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Abstract 

Graphene has recently motivated various research groups due to its peculiar 

properties and the research on this novel nanomaterial is growing rapidly. Electric 

transport properties of graphene make it a promising candidate for future 

nanoelectronics applications. Moreover, thermal, mechanical and optical 

properties are other powerful indications of its capability to open a new era in 

nanoscale developments in a variety of fields. Carbon materials have already 

been demonstrated to be promising in biomedical applications and graphene, as 

a building block for graphitic materials, holds a unique place in terms of 

biocompatibility; offering great opportunities due to its high surface to volume ratio 

and charge transport capability. Being electrically conductive and having 

ultrahigh mobility offers a great deal in electronic application developments. 

Therefore, in this study, the promise of graphene to build a biosensing platform 

has been investigated through developing a biosensor that exploits incredible 

electric transport properties of graphene along with its high sensitive and 

selective biocompatible structure. In order to achieve such a purpose, a label-

free biosensing platform has been developed by employing Hall effect principle. 

This thesis presents all the details to form a biosensing platform along with the 

promising results that have been obtained.  
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Chapter 1. Introduction 

The invention of first biosensors [1] opened a new door to multidisciplinary 

research and it led to astonishing progress in applications of biosensors [2]. The 

use of biosensors has gained an outstanding importance in a variety of fields 

such as biomedicine, diagnosis, drug discovery, food safety, security and 

defence applications and environmental monitoring [3]. Implementation of novel 

biological techniques and improved instrumentation have enhanced the 

sensitivity limits and, with the accommodation of  nanomaterials [4], an incredible 

progress towards forming innovative biosensors has been initiated. The 

biosensing field paves the way towards integration of novel biological techniques 

with nanomaterials, which will help develop specific biosensors having potentially 

ultrahigh sensitivities. Moreover, the developments are expected to allow 

facilitating biosensors as point-of-care systems which will improve diagnostics of 

diseases, make health care easier and allow real-time monitoring without any 

need for physical examination by experts. 

Biosensor research is a dynamic field and the efforts are towards improving the 

systems by developing biosensing platforms that can achieve detection ranges 

of small concentrations. This is important for early diagnostics of any harmful 

biomolecule and, consequently, preventing potential undesired outcomes. To do 

so, utilization of novel materials along with new design and fabrication techniques 

are required. Devices used in detection process should be reduced in size as 

much as possible with reasonable design structures along with effective methods 

to detect lower concentrations. Size reduction is not only important for better 

sensitivity but also for achieving practical devices for end user. Meanwhile, 

operational conditions are also an important point that must be considered 

although having a highly sensitive sensing system is desired. Therefore, there 

should be a balance between sensitivity and applicability since fabrication, cost 

and practical implementation are of importance for the end user. 

In conjunction with these requirements, the tendency in biosensing field is 

towards the development of point-of-care applications with fast response times 

since this is desirable in terms of users’ point of view. However, it requires too 
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much effort as further development is needed to miniaturize the system and 

develop related instrumentation. Micro fabrication techniques have been 

established well enough to solve the issue to an extent. And yet, it is not sufficient 

to address the high sensitivity demand as low dimensions lead to instability [5] 

issue in materials. Thus, the devices must be prevented from being unstable as 

marching towards smaller sizes may cause the system to become unstable. 

Graphene, as a nanomaterial, has been proved to be stable along with its one-

atom thickness and two-dimensional structure [5, 6]. It holds unique electrical, 

mechanical, thermal and optical properties such as ultra-high mechanical 

stiffness, excellent electric transport properties and high thermal conductivity with 

optical transparency [7, 8]. Due to incredible properties, it allows development of 

various applications, from transistors to sensors and energy storage equipment 

to biomedical devices, with very high sensitive and effective performances [8-24]. 

Having high carrier mobility and gate controllable carrier concentration places 

graphene particularly as an outstanding nanomaterial for potential high sensitive 

future applications such as transparent conductors, flexible electronics, displays, 

transistors and high frequency electronic devices [25-27]. The advantages of 

graphene can be evolved in such a way to have very high sensitive biosensors 

along with excellent performances as a result of peculiar material properties it 

encompasses. Graphene could be utilized for biosensing purposes by employing 

its mechanical, electrical, optical or thermal properties [16, 28-39]. Therefore, a 

reasonable method should also be implemented to achieve bio-detection in a 

practical and cost-effective manner since biosensors can be in various forms in 

terms of their principal of operation such as electrochemical, mechanical or 

optical detecting mechanisms [2, 3, 40, 41]. 

This study was devoted to employ electronic properties of graphene since it 

possesses very high mobility. To do so, Hall effect mechanism was decided to be 

employed. The Hall effect phenomena is known for decades [42] and has been 

used for material characterization heavily [43]. However, it has found places in 

several industrial applications from cars, planes and sensitive positioning 

applications in factories to biosensing applications [44-60]. It is one of the best 

method that could be implemented for such a purpose since graphene has the 

highest carrier mobility ever known and has one-atom thickness [61]. Therefore, 
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electrical properties of graphene make it an excellent candidate for such 

applications since the obtained transverse voltage depends on carrier mobility 

and thickness of the material. 

Hall effect devices are currently dominating the market of the magnetic sensors 

[62-64] due to several advantages such as allowing miniaturization, being 

compatible with electronics integration, cheaper fabrication and room 

temperature operation with high linearity [65]. There has already been a 

considerable amount of reports to realize the potential of graphene as Hall effect 

sensors [63, 66-72]. The results reveal the great promise of graphene in this field 

since it beats all counterpart materials such as indium antimonite (InSb), and two-

dimensional electron gas (2DEG) thin structures [71] which are the two types that 

are mostly employed in Hall effect applications requiring higher sensitivities. 

The choice of employing Hall effect is not only due to exploiting the unique 

properties of graphene but also because of the magnetic field being adopted to 

operate devices. Apart from its key role in daily life from electric production to 

data storage and from quantitative explanation of physical properties of materials 

to particle acceleration [43, 44], magnetic field has a huge potential of providing 

non-destructive and highly efficient detection platforms in biosensing field [73]. It 

provides a low intrinsic background in biological systems since those systems 

have no comparable biological signal [74]. Therefore, the advantages of the 

magnetic field in biological systems is also exploited by combining it with the 

unique electric properties of graphene nanomaterial to form a highly sensitive and 

cost-effective biosensing platform. 

1.1 Research Gap 

Biosensors field is one of the fields that requires more improvements and 

currently an enormous amount of work is undertaken [3, 4, 75-79]. Using 

magnetism is one of the techniques that was widely used to form detection 

platforms for biosensing purposes since it has a huge promise [73, 80-82]. 

Several mechanisms were reported based on different applications of magnetism 

such as magnetoresistance [83-86], planar Hall effect [87-93], spin valve [94-98], 

superconducting quantum interference devices (SQUID) [99], and Hall effect [65, 
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100-108]. Amongst them, the Hall effect principle is the easiest way of achieving 

a magnetic sensor although it may not reach the sensitivity limits offered by some 

of those structures, e.g. SQUID sensors [48]. Although each application has 

some certain advantages in terms of sensitivity, the specific requirements for 

operation such as low temperature demand in SQUID sensors, or fabrication 

complexity could make them not practical. Thus, a considerable effort can be 

observed in biosensing applications that employ the Hall effect principle [109-

115]. 

The Hall effect principle is discussed in detail in section 2.2. Briefly, it can be 

explained as the transverse voltage that occurs due to Lorentz force. This force 

is appeared due to deviation in electron flow which can be observed under the 

presence of perpendicularly applied magnetic field (See equation (2-1)). The 

obtained voltage depends on several parameters such as applied current and 

field, thickness and geometrical structure along with carrier mobility and density 

of a particular material (See equation (2-2)). Unlike the classical Hall effect, planar 

Hall effect is used to describe the change in magnetoresistance in ferromagnetic 

materials under an applied magnetic field [116]. Basically, the relationship is only 

geometrical meaning that in classical Hall effect the field is applied 

perpendicularly whereas in planar Hall effect it is applied in parallel to sensing 

plane. 

In terms of materials, several structures have been reported such as silicon, 

bismuth, indium antimonite thin films and two-dimensional electron gas 

heterostructures for fabrication of Hall devices [117]. Commercially available Hall 

sensors are dominated by silicon, due to well-developed CMOS manufacturing 

process [63, 70, 118, 119]. However, in applications requiring higher sensitivity, 

heterostructures from III-V compounds are required because of superior electron 

transport properties they have [120-125]. However, manufacturing cost can be 

high and integration with signal processing circuitry may be difficult [63]. Indium 

antimonite [126] and bismuth [127] thin films are also used in Hall applications 

due to the high electron mobility properties they retain and the linear response 

they demonstrate for a wide range of field strengths. Recently, graphene has 

become a material of interest for many applications, it is a particularly promising 

candidate for Hall effect applications [61, 68, 71, 128] since it is one-atom thick 
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and retains ultrahigh carrier mobility [27, 129], thus, causing charge carriers to be 

constrained in a two-dimensional plane, consequently, leading to a higher 

sensitivity and an outstanding resolution. Being intrinsically low noise material 

[71, 128, 130] is another advantage it has. Therefore, it encompasses the best 

material properties for such applications. 

Various sensors based on graphene have been constructed hitherto for detection 

of hazardous gases [131-133], physiological signals [134], heavy metal ions [135, 

136] and mechanical force [137, 138]. It was also used to detect nucleic acid 

[139], proteins [140], dopamine [141, 142], glucose [143, 144] and hydrogen 

peroxide [134]. Despite being the best material candidate for Hall effect sensors 

[145] and having attracted researchers for various engineering applications [10, 

11, 13, 15, 137, 146-148], there has not been any considerable effort to utilise 

graphene as a Hall effect biosensor. However, a considerable amount of work 

has been devoted to development of graphene Hall effect sensors for different 

applications [66, 68, 145, 149-152]. 

Apart from the reasons given above, most of the reported Hall effect biosensors 

employ magnetic beads as a label for detection [153]. General implementation 

has been about functionalizing paramagnetic beads and making use of the ac 

susceptibility measurements [154] to detect signal change that occurs due to the 

existence of magnetic beads in case of binding events. Meanwhile, few works 

have employed a label-free approach; however, they have not been operated in 

real-time and, instead of using Hall devices, the Hall measurements were used 

as a supporting tool, for characterising the system [155-157]. In the light of the 

issues stated above, the aim of this research was to explore potential biosensor 

applications by exploiting the unique electric transport properties of graphene and 

adopting Hall effect sensing principle. To eliminate the disadvantages of labelled 

detection, this work has also focused on practical designs to develop a label-free 

Hall effect biosensor that can operate in liquid medium for real-time observation. 

1.2 Motivation and Objectives 

Hall effect sensing mechanism is one of the most promising methods as a 

sensing method amongst other magnetic sensors because of the practicality of 
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implementation. In addition, sensitivity could be increased with arrangements on 

the material structure. The sensitivity limit for a Hall effect type sensor can be 

improved incredibly by employing the best suitable material choice. Because, 

materials with high carrier mobility, low carrier concentration and narrow band 

gaps provide the exact characteristics for high sensitivity Hall devices [43, 44, 

158]. In addition, thickness reduction delivers an exceptional advantage since the 

charge carriers are confined, thus, causing a stronger force [61, 71, 72, 159]. 

Since the successful isolation of graphene [6], academia and industry has 

intensely been attracted by its unique properties such as ultrahigh electron 

mobility, lowest resistivity, optical transparency, incredible mechanical strength, 

flexibility, high surface area and compatibility to biomolecules [9, 10, 146, 156, 

160-163]. All these properties make it a promising material for several 

applications, particularly, a candidate for sensing applications [164]. In terms of 

Hall effect sensing principle, graphene can be considered the best choice for such 

applications due to its incredibly high carrier mobility and atomically thin body. In 

addition, graphene does not require specific temperature to operate [165], hence, 

it can be used in room temperature with high sensitivity which will make the 

implementation of point-of-care applications possible. In addition, small variations 

in sensitivity due to thermal effects can be compensated via varying the gate 

voltage [63]. Moreover, it exhibits intrinsically low noise [130, 145], consequently, 

contributes the sensitivity improvement whilst being operated as a Hall sensor. 

Being compatible with biomolecules, having large surface to volume ratio and 

possessing great electrical properties of graphene motivates this research. 

The objective was to design suitable geometrical structures from single layer 

graphene sheets with optimized length to width ratio and then to explore the 

promise of those structures as Hall effect sensors. After that the ultimate goal 

was to functionalize the sensor surface to form a biosensor which can be used in 

wet environment and provide real-time observation. This will result in creating 

Hall effect biosensors that do not need labels such as magnetic beads, thus, 

preventing any drawback; e.g. signal reduction due to separation distance 

between sensor to bead and time for a bead to reach the active surface area. 

Instead of developing an application specific biosensor, mouse IgG was used to 

show proof of principle.  
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1.3 Thesis Outline 

This thesis presents development of a graphene biosensor by employing Hall 

effect sensing principle. The system was built to perform label-free detection in 

real-time. To do so, Immunoglobulin G (IgG) protein was used as a target analyte 

and the sensor surface was functionalized accordingly to characterise the system 

response. The thesis covers all the effort from design and fabrication to 

functionalization and characterization of the system to achieve the biosensing 

platform including driving and signal processing circuitry. Therefore, it is 

structured into 8 chapters and the whole steps that were undertaken to achieve 

the desired biosensing system are presented in related sections. 

The first chapter is a brief introduction to the main concept of the work and 

outlines the field of study in general including the structure of the thesis. It also 

introduces the motivation that prompted to undertake this study along with the 

research gap in this field. 

A literature review on graphene nanomaterial and Hall effect principle is 

presented in Chapter 2 along with their typical and unique properties and 

implementation to applications. Some of the magnetic field sensors are also 

presented briefly in this chapter since this work is, basically, related to magnetic 

field sensing and employs it to build a biosensing system. A brief introduction of 

biosensing concept is given with related literature regarding graphene and Hall 

effect biosensors. 

Chapter 3 is devoted to the construction of required electronic circuitry for 

actuating sensors and obtaining the output since there are undesired effects 

which are causing less sensitive or less accurate results. This chapter takes a 

closer look at those effects and presents the solution to the problem by 

introducing the developed circuitry along with the promising results it provided. 

Gold-based Hall effect sensors were designed and fabricated initially using 

different approaches as a cost-effective solution for Hall effect biosensors. The 

response of those devices was observed for potential biosensing outcomes. 

Chapter 4 gives the steps that were undertaken from design to fabrication and 
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characterisation of gold Hall effect devices on different substrates having different 

structures. 

The aim was initially to prepare graphene so that it can be used to fabricate Hall 

sensors on substrate. In addition, it was also aimed to prepare graphene in such 

a way that it can be adopted to form suspended Hall sensors. Then, the plan was 

to fabricate Hall devices from both suspended and supported graphene sheets 

and explore their behaviour in terms of sensitivity and repeatability. Therefore, 

different techniques such as epitaxial graphene growth on silicon carbide and 

CVD grown graphene were employed to prepare graphene so that it can be used 

to form supported and suspended structures. Chapter 5 presents various options 

that were adopted for this purpose with the feasibility along with the strength and 

weakness of each method. 

In terms of fabricating devices, the main focus was to use CVD grown graphene, 

on a Si/SiO2 substrate, as it is a promising method for obtaining large area 

graphene sheets. Therefore, commercially available graphene samples were 

purchased and used for microfabrication. In addition, direct printing of graphene 

oxide devices was also explored as an alternative method. The detailed overview 

on fabrication and obtained results are discussed in Chapter 6. 

Chapter 7 demonstrates the performance of graphene Hall effect biosensors 

quantitatively as well as the further steps required to prepare and isolate the 

sensors for liquid medium. The obtained results are discussed in detail. Finally, 

the conclusion and final remarks on the work are given in Chapter 8 with potential 

further improvements that may be performed. 
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Chapter 2. Graphene, Hall Effect and Biosensors 

In this chapter, a literature review on graphene nanomaterial, Hall effect principle 

and biosensors is presented. Unique properties of graphene and the production 

methods are discussed including the promise of it for future applications in 

various fields. Meanwhile, necessary quantitative expressions and qualitative 

explanation of the Hall effect sensing mechanism is described together with its 

implementation to applications. Moreover, a brief overview on magnetic types of 

sensors is given including applications. Finally, biosensing concept is explained 

and the literature related to Hall effect and graphene in biosensing is presented. 

2.1 Graphene 

Graphene is a two dimensional nanomaterial consisting of hexagonal honeycomb 

structure of carbon atoms [26]. It can be seen in single, double or multilayer 

forms. Researchers have started to study different aspects of it after it has been 

successfully isolated by a research group in Manchester University, UK, in 2004 

[166]. The atomic structure of graphene is represented in Figure 2-1. 

 

Figure 2-1: Representation of graphene’s atomic structure. It is comprised of single layer carbon 
atoms in a hexagonal structure. 

Unique electrical, mechanical and optical properties have been observed in 

graphene [11, 25, 129, 167-177]. Therefore, it is now an of interest nanomaterial 
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for a wide range of research groups and industry because of its promising 

properties. It provides a multidisciplinary research area for researchers having 

different backgrounds. And it is estimated that graphene will revolutionize many 

applications in near feature [178]. The following sections provide more detailed 

outlook of graphene’s properties, manufacturing, characterisation and potential 

future applications. 

2.1.1 History 

Carbon is an important material for life and sources of organic chemistry. Various 

structures having different physical properties are presented in carbon based 

systems [23]. Graphene is considered as the initial point to identify the electronic 

properties in all allotropes of carbon [179]. The theoretical studies of two-

dimensional graphite were conducted many decades ago [180] and used for 

describing properties of different carbon-based materials. Figure 2-2 presents a 

brief historical outlook to discovery of graphene. 

 

Figure 2-2: Timeline for history of isolation and characterisation of graphene. Adapted from [181]. 

Two decades ago, it was understood that graphene offers incredible condensed 

matter analogue of 3D quantum electrodynamics, however, it was assumed not 

to be in free state [23, 182] because two dimensional crystals were believed to 

be unstable thermodynamically and could not exist [166]. This idea has changed 
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after discovery of graphene [6] and other two dimensional atomic crystals, such 

as single-layer boron nitride [183]. These discoveries showed that two 

dimensional crystals are continuous and more importantly exhibit high crystal 

quality [6, 175, 184]. Discovery of graphene brought Nobel prize to Andre Geim 

and Konstantin Novoselov in 2010 [185]. There has been a tremendously 

increasing number of researches so far. It is believed that graphene will 

revolutionize many applications due to its unique physical properties and has a 

potential of replacing silicon in electronics industry [23]. Since the famous 

prediction of Gordon Moore (known as Moore’s Law) the number of transistors 

on a chip has increased significantly, and today that number is close to two billion. 

However, shrinking silicon more is not viable as there would be fabrication 

limitations and the quantum effects would take place. At that point a material 

which has the potential to replace silicon will be of interest. And graphene seems 

to have this potential if the bandgap issue can be overcome. Figure 2-3 shows 

the increasing trend in graphene related research. 

 

Figure 2-3: Trends in graphene research publications between 2004 and 2017. Performing a 
search in Scopus for articles published with “graphene” shows an expanding research from 156 
in 2004 and reached to 19,348 by the end of 2017 (Accessed February 2018).  

2.1.2 Properties 

There has been an enormous number of studies for uncovering the properties of 

graphene since its discovery. The description of graphene is given as “the 
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thinnest, most flexible and strongest material known” [186]. The C-C bond length 

of graphene is around 1.42 Å [173] and has a thickness of about 0.35 nm [187]. 

Graphene, with its two-dimensional structure, is the building block for all graphitic 

forms such as fullerene and carbon nanotube [23, 24, 166] as shown in Figure 

2-4. The figure is a representation of how a monolayer of graphene is obtained 

from graphite and adopted to form other graphitic materials such as carbon 

nanotube and fullerene. 

 

Figure 2-4: Single layer of Graphene as a 2D building block for all graphitic forms. It can be 
wrapped up to form zero-dimensional (0-D) fullerene or rolled into one dimensional (1-D) carbon 
nanotubes [24]. 

In terms of electronic point of view, graphene can be referred to as either a zero 

overlap semimetal or a zero band gap semiconductor [188] although graphite 

presents metallic behaviour and diamond behaves as insulator as two other 

formation of carbon atoms. A bandgap means the difference between the 

energies of the valence and the conduction bands of semiconductors. The 

movement of electrons from valence band to conduction band is observed with 
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the existence of the bandgap. However, in a zero-bandgap semiconductor, the 

valence and the conduction bands meet as can be observed from Figure 2-5. 

 

Figure 2-5: A representation of structures with bandgap (left) and zero bandgap (right). Adapted 
from Lawrence Berkeley National Laboratory. 

 Graphene has excellent electronic properties with a high carrier mobility of 

around 200,000 cm2Vs-1 [23, 189]. The carrier concentration of graphene can be 

controlled by applying a gate voltage [5], thus, the conductivity can be tuned. The 

electrical conductivity of graphene is similar to copper, yet, it has a lower density 

and higher thermal conductivity than copper [23]. Experiments on graphene 

showed that it is the strongest material ever known with a Young’s modulus of 

1.1 TPa and a tensile strength of 130 GPa [23, 190]. Its density is lower than steel 

but it is stronger than steel up to 50 times [23]. It has a complete impenetrability 

to gases [148], and shows high thermal conductivity around 5000 Wm-1K-1 [23, 

178, 189]. Moreover, it has extraordinary optical properties with around 97.7 % 

transmittance [23, 168, 172]. Also, its intrinsic noise is lower than the other nano-

sized materials which makes it a perfect candidate for electronics applications 

[63, 71, 128, 130]. Table 2-1 shows a comparison of electron mobility of graphene 

with other materials. 

Graphene Ref [27] 200,000 cm2V-1s-1 

Carbon nanotube Ref [191] 100,000 cm2V-1s-1 

InSb Ref [192] 77,000 cm2V-1s-1 

Bi Ref [193] 12,000 cm2V-1s-1 

Silicon Ref [194] 1,400 cm2V-1s-1 

Table 2-1: Comparison of mobilities for different materials. 
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2.1.3 Manufacturing 

It is vital to develop new techniques and improve the existing ones in order for a 

good understanding of graphene properties and developing effective applications 

for a wide range of fields. Thanks to rapid development in graphene research, 

several methods have been developed hitherto for synthesising graphene [195-

200]. Currently, several options of obtaining graphene is available. These options 

provide more flexibility on controlling both graphene production and graphene-

based device manufacturing. Yet, they have relatively high costs of fabrication 

which must be dealt with. A detailed classification of existing production methods 

is given in Figure 2-6. 

 

Figure 2-6: Classification of graphene production methods. Adapted from [196-198, 200, 201]. 

The developed methods can basically be classified under two main approaches 

as top-down and bottom up fabrications [23]. The first method is related to 

graphene production from graphite and the second one is graphene production 

from non-graphitic resources [200]. Each production method has its own specific 

way of implementation with its own superior advantages in terms of application 

point of view [195]. 

2.1.3.1 Exfoliation 

Graphene was discovered by a simple production technique which is basically 

called as scotch tape method [5]. This method is based on mechanical cleavage 

of graphite crystals by peeling off with a tape repeatedly for several times. This 

technique requires time and patient to acquire single layer graphene sheets. 
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Natural and synthetic, highly ordered pyrolytic graphite (HOPG), graphite sources 

are currently available resources to produce graphene by mechanical cleavage. 

Graphene from natural graphite has better quality than the synthetic one [200]. 

However, this method brings an issue of large area production. Although this 

process is sufficient for research purposes, it is not convenient for mass 

production as it requires too much time to obtain single layer of graphene. In 

addition, formation of graphene layers is arbitrary and cannot be controlled with 

implementation of this technique. 

Performing chemical exfoliation is also possible and several methods can be 

found in literature regarding this [202-206]. Although the latter approach seems 

to be more scalable method, it introduces problems, e.g. it is difficult to remove 

the hazardous solvents being used. 

2.1.3.2 Chemical Vapour Deposition 

Transitional metal substrates, e.g. copper or nickel, can be used to produce large 

area of graphene by performing thermal decomposition of hydrocarbons [207]. In 

order to be able to use graphene produced with this method, it must be 

transferred on to SiO2 and SiC or flexible substrates. The transfer can be 

achieved via wet chemical etching of metal [208]. The reason of using a substrate 

is because of the need to support graphene since its atomically thin structure 

makes it difficult to handle. The use of substrates such as SiO2 is due to their 

insulating properties which does not intervene the conductivity of graphene. 

Therefore, a silicon substrate would not be feasible to use since it is also 

conductive.   

2.1.3.3 Graphene Oxide Reduction 

Graphite oxide can be exfoliated for forming graphene oxide which can be further 

reduced thermally or chemically [187]. To do so, modified Hummers method [209] 

is used to treat the graphite with sulphuric acid and potassium permanganate. 

The layers are then separated by sonication to form graphene oxide. Further 

reduction is possible after this step either chemically or thermally [210]. The 

obtained graphene with this way has the potential in many applications such as 

sensors or electrochemical growth of nanoparticles. 
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2.1.3.4 Epitaxial Growth 

Epitaxial graphene growth on silicon carbide is one of the promising methods for 

high quality and large area graphene growth. This mechanism can be classified 

as bottom-up production process and is performed by heating up silicon carbide 

samples to high temperatures under a vacuum environment or an inert gas flow. 

The idea is to sublimate silicon atoms and let the remaining carbon atoms to form 

graphene [211-213] since silicon sublimates in lower temperatures than carbon. 

It also requires a good control mechanism [213, 214] on growth conditions to 

prevent arbitrary formation of graphite flakes. This technique is implemented by 

using high temperature furnaces as it requires high temperatures of up to 2000 

°C. The structure of silicon carbide is important for graphene formation. 

Generally, 4H-SiC or 6H-SiC structures have been reported for formation of 

graphene [211, 213, 215-219]. 

2.1.3.5 Other Methods 

Apart from the methods explained above, there are many other methods available 

for manufacturing of graphene and detailed examination of these methods can 

be found in literature [195, 197, 199, 200, 206, 213, 220-234]. 

2.1.4 Characterisation 

There are several ways of characterisation to analyse graphene structure. The 

important and common methods can be listed as light microscopy and Raman 

spectroscopy. Despite transparent property of graphene, it can be visualised 

when it is transferred on a silicon oxide substrate and the number of single or few 

layers can be identified [6, 235]. The simple methods of exfoliation [5, 6, 166] 

isolation and visualisation [235] of graphene flakes was the starting point of 

graphene research and still provides the opportunity of research in graphene with 

limited resources. Figure 2-7 demonstrates visualisation of graphene flakes on 

an oxide layer using optical microscopy [235]. 

Further characterisation can be made by performing Raman spectroscopy [235-

240]. It is a popular characterisation technique that is used in graphene research. 

The presence of graphene can be confirmed if it is hard to identify via optical 

microscopy. It has specific features such as G band at about 1580 cm-1 and 2D 
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band at about 2700 cm-1. The G and 2D bands are corresponding to in-plane 

vibration of carbon atoms and two phonon resonance, respectively [241]. These 

peaks are notable in pristine graphene. However, other forms of graphene, such 

as graphene oxide or few-layer graphene, present additional disorder which is 

defined by D band. The latter band is observed at 1350 cm-1 and occurs due to 

defects in the sample [242]. Meanwhile, the substrate used to support graphene 

can also affect the spectra since graphene bonds are influenced by the substrate 

[243]. 

 

Figure 2-7: Visualisation of graphene under optical microscopy. Graphene crystallites on a SiO2 
substrate of 300 nm thickness under white (a) and green light (b). Monolayer graphene can be 
seen clearly, however, it is not possible to distinguish graphene with white light on a 200 nm thick 
substrate (c). Adapted from [235]. 

Raman measurement was reported to be very sensitive to variety of parameters 

[244] such as laser excitation energy, thickness, strain, density, quality and 

number of layers. The shapes, locations, intensities and ratios of the peaks can 

identify single, few and multilayer graphene as shown in Figure 2-8. Therefore, it 

is a useful tool for determining many properties of graphene as a non-destructive 

method. The 2D peak has a sharp and single fitted Lorentzian component in a 

pristine graphene whereas it can be fitted with four components in a bilayer 

sample with an upshifting trend for higher number of layers [236]. The 2D peak 

diminishes in the defected graphene structures due to discontinuous hexagonal 

crystal symmetry which affects the resonance [245] and the D peak has a higher 

intensity [246]. The position and the shape of 2D and G peaks along with their 

intensity ratio, I2D/IG, help deriving the number of layers [240]. In a pristine 

graphene sample, the D peak is not observed because of crystal symmetries, 

therefore, the ID/IG ratio is close to 0 with the I2D/IG ratio as high as 3 [247]. 
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Figure 2-8: Comparison of the Raman spectra of graphene and graphite (a). Comparison of 
the 2D peaks in graphene and graphite (b). G peak (c) and 2D peak (d) variations with respect to 
number of layers. D peak obtained on the edge of graphite and graphene (e) showing defects. 
Adapted from [238]. 

Another method of graphene characterisation is to use x-ray photoelectron 

spectroscopy (XPS) since it is a quantitative technique that gives information 

about the presence of the elements at the surface together with their percentage 

and chemical states [248-250]. Therefore, it can also be used not only to confirm 

the presence of graphene but also to quantify the oxygen content for 

functionalisation purposes or identify any residuals following fabrication [249-

253]. Using available XPS databases [254], the XPS carbon C1s spectrum can 

be fitted to identify the functional groups (chemical bonds) based on the peak 

positions. Other characterisation methods can be listed as atomic force 
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microscopy (AFM) [190, 255] or scanning tunnelling microscopy (STM) [256]. 

These methods provide information on height changes by visualising the surfaces 

at the atomic level. 

2.1.5 Applications and Future 

Graphene presents the potential to improve the functionality of various fields such 

as energy storage, sensing, electronic, environmental monitoring and health 

applications [257] due to exceptional properties it accommodates e.g., room 

temperature high carrier mobility, light weight and transparent structure along 

with being stronger than steel [23]. Most of the reported properties of graphene 

were revealed under idealised conditions and were based on pristine material, 

however, under real conditions its structure is rather complex and to some extent 

controlled by the application [168]. Yet, with appropriate design arrangements, 

very high-sensitive and high-performance applications can be developed due to 

its profound properties which make it an unbeatable material for a variety of 

applications. Figure 2-9 demonstrates a summary of potential graphene 

applications. 

 

Figure 2-9: Graphene applications [258]. 

The mechanical properties of graphene make it a perfectly fit material for nano-

mechanical applications [8, 177, 259]. Additionally, room temperature quantum 

Hall effect, and ambipolar field-effect characteristics along with high electrical 

conductivity with intrinsic low noise make it an outstanding material for electronic 
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application development [260]. It can also be used in environmental monitoring 

applications as gas sensors due to its high surface area and atomic thick structure 

that enhances the detection limit down to single atom [15]. Food safety and 

clinical diagnostics are the fields where graphene has an outstanding potential to 

be used as an electrochemical biosensor [34]. It has potential also in optical and 

optoelectronic applications due to its optical transparency, flexibility and chemical 

resistance to acids or base [22] and it is a good candidate of fibre optic sensors 

since it presents surface Plasmon property [10]. A flexible organic optoelectronic 

device has already been reported using multilayer graphene [147]. Additionally, 

it is an excellent candidate for photovoltaic applications because of being stable 

against water and oxygen along with having large surface area and high carrier 

mobility. The potential of graphene has also been explored in applications such 

as super capacitors [9, 261] and electrochromic devices [146, 163]. 

Most of the peculiar properties of graphene have been revealed almost in a 

decade of its discovery [178]. Revealed properties so far have led to an 

increasing appetite of researchers to study on novel applications based on this 

material. Also, industrial applications of graphene are likely to appeared in near 

future [178]. It seems that graphene’s electrical, mechanical, optical and thermal 

properties will enable researchers to develop high quality devices for various 

purposes from energy storage devices and sensor applications to bendable touch 

screens and logic transistors and more [25, 178]. Therefore, it holds a huge 

promise for future technology [262]. Figure 2-10 provides a prediction on potential 

electronic applications based on graphene for the future. It has a huge promise 

for various applications such as super capacitors, batteries, solar and fuel cells, 

biosensors, electronics etc., [263] due to the properties briefly summarised 

above. 

 

Figure 2-10: Estimation of graphene-based display & electronic devices [178]. 
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2.2 Hall Effect 

Hall effect is one of the fundamental techniques used for characterising electrical 

transport properties in metals and semiconductors. It was discovered by Edwin 

Hall in 1879 whilst he was trying to understand the mechanical force on a current 

carrying wire under a magnetic field [42]. The basic idea of Hall effect is to drive 

current through a thin layer of metal sheet or semiconductor and apply a magnetic 

field perpendicular to the driven current. This exerts a force which is 

perpendicular to both driven current and applied magnetic field. The exerted force 

is also known as Lorentz Force and is illustrated in Figure 2-11. This phenomenon 

has found important roles for many practical applications in last decades although 

it was employed for characterisation of electrical properties for many years. 

 

Figure 2-11: Force in a current-carrying wire due to applied magnetic field [44]. 

2.2.1 Properties 

Hall devices are a commonly used magnetic sensors and they operate on the 

principle of Lorentz Force [43]. This force occurs as a result of the accumulation 

of moving charges to one side [118] due to a perpendicularly applied magnetic 

field. Consequently, a transverse voltage difference occurs. The obtained voltage 

is named the Hall voltage and the actual phenomenon known as the Hall effect 
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since it was discovered by Edwin Hall [44]. Hall effect magnetic sensors are 

relatively easy to fabricate compared to the other magnetic device classes. Also, 

the ultimate goal of field implementation is achievable due to the ease of 

electronic integration. The relationship between exerted force, applied electric 

and magnetic fields can be expressed mathematically as given in equation (2-1) 

for a quantitative analysis. 

�⃗� = 𝑞�⃗⃗� + 𝑞𝜗𝑥�⃗⃗� = 𝑞(�⃗⃗�𝜗𝑥�⃗⃗�) (2-1) 

The terms in the equation represents force (�⃗�), magnitude of the charge (𝑞), 

electric field (�⃗⃗�), velocity of the charge (𝜗) and the magnetic field (�⃗⃗�), respectively. 

This equation is also referred to Lorentz force equation. Except   𝑞 , all the 

variables given in the equation (2-1) are vector quantities. As it is clearly seen 

from the equation, response of a charged particle to both electric and magnetic 

field has effect on exerted force. As a result of this exerted force, electrons 

experience resistance to their flow and this leads to an accumulation of charge 

carriers to one side [118]. In such a case, a transverse voltage occurs. 

In addition to magnetic field (𝐵𝑦) and current (𝐼𝑥), the Hall voltage (𝑉𝐻) at the 

output of a Hall device depends on geometrical shape, thickness, and material 

properties as well [43]. The basic relationship between Hall voltage and those 

properties are given below as: 

𝑉𝐻 = 𝐺
1

𝑛𝑒

𝐵𝑦𝐼𝑥

𝑡
 (2-2) 

The term VH represents the Hall voltage, 𝑛 denotes the density of the charge 

carriers (carrier concentration) and it is given in cm-2 unit, µ is for carrier mobility 

with the unit of 𝑐𝑚2𝑉−1𝑠−1  and 𝑒  stands for electron charge 

(~1.60𝑥10−19𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑠). These variables are related to the properties of the 

material apart from electron charge since it is a physical constant. Additionally, 𝑡 

denotes the thickness of the material in metres, 𝐼𝑥 represents the applied current 

that flows through the material sheet, 𝐸𝑥 is applied electric field and 𝐵𝑦 is the term 

that represents the perpendicular magnetic field. The latter terms are the 

quantities that can be arranged as desired. G represents geometrical factor [119] 
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which depends on carrier mobility and length to width ratio (l/w). The geometrical 

correction factor is defined as: 

𝐺 = 1 −
16

𝜋2
𝑒

𝜋𝑙
2𝑤 (1 −

8

9
𝑒

𝜋𝑙
2𝑤) (1 −

(𝛳𝐻)2

3
) (2-3) 

The relation given in equation (2-3) is valid for 0.85≤l/w≤∞ and 0≤ϴH≤0.45 

radians. Typical G values can be observed as 0.73, 0.87 and 0.924 for 

geometrical shapes of square, cross with narrow contacts and the cross with 

larger contacts, respectively [264]. The term 𝜃𝐻 shown in the figure is the angle 

between resulting electric field and current density under magnetic field and 

named as Hall angle. It is an indication of resistance in flow of electrons. The 

efficiency of Hall effect structures is expressed in terms of current or voltage 

related sensitivities. In addition, magnetic field resolution (or minimum detectable 

field) is also used to specify the ability of small field sensing. As equation (2-2) 

suggests, transport properties of a material such as carrier mobility, carrier 

concentration and carrier type can be determined by measuring Hall voltage since 

the values of applied magnetic field strength, flowing current and thickness of the 

structure is known. The voltage exerted from the system is proportional with 

carrier mobility and inversely proportional with carrier concentration and 

thickness of the material. Figure 2-12 depicts the principle of the operation with 

related quantities in Hall effect mechanism. 

To indicate the performance of Hall devices, current-related sensitivity, SI, is 

mostly used as a quantitative performance parameter for Hall devices. It is 

defined as the ratio of absolute sensitivity to applied current and given as: 

 𝑆𝐼 = |
𝑆𝐴

𝐼𝑋
| (−) 

where IX is the applied current value. SA represents the absolute sensitivity of a 

Hall device, one of the parameters used for sensitivity measurement, and it is 

given by the change in output voltage as a function of applied field under a certain 

biasing current. The latter term is given as: 

 𝑆𝐴 =
𝑉𝐻

𝐵𝑦
 (−) 
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Figure 2-12: A representation of Hall effect sensing principle. A transverse voltage, VH, is obtained 
in the presence of a perpendicularly applied magnetic field, By, whilst charged carriers, Ix, are 
flowing. Moving charges are accumulated to one side under given orientation of current and 
magnetic field, causing a transverse voltage to occur. The sign of the measured voltage gives an 
indication about the type of charge carrier in the structure. 

2.2.2 The Use of Hall Effect in Characterisation 

Hall effect has been used to characterise the electric properties of materials. It is 

used to determine the carrier mobility and density of materials as well as the 

dominant charge carriers. Type of the majority charge carriers (n-type or p-type) 

are defined by inspecting the value of Hall coefficient. This value is represented 

with RH and obtained as: 

 𝑅𝐻 = ± 1 𝑛𝑞⁄  
(2-6) 

The positive sign is an indication of holes as majority charge carriers, thus, the 

material or semiconductor is referred to as p-type in such a case. The negative 

value points out that the majority charge carriers are electrons and in that case 

the material is referred to as n-type. Hall coefficient is also represented as in (2-7) 

or (2-8): 
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𝑅𝐻 = 𝐸𝑧 𝐽𝑥𝐵𝑦⁄  (2-7) 

𝑅𝐻 = 𝑉𝐻𝑡 𝐼𝐵⁄  (2-8) 

Here, 𝐽𝑥 is used for the current density and it is defined as current per unit area. 

Thus, the Hall coefficient could be expressed in unit of Ωm∕T or m3∕C. 

2.2.3 Applications 

Hall effect sensors are magnetic type sensors that are working based on Lorentz 

force and uses the perpendicular magnetic field component to produce 

information. They are used widely in many applications as low-cost sensors. They 

can be seen with various names [43, 44, 53, 265, 266] in commercial field. The 

term Hall plate is used for the devices similar to that of Hall discovered [43] and 

based on different device geometries, application field and regional literature, 

devices whose working principle relies on the physics of Hall effect are named as 

“Hall device, Hall element, Hall Cell, Hall Sensor, Hall Magnetic sensor, Hall effect 

sensor, Hall biosensor, Hall generator or micro-Hall device etc., [43, 121, 158, 

264, 265, 267-269]. In general, any shape of conductive material with four 

contacts could be attributed as a Hall device. However, in terms of practicality 

and specific applications, certain criteria should be considered to build more 

convenient and efficient devices. 

The only application of the Hall effect principle was to determine electric transport 

properties of materials for many decades [43]. After its potential was realised, 

Hall effect mechanism has been successfully implemented to a variety of fields 

in terms of sensing applications which are commercially available. Devices based 

on the Hall effect have been investigated for more than a hundred years [43] with 

deployment in cars, planes, machine tools, computers and medical equipment 

[63]. The devices have led to a variety of applications [43, 44]; from antilock 

braking systems in vehicles, disk drives in computers to highly reliable position 

sensing with automated systems in factories. Micro power and two-wire switches, 

power devices and Hall integrated circuit (Hall-IC) for smart motor control are 

amongst developed applications. In the last decade, there has been a 

considerable number of reports utilizing the Hall principle for bio-sensing 

applications [74, 103-107, 109-115, 126, 270-281]. In terms of industrial 
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importance, Hall devices are the most widely used magnetic sensor format [62-

64] due to their ease of fabrication and implementation, small size and high 

linearity [70]. 

2.2.4 Materials 

Materials with high carrier mobility, low carrier concentration and narrow band 

gaps are desirable for Hall effect applications since these properties provide the 

exact characteristics for high sensitivity Hall devices [43, 44, 158]. The existence 

of a band gap is the key difference between conductors and insulators. The 

conductors have their conduction band partially filled, therefore, electrons can 

move freely. As opposed to conductors, the insulators have an empty conduction 

band. The electrons of an insulator that has a small band gap can be activated 

thermally (or by doping) so that they can participate in the conduction. These 

types of materials are known as semiconductors and the smaller the band gap 

they have the easier the conduction they can provide as a result of increased 

mobility. As is explained in section 2.1.2, the sensitivity of a Hall device is 

proportional with the mobility, thus, materials with narrow band gaps are providing 

devices with better sensitivities. In addition, reducing the material thickness 

provides an exceptional advantage since the charge carriers are confined, which 

produces a stronger force [61, 71, 72, 159]. 

Materials from silicon (Si), bismuth (Bi) and indium antimonite (InSb) thin films or 

gallium arsenide / aluminium gallium arsenide (GaAs/AlGaAs) two-dimensional 

electron gas heterostructures can be used to fabricate Hall devices [117]. 

Currently, commercially available Hall effect sensors are dominated by silicon, 

due to well-developed CMOS manufacturing processes being available [63, 70, 

118, 119]. However, in applications requiring higher sensitivity, heterostructures 

from III-V compounds are particularly more desirable due to their superior 

electron transport properties [120-125], but the technology can be more costly to 

manufacture and harder to integrate with circuits for signal processing [63]. InSb 

[126] and Bi [127] thin films are also used in Hall applications due to their high 

electron mobility properties and linear response for a wide range of field 

strengths. Table 2-2 provides typical sensitivities of different materials. 
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Material SI (V/AT) 

CVD graphene (Ref [71]) 2093 

Epitaxial graphene (Ref [72]) 1021 

2DEG (Ref [275]) 357 

Silicon (Ref [282]) 175 

Table 2-2: Typical state of the art sensitivities for different materials. 

2.2.5 Potential of Graphene 

Recently, graphene has become a material of interest for many applications. It is 

a one-atom thick nanomaterial consisting of carbon atoms formed in a hexagonal 

honeycomb shape [283]. There have been many reported studies for a wide 

range of applications [5, 8-12, 15, 18, 21, 23, 28, 148, 163, 168, 169, 172, 260, 

284-287]. The unique material properties of graphene make it a promising 

candidate for mechanical, electrical and optical systems [8, 12, 25, 168, 172, 174, 

177, 178, 190, 288]. Possessing ultra-high carrier mobility [27, 129] and being 

one-atom thick makes graphene a specifically unique material for Hall effect type 

applications [61, 68, 71, 128] since charge carriers are constrained in a two-

dimensional plane thus providing a higher sensitivity and an outstanding 

resolution. In addition, graphene is also an intrinsically low noise material [71, 

128, 130] due to its two-dimensional structure, zero-energy band gap, high 

mobility and lower carrier concentration along with metallic type of conductance 

[289]. Therefore, there has been a number of publications exploring the potential 

of graphene as a Hall sensor [63, 66-69, 117, 128, 149-151, 159, 290, 291] where 

devices having superior sensitivities with lower noise were obtained. 

2.2.6 Reported Graphene Hall Devices 

Hall effect phenomena was directly or indirectly discussed in all reported studies 

related to electronic properties of graphene since it is used to determine electric 

transport properties of materials. Thus, in early studies on graphene, Hall effect 

mechanism was used as a tool to determine superior electric transport properties 

of it [292]. This was performed for single and multi-layer structures of graphene 

as well as for various production techniques [165, 244] such as mechanical 

exfoliation, epitaxial grown on silicon carbide or chemical vapour deposition 

methods etc. Basically, the Hall effect examples in the early studies were about 
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describing the correlation between electric properties of graphene and the way it 

was obtained along with its number of layers. 

Although graphene is a newly explored material, a considerable amount of papers 

has already been published which report on various applications of Hall effect 

sensor structures based on graphene [61, 63, 66-72, 145, 149, 150, 152, 159, 

165, 290, 291, 293-296]. The structure of the graphene theoretically makes it an 

excellent candidate for such purposes. The results from graphene Hall sensors 

also showed that it is highly sensitive to magnetic fields and has a good linear 

characteristic [63, 70, 71, 297]. The excellent sensitivity of graphene is because 

of its high carrier mobility and its one atom thick structure which could be 

considered as the ultimate limit for Hall applications [71]. Noise analysis on 

graphene Hall devices showed that the sensitivity of a graphene Hall sensor is 

only limited to its intrinsic properties in addition to defects in its structure [130, 

165]. This means a Hall structure out of graphene would present the same 

behaviour under different external conditions which makes it an ideal material for 

variety of Hall applications. Another advantage of graphene that should be 

pointed out is its tuneable electric transport properties by adjustment of gate 

voltage [63, 71, 128]. This helps to improve carrier mobility and lower carrier 

density so that it leads to devices with significant high performances [63]. 

Graphene was first started to be explored for magnetoresistance device 

fabrication in terms of magnetic applications and few studies were reported [159, 

298, 299] based on this idea. The studies suggested that graphene could provide 

a better sensitivity even in sub-micron scales with respect to previously used 

materials. Hall effect was also used in one of those studies to enhance the 

performance of the device [298]. However, primary research on actual graphene 

Hall effect devices was reported on investigating transport and noise properties 

of micro-Hall probes for use of scanning Hall probes [165] with a high field 

sensitivity. A CVD grown graphene was used to pattern respective Hall probes 

and they were tested in temperatures ranging from 300 K to 4.2 K in the study. A 

scanning Hall probe microscope system [117] was developed thereafter by using 

CVD grown graphene and used for imaging domains of a demagnetized 

permanent magnet. The results suggested that graphene Hall probes are 

comparable with other previously reported Hall probes based on bismuth thin film 
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or GaAs/AlGaAs hetero-structure. The studies showed that the fundamental 

limitation on sensitivity is only restricted by intrinsic properties of graphene and 

defects of its structure. 

Devices based on epitaxial grown graphene on silicon carbide with micron sizes 

ranging from 500 nm to 20 µm were also reported [72]. These devices were used 

for magnetic field sensing and a minimum detectable field of 2.5 µT∕√Hz was 

achieved in room temperature which makes them comparable with the same size 

semiconductor devices. In another study, epitaxial grown graphene was used to 

form micron sized Hall devices for the purpose of small magnetic moment 

detection as well [293]. A micro bead with a diameter of 1µm was placed on a 

device with a 2µm size with the aid of a nano-manipulator. Transport and noise 

spectrum measurements were performed in room temperature. 

Hall elements with a current-related sensitivity of up to 1180 V∕AT and a voltage-

related sensitivity of up to 0.3 V∕VT was then reported [63]. These devices were 

the first Hall structures reported with their current and voltage related sensitivities 

in addition of being the first batch fabricated high-performance graphene devices. 

Also, a minimum detectable field of up to 50 nT∕√Hz was achieved with a 

frequency of 4.5 MHz which makes them far better than previously reported 

graphene Hall devices. Graphene devices with current-related sensitivity of up to 

2093 V∕AT with a magnetic resolution of around 100 nT∕√Hz were then reported 

[71]. Further works performed to improve the sensitivity of graphene and an ultra-

sensitive Hall sensors with a current-related sensitivity of up to 5700 V∕AT and a 

voltage-related sensitivity of up to 3 V∕VT was reported [70]. The latter values 

are much higher than not just only other semiconductor-based devices but also 

all reported devices based on graphene and they were achieved by encapsulating 

graphene in a hexagonal boron nitride. 

Another interesting study was reported about a CMOS integrated circuit (IC) 

based on graphene/silicon structure which combines ultra-high carrier mobility of 

graphene with sophisticated functionality of an IC. Voltage and current related 

sensitivities of 0.1 V∕VT and 200 V/AT were achieved, respectively. Although 

those results are similar with that of silicon-based Hall devices, it is not 
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comparable with previously reported graphene devices. The reason can be 

attributed to defecting graphene structure during fabrication. 

In conclusion, high mobility and thin structure of graphene make it the perfect 

candidate known to us which can revolutionise the Hall sensing applications. Due 

to low intrinsic noise and high stability with respect to temperature changes 

seems to make graphene dominating all fields of Hall applications. 

2.2.7 Quantum Hall Effect and Its Observation in Graphene 

The quantum Hall effect is observed in two dimensional electron gas systems 

under a strong magnetic field [188] and can be considered as quantum 

mechanics version of Hall effect. As explained in section 2.1, in classical Hall 

effect, electrons experience resistance to their flow while they are under magnetic 

field and this resistance is linear with respect to magnetic field strength. However, 

in quantum Hall effect, the resistance jumps up by steps with respect to magnetic 

field and shows integer plateaus where the longitudinal resistance vanishes. In 

addition, it is observed in very low temperatures (10 K - 100 K). Unlike other two 

dimensional electron systems, the quantum Hall effect phenomena in graphene 

is quite interesting as it shows half integer plateaus [6, 182, 184, 300-306] and 

can be observed even in room temperature [301]. Also, for different magnetic 

field strengths, different behaviours are also observed [307] which makes this 

material extremely interesting. 

2.3 Other Types of Magnetic Sensors 

Magnetic sensors have been useful tools for human beings to drive, store, 

analyse and control systems with several functions. For example, magnetic 

storage disks in computers, non-contact reliable switches in airplanes and 

automobiles, and control systems in factories for reliable and higher productivity 

[49].  The classification of magnetic sensors is made based on their ability to 

measure total (scalar magnetometers) or vector component of the magnetic field 

(vector magnetometers) [308]. There are several forms of magnetic sensors in 

terms of their principle of operations [47, 308, 309] and most commonly used 

types can be listed as magnetoresistive [299, 310-314], superconducting 

quantum interference device (SQUID) [99], spin-valve [315], and Hall effect 
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sensors [43, 44]. The detection range and applications of magnetic sensors are 

summarised in Figure 2-13. 

 

Figure 2-13: Applications and sensitivity range of magnetic sensors [48].  

There are examples with excellent sensitivity [49, 308], however implementation 

may not be straightforward due to specific requirements, such as fabrication 

difficulties, operating conditions and specific temperature requirements [48, 49, 

118, 309, 316-318]. For example, SQUID sensors are the magnetometers that 

exploit the superconducting properties of certain materials under low 

temperatures that are below superconducting transition range. If materials are 

cooled below that temperature, their resistance to the flow of electricity is 

eliminated and they become superconductors. The sensitivity of those types of 

sensors is limited by magnetic noise and the range is from 10-6 nT to 10-5 nT for 

commercially available sensors [49]. Although they are perfect for detecting field 

strengths that are below the earth’s magnetic field, the system requirement 

makes it hard to implement. Another magnetic sensor example is search-coil 

magnetic sensors. Those sensors work based on Faraday’s induction law. The 

voltage of the output leads changes proportional to the amount of the magnetic 

flux applied to the coil. Those magnetometers can detect fields up to 2𝑥10−5𝑛𝑇 

in a frequency range of 1 Hz to 1 MHz [49]. Meanwhile, the electronic read-out 
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circuit has a limiting effect on the sensitivity and frequency range of those type of 

sensors. Likewise, flux-gate magnetic sensors can be listed as another type of 

magnetic sensor and they are formed from a drive and a sense coil along with a 

wound of ferromagnetic material. The working principle relies on magnetic 

induction and the saturation property of ferromagnetic materials at high fields. 

They have a sensitivity range of 10−2𝑛𝑇 to 107𝑛𝑇 [49]. Besides magnetic sensor 

types briefly explained above, there are several types of magnetic sensors also 

available with various detection capacity. The detailed information of all types of 

magnetic sensors can be found in literature with in depth analysis [47-49, 62, 96, 

99, 118, 119, 159, 298, 308-311, 316-322].  

2.4 Biosensors 

A biosensor is a combination of two components, bio-receptor and transducer, 

integrated in such a way to allow the detection of specific target molecule. A 

bioreceptor is a specific recognition element for detecting desired chemicals and 

biomolecules. The transducer is used to convert the detection event into a 

meaningful description by means of electrical, mechanical or optical signals. The 

definition of IUPAC (International Union of Pure and Applied Chemistry) for a 

biosensor is “A device that uses specific biochemical reactions mediated by 

isolated enzymes, immunosystems, tissues, organelles or whole cells to detect 

chemical compounds usually by electrical, thermal or optical signals” [323]. 

Biosensors are used in various fields such as food safety, environmental 

monitoring and medical diagnostics. Basic structure of a biosensor is shown in 

Figure 2-14. 

Historically, the field of biosensor research traces back to 1962 with enzyme 

electrode development by Lenard C. Clark [1, 41] for testing glucose levels in 

blood and since then the bio-sensing field has been contributed by scientists from 

different research backgrounds. Thus, it has created a multidisciplinary research 

field. In 1970s, the first generation of biosensors was commercialised [324]. 

Further developments followed by describing a bio-recognition system for the use 

of whole cell [325]. Research and developments on the field has continued, 

particularly over the last decade. Using carbon nanotubes [79], nanowires [326, 
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327], nanoparticles [328-330] and novel materials such as graphene [4, 18, 28, 

30, 32, 284, 331-333] could lead to incredible advancement. 

 

Figure 2-14: Basic structure of a biosensor. 

The biosensors market is expected to reach $21.17 billion by 2020 [334]. It is 

likely that the biosensors will have a huge impact on point of care diagnostics 

[335] because they have potential to be simplified and reduced in size, thus 

providing easy to use products. Therefore, this field needs to be improved based 

on new materials and design implementations to achieve a detection range of 

very small concentrations.  However, it is worthy of note that the 

commercialisation of biosensors is slow despite having the huge potential. This 

can be attributed to cost required for development, optimisation and fabrication 

from research to commercial products. 

2.4.1 Detection Principle 

In order to detect a specific desired biological element, the sensor surface should 

be functionalised and this is usually done with complementary molecule [40]. In 

the presence of desired biological element, a capture process occurs. This 
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process refers to the recognition step. A transducer is then used for converting 

the recognition event into a measurable electrical signal. A desired target 

molecule is captured by bio-receptor and this event creates a physical change in 

the transducer. The physical change can be measured as electrical [155], 

mechanical [336], optical [337] or electrochemical [338] based on transducer 

type. This change is converted to an electrical signal for a meaningful 

interpretation of the detection. The signal from output of the transducer is usually 

very small and needs to be amplified. In addition to amplification, any noisy 

harmonics should also be removed. Figure 2-15 is a representation of complete 

bio-sensing system depicting recognition (a), transducing (b), signal amplification 

(c) and processing (d) with recording/displaying (e) steps. 

 

Figure 2-15: Schematic of biosensor with recognition (a), conversion (b), signal amplification (c), 
processing (d), recording and displaying (d) steps. 

2.4.2 Classification 

There are different types of bio-receptors (enzymes, antibodies, nucleic acids, 

cells), and biosensors can be classified according to which type bio-receptor is 

used. Meanwhile, they can be classified based on their transducing element such 

as mass-based, optical-detection, electrochemical, electrical etc. Detailed 

overview on biosensor types can be found in refs [2-4, 40, 41]. 

2.4.3 Hall Effect in Biosensing 

The principle of Hall effect was well-developed for defining material properties of 

solids and magnetic field measurements and it was successfully applied to 

several systems based on engineering-oriented applications. The applicability of 

Hall principle has been investigated quite recently for biomedical purposes [339] 

and a considerable number of reports have been devoted to employability of Hall 
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principle for biosensing applications [65, 103-115, 126, 154, 271, 272, 275, 280, 

282, 340-347]. Hall effect-based biosensors have been shown to be successful 

with the aid of magnetic particles [73, 81, 153, 276, 277, 348-350]. In this type of 

detection, magnetic beads are used to measure magnetic susceptibility [81]. 

Basically, a combination of alternating and non-alternating magnetic field is 

applied in-plane and perpendicular to the sensor surface, respectively. The 

detection is achieved via observing an output signal which has the same 

frequency of the in-plane excitation signal. 

Magnetic beads are promising tools for target molecule detection in human fluid 

since they could be used as magnetic labelling of biological molecules [272] and 

provide a low cost technique. Also, they have the advantage of negligible 

interference and long-term stability [272, 351]. However, there are some 

restrictions that limit the sensitivity of the Hall sensor if magnetic beads are used. 

It is crucial to consider the separation between surface of the sensor and 

magnetic bead as magnetic field from the beads decreases proportional to ~ 1 𝑠3⁄  

where s represents the separation distance [115]. This parameter must be treated 

carefully for an optimised signal to noise ratio. 

𝐵𝑑𝑖𝑝𝑜𝑙𝑒 =
𝜇0𝑚

2𝜋𝑠3
 (2-9) 

Additionally, magnetic moment of a magnetic bead is another important 

parameter that must be considered since those parameters are affecting the 

magnetic field provided by magnetic beads. Equations (2-9) and (2-10) explain 

the relationship of those parameters. Here, 𝑚, 𝑀𝑠, 𝑉and 𝜌 represent magnetic 

moment, saturation magnetization, volume and density of superparamagnetic 

beads, respectively. The term 𝜇0 is used for the permeability of vacuum. 

𝑚 = 𝑀𝑠. 𝑉. 𝜌 = 𝑀𝑠. (
4𝜋

3
) . 𝑟3. 𝜌 (2-10) 

A Dynalbead with 1 µm diameter has a typical magnetic moment of ≈4×108 µ 

[107]. This value corresponds to a Bdipole of 640 µT at a distance of 50 nm. This 

can easily be detected by fabricated devices since a minimum field detection of 

162 nT/√Hz was obtained (see section 6.4.2). In fact, this resolution makes the 
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sensor capable of detecting beads even at a separation distance of 0.5 µm 

successfully. 

In terms of application point of view, Hall effect sensors have been used for 

detecting [105, 107, 110, 114, 282, 352-355] or counting magnetic beads [106]. 

The beads were used as a label and those sensors have been adopted to 

manipulate biological species, perform medical imaging [356, 357] or map the 

trajectory of moving particles [104]. A successful magnetic bead detector using a 

silicon Hall sensor, having an active area of  2.4 × 2.4 µm2, was demonstrated for 

detecting a single magnetic bead with diameter of 2.8 µm [282]. This was 

fabricated using CMOS technology and a current related sensitivity of 175 V∕AT 

with a magnetic field resolution of about 200 nT∕√Hz was achieved. The ability of 

a similar structure was then tested as an actual biosensor in another study [351] 

by functionalizing beads. It was applied to immunoassay and a detection limit of 

0.1 ng ∕ ml was achieved. These studies followed by several reports of CMOS 

fabricated sensors that manipulate or detect magnetic beads for various 

biological species [269, 276, 342, 351, 358, 359]. The advantage of a Hall 

biosensor in CMOS structure is its ability of combining the sensor structure with 

required manipulating and signal processing circuitry such as biasing, reading, 

amplifying, sampling and control logic on a chip which provides an advanced 

functionality [277, 281, 360]. However, there are certain limitations that restricts 

the sensitivity such as the material being used, since silicon is not the best option 

to obtain a high sensitive Hall effect sensor, and the separation distance between 

sensor surface to bead. Therefore, thin film structures with high carrier mobility, 

such as thin films of InSb [273] or 2DEG systems of InAs , AlGaAs/InGaAs [361] 

and InAs/GaSb [275], have also been preferred since their sensitivity is better 

than silicon competitors and the signal of interest can be provided even in longer 

separations. For example, a micro-Hall sensor based on InSb thin film was 

reported as a potential platform for bio-screening applications which was capable 

of  detecting beads as small as 100 nm even at a distance of 200 nm between 

particle and sensor surface [115]. In a further study based on InSb thin films, the 

detection of DNA [272] has been explored using devices with an active area of 

30 × 30 µm2. The detection process was performed by functionalizing magnetic 

beads of sizes around 200 nm diameter. A layer of gold (200 nm) was used on 

the surface of the sensor for immobilization process and the sensor was isolated 
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with silicon nitride [271] and promising results have been obtained. In addition, 

the feasibility of a potential biosensor was also demonstrated by placing 2.8 µm 

beads on an array consisting of devices with 5 µm × 5 µm active areas [113]. 

More studies followed by using InSb for similar sensing purposes [112, 113, 126]. 

2DEG heterostructures have also shown promising results in terms of bead 

detection as a biosensing platform [111, 274]. The advantage of using such 

systems is their adjustable high mobility during fabrication which provides the 

flexibility of sensitivity adjustment. In terms of graphene, micron-sized devices 

were fabricated from epitaxial graphene [293] and their promise was assessed 

using a Dynal bead with a size of 1 µm. The results demonstrated an improved 

performance compared to standard semiconductor devices which suggests 

graphene as a highly important material for biological substance detector using 

beads as a label. In addition, in a sensitivity modelling work, the performance of 

graphene has also been confirmed for such applications via performing 

simulations [362]. 

2.4.4 Graphene in Biosensing 

Graphene demonstrates good stability, high sensitivity and selectivity, negligible 

capacitive current, and great electro-catalytic activity [7]. Various appealing 

properties can be observed in graphene such as high transparency, unbeatable 

mechanical strength, flexibility, good electrical and thermal conductivity, large 

surface area, ambipolar electric field effect and superior electronic properties [4]. 

Due to unique material properties, graphene is considered as a highly promising 

candidate for optical, electrical and mechanical systems [8, 12, 25, 168, 174, 177, 

178, 190, 288]. It is particularly promising for electrical sensing applications [363] 

because of its high carrier mobility [27, 166] and low intrinsic electrical noise [11, 

364]. It may seem to be an ideal choice as a biosensing element due to its large 

surface area and excellent electrical conductivity, however, a monolayer pristine 

graphene is chemically an inert material [176] which presents a drawback in 

terms of electrochemical sensing point of view. Because, the main characteristics 

of an electrochemical sensing system is that on the surface, reduction or 

oxidation reaction can occur so that it causes the transfer of electrons from or to 

the sensing surface, thus, providing a change that can be measured in terms of 

voltage, current or impedance [365]. 
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Nonetheless, graphene can be used in biosensing field in two different ways [30]. 

The first method involves charge biomolecule interactions at π-π domains, 

electrostatic forces and charge exchange that lead to electrical variations [366]. 

The other method is to employ structural defects [38], so that functional groups 

can be obtained, and using chemical functionalization for immobilizing the 

molecular receptors on graphene and then make use of highly conductive 

characteristics of graphene [187, 367-370]. To achieve enhanced biosensing 

performance, graphene is often functionalized using biomolecules, enzymes, 

polymers, metals and metal oxide nanoparticles [7, 371]. Graphene can allow the 

development of new electrochemical sensors for detection of glucose, nucleic 

acids, hydrogen peroxide, protein markers etc., [260] due to its distinguished 

electrochemical structure. The unique electronic band structure of graphene 

leads to incredible charge transport and electrical properties. The large surface 

area [13, 372] of graphene particularly distinguishes it amongst existing 

nanomaterials and allows direct interaction with a wide range of biomolecules 

available [373]. In addition, engineering graphene with structural defects is 

possible using low-cost fabrications techniques [374]. 

To perform a label-free detection, a covalent binding process can be employed 

for surface modification from benefitting the structural defects, however, the 

incredible electric transport properties of graphene diminishes in such an 

arrangement due to discontinuity in the structure of graphene. To overcome this 

issue, a high-quality graphene film can be used with pyrene which allows the 

surface modification process to be performed non-covalently [375]. A non-

covalent binding occurs between graphene and pyrene through π-stacking [376] 

due to charge interactions between them which leads to a change in carrier 

density [155]. Through this mechanism a label-free detection can be performed. 

In this work, this mechanism was employed to create a label-free biosensing 

system.  

Graphene has already been adopted in various sensing applications such as 

clinical (for detections of glucose, cholesterol, ascorbic acid, uric acid, H2O2, 

dopamine), environmental (detections of pesticides, hydrogen and metal ions), 

and food (detections of staphylococcus and tryptamine) [32]. Comprehensive 
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reviews on this topic can be found in refs [16, 19, 28, 30, 33, 284] since the details 

on those structures are beyond the scope of this work. 



Chapter 3 

40 

Chapter 3. Test Rig Design 

A specific setup in a specific order is required for successfully obtaining accurate 

results from measurements. First, a voltage or a current source is required as a 

biasing source to operate a Hall device. The operation mode of a Hall device is 

named as current-mode or voltage-mode of operation depending on which 

source is used to bias the device [44]. Secondly, a magnetic field source is 

necessary. The latter source must be introduced in such a way that the field lines 

are applied perpendicularly to the driven current. Then, the simple rule for 

obtaining Hall voltage is to form at least four contacts on a thin sheet of metal or 

semiconductor and bias it via preferred choice of source. This is, in principle, 

sufficient for obtaining any Hall voltage which occurs due to applied perpendicular 

magnetic field. A voltmeter can then be used to acquire the output across the 

remaining contacts that are not used for biasing. However, Hall voltages are 

typically quite small and therefore require amplification. This means that the 

output needs to go through an amplification step. Apart from driving sources and 

reading circuitry, external noise sources have certain limitations on the sensitivity 

of the system. Therefore, it is also important to consider minimizing the effect of 

the external noise sources for increasing the sensitivity. In this chapter, required 

biasing and magnetic field sources with relevant design arrangements for control 

circuitry are discussed to obtain the output of interest in real-time with an accurate 

measurement. 

3.1 Rig Design 

A Hall effect sensor can be thought of as a combination of three major parts; the 

transducer itself, power supply to bias the transducer and data acquisition stage 

for acquiring relevant output. However, those parts require to be used in 

conjunction with specially designed electronics to perform properly and to present 

the data to end user. Adopting specially designed electronics significantly 

improves the system capability by maintaining the performance and providing 

application specific data, thus, leaving no concern to the end user. A test rig, 

including biasing sources and specific electronics, was designed and constructed 
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to obtain a sensor with desired performance parameters. The following sections 

provide a detailed outlook to constructed rig to operate devices. 

3.1.1 Biasing Source 

A Hall transducer can, in principle, be used simply by adding a stable power 

supply to it and biasing can be achieved either with a voltage or a current source. 

Each biasing source has its own advantage and disadvantage.  A simple setup 

for biasing a Hall device is demonstrated in Figure 3-1. In case of a voltage 

source, the temperature coefficient of the transducer sensitivity will be as high as 

0.3% ∕ °C [44], meaning that the output will vary significantly with respect to 

temperature change. Therefore, some additional front-end circuitry is required to 

limit the current that will be sourced from the voltage supply and provide more 

stable output in case of voltage mode of operation [44, 267]. Limiting the current 

is particularly important to reduce the power consumption, hence, preventing 

device from thermal heat effect. Figure 3-1 illustrates the simplest way of biasing 

a Hall device. 

 

Figure 3-1: An illustration of a Hall plate biasing. 

To obtain a stable output in case of temperature changes, the voltage source or 

the gain of the amplifier can be made temperature dependent [43] to maintain a 

stable output, thus, making the system less sensitive to variations of temperature. 

In terms of implementation, a buffer must be placed in between voltage reference 

and the Hall transducer for low current transducers where an additional transistor 
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can be added in between the buffer and the device for the transducers requiring 

high currents. 

Another way of reducing the output variations with respect to temperature 

changes is to bias the transducer via a current source. Current mode of operation 

provides a reduction as low as 0.05 % ∕ °C in temperature coefficient [44]. As a 

result, current source biasing is preferable in most cases as it provides more 

stable working conditions due to significant reduction in temperature coefficient 

[43, 44, 158]. In terms of current mode of operation, a power supply can simply 

be used with a combination of resistors for biasing devices. A constant current 

biasing circuit can be achieved by placing simply a resistor in between voltage 

reference and the transducer. It can also be obtained via using a transistor by 

connecting it to the transducer as shown in Figure 3-2. 

 

Figure 3-2: Biasing Hall transducer via a constant current source using a transistor. 
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3.1.2 Magnetic Field Source 

A magnetic field source is required for applying a force on moving charges, thus, 

creating a transverse voltage. An electromagnet could be made simply by winding 

a current carrying wire on a piece of ferromagnetic material such as iron and can 

be used as a magnetic field source that can be varied. Another approach is to 

use a permanent magnet as a constant magnetic field source. In both cases, the 

magnetic field lines should be applied perpendicular to the surface plane of the 

device and needs to be able to provide a uniform field. 

Strong rare earth magnets (First4Magnets-UK) were used as constant magnetic 

field source. To apply a strong and uniform field in a perpendicular orientation a 

‘c-core shape’ was designed as shown in Figure 3-3 (a) and made from pure iron 

for applying field lines perpendicularly as uniform as possible. Then, neodymium 

magnets (First4Magnets-UK) with various thickness and radius were used as 

constant magnetic field sources. 

 

Figure 3-3: Magnetic field sources. A rare earth magnet in a designed c-core shape and made of 
pure iron (a). Two rare earth magnets in a designed plastic holder (b - left) and arranged for 
providing constant magnetic field. A Helmholtz coil (b – right) and Maxwell coil (c) for providing 
variable magnetic field. The c-core shape was also used as a variable magnetic field source by 
winding a current carrying wire without including rare earth magnet. 

Using magnets in such a geometry made the magnetic field even stronger and a 

field strength of up to 750 mT was obtained and used as a high field providing 

source. Moreover, Helmholtz coils was also designed and constructed by using 
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laser cut acrylic pieces (Figure 3-3 (b)). The latter setup provided a constant field 

strength of 120 mT (Figure 3-3 (b) – black shape on the left containing two 

neodymium magnet) along with a variable field of up to 20 mT (Figure 3-3 (b) – 

orange shape on the right containing a wire). The specification of permanent 

magnets used in this study is summarised in Table 3-1. 

Magnet Diameter Thickness Pull Force 

N42 Neodymium Pot Magnet 60 mm 14.5 mm 136 kg 

N52 Neodymium “Strongest Grade” Magnet 20 mm 10 mm 14.8 kg 

N42 Neodymium Magnet 10 mm 10 mm 3.9 kg 

Table 3-1: Specification of permanent magnets used in this study (All magnets were purchased 
from First4Magnets-UK.) 

In addition, a Maxwell coil (Figure 3-3 (c)), designed and made in Newcastle 

University as part of a previous PhD project [377], was used as a uniform and 

variable magnetic field source. This coil was made of double insulated 

Magnetemp CA200 copper transformer wire which had 1 mm diameter. This wire 

was wound on to a custom made Tuffnall formers by hand. The field response of 

this magnet was calculated to be 1.159 mT/A. A cross-sectional view of used 

Maxwell coil is given in Figure 3-4. 

 

Figure 3-4: Cross-sectional view of the Maxwell Coil. Adapted from [377]. 
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All these sources were used to characterise the response of graphene devices 

for varying magnetic fields as well as for its sensitivity to low level field strengths. 

The provided quantitative values were obtained by using a commercially 

available gauss meter (Hirst Magnetics GM08 Gauss Meter).  

3.1.3 Amplification 

In general, Hall voltages are quite small and therefore require amplification 

meaning that the output needs to go through an amplification stage. Therefore, it 

is necessary to implement an amplification process since the output of such 

systems are in millivolt or microvolt ranges. Depending on the structure of the 

devices, the Hall voltage might be even smaller. For instance, Hall voltage 

obtained from output of the devices made on PCB (see section 4.4.1) was in 

nanovolts range. This can be explained by high carrier density and relatively thick 

structure of the materials that were used to form those devices. The smaller 

ranges make it difficult to measure since it is below the detectable range of most 

of the acquisition systems. To overcome the issue, an amplification stage is 

required in order to bring the Hall voltage to a level that can be measured easily. 

In the amplification stage, an instrumentation amplifier is desired since the Hall 

devices have differential outputs as seen in Figure 3-5. Therefore, a zero-drift, 

precision programmable instrumentation amplifier, LMP8358 (see Figure 3-6), 

with a high gain (x10 - x1000) was used to amplify the differential output signal 

from the device. 

 

Figure 3-5: Implementation of an amplification stage. 
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Figure 3-6: The structure of LMP8358MA instrumentation amplifier (Texas Instruments). 

3.1.4 Offset Removal 

The offset voltage is an undesired effect which occurs due to contact 

misalignments, poor surface roughness or non-homogeneous device structure 

[43, 44, 378] and introduces a non-zero voltage value for the cases of zero 

magnetic field and keeps increasing with increased current under constant 

magnetic field. In most cases, this voltage could be even higher than the actual 

Hall voltage that is point of interest. Figure 3-7 represents the parameters that 

causes the offset voltage. 

 

Figure 3-7: The parameters that causes offset voltage. 
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The amplification stage increases the output and help better understanding of the 

voltage change; however, it still has the limitations in terms of the ability of 

accurate measurement since the output is amplified together with offset voltage. 

That means the amplification process also causes the amplification of the offset 

voltage, as well. A potentiometer can be used as a tool for eliminating offset 

voltage by being connected to the output of the amplification circuit as shown in 

Figure 3-8 and could be arranged to provide zero offset. However, this will work 

for a specific biasing current and will require an adjustment if the amount of 

biasing current changes. Additionally, thermal effects will be dominant since a 

potentiometer is in use. 

 

Figure 3-8: A basic offset removal stage for Hall devices using a potentiometer. 

3.1.5 External Noise Cancellation 

External noise sources have certain limitations on electronic circuits. Likewise, 

the developed system is prone to external noise sources which needs to be dealt 

with. In addition to implemented stages given in previous sections, a shielded 

aluminium enclosure (RS Components, UK) was used to serve as a Faraday 

cage. As shown in the Figure 3-9, it is a closed dark box and helped eliminate 

external noise sources such as RF and ambient light etc. The external 

connections to inner medium were made via BNC connectors. 
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Figure 3-9: Outer (left) and inner (right) view of the shielded aluminium enclosure. 

3.1.6 Data Acquisition 

Data acquisition can be performed after the amplification and offset removal 

stages. As was mentioned in section 3.1.4 the amplification increases the offset 

voltage as well, however, this can be eliminated via the procedure explained. The 

amplification stage introduces another issue which might cause a deteriorating 

effect on actual signal of interest since it leads to a similar amount of amplification 

of noise signals. Therefore, the output of the amplifier must be filtered with a low 

pass filter for removal of undesired frequency components. Figure 3-10 shows 

the implementation of a filtering stage. A filter having a specified cut-off frequency 

can simply be integrated to the circuit via passive components such as capacitors 

and resistors. Meanwhile, it can also be filtered using a software after acquisition.  

 

Figure 3-10: A basic biasing, amplifying and offset removal stages along with filtering stage for 
Hall devices. 
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A portable multimeter (Fluke 189 True RMS Multimeter) capable of measuring 

microvolts and a Keithley 6517B electrometer with Digimess DM200 digital 

multimeter was used to observe the output behaviour of the devices. In cases 

where the voltage was too low to measure by those equipment, a Keithley 2182A 

nanovoltmeter was used. In addition, a data acquisition card (National Instrument 

USB6221 DAQ) was also used to record the output for further analysis using 

LabVIEW software. The USB6221 DAQ is a high-performance multifunction data 

acquisition module that was optimised for fast sampling rates with superior 

accuracy. It can easily be connected to a PC via USB Port. It provides 16 analog 

inputs (16-bit, 250 kS/s) and 2 analog outputs (16-bit, 833 kS/s) along with 24 

digital I/O (8 clocked) and 32-bit counters. 

3.2 Implementation of an Integrated System 

The simple rule for obtaining a Hall voltage is to form at least four contacts on a 

thin sheet of metal or semiconductor. This is, in principle, sufficient for capturing 

any Hall voltage which occurs due to the applied perpendicular magnetic field. 

However, Hall voltages are typically quite small and therefore require 

amplification. In addition, offset voltages may be significantly higher than the Hall 

voltage. The offset voltage is an undesired outcome that occurs due to contact 

misalignments or poor surface roughness and non-homogeneous device 

structure [44]. This must be eliminated when forming a system with high 

sensitivity. The approaches presented in above sections will not be able to 

remove the offset dynamically since any change in the biasing current leads to a 

change in output regardless of magnetic field. More importantly, the output is 

prone to thermal effects in such a design since it becomes very sensitive to 

temperature changes. To remove the offset voltage a technique called ‘current 

spinning’ was employed [379] which can remove the offset voltage dynamically. 

Figure 3-11 is a representation of a cross shaped Hall device which will be used 

to explain the spinning method between contacts. 

Basically, the idea can be explained by a simple approximation of a Hall device 

structure by using four resistors connected to each other in a Wheatstone bridge 

structure. In this case, an offset voltage can easily be introduced by using three 

resistors with the same values and one with a different value. Once the current is 
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applied from one connection to the other non-neighbouring connection a voltage 

will be measured between other two non-neighbouring connection points. If this 

setup is rotated by 180°, the measured voltage will change in sign but remain as 

the same value. 

 

Figure 3-11: A representation of cross shape Hall device. 

In case of a Hall device, the Hall voltage would not change since it depends on 

the exerted force (given in equation (2-1)) due to applied current and magnetic 

field. Once the outputs for 0° and 180° are obtained, the Hall voltage can easily 

be calculated by doing a simple mathematical operation on them. This method is 

summarised in Table 3-2 by considering the current rotation between all contacts. 

Current Measure Obtained Output 

From A to B Between C and D VH + Voffset1 

From C to D Between B and A VH + Voffset2 

From B to A Between D and C VH – Voffset1 

From D to C Between A and B VH – Voffset2 

Table 3-2: Biasing configurations and relevant outputs for a cross shape Hall device (see Figure 
3-11 for cross shape). 

In general, it is relatively simple to integrate Hall devices with on-chip circuitry for 

actuation and read-out, however, this is not straightforward when using graphene 

materials. The theoretical sensitivity of the system reduces significantly during 

implementation – as demonstrated by a previous attempt to integrate Hall effect 

graphene devices on a CMOS chip [291]. In the reported work, the achieved 

sensitivity limit (200 V/AT) [291] was similar to silicon based Hall devices (310 

V/AT) [380]. This may be due to introducing defects in the graphene during the 

processing steps. 

A

B

DC
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To address the issue, a bespoke circuitry was designed and constructed on a 

PCB board, by employing a ‘current spin model’ [378], and integrated with the 

graphene Hall effect sensors for biasing and processing the output. The circuitry 

was used to correct the output by eliminating non-desired offset voltages and 

reducing noise levels thus providing an improvement on the sensitivity of the 

overall system. The schematic in Figure 3-12 demonstrates the steps that were 

implemented for driving devices and reading the outputs. 

 

Figure 3-12: Schematic of developed driving and processing circuitry for rotating the current 
between contacts and reading the output simultaneously. Current and voltage switching circuits 
are simultaneously operating with the help of a microcontroller and the output is amplified before 
being read by the data acquisition card. Then, the obtained output is filtered and visualized via a 
user interface created via LabVIEW. The entire system synchronously operates to provide a 
smooth elimination process. 

Fundamentally, the current is driven from one of the contacts to a non-

neighbouring contact and simultaneously the produced output voltage is 

measured across the remaining two contacts (e.g. current flows from the top 

contact to the bottom and the voltage difference between left and right contacts 

is measured – see Figure 3-11 and Table 3-2)). In such a case, the produced 
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output includes both Hall voltage (VH) generated by applied perpendicular 

magnetic field (By) and offset voltage (Voff). To be able to remove the offset 

voltage, the current flow is rotated 180 and passes through two new non-

neighbouring contacts whilst the voltage across the remaining contacts is 

measured. The current flows from left contact to the right contact and the voltage 

difference between bottom and top contacts are measured (see Figure 3-11 and 

Table 3-2). In this case, the measured output includes Hall voltage subtracted by 

offset voltage. For a more robust elimination, this procedure continues for one 

complete cycle meaning that the current is driven between all contacts for a 

complete cycle following 90 rotation steps. Averaging the obtained outputs 

eliminates the offset and reveals the Hall voltage. A typical processed output of 

the device for one cycle is given in Figure 3-13. Each region indicated in the figure 

corresponds to the specific cases mentioned above, e.g., region 1 is the 

measured output between left and right contacts whilst the current flows from top 

to bottom. 

 

Figure 3-13: A Typical output obtained after one cycle with a rotation frequency of 2 Hz. Each 
region corresponds to a specific obtained output of which current flows between two non-
neighbouring contacts. 

The constructed PCB has an on-board constant current source, which can easily 

be adjusted from 1 µA to 10 mA and can bias the sensor in floating or grounded 

mode of operation. Due to the controllable sensitivity of graphene, an optional 

input for gate voltage was also included. Current and voltage switching 

mechanisms were connected to the current source and the amplifier along with 
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the connections to device contacts as shown by the circuit diagram in Figure 3-14. 

A microcontroller simultaneously manipulates the current rotation and output 

reading for various frequencies up to 1 MHz, however, due to the lack of reading 

capacity of data acquisition device the system was operated in a maximum 

frequency of up to 50 kHz. Amplification was performed via a high-performance 

instrumentation amplifier (LMP8358). The image in Figure 3-15 shows the 

designed system built on a PCB board. 

 

Figure 3-14: Circuit diagram of the constructed system. 

The whole setup was synchronized with a data acquisition card for obtaining the 

output and a LabVIEW interface was created for saving and analysing the 

obtained data. The sensors can be integrated by being mounted on the board via 

the tongue shaped tip shown. Connections can also be made remotely using the 

relevant connection pins on the board. Assembling the driving and read-out 

system on a PCB is beneficial since there are challenges to integrate graphene 

on a single chip which encompasses all the electronic functionalities required for 

operation. As was demonstrated in a previous study  [291], the complexity and 

temperature requirements of fabrication makes it difficult to integrate the 

graphene devices with a chip having biasing and read-out functionality. Figure 

3-16 shows the setup which was used to operate devices. 
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Figure 3-15: Constructed system board PCB. The sensors can easily be mounted on the tongue 
shaped tip or can be remotely connected via specified pins provided. The on-board current biasing 
mechanism can be used for biasing the Hall elements. The PCB also allows a current source to 
be connected externally for biasing.  

 

Figure 3-16: Measurement setup including a Faraday box (a) for eliminating external noise 
sources, a Maxwell coil (b) with power supplies (c) and permanent rare earth magnets (d) for 
obtaining variable and constant magnetic fields uniformly and a Keithley 6221 current source (e) 
for biasing with DAQ device (f) for data acquisition. 



Chapter 3 

55 

3.2.1 Offset and Noise Reduction 

The developed driving and processing board was tested for its dynamic offset 

removal ability. The results obtained from the output of the devices with and 

without circuit implementation was assessed for cases of no magnetic field with 

a variable current source (Figure 3-17 (a)) and constant current flow with variable 

magnetic field (Figure 3-17 (b)). The implementation of the circuitry helped 

reducing the offset voltage by 99%. 

 

Figure 3-17: Demonstration of offset removal utilising graphene devices (see section 6.4.1). Direct 
driving of the sensor under no magnetic field (a). The data shown with yellow gives the reduction 
ratio. The response of the sensor under variable magnetic field with constant current source of 
15 µA (b). Residual magnetic offset values obtained for both processed and non-processed output 
(c).  
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The offset equivalent magnetic field is defined as the ratio of offset voltage to the 

absolute sensitivity and given as: 

 𝐵𝑜𝑓𝑓 =
𝑉𝑜𝑓𝑓

𝑆𝐴
 (−) 

where Boff stands for offset equivalent magnetic field and Voff represents offset 

voltage. The negligible residual offset shown in Figure 3-17 (c) corresponded to 

an offset equivalent magnetic field value of 100 nT thus providing a significant 

improvement in terms of the system accuracy. 

Also, fast Fourier transform measurements on devices with and without biasing 

and driving circuitry showed that the noise level is reduced considerably by 

employing the developed circuitry. The power spectral density figures showed 

that the higher frequency operation leads to lower noise effect, thus, providing 

devices with better sensitivities. Figure 3-18 shows power spectral density 

measurements with respect to frequency of rotation. 

 

Figure 3-18: Power spectral density measurement with respect to rotation frequency showed a 
considerable amount of reduction in noise. 

3.3 Bead Detection 

Magnetic beads have been mostly used in biosensing platforms that utilise Hall 

mechanism as detection scheme [102, 105, 109, 115, 153, 272, 276, 282, 340, 

348, 349]. This is most commonly preferred method for performing biological 
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measurements [154] in Hall effect based biosensors. Adopting beads in Hall 

sensors require a different scheme for detection. Basically, magnetic micro/nano 

beads are used as a label to achieve the detection by covering the surface with 

a desired target analyte. Then, the sensor surface is functionalized in such a way 

to capture those target analytes. This method is also known as ‘ac susceptibility 

measurements’ [154] and is preferred commonly for performing biological 

measurements. The idea in ac susceptibility measurement is to create an 

alternating magnetic field with a certain frequency. This field is then applied in the 

plane of the sensor in the direction of the applied dc current. A perpendicular 

constant magnetic field is applied after the in-plane alternating field is created. If 

the beads are on the sensor surface then an output signal that has the same 

frequency of the in-plane ac excitation field must be observed, otherwise, there 

will not be any output. In other words, the output should be observed in case of 

binding event. The detection scheme is demonstrated in Figure 3-19 via a 

constructed system for potential future works. 

 

Figure 3-19: Schematic view of the measurement setup for ac susceptibility measurements. The 
setup contains Zurich HF2LI Lock-in amplifier, Signal Force (Data Physics) power amplifier, 
Maxwell coil or permanent magnet for dc field and Helmholtz coil for ac field creation. 

In order to achieve such a scheme, a lock-in amplifier (Zurich Instruments HF2LI) 

was used to drive a power amplifier (Signal Force – Data Physics). The power 

amplifier fed a handmade Helmholtz coil for creating an alternating field having 

the same frequency of the excitation signal produced by lock-in amplifier. The 

Helmholtz coil was designed to include a base for placing the sensor chip in the 

right orientation so that in plane magnetic field can be applied. A high current 
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power supply (Aim-TTi CPX400D) was used to create constant magnetic field by 

employing a Maxwell coil. The sensor output was connected to lock-in amplifier 

for achieving the detection of the same frequency of the driven signal. A Keithley 

6221 DC and AC current source was employed to bias the sensors and a Keithley 

6517B electrometer with a DM 200 multimeter were used for confirmation. 

Meanwhile, due to necessity for real-time monitoring, this method has not been 

used for measurements. However, the setup for this scheme was created, as 

shown in Figure 3-20, for potential future applications where beads may be used. 

Moreover, the complexity in this scheme does not make it attractive in terms of 

practicality. 

 

Figure 3-20: Test rig setup for measurements including lock-in amplifier (a), LabVIEW interface 
(b), Hirst Magnetics GM08 gauss meter (c), Faraday cage (d), Maxwell coil (e), Helmholtz coil 
(inside Maxwell coil) (f), high current power supply (g) to produce magnetic field, Keithley 6221 
DC and AC current source (h), Keithley 6517B electrometer (i), Signal Force (Data Physics) power 
amplifier (j) and Digimess DM 200 Digital Multimeter (k). 
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Chapter 4. Gold Hall Devices 

Any thin layer of metal or semiconductor in a simple rectangular shape with four 

contacts could be considered as a Hall device although they would suffer from 

significant small potential difference produced at the output due to their electric 

transport parameters. As is mentioned in section 2.2, certain requirements such 

as carrier mobility, density of charge carriers etc., should be satisfied in materials 

to have effective and sensitive Hall devices. In fabrication of gold devices, the 

aim was to explore a cheaper and easier way of implementation for biosensors 

as gold can easily be functionalised for biosensing purposes [381-385]. This 

Chapter presents entire steps that were undertaken from design and manufacture 

to measurements of Hall devices made of gold. 

4.1 Design 

Hall devices are basically devices that are producing information, with respect to 

applied field, as an output voltage. As is given in equation (2-2), Hall voltage 

output is proportional with carrier mobility and inversely proportional with carrier 

concentration. However, the geometrical structure has certain effects in terms of 

produced output [43, 264, 267, 386]. Therefore, designing a suitable geometrical 

structure [43, 44, 264, 267, 387] has a huge influence in terms of produced 

output. Scaling those structures are also affecting the output voltage [387, 388]. 

Several devices with different geometrical structures (Greek cross, square, 

cauliflower, round etc.,) and dimensions. 

Figure 4-1 is a sketch of basic geometrical structures with corresponding 

dimensions (in terms of length and width) on the masks. Active areas that were 

ranging from 1 mm to 3 mm were designed to be used for devices on PCB. The 

reason of designing devices with relatively large sizes (millimetre range) was due 

to PCB fabrication limits. The corresponding shapes were designed as a gerber 

file (.gbr extention) in order to fabricate appropriate geometrical structures. 
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Figure 4-1: A representation of basic shapes of circle (a), square (b), cross (c) and cauliflower (d) 
with corresponding dimensions as length (L) and width (W). 

A second design including cross structures with relatively smaller sizes (500 µm) 

was also prepared as dxf file (.dxf extension). This was used to operate laser 

machine (HPC Laserscript) to create masks for gold sputtering on a glass 

substrate. The reason of choosing the latter dimension was because of the limit 

that the laser cutting machine can reach for obtaining a clear mask from acrylic. 

Due to thermal distortion in acrylic, smaller dimensions with clear shapes were 

not feasible. 

To fabricate micro-scale gold devices on a silicon substrate, a mask was 

designed with several geometrical forms (cross, square, circle, cauliflower) along 

with various length to width ratios (𝑙/𝑤) greater than 3 and made on a 4-inch 

glass to form devices having active areas of  10 µm, 20 µm, 40 µm and 60 µm. 

An integrated circuit design software (Tanner Tools – L-edit) was used to design 

the mask with geometrical structures to form devices along with contact pads. 

Figure 4-2 shows the designed mask. 
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Figure 4-2: Designed mask with several Hall devices from 10 microns to 60 microns along with 
beams and cantilever structures having various sizes.  

4.2 Materials 

Thin films [124, 127, 389, 390], 2DEG heterostructures [121, 123, 391-394] or 

single layer atomic structures such as graphene and its derivatives [63, 71, 72, 

128] are the excellent choices since they meet the required criteria for better Hall 

devices. However, working with those materials requires familiarity of 

microfabrication processes which could be expensive to a certain extent and 

could cost time. Because, every stage of the process, from design to actual 

manufacturing, must be well-defined. Additionally, the manufactured devices 

should be planned as part of a system that is easy to be biased with current or 
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voltage sources and allows reading the output without causing confusion. 

Therefore, it was decided to work with relatively easy to fabricate devices. 

4.2.1 Devices on PCB 

Initially, gold devices were planned to be made on a traditional PCB in 

combination with nickel and copper. Those devices are not practical for the Hall 

device structures; however, it was used to help in experimental setup described 

in Chapter 3. The aim was to optimise sensing circuitry although PCB Hall 

devices are not viable for sensing purposes. 

4.2.2 Devices on Glass 

The second approach was to form gold structures directly on a glass substrate. 

This approach was simple in terms of fabrication with feasibility as Hall sensors. 

However, they presented a disadvantage in terms of biosensing which occurs 

due to adhesion issue. Since no adhesion layer such as chromium or titanium 

was used, the gold layer was prone to delamination in wet environment. 

4.2.3 Devices on Silicon Substrate 

The last approach was to implement microfabrication steps and form gold based 

micro-Hall devices in combination of chromium on a silicon die. This method of 

fabrication was more complicated to make devices and leading to slightly less 

sensitive sensors for relatively bigger sizes, yet, can be applied to biosensing 

applications. 

4.3 Fabrication 

4.3.1 Fabrication on PCB  

This approach was an unusual way of fabrication for Hall structures as they are 

commonly made via microfabrication techniques mostly using semiconductors 

due to the advantage of being able to control the material parameters which are 

crucial for Hall effect applications. The aim was to use an alternative and easier 

way of device fabrication and practically observe the response of an 

inhomogeneous combination of metals along with different shapes and sizes. 

Additionally, and more importantly, they were used to develop the Hall 
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measurement system that is mentioned in section 3.2. The devices were made 

of single-sided PCB with no plated-through holes and were built on 1.6mm FR4 

epoxy glass fibre substrate along with three layers of different materials using 

PCB fabrication techniques. It was consisted of 1 oz (35 µm) of copper (Cu) layer, 

3-5 µm nickel (Ni) layer, and 0.3 µm of gold (Au) layer. A cross-sectional view of 

the design is given in Figure 4-3. 

 

Figure 4-3: Cross-sectional view of designed Hall devices on PCB. 

Several devices with different geometrical structures (Greek cross, square, 

cauliflower, round etc.,) and dimensions ranging from 1 mm to 3 mm were 

fabricated for each shape (see Figure 4-4). The reason of designing devices with 

relatively large sizes (millimetre range) was due to PCB fabrication limits. Most of 

the devices consisted of 4 contact points; 2 for biasing and other 2 for reading, 

respectively. The devices with 6 contacts (Figure 4-4 (e) and Figure 4-4(f)) were 

aimed to be used for quantum Hall effect or magnetoresistance effects. However, 

they were not tested for quantum Hall effect since it requires too strong magnetic 

field which was not practical at this stage. 

The areas covered by solder resist was designed for potentially limiting any bead 

attachment to the required areas of devices meaning that the functionalisation 

process can be performed only on active areas of the devices. Meanwhile, those 

devices were used as a test step to create a relevant electronic circuitry for further 

works rather than functionalising for specific purposes. This was due to high 

carrier concentration and relatively thick and large structure of the devices which 

makes them not practical for such a purpose. The fabricated PCB Hall devices 

with various structures is shown in Figure 4-4. 
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Figure 4-4: Fabricated Hall Devices. Cauliflower shapes with 1 mm (a) and 3 mm (b). Hall bar 
with 1 mm (c) and 3 mm (d). Hall bar with two legs having 1 mm (e) and 3 mm (f) shapes. Cross 
shapes with 1 mm (g) and 3 mm (h). Circle shapes with 1mm (i) and 3 mm (j) diameters. Square 
shapes with 1 mm2 (k) and 3 mm2 (l). 

4.3.2 Fabrication on Glass 

Devices that are explained in previous section had non-homogeneous structures 

since they included three different layers of materials. Additionally, surface 

roughness was not as smooth as desired. Therefore, additional structures were 

designed and made on a thin acrylic mask by cutting relevant structures with laser 

cutting machine (HPC Laserjet). Then a gold layer of around 30 nm were formed 

by sputtering technique using a Bio-Rad Microscience Division SC500 sputter 

machine. Those devices had relatively large sizes (500 μm and more) due to the 

limitation in laser beam size and thermal distortion issue in the acrylic. Figure 4-5 

shows the sputter machine used for forming gold structures (a) along with the 

created acrylic masks on glass slides (b) and one of the slides with formed Hall 

devices (c). 
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Figure 4-5: Gold sputter coater (Bio-Rad Microscience Division SC500) used for gold sputtering 
on glass (a) with designed acrylic masks (b) and obtained devices (c). 

4.3.3 Fabrication on Silicon Substrate 

Gold devices on glass were found to be feasible as Hall devices, however, there 

was an issue regarding the adhesion between gold layer and the substrate 

implying that the devices will work in dry air only, and in case of a liquid 

environment they will be detached from the surface of the substrate. This was 

practically tested and confirmed meaning that they were not suitable for 

biosensing due to adhesion issue. Therefore, it was decided to fabricate gold 

devices with an adhesion layer. As a result, in addition to those devices made on 

PCB and glass, micro-Hall devices from 10 µm to 60 µm were also fabricated 

using microfabrication techniques including lithography and lift-off processes by 

employing a SiO2/Si substrate. A chromium layer was used to aid the adhesion. 

Figure 4-6 demonstrates the microfabrication steps designed for device 

manufacturing. 

The fabrication started with cutting silicon substrates of around 10 × 10 mm2 and 

cleaning before any process. The cleaning procedure took place initially by doing 
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ultrasonic bath at 80 °C using NMP (N-methyl-2-pyrrolidone) and IPA (propan-2-

ol) for 10 and 5 minutes, respectively, followed by rinsing with ultra-pure water. 

This was carried out as an initial step for organic clean. Then, further cleaning 

process was taken place using piranha solution (a mixture of H2O2 (hydrogen 

peroxide) and H2SO4 (sulphuric acid)) to remove any residue. The last step in 

cleaning was to employ RCA cleaning method (steps including NH4OH 

(ammonium solution), H2O2 and BHF (buffered hydrofluoric acid)). After wet-

chemical cleaning procedure, the substrate was dried using nitrogen gun. 

 

Figure 4-6: Lithography and lift-off process for micro-Hall gold devices. Positive photoresist cover 
(a), lithography and developing resist stages for constructing the pattern (b), chromium (Cr) and 
gold (Au) evaporation using e-beam evaporator (c), and lift-off process (d). 

The substrate was covered with negative photoresist (AZ5214E) by using a spin 

coater (EMS 6000 spin coater) and pre-baked at 90 °C for 10 minutes, following 

the cleaning procedure. Then, the lithography process was performed with the 

aid of patterned glass mask. The sample was exposed to UV for 4 seconds using 
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KarlSuss MJB-3 mask aligner. A post-bake stage took place by using a hot plate 

(Electronic Micro Systems Ltd Model 1000-1 Precision Hot Plate) at 120 °C for 

30 seconds followed by a blank UV exposure for 8 seconds. The latter process 

was performed to use the photoresist as an image reversal. After lithography, 

patterns were obtained by developing the photoresist using AZ 326 MIF 

developer. A chromium layer of 7 nm and gold layer of 35 nm were evaporated 

using e-beam evaporator (Edwards 306 e-beam evaporator) after developing 

relevant structure. These thicknesses were decided to be adequate for visibility 

and adhesion. In addition, the stated thicknesses were decided to be sufficient 

for potential biosensing applications in liquid medium. The last step was to do lift-

off process in order to remove unnecessary parts. Figure 4-7 shows the obtained 

device structures after following the steps explained above. 

 

Figure 4-7: Patterned photoresist after lithography and developer (a), obtained device structures 
after lift-off (b). 

A similar process was carried out to form contacts on the obtained structures. 

Meanwhile, it is worth to note that the steps given in Figure 4-6 are for forming 

the Hall features using negative photoresist. To obtain contacts, positive resist 

was used instead of negative resist due to feature arrangements on the mask, 

therefore, the process took place in the reverse meaning that the features were 

formed on the areas where exposed to UV directly. In this case, the same 

photoresist was used, however, it was pre-baked at 90 °C for 15 minutes and the 

exposure time was 4 seconds without performing post-bake and blank exposure. 

The same developer was used to develop the resist and a layer of chromium with 

30 nm along with a layer of gold with 250 nm were evaporated using e-beam 

evaporator. The fabrication was completed by doing the second lithography. 
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Figure 4-8 shows the developed features aligned with previously formed Hall 

structures (a) and the devices with contacts after lithography process (b) along 

with the fabricated devices on a 10 × 10 mm2 die (c). 

 

Figure 4-8: Patterning contact locations and alignment with photoresist (a), formed contacts after 
second lift-off (b). A silicon die used as a substrate with the fabricated devices on. 

4.4 Measurements and Results 

4.4.1 PCB Hall Devices 

As was mentioned in previous sections, Hall devices on a PCB substrate is not 

an ideal way of device formation. Because of non-homogeneous material 

combination along with relatively thick and large structures, these types of 

devices required high current and high magnetic field to produce considerable 

output. Initially, a low noise linear DC power supply (Farnell E30-28T) was used 

to drive the devices. The reason of not using a switching power supply was to 

minimize any noise caused by biasing source. The linear power supply was used 

in combination with high power resistors to obtain a current source with higher 

ranges (up to 3A). Apart from this power supply, a Keithley 6221 AC and DC 
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current source was also used for operating devices. It can provide a DC current 

range of −100 mA to +100 mA and is able to provide current in nano-amp 

precision. Additionally, it can provide an AC current range of up to 2 mA, as well. 

To allow current flow, the contacts of the device were soldered using a screened 

cable. The reason of using the screened cable was to eliminate external noise 

effects. The PCB Hall device was placed in between designed c-core structure 

as shown in Figure 4-9 in order to apply a perpendicular magnetic field.  

 

Figure 4-9: A PCB Hall device placed in the designed c-shaped structure which consists of a rare 
earth magnet and iron core to perform Hall measurements. 

The Hall voltage is not affected from the misalignment of the contacts along the 

length of the device. Because the electrons would feel the same amount of 

resistance to their flow and a voltage value due to the exerted force would occur 

at the location where the transverse contacts are placed. A typical output 

obtained from fabricated PCB devices is shown in Figure 4-10 as an example. 

The zero-magnetic field line should have been on zero-horizontal line instead of 

being a negative value with a voltage gradient. This was because of the offset 

voltage effect as explained in section 3.1.4. However, if the no-field line is taken 

as a reference, the response of the device is highly linear for both positive and 

negative magnetic field strengths since a voltage gradient is observed for positive 

and negative values of current and magnetic field. This was a good sign in terms 

of linearity point of view. Nevertheless, this response must be corrected as it 

introduces complexity if the device is intended to be used for specific purposes. 
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The PCB Hall devices were designed and fabricated with the aim to create a 

circuitry for offset removal initially. Because, they were expected to have low 

performance parameters as Hall sensors, however, the idea was still to obtain an 

accurate measurement from them both for constructing a working circuitry for 

graphene devices and adopting PCB devices as biosensors in future works. The 

integrated circuitry explained in section 3.2 was designed and constructed with 

the aid of fabricated PCB devices. Figure 4-11 presents the corrected version of 

the results given in Figure 4-10. 

 

Figure 4-10: A typical output obtained from devices made on PCB without correction. 

The output voltages in few hundreds of nanovolts were obtained from PCB based 

Hall devices. In order to be able to achieve an output of around few hundreds of 

microvolts range, the system must at least be driven with no less than 1 A with 

the employment of high magnetic field. Meanwhile, applying high current is 

particularly not convenient for safety reasons. It also causes more power 

consumption which consequently leads to disruptive working behaviour due to 

thermal heat effects. 

A current-related sensitivity of 3 µV ∕ AT was calculated which proved that the 

sensitivity of those type of Hall sensors are not in a desired range as was 

estimated due to its relatively large and thick structure along with its non-

homogeneous structure. 
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Figure 4-11: Corrected Hall output after removing offset voltage. 

4.4.2 Devices on Glass Substrate 

The gold devices on a glass substrate were designed and fabricated to eliminate 

the non-homogeneous structure issue so that the sensitivity could be improved. 

To perform measurements, a screened cable was connected to the device’s 

contacts with the aid of silver paint (RS Pro Silver Conductive Adhesive Paint). 

Similar to the case in the PCB devices, the magnetic field was provided using the 

same iron core and rare earth magnet as shown in Figure 4-12. 

 

Figure 4-12: Au Hall device on glass substrate placed in magnetic field. 
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As was expected, this type of devices showed better sensitivity characteristics 

compared to PCB ones. Because, it did not include different material combination 

and had thinner gold layer. They also presented a good linearity behaviour. 

Outputs in microvolt range were obtained from those devices as shown in Figure 

4-13. The obtained values were better than the PCB based devices by about an 

order of magnitude. 

The behaviour they presented suggests that they can be adopted for applications 

where high sensitivity is not required. A current-related sensitivity of 5 mV ∕ AT 

was obtained which confirms the improvement of the performance comparing 

PCB based Hall sensors. However, in terms of biosensing applications, they are 

not suitable due to lack of adhesion to the substrate which consequently causes 

delamination when a liquid inserted on them. 

 

Figure 4-13: Response of a gold-based Hall device on gold substrate to positive and negative 
field polarities along with no magnetic field cases under varying current. 

4.4.3 Devices on Silicon Substrate 

Micro-fabricated gold devices were employed as an alternative to gold-based Hall 

devices on glass substrate to improve the adhesion. To do so, a layer of 

chromium was used as was explained in section 4.3.3. However, addition of this 

extra layer means that the performance of the device would decrease. To 
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overcome this issue, the size of the sensors was decreased to compensate the 

reduction of the performance due to adhesion layer. The fabricated devices were 

wire-bonded to a 28-pin DIP chip, as demonstrated in Figure 4-14, using a wire 

bonder (Kulicke & Soffa Industries Model 4700 Wire Bonder).   

 

Figure 4-14: A optical (a) and SEM (b) image of wire-bonded contacts to a chip. 

The initial measurements were performed on devices with 60 µm sizes. The 

performance parameters with those devices were no better than gold devices on 

glass substrate. This was an expected reduction since micro-Hall gold devices 

were fabricated with an additional layer of chromium. A current-related sensitivity 

of 3 mV/AT was obtained from those devices which verified the reduction in 

performance. Figure 4-15 shows the output change of a 60 µm device with 

respect to magnetic field.However, the following measurements on devices with 

10 µm active areas presented a considerably better performance. This was 

attributed to the size effect [43, 264, 267, 316, 387] meaning that the smaller the 

size the better the performance. A current-related sensitivity of 27 mV ∕ AT was 

calculated for those devices. In Figure 4-16, the output characteristic of a 10 µm 

device is presented with respect to varying current (a) and magnetic field (b).  
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Figure 4-15: The output of a Cr/Au device on silicon substrate with 60 µm active area. The device 
was biased with 1 mA driving current.  

 

Figure 4-16: The output of a Cr/Au device on silicon substrate with 10 µm active area. The device 
output with respect to varying current for positive and negative magnetic fields (a). The output of 
the device with respect to varying magnetic field with a biasing current of 1 mA. 
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4.5 Summary 

In general, gold-based Hall devices on PCB cannot be considered for high 

sensitivity applications due to their electric material properties and non-

homogeneous structure. However, reducing the layer sizes has merit for 

applications not requiring high sensitivity as was shown with gold devices on 

glass substrate. In reality, the performance parameters for the latter type of Hall 

sensors can significantly be improved if they can be made in smaller sizes as 

confirmed by gold devices on silicon substrate with 10 µm active areas. In this 

work, the aim was to discover a cheaper and easier fabrication method, thus, the 

devices on glass substrate were made with larger sizes, due to limitation of laser 

size and distortion in acrylic because of thermal heat effect. Moreover, sputtering 

technique is not convenient for creating a smooth surface as it is bombarding the 

gold all around the surface. Therefore, employing an appropriate glass mask with 

smaller features and implementing lithographical processes would allow smaller 

sizes. Using electron beam evaporation can improve the surface smoothness 

which will consequently lead to devices with much better performances. 

Meanwhile, it is worth to note that creating devices with only a thin gold layer will 

not be suitable for biosensing applications although they might be used for 

applications requiring dry air. Because, the material is removed from the surface 

when it is introduced in liquid environment. This is due to the lack of the adhesion 

layer. In the meantime, employing an adhesion layer will cause distortion in the 

performance as was shown by Cr ∕ Au devices with 60 µm active sizes. 

Nevertheless, this issue can be overcome by decreasing the feature size as was 

confirmed by Cr ∕ Au devices with 10 µm active areas. The performance 

parameters for the devices explained in this chapter is summarised in Table 4-1. 

Devices Current-related Sensitivity 

Au / Cu /Ni on PCB (1 mm size) 3 µV/AT 

Au on Glass Substrate (500 µm size) 5 mV/AT 

Au / Cr on SiO2/Si Substrate (60 µm size) 3 mV/AT 

Au / Cr on SiO2/Si Substrate (10 µm size) 27 mV/AT 

Table 4-1: Comparison of performance parameters for gold-based devices. 
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Chapter 5. Graphene Preparation 

In terms of graphene, the aim was initially to prepare graphene so that it can be 

used to fabricate Hall sensors on a substrate. In addition, it was also aimed to 

prepare graphene in such a way that it can be adopted to form suspended Hall 

sensors. Then, the plan was to fabricate Hall devices from both suspended and 

supported graphene sheets and explore their behaviour in terms of sensitivity and 

repeatability. Therefore, different techniques such as epitaxial graphene growth 

on silicon carbide and CVD grown graphene were employed to prepare graphene 

so that it can be used to form supported and suspended structures. CVD grown 

graphene on copper and on polymer were employed for graphene transfer 

process since this method provides large area of graphene coverage. Epitaxially 

graphene growth method was implemented using various options to obtain high 

quality films with good electrical properties. This chapter presents various options 

that were adopted to achieve supported and suspended graphene with the 

feasibility along with the strength and weakness of each method. 

5.1 Materials 

CVD and epitaxially grown graphene sheets were initially used for graphene 

preparation. CVD grown single layer graphene sheet on copper (Graphene 

Supermarket) and on polymer (Graphenea) were used for obtaining actual 

suspended structures whereas other form of graphene was used to explore the 

feasibility of implementation. To obtain suspended graphene sheets from CVD 

grown graphene, pre-patterned substrates were used. To explore the 

manufacturability of epitaxially grown graphene, a conductive silicon carbide was 

used by implementing thermal decomposition and laser heating procedures. 

5.2 Epitaxial Graphene 

5.2.1 Thermal Decomposition 

The silicon face of an n-type 4H silicon carbide sample was used to implement 

the growth process. The reason of employing this type of silicon carbide crystal 

was because of its hexagonal unit cell structure [213]. They consist of 4 and 6 
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bilayers of silicon and carbon atoms, respectively. The lattice structures of these 

types are shown in Figure 5-1.  

 

Figure 5-1: A Silicon carbide bilayer atoms and demonstration of a formed single layer graphene 
along with buffer layer (Top) [395]. Lattice structure for 3H-SiC, 4H-SiC, 6H-SiC and 15R-SiC 
(Bottom) [396]. 

The silicon carbide sample should not have any scratches on it for a successful 

growth process. Therefore, polished samples need to be used for the process. 

Also, the surface must be cleaned [213] for a successful growth. The surface 

cleaning procedure included a set of chemical process also known as RCA clean. 

Briefly, N-Methyl-2-pyrrolidone (NMP), isopropanol (IPA) and ultrapure water 

were used with the aid of ultrasonic bath for initial organic clean at 80 °C. After 
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this initial step, the samples were further treated with piranha solution (25% 

hydrogen peroxide – H2O2, 75% sulphuric acid – H2SO4) and hydrofluoric acid 

(HF) to remove any residues. Lastly, the samples underwent final cleaning steps 

including ammonium solution (NH4OH), hydrogen peroxide and buffered 

hydrofluoric acid. A nitrogen gun was then used to dry the samples. After cleaning 

the samples, an etching process was performed under argon ∕ nitrogen (95% ∕ 

5%) gas flow for about 20 minutes in a temperature around 600 °C. Then, the 

growth process was done by using a high temperature furnace (JIPELEC), as 

shown in Figure 5-2, which was heated up to 1725 °C. 

 

Figure 5-2: High temperature vacuum furnace (Newcastle University, School of Engineering). 

The latter process was performed in two steps under high vacuum (on the order 

of 10−5 - 10−6 torr). First, the sample was heated up to 1200 °C for 20 minutes to 

allow surface reconstruction of silicon carbide. Once this process was completed, 

it was further heated up to 1725 °C for 1 hour to grow graphene. It was reported 

[214] that graphene growth rate is slower on silicon terminated face (0001) than 

carbon terminated face (0001̅), thus, the graphene was grown on silicon face for 
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obtaining potentially single layer graphene. Figure 5-3 depicts the formation of 

graphene both on silicon and carbon faces of silicon carbide sample.  

 

Figure 5-3: Graphene formation on both faces of silicon carbide. 

The Raman spectrum shown in Figure 5-4 was taken as one scan and the 

arbitrary units were referenced to the same baseline. A ratio of 0.95 was 

calculated for 2D/G from Raman spectroscopy measurements, shown in Figure 

5-4, which confirmed the existence of double layer graphene [165, 236, 237, 239, 

240, 397] after implementation of thermal decomposition process. Meanwhile, the 

cost of the production is also important in addition of the quality. This requires 

alternative ways of implementations. Therefore, a relatively new technique was 

reported as an alternative process for obtaining epitaxial growth of graphene 

[258, 398-401]. Detailed exploration of this alternative method is given in the 

following section. 

 

Figure 5-4: Raman spectra of epitaxial graphene on silicon carbide. D and G peaks (a) with 2D 
peak (b).  
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5.2.2 Laser Heating 

Recently, promising results were reported based on laser beam irradiation [25, 

398-401] for graphene manufacturing purposes. This technique provides the 

advantage of performing the task under atmospheric pressure and lets the 

formation of graphene to occur just in seconds scale. In addition, depending upon 

the beam size, the patterning can also be performed simultaneously during the 

growth process [400]. Additionally, it does not require a thorough cleaning 

procedure. Thus, the growth process was decided to be performed by using a 

laser beam as a heating source because of being cost effective, time saving and 

simplicity of implementation. 

In order to implement such an experiment, a chamber was designed to be made 

of stainless steel. The cross-sectional view of the design is given in Figure 5-5 

(a). This was manufactured in mechanical workshop of the School of Engineering. 

Basically, it has an adjustable sample holder for arranging the distance between 

the sample and laser source and has a sodium chloride window to prevent back 

reflection of the beam before it reaches the sample. Additionally, it has a pressure 

gauge to monitor the pressure inside the chamber as it was designed to be 

capable of handling a certain amount of pressure. However, it was used only with 

free flow of argon gas during the experiments as it has to be done in an inert 

atmosphere. The actual view of the manufactured chamber is shown in Figure 

5-5 (b). 

In a previously reported study, an n-type 6H silicon carbide sample was used and 

a CO2 laser source was used to heat only a spot of beam diameter for 10 seconds 

[398]. However, it was not suitable for growing graphene uniformly on the 

substrate since the growth area was limited to the diameter of the beam size. 

Therefore, it was decided to scan the entire substrate using laser beam in order 

to have a uniformly grown graphene. To do so, a 60 W CO2 laser cutting machine 

(HPC Laserscript) was used in engrave mode with a scanning speed of 300 

mm∕min and 80% of power to heat the entire surface of the sample. A piece of 

n-type 4H silicon carbide was placed on the top of the adjustable sample holder 

and an argon gas bottle was connected to chamber. The gas was allowed to flow 

freely under atmospheric pressure and the sample was scanned via laser beam 
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for 25 times. Figure 5-6 shows the entire experimental setup including laser 

machine, argon gas bottle along with the manufactured chamber (inset). 

 

Figure 5-5: Cross-sectional view of the designed chamber for implementation of laser heating (a). 
The chamber was made of stainless steel and a pressure gauge was fitted with required hose 
connectors for gas connection (b). 

 

Figure 5-6: Laser heating setup. 
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Raman measurement, given in Figure 5-7, showed that D, G and 2D peaks of 

graphene were obtained. However, 2D peak of graphene had a full width half 

maximum of almost 180 𝑐𝑚−1  which is too broad for monolayer graphene. 

Meanwhile, it still has promise for graphene formation since other two peaks (D 

and G) are in corresponding locations and have satisfactory shapes. This could 

lead potentially single layer graphene on a large scale after optimizing the setup 

and, consequently, could either reduce the fabrication costs or reduce the time 

required for epitaxial growth process. Few rearrangements such as laser power, 

flow rate of the gas or pressurizing the chamber could make the process an 

applicable approach. Due to limited time of the project, the optimisation works 

have not been carried out. 

 

Figure 5-7: D and G (a) with 2D (b) peaks obtained from laser heated silicon carbide. 

5.2.3 Silicon Carbide Etch 

In the former two sub-sections, the ways to obtain epitaxially grown graphene 

samples was discussed along with the undertaken work to achieve it. Those 

samples could be used directly to form devices by masking the substrate and 

implementing lithography and/or a set of chemical processes. However, to have 

suspended graphene structures, further treatment requires to under etch 

respective areas on the substrate. A photoelectrochemical process has been 

implemented which is similar to a previously reported study [402] in order to 

successfully etch the silicon carbide. An illustration of the process is given in 

Figure 5-8. 

To implement the illustrated process given in Figure 5-8, a holder was designed 

which consisted of slots for Fresnel lens to accommodate the best focal length 
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and a stand for UV light source. The distance from Fresnel lens to UV source and 

the Fresnel lens to sample can be arranged by changing the location of lens using 

the slots in order to have a better focus on a specific area of interest on the 

sample. A 100 W mercury lamp was used as a UV light source. Fresnel lens were 

aimed not only to focus on a specific part but also to increase the concentration 

of UV light source. The setup for the experiment is shown in Figure 5-9. 

 

Figure 5-8: An illustration of the photoelectrochemical etching process for silicon carbide.  

A chemical solution of potassium hydroxide (KOH) with 1% concentration was 

prepared as an etchant. To handle it during the process, a Teflon plate was used. 

A conductive silicon carbide sample was adhered on the surface of the plate with 

the aid of a nail varnish. Silver paint was used to contact the sample to current 

source from one of its edge. The contact point was insulated by melting a drop of 

wax on the silver paint in order to prevent any chemical reaction on that region. 
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Figure 5-9: Setup for photo-electrochemical etching of silicon carbide. 

A platinum wire was attached to Teflon plate and one side of it was put inside the 

KOH solution directly to serve as an anode contact. The current value was set to 

5 mA initially and observed throughout the entire process. It was found that the 

current level started to decrease dramatically in the beginning and the decreasing 

ratio slowed down after around 20 minutes and became stable at a level of around 

70 µA towards the end of the experiment. The change in the current was not 

reported in previously reported study, however, it was attributed as the reason of 

resistance change throughout the process. One of the reasons, why they did not 

report, might be because of only relying on the adjusted value on the source 

rather than observing the actual current value throughout the experiment. The 

etching process was performed continuously for 2 hours. The sample was then 

cleaned with acetone and isopropanol and rinsed with deionized water. Zygo 

profilometer was used to check any changes on the sample. Initial result was 

promising since it was confirmed that the sample was etched around 5 nm as it 

is seen in Figure 5-10. 
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Figure 5-10: The sample was characterized using Zygo profilometer. Etched silicon carbide 
sample after the process (a). 3D view of the step created after etching process (b). 

The same setup was used to etch an n-type semi-insulating silicon carbide 

sample as well. However, this type of sample did not allow the current to start at 

a value of 5 mA. The maximum sourced current was 22 µA, however, after 2 

hours it was observed that the current limit could be increased as high as 10 times 

of initial value and stays stable at a value around 210 µA. This was attributed as 

the resistance drop as opposed to the case in the conductive sample. 

Nonetheless, no considerable change was observed in the latter sample after it 

was checked with Zygo profilometer. This was attributed to low level of current 

value which requires more time to achieve a considerable amount of etching.   
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5.3 Graphene Transfer 

5.3.1 Transfer from Copper to SiO2∕Si Substrate 

CVD grown graphene on copper is a method that is widely used for obtaining 

graphene sheets covering large areas. To take the advantage of graphene, it 

needs to be transferred on to a SiO2/Si substrate. A sheet of 2 × 2 cm2 graphene 

grown on copper foil was used (Graphene Supermarket) as a single layer 

graphene to create suspended graphene devices. The graphene sheets were 

transferred on a substrate which was drilled with the aid of focused ion beam 

milling technique. The drilling process can be defined briefly as focusing beam of 

gallium ions at a high beam current for opening holes on a specific area of interest 

[403]. Circle structures having diameters that vary from 3 µm to 5 µm along with 

a depth of 1 µm were designed to be created on a SiO2/Si substrate. The drilling 

procedure started with covering the substrate with a thin layer of gold. Then, it 

was drilled with a configuration of 3 sets of 5 x 5 having 10 µm separation between 

each hole. As shown in Figure 5-11, the first, second and third sets consisted of 

3 µm, 4 µm and 5 µm diameters, respectively. Meanwhile, the substrate having 

smaller holes (down to 400 nm) has also been made. 

 

Figure 5-11: Formed features on the substrate using ion-beam milling. The surface covered with 
gold and drilled (a). Gold layer was etched away chemically (b). 
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The drilling task has been performed using facilities in Birmingham University, 

UK. After successful substrate drilling, the gold layer was etched, and the sample 

was cleaned. The gold on the surface of the substrate was removed via 

potassium iodide (KI) gold etchant (1:4:40 I2/KI/H2O) solution. After etching 

process, the sample was cleaned using acetone, isopropanol and piranha (a 

mixture of hydrogen peroxide (H2O2) and sulphuric acid (H2SO4)) solution. Then, 

the substrate further cleaned for any organic residuals via oxygen plasma etch. 

After completion of cleaning process, the substrate was dried using nitrogen gun. 

Figure 5-11 shows the sample with holes after drilling process (a) as well as after 

gold removal stage (b). 

The transfer process has been performed following the cleaning procedure. This 

was basically implemented by using a purchased CVD grown monolayer 

graphene on copper (Graphene Supermarket). A thermal release tape 

(purchased from Graphenea as a sheet of 200 mm x 200 mm) was adhered to 

the copper foil which had graphene on both sides. This tape can be released in 

a temperature of 100 °C. A piece of double-sided tape was attached on to a glass 

slide and then a piece of thermal release tape was stuck on the other side of the 

double-sided tape where a piece of copper foil was deposited on the thermal 

release tape. This was pressed down firmly for 5 minutes. Then, an etchant was 

prepared by using 40% iron (III) chloride solution for etching the copper. The 

glass slide with copper attached was put into prepared solution for 50 minutes 

until all the copper was etched away. The slide was then placed into ultrapure 

water for 5 minutes and then left to dry for 1 hour. After that, it was placed onto a 

clean SiO2/Si die (thermal release tape face down) and pressed firmly. The 

attached slide and die were placed in the oven together at 120 °C for 10 minutes 

until the thermal release tape became unstuck. Figure 5-12 shows them 

implementation of the transfer process. 

Several techniques were implemented to characterize the fabricated suspended 

graphene devices. SEM and EDX were used to have an initial assessment of the 

transfer to image devices and observe the carbon atoms for validating the 

existence of graphene on the holes. However, imaging graphene via the available 

SEM was not managed. 
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Figure 5-12: Transfer process for fabrication of suspended graphene. A double-sided tape was 
stuck to a piece of glass slide (a). The copper foil having graphene was stuck to a thermal release 
tape and put on the prepared glass (b). Then, it was firmly pressed (c). Finally, the sample was 
placed in a chemical etchant to remove the copper (d).  

Nevertheless, the EDX result given in Figure 5-13 confirmed the existence of 

carbon (C) atoms, which was attributed as graphene on related regions. The 

other peaks related to silicon (Si) and oxygen (O) were because of the substrate. 

Gallium (Ga), iron (Fe) and aluminium (Al) atoms were also detected which were 

attributed as the elements that were used in the processes of focused ion beam 

milling and copper etching. 
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Figure 5-13: A typical EDX result on transferred graphene from copper to SiO2/Si Substrate. 

Then, sample was further characterised by Raman spectroscopy using a Horiba 

Yvon Raman Spectrometer with a laser excitation of 514 nm. The initial results 

confirmed the existence of graphene on both supported and suspended locations 

of the substrate. As seen in Figure 5-14 (a), a sharp 2D peak was obtained with 

a 2D/G ratio of 2.4 meaning that single layer graphene was obtained. Additionally, 

a Raman mapping was also performed on and around several holes to examine 

the structure for any considerable difference in Raman peaks for supported and 

suspended locations (Figure 5-14 (b)). This was carried out to have a better 

appreciation of the distribution of graphene. Therefore, a MATLAB script was 

used to fit the peaks and image them based on their locations and widths as well 

as their intensities as shown in Figure 5-14 (c-d-e). In a previous study [259], it 

was reported that there are differences in Raman results such as reduced 

energies and increased widths for suspended graphene locations for suspended 

portions compared to supported ones. However, they might have measured the 

differences due to strain or any other mechanical effect since any considerable 

difference was not observed in the obtained sheets in this work. 
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Figure 5-14: Raman mapping for the location of graphene peaks on and around a suspended 
structure. Typical Raman Spectra after transfer process (a). Silicon substrate with holes (b). 
Raman peak distribution around a hole for D (c), 2D (d) and G peaks (e). The surface was 
scanned with a laser having spot size of 1 µm. The hole does not appear to affect the graphene 
Raman spectra.   

In addition to imaging the devices via Raman mapping, helium ion microscopy 

(ORION NanoFab – 3-in-1 Multibeam Ion Microscope for Sub-10nm 

Nanostructuring – see Figure 5-15) was also used as part of the visualisation 
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process. This imaging technique allowed individual graphene flakes to be seen. 

This imaging technique was found to be the best solution for monitoring single 

layer graphene sheets amongst other methods that were mentioned so far 

because, it presented a clearer view of the structure even in large magnification. 

 

Figure 5-15: ORION NanoFab Multibeam Ion Microscope for Sub-10nm Nanostructuring 
(Newcastle University, NEXUS). 

Graphene layers on some of the holes were found to be ruptured as pointed in 

Figure 5-16. This was attributed to any trapped gas inside the holes which has 

led to a blast because of the vacuum during imaging process. Shining bits on the 

supported locations are graphene flakes. The holes which are covered with 

graphene can easily be distinguished as shown with red circle. The illustration of 

the suspended structures via helium ion microscopy together with the Raman 

spectroscopy confirmation proved the successful achievement of the suspended 

graphene structures. The obtained suspended graphene structures could then be 

patterned with the aid of an appropriate mask and lithographic process to form 

desired Hall devices. Undesired parts of the graphene can easily be removed via 

oxygen plasma etch. 
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Figure 5-16: Helium ion microscope image of suspended graphene sheets.  

5.3.2 Transfer from Polymer to SiO2/Si Substrate 

As a newly developed method (Graphenea), easy transfer monolayer graphene 

form provides easier transfer option and prevents from using dangerous 

chemicals explained above. The structure consists of three layers as shown in 

Figure 5-17 (a). Instead of a copper foil, this type of graphene comes on a polymer 

layer. The graphene is also protected with a sacrificial layer that is placed on top 

of it. Employing this type of graphene provides more flexibility and eliminates 

exhausting chemical processes to etch copper, clean surface and perform the 

actual transfer operation as described in section 5.3.1. 
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Figure 5-17: Easy transfer monolayer method. Graphene is in between a polymer and sacrificial 
layer (a), polymer is removed via deionized water (b), Substrate is introduced (c) and the sacrificial 
layer is removed (d). 1 × 1 inch2 graphene film on polymer (e).  

To perform the transfer process, silicon substrates were prepared to have 

rectangular trenches which are continuous along the sample lateral size. Creating 

these features instead of holes was because of avoiding any rupture that was 

explained in section 5.3.1. Four rectangular geometries (1.5 mm wide and 9 mm 

long) were prepared to have a separation distance of 0.5 mm between each and 

made by using the facilities in Birmingham University, UK. Each of the four 

rectangles had depths of 20 µm. 

A monolayer graphene film in between a polymer and sacrificial layer with a 

dimension of 6.5 × 6.5 cm2 was used for performing transfer process. The 

polymer layer was detached easily only by putting the structure in deionized water 

(Figure 5-17 (b)). Then, graphene and sacrificial layer was floating on the surface 

of water once the polymer was removed. The transfer was achieved by 

introducing the substrate in the water and fishing the floating graphene with 

sacrificial layer (Figure 5-17 (c)). The substrate was then taken out of the water 
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and left in air for 30 minutes to let it dry (Figure 5-17 (d)). After that, a hot plate 

with a temperature of 150 °C was used to anneal the substrate in order to allow 

better adhesion. The actual view of substrates with graphene and sacrificial layer 

after initial annealing process is depicted in Figure 5-18.  

 

Figure 5-18: Graphene samples with sacrificial layer on the substrates after initial annealing 
process at 150 °C using hot plate. 

To improve the adhesion, the samples were placed in vacuum and kept for 3 

days. Then, the samples were annealed at 450 C under nitrogen flow for at least 

2 hours to remove the sacrificial layer (suggested by the supplier – Graphenea). 

Meanwhile, the removal could have also been performed by implementing wet 

chemical treatments, however, since there were trenches on the substrate, it 

might have caused the suspending graphene portions to adhere the sides and 

the bottom of the trenches, thus, preventing the formation of suspended 

structures. Therefore, high temperature treatment was considered as a safer way 

of implementation. 

The samples were imaged using helium ion microscopy following the removal of 

sacrificial layer. Initial assessment verified the formation of suspended graphene 

sheets as shown in Figure 5-19. Examining the surface via this method showed 

that the formation is arbitrary instead of continuous coverage. This was attributed 

to excessive trench widths (1.5 mm wide) which causes fractures in the graphene. 

However, this method was proved to be feasible and a safer way of obtaining 

suspended graphene sheets. To achieve a higher coverage, the width of the 

trenches should be reduced so that the fracture is prevented. 
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Figure 5-19: Suspended graphene on a pre-created trench (a). A closer view showing wrinkled 
graphene sheet (b). 
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5.4 Summary 

The initial assessment for silicon carbide suggested that the methodology given 

under section 5.2.2 has potential for graphene production as a cheaper and faster 

way of implementation. The undertaken work regarding silicon carbide etch 

showed the promise for suspended sheet formation. However, achieving an 

optimum solution for graphene formation and suspension would require a 

significant amount of time which was beyond the time allowed for this study. 

Therefore, the optimization work has been left for the following future projects. 

Although suspended graphene is shown to be feasible following different 

techniques using CVD grown graphene (given under section 5.3), there was not 

enough project time to optimise the presented methods for suspended sensors. 

Therefore, the work focused on buying commercially available CVD grown 

graphene samples on SiO2/Si substrates. The details about device fabrication 

using commercially available CVD grown graphene samples is presented in the 

following chapter. The next chapter is also presenting an alternative way of 

obtaining suspended graphene structures during microfabrication which may 

eliminate the steps requiring for graphene preparation. 
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Chapter 6. Graphene Hall Devices 

The main focus of fabricating Hall devices was to use CVD grown graphene, on 

a Si/SiO2 substrate. Commercially available graphene samples were purchased, 

and different microfabrication processes were defined to achieve micron-sized 

Hall devices. Moreover, the defined procedures were arranged so that it may also 

be used for suspended devices, if required in future applications. In addition, 

reduced graphene oxide printed on a glass substrate was also explored as an 

easier and cheaper fabrication approach. This chapter presents, design and 

manufacture steps to obtain graphene micro-Hall devices by following different 

techniques along with the obtained results. 

6.1 Design 

Two different microfabrication processes were designed to allow the fabrication 

of graphene Hall devices. The first method was designed to be performed by 

employing a protective layer whereas the second approach was designed to 

perform microfabrication without coating the surface with a protective material. In 

addition to those two approaches, an alternative way of device fabrication was 

also planned for microfabrication by adopting printed graphene oxide for direct 

patterning of devices without need for additional procedures. 

For the first method, a mask having the same design presented in section 4.1 

was used (gold-based devices on silicon substrate). However, an optional layer 

for oxide etch was included to this mask. As opposed to potential ways for 

obtaining suspended graphene sheets presented in Chapter 5, an additional 

insulation layer was designed on the mask to allow a second way of 

implementation for obtaining potential suspended structures after device 

fabrication. The third layer on the mask were created to avoid further treatment 

after graphene preparation which may provide more robust solution for future 

projects. However, this would require a careful planning and handling since 

dangerous chemicals such as hydrofluoric acid is needed. Moreover, additional 

features as depicted in Figure 6-1 was also placed on the mask so that the 

substrate can be patterned chemically for graphene transfer applications. The 
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latter features were designed to create an alternative option for focused ion beam 

milling technique. This mask was designed to perform microfabrication on a die 

scale.  

 

Figure 6-1: Designed mask with additional features to allow implementation of further fabrication. 
The features encircled with red are for creating the holes and then transfer graphene to form 
suspended structures. 

In addition, a wafer scale manufacturing procedure was also designed to achieve 

bulk fabrication. To do so, another mask was designed which includes several 

cross structures having active areas of 10 µm, 20 µm and 40 µm. Figure 6-2 

shows layout of an individual die of 5 × 5 mm2 placed on the mask. The latter 

mask was made of plastic and designed to form devices to allow the wire bonding 

of the contacts on a chip and make insulation easier. This mask was also created 

to be used for manufacturing devices without any protective layer. Moreover, the 

features on the mask was arranged so that the fabricated devices can perform 

within a liquid medium for biosensing applications. 

Apart from the first two methods, printing graphene oxide was planned to be used 

as an alternative and cheaper way for device fabrication. In terms of material 

point of view, the latter approach may not be the best option for Hall device 

manufacturing, however, biosensors with better performances could be obtained. 

250um
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Figure 6-2: Layout of an individual 5 mm × 5 mm die on a 4-inch mask for wafer-scale fabrication. 

6.2 Materials 

CVD grown single layer graphene samples on SiO2/Si substrate Graphenea (had 

a substrate thickness of 525 µm with an oxide layer of 300 nm) and Graphene 

Supermarket (had a substrate thickness of 525 µm with an oxide layer of 285 nm) 

were used for microfabrication of Hall devices. The reason of using CVD grown 

graphene was because of its high-quality electrical properties and large area 

coverage (>95%). The samples from Graphenea were used for microfabrication 

using a protective layer whereas the samples from Graphene Supermarket were 

employed for implementation of microfabrication with no-protective layer. 

Moreover, multilayer graphene samples (Graphene Supermarket) were also used 

to manufacture devices without adopting a protective layer. Besides, graphene 
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oxide (Graphenea) was employed as an alternative approach to achieve an 

easier fabrication method to manufacture devices. 

6.3 Fabrication 

To obtain devices out of graphene, the substrate needs to be masked and be 

exposed to lithographic and chemical processes. The following sections provides 

information about several steps that were undertaken to achieve microfabrication. 

Most of the fabrication process took place in clean room environment. However, 

the works related to derivatives of graphene were partly performed outside of the 

clean room using different laboratories within the School of Engineering and the 

Institute of the Cellular Medicine. Figure 6-3 shows some of the laboratories used 

for fabricating devices. 

 

Figure 6-3: Partial views from some of the labs used for fabrication. Clean room facilities for 
lithographical (a) and thermal processes (b). Nexus facilities for nano-scale fabrication and 
imaging processes (c). Facilities under Institute of Cellular Medicine for surface modification and 
bio-measurements (d). 

Two microfabrication routes were defined for manufacturing devices using 

monolayer graphene samples. The initial work carried out by adopting a 

protective layer using titanium as a cover. This was followed by fabrication 

process without employing a protective layer which was demonstrated to be 

easier and more robust. Multilayer graphene devices were also manufactured 
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following the route for no-protective layer. In terms of derivatives of graphene, 

devices were manufactured with reduced graphene oxide by directly printing 

them on a glass substrate. This had then reduced chemically to obtained devices 

from reduced graphene oxide. 

6.3.1 Monolayer Graphene Using Protective Layer 

Due to issues related to visualising graphene under optical microscope, a layer 

of titanium was decided to be employed for covering the surface of graphene, 

initially. The aim was to make formed structures easy to see during the 

fabrication. In addition, graphene would have been protected during wet chemical 

processing. Moreover, it was thought to provide an adhesion layer for the 

contacts, as well. Therefore, the surface was covered with 15 nm titanium using 

e-beam evaporator shown in Figure 6-4 (Edwards 306 e-beam evaporator). 

 

Figure 6-4: Edwards 306 e-beam evaporator in CLR4 (Newcastle University, school of 
Engineering). 

After titanium evaporation, the plan was to etch the titanium using buffered 

hydrofluoric acid (BHF with a concentration of 5:1) as is defined in Figure 6-5 to 

remove areas not required for device formation. Graphene was planned to be 

used for protecting the underlying oxide layer since it was shown to be resistant 

to BHF [175, 404]. The rest of the steps were planned as graphene etch, 

photoresist spin, lithography, developing photoresist, chromium/gold evaporation 

and lift-off for obtaining complete set of devices. The devices should have been 
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successfully manufactured up to this point (up to step 10, see Figure 6-5). To 

allow the formation of suspended structures, devices were planned to be further 

processed by implementing the remaining steps shown in Figure 6-5 by exposing 

the substrate to further wet chemical etching process mainly using BHF. 

 

Figure 6-5: Microfabrication process. (1) CVD graphene on a SiO2/Si Substrate. (2) Titanium 
deposition. (3 & 4) Photoresist cover and developing it for forming device structures. (5) Etching 
titanium. (6) Graphene etch. (7 & 8) Photoresist cover and developing it for forming contacts. (9) 
Chromium and gold evaporation using e-beam. (10) Lift-off. (11) Photoresist deposition. (12) 
Lithography. (13) Titanium etch. (14) SiO2 etch. The steps from 1 to 10 is designed for forming 
supported devices whilst the rest of the steps are further steps for forming suspended structures. 
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After titanium coverage, the substrate was spun with photoresist (AZ5214E 

image reversal resist), using EMS 6000 Spin Coater (Figure 6-6 (a)), and the 

lithographical process was performed via Karl Suss MJB-3 Mask Aligner (Figure 

6-6 (b)).  

 

Figure 6-6: Spin coater (EMS 6000) (a) and mask aligner (Karl Suss MJB-3) (b) (Newcastle 
University, school of Engineering).  

A spin speed of 4300 rpm was used to coat the surface of the sample with 1 µm 

thick photoresist. This was pre-baked for 10 minutes at 90 °C and then exposed 

to UV for 4 seconds. This procedure followed by a post-bake step which took 

place on a hot plate for 30 seconds at 120 °C. A final UV exposure was performed 

for 8 seconds to obtain features on the surface. Figure 6-7 shows an optical 

microscopy image of the substrate with titanium layer (a) and the formed 

geometries after resist development. The process was shown to be fully 

successful up to the first resist development stage. 

After lithography process, titanium was etched chemically using HF for removing 

the locations not required for device formation. However, it was found that most 

of the substrates were cleared, as shown in Figure 6-8 (a), which was attributed 

as a consequence of oxide layer etch by HF. The graphene on the remaining 

parts of the samples was observed to be mostly delaminated (Figure 6-8 (b)). 

Employing HF to etch titanium yielded only a small number of survived features 

(Figure 6-8 (c)). 
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Figure 6-7: Optical microscopy images of microfabrication process using titanium as a cover. The 
substrate was covered by evaporating titanium (a). Created structures after lithography (b). 

 

Figure 6-8: Wiped (a), delaminated (b) and partially obtained structures after titanium etch (c). 

Meanwhile, successfully survived features were characterised for existence of 

graphene, thus, SEM imaging with EDX was performed using a bench-top SEM 

Microscope (Hitachi Tabletop TM3030) as shown in Figure 6-9. SEM images 

clearly showed the remaining patterns and the EDX results suggested that there 

were some bits of the titanium around the surface of the substrate which means 
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few more seconds require for wet chemical etching process. However, it was 

observed that exposing the substrate to HF for a bit longer time eventually caused 

the features to be wiped. 

 

Figure 6-9: SEM image (a) and EDX (b) on patterned structure of titanium/graphene. 
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In addition, Raman spectroscopy of the samples was obtained using a Horiba 

Yvon Raman microscope. As was explained in section 2.1.4 the D peak is an 

indication of defects in graphene samples. The measurement showed a high D 

peak which refers to defected structure of graphene as shown in Figure 6-10.  

 

Figure 6-10: Raman spectra of remained graphene structures. 

It was also realized that the delamination was not only due to oxide layer etch by 

HF but also because of poor adhesion of graphene to the surface. Wet chemical 

processing caused the delamination since the adhesion was not strong enough. 

It was further observed that even diluting the sample in pure water without any 

treatment caused the same issue. In order to overcome this issue, the samples 

were pre-treated, and the microfabrication took place without employing a 

protective layer as is explained in the next section. 

6.3.2 Multilayer Graphene 

It was observed that the adhesion of multilayer graphene is stronger than the 

single layer one which makes the fabrication process easier. Therefore, the same 

mask mentioned in section 6.3.1 was used for patterning multilayer graphene and 

evaporating metal contacts, however, without adopting any protective layer. The 

multilayer samples were consisted of randomly distributed graphene flakes of 3 
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to 5 layers along with various lengths. The primary reason of using multilayer 

structure was due to its easier visibility. Apart from implementing steps for 

covering the surface with a protective layer, similar steps given in Figure 6-5 were 

adopted by excluding the procedure defined for suspending the structures. 

Similar to the operation explained in previous section, a photoresist was spin 

coated and baked following by a UV exposure. The features were obtained after 

resist development. Then, desired patterns were revealed by implementing an 

oxygen plasma process using a TEGAL Co. PLASMOD microwave asher. It was 

found that the time required for implementing some steps was slightly longer than 

monolayer graphene. For example, etching this type of graphene using oxygen 

plasma took longer time (around 45 minutes) due to relatively thicker structure of 

multilayer graphene. The photoresist has successfully survived during plasma 

etch process. In reality, it was also etched during the operation, however, due to 

its higher thickness (>1 µm) a longer time was going to require for sweeping all 

of it. In addition, it was also more resistant than expected since it was baked prior 

to operation.  Figure 6-11 shows the view of a multilayer graphene sample after 

each step from bare sample (a) to lithography and resist development (b) along 

with patterning (c-d) process. 

 

Figure 6-11: Fabrication steps for patterning multilayer graphene. Multilayer graphene (a) and the 
view after lithography and developing process (b). The patterning was achieved by performing 
plasma etching (c). A closer look at the patterned structure after etching process (d). 
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To obtain actual devices, another lithographical process was performed using 

similar techniques for contact formation depicted in Figure 6-5. Therefore, a 

second resist coating and lithographical process took place following by a 

photoresist development stage. The contact features were formed and a layer of 

chromium (30 nm) along with a layer of gold (250 nm) was evaporated using e-

beam evaporator. Devices with contacts were formed after lift-off. The alignment 

during the lithography process was more straightforward since it was easier to 

visualise multilayer graphene. Figure 6-12 demonstrates the images of contact 

formation on the patterned structures. 

 

Figure 6-12: Micro-fabricated multilayer graphene. The view after lithography and developing (a) 
and after lift-off (b). Devices were placed on 10 mm × 10 mm substrate (c). 
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Raman spectra measurement of the devices after fabrication is shown in Figure 

6-13. The peaks characteristic to graphene were assessed and peak intensity 

ratio between 2D and G (2D ∕ G) bands were calculated to be 0.6 indicating multi-

layer graphene [405]. 

 

Figure 6-13: The Raman spectrum of multilayer graphene after fabrication. 

6.3.3 Monolayer Graphene (No Protective Layer) 

To avoid the issues mentioned in the section 6.3.1, another microfabrication 

process was carried out by directly processing CVD grown graphene without any 

protective layer. To help better adhesion of the graphene to the Si/SiO2 substrate 

and prevent any delamination, the samples were annealed at a temperature of 

300 °C under free flow of nitrogen for 3 hours. Meanwhile, single layer graphene 

presents difficulties in terms of visualisation which causes misalignments of 

contacts and patterned geometries. The visualisation issue was the reason why 

a protective layer was employed in the section 6.3.1. To overcome this issue, a 

sub-micron manipulator (FINEPLACER® lambda Sub-Micron Bonding System) 

shown in Figure 6-14 was used to mark certain areas on the wafer in order to 

allow the alignment marks to be visible, therefore, making the alignment easier 

during the lithography. Lithographical process became relatively easier by 

employing this method. Apart from visualisation, this approach was designed to 

be performed as a wafer-scale, thus, preventing the time-consuming tasks 

required for die-scale manufacturing.  
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Figure 6-14: FINEPLACER® lambda Sub-Micron Bonding System used to mark certain areas on 
the wafer for alignment. (Newcastle University, School of Engineering). 

An array of single graphene Hall devices with an active area of 10 µm × 10 µm 

were designed for manufacturing on 5 mm × 5 mm dies using the following 

microfabrication process highlighted in Figure 6-15. A photoresist layer was spin 

coated to cover a 4-inch silicon wafer containing a 285 nm surface oxide layer 

with a CVD grown and transferred graphene layer (Graphene Supermarket). 

Desired patterns were obtained by implementation of a lithography process. The 

wafer then underwent a dry etching process via oxygen plasma (by using TEGAL 

Co. PLASMOD microwave Asher) for 13 minutes to remove the graphene not 

protected by photoresist. After removal of photoresist, a similar lithography 

process was performed for defining the contacts. A 30 nm layer of chromium and 

250 nm layer of gold were deposited with electron beam evaporation following 

the lithography steps. The desired contact patterns were formed after the lift-off. 

Lastly, the processed wafer was diced into 5×5 mm2 dies which include several 

individual micro-Hall elements. Devices having an active area of 10 µm × 10 µm 

were formed in a cross-like geometry as shown in Figure 6-16. 
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Figure 6-15: Schematic for microfabrication process to form graphene micro-Hall devices. (a) 
High quality CVD grown graphene situated on a Si/SiO2 wafer. (b) The wafer was covered with 
AZ5214E photoresist and pre-baked at 90° C for 15 minutes. (c) UV exposure for 14 seconds 
using a patterned mask. (d) Developing the photoresist for obtaining relevant patterns. (e) Etching 
process via oxygen plasma to remove graphene not protected by the photoresist layer. (f) 
Photoresist removal. (g) Another layer of photoresist was spin-coated onto the sample and pre-
baked. (h) Second UV exposure for defining contacts. (i) Photoresist development. (j) Chromium 
and gold evaporation. (k) Lift-off. 
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Figure 6-16: (a) An optical image of a graphene Hall effect device with Cr/Au contacts. Graphene 
layer is highlighted with red-dotted lines. (b) A view of one of the fabricated 5x5mm2 dies 
containing several devices. 

The length to width ratio was designed to be greater than 3 in order to avoid 

weakening the Hall effect due to geometrical factor [43, 118, 128]. To assess the 

quality of the graphene, Raman spectroscopy measurements were performed. 

The Raman data, shown in Figure 6-17, was obtained after completion of the 

fabrication procedure. The peaks characteristic to graphene were assessed. A 

sharp 2D peak and quite small D peak were obtained with a calculated 2D/G 

intensity ratio of around 2.5 which indicates a high quality single layer graphene 

[165, 236, 237, 239, 240, 397]. 

 

Figure 6-17: The Raman spectrum of graphene after the microfabrication process. 
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6.3.4 Printed Graphene 

The intention in employing printed graphene was to develop an alternative way 

of device manufacturing which can both make the fabrication easier by 

eliminating most of the steps given in above sections and provide better devices 

for biosensing purposes. The idea behind the printed graphene was to employ 

graphene oxide solution by printing it on the surface of a glass slide. The 

fabrication of those devices was performed using facilities in Chemical 

Nanoscience Laboratory within the School of Natural and Environmental 

Sciences (Newcastle University). The sensors were printed at a temperature of 

75 °C with a setup that provides a material having around 5-layer thickness. 

Meanwhile, graphene oxide is not conductive due to high resistance, thus, cannot 

be used as Hall device normally. However, reduced graphene oxide is relatively 

better and can be used as a conductive material. Therefore, the devices were 

reduced chemically after they were formed directly without using any mask. 

Figure 6-18 shows one of the printed graphene oxide devices after being 

reduced.   

 

Figure 6-18: Printed and chemically reduced graphene oxide Hall device. 

The printed devices require to have contacts to allow performing measurements. 

Therefore, silver contacts were also printed on those Hall devices so that they 

can be connected to the testing equipment. A silver ink was used with a cartridge 

that blocks UV-light to avoid silver degradation. Meanwhile, the printing process 

for contacts was performed after chemical reduction of graphene oxide to 
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maintain the resistance between contacts and device. The printed silver contacts 

on a Hall device is shown in Figure 6-19. 

 

Figure 6-19: An optical microscopy image of reduced graphene oxide Hall device with printed 
silver contacts. 

In a graphene oxide sample the oxygen content is higher which gives rise to C-O 

peak (≈286.7 eV) comparing to C=C peak (≈284.5 eV) [406]. However, in a 

reduced graphene oxide sample, the content of oxygen is decreased significantly 

[407]. The existence of the graphene oxide on the glass substrate was confirmed 

via performing XPS as shown in Figure 6-20. The XPS spectra showed that the 

relative percentage of C=C bonds is extremely higher than C­O bonds which 

verifies the reduction in oxygen content. Moreover, it did not show any elements 

other than carbon and oxygen which indicates the absence of impurities.  

 

Figure 6-20: XPS Spectra of reduced graphene oxide. 
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6.4 Measurements and Results 

The measurements were carried out via integrating samples to the processing 

board. Samples were placed either on the specified part (tongue shaped) of the 

board (see Figure 3-15) or on a chip, as shown in Figure 6-21, and then 

measurements were performed. 

 

Figure 6-21: A fabricated die with several graphene Hall devices placed on a chip (a) and the wire 
bonder (Kulicke & Soffa Industries Model 4700 wire bonder) used for assembling devices to the 
chip (b). 
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6.4.1 Multilayer Graphene 

Structures having cross-like geometries with an active area of 40 µm and length 

to width ratios of 3 were tested for characterising the performance of multilayer 

devices. The ability of detecting magnetic field change is one of the key 

parameters for determining the performance of Hall devices [43]. As was 

expected, graphene was proved to be significantly better than gold-based 

devices mentioned in Chapter 4. The Hall voltage obtained from output of the 

graphene devices was higher than the gold-based ones even with less driving 

current about three orders of magnitude and less field strengths about an order 

of magnitude. This is due to the unique structure of graphene which consists of 

high carrier mobility and atomic-level thickness. A current of few µA and a field 

strength of few mT were sufficient for obtaining outputs. Figure 6-22 

demonstrates a typical output from a multilayer graphene sample with respect to 

varying field. 

 

Figure 6-22: A typical Hall voltage obtained from output of a multilayer graphene device (n=4) 
with respect to varying magnetic field using 50 µA of driving current by employing current-spinning 
circuitry. The device had an active area of 40 µm. 

Presenting a linear behaviour with respect to field change is another key 

parameter in Hall devices for applicability of applications. Multilayer graphene 

samples also showed good linearity across devices as shown in Figure 6-23. 
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Figure 6-23: Linearity across several devices made of multilayer graphene.  

A current-related sensitivity of up to 200 V/AT was obtained from multilayer 

devices which is better than gold-based devices about five orders of magnitude 

and comparable with the silicon based competitors [408]. The current-related 

sensitivity with respect to varying magnetic field is given in Figure 6-24 (a) along 

with the sensitivity parameters across multilayer graphene devices. 

 

Figure 6-24: Current-related sensitivity with respect to varying magnetic field for device #2 (a). 
Current-related sensitivities across multilayer graphene Hall devices (b). 
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The obtained results suggest that graphene-based materials have the promise 

for Hall effect type applications and better performance parameters can be 

reached by adopting single layer graphene devices. The extraordinary capability 

of single layer graphene Hall devices is presented in the following section. 

6.4.2 Monolayer Graphene 

Several micro-fabricated Hall elements with the same geometries, having length 

to width ratios of 3.5, were tested to observe the output characteristics of devices. 

Unlike the design for multilayer graphene (given in section 6.4.1), the length to 

width ratio was designed to be greater than 3 in order to avoid weakening the 

Hall effect due to geometrical factor [43]. Quantitative analysis was performed 

both under constant magnetic field with variable current and under constant 

current with variable magnetic field. To achieve devices with the capability of low 

field sensing, the offset equivalent magnetic field needs to be optimized first. 

Reducing this parameter is important for sensitivity improvements and 

consistency. Eliminating this parameter also considerably increases the 

sensitivity of the devices. Therefore, a circuitry was constructed on PCB as 

explained in section 3.2.1. As shown in that section, a residual offset 

corresponding to an offset equivalent magnetic field value of 100 nT was obtained 

using the developed circuitry for offset removal. Together with detection 

capability, a linear performance is also desirable for practical implementation of 

Hall effect devices. As seen from Figure 6-25 the Hall voltage of fabricated 

graphene devices showed a highly linear behaviour with respect to both applied 

field strength and driving current. The demonstrated highly linear response (R2 > 

0.99) is comparable with those reported in previous studies on graphene devices 

[63, 291, 296]. 

A maximum current-related sensitivity of 2540 V/AT was obtained with no gate 

voltage applied. As seen from Figure 6-26, the sensitivity varies across devices. 

The sensitivity variations across those devices can be explained by non-uniform 

adhesion of graphene to the substrate, defects and ruptures or residuals caused 

the by fabrication process [165]. Differences in the input resistances of devices 

may also play a role in sensitivity variations [394]. Nevertheless, thanks to the 

excellent electrical properties of graphene, fabricated devices with even the worst 
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performance (323 V/AT) still provide better sensitivities compared to Si based 

competitors (310 V/AT) [380]. 

 

Figure 6-25: The response of the graphene sensor shows highly linear behaviour. Hall voltage 
under constant negative (red) and positive (blue) field strength of 120 mT with variable driving 
current (a) and under variable magnetic field with constant driving current of 15 µA (b). The 
repeatability (n=3 for (a) and n=6 for (b)) tests showed that devices are highly stable in terms of 
providing corresponding outputs. Good linearity is shown across all devices (c). 
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Figure 6-26: Current-related sensitivity for variable current (a) and variable magnetic field (b) for 
device #2. Current-related sensitivities across different graphene Hall devices (c) with the same 
geometry and sizes under the same operating conditions (15 µA biasing current and 2 mT field).  

In addition of representing high sensitivity, graphene also has low noise 

intrinsically [11]. Having a combination of low noise and high sensitivity leads to 

devices with high resolutions. Magnetic field resolution is the parameter that is 

used for determining the minimum detectable field capability of the sensor and 

given as: 

 𝐵𝑚𝑖𝑛 =
√4𝑘𝐵𝑇𝑅𝑠∆𝑓

𝑅𝐻𝐼𝑥
 (−) 

where, kB is the Boltzmann constant, T temperature, Rs series resistance and Δf 

measurement bandwidth. The minimum detectable magnetic field parameter can 

also be determined according to equation (−), where Bmin is the field resolution 

and Vn represents the spectral density of the voltage noise. 
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 𝐵𝑚𝑖𝑛 = |
𝑉𝑛

𝑆𝐴
| (−) 

The latter equation states that the resolution can be calculated by dividing the 

noise spectra by absolute sensitivity. To determine this value, the FFT tool of 

LabVIEW software was used to measure voltage noise spectra by adopting a 

National Instruments’ data acquisition device (NI-DAQ USB). The data of 

measured noise spectra (V∕√Hz) was divided by absolute sensitivity, during the 

operation, to obtain the minimum detectable field (T∕√Hz). Magnetic field 

resolution of the sensor with respect to frequency was obtained as shown in 

Figure 6-27. Meanwhile, it is worth to note that the minimum detectable field is 

defined by the thermal noise region. That means the maximum achievable value 

is considered as the magnetic resolution of a particular device within the thermal 

noise region. 

 

Figure 6-27: Magnetic field resolution of a graphene Hall sensor as a function of frequency.  

As seen in Figure 6-27, the noise level decreases with respect to increasing 

frequency, representing a 1/f dependence. Around 2 kHz, the noise level is 

dominated by thermal noise only. A minimum field resolution of 162 nT/√Hz was 

extracted from fast Fourier transform measurements. Assessing the current 

related sensitivity together with the minimum detectable field, it can be seen that 

the developed devices demonstrate the highest SI and the second lowest Bmin as 

given in Table 6-1. The field resolution is higher than that of calculated for offset 
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equivalent magnetic field presented in section 3.2.1 since another sensor was 

used. 

Material SI (V/AT) Bmin (nT/√Hz) 

CVD graphene (Ref [63]) 1200 800 

CVD graphene (Ref [71]) 2093 100 

CVD graphene (Ref [117]) 1800 20000 

Silicon (Ref [282]) 175 200 

Epitaxial graphene (Ref [72]) 1021 2500 

CVD graphene (Ref [130]) 800 500 

2DEG (Ref [275]) 357 500 

Silicon (Ref [408]) 143 250 

CVD graphene (Ref [165]) 1200 43000 

This work 2540 162 

Table 6-1: Comparison of current related sensitivities and minimum detectable field resolutions. 

6.4.3 Printed Graphene 

Apart from the microfabricated devices presented in the above sections, an easier 

alternative of device manufacturing was also explored as was explained in 

section 6.3.4. The measurements on this type of devices were not performed 

thoroughly due to an extreme decrease in their performance after being driven 

with the current for a short period of time. To carry out the measurements, a silver 

paint and an extremely thin wire were used as shown in Figure 6-28 to arrange 

the connection between testing equipment and the sensors. 

 

Figure 6-28: The connection between reduced graphene oxide Hall sensors on glass substrate 
and test equipment with the aid of silver paint and a thin wire. 
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Initial assessment showed that they can reach a current-sensitivity of around 64 

V∕AT, however, keeps decreasing and finally does not provide any reusable 

output. The reduction in the performance was attributed to the oxidizing effect 

caused by electrical stimulus [409]. The performance of the devices may be 

maintained by employing a reversible electrical modification process defined in 

ref [409]. However, implementation of this technique was left for potential future 

projects since this approach was not the main focus of this work.   

6.5 Summary 

Design, fabrication and performance parameters of graphene-based Hall sensors 

were discussed. It was shown that single layer graphene can be fabricated 

without need to a protective layer by implementing a high temperature treatment 

under free flow of nitrogen gas. The performance of single layer graphene was 

also demonstrated to be better than other competitor materials such as InSb or 

2DEG systems. In addition to single layer, the multi-layered graphene structures 

were also shown to have comparable performances to silicon-based Hall 

sensors. Table 6-2 demonstrates the current-related sensitivities obtained across 

graphene devices with different structures. 

Devices Current-related Sensitivity 

Monolayer Graphene 2540 V/AT 

Multilayer Graphene 200 V/AT 

Printed and reduced Graphene Oxide 64 V/AT 

Table 6-2: Current-related sensitivities obtained from fabricated devices. 

Novel techniques were also investigated to obtain Hall devices from derivatives 

of graphene. Printed and chemically reduced graphene oxide was explored for 

potential Hall effect biosensor applications which would eliminate most of the 

microfabrication steps. It was shown that the fabrication and reduction is feasible 

with this method. However, a significant loss of performance was observed which 

was attributed to oxidizing effects. Potential solution for this issue was 

recommended which is worth to be investigated in future.
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Chapter 7. Forming Graphene Hall Effect Biosensor for 
Real-time Label-free Detection 

In terms of utilising the fabricated devices as biosensors, a protocol has been 

prepared to modify the surface of the sensors for the recognition of specific 

biomolecule. The fabricated devices were placed on a chip and a well was formed 

on the top in order to serve as a reservoir. This chapter presents the steps for 

fabrication of devices that can operate in liquid environment along with the 

process for functionalization and the results of bio-measurements. 

7.1 Design 

Similar design steps for monolayer graphene given in section 6.1 were used for 

construction of devices. To form a biosensing system which can operate in real-

time, the fabricated devices should be able to operate in liquid environment. To 

do so, further steps were designed to form a well on the surface of the devices. 

An epoxy glue was employed for insulating the contacts. In addition, acrylic 

masks were designed to be created using laser cutting machine to protect the 

active areas of the devices with the aid of photoresist during insulation process. 

The cross-sectional view of the design presented in Figure 7-1 shows the process 

of insulation. 

 

Figure 7-1: Schematic of design of the system (Cross-sectional view). The well is obtained once 
the acrylic piece is removed (after the drying process of the epoxy glue). The photoresist is 
cleaned using acetone after removal of acrylic piece. 
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7.2 Materials 

Devices were built using monolayer CVD grown graphene (Graphene 

Supermarket). Chemicals that were used for this study were purchased from 

Sigma-Aldrich, UK, unless otherwise stated. In order to maintain a constant pH 

of 7.4, a phosphate buffered saline (PBS) was prepared (500 mL) using 0.4 g of 

sodium chloride (NaCl), 0.1 g of potassium chloride (KCl), 0.71 g of sodium 

phosphate dibasic (Na2HPO4) and 0.1 g of potassium phosphate monobasic 

(KH2PO4). This buffer is a salty solution and has an ionic concentration that 

matches with the solution of the human body. The reason of using this buffer was 

to maintain a constant pH for IgG molecules to survive. It was also used as a 

reference point between different stages during the measurements to observe if 

there were any change in output of the devices. Due to high conductivity of 

graphene and the aid of the insulation shown in Figure 7-1, the conduction occurs 

on the surface of graphene, thus the Hall phenomena can be observed in this 

solution. 

 

Figure 7-2: The structure of 1-Pyrenecarboxylic acid. Adopted from Sigma-Aldrich. 

Another prepared solution was MES buffer which has a pH of around 6. The 

reason of using MES was because of its amine free structure which can be 

employed for carboxy to amine crosslinking using carbodiimide crosslinker, thus, 

would not create additional bonds with pyrene. To prepare the buffer solution of 

500 mL; 100 mM of MES hydrate (C6H13NO4S . xH2O) and 500 mM of sodium 
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chloride were used. Since Raman and XPS spectra showed that the formed 

graphene devices are good quality and has no considerable defects, pyrene was 

decided to be used to modify the surface non-covalently. Therefore, 1-

Pyrenecarboxyilic acid (C17H10O2) was employed which can help reduce the 

distance between the binding area and the surface of the device due to its shorter 

chain (see Figure 7-2). The charge interaction between graphene and pyrene 

causes a change in carrier concentration through π-stacking which consequently 

leads to a Hall voltage change. This mechanism was adopted to create a label-

free detection. Therefore, a pyrene solution of 5 mM was prepared using 

methanol (CH3OH) (Fisher Scientific). In order to facilitate the amine group for 

carboxyl to form an amide bond, EDC (N-(3-Dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride) and sulfo NHS (N-Hydroxysulfosuccinimide 

sodium salt) was used. EDC was used as a carboxyl and amine reactive 

crosslinker and sulfo-NHS was used to enhance the coupling efficiency. The 

solution was prepared in 1:1 ratio by using 0.6 mg of EDC and 1.1 mg of sulfo 

NHS with 1 mL of MES buffer. Immunoglobulin G (Mouse IgG) was used to 

interact with this structure and serve as a capture antibody. To prevent non-

specific binding of antigens and antibodies, bovine serum albumin (BSA) was 

used as a blocking agent. It was prepared in 2 % of concentration using PBS 

solution. Lastly, anti-mouse IgG and anti-goat IgG were used as specific and non-

specific antigens, respectively, to observe the behaviour of the biosensor. 

7.3 Fabrication 

Devices were fabricated by microfabrication techniques similar that of the 

explained in section 6.3.2. Basically, the microfabrication process was performed 

by directly processing graphene without a protective layer. The graphene was 

sourced from Graphene SupermarketTM, which was grown by chemical vapour 

deposition (CVD) and situated on a 4-inch silicon wafer containing a 285 nm 

surface oxide layer. To improve the adhesion of graphene to the substrate and to 

prevent the possibility of delamination, the samples were annealed at 300 °C 

under free flow of nitrogen for three hours. Devices having an active area of 20 × 

20 µm2 were fabricated on dies of 5 × 5 mm2 by implementing the following 

microfabrication process shown in Figure 7-3. 
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Devices having sizes of 10 × 10 µm2 were used to develop a high-sensitive 

magnetosensing system as explained in section 6.3.3. These devices were also 

used to find and optimum way for a biosensing system development and had 

damages during the process. Therefore, remaining devices with the 20 × 20 µm2 

sizes were used for performing biosensing measurements. 

 

Figure 7-3: The fabrication steps to form sensors. CVD grown graphene on Si/SiO2 substrate (a). 
Photoresist spin (b). Lithography and resist development processes (c). Graphene etching using 
oxygen plasma (d). Another photoresist spin for contact formation (e) with lithography and 
development processes (f). Cr/Au evaporation (g) and lift-off (h). 

A photoresist layer was first spin-coated onto a 4-inch wafer containing graphene 

layer and then patterned by a lithography process. A dry etching process was 

performed via oxygen plasma for 13 minutes to remove the graphene parts that 

were not required. Then the photoresist was removed, and a lift-off process was 

performed to define the gold contacts. For the deposition, a layer of 30 nm 

chromium (Cr) followed by a layer of 250 nm gold (Au) was evaporated by 

electron beam (e-beam) evaporation. To form the desired gold contacts, the 

wafer was then placed in acetone for 30 minutes to remove the remaining 

photoresist and metal not adhered to the graphene surface. Figure 7-4 shows 

Raman and XPS spectra of graphene after fabrication. The obtained data showed 

that graphene is of high-quality single layer with low defects. 
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Figure 7-4: Raman (a) and XPS (b) Spectra of fabricated devices. 

To form a system which can operate in real-time, the fabricated devices should 

be able to operate in liquid environment. To do so, a reservoir needs to be formed 

on the surface of the devices. Therefore, devices went through further steps in 

order to host solution analytes. The obtained 5 × 5 mm2 dies were placed on 28-

pin DIP chips and all relevant connections between device contacts and the chip 

were made using a wire bonder (Kulicke & Soffa Industries Model 4700). Then 
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the contacts were isolated by using an epoxy glue (Epoxy Technology Inc. EPO-

TEK® 302-3M Black) for forming a reservoir, as shown in Figure 7-5.  

 

Figure 7-5: Fabricated devices (a) with placement on a chip and coverage of epoxy glue using 
laser cut acrylic tool (b). A reservoir was placed on the top of the formed well (c) and it was fitted 
with a lid (d) to prevent vaporization of the liquids if the process requires longer time. Several 
devices were fabricated to observe the behaviour of the devices for different conditions (e). 



Chapter 7 

130 

To keep the active areas of the devices clear, related patterns were designed and 

made from acrylic by cutting them using laser cutting tool (HPC Laserscript). The 

active areas were covered by photoresist and acrylic patterns were placed on 

them. Then, they were kept for few hours to let drying before being covered by 

the epoxy glue. Devices were left to dry overnight after application of epoxy glue 

and then a plastic reservoir was placed on top of the created wells. Lastly, the 

photoresist was removed, and devices were left to dry before being modified and 

tested. 

7.4 Experimental 

7.4.1 Functionalization 

In principal, it is sufficient for a receptor part of a biosensor to be highly selective 

to specific biomolecular element. However, it has to be interfaced with a 

transducer for operation and the transducer requires to be sensitive enough and 

reproducible and, ideally, can operate in real-time for reliable measurements [30]. 

A labelled approach is normally implemented to obtain a stronger signal in the 

presence of biological specificity to an analyte or chemical binding, thus, 

improving the precision. However, this approach requires the labelling process 

including nanoparticles, quantum dots, fluorescent dyes, chemiluminescent 

molecules [20, 75, 410-416] and may not allow real-time monitoring or may 

increase the time for detection as is the case for magnetic particles used in Hall 

effect type biosensors [269]. A label-free detection approach can alternatively be 

implemented using electrical, mechanical and optical properties or charge 

interaction to monitor binding activities in real-time, thus, providing direct 

information about target molecules more and preventing the negative impacts of 

interference effects which may occur during the labelling process [30]. Therefore, 

in this study, graphene Hall effect devices were decided to be used for biosensing 

purposes by employing a label-free detection approach in order to be able to 

observe the response of the devices in real-time as well as reducing the need for 

costly electronics which require for labelled detection scheme [107]. 

Covalent binding approach can be employed to achieve label-free detection, 

however, the electronic structure of graphene is disturbed if the binding event 

takes place with this method since the it occurs at carbon atoms near grain 
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boundaries and defects [375] meaning that there must be considerable amount 

of defects to adopt covalent binding. However, as it can be seen from Raman and 

XPS spectra presented in previous section (Figure 7-4), the fabricated devices 

consist of monolayer of graphene with no considerable functional groups. Pristine 

graphene is considered to be an oxide free material and demonstrates π–π 

stacking, non-covalent interaction and strong electrostatic force besides 

providing a vast surface area at molecular level [30]. Therefore, the 

functionalization can be performed non-covalently for binding the functional 

groups of graphene [417-419] which will also prevent the disruption of electronic 

properties. Non-covalent modification includes ionic bonds, Van der Waals 

forces, π–π stacking interactions, hydrogen bonding and coordination bonds [19]. 

To be able to achieve non-covalent functionalization, pyrene derivatives can be 

adopted since it was discovered to interact with graphene non-covalently via π-

stacking [376]. Therefore, 1-pyrenecarboxylic acid was used in this study for 

surface modification and this helped creating a label-free detection scheme as 

explained in the following section. 

7.4.2 Detection Protocol 

Detection protocol was designed to include two main approaches, namely, 

positive and negative control. Positive control procedure was designed to 

observe the behaviour of devices in the presence of specific antigen. In this study, 

anti-mouse IgG was chosen to be used as specific target analyte. On the other 

hand, negative control was designed under two headlines. The first approach for 

negative control was to test the device response in the vicinity of non-specific 

target antigens. For this study, anti-goat IgG was employed for this purpose. The 

second approach for negative control was to observe the behaviour of the devices 

where there is no capture antibody immobilized on the surface. To do so, surface 

was modified but without adding capture IgG on and the rest of the procedure 

was the same as positive control scheme. 

The assessment procedure began with implementing the steps defined by 

positive control procedure. Initially, 100 µL of PBS buffer was added on the 

surface and the output of the device was recorder under the presence of this 

solution without implementing any surface modification process. Then, PBS 
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solution was removed from the surface and it was rinsed with methanol. After 

rinsing, 5 mM of 1-Pyrenecarboxylic acid was inserted on the surface and kept 

for 1.5 hours to allow interaction with graphene. The surface was then rinsed with 

methanol and PBS respectively, following the interaction process. The output of 

the device was observed in PBS medium for the second time to check for any 

change after graphene and pyrene interaction. The procedure followed by rinsing 

the surface with MES buffer and adding NHS/EDC solution in 1:1 ratio. The 

device was kept under this solution for 15 minutes and then it was quickly rinsed 

with PBS solution. Mouse IgG, having a concentration of 20 µg/ml, was 

immobilized to the surface of graphene by adding it on the surface and leaving 

for 1 hour. The latter bio-element was used as capture antibody for specific 

biomolecule recognition. The immobilization was followed by PBS rinse and 

observing the device output under the presence of this solution for the third time 

to analyse for any signal change. To prevent any non-specific binding event, BSA 

was used as a blocking agent (2 %) to block any binding sites. It was added on 

the surface and remained for 1 hour followed by another PBS rinse. The output 

of the devices was observed for the fourth time in PBS. Lastly, anti-mouse IgG of 

20 µg/ml was injected on the surface and kept for 1 hour to allow binding. The 

last step was followed by PBS rinse and the output observation for the fifth time 

under PBS presence. The protocol for positive control scheme is demonstrated 

in Figure 7-6. It is worth to note that this figure illustrates the procedure only for 

positive control in a brief manner. Therefore, observing an output change is of 

importance. The process needs to demonstrate a measurable change to confirm 

a successfully performed stage. As a result, the process was defined to include 

verification steps so that in case of the observation of no change, the initial stage 

would be performed from the beginning by cleaning devices or using new ones. 

The procedures for non-specific antigen and no capture antibody cases were 

designed to be slightly different than that of shown in Figure 7-6. To observe the 

behaviour of the devices for non-specific biomolecules, anti-goat IgG was used 

instead of anti-mouse IgG. Apart from employing anti-goat IgG, all other steps 

were the same as given in the figure. Meanwhile, in the last step of the process 

(before record the output), the output needs to be recorded whether there is any 

change or not. In other words, the process would not return the initial stage if a 

change is observed although a non-specific binding should not occur for an 
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appropriately performing device which would not produce a measurable 

difference. If, for any reason, non-specific binding occurs, then it would be easier 

to observe by following the latter procedure. Therefore, the performance of the 

devices would clearly be presented in terms of sensitivity and selectivity of 

specified targets. 

 

Figure 7-6: Positive control protocol for detecting IgG. 

For the case where there is no capture antibody, the stage shown for surface 

modification with capture antibody was not performed, instead, blocking agent 

(BSA) was used to block any available binding sites. To clarify, the stage depicted 

as “add mouse IgG” in Figure 7-6 should be used as “add BSA” followed by the 

actual BSA stage shown in the figure. The second blocking stage was to make 
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sure that the blocking stage was performed thoroughly. At the end of the process, 

anti-mouse IgG was used to assess the selectivity of the devices. 

 

Figure 7-7: The illustration of control steps for specific (left column) and non-specific (middle 
column) antigens along with no-capture antibody (right column) cases. All three cases include 
surface modification with blocking stage (a), injection of target analytes (b) and observation of 
behaviour by measuring the output (c). 

As was the case for the previous negative control scheme, in the last stage no 

output change should be observed for an appropriately functioning device. 
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However, the procedure was designed to record the output without looking 

whether there is any change or not to ensure the capability of devices for 

assessing the sensitivity and the selectivity thoroughly. Figure 7-7 illustrates 

antibody-antigen interactions which was expected to occur by employing the 

methods explained for positive and negative control schemes. The left column in 

the figure is an interpretation of the positive control steps that were used to check 

the sensor output in the presence of specific target analyte. Likewise, the middle 

and the right columns are representing interactions between non-specific 

antibody-antigen and surface-analyte in case of no capture antibody, 

respectively. 

7.5 Results and Discussion 

The next challenge was to illustrate how sensitive are the developed biosensors 

in terms of detecting the specified bio-elements. This section provides a 

quantitative analysis in terms of selectivity, sensitivity and repeatability. Initially, 

devices were assessed in terms of their feasibility to operate in liquid 

environment. To do so, ultra-pure water was injected on the surface of the sensor 

with the aid of formed reservoir. As can be seen from Figure 7-8, the obtained 

output presented a desirable characteristic meaning that the polarity of the output 

changes whilst the magnetic field is applied in the reverse polarity which follows 

the characteristic behaviour of a Hall device. 

 

Figure 7-8: The behaviour of the sensor with respect to polarity of the applied magnetic field.  
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Secondly, the devices were evaluated with respect to the concentration of the 

solution to observe whether there is any significant change depending on the 

concentration. Glycerol (w ∕ v changing from 0 % to 40 %) was employed in order 

to satisfy this requirement. The change in the output with respect to concentration 

of glycerol is shown in Figure 7-9. As is seen, the output tends to rise with the 

increase of concentration. The latter case suggests that there must be a base 

solution to observe any difference after performing each stage explained in 

section 7.4.2. Therefore, PBS solution was used between different stages to 

examine the characteristics of the devices. 

 

Figure 7-9: Change in Hall voltage with respect to glycerol concentration (weigh / volume) showing 
rising output (n=3). 

The behaviour of the devices was assessed by employing the control 

mechanisms described in the previous section to discover the feasibility as a 

biosensor and to determine the performance in terms of detection capability of 

specific target analytes. The main expectation in a biosensor is to observe a 

measurable signal change whilst specific target antigens are introduced which 

should occur due to antibody-antigen interaction. To confirm the signal change, 

PBS solution was used as a reference base and the sensor output was recorded 

after each step. All measurements were performed under 10 µA driving current 

with a magnetic field of 120 mT. Due to performance variation across fabricated 

devices (see section 6.4) data was normalised with respect to the change 
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observed in the first step. Figure 7-10 shows the normalized data with respect to 

pyrene change for each step indicated in the figure. After each step, a 

measurable signal change has been observed with respect to the sensors 

previous stage which both confirmed the surface modification and antibody-

antigen interactions. 

 

Figure 7-10: The obtained data by normalising all steps with respect to pyrene change (n=6) using 
positive control scheme. 

Furthermore, the verification was performed by observing the output of the device 

in real-time during each step as indicated in Figure 7-11. The figure shows the 

real-time data which presents the change of the output with respect to initial 

measurements of each step. As can be seen from the figure, a change is 

observed in each stage from pyrene addition (a) and surface modification with 

capture antibody (b) to blocking the surface for non-specific targets (c) along with 

the addition of specific antigens (d). The change in the voltage can be explained 

by charge interactions between graphene and the added materials which 

consequently altering the performance of the Hall devices and creating a 

considerable difference with respect to sensor’s initial state during each step. 

The second requirement in a biosensor is not to allow the binding of the non-

specific target analytes and consequently not to produce any measurable signal 

difference compared to its previous stage. To assess the behaviour for this 

requirement, the approach given in the middle column of the Figure 7-7 has been 
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employed as a negative control scheme using non-specific target antigen. Similar 

to the positive control scheme, the sensor surface was modified so that it 

contained mouse IgG as capture antibody. However, non-specific target analyte 

(Anti-goat IgG) was introduced instead of specific antigen (middle column, after 

process (b)). 

 

Figure 7-11: Real-time data showing the output change with respect to the initial measurement of 
each process. A clear change can be observed for pyrene addition (a), surface modification with 
capture mouse IgG (b), blocking with BSA (c) and anti-mouse IgG (d) for specific target analyte 
processes. 

The output of the devices was recorded in PBS medium after each step and 

related data were normalised with respect to pyrene change, as shown in Figure 

7-12, for a better representation. It is clearly seen that there is not any 

considerable measurable signal comparing with the recorded output of the 

previous stage after addition of non-specific antigen. This confirms that no 

interaction occurred between capture antibody and non-specific target antigen. 

The observed behaviour of the devices indicated that they are sensitive to 
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specified biomolecule. Similar to the positive control scheme, real-time data were 

also used in conjunction with the PBS base measurements for further verification. 

As can be seen from Figure 7-13, the surface modification processes have led to 

an output change (a, b, c) whereas no change was observed during the stage 

where non-specific antigen was introduced (d). 

 

Figure 7-12: The obtained data by normalising all steps with respect to pyrene change (n=4) using 
negative control scheme which employs non-specific target antigen. 

Meanwhile, further investigation was carried out to fully characterise the 

behaviour of devices. The output of the sensors was also checked if any 

considerable change can be obtained while there is no capture antibody. The 

latter case was adopted as another negative control procedure which is not using 

capture antibody. This case must be examined to verify that the sensor is not just 

producing random output in the presence of any analyte. Therefore, as shown in 

the right column of the Figure 7-7, the surface of the sensor was modified using 

pyrene, however, without employing capture antibody. Apart from using mouse 

IgG as bioreceptor, the remaining steps were the same as explained for the 

positive control scheme. The obtained data for the latter case were normalised 

with respect to pyrene change as shown in Figure 7-14. The data clearly 

demonstrates no signal change after blocking stage which can be explained by 

no interactions between the surface of the sensor and the target analyte. 
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Figure 7-13: Real-time data showing the output change with respect to the initial measurement of 
each process. A change can be observed for pyrene addition (a), surface modification with 
capture mouse IgG (b) and blocking process with BSA (c). However, introducing anti-goat IgG (d) 
has led to no change during the process which confirms no interaction occurred between capture 
antibody and non-specific antigen. 

 

Figure 7-14: The obtained data by normalising all steps with respect to pyrene change (n=4) using 
negative control scheme which does not employ any capture antibody. 
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Similar to the case in specific and non-specific antigen detection schemes, the 

output characteristic of the devices was also monitored in real-time as shown in 

Figure 7-15. A clear change can be seen for pyrene addition which occurred due 

to pyrene-graphene interaction (a). Likewise, a change can be observed in 

surface modification (b). In this stage no capture antibody was used, instead, 

BSA was used to block any available binding sites. This stage was followed by 

one more blocking process (c) to ensure the blocking was successfully 

implemented. No signal change was observed for the second blocking stage 

which verifies the blocking process. Similarly, addition of analyte (d) did not 

caused any signal change which also validates the selectivity of the devices. 

Overall, the real-time data showed the sensor’s selectivity and verified that there 

is no measurable change in the output whilst there is no capturing antibody which 

makes the devices feasible to be used as biosensors for the specified task. 

 

Figure 7-15: Real-time data showing the output change with respect to the initial measurement of 
each process. A change can be observed for pyrene addition (a), surface modification without 
using capture mouse IgG (b). In modification step, BSA was used to block any available binding 
sites instead of using capture antibody. To ensure successful blocking operation, another blocking 
process was performed using BSA (c). The second blocking process shows no change which 
verifies the successful operation. Meanwhile, introducing anti-mouse IgG (d) has led to no change 
during the process which confirms no interaction occurred between sensor surface and target 
analyte since there was no available bioreceptor on the surface. 
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Figure 7-16 is a 3D plot considering all the data together and demonstrates the 

output change per step which validates the devices to be good in terms of 

sensitivity and selectivity to the specific binding. Taking all the data into account, 

it is clear that the developed system can be used as a biosensor which is sensitive 

and selective to specified biomolecule and can operate in real-time without need 

for any labelling procedure. 

 

Figure 7-16: Normalised data with respect to pyrene change showing change per step with 
respect to its previous stage. The figure clearly demonstrates the devices to be good in terms of 
being sensitive only to the specific binding required.  

Lastly, developed biosensors were assessed for their dynamic detection range 

with respect to molar concentration. To do so, similar steps given in positive 

control scheme were implemented using 20 µg/ml coverage of mouse IgG, 

however, in the last step where injection of specific antigen is required, anti-

mouse IgG was added to the surface in such a way that the molar concentration 

changes as shown in Figure 7-17. The specific antigens were added in different 

molar concentrations (starting from 0 nM and keeps increasing) step by step so 

that the output can be observed with respect to different concentrations. 

Increasing molar concentrations have led to a change of the output. The 

resolution is reduced in higher concentrations due to saturation. A dynamic range 
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of 1 nM to140 nM was demonstrated with potential for a wider dynamic range 

since the data seem to fit well to a 3rd order polynomial. The obtained minimum 

detection limit corresponds to 150 ng/ml. 

 

Figure 7-17: Data representing change in the output with regards to added concentration of anti-
mouse IgG through the time (a). A better representation showing output change with respect to 
molar concentration of anti-mouse IgG (a). 

As was mentioned in section 2.4.3, the Hall effect biosensors were mainly used 

to detect the existence of beads. Therefore, a detailed analysis which 

encompasses the saturation was not found in the literature to compare the results 

related to calibration curve. To the best of author’s knowledge, this is the first 
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work related to Hall effect biosensors which performs a thorough analysis from 

specific and non-specific target response to the output change with respect to 

concentration change. 

7.6 Summary 

In this work a non-covalent modification approach was employed due to low 

defective structure of devices. This approach was also adopted to maintain the 

good electronic properties of graphene samples. A label-free detection scheme 

was designed and implemented. It was shown that real-time monitoring of the 

output is feasible. Eliminating magnetic beads in such applications also helped 

reduce costly equipment to drive and process the output of the system. In 

addition, extra steps for functionalizing labels were also eliminated which 

preserving a considerable amount of time. A covalent functionalization approach 

may be considered in future for samples that have considerable number of 

defects. It can also be implemented by creating local defects in pristine graphene. 

However, this would certainly cause a deterioration in electronic properties of 

graphene which may consequently reduce the sensitivity of such biosensors. 

In conclusion, the feasibility of a label-free graphene Hall effect biosensor was 

demonstrated by fabricating devices in micro-scale and developing an 

appropriate bio-chemical procedure. The developed biosensors were shown to 

be good in terms of sensitivity and selectivity of specified target molecules without 

need for any label. It would be expected that an optimisation of the sensor 

fabrication would help to reduce the current lower detection limit to below 1 nM. 

The upper limit looks to be higher than that of the demonstrated range since the 

data fits well to a 3rd order polynomial. Therefore, it appears to have a wider 

dynamic range towards higher concentrations. 
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Chapter 8. Conclusion and Future Work 

8.1 Conclusion 

In this work, Hall effect magnetometers were fabricated from a range of 

approaches. Relatively large-scale PCB sensors were used to develop the 

system electronics. Gold devices were then fabricated to obtain bench mark 

performance figures for micro fabricated devices. Finally, a range of graphene 

devices were developed to allow an assessment of their performance. Apart from 

actual device manufacturing, several routes were employed for easier graphene 

production and suspension. Therefore, thermal decomposition and laser heating 

options were investigated for epitaxial graphene growth from silicon carbide and 

a photoelectrochemical etching process was adopted to obtain potentially 

suspended graphene. Meanwhile, alternative avenues were also explored using 

CVD grown graphene sheets by transferring on pre-patterned substrates for 

suspended graphene formation. Different options such as graphene on copper 

and on polymer were used for the transfer process and their promise was 

examined in terms of applicability. 

A reservoir was formed on surface of devices in order to obtain a biosensing 

system. An epoxy glue was used to isolate the contacts with the aid of a laser cut 

acrylic mask which was adopted to protect the active areas of devices during 

isolation process. The isolation process allowed the biosensors to operate in 

liquid environment. To functionalize devices, a non-covalent surface modification 

process took place by employing pyrene. A protocol consisting of three control 

steps was defined to assess the behaviour of devices. The developed biosensors 

have shown to be sensitive and selective to specified target molecules. 

8.2 Contribution 

Various options were investigated for preparing graphene and micro fabricating 

devices. Devices from single layer graphene samples were shown to be the best 

material for magnetosensing applications. To reveal potential of fabricated 

graphene Hall devices, a circuitry was designed and made on PCB which was 
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used to actuate devices and process the output by dynamically removing 

undesired effects. The circuitry helped reduce the offset equivalent magnetic field 

down to 100 nT, thus, improved the accuracy of the devices significantly. 

Integrating this circuitry with fabricated devices, have led to a highly sensitive 

magnetometer [420] which reached a current-related sensitivity of 2540 V/AT 

[421] along with good linear behaviour. 

In addition, the feasibility of suspending graphene was demonstrated which can 

be adopted for future device fabrication. Moreover, printed graphene oxide 

devices were shown to have merit for easier and cheaper device manufacturing. 

The most important contribution of this work was to demonstrate the feasibility of 

a label-free graphene Hall effect biosensor. The feasibility was demonstrated by 

adopting a protocol including control mechanisms to assess the performance of 

the developed system. This demonstration showed that the elimination of 

additional steps in fabrication and operation of Hall effect-based sensors are 

feasible which can help to develop cost-effective biosensors. The devices 

showed the promise which can be taken forward for future applications. 

8.3 Future Work 

A range of other options for device fabrication were explored, several of which 

showed potential for further development. Inkjet printing of graphene oxide is one 

of the most promising method that could be taken forward for potential future 

device developments. It was shown to be feasible for direct device manufacturing 

without need for any additional fabrication step. A thermal reduction method could 

be performed to reduce the oxygen content of the structure [422]. To prevent the 

degradation in the performance of those devices, a reversible electrical 

modification process presented in ref [409] could be employed to maintain the 

efficiency for potential biosensor development. Likewise, heating silicon carbide 

samples via a laser beam is another promising option for potential graphene 

fabrication. Optimisation works on laser power, scanning speed, and 

manufactured chamber could provide uniformly grown graphene sheets. The 

promise of this method has already been shown in a quite recent work [423] which 

suggests the method is feasible for future electronic device applications. Further 

improvement is feasible by adapting an onboard analog to digital converter (ADC) 
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and a display along with a small magnet which will make the system more 

compact and eliminate all lab equipment, thus, making the system convenient to 

be used for end users. 
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