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Abstract

The confirmed discovery of the Higgs boson in 2012 raises some intriguing cosmological

questions about the fate of the false vacuum and what this means for the Standard Model.

Quantum field theory allows for the existence of metastable fields where a potential devel-

ops a lower energy state, or true vacuum, at large field values where the energy is lower

than its local minimum, or false vacuum, value. The most recent measurements of the

Higgs and top masses suggest this is the case for the Higgs potential.

A phase transition may occur through the process of quantum tunnelling, resulting in

the nucleation of a rapidly expanding true vacuum bubble on a false vacuum background.

Such a bubble may have devastating consequences for the universe if it expands to cover

all of space. The fact that this has clearly not yet happened allows us to put constraints

on our model for vacuum decay and provides insight into Beyond Standard Model physics.

Using methods from Euclidean field theory, we find the tunnelling rates of toy model

potentials as well as a close approximation to the Higgs in various spacetimes. We first

investigate tunnelling in asymptotically flat space before applying a similar method to

false vacuum decay in de Sitter space, also incorporating the effects of back reaction.

Two different potentials are considered to investigate vacuum decay in a Randall-Sundrum

braneworld: a quartic potential with two well defined vacua, and a Higgs-like potential

closely approximating the Higgs at high energies. Vacuum decay is studied for fields living

on a 4-dimensional brane in RS2, and the presence of a fifth dimension is found to have

little influence on the decay rate.

We further use these potentials to look at the case of vacuum decay seeded by the presence

of a black hole in five dimensions. By comparing the tunnelling rate with the Hawking

evaporation, it is found that small black holes at high energy scales can catalyse vacuum

decay. The energy scales needed to form such black holes may potentially be reached in

the most energetic of cosmic ray collisions.

Finally, we look at the negative modes of O(4) and black hole instantons and find that

instantons seeded by a black hole characteristically have a single negative mode. For O(4)

instantons at energies close to the Planck scale, an infinite stack of negative modes arises,

raising the question of how this is to be interpreted.
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Chapter 1

Introduction

The existence of the Higgs boson was first proposed in 1964 – an excitation of the Higgs

field that provides a mechanism by which other particles are granted mass[1]. Some time

after this proposal, the subject of vacuum decay began to attract interest in the 1970s,

with work by Sidney Coleman and others investigating the “fate of the false vacuum”

[2], [3]. When considering the fate of our universe, these two topics become inextricably

linked. If the Higgs field is metastable, then a spontaneous phase transition may result in,

as Coleman put it, “the ultimate ecological catastrophe”. This dramatic claim refers to

the phenomenon of vacuum decay – if a field occupies a local minimum energy state, then

there exists a non-zero probability of a spontaneous transition to a lower energy state.

Consideration of this possibility for a scalar field was initiated in the Soviet Union with

Kobsarev, Okun and others investigating the formation of bubbles in metastable vacua

[4],[5]. These bubbles form when a field occupying a local minimum energy state (known

as the false vacuum) transitions to a lower energy state (the true vacuum). A bubble where

the field is near to its true vacuum value nucleates at the transition site, before expanding

very rapidly at speeds asymptotically approaching the speed of light to eventually swallow

up all of space. The region contained inside this bubble has a lower vacuum energy and

therefore different physics to the region outside, justifying Coleman’s claim that such an

event would indeed be an ecological catastrophe were such a bubble to swallow up Earth.

A methodology for calculating the likelihood of such a phase transition was developed by

Coleman [2], and later extended to incorporate gravity by Coleman and de Luccia [3].

For a potential with two minima separated by a barrier, a transition from the higher to

lower minimum may spontaneously occur through the process of quantum tunnelling. The

transition rate Γ is given by

1



Chapter 1. Introduction

Γ = Ae−B (1.1)

where the prefactor A is a constant and B is the difference in actions between an instanton

and the false vacuum. In the Coleman-de Luccia formalism, semi-classical (or instanton)

solutions to the field’s equations of motion are known as the bounce. Finding these

instanton solutions provides a technique for investigating the decay rate of metastable

vacua, including the Higgs.

In 2012, experiments at CERN confirmed the existence of the Higgs boson. Our current

understanding suggests that the Higgs field is indeed metastable [6]. More accurate mea-

surements of the Higgs and top quark masses are needed to determine the shape of the

potential with greater certainty, but it is likely that the Higgs occupies a false vacuum

state.

This raises some intriguing cosmological questions about physics beyond the Standard

Model and the fate of our universe. The effects of such a transition may be felt across

Hubble volumes or even larger scales, and a rapidly expanding vacuum bubble could have

major consequences for the universe depending on whether it expands to cover all space or

remains contained within a local horizon. An average decay time on the order of 109 years

may be cause for concern, or it may be possible that true vacuum bubbles were formed

during inflation. Evolution of the Higgs field during inflation has been previously studied

by Espinosa et al. [7] and draws the conclusion that while the bubbles may initially be

innocuous during the period of inflation, they could later expand to swallow all of space.

It is therefore of considerable interest to answer the question of how likely it is for a phase

transition to occur, and what factors may enhance or suppress the transition rate. By

first considering a toy model potential in Coleman’s thin wall approximation, we develop

numerical techniques to calculate B in Minkowski space, which is covered in section two.

The effect of back-reaction on the tunnelling rate and the interaction of a massive field

with the spacetime curvature is considered in chapter three. We investigate tunnelling in

de Sitter space and consider the effects of the self-coupling parameters in the potential

and the rescaled Planck mass Mp.

Chapter four gives the potentials that we consider in the later chapters of this thesis: a

quartic potential with two well-defined minima, and a logarithmic potential that closely

approximates the Higgs potential at high energies.

Our techniques for calculating tunnelling rates are then applied to the Higgs field in

chapter five, where we look at the influence of a fifth dimension on the bounce when the

Higgs field is localised to a four-dimensional brane in a five-dimensional Randall-Sundrum

2



Chapter 1. Introduction

braneworld. Chapter six continues to investigate vacuum decay rates in RS2 with the

addition of a black hole in the bulk.

The negative modes of Coleman-de Luccia instantons and how to interpret these are

examined in chapter seven. The main scenario we consider is for O(4) instantons in empty

space, and results are also included for vacuum decay seeded by a black hole. This presents

the first look at negative modes of instantons with curvature coupling and we give a new

result for the negative mode in the thin wall approximation.

In chapter eight, we summarise the conclusions we are able to draw from this study of

vacuum decay and consider where future work in this field may lead.
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Chapter 2

The Coleman-de Luccia Instanton

2.1 Metastable vacua and true vacuum bubbles

Investigation of vacuum decay began in the 1970s, when Kobsarev, Okun and Voloshin

first considered the possibility in Bubbles in metastable vacuum [5]. This paper examined

the case of two energy states with different energy density, and found that the higher

vacuum was almost stable in terms of a possible phase transition to the lower. In the

case where a phase transition occurs, a bubble of the lower vacuum energy state would

be produced. The upper and lower vacua are now known as the false and true vacuum

respectively. This paper looked at the possibility of vacuum decay for a Klein-Gordon

field with the Lagrangian density

L =
1

2
(∂φ)2 − V (φ) (2.1)

A previous paper by Zeldovich, Kobsarev and Okun [4] had looked at the case where V (φ)

is a symmetric potential

V (φ) = λ2(φ2 − η2)2 (2.2)

where λ and η are constants. This potential produces two degenerate vacuums at −η and

+η where V (φ) = 0. The domains with φ = +η and φ = −η are separated by walls with

thickness
√

2/η and a surface mass density

µ =
4
√

2

3
λη3 (2.3)
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This established that the walls can form bubbles which collapse under the action of the

surface tension. For a potential with degenerate vacua, there is no difference in energy

densities to trigger a spontaneous phase transition. Kobsarev et al. considered phase

transitions for an asymmetric potential. In this case, the transition rate is related to the

difference in actions between the false and true vacua according to

Γ = Ae−B (2.4)

A method for finding the action B was presented by Coleman in Fate of the false vacuum:

semiclassical theory [2]. The method for finding the co-efficient A was dealt with in a

second paper [8]. We will come back to the prefactor A later.

2.2 Vacuum decay from Euclidean Field Theory

In Fate of the false vacuum [2], Coleman presented a methodology for finding the instanton

solutions for a quantum field theory with two vacuum states with different energy densities.

To begin constructing this methodology, first consider a particle of unit mass moving in

one spatial dimension under the influence of potential V (x). Imagine, in the classical

version of this system, the particle is in a stable equilibrium at x = 0. However, in the

quantum picture, quantum corrections render this state unstable. Field theory can give

rise to a similar situation. Consider the theory of a scalar field in four dimensions with

the Lagrangian,

L =
1

2
∂µφ∂

µφ− V (φ). (2.5)

The potential V (φ) has two unequal minima, referred to by Coleman as φ+ (the higher

state) and φ− (the lower state). The higher of these energy states is known as the false

vacuum, and the lower, the true vacuum.

The probability of a phase transition from the false to true vacuum is considered in terms

of barrier penetration. Coleman develops a methodology by looking at barrier penetration

in many dimensions for a particle of unit mass, and then extends this to Euclidean field

theory (imaginary time). To investigate the evolution of the field in imaginary time, we

make the substitution

t = iτ (2.6)

where t is the real time and τ is imaginary time. The Euclidean action is defined as minus

the analytic continuation of (2.5) to imaginary time,

5



Chapter 2. The Coleman-de Luccia Instanton

Figure 2.1: A potential with degenerate minima where it is possible for a phase transition from
false to true vacuum to occur via quantum tunnelling.

SE =

∫
d4x

[
1

2
∂µφ∂

µφ+ V (φ)

]
(2.7)

The equation of motion for the field with a solution known as the ”bounce” is

(
∂2

∂τ2
+∇2

)
φ = V ′(φ) (2.8)

where the prime denotes differentiation with respect to φ. The boundary conditions for

the bounce are

lim
τ→±∞

φ(τ,x) = φ+, (2.9)

and
∂φ

∂τ
(0,x) = 0. (2.10)

The action SE will be used to determine the tunnelling exponent in equation (2.4):

SE =

∫
dτd3x

[
1

2

(
∂φ

∂τ

)2

+
1

2
(∇φ)2 + V

]
. (2.11)

For B to be finite, the field must approach its false vacuum value at infinity. This imposes

6
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the condition

lim
|x|→±∞

φ(τ,x) = φ+, (2.12)

This condition has a physical interpretation: quantum fluctuations cause a bubble of true

vacuum to nucleate at the site of the transition, while at locations far away from this site,

the field existing in the false vacuum remains unaffected.

It can be shown that the bounce is always O(4) symmetric, ie. φ is only a function of ρ

where ρ =
√
|x|2 + τ2. Therefore, the Euclidean action simplifies to

SE = 2π2

∫ ∞

0
ρ3dρ

[
1

2
(φ′2) + V (φ)

]
. (2.13)

The prime denotes differentiation with respect to ρ. The equation of motion becomes

φ′′ +
3

ρ
φ′ =

dV

dφ
. (2.14)

The tunnelling exponent B in (2.4) is given by the difference in actions between the false

vacuum and the bounce.

B = SE(φ)− SE(φ+) (2.15)

After tunnelling, the field inside the bubble evolves according to the classical field equation

− ∂2φ

∂t2
+∇2φ = V ′(φ). (2.16)

where t is the real time, and the bubble rapidly expands.

2.3 The thin wall approximation

In his first paper on the subject of vacuum decay [2], Coleman gives a method for finding

instanton solutions where the bounce looks like an O(4) spherically symmetric bubble

nucleating with a thin wall separating the region of true vacuum inside the bubble from

the false vacuum background. The radius of the bubble is assumed to be large compared

to the characteristic variational scale of the field φ.

To implement this method, Coleman begins by considering an even function of φ, V+(φ),

V0(φ) = V0(−φ) (2.17)
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with minima at points ±a,

V ′0(±a) = 0 (2.18)

V0 is a function chosen such that V0(φ+) = V0(φ−) and dV0/dφ vanishes at both φ+ and

φ−. We define the difference between the two vacua ε

ε = V (φ+)− V (φ−) (2.19)

and write V as

V (φ) = V0(φ) +O(ε) (2.20)

The equation of motion for the approximate φ is

φ′′ =
dV0

dφ
(2.21)

This discards the term proportional to φ′ in equation (2.14) which will be justified later.

(2.21) admits a first integral,

[
1

2
(φ′)2 − V0

]′
= 0 (2.22)

Its value is determined by the condition that φ(∞) is the false vacuum φ+:

1

2
(φ′)2 − V0 = −V0(φ±) (2.23)

ρ̄ is the point at which φ is the average of its two extreme values:

∫ φ

(φ++φ−)/2
dφ[2(V0 − V0(φ±))]−1/2 = ρ− ρ̄ (2.24)

ρ̄ is assumed to be large compared to the length scale on which φ varies. If ρ̄ is large, the

bounce looks like a bubble of true vacuum embedded in the false vacuum, separated by a

wall. This wall is small in thickness compared to the radius of the bubble, hence, we use

a thin wall approximation to find instanton solutions.

Coleman determines ρ̄ by computing the action B and imposing the condition it is sta-

tionary under variations of ρ̄. The integration can be broken down into three parts: inside

the wall, outside the wall, and within the wall itself.

8



Chapter 2. The Coleman-de Luccia Instanton

Outside the wall:

Boutside = 0 (2.25)

Inside the wall:

Binside = −π
2

2
ρ̄4ε (2.26)

Within the wall, in the thin wall approximation:

Bwall = 2π2ρ̄3

∫
dρ

[
1

2
φ′2 + V0(φ)− V0(φ+)

]
(2.27)

The tension in the bubble wall, σ, can be written as

σ = 2

∫
dρ [V0(φ)− V0(φ+)] . (2.28)

Then, Bwall = 2π2ρ̄σ. We can now compute the action of the bounce

B = −1

2
π2ρ̄4ε+ 2π2ρ̄3σ (2.29)

This is stationary at

ρ̄ = 3σ/ε (2.30)

This quantity becomes large when ε is small. Therefore, for potentials with a small differ-

ence between the two minima, we can justify eliminating the φ′/ρ term in (2.14).

We can draw the following conclusions about the behaviour of the action depending on

the form of the potential, and therefore the likelihood of the field to transition:

• B decreases and the tunnelling rate is enhanced when ε becomes large.

• The thickness of the bubble wall is increased by decreasing the size of the barrier.

We now know

B = 27π2σ4/2ε3 (2.31)

The bounce has been used in the thin wall approximation to calculate a tunnelling co-

efficient that gives the probability of a bubble of true vacuum nucleating within the false

vacuum. The bounce can also be used to describe the bubble evolution in real time. The

surface t = 0 is the intersection of Euclidean space (imaginary) and Minkowski space (real

time). The time derivative of φ on this surface is zero at the point the bubble materialises.
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In this thin wall approximation, all of the energy released from the true vacuum to the

false vacuum goes into driving the acceleration of the thin wall as the bubble expands.

Having established this model for vacuum decay in flat space, Coleman later with de

Luccia modified the theory to incorporate gravity [3]. We will return to this later, but

first we can revisit the other variable in the tunnelling equation: the co-efficient A.

2.4 First quantum corrections

Coleman’s second paper with Callan [8] dealt with the co-efficient A in the tunnelling

equation.

The specific value of A varies depending on the form of the potential V , though its contri-

bution to the tunnelling rate is exponentially smaller than that of the action B. Therefore,

throughout this thesis B will be the primary consideration when finding transition rates,

though we will briefly look at A here and its relevance to the modes of the bounce.

The prefactor A comes from summing over the eigenvalues of all the perturbations about

the bounce. It is obtained using a method based on functional integration, and ultraviolet

divergences are removed using the usual renormalisation in perturbation theory.

Coleman and Callan present a method for obtaining A based on a sum over all the energy

eigenstates. We can again consider the case of a particle of unit mass moving in one

spatial dimension under the influence of the potential V (x). The position eigenstates of

the particle |xi > and |xf > appear in the Euclidean version of Feynman’s sum over

histories.

〈xf |e−HT/~|xi〉 = N

∫
[dx]e−S/~ (2.32)

In this equation, on the left hand side H is the Hamiltonian and T is a positive number,

while on the right, N is a normalisation factor and S is the Euclidean action. Note, here

~ is not set equal to one. If we expand in a complete set of energy eigenstates

H|n〉 = En|n〉, (2.33)

Then

〈xf |e−HT/~|xi〉 =
∑

n

e−EnT/~〈xf |n〉〈n|xi〉. (2.34)

The leading term in this expression for large T tells us the energy and wavefunction of the

lowest lying energy eigenstate.
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The Euclidean action S is

S =

∫ T

0
dt

[
1

2

(
dx

dt

)2

+ V

]
(2.35)

where x(t) obeys the boundary conditions x(0) = xi and x(T ) = xf .

Figure 2.2: The Euclidean form of a potential with false and true vacua.

The total decay rate Γ can be found by summing the probability of decay from all the

individual bounce solutions. The term “bounce” comes from the behaviour of a particle

in the Euclidean form of a potential with a shape such as in fig. 2.2 (the potential is

upside-down compared to fig. 2.1). The particle can begin at the top of the hill, bounce

off the potential on the right, and return to the top of the hill. The bounce has energy

E = 0 and the centre of the bounce is defined as the point where dx/dt = 0. If we denote

the action of a bounce by B, then we can use equation (2.22) to express the action using

the potential V

B =

∫ ∞

−∞
dt(dx̄/dt)2 (2.36)

=

∫ σ

0
dx[2V (x)]

1
2 (2.37)

where σ is the second zero of V (further explanation is given in [8].
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By translation invariance, the centre of the bounce (ie. the point at which the bubble

nucleates) can be anywhere along the t axis. For a very large time interval T , a bounce

centred anywhere in the interval of integration is an approximate stationary point of the

functional integrand. Therefore, there can be n separate bounces spaced out along an

interval of length T , with centres at t1...tn, where T > t1 > t2... > tn > 0. The functional

integral can be evaluated by summing over all these configurations. Coleman and Callan

do this by assembling the factors that go into this expression and then performing the

summation.

For n bounces, the total Euclidean action is nB, which takes care of the exponential for

the action.

To evaluate the determinant for the path integral, we find the product of contributions

from large time intervals surrounding each bounce and the even larger time intervals where

x = 0 surrounding each bounce. This gives

[ω
π

] 1
2
e−ωTKn (2.38)

where K is defined by demanding that this expression give the right answer for one bounce

and ω2 is defined to be V ′′(0).

Finally, an integration if performed over the locations of each of the centres of the bounce:

∫ T

0
dt

∫ t1

0
dt2...

∫ tn−1

0
dtn = Tn/n! (2.39)

The summation is now performed:

∞∑

n=0

[ω
π

] 1
2
e−ωT

(Ke−BT )n

n!
=
[ω
π

] 1
2

exp[−ωT +Ke−BT ] (2.40)

The total probability of decay comes from summing the probabilities of decay due to

each bubble solution. For a single bubble solution, evaluating the path integral gives a

contribution to A of the form

Ibubble ≈
1

2
iΩT

∣∣∣∣
det′ S′′E [xb]

detS′′E [xfv]

∣∣∣∣
−1/2(

B

2π

)1/2

e−B Ifv, (2.41)

where S′′E is the second functional derivative of the Euclidean action, det′ denotes the

determinant with zero modes omitted, and Ibubble and Ifv are the actions of the bubble

and false vacuum respectively. The factors Ω and T for the total volume and time period
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arise from the zero modes, along with a Jacobian factor (B/2π)1/2. This bounce solution

has a vanishing derivative and is a saddle point of the Euclidean action. The second

variational derivative of the action at the bounce has exactly one mode with a negative

eigenvalue, which gives rise to a factor of i in the contribution to A (a more rigorous

derivation of this result is given by Coleman and Callan in [8]). This would become in if

there were n negative modes, which is explored later in chapter seven.

Summing the contributions to A from all possible bubble solutions gives a final decay

probability per unit time

Γ = (B/2π)1/2

∣∣∣∣
det′[−∂2

t + V ′′(x̄)]

det[−∂2
t + ω2]

∣∣∣∣ e−B[1 +O(~)]. (2.42)

While the prefactor A is only considered in chapter seven of this thesis in relation to the

negative modes of instantons, its contribution to the total decay rate is worth mentioning.

Estimates for the prefactor A have been investigated previously by Strumia and Tetradis

using a coarse-grained potential (a simplified form of the potential where microscopic detail

can be smoothed over below the coarse-graining scale) in [9], which drew the following

conclusions:

• The main role of A is to remove the dependence on the coarse-graining scale in

high-temperature phase transitions.

• A always enhances the tunnelling rate.

• In strongly first-order phase transitions, B gives the dominant contribution to the

decay process.

• A makes a greater contribution to the decay process for progressively weaker first-

order phase transitions.

2.5 The Coleman-de Luccia instanton

Coleman’s paper I [2] established a semiclassical theory for the decay of metastable vacua.

In paper II [3], this theory is extended to include the effects of gravitation. While gravity

and vacuum decay act on vastly different scales, when considering the evolution of the

bubble, gravitational effects become significant.

We will now present a method for finding instanton solutions incorporating gravitation.

As in the theory without gravity, consider a scalar field defined by the action,

S =

∫
d4x

1

2
((∂φ)2 − V (φ)), (2.43)
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where V (φ) is a potential with two non-degenerate local minima φ±. A bubble is produced

as a result of a transition from φ+ to φ−. When the bubble nucleates, the energy released

by conversion of false vacuum to true is proportional to the volume of the bubble, and

therefore so is the Schwarzchild radius associated with this energy.

Gravitation affects vacuum decay and vacuum decay affects gravitation. Incorporating

gravitational effects into the theory, a scalar field is defined by the action,

S =

∫
d4x
√−g1

2
[gµν(∂φ)2 − V (φ)− (8)πG)−1R], (2.44)

where R is the curvature scalar. A cosmological constant can be introduced into the action

by adding a constant to V . Once vacuum decay occurs, the cosmological constant inside

the bubble is different from the one outside, fundamentally changing the structure of the

spacetime for the true vacuum. The effects of backreaction on decay rates are discussed

in section two.

Experimental observations confirm our universe is flat with a very small cosmological

constant [10]. We therefore have two scenarios to consider: (1) that we live in a false

vacuum where a phase transition has yet to occur, and the shape of the spacetime in any

true vacuum bubble would be AdS; or (2) we live in a universe in which vacuum decay

has already occurred, and the resulting spacetime in the true vacuum bubble is flat after

tunnelling. Measurements of the Higgs mass that find the field to be metastable [6], [11]

rule out the second of these scenarios.

To expand Coleman’s model for vacuum decay to incorporate gravity, we begin with

the bounce solution. We can reasonably assume that gravitation does not break the

symmetries of the scalar problem, and the bounce will therefore be invariant under four-

dimensional rotations.

In this model, we first construct a general rotationally invariant Euclidean metric. Define

a radial curve to be a curve of fixed angular co-ordinates. Choose the radial co-ordinate

ξ to measure distance along radial curves.

ds2 = dξ2 + ρ(ξ)2dΩ2 (2.45)

where dΩ2 is the element of distance on a unit three-sphere of volume 2π2 and ρ gives the

radius of curvature of each three-sphere.

The scalar field equation is

φ′′ +
3ρ′

ρ
φ′ =

dV

dφ
(2.46)
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where the prime denotes d/dξ. The Einstein equation

Gξξ = −κ2Tξξ (2.47)

becomes

ρ′2 = 1 +
1

3
κ2ρ2

(
1

2
φ′2 − V

)
(2.48)

where κ = 8πG.

The action of the field incorporating gravity is

SE = 2π2

∫
dξ

(
ρ3(

1

2
φ′2 + V ) +

3

κ2
(ρ2ρ′′ + ρρ′2 − ρ)

)
. (2.49)

From this, we will now construct the bounce in the thin wall approximation. Trivially,

inside the wall, ρ is replaced with ξ. Comparing the field equations with and without

gravity, the co-efficient of the φ′ term in the gravitational case is now ρ′/ρ rather than

1/ρ. Therefore, in the thin wall approximation we can copy (2.24) and replace ρ.

∫ φ

(φ++φ−)/2
dφ[2(V0 − V0(φ±))]−1/2 = ξ − ξ̄ (2.50)

Once we have φ, we can solve the Einstein equation (2.48) to find ρ. We choose the

integration constant

ρ̄ = ρ(ξ̄) (2.51)

This is the radius of curvature of the wall separating the false and true vacua.

The action SE can be integrated by parts to give

SE = 2π2

∫
dξ

(
ρ3(

1

2
φ′2 + V )− 3

κ2
(ρρ′2 + ρ)

)
(2.52)

It is not necessary to introduce any surface term to the action – B is the difference between

two actions where the solutions agree at infinity, and these surface terms will therefore

cancel in the calculation of the bounce action.

We can now use (2.48) to replace ρ′2:

SE = 2π2

∫
dξ

(
ρ3V − 3ρ

κ2

)
(2.53)

So far in this subsection, we have not yet implemented the thin wall approximation in our

calculations incorporating gravitation. Now we will evaluate B. The action is divided up
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into three parts as before.

Outside the wall:

Boutside = 0 (2.54)

Within the wall, ρ can be replaced with ρ̄ and V with V0:

Bwall = 4π2ρ̄3

∫
dξ[V0(φ)− V0(φ+)] (2.55)

Inside the wall, φ is constant, hence,

dξ = dρ(1− 1

3
κρ2V )−1/2 (2.56)

and

Binside = −12π2

κ

∫ ρ̄

0
ρdρ[1− 1

3
κρ2V (φ−)]1/2 − (φ− → φ+) (2.57)

When considering vacuum decay in relation to our universe, there are two possibilities:

we are either living in a pre-transition universe waiting for vacuum decay to occur, or

alternatively, vacuum decay has already happened at some point in the past and we live

in the universe with the new vacuum energy that results from it.

Our current understanding of the Higgs field allows us to rule out this second scenario

and conclude that our universe exists in a metastable vacuum. However, Coleman and de

Luccia considered the post-apocalyptic scenario for a more general scalar field.

2.5.1 Case 1

The first special case Coleman and de Luccia consider is that we currently live in a universe

after vacuum decay, where our present spacetime in the true vacuum is flat having decayed

from a de Sitter false vacuum. The energy densities of the false and true vacua are:

V (φ+) = ε, V (φ−) = 0 (2.58)

The action B is stationary at the bubble radius

ρ̄ =
12σ

4ε+ 3κσ2
(2.59)

=
ρ̄0

1 + (ρ̄0/2Λ)2
. (2.60)
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The action can be expressed in terms of the action without gravitation, B0

B =
B0

[1 + (ρ̄/2Λ)2]2
. (2.61)

where B0 = 27π2σ4/2ε3 is the decay exponent in the absence of gravity.

2.5.2 Case 2

The second special case considered is that we’re living before a vacuum decay event has

happened in our region of space. In this scenario, we live in a flat universe with zero

energy density at the false vacuum, while the true vacuum has negative energy density

and the spacetime inside the bubble is anti-de Sitter. The energy densities for the false

and true vacua are:

V (φ+) = 0, V (φ−) = −ε (2.62)

B is stationary at

ρ̄ =
ρ̄0

1− (ρ̄0/2Λ)2
(2.63)

The action is

B =
B0

[1− (ρ̄/2Λ)2]2
(2.64)

Without gravitation, the thin wall approximation is valid when ρ̄ is large compared to

the length scale of variation of φ. In the case with gravity, 1/ρ in the φ′ term in the field

equations is replaced with ρ′/ρ. This is the quantity that must be small at the wall.

We can test whether this is small using the Einstein equations. From equation (2.48), we

have,
ρ′2

ρ2
=

1

ρ2
+
κ

3

(
1

2
φ′2 − V

)
(2.65)

The left hand side is small if both terms on the right are small. The first term 1/ρ is small

as in the non-gravitational case. In the second term,
(

1
2φ
′2 − V

)
is approximately constant

throughout the wall, and has zero magnitude on one side of the wall and magnitude ε on

the other. It would therefore be an overestimate to replace this quantity with ε everywhere

– the second term becomes (1/Λ)2.

The thin wall approximation is valid if both ρ̄ and Λ are large compared to the charac-

teristic scale on which φ varies, which does not place a restriction on the ratio ρ̄/Λ that

measures the importance of gravitation.

Coleman and Callan consider two special cases. In the first case, for a field decaying into
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our present vacuum, gravitation increases the likelihood of a bubble materialising (B gets

smaller) and decreases the radius of the bubble at the point of materialisation (ρ gets

smaller).

In the second case, for a field decaying from our present vacuum, the opposite is true. The

presence of gravitation introduces a cosmological constant Λ and makes bubble nucleation

less likely while the radius of the bubble increases. Vacuum decay can be quenched com-

pletely when ρ̄0 = 2Λ, where ρ̄ is the bubble radius before incorporating gravitational

effects.

This can be explained by considering the energy of the bubble. For vacuum decay to

occur, the nucleating bubble must have zero energy – the sum of a negative volume term

and a positive surface term. In the case without gravity, it is always possible to create a

zero energy bubble regardless of how small ε is, provided ρ̄ is large. The volume/surface

ratio in this case allows the bubble to have zero energy.

When including gravitation, the negative energy density inside the bubble leads to a

distortion of the spacetime geometry in such a way as to diminish the volume/surface

ratio. It is therefore possible that, for sufficiently small ε, no bubble will ever have zero

energy regardless of the size of ρ̄.

2.6 Negative mode solutions

As a result of the first quantum corrections in [8], a characteristic feature of vacuum decay

is the emergence of a negative mode of field perturbations corresponding to a scaling of

the bubble radius up or down. In chapter seven, we address the problem of infinitely many

such modes occurring for tunnelling in asymptotically de Sitter space.

For the case with a negative mode, a solution to the field equations can be found by

considering a potential with degenerate minima

V0 =
1

4
λφ2(φ− φtv)2 (2.66)

where the field has its true vacuum value at φ = φtv. For this potential, the field equation

is,

1

2
φ′2 = V0(φ) (2.67)

Which then permits a solution for φ of the form,
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φ =
1

2
φtv(1− tanhκ(r −R)) (2.68)

where r is the radial co-ordinate with the centre of the bubble at r = 0 and R is the bubble

radius. By differentiating 2.68 and defining θ = κ(r −R) we can write φ′ as

φ′ =
1

2
φtvκ sech2 θ (2.69)

Substituting into 2.67 gives

1

2
φ′2 =

1

8
φtvκ

2 sech2 θ (2.70)

1

4
λφ2(φ2 − φ2

tv) =
1

4
λφ2

tv(1− tanh θ)2 1

4
λφ2

tv(1 + tanh θ)2 (2.71)

=
1

64
λφ2

tv(1− tanh2 θ)2 (2.72)

Hence κ is given by

κ2 =
1

8
λφ2

tv (2.73)

The action per unit area of the bubble wall, σ, can be found by performing an integration

of the potential

σ =

∫
φtv

0

√
1

2
λφ2(φ2 − φ2

tv)dφ (2.74)

We can now substitute (2.68) and (2.72) to express κ in terms of σ.

κ =
3σ

φ2
tv

(2.75)

In chapter seven, we revisit this solution for φ to explore the negative modes of O(4) and

black hole instantons.
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Chapter 3

Tunnelling with toy model

potentials

3.1 Tunnelling in flat space

Numerical techniques for investigating decay rates are developed from Coleman and de

Luccia’s formalism for finding instanton solutions using Euclidean field theory. To build

these techniques, the first case considered is one where the gravitational back reaction is

ignored. This has the metric:

ds2 = dt2 − dx2 − dy2 − dz2. (3.1)

To convert this metric to the Euclidean space we will work in, we make the replacement

t = ir where r is the imaginary time. In polar co-ordinates the metric can be written in

terms of r:

ds2 = dr2 + r2(dχ2 + sin2 χ(dθ2 + sin2 θdφ2)) (3.2)

For a vacuum to be metastable, there must exist a barrier in the potential through which

the field can tunnel, the height of which will determine the bubble wall thickness (see fig.

3.1).

The method to find instanton solutions numerically implements a means of testing whether

an estimate for φ at the centre of the bubble, φ0, “undershoots” or “overshoots”, as defined

by Coleman in [2]. The explanation of this considers a particle moving in the potential

subject to a viscous damping force. If the initial position of this particle is properly

chosen, it will come to rest at φfv, the value of φ in the false vacuum, at minus infinity.
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Chapter 3. Tunnelling with toy model potentials

We will return to this explanation later when considering the implementation of numerical

methods.

Depending on particle physics parameters such as the Higgs mass, the Higgs potential may

feature a false vacuum and a potential barrier. The precise location of the true vacuum

is either not known, or a second local minimum might not exist. The potentials we will

use in later chapters give close approximations to the Higgs potential at large field values.

To begin developing our methods to find instanton solutions numerically, we will first

consider a toy model potential with two well-defined minima, the lower of which is located

at V (φ) = 0, thus placing the true vacuum in flat space.

V (φ) =
1

2
m2φ2 − 1

4
λφ4 +

1

6
gφ6 (3.3)

m is the scalar field mass while g and λ are self coupling parameters. The number of

free parameters can be reduced by rescaling. First we choose to define φ = φ′/P and

V = V ′/Q and substitute this into equation (3.3):

V ′ = QV =
Q

2
m2φ

′2

P 2
− Q

4
λ
φ′4

P 4
+
Q

6
g
φ′6

P 6
(3.4)

We then make the substitutions m′ = Qm2/P 2 and λ′ = Qλ/P 4. By setting m′ = λ′ = 1,

we can rewrite the remaining coupling parameter as g′ = m6g/λ3. The prime is then

dropped. Our rescaled potential is therefore

V (φ) =
1

2
φ2 − 1

4
φ4 +

1

6
gφ6 (3.5)

This resembles the potential considered by Coleman in [2] in that both minima are well

defined and that a bubble is expected to nucleate close to the minimum of the true vacuum.

The Euclidean field equation is

φ′′ +
3

r
φ′ − dV

dφ
= 0 (3.6)

Our numerical methods are concerned with computing the quantity B in the usual tun-

nelling equation

Γ = Ae−B. (3.7)

(Coleman gives the exponent here as −B/~, but we will choose to set ~ = 1 for all
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Chapter 3. Tunnelling with toy model potentials

calculations.)

While the factor A has a small contribution to the tunnelling rate, B dominates the decay

process and will be the primary concern throughout this thesis. Therefore, the numerical

methods used to solve the field equations do not include a computation of A.

3.2 Numerical methods

After tunnelling, the field assumes a value φ0 close to its true vacuum value φtv at the

centre of the nucleated bubble, while the field remains in the false vacuum at large r. A

regular solution must have φ′ vanish at r = 0. We can therefore impose the boundary

conditions:

φ′(0) = 0 (3.8)

lim
r→∞

φ(r) = φfv (3.9)

Numerical calculation of the exact instanton solutions implements a shooting method. This

requires making an initial estimate for the field value at the centre of the bubble φ(0) = φ0,

and an integration over r is then performed until either of the following conditions are

met:

φ < 0 (3.10)

V (φ)− 1

2
φ′2 > 0 (3.11)

An instanton solution exists when both conditions are met simultaneously, thus satisfying

the boundary conditions. If both conditions are not met, the initial estimate for φ0 is

adjusted accordingly depending on whether it “overshoots” or “undershoots”. Coleman

defines these terms in [2] depending on whether the field begins too far to the left or right

of φtv, such as in fig. 3.1.

Returning to Coleman’s explanation in terms of a particle moving in the potential, if the

initial position is chosen to the right of φ0 but sufficiently close to the turning point, the

particle will overshoot and pass φfv at a finite time. On the other hand, should the initial

position be chosen too far to the left of φ0, the particle will never reach φfv and thus

undershoots.

The beginning estimate for φ0 is selected by choosing two points φLeft and φRight between

which φ0 is expected to lie, and taking the midpoint φM = (φL + φR)/2 = φ0 . This

starting estimate must be lie between the top of the barrier and the true vacuum. A

numerical integration of φ between r = 0 and r = ∞ is then performed, stopping when
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Chapter 3. Tunnelling with toy model potentials

Figure 3.1: An example potential with false and true vacua, where the true vacuum is located at
V (φ) = 0.

r becomes very large. If the starting point chosen is too far to the right, there is not

enough friction to slow down the field and satisfies the stopping condition 3.10 before the

integration completes. This is considered an “overshoot” and a new estimate is chosen by

reassigning φL = φM .

Similarly, if the starting point chosen is too far to the left, the field hits the potential

and never reaches φ = 0, satisfying the stopping condition 3.11 before the integration

completes. This is considered an “undershoot” a new estimate is chosen by reassigning

φR = φM . This process is repeated until the above conditions are met simultaneously to

a desired accuracy and the actual value of for φ0 can be assumed to lie close to the actual

value.

3.3 Bubble profiles and action

The above method can be used to obtain the bubble profile for a single bounce solution,

and also to investigate the effects of the self-coupling on the action B. For tunnelling in

flat space, fig. 3.2 shows the evolution of the field during tunnelling when g=0.1. The

thin wall approximation applies when the radius of the bubble R is much larger than the

thickness of the bubble wall, which can be seen to be the case.

From fig. 3.3 it can be seen that there is a smooth increase in B as g is increased, meaning

a stronger coupling suppresses the tunnelling rate. The location of the second minimum

places a limit on the maximum value of g < 3/16 in order for the field not to tunnel

beyond the minimum. However, the thin wall approximation breaks down before reaching
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Chapter 3. Tunnelling with toy model potentials

Figure 3.2: The change in φ and φ′ with distance r from the center of the bubble when g=0.1.
At this value of g we can see that the bubble’s radius R is smaller than the thickness of its wall,
determined by the steepness of the slope.

this point. Beyond a certain value of g, R becomes larger than the thickness of the bubble

wall and the semiclassical approximation is no longer valid. This can be seen from the

cut-off in fig. 3.2 beyond which numerical solutions could not be obtained.

3.4 Tunnelling between de Sitter vacua

So far, we have established a general methodology for calculating instanton solutions in

order to obtain B and applied this to phase transitions in flat space. We will now consider

tunnelling between de Sitter vacua where the spacetime within the bubble is also curved.

In curved space, the scale factor a now plays a role and the decay process is subject to

back reaction. We will investigate the decay of a metastable field in 4-dimensional curved

space that has curvature constant k = 1. Our metric is

ds2 = dr2 + a(r)2[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)] (3.12)

where a(r) is the scale factor as a function of imaginary time r. Here we embed a two-

sphere space within a three-sphere. This spacetime is chosen due to its O(4) symmetry

and has a finite volume that will give a finite bounce action.

The spacetime evolves as the field tunnels through the barrier. The Euclidean Lagrangian
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Chapter 3. Tunnelling with toy model potentials

Figure 3.3: The tunnelling exponent B can be obtained over a range of g.

density for the bounce is given by

L =

(
−
RM2

p

2
+

1

2
(∇φ)2 + V (φ)

)
√
|g| (3.13)

= 2π

[
−3M2

p (ka+ aa′2) + a3

(
1

2
φ′2 + V (φ)

)]
(3.14)

Where R is the Ricci curvature tensor and the curvature constant k = 1. Primes denote

differentiation with respect to r.

To avoid further calculations at this stage that are necessary to approximate the Higgs,

we will again use a toy model potential with two well defined local minima. This allows

the effects of back reaction to be observed as the relevant free parameters are varied. The

form we choose for V is similar to the potential considered for the flat space case, with an

additional parameter V0.
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Chapter 3. Tunnelling with toy model potentials

V (φ) =
1

2
m2φ2 − 1

4
λφ4 +

1

6
gφ6 + V0 (3.15)

m is the field mass while λ and g are self coupling parameters. V0 is a non-zero quantity

that tunes the potential such that V (0) = V0, thus placing the false vacuum in de Sitter

space while the spacetime inside the true vacuum bubble has a smaller potential and hence

a smaller curvature. Rescaling allows us to set m = λ = 1 and therefore leaves two free

parameters remaining in the potential: the rescaled Planck mass M and a constant V0.

We also have one free parameter from the Einstein equations: the self-coupling parameter

g.

The Euclidean field equations are:

0 = φ′′ + 3
a′

a
φ′ − dV

dφ
(3.16)

0 = 1− a′2 − 2aa′′ − a2

M2

(
1

2
φ′2 + V (φ)

)
(3.17)

where the prime denotes differentiation with respect to r.

3.4.1 Free parameters

There are three free parameters: V0, M , and g. A fourth parameter is the de Sitter

radius L, which gives the size of a “false” vacuum universe. This is dependent on V0 and

M according to V0 = −3M2
p /L

2 and is absorbed into the V0 scaling. M is the rescaled

reduced Planck mass such that M2 = λM2
p /m

2. These parameters determine the shape

of the potential, and therefore affect the tunnelling rate.

With the scale factor a coming into play and the instanton is finite, we no longer integrate

between r = 0 and r =∞, but impose boundary conditions based on the topology of the

spacetime.

φ′(0) = 0 (3.18)

φfinal = 0 (3.19)

a(0) = 0 (3.20)

afinal = 0 (3.21)

Note that, from equation (3.17), a′(0) = 1.

In practice the complete integration is now performed between the two points where a(r) =
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0. However, the transition between the false and true vacuums will occur long before this

integration completes at a = 0.

We integrate the Lagrangian between r0 = 0 and r1 < rfinal to get the action of the

bounce, given by

SE = 2π2

∫ r1

0

[
− 1

3M2
(a+ aa′2) + a3

(
1

2
φ′2 + V (φ)

)]
dr (3.22)

The tunnelling exponent B in this case is given by

B = SE − SFV (3.23)

where SE is the bounce action and SFV is the action for the false vacuum given by a

change of variable from r to a′ in equation (3.22). The action of the false vacuum is

SFV = 2π2

∫ a′(r0)

a′(0)

18M4a′2

V0
da′ (3.24)

= 2π2

[
6M4a′3

V0

]
(3.25)

=
12π2M4

V0
(a′(r0)3 − 1) (3.26)

3.4.2 Evolution of the field and back reaction

Varying the parameters V0, M , and g allows the effects of back reaction on φ to be

observed. The back reaction can be reduced by increasing V0, which reduces the relative

difference between the two minima and increases the thickness of the bubble wall. The

effect of variations in V0 and M are shown in figures 3.6 and 3.7.

In the false vacuum, the scale factor a relates to r according to

a(r) = Lsin((r − r0)/L) (3.27)

where L is the de Sitter radius and r0 is r at the centre of the bubble. At small r, this can

be approximated as a(r) ≈ r. The comparison between this and the numerical solution is

shown in Fig. 3.4 (top right).
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Figure 3.4: Plots of φ, φ′, a and a′ against r with the parameters V0 = 4, Mp = 20, g = 0.10. The
top left plot shows the profile of a thin wall ;bble, where the field approaches zero as r goes to
infinity. Also plotted (red) in the top right is an analytical approximation for a at small values of
r, a = Lsin((r − r0)/L), which perfectly matches the numerical calculation.
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Figure 3.5: Plots of φ, φ′, a and a′ against r with the parameters V0 = 4, M = 20, g = 0.125.
Contrasted with figure (3.4), it can be seen that increasing g by 0.025 has increased the radius of
the bubble and decreased the absolute difference between the two vacua, which is consistent with
the case in flat space.
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Figure 3.6: Plots of φ, φ′, a and a′ against r with the parameters V0 = 10, M = 20, g = 0.10.
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Figure 3.7: Plots of φ, φ′, a and a′ against r with the parameters V0 = 4, M = 30, g = 0.10.
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Chapter 4

Higgs approximations

4.1 Approximations to the Higgs potential

There has been a recent resurgence of interest in applications of vacuum decay to the

standard model Higgs field [12, 13, 14, 15, 16, 17, 18]. In the following sections, we will

consider various scenarios for vacuum decay with a potential that closely approximates

the Higgs at large field values.

The standard model Higgs field is an SU(2) doublet Φ. The Higgs potential has the bare

form

V (Φ) = −µ2|Φ|2 + λ|Φ|4 (4.1)

where λ is determined experimentally from measurements of the Higgs and top quark

masses. The potential is symmetric under SU(2) field transformations, and at large field

values it is often described as having a Mexican hat shape. Fig. 4.1 shows the real and

imaginary parts of the field Φ.

The Higgs potential at large |Φ| includes quantum corrections and can be expressed in

terms of an effective self-coupling λeff and field φ = 1
2 |Φ|

V (φ) =
1

4
λeffφ

4 (4.2)

where λeff is a parameter greater than zero for stability. One and two-loop calculations in

renormalisation group theory can be used to obtain estimates for λeff and allow for close

approximations to the Higgs potential at large field values. Computations of the first next-

to-next-to-leading order analysis of the Standard Model Higgs potential were presented in
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Chapter 4. Higgs approximations

Figure 4.1: Shape of the Higgs potential at low energy. For a fixed value of λ the potential is
shown against the real and imaginary parts of the first component of Φ.

[11], giving the two-loop QCD and Yukawa contributions to the effective coupling λeff . At

high energies, λeff becomes negative.

While the Standard Model Higgs potential has the general features of a false vacuum and

a potential barrier, its specific form is dependent on the values of the Higgs and top quark

masses, currently measured as MH = 125.1 ± 0.14GeV and Mt = 172.9 ± 0.4GeV [19].

The quantum corrected Higgs potential can decrease at large field values and destabilise

the present day 246 GeV minimum. For top masses in the range 171 − 174GeV, Higgs

instability sets in at scales from 1010−1018 GeV. This instability scale, Λ, is very sensitive

to particle physics parameters and possible new physics that lead to a metastable false

vacuum [11, 20, 21].

In the metastable scenario, vacuum decay rates are strongly exponentially suppressed and

the lifetime of the false vacuum is far too long to be cause for concern. However, the

possibility of black holes seeding vacuum decay at an enhanced rate has recently been

considered [22, 23, 24, 25, 26, 27, 28, 29]. In these cases, vacuum decay is very rapid.

Chapter five of this thesis looks at Higgs vacuum decay in a Randall-Sundrum braneworld,

while chapter six considers vacuum decay on the brane in the presence of a black hole.

Chapter seven investigates the negative modes of true vacuum bubbles. In the following

chapters, we will consider two different potentials: one is a quartic potential, with two

well defined minima, while the other is a logarithmic potential closely approximating the

Higgs at large field values.

4.1.1 Quartic potential

The quartic potential that appears in the later chapters of this thesis has the form,

Vq(φ) =
1

4
λqφ

4 − 1

3
λq(φm + φt)φ

3 +
1

2
λqφmφtφ

2, (4.3)
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Figure 4.2: Plot by Florent Michel. Quartic potential (4.3) for φm = Mp/10, φt = Mp/4, and
λq = 10/3.

which has been parametrised by the field values φm at the maximum and φt at the non-zero

minimum. The parameter λq sets the overall scale. The origin φ = 0 is a false vacuum,

and φt is the true vacuum when φt > 2φm. One example is shown in the Fig. 4.2.

While our numerical calculations do not rely on the thin wall approximation, this can

provide a useful check for the results. The thin wall approximation is valid when φt ∼ 2φm.

For this potential, where the false vacuum is located at V = 0, the spacetime inside the

true vacuum bubble is anti-de Sitter. An important parameter in this picture is the AdS

radius `, defined as

`2 = −
3M2

p

V (φt)
. (4.4)

We expect gravitational back-reaction to become important when the bubble radius is

comparable to the AdS radius. In the thin-wall approximation, the ‘flat-space’ bubble

radius is R0 = 3σ/ε and we can obtain the ratio 1

R0

`
=

1√
2

φt
Mp

(
1− 2

φm
φt

)−1/2

. (4.5)

Note that this is independent of the overall scale parameter λq. It is possible to scan

through different values of R0/` by fixing φm/φt and scanning through different values of

φt, with the effects of back reaction becoming significant when R0/` ∼ 1.

1see chapter two for a calculation of σ
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4.1.2 Logarithmic potential

The second potential we consider uses two-loop quantum corrections to closely approxi-

mate this Higgs. This potential is defined in terms of an effective coupling λeff :

V (φ) =
1

4
λeff(φ)φ4. (4.6)

with a running coupling constant λeff(φ) that becomes negative at some crossover scale

Λφ. Vacuum decay depends on the shape of the potential barrier in the Higgs potential

around this instability scale, and in order to explore the likelihood of decay it is useful to

use an analytic fit to λeff . The effective coupling is determined by renormalisation group

methods and depends on low-energy particle masses, with strong dependence on the Higgs

and top quark masses.

In [25], a two parameter fit to λeff was used to obtain a Higgs-like potential, where one of

the parameters was closely related to the crossover scale. It was found that the dependence

of the instanton action on the potential was strongly dependent on this parameter, but

very weakly dependent on the second parameter, which was more related to the shape of

the potential at low energy.

Two loop calculations of the running coupling λ give a high-energy approximation

λeff = g

{(
ln

φ

Mp

)4

−
(

ln
Λ

Mp

)4
}

(4.7)

Here, Λ > 0 is the scale at which the coupling and the potential vanish while g is strictly a

positive number. A local minimum is located at φ = 0. The approximate next-to-next-to-

leading order calculations given by [11] are used to determine g for different values of the

top quark mass. An example potential is given in Fig. 4.3 with top mass Mt = 172GeV ,

while a plot of the function λeff for three different choices of (g, Λ) are shown in Fig. 4.4.

The height of the Higgs potential barrier is small compared to Λ4, meaning the bubbles

produced have thick walls. The Higgs values inside the bubble are smaller then the false

vacuum value beyond the barrier, but do not reach a true vacuum. Inside the bubble, the

potential is roughly of order Λ4 and the bubble size is of order Λ−1, so that the ‘effective’

value of R0/` in this case is around Λ/Mp.
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Figure 4.3: The Higgs potential calculated numerically at one loop order for top quark mass
Mt = 172 GeV and the approximate potential using (4.7) with values of g and Λφ chosen for the
best fit.

102 105 108 1011 1014 1017

φ(GeV)

−0.025

0.000

0.025

0.050

0.075

0.100

λ
H

Figure 4.4: Plot by Florent Michel. The effective coupling is denoted by λeff = λH for the
Higgs-like potential (4.7) for Λ = 108GeV (green, dotted), Λ = 1010GeV (blue, continuous), and
Λ = 1012GeV (orange, dashed), and q chosen so that λ(φ = 103GeV) = 0.1.
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Vacuum decay on the brane

This chapter presents work previously posted to arXiv:1907.11046 [hep-th], by L. Cuspin-

era, R. Gregory, Ruth,K. M. Marshall, and I. G. Moss, (2019). “Higgs Vacuum Decay in

a Braneworld.”

5.1 Vacuum decay in a Randall-Sundrum braneworld

First order phase transitions in a Randall-Sundrum braneworld in de Sitter space have

previously been investigated by Davis and Brechet [30], using Coleman and de Luccia’s

thin wall approximation to find bounce solutions. It was found that when the potential

is smaller in magnitude than the brane tension, this gives the standard four dimensional

result. In this chapter, we will use the CdL formalism to find exact instanton solutions for

a potential that closely approximates the Higgs at high energies, and show that the four

dimensional result is also reproduced when the space is asymptotically flat.

There are two variants of the Randall-Sundrum braneworld [31, 32], referred to as RS1

and RS2. Both versions describe the universe in terms of a five dimensional anti-de Sitter

bulk where the Standard Model is localised on a 3+1 brane or branes. The RS1 model

features two branes, the Planck brane and the TeV brane embedded in a five dimensional

bulk at a fixed distance apart, with the particles of the Standard Model residing on the

TeV brane. In the RS2 model shown in fig. 5.1, the geometry remains the same, but only

the Planck brane is presumed to exist. The Standard Model particles are localised on the

brane while gravity acts across the five-dimensional bulk. We will use the RS2 model to

build our picture of higher-dimensional vacuum decay with black holes.

In this model, the field is located on a four dimensional brane where the Standard Model

lives, while the brane is placed in a five dimensional bulk which has anti-de Sitter radius `.
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Figure 5.1: A Randall-Sundrum braneworld featuring a single brane. ` is the AdS radius and
the brane tension σ is tuned so that the brane is flat in the false vacuum. Diagram by Leopoldo
Cuspinera.

The tunnelling exponent B for decay rates on the brane will have contributions from both

the brane and bulk. For a braneworld with a Z2 symmetric bulk, the Euclidean action is

given by SE = S
(Bulk)
E + S

(brane)
E .

The action of the field in the bulk is

S
(Bulk)
E =

1

2κ2
5

∫
d5x
√
g
(
−R(5) + 2Λ5

)
(5.1)

while the action on the brane is

S
(brane)
E =

∫
d4x
√
h

(
1

2
(Dφ)2 + V (φ) + σ

)
(5.2)

The induced metric on the brane is hab = gab−nanb where na is the normal to the brane.

As in the Randall-Sundrum model, Λ5 = −6/`2 and the brane cosmological constant

σ = 6/κ2
5`.

Davis and Brechet implemented Coleman’s thin wall approximation in order to find in-

stanton solutions. They found that if the potential is smaller than the brane tension, this

returns (to leading order) the standard four dimensional results. This is unsurprising, as
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in the case of small curvature, gravity on the brane should reduce to standard relativity

in four dimensions. If the potential is larger than the brane tension, then the effects of

brane gravity become significant and are found to enhance vacuum decay in all cases.

In the next chapter, we will find exact solutions for the bounce on an RS2 brane when

space is asymptotically flat, and compare the results with the case studied here.

5.2 Instanton solutions in RS2

Here we will consider the case of vacuum decay in RS2 with the Standard Model localised

to a single Planck brane. We take a field living on a four-dimensional brane embedded in

a five-dimensional bulk with anti-de Sitter radius `. The brane tension in five dimensions

is σ = 6/κ2
5` where κ2

5 = 8πGN`, found by taking the trace of Σµν . GN is the standard

Newton constant in four dimensions, related to the five dimensional gravitational constant

by GN = G5`. The negative curvature of spacetime causes a localisation of the graviton

on the brane, the background solution being a brane with energy and tension equal and

precisely tuned to the bulk cosmological constant, giving a flat brane at z = 0:

ds2 = e−2|z|/`ηµνdx
µdxν − dz2 (5.3)

where `2 = −6/Λ5 is the AdS curvature scale. The local negative curvature of the bulk

supports the brane tension σ for a brane with curvature tensor Kµν , that is assumed by

symmetry to be equal on both the positive + and negative − sides of the brane. σ that is

easily calculated from the Israel junction conditions [33]:

K+
µν = −1

`
ηµν ⇒ K+

µν −K+ηµν =
3

`
ηµν = 4πG5σηµν (5.4)

One can add energy momentum to the brane, a cosmological fluid, or a perturbative

localised source. In all cases, the intuitive visualisation of brane matter is that it causes

the braneworld to bend as first pointed out by Garriga and Tanaka [34] (see also [35, 36]).

For the single 4D brane in RS2, the metric is

ds2
brane = dτ2 + a(τ)2dΩ2

3 , φ = φ(τ) (5.5)

equation (5.1) is the Euclidean action for the bulk given in [30]. The bulk metric in AdS

can be rewritten as

ds2
bulk = hdt2 + h−1dr2 + r2dΩ2

3 (5.6)
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where h = 1 + (r2/l2) [37]. On the brane, r = a(τ).

For a field on the brane, we will find bounce solutions to the field equations and calculate

transition rates. The probability of a phase transition is given by the usual form of Γ

Γ = Ae−B. (5.7)

The Euclidean action for the brane in equation (5.2) can be rewritten as

SE = − 1

2κ2
5

∫

M+

d4x (R− 2λ)− 1

κ2
5

∫

∂M+

d4xK+

∫

∂M+

d4x

(
1

2
(Dφ)2 + V + σ

)
. (5.8)

where K is the brane curvature, ∂M denotes boundary terms, and the superscript +

refers to the positive side of the brane. In line with the Randall-Sundrum model, we take

a cosmological constant for the five-dimensional bulk, Λ5 = −6/`2 and σ = 6/κ2
5` for the

brane.

The tunnelling exponent B is found by applying the usual method from Coleman and de

Luccia’s formalism for finding instanton solutions to the field equations [3]. It is possible

to evaluate our form of B numerically without using the thin wall approximation.

In the standard 4-dimensional case without a brane, the field equations are

0 = φ̈+ 3
ȧ

a
φ′ − dV

dφ
(5.9)

ä =
8πG5a

3`
(φ̇2 + V ) (5.10)

For our model in five dimensions where the brane has mirror symmetry, the equations of

motion can be derived from the Israel junction conditions. A full derivation is given in

Appendix A. Integrating the stress-energy tensor for the brane, we define a surface stress

tensor

Σµν =

∫
Tµνdl (5.11)

where the stress-energy tensor Tµν is integrated across the brane. The junction condition

is

K+
µν = 4πG5`[Σµν −

1

3
Σhµν ] (5.12)

where the curvature K+
µν = K−µν is the same each side of the boundary. The extrinsic

40



Chapter 5. Vacuum decay on the brane

curvature K is

K = −4πG5

3
Σ (5.13)

We will use the curvature component Kχχ to derive the equations of motion for the field,

where the subscript χ denotes spatial components. We use an ansatz for the field:

φ = φ(τ) (5.14)

(∇φ)2 = φ̇2 (5.15)

The trace Σ is given by

Σ = −
(
φ̇2 + 4V + 4σ

)
(5.16)

while Σχχ can also be written

Σχχ = −a2

(
1

2
φ̇2 + V + σ

)
(5.17)

By symmetry from K+
χχ = K−χχ we can write

8πG5(Σχχ −
1

3
Σgχχ) = 2Kχχ (5.18)

(5.19)

The curvature Kχχ is found from the metric on the brane by taking the non-zero Christoffel

symbols and defining a normal vector ni

Kχχ = haχh
b
χ (na,b − Γ cabnc) (5.20)

= Γ cχχnc (5.21)

= Γ tχχṙ − Γ rχχṫ (5.22)

Substituting this into the junction condition, we arrive at an equation of motion for the

field in terms of ȧ (see Appendix A).

1− ȧ2 =

(
8πG5

3`

)2

a2

(
6

4πG5`

(
V − 1

2
φ̇2

)
+ a2 4

3
πG5

(
V − 1

2
φ̇2

)2
)

(5.23)

Differentiating this with respect to τ gives us an equation of motion for the field in terms

of ä.

ä =
8πG5a

3`
(φ̇2 + V ) +

a

3
(4πG5)2

(
V − 1

2
φ̇2

)(
1

3
V +

5

6
φ̇2

)
(5.24)
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while the second field equation has the same form as the 4-dimensional case without the

brane.

0 = φ̈+ 3
ȧ

a
φ̇− dV

dφ
(5.25)

The boundary conditions are:

when τ = 0, φ = φb, a = 0, ȧ = 1 (5.26)

as τ →∞, φ→ φfv, a→ τ + c (5.27)

with φb denoting φ at the centre of the bubble. Note the presence of a constant c in the

boundary condition a→∞.

It is also worth noting that the critical RS brane (with V = φ̇ = 0) has ȧ ≡ 1. This leads

to the brane trajectory

r(τ) = a(τ) , t(τ) =
`

2
log(1 + τ2/`2) (5.28)

This is a less familiar form for the critical RS brane, obtained because we are solving for

the brane in bulk global coordinates, rather than the usual Poincare patch. The trajectory

can easily be transformed to its familiar form (5.3) using

ez/` =
et/`√

1 + r2/`2
, xi = ez/`rni4 (5.29)

where n4 is the unit vector in 4 dimensions.

5.3 Choice of potentials

We recall the Higgs-like potential from chapter four (4.2)

V (φ) =
1

4
λeff(φ)φ4 (5.30)

with an effective coupling

λeff = g

{(
ln

φ

Mp

)4

−
(

ln
Λ

Mp

)4
}

(5.31)

and the quartic potential
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Vq(φ) = g

[
φ4

4
− φ3

3
(φV + φM ) +

φ2

2
φV φM

]
(5.32)

where φM is the value of φ at the top of the barrier, and φV is the field at the true vacuum.

Both of these will be considered to calculate vacuum decay rates on the brane.
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Figure 5.2: The Vq potentials referred to in the text. On the left in blue with φM = 0.4, and φV = 1
(with Mp = 1), corresponding to a well-defined bubble wall. On the right in red the potential more
closely approximated the Higgs potential, with φM = 0.1, and corresponds to a thick wall bubble.

In each case, we integrate (5.24) from the centre of the instanton, τ = 0, looking for a

solution that asymptotes the flat critical RS trajectory (5.28). However, note that because

we set boundary conditions at τ = 0 of a = 0, ȧ = 1 and φ̇ = 0, the flat geometry at large

τ is φ → φfv, a → τ + c – integrating through the bubble wall produces an offset in the

value of r relative to t. While this is not particularly relevant to the form of the bubble

solution, for which a(τ) is important, it is a crucial observation for the computation of the

action, as we will return to in the next section.

The quadratic potential (5.32) is particularly useful for exploring the variation from thin to

thick bubble walls, and for varying backreaction strengths. To illustrate this, we present

results for two representative potentials, one giving a strongly backreacting thin wall,

with parameter values g = 1, φV = Mp, φM = 0.4Mp, and the other a weakly backreacting

thick wall with parameter values g = 1/2, φV = Mp, φM = 0.1Mp; in both cases the Planck

scales are M5 = 0.4 in five dimensions and Mp = 1 in four dimensions, hence the bulk AdS

lengthscale is ` = 1/M3
5 = 125/8. Fig. 5.2 shows the potential Vq for these two choices of

parameters; note the thin wall potential (shown in blue) has a significant potential barrier

between the vacua, but less well represents a Higgs-type potential, whereas the thick wall

potential (shown in red) more closely resembles the Higgs potental, having a very small

barrier relative to the global minimum.

The scalar field solution is shown in fig. 5.3, and demonstrates clearly the distinction

between the potentials: the thin wall has a clear, sharp transition from false to true
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Figure 5.3: The scalar field solution for the potentials shown in fig. 5.2. Once again, blue corre-
sponds to the thin wall bubble, here clearly seen as a step in φ, and red to the thick wall bubble.

Figure 5.4: The geometry of the brane with bubble embedding shown in Poincare coordinates, as
is usual for the flat RS brane. Right: embedding for a thin wall bubble. Left: embedding for a
thick wall bubble. On the brane, r is given by r = a(τ) and (ṫ = (h − (̇r)2)1/2/h, ṙ2 is given by
equation (5.23)

vacuum around τ ∼ 25, whereas the thick wall does not even reach the true vacuum by

the centre of the bubble. The effect of the bubble on the embedding of the brane is shown

in fig. 5.4. The strongly backreacting thin wall brane shows the transition between the

flat RS critical asymptotic false vacuum brane, and the sub-critical true vacuum AdS

embedding in the interior of the brane. The weakly interacting thick wall has a much less

significant displacement, and does not reach the spherical shape of the sub-critical brane.
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Chapter 5. Vacuum decay on the brane

5.4 The bounce action in RS2

We use the action computed by Davis and Brechet [30] for the instanton on the brane to

calculate B, which is found from the difference in actions inside and outside the bubble:

B = SE(φ)− SE(φfv) (5.33)

For both the false and true vacuum regions, SE is the total action combining contributions

from the bulk (SB)and brane (Sb).

SE = S(b) + S(B) (5.34)

Using the field equation (5.25), the bulk part of the action can be written as

S
(B)
E =

2π2

3`2

∫
dτ
a5

h
`2

(
V − φ̇2

2
+

6

κ2
5`

)
(5.35)

From the trace of the junction condition, the brane part of the action reduces to

S
(b)
E =

−2π2

3`2

∫
dτa3

(
V − φ̇2

2
+

6

κ2
5`

)
(5.36)

The overall bounce action B is therefore found by combining (5.35) and (5.36) and sub-

tracting the false vacuum action from the action inside the bubble.

B = S
(B)
E (φ) + S

(b)
E (φ)− S(B)

E (φfv) + S
(b)
E (φfv) (5.37)

S
(B)
E (φ) + S

(b)
E (φ) =

2π2

3`2

∫
dτ

(
a5

h
− a3`2

)(
V − φ̇2

2
+

6

κ2
5`

)
(5.38)

At the false vacuum V = 0 and φ̇ = 0. As τ → ∞, a → τ + c where c is an unknown

constant. The action computed from this is infinite, and therefore it is not possible to

perform the subtraction in equation (5.37) because τ has a different meaning for the false

vacuum and for the bubble.
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To address this problem, we can write the equations of motion to express ȧ and φ̇ in terms

of a implicitly, thus removing the c:

S
(b)
E =

−2π2

3`2

∫
da

a3

(h)ȧ

(
V − φ̇2

2
+

6

κ2
5`

)
(5.39)

At the false vacuum, a = τ and V − φ̇2

2 = 0. (5.37) can now be rewritten as

SE(φ)− SE(φfv) =
2π2

3

∫
dτ

[(
a5

h
− a3`2

)(
V − φ̇2/2

ȧ

)
+

6`

κ2
5

(
1

ȧ
− 1

)]
(5.40)

=
2π2

3

∫
dτ
a3

h

[
6`

κ2
5

(ȧb − 1) +
φ̇2

2
+ V

]
(5.41)

where ȧb is the rate of change of a inside the bubble.

5.5 Equations of motion

Recall from equation (5.9) – (5.25) the equations of motion on the brane are

0 = φ̈+ 3
ȧ

a
φ′ − dV

dφ
(5.42)

1− ȧ2

a2
=

8πG5

3

(
V − 1

2
φ̇2

)
+

4πG5

3

(
V − 1

2
φ̇2

)2

(5.43)

ä =
8πG5a

3
(φ̇2 + V ) +

a

3
(4πG5)2

(
V − 1

2
φ̇2

)(
1

3
V +

5

6
φ̇2

)
(5.44)

with the boundary conditions

when τ = 0, φ = φb, a = 0, ȧ = 1

as τ →∞, φ→ φfv, a→∞

where the field has value φ = φb at the centre of the bubble. Solving equation (5.42) and

equation (5.44) gives the instanton solutions. In the ordinary 4D case without the brane,

the equations of motion are
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Figure 5.5: Change in the bounce action and change in φ0 over a range 0 < ` < 2.0 for vacuum
decay both with and without a brane.

0 = φ̈+ 3
ȧ

a
φ′ − dV

dφ
(5.45)

ä =
8πG5a

3
(φ̇2 + V ) (5.46)

which are also solved numerically for comparison.

5.6 Results

Bounce solutions are obtained over a range 0 < ` < 2.0. Outside of this range, the sign

change in V +σ over the course of the integration means it is not possible to find solutions

using the CdL method, though it is possible these solutions still exist.

Fig. 5.6 shows the tunnelling exponent for the quartic potential Vq given in chapter four

with the parameter sets considered in §5.3, these are plotted as a function of the mass

parameter M5 = M
2/3
p `−1/3, which determines the strength of gravity in five dimensions.

The barrier is at the centre of the bubble φM = 0.4Mp and φM = 0.1Mp. These test case

examples show a reduction in B, hence an increase in the vacuum decay rate, due to the

increasing influence of the extra dimension as M5 becomes increasingly much smaller than

Mp.
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Figure 5.6: The vacuum decay exponent B for the quadratic potential plotted as a function of M5

for barriers with φM = 0.4Mp (left) and φM = 0.1Mp (right). The exponent approaches the 4D
value as M5 approaches the 4D Planck mass Mp.

The edge of the plots denotes a minimum value ofM5 beyond which the numerical solutions

cease to exist. If the value of M5 is reduced any further, V +σ undergoes a change of sign

and the total surface tension on the brane becomes negative near the centre of the bubble.

(Note: while it is not possible to obtain numerical solutions beyond this limit using the

CdL method, this does not rule out their existence.) The increase in the vacuum decay

rate only occurs when the potential is close to the Planck energy, but then the allowed

range of M5 is very narrow, as in the examples plotted above, and does not correspond to

a significant hierarchy. Therefore, adding an extra dimension only affects the decay rate

in very specialised situations.

For tunnelling in RS2, we plot the action of the bounce as a function of the anti-de Sitter

radius. It can be seen from fig. 5.5 that as ` increases, the value of B tends to the same

value as the 4-dimensional result, which has no dependence on `.

τ = 0 is defined as the centre of the bubble, and the field approaches its false vacuum

value as τ → ∞. Bubble profiles are plotted from the instanton solutions for both the

RS2 and 4-dimensional cases. From figures 5.8 and 5.9 these can be seen to have thick

wall characteristics.

The value of the field at the centre of the bubble φ0 in RS2 has a minor dependence on `.

φ0 has no dependence on ` in four dimensions, but both cases show very similar bubble

profiles that are not greatly affected by the presence of the fifth dimension.

Some results for the quadratic potential (5.32) are shown in fig. 5.6. The tunnelling
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Figure 5.7: The vacuum decay exponent B plotted as a function of M5 for Higgs potentials with
a range of values of the instability scale Λ. There is no dependence on the extra dimension.

Figure 5.8: Plots of the bubble profiles on the brane and action vs radius for ` = 1.

exponent has been plotted as a function of the mass parameter M5 = M
2/3
p `−1/3 which

determines the strength of gravity in five dimensions. The barrier is at φM = 0.1Mp

and φM = 0.2Mp. These rather extreme examples show a reduction in B, and hence an

increase in the vacuum decay rate, on reduction of the five dimensional Planck mass.

We also show the tunnelling exponent for the Higgs-style potential VH , with parameters

chosen within the Standard Model range in fig. 5.7. The Higgs potential is small at the

Planck scale because the parameter g in the potential is so small. Consequently, vacuum
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Figure 5.9: Plots of the bubble profiles in 4-dimensional flat space and action vs radius for ` = 1.

decay rates with the Higgs potential show no dependence on the extra dimensions, as

shown in fig. 5.7. However, this situation changes when we consider vacuum decay seeded

by primordial black holes, as in ref. [38].

5.7 Conclusion

We have found instanton solutions for a field with an approximate Higgs potential in an

RS2 braneworld, and used this to calculate transition rates. We explored general bubble

solutions with a quartic potential, as well as an approximate Higgs potential, as outlined

in chapter four. The tunnelling exponent is compared with that for phase transitions

in 4-dimensional asymptotically flat space, and it is found that the influence of the fifth

dimension on tunnelling rates is minor until the ratio M5/Mp approaches the critical cut-

off point beyond which numerical results could not be obtained.. This is consistent with

Davis and Brechet’s result when V + σ > 0.

Profiles of the true vacuum bubbles are also produced for both forms of the potential, with

there being little change in the bubble properties or the value of the true vacuum after

tunnelling compared with the 4D result.

One interesting feature of our numerical solutions was the sharp cut-off in the allowed value

of M5 due to the total brane tension becoming negative. This is possibly due to the fact

we integrate out from τ = a = 0, hence this method does not allow for a wormhole-type

solution where the brane transitions from positive to negative tension as in [39, 40].
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Chapter 6

Black Hole Instantons

This chapter presents work previously published in a paper by L. Cuspinera, R. Gregory,

K. M. Marshall, and I. G. Moss, (2019). “Higgs vacuum decay from particle collisions?”

Physical Review D 99(2): 024046. arXiv:1803.02871v2 [hep-th].

6.1 Black Holes as bubble nucleation sites

Recent investigations of Standard Model Higgs vacuum decay would suggest that the

exponential suppression of the tunnelling rate makes a phase transition within the lifetime

of the universe unlikely, and Coleman’s “ultimate ecological catastrophe” will not occur

[12, 13, 14, 15, 16, 17, 18].

However, other work has looked at cases where this low tunnelling rate may be significantly

enhanced – for fields in the presence of a black hole, the lifetime of the vacuum is greatly

reduced and a tunnelling event becomes more likely [22, 23, 24, 25, 26, 27, 28, 29]

In this scenario, tunnelling is initiated by a black hole seed in the false vacuum, which

decays to a remnant black hole while a true vacuum bubble nucleates with the black hole

at its centre. The black hole remaining after the phase transition will have a smaller area

and also lower entropy compared to the seed. This difference in areas allows the tunnelling

rate to be determined – the tunnelling exponent B is given by the difference in actions

between the initial and final configurations, which is equivalent to finding the difference

in area between the seed and remnant black holes.

In this chapter, we will build on previous work in [23, 24, 25, 26] that looks at possible

scenarios where vacuum decay is seeded by a black hole. It was found in [23, 24] that

primordial black holes nearing the end of their lifetime may seed vacuum decay. Factoring

in quantum gravity corrections to the Higgs, gravitational inhomogeneities give rise to
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microscopic black holes that significantly reduce the barrier to vacuum decay. Here, we

build on this picture by considering a scenario with a tidal black hole in a five dimensional

Randall-Sundrum braneworld, while the Higgs field is localised to a four dimensional brane.

In this picture of vacuum decay, a key feature is the small size of the black holes needed in

order to seed a phase transition. Such black holes may plausibly be produced in particle

collisions, though current particle accelerators fall short of reaching the necessary energy

scales. However, the most energetic of cosmic ray collisions at a scale of 1021 eV may pro-

vide the opportunity for such black holes to form – though these collisions are fortunately

rare.

When investigating vacuum decay with black holes, we can compare the black hole’s decay

through Hawking evaporation to the vacuum decay rate. The vacuum decay rate is, as

usual,

ΓD = Ae−B (6.1)

and the Hawking evaporation rate of the black hole is given in [23] as

ΓH ≈ 3.6× 10−4(G2M3
s )−1 (6.2)

where Ms is the mass of the seed black hole and G is the gravitational constant in the

relevant number of dimensions.

We construct a picture of a Higgs field in the false vacuum close to the horizon of a

static, spherically symmetric black hole. The field undergoes a phase transition to its true

vacuum value, resulting in a bubble of true vacuum nucleating around the black hole. The

presence of a bubble directly affects the black hole by reducing its radius and therefore its

entropy. Both the black hole and the bubble have actions related to their area.

Sbh = −1

4
Abh + βM (6.3)

Sb = −1

4
Ab + βM (6.4)

where Abh is the area of the black hole and Ab is the area of the black hole remnant,

and βM is a mass term [41, 42]. This result can be obtained from thermodynamics. We

assume the action SE is proportional to the free energy according to
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SE = βF (6.5)

where β relates to the Hawking temperature T as T = β−1. The free energy F then relates

to enthalpy E, temperature T and entropy S, where the entropy can be expressed in terms

of the black hole’s area A.

F = E − TS (6.6)

S =
1

4
A (6.7)

The black hole’s enthalpy is its mass M . The action is therefore

SE = β

(
M − A

4β

)
(6.8)

= βM − 1

4
A (6.9)

With the βM terms cancelling, the difference in actions between the initial and final

configurations can therefore be expressed in terms of a difference in the areas of the black

holes:

∆S = Sb − Sbh (6.10)

We can therefore rewrite the decay equation in terms of a reduction in the black hole’s

entropy ∆S

ΓD ∝ e∆S (6.11)

This result can also be proved directly – see appendix B.

6.2 The Euclidean Brane Black Hole Action

The action of any static black hole can be expressed entirely by surface terms – a result

which also applies even with the presence of a cosmological constant, with matter, or with

a conical singularity at the horizon.

This can be shown by first recalling the properties of the Euclidean Schwarzschild black
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hole in four dimensions:

ds2 = f(r)dτ2 + f(r)−1dr2 + r2dΩ2
II , (6.12)

where

f(r) = 1− 2GNM

r
(6.13)

and dΩ2
II is the metric for a two-sphere. In order to explore the geometry near the ‘horizon’

rh = 2GNM , we expand using a new coordinate %, defined by

% =

√
2(r − rh)

κ
(6.14)

where κ is the surface gravity, κ = f ′(rh)/2. To leading order f(r) = κ2%2 + O(%4), and

close to the horizon,

ds2 = d%2 + %2d(κτ)2 + r2
hdΩ

2
II +O(%4), (6.15)

When κτ is taken to be an angular coordinate with the usual range 2π, for small % ≥ 0,

the metric is geometrically the product of a disc with a sphere. If κτ has a different range,

then the manifold has a conical singularity at rh. Other than this, the Euclidean section is

perfectly regular but only covers the exterior region of the original black hole. The event

horizon of the original Lorentzian black hole is encoded in the topology of the Euclidean

solution: the surface % = 0 is a 2-sphere of radius rh.

For the brane black hole in five dimensions, the metric is extended into an additional

direction. This is parametrised by χ in Kudoh et al. [42], who numerically constructed

small brane black holes with horizon size less than the AdS radius `. In [42], the metric

was written in the form

ds2 =
1

(1 + ρ
` cosχ)2

[
T 2(ρ, χ)dτ2 + e2B(ρ,χ)(dρ2 + ρ2dχ2) + e2C(ρ,χ)ρ2 sin2χdΩ2

II

]
,

(6.16)

where the brane sits at χ = π/2, and χ ≤ π/2 is kept as the bulk. In the small black hole

limit, `→∞, we have the five dimensional Schwarzschild black hole [43]:

ds2 =

(
ρ2 − ρ2

h

ρ2 + ρ2
h

)2

dτ2 +

(
ρ2 + ρ2

h

ρ2

)2 [
dρ2 + ρ2dΩ2

III

]
(6.17)

written here in homogeneous co-ordinates, rather than the area gauge. dΩ2
III is the metric

for a three-sphere. The local Euclidean horizon coordinate is % = 2(ρ − ρh), and the
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horizon has area A = 4ρ2
h, and surface gravity

κ = e−B(ρh)T ′ (6.18)

as given in [42], where the prime denotes the derivative with respect to ρ. At order

ρ/` the black hole is corrected by the conformal factor, and at order ρh/` in the other

metric functions close to the horizon. Kudoh and collaborators integrated the functions

T,B and C numerically, and found that the T function to a very good approximation

extends hyperspherically off the brane. Although B and C are not precisely the same,

their difference is roughly of order ρh/` as expected. At large ρ, T,B,C → 1, and the

metric is asymptotically AdS in the Poincaré patch.

Although we do not use the explicit form of the metric, the features we require from the

solutions of [42] are that the event horizon is topologically hyperspherical with constant

surface gravity, and that the braneworld black hole asymptotes to the Poincaré patch

of AdS. The coordinate transformation between the local black hole coordinates and the

Poincaré RS coordinates is

ρ2 = r2 + `2(e|z|/` − 1)2, tanχ =
r

`(e|z|/` − 1)
, (6.19)

A slight bend in the brane ‘trajectory’ at ρh is expected due to the bending of the brane

in response to the black hole, which gives rise to a four dimensional Newtonian potential

as described in [34]. From the perspective of the {ρ, χ} coordinates, in which the brane

sits at χ = π/2, this will show up as a 1/ρ correction to T,B,C. We therefore take our

asymptotic metric to be of the form

ds2 = e−2|z|/` [F (r, z)dτ2 + F (r, z)−1dr2 + r2dΩ2
]

+ dz2, (6.20)

where F ∼ 1− 2GNM(z)/r +O(r−2). M(z) can be thought of as coming from the brane

bending term of M/ρ in the original coordinates.

6.2.1 Computing the Action

The action of the black hole instanton diverges, making it necessary to regulate it in

some way. At large distances from the black hole, this is done by truncating the five

dimensional manifold, taking a surface at large radius R on the brane and extending this

along geodesics in the ±z directions orthogonal to the brane. This produces the outer

boundary surface ∂MR as shown in the cartoon in figure 6.1. The interior is denoted by

MR and the intersection of MR with the brane world is denoted by B.
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Figure 6.1: A cartoon of the Euclidean tidal black hole and the cut-off surfaces. On the left,
the τ, θ coordinates are suppressed, and the cut-off surface is indicated relative to the brane and
bulk black hole horizon. Only one half of the Z2 symmetric solution is shown. On the right, the
Euclidean τ coordinate is shown but the bulk and angular coordinates are suppressed, and the
“black hole cigar” geometry is indicated. Two circles denote the boundary ∂H of the region just
outside the horizon and the boundary ∂Mr at large radius. Diagrams by Ruth Gregory.

The Euclidean action for this truncated instanton or black hole solution is

SR = − 1

16πG5

∫

MR

(R5 − 2Λ5)
√
g5 +

∫

B
Lm
√
g4 +

1

8πG5

∫

∂MR

K
√
h, (6.21)

where K denotes the extrinsic curvature of the boundary surface ∂MR defined with an

inward pointing normal to the bulk manifold MR. The matter Lagrangian Lm includes

the contribution from any nontrivial Higgs field profile, as well as the brane stress-energy

tensor. The bulk integral ranges across all z, and includes the δ−function curvature at the

brane source in the spirit of the Israel approach. Numerical subscripts distinguish between

bulk and brane geometry, with the gravitational constant in five dimensions given in terms

of Newton’s constant GN by G5 = `GN .

The tunnelling exponent is given by the difference between the actions of the instanton

geometry with a remnant black hole, and the false vacuum geometry with the seed black

hole: B = Sinst − Sfv. This is finite in the limit R→∞.

To show this, we begin by introducing a small ball, H, extending a proper distance of

order O(ε) out from the black hole event horizon. This will deal with any conical deficits

arising from a generic periodicity in Euclidean time. The action calculation is now split

into two terms,

SR = Shor
R + Sext

R , (6.22)
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where1

Shor
R = − 1

16πG5

∫

H
(R5 − 2Λ5)

√
g5 +

∫

BH
Lm
√
g4 +

1

8πG5

∫

∂H
K
√
h, (6.23)

Sext
R = − 1

16πG5

∫

MR−H
(R5 − 2Λ5)

√
g5 +

∫

B−BH
Lm
√
g4 +

1

8πG5

∫

∂H
K
√
h

+
1

8πG5

∫

∂MR

K
√
h,

(6.24)

and BH = B ∩H is the intersection of the event horizon cap with the brane.

6.2.2 Near Horizon

To deal with the near-horizon contribution, we transform (6.16) to local horizon coordi-

nates, analogous to the Euclidean Schwarzschild transformation, (6.14), so that

ds2 ≈ d%2 +A2(%, ξ)dτ2 +D2(%, ξ)dΩ2
II +N2(%, ξ)dξ2, (6.25)

where % < ε insideH. Comparing to (6.16), we see A = T/(1+ ρ
` cosχ), D = ρ sinχeC/(1+

ρ
` cosχ), N = eB/(1 + ρ

` cosχ), with % ≈ (ρ− ρh)/(1 + ρh
` cosχ) and ξ = χ+O(%2). The

brane sits at ξ = π/2, and on the horizon, ξ ∈ [0, π].

As with the four dimensional Euclidean Schwarzschild, there is a natural periodicity of

τ for which the Euclidean metric is nonsingular; this periodicity is β0 = 2π/κ, where κ

is the surface gravity of the black hole given in the original coordinates by (6.18), and

in the horizon coordinates by ∂A/∂%. From nonsingularity of the geometry, we deduce

N ∼ N0(ξ) + O(%2), D ∼ D0(ξ) + O(%2), and A ∼ κ% + O(%2). Now let us consider a

general periodicity β for the Euclidean time τ , then we will have a conical singularity at

% = 0. In order to compute the action, we smooth this out by modifying the A function

so that A′(ε, ξ) = κ, but A′(0, ξ) = κβ0/β. Computing the curvature for this smoothed

metric gives
√
g5(R5 − 2Λ5) = −2N0(ξ)D0(ξ)2A′′(%) +O(%) (6.26)

which gives the bulk contribution to Shor
R as

− 1

16πG5

∫

H
(R5 − 2Λ5)

√
g5 +

∫

BH
Lm
√
g4 (6.27)

=
β

2G5
[A′(ε)−A′(0)]

∫
N0D

2
0dξ +O(ε2) (6.28)

=
κ

8πG5
[β − β0]A5 (6.29)

1Note, the extrinsic curvature in the Gibbons-Hawking term is computed with an inward pointing
normal, hence the same sign for that term in each expression.
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where A5 = 4π
∫
N0D

2
0dξ is the area of the braneworld black hole horizon extending into

the bulk (on both sides of the brane). Note that the matter term on the left gives no

contribution since the matter Lagrangian does not have a singularity at ρ = 0.

To compute the Gibbons-Hawking boundary term we note that the normal to ∂H is

n = −d%, hence the extrinsic curvature is

K = −A−1A,% +O(ε) (6.30)

and
1

8πG5

∫

∂H
K
√
h = − κβ

2G5

∫
N0D

2
0dξ = −κβA5

8πG5
(6.31)

Thus the contribution to the action from the horizon region is

Shor
R = −κβ0A5

8πG5
= − A5

4G5
(6.32)

6.2.3 External Region

The external part Sext
R can be simplified by taking a canonical decomposition based on a

foliation of the manifold by surfaces of constant τ and Στ (see appendix B). The part of

the action outside the horizon cylinder reduces to simple surface terms,

Sext
R =

1

8πG5

∫ β

0
dτ

(∫

CR

3K
√
h+

∫

CH

3K
√
h

)
. (6.33)

where 3K are the extrinsic curvatures of codimension two surfaces of constant r, regarded

as submanifolds of surfaces of constant τ , Στ as described in appendix B.1.

Close to the horizon, we use the metric (6.25) and find

3K = 2D−1D,% +N−1N,% → 0, (6.34)

at the horizon % = 0 for the behaviour of the metric coefficients D(%, ξ) and N(%, ξ) given

earlier. This boundary term gives no contribution to the action.

6.2.4 Large R

At large distances, the metric approaches the perturbed Poincaré form (6.20), and we find

3K = − 2

R
e|z|/`F 1/2,

√
h = R2e−3|z|/`F 1/2. (6.35)
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hence

Sext
R = − β

GN`

∫ ∞

0
dze−2z/`

(
2R− 4GNM(z) +O(R−1)

)
. (6.36)

Ideally, we would like to regularise this action either by background subtraction, or by

adding in boundary counterterms along the lines of [44, 45]. However, the counterterms

of [45] do not regulate this action, and one cannot replace the interior ofMR with a pure

RS braneworld, due to the variation of M(z) along ∂MR. Instead, we note that the Higgs

fields on the brane in any instanton solution will die off exponentially for large r, so from

the intuition that M(z)/r ∼M∞/ρ = M∞/
√
r2 + `2(e|z|/` − 1)2, we then deduce that the

mass function M(z) will be the same at leading order for both the false vacuum with the

seed brane black hole, and the instanton solution, therefore the exterior terms will cancel

when we take the difference between the instanton action and the false vacuum action:

B = Sinst − Sfv = lim
R→∞

[
Sext
R

∣∣∣
inst
− Sext

R

∣∣∣
fv

]
− A

inst
5

4G5
+
Afv

5

4G5
=
AS
4G5

− AR
4G5

(6.37)

where AS and AR refer to the areas of the seed and remnant black hole horizons respec-

tively.

This is simply the reduction in entropy −∆S caused by the decay process, and the tun-

nelling rate is recognisable as the probability of an entropy reduction ∝ exp(∆S). The

difficulty we face when applying (6.37) is that we have to relate the black hole area to the

mass of the black hole triggering the vacuum decay and the physical parameters in the

Higgs potential. This requires explicit solutions for the gravitational and Higgs fields.

6.3 Tidal black hole bubbles

The lack of any analytic brane black hole solutions presents the main obstacle to finding

tunnelling instantons. The brane-vacuum equations are complicated by the reduced sym-

metry of the expected static, brane-rotationally symmetric geometry. Although we have

numerical brane black hole solutions, the introduction of Higgs profiles on the brane would

require these to be modified, and a new full numerical brane+bulk solution would have

to be computed. Instead of attempting this considerable undertaking, we adopt a more

practical alternative based on the tidal black hole solutions of Dadhich et al.[ [46]].

As described, for example, by Maartens [47], one can take an approach of solving purely

the brane “Einstein equations”, i.e. the induced Einstein equations on the brane found

by the Gauss Codazzi projection of the Einstein tensor in Shiromizu, Maeda and Sasaki

[35] (hereafter referred to as SMS), which provide a suitable set of initial conditions on

the brane for evolving into the bulk. These equations are similar to the four dimensional

Einstein equations, but contain additional terms involving the square of the energy mo-
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mentum of any matter on the brane, and an additional projected Weyl tensor , Eµν , coming

from a projection of electric part of the bulk Weyl tensor onto the brane. (For the full

form of the Weyl tensor, see equation (B.21) in Appendix B.) The projected Weyl tensor

for the tidal black hole satisfies the equations Eµµ = 0 and ∇µEµν = 0. Following [47],

one uses the symmetry of the physical set up to define functions U and Π and write the

projected Weyl tensor as

Eµν = diag

(
U ,−(U + 2Π)

3
,
Π − U

3

)
(6.38)

This is manifestly tracefree, and the ‘Bianchi’ identity implies a conservation equation for

U , Π. For the spherically symmetric static brane metric

ds2
brane = f(r)e2δ(r)dτ2 + f−1(r)dr2 + r2dΩ2

II , (6.39)

the conservation equation implies

(U + 2Π)′ +

(
f ′

f
+ 2δ′

)
(2U +Π) +

6Π

r
= 0 . (6.40)

Even for the vacuum brane this is not a closed system, but if one assumes an equation of

state, one can find an induced brane solution [48]. The tidal black hole corresponds to the

choice Π = −2U , for which (6.40) is easily solved by U ∝ 1/r4.

The tidal black hole of Dadhich et al. [46], has δ(r) ≡ 0,

f(r) = 1− 2GNM

r
−
r2
Q

r2
, (6.41)

and

Eµνdxµdxν = −
r2
Q

r4

(
f(r)dτ2 + f−1(r)dr2 − r2dΩ2

)
, (6.42)

where rQ is a constant parameter related to the tidal charge Q of [46] by r2
Q = −Q. The

motivation for this solution is clear: at large distances, the Newtonian potential of a mass

source has the conventional GNM/r behaviour due to a “brane-bending” term identified

by Garriga and Tanaka [34]; the interpretation being that the brane shifts relative to the

bulk in response to matter on the brane. At small distances on the other hand we would

expect the higher dimensional Schwarzschild potential to be more appropriate, hence the

−r2
Q/r

2 term. The event horizon is distorted by the projected Weyl tensor, hence the

name. Other choices for the Weyl tensor lead to different brane solutions [48], however

these tend to have either wormholes or singularities (or both), therefore we do not consider

these here.
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To obtain our bubble solution, we will need to find the fully coupled Higgs plus brane

SMS-gravitational equations of motion in the spherically symmetric gauge (6.39). For this

we will use the same tidal Ansatz for the equation of state of the projected Weyl tensor:

Π = −2U , meaning that even when the Higgs fields take a nontrivial bubble profile, the

conservation equation for the Weyl tensor (6.40) is still solved by U = −r2
Q/r

4.

We also have some limited information about the form of the tidal black hole solution

away from the brane from an expansion in the fifth coordinate. According to Maartens

and Koyama, [49] the metric parallel to the brane at proper distance z from the brane is

g̃µν(z) = gµν(0)− (8πG5Sµν) z +
[
(4πG5)2SµσS

σ
ν − 8πGNSµν − Eµν

]
z2 + . . . (6.43)

where Sµν = Tµν − 1
3Tgµν is composed of the energy momentum tensor of brane matter.

In the false vacuum state, we have Tµν = 0 and the metric expansion away from the brane

reduces to

ds2 ≈ e−2|z|/` (gµν − Eµνz2
)

+ dz2

≈ e−2|z|/`

{(
1 +

r2
Qz

2

r4

)
(
fdτ2 + f−1dr2

)
+

(
1−

r2
Qz

2

r4

)
r2dΩ2

II

}
+ dz2

(6.44)

which shows clearly how the horizon area decreases in the z direction. The horizon forms

into a true bulk black hole when the area vanishes for some value of z of order r2
h/rQ.

Although this tidal black hole has many attractive features, the main difficulty that has

to be overcome when finding the bubble solutions is that the tidal constant rQ is unde-

termined. Clearly a nonsingular brane black hole, if approximately tidal, should have a

relation between the asymptotic mass measured on the brane, M , and the tidal charge

r2
Q. For very large black holes, we expect the horizon radius to be predominantly deter-

mined by M , and this ambiguity is not relevant, however for the small black holes we are

interested in, the horizon radius is primarily dependent on rQ, and we must confront this

ambiguity.

We start by noting that the tidal black hole solution should be identical to the five di-

mensional Schwarzschild black hole in the limit that the AdS radius `→∞, as the brane

stress-energy tensor, which is tuned to the cosmological constant, vanishes in this limit,

and full SO(4) rotational symmetry is restored. Since GN = G5/`, (6.41) implies that

r2
Q → r2

h in this limit. Intuitively, we also expect that for small black holes, the curvature

is dominated by the black hole and the bulk AdS scale should be subdominant. The black

hole should look (near the horizon at least) mainly like a five dimensional black hole which

has radius rQ, i.e. r2
Q → r2

h as rh → 0. We will therefore assume analyticity in rh/` and
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write

r2
Q = r2

h

(
1− brh

`
+O

(
r2
h

`2

))
(6.45)

for small rh/`, where b is some constant independent of rh and `, expected to be roughly

of order unity. For the tidal black hole, a trivial rewriting of (6.41) gives the relation

M =
br2
h

2G5
(6.46)

in other words, we have expressed the ambiguity in the tidal parameter for small black

holes by the parameter b, and the relationship between the asymptotic mass of the black

hole as measured on the brane and the horizon radius explicitly factors in this ambiguity.

As we now see, this uncertainty can be absorbed into a redefinition of the low energy

Planck scale in the tunnelling rate.

The tunnelling process starts with the uniform false vacuum φfv and a seed black hole

with mass MS . This false vacuum configuration resembles the tidal black hole on the

brane, and a slightly perturbed 5D Schwarzschild solution in the bulk [42]. The bubble

solution represents the decay process to another state with the field asymptoting the same

false vacuum at large distances but with the field approaching its true vacuum near the

horizon of a remnant black hole with mass MR, which remains after tunnelling.

Previously, we showed that the tunnelling exponent is given by

B =
1

4G5
(AS −AR) , (6.47)

where S represents the five dimensional area of the seed black hole area and R that

of the remnant black hole. To leading order in rh/`, the small black hole horizon has

an approximately hyperspherical shape, therefore the area will be well approximated by

2π2r3, hence

B =
π2

2G5

(
r3
S − r3

R

)
=
π2r3

S

2G5

[
1−

(
MR

MS

) 3
2

]
(6.48)

using (6.46). In the limit that the difference in seed and remnant black hole masses is

small, (MS −MR)/MS = δM/Ms � 1, we finally arrive at

B ≈ 3

4

(
πMS

bM5

)3/2 δM

MS
, (6.49)

where M5 = (8πGN`)
−1/3 is the low energy Planck scale. The uncertainty in the value

of the tidal charge parameter b can be absorbed into our uncertainty in the low energy

Planck scale, and so we let bM5 →M5.
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The action B which gives the tunnelling exponent is therefore found from the taking the

difference in actions of the black hole and the instanton.

B = Sbh − Sb (6.50)

= 4πGM2
seed(r

2
bh − r2

b ) (6.51)

6.3.1 Approximating φ′′ near the horizon

Near the horizon of the black hole, it is necessary to use an analytical approximation for

φ′′ to solve the equations of motion. We take the spherically symmetric Euclidean metric

as:

ds2 = f(r)e2δ(r)dτ2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) (6.52)

Where f has the form

f = 1− 8πGµ(r)

3r2
(6.53)

The equations of motion for the bounce solution are

fφ′′ +
3

r
fφ′ + δ′fφ′ + f ′φ′ − ∂V

∂φ
= 0 (6.54)

δ′ =
8πG

3
rφ′

2
(6.55)

µ′ = 2π2r3(
1

2
fφ′

2
+ V ) (6.56)

To approximate φ, we rewrite f and perform a series expansion to second order, where we

define x = r − rh.

f = f1x+ f2x
2 + . . . (6.57)

φ = φh + a1x+ a2x
2 + . . . (6.58)

V = Vh + Vφha1x+ . . . (6.59)

Vφ = Vφh + Vφφha1x+ . . . (6.60)

By substituting these expansions into equation (6.56), this gives an approximation for φ

φ′′ = 2a2 (6.61)
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where

a2 =
4πG

3
rha

3
1 +

a2
1

Vφh

[
8πG

3
Vh +

1

4
Vφφh

]
(6.62)

6.3.2 Higgs bubbles on the brane

The Higgs bubble will correspond to a solution of the brane SMS equations with an energy

momentum tensor derived from the (Euclidean) scalar field Lagrangian2

Lm =
1

2
gµνφ,µφ,ν + V (φ). (6.63)

where V (φ) has a metastable false vacuum. The SMS equations for the bubble, assuming

the general form (6.39) are derived in appendix B.2, and are

fφ′′ + f ′φ′ +
2

r
fφ′ + fδ′φ′ − V,φ = 0, (6.64)

µ′ = 4πr2

{
1

2
fφ′2 + V − 2πGN

3
`2(

1

2
fφ′2 − V )(

3

2
fφ′2 + V )

}
, (6.65)

δ′ = 4πGNrφ
′2
{

1− 4πGN
3

`2(
1

2
fφ′2 − V )

}
. (6.66)

where, for comparison with the vacuum case (6.41), we have defined a “mass” function

µ(r) by

f(r) = 1− 2GNµ(r)

r
−
r2
Q

r2
. (6.67)

These are integrated numerically from the black hole horizon rh to r → ∞ where φ is in

the false vacuum, implementing the ‘shooting‘ method described in chapter three. The

remnant mass MR and the tunnelling exponent B are determined in terms of the seed

mass MS , the potential V and the AdS radius `.

The results presented in this section are based on the Higgs-like logarithmic potential

described in the previous chapter, assuming that the standard model holds for energy

scales up to the low energy Planck mass M5.

Here we take a one parameter analytic fit to λeff , where the single parameter is the crossover

scale Λφ:

λeff = g(Λφ)

{(
ln

φ

Mp

)4

−
(

ln
Λφ
Mp

)4
}

(6.68)

and g(Λφ), chosen to fit the high energy asymptote of λeff , varies very little across the range

of Λφof relevance to the Standard Model λeff . In four dimensions, we can have a Higgs

2Note that we have defined the Euclidean Lagrangian to contain +V , meaning that the false vacuum
solution will have energy-momentum −V gµν , but that our 4D Einstein equations will have the conventional
sign for the energy-momentum, i.e. Gµν = 8πGNTµν + . . . .
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instability scale very close to the Planck scale, however with large extra dimensions, new

physics could potentially enter at the low-energy Planck scale M5, thus to be consistent,

we should restrict our parameters to the range Λφ < M5 < Mp.
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Figure 6.2: Profiles for the bubble and the mass term µ(r) outside the horizon rh with M5 =
1015GeV, Λφ = 1012GeV and rh = 20000/Mp. This particular solution has tunnelling exponent
B = 4.3

Figure 6.2 gives profiles for a typical bubble centered on the black hole after tunnelling

and for the mass term µ(r) beyond the horizon radius rh. The field is in the true vacuum

at the horizon and approaches the false vacuum as r →∞ with a characteristic thick wall

profile. The bubble radius greatly exceeds the horizon of the black hole.

The change in the mass term is given by ∆µ(r) = µ(r)−µ(rh). Near the horizon, ∆µ(r) is

negative due to the negative potential V in equation (6.65). µ(r) becomes positive at large

r where there is a positive contribution from the kinetic term and hence ∆M is positive.
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6.3.3 Branching Ratios

The calculation of the vacuum decay rate assumes a stationary background which only

makes sense when the decay rate exceeds the Hawking evaporation rate. The brane black

hole can radiate in the brane or into the extra dimension, but if we consider a scenario as

close as possible to the standard model then most of the radiation will be in the form of

quarks and leptons radiated into the brane, simply because these are the most numerous

particles. (For a review of Hawking evaporation rates in higher dimensions see [50].)

Black hole radiation is similar to the radiation from a black body with the same area

as the black hole horizon and at the Hawking temperature, but with additional ‘grey

body’ factors representing the effects of back-scattering of the radiation from the space-

time curvature around the black hole. Following [50], we can express the energy loss rate

due to evaporation as Ė, where on dimensional grounds (since rh is the only relevant

dimensionful parameter)

|Ė| = γ r−2
h , (6.69)

for some constant γ. The Hawking decay rate of the black hole ΓH , using (6.46) to

eliminate the radius, is

ΓH =
|Ė|
MS

=
4πγM3

5

M2
S

(6.70)

The vacuum decay rate is given by the usual equation,

ΓD = Ae−B. (6.71)

The pre-factor A contains a factor (B/2π)1/2 from a zero mode and a vacuum polarisation

term from the other modes, whose characteristic length scale is the bubble radius rb. We

estimate

ΓD ≈
(
B

2π

)1/2 1

rb
e−B. (6.72)

Transition rates seeded by the black hole seed are presented as a branching ratio of ΓD

and ΓH , given in equation (6.2).

ΓD
ΓH
≈ 1

γ

(
B

2π

)1/2(MS

M5

)3/2(rh
rb

)
e−B (6.73)

Vacuum decay is important when this ratio is larger than one.

The contribution to ΓH from a fermion in four dimensions is 7.88× 10−4 for each degree

of freedom [51]. In the Standard Model, there are a total of 90 fermions (quarks, leptons,

and neutrinos) giving 90 fermion degrees of freedom. Harris and Kanti [52] find that ΓH
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for a five dimensional black hole is 14.2 times that for a four dimensional black hole, giving

an approximate ΓD in five dimensions

ΓD ≈ 14.2× 90× 7.88× 10−4 = 0.10. (6.74)

Λφ = 1 × 1012 GeV
Λφ = 2 × 1012 GeV
Λφ = 5 × 1012 GeV

100 101 102 103 104 105 106
seed mass MS M5

100

101

102

103

104

ΓD
ΓH

Figure 6.3: The branching ratio of the false vacuum nucleation rate to the Hawking evaporation
rate as a function of the seed mass for a selection of Higgs models with M5 = 1015GeV.

The branching ratio is plotted in figure 6.3 for M5 = 1015GeV and Higgs instability scale

around 1012 GeV (corresponding to a top quark mass of 172 GeV). Note that the decay

rates in this parameter range are larger than M3
5 /M

2
S , i.e. they are extremely fast. The

figure shows an example where black holes with masses between 1017 GeV and 1020 GeV,

or 10−7 g to 10−4 g, would seed rapid Higgs vacuum decay.

6.4 Black hole seeded vacuum decay in four dimensions

To contrast the influence of a black hole in the bulk and a black hole on the brane for

vacuum decay in RS2, we will also present results for vacuum decay seeded by a four

dimensional black hole. For this subsection, we will revisit a toy model potential with two

minima:
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V =
1

2
m2φ2 − 1

4
λ2φ4 +

1

6
ĝφ6 (6.75)

where the free parameter ĝ varies the height of the potential barrier and m and λ are self

coupling parameters. We can rescale the variables to set m = λ = 1, and therefore the

rescaled action B̂ will be expressed in terms of the real action B̂ = mλB in plots. The

effect of ĝ on the decay rate in five dimensions is shown in figs. 6.6 and 6.7.

In four dimensions, the black hole’s mass is presented as a ratio Ms/Mp of seed mass

to Planck mass where M2
p = (8πG)−1. In the bulk, the relevant parameter is the five

dimensional Planck mass, and we consider the ratio Ms/M5 where M3
5 = (8πG)−1.

We present these results to compare the influence of four and five dimensional black holes

on vacuum decay rates, although we do not give results using the Higgs-like potential for

a 4D case (which has been previously explored in [26]). Fig. 6.5 gives the action and

branching ratios for vacuum decay seeded by a four dimensional black hole, which can be

compared with the 5D results shown in figs. 6.6 and 6.7.

While the Higgs-like potential we have previously considered gives rise to bubbles that are

characteristically thick walled, a quadratic potential allows for the nucleation of thin wall

bubbles. The qualitative differences between a thick and thin wall bubble are shown in

fig. 6.4, demonstrating how the thickness of the bubble wall may be much greater than

its radius in the thick wall case.

Figure 6.4: The bubble profiles for ĝ = 0.04 (left) and ĝ = 0.14 (right), which show a thick wall
and thin wall bubble respectively.

6.4.1 Discussion

The tunnelling exponents and branching ratios are shown for two different values of the

rescaled 5D Planck mass M5 in figs. 6.6 and 6.7. The mass parameter MD is defined
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Figure 6.5: The tunnelling exponent as a function of seed mass (left) and the branching ratio of
the false vacuum nucleation rate to the Hawking evaporation rate as a function of the seed mass
(right), in four dimensions.

as MD = (λm)2/3M5 where M5 is the five-dimensional Planck mass. λ and m are free

parameters which can be varied by choosing a value for the rescaled M̂5. The effect of

increasing the cube of the rescaled Planck mass by 10 from fig. 6.6 can be seen in fig. 6.7.

For the five dimensional case shown in 6.6, we see Hawking evaporation drive changes

in the black hole’s mass to a point where it is overtaken by vacuum decay. In the case

of M3
5 = 10, it is not possible to say which of vacuum decay or Hawking evaporation

dominates across a range of seed masses, as both can be seen to drive mass changes across

a narrow range depending on the self coupling parameter g. This range narrows further

as the seed mass increases.

Increasing M5 to M3
5 = 100 widens the curves so that vacuum decay can be seen to

dominate for smaller seed masses.

Compared to the four dimensional case, the convergence of the actions occurs at a lower

seed mass, which would produce a higher tunnelling rate in five dimensions than in four

for a black hole of the same mass.

For both four and five dimensional fields, when the black hole seed mass is sufficiently

large, the action will tend towards a large value independent of ĝ. This has the effect of

quenching the tunnelling rate.
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Figure 6.6: The tunnelling exponent as a function of seed mass (left) and the branching ratio of
the false vacuum nucleation rate to the Hawking evaporation rate as a function of the seed mass
(right), in five dimensions. MD = (λm)2/3M5, M3

5 = 10.

6.5 Conclusion

In this chapter, we have used the Randall-Sundrum model to explore black hole seeded

vacuum decay in five dimensions, and found that for a Higgs-like potential, black holes

with masses in the approximate range 102 < Ms/M5 < 105 rapidly seed vacuum decay.

The branching ratio plot shown in figure 6.3 demonstrates that small black holes in higher

dimensions are overwhelmingly likely to initiate vacuum decay once they have radiated

away sufficient mass to enter this range. As was found to be the case for 4D in [26],

any small black hole, formed either in the early universe or in a high energy cosmic ray

collision, will radiate, lose mass, then become sufficiently light that it seeds decay with a

rate of order 103−5T5.3

Due to the much lower Planck mass M5 in five dimensions (M5 . 109GeV), it is possible

that black holes light enough to trigger vacuum decay could be produced in high energy

cosmic ray collisions. For example, the highest energy cosmic ray collisions [53, 54, 55]

observed have an energy in excess of 1011GeV, which could be sufficient to produce black

holes of this scale.

Since the probability of vacuum decay occurring as a result of the existence of these small

3Here, T5 = (c3/8πG5~)1/3 is the 5D Planck time.

70



Chapter 6. Black Hole Instantons

Figure 6.7: The tunnelling exponent as a function of seed mass (left) and the branching ratio of
the false vacuum nucleation rate to the Hawking evaporation rate as a function of the seed mass
(right), with increased M5. MD = (λm)2/3M5, M3

5 = 100.

black holes is so high, we can conclude that either:

• there were no microscopic primordial black holes capable of seeding vacuum decay,

as the present day universe exists in a metastable false vacuum state;

• or, we do not live in an RS2 braneworld where the reduced 5D Planck scale allows

for such black holes to be produced in the highest energy cosmic ray collisions.

Our results were presented as a branching ratio of the Hawking evaporation rate ΓH to

tunnelling rate ΓD, which required calculating the tunnelling exponent B. Although the

solution for a brane black hole is not known analytically, we were nonetheless able to

construct an argument from thermodynamics that the action for tunnelling would still be

the difference in areas of the black hole horizons (an alternative derivation of this is given

in Appendix B).
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Negative Modes

This chapter presents work previously published in a paper by R. Gregory, K. M. Marshall,

F. Michel and I. G. Moss, (2018). ”Negative modes of Coleman–De Luccia and black hole

bubbles.” Physical Review D 98(8): 085017. arXiv:1808.02305v2 [hep-th].

7.1 Bubbles with negative modes

In previous chapters, we have worked with a model of vacuum decay in which a phase

transition is interpreted as the nucleation of a true vacuum bubble on a false vacuum

background. A key feature of this picture is the existence of a negative mode of field

perturbations corresponding to a scaling of the bubble radius up or down. However, for

decay in asymptotically de Sitter space, a problem arises with the emergence of an infinite

number of negative modes and the question of how this can be physically interpreted.

Previously, the negative mode problem has been investigated numerically for vacuum decay

in asymptotically de Sitter spacetimes. This chapter presents the first results for negative

modes for an asymptotically flat instanton. We also give a new analytic result for the first

negative mode in the thin wall bubble limit.

Here we look at two different Higgs vacuum decay scenarios: vacuum decay in empty

space and vacuum decay seeded by black holes. For the first scenario, vacuum decay

rates with gravitational back-reaction in empty space have previously been examined by

[16, 56, 57, 58]. The gravitational back reaction becomes significant when Λ approaches

the Planck scale. Here we present an analysis of the negative modes that includes the

possibility of non-minimal coupling of the Higgs field to gravity.

Numerical calculations show there are two possible cases for the modes of the solutions:

either a single negative mode, or infinitely many. The second case is seen for vacuum

72



Chapter 7. Negative Modes

decay in asymptotically de Sitter space, where a change in sign for the kinetic terms in

the action of the perturbations gives rise to the infinite stack of negative modes.

In the second scenario we investigate, we return to the case of black hole seeded vacuum

decay. Here, vacuum decay is enhanced by the presence of a microscopic black hole left

over from the early universe. This effect has previously been investigated for vacuum

decay in de Sitter space [22], and later for more general scenarios including asymptotically

flat space [23, 24, 25].

In both the empty space and black hole scenarios, the dominant decay process is one

that produces static O(3) symmetric bubbles. Numerical analysis of the negative modes

for vacuum decay with an asymptotically flat black hole nucleation seed finds only one

negative mode. The kinetic term in the action of the perturbations is always positive.

We can conclude from this that vacuum decay seeded by black holes has a single negative

mode and will likely be consistent in the bounce solutions.

7.2 Tunnelling and negative modes

We consider decay of the false vacuum state of a scalar field φ with potential V (φ). The

path integral formalism from Coleman (summarised in chapter two) is used to find bounce

solutions φb to the scalar field equations, with imaginary time coordinate τ [2]. Recalling

equation (2.41) from chapter two, evaluating the path integral for a single bubble solution

gives a contribution to the vacuum decay amplitude of the form

Sbubble ≈
1

2
iΩT

∣∣∣∣
det′ S′′E [φb]

detS′′E [φfv]

∣∣∣∣
−1/2

B2

4π2
e−B Sfv, (7.1)

where S′′E denotes the second functional derivative of the Euclidean action, and det′ denotes

omission of zero modes from the determinant. The zero modes give factors Ω and T for

the total volume and time period, along with a Jacobian factor B2/4π2. The factor i

arises from the negative mode. This would become in if there were n negative modes. The

vacuum decay rate Γ can be calculated by summing multiple bubble amplitudes, and the

result is [8, 59]

Γ ≈
∣∣∣∣
det′ S′′E [φb]

detS′′E [φfv]

∣∣∣∣
−1/2

B2

4π2
e−B. (7.2)

The negative mode can be explained easily in the thin-wall limit, when the bubble solution

consists of a true vacuum region φtv surrounded by a relatively narrow wall where the field

transitions to the false vacuum. This approximation is valid when the difference in energy

ε of the true and false vacua is small compared to a combination of barrier height and

width. The field is represented by a bubble Ansatz of the form φ = φ(τ ;R) ' φ0(τ −R),
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with τ being the radial distance from the centre of the bubble and R being the bubble

radius, where φ0(x) solves the ‘planar’ domain wall equation

φ′′ ≈ ∂V

∂φ
. (7.3)

For tunnelling in empty space, we have the boundary conditions:

• φb → φfv when τ → ±∞

• at spatial infinity: φb → φfv as |x| → ∞

where φfv is the value of the field at the false vacuum.

From Coleman [2], the tunnelling exponent B is related to the change in Euclidean action

by B = SE [φb]− SE [φfv], where

B =

∫ ∞

−∞
dτ

∫
d3x

(
1

2
(∂τφb)

2 +
1

2
(∇φb)

2 + V (φb)

)
. (7.4)

In [2] Coleman showed that there exists a bubble solution with O(4) symmetry that has

the smallest action, and hence the largest tunnelling rate, compared to other bounce

solutions. This solution has exactly one negative mode [8] and is a saddle point of the

Euclidean action, as shown in Coleman and Callan’s second paper covered in chapter two

(see equation (2.41) in §2.4).

Using the thin wall approximation, we can integrate the tunnelling exponent in terms of

the bubble radius R (see §2.3),

B(R) = 2π2σR3 − 1

2
π2εR4. (7.5)

where ε is the difference in height between the two minima and σ is the bubble wall tension.

The action has an extremum B′ = 0 at R = 3σ/ε. Here, σ is the action per unit area of

the bubble wall, which can be found in terms of an integral of the potential V (φ) by

σ =

∫ φtv

φfv

|2∆V (φ)|1/2dφ (7.6)

using 1
2φ
′2
0 = ∆V found from integrating equation (7.3). The bubble solution is given by

the extremum at the radius Rb = R0 ≡ 3σ/ε, where B has a maximum.

The negative mode corresponds to changes in φ that increase or decrease the radius of the
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bubble solution,

δφ =
dφ

dR
δR. (7.7)

The overall change in B is related to the negative eigenvalue λ0 of the perturbations about

the bounce by,

δB ≈ 1

2
B′′(R)δR2 (7.8)

=
1

2

∑
c2
nλn ≈

1

2
c2

0λ0, (7.9)

where δφ is defined by a sum over un modes

δφ =
∑

cnun. (7.10)

(The derivation of the eigenvalue equation for perturbations about the bounce will be

dealt with later.) The norm of a function f(x) is defined by

‖f‖2 =

∫
f(x)2 d4x, (7.11)

Eq. 7.10 is normalised so that

||un||2 = 1 (7.12)

As we require a negative expression for δB, we pick out λ0 as the single negative mode

and rewrite ‖δφ‖2,

‖δφ‖2 = ‖c0u0‖2 = c2
0 (7.13)

and therefore δB

δB ≈ 1

2
c2

0λ0 ≈
1

2
||δφ||2λ0 (7.14)

Combining all of the above gives an expression for the negative eigenvalue λ0,

λ0 =
B(R)′′δR2

||δφ||2 (7.15)

Using equation (7.7), this gives us a simple formula for the negative eigenvalue in the

thin-wall approximation,

λ0 ≈
B(R)′′

||dφ/dR||2
∣∣∣∣
R=Rb

(7.16)

This can be taken further using our approximation for the bubble wall profile. The field
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at distance τ relates to its true vacuum value according to

φ =
1

2
φtv

(
1− tanh

[
3σ

φ2
tv

(τ −R)

])
(7.17)

as given by (2.68) in chapter two. The action has a maximum at R = Rb. Using equation

(7.17), we can write ∣∣∣∣
∣∣∣∣
dφ

dR

∣∣∣∣
∣∣∣∣
2

≈ 2π2σR3 (7.18)

Substituting this into equation (7.16), the negative eigenvalue can be expressed as

λ0 =
1
2B
′′(Rb)

3π2R3
bσ

. (7.19)

We now substitute B′′ from equation (7.5) into this expression to get

λ0 ≈ −
3

R2
b

. (7.20)

This result is remarkably simple! From this new approach, we confirm the findings of

Coleman and Callan in [8]. The approximation is valid when the thickness of the wall is

small compared to the bubble radius, which translates to ε� 9σ2/φ2
tv.

7.2.1 Gravitational back-reaction

We will look at bubble solutions with gravitational back-reaction. These can be found by

extremising the Einstein-scalar action,

SE =

∫ [
− R

16πG
+

1

2
(∂φ)2 + V (φ)

]√
gd4x, (7.21)

where R is the Ricci scalar. Bubble solutions with O(4) symmetry can be described by a

‘radial’ solution of scalar field, φ(τ), and geometry:

ds2 = dτ2 + a2(τ)dΩ2
III (7.22)

where φ and a tend towards the true vacuum form as τ, a(τ) → 0, and the false vacuum

form for large τ .

When finding the bounce solutions, B is given by the difference in actions between the

bubble and the false vacuum, and we assume this is still true when considering the case

of a single bubble.

There are two scenarios to consider depending on whether the Euclidean metric is compact
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Figure 7.1: Left panel: O(4)-symmetric instantons obtained with the quartic potential (7.53) for
λq = 128 and φt/φm = 2.5. The value of φt in Planck units increases from blue to red. Right panel:
Negative eigenvalues for these solutions. The dashed curve shows the thin wall approximation
(7.35). The vertical dashed line shows the value φc of φt above which Qb takes negative values.
Plots by Florent Michel.

or infinite:

1. The compact case, where the scalar field never quite reaches the false vacuum value

outside the bubble.

2. The infinite case, where the scalar field asymptotically approaches the false vacuum

value as a→∞.

In the compact case, the possible bubble solutions are restricted by regularity conditions

on the metric at the two points where a = 0. For this case we impose the boundary

conditions:

φ′(0) = 0 (7.23)

φfinal = 0 (7.24)

a(0) = afinal = 0 (7.25)

a′(0) = 1 (7.26)

In the infinite case, B = SE [φb]−SE [φfv] may also become infinite without constraints on

the metric. We require that the Euclidean metric approaches the same form at infinity

for the bounce and for false vacuum to ensure that B remains finite. It is not necessary

to introduce boundary terms here as they will cancel when evaluating B.

We use Coleman and de Luccia’s formalism to obtain bounce solutions in the thin wall

limit. The thin wall approximation assumes that the scalar field oscillates rapidly between

false and true vacuum values. At the centre of the bubble wall, the bubble radius R is

the scale factor a. Provided the local curvature within a bubble wall with width w and
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tension σ is below the Planck scale wσ �M2
p , the thin wall approximation still holds [60]

(here we used the reduced Planck mass M2
p = 1/(8πG)).

The curved-space bubble solutions can be represented by the form φ = φ(a;R) where

φ ≈ φ0(τ − τb) for the thin wall, and τb is the coordinate location of the bubble centre:

a(τb) = R.

The scale factor is approximated by a piecewise differentiable function

a(τ) = atv(τ)Θ[τb − τ ] + afv(τ)Θ[τ − τb] , (7.27)

where atv(τb) = afv(τb) = R.

We compute the difference in actions between the bubble and the false vacuum to find B

as before.

In the compact case, we will consider a phase transition where the vacuum decays from a

de Sitter universe into flat space. The potential V is therefore constructed such that the

false vacuum has positive energy ε while the energy of the true vacuum is zero.

The scale factors for the true vacuum at the centre of the bubble and the false vacuum

outside the bubble can be written in terms of τ :

atv = τ (7.28)

afv = ` sin((τ − τ0)/`) (7.29)

where ` =
√

3/(8πGε) is the de Sitter radius and τ0 is a introduced to satisfy atv(τb) =

afv(τb) = R. The tunnelling exponent can be directly calculated as (see also [3])

B(R) =
4

3
π2ε`4

{
1∓ (1−R2/`2)3/2

}
− 2π2ε`2R2 + 2π2σR3, (7.30)

and is plotted in figure 7.2.

• The upper sign applies when the false vacuum region is larger than a hemisphere,

and the true vacuum bubble occupies a smaller volume than the false vacuum region

(a “small bubble” situation, following the terminology of ref. [61]).

• The lower sign applies when the false vacuum covers less than a hemisphere, and the

true and false vacuum regions have a similar volume (a “large bubble” situation)

The tunnelling exponent (7.30) has one extremum Rb away from the origin,

Rb =
R0

1 + (R0/2`)2
, (7.31)
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Figure 7.2: Left panel: The tunnelling exponent B(R) for a thin-wall bubble of flat vacuum in de
Sitter space. The large and small bubble exponents are superposed. Right panel: The tunnelling
exponent B(R) for a thin-wall bubble of anti-de Sitter vacuum in flat space. ` is the AdS radius,
ε is the barrier height, and σ the bubble wall tension. Plots by Florent Michel.

where R0 = 3σ/ε is the bubble radius without the gravitational back reaction. Bubble

solutions always exist, but the extremum becomes a minimum when 3σ/ε > 2`. The

thin-wall approximation therefore predicts the disappearance of the negative mode, and

we can estimate the value of the mode in a similar way to the probe case. Since the

bubble wall is determined by τ = R, and the geometry inside the bubble is flat, we find

that the eigenvalue is well approximated here by the flat space value 7.16. Numerical

investigations have shown that new sets of spherically symmetric negative modes start to

appear [62, 63, 64, 61, 65]. The first set are fluctuations localised near the bubble wall,

called ‘wall modes’ in Ref [61]. The second set are localised near the maximum radius of

the instanton in the ‘large bubble’ case.

In the non-compact case, the true vacuum has negative energy −ε and the false vacuum

has zero energy. This represents vacuum decay from flat space to anti de Sitter space, and

we have atv = ` sinh τ/`, afv = τ + (R− τb) in (7.27). This time we find

B(R) =
4

3
π2ε`4

{
1− (1 +R2/`2)3/2

}
± 2π2ε`2R2 + 2π2σR3, (7.32)

plotted in the right panel of figure 7.2. The upper sign corresponds to 3σ/ε < 2`, and

the bubble matches an interior of AdS to an exterior of an S3 in R4, i.e. a conventional

bubble. For 3σ/ε > 2` we can still find a solution, provided we match the interior of an

AdS sphere to an interior of a three-sphere in R4: clearly this does not have an intuitive

interpretation as a vacuum decay bubble, and is similar to the situation of dS tunnelling

above, where the false vacuum covers less than a hemisphere of dS. We note simply that

these solutions do not have a negative mode, hence are not tunnelling instantons, and do
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not consider them further. For 3σ/ε < 2` the bubble has radius [3]

Rb =
R0

1− (R0/2`)2
. (7.33)

Whenever a bubble solution exists the extremum is always a maximum and the nega-

tive mode we had originally should remain. This time, in our estimate of the negative

eigenvalue, we note R = ` sinh τb/`, hence

∥∥∥∥
dφ

dR

∥∥∥∥
2

=

∥∥∥∥
dφ

dτb

∥∥∥∥
2(dτb

dR

)2

= 2π2σR3(1 +R2/`2)−1 (7.34)

We can substitute this into the general formula (7.16), with the exponent B(R) from

(7.32), and evaluate the result at the bubble radius Rb from (7.33), to get

λ0 ≈ −
3

R2
0

{
1−

(
R0

2`

)4
}
, (7.35)

where R0 = 3σ/ε as before.

7.2.2 Model and field equations

In order to consider a wide variety of models relevant to Higgs cosmology, we generalise

the gravitational action (7.21) to include non-minimal coupling between the scalar field

and gravity,

S =

∫ [
− R̂

16πG
+
ξ

2
R̂φ2 +

ĝµν

2
(∂µφ)(∂νφ) + V (φ)

]
√
ĝd4x (7.36)

where ξ is a non-minimal coupling coefficient and hats denote the choice of metric com-

monly referred to as the Jordan frame. We consider potentials such that V (0) = V ′(0) = 0,

V ′′(0) > 0, and assume V takes negative values in some interval of φ so that the bubble

solutions will be non-compact. To find numerical solutions and study their perturbations,

it is convenient to go to the Einstein frame by rescaling the metric:

gµν =
(
1− 8πGξφ2

)
ĝµν (7.37)

(for an analysis of solutions in the Jordan frame see [16, 58]). The action becomes

S =

∫ (
− R

16πG
+
f(φ)2

2
(∂µφ) (∂µφ) +W (φ)

)√
gd4x, (7.38)
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where

f(φ) =

√
1− 8πGξ (1− 6ξ)φ2

1− 8πGξφ2
(7.39)

and the modified potential is

W (φ) =
V (φ)

(1− 8πGξφ2)2 . (7.40)

In all the cases we will consider, f(φ) remains strictly positive. We look for O(4)-symmetric

solutions, and slightly change the form of our metric to add a lapse function:

ds2 = N(τ)2dτ2 + a(τ)2dΩ2
III , (7.41)

The lapse function N allows us to recover the full set of Einstein equations from extrem-

isation of the action, which will be convenient when deriving the eigenvalue equation.

Substituting in the form of the metric (7.41), and integrating out over the angular vari-

ables, we obtain

S = 2π2

∫ [
f(φ)2

2N2
φ′2 +W (φ)− 3

8πG

(
1

a2
+

(
a′

aN

)2
)]

a3Ndτ, (7.42)

Variation with respect to φ and N give the system of equations:

f(φ)

(
f(φ)

a3

N
φ′
)′

= Na3W ′, (7.43)

a′2

N2
= 1 +

8πG

3
a2

(
f(φ)2

2N2
φ′2 −W (φ)

)
. (7.44)

Variation with respect to a gives a Bianchi Identity1. The system (7.43,7.44) can also be

obtained from the full set of Einstein equations after eliminating redundancies, showing

that there is no independent constraint. For boundary conditions, we look for asymptoti-

cally flat instantons, with φ(∞) = φFV and a(τ) ∼ τ as τ → ∞. We choose to place the

centre of the instanton at τ = 0, where a(0) = 0 and for regularity at the origin we must

have φ′(0) = 0. Equation (7.44) can be rewritten as:

1− 8πGa2W (φ)/3

1− 4πGa2(∂aφ)2/3
=
a′2

N2
. (7.45)

This shows that the left-hand side, which will play an important role in the following, is

always non-negative, and cannot vanish if a is strictly monotonic.

The lapse function N(τ) represents some of the freedom we have to choose the coordinate

1Using Eq. (7.43), it is equivalent to the derivative of Eq. (7.44).
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gauge. We will focus on instantons where a is a strictly increasing function of the distance

to the centre of the bubble, which allows us to choose a as radial coordinate. Setting

τ = a, the action (7.42) becomes

S = 2π2

∫ ∞

0
Na3

(
f(φ)2φ′2

2N2
+W (φ)

)
da− 3π

4G

∫ ∞

0

(
N +

1

N

)
ada (7.46)

Variation with respect to N and φ gives back the system (7.43,7.44), showing that no

physical degree of freedom has been lost.

Since the derivative of N does not appear in Eq. (7.46), one can express N as a function

of φ and φ′:

N =

(
1− 4πGa2f(φ)2φ′2/3

1− 8πGa2W (φ)/3

)1/2

. (7.47)

This quantity is always real. The expression in the denominator is a recurring and impor-

tant combination for the eigenvalue problem, hence we write

Q[φ] ≡ 1− 8πG

3
a2W (φ). (7.48)

Plugging Eq. (7.47) into Eq. (7.46), we obtain an unconstrained action for the scalar field

φ,

S = − 3π

2G

∫ ∞

0
sgn (Q[φ])

[
Q[φ]

(
1− 4πGa2

3
f(φ)2φ′2

)]1/2

ada. (7.49)

Extremization of this action gives back Eq. (7.43) with the explicit form of N given by

Eq. (7.44).

This expression for the action can be conveniently used to derive the eigenvalue equation.

To this end, let us assume we have an exact solution φ = φb. We look for a perturbed

solution of the form2 φ = φb + ϕ/f(φb). To quadratic order in ϕ, the action reads S =

S(0) + S(2) +O
(
ϕ3
)
, where S(0) is the action of the background instanton and

S(2) = 2π2

∫ ∞

0

a3

Nb

[(
D2W +

8πGa2

3Qb
(DW )2 +

8πGf

3Qb
φ′bDW

)
ϕ2

2Qb
+

1

N2
bQb

ϕ′2

2

]
da.

(7.50)

where Qb = Q[φb], and D = f−1d/dφ. The simplest way to derive (7.50) is to regard φ as

a coordinate on a one dimensional manifold with metric

g = f(φ)2dφ2. (7.51)

The action can be evaluated in a coordinate frame with f = 1, and then the general ex-

2Notice that ϕ(a) is the geodesic distance, in the metric (7.51), between the perturbed and background
fields.
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pression is recovered by replacing derivatives with respect to φ by the covariant derivative

D.

The corresponding eigenvalue equation obtained from the perturbed action is

1

Nb a3

(
a3

N3
b Qb

ϕ′
)′

=

[
1

N2
bQb

(
D2W +

8πGa2

3Qb
(DW )2 +

8πGa2f

3Qb
φ′bDW

)
− λ

]
ϕ,

(7.52)

where λ is the eigenvalue.

By definition, Nb is always positive. However, Qb will be negative wherever a2W (φb) >

3/(8πG). When Qb is negative, the quadratic action is unbounded from below. (In fact,

it can reach arbitrarily high negative values even for square integrable perturbations of

unit L2 norm provided the latter oscillate sufficiently fast in the region where Qb < 0.)

As was shown in [61, 65] for instantons in de Sitter space, if the eigenmode equation has

no singularity, negativity of the kinetic term implies the existence of an infinite number

of negative eigenvalues.

The existence of this infinite tower of negative modes can be qualitatively understood as

follows. In regions where the kinetic term is positive, for sufficiently large negative values

of λ, ϕ increases or decreases exponentially with a, with growth rate N2
b

√
Q|λ|. Let us

call the boundaries of the interval in which Q is negative a− and a+. ϕ is exponentially

increasing or decreasing for a > a+, and oscillating for a− < a < a+. The global solution

will be decreasing at infinity provided the oscillating solution for a just below a+ can

be matched with the decaying one for a > a+. This occurs twice each time we add

one wavelength in the interval [a−, a+]. If the kinetic term is positive everywhere, the

boundary conditions at a = 0 and a → ∞ can not be simultaneously satisfied. If the

kinetic term reaches negative values, however, ϕ becomes oscillatory in some interval,

allowing us to match an exponentially decreasing function for a → ∞ with a hyperbolic

cosine for a ≈ 0. More precisely, they will match provided the difference between the

phases of the oscillations at both ends of the region where the kinetic term is negative

exactly compensates the difference between the ratios ϕ′/ϕ for the hyperbolic cosine on

the left and the exponential on the right.

It must be noted, however, that these negative modes may be physically relevant only for

very thin bubbles. Indeed, negativity of the kinetic term requires that |af(φb)φ
′
b| reaches

values above the Planck mass. In many models, φb is limited to be less than 1 in Planck

units, so that the semiclassical analysis should not break down. These negative modes

may thus be physically meaningful only if |af(φb)φ
′
b| � |φb|, i.e., either when the width of

the bubble is much smaller than its radius or when f is large. The latter case can occur

when ξ is large and negative. In the following section we will see examples that realise
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Figure 7.3: Left panel: Quartic potential (7.53) for φm = Mp/10, φt = Mp/4, and λq = 10/3.
Right panel: Effective coupling for the Higgs-like potential (7.56) for Λ = 108GeV (green, dotted),
Λ = 1010GeV (blue, continuous), and Λ = 1012GeV (orange, dashed), and q chosen so that
λ(φ = 103GeV) = 0.1. Plots by Florent Michel.

both of these possibilities.

7.3 Eigenvalues of negative modes

We turn now to the numerical solution of the system (7.43,7.44) and eigenvalue equa-

tion (7.52) with two different shapes for the potential V . Recall from chapter four the

quartic potential

Vq(φ) =
1

4
λqφ

4 − 1

3
λq(φm + φt)φ

3 +
1

2
λqφmφtφ

2, (7.53)

been parameterised by φm and φt, the field values at the maximum and the non-zero

minimum respectively. The parameter λq sets the overall scale. The origin φ = 0 is a false

vacuum, and φt is the true vacuum when φt > 2φm. One example is shown in the left

panel of Fig. 7.3. The thin wall approximation is not used to obtain the numerical results,

though can provide a useful check. The thin wall approximation is valid when φt ∼ 2φm.

An important derived parameter is the AdS radius of the true vacuum `. For minimal

coupling (ξ = 0),

`2 = −
3M2

p

V (φt)
. (7.54)

For example, we expect gravitational back-reaction to be important when the bubble

radius is comparable to the AdS radius. In the thin-wall approximation, the ‘flat-space’

bubble radius R0 = 3σ/ε and the ratio R0/` is,

R0

`
=

1√
2

φt
Mp

(
1− 2

φm
φt

)−1/2

. (7.55)

84



Chapter 7. Negative Modes

Note that this is independent of the overall scale parameter λq. It is possible to scan

through different values of R0/` by fixing φm/φt and scanning through different values of

φt.

While the quartic potential is convenient for illustrative purposes, obtaining results which

may be applicable to the Standard Model requires a more realistic one. We thus also used

a Higgs-like potential with the form given in chapter four,

VH(φ) =
λH(φ)

4
φ4, λH(φ) = q

((
ln

φ

Mp

)4

−
(

ln
Λ

Mp

)4
)
. (7.56)

In this expression, Λ > 0 is the scale at which the coupling and the potential vanish,

and q is a strictly positive number. Like the quartic potential Vq(φ), this potential has a

local minimum at φ = 0. Plots of the function λH for three different choices of (q, Λ) are

shown in the right panel of Fig. 7.3. They approximate the next-to-next-to-leading order

calculations reported in [11] with different values of the top quark mass.

The height of the Higgs potential barrier is small compared to Λ4, making the bubble

solutions shallow, with thick walls, and Higgs values inside the bubble extend beyond the

barrier but do not reach a true vacuum. The potential inside the bubble is roughly of

order Λ4 and the bubble size is of order Λ−1, so that the ‘effective’ value of R0/` in this

case is around Λ/Mp.

We first work with the quadratic potential and ξ = 0, i.e., with a minimal coupling between

the scalar field φ and gravity. In Fig. 7.1 we show the negative eigenvalues with fixed ratio

φt/φm = 2.5, λq = 128, and φt ranging from 0.25Mp to Mp. Below a critical value φc,

here close to 0.67Mp, there is only one negative mode. The dashed line shows the negative

mode obtained for the thin-wall approximation using (7.35), which agrees quite well with

the numerical result despite the walls not being particularly thin.

The quantity Q defined in (7.48) is positive for the bubble solutions with φt < φc, but for

φt > φc, Q takes negative values in a finite interval of a. Correspondingly, we find new

negative eigenvalues, all but one going to −∞ in the limit φt → φc. The numerical evidence

therefore supports the existence of infinitely many negative eigenvalues for φt > φc.

Results with nonminimal coupling are shown in Fig. 7.4. Here the parameters of the

potential are fixed to φm = 0.36, φt = 0.84, and λ4 = 10/3, and the nonminimal coupling

ξ is varied between −0.5 and 0.9. At the level of the instanton solution, the main effect

of a negative value of ξ seems to be to increase the radius of the bubble, while a positive

value increases φ(0). Its role is more dramatic when considering the negative modes: as

shown in the right panel of the figure, there is a critical value ξc, here close to 0.2, above

which only one negative mode is present, but below which there is an infinite number of

85



Chapter 7. Negative Modes

Figure 7.4: Left panel: O(4)-symmetric instantons obtained with the quartic potential (7.53) for
φm = 0.36, φt = 0.84, and λq = 10/3, for different values of the nonminimal coupling ξ ranging
from −0.5 to 0.9. The value of ξ increases from blue to red. Right panel: Negative eigenvalues for
these solutions. The vertical dashed line shows the value ξc of ξ below which Qb takes negative
values. Plots by Florent Michel.

Figure 7.5: Plots of the first six negative modes in the region where the kinetic term is negative. We
use the Higgs-like potential (7.56) with q = 10−7 and Λ = 0.3, and a minimal coupling ξ = −5.3,
slightly below the critical one ξc ≈ −4.8 for this potential. (The normalization is arbitrary.) Plot
by Florent Michel.

them. As already noticed when varying φt, the first case corresponds to a positive Q,

while in the second case this function takes negative values in a finite interval of a. As

in the previous case also, all but one negative eigenvalues go to negative infinity when

approaching the threshold ξ → ξc.

Figures 7.5, 7.6, and 7.7 show results obtained with the potential VH . To ease the numerical

resolution, they are made with relatively high values of Λ, close to unity in Planck units.

We found a similar behavior for smaller values of this parameter. In Fig. 7.5 are shown the

first six negative modes for fixed potential and a minimal coupling ξ slightly smaller than

ξc, in the region where Q < 0. The main information is that, as expected, negative modes

are oscillatory in this region, and that the nth one has approximately n/2 wavelengths for

sufficiently large n.
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Figure 7.6: Euclidean action (left panel) and negative eigenvalues (right panel) of an asymptotically
flat O(4)-symmetric instanton with the Higgs potential (7.56) with q = 10−7 and ξ = 0. Plots by
Florent Michel.

Figure 7.7: Euclidean action (left panel) and negative eigenvalues (right panel) of an asymptotically
flat O(4)-symmetric instanton for the Higgs potential (7.56) with q = 10−7 and Λ = 0.5 . Plots by
Florent Michel.

Figures 7.6 and 7.7 shows the Euclidean action and negative eigenvalues of instantons as

functions of Λ and ξ respectively, for q = 10−7. As can be seen on the left panels and

more generally in Figure 7.8, the Euclidean action of instantons supporting infinitely many

negative modes is huge, making the transition rate negligible. We found the same holds

for all parameters we tried. It thus seems that, for realistic potentials, the appearance

of an infinite number of negative eigenvalues requires such a strong back-reaction from

gravity on the instanton that the probability of bubble nucleation becomes negligibly

small. Conversely, all instantons we found which gave non-negligible decay rates have

only one negative eigenvalue.
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Figure 7.8: Left panel: Dependence of the critical value ξc of the nonminimal coupling below
which an infinite number of negative modes is present in the scale Λ at which the Higgs potential
vanishes. The potential is given by (7.56) with q = 10−7. For larger values of Λ, ξc is formally
positive, but φ reaches values close to the Planck scale so that the semi-classical approximation is
not expected to be valid. Right panel: Euclidean action of the critical instanton with ξ = ξc for
the same values of Λ. Plots by Florent Michel.

7.3.1 Negative modes of black hole seeded instantons

We also present the results for the negatives modes of instantons seeded by black holes.3

Recall from chapter six the metric:

ds2 = f(r)2δ(r)dτ2 +
dr2

f(r)
+ r2dΩ2

2 , (7.57)

where τ is the Euclidean time, f is a smooth positive function, and dΩ2
2 is the metric on

a two-dimensional sphere. We define the function µ by

f(r) = 1− 2Gµ(r)

r
, (7.58)

and the Einstein equations are as given previously

(
r2δfφ′

)′
= r2eδV ′[φ], (7.59)

µ′ = 4πr2

(
1

2
fφ′2 + V [φ]

)
, (7.60)

δ′ = 4πGrφ′2. (7.61)

We look for asymptotically flat black hole solutions, for which f(r) vanishes at the horizon

r = rh and φ approaches the false vacuum as r → ∞. Without loss of generality (up to

a global rescaling of τ), we can impose the condition δ(rh) = 0. The final boundary

3This part of the project was done by Florent Michel and has been included for completeness.
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condition is given by a regularity condition at the horizon [25]:

φ′(rh) =
rhV

′[φ(rh)]

1− 8πGr2
hV [φ(rh)]

. (7.62)

To express the eigenvalue equation, we write φ = φb + φ1, µ = µb + µ1, and δ = δb + δ1,

where (φb, µb, δb) is an exact solution of equations (7.59 – 7.61). We define fb ≡ 1−2Gµb/r.

The eigenvalue equation is:

e−δb

r2

d

dr

(
r2eδbfbφ

′
1

)
= (V(r)− λ)φ1. (7.63)

where

V(r) ≡ V ′′[φb] + 16πGrV ′(φb)φ
′
b − 8πGrf ′b + δ′bfb +

fb
r
φ′2b . (7.64)

We solved the system (7.59 – 7.61) and the eigenvalue equation (7.63) in the two poten-

tials (7.53) and (7.56). Results for the tunnelling exponent B and negative eigenvalues λ

are shown in Figs. 7.9 and 7.10.

Notice that in the case of the quartic potential (7.53) we have an approximate symmetry

when the effects of gravity are sufficiently small. The differences between the curves shown

in each panel of Fig. 7.9 are thus entirely due to the gravitational back-reaction, which

has the tendency to increase the tunnelling exponent B and decrease the absolute value

of λ.

For both potentials, in the whole range of parameters that were tried we always found

only one negative mode, as could be expected from the fact that the kinetic term in the

eigenvalue equation (7.63) is always positive outside the horizon, and the background

solution has no node. This suggests that the static instantons with black holes found

in [22, 24, 25] can be safely interpreted as the dominant contribution to the decay rate of

the false vacuum in the presence of small black holes.

Three solutions corresponding to different values of rh are shown in Fig. 7.11 for the

Higgs-like potential with Λ = 10−10. Each of them has only one node, which confirms

there should exist one and only one negative mode over each instanton.

7.4 Conclusion

In this section, we have studied negative modes of instantons for the case of asymptotically

flat O(4)-symmetric Coleman-de Luccia type instantons, including a non-minimal coupling

of the scalar, and also presented the results for negative modes of instantons seeded by

black holes, such as those developed in [23, 24, 25].
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Figure 7.9: Tunnelling exponent for seeded nucleation (left panel) and negative eigenvalue (right
panel) of the instanton with black hole for the quartic potential (7.53) with the parameters a4 = 1,
φt = 2α and φm = 0.6α, where α = 1 (blue), 10−1/4 (orange), 10−1/2 (green), and 10−1 (red).
Plots by Florent Michel.
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Figure 7.10: Tunnelling exponent for seeded nucleation (left panel) and negative eigenvalue (right
panel) obtained for the Higgs potential (7.56) for the same values of the parameters as in Fig. 7.3,
right panel. Plots by Florent Michel.
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Figure 7.11: Solutions for the tunnelling exponent with λ = 0 for the Higgs-like potential (7.56)
with Λ = 10−10. The Schwarzschild radius rh is equal to 0.1Λ−1 (orange), Λ−1 (blue), and 10Λ−1

(green). Plot by Florent Michel.
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For the O(4)-symmetric asymptotically flat instantons, we explored a wide range of pa-

rameter space with a conventional quartic potential, as well as a more phenomenologically

realistic analytic fit to the Standard Model Higgs potential. For any value of the non-

mimimal coupling parameter ξ, it is always possible to find a region of parameter space in

the potential that has an infinite tower of negative modes for the corresponding instanton.

However, these parameter values correspond to energies close to the Planck scale.

In the case of the black hole instantons, this problem of infinite negative modes did not

occur as the kinetic term of the quadratic action is always positive outside the horizon, and

we therefore confirmed numerically that there is always only one negative mode. A change

in the potential due to nonmininal coupling would not change the sign of the kinetic term,

and therefore, while we did not explicitly consider it here, we would expect the number of

negative modes to remain exactly one should it be included.

As already noted in [61, 65, 66], the infinite tower of negative modes that arises when the

kinetic term of the quadratic action reaches negative values remains mysterious, although

it is intriguing that the tower of modes appear approximately at the self-compactification

scale corresponding to a domain wall topological defect of tension σ [67, 68]. Using an

analytical estimate for the large negative eigenvalues in the O(4)-symmetric case, we argue

that these infinite negative modes induce a divergence in quadratic observables, which

seems to support the argument that they may signal a breakdown of the semiclassical

approximation.

Assuming asymptotic flatness in both the O(4)-symmetric and black-hole cases, we have

found that realistic instantons always have exactly one negative mode. It therefore seems

to be a safe interpretation that the leading contribution to the tunnelling rate comes from

the lowest-action instanton.
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Conclusions and Further Work

8.1 Conclusions

A general description of vacuum decay was presented in chapter one. Current measure-

ments of the Higgs and top quark masses suggest our universe exists in a metastable false

vacuum state, i.e. that the shape of the Higgs potential exhibits a potential barrier and

the Higgs field may spontaneously transition to a lower energy state. Such a vacuum

decay event was described by Coleman as “the ultimate ecological catastrophe”, and this

thesis has addressed the possibility that such an event may occur for different spacetimes

and for different potentials, including a close approximation to the Higgs potential at high

energies.

Chapter two outlined the methods from Coleman and de Luccia [3] that were used through-

out this thesis to obtain instanton solutions and the exponent B that gives the dominant

contribution to vacuum decay in the tunnelling equation. Profiles of the bubble were

obtained by solving the equations of motion for the field, while the difference in action

between the bubble and false vacuum states is used to find the tunnelling rate. This tech-

nique for finding exact numerical solutions to the bounce was applied in later chapters

to tunnelling in de Sitter space, anti-de Sitter space, and a Randall-Sundrum braneworld

both with and without the presence of a black hole.

In chapter three, the effects of back reaction were examined for a scalar field in a toy

model potential featuring two minima. In this model, there were three free parameters

that were varied to determine the effects of back reaction: V0, that set the height of the

potential at φ(0) = 0, the rescaled Planck mass Mp, and a self-coupling parameter g. It

was found that:

• For tunnelling in de Sitter space, the spacetime backreacts with the bubble.
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• Of the three free parameters V0, Mp and g, varying the rescaled Planck mass has a

lesser effect on the bubble than by varying the parameters in the potential.

• The tunnelling rate is enhanced by increasing the relative difference between the two

minima.

• Increasing V0 has the effect of decreasing the relative difference between the two

minima, therefore suppressing vacuum decay.

• Potentials with a taller barrier give rise to thin wall bubbles, while smaller barriers

produce thick wall bubbles.

• The thin wall approximation only holds for values of the self-coupling g between 0

and 3/16.

The potentials we consider for vacuum decay in higher dimensions are defined in chapter

four. The two potentials of interest are a quartic potential with a well defined false vacuum,

resulting in the nucleation of thin wall bubbles, and also a Higgs-like potential that allows

for investigation of decay of the Higgs field, where the parameter g can be tuned to fit the

Higgs approximation to the actual Higgs potential calculated from two-loop beta functions

for a range of top masses. These potentials are then used to investigate vacuum decay in

higher dimensions both with and without a black hole.

In chapter five, we considered the case of vacuum decay on the brane and compared this to

the regular result for four dimensional asymptotically flat space. For a field in a Randall-

Sundrum braneworld featuring a single brane, it was found that the presence of the fifth

dimension had very little effect on either the shape of the bubble or the tunnelling rates

in the range 0.4 < M5/Mp < 1.0, with only a very minor dependence on the AdS radius `.

The extra dimension enhances the tunnelling rate when M5 << Mp, but for larger values

of M5 the usual 4D result is reproduced, consistent with the findings of [30].

Chapter six expanded on previous work to investigate the behaviours of four and five

dimensional scalar fields around black holes. For large black hole masses, the probability

of a bubble nucleating with large enough radius to exceed the black hole horizon rapidly

tends to zero, therefore all but eliminating any chances of the black hole seeding vacuum

decay. However, black holes that decay rapidly to reach a small mass in the range 102 <

Ms/M5 < 105 are extremely likely to trigger a phase transition. The main conclusions of

this chapter are:

• Decay rates are presented as branching ratios ΓD/ΓH , as the evaporation rate of the

seed black holes must be taken into account.

• The tunnelling exponent B is given by the difference in area between the seed and
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remnant black holes, a result that can be derived from thermodynamics.

• Black holes at the TeV scale are sufficiently small to seed vacuum decay.

• Current particle accelerators do not operate at high enough energies to seed vacuum

decay, though it is possible that such particles may be produced in the most highly

energetic cosmic ray collisions.

• The high likelihood of vacuum decay occurring should such TeV black holes exist

rules out the possibility of microscopic primordial black holes.

Comparing with the results from chapter five, where it was found that the presence of an

extra dimension does not enhance the decay rate, we can conclude that it is the presence

of the black hole rather than the extra dimension that seeds vacuum decay.

The final chapter investigated the emergence of negative modes of O(4) and black hole

instantons and presented a first look at negative modes with curvature coupling. The

main conclusion of this chapter is the new result for the negative eigenvalue λ0 found

analytically using the thin wall approximation, λ0 ≈ − 3
R2
b
.

When exploring the O(4) instantons, for any value of the non-mimimal coupling parameter

ξ, an infinite tower of negative modes emerged when parameters were tuned to correspond

to energies close to the Planck scale. This was true both for the quartic potential and

the potential approximating the Higgs. While the precise reason for the appearance of

this infinite stack of negative modes remains a mystery, it appears to be the case that

in asymptotically flat space the most realistic instantons (energies not approaching the

Planck scale) have only one negative mode. The leading contribution to the decay rate is

given by the instanton with the lowest action.

Comparing this briefly to the result for black hole instantons, it was confirmed that for

tunnelling in the presence of a black hole, the kinetic term of the action remained positive

and thus the instanton only featured a single negative mode.

8.2 Further Work

This thesis has considered vacuum decay for a variety of spacetimes, encompassing both

four and five dimensions and incorporating black holes, as well as considering both Higgs-

like potentials and potentials with well defined minima. Further work could continue to

explore vacuum decay for other models, or address particular problems that arose in the

course of this research, such as:

• how to obtain instanton solutions on the brane when V + σ < 0;
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• how to interpret an infinite stack of negative modes.

In chapter five, it was not possible to use the Coleman-de Luccia method to obtain instan-

ton solutions at large AdS radii for negatives values of V + σ, though it is possible such

solutions still exist. A means to confirm or disprove their existence is not currently known,

though future work may search for alternate methods of obtaining instanton solutions.

The work in chapter six examining black hole seeded vacuum decay considered the case

of spherically symmetric Schwarzchild black holes. Further work may consider vacuum

decay seeded by rotating or charged black holes, or consider vacuum decay on a brane in

RS1 rather than RS2.

The infinite stack of negative modes that emerges for O(4) instantons at energies near the

Planck scale in chapter seven thus far eludes a satisfactory physical interpretation, though

future work could investigate this problem further, such as studying time-dependent per-

turbations around the bounce.
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A.1 Israel junction conditions on the brane

In this appendix, we derive the equations of motion for vacuum decay on the brane in RSII

from the Israel junction conditions. (A detailed explanation of how junction conditions

may be used to derive field equations can be found in [69].) These give us information

about the brane’s curvature. From [37] the five-dimensional bulk has the Euclidean metric

ds2 = hdt2 + h−1dr2 + r2dΩ2
3 (A.1)

On the brane, the metric is

ds2 = dτ2 + r2dΩ2
3 (A.2)

The Israel junction conditions are

∆Kab = 8πG5[Σab −
1

3
Σhab] (A.3)

where ∆Kab = K+
ab − K−ab is the jump in the extrinsic curvature and hab the four-

dimensional metric. The indices a and b run over the brane, while we later use the

indices µ and ν that run over the bulk. K has the form

K = −Kττ +
3

r2
Kχχ (A.4)

The subscript τ denotes imaginary time while χ is the is the radial coordinate of the

3-sphere appearing in equation (5.5).

96



Appendix A. Israel junction conditions

A.2 Extrinsic Curvature

A.2.1 Kχχ

We will first derive the Kχχ component of the curvature

We define a tangent vector ta

ta = ṫ∂t + ṙ∂r (A.5)

where the dot denotes the derivative with respect to imaginary time. From the metric, it

is therefore possible to write

hṫ2 +
ṙ2

h
= 1 (A.6)

This allows us to define

ṫ = ρ/h (A.7)

where ρ = (h− ṙ2)
1
2 .

Integrating the stress-energy tensor for the brane, we define

Σµν =

∫
Tµνdl (A.8)

using the stress-energy tensor Tµν , where

φ = φ(τ) (A.9)

(∇φ)2 = φ̇2 (A.10)

The trace of Σ is given by

Σ = −
(
φ̇2 + 4V + 4σ

)
(A.11)

while Σχχ can also be written

Σχχ = −r2

(
1

2
φ̇2 + V + σ

)
(A.12)

The curvature Kχχ has dependence on both the brane and bulk, but can be found from

the metric on the brane by taking the non-zero Christoffel symbols and defining a normal
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vector ni

Kχχ = haχh
b
χ (na,b − Γ cabnc) (A.13)

= Γ cχχnc (A.14)

= Γ tχχṙ − Γ rχχṫ (A.15)

= −1

2
grr (grχ,χ + grχ,χ − gχχ,r) ṫ (A.16)

= hṫr (A.17)

Therefore, by replacing ṫ = ρ/h, we can write

Kχχ = ρr (A.18)

We now use this to find the equations of motion. From the Israel junction conditions we

have

[Kχχ]+− = 8πG5(Σχχ −
1

3
Σgχχ) (A.19)

The curvature is assumed to be equal on both sides of the brane. By symmetry from

K+
χχ = K−χχ we can write

8πG5(Σχχ −
1

3
Σgχχ) = 2Kχχ (A.20)

= 2ρr (A.21)

= 2r
√
h− ṙ2 (A.22)

2r
√
h− ṙ2 = 8πG5

[
−r2

(
1

2
φ̇2 + V + σ

)
+

1

3
r2
(
φ̇2 + 4V + 4σ

)]
(A.23)

√
h− ṙ2 =

4

3
πG5r

[
σ +

(
V − 1

2
φ̇2

)]
. (A.24)

Squaring both sides:

h− ṙ2 =

(
4

3
πG5

)2

r2

[
σ2 + 2σ

(
V − 1

2
φ̇2

)
+

(
V − 1

2
φ̇2

)2
]

(A.25)

We can then substitute h = 1 + r2/`2 into this equation to get

1 +
r2

`2
− ṙ2 =

(
4

3
πG5

)2

r2

[
σ2 + 2σ

(
V − 1

2
φ̇2

)
+

(
V − 1

2
φ̇2

)2
]

(A.26)

Equating the r2 terms then gives an expression in terms of the AdS radius ` and the brane

98



Appendix A. Israel junction conditions

tension σ.

r2

`2
=

(
4πG5

3

)2

r2σ2 (A.27)

1

`2
=

(
4πG5

3

)2

σ2 (A.28)

Taking out the r2 terms in (A.26) leaves

1− ṙ2 =

(
4πG5

3

)2

r2

(
6

4πG5`

(
V − 1

2
φ̇2

)
+

(
V − 1

2
φ̇2

)2
)

(A.29)

=

(
8πG5

3`

)2

r2

(
6

4πG5`

(
V − 1

2
φ̇2

)
+ r2 4

3
πG5

(
V − 1

2
φ̇2

)2
)

(A.30)

Dividing through by r2 gives an expression equivalent to the SMS equations as given in

[36], where the induced Einstein equations on the brane are found by the Gauss Codazzi

projection of the Einstein tensor.

1− ṙ2

r2
=

8πGN
3

(
V − 1

2
φ̇2

)
+

4πG5

3

(
V − 1

2
φ̇2

)2

(A.31)

A.2.2 Kττ

We now look to find the Kττ component of the curvature. Kττ has the form

Kττ = tatbna,b − Γ cabnc (A.32)

= tt∂tnt + tr∂tnr −
(
ẗ2Γ ctt + 2ṫrΓ ctr + r2Γ crr

)
nc (A.33)

= ṫr̈ − ṙẗ− 2ṫṙ2Γ trt + ṫ3Γ rtt + tṙ2Γ rrr (A.34)

The non-zero Christoffel symbols are

Γ trt =
1

2

h′

h
(A.35)

Γ rtt =
1

2
h′h (A.36)

Γ rrr = −1

2

h′

h
(A.37)
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Substituting these into (A.34) and substituting ṫ = ρ/h gives

Kττ = ṫr̈ − ṙẗ− 2ṫṙ2h
′

h
+ ṫ3

1

2
h′h− tṙ2 1

2

h′

h
(A.38)

= ṫr̈ − ṙẗ− 3

2
ṫṙ2h

′

h
+
ṫ3

2
h′h (A.39)

=
ρ

h
r̈ − ṙ

(ρ
h

)˙− 3ρh′

2h2
ṙ2 +

ρ3

2
h′h2 (A.40)

Using (A.6), we now make the substitutions ρ =
(
h− ṙ2

) 1
2 and ρ̇ = 1

2(h′r− 2ṙr̈)ρ−1. This

gives

(ρ
h

)˙
=
ρ̇

h
− ρh′ṙ

h2
(A.41)

which we substitute into (A.40)

Kττ =
ρ

h
r̈ − ρ

h
ṙ +

ρh′

h2
rṙ − 3ρh′

2h2
ṙ2 +

ρ3h′

2h2
(A.42)

=
ρ

h
r̈ − ṙ

2hρ

(
h′ṙ − 2ṙr̈

)
+
ṙ2ρh′

h2
− 3ṙ2ρh′

2h2
+
ρ3h′

2h2
(A.43)

= r̈

(
ρ

h
+
ṙ2

hρ

)
− ṙ2h′

2hρ
− ρh′h

2h2
(A.44)

=
r̈

ρ
− ṙ2h′

2hρ
− ρh′

2h
(A.45)

=
r̈

ρ
− h′

2ρ
(A.46)

We arrive at a final expression for Kττ

Kττ =
r̈ − h′/2

ρ
(A.47)

We can use this to find an expression for r̈. From the Israel junction conditions we have

2Kττ = 8πG5(Σττ −
1

3
Sgττ ) (A.48)

where gττ = 1. Σµν has the form

Σµν = φ,µφ,ν − gµν
(

1

2
(∇φ)2 + V + σ

)
(A.49)

where we write the stress-energy tensor in terms of the brane tension σ. The trace of Σµν

is

Σ = Σµ
µ = −

(
φ̇2 + 4V + 4σ

)
(A.50)
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Σττ is

Σττ =
1

2
φ̇2 − V − σ (A.51)

We can therefore write

2Kττ = 8πG5

(
1

2
φ̇2 − V − σ +

1

3

(
φ̇2 + 4V + 4σ

))
(A.52)

= 8πG5

(
5

6
φ̇2 +

1

3
V +

1

3
σ

)
(A.53)

We now make the substitution Kττ = (r̈ − h′/2)/ρ from (A.47).

2r̈ − h′ = 8πG5ρ

(
1

2
φ̇2 − V − σ +

1

3

(
φ̇2 + 4V + 4σ

))
(A.54)

We can now replace ρ using

ρ =
4πG5r

3

(
σ + V − 1

2
φ̇2

)
(A.55)

from the expression for Kχχ. This gives

2r̈ − h′ =
2

3
(4πG5)2r

(
V − 1

2
φ̇2 + σ

)(
5

6
φ̇2 +

1

3
V +

1

3
σ

)
(A.56)

= 2

(
4πG5

3

)2

r

[
σ2 + 2σ

(
φ̇2 + V

)
+

(
V − 1

2
φ̇2

)(
1

3
V +

5

6
φ̇2

)]
(A.57)

We now make the substitution

h′ =
2r

`2
= 2

(
4πG5

3

)2

rσ2 (A.58)

and replace σ using

σ =
3

4πGN`2
(A.59)

This gives

2r̈ − 2r

`2
= −2r

`2
+

16πG5

3`
(φ̇2 + V ) +

2r

3
(4πG5)2

(
V − 1

2
φ̇2

)(
1

3
V +

5

6
φ̇2

)
(A.60)

The σ2 terms now cancel.

r̈ =
8πG5a

3`
a(φ̇2 + V ) +

r

3
(4πG5)2

(
V − 1

2
φ̇2

)(
1

3
V +

5

6
φ̇2

)
(A.61)
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B.1 Canonical decomposition

In this appendix we review and extend the ideas given in [70] that provide a canonical

decomposition of a manifold (in our case a Euclidean one) by a foliation of hypersurfaces

Στ to recast the gravitational action in its Hamiltonian version.

The gravitational equations on a manifold M with boundary ∂M are obtained by the

extremisation of the usual Einstein-Hilbert action plus a Gibbons-Hawking surface term:

I = − 1

16πG5

∫

M
(R5 − 2Λ5)

√
g5 +

∫

B
Lm(g, φ)

√
g4 +

1

8πG5

∫

∂M

√
hK, (B.1)

here Lm is the matter Lagrangian, hab = gab − nanb is the induced metric and K =

gabKab = gabha
chb

d∇cnd is the trace of the extrinsic curvature of the boundary ∂M with

normal vector na pointing in to M.

To simplify this action we make a foliation of the spacetimeM by codimension one time-

slices Στ , labelled by a periodic Euclidean time function τ which runs from τ = 0 to τ = β.

The induced metric on the time-slices is written as

hab = gab − uaub, (B.2)

where ua is a unit normal vector to the slice Στ . In general, ∂/∂τ and ua will not be

aligned, but we can decompose ∂/∂τ into components along the normal and tangential

directions, (
∂

∂τ

)a
= Nua +Na (B.3)

The lapse function, N , measures the rate of flow of proper time with respect to the
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∂ℋ

Σ τ

Στ = 0
CR

CR, τ

naua

Cℋ

∂ℳR

Figure B.1: An illustration of the foliation of the Euclidean {τ, r} section of the brane black hole.
The normals ua and na of, respectively, the foliation Στ and manifold boundaries are shown, to-
gether with the codimension two surfaces CR,τ that are regarded as a codimension one submanifold
of the Στ surfaces.

coordinate time τ as one moves through the family of hypersurfaces. We construct the

time-slices Στ to meet the boundary ∂M orthogonally for convenience. In the case of the

region outside the horizon for Iext
R (6.24), the boundary ∂M is composed of two surfaces

of constant radius, ΣH near the horizon, and ΣR at large radius.

We use the Gauss identity to relate the Riemann tensor of gab in five dimensions to the

Riemann tensor of hab in four, and the extrinsic curvatures of the constant time slices

Kab = hcah
d
b∇cud, as

R4
a
bcd = haa′hb

b′hc
c′hd

d′R5
a′
b′c′d′ +KacKdb −KadKcb. (B.4)

Notice this K is distinct from the extrinsic curvature of ΣR in (B.1). Contracting (B.4)

gives

R5 = R4 + 2R5abu
aub − (K2 −KabKab), (B.5)

and we obtain a relation between the second term of this expression and the extrinsic

curvature by commuting covariant derivatives of the normal vector

R5abu
aub = 2ub∇[c∇b]uc = K2 −KabKab −∇a(ua∇cuc) +∇c(ua∇auc). (B.6)

Combining these two expressions leads to the identity,

R5 = R4 − (KabKab −K2)− 2 [∇a(ua∇cuc)−∇c(ua∇auc)] , (B.7)

which forms the basis of all canonical decompositions of the Einstein-Hilbert action.
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When substituted in (B.1), the last two terms of (B.7) are reduced to boundary contri-

butions on ∂M. The first of these vanishes due to orthogonality of ∂MR and Στ . The

second combines with
∫
∂MK from the original action, and gives on ∂MR (with a similar

expression for ∂H)

1

8πG5

∫

∂MR

d4x
√
h
(
∇ana + nbu

a∇aub
)

=
1

8πG5

∫

∂MR

d4x
√
h(gab − uaub)∇anb

=
1

8πG5

∫

∂MR

d4x
√
h hab∇anb, (B.8)

but this four dimensional integral can be viewed as an integral over τ of a three dimensional

integrand that is precisely the three dimensional extrinsic curvature 3K of a family of

surfaces CR(τ) = ∂MR ∩ Στ living in the boundary ∂MR. A similar term is obtained

for the ∂H surface near the horizon however, for the black hole metrics, it turns out that
3K → 0 as r → rh, and so this term does not contribute to the action.

Noticing that
√
g = N

√
h, and introducing a metric 3h on CR, we can divide the spacetime

integral into space and time, to express the action (B.1) as

I = −
∫
Ndτ

{
1

16πG5

∫

Στ

√
h
[
R4 − (KabKab −K2)− 2Λ5 − 16πG5Lm

]

− 1

8πG5

∫

CR

√
3h 3K − 1

8πG5

∫

CH

√
3h 3K

}
.

(B.9)

Furthermore, we can see how the extrinsic curvature is related to the Lie derivative of the

intrinsic metric with respect to τ via (B.3):

Kab =
1

2
£uhab =

1

2N
(£τhab −£Nhab) =

1

2N

(
ḣab − 2D(aNb)

)
, (B.10)

where ḣab = hcah
d
b£τhcd and Da is the derivative associated with hab.

To obtain the Hamiltonian form of I we define the canonical momentum πab conjugate to

the intrinsic metric as

πab ≡ δI

δḣab
=
√
h(Kab −Khab), (B.11)

This allows us to recast (B.9) in terms of the canonical momentum

I = −
∫ β

0
Ndτ

{
1

16πG5

∫

Στ

√
h

[
R4 −

1

h

(
πabπab −

1

3
π2

)
− 2Λ5 − 16πG5Lm

]

− 1

8πG5

∫

CR

√
3h 3K − 1

8πG5

∫

CH

√
3h 3K

}
. (B.12)

Now we are ready to perform a Legendre transformation of the Lagrangian and using
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(B.10) and (B.11) to obtain the Hamiltonian formulation.

I =
1

8πG5

∫ β

0
dτ

{
1

2

∫

Στ

√
h
(
πabḣab −NH−NaHa

)

+

∫

CR

√
3h(N 3K +Naπabn

b) +

∫

CH

√
3h(N 3K +Naπabn

b)

}
,

(B.13)

with the Hamiltonian constraint function H and the momentum constraint function Ha
given by

Ha = −2Db

(
1√
h
πab
)

(B.14)

H = R4 − 2Λ5 +
1

h

(
πabπab −

1

3
π2

)
− 16πG5Lm. (B.15)

Finally, for a static spacetime we have ḣab = 0 and in the non-rotating case Na = 0. The

metric is a solution to the field equations, so that in particular we have the constraint

equations H = Ha = 0. The only non-vanishing part of the action are the two boundary

terms 3K,

I =
1

8πG5

∫ β

0
dτ

(∫

CR

3K
√
h+

∫

CH

3K
√
h

)
. (B.16)

For our black hole solutions, this diverges in the limit R→∞, with R being the radius of

the surface CR in fig. B.1. However, the matter contributions to the black hole instanton

solutions die off exponentially at large radii, so that the boundary terms cancel when we

calculate the difference in actions between the instanton solutions and the false vacuum

solutions with the same mass and periodicity β.

B.2 Brane equations for the instanton bubble

Following the work done in [35, 46] we briefly review the derivation of the equations

(6.64-6.66), which describe the dynamics of the bubble-brane system analysed on Section

6.3.

The Einstein equations for a five dimensional RS braneworld can be written as

(5)Gab = −Λ5gab + 8πG5δ(z)(−σhab + Tab), (B.17)

where z is a coordinate defined by taking the proper distance from the brane into the

bulk, G5 = GN` and the cosmological constant of the bulk Λ5 = −6/`2 is given in terms

of the AdS5 radius `. Notice that we use latin indices for the bulk spacetime whereas greek

indices will be reserved for objects living on the brane. The brane is located at z = 0 and
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has an induced metric hab, defined by

hab = gab − nanb (B.18)

where na is a unit vector in the z−direction. The energy momentum tensor of the brane

carries the effect of the tension σ and has a contribution Tab, coming from the fields living

in the brane.

The Israel junction conditions for the brane allow us to write down a set of four dimensional

Einstein equations (see [35]),

Gµν = 8πGN T̃µν − Eµν − Λeffhµν , (B.19)

where Λeff is an effective four dimensional cosmological constant on the brane,

Λeff = − 3

`2
+

(4πG5σ)2

3
, (B.20)

and Eµν is the projection of the five dimensional Weyl tensor onto the brane

Eµν = (5)Cαβρσnαn
ρhµ

βhν
σ, (B.21)

carrying information about the extra dimensional geometry to the brane. Eµν is divergence

free due to the Bianchi identities. Due to the properties of the Weyl tensor, Eµν is traceless

and divergence free. In the critical RS brane that will be our false vacuum, the tension of

the brane is tuned so as to set Λeff to zero, i.e.

σ =
3

4πG5`
. (B.22)

Finally, the effective energy momentum tensor, T̃µν = Tµν + πµν consists of the standard

energy momentum tensor, together with second order terms

πµν =
1

σ

(
−3

2
TµαT

α
ν +

1

2
TTµν +

3

4
hµνTαβT

αβ − 1

4
hµνT

2

)
. (B.23)

As discussed in section 6.3, we consider static, spherically symmetric solutions on the

brane, with metric (6.39), and make the tidal Ansatz for the Weyl tensor:

Eµνdxµdxν = U(r)
(
fe2δdτ2 + f−1dr2 − r2dΩ2

II

)
(B.24)
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where the conservation equation gives

U(r) = −
r2
Q

r4
. (B.25)

where rQ is a constant parameter related to the tidal charge Q of [46] by r2
Q = −Q. The

metric functions f(r) and δ(r) are determined by the effective Einstein equations (B.19).

Following [25], we define a “mass function” µ(r) by

f = 1− 2GNµ(r)

r
−
r2
Q

r2
, (B.26)

where we have explicitly factored out the tidal term r2
Q/r

2. The relevant components of

the Einstein tensor are

Gtt = −2GNµ
′

r2
+
r2
Q

r4
, Grr −Gtt =

2f

r
δ′ (B.27)

For the instanton scalar profile with potential V (φ), the energy-momentum tensor for the

scalar field is

Tµν = φ′2δrµδ
r
ν − hµν

(
1

2
fφ′2 + V

)
, (B.28)

thus inputting the form of f , we see that the tidal contribution is cancelled by the tidal

tensor, and we finally obtain the equations of motion (6.64-6.66) used in the numerical

integration:

0 = fφ′′ +
2

r
fφ′ + δ′fφ′ + f ′φ′ − ∂V

∂φ
(B.29)

µ′(r) = 4πr2

[
1

2
fφ′2 + V − 2πGN

3
`2(

1

2
fφ′2 − V )(

3

2
fφ′2 + V )

]
, (B.30)

δ′ = 4πGNrφ
′2
[
1− 4πGN

3
`2(

1

2
fφ′2 − V )

]
. (B.31)
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