are tested and evaluated.
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Chapter 3

Primary sequence-based descriptors

In order to develop predictive models that can aid in mAb process development, structural
descriptors need to be generated in order to compare the different mAbs. In this chapter the
general structure of mAbs and common sources of structural variations that might impact the
descriptors are highlighted and discussed. Four novel strategies have been developed for

primary sequence preparation and descriptor calculation which are discussed in detail.

3.1 The Antibody Structure

There are five main heavy chain classes of antibodies: IgA, IgD, IgE, 1gG and IgM where IgG
have the highest occurrence in the human body with around ~75% of all antibodies found in
the human serum (Schroeder and Cavacini, 2010). In this research, an extensive search was
performed using the IMGT database to investigate the diversity of different antibody classes in
clinical phases as well as manufacturing. The search criteria were specified to find all full-
length IgA, IgD, IgE, 1gG and IgM antibodies while excluding fusion proteins and fragments.
Of the total 555 antibodies that met the search requirements, 543 were of the 1gG class (~98%).
Due to these findings, 1gG antibodies are the focus of this dissertation. The IgG class can be
further divided into four subclasses or so-called isotypes: 19G1, IgG2, 1IgG3 and 1gG4. Of these,
the 1gG1, 1gG2 and 1gG4 isotypes are further investigated in this chapter due to being the most
common according to the IMGT search with 74% being IgG1, 12% being 19G2 and 13% being
IgG4 out of all 1gG antibodies.

Figure 3.1 represents the structure of an IgG1 antibody. In general, the 1gG antibody consists
of four amino acid chains, of which two are heavy chains (50kDa and ~450 residues long each)
and two are light chains (25 kDa and ~230 residues long each). The heavy chain can be divided
into the four domains: the variable region (Vn), first constant domain (Cxl), second constant
domain (Cn2) and third constant domain (Cx3) where a Hinge region connects the Cn1 and Cn2
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domains of the heavy chain. The light chain can be divided in a similar manner into two
domains: the light chain variable domain (VL) and a constant domain (Cy). Like the heavy chain,
the light chain has two naturally occurring isotypes: kappa and lambda. Each of the mentioned
domains in the antibody contains ~110 residues whereas the hinge has 15 residues in the IgG1

isotype compared to 12 residues in the IgG2 and 1gG4 isotypes (Janeway Jr et al., 2001).

3.1.1 The Fab region structure and function

The Vy and CH; domains of the heavy chain together with the Vi and C. domains of the light
chain make up the Fab region of the antibody. This is also known as the binding region of the
antibody that binds to a specific target protein (antigen) e.g. a membrane protein on a pathogen.
The binding occurs specifically in the variable domains V+ and V. which contain six sequence
loops (three for each variable domain) called Complementarity-determining regions (CDRS)
that bind to a specific antigen. Antibodies can be grouped into so called idiotypes based on a
group of antibodies that bind to a specific antigen and share similar structural characteristics in
the variable domains and CDRs.

(@) (b)

Figure 3.1. General structure of an 1gG1 antibody. (a) Front view of the antibody showing the separate domains
of the heavy chain (Vu, Cul, Hinge, Cu2 and Cn3) depicted in blue as well as the separate domains of the light
chain (V. and C.) depicted in orange. (b) Side view of the antibody structure with the two glycan structures
highlighted with a red circle. Each glycan connects to Asn297 of each heavy chain (adapted from Vidarsson et al.
(2014)).

3.1.2 The Fc region structure and function
The Cn2 and Ch3 domains of both heavy chains are called the Fc region of the antibody. The

Fc region determines the type of response that is triggered in the immune system, the so-called
Fc effector function, and has been covered elsewhere (Rajpal et al., 2014, Kizhedath et al.,
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2017). An important part of this region is asparagine 297, which is strictly conserved in all IgG
isotypes. It serves as an attachment point for glycans in the C42 domain of each heavy chain
(see Figure 3.1b). The glycan structures have been shown to increase the overall stability of the
IgG (Zheng et al., 2011) as well as playing an integral part in the activity of the antibody
(Ferrara et al., 2011).

3.1.3 Sequence variability in constant domains

Most of the sequence variability between antibodies is found in the variable domains V and
VL. The variability is caused mainly by the unique structure of the CDR loops which gives them
their high specificity to different antigens. Variability in sequences is also encountered in the
constant domains when comparing the different isotypes in the heavy and light chain separately
(see Figure 3.2). However, the extent of the variability is not as pronounced as when comparing
sequences of the variable domains between antibodies. The amino acid differences between the
isotypes in the heavy chain are illustrated in Figure 3.2a. EU numbering has been used to
illustrate each of the residue positions in the sequence alignment (Edelman et al., 1969). The
positions highlighted with red boxes are positions that play a vital role in the Fc effector
function (Kizhedath et al., 2017). Positions coloured in red and underlined mark the positions
of amino acids that vary between different allotypes and are slightly different in the sequence
that can be found between different populations (Vidarsson et al., 2014). A more extensive view
of allotypes occurring in the heavy chain isotypes is illustrated in Figure 3.2b. In total, including
the allotypes, only 44 residues of a total of ~340 residues from the constant domains and hinge

are different in the heavy chain between isotypes.

In addition to the variations caused by the allotypes in the heavy chain, a common modification
in design of 1gG4 antibodies is the mutation of the wildtype hinge residue Serine 228 to a
Proline. The mutation stabilises the hinge region which becomes more rigid and more similar
to that of the 1gG1 hinge (Aalberse and Schuurman, 2002). This also has the effect of increasing
the efficacy of the 1gG4 antibodies by preventing Fab arm exchange with other IgG4 antibodies
(Silvaetal., 2015).

The sequence variability between kappa and lambda is however more pronounced with 74
residues being different out of the total ~110 residues in the C. domain, with reported allotypes
positions marked as red an underlined (see Figure 3.2c). No allotypes have been reported for
kappa and lambda but residue variability is present between different light chain isotypes which
is illustrated in Figure 3.2d. All information related to the allotypes in the heavy and light chain

were acquired from the IMGT database (Lefranc and Lefranc, 2012).
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3.1.4 Disulphide bonds

The heavy and light chains are linked with a single disulphide bond between the CL and Cnl

domains that prevents the two chains from separating. In addition, the two heavy chains are

also connected by disulphide bonds in the region surrounding the hinge. In IgG1 and IgG4 the

heavy chains are linked with two disulphide bonds whereas 1gG2 antibodies have a total of four

disulphide bonds linking the two heavy chains (Liu and May, 2012). The structural differences

and the sequence variability of the constant domains in the heavy and light chain are

summarised in Table 3.1.

Table 3.1. Summary of structural differences of the constant domains in the heavy and light chains (adapted from
Lefranc et al. (2005) and Liu and May (2012))

Heavy Chain IgG1 1gG2 1gG4
Cn1 residues 98 98 98
Hinge residues 15 12 12
Cn2 residues 110 109 110
Cw3 residues ~110 ~110 ~110
Allotypes 7 4 3
Disulphide bonds in hinge 2 4 2
Light chain kappa lambda

Cv residues ~107 ~106

Allotypes 3 5
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Figure 3.2. Heavy and light chain isotypes and allotypes. (a) Sequence alignment of the constant domains Cn1,
Hinge, Cu2 and Cw3 in the heavy chain showing all structural differences between the isotypes 1gG1, 1gG2 and
1gG4. Sequence numbering follows the EU numbering scheme and positions marked as bold, underlined and
coloured red are positions with varying residues originating from different allotypes. Positions marked with red
boxes highlight residues that are important in the Fc effector function (b) Comparison of the common allotypes
with the positions in the primary sequence isolated to illustrate the varying residues based on given alleles. Allele
names containing IGHG1 refer to 1gG1, IGHG2 to 1gG2 and IGHG4 to 1gG4 (c) Sequence alignment of the
constant domain C in the light chain illustrating the structural differences between the isotypes kappa and lambda.
Positions with varying residues in the sequences of known allotypes are marked as bold, underlined and coloured
red. (d) Comparison of most common isotypes of the C. domain where only positions with varying residues are
illustrated. Allele names containing IGKC refer to the kappa isotypes while allele names containing IGLC refer
to the lambda isotypes (adapted from Lefranc and Lefranc (2012)).
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3.1.5 Sequence variation from humanisation

Many antibodies are produced by using animal models such as house mouse. In this process
antibodies are developed as part of the animal’s immune system when presented with an antigen
of interest. B cells expressing antibodies specific to the antigen are harvested and antibodies
with high specificity are retained for further evaluation (see Figure 3.3a) (Laffleur et al., 2012).
However, these antibodies cannot be used due to slight differences in the structure of the Fc
region which will cause undesired binding when presented in a human environment and thereby
causing adverse effects (Hansel et al., 2010). Often in order to be able to use the antibodies
clinically they first need to be modified to become more human-like. Boulianne et al (1984)
circumvented this problem by replacing the constant domains (Cn1, hinge, CH2, Cx3 and C.)
of a mouse antibody with those of human counterparts and thereby producing a chimeric
antibody (see Figure 3.3b) with high specificity and lowered immunogenicity (Boulianne et al.,
1984). An improvement of this was made by Jones et al (1986) where instead of retaining the
full variable domains of the animal antibody, a humanised antibody (see Figure 3.3c) could be
produced by retaining only the CDRs which were grafted onto the framework regions of human
variable domains (Jones et al., 1986). This has the effect of lowering the immunogenicity
further by reducing the animal components that can cause adverse effects, but can also lower
the specificity towards the antigen (Hwang and Foote, 2005). Fully human antibodies (see
Figure 3.3d) can be expressed through the use of transgenic animals which have been modified
to express human antibodies upon immunisation (Green et al., 1994, Mompo and Gonzalez-
Fernandez, 2014).

animal chimeric humanized human

(a) (b) (c) (d)

Figure 3.3. Representation of antibody modification where orange domains are expressed domains from the animal
model and blue domains are expressed from human genome. Level of modification is presented in increasing order
from fully animal (a), to chimeric (b), to humanised (c) and finally to fully human (d) (adapted from Absolute
Antibody (2018)).

The humanisation of antibodies introduces an interesting artefact in the sequence variability of

the variable domains which originates from the modification used to design the antibody
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(animal, chimeric, humanised and human). In this dissertation, only antibodies with human
constant domains will be used in order to decrease sources of variability. However, for chimeric
antibodies there will be an effect originating from the species used to express the variable
domains compared to that of humanised and human antibodies. As mentioned above, just as the
chimeric antibodies can cause adverse effects through unwanted binding, it might also impact
on the performance in operational units in a bioprocess e.g. binding in chromatographic

columns.

3.2 Descriptor generation

All antibody sequences that were used in modelling in the subsequent chapters were obtained
from the IMGT database unless another means of acquisition is specified. Figure 3.4 illustrates
an overview of the applied workflow for the generation of descriptors. An initial isotype
classification of the sequences was performed by using recognition sequences for each isotype
based on the human hinge region and the beginning of the human constant C,. domain to identify
the isotype of the heavy and light chain, respectively. For 1gG4, an additional recognition

sequence was added to incorporate the Ser228Pro mutation.

Descriptors were generated by either using 1) software to estimate protein properties with
FASTA as input format or 2) conversion of each selected residue into numerical values with so
called amino acid scales illustrated in Figure 3.4b. Prior to the descriptor generation, a sequence
preparation step was performed in order to generate four different data sets illustrated in Figure
3.4awhich is explained further in Section 3.3. Explanation of the descriptor generation is given

first in order to facilitate the comparison of the different sequence preparation strategies.

3.2.1 Software based descriptors

In order to generate meaningful descriptors from the sequences to be used in modelling,
dedicated software was used. In this dissertation, ProtDCal 3.5 (Ruiz-Blanco et al., 2015) and
a standalone version of EMBOSS Pepstats 6.5 (McWilliam et al., 2013) were considered and

used to generate the descriptors presented in Table 3.2.
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Table 3.2. List of generated descriptors from ProtDCal and EMBOSS Pepstats. The stars in the second and third
columns represent which software was used for generation of each descriptor.

Descriptor ProtDCal Pepstats Type Description

Gy (U) ° Folding energy Index of the contribution to the free energy
from the entropy of the first shell of water
molecules in an unfolded state

G,(U) ° Folding energy Index of the interfacial free energy of an
unfolded state

W(U) ° Folding energy Number of water molecules close to a residue
in an unfolded state

My, ° Physiochemical Molecular weight of the protein

HP ° Physiochemical Hydrophobicity by the Kyte-Doolittle scale

IP ° Physiochemical Isoelectric point of the protein

AHj ° Physiochemical Heat of Formation

ECI ) Physiochemical Electronic Charge Index

ISA ° Physiochemical Isotropic Surface Area

Apolar ° Physiochemical Polar area of each amino acid in unfolded
state

Charge ° Physiochemical The sum of all charges in sequence

ARy, ° Physiochemical Average residue weight

Residues ° Physiochemical Number of residues in sequence

ProtDCal is a freely available tool specifically designed to generate descriptors for multivariate
modelling of proteins by using either the primary sequences in FASTA format or 3D structures
in PDB format. It has been applied successfully in machine learning environments for the
identification of functional protein residues (Corral-Corral et al., 2017) and prediction of N-
glycosylation sites on proteins (Ruiz-Blanco et al., 2017) to mention a few. ProtDCal allows
for generation of a variety of descriptors ranging from thermodynamic, topological (only for
3D structures) to physiochemical properties. For the purposes of this research however,
descriptors were selected focusing on properties present on the surface such as charge and
polarity as well as descriptors for protein stability such as folding energies and hydrophobicity
due to the interest in developing models can accurately predict external behaviour of mAbs
such as chromatographic column performance (Gagnon, 1996b) or self-association (Li et al.,
2016).
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It is important to note that ProtDCal will calculate physiochemical descriptors based on indexed
values for each residue when using the primary sequences as input. This means that no
assumptions are made in ProtDCal regarding environmental factors in the solution surrounding
the protein. For calculation of full protein descriptors, ProtDCal provides different calculation
modes or so-called aggregation techniques which determines how the descriptors are put
together based the indexed residue values (Ruiz-Blanco et al., 2015). In this research
considerations were given to two such methods: the sum and the Euclidean distance of the
generated indices. The Manhattan distance was selected due to the descriptors being additive in
nature, meaning that an approximation of a descriptor for the full protein is that of the
summation of the individual amino acids. The Euclidean distance was used in addition to give
more information of the magnitude of the descriptors when multiple residues are used for
descriptor generation. Specifics on when the different aggregation methods were applied can
be found in Section 3.3 below. The calculation of the folding energy descriptors in ProtDCal,
on the other hand, is based on empirical equations which are dependent on adjacent residues as
well as the temperature (Ruiz-Blanco et al., 2013). In this research, the default value of 25 °C
(298.15 °K) was used.

In addition, ProtDCal is also able to generate descriptors for specified groups of amino acids
seen in Table 3.3. These groups are based on amino acid composition of secondary structure
(Otaki et al., 2010) and classical amino acid classification according to the side chain polarity,
charge, aromatic structure and so on (Taylor, 1986). By generating the ProtDCal descriptors in
Table 3.2 based on selected amino acids specified in a group, greater utilisation of the input
sequence is achieved as specific properties can be quantified more easily e.g. calculation of
descriptor based only on polar residues (PLR). All 12 presented groups in Table 3.3 were used
to generate descriptors from ProtDCal thus resulting in 120 unique descriptors (10 descriptors

per group) for each sequence input.
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Table 3.3. Amino acid groups available in ProtDCal. RTR, BSR and AHR are based on common residues found
in secondary structure. ALR, ARM, NPR, PLR, PCR, NCR and UCR are groups that conform to the classical
amino acid classification. PRT represents the full sequence (adapted from Ruiz-Blanco et al. (2015))

Amino acid  Description Residues
group
RTR Common residues in reverse Secondary structure Asn, Asp, Gly, Pro and Ser
turn structure
BSR Common residues in Beta Secondary structure lle, Phe, Thr, Trp, Tyr and
Sheet structure Val
AHR Common residues in Alfa Secondary structure Ala, Cys, GlIn, Glu, His,
Helix structures Leu, Lys and Met
ALR Aliphatic residues Residue classes Ala, Gly, lle, Leu and Val
ARM Aromatic residues Residue classes His, Phe, Trp and Tyr
NPR Non-polar residues Residue classes Ala, Gly, lle, Leu, Met, Phe,
Pro, Trp and Val
PLR Polar residues Residue classes Arg, Asn, Asp, Cys, GIn,
Glu, His, Lys, Ser, Thr and
Tyr.
PCR Positively charged residues Residue classes Arg, His and Lys
NCR Negatively charged residues Residue classes Asp and Glu
UCR Uncharged polar residues Residue classes Asn, Cys, Gln, Ser, Thr,Tyr
UFR Unfolding residues Residue classes Gly and Pro
PRT Whole protein Whole protein All residues

EMBOSS Pepstats was used to provide additional descriptors to the data set. Though not as
extensive as ProtDCal, the total charge, the average residue weight and the number of residues
in the sequence was calculated by Pepstats. In Pepstats, the molecular weight of the sequence
was calculated with the assumption of no N- or C-terminal modifications being present in the
sequence whereas the isoelectric point (pl) and charge were calculated based on the

physiological pH of 7.4.
3.2.2 Amino acid scale descriptors

Many advancements have been made in developing new informative descriptors to be used in
the QSAR modelling framework. For modelling of proteins and peptides, so called amino acid
scales were first developed and introduced by Sneath in order to numerically convert the
residues into meaningful values (Sneath, 1966). A large number of physiochemical descriptors
were generated for the 20 naturally occurring amino acids. These were then reduced into four
vectors (components) using PCA (see Section 2.2.1) for dimensionality reduction and thus
allowing the components to capture the overall differences and similarities between the amino
acids based on the used descriptors. This led to a reduction in the number of descriptors that
were used in QSAR modelling due to a large number of descriptors being replaced by unique
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values for each amino acid in the sequences. Many new and specialised amino acid scales have
since been developed to capture different properties of the amino acids. A comparison of 13
different scales was performed by van Westen et al (2013) in order to find complementary
scales to be used in modelling (van Westen et al., 2013b, van Westen et al., 2013a). Based on
these findings and for the purposes of this dissertation, the Z-scale (Hellberg et al., 1986,
Hellberg et al., 1987b), the T-scale (Tian et al., 2007) and the MSWHIM scale (Zaliani and
Gancia, 1999) were chosen to be used for numerical conversion of sequence residues as they
capture physiochemical, topological and electrostatic properties, respectively (see Table 3.4).
In total, 11 descriptors based on the three chosen amino acid scales were used for numerical

conversion of each residue.

Table 3.4. Amino acid scales used for descriptor generation and details on captured information of the individual
components

Scale Description Method  Number of Component  Component descriptions
Components
Z-Scale Physiochemical PCA 3 Z1 Contains information related
to the hydrophabicity
Z2 Contains information related
to size, hydrophobicity and
hydrophilicity
Z3 Contains information related
to pH and NMR values
T-scale Topological PCA 5 Tl No information given
T2 No information given
T3 No information given
T4 No information given
T5 No information given
MSWHIM Electrostatic PCA 3 MS1 Contains information related
potential to the charge and size
MS2 Contains information for

further separation of
positively charged residues

MS3 Contains information for
further separation of
negatively charged residues

3.3 Sequence preparation and conversion

Normally, in any given problem statement where protein descriptors are used to develop a
model with the goal of being able to predict some process related performance metric e.g.
aggregation, retention time etc, a subset of specific structural features in the protein will be
directly related to that output. Using the full antibody sequence to generate descriptors in such
cases would confound the information due to the majority of the residues being redundant and

more likely to introduce noise in the descriptors. Therefore, prior to the generation of the
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descriptors, five novel preparation strategies were considered in order to address this issue of
resolution: Domain based, Window based, Single Amino Acid based and Running Sum based
strategies which are illustrated in Figure 3.4a. These five strategies were developed and
considered in order to reduce the noise from the redundant residues and enhance the information

from the residues related to an output of interest.

3.3.1 Domain based

In the Domain based approach, all sequences were split into smaller fragments corresponding
to the antibody domains (VhH, Chl, Hinge, CH2, Cnx3, VL and Cy). The start and the end positions
for each domain were generated based on the initial isotype classification, thus finding the
positions of the hinge and the start of the constant domain C and then using the specific domain

lengths specified in Table 3.1.

Descriptors were generated using both software and amino acid scales, see Figure 3.4b. In
ProtDcal, descriptors were generated based on the 12 amino acid groups presented in Table 3.3
resulting in 120 unique descriptors. This to further extract more information from the domains
but also capture the slight differences in the amino acid compositions in the domains. Global
versions of the amino acid scale descriptor were generated by summing the individual
component values of all residues. This was as all components are orthogonal to each other in
each of the amino acid scales due to have been generated from PCA (Bro and Smilde, 2014).
This therefore allows each component to be additive without influencing the other components.
In total 136 descriptor for each domain was generated for the Domain based approach (5 from
EMBOSS Pepstats, 120 from ProtDCal and 11 from the amino acid scales).

3.3.2 Window based

In the Window based approach, a multiple sequence alignment (MSA) was first performed with
all sequences used in a study of interest in order to overlap regions with high similarity between
antibodies. BLOSUMB80 was used as the amino acid substitution matrix due to the antibodies
sharing high sequence similarity (Henikoff and Henikoff, 1992). When aligning antibodies,
longer consecutive gaps are expected in the variable regions due to the unique structure and
differences in length of the CDR loops. However, in order to avoid misalignment of more
conserved regions in the variables domains, control checks were implemented to ensure that
that conserved cysteine and tryptophan residues were aligned in the variable regions which are
illustrated in Figure 3.5 (Lefranc et al., 2003). From the resulting alignment, a window was
defined based the longest consecutive gap region plus two additional residues, one on either

side of the gap region. The full sequence was then divided based on the specified window, thus
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generating smaller fragments of sequences equal in size to the specified window. As an
example, if the window was specified to 25 residues, the first fragment would contain residues
1 to 25, the second fragment residues 26 to 50 and so on. The addition of the two extra residues

to the window ensures that no single fragment would contain only gaps.

Similar to the Domain based approach, descriptors were generated using both the software and
amino acid scales. However, due to the sequence fragments being much smaller than the domain
sequences only the PRT options from the amino acid groups was used to generating descriptors.
Instead, both Manhattan distance and Euclidean distance were used as aggregation methods to
generate descriptor in ProtDCal resulting in 16 unique descriptors. In total 32 descriptors were
generated for each sequence fragment that was created in the Window based approach (5 from
EMBOSS Pepstats, 16 from ProtDCal and 11 from the amino acid scales).

3.3.3 Substructure Based

In the Substructure based approach the identified domains were further broken down into
smaller substructures which are consistent across all full chain IgG antibodies. For the variable
domains, the CDR loops and frameworks (FRs) were identified by utilising highly conserved
residues present in these domains as well as applying specified rules for CDR loop identification
presented in (Lefranc et al., 2003). A breakdown of the substructures in the variable domains is
illustrated in Figure 3.5 showing the IMGT numbering and usual residue length for each

substructure as well as conserved cysteines and aromatic residues.

In a similar manner, the identification of the substructural components in the constant domains
were identified by using the IMGT numbering scheme presented in (Lefranc et al., 2005). The
sequence splitting of the constant domains is more straight forward to implement due to amino
acid composition and domain lengths being highly conserved in these domains. This resulted
in 43 unique primary sequence fragments from a full-length mAb where 14 originated from the
variables domains (Vx and V), 28 from the constant domains (Cnl, Cn2, Cx3 and Cr) and one

from the hinge region.

FR, CDR, FR, CDR, FR, CDR, FR,
IMGT Numbering: 1226 27> 38 39> 55 56> 65 66> 104 105> 117 118-> 129
Number of residues: 25-26 5-12 16-17 0-12 36-39 2-23 10-12
CYs23 TRP41 CYs 104 TRP/PHE

Figure 3.5. Breakdown of the variable domains into the smaller framework (FR) and CDR substructures.
Conserved cysteines are represented as a yellow line while conserved aromatic residues are represented as blue
lines (adapted from Lefranc et al. (2003)).
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The descriptor generation in the Substructure based approach was identical to that of the
Window based approach where a total of 36 descriptor were generated for each substructure
sequence (5 from EMBOSS Pepstats, 20 from ProtDCal and 11 from the amino acid scales).

3.3.4 Running Sum based

In the Running Sum based approach, an alignment was first carried out by using the IMGT
numbering scheme. To properly align the CDR loops, gaps was introduced in order to convert
all corresponding CDRs to be of equal length. This was performed by assigning a constant
maximum length to each CDR substructure and introducing gaps in sequences if the CDR
sequence was shorter than the specified maximum length for the specific CDR loop. The lengths
assigned were 15 residues for CDR1, 15 residues for CDR2 and 25 residues for CDR3. These
lengths were based on the maximum observed CDR lengths of 297 mAb sequences taken from
the IMGT mAb database where a maximum of 12, 12 and 23 residues were observed in CDR1,
CDR2 and CDR3 loops, respectively. The lengths were rounded upwards to the closest whole
five in order to account for future samples that might have longer CDR gaps.

In comparison, the difference in the lengths of the framework substructures is caused by
systematic addition/elimination of residues whose locations in the sequence are known (Lefranc
et al., 2003). For sequences that were shorter than the maximum length of a framework
substructure, gaps were systematically introduced in these positions thus conforming all

sequences for a specified framework substructure to the same length.

A window was defined similar to that of the Window based approach. The width of the window
was set to 13 residues to be about half of the longest defined CDR loop of 25 residues. The
window was then used to generate smaller fragments by sliding it upstream in the sequence one
residue at a time from the beginning to the end of the alignments. As an example, the first
fragment will contain residues 1 to 13, the second fragment will contain residues 2 to 14 and so

on.

In this approach, only the amino acid scales were used to generate descriptors for the antibodies.
Each component from the individual amino acid scales was summed based on the amino acid

composition of the input fragment as described in Section 3.3.1.

3.3.5 Single Amino Acid based

Similar to the Running Sum based approach all sequences were aligned by using the IMGT

numbering scheme prior to extracting any information. In the Single Amino Acid based

approach however, positions of individual residues that varied between mAb samples were

identified in the resulting alignment and used for descriptor generation. To include positions
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with gaps, smaller sequence fragments were generated in order to avoid information loss. For
positions with systematic gaps such as in the variable domain frameworks and in the constant
domains, fragments were generated by adding one residue before and after the start and end of
the gap, respectively. The CDR loops was used directly without modification due to their high

sequence variability and length.

Similar to the Running Sum based approach, only the amino acid scales were used to generate
descriptors. All identified positions with varying residues in the IMGT alignment were directly
converted into numerical values using the amino acid scales. Generated fragments containing
gaps and the CDR loops were converted using Manhattan distance to sum the up the individual

components.

3.3.6 Differences between strategies

In the Domain based, Window based and Substructure based approaches descriptors were
generated by using both software and amino acid scales Figure 3.4b due to the treatment of
longer sequence fragments. Because of the long sequence fragments used in the Domain based
approached there was a high probability that information from critical residues, important to
the model output, would be confounded by redundant residues. The Window based approach
was considered to improve the Domain based approach in order to reduce the amount of noise
introduced by calculating the descriptors with fewer residues in each fragment e.g. 25 compared
to that of the Domain based where the full domain, e.g. ~110 residues, was used to calculate
descriptors. In this way, a data set with higher resolution of the impact from each residue could
generated. However, a big disadvantage with the Window based approach is that the descriptors
generated become unique to the samples in the data set which is caused by the multiple sequence
alignment (MSA). More specifically, the MSA algorithm (BLOSUMS80) will try to align
provided sequences and maximise the alignment score by increasing residue matches and
decreasing residue mismatches between sequences. This alignment becomes unique to the
samples that were provided and will not necessarily be identical when new samples are added.
This means the generated fragments from the Window based approach and the descriptors
generated from these will be highly dependent on the form the alignment takes. This creates
problems if descriptors for future samples need to be generated as these might not fit in in the
previous alignment due to longer or shorter sequence regions and a manual alignment of these
samples would be required. Due to this disadvantage, the Window based approach was
discarded. Instead, the Substructure based approach was considered as an alternative to address
this issue. By identifying and using the smaller substructures that make up the domains to

generate descriptors, the resolution could be improved due to fewer residues being used
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compared to the Domain based approach. This also ensures that comparable descriptors for
future samples can be generated due the same substructures existing in all antibodies that are

of the same conformation.

The two remaining approaches Running Sum and Single AA were developed to investigate the
impact of individual residues in the sequence. The use of the IMGT numbering scheme instead
of MSA ensured that corresponding residues in different sequences would be aligned correctly
and be reproducible. The Running Sum based approach can be considered as an alternative to
the Substructure based approach due to larger fragments still being handled. The biggest
difference however is that each residue was represented multiple times in slightly different
sequence variations thus allowing important residues to have an increased impact in the model
development. The Single AA based approach is fundamentally different from the previously
mentioned strategies as only residues that varied between antibodies in the alignment were used
for descriptor generation. This was to investigate if only the varying regions in the primary
sequence were the only information necessary in order to produce models with high fit and

accuracy.

The impact of the sequence splitting on the number of descriptors per mAb can be observed in
Table 3.5 for the different approaches. Table 3.5 also provides estimates of the potential number
of descriptors per mAb based on which domains of the mAb are used for descriptor generation
(Vu/VL, Fab and Full length). It is important to note that, though higher resolution can be
attained by reducing the length of the sequence fragments, the total number of descriptors
increases in turn as a result of increased number of fragments which occurs in the higher
resolution descriptor sets. The largest increase in descriptors can be seen in the Running sum
due to more sequence fragments being generated in both the heavy and the light chains. This is
more easily understood if considering descriptor generation for a full structure mAb with ~450
residues in the heavy chains and ~230 residues in the light chains. This would generate closer
to 700 unique fragments when including gaps introduced by the IMGT sequence alignment.
Therefore, in this approach, only the amino acid scales were used to generate descriptors in

order to avoid generating an excessive number of descriptors.
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Table 3.5. Representation of the expected number of descriptors generated for each mAb when using the Domain
based, Window based, Substructure based, Single AA based and Running Sum based approaches to generate
descriptors. A full-length mAb with 450 residues in the heavy chain and 230 residues in the light chain was
considered in this case. The number of sequence fragments (Domain, Window, Substructure and Running Sum)
or sequence positions (Single AA) are listed in the parenthesis

Method Vu/VL Fab Full length Input type !Descriptors per
input

Domain 272 (2) 544 (4) 952 (7) @ Domain 136

Window @) 320 (10) 640 (20) 896 (28) Fragment 32

Substructure 448 (14) 896 (28) 1376 (43) Substructure 32

Running Sum @ 2486 (226) 4686 (426) 7216 (656) Fragment 11

Single AA @ 1452 (132) 1540 (140) 1628 (148) Position 11

@ Calculated with a window width of 25 residues

@ Calculated with a window width of 13 residues and without gaps in the sequence

@ Calculated based on 80% similarity between mAbs with the majority of the variability in the variable domains
) 136 descriptors are generated for the Hinge which was treated as a domain

3.4 Summary

From the proposed methods able to generate descriptors described in this chapter it is clear that
each strategy has its advantages and disadvantages. However, specific sequence preparation
strategies might be better suited for different purposes as “no one size fits all”. This makes the
proposed descriptor generation highly customisable and can be adapted to specific needs in the
model development. The described workflow for descriptor generation using the primary
sequence of mAbs has been applied as described in Chapter 4 where the intrinsic variation
originating from the mAb isotypes and species origins has been explored. The suitability if
these descriptors for prediction of HIC retention times and mAb yields is addressed in Chapter
5.
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Chapter 4

Impact of mAb isotypes and species origins on

primary sequence-based descriptors

In this chapter, the potential structural variations in the generated primary sequence-based
descriptors presented in the previous chapter was investigated with regards to the mAb isotypes
and species origins. Due to many residues being conserved in individual isotypes based on the
sequence alignment in the previous chapter, it was expected that descriptors generated from the
constant domains of the heavy or light chain would impact on the generated descriptors. This
was more uncertain in the case of the species origins due to the variable domains containing the
majority of the sequence variability in the mAb primary sequence and therefore critical residues
were likely to be confounded. Exploration was performed with PCA to characterise the impact
of the heavy and light chain isotypes while more dedicated classification methods such as PLS-
DA and SVC were used to establish potential correlation between the sequence structure and

the species origins.
4.1 Material and Methods

4.1.1 Sequence gathering

Primary sequences of therapeutic based mAbs were collected from the IMGT database accessed
in March 2017. Only sequences of full chain mAbs were collected where mixed heavy chain
isotypes, such as 1gG2/4, and mixed species origins, such as chimeric-humanised samples, were
excluded. In total, 273 mAb sequences were collected and stored in a database along with key
information pertaining to the heavy and light chain isotypes as well as the species origin (see
Table A.2 in Appendix A). Table 4.1 lists the number of mAbs out of the collected 273

belonging to a specific isotype or species origin.
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Table 4.1. Summary of isotype and species origin diversity of the 273 gathered mAb sequences from the IMGT
database.

Chain/Species Isotype/Origin Number of Samples
lgG1 197
HC 19gG2 35
lgG4 41
Lc kappa 242
lambda 31
chimeric 35
Species human 122
humanised 116

4.1.2 Descriptor Generation

Structural descriptors for the X block were generated using the methodology presented in
Section 3.2 with four unique primary sequence-based descriptor (PSD) sets prepared: Domain
based (PSD1), Substructure based (PSD2), Single AA based (PSD3) and Running Sum based
(PSDA4).

4.1.3 Modelling Methods

4.1.3.1 Principal Component Analysis

Principal Component Analysis (PCA) was used as an exploratory analysis tool to investigate
the four descriptor sets and the relationship between descriptors and different chain isotypes
and species origins. Each model was selected to contain 90% of the total variation contained in
the descriptor set of interest. PCA implementation was performed using the PLS Toolbox

version 8.6.1 (Eigenvector Research, Inc). For more details on PCA, see Section 2.2.1.

4.1.3.2 Partial Least Square Discriminant Analysis

The NIPALS algorithm was used to develop a PLS regression model for predicting the dummy
variables generated from the class information pertaining to the species origin of the mAbs.
Discriminant Analysis (DA) was then applied to create decision thresholds in order to classify
the predictions of the developed PLS model. For more information on PLS-DA, refer to Section
2.3.1.

4.1.3.3 Support Vector Machines for Classification

The LibSVM toolbox was used and implemented in MATLAB 2016a for SVC model
development (Chang and Lin, 2011). The C-SVM function in LibSVM uses by default the One-

vs-One (OvO) strategy for multiclass classification problems. A shell script was developed to
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implement the One-vs-Rest (OvR) classification strategy instead in order to reliably compare
SVC to PLS-DA and this is presented in Appendix B.1. Optimisation of the model parameter
C was performed using a grid search approach on defined points over specified ranges for each
parameter (for details on parameters see Section 2.3.2). The grid points used for C was
[10°, 10, 103, 102, 107, 10°, 10%, 102, 103, 104].

4.1.4 Data Curation and Pre-treatment

All descriptor sets were first curated by removing columns containing null values, coded as -
999. Furthermore, descriptors with a standard deviation below 0.0001 were also removed as
they did not contain sufficient variation for the model development. The standard deviation for
a descriptor, k, was calculated according to equation 4.1 where N is the number of samples in
the dataset and X, is the average value of the descriptor k. All data blocks were auto-scaled
before being used in model development in order to centre the data around zero as well as to

scale all descriptors to unit variance (see Section 2.7).

N
1 _
O = mZ(xik — Xp)? (4.1)
L=

4.1.5 Model Training and Validation

4.1.5.1 Structured data splitting

Prior to model development with PLS-DA and SVC the data set was split into a calibration set
and an external test set to represent future samples. The Kennard-Stone (CADEX) algorithm
was used for this purpose which divides the samples according to structural similarity, in the
form of Euclidean distance, between samples in the descriptor space (see Section 2.5.1 for more
details). 80% of the samples were retained for model calibration and the remaining 20% were

kept for external testing and model validation.

4.1.5.2 Cross Validation

A repeated k-fold cross validation scheme was applied for model development for PLS-DA and
SVC where k was chosen to be five in order to get an 80/20 sample split ratio between training
and validation samples, respectively. 20 iterations were performed to better utilise the data set
and decrease the potential impact of outliers in the data on the cross validation.

95



4.1.5.3 Model Validation

Validation PLS-DA and SVC models were performed using the overall error rate (ER) in
eq.(2.62) and the Matthews Correlation Coefficient (MCC) in eq.(2.66) based on the confusion
matrices of the developed models. Model parameters in PLS-DA and SVC were selected based

on the minimum ER value observed in the cross validation.
4.2 Results and Discussion

4.2.1 Domain based selection of descriptors

Exploratory analyses of the HC and LC isotypes as well as the species origin were performed
by first selecting descriptors that were known to be closely related to the investigated response
in question based on sequence difference between isotypes described in Section 3.1.3. Figure
4.1 illustrates the selection of descriptors based on their domain of origin. For the HC isotypes,
only the heavy chain domains: Vu, Cxl, CH2 and Cn3 were used and are marked in red
illustrated in Figure 4.1a. Similarly, investigation of the LC isotypes was performed with
descriptors from the light chain domains: Vi and C (see Figure 4.1b). For the Species origins,
only the Vy and VL were used, (see Figure 4.1c), due to these structural differences being
present only in the variable domain due to the humanisation of the mAbs (Kim et al., 2005).

A

(a) Heavy Chain Isotype (b) Light Chain Isotype (c) Species Origin

Figure 4.1. Descriptor selection based on the structural origin of investigated response for (a) heavy chain isotypes,
(b) light chain isotypes and (c) species origin. Descriptors from the mAb domains used in structural exploration
are coloured red while excluded domains are coloured grey in the three presented cases.

PCA was used as an exploratory tool to capture and visualise the information contained in the
generated descriptor sets presented in Section 3.2. As PCA is scale dependent, the descriptors
were auto-scaled before analysis (Bro and Smilde, 2014). The PCA models were built to capture
approximately 90% of all variations contained in the individual descriptor sets. A summary of
the PCA models is presented in Table 4.2 and list exploration of both heavy and light chain

descriptors separately.
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Table 4.2. PCA model summary of heavy chain (HC) descriptors and light chain descriptors (LC) according to the
four descriptor resolutions PSD1, PSD2, PSD3 and PSD4. Models were developed to capture approximately 90%
of the total variation present in the individual descriptor sets.

Chain Descriptor Number of Principal Explained
Set Descriptors Components  Variation (%)
PSD1 543 19 89.96
PSD2 817 27 90.14

HC
PSD3 1625 68 90.02
PSD4 4367 41 90.02
PSD1 272 12 90.20

LC PSD2 490 20 90.19
PSD3 1601 43 90.06
PSD4 2387 26 89.92

4.2.2 Exploration of HC Isotypes

In the case of the heavy chain, all samples formed three clearly defined groups when analysing
the scores from the PCA models. The PCA results of PSD1 is illustrated in Figure 4.2 where
the scores and loadings of the two first components were enough to characterise the structural
difference between the heavy chain isotypes. It can be observed that IgG1 samples are separated
from 1gG2 and 1gG4 samples in the first PC which explains 34.34% of the total data variation
in the descriptor set illustrated in Figure 4.2a. The second component further separates 19gG2
from 1gG4 samples and explained an additional 17.03% of the total data variation in the PSD1
descriptor set. The subsequent components showed no further separation of the heavy chain
isotypes but instead captured varying degrees of variation linked to the sequence variability of
the variable domain, V4 (data not shown). From the loadings of the first and second PCs
illustrated in Figure 4.2b and Figure 4.2c it can be observed that the constant domains: Cn1,
Cn2 and Cnx3 contribute more significantly to the separation observed in the score plot while
the loadings of the descriptors in the variable domain Vu remain close to zero. This
phenomenon is explained by investigating the VDJ gene recombination responsible for
expressing the heavy and light chain of the mAbs. All genes encoding for the full heavy chain
are located on chromosome 14 in the human genome where the VDJ region codes for the
diversity of the Vy domain. Genes encoding for constant domains are located further
downstream and contain information for encoding all heavy chain isotypes (Jung and Alt, 2004,
Schroeder and Cavacini, 2010). This means the primary sequence of the V4 domain cannot be

used to infer the isotype of the heavy chain due to being shared between 1gG1, 1gG2 and IgG4
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and it is therefore the reason for the low contribution of the Vi domain in the loadings plots

illustrated in Figure 4.2b and Figure 4.2c.

Identical observations were made for the other descriptor sets: PSD2 (see Figure C.la and
Figure C.1b), PSD3 (see Figure C.1c and Figure C.1d) and PSD4 (see Figure C.1e and Figure
C.1f) presented in Appendix C, where the structural differences between the HC isotypes
formed distinct groups in the score plots. Some differences in explained data variation was
however observed. When using PSD1, PSD2 and PSD4, the first two PCs explained between
35-50% of the total data variation. In the PSD3 descriptor set however, PC1 and PC4 contained
the information for heavy chain isotype separation which also had a lower cumulative explained
variation of 17.08% of the total data variation. PC2 and PC3 described variation pertaining to
the sequence variability in the variable domain, Vu (data not shown). The primary reason for
the lower explained variation in PSD3 compared to the other descriptor sets was due to the high
resolution where each amino acid is represented individually. This led to a higher exclusion of
descriptors from the constant domains during the data curation with more static descriptors
being removed in PSD3 compared to the descriptor sets PSD1, PSD2 and PSD4. In the latter
descriptor sets all descriptors are a sum of multiple residues and therefore contain more
variation. A summary of the PCA analysis of the four descriptor sets exploring the components
involved in the separation of the HC isotypes is presented in Table 4.3.
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Figure 4.2. PCA exploration of Vy, Cul, Cu2 and Cy3 descriptors from PSD1. (a) Score plot of the first two
principal components (PCs). The isotypes 1gG1 are coloured red, 1gG2 coloured green and 19G4 coloured blue.
(b) Loadings of the first PC. (c) Loadings of the second PC.

Table 4.3. Summary of PCA analysis listing the principal components used to observe separation of HC and LC
isotypes together with the corresponding explained data variation for each descriptor set. The last column shows
the percentage of descriptors generated from the constant domains.

Chain Descriptor Principal Exp_lained Numb_er of Const_ant Domain
Set Components  Variation (%) Descriptors Descriptors (%)
PSD1 1,2 51.37 543 74.95
PSD2 1,2 42.93 817 70.13
He PSD3 1,4 17.08 1625 45.17
PSD4 1,2 35.57 4367 68.26
PSD1 1 52.23 272 50.00
PSD2 1 54.29 490 50.20
= PSD3 1 49.81 1601 47.09
PSD4 1 52.61 2387 47.47
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4.2.3 Exploration of LC Isotypes

Similarly to the heavy chain, a very clear separation of the light chain isotypes, kappa and
lambda, was observed in the first PC for the PSD1 descriptor set seen in Figure 4.3a which
explained 52.23% of the data variation. However, contributions to the separation were not only
caused by the constant domain Cy but the variable domain V also contributed to the separation
of kappa and lambda seen in Figure 4.3b. Identical trends of PCA scores and loadings were also
observed in the other three descriptor sets: PSD2 (see Figure C.2a and Figure C.2b), PSD3 (see
Figure C.2c and Figure C.2d) and PSD4 (see Figure C.2e and Figure C.2f) presented in
Appendix C where the first principal component explained 54.29%, 49.81% and 52.61% of the
data variation, respectively. The contribution of the Vi domain to the separation is due to the
fact that the VJ gene recombination of the light chain occurs at two separate chromosomes
where lambda is encoded on chromosome 2 and kappa on chromosome 22. Both chromosomes
have an individual VJ region for encoding the V. domain whose primary sequence thus
becomes dependent on the isotype that is expressed (Jung and Alt, 2004, Schroeder and
Cavacini, 2010). It therefore becomes possible to infer the light chain isotype based on the
primary sequence of the V. domain alone. This is further supported by the fact that the
explained variation of the first PC in all descriptor sets is larger than the percentage of

descriptors originating from the constant domain Cy as presented in Table 4.3.
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Figure 4.3. PCA analysis of V| and C._ descriptors from the PSD1 descriptor set. (a) Score plot of the first two
principal components (PCs). The isotype kappa is coloured red and lambda is coloured green. (b) Loadings of the
first PC.

4.2.4 Exploration of species origin

Compared to previous observations on HC and LC isotype analysis, the PCA analysis of the
Vx and Vi domain descriptors did not yield a clear separation between chimeric, human and

humanised samples as can be observed for the PSD1 descriptor set in Figure 4.4a. Instead,
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structural features related to the LC isotypes had a big influence on the captured data variation
and this was a driving force in the separation of samples as can be observed in Figure 4.4b for
descriptor set PSD1. Similar observations were made for the three other descriptors sets and are
presented in Appendix C for PSD2 (see Figure C.3a and Figure C.3b), PSD3 (see Figure C.3c
and Figure C.3d) and PSD4 (see Figure C.3e and Figure C.3f). This was not unexpected
however due to the contribution of the V. domain descriptors observed in Figure 4.3b and that
the expression of kappa and lambda light chain occurs at different Chromosomes. Another
impacting factor is the high diversity of the CDR regions in the variable domains which are the
main source of data variation in the four descriptor sets and therefore makes it difficult to
observe any species origin related separation with PCA. Even when exploring principal
components of higher order, no defined separation of the species origins can be observed in the
descriptor sets. Therefore, PLS-DA was used for classification in order to explore the extent of
data variation related to the species origins. SVC was also applied as an additional classification
method to evaluate the effect of the descriptor sets on model performance and accuracy between
methods.

(a) 15 | (b)

PC2 Scores (10.81%)
PC2 Scores (10.81%)

PC1 Scores (11.73%) PC1 Scores (11.73%)

Figure 4.4. PCA scores of the first and second principal components (PCs) from Vy and V. domain descriptors of
PSD1. (a) chimeric (red), human (green) and humanised (blue) samples. (b) I LC isotypes kappa (red) and lambda

(green)

4.2.5 Species origin classification

To evaluate developed supervised models, the sample set was split into a calibration and test
sets with an 80/20 ratio using the CADEX algorithm in order to retain the majority of samples
and data variation for training. Using the CADEX algorithm also assured that samples in the
test set would be structurally similar to the samples in in the calibration set with regards to the
descriptor space. Table 4.4 lists the splits of the four descriptor sets with regards to the species

origins. It can be observed that the ratio of test set samples was retained at around 0.2 for the
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three individual species origins in the four descriptor sets thus retaining representation in the

test set.

Table 4.4. Sample split with CADEX of the descriptor sets: PSD1, PSD2, PSD3 and PSD4. The number of samples
belonging to each individual species origin is listed for both the calibration and test sets.

Descriptor Set Numb.er of Species Origin  Calibration  Test Set Sa”.‘p'e
Descriptors Ratio (Test)
chimeric 28 7 0.20
PSD1 272 human 95 27 0.22
humanised 95 21 0.18
chimeric 26 9 0.26
PSD2 488 human 98 24 0.21
humanised 94 22 0.19
chimeric 28 7 0.20
PSD3 1738 human 92 30 0.25
humanised 98 18 0.16
chimeric 29 6 0.17
PSD4 2640 human 93 29 0.24
humanised 96 20 0.17

A summary of the performance of the developed PLS-DA and SVC models is shown in Table
4.5 for each of the four descriptor sets. In general, models developed with SVC showed a little
higher performance compared to PLS-DA in both the cross-validation and test set, thus
indicating slightly better generalisation which was most pronounced in the PSD1 and PSD2
descriptor sets. A potential reason for this may be due to the fact that all samples impact on the
on the regression prediction in PLS-DA model and therefore it is more likely to be influenced
by noisy samples. On the other hand, SVC models are developed only on an optimal subset of
the samples (support vectors) used for defining the decision boundary which thereby reduces
the influence of noisy samples on the model performance. Notwithstanding this, all models had
excellent performance in the external test set with MCC values well above 0.7 except for the
PLS-DA model developed using PSD1. Due to the differences in sample sizes between
chimeric, human and humanised samples, the MCC metric is preferred as it gives fair
representation of all classes regardless of samples size (Jurman et al., 2012). The high MCC
values are therefore an indication of strong correlation between the structural descriptors of the
Vx and Vi domains and the species origin. As no descriptor reduction or selection has been
performed on the descriptor sets prior to model development, a strong correlation between the

primary sequence and the species origin can be assumed.
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In addition, the developed PLS-DA models also give an indication of the extent of the data
variation in the Vy and Vi domain descriptors that are correlated to the species origin. From
Table 4.5 it can be observed that roughly a quarter of the total data variation in PSD2, PSD3
and PSD4 is used for class prediction by the models whereas the variation used inPSD1 is
slightly higher with 35.93%. Thus, an estimation of the structural variation from the Vy and V
domains correlated to species origin can be inferred based on the used data variation by the
developed PLS-DA models.

Table 4.5. Summary of model performance of PLS-DA and SVC developed on the descriptor sets: PSD1, PSD2,
PSD3 and PSD4. Performance metrics for calibration (Cal), cross-validation (CV) and the external test (Test) set
are provided.

Methog  Descriptor  Explained X Cal Ccv Test
Set Variation (%)  Mmcc  ER MCC ER MCC ER
PSD1 35.93 082 011 068  0.19 068  0.20
PSD2 22.21 077 0.4 062  0.23 079  0.13
PLS-DA
PSD3 28.70 0.95  0.03 075 0.5 096  0.04
PSD4 24.41 0.88  0.07 071 0.8 091  0.05
PSD1 - 092  0.05 072 017 085  0.09
sve PSD2 - 093  0.04 072 017 094  0.04
PSD3 - 099 001 074 0.5 094  0.04
PSD4 - 095 0.3 079  0.13 094  0.04

In addition, individual classification performance in relation to the chimeric, human and
humanised samples was assessed with receiver operating characteristics (ROC) curves on the
cross-validation results in order to understand the slightly lower MCC values compared to those
in the calibration and test set. More specifically, the area under the curve (AUC) was used as a
performance metric with a value of 0.5 indicating poor classification accuracy and a value of
one indicating perfect classification (Fawcett, 2006). The AUC values obtained from the cross-
validation on PLS-DA model developed using PSD3 data set are illustrated in Figure 4.5a and
the equivalent SVC model in Figure 4.5b. The black dashed line represents the AUC value of
0.5 thus indicating a reference border where no discrimination between classes are possible (see
Section 2.6.2). Clearly these were all above 0.9 thus indicating high accuracy. It can be observed
that most of the misclassification occurs in the humanised samples (blue line) whose AUC
values are lower compared to those of the chimeric and human samples. This is the cause for
the lower MCC values in the cross-validation compared to the calibration and external test set,
where the misclassification of humanised samples was lower (data not shown). This trend was
also observed in the cross-validation results of PLS-DA and SVC ROC curves for the remaining

three descriptor sets of PSD1, PSD2 and PSD4, illustrated in Figure C.4 in Appendix C. A
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closer inspection of the resulting confusion matrices from the cross-validation of the four
descriptor sets showed that the misclassified humanized samples were classified as a mix of
chimeric and human (data not shown). Therefore, no particular preference was observed of the
misclassified samples that leaned more towards the chimeric class or the human class. A
potential reason for this could be due to the mix of chimeric CDRs and the human framework
regions which in unique instances, have a higher resemblance to that of fully chimeric or fully

human sequences.
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Figure 4.5. ROC curves and AUC for chimeric (red line), human (green line) and humanised (blue line) samples
developed on prediction data from the cross-validation of PSD3 in (a) PLS-DA and (b) SVC. The black dashed
line represents the AUC value of 0.5 where no discrimination between classes can be made.

4.3 Summary

Based on the results presented in this chapter, the developed primary sequence-based
descriptors from Chapter 3 work well for identifying more apparent structural differences such
as the HC and LC isotypes through exploration techniques such as PCA. More advanced
supervised methods had to be used, however, to successfully separate and classify the species
origin of the used samples in order to reach higher accuracy. These exploration and
classification results were not unexpected based on the evident differences in the primary
sequence of the constant domains and the structural variation originating from humanisation of
mADbs presented in Section 3.1.5 (see Figure 3.2). Instead, the descriptor sets applicability to
these problems indicates that the developed descriptors reflect the underlying biological
features and thus the development of more advanced predictive models can be attempted. The
next logical step would be to try to develop models for prediction of mAb behaviour in more
complex experimental environments where the structural correlation to the response might be

more elusive.
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The second important finding in this chapter is the characterisation of sources of structural
variation correlated to mAb isotypes and species origins that greatly impact the descriptors. The
described workflow in this chapter can therefore be used to determine sources of systematic
variation that is present in the mAb structure. Characterisation of such variation becomes vital
in model development as it can negatively impact model performance if the variation is

unrelated to the response which is explored in the next chapter.
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Chapter 5

QSAR Model development: Primary sequence-based

descriptors

In Chapter 3, a novel workflow was presented for the generation of descriptor sets, capturing
varying sequence resolutions, were developed from the primary sequences of mAbs. In this
chapter the four primary sequence-based descriptor sets were investigated and applied in the
prediction of HIC retention times and mAb yields. These were chosen as response vectors for
model development due to being important parameters in pharmaceutical industries for the
assessment of productivity and product stability, respectively. The structural variation related
to the heavy and light chain isotypes as well as species origins present in the primary sequence-
based descriptor sets observed in Chapter 4 were further explored with regards to the chosen
responses. A benchmarking scheme for sequential improvement and comparison of the models
with regards to descriptor reduction and selection is also developed and presented in this

chapter.
5.1 Material and Methods

5.1.1 Response Data

In this research, the quantitative process data published by Jain et al. (2017) was used to develop
predictive models (Jain et al., 2017). It is important to note that all constant domains in the
heavy chain were expressed as 1gG1 for the heavy chain with allele IGHG1*01. The original
isotype of the light chain was retained in the explored samples where two alleles were used for
expressing either kappa (IGKC*01) or lambda (IGLC1*01) conformation.

The diversity of the of Jain dataset is illustrated in Figure 5.1 which shows the distribution of

Kappa and Lambda mAbs (Figure 5.1a), the distribution of human, humanized and chimeric
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mADbs (Figure 5.1a) as well as the distribution of mAbs in the different clinical phases: phase

I1, phase 111 and phase IV (approved) (Figure 5.1c).

W Kappa MLambda B Human M Humanised M Chimeric W Phase2 ®Phase3 M Approved
(a) (b) (c)

Figure 5.1. General summary of mAbs in the dataset from Jain et al. (2017) according to (a) the light chain
isotypes, (b) species origins and (c) clinical phase distribution.
Out of the 12 characterised biophysical properties available in the publication of Jain et al.
(2017), the mADb vyields from the HEK cell line cultivations and the HIC retention times were
selected as model responses as discussed in Section 1.5. A brief description of the experimental
setup for both responses is explained below according to the description provided by the

authors. No triplicates were given for either for mAb yield or HIC retention times for the 137
mADb.

5.1.1.1 mAb expression and extraction

The 137 mAbs were expressed in HEK293 cells under identical cultivation conditions. After 6
d of growth, the cell culture supernatant was harvested by centrifugation and passed over
Protein A agarose (MabSelect SuRe from GE Healthcare Life Sciences). The bound mAbs were
then washed with PBS and eluted with buffer (200 mM acetic acid/50 mM NaCl, pH 3.5) into
1/8 volume 2 M Hepes, pH 8.0. The final products were buffer-exchanged into 25 mM Hepes
and 150 mM sodium chloride at pH 7.3.

5.1.1.2 HIC

5 ng of IgG samples (1 mg/mL) were mixed with a mobile phase A solution (1.8 M ammonium
sulphate and 0.1 M sodium phosphate at pH 6.5) to achieve a final ammonium sulphate
concentration of about 1 M before analysis. A Sepax Proteomix HIC butyl-NP5 column was
used with a linear gradient of mobile phase A and mobile phase B solution (0.1 M sodium
phosphate, pH 6.5) over 20 min at a flow rate of 1 mL/min with UV absorbance monitoring at
280 nm.
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5.1.1.3 Exclusion of samples

Out of the 137 available mADbs in the data set, 6 mAbs were excluded based on one of the

following reasons:

1) Original mAb was not of 1gG class e.g. IgM
2) Original mAb was of a hybrid conformation e.g. 19G2/4

3) Experimental data for mAb was not available

This resulted in 131 mAbs being selected for further evaluation and are listed in Appendix A,
Table A.3 with corresponding experimental measurements for HIC retention times and mAb

yields.

5.1.2 Descriptor Data Generation

Structural descriptors for the X block were generated based on the methodology presented in
Chapter 3 where four unique descriptor sets were attained: Domain based (PSD1), Substructure
based (PSD2), Single AA based (PSD3) and Running Sum based (PSD4) where PSD is short
for “Primary sequence-based descriptors”. All sequences for the variable domains Vy and Vi
were provided as supplementary information in the study from Jain et al (2017). Final heavy
chain sequences for descriptor generation were prepared by attaching the allele sequence
IGHG1*01 representing 1gG1 isotype to the Vy domains. The allele sequences IGLK1*01 and

IGLC1*01 were used and attached to V.. domains of kappa and lambda isotype, respectively.
5.1.3 Modelling Methods

5.1.3.1 PLS

Partial Least Squares regression was performed using the NIPALS algorithm. The first 20 latent
variables were calculated to allow for a majority of the data variation in X and ¥ to be captured.
A higher number of latent variables is usually not recommended as they commonly only
improve fitting of individual samples, thus causing over-fitting (Wold et al., 2001). For more

information on PLS, refer to Section 2.4.1.

5.1.3.2 SVR

Optimisation of the model parameters C and € was performed by using a grid search approach
on defined points over specified ranges for each parameter (for details on parameters see
Section 2.4.2). The grid points used for € were [10°, 104, 10, 102, 107, 10°, 10%, 102, 103,
10%] whereas the grid points used for e were [103, 1025, 102, 10'1°, 101, 10°®, 10°, 10°5, 101].

This resulted in 90 different parameter permutations that were evaluated in the cross validation.
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5.1.4 Model Training and Validation

5.1.4.1 Structured data splitting

Prior to model development the data set was split into a calibration set and an external test set
to represent future samples. The Kennard-Stone (CADEX) algorithm was used to divide the
samples according to structural similarity in the form of Euclidean distance between samples
in the descriptor space (see Section 2.5.1 for more details). 80% of the samples were retained
for model calibration where the remaining 20% was kept for external testing and model

validation.

5.1.4.2 Cross-Validation scheme

A repeated k-fold cross validation scheme was applied for model development where k was
chosen to be five in order to get an 80/20 sample split ratio between training and validation
samples, respectively. 20 iterations were performed to better utilise the data set and decrease
potential impacts of outliers in the data on the cross validation. For more information, see
Section 2.5.2.

5.1.4.3 Model Validation

All models were validated adhering to the OECD guidelines for R? and Q2 in QSAR/QSPR
models (Veerasamy et al., 2011, Alexander et al., 2015). The guidelines state that R? and Q2
should be greater than 0.5 and 0.6 in the cross-validation and external prediction, respectively.
The thresholds for R? and Q2 in the OECD guidelines are intended to be used for early model
development to explore potential correlation of factors and descriptors related to the modelled
responses. Once characterised, additional descriptor development and adjustments can be
performed to further improve model performance. For more information on R? and Q?, refer to
Section 2.6.1.

5.1.4.4 Y-Randomisation

Y-randomisation was used to evaluate the presence of random correlation between a descriptor
set and a randomised response vector. The response vector was randomised 50 times and an
individual model was developed on each permutation. Calculated R? and Q2 values from the
50 models were then averaged. If no chance correlation is present in the descriptor set both the
averaged R? and Q2 values will be low. For more details on Y-randomisation, refer to Section
2.6.3.
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5.1.5 Descriptor reduction and selection

The placement of the unsupervised V-WSP reduction algorithm in the model development
pipeline needed to be considered in order to generate an unbiased test set, as discussed in
Section 2.5.1. Two approaches were considered where the first scenario places the V-WSP
reduction prior to the structured data splitting using CADEX illustrated in Figure 5.2a. This
sequence however, introduces a bias due to collinearity reduction of descriptors with all
available samples in the data set. This means, that even after splitting the data set into a
calibration set (black box) and a test set (red box), the selection of the test set samples might
have been affected by the descriptor reduction of all samples. The descriptor reduction is thus
influenced by all samples and therefore becomes biased. Instead, the second scenario illustrated
in Figure 5.2b has the V-WSP reduction placed after the data splitting which ensures that only
selected calibration samples influence the descriptor reduction. This approach is thus unbiased
as it keeps the external test set samples separate throughout the model development pipeline
where descriptor reduction and selection were performed only on the calibration set. For these
reasons, development of all models in this chapter was performed adhering to the workflow
illustrated in Figure 5.2b.
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Figure 5.2. Overview and placement consideration of the V-WSP algorithm in regards to the data splitting and the
variable selection (VS). (a) Placement of V-WSP reduction prior to structured sample splitting results in a biased
selection of descriptors due to influence from all samples. (b) Structured splitting performed before V-WSP
reduction results in an unbiased selection of descriptors due to being independent from the test set samples. Vertical
arrows represent selection of descriptors in the test set to match the calibration set.

5.1.5.1 V-WSP

The V-WSP algorithm was applied as an unsupervised reduction method to reduce the number
of descriptors in the X block by only keeping descriptors with low correlation between them
(Ballabio et al., 2014). Procrustes goodness of fit was used as a metric to investigate how much
of the information between the original and reduced data was retained after the variable
reduction with the V-WSP algorithm (Peres-Neto and Jackson, 2001, Kendall, 1989). A
Procrustes value of zero means that the information in the data sets is identical and a value of
one means that the data sets a completely dissimilar. In the absence of any published acceptable
correlation thresholds, the thresholds for each domain were selected by empirically testing all
values from 0.5 to 0.99 with increments of 0.01. The correlation threshold was chosen based
on guidelines from Ballabio et al. (2014) where the goal of the reduction is the elimination of

redundant information and not the preservation of the data structure.

To this end, the correlation thresholds were chosen on a case by case basis for each individual
group of descriptors defined by the domains in PSD1 or the substructures in PSD2, PSD3 and
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PSD4 therefore corresponding to inherent structural blocks in the mAbs. This was done in order
to preserve vital information present in each individual structural block of the mAb structure
and at the same time reduce the number of redundant descriptors. Reduction with V-WSP was
performed prior to any supervised variable selection method used in this research according to
Figure 5.2b.

5.1.5.2 rPLS

Supervised variable selection with rPLS was performed with PLS Toolbox 8.6.1 (Eigenvector
Research Inc) together with MATLAB 2016a (Mathworks®). An initial PLS model was
developed with selected descriptors from V-WSP reduction and the latent variable with the
smallest RMSECYV was selected as a starting point for the rPLS selection. For more information
on rPLS, refer to Section 2.9.1.

5.1.5.3 GA

Supervised variable selection with Genetic Algorithm (GA) was performed using PLS Toolbox
8.6.1 (Eigenvector Research Inc) together with MATLAB 2016a (Mathworks®) and PLS as
the fitness function. A population size of 100 was used and the maximum number of generations
was set to 100. The convergence for the GA algorithm was set to 50%. Default values for the
mutation rate and the ratio of kept variables in the initial models was kept as 0.5% and 30%,

respectively. For more information on the GA algorithm, refer to Section 2.9.2.

5.1.5.4 LASSO

Supervised variable selection with L1-norm regularisation (LASSO) with SVR was applied
using the function fitrlinear in MATLAB 2016a (Mathworks®) where SVR was set as the
learner and lasso set as the regularisation method. A grid search was performed similar to that
of SVR method in Section 5.1.3.2 above in order to optimise the parameter selection. The
fitrlinear function uses A according to eq.(5.1) instead of C as a regularisation term as

previously described in Section 2.4.2.1.

n
1
i — , *)2
Jmin_ 2wl + "Z(El +E) (5.1
l:

The relationship between C and A is described in eq.(5.2) where n is the number of samples
(Rifkin, 2002). The relationship was used to convert the previously used C values to that of A

instead.
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For more details on the LASSO method, refer to Section 2.9.3.

5.1.6 Model Benchmarking

In this research, descriptor reduction and selection were performed and evaluated in subsequent
steps (Figure 5.3) in order to better investigate their impact on the model performance. For each
descriptor set, the CADEX algorithm was applied to split the available samples into a
calibration set for training (80%) and a test set for model validation (20%). Following the
outline in Figure 5.3, an initial model was developed with all descriptors in the descriptor set
of interest. A second model was then developed after V-WSP reduction had been performed on
the descriptor set. A final model was then developed after variable selection with either rPLS,
LASSO or GA had been performed on the V-WSP reduced descriptor set. The performance
metrics of R? and Q2 of the cross-validation and the test set from each of the three model were
then compared to evaluate the effect of the descriptor reduction and selection methods. This
process was repeated for each of the four descriptor sets: PSD1, PSD2, PSD3 and PSD4 when
using either PLS or SVR as modelling method.

In total, 32 models were developed in order to compare the performance of different
permutations of the presented methods. It is important to note that LASSO was only applied
when SVR was used as modelling method whereas rPLS was only applied when PLS was used
as modelling method.
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Figure 5.3. Sequential model development and evaluation for investigation of changes in performance with
descriptor reduction and selection methods. Three models are developed on 1) all available descriptors, 2) the V-
WSP reduced descriptor set and 3) the descriptor set after supervised variable selection (VS).

5.1.7 Statistical testing

In Chapter 4, strong correlations were observed between the individual chains and their
corresponding isotypes based on exploratory analysis with PCA (see Section 4.2.2 for the heavy
chain and Section 4.2.3 for the light chain). A strong correlation was also observed between the
variable domains and the species origin when explored with PLS-DA and SVC (see Section
4.2.5). Statistical models were therefore used to establish if any significant differences were
present between groups (statistical factors) of responses. In this research the factors were
defined as the heavy chain, the light chain and the species origin of the mAbs. The heavy chain
factor consisted of three levels being: IgG1, IgG2 or 1gG4. The light chain factor consisted of
two levels being: kappa or lambda. Finally, the species factor consisted of three levels being:
chimeric, human or humanised. Figure 5.4 illustrates a decision tree for choosing an appropriate

test depending on the normality and the available number of levels in the investigated factor.

Normality was tested using the Anderson-Darling test with a significance level of 0.05
(Anderson and Darling, 1952). Ho is the hypothesis that the data is normally distributed whereas

H: is the alternative hypothesis that the data follows another distribution.
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Figure 5.4. Decision tree for statistical testing of response data based on normality and number of available levels
for the investigated factor.

5.1.7.1 Parametric methods

Two different parametric tests were used for data that conformed to a normal distribution where
the number of available levels in the factor of interest determined which test to use. If two levels
were available, a 2-sample t-test was used to test for any significant differences between the
group means whereas if three levels were available, a 1-way Analysis of Variance (ANOVA)

was used (Krzywinski and Altman, 2014a).

5.1.7.2 Non-parametric methods

Non-parametric tests were used if the data did not conform to a normal distribution. Similar to
the parametric methods, the number of available levels in the factor of interest determined
which statistical test would be performed. A Mann-Whitney rank test was performed for factors
with two levels and a Kruskal-Wallis test was performed for factors with three levels
(Krzywinski and Altman, 2014b).

5.1.7.3 Multiple comparison

Two statistical tests were performed for each individual response, one for testing the significant
difference between the heavy chain isotypes and the other to test the significant differences
between the light chain isotypes. However, performing multiple inferences on the same data set
can cause Type I error (incorrectly rejecting Ho). This is due to that fact that when the number
of statistical tests increases, the probability of any one of them being significant increases. To
adjust for this, the Bonferroni correction was used to modify the significance level according
to eq.(5.3) which gives the effective significance level for which each test needs to be tested
against (Sedgwick, 2014).

(44
X(per comparison) = m (5.3)
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where « is the desired significance level, m is the number of performed tests and

A (per comparison) 1S the effective significance level.
5.2 Results and discussion

5.2.1 Selection of samples for model development

From Chapter 4 it was observed that much of the data variation in the descriptors had a strong
relationship to the heavy chain and light chain isotypes according to the PCA score plots
illustrated in Figure 4.2 and Figure 4.3, respectively. This variation is systematic and originates
from the unique structure and amino acid composition found in the individual mAb isotypes
illustrated in Figure 3.2 in Chapter 3. This is of importance as systematic variation in the X
block that is unrelated to the responses can have a negative impact on the developed models
and cause large prediction errors (Wold et al., 1998, Trygg and Wold, 2002). Therefore, prior
to model development a statistical analysis was performed to test if a significant difference was
present between response measurements related to different isotypes of the heavy and light
chain. Due to the lack of samples in the IgG2-lambda and 1gG4-lambda permutations (two
samples in each group), two-factor hypothesis testing methods such as the parametric two-way
ANOVA (Fisher, 1992) or its non-parametric equivalent, the Schreier-Ray-Hare test (Sokal and
Rohlf, 1969) could not be reliably used. The unequal samples sizes can lead to a decrease in
statistical power, meaning that it becomes increasingly difficult to correctly reject Ho and thus
causing a Type Il error (Rusticus and Lovato, 2014). Instead, multiple comparisons of single
factors (heavy or light chain) were performed in order to increase the sample sizes in each factor
level. Appropriate statistical tests were chosen according to the decision tree illustrated in

Figure 5.4.

Normality testing was performed for all mAb isotypes groups (kappa, lambda, 1gG1, IgG2 and
IgG4) for both the HIC retention times and the mAb yields with the results presented in Table
5.1. For the HIC retention times data, normality could not be assumed for the 1IgG1 and 1gG2
isotypes in the heavy chain as well as the kappa isotype in the light chain due to p < 0.05.
Due to the lack of normality, non-parametric statistical methods were applied were a Kruskal-
Wallis test and a Mann-Whitney test were used for significance testing of the heavy chain
isotypes and the light chain isotypes, respectively. For the mAb yield data, normality could be
assumed in all isotypes and thus parametric statistical methods were applied in these instances.
A one-way ANOVA and a two-Sample t-test were used for significance testing of the heavy
chain isotypes and the light chain isotypes, respectively.
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Table 5.1. Hypothesis testing of heavy and light chain isotypes using Anderson-Darling Normality Test with a
significance level of 0.05. Hy is the hypothesis that the data follows a normal distribution.

Factor  Level Samples HIC Yield

(Chain)  (Isotype) p Decision p Decision

LC kappa 119 0.0005 Reject Ho 0.4310 Keep Ho
lambda 12 0.1498 Keep Ho 0.0648 Keep Ho
IgG1 89 0.0005 Reject Ho 0.1709 Keep Ho

HC 1gG2 20 0.0097  Reject Ho 0.8839  Keep Ho
1gG4 22 0.1990 Keep Ho 0.9414 Keep Ho

Results of the statistical tests are presented in Table 5.2. The effective significance level for
each test was set to 0.025 according to the Bonferroni correction due to two multiple
comparison being performed for each response. The analysis showed that the isotype had no
significant impact on the measured responses for either the HIC retention times or the mAb
yields. Due to these findings only 1gG1-kappa samples were kept for model development due
to being the most numerous in the present data set. In addition, this is also the predominantly
preferred conformation of new mAbs in clinical trials according to the IMGT database search
in Chapter 3. This resulted in 81 samples being selected from the 131 samples in the original

data set.

Table 5.2. Hypothesis testing of with a significance level of 0.025 according to the Bonferroni correction for
multiple comparisons. Hp is the hypothesis that there is no significant difference between means of different
isotypes. Non-parametric tests are referred to as NP and parametric test as P.

Factor Levels Equal .
Response . Type Test . p Decision
(Chain) (Isotypes) Variance
HiC HC 3 NP Kruskal-Wallis - 0.1201 Keep Ho
LC 2 NP Mann-Whitney - 0.0721 Keep Ho
Vield HC 3 P 1-Way ANOVA  Yes (p=0.2270) 0.8532 Keep Ho
ie
LC 2 P 2-Sample T-test  Yes (p=0.8052) 0.6326 Keep Ho

It is important to remember that the heavy chain constant domains in all mAbs in the study of
Jain et al (2017) were expressed as 1IgG1, which introduces a bias in the statistical testing of the
heavy chain isotypes. As for the light chain, as the original isotypes were kept mostly intact
through expression with one allele for kappa and another for lambda, the impact of the light
chain isotypes on the measurements becomes more representative. As the statistical testing
above was performed through the partitioning of mAbs according to their original isotype, the
lack of significance might not hold true if identical experiments were to be performed with

unaltered mAbs. The selection of IgG1-kappa mAb samples in this case therefore ensures that
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the measurements are more representative in terms of the original mAb structures due to less

sequence alteration.

In retrospect, even though the alteration of the original mAbs introduced a bias in the statistical
testing of the heavy chain, it gives an alternative approach for investigation of potential
variation when combined with exploratory analysis methods such as PCA, PLS-DA or SVC.
This to better control the introduction of potential systematic variation in the X block prior to
use in model development in order to improve the prediction accuracy of the resulting models.
This becomes more relevant in environments such as industrial or clinical settings where the

original mAb structures are kept intact in order to infer information.

5.2.2 Impact of species origin

Multiple models were developed on the retained 81 IgG1l-kappa samples according to the
benchmarking scheme presented in Section 5.1.6 which resulted in unique 32 models. The
model performance of each individual model is presented in Table C.4a and Table C.5a in
Appendix C for the HIC retention times and mADb yields, respectively. As can be observed,
models developed from the full descriptor set or the V-WSP reduced descriptor sets resulted in
a poor fit in terms of the cross validation R? (0.04 — 0.22) and Q2 (-0.06 — 0.15) suggesting that
the models were unable to capture the underlying correlation within the data. Adequate
improvements were first seen after a variable selection step had been performed with the GA
selection proving to be superior compared to that of rPLS and L1-SVR variable selection in
both PLS and SVR generated models. A concern, however, is the poor R? and Q2 values of the
external test set, which never reached satisfactory levels for models with adequate cross
validation metrics. All developed models therefore failed the OECD criteria of having a R? and

Q2% > 0.5 in the cross validation as well as a R and Q2 > 0.6 in the external test set.

5.2.2.1 Behaviour of species origins in PLS models

PLS was used as a diagnostic tool to further investigate the cause of the poor validation in the
test set. It was observed that initial of models for HIC retention time prediction developed on
the V-WSP reduced descriptor sets only had one component. From the error plots generated by
PLS, it was observed that the lowest RMSE value was attained with one component which
otherwise increased with higher model complexity for PSD1 (Figure 5.5a), PSD2 (Figure 5.5b),
PSD3 (Figure 5.5¢) and PSD4 (Figure 5.5d). The same trends in the error was also observed
for PLS models developed for prediction of mAb yields and is presented in Figure C.5 in

Appendix C.
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Figure 5.5. PLS error for prediction of HIC retention times in the calibration (blue line) and the cross-validation
(red line) with regards to the number of latent variables developed from the V-WSP reduced descriptor sets of (a)
PSD1, (b) PSD2, (c) PSD3 and (d) PSD4.

Further investigation was performed where a PLS models with two components were developed
for each descriptor set in order to closer investigate the samples residuals and scores. This
showed that the residuals and PLS scores were greatly affected by the species origin of the
mADbs which is illustrated in Figure 5.6 for the HIC retention times. Models used in the Figure
5.6 were developed after V-WSP reduction had been performed and they show the impact of
the species origin for the individual descriptor sets. From the influence plots for PSD1 (Figure
5.6a), PSD2 (Figure 5.6¢), PSD3 (Figure 5.6e) and PSD4 (Figure 5.69) it can be observed that
the chimeric samples tend to have higher residual values compared to humanised and human
samples. This becomes increasingly apparent with higher primary sequence resolution
illustrated in PSD2 (Figure 5.6c), PSD3 (Figure 5.6e) and PSD4 (Figure 5.6g) where the
chimeric samples are further removed from the humanised and human samples compared to
PSD1 (Figure 5.6a). As discussed in Section 3.1.5, this variation originates from the species
origin that was used to design the mAbs where mADbs originating from mouse will differ slightly
in amino acid composition compared to human mAbs in the framework regions of the variable
domains. The retained data variation from the descriptor sets used in the trained PLS models is

also affected by the systematic variation caused by the different species origins. This is
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illustrated as score plots for PSD1 (Figure 5.6b), PSD2 (Figure 5.6d), PSD3 (Figure 5.6f) and
PSD4 (Figure 5.6h). The same trends in the residuals and PLS scores were also observed for
PLS models developed for the prediction of the mAb yield measurements where the chimeric
samples separated from the human and humanised samples which is presented in Figure C.6 in

Appendix C.

The PLS scores (T) were used in this analysis as they provide better insight into the rotation of
the Latent variables e.g. what is captured by the model with respect to the PLS loadings (W*)
in the descriptor space according to the relationship T = XW™* (Wold et al., 2001).The PLS
algorithm tries to maximise the co-variance between X and ¥ but can become confused if there
IS a systematic variation in X unrelated to ¥ (Trygg and Wold, 2002). A separation of chimeric
samples can be observed through groupings in the lower right quadrant which is most evident
in PSD3 and PSD4 with the highest sequence resolution. This illustrates that the PLS model
becomes influenced by the different species origins and tries to separate the samples

accordingly.
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Figure 5.6. Impact of species on PLS models developed using the HIC retention times as the modelled response
where chimeric samples are coloured red, human samples in green and humanised in blue. PLS Influence plots for
PSD1 (a), PSD2 (c), PSD3 (e) and PSD4 (g). PLS scores (T) for the individual samples for PSD1 (b), PSD2 (d),
PSD3 (f) and PSD4 (h).

122



5.2.2.2 Significance of species origins

As the variable domains were kept unaltered in the study of Jain et al (2017), additional
significance testing according to the species origins was performed to investigate potential
differences in the responses between chimeric, human and humanised samples. The study was
performed in the same way as described previously in Section 5.2.1 and is therefore only
covered briefly here. From the study, it was shown that no significant difference between the
HIC retention time means of mAbs from various species origins was observed (Table C.2 in
Appendix C) whereas a significant difference (p = 0.0093 < 0.0133) was observed between

chimeric and humanised samples for the mAb yield measurements (Table C.3 in Appendix C).

In Section 4.2.5 it was shown that classification of the chimeric, human and humanised samples
was possible with PLS-DA and SVC due to systematic structural differences in the primary
sequences of the V1 and V. domains. Therefore, combined with the supporting evidence from
the diagnostic PLS models in Section 5.2.2.1 and the statistical significance testing of the
species origins, an additional sample selection was performed. For the development of models
with the HIC retentions time measurements only the humanised samples were retained (N =
45). For model development the mAb yield measurements, only chimeric and humanised

samples were retained (N = 55).

5.2.3 HIC model development on humanised samples

The cross validation and test set validation for all developed models for the HIC retention time
prediction is presented in Table C.4b in Appendix C. Models developed with PLS and SVR
using the full and V-WSP reduced descriptor sets still show a poor fit in the Cross-validation
with values around or below 0.3 and 0.2 for R? and Q?, respectively, for all descriptor sets.
Adequate Cross-validation performance was first observed after variable selection where GA
especially performed well with both PLS and SVR according to the OECD guidelines
(Veerasamy et al., 2011, Alexander et al., 2015). The SVR models developed after variable
selection with LASSO never attained good cross-validation performance in any of the data sets.
A potential cause to this might be due to that the descriptor sets contains redundant descriptors
with differing levels of collinearity toward response correlated descriptors. For the LASSO
algorithm to work properly, only a small degree of collinearity can exist between redundant and
response correlated descriptors in order for appropiate selection to be performed which is

known as the “Irrepresentable Condition” (Meinshausen and Yu, 2009).

Out of the four benchmarked descriptor sets, only the PLS and SVR models developed using
PSD1 (Domain based) and PSD4 (Running sum) passed the OECD criteria for both cross
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validation (R? and Q2 > 0.5) and external testing (R? and Q2 > 0.6). Due to similar model
performance between the PLS and SVR, model selection was based on diagnostic capabilities
where the PLS models are preferred due to easier evaluation of residuals and descriptor

contribution towards Y. PSD1 was selected as the preferred descriptor set due to two reasons:

1. The interpretability of descriptors in PSD1 is higher due to most of them being
physiochemical in nature. The PSD4 descriptor set in comparison consists entirely of
descriptors generated from three amino acid scales (Z-scale, T-scale and MS-WHIM).
Each descriptor represents a score generated from PCA on a set of physiochemical (Z-
scale), topological (T-scale) or electrostatic (MS-WHIM) properties and is thus a linear
combination of larger descriptor sets (see Section 3.2.2 for more details).

2. The PLS model developed on PSD1 had a lower model complexity compared to the
PLS model developed on PSD4 based on the selection of Latent variables (LVs) from
the cross validation. Three LVs were selected for the PLS model developed on PSD1
compared to 12 LVs for the PLS model developed on PSD4. This makes interpretability
of the contribution from the individual LVs more difficult in the case of PSD4 due to
the fact that deflation of X and ¥ occurs each time a LV is extracted in the PLS algorithm

and models with lower complexity are preferred (Wold et al., 2001).

From the original 272 descriptors present in the full PSD1 descriptor set, 51 were retained from
the V-WSP reduction thus effectively reducing the number of descriptors by ~80%. Procrustes
index was used to evaluate the loss of information when comparing the full and VV-WSP reduced
PSD1 descriptor sets. A value of 0.1434 was obtained, thus indicating that only a small portion
of the information was lost in the reduction step (Ballabio et al., 2014). This can also be
observed in Table C.4b in Appendix C for PSD1 where the of R? and Q2 values in the cross
validation and the test set remained mostly unchanged after the reduction. Out of the 51
remaining descriptors, GA selected a subset of 17 descriptors used to develop the final PLS
model. Model predictions of the calibration and test set samples are shown in Figure 5.7a as a
measured vs predicted plot. The test samples are further illustrated in Figure 5.7b as a bar plot
for easier comparison of the measured and predicted values. The model performance is
summarised in Table 5.3. The PLS regression coefficients for the selected descriptors are
illustrated in Figure 5.8.
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Figure 5.7. HIC retention time predictions of 45 IgG1-kappa humanised mAbs with PLS model (3 LVs) developed
on the PSD1 descriptor set after reduction with V-WSP and selection with GA. (a) Measured versus predicted plot
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0.3 T T T T T T T

0.2

0.1

-0.1

Regression Coefficient
o

-0.2

-0.3

Muw (VH)

Gs(U) AHR (VH) -
W(U) UCR (VH)

Mw UCR (VH)

HP NCR (VH) -

Ip PLR (VH) [

ECI UCR (VH) |-

1 L 1
T T T
= = =
< 2 <
X x E
= |
r & @
o (=3 o
< < -
Descriptors

Gs(U) UCR (VL) -

W(U) PLR (VL) -
Mw AHR (VL) |-

Mw ALR (VL) |-

ECIRTR (VL) F
Ap ALR (VL) -
T1 Sum (VL) -

Figure 5.8. Regression coefficients of the PLS model (3 LVs) developed on the PSD1 descriptor set after reduction

with V-WSP and selection with GA.

Table 5.3. PLS model summary developed for HIC retention time prediction using the PSD1 descriptor set. Root
Mean Square Error (RMSE), R?, Q? and model bias are listed for Calibration, Cross validation, Test set and Y-

randomisation

PLS

RMSE R? Q? Bias
Calibration 0.47 084 084 0.00
Cross Validation 0.67 0.63 0.62 0.01
Test 051 078 0.9 -0.27
Y-scrambled 1.42 0.05 -0.63 0.01

(Average)

Many of the test set samples were slightly over predicted which resulted in a negative bias (-
0.27). The reason for this is not known but could be a slight indication of over-fitting of the

calibration samples due to the difference in bias between the cross-validation and test set (Hastie

etal., 2009a).
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A general trend observed in the descriptors showed that residue groups consisting mainly of
polar and charged residues such as AHR (common residues in alfa helix), NCR (negatively
charged residues) UCR (uncharged residues), PLR (polar residues), and RTR (common
residues in reverse turn/loops) had a negative contribution on the prediction, thus indicating
that mAbs with a high number of polar residues tend to have lower retention times. This is
illustrated by the negative coefficients values of the isoelectric point (Ip), charge (ECI), and
hydrophobicity (HP) where lower values in these descriptors increases the predicted retention
time. This is supported by literature where higher concentrations of salts are required to
neutralise the protein polarity in order to expose hydrophobic patches that can bind to the HIC

column (Gagnon, 1996a).

The summed molecular weight of the residues in the UCR group in the V4 chain had a positive
contribution to the HIC retention time. The UCR group contains tyrosine which has the highest
weight among all the group constituents and is also the only residue with a benzene ring, thus
making it slightly hydrophobic. This indicates that with increasing number of tyrosine residues,
the HIC retention time will increase. This is supported by the descriptor describing the
theoretical number of water molecules surrounding a residue, W(U), for the UCR residues in
the Vy chain where more polar residues tended to have more surrounding water molecules
compared to tyrosine. W(U) was also shown to have a strong negative correlation to the
retention time in both the VVy and V. chain for polar residues further indicating a correlation
between hydrophobic residues and longer retention times, which is supported by literature
(Kennedy, 1990).

The polar area of residues (Ap) was also shown to be an important factor where larger areas
contributed to lower retention times for RTR and PLR residues due to these groups containing
mostly polar residues (see Table 3.3 in Section 3.2.1). The opposite was observed in the V
chain where the polar area of aliphatic residues (ALR) contributed to higher retention times.
Glycine has the highest indexed polar area value in ProtDCal of all residues in the ALR group
(see Table 3.3 in Section 3.2.1) which indicates that a higher number of glycine residues in the
VL chain contributes to a higher retention time. Glycine and proline are known as unfolding
residues which indicates that a higher number of glycine residues aids in decreasing the protein
stability and thus increase binding in HIC due to exposure of the hydrophobic patches. This is
supported by literature where glycine was shown to have a negative impact on alfa helix
stability when introduced (Scott et al., 2007). This is further supported by the model where the
molecular weight (Mw) of ALR residues in the V. chain has a negative correlation to the

retention time indicating that other residues besides glycine contribute to lower retention times.
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Also, a potential reason for the higher performance achieved with PSD1 compared to higher
resolution datasets, such as PSD2 (substructure based) and PSD3 (single amino acid based),
could be due to the introduction of more redundant descriptors in PSD2 and PSD3 which has
been shown to negatively impact model performance and descriptor selection algorithms
(Donoho, 2000, Fan and Lv, 2010). This is especially true for descriptors generated based on
the amino acid composition of the sequence where each residue in the mAb structure equally
impacts the resulting descriptors. Therefore, through generation of descriptors based on the
individual domains, a reduction of the number of redundant descriptors present in the datasets
can be achieved compared to descriptor generation for each substructure (PSD2) or each amino

acid in the sequence (PSD3).

Y-Randomisation (or Y-Scrambling) was used as a final validation step to evaluate the selection
of the descriptors (Ricker et al., 2007). A PLS model was trained on a randomised (scrambled)
HIC response vector while the sample order in the PSD1 descriptor set was kept unchanged.
This was repeated 50 times and the average of R? and Q2 for the cross validation was calculated.
A R? value of 0.05 and a Q2 value of -0.63 was obtained. This indicates that no chance
correlation is present and that the selected descriptors are important to describe the relationship

between the structure of the mAbs and HIC responses. Results are summarised in Table 5.3.

In order to appropriately evaluate if a mADb can cause potential problems in processing, a
threshold needs to be defined based on the mADb HIC retention times. In the research of Jain et
al (2017) the authors defined an upper threshold for the HIC retention time as a confidence
interval of 11.7 £ 0.6 minutes which was based on the retention times of 48 approved mAbs in
their full data set of 137 mAbs. The remaining 89 mAbs in the data set are all pending in clinical
phase Il or phase Ill. Thus, any mAbs with a predicted HIC retention time falling above the
lower confidence limit (11.1 minutes) could be flagged due to potential risk of being
problematic in process development while mAbs falling below can be considered well-behaved.
When applying the threshold on the predictions from the PLS-GA model developed on the
PSD1 descriptor set, eight mAbs were flagged due to above the lower confidence limit:
atezolizumab, bevacizumab, certolizumab, enokizumab, obinutuzumab, otlertuzumab,
ranibizumab and tildrakizumab. Five of these mAbs have been approved while three are still in
clinical trials. However, this does not necessarily indicate that predictions falling inside or
above the threshold confidence interval will definitely fail in process development as there are
a number of factors involved that are not accounted for in this evaluation. However, historical

data in this context from approved products can be used to develop predictive models that would
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allow for risk evaluation in early process development and thereby reduce the load on the

bioprocess pipeline.
5.2.4 mAb yield model development on humanised samples

The cross validation and test set validation for all developed models for the prediction of the
mADb vyields are presented in Figure C.5b in Appendix C. The developed models behaved
similarly to the models for the prediction of the HIC retention times, where adequate
performance in the cross validation was only achieved after variable selection had been
performed. GA selection and rPLS achieved good performance for all descriptor sets while
LASSO selection suffered due to collinearity between redundant and response-correlated

descriptors explained in Section 2.9.3.

Unfortunately, no model performed well on the external test set. PLS-GA model developed
using PSD3 had a high R? value of 0.69 but a Q2 value of 0.35 in the test set thus indicating a
high offset of the predictions compared to the measured values. The difference between R? and
Q? is also greater than 0.3 thus failing the OECD criteria of |[R? — Q?| < 0.3 (Veerasamy et al.,
2011). PLS-GA model developed using PSD4 had similar R? and Q2 values of around 0.5 in
the test set, but this is below the desired value of 0.6 according to the OECD guidelines.
Predictions of PLS-GA model developed using PSD4 are illustrated in Figure 5.9a. It can be
observed that all calibration samples fall directly on the parity line whereas the predictions of
the test set samples have large differences between predicted and measured values as illustrated
in Figure 5.9b. This is usually an indication of the model being overfitted where the model fits
the random pattern in the noisy variables of the calibration data set (Lever et al., 2016). The

model performance is summarised in Table 5.4.
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Figure 5.9. mAb yield predictions of 55 IgG1-kappa humanised and chimeric mAbs with PLS model (3 LVs)
developed on the PSD4 descriptor set after reduction with V-WSP and selection with GA. (a) Measured versus
predicted plot with calibration (grey) and test (red) samples. (b) Prediction and measured HIC retention times of
test set samples.

Table 5.4. PLS-GA model summary developed for mAb yield prediction using the PSD4 descriptor set. Root Mean
Square Error (RMSE), R?, Q% and model bias are listed for Calibration, Cross validation and Test set.

PLS

RMSE R? Q? Bias
Calibration 1.51 1.00 1.00 0.00
Cross Validation 15.58 0.95 0.94 -0.68
Test 47.56 0.51 0.50 1.90

Several factors might impact the model development. All mAbs were expressed recombinantly
using mammalian expression vectors where the heavy and light chain were expressed from
individual cassettes (Jain et al, 2017). It has been shown that excess expression of the LC chain
compared to the expression of the HC chain facilitates higher cell productivity and mAb yield
(Bayat et al., 2018, Bhoskar et al., 2013). However, due to the unique structure of the variable
domains in the mAbs, differences in folding efficiency in the endoplasmic reticulum might
prevent an excess expression of the LC chain (Braakman and Bulleid, 2011). This is especially
important in the model development which assumes that all measured yields had identical
experimental setup which probably does not hold true as the HC:LC expression ratios will be
different between mAbs. The HC:LC ratio might therefore be an important measurement
needed for the improved model performance and can be used either as an extra input in the X
block along with the structural descriptors or, used as an additional dependent variable along
with the mAD yields.

Another potential cause for the poor performance in the test set might be the lack of necessary
variation in the data. In the case of the X block, by using the primary sequence to generate

structural descriptors, no information can be gained regarding higher order structural
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information such as secondary or tertiary structure and potential intra-protein interactions. More
samples might also be needed to better represent the range of Y responses, but also to introduce
more structural variation in the X block. Noise and descriptor collinearity are also influencing
factors in the model development where the descriptor selection methods can suffer and the
wrong descriptors are thus selected (Fan and Lv, 2010).

5.3 Summary

The regulatory and quality assurance requirements for the process development of therapeutic
mADbs are becoming more stringent to ensure high product specificity and clinical safety. This
has in turn led to an increase in the number of experiments needed to characterise the design
space of a process in order to investigate the impact of process parameters on the product
quality. Today, platform approaches are becoming increasingly popular for process
development of therapeutic mAbs which limits the number of operational units that needs to be
characterised (Shukla et al., 2017). However, even with platform approaches the number of
experiments needed for process characterisation is still cumbersome and costly. This is
especially true in early process development where uncertainty is high with regards to the
manufacturability of the mAb and where the effective processing routes might not be clear.

Over recent years, the QSAR framework for in silico model development has become
increasingly popular for end point predictions of aggregation (Obrezanova et al., 2015) as well
as downstream applications (Robinson et al., 2017, Woo et al., 2015a). This makes the QSAR
framework a potentially valuable tool that can aid risk assessment in early process development
to better direct experimental designs and thus reduce costs (Karlberg et al., 2018). The use of
in silico approaches allows for more informed estimates of the potential behaviour of an mAb
in different unit operations of the process. This becomes possible by efficiently making use of
historic process data from previously established mAb manufacturing processes and therefore

constructing an expert system.

In this Chapter the importance of exploring systematic variations as a source of noise in QSAR
model development has been shown and should be considered as a critical step in the model
development. A combination of PLS and statistical testing of the responses was performed to
decrease the impact of systematic variation originating from the chain isotypes and species
origin. This had a beneficial effect on the model performance in both the cross validation and
external test set prediction after sample reduction with regards to the species origin. However,
due to the alteration of the constant domains in the original mAb structures, no conclusive
results could be drawn regarding the impact of systematic variation related to the heavy chain
isotypes 1gG2 and 1gG4 and the light chain isotype lambda. The workflow presented in this
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Chapter, however, provides a structured approach for selecting samples and reducing
systematic variation that could negatively impact the model performance. In the work of
Andersen and Bro (2010), the authors stated that removal of outliers is a vital step prior to
variable selection due to the high sensitivity these methods have towards outliers. Thus, the
removal of samples with systematic variation uncorrelated to the response greatly aids variable

selection and reduces the risk of potential selection of uncorrelated variables.

Further, an efficient benchmarking scheme is presented here to validate several modelling
methods, descriptor sets and incremental descriptor reduction and selection. A model was
successfully developed for predicting HIC retention times and conformed to the model
validation scheme presented in the OECD guidelines for cross-validation (R? and Q% > 0.5)
and the test set (R? and Q2 > 0.5). Though not all variation has been explained by the model,
the presented workflow is intended as an early model development step to evaluate useful
descriptors and factors affecting model performance. Additional descriptor generation and
modification might therefore help in improving model accuracy further. Based on the defined
confidence interval of 11.7 = 0.6 from Jain et al (2017), sample predictions can easier be
assessed as potentially problematic if the prediction falls above the lower confidence limit (11.1
minutes). This however does not indicate that they are certain to fail but that caution should be

exercised and further studies are needed to characterise potential problems.

Unfortunately, no satisfactory model could be developed for the prediction of mAb yields as
indicated by the signs of overfitting evidenced by the poor test set results. A potential cause
could be the simplicity of the descriptor generation based on the primary sequence which does
not take into account higher ordered structure and stability. This is investigated further in
Chapter 7, where 3D structure descriptors will be evaluated in model development.
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Chapter 6

3D Structure Descriptors

In this chapter descriptor generation with regards to the protein structure and dynamics is
assessed as an alternative to the primary sequence descriptors generated in Chapter 3. An
overview of protein structure model development is presented and key aspects such as the
linkage of cysteines to form disulphide bridges and structure evaluation are assessed. The
generated protein structures were used as inputs to molecular dynamics simulations in order to
relax the protein structure as well as to capture conformational dynamics of the mAbs. The
theory and implementation of molecular dynamics has been assessed in detail in order to create
a wide knowledge base to produce more realistic simulations of the mAb structures that were
used in this research but as well for future applications. In addition, strategies for modification
of protein charges with regards to the pH as well as addition of co-solvents to the simulation

system has been proposed.

The methodology for generating 3D structure descriptors follows the same approach as in
Section 3.3 in order to generate descriptor set of different resolutions. Three resolutions were
generated for the 3D structure descriptors based on the full chains, the individual domains and
the substructures. ProtDCal was implemented to generate the 3D structure descriptors but were
modified with the solvent accessible surface area of the superficial residues in order to represent

the surface properties of the mAbs.

6.1 Structure Generation

In order to generate meaningful descriptors for model development, structures need to be
available. Usually structure determination of proteins is performed by using either X-ray
crystallography or Nuclear Magnetic Resonance (NMR) which both can give a very high
atomistic resolution of the structure. Another method called Cryogenic-Electron Microscopy
(Cryo-EM) has been making its impact within this area as well due to the many improvements
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that has been made over the years to the method and the analytical software to refine the
atomistic resolution (Carroni and Saibil, 2016, Merk et al., 2016). These methods are however
very time consuming and expensive due to the specific requirements of the methods and are not
always guaranteed to succeed (Krishnan and Rupp, 2012). Instead, the use of in silico methods
provides an alternative to estimate the protein structure and has therefore become popular in

structure determination.

6.1.1 Background on in silico methods

In silico structure prediction can roughly be divided into two schools:

1. Ab initio methods where the secondary and tertiary structure is predicted directly from
the primary sequence
2. Comparative or homology modelling where templates of existing structures are used to

predict the structure of proteins of interest.

Due to the high complexity in protein folding, pure ab initio methods do exist today but have
low accuracy and are limited to smaller proteins (< 120 residues). Extremely high
computational resources are also required in order to predict the protein folding with ab initio
methods (Lee et al., 2017). More recently, a new method based on deep learning called
AlphaFold has shown promising results and predicts likely distances between residues as well

as potential angles between chemical bonds (Evans et al., 2018).

Instead, homology modelling has been shown to offer good prediction accuracy when protein
templates exist and can be used. The high structural accuracy in homology modelling is based
on the principle that high primary sequences similarity results in high tertiary structure
similarity (Venclovas, 2011).

6.2 Homology Modelling

The approach for predicting structures in homology modelling can be broken down into five

individual steps (Marti-Renom et al., 2000):

1. Identification of evolutionary related proteins to a target protein that can be used as
templates (also known as homologs).

2. Alignment of the target protein sequence to the template.

3. Model building of target protein structure based on available structural information in
the template.

4. Error estimation of target model structure.

5. Scoring of models for comparison
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Step one and two can usually be done in parallel where many different techniques exist to find
templates. Depending on the sequence identity that can be achieved between the target protein
and template however, alternative approaches need to be considered. When the sequence
identity is greater than 40% which is also known as the daylight zone (Rost, 1999), the search
and selection of templates can be performed using pairwise sequence alignment tools such as
Basic Local Alignment Search Tool (BLAST) (Johnson et al., 2008) or FASTA (Pearson, 1998)
from the National Centre for Biotechnology Information (NCBI). At lower sequence identity
(25-40%, also known as the twilight zone), methods such as position-specific iterated BLAST
(PSI-BLAST) (Altschul et al., 1997) or Hidden Markov Models (HMMs) (Eddy, 1998) can be

used instead for more sensitive searches to find homologs.

Different approaches exist to build the target model from the templates in step three. Commonly
used approaches are modelling by assembly of rigid bodies (Sutcliffe et al., 1987), modelling
by segment matching or coordinate reconstruction (Levitt, 1992) and modelling by satisfaction
of spatial restraints (Sali, 1995).

An initial error estimation of the produced model can usually be carried out by inspecting the
differences between the target protein sequence and that of the template. It is commonly known
that when the similarities in the alignment between the template and the target protein decrease,
the errors in the model will increase in turn. These errors originate from five sources (Fiser,
2010) related to:

1. Side-chain packing

2. Structural prediction of regions in the target protein that has shifted but otherwise
correctly aligned with the template structure

3. Structural prediction of regions in the target protein that does not have an alignment

4. Structural prediction of regions in the target protein that are misaligned in the template
structure

5. Structural prediction of target protein with wrong templates

As mentioned, the error is highly dependent on the sequence identity of the target protein and
the template. If the sequence similarity is greater than 40%, approximately 75-90% of the
predicted model structure will overlap, with an offset error of the peptide chain atoms of roughly
1 A from their true positions. If sequence similarity goes lies in between 30-40%, the structure
overlap decreases in turn and drops to 50-75% with an offset of 3 A in the peptide chain atoms
(Sanchez and Sali, 1998). This therefore shows the importance of appropriate selection of good

templates to be used in homology modelling. It has also been shown that the model accuracy
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increases by using multiple templates to estimate the target protein structure (Fernandez-
Fuentes et al., 2007).

Table 6.1 lists some of the most commonly used software for model generation for mAbs. This
list is by no means exhaustive of all the different web services and stand-alone software used

for homology modelling.

Table 6.1. Commonly used homology modelling software for structure prediction of mAbs.

Software Description Reference
Web Antibody Modelling Canonical modelling of CDR loops L1-3 and H1-  (Whitelegg and Rees,
(WAM) 2 and template search for H3. CDRs are grafted 2000)

onto template frameworks
Prediction of ImmunoGlobulin ~ Canonical modelling of all CDR loops and (Marecatili et al.,
Structure (PIGS) grafted onto template frameworks. 2014)
Rosetta Antibody Grafts selected CDR templates onto template (Sircar et al., 2009)

framework regions and energy optimises all
residues in model. Further refinement of resulting
model is performed using Monte Carlo

minimisation.
Molecular Operating Grafts selected CDR templates onto framework (Almagro et al.,
Environment (MOE) templates. Energy minimisation with AMBER99  2011)
Antibody Modeller forcefields is performed to relax structure and

resolve steric clashes in grafted regions.

Modeller One or more templates used to represent the full (Webb and Sali,
structure. Imposes conformational and sterically 2014)
restraints in the target model according to the
templates.

All software packages in Table 6.1, except Modeller, are specialised model generation for mAbs
and perform a separate template search for the individual framework regions and CDRs. Both
WAM and PIGS are very similar in execution when generating a target model as both methods
use canonical structure prediction of the CDR loops. This means that the CDR loops can only
assume a limited number of conformations based on the length of the loop and on the identity
of specific residues at key positions (Chothia and Lesk, 1987). The PIGS web service is,
however, more preferable as its reference database and canonical structure definitions are
frequently updated (Marcatili et al., 2014). Compared to the canonical approaches, Rosetta
Antibody focuses on resolving steric clashes in the target model that arises from the grafting of
the CDR loops onto the framework regions as well as residue overlap caused by the use
different templates (Sivasubramanian et al., 2009). The MOE Antibody Modeller is similar to
that of Rosetta Antibody, but does not perform such an extensive refinement and focuses mostly

on the regions where the CDRs were grafted onto the framework regions.
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Research published in Almagro et al. (2011) benchmarked four antibody structure prediction
tools where PIGS, Rosetta Antibody and MOE Antibody Modeller were included and tested on
nine Fy antibody structures (Vn and V). The authors showed that accurate predictions could be
generated for most of the structure except for the H3 loop, which was distinctly different
compared to the experimental structures. It was also shown that Rosetta Antibody produced

models with fewer steric clashes compared to PIGS and MOE Antibody Modeller.

In this research, Modeller (version 9.20) was selected to generate structures for the mAbs due
to the in-house expertise available in the School of Natural and Environmental Sciences at
Newcastle University. Modeller can also be locally installed and prediction of structures can be
performed without connecting to the web server. This is usually desirable for Contract
Manufacturing Organisations (CMOs) that deal with third party sequences and therefore face
restrictions in the use of web services. Though the use of PIGS and Rosetta Antibody may have
been preferred for better accuracy in the structures of the CDR loops, these methods were
excluded due to being web services. However, further molecular dynamics simulations were
performed of the generated structures to minimise the structure energy and resolved steric and

conformational clashes (see Section 6.4).

6.2.1 Antibody Template Selection

To simplify the structure generation, it was decided to only model the Fab regions (VH, CHl,

V. and C. domains) of the mAbs due to two reasons:

1. The mAb data sets used in this research were modified and expressed with selected
allotypes (see Section 5.1.1). The heavy chain was expressed as 1gG1 with allotype
IGHG1*01 whereas in the light chain the allotypes IGKC*01 and IGLC2*01 were used,
respectively, for kappa and lambda chains (Jain et al., 2017). Thus, except for the
sequence variability originating from the C., the main source of variability originated
from the variable domains V1 and VL.

2. Structure preparation of full-length mAbs is much more complex due to consisting of
four individual chains and two glycans attached in the Fc region. Information about the

glycan profiles is also extremely limited.

The template search was performed using BLAST where homologs with high sequence identity
and existing structures in the Protein Data Bank (PDB) (Berman et al., 2000) were identified.
Individual searches of the heavy and light chain of the Fab fragments always yielded template
candidates with more than 80% sequence identity. Based on this, it was decided to select a

single template for each isotype permutation of the Fab fragments for simplicity and due to

137



further simulations to be performed. Quality assessment of the templates was based on their R-
factor value which is a measurement of similarity between the crystal structure and
experimental X-ray diffraction data. A value of zero indicates a perfect fit while a value of 0.6
or higher is obtained if a random structure is used. For larger proteins such as mAbs, values
around 0.2 or below are a good indication of well-defined structures (International Union of
Crystallography, 2017). The resulting templates are displayed in Table 6.2 where 2FGW and
7FAB were the only structures used in this research due to the mAbs being expressed as IgG1.
The sequence identity listed as SeqlD remained high with greater than 70% identity when
aligned with the mAbs in the data sets. 55X4 and 5DK3 are listed as potential candidates,
respectively, for IgG2 and 1gG4.

Table 6.2. List of templates PDB structures to be used as templates for different isotype permutations.

PDB HC LC Resolution R-factor Modifications SeqlID

2FGW lgG1 kappa 3A 0.176 Loop refinement >70%
(H3: 101-108)

TFAB IgG1 lambda 2A 0.169 None >70%

5SX4 1gG2 kappa 28A 0.223 Ligand and -
solutes removed

5DK3 1gG4 kappa 2.28 0.184 Solutes, Fc and one of Fab

region removed

6.2.2 Pairwise Cysteine Distance Restraints

Five naturally occurring disulphide bonds will always be present in the Fab region of the mAb
with two in the light chain, two in the heavy chain and one interchain bridge between the heavy
and light chains. MODELLER by default will not restrain the distances between cysteines
involved in disulphide bridges and can be observed in Figure 6.1a where distance between the
sulphur atoms are more than 15 A. By adding individual restraint for pairwise cysteines in the
homology model the positions of the sulphur atoms can be adjusted to form the disulphide
bonds as sown in Figure 6.1b. Figures were generated in UCSF Chimera (version 1.13)
(Pettersen et al., 2004).
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Figure 6.1. Distance restraint of cysteines in adalimumab generated. Structure coloured as orange depicts the light
chain and structure coloured as blue depicts the heavy chain (a) Homology model without added distance restraints
to the interchain cysteines. (b) Homology model with restraint between the interchain cysteines.

6.2.3 Model Assessment

Due to the difference in the amino acid composition and the length between the template and
the mAb sequences used in this research, direct comparison with root mean square deviation
(RMSD) of atom positions is not possible. Instead initial model assessment was performed with
the inherent metric Discrete Optimised Protein Energy (DOPE) in Modeller (Shen and Sali,
2006) which is used to assess the energy of a structure or the residues in a structure. It is often
used to select a model or structure from several predictions where a lower DOPE value relates

to a more stable structure.

Figure 6.2 illustrates the normalised DOPE profiles for the template 2FGW (green line) and
adalimumab (orange line) for the heavy and light chain. As can be observed, the DOPE profiles
of the template and predicted structure overlap in most regions. The largest differences between
the template and predicted model can be observed in the regions containing the CDR loops (H1,
H2, H3 and L3) which have the highest deviation from template and thus are structurally
different. This is, however, expected due to differing amino acid compositions in the CDR
regions between adalimumab and the template. To date, accurate prediction of the CDR loops
with homology modelling is still very difficult, especially in the case of the H3 loop which has
the highest degree of varying amino acid composition and length when compared between
mAbs (Almagro et al., 2011). In comparison, the structure of the constant domains C. and Cnl
overlaps in Figure 6.2a and Figure 6.2b, respectively, due to a higher sequence identity between
the template and protein target. The trends observed between the generated structure of
adalimumab and the templates were also broadly observed in all generated mAb structures in

this research.
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Figure 6.2. DOPE score for generated model (orange line) and template (green line) for the light chain (a) and
heavy chain (b) for the aligned residues. Positions of CDR loops regions are marked by name and arrows in both
the heavy and light chain.

6.2.4 Structure considerations

It is possible to use the generated homology structures of the mAbs to generate structural
descriptors. However, four key considerations of the generated structured needed to be
addressed before doing so:

1. Origin of the templates

2. The structure is biased towards the template
3. The structure is not completely relaxed
4

Residue states in the structure might not be accurately represented

The first point involves faults or assumptions that are present in the acquired experimental
structures which might not necessarily represent reality. In the case of X-ray crystallography,
the mAbs are never naturally packed in close proximity to each other in a physiological
environment. The close proximity as a result of the crystallisation might introduce structural
artefacts in the generated 3D structures and therefore may not be completely accurate. In the
case of NMR, the structures are determined in a dynamic system where the proteins have less
self-interaction. However, the acquired 3D structures will be heavily biased towards the
environment in which the structure determination was performed e.g. pH, temperature, molality

etc.

Point two and three originate from structure generation in Modeller which estimates the target
protein structure based on the used template. Compared to specialised software, such as Rosetta
Antibody and PIGS which use unique templates for individual framework regions and CDR

140



loops in the mAbs, Modeller was used to predict the mAb structure with a single template. This
constrains the structure towards the used template and might not necessarily represent the true
structure, especially of the CDR loops. It can also cause the structure to not be in a non-relaxed
state, especially in regions where a difference in length exists between the target protein and
template. Caution thus needs to be exercised as these differences might have an impact on the

generated descriptors if the homology model if used directly for descriptor generation.

The fourth point relates to the impact of the environmental factors that can change structural
conformation and dynamics of the mAbs. In mAb manufacturing, drastic changes in the
environment are common in many operational units in the downstream process. The pH and
molality are common process factors that are changed to enhance binding and elution of mAbs
in different chromatographic columns that can drastically impact the conformation of the

protein structure.

6.3 Protein dynamics

Proteins have since long ago been described as being static structures with a specific function.
The reality however is that proteins are dynamic in nature with small structural fluctuations
over time. This is highly related to the folding energy landscape of a protein, where at a stable
conformation, many structurally similar states exist separated by small thermodynamic free
energy barriers (Bryngelson et al., 1995). Figure 6.3a illustrates a simplified example of the
energy landscape of a protein. As can be observed, fluctuations between the different states
depends heavily on the magnitude of the free energy barrier where transitions to similar state
are more frequent due to a smaller energy barrier (4G,,.q;) Whereas larger conformational
changes require more energy (4Ggiopar)- The magnitude of time is also an important factor that
needs to be considered where transition between larger conformational states takes longer due
to the cumulative kinetic energy required to overcome the large energy barriers. Figure 6.3b
illustrates changes in structural states related to the different timescale and was adapted from
the work of Henzler-Wildman and Kern (2007) as well as the work of Adcock and McCammon
(2006). It can be observed that smaller changes, such as bond vibrations and methyl rotations,
occurs at shorter timescales whereas rotation of larger solvent accessible side-chains and loop
motions lies on a timescale of nanoseconds due to larger energy differences in the barriers.
Changes in environmental factors, such as temperature, pH and molality to name a few, are also
important to consider, as they will inevitably result in a change of the energy landscape of the
protein which is illustrated as a shift from its original conformation (green line) to that new

conformation (orange line) in Figure 6.3a. This can also have an effect on the protein function
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that is active in the original environment and inactive in the changed environment due to

conformational change.
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Figure 6.3. Potential dynamics of a protein. (a) A simplified energy landscape for an arbitrary protein.
Environmental changes can drastically change the landscape as shown in the shift from the green line to the orange
line with a different conformation occupying the energy minima. (b) The time scale needed to observe local as
well as global conformational changes in a protein (adapted from Henzler-Wildman and Kern (2007) and Adcock

and McCammon (2006)).

6.3.1 Describing the system dynamics

Accurate insight into the protein dynamics can today be gained through the use of
computational simulations. The complexity of the simulations can usually be divided into four
levels of resolutions to observe a system where a short description on each has been given

below.
Quantum mechanics

The atom nuclei and electrons of a system can be described by solving the time-dependent

Schrédinger equation (TDSE) for a single particle.

2

Ay(r,t) = {—h—vz + V}z,l;(r, t) = ih% (6.1)

2m

5 0?2 0?2 0?2
where V= = 92 + 3y2 + 572
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where H is the Hamiltonian operator which corresponds to the total energy of the system, y the
wave function, r the position vector of the particle (r = xi + yj + zk), t the time, h the reduced
Planck constant, m the mass of the particle, V the potential energy and i the imaginary number.
However, the TDSE is not practical for describing structure dynamics due to being
computationally intensive and it is more commonly applied for studies of faster phenomena
such a light emission absorption and emission. Instead, the time-independent form is more

commonly used to describe structure dynamics according to:

2
{—Zh—mvz + V}IIJ(T) = Ey(r) (6.2)
The quantum mechanics (QM) simulations provide highly detailed information about the
dynamics of the system but are also able to incorporate chemical reactions due to the
approximations of the electron orbitals. However, only smaller systems with a few atoms can
be simulated with QM due to the high complexity and computationally cumbersome
calculations (Leach, 2001d).

Classical/Molecular mechanics

Simulate the atomistic positions and movement in space by solving Newtons equations of

motion for individual particles in the system:

dzri

=m ! (6.3)

Fi =m;Qq;

where F is the force, m the mass of the atom, and a the acceleration of the particle. The
atomistic interactions are approximated by using empirical force fields that describe the
potential energies of the system (see Section 6.4.1). This allows for longer simulation times up
to the scale of microseconds and even milliseconds when coarse-grained force fields are used.
A drawback with molecular mechanics (MM) is its inability to break or create covalent bonds
(Adcock and McCammon, 2006). Molecular mechanics simulations are also referred to as
Molecular Dynamics (MD).

Hybrid QM/MM

Can be used to simulate systems that are too computational expensive for standard QM but
where chemical reactions are important such as enzymatic reactions. The protein structure or

system is divided into two parts where a smaller part is simulated with QM which encloses the
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structure responsible for the chemical reaction whereas the larger part is simulated with MM
(Liu et al., 2001).

Monte Carlo

Instead of using a deterministic system such as MD which is reliant on a time component,
Markov Chain Monte Carlo (MCMC) is a statistical approach that samples the conformation
space by randomly moving the system atoms. This means that the atom movement ina MCMC
simulation is only dependent on its immediate predecessor and therefore no temporal
relationship exists between the trials (Leach, 2001e). A drawback with MCMC is that the
simulation can become computationally expensive with increased number of atoms in the
systems due to the exponential increase in degrees of freedoms in the system if not properly

restrained.
Selection of simulation resolution

Information gained through computational molecular simulations can answer many questions
regarding the protein dynamics due to the high level of detail captured. Most commonly used
are the MD simulations which allows for longer simulation times and the ability to follow
conformational events due to being deterministic. In this research, the focus has been placed on
MD simulations due to being faster and that chemical reactions are not required for the
descriptor generation.

6.4 Molecular Dynamics

Many advancements have been made over the years to MD simulations such as theoretical
improvements with new empirical force fields as well as practical improvements of simulation
speed and increase the system size (Rauscher et al., 2015). One such advancement is the
incorporation of Graphical Processing Units (GPUs). State-of-the art graphics cards contains
thousands of cores which can be used to divide the molecular system into smaller parts which
can be run in parallel. This shifts the workload from the Central Processing Unit (CPU) to the
GPU which calculates the forces on the atoms whereas the CPU is free to allocate data and

combine the results of the smaller parts (Loukatou et al., 2014).

Improvements in simulation time can also be gained through simplification of the system with
a so-called coarse-grained approach. Instead of representing all atoms in the system (referred
to as all-atom or atomistic), a coarse-grained simulation may represent each amino acid side-
chain as a single cluster with their corresponding force fields. This drastically reduces the

degrees of freedom in the system (see Section 7.2.2.1) which in turn decreases the necessary
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number of calculations that needs to be performed (Kmiecik et al., 2016). One of the most
commonly used coarse-grained force fields is MARTINI which has been shown to achieve
simulation results close to that of atomistic simulations (May et al., 2013). Figure 6.4 illustrates
the applicability domains of atomistic and coarse-grained models with regards to the system

size and simulation time (adapted from Kmiecik et al (2016)).
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Figure 6.4. The relationship between the system size and possible simulation times for QM, atomistic and coarse-
grained simulations. Loss of information is inevitable when moving to simplified estimation of the system such as
atomistic and coarse-grained representation which are illustrated by the green and orange graphs, respectively
(adapted from Kmiecik et al. (2016)).

As shown, larger systems and longer simulation times become possible when moving from
more computationally intensive QM calculations towards system approximations with MM
calculations. With further decrease in degree of freedoms in a system resulting from the move
from an atomistic to a coarse-grained setup, the system size and simulation times can be
increased even further. However, caution needs to be exercised as a system simplification step
inevitably leads to a loss of information of protein dynamics which will no longer be captured
in the simulations. This can easily be visualised when comparing the energy landscapes of an
atomistic model to those of a coarse-grained model represented as the green and orange energy
graphs in Figure 6.4, respectively. In the atomistic model, the rotations of the side chains and
bond vibrations will more or less be intact resulting in many local conformational minima in
the energy landscape. In a coarse-grained model however, side-chains are treated as a single
cluster and therefore lack many of the local motions. The energy landscape of a coarse-grained
will therefore be smoother but will follow the general trend of an atomistic model. Therefore,
it is advised to choose the simulation resolution based on the area of investigation where an
atomistic model is recommended to capture local motions and a coarse-grained model

recommended to capture global motions.
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A popular approach to increase the resolution is to use multiscale modelling where major events
are first captured with a coarse-grained model. Events of interest can be further modelled by
reconstructing the coarse-grained model to atomistic resolution at specified time points (Heath
et al., 2007). This allows for more detailed information about the system to be captured and

avoids the need of performing longer atomistic simulations in the beginning.

A list of commonly used MD software packages is presented in Table 6.3. For the purpose of
this research, GROMACS (version 5.1.4) was selected due to the in-house expertise available
at Newcastle University. In addition, GROMACS is able to incorporate the MARTINI force
field used for coarse-grained modelling. This is of added benefit due to the increasing popularity
of MARTINI and the many advancements made to the force field which have increased the

model accuracy to almost rival that of atomistic (Marrink and Tieleman, 2013).

Table 6.3. Non-exhaustive list of popular MD simulation software.

Software Atomistic  Coarse- GPU (OR] Availability Reference
Grained support
AMBER YES NO YES Window, Commercial (Salomon-Ferrer
Linux et al., 2013)
CHARMM YES NO YES Linux Commercial ®  (Brooks et al.,
2009)
GROMACS YES YES @ YES Linux Free (Van Der Spoel
et al., 2005)
MOE YES NO YES Windows,  Commercial (MOE, 2018)
Linux
NAMD YES YES @ YES Windows,  Free (Phillips et al.,
Linux 2005)

@ A reduced version of CHARMM can be acquired for free.
@ Uses the MARTINI force fields

6.4.1 Force Fields

In order to calculate the forces acting in a system, the potential energy, U(r"), for each atom
needs to be defined where r¥ = (r,,1,, ..., ry) are the Cartesian coordinates for the N atoms
in the system. The molecular interactions can be approximated with mathematical expressions
to represent different interactions of the system. An equation for approximation of the total
potential energy in a system can be written as (Leach, 2001b):

U(TN) = Ubonds + Uangles + Utorsions + Ucolumb + Uvdw (6-4)
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As shown, the interactions can be divided into two categories of bonded (green solid lines) and
non-bonded (red and black dashed lines) interactions shown in Figure 6.5a and Figure 6.5Db,

respectively.

(a) Bonded interactions (b) Non-bonded interactions

Bond torsion

Bond stretching \(? \/

Electrostatic van der Waals

Angle bending

Figure 6.5. (@) The bonded interactions originating from bond stretching, angle bending and bond torsion
(rotation). (b) The non-bonded interactions originating from electrostatic and van der Waals potentials (adapted
from Allen (2004) and Leach (2001b)).

The bonded interactions represent the potential energies originating from the covalent bonds
and steric conformation of the structure in the form of bond stretching, angle bending and
torsion from bond rotations. Resulting potential energies from the bonded interactions are
shown in Figure 6.6 and were adapted from the GROMACS manual 5.1.4 (Abraham et al.,
2016).

The potential from the bond stretching between two atoms is approximated using Hooke’s law

for harmonic potentials (see Figure 6.6a) to define the potential well:

1
Ubonds(rij) = Eklpj(rij - Teq)z (6.5)

where rij = |rij| and rij =r;— rj

which in turn takes on the following expression for the force:
i _ b Tij
Fionas(1i;) = —kii(1ij — 1eq) — (6.6)
ij
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The constant kf’j is the spring constant where a higher value prevents greater bond stretching.
The variable r;; is the bond vector between two atom positions with the magnitude or bond
length 7;;. The constant r,, is usually referred to the natural bond length where the potential

energy is at its lowest.

The potential energy from angle bending (see Figure 6.6b) is also frequently described using

Hooke’s law but uses the angle between two bonds instead of the bond length:

1
Uangles(gijk) = Ekigjk(eijk - Heq)z (6.7)

The potential energy of the angle bending takes on the following expression for the force:

. dU 6
zmgles(el]k) - = angli‘s.( Uk)
i
du 0;;
Fléngles(gijk) = - angé:,sk( Uk) (68)
Fgmgles(gijk) = _Ffmgle - angle

where 6, = arccos <—] ]>
r‘ijrkj

The constant kuk Is the spring constant where higher values prevent bending making the
structure more rigid. The variable 6, is the angle between two connecting bonds from three
atomic positions. The constant 6, represents the natural angle based on the atom types of the

three atoms.

The torsion potential is almost always expressed as a cosine Fourier series expansion with m =
1,2,...,M (Leach, 2001b). The torsion is defined by three connecting bonds and therefore

involves four atomic coordinates (see Figure 6.5a) according to:

Utorstons ¢l]kl) Z kl}kl Cos(m(pijkl - Vm)) (69)

The expression for the resulting torsion force is not shown due to being much more extensive

than previous forces. The constant kfj,:? is the magnitude of the torsion potential, m represents
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the which series in the series expansion, the variable ¢, is the torsion angle and y,, is the
phase factor which describes at which angle the potential energy is at its lowest. Figure 6.6¢
shows the potential energy from the torsion of an arbitrary molecule bond where the energy is
at its lowest when with less steric clashes occurs (staggered conformation) and at its highest

when more steric clashes occurs (eclipsed conformation).
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Figure 6.6. Potential energy of bonded interactions. (a) An approximation of the potential energy in the bond
stretching using Hooke’s law as a function of the distance between two bonded atoms. (b) The potential energy
from angle bending as a function of the angle between two connecting bonds and approximated with Hooke’s law.
(c) Approximation of the potential energy from bond torsion as a function of the bond angle. Highest potential is
observed in eclipsed conformation and lowest in staggered conformation (adapted from the GROMACS manual

5.1.4).

The non-bonded interactions represent the potential energies originating from electrostatic and
van der Waals interactions. These include both internal interactions in the protein as well as

external interactions from the solvate. Resulting potential energies from the non-bonded
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interactions are shown in Figure 6.7 and were adapted from the GROMACS manual (Abraham
etal., 2016).

Potential energies originating from van der Waals interactions are commonly described by

using the Lennard-Jones (Jones, 1924) equation:

e 12 o 6
Uvdw(rij) = 4¢ [(T’_) — (T'_> ] (610)
ij ij

The potential energy takes on the following form for the resulting force:

_ 12 o® T
Fig, (1)) = 4e l12T —6—|—2 (6.11)
ij ijl Tij

The constant ¢ defines the depth of the potential well whereas the constant o defines the
distance between two atoms when the potential is at a minimum. It can be observed in Figure
6.7b that an arbitrary attraction occurs when the distance is 3 A between two atoms, this is
similar to that of the Morse potential seen in Figure 6.6a but lacks a physical bond. The
magnitude of the Lennard-Jones potential is also much lower compared to that of the Morse

potential.

The electrostatic potential energy between two charged atoms in the system can be described

by using the following expression:

1 qiq;
4‘7T€0 Tij

Ucotump (rij) = (6.12)

The electrical potential takes on the familiar expression of coulombs law when converted into

the resulting force:

1 qiq;ri
2

Fiolumb(rij) = (6.13)
The variable q is the charge of the atom and ¢, is known as the permittivity constant. It can be
observed through Figure 6.7b that the potential energy increases with shorter distance between

charges. When of same charge the atoms will repel each other while different charges will

attract each other.
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Figure 6.7. Potential energy of non-bonded interactions. (a) The electric potential as a function of distance between
two charged points. (b) The van der Waals potential approximated with Lennard-Jones potential (green line) as a
function of the distance between two non-bonded atoms. Consists of one repulsion (orange dashed line) and one
attraction (orange full line) component (adapted from the GROMACS manual 5.1.4).

It should be mentioned that the hydrogen bond, which is a common non-bonded interaction in
proteins, is not treated as a separate bond type in the force fields but rather as a combination of

Lennard-Jones and electrostatic potential instead.

In comparison to the bonded interactions, the number of non-bonded interactions that needs to
be evaluated in a system increases with the order of N2 due to the fact, that any pair of atoms
in the system can interact. To avoid time-consuming simulations or, in worst cases, system
crashes, cut-off schemes are used to reduce the number of potential long-range calculations that
needs to be performed. Commonly applied is Particle Mesh Ewald (PME) summations which
consists of short-range contributions and long-range contributions. Short-range interactions are
determined by a predefined cut-off radius (commonly 1 nm) to identify neighbouring atoms to
the atom of interest. If the distance is less than the defined cut-off radius, the atom is included
in the force calculation and a so-called neighbours list is created that specifies the neighbouring
atoms to the atom of interest which was first proposed by Verlet (1968). Long-range
interactions are atoms with distances exceeding the defined cut-off radius from the atom of
interest and are instead calculated with Fourier transform from the real space to the reciprocal

space which allows for faster computation.

As can be observed, equations (7.5), (7.7), (7.9), (7.10) and (7.12) contain parameters for
optimal bond lengths, angles, potential wells, force constants etc that needs to be specified. Put
in simple terms, a force field is a list of parameter values for different atom types with

corresponding equations that are used to calculate the potential energy of the system (Allen,
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2004). li is important to note that an atom type should not be confused with an element from
the periodic table. The definition of an atom type here involves the hybridisation state and/or
the charge of the atom as well as the type of connected atoms. For example, carbon will have
several atom types which describe different hybridisation states and surroundings. This in turn
means that they will behave slightly different from each other and therefore need to be described
with a unique set of parameters for each atom type. This also makes the number of atom types
listed in the force fields much more numerous than the number of elements in the periodic

system.

Table 6.4 gives a non-exhaustive list of popular force fields that are used in MD simulations
currently where several different versions of the AMBER, CHARMM and GROMOS force
fields exists. Only slight variations exist between the different force fields which include
differences in parameter values or slight differences in the potential energy equations, usually
in the non-bonded interactions (Allen, 2004). The estimation of the parameters for different
atom types are almost always carried out with QM calculations or taken from experimental

measurements (Kmiecik et al., 2016).

Table 6.4. Non-exhaustive list of popular force fields.

Force Field Parameter determination Reference

AMBER Multi-purpose force field widely used for proteins and DNA (Cornell et al., 1995)
simulations

CHARMM Multi-purpose force field widely used for both small and (Brooks et al., 1983)
macromolecule simulations

GROMOS First developed for simulations of protein or DNA in (Oostenbrink et al.,
hydrophobic solvent. Now the force field is multi-purpose. 2004)

OPLS-AA Multi-purpose force field (Jorgensen et al., 1996)

In this research, the atomistic amber99sb-ILDN force field was used to simulate the dynamics
of the antibody Fab fragments. The authors Lindorff-Larsen et al. (2010) modified the original
amber99sb force field to more accurately describe side chain torsions in a protein.

6.4.2 The MD Algorithm and Time Integration

The global MD algorithm is shown in Figure 6.8 and consists of four steps (adapted from the
GROMACS User Manual 5.1.4 (Abraham et al., 2016)).

In the initial step of any MD simulation, the positions and velocities for each atom in the system
need to be specified. Atom positions can be acquired through PDB files from either
experimental data or a predicted structure (see Section 6.2). Usually no velocities are available

when starting a new simulation project unless it is a continuation of a previous simulation. In
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these cases, the Maxwell-Boltzmann distribution can be used to randomly assign initial

velocities to all atoms in the system at a given temperature T.

2
m; m;v;
) = - 14
Lastly, a force field needs to be selected to describe the potential energy function and

interactions in the system and will not be changed throughout the simulation.

The forces in the system are then calculated from the potential energy of the system in step two.
The resulting force on each atom is calculated as a vector sum based on all interactions from
surrounding atoms (see Section 6.4.1). This step also involves all corrections applied to the
system in order to maintain or change the thermodynamic macrostate by controlling the system

volume, temperature and pressure. This is further explained in Section 6.4.4.

THE GLOBAL MD ALGORITHM

1. Input initial conditions
Potential interaction U as a function of atom positions
Positions r of all atoms in the system
Velocities v of all atoms in the system

O

repeat 2, 3 and 4 for required number of steps

2. Compute forces
The forces on any atom

U

¢ arf
is computated by calculating the force between non-bonded atom pairs:

Fi :ZFU
]

plus the forces due to bonded interactions (which may dependon 1,2,3 or 4
atoms), plus restraining and/or external forces.
The potential and kinetic energies and the pressure tensor may be computed.

254

3. Update configuration
The movement of the atoms is simualted by numerically solving Newton's

equation of motion
d’r; F;

dt?  m;
or
dr;,  dv; F;

LV =
dt Yodt omy

Y

4. Output step (if required)

write positions, velocities, energies, temperature, preassure etc

Figure 6.8. Four steps of the global MD algorithm. Step 1) Positions and initial velocities are assigned and a force
field chosen. Step 2) Calculation of resulting forces on all atoms in the system. Step 3) Updates the positions and
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velocities of all atoms in the system. Step 4) Saves specified information to a log file (adapted from the
GROMACS User Manual 5.1.4).

The third step in the MD algorithm updates the positions of all atoms in the system based on
the calculated forces in step two. This is done by numerical integration in order to approximate
the resulting velocities and positions of the atoms in the system. Two popular approaches that
commonly used to perform the integration are the Verlet velocity algorithm (Swope et al., 1982)
and the Verlet leapfrog algorithm (Hockney and Eastwood, 1988) where the later will be
investigated more thoroughly. The leapfrog algorithm updates the atom position and velocity

according to:

(t i1 At) = (t ! At) NLLOY (6.15)
V; 2 =7V; 2 m; .

1
1+ AD) = 14(8) + v, (t + EAt) At (6.16)

where v; and r; are the velocity and the position of atom i and At is the timestep used in the
numerical integration. In the leapfrog algorithm, positions are updated at each full time-step
(t + At) (6.15) while the velocities are updated at each half time-step (t + At/2) (6.16) thus
making the atomic position and velocity jumping over each other like two leaping frogs. This
allows for more accurate calculations of the velocities as compared to if the positions and

velocities would have been synchronised.

In MD simulations, the time step At needs to be sufficiently large in order to efficiently simulate
the protein dynamics without unnecessary resampling of the conformational space. However,
if a too big a time step is selected it can cause instability and inaccuracies when the subsequent
atom positions are calculated resulting in unfavourable conformations and high potential
energies. A rule of thumb is to adapt the time step to the smallest local motion in the system in
order to avoid this problem. Usually, a default time step of 2 fs is used in MD simulations today.
It is important to note that the vibration period of the hydrogen bonds is shorter than the timestep
of 2 fs and therefore cannot be accurately sampled. In order to avoid instability, the hydrogen
bonds are constrained with the LINCS algorithm which keeps the length of the hydrogen bond

constant throughout the simulation.

6.4.3 Periodic Boundary Conditions

Even with advancement of computational power the actual size of the system to be simulated

is extremely small compared to a real-world setting. This also means that the surface to volume
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ratio in the simulation is much higher compared to a real experimental setup which can
introduce artefact caused by surface effects. Unless this is the aim with the simulation, a way
to avoid this problem is to use so called Periodic Boundary Conditions (PBCs). In the event
where a molecule exits the simulation box it will automatically re-enter the system on the
opposite side with its trajectory preserved as can be seen in Figure 6.9a. This effectively means
that the system has been enlarged by infinity. Caution needs to be exercised in order to avoid
self-interaction of example a protein. This is commonly avoided by making sure that the
distance between the protein to the edge of the simulation box is at least three solvation layers
wide which roughly translates to 0.9 — 1.0 nm (Gonzélez, 2011). This concept is shown in
Figure 6.9b where the cut-off radius is illustrated as the dashed red circles surrounding a particle
of interest. The system size is adequately chosen in this case where the particle of interest will
not self-interact as well as overlap between the circles have been avoided thus making sure that
potential water molecules in the systems are not affected by the particle from adjacent boundary
cells (adapted from (Gonzélez, 2011)).
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Figure 6.9. The application of the periodic boundary condition in a simulation. (a) Movement of particles out of
the simulation box will enter the opposite. (b) Depicts the cut-off radius for long-range interactions as the dashed
red circle and the importance of choosing a proper box size in order to avoid overlap and self-interaction (adapted
from Gonzalez (2011)).

The shape of the PBC can also be changed in order to optimise the simulation if a rectangular
box introduces too many water molecules into the system when solvated. Preferably, the shape
of the PBC should be chosen so it reflects the underlaying geometry of the macromolecule e.g.
a Truncated Octahedron or a Rhombic Dodecahedron can be used for simulation of globular
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proteins whereas a hexagonal prism can be used for simulation of a rod like protein or DNA
(Leach, 2001a).

6.4.4 Thermodynamic macro and microstates

In order to properly simulate a system, it is important to make sure that the simulation accurately
captures its thermodynamic properties. So far, the main discussion has been about atom
interactions and motions in a system of interest. The positions and velocities of the atoms are
commonly referred to as thermodynamic microstate variables, which in turn define the
thermodynamic macrostate properties of volume, pressure and temperature in a system. It is
important to remember that a macrostate with a set volume, temperature and pressure can be
described by several different microstates whereas the opposite is not possible where instead
one microstate will have single corresponding macrostate. This is easier understood when
considering a smaller system containing a few atoms with defined positions and velocities. If
two of the atoms were to swap velocity directions and magnitudes, the microstate of the system
would change due to the change in the microstates variables whereas the macrostate will still

be conserved.

This is an important aspect that needs to be considered in order to correctly simulate a real-
world experiment where a specific temperature, volume and pressure are used. The absolute
temperature of a system can be calculated by using the total kinetic energy shown in (6.17)

below.

N
1 knT
Erin = Ez m? === (3N = Np) (6.17)

kgis Boltzmann’s constant, N is the number of constraints applied on the system and 3N — N,
is the total number of degrees of freedom in the system. The pressure, p, can be calculated by

using the total kinetic energy and the virial of the system shown in (6.18) below.

2
p= 55 (Exin — (T)) (6.18)

N N
1
(T) = _Ez Z(Fijrij> (6.19)

i j>i
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I/ is the system volume and (T') is the virial or the expected value of the sum of products between
atom coordinates and the forces acting on them (Berendsen et al., 1984). The brackets represent

the average value over time.

When performing a MD simulation, several different simulation ensembles are available that
that restrains the system by keeping some of the thermodynamic properties constant while
allowing other to fluctuate. The choice of which ensemble to use depends heavily on how the
system should behave and the aim of investigation. Three commonly used ensembles are NVE,
NVT and NPT where all ensembles have a constrained number of atoms (N). The NVE
ensemble is a so-called micro-canonical ensemble with constrained volume (V) and energy (E)
and is most often used to study the conformational energy landscape. The NVE ensemble
should never be used to equilibrate a system as the desired temperature can never be reached
when the energy is conserved. The NVT ensemble is a canonical ensemble and thus in thermal
equilibrium with constrained volume and temperature (T). This type of ensemble is often used
to simulate biological reactions. The NPT ensemble is an isothermal—isobaric ensemble with
constrained pressure (p) and temperature and is commonly used to simulate chemical reactions
in environments where the pressure is maintained such as open atmosphere reactions. Both the
NVT and NPT ensembles are commonly used for system equilibration to reach specified
temperature and pressure in order to replicate experimental environments. More detailed

descriptions on the different ensembles are reviewed elsewhere (Brown and Clarke, 1984).

In order to maintain the desired thermodynamic parameters of a system in a simulation, the use
of so-called coupling schemes becomes necessary in order to control parameters of interest such
as the temperature and pressure of the system.

The temperature can be controlled by using thermostats. The Berendsen (Berendsen et al., 1984)
and Velocity-rescaling thermostats (Bussi et al., 2007) controls the temperature by directly
scaling the velocities of the atoms in the system through first-order decay. The Berendsen and
Velocity-rescaling thermostats are known as coupling methods. Alternatively, the Nosé-Hoover
thermostat (Nosé, 1984, Hoover, 1985) can be used and works by adding an extra correction
term to the Newton’s equation of motion seen in Figure 6.8 which subtracts or adds to the atom
velocities in the system if the temperature is too warm or too cold, respectively. The Nosé-
Hoover thermostat is a so-called extended system dynamics method. The three listed
thermostats are virtually linked to a heat bath with constant temperature through which heat is
exchanged as illustrated in Figure 6.10. This also means that the energy will no longer be
conserved in the system and will change depending on the temperature difference between the

heat bath and the system of interest.
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Energy is
conserved

Energy is not
conserved

Figure 6.10. A system coupled to a virtual heating bath illustrating the heat exchange between the heat bath and
the system of interest (adapted from Ghiringhelli (2014)).

The pressure, similarly to the temperature, is controlled by using barostats. A commonly used
weak coupling method is the Berendsen barostat (Berendsen et al., 1984) which is similar to
the Berendsen thermostat but instead scales the dimensions of the system in order to achieve
the desired reference pressure. Alternatively, the Parrinello-Rahman barostat is an extended
system dynamics method similar to that of the Nosé-Hoover thermostat where the volume
becomes and extra variable (Parrinello and Rahman, 1981). This allows the system size to vary,
thus contracting or expanding the system if the pressure is too low or too high, respectively,

compared to the desired reference pressure.
6.4.5 GROMACS System Equilibration

In this research, the GROMACS guidelines for system equilibration were used prior to any
production runs in order to emulate real-world experimental conditions (Abraham, 2014). Four
equilibration steps were performed with a final production run at the end according to the steps

below:

Solvation of the system
Energy minimisation (EM)
Temperature increase to target value through NVT ensemble

Adjustment of pressure to target value through NPT ensemble

A A o

MD production run

The first step involves specifying the periodic boundary conditions to define the simulation box
and then filling the empty space with water molecules and counter ions to buffer the system. A
common practice is to add chloride and sodium ions to counter the charges of the protein to get
a system with a net charge of zero.

The EM is a crucial step that prevents the system from “blowing up” when equilibrated due to
potential close proximities and steric clashes between atoms which can result in large forces.

These clashes originate partly from the protein structure that, if predicted, might not be
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completely relaxed and therefore structurally unfavourable (see Section 6.2.4). Another source
is clashes originating from the addition of the solvate to the system where potentially some
water molecules might have been placed too close to the protein. The energy minimisation
conformationally resolves these clashes by relaxing the system through rotational and
directional motions of the clashing atoms, thus lowering the energy of the system (Leach,
2001c). Several methods exist to perform the EM where derivative minimisation methods are
most commonly used. First-order methods such as steepest descent and conjugate gradient are
fast methods that use the first derivative or gradient to find the energy minima but with the
drawback that they can get stuck in local minima. Second-order derivative methods, such as
quasi-Newton and L-BFGS, include information about the energy curvature and are less likely
to get stuck at local minima but are more computationally intensive due to the need to calculate
the Hessian matrix (second derivative matrix). For more detailed information on the listed
minimisation methods, refer to the following work (Schlick, 1992). The steepest descent
minimisation was used in all simulations due to its speed compared to quasi-Newton and L-
BFGS.

In the third equilibration step, an NVT ensemble was used to raise the temperature of the system
to a desired target value. Initial velocities in the system were assigned with the Maxwell-
Boltzmann distribution presented in eq.(6.14) according to a target temperature of 300 °K.
Position restraints were added to the backbone of the proteins in order to avoid structural
collapse due to the rapid heating of the system. The restraints added followed Hooke’s law
where a virtual spring was attached between the backbone atoms and their original position in
space as described by eq.(6.6). A high value was used for the spring constant to keep the
backbone rigid. This allowed for further relaxation of the protein side-chains and solvent
molecules while the system is heated as well as avoids large conformational changes of the
protein structure caused by rapid heating. The ensemble was allowed to run until the
temperature of the system had reached the desired target value with little fluctuation. This step

was performed using the Velocity-rescaling thermostats in all simulations.

Due to the volume being kept constant in the NVT ensemble, the resulting pressure will be
offset compared to the desired target value at the end the NVT run. Therefore, in the fourth
equilibration step, a NPT ensemble was used to adjust the pressure in the system to 1 bar with
the Parrinello-Rahman barostat. The system temperature was kept constant through continued
use with the Velocity-rescaling thermostat. By correcting the pressure, the volume of the system
will inevitably change and will no longer conform to the initially defined dimensions. This

however is of little consequence as the goal is to emulate the temperature and pressure in a real-
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world experiment. Additionally, similar to the previous step the backbone was kept restrained

in order to avoid structural collapse while equilibrating the pressure.

In the fifth and final step, a production run was performed as a continued NPT ensemble with
a temperature of 300 °K and a pressure of 1 bar. The backbone constraints on the proteins were
removed to allow the protein to adjust to the environment. In order to capture the dynamics of

the system a simulation time of 50 ns was used.

6.5 Modifications of protein structure and solvent

In addition to steps described in Section 6.4.5, two more considerations were made to increase

the fidelity of the performed simulations.

6.5.1 Co-solvent preparation

The standard simulations in GROMACS are performed in water together with the counter ions
sodium and chloride. Real experiments however will usually have additional ions and
molecules that are added to either influence the stability of the protein or due to being necessary
in particular experiments/process steps. A workflow depicting the preparation of small
molecule co-solvents is illustrated in Figure 6.11a. In this research the ChemSpider database
was used to find structural information of co-solvents of interest (Pence and Williams, 2010).
ChemSpider provides the SMILE format for all listed small molecules which describes the
connectivity properties between the atoms in the compound. The Build Structure feature in
USCF Chimera (version 1.13) was then used to convert the SMILE format into a MOL2 format
which in addition to describing the connectivity have generated space coordinates for the atoms
in the compound (Pettersen et al., 2004). Alternatively, OpenBabel can be used instead of
Chimera which is more specialised and allows for conversion of nearly all the chemical formats

for small molecules (O'Boyle et al., 2011).

In GROMACS when reading in a protein structure, the software will generate a corresponding
structure file (e.g. protein.gro) as well as a topology file (topol.top). The structure file will
contain the coordinates for all atoms in the system, including all atoms in the protein, solvate
and co-solvents. If a previous simulation of the system has been performed such as EM, NVT
or NPT, the structure file will also contain the initial velocities for each atom in the system that
will be used for the next chronological simulation. The topology file on the other hand is a list
that describes the properties of all the atoms in the system such as the atom types, masses and
charges. The topology file also lists the connectivity of the atoms in the system to describe all
pair-wise bonds (two atoms), angles (three atoms) and torsions (four atoms) with corresponding

force field parameters. These are used to perform the calculations of the potential energies
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described in Section 6.4.1. Any additions to the simulation system in the form of solvents or
other particles will also be included in the topology file and their properties described. For
proteins that consist of multiple chains that are connected with disulphide bonds such as mAbs,
all chains can be merged into a single structure. This allows for cysteines between chains to be
connected and is necessary in order to properly represent the mAb structure. This in turn will
generate a single topology file for the merged structure. Alternatively, multiple chains can be
represented by using multiple topology files that describe the individual chains. However,
interchain disulphide bonds cannot be defined if used, thus increasing the risk of system

instability.

In the last step when adding a custom co-solvent, the AnteChamber PYthon Parser interface
(ACPYPE) was used in order to generate additional structure and topology files for the co-
solvent that could be used in the simulation (Sousa da Silva and Vranken, 2012). For the
purposes of this research the topologies were generated using the General Amber Force Field
(GAFF) for small molecules with AM1-BCC calculations for estimation of charges (Wang et
al., 2004). The co-solvent topology file was then referenced in the protein topology file in order
for GROMACS to be able to use the new co-solvent.

To acquire the correct concentration of co-solvent in the simulation there was a need to calculate
the number of molecules to be added to the simulation box. This was based on the total number
of water molecules present in the simulation box and calculated according to stoichiometric

formula in (6.20) below.

Nwater Mwater

Nes = ———C¢s (6.20)

pwater

N, is the total number of co-solvent molecules, N, 4:.r IS the total number of water molecules,
M., qter 1S Molar mass of water (18.0153 g/mol), p,, 4cer IS the water density at 300 °K (997 g/l)
and C_, is the target concentration of the co-solvent (mol/l). The calculated number of molecules
were then added to the simulation box by using the insert-molecule function in GROMACS

with the generated co-solvent structure file from ACPYPE as input.
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6.5.2 Modification of residue protonation states

Another parameter that is often likely to change is different experimental setups and operational
units in industrial processes is the pH which affects the protonation states of ionisable residues.
Most often when running a MD simulation, the default protonation states in the acquired
structure are used. This might not, however, represent the true protein structure due to
differences between the protonation states in an experiment and that of the simulation. This can
have a negative impact on the dynamics due to wrong assumptions are made in the electrostatic

interactions.

The workflow illustrated in Figure 6.11b was used to modify the protein structure to better
conform to a specific pH. In this research, a local installation of the ProteinPrepare suite which
is part of the High-Throughput Molecular Dynamics (HTMD) environment (Acellera Ltd) was
used to modify the protonation states of acidic and basic residues in the protein structures prior
to simulations (Martinez-Rosell et al., 2017). More specifically, ProteinPrepare makes use of
PROPKA (version 3.1) to predict the pKa values of any acidic and basic residues that are present
in the protein (Olsson et al., 2011, Sondergaard et al., 2011). The PROPKA tool takes into
consideration the locations of the acid/base residues as well as surrounding residues that can
impact on the pKa. For buried residues the pKa value is adjusted in order to drive charged
residue to become more neutral. Buried negatively charged residues (acids) have increased pKa
values while buried positively charged residues (bases) have their pKa value lowered. This is
also impacted by proximity of other ionisable residues which further modifies the pKa values
of the residues. ProteinPrepare then compares the predicted pKa values towards that of a target
pH value in order to assign the protonation states of the residues. Table 6.5 lists all ionisable

residues together with the three-letter code for the different protonation states.

Table 6.5. List of residue protonation states

Protonation states

Amino acid Type

Positive Neutral Negative
Aspartic acid Acid - ASH ASP
Cysteine @ Acid - CYS/CYX CYM
Glutamic acid Acid - GLH GLU
Tyrosine @ Acid - TYR TYM
Arginine @ Base ARG ARO -
Histidine Base HIP HID/HIE -
Lysine @ Base LYS LYN -

@ Cysteines involved in disulphide bridges are coded as CY X while free cysteine is coded as CYS.
@ Does not naturally occur as negatively charged which requires very high pH values
@ Does not naturally occur as neutral which requires very high pH values
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If two cysteines are in close proximity then ProteinPrepare will assign them as CY X, meaning
that they are involved in a disulphide bridge. The software will assign a pKa value of 99 to all
CYX residues in order to avoid deprotonation in the event when a high target pH is used.
Caution should be exercised as well when a high target pH value is used that drives tyrosine to
become charged as well as arginine and lysine to become neutral. The resulting structure will
not be useable in any MD simulation due to that the topologies for these protonation states will
not exist in any force field.

Protonation of residues according to the predictions from PROKPKA were performed with
PDB2PQR (version 2.1) inside of ProteinPrepare (Dolinsky et al., 2004, Dolinsky et al., 2007).
As a final step, PDB2PQR performed an energy minimisation of the structure by rotating and
flipping the side-chains to allow the structure to become more relaxed where the AMBER99

force field was used. The final structure was then exported as a PDB file.

The effect of assigning different environmental pH values is illustrated in Figure 6.12 where
the electrostatic surface of adalimumab Fab fragment is shown with positive charges depicted
in blue, neutral in white and negative charges in red. When the pH is low (=2) the negatively
charged residues (acids) become neutral due to becoming protonated resulting in a highly
positively charged surface. Through incremental increase of the pH it can be observed the
negatively charged residues and positively charged residues (bases) become deprotonated

resulting in a more negatively charged surface.

Negative
Neutral

Positive

pH 2.0 pH 5.0 pH7.4 pH 10.0

Figure 6.12. Impact of pH on the electrostatic surface of adalimumab Fab fragment. At a pH of 2 the surface is
predominately positively charged (blue) and shift to become more negatively charged (red) with increasing pH.
The figure was generated from surface renderings using USCF Chimera (version 1.13).

The structure optimisation step with PDB2PQR is not necessarily needed due to the energy
minimisation that is performed when equilibrating the system in GROMACS. An alternative

approach would be to use PROPKAZ3.1 to predict the pKa values for the residues and manually
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assign the protonation states of the residues according to a target pH by using the optional inputs
in the pdb2gmx function in GROMACS.

6.6 Descriptor Generation

A summary of the software packages that have been used in this research for the preparation
and the simulation of proteins structures and dynamics is listed in Table 6.6. A general overview
of the protein preparation and simulation is also illustrated in Figure 6.13 which shows the
protein structure prediction with MODELLER, the protein dynamic simulation with

GROMACS as well as the descriptor generation from the resulting output from GROMACS.

In order to generate meaningful descriptors, it was necessary to first extract a structure from the
production run simulations that were in conformational equilibrium. This section describes in
detail how the final structure was acquired from the GROMACS simulations as well as how 3D
structure descriptors were generated.

Table 6.6. List of software packages used in this research to prepare and simulate the protein structure and
dynamics.

Software Version Description

MODELLER 9.20 Used for structure prediction from primary sequence with the help of PDB
templates. Implemented to restrain distances between cysteines involved in

disulphide bridges.

GROMACS 5.1.4 Simulation software to estimate the protein dynamics of a target protein
structure in a defined environment.

CHIMERA 1.13 Visualisation and analysis software. Useful for editing structure and fill in
missing loops.

VMD 1.9.2 Visualisation and analysis software. Useful for calculation of protein

RMSD and RMSF as well as visualising the dynamic of the protein
through a playback function of the trajectories.

ACPYPE 0.1.0 Software that simplifies the generation of small molecule topologies and
parameters that are compatible with many existing forcefields such as
AMBER and CHARMM.

PROPKA 3.1 Software for the prediction of pK, values of acidic and basic residues in a
protein structure. PROPKA takes into account if the residue is buried or
accessible on the surface in order to perform more accurate calculations.

PDB2PQR 2.1 Fills in any missing heavy atoms and adds hydrogen atoms according to
protonation states computed from PROPKA. Also optimises structure by

resolving residues involved in steric clashes.
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6.6.1 Time frame selection

Due to the constraints placed on the backbone in production run, relaxation of the structures
occurred in the beginning of the simulation for each mAb. This is illustrated in Figure 6.14
which shows the conformational change of adalimumab simulated in water. It can be observed
in Figure 6.14a that a conformational shift occurs from its original conformation (t=0) to a more
relaxed conformation (t=5) which is then retained throughout the rest of the simulation
indicating that an equilibrium has been reached. The RMSD used in the figure is a measurement
of atomistic deviation over time from a reference structure where the constrained structure from
the previous NPT equilibration was used. This conforms to the idea of the energy landscape
illustrated in Figure 6.3a where the protein structure will strive to attain as low conformational
energy as possible. It also illustrates the structure bias from MODELLER where the predicted

structure is biased towards the template and not necessarily in a relaxed state.

Further analysis showed that the smaller fluctuations (vibrations) observed in Figure 6.14a were
due to local motions of the loops and turns in the mAb and are illustrated as the peaks in Figure
6.14b and Figure 6.14c for the light chain and heavy chain, respectively. The RMSF values
used in the figures are temporal averages of the atomic trajectories (i.e. motions) in space of the
residues, thus capturing the residue fluctuation over time. The RMSF values in the figures were
calculated from the protein motions acquired after equilibrium had been reached until the end

of the simulation.

Based on these facts, the extraction of the structure was therefore performed by selecting a time
frame located in the equilibrium interval of the simulations. The timeframe was selected
towards the end of each simulation in order to allow the structures to relax and reach
conformational stability. This was due to the fact that relaxation times between mAbs varied,
thus introducing uncertainty of conformational stability if earlier timeframes were used. This is
covered more in detail in Section 7.1.2 which discusses the simulation results for the 137 mAbs
in the publication of Jain et al. (2017).
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Figure 6.14. MD simulation result for adalimumab. (a) The conformational change of adalimumab evolving over
time in the production run. (b) The average fluctuations of the individual residues in the light chain between t=5
ns and t=50 ns. (c) The average fluctuations of the individual residues in the heavy chain between t=5 ns and t=50
ns.

6.6.2 Descriptor software and calculations

Similar to the primary sequence-based descriptors, ProtDCal was used for generation of 3D
structure descriptor by using the acquired PDB structures from the MD simulations as input
(Ruiz-Blanco et al., 2015). GROMACS was used to generate the solvent accessible surface area
(SASA) for the residues in the mAbs which were used as basis or modification of many of the
generated descriptors. Table 6.7 lists the descriptors. Focus was placed on descriptors pertaining
to the surface, shape and energies that were impossible to capture when using the primary

sequence.
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Table 6.7. List of energy and topological descriptors used to describe the protein structure

Descriptor ProtDCal GROMACS Type Description

G.(F) ° Energy Contribution to the free energy from the
conformational entropy in a folded state

Gy (F) ° Energy Contribution to the free energy from the
entropy of the first shell of water
molecules in a folded state

G,(F) . Energy Interfacial free energy of a folded state

W(F) ° Energy Number of water molecules close to a
residue in a folded state

HBd ° Energy Number of hydrogen bond in the
backbone of the protein

AGg ° Energy Variation of the interfacial free energy
between folded and unfolded states

AGy ° Energy Contribution to the folding free energy
of the first shell off water molecules

AG,,; ° Energy Free energy contribution of the charge
distribution within the protein

AG, ° Energy Contribution of the Van der Waals
interaction to the folding free energy

AG,rs ° Energy Contribution of the dihedral torsion
potential to the folding free energy

SASAyoiar Topological The total solvent accessible surface area
from the polar residues

Spolar Topological The effective surface polarity from the
charged and polar residues

SASAnon—potar Topological The total solvent accessible surface area
from the non-polar residues

S non—polar Topological The effective surface hydrophobicity
from the non-polar residues

In(FD) ) Topological Logarithm of the folding degree

In addition, 37 Transferable Atom Equivalent (TAE) descriptors were used in order to describe

electron and charge densities of the mAbs. TAE is in simple terms a library of empirical atomic

charge density components that are used to construct electron densities able to describe the

protein surface of individual amino acids (Breneman and Rhem, 1997).

The TAE descriptors used in this research were available in ProtDCal as listed value for each

amino acid. This meant that the generated TAE descriptors were based on the amino acid

composition in ProtDCal rather than feature of the protein and therefore no different from using

the primary sequence as input. In order to conform these descriptors to represent the surface of
the mAb the generated SASA values from GROMACS were used according to eq.(6.21). The

equation calculates the fraction of each amino acid that is accessible to solvent and is known as
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the relative surface area (RSA) and ranges from zero (the residue is completely buried) to one

(maximum exposure).

SASA;
— MaxASA;

L

raESace _ TAE; = Z RSA; - TAE;, (6.21)
i

TAE:""° is the resulting kth TAE descriptor for the surface, SASA; is the solvent accessible
surface area of residue i, MaxASA; is the maximum accessible surface area of a residue i,
TAE;;, it the kth listed TAE descriptor for residue i and RSA; is the relative surface area of
residue i. The MaxASA value is defined as the accessible surface area of an amino acid X in a
Gly-X-Gly tripeptide conformation. Published empirical values from Tien et al. (2013) were

used to calculate the descriptor in this research.

In a similar fashion, descriptors for describing the hydrophobicity, eq.(6.22), and the polarity,
eq.(6.23), of the surface were generated by using the Kyte-Doolittle scale. Specifically, the
hydrophobicity of the surface was calculated by using the nine in the NPR amino acid group in
Table 3.3 in Chapter 3 and the polarity was calculated using the 11 residues in the PLR amino
acid group.

SASA; p
Snon—polar = Z mki (6.22)
i € NPRp L
SASA; xp
Spolar = | Z mki (6.23)
i € PLRp

Snon-potariS the surface descriptor describing the hydrophobicity, S,,q-is the surface

descriptor describing the surface polarity and k” is the Kyte-Doolittle value for residue i.

No treatment was needed for the generated energy descriptors from ProtDCal as these are

calculated based on the surrounding environment.

6.6.3 Descriptor resolution

Similar to the primary sequence-based descriptor, strategies for defining the descriptor
resolution was used where selection of residues to use were based on the intrinsic structural

features of all mAbs (see Section 3.3). Three different resolutions were considered when
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generating 3D structure descriptors: Chain, Domain and Substructure. Table 6.8 lists the

number of generated descriptors for the three resolution in a Vu/V and a Fab configuration.

Table 6.8. Number of generated descriptors based on resolution type and size of the mAb.

Method Vu/VL Fab Input type !Descriptors per
input

Chain Skipped ® 104 (2) Chain 52

Domain 104 (2) 208 (4) Domain 52

Substructure 728 (14) 1456 (28) Substructure 52

@ Is identical to the domain resolution when Vu/V. is used

6.7 Summary

In this chapter a workflow for generating and simulating mAb structures has been presented.
Due to the high structural similarities shared between mAbs and availability of structure
templates, the homology modelling approach with MODELLER was selected for initial
prediction of the mADb structure. However, due to the high sequence dissimilarity in the variable
regions between the predicted structure and the template it was assumed that predicted
structures would have an unfavourable energetic state and therefore not be relaxed. MD
simulations with GROMACS was therefore performed as a subsequent step after the homology

modelling in order to relax the predicted structures.

Descriptor were then generated with ProtDCal but modified with residue SASA values from
GROMACS in order to only capture the surface properties. Generated descriptors presented in
this chapter has been applied and assessed on prediction of HIC retention times and mAb yields
in Chapter 7.
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Chapter 7

QSAR Model Development: 3D Structure

Descriptors

In Chapter 6, a workflow for the generation of novel 3D structure descriptors was presented
which provided an alternative approach to describe the mAb structure compared to the
previously explored descriptors generated from the primary sequences described in Chapter 3.
The 3D structure descriptors were designed to represent the surface properties as well as the
stability properties of the mAbs. Three different 3D structure descriptor resolutions were
investigated which were generated based on the full chains, the individual domains and the

individual substructures present in the mAb structure (from the lowest to the highest resolution).

The new 3D structure descriptors were first evaluated for potential systematic variation
originating from the unique structure of the light chain isotypes with the use of PCA. In
addition, the potential variation originating from the species origins was also explored with
classification methods such as PLS-DA and SVC. These were important factors in the
development of the predictive models presented in Chapter 5 where the primary sequence-based

descriptors contained systematic variation uncorrelated to the investigated responses.

HIC retention times and mADb yields were chosen as response vectors for model development
due to being important parameters in pharmaceutical industries for the assessment of
productivity and product stability, respectively. All models were developed according to the
benchmarking scheme first presented in Chapter 5. PLS and SVR were used as modelling
methods. Model optimisation was performed in incremental steps where V-WSP was used for
initial variable reduction. rPLS, LASSO and GA was then applied for subsequent variable
selection on the V-WSP reduced descriptor set in order to increase correlation between

descriptors and responses.
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7.1 Material and Methods

7.1.1 Response Data

In this research quantitative process data published by Jain et al (2017) was used to develop
predictive models for HIC retention times and mAb yields. For more details on the dataset and
experimental setup of the mAb yield and HIC, refer to Section 5.1.1. Out of the 137 available

mADs in the data set, 131 were retained based on the reasoning discussed in Section 5.1.1.3.

7.1.2 Descriptor Data Generation

Fab fragments of the mAbs were prepared for simulation using the available sequences of the
variable domains Vy and V. provided as supplementary information in the study of Jain et al
(2017). The heavy chain was prepared by attaching an IgG1 CHx1 sequence obtained from allele
sequence IGHG1*01 to the provided V1 domains. Similarly, the light chain was prepared by
attaching a C. domain sequence to the provided V. domains obtained from either allele
sequence IGLK1*01 (kappa) or IGLC1*01 (lambda).

Homology models were generated using MODELLER version 2.17 (Webb and Sali, 2014) with
a single template where PDB 2FGW and 7FAB were used for Fab fragments of kappa and
lambda isotypes, respectively (see Table 6.2 in Chapter 6). Pair-wise cysteines involved in
disulphide bridges were restrained where the sulphur atoms were placed at a distance of 2 A
from each other in order to properly connect the cysteine residues. Two mAbs (muromonab and
teplizumab) were excluded in this process due to having cysteines in the CDR regions which

caused MODELLER to form incorrect disulphide bridges, thus misrepresenting the structure.

Atomistic simulations of the Fab fragments were performed with GROMACS (version 5.1.4)
and simulated in water with a concentration of 0.1 M NaCl in order to stabilise surface charges.
Prior to the production run, the system was equilibrated to a temperature of 25 °C and pressure
of 1 bar. In this research, the high-performance computing (HPC) service ROCKET at
Newcastle University was used run the production simulation. Each Fab fragment was
simulated for a total of 50 ns to allow structure to reach conformational equilibrium described
in Section 6.6.1. Atezolizumab was excluded in this process due to causing critical failures in
the simulation. Several attempts were performed to re-simulate atezolizumab but all failed due

to high system instability.

Structural descriptors for the remaining mAbs were generated based on the methodology

presented in Section 6.6 where three unique descriptor sets were obtained: Chain based

(MSD1), Domain based (MSD2) and Substructure based (MSD3) where MSD is short for

“Molecular Structure Descriptors”. In total, this resulted in 128 mADbs being selected for further
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evaluation as listed in Table A.3 in Appendix A with corresponding experimental

measurements for HIC retention times and mADb yields.
7.1.3 Modelling Methods

7.1.3.1 PCA

PCA was used as an exploratory analysis tool to investigate the three descriptor sets and the
relationship between descriptors and the light chain isotypes as well as the species origins. PCA
implementation was performed using the PLS Toolbox version 8.6.1 (Eigenvector Research,
Inc). For more details on PCA, see Section 2.2.1.

7.1.3.2 PLS-DA

The NIPALS algorithm was used to develop a PLS regression model for predicting the dummy
variables generated from the class information pertaining to the species origin of the mAbs.
Discriminant Analysis (DA) was then applied to create decision thresholds in order to classify

the predictions of the developed PLS model. For more details on PLS-DA, see Section 2.3.1.

7.1.3.3SVC

The LibSVM toolbox was used and implemented in MATLAB 2016a for SVC model
development (Chang and Lin, 2011). The C-SVM function in LibSVM was used for multiclass
classification problems. A shell script was developed to implement the OvR multiclass strategy
in SVC instead of using the default OvO strategy in LibSVM in order to reliably compare SVC
to PLS-DA. The shell scripts for model fitting and prediction are presented in Appendix B,
Code B.1 and Code B.2, respectively. Optimisation of the model parameter C was performed
using a grid search approach on defined points over specified ranges for each parameter (for
details on parameters see Section 2.3.2). The grid points used for C were
[10°, 10, 103, 102, 107, 10°, 10%, 102, 103, 104].

7.1.3.4 PLS

Partial Least Squares regression was performed using the NIPALS algorithm. The first 20 latent
variables were calculated to allow for a majority of the data variation in X and ¥ to be captured.
A higher number of latent variables is often not recommended as they usually only improve
fitting of individual samples, thus causing over-fitting (Wold et al., 2001). For more information
on PLS, refer to Section 2.4.1.
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7.1.3.5 SVR

The optimisation of the model parameters C and € was performed by using a grid search
approach on defined points over specified ranges for each parameter (for details on parameters,
see Section 2.4.2). The grid points used for € were [10°, 10, 103, 102, 10, 10°, 10%, 102, 103,
10*] whereas the grid points used for e were [107, 102°, 102, 101°, 101, 10%°, 10°, 10°°, 10Y].
This resulted in 90 different model parameter permutations that were evaluated in the model

cross validation.

7.1.4 Data curation and pre-treatment

An initial data curation step was performed where descriptors with a standard deviation lower
than 0.0001 were removed as they were considered to be static and thus not contributing

informational content to the model.

Both the descriptor set (X block) and the response vector (Y block) were autoscaled when used
in regression models in order to allow the descriptors to influence the resulting model equally
(see Section 2.7). In classification models, only the X block was autoscaled whereas the class

labels were assigned as zero and one in PLS-DA and minus one and one in SVC.
7.1.5 Model Training and Validation

7.1.5.1 Structured data splitting

Prior to model development the data set was split into a calibration set and an external test set
to represent future samples. The Kennard-Stone (CADEX) algorithm was used to divide the
samples according to structural similarity based on the Euclidean distance between samples in
the descriptor space (see Section 2.5.1 for more details). 80% of the samples were retained for

model calibration and the remaining 20% were used for external testing and model validation.

7.1.5.2 Cross-Validation scheme

A repeated k-fold cross validation scheme was applied for model development where k was
chosen to be five in order to get an 80/20 sample split ratio between training and validation
samples, respectively. 20 iterations were performed to better utilise the data set and to decrease
the potential impacts of outliers in the data on the cross validation. For more information, see
Section 2.5.2.

7.1.5.3 Model Validation

The validation of PLS-DA and SVC models was performed using the overall error rate (ER)

and the Matthews Correlation Coefficient (MCC) based on the confusion matrices of the
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developed models. The appropriate model complexity of the PLS-DA and SVC models was
determined through the selection of model complexity with the lowest ER in the cross

validation. For more information on the classification metrics, refer to Section 2.6.2.

All regression models were validated using the OECD guidelines for R? and Q2 for QSAR
models (Veerasamy et al., 2011, Alexander et al., 2015). The guidelines state that R? and Q2
should be greater than 0.5 and 0.6 in the cross-validation and external prediction, respectively.
In addition, the difference between R? and Q2 should not exceed 0.3. The thresholds R? and
Q2 in the OECD guidelines are intended to be used for early model development to explore
potential correlation of factors and descriptors related to the modelled responses. Once
characterised, additional descriptor development and adjustments can be performed to further
improve model performance. For more information on the regression metrics, refer to Section
2.6.1.

7.1.5.4 Y-Randomisation

Y-randomisation was used to evaluate the presence of random correlation between a descriptor
set and a randomised response vector. The response vector was randomised 50 times and an
individual model was developed on each permutation. Calculated R? and Q2 values from the
50 models were then averaged. If no chance correlation is present in the descriptor set, both the
averaged R? and Q2 values will be low. For more details on Y-randomisation, refer to Section
2.6.3.

7.1.6 Variable reduction and Selection

7.1.6.1 V-WSP

The V-WSP algorithm was applied as an unsupervised variable reduction method to remove
collinear descriptors present in the X block. Implementation of V-WSP was performed in the

same way as described in Section 5.1.5.1.

In order to avoid removal of collinear descriptors belonging to different chains, domains or
substructure, the V-WSP reduction was performed on groups of descriptors defined by the
resolution of the descriptor set. In MSD1, the groups were defined as individual chains. In
MSD?2, the groups were defined as individual domains. In MSD3, the groups were defined as
individual substructures. This was done in order to avoid excessive information loss and to
represent each group individually. Reduction with V-WSP was performed prior to any

supervised variable selection method.
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7.1.6.2 rPLS

Supervised variable selection with rPLS was performed using PLS Toolbox 8.6.1 (Eigenvector
Research Inc) together with MATLAB 2016a (Mathworks®). An initial PLS model was
developed with selected descriptors from V-WSP reduction and the latent variable with the
smallest RMSECYV was selected as a starting point for the rPLS selection. For more information
on rPLS, refer to Section 2.9.1.

7.1.6.3 GA

Supervised variable selection with Genetic Algorithm (GA) was performed using PLS Toolbox
8.6.1 (Eigenvector Research Inc) together with MATLAB 2016a (Mathworks®) and PLS as
the fitness function. A population size of 100 was used and the maximum number of generations
was set to 100. The convergence for the GA algorithm was set to 50%. Default values for the
mutation rate and the ratio of kept variables in the initial models was kept as 0.5% and 30%,
respectively. For more information on GA, refer to Section 2.9.2.

7.1.6.4 LASSO

The LASSO algorithm was implemented using the function fitrlinear in MATLAB 2016a
(Mathworks®) where SVR was set as the learner and LASSO selected as the regularisation
method. A grid search was performed in the same fashion to that of SVR described in Section

5.1.5.4 in order to optimise the parameter selection.
7.2 Results and Discussion

7.2.1 Analysis of protein dynamics

The evaluation of the simulations was performed by observing the generated RMSD plots for
the 128 mAb simulations which are shown in Figure 7.1. The majority of the mAb structures
reached conformational stability after 15 ns which can be observed as the plateaus in Figure
7.1a. However, four mAb structures failed to reach conformational stability during the
simulation where the RMSD value instead kept increasing as illustrated in Figure 7.1b.
Interestingly, three of these mAbs: briakinumab, fezakinumab and tralokinumab are of lambda
conformation whereas eldelumab is of kappa conformation. It has been shown in research that
light chains of the lambda isotype in general are more unstable than kappa which might explain

why conformational stability were not reached in the simulations (Rouet et al., 2014).
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Figure 7.1. RMSD plots of GROMACS simulations where (a) mAbs have reached conformational stability and
(b) mADbs that have not reached conformational stability.

In addition to the plots, the standard deviation of the RMSD, og,,5p, Was calculated from the

snapshots obtained between 15 ns and 50 ns in the simulations according to equation (7.1).

1

50 ns 2
OrMSD = (% Z (RMSD, — E(RMSD))2> (7.1)

N —
frames t=15ns

where Ngyqmes 1S the number of snapshots between 15 ns and 50 ns, RMSD, is the RMSD value
at time t and E(RMSD) is the expected value or average of the RMSD according to equation
(7.2).

1 50 ns
E(RMSD) = ——— z RMSD, (7.2)
frames

t=15ns

The ogysp Value thus represents the variability of the RMSD curve in the simulation interval
between 15 ns and 50 ns where stability had been reached for the majority of mAb structures.
Therefore, in a more indirect manner, the ogysp Value can be used to infer conformational
stability of a protein where a low value represents a stable conformation whereas a high value
represents conformational change. The four mAb structures: briakinumab, fezakinumab,
tralokinumab and eldelumab illustrated in Figure 7.1b had ogsp Values above 0.12 with the
highest value of 0.21 (fezakinumab). The mAb structures that were considered stable all had
values below 0.07, thus having less conformational variation occurring after the structure had

been relaxed (data not shown). Further inspection of eldelumab was performed in order to
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investigate the second plateau illustrated in Figure 7.1b between 30 ns and 50 ns of the
simulation. It was observed that the rise in RMSD occurring at 30 ns was caused by the Vx
domain slightly twisting upwards in the Fab fragment as illustrated in Figure 7.2 where Figure
7.2a and Figure 7.2b are snapshots taken at the 25 ns and 35 ns timeframes of the simulation
respectively. The new structural conformation of eldelumab illustrated in Figure 7.2b then
remained stable throughout the rest of the simulation. In the case of briakinumab, fezakinumab
and tralokinumab, twisting occurred in all domains where the Vy and V. domains packed closer
to the CL and Cnxl domains respectively, thus resulting in a more compact and spherical
structure (data not shown). The observed conformational change of the structures were gradual
throughout the simulations which also explains the continued increase of the RMSD values for

briakinumab, fezakinumab and tralokinumab.

(a) (b)

Figure 7.2. Displacement of the Vy domain (blue arrow) in the simulation of eldelumab from the domains original
position captured at (a) 25 ns to its new placement captured at (b) 35 ns. The heavy chain is coloured blue while
the light chain is coloured red.

For all simulations except briakinumab, eldelumab, fezakinumab and tralokinumab, the
structures remained stable throughout the simulation and no conformational changes occurred.
The last timeframe in each of these simulations was therefore used to generate a PDB structure
from which descriptors were later generated (see Section 6.6). For eldelumab, the last timeframe
was used due to that the second plateau remained stable from 30 ns until the end of the
simulation. Preferably, continued simulation of briakinumab, fezakinumab and tralokinumab
would be desirable in order to allow the structures to converge to a stable conformation.
However, due to time constraints within the project, the last timeframe in the simulations (50

ns) were used to generate the descriptors. Though it introduces some uncertainty regarding
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briakinumab, fezakinumab and tralokinumab structural stability, it was believed that if the
simulations were allowed to run further, they would converge to a stable conformation.
Therefore by selecting the last timeframe in the simulation, it could be assumed that the

structures would be closer to the stable conformations than they were prior to the simulations.

7.2.2 Impact of the light chain isotypes

Similar to the exploratory analysis performed in Chapter 4 on the 273 mAb sequences obtained
from the IMGT database, the impact of the light chain isotypes, kappa and lambda, on the
generated 3D structure descriptors described in Chapter 6 was explored with PCA. Only
descriptors generated from the light chain were used in this exploratory analysis because no
structural information relating to the heavy chain isotype were present in the structures due to
all mAbs being expressed as IgGl. The number of principal components (PCs) was
incrementally increased until approximately 90% of the data variation in the descriptors sets
had been explained. This was done due to the light chain isotype being expected to have a strong
impact on the generated descriptors in a similar fashion as was observed in Chapter 4 for the

primary sequence-based descriptors.

A clear diagonal separation of kappa and lambda could be observed in the first and second PCs
in MSD1 (Figure 7.3a), MSD2 (Figure 7.3b) and MSD3 (Figure 7.3c) with an explained
variation of 81.18%, 72.0.3% and 42.45%, respectively. However, not all of the explained
variation of the first two PCs can be attributed entirely to the separation of the isotypes which
also separates the individual samples from each other due to their unique surface properties. It
is difficult to estimate to what extent the V. and C. domains influence the separation. However,
a clear contribution from both domains could be observed when investigating the loadings of
PC1and PC2, as illustrated in Figure C.7 in Appendix C. The remaining PCs showed no further
separation of the light chain isotypes and were therefore assumed to capture variation related to
individual samples instead (data not shown). A short summary of the PCA results is presented
in Table 7.1.

The statistical analysis on the response vectors of the HIC retention time and mAb yield
performed in Section 5.2.2 is still valid due to being independent from the generated descriptors
and only investigates the behaviour of the responses according to the isotypes. Just as with the
primary sequence-based descriptors, a strong impact of the isotypes on the generated 3D
structure descriptors was evident (see Figure 7.3). This can potentially act as a systematic
variation that is uncorrelated to the response and can have a negative impact on the performance
of developed regression models (Wold et al., 1998). It is important to remember that the heavy

chain was modified by Jain et al (2017) where all heavy chain constant domains were expressed
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as 1gG1 regardless of their original conformation. Therefore, no conclusions can be drawn with
regards to the impact of the original heavy chain isotypes on the responses. For these reasons,
only 1gG1-kappa samples were used for further model development, resulting in 79 samples

being retained from the previously 128 selected samples.

As previously described in Chapter 4, the amino acid composition of the primary sequence in
the VL domain will be different between kappa and lambda due to being expressed from
separate genes in the VVJ recombination (Jung and Alt, 2004). This had a significant impact on
the generated 3D structure descriptors from the V.. domain which had high contributions to the
loadings of the PC1 and PC2 (see Figure C.7 in Appendix C). This indicates that a fraction of
residues directly related to the light chain isotype are present on the surface and it further
highlights the need for an appropriate selection of samples in order to avoid introduction of

uncorrelated systematic variation prior to model development.
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Figure 7.3. PCA score plots of the first two components calculated from the light chain descriptors from MSD1
(a), MSD2 (b) and MSD3 (c) where kappa and lambda samples are coloured red and green, respectively.
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Table 7.1. PCA exploration summary of light chain descriptors from MSD1, MSD2 and MSD3 where each model
was developed to capture approximately 90% of the total data variation. The last two columns show information
of PCs related to the LC isotype separation and the cumulative explained variation of those PCs.

. - . LC Isotype Explained
Descriptor Numb_er of  Principal Exp!amed separating Variation (%) by
Set Descriptors Components Variation (%)

components selected component
MSD1 50 4 90.04 land2 81.18
MSD2 100 6 90.24 land2 72.03
MSD3 632 26 90.12 land2 42.45

7.2.3 Impact of species origin

To explore the potential impact of the species origin, classification methods such as PLS-DA
and SVC were applied to the 79 selected 1gG1-kappa samples. All 100 descriptors in MSD1
were used in the model development due to having been calculated on the full heavy or light
chains where separation of constant and variable domains is not possible (see Section 6.6.3).
As for MSD2 and MSD3, only descriptors belonging to the variable domains Vx4 and Vi were
used which resulted in 100 and 644 descriptors being used, respectively. The CADEX algorithm
was used to split the data into 80/20 for calibration and test, respectively, according to the
structural information contained in the individual descriptor sets MSD1, MSD2 and MSD3.
When CADEX was used directly, the algorithm produced a skewed split of species origins in
the calibration and test sets in all individual descriptor sets. This was especially pronounced for
the chimeric species origin where only one sample was placed in the test set for MSD2 and
MSD3 while no samples were placed in the test set for MSD1. Instead, a sample stratification
strategy was implemented to ensure that all species origins were appropriately represented in
the test set (Shahrokh and Dougherty, 2013). This was performed by applying the CADEX
algorithm individually on the three species origins where 80% were retained for training and
20% for model validation in the test set. A summary of the sample splitting is presented in Table
C.6 in Appendix C.

A summary of the performance of the developed PLS-DA and SVC models is presented in
Table 7.2 for the three descriptor sets. None of the developed models performed well in the
cross-validation where the error rates were close to 0.4 regardless of modelling method or
descriptor set, meaning that approximately 40% of the samples were classified incorrectly. The
corresponding MCC values showed an indication of a weak correlation (0.2-0.3) between the
generated descriptors and the species origin classes, thus indicating a lack of correlation in the
data (Jurman et al., 2012). This is further supported through investigation of the individual AUC

values of the three species origins obtained from the ROC curves illustrated in Figure C.8 in
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Appendix C. For both PLS-DA and SVC models developed on the MSD1 and MSD2 descriptor
sets, the AUC values tended to be placed around 0.65 for the chimeric and human species
origins while the humanised species origin was around 0.75. For PLS-DA and SVC models
developed on the MSD3 descriptor set, the AUC value of the chimeric species origin tended to
be around 0.8 while the human and humanised classes had values around 0.7. The AUC values
are considered to be relative and dependent on the data set used. However, as a rule of thumb
AUC values above 0.8 can be considered as a reasonable performance while values below 0.8
can be considered poor (Fawcett, 2006). Thus, none of the developed classification models were
able to identify an underlaying correlation between the generated 3D structure descriptors and

the species origins.

Compared to the cross-validation, the results observed in the test set tended to vary a bit more.
In general, SVC models tended to have slightly higher MCC values and lower ER values
compared to PLS-DA. The best performance was observed in the SVC model developed on
the MSD3 descriptor set with a MCC value of 0.75 and an ER value of 0.18. However, due to
the poor performance in cross-validation this model cannot be considered to produce accurate

predictions in future samples.
Table 7.2. Summary of PLS-DA and SVC model performance developed on the descriptor sets: MSD1, MSD2,

and MSD3. The MCC and ER performance metrics for calibration (Cal), cross-validation (CV) and the external
test (Test) set are provided as well as the explained data variation of X and Y by PLS-DA.

Methog Descriptor Explained X — Explained ¥ Cal cv Test
Set Variation (%) Variation (%) mcc ER MCC ER MCC ER
MSD1 86.68 62.27 0.86 0.08 0.19 048 029 041
PLS-DA MSD2 76.59 45.97 0.72 0.16 0.20 0.48 0.07 053
MSD3 26.95 57.52 0.78 0.13 0.26 0.42 0.59 0.24
MSD1 - - 0.89 0.06 0.28 0.40 0.48 0.29
SvC MSD2 = = 0.92 0.05 032 0.37 0.37 0.35
MSD3 - - 0.97 0.02 0.26 0.40 0.75 0.18

When compared to the classification results in Section 4.2.5 where primary sequence-based
descriptors had a strong correlation to the species origin classes, the 3D structure descriptors
investigated in this chapter could not be directly linked to the species origin. A plausible cause
for this could be that the necessary information needed for a reliable classification becomes
buried inside the protein structure. Compared to the primary sequence-based descriptors, where
each residue in the V4 and V. domains had equal representation, in the 3D structure descriptors
the species origin related residues might no longer be represented due to having been modified

to conform to the solvent accessible surface area. Thus, the systematic variation related to the
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species origins observed in Section 4.2.5 becomes nearly negligible when 3D structure

descriptors are used.

It is important to note that there was no significant statistical difference between the means of
the HIC retention time between the three species origins whereas for the mAb yields, a
significant statistical difference between the means of the chimeric and humanised samples was
observed (see Section 5.2.2). However, due to the lack of systematic variation present in the 3D
structure descriptors related to the species origin, all 79 IgG1-kappa samples were retained for

further model development presented in Table A.3 in Appendix A.

7.2.4 HIC model development on 1gG1-kappa samples

The same structured approach for model benchmarking described in Chapter 5 was applied for
regression fitting with regards to the HIC retention times. The CADEX algorithm was used to
divide the 79 retained 1gG1-kappa samples into a calibration set for training (80%) and a test
set for model validation (20%). PLS and SVR were used as modelling methods. A first set of
initial models was developed on all available descriptors in MSD1, MSD2 and MSD3. A second
set of models was developed with collinearity reduction using the V-WSP algorithm to reduce
the number of descriptors in MSD1, DS and MSD3. Lastly, a final set of models was developed
on the retained descriptors from the V-WSP reduction using rPLS, LASSO and GA for variable
selection to reduce the number of descriptors even further. The model quality metrics on cross
validation and test set validations for all developed models are presented in Table C.7a in
Appendix C. These were benchmarked according to the OECD guidelines.

Models developed on the MSD1 never attained good performance and the cross-validation of
R? and Q2 remained below or around 0.2 regardless of the modelling method or the level of
reduction of the descriptors. Models developed on MSD2 followed a similar trend as MSD1
but had slightly increased R? and Q2 values of 0.39 and 0.34, respectively, in PLS whereas
values of 0.30 and 0.29 were obtained in SVR after variable selection with GA. Adequate cross-
validation performance was first observed when models were developed on MSD3 in the
following cases: 1) PLS model after descriptor selection with rPLS, 2) PLS model after
descriptor selection with GA and 3) SVR model after descriptor selection with GA. Out of these
three, only descriptor selection with GA demonstrated satisfactory performance in the external
test with a R? and Q2 of 0.66 and 0.65, respectively, for PLS and a R? and Q2 of 0.64 and 0.63,
respectively, for SVR. Neither rPLS nor LASSO performed as well as GA for variable selection
on the MSD3 descriptor set. LASSO especially had poor performance in both the cross-
validation and test set whereas rPLS had acceptable performance in terms of the OECD
guidelines in the cross-validation but poor performance in the test set. A potential cause to this
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might be due to the descriptor sets containing redundant descriptors with differing levels of
collinearity toward response correlated descriptors. Especially for the LASSO algorithm to
work properly, only a small degree of collinearity can exist between redundant and response
correlated descriptors in order for the appropriate selection to be performed (Meinshausen and
Yu, 2009). In conclusion, only the PLS and SVR models developed using MSD3 (Substructure
based) and optimised with GA fulfilled the OECD criteria for both cross validation (R? and
Q% > 0.5) and external testing (R?and Q? > 0.6) (Veerasamy et al., 2011, Alexander et al.,
2015). Due to similar model performance, both the PLS and SVR models can be used for the
prediction of HIC retention times. However, the PLS model is preferred in an industrial setting
due to being more straightforward to train where only one model parameter needs to be
specified. The PLS model also have stronger diagnostic capabilities where the investigation of

sample and descriptor contribution towards Y is more intuitive.

The selected model was developed initially from the original 1163 descriptors available in the
full MSD3 descriptor set where 319 were retained from the V-WSP reduction, thus effectively
reducing the number of descriptors by ~70%. The Procrustes index was used to evaluate the
loss of information when comparing the full and V-WSP reduced MSD3 descriptor sets. A
value of 0.0638 was obtained, indicating that only a small fraction of the information was lost
in the reduction step (Ballabio et al., 2014). This can also be observed in benchmark table for
MSD3 (see Table C3.2a in Appendix C) where the of R? and Q2 values in the cross validation
and the test set remained mostly unchanged after the reduction. Out of the 319 remaining
descriptors, GA selected a subset of 51 descriptors used to develop the final PLS model. A full
list of the selected descriptors is presented in Table C.8 in Appendix C. Model predictions of
the calibration samples (dark circles) and test samples (red circles) are shown in Figure 7.4a as
a measured vs predicted parity plot. The test samples from Figure 7.4a are further illustrated in
Figure 7.4b as a bar plot for easier comparison of the measured and predicted values for
individual mAbs. The model performance is summarised in Table 7.3.

Y-Randomisation (or Y-Scrambling) was used as a final validation step to evaluate the selection
of the descriptors (Rucker et al., 2007). A PLS model was trained on a randomised (scrambled)
HIC response vector while the sample order in the MSD3 descriptor set was kept unchanged.
This was repeated 50 times and the average of R2 and Q? for the cross validation was calculated.
A resulting R? value of 0.03 and a Q2 value of -3.94 was obtained. This indicates that no chance
correlation is captured by the model and that the selected descriptors are important to describe
the relationship between the structure of the mAbs and HIC responses. The results are

summarised in Table 7.3.
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Figure 7.4. Predictions of HIC retention times with PLS-GA model developed on the MSD3 descriptor set (LVs
=9). (a) Measured versus predicted plot with calibration samples in black and test set samples in red. (b) Measured
(black) and predicted (red) values of test set samples.

Table 7.3. PLS model summary developed for HIC retention time prediction using the MSD3 descriptor set. Root
Mean Square Error (RMSE), R?, Q2 and model bias are listed for Calibration, Cross validation, Test set and Y-
randomisation (Y-scrambled). The Y-randomisation metrics are the average values of 50 randomised models.

PLS

RMSE R? Q? Bias
Calibration 0.13 0.98 0.98 0.00
Cross Validation 0.51 0.75 0.71 0.02
Test 0.59 0.66 0.65 -0.11
Y-scrambled 2.01 003 -394 -0.01
(Average)

The developed PLS model has signs of slight over-fitting when observing the calibration
samples (dark) and the test set samples (red) in Figure 7.4a. The calibration samples showed a
low RMSE value of 0.13 compared to the test set with an RMSE value of 0.59, which is also
indicated by a greater distance of these samples from the parity line. This is an indication of
over-fitting as the RMSE values between the calibration and test set should be ideally similar
to each other (Lever et al., 2016). A likely reason for this is that a small number of redundant
or noisy descriptors were selected by the GA algorithm to better fit the calibration samples in
the cross-validation which in turn resulted in a high calibration fit with R? and Q2 values of
0.98 and 0.98, respectively (Leardi, 2000). However, though not perfect, the underlaying
correlation between the mAb structures and the HIC retention times has been captured by the
PLS model as indicated by R? and Q2 values greater than 0.6 for the test set (Veerasamy et al.,
2011)
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A general trend observed in the descriptors was that about 45% of all descriptor belonged to
the CDR regions, 31% to the framework regions and the remaining 24% belonged to both the
constant domains of Cx1 and Cy (see Table C.8 in Appendix C). This indicates the importance
of the structural information contained in the variable domains. This is sensible as the CDRs
are the source of the greatest sequence variability in the entire mAb structure which in turn
affects surface and structure related properties of both the CDRs as well as framework regions
in the variable domains (Lefranc et al., 2003). The effect will likely not be as pronounced in the
constant domains of the 79 IgG1l-kappa samples due to having identical primary sequence.
Instead, the variability present in the 3D structure descriptors of the constant domains are likely
to be related to conformational differences originating from the molecular dynamics
simulations. However, it is important to note that the descriptors from the constant domains
cannot be disregarded due to dynamic interactions between the constant and variable domains

which in turn will affect the generated descriptors (Feige et al., 2010).

A closer inspection of the descriptors revealed that selected descriptors describing the polar
surface areas (Spolar and SASApoiar) and non-polar surface areas (Snon-polar and SASAnon-polar)
belonged almost exclusively to the CDR regions. Representation of the volume (VOLTAE) and
the electrostatic potential (SIEP) generated as part of the TAE descriptors were also commonly
found belonging to the CDRs. This is consistent with published research where the CDRs have
a pivotal role in binding to the HIC column resin with stronger binding usually occurring when
the CDRs are long and hydrophobic (Hebditch et al., 2018).

In addition, the stability of the mAb structures played a central role for prediction of the
retention times represented mostly by energy-based descriptors. 11 of the 24 GA selected
energy descriptors were related to the conformational entropy Gc(F), which describes the
stability of the protein with regards to the hydrophobic interactions in the protein core which
were selected for the CDRs, framework regions and the constant domains. Other important
energy descriptors of note were the number of estimated water molecules surrounding the
surface, W(F), and the interfacial free energy, AGs, representing the energy contribution from
interactions between polar residues and surrounding water molecules. This is supported by
published literature where the protein stability has been reported to play a pivotal role in HIC
binding (Beyer and Jungbauer, 2018). This is further elucidated when considering that salt is
added to promote binding in HIC columns and more stable mAbs require higher concentration
of salt to disrupt electrostatic forces on the surface in order to expose hydrophobic patches
(Gagnon, 1996a).
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In retrospect, a replacement for the TAE descriptors might help to improve model performance.
This is due to the TAE descriptors consisting of static values for the individual amino acids
which will be identical regardless of the environment they are in (Breneman and Rhem, 1997).
Similarly, an alternative to the ProtDCal descriptors describing the energy and stability of the
structure might also improve model performance due to being based on simplified empirical
calculations. It was shown that they can provide a fair and often good approximation of stability
energies when compared to experimental results. However, their applicability was not suited
for all protein structures where large differences were observed between predicted and observed
experimental energies in some cases (Ruiz-Blanco et al., 2013). A suggestion would be to
perform surface properties and energy calculations directly in GROMACS or similar software
as will be discussed further in Section 8.1.

7.2.5 mADb yield model development on 1gG1-kappa samples

An identical benchmarking scheme as described at the start of Section 7.2.4 was performed to
fit the MSD1, MSD2 and MSD3 descriptor sets to the mAb yield response. The cross validation
and test set validation for all developed models are presented in Appendix C, Table C.7b. The
developed models behaved similarly to the models for the prediction of the HIC retention times,
where adequate performance in the cross validation was only achieved after variable selection
had been performed. GA selection and rPLS achieved acceptable performance with R? and Q2
greater than 0.6 for both PLS and SVR developed using MSD3 descriptor set. Selection with
LASSO however suffered due to correlation between redundant and response-correlated
descriptors as explained in Section 2.9.3.

Unfortunately, none of the developed models had an adequate performance in the external test
set regardless of which permutation of modelling, reduction or variable selection method was
used. The predictions from the PLS model developed using MSD3 and optimised with GA is
illustrated in Figure 7.5a. The test samples (red circles) from Figure 7.5a are further illustrated
in Figure 7.5b as a bar plot for easier comparison of the measured and predicted values for
individual mAbs.It can be observed that many of the test set samples have been underpredicted
which resulted in low R? and Q2 values of 0.11 and -0.92, respectively. The model performance

is summarised in Table 7.4.
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Figure 7.5. Predictions of mAb yield with a PLS-GA model developed on the MSD3 descriptor set (LVs = 3). (a)
Measured versus predicted plot with calibration samples (black) and test set samples (red). (b) Measured (black)
and predicted (red) values of test set samples.

Table 7.4. PLS model summary developed for mAb yield prediction using the MSD3 descriptor set. Root Mean
Square Error (RMSE), R?, Q? and model bias are listed for Calibration, Cross validation and Test set.

PLS

RMSE R? Q? Bias
Calibration 20.09 0.90 0.90 0
Cross Validation 36.42 0.69 0.68 -2.73
Test 74.25 0.11 -0.92 49.55

It is difficult to identify the true reason for the poor performance in the test set although a
potential cause may be the lack of necessary variation in the data. Addition of extra samples to
the data set might aid to better represent the range of Y responses, but also to introduce more
structural variation in the X block. Noise and descriptor collinearity are also influencing factors
in the model development where the descriptor selection methods can suffer where the wrong
descriptors are selected thus leading to fitting of noise uncorrelated to the samples in the test
set (Fan and Lv, 2010). A nested cross-validation approach might help in improving the model
generalisation due to using all the available data but at the loss of a dedicated test set (Cawley
and Talbot, 2010). Another approach would be to try ensemble techniques such as bagging or
boosting where multiple models are developed on separate sample subsets which have been

shown to improve model performance and generalisation (Drucker, 1997).

From a more biological perspective, transcription and translation of the heavy and light chains
occurs separately within the cell which usually result in a higher concentration of light chains
being expressed compared to the heavy chains. The structure of the mAbs might therefore not
be directly related to the mADb yields (Bayat et al., 2018, Bhoskar et al., 2013). In Pybus et al.
(2014), the authors investigated the mAb expression with regards to the corresponding mRNA
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structure in CHO cells. They found that expression was significantly impacted by the stability
of the mRNA structure where less stable MRNA structures resulted in lower yields. The mRNA
sequence also determines which RNA codons are used during translation which has a
significant impact on the expression as also reported by the authors. Optimisation of the
nucleotide sequence is therefore vital in order to have an efficient expression of mAbs. The
sequence variation in the variable domains has also been shown to impact expression in CHO
cells which relates back to the mRNA and RNA codons (Mason et al., 2012). The sequence
variation can impact the protein folding in the endoplasmic reticulum which in turn can become
overloaded due to the accumulation of unfolded or misfolded proteins, thus leading to lower
expression rates (Braakman and Bulleid, 2011, Stoops et al., 2012). Based on these facts, it is
therefore difficult to accurately predict the yields based on the mAb structure alone, but

information pertaining to the mMRNA sequences would be needed as well (Pybus et al., 2014).

7.2.6 Comparison to primary sequence-based models

Initially, a model comparison for HIC retention time prediction of the developed primary
sequence-based model presented in Section 5.2.3 and the developed 3D structure model
presented in Section 7.2.4 was supposed to be performed with an independent external data set.
Due to using CADEX, different samples were selected for the test set in the two models which
meant that an unbiased evaluation using the samples from the data set provided by Jain et al.
(2017) could not be performed. Instead, HIC retention times for humanised mAbs from the
Advanced Manufacturing Supply Chain Initiative (AMSCI) data were supposed to be used
(CPI, 2015). However, due to project time constraint and the lengthy process to draw up
confidentiality agreements, the AMSCI sequences and HIC retention times could not be

accessed in time and a direct comparison between the models was therefore no longer possible.

However, some conclusions regarding the applicability can be made. As was observed in
Chapter 5, when all species origins were used in model development, none of the resulting
models had adequate performance with regards to the OECD criteria due to poor performance
in the test set (R? and Q2 < 0.6). This was caused by the systematic variation in the primary
sequence-based descriptors that originated from structural differences between the species
origins which were uncorrelated to the HIC response (see Section 5.2.2). Adequate performance
was not reached until only humanised samples had been selected, significantly increasing the
model performance in both the cross validation and test set when primary sequence-based
descriptors were used. In comparison, due to the negligible systematic variation present in the
generated 3D structure descriptors from the species origins, model development could proceed

with all available 1gG1-kappa samples as well as achieving adequate performance in both the

191



cross-validation and test set (see Section 7.2.4). The use of 3D structure descriptors therefore
increases the applicability of the QSAR model to the point where the species origin can be
ignored. However, stronger systematic variations originating from the different mab isotypes
still needs to be considered and therefore the model will only be able to predict accurately on

lgG1-Kappa samples.

From the perspective of a pharmaceutical industry, neither the primary sequence-based model
or the 3D structure descriptor model has adequate performance to be used as a predictive tool
in QbD risk assessment as of yet. This would require a higher model performance with R? and
Q2 values of at least 0.8 in both the cross-validation and test set in order to decrease the offset
between measured and predicted values thus increasing the confidence in the predictions.
However, based on the acquired results, both the primary sequence-based descriptors and the
3D structure descriptors shows promise for further improvements. In this research, the initial
descriptor sets were developed to capture a wide range of different properties and features in
although the majority of these were discarded in the model optimisation with VV-WSP reduction
and GA selection. Further model development is therefore recommended by re-evaluating the
properties of the selected descriptors in order to expand and incorporate more related structural
properties and features in the descriptor sets. It is important to note that the 3D structure
descriptors are more flexible than the primary sequence-based descriptors. This is due to that
process related information regarding the environment e.g. temperature, pH, molality etc can
be incorporated in the MD simulations and their effects on the protein structure can be
approximated (see Section 6.5). This is not possible with the primary sequence-based

descriptors due to being static.

7.3 Summary

In this chapter the 3D structure descriptors, developed from mAb structures simulated with
GROMACS, were explored and used for the development of predictive models for the

prediction of HIC retention times and mADb yields.

Exploration of the 3D structure descriptors of the light chain with PCA showed a strong
correlation to the kappa and lambda isotypes which were present in all of the three generated
descriptor sets. Based on previous results from the statistical hypothesis testing in Section 5.2.2,
no correlation between the light chain isotypes and responses of HIC retention times as well as
mADb yields could be significantly proven. As described in Section 7.1.1, modification of the
heavy chain was made by Jain et al (2017) as they expressed all 1gG2 and 1gG4 mAbs as IgG1.
If the original isotypes were preserved, though unknown, it could have potentially altered the
measured experimental responses. For this reason, only IgG1 samples were selected due to the
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uncertainty of the true behaviour of the IgG2 and IgG4 mAbs. Contrary to the previously
explored primary sequence-based descriptors, only negligible correlation between the
generated 3D structure descriptors and the species origins was observed through classification
models based on PLS-DA and SVC. As a result, selection of a subset of 79 1gG1-kappa samples
of all species origins from the available 128 samples was used in order to reduce harmful
systematic variation uncorrelated to the response vectors as well as keeping the samples true to

their original conformations.

In this chapter, it has been shown that a model for predicting the HIC retention times could be
developed with 3D structure descriptors generated from the individual substructures (MSD3)
of a Fab fragment. Both PLS and SVR models developed on the MSD3 descriptor set after
descriptor selection with GA had similar performance, but the PLS model was selected due to
more straightforward implementation. The PLS model had adequate performance in accordance
with the OECD guidelines for QSAR models with a R? and Q2 of 0.75 and 0.71, respectively,
in the cross validation and a R? and Q2 of 0.66 and 0.65, respectively, in the test set. Though
not all variation was explained by the model, it provided valuable insight into important

descriptors and factors affecting model performance.

No satisfactory model could be developed for the prediction of mAb yields as indicated by the
signs of overfitting evidenced by the poor test set results. A potential cause could be that
structural information alone might not be directly correlated to the yield and other factors

related to the expression from the cell might be missing.

Unfortunately, no direct comparison could be made between the selected primary sequence-
based model in Chapter 5 and the 3D structure model in this chapter for prediction of HIC
retention times as explained above. However, the model developed using the 3D structure
descriptors showed broader applicability due to being unconstrained in regards to the species
origins. In comparison, the model developed on the primary sequence-based descriptors was
trained on humanised samples only and would not be able to reliably predict retention times for
chimeric and human samples. Further improvement of the developed models is still necessary

in order to increase prediction accuracy prior to application in risk assessment.
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Chapter 8

Conclusions and Future Work

In this project the QbD framework was reviewed due to being commonly used in process
development for mAbs and provides a systematic approach to increases process understanding
through characterisation of process parameters and their effect on the product quality. However,
due to the numerous process parameters that need to be characterised, the QbD framework still
faces challenges in implementation. Much research has been focused in areas such as high-
throughput platforms and process optimisation to reduce attrition in the process development.
However, it was identified that one of the biggest challenges in QbD implementation is the lack
of knowledge about both the process and product in early process development where the

manufacturability of an mAb might not be possible.

In the literature review, it was shown that the QSAR framework for in silico model development
has become increasingly popular for end point predictions of protein behaviour in different unit
operations. This makes the QSAR framework a potentially valuable tool which can aid risk
assessment in early process development to better direct experimental designs and thus reduce
costs. The use of in silico approaches therefore allows for more informed estimates of the
potential behaviour of a mADb in different unit operations of the process. This could become
possible by efficiently making use of historic prosses data from previously established mAb
manufacturing processes and constructing an expert system. The integration of QSAR into the
QbD framework was therefore proposed in order to increase product understanding which is

especially important in early process development.

In this research, an extensive framework was developed based on QSAR in order to address the
challenges facing mAb process development. The framework can roughly be divided into three
parts according to: 1) Generation of descriptors relating both to the primary sequence as well
as the 3D structure of mAbs. 2) Exploration and statistical assessment of generated descriptor

and responses, respectively, for elimination of detrimental systematic variation. 3) Model
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development and validation coupled with descriptor reduction and selection. The
implementation of such frameworks is becoming increasingly important in pharmaceutical
industries in order to speed up development and lower the costs of new biopharmaceuticals.
Due to the shifts toward high-throughput technology that has occurred during the recent years
in both upstream and downstream of the mAb process, the increased availability of process data

introduces and excellent starting point for the implementation of the presented framework.

In this research, focus was placed on the development of predictive models assessing HIC
retention times and mADb yields due to these important factors for protein stability and
productivity assessment in process development. The highlights from the different chapters in
this thesis and potential improvements are addressed according to the following areas: 1)
Descriptors, 2) Sample Selection and 3) Model Development and Assessment for easier

evaluation.

8.1 Descriptors

Two different approaches for generating descriptors for development of predictive models was
reviewed and implemented in this project. The first approach presented in Chapter 3, used the
primary sequence of the mAbs where descriptors were produced using EMBOSS Pepstats,
ProtDCal and amino acid scales. These descriptors were designed to capture structural
variations based on differences in amino acid compositions between mAbs. The second
approach presented in Chapter 6, was based on development of 3D structure from the primary
sequences. Due to the lack of published structures, homology modelling was applied to produce
approximations of the 3D structures for all mAbs used in this research. Molecular Dynamics
simulations was then performed to relax the homology structures. Descriptors were then
developed with GROMACS and ProtDCal and captured properties related to the surface and
stability of the mADbs.

In both approaches, descriptor sets of different resolutions were generated. For the primary
sequence-based descriptors, the lowest resolution was attained when descriptors were
calculated from all residues in an individual domain which meant that each domain could be
represented individually. The highest resolution was attained when descriptors were generated
for each individual residue in the primary sequence. For the 3D structure descriptors, the lowest
resolution was calculated from each individual chain while the highest was calculated from the
individual substructures present in the mAb structure. By comparing the different resolutions
in the developed predictive models, a trade-off could be made in order to investigate the
required resolution for adequate model performance. More explicitly, a too low resolution

would often confound important structural properties while to high resolution would introduce
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noise in the form of redundant descriptors into the developed models where in both cases lead

to poor model performance.

8.1.1 Suggestion for Improvements

One of the biggest weaknesses with the generated descriptors is the absence of data on protein
modifications such as the mAb glycan structure which has a major impact on the mAb stability.
Due to that the upstream environment was identical for all mAbs in data set acquired from Jain
et al. (2017), it was assumed that the glycan structure would be similar between the mAbs used
for model development in this research. However, this assumption cannot be made in an
industrial setting where the glycan structure is likely to be different between mAbs and therefore

must be considered as a source of variability and represented in the modelling data.

In this research atomistic simulations using GROMACS were performed on all mAbs in order
to relax the structure and capture the structure dynamics. However, as presented in Section
7.2.1, three mADbs failed to converge to a stable conformation. It was suggested that continued
simulation would be necessary in order for the structure to converge to a stable conformation.
In retrospect, a longer simulation time, such as 100 ns as well as multiple runs for each structure,
would be beneficial for all structures as it allows for more structural variation to be captured
while at the same time minimises the risk of simulations ending at conformational transition
points. However, running all simulations at atomistic resolution for 50 ns takes considerable
amounts of time. An alternative would be to investigate coarse-grained simulations which will
run much faster due to the protein structure being simplified thus resulting in less particles in
the simulation system. A comparison would need to be made to ensure that the protein dynamics
of coarse-grained simulation is representative to that of the atomistic simulation in order to not
bias the resulting structure. The use of coarse-grained simulation would also allow for longer
simulations to be run, thus generating a stronger foundation for understanding to structure

dynamics.

3D structure descriptor in this research were generated from a PDB structure acquired from a
single time-frame from the MD simulation. However, due to the structure being dynamic and
changing slightly over time, only using single time-frame might not accurately represent the
surface and stability of the structure. An alternative would be to generate descriptors on all
available time frames from when the structure has reached conformational stability to the end
of the simulation and then average the descriptors over time. This would probably result in
more stable and representative descriptors due to conforming to the dynamics of the mAb

structure.
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As mentioned earlier in Chapter 7, the calculation of energy descriptor through ProtDCal are
based on simplified empirical mathematical models which might not accurately represent the
environment in which the mAbs are simulated. It is therefore proposed that stability and energy
related descriptors are calculated directly in GROMACS or equivalent software which can take
into consideration many different interactions between the atoms in the system. GROMACS
also supports energy calculations of predefined groups of residues, thus allowing for calculation
of descriptors conforming to the different descriptor set resolutions presented in Chapter 6.

Though never implemented, a workflow of modifying the titration states of residues in the mADb
structure as well as adding co-solvents to the system was presented in Chapter 6. It would be
interesting to see how the descriptors change in response to the change in pH and co-solvent
concentration. If the HIC elution curves were available for the mAbs in Jain et al. (2017) instead
of just the end point retention times, several simulations with differing salt concentrations could
have been performed and linked to the cumulative elution, thus expanding the data set.
Alternatively, the proposed methodology could be used on published experimental data which

follows DoE experimental design.

8.2 Sample Selection

Selection of samples played a critical role in the model development in order to reduce
systematic variation uncorrelated to the response vectors where a structured approach for
investigating sources of variation was proposed. Two sources of variation were identified early
on where the first originated from the unique structures of the heavy chain isotypes 1gG1, 1gG2
and 1gG4 whereas the second originated from the unique structure of the light chain isotype
kappa and lambda. Exploration of the primary sequence-based descriptor with PCA on the
gathered 273 IMGT sequences presented in Chapter 4 revealed that both the heavy and light
chain isotypes had a clear and strong separation. Further analysis showed that a significant
portion of the data variation in the descriptors were used to explain the observed separations.
Similar results were observed when exploring the 3D structure descriptors of the 128 samples
acquired from Jain et al. (2017) presented in Chapter 7, where a clear separation of light chain
isotypes kappa and lambda were observed with PCA. However, due to the alteration of the
heavy chain constant domains in the original mAb structures which were all expressed as 1gG1,

no conclusive results could be drawn regarding isotypes 19G2 and 1gG4.

The statistical analysis performed in parallel on the response vectors of HIC retention times and
the mADb yields from the data set provided by Jain et al. (2017) showed that no differences could
be significantly proven in either of the responses when the heavy or light chain isotypes were

compared. Important to note is that the statistical analysis performed on the heavy chain
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isotypes was biased due to all samples being expressed as 1gG1 and was therefore not likely to
show a significant difference between the isotypes. However, due to the clear separation of
IgG1, 1gG2 and 1gG4 that was observed in Chapter 4 when exploring the primary sequence-
based descriptors, it was impossible to know if the unaltered mAbs would have an effect on the

responses.

A similar analysis of the species origins was performed by exploring data variation in the
generated descriptor correlated to that of the species origins. These analyses were performed
with classification methods such as PLS-DA and SVC instead of PCA due to higher degree of
variability in the explored descriptors. A strong correlation was observed between the species

origins and the primary sequence-based descriptors but not with the 3D structure descriptors.

Elimination of systematic variation uncorrelated to the responses was performed by removing
groups of samples belonging to a specific isotype or species origin which were strongly
correlated with the descriptors but where a difference between responses could not be
significantly proven in the statistical analysis. It is important to mention that the reasoning of
selecting the 1gG1 in this research was based on the assumption that the experimental
measurements of the response vectors might have been different for the 1gG2 and 1gG4 samples
if they were not expressed as IgG1. The IgG1 samples were therefore selected due to their heavy

chain isotype not having been altered.

8.2.1 Suggestion for Improvements

Though it was never followed up due to time constraints, the good classification performance
observed when predicting the species origins in Chapter 4 might be interesting to look into. It
is often assumed that there is no intrinsic difference between humanised and human samples.
However, the prediction accuracy was high in both the cross-validation and the test set, thus

indicating that a structural difference between human and humanised samples are present.

Homology models and MD simulations of true 1gG2 and 1gG4 mAbs were never performed in
this research. It was shown that only a negligible correlation was present between the 3D
structure descriptors and the light chain isotypes. It would therefore be interesting to observe if
the performance of classification models developed on a mix of 1gG1, 1gG2 and 1gG4 mAbs

where 3D structure descriptors are used as model input would be different.

8.3 Model Development and Assessment

Model development on the significantly larger data set provided by Jain et al. (2017) allowed

for more advanced testing and benchmarking. In Chapter 5 and Chapter 7, predictive models

for HIC retention times and mAb yields were developed with primary sequence-based
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descriptors and 3D structure descriptors, respectively. Due to the larger sample sets that were
retained after samples selection a dedicated test set could be used to validate the developed
models properly. A model development framework was proposed for testing different
permutation of modelling methods with descriptor reduction and selection methods. In this
research, an initial model was developed on the full descriptor set. The unsupervised V-WSP
algorithm was then applied to decrease the number of collinear descriptors where a new model
was developed on the reduced descriptor set. A subsequent descriptor selection was performed
on the reduced descriptor set with supervised descriptor selection techniques such as rPLS,
LASSO and GA which resulted in three new models being developed. This process was
performed for all available descriptor sets in order to identify needed resolution for adequate
model performance in both the cross-validation and the test set. The performance of all models
was evaluated based on the OECD guidelines for QSAR models.

Predictive models for HIC retention times were successfully developed for both the primary
sequence-based descriptors and the 3D structure descriptors. The model developed on the 3D
structure descriptors had a larger applicability due to having been trained on all chimeric,
human and humanised samples and passed the OECD criteria. The model developed on the
primary sequence-based descriptors was more constrained due to having been trained solely on
the humanised samples due to a poor performance of the model when different samples were
included into model calibration. The reason for this was due systematic variation originating
from the species origins which was much more pronounced in the primary sequence-based
descriptors due to capturing all information from the primary sequence. For the 3D descriptors
however, due to being buried inside of the protein structure, residue related to the species origin
class did not translate over to the descriptors due to their SASA values being close to zero (see
Section 6.6.2). This resulted in 79 mAbs being used to train the 3D structure-based model
compared to 45 mAbs being used for training the primary sequence-based model. Much more
structural variability is therefore introduced in the 3D structure based-model which increases

the model’s robustness when predicting retention times for future samples.

In the paper of Robinson et al. (2017), a QSAR model was developed for predicting the elution
salt concentration in a HIC column where the authors developed descriptors generated from 3D
structures of Fab fragments which was then trained with SVR. The authors reported that a R?
of 0.60 was observed in the cross-validation while a R? of 0.44 was observed in the external
test set. Both the primary sequence-based model and 3D structure-based model presented in
Chapter 5 and Chapter 7, respectively in this research, attained a higher R? in both the cross-

validation and external test set compared to Robinson et al. (2017).
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8.3.1 Suggestion for Improvements

In this research much focus was placed on developing a single model by splitting all available
samples once into a calibration set and a test set. However, alternative training approaches for
model development exist such as nested cross-validation which consist of two validation loops:
an outer loop for model validation and an inner loop for model training. The available samples
are often split at random in the outer loop which can be repeated any number of times and have
shown to produce models with good generalisation (Raschka, 2018). Other alternatives are
ensemble techniques such as bagging and boosting which have also been shown to produce
models with good generalisation capabilities. A drawback with these methods is that no

dedicated test set will be available to substitute as future samples.

A recommendation from Leardi (2000) was that the GA algorithm should not be used on
problems with more than 200 descriptors which can result in over-fitting which was observed
in the mAb yield models. A work-around would be to modify the GA algorithm to generate
random descriptor subsets based on groups instead of the individual descriptors. The descriptors
used in this research can all be grouped according to the structure they were generated from e.g.
chain, domain, substructure etc as well as the type of the descriptor e.g. topological, energy
based etc. This would not only make GA selection faster but the importance of the individual
structures of the mAb as well as the descriptor types could be assessed more efficiently.

As mentioned in this research, the V-WSP algorithm was applied to reduce the number of highly
correlated descriptors. The implementation however, is very dependent on the data set where
the correlation thresholds were selected in order to minimise loss of information. The resulting
reduction might therefore be slightly different if performed on another data set and is therefore
subjective. However, in both the primary sequence-based descriptors and 3D structure
descriptors, it was observed that the constant domains generally had a lower correlation
threshold applied (~0.6-0.7) resulting in less descriptors being retained, while the variable
domains generally had a higher correlation threshold applied (~0.8-0.9) resulting in more
descriptor being retained (data not shown). A recommendation would be to use static correlation
thresholds when reducing the descriptor sets based on the observed values for the constant and
variable domains. This would in turn lead to a more objective reduction of descriptors

regardless of the data set used.

A common problem encountered model development is that the distribution of response data if
often skewed. This if often true in experimental data of mAbs where the majority of samples
are well-behaved whereas only a few are flagged as problematic. The CADEX algorithm used

in this research only takes into account the structural descriptors when selecting samples for
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training and validation. For a more controlled selection, a stratification strategy with regards to
the response distribution could be applied in order to split the distribution in to three to four
equal sample sizes in which the CADEX algorithm is applied individually.

8.4 Summary

In summary, the work presented in this thesis has provided an extensive framework for
generation of structural descriptor and predictive model development that can be applied for
prediction of mAb behaviour in processing. As was demonstrated, successful model
development was achieved for prediction of HIC retention times. Though the model
performance can be further improved, it allows for further study into development of new
descriptors and approaches for which several suggestions for improvement on the defined
framework have been given. The framework is therefore very promising due to that only the
structural information of the mAbs is needed in order to predict chromatographic behaviour.
The applied descriptor generation and modelling frameworks has therefore the potential to work
in other chromatographic systems such as AIEX, CEX, etc where column binding is dependent
on the structural features of the mAbs, which has also been supported by literature. Therefore,
continued development and implementation of the proposed framework could be used to
acquire a foundation of risk assessment tools to aid in early process development of new drug
candidates and used to investigate potential processing behaviour and process route selection.
This has the added value of increasing the process and product understanding which can
potentially lower the number of required experiments in order to characterise the process design
space and in turn lower development costs. As stated by DiMasi et al. (2016), the expected total
cost from clinical phase | to market release was approximated to $1.460 billion. Even if the
proposed implementation of QSAR modelling into the QbD framework only reduces cost by 1-

2% at minimum, this is still a reduction of $14.6-29.2 million.

A continued development and expansion of QSAR risk assessment tools, not only in process
development, but for clinical safety and biological activity as well, might allow for prediction
of mAb developability (Zurdo et al., 2015). This means, that based on the potential risk of a
mADb candidate to fail due to lack of clinical safety, problematic in manufacture or lack of
biological activity, a more informed decision can be made to either fail or proceed with the
candidate. This can therefore aid in reducing attrition as well as prevent large investments from

being made on mAb candidates with low developability.
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Appendix A

A.1 Marketed mAbs

Table A.1. List of market approved and withdrawn mAbs in the EU and the US between 1986-2017 with their
corresponding approval years from EMA and FDA, respectively. mAbs highlighted in blue are biosimilars.

FDA Approval

Comment

Biosimilar, same as Humira

Trade Name INN EMA Approval

Cyltezo adalimumab 2017 2017
Zinplava bezlotoxumab 2017 2016
Bavencio avelumab Not approved 2017
Dupixent dupilumab Not approved 2017
Imfinzi durvalumab Not approved 2017
Ocrevus ocrelizumab Not approved 2017
Silig brodalumab Not approved 2017
Cingair reslizumab 2016 2016
Lartruvo olaratumab 2016 2016
Darzalex daratumumab 2016 2015
Empliciti elotuzumab 2016 2015
Portrazza necitumumab 2016 2015

Ixifi

infliximab

Not approved

2017

Biosimilar, same as Remicade

Anthim
Tecentriq
Cosentyx
Nucala
Opdivo
Praluent
Praxbind
Repatha

Unituxin

Blincyto
Mvasi (US)
Keytruda
Cyramza
Entyvio
Sylvant
Lemtrada

obiltoxaximab
atezolizumab
secukinumab
mepolizumab
nivolumab
alirocumab
idarucizumab
evolocumab

dinutuximab

blinatumomab

bevacizumab

pembrolizumab

ramucirumab
vedolizumab
siltuximab

alemtuzumab

Not approved
Not approved
2015
2015
2015
2015
2015
2015
2015

2015
Not approved
2015
2014
2014
2014
2013

2016
2016
2015
2015
2015
2015
2015
2015
2015

2014
2017
2014
2014
2014
2014
2014

Withdrawn from use in the
European Union

Biosimilar, same as Avastin
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Trade Name INN EMA Approval FDA Approval Comment

Kadcyla trastuzqmab 2013 2013 Conjugated antibody
emtansine

Perjeta pertuzumab 2013 2012

Gazyvaro obinutuzumab Not approved 2013

Adcetris brentuximab 2012 2011 Conjugated antibody
vedotin

Abthrax raxibacumab Not approved 2012

Benlysta belimumab 2011 2011

Vervoy ipilimumab 2011 2011

Xgeva denosumab 2011 2011

Prolia denosumab 2010 2010

Arzerra ofatumumab 2010 2009

Scintimun besilesomab 2010 Not approved

RoActemra tocilizumab 2009 2010

laris canakinumab 2009 2009

Simponi golimumab 2009 2009

Stelara ustekinumab 2009 2009

Cimzia certolizumab 2009 2008 PEG conjugated Fab fragment
pegol

Removab catumaxomab 2009 Not approved

Soliris eculizumab 2007 2007

Lucentis ranibizumab 2007 2006 Fab fragment

Vectibix panitumumab 2007 2006

Tysabri natalizumab 2006 2004

Proxinium catumaxomab 2005 2005

Avastin bevacizumab 2005 2004

Xolair omalizumab 2005 2003

Erbitux cetuximab 2004 2004

Raptiva efalizumab 2004 2003 Voluntarily withdrawn from

the market in EU in 2009 and
in US in 2009

Zevalin il_oritumomab 2004 2002 Conjugated antibody
tiuxetan

NeutroSpec fanolesomab Not approved 2004

Humira adalimumab 2003 2002

Bexxar tositumomab Not approved 2003

Campath alemtuzumab 2001 2001

Herceptin trastuzumab 2000 1998

Ogivri trastuzumab Not approved 2017 Biosimilar, same as Herceptin

Mylotarg

gemtuzumab
0zogamicin

Not approved

2000

Conjugated antibody.
Voluntarily withdrawn from
the market in US in 2010.

238



Trade Name INN EMA Approval FDA Approval Comment

Remicade infliximab 1999 1998

Synagis palivizumab 1999 1998

Zenapax daclizumab 1999 1997 Withdrawn from the market
for commercial reasons in EU
in 2009 and in US in 2009

Simulect basiliximab 1998 1998

Rituxan, rituximab 1998 1997

MabThera

Rixathon rituximab 2017 Not approved Biosimilar, same as Rituxan

Humaspect votumumab 1998 Not approved Withdrawn from the market in
EU in 2003

LeukoScan sulesomab 1997 Not approved

CEA-scan arcitumomab 1996 1996 Withdrawn from the market in
EU in 2005

MyoScint imiciromab Not approved 1996 Has been discounted

ProstaScint capromab Not approved 1996

Verluma nofetumomab Not approved 1996

ReoPro abciximab 1995 1994 Country-specific approval
(prior to EMA Centralized
Procedure).

OncoScint satumomab Not approved 1992

Orthoclone muromonab- 1986 1986 Country-specific approval

OKT3 CD3 (prior to EMA Centralized
Procedure).

Panorex edrecolomab 1995 Not approved Withdrawn from the market in
EU in 2006

Centoxin nebacumab 1991 Not approved Withdrawn from the market in

EU in 1993
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A.2 IMGT mADbs

Table A.2. List of 273 mAbs collected from the IMGT database. The original chain isotypes, species origin and
development status are given for each antibody.

INN HC LC Species Origin Development Status
abituzumab 1gG2 kappa humanised Phase |
abrilumab 1gG2 kappa human Phase Il
actoxumab IgG1 kappa human Phase 11
adalimumab IgG1 kappa human Phase M
aducanumab gG1 kappa human Phase 111
afasevikumab IgG1 kappa human Phase |
alemtuzumab gG1 kappa humanised Phase M
alirocumab IgG1 kappa human Phase |
amatuximab IgG1 kappa chimeric Phase Il
andecaliximab IgG4 kappa chimeric Phase Il
anifrolumab IgG1 kappa human Phase 111
anrukinzumab IgG1 kappa humanised Phase Il
aprutumab IgG1 lambda human Phase |
ascrinvacumab 1gG2 kappa human Phase Il
atezolizumab IgG1 kappa humanised Phase 111
atinumab 1gG4 kappa human Phase |
avelumab IgG1 lambda human Phase 11
bapineuzumab IgG1 kappa humanised Discontinued
basiliximab IgG1 kappa chimeric Phase M
bavituximab 1gG1 kappa chimeric Phase 11
benralizumab IgG1 kappa humanised Phase I11
bevacizumab beta IgG1 kappa humanised Phase 111
bevacizumab IgG1 kappa humanised Phase M
bezlotoxumab IgG1 kappa human Phase M
bimagrumab IgG1 lambda human Phase II
bimekizumab IgG1 kappa humanised Phase 11
bleselumab 1gG4 kappa human Phase Il
blosozumab 1gG4 kappa humanised Phase 11
bococizumab 1gG2 kappa humanised Phase I1I
brazikumab 1gG2 lambda human Phase Il
brentuximab vedotin IgG1 kappa chimeric Phase Il
briakinumab IgG1 lambda human Phase |
brodalumab 1gG2 kappa human Phase II
brontictuzumab 1gG2 lambda humanised Phase |
burosumab IgG1 kappa human Phase II
cabiralizumab 1gG4 kappa humanised Phase |
camrelizumab 1gG4 kappa humanised Phase |
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INN HC LC Species Origin Development Status
canakinumab IgG1l kappa human Phase Il
cantuzumab ravtansine IgG1 kappa humanised Phase Il
carlumab IgG1 kappa human Phase Il
carotuximab IgG1 kappa chimeric Phase Il
cergutuzumab amunaleukin  1gG1 kappa humanised Phase Il
cetuximab IgG1 kappa chimeric Phase M
cixutumumab IgG1 lambda human Phase 11
clazakizumab gG1 kappa humanised Phase Il
clivatuzumab tetraxetan IgG1 kappa humanised Phase 11
codrituzumab 1gG1 kappa humanised Phase Il
coltuximab ravtansine IgG1 kappa chimeric Phase 11
conatumumab IgG1 kappa human Discontinued
concizumab IgG4 kappa humanised Phase |
cosfroviximab IgG1 kappa chimeric Phase I/11
crenezumab IgG4 kappa humanised Phase 111
crizanlizumab 1gG2 kappa humanised Phase Il
crotedumab IgG4 kappa human Phase |
dacetuzumab IgG1 kappa humanised Phase |
daclizumab IgG1 kappa humanised Phase M
dalotuzumab IgG1 kappa humanised Phase |
daratumumab IgG1 kappa human Phase M
dectrekumab gG1 kappa human Phase Il
demcizumab 1gG2 kappa humanised Phase |
denintuzumab mafodotin IgG1 kappa human Phase |
denosumab 1gG2 kappa humanised Phase 111
dezamizumab IgG1 kappa humanised Phase |
dinutiximab beta IgG1 kappa chimeric Phase |
dinutuximab IgG1 kappa chimeric Phase M
diridavumab IgG1 lambda human Not Stated
domagrozumab gG1 kappa humanised Phase Il
drozitumab 1gG1 lambda human Phase |
duligotuzumab IgG1 kappa humanised Phase Il
dupilumab 1gG4 kappa human Phase 111
durvalumab IgG1 kappa human Phase I11
dusigitumab 1gG2 lambda human Phase Il
efalizumab IgG1 kappa humanised Withdrawn
eldelumab IgG1 kappa human Phase II
elezanumab IgG1 lambda human Phase |
elgemtumab IgG1 kappa human Phase |
elotuzumab IgG1 kappa humanised Phase M
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INN HC LC Species Origin Development Status
emactuzumab IgG1l kappa humanised Phase |
emapalumab IgG1 lambda human Phase I1I
emibetuzumab 1gG4 kappa humanised Phase Il
emicizumab 1gG4 kappa humanised Phase M
enavatuzumab IgG1 kappa humanised Phase |
enfortumab vedotin IgG1 kappa human Phase |
enoblituzumab IgG1 kappa humanised Phase |
enokizumab gG1 kappa humanised Phase Il
enoticumab 1gG1 kappa human Phase |
ensituximab 1gG1 kappa chimeric Phase Il
eptinezumab IgG1 kappa humanised Phase 111
erenumab 1gG2 lambda human Phase I11
etaracizumab IgG1 kappa humanised Phase Il
etrolizumab IgG1 kappa humanised Phase Il1
evinacumab IgG4 kappa human Phase Il
evolocumab 1gG2 lambda human Phase M
farletuzumab IgG1 kappa humanised Phase 111
fasinumab 1gG4 kappa human Phase 111
fezakinumab IgG1 lambda human Not Stated
ficlatuzumab IgG1 kappa humanised Phase |
figitumumab 1gG2 kappa human Phase |
firivumab IgG1 kappa human Not Stated
flanvotumab IgG1 kappa human Phase |
fletikumab 1gG4 kappa human Phase |1
foralumab IgG1 kappa human Phase |
foravirumab IgG1 kappa human Phase |1
fremanezumab IgG2 kappa humanised Phase 111
fresolimumab 1gG4 kappa human Phase |
fulranumab IgG2 kappa human Phase 111
futuximab gG1 kappa chimeric Phase Il
galcanezumab 1gG4 kappa humanised Phase 11
ganitumab IgG1 kappa human Phase |
gantenerumab 1gG1 kappa human Phase 111
gatipotuzumab IgG1 kappa humanised Phase |
gedivumab 1gG1 kappa human Phase 1l
gemtuzumab ozogamicin 1gG4 kappa humanised Phase M
gevokizumab 1gG2 kappa humanised Phase II
girentuximab IgG1 kappa chimeric Phase I11
glembatumumab vedotin 1gG2 kappa human Phase I11
glembatumumab 1gG2 kappa human Phase II
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INN HC LC Species Origin Development Status
guselkumab IgG1l lambda human Phase M
ibalizumab 1gG4 kappa humanised Phase I1I
icrucumab IgG1 kappa human Phase Il
ifabotuzumab IgG1 kappa humanised Phase I/11
imalumab IgG1 kappa human Not Stated
imgatuzumab IgG1 kappa humanised Phase Il
inclacumab IgG4 kappa human Phase Il
indatuximab ravtansine 1gG4 kappa chimeric Phase Il
indusatumab vedotin IgG1 kappa human Phase |
indusatumab IgG1 kappa human Not Stated
inebilizumab IgG1 kappa humanised Phase II
infliximab IgG1 kappa chimeric Phase M
intetumumab IgG1 kappa human Not Stated
ipilimumab IgG1 kappa human Phase M
iratumumab IgG1 kappa human Phase Il
isatuximab IgG1 kappa chimeric Phase 111
itolizumab IgG1 kappa humanised Phase Il
ixekizumab 1gG4 kappa humanised Phase Il
labetuzumab govitecan IgG1 kappa humanised Phase 1l
lacnotuzumab IgG1 kappa humanised Phase Il
lanadelumab IgG1 kappa human Phase 111
landogrozumab 1gG4 kappa humanised Phase Il
laprituximab emtansine IgG1 kappa chimeric Phase |
laprituximab IgG1 kappa chimeric Phase |
larcaviximab IgG1 kappa chimeric Phase /11
lebrikizumab 1gG4 kappa humanised Phase I11
lenzilumab IgG1 kappa human Phase Il
lesofavumab IgG1 kappa human Preclinical
lexatumumab IgG1 lambda human Phase |
lifastuzumab vedotin IgG1 kappa humanised Phase Il
ligelizumab 1gG1 kappa humanised Not Stated
lirilumab 1gG4 kappa human Phase Il
lodelcizumab 1gG1 kappa humanised Phase 11
lorvotuzumab mertansine IgG1 kappa humanised Phase I/11
lucatumumab 1gG1 kappa human Phase |
lumretuzumab IgG1 kappa humanised Phase |
lupartumab amadotin IgG1 lambda human Phase |
lupartumab IgG1 lambda human Phase |
margetuximab IgG1 kappa chimeric Phase I1
mavrilimumab 1gG4 lambda human Phase II
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INN HC LC Species Origin Development Status
milatuzumab doxorubicin IgG1l kappa humanised Phase |
mirvetuximab soravtansine IgG1 kappa chimeric Phase I1I
mirvetuximab IgG1 kappa chimeric Phase |
modotuximab IgG1 kappa chimeric Phase Il
mogamulizumab IgG1 kappa humanised Phase |
monalizumab 1gG4 kappa humanised Phase |
motavizumab IgG1 kappa humanised Phase 111
namilumab IgG1 kappa human Phase |
naratuximab IgG1 kappa chimeric Phase 11
narnatumab IgG1 kappa human Phase |
natalizumab IgG4 kappa humanised Phase M
navivumab IgG1 kappa human Not Stated
necitumumab IgG1 kappa human Phase M
nemolizumab 1gG2 kappa humanised Phase Il
nesvacumab IgG1 kappa human Phase |
nimotuzumab IgG1 kappa humanised Phase M
nivolumab IgG4 kappa human Phase M
obiltoxaximab IgG1 kappa chimeric Phase I/11
obinutuzumab IgG1 kappa humanised Phase M
ocaratuzumab IgG1 kappa humanised Phase I/11
olaratumab IgG1 kappa human Phase 1l
oleclumab IgG1 lambda human Phase |
olokizumab 1gG4 kappa humanised Phase |
omalizumab IgG1 kappa humanised Phase M
onartuzumab IgG1 kappa humanised Phase M
opicinumab IgG1 kappa human Phase |1
orticumab IgG1 lambda human Phase Il
oxelumab IgG1 kappa human Discontinued
0zanezumab IgG1 kappa humanised Phase |
pamreviumab IgG1 kappa human Phase |
parsatuzumab gG1 kappa humanised Phase 11
pateclizumab IgG1 kappa humanised Phase Il
patritumab 1gG1 kappa human Phase 111
pembrolizumab 1gG4 kappa humanised Phase Il1
perakizumab 1gG1 kappa humanised Phase |
pidilizumab IgG1 kappa humanised Phase II
pinatuzumab vedotin IgG1 kappa humanised Phase |
plozalizumab IgG1 kappa humanised Phase Il
polatuzumab vedotin IgG1 kappa humanised Phase |
ponezumab 1gG2 kappa humanised Phase II
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INN HC LC Species Origin Development Status
porgaviximab IgG1l kappa chimeric Phase I/11
prezalumab 1gG2 kappa human Phase |
pritoxaximab IgG1 kappa chimeric Phase Il
quilizumab IgG1 kappa humanised Phase Il
rafivirumab IgG1 lambda human Phase Il
ralpancizumab 1gG2 kappa humanised Phase |
ramucirumab IgG1 kappa human Phase 11
refanezumab gG1 kappa humanised Phase Il
rilotumumab 1gG2 kappa human Phase Il
rinucumab 1gG4 kappa human Phase |
risankizumab IgG1 kappa humanised Phase 111
rituximab IgG1 kappa chimeric Phase M
robatumumab IgG1 kappa human Preclinical
roledumab IgG1 kappa human Phase Il
romosozumab IgG2 kappa humanised Phase 111
rontalizumab IgG1 kappa humanised Phase Il
rosmantuzumab IgG1 kappa humanised Phase |
rovalpituzumab IgG1 kappa humanised Not Stated
sacituzumab govitecan IgG1 kappa humanised Phase 111
sacituzumab IgG1 kappa humanised Not Stated
sarilumab IgG1 kappa human Phase M
satralizumab 1gG2 kappa humanised Phase 111
secukinumab 1gG1 kappa human Phase M
selicrelumab 1gG2 kappa human Phase |
seribantumab 1gG2 lambda human Phase Il
setoxaximab IgG1 kappa chimeric Phase |1
sifalimumab IgG1 kappa human Phase |
siltuximab IgG1 kappa chimeric Phase |1
simtuzumab IgG4 kappa humanised Phase Il
sirukumab gG1 kappa human Phase 111
solanezumab 1gG1 kappa humanised Phase 11
suptavumab IgG1 kappa human Discontinued
suvizumab 1gG1 kappa humanised Phase |
suvratoxumab IgG1 kappa human Phase Il
tabalumab 1gG4 kappa human Phase 111
tanezumab 1gG2 kappa humanised Phase I11
tarextumab 1gG2 kappa human Phase I/11
telisotuzumab IgG1 kappa humanised Phase |
teplizumab IgG1 kappa humanised Phase I11
teprotumumab IgG1 kappa human Phase |
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INN HC LC Species Origin Development Status
tesidolumab IgG1l lambda human Phase Il
tezepelumab 1gG2 lambda human Phase I1I
TGN1412 1gG4 kappa humanised Phase 11
tigatuzumab IgG1 kappa humanised Phase Il
tildrakizumab IgG1 kappa humanised Phase 11
timigutuzumab IgG1 kappa humanised Phase |
timolumab IgG4 kappa human Phase |
tisotumab IgG1 kappa human Not Stated
tocilizumab IgG1 kappa humanised Phase M
tomuzotuximab 1gG1 kappa chimeric Phase Il
tosatoxumab IgG1 lambda human Phase 1/11
tovetumab 1gG2 kappa human Phase 1/11
tralokinumab 1gG4 lambda human Withdrawn
trastuzumab emtansine IgG1 kappa humanised Phase 111
trastuzumab IgG1 kappa humanised Phase M
tregalizumab IgG1 kappa humanised Phase Il
tremelimumab 1gG2 kappa human Phase 111
trevogrumab 1gG4 kappa human Phase Il
ublituximab IgG1 kappa chimeric Phase |
ulocuplumab 1gG4 kappa human Phase |
urelumab 1gG4 kappa human Phase 1l
ustekinumab 1gG1 kappa human Phase M
utomilumab 1gG2 lambda human Phase |
vadastuximab talirine IgG1 kappa chimeric Phase I11
vadastuximab IgG1 kappa chimeric Not Stated
vantictumab 1gG2 lambda human Phase |
varisacumab IgG1 kappa human Phase |
varlilumab IgG1 kappa human Phase |
vatelizumab IgG4 kappa humanised Phase |
vedolizumab gG1 kappa humanised Phase M
veltuzumab IgG1 kappa humanised Phase |
vesencumab IgG1 kappa human Phase |
vonlerolizumab IgG1 kappa humanised Phase |
vorsetuzumab IgG1 kappa humanised Phase |
vunakizumab IgG1 kappa humanised Not Stated
xentuzumab IgG1 lambda human Phase |
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A.3 Predictive Modelling mAbs

Table A.3. List of 137 mAbs from Jain et al (2017) “Biophysical properties of the clinical-stage antibody
landscape” PNAS. The original chain isotypes and species origin is given for each mAb along with the
corresponding experimental measurements for melting point (Tm), HIC retention times and mAb yield from HEK
cell line. The two last columns indicate if either primary sequence-based or MD based descriptors were generated
for a sample and then used for model development.

Name HC LC Species Origin Tm HIC Yield Primary MD
abituzumab 1gG2 kappa humanised 7550 9.23 8956 e °
abrilumab 19gG2 kappa human 71.00 941 10022 e °
adalimumab 1gG1 kappa human 71.00 8.82 13493 e °
alemtuzumab IgG1 kappa humanised 7450 8.77 14465 e °
alirocumab 1gG1 kappa human 7150 9.04 69.23 e °
anifrolumab IgG1 kappa human 6250 8.80 8205 e °
atezolizumab IgG1 kappa humanised 7350 1335 164.09 e
bapineuzumab 1gG1 kappa humanised 73.00 8.86 15109 e °
basiliximab IgG1 kappa chimeric 60.50 9.58 107.46 e °
bavituximab 1gG1 kappa chimeric 59.50 11.50 45.11 ° °
belimumab IgG1 lambda human 60.00 10.46 1047 e °
benralizumab IgG1 kappa humanised 76.00 9.47 146.71 e °
bevacizumab 1gG1 kappa humanised 63.50 11.77 4998 e °
bimagrumab IgG1 lambda human 72.00 10.13 15024 e °
blosozumab 1gG4 kappa humanised 7050 9.24 12001 e °
bococizumab 1gG2 kappa humanised 67.00 10.18 9579 e °
brentuximab 1gG1 kappa chimeric 72.00 10.54 268.06 e )
briakinumab 1gG1 lambda human 7150 9.36 12199 e °
brodalumab 1gG2 kappa human 7450 9.08 15086 e °
canakinumab 1gG1 kappa human 72.00 9.32 45.72 ° °
carlumab IgG1 kappa human 69.50 11.17 24332 e °
certolizumab 1gG1 kappa humanised 8150 11.48 186.71 e °
cetuximab 1gG1 kappa chimeric 68.50 10.11 109.16 e °
cixutumumab 1gG1 lambda human 7350 11.76 15426 e °
clazakizumab 1gG1 kappa humanised 69.50 9.57 11348 e °
codrituzumab IgG1 kappa humanised 73.00 884 6635 e °
crenezumab 1gG4 kappa humanised 72.00 10.03 149.27 e °
dacetuzumab IgG1 kappa humanised 68.00 8.47 12845 e °
daclizumab IgG1 kappa humanised 74.00 9.29 24511 e °
dalotuzumab IgG1 kappa humanised 77.00 9.89 8242 e °
daratumumab IgG1 kappa human 71.00 951 23333 e °
denosumab 1gG2 kappa human 69.50 8.50 13417 e °
dinutuximab IgG1 kappa chimeric 69.00 9.83 7643 e °
drozitumab IgG1 lambda human 63.00 9.29 2207 e °
duligotuzumab IgG1 kappa humanised 67.50 10.21 19258 e °
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Name HC LC Species Origin ~ Tm HIC Yield Primary MD
dupilumab 1gG4 kappa human 76.50 10.16 16355 e °
eculizumab 19G2/G4  kappa humanised 66.00 10.61 226.47

efalizumab IgG1 kappa humanised 7250 8.67 166.99 e °
eldelumab IgG1l kappa human 59.50 12.42 89.25 e °
elotuzumab IgG1 kappa humanised 83.50 10.31 21319 e °
emibetuzumab 1gG4 kappa humanised 7150 9.64 9875 e °
enokizumab IgG1 kappa humanised 68.00 1293 23982 e °
epratuzumab gG1 kappa humanised 65.00 9.19 7823 e o
etrolizumab IgG1 kappa humanised 76.00 932 17384 e °
evolocumab 1gG2 lambda human 65.00 10.36 260.68 e o
farletuzumab gG1 kappa humanised 7550 9.49 22082 e °
fasinumab 1gG4 kappa human 71.00 10.03 11037 e °
fezakinumab IgG1 lambda human 69.00 11.80 14145 e °
ficlatuzumab lgG1 kappa humanised 75.00 9.42 249.03 e °
figitumumab 1gG2 kappa human 66.50 10.75 11992 e °
fletikumab 1gG4 kappa human 7150 11.04 220.38 e °
foralumab IgG1 kappa human 66.00 9.84 17444 e °
fresolimumab 1gG4 kappa human 74.00 10.88 166.04 e °
fulranumab 1gG2 kappa human 68.50 9.33 14202 e °
galiximab IgG1 lambda chimeric 6750 1220 17412 e °
ganitumab lgG1 kappa human 7850 9.33 22944 e °
gantenerumab lgG1 kappa human 7750 9.00 162.66 e °
gemtuzumab lgG4 kappa humanised 7250 1226 17130 e °
gevokizumab 1gG2 kappa humanised 7150 8.83 136.36 e °
girentuximab IgG1 kappa chimeric 63.00 9.08 30.72 ° °
glembatumumab 1gG2 kappa human 70.50 13.68 152.71 e °
golimumab IgG1 kappa human 70.00 11.36 16324 e °
guselkumab IgG1 lambda human 69.50 11.40 167.34 e °
ibalizumab 1gG4 kappa humanised 72.00 10.24 13328 e °
imgatuzumab lgG1 kappa humanised 7150 10.09 187.71 e °
infliximab IgG1 kappa chimeric 6450 10.36 6.58 ° °
inotuzumab 1gG4 kappa humanised 83.00 9.72 169.77 e °
ipilimumab lgG1 kappa human 73.00 1157 16956 e °
ixekizumab 1gG4 kappa humanised 83.00 1094 9728 e °
lampalizumab lgG1 kappa humanised 67.00 9.25 187.08 e °
lebrikizumab 1gG4 kappa humanised 66.00 12.38 61.61 e °
lenzilumab IgG1 kappa human 74.00 8.72 18474 e °
lintuzumab IgG1 kappa humanised 75.50 10.87 229.97 e °
lirilumab 1gG4 kappa human 70.00 25.00 270.48

lumiliximab IgG1 kappa chimeric 6450 9.55 86.27 e °
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Name HC LC Species Origin ~ Tm HIC Yield Primary MD
matuzumab IgG1 kappa humanised 72.00 9.84 22433 e °
mavrilimumab 1gG4 lambda human 68.50 10.30 15055 e °
mepolizumab IgG1 kappa humanised 7850 9.24 22148 e °
mogamulizumab IgG1 kappa humanised 68.50 9.64 89.77 e °
motavizumab IgG1 kappa humanised 86.00 9.69 13355 e °
muromonab 1gG2 kappa chimeric 7450 8.90 11352 e
natalizumab 1gG4 kappa humanised 7950 9.70 25175 e °
necitumumab 1gG1 kappa human 76.50 10.81 198.60 e °
nimotuzumab 1gG1 kappa humanised 65.50 25.00 15.13

nivolumab 1gG4 kappa human 66.00 9.02 17881 e °
obinutuzumab IgG1 kappa humanised 73.00 10.64 17644 e °
ocrelizumab IgG1 kappa humanised 7050 9.91 13777 e °
ofatumumab 1gG1 kappa human 68.00 9.73 24975 e °
olaratumab IgG1 kappa human 62.50 10.61 14194 e °
olokizumab 19G4 kappa humanised 69.00 9.91 11526 e °
omalizumab IgG1 kappa humanised 7750 9.52 15045 e )
onartuzumab 1gG1 kappa humanised 80.00 9.92 14793 e °
otelizumab 961 lambda  imenized 7550 9.08 15208

otlertuzumab IgG1 kappa humanised 68.50 10.96 149.60 e °
0zanezumab IgG1 kappa humanised 67.00 10.03 97.07 e °
palivizumab IgG1 kappa humanised 7950 9.33 24312 e °
panitumumab 1gG2 kappa human 7850 9.48 17959 e °
panobacumab IgM kappa human 69.00 9.83 107.60

parsatuzumab IgG1 kappa humanised 6450 9.11 40.02 e °
patritumab 1gG1 kappa human 7150 10.15 68.77 ° °
pembrolizumab 1gG4 kappa humanised 66.00 11.07 6491 e °
pertuzumab 1gG1 kappa humanised 7850 10.11 31.43 ° °
pinatuzumab IgG1 kappa humanised 79.00 9.22 13058 e °
polatuzumab 1gG1 kappa humanised 7400 8.76 22506 e °
ponezumab 1gG2 kappa humanised 61.00 1050 1696 e °
radretumab IgE kappa human 77.00 951 151.17

ramucirumab IgG1 kappa human 66.00 943 90.67 e °
ranibizumab 1gG1 kappa humanised 65.00 12.14 4145 e °
reslizumab 1gG4 kappa humanised 7550 9.82 19157 e °
rilotumumab 1gG2 kappa human 79.00 12.63 173.08 e °
rituximab IgG1 kappa chimeric 69.00 10.80 164.14 e °
robatumumab IgG1 kappa human 80.00 9.51 11712 e °
romosozumab 1gG2 kappa humanised 76.00 9.18 227.69 e °
sarilumab IgG1 kappa human 64.00 8.99 18179 e °
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Name HC LC Species Origin ~ Tm HIC Yield Primary MD
secukinumab IgG1 kappa human 72.00 1139 14896 e °
seribantumab 1gG2 lambda human 7750 10.42 189.98 e °
sifalimumab IgG1l kappa human 67.00 9.65 158.63 e °
siltuximab IgG1 kappa chimeric 64.50 11.00 9567 e °
simtuzumab 1gG4 kappa humanised 66.50 10.41 19144 e °
sirukumab IgG1 kappa human 68.00 11.26 10981 e °
tabalumab 1gG4 kappa human 64.00 10.85 12160 e °
tanezumab 1gG2 kappa humanised 7550 1239 4886 e °
teplizumab IgG1 kappa humanised 6450 8.79 150.88 e
tigatuzumab IgG1 kappa humanised 6450 10.02 178.97 e °
tildrakizumab IgG1 kappa humanised 7750 11.08 181.89 e °
tocilizumab IgG1 kappa humanised 9150 9.09 13965 e °
tovetumab 1gG2 kappa human 63.50 8.67 277.18 e °
tralokinumab 1gG4 lambda human 63.00 10.26 12143 e °
trastuzumab lgG1 kappa humanised 7850 9.66 159.48 e °
tremelimumab 1gG2 kappa human 75.00 1156 22959 e °
urelumab 1gG4 kappa human 66.00 11.16 14392 e °
ustekinumab IgG1 kappa human 69.50 8.78 15272 e °
vedolizumab lgG1 kappa humanised 80.50 10.94 221.76 e °
veltuzumab lgG1 kappa humanised 70.00 11.09 22495 e °
visilizumab 1gG2 kappa humanised 71.00 9.01 24201 e .
zalutumumab IgG1 kappa human 7250 9.34 20051 e °
zanolimumab IgG1 kappa human 80.50 9.59 116.37 e °
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Appendix B

B.1 MATLAB Scripts

Code B.1. MATLAB script for implementation of OVR classification strategy in SVC function from LibSVM
toolbox for model fitting.

function [assignedClass,prob,model] = fitSVC ovr (X, labels, svmcmd)

nSam = size(X,1);
labelSet = unique (labels);
nClasses = length (labelSet);

MEMORY ALLOCATION
SVC = cell (nClasses,1);
prob = zeros (nSam,nClasses);
decv = zeros (nSam,nClasses);

for i=1:nClasses
3> MODEL DEVELOPMENT
SVC{i} = svmtrain (double (labels == labelSet(i)),pX,svmcmd) ;

PREDICTION OF SAMPLES
i svmpredict (double (labels == labelSet(i)),
X,SVC{i},'-g");

[NINIprOb(:Il)

DECISION VALUES
decv(:, 1) = prob(:,1i) * (2 * SVC{i}.Label(l) - 1);

end

CLASS ASSIGNMENT
[~,assignedClass] = max(decv, [],2);
assignedClass = labelSet (assignedClass) ;

model.SVC = SVC;
model.labelSet = labelSet;
end
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Code B.2. MATLAB script for implementation of OVR classification strategy in SVC function from LibSVM
toolbox for model prediction.

function [assignedClass,prob] = predictSVC ovr (X, labels,model)

SVC = model.SVC;

nSam = size(X,1);

labelsSet model.labelSet;
nClasses length (labelSet) ;

MEMORY ALLOCATION
prob = zeros (nSam,nClasses);
decv = zeros(nSam,nClasses);

for i=1l:nClasses
PREDICTION O SAMPLES
[~,~,prob(:,1)] = svmpredict (double (labels == labelSet(i)),
X,8SvC{i},"'-g");

DECISION VALUES
decv(:, i) = prob(:,1) * (2 * SVC{i}.Label(l) - 1);

end

CLASS ASSIGNMENT

[~,assignedClass] = max(decv, [],2);
assignedClass = labelSet (assignedClass) ;
end
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B.2 GROMACS Parameters

Code B.3. Energy minimisation parameters in EM.mdp.

integrator
emstep
nsteps
emtol

nstxout
nstlist
cutoff-scheme
ns_ type
coulombtype
rcoulomb

rvdw

pbc

steep
0.002
50000
20.0

Parameters for atom neighbour search and interaction calculations

800

=1
= Verlet
= grid

PME
1.0
1.0
XYZ
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Code B.4. NVT parameters with defined volume and temperature (NVT.mdp).

title
define

; Run parameters
integrator
nsteps

dt

; Output control
nstxout

nstvout
nstenergy
nstlog

; Bond parameters
Continuation
constraint algorithm
constraints
lincs_iter
lincs_order

; Neighborsearching
cutoff-scheme

ns_ type

nstlist

rcoulomb

rvdw

; Electrostatics
Coulombtype

pme order
fourierspacing

; Temperature coupling is on
tcoupl

tc-grps

tau t

ref t

; Pressure coupling is off
pcoupl

; Periodic boundary conditions
Pbc

; Dispersion correction
DispCorr

; Velocity generation
gen _vel

gen_temp

gen_seed

(saves coordinates,

= NVT equilibration

= -DPOSRES

= md ; leap-frog integrator
= 5000 2 * 5000 = 10 ps

= 0.002 ; 2 fs

velocities and energies to log file)
= 5000
= 5000
= 5000
= 5000

= no
= lincs

= all-bonds
=1

=4

= Verlet
= grid
=10

= 1.0

= 1.0

= PME

= 0.16

= V-rescale

= Protein Non-Protein
= 0.1 0.1

= 300 300

= no

= xyz

= EnerPres

= yes
= 300

256




Code B.5. NPT parameters with defined pressure (NPT.mdp). Resumes after end of NVT simulation.

title = NPT equilibration
define = -DPOSRES

; Run parameters

integrator = md ; leap-frog integrator
nsteps = 5000 ; 2 * 5000 = 10 ps
dt = 0.002 ; 2 fs

; Output control (saves coordinates, velocities and energies to log file)

nstxout = 5000
nstvout = 5000
nstenergy = 5000
nstlog = 5000

; Bond parameters

continuation = yes ; Restarting after NVT
constraint algorithm = lincs

constraints = all-bonds

lincs_iter =1

lincs_order =4

; Neighborsearching

cutoff-scheme = Verlet
ns_type = grid
nstlist = 10
rcoulomb = 1.0
rvdw = 1.0

; Electrostatics

coulombtype = PME
pme order =4
fourierspacing = 0.16

; Temperature coupling is on

Tcoupl = V-rescale

tc-grps = Protein Non-Protein
tau t = 0.1 0.1

ref t = 300 300

; Pressure coupling is on

pcoupl = Parrinello-Rahman
pcoupltype = isotropic

tau p = 2.0

ref p =1.0
compressibility = 4.5e-5

refcoord scaling = com
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Code B.5 Continued. NPT parameters with defined pressure (NPT.mdp). Resumes after end of NVT simulation.

; Periodic boundary conditions
pbc = xyz

; Dispersion correction

DispCorr = EnerPres
; Velocity generation
gen vel = no
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Code B.6. Production run parameters (MD.mdp). Resumes after end of NPT simulation.

title

; Run parameters
integrator
nsteps

dat

; Output control
nstxout

nstvout
nstenergy

nstlog

; Bond parameters
continuation
constraint algorithm
constraints
lincs_iter
lincs_order

; Neighborsearching
cutoff-scheme

ns_ type

nstlist

rcoulomb

rvdw

; Electrostatics
coulombtype

pme order
fourierspacing

; Temperature coupling is on
tcoupl

tc-grps

tau t

ref t

; Pressure coupling is on
Pcoupl

Pcoupltype

tau p

ref p

compressibility

; Periodic boundary conditions
pbc

; Dispersion correction
DispCorr

; Velocity generation
gen_vel

MD simulation

= md ; leap-frog integrator
= 25000000 ; 2 * 25000000 = 100 ns
= 0.002 ; 2 fs

20000
20000
20000
20000

= yes ; Restarting after NPT
= lincs

= all-bonds

=1

= 4

Verlet

= grid
= 10
=1.0
=1.0

= PME

0.16

= V-rescale

= Protein Non-Protein
= 0.1 0.1

= 300 300

Parrinello-Rahman
isotropic

2.0

1.0

4.5e-5

XyZ

EnerPres

no

259




260



Appendix C

C.1 Chapter 4 Modelling Results
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Figure C.1. PCA exploration of descriptors from V4, Cul, Cu2 and Cn3 heavy chain domains with a clear
separation of 1gG1 (red), IgG2 (green) and 1gG4 (blue) occurred in the scores generated from PSD2 (a), PSD3 (c)
and PSD4 (e). The vast majority of domain contribution for the HC isotype separation of the scores originated
from the constant domains for the descriptor sets PSD2 (b), PSD3 (d) and PSD4 (f).
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Figure C.2. PCA exploration of descriptors from V and C. light chain domains with a clear separation of kappa
(red) and lambda (green) occurred in the scores generated from PSD2 (a), PSD3 (c) and PSD4 (e). Both V. and
C. domains contributed to the LC isotype separation of the scores for the descriptor sets PSD2 (b), PSD3 (d) and
PSDA4 (f).
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Figure C.3. Impact of LC isotype from the V. domain on the PCA exploration with two principal components. No
clear separation of the species origins: chimeric (red), human (green) and humanised (blue) samples were apparent
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Figure C.4. ROC curves and AUC of cross-validation for chimeric (red line), human (green line) and humanised
(blue line) with PLS-DA developed on (a) PSD1, (c) PSD2 and (e) PSD4 as well as SVC developed on (b) PSD1,
(d) PSD2 and (f) PSDA4.
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C.2 Chapter 5 Modelling Results
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Figure C.5. PLS error for prediction of mAb yields in the calibration (blue line) and the cross-validation (red line)
with regards to the number of latent variables developed from the V-WSP reduced descriptor sets of (a) PSD1, (b)
PSD2, (c) PSD3 and (d) PSDA4.
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Figure C.6. Impact of species on PLS models developed on the mAb yield where chimeric samples are coloured
red, human samples in green and humanised in blue. PLS Influence plots for PSD1 (a), PSD2 (c), PSD3 (e) and
PSD4 (g). PLS scores, T, for the individual samples for PSD1 (b), PSD2 (d), PSD3 (f) and PSD4 (h).
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Table C.1. Hypothesis testing of heavy and light chain isotypes using Anderson-Darling Normality Test with a
significance level of 0.05. Hy represents that the data follows a normal distribution.

HIC Yield
Factor Level Samples — —
p Decision p Decision
chimeric 10 0.9900 Keep Ho 0.2387 Keep Ho
Species  humanised 45 0.0007 Reject Ho 0.1195 Keep Ho
human 26 0.0050 Reject Ho 0.8751 Keep Ho

Table C.2. Hypothesis testing of with a significance level of 0.05. H, represents that there is no significant
difference between means of different species origins. Non-parametric tests are referred to as NP and parametric
test as P.

Equal -
Response  Factor Levels Type Test Variance p Decision
HIC Species 3 NP Kruskal-Wallis - 0.3923 Keep HO
. . Yes Reject
Yield Species 3 P 1-Way ANOVA (p=0.9315) 0.0244 HO

Table C.3. Multiple comparison hypothesis testing with 2-sample T-test with an effective significance level of
0.0133 according to Bonferroni Correction. Ho represents that no difference between means can be observed.

First Level Second Level  Equal variance p Decision
chimeric human Yes (p=0.7314)  0.0313 Keep HO
chimeric humanised Yes (p=0.8420)  0.0093 Reject HO
human humanised Yes (p=0.7917)  0.6086 Keep HO
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C.3 Chapter 7 Modelling Results
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Figure C.7. PCA loadings of light chain descriptors from MSD1, MSD2 and MSD3. The first (a) and second (b)
component of MSD1 calculated from descriptor generated from the entire light chain. The first (c) and second (d)
component of MSD2 were calculated from descriptors generated individually from the V. and C. domains. The
first (e) and second (f) component of MSD3 were calculated from descriptors generated from individual
substructures in the V| and C. domains. Domain specific descriptors are separated by the black vertical dashed
line in MSD2 and MSD3.

270



Table C.6. 80/20 sample splitting of the 79 selected 1gG1-kappa samples. Splitting was performed with the
CADEX algorithm on the three descriptor resolutions MSD1, MSD2 and MSD3 generated from the variable
domains Vy and V. The splitting results of a stratified and non-stratified strategy is presented. The implemented
sample stratification strategy was designed to place approximately 20% of each species origin in the test set for

model validation.

Descriptor  Species Not Stratified ' Stratified '
Set origin Calibration Test (RTa;S'% Calibration Test (RTa;S'%
chimeric 10 0 0.00 8 2 0.20
MSD1 human 23 3 0.12 20 6 0.23
humanised 30 13 0.30 34 9 0.21
chimeric 9 1 0.10 8 2 0.20
MSD2 human 23 3 0.12 20 6 0.23
humanised 31 12 0.28 34 9 0.21
chimeric 9 1 0.10 8 2 0.20
MSD3 human 21 5 0.19 20 6 0.23
humanised 34 9 0.23 34 9 0.21
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Figure C.8. ROC curves and AUC of cross-validation for chimeric (red line), human (green line) and humanised
(blue line) with PLS-DA developed on (a) MSD1, (c) MSD2 and (e) MDS3 as well as SVC developed on (b)
MSD1, (d) MSD2 and (f) MDS3.
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Table C.7. Model benchmarking table for (a) HIC retention times and (b) mAb yields. Performance of all model
permutations and descriptor sets in the Cross validation and Test set developed from 79 1gG1-kappa samples have
been presented. Colouring was applied conforming to the OECD guidelines. Green indicates values higher than
0.5 and 0.6 in the cross validation and Test set, respectively. Yellow indicates values between 0.3 and 0.5 in the
cross validation as well as between 0.3 and 0.6 in the Test set. Red indicates values below 0.3.

( a} Cross Validation Test Set
MsD1 MSD2 MsD3 MsD1 MSD2 MsD3
R® Q R q R q R® Q R q R q
Full 004 006 007 -007 003 -0.12 009 011 004 -019 012 011
o oLs V-Wsp 006 008 003 -017 001 -0.23 016 -003 005 -0.33 016 0.12
= rPLS 012 011 013 010 056 0.55 002 008 003 -0.18 007 0.02
§3 GA 019 016 039 034 075 071 024 006 0.10 -033 066 0.65
%.;. Full 004 003 005 -004 005 -0.04 002 005 005 -006 001 -0.04
g sr | V-WSP 008 005 001 -003 006 -0.04 0.14 005 006 -004 003 -0.04
L1-SVR 005 004 013 009 007 -0.05 000 005 008 001 000 -0.04
GA 022 018 030 029 077 075 022 006 009 -0.18 064 063
(b} Cross Validation Test Set
MsD1 MSD2 DS3 MsD1 MSD2 MsD3
R® Q R q R q R® Q R q R q
Full 001 025 004 021 002 -0.21 000 -0.15 001 -028 000 -0.82
oLs V-Wsp 001 023 001 -014 007 000 000 -0.14 000 -024 000 -1.06
n rPLS 006 005 010 008 059 0.58 006 -0.18 001 -042 003 -071
_’%E GA 008 004 019 011 069 0.68 028 034 001 -063 011 -0.92
é.% Full 007 000 003 -002 001 -0.02 025 043 009 -015 002 -0.59
< sr | V-WSP 004 002 001 -001 010 004 001 000 002 -017 000 -0.97
L1-SVR 004 003 004 003 036 034 000 000 000 -0.15 003 -0.67
GA 006 004 024 015 064 0.63 033 026 006 -0.96 0.18 -0.81
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Table C.8. List of descriptors from PLS model developed with GA for prediction of HIC retention times (LVs =
9). The descriptor names and types have been given as well as which domain and substructure the descriptors were
generated from.

Index  Descriptor Type Domain  Substructure ggg;f}?i;?ﬂ
1 Gc(F) Energy VH FW1 0.0673
2 SIEP TAE VH FW1 -0.0892
3 W(F) Energy VH CDR1 -0.0867
4 SASAnon-polar Topo VH CDR1 0.0235
5 SIEPMax TAE VH CDR1 -0.0898
6 Gc(F) Energy VH FW2 0.1844
7 AGs Energy VH FW2 0.1245
8 In(FD) Topo Vh FW2 0.0534
9 Del(K)IA TAE A\ FW2 -0.1129
10 G(F) Energy Vi CDR2 0.2312
11 VOLTAE TAE A\ CDR2 0.0738
12 SIEPMax TAE VH CDR2 0.0272
13 VOLTAE TAE VH FW3 -0.0655
14 Del(G)NMax  TAE Vi FW3 -0.0755
15 Ge(F) Energy VH CDR3 0.1747
16 Gw(F) Energy VH CDR3 0.2325
17 AGs Energy VH CDR3 -0.0820
18 AGel Energy Vi CDR3 0.1667
19 SASApolar Topo VH CDR3 0.3130
20 Spolar Topo VH CDR3 0.0776
21 Shon-polar Topo VH CDR3 -0.1258
22 VOLTAE TAE VH CDR3 0.0730
23 SIEPMax TAE VH CDR3 -0.0948
24 Gc(F) Energy VH FW4 0.0297
25 SASApolar Topo \'/% FW1 0.1018
26 Gc(F) Energy \8 CDR1 0.1803
27 SASAnon-polar Topo \'/% CDR1 0.0818
28 Shon-polar Topo \/% CDR1 0.0066
29 In(FD) Topo Vi CDR1 0.1763
30 Del(Rho)NMax TAE Vi CDR1 -0.1068
31 AGs Energy Vi FW2 -0.1137
32 HBd Energy Vi FW2 -0.1156
33 SIDel(K)N TAE Vi FW2 -0.1292
34 AGrors Energy Vi CDR2 0.2147
35 SASAnon-polar Topo Vi CDR2 0.2519
36 Shon-polar Topo VL CDR2 0.1550
37 Ge(F) Energy Vo FW3 0.1116

274



Regression

Index Descriptor Type Domain  Substructure Coefficient
38 Ge(F) Energy Vi Fw4 0.2662
39 AGw Energy Vo FW4 0.0374
40 Gc(F) Energy Cul A-Strand 0.1552
41 G¢(F) Energy Cul B-Strand -0.1913
42 SIEP TAE Cul B-Strand 0.0681
43 HBd Energy Cul D-Strand 0.0992
44 SASApolar Topo Cul E-Strand -0.2145
45 Del(K)Max TAE Cul E-Strand -0.0814
46 AGy Energy Cul G-Strand -0.1064
47 Del(K)Max TAE Cnl G-Strand -0.1336
48 Del(K)Max TAE C. A-Strand 0.1670
49 W(F) Energy CL C-Strand 0.1686
50 AGrors Energy CL F-Strand -0.2348
51 Ge(F) Energy CL G-Strand 0.0874
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Appendix D

D.1 Eigenvectors and Eigenvalues

Eigenvectors are a special case of matrix multiplication where a transformation of these vectors
only changes their magnitude where their original direction is retained. Eigenvectors can only
be calculated for square matrices, but it should be noted that not all square matrices have them

(Abdi, 2007). The definition of eigenvectors is presented in eq.(D.1).
Av = Ay, v+0 (D.1)

Here, A is an arbitrary non-symmetric transformation matrix with M rows and M columns, v is
the eigenvector and A is the eigenvalue. Given the square form of the transformation matrix, A,
there will be m eigenvectors and eigenvalues. Eq.(D.1) can then be rewritten to include all

eigenvectors and eigenvalues according to eq.(D.2) and is referred to as the eigen space of A.
AV =TVA (D.2)

Where, V = [V1 ... V] is the eigenvector matrix and A = diag(44, ..., 4y) is a diagonal
matrix consisting of the eigenvalues. V is invertible if, and only if all eigenvectors are linearly
independent, then the transformation matrix, A can be decomposed according to eq.(D.3) which

is also called the eigen-decomposition of A.
A=VAV? (D.3)

However, for a special type of matrices often used in statistics called positive semi-definite, the
eigen-decomposition will always exist. A matrix, 4, is positive semi-definite if obtained as the

product of some matrix X and its transpose according to eq.(D.4).
A=XX"TorA=X"X (D.4)

The positive semi-definite matrices are therefore always symmetric which results in all
eigenvectors becoming orthonormal, meaning that pair-wise eigenvectors are orthogonal,
eg.(D.5), and that the magnitude of each eigenvector is equal to one, eq.(D.6). The eigenvalues

obtained from a positive semi-definite matrix will always be larger or equal to zero, eq.(D.7).
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viv,=0ifk#1, kl=1,..,M (D.5)

lvell = vive = 1 (D.6)

A =0 (D.7)
The orthogonality of the eigenvectors implies that V=1 = VT and greatly simplifies the eigen-
decomposition of A due to that the inverse does not need to be calculated. The expression in
eq.(D.3) can be rewritten according to eq.(D.8). In statistics, common positive semi-definite

matrices include the covariance, X, matrix and the correlation matrix.

A=VAVT (D.8)
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D.2 Singular Value Decomposition
The Singular Value Decomposition (SVD) is another common technique that is used for

calculating the principal components in PCA where X is decomposed according to:
Xcent = usv’ (D.9)

where U (N x N) is unitary matrix, § = diag(sl, S2y eees Smin(N,M)) (N x M) is a diagonal matrix
which will contain extra rows or columns of zeros if N > M or N < M, respectively. The matrix
V is the eigenvector matrix and is equal to V in the eigen-decomposition in eq.(2.12) only when
X has been mean centred prior to SVD decomposition (Wall et al., 2003). Through substitution
of eq.(D.9) into eq.(2.11), the relationship between the eigenvalues and the and the singular

values can be calculated to:

k =1,..,min (N, M) (D.10)

The PC loadings will be the eigenvector matrix as stated in eq.(2.13) which means that the PC

scores are calculated as the product of U and S according to:

T = US (D.11)
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D.3 Lagrange Multipliers in SVC

Application of Lagrange multipliers is described here for the soft-margin SVC classifier
covered in Section 2.3.2.2. In its essence the Lagrange multipliers reformulates the primal
optimisation problem by adding the constraints to the maximisation or minimisation expression

according to:

N N
1
L@ b, =513 +C) &= ) a(xi+b) - (1-§)
i=1 i=1

N
= —z Bi&i
i=1

(D.12)

where the constraints for the class boundaries have been multiplied by «; and the constraints
for the slack variables have been multiplied by g;. This is necessary in order to formulate the
dual problem where optimisation is performed with regards to the samples instead of the
variables. For the SVC algorithm to properly select the optimal solution, the Karush—Kuhn—
Tucker (KKT) conditions must hold true (Kuhn and Tucker, 2014). This means that the
resulting Lagrangian, £, in expression in eg.(D.9) must be differentiable as presented in KKT
condition 1. The initial constraints from the primal must also hold true in the solution and is
represented as KKT condition 2. KKT condition 3 is called the complementary slackness
condition and is necessary in order to have a strong duality, meaning that the solution of the

dual is equal to that of the primal.

KKT condition 1

N

aL(w, b, )

e @~ Z a;yix; =0 (D.13)
i=1

0LwDh§) X

Y z a;y; =0 (D.14)

=1
aL(w, b, )
—g  —CTa@—hi=0 (D.15)
L
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KKT condition 2

yl(wxl+b)—120

=20

KKT condition 3

a;yi(@'x; +b) —(1-¢))=0
Bi§i =0

(D.16)
(D.17)

(D.18)
(D.19)

Through substitution with eq.(D.13) into eq.(D.12), the expression can be rewritten into the

form of the Wolf dual according to:

=
=

maximise = W(a) = Z a; — = a;yiyiXi - Xj
a

subjectto=0<qa; < C

n

=zaiyi=0

i=1

(D.20)

The resulting constraints in eq.(D.17) are formulated based on eq.(D.13) and eq.(D.14) in KKT

condition 2 as well as eq.(D.15) and eq.(D.16) in KKT condition 3. An example of the potential

solutions for the Wolf dual is illustrated in Figure D.1 which is only dependent on the values

a;. For more details on Lagrange multiplier in SVC, refer to the work of Hastie et al. (2009Db).
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Figure D.1. Example of optimisation solutions for the Lagrange dual which is only dependent on the values of «;
as well as the samples in the data set.
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