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Abstract 

Cortical activity reveals spontaneous fluctuations that are not solely determined by 

external inputs, but reflect changes to the underlying excitability of neurons, referred to 

as cortical state. These fluctuations are partly linked to fluctuations in arousal, whereby 

they influence sensory processing as well as behavioural performance. During active 

versus inactive states, the cortex is more desynchronised and displays suppressed low-

frequency and increased high-frequency activity, as well as lower correlations in 

population spiking activity. Selective attention facilitates the prioritisation of task-

relevant sensory inputs over those which are irrelevant. When attention is directed 

towards the receptive field of the recorded neuronal population, firing rates increase 

and, interestingly, this area of the cortex desynchronises in a comparable manner to that 

observed during cortical state fluctuations. Because of these similarities, it has been 

suggested that cortical state and selective attention might rely on related underlying 

circuit mechanisms.  

In this thesis, I investigated cortical state changes across different spatiotemporal scales 

and across species, using pupil diameter as an across-species proxy for neuromodulatory 

controlled central arousal state. In the first chapter, I describe how global, arousal-

mediated state fluctuations influence specific behavioural and electro-encephalographic 

(EEG) signatures of perceptual decision-making in human subjects. Arousal strongly 

affects behaviour and task-related activity across the brain, including in visual, 

association, and motor cortex. 

In the second chapter, I described how top down covert attention affects neuronal 

signatures of cortical state within sensory areas and their coordination between visual 

areas in Macaque monkeys. Using a Hidden Markov Model (HMM), I classified periods 

of vigorous (On) and faint (Off) population spiking activity. These periods were 

coordinated in a top-down manner across brain areas along the visual hierarchy during 

selective attention and this coordination was furthermore predictive of behavioural 

performance.  

Finally, in the third study, I tested how the local effects of attention induced cortical 

state changes within a single area are influenced by iontophoretic administration of 

dopaminergic drugs. Dopamine strongly affects neural activity in parietal cortex, with 

specific modulations of activity related to attentional processing. 

These results highlight the strong influences of cortical state and attention on neural 

activity and behaviour, as well as the crucial role of the interaction between these two 

functions. They furthermore shed light on the neural mechanisms that underlie cortical 

state fluctuations, top-down attention and perceptual decision making, from small scale 

modulations of single neuron firing rates, to the way activity within and across brain 

areas is coordinated and finally to the way they influence behavioural performance. 
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Chapter 1 - General Introduction 
 

This chapter contains a review of the literature relevant to this thesis. In each of the 

three following chapters I discuss an independent experimental project. Accordingly, 

each of these chapters will have their own introduction, methods, results and discussion 

section that is tailored to that chapter's more specific topic. Finally, I will discuss the 

overarching relevance of these experimental projects in the context of existing 

knowledge, and highlight potential areas of future research in the general discussion in 

chapter 5.  

Here I briefly outline the contributions of my colleagues to the experimental chapters.  

The influence of cortical state fluctuations on the neural signatures of perceptual 

decision making is discussed in Chapter 2. For this project, I did not collect the data, but 

obtained it through a collaboration with the lab of Professor Mark Bellgrove (Monash 

University). This chapter has recently been published (van Kempen et al., 2019). The 

published article has been adapted for this thesis.  

Part of the data described in chapter 3 has been collected together with Michael Boyd, 

who discussed different aspects of some of these data in his PhD thesis.  

Similarly, part of the data analysed and discussed in chapter 4 has been collected by 

Christian Brandt, a former post-doctoral researcher in the lab of Alexander Thiele. 

 

1.1 - Rationale 

Both behavioural and neural responses are variable, even under repeated measurements 

under identical conditions (Gescheider, 1997). Early psychophysical studies investigated 

human responses to external stimuli in order to measure their sensory (difference) 

thresholds, the strength of a presented stimulus (change) required for it to be 

consciously perceived. These early studies found that the sensitivity with which a 

stimulus could be detected fluctuated over time. Therefore, in order to accurately 

measure sensory thresholds, multiple measurements should be taken (Gescheider, 

1997).  

Similarly, neural responses vary from moment to moment (Carandini, 2004; Tomko and 

Crapper, 1974). Part of this variability is brought about by various stochastic 

physiological mechanisms such as the stochastic nature of synaptic transmission and 

receptor diffusion (Ribrault et al., 2011). Additionally, some response variability is 

brought about by functions such as brain state, attention and arousal (Arieli et al., 1996; 

Beaman et al., 2017; Engel et al., 2016; Fontanini and Katz, 2008; Goris et al., 2014; Harris 

and Thiele, 2011; McGinley et al., 2015b; Rabinowitz et al., 2015; Reimer et al., 2014; 

Scholvinck et al., 2015). Because of the variability in both behaviour and neural activity, 

a central theme in neuroscientific research has been to characterise this non-stationarity 
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of behavioural and neural responses and to determine their relationship (Britten et al., 

1996; Shadlen et al., 1996).  

Studying variability in neural activity, even in response to simple stimuli, can inform us 

about basic neural mechanisms that support healthy brain functioning (Ringach, 2009). 

In addition, as neural variability is altered in for instance autism spectrum disorder, it 

can potentially also elucidate abnormal brain functioning (Dinstein et al., 2015). 

In this thesis, I will explore the effect of fluctuations in neural excitability that occur 

across different spatiotemporal scales on behavioural and neural responses during 

cognitive tasks. These fluctuations vary from global fluctuations that influence brain-

wide activity during perceptual decision-making, to smaller scale network interactions 

of cortical state and attention, to the local effects of selective attention within a single 

area and how they are influenced by neuromodulator administration. I focus specifically 

on the visual system but discuss research that has investigated the effects of neural 

excitability fluctuations in other sensory domains.  

 

1.2 - Vision 

1.2.1 - Visual pathways: from retina to cortex 

Light is focused onto the retina by the cornea and the lens where it stimulates cone and 

rod photoreceptors. Rod photoreceptors are more sensitive to light than cone receptors, 

due to their higher levels of photosensitive pigment and signal amplification, and are 

therefore suited for vision during low light levels. Cone receptors in primates are 

specifically sensitive to one of three parts of the light spectrum and selectively absorb 

light with short (426nm), medium (530nm) or long (555nm) wavelengths, corresponding 

to blue, green and red colours, respectively (Merbs and Nathans, 1992). The signals from 

photoreceptors are combined and processed by retinal ganglion cells. The limited region 

of the retina for which ganglion cells process the inputs from photoreceptors comprises 

the receptive field (RF) for a given cell.  

Visual information that is projected onto the retina is sent to three subcortical regions: 

the pretectal region and the superior colliculus (SC) of the midbrain as well as the lateral 

geniculate nucleus (LGN) of the thalamus (Kandel et al., 2000). Whereas the pretectal 

region of the midbrain controls the amount of light that hits the retina by driving 

constrictions in pupil diameter in response to luminance increases, as well as controlling 

optokinetic reflexes, the projections to SC and LGN relay (indirectly) to the cerebral 

cortex and support visual perception and higher cognitive function. Projections from the 

retina terminate onto superficial layers of the SC (SCs), where a map of the contralateral 

visual field is constructed, and projected via the pulvinar in the thalamus to the cortex. 

As approximately only 10% of retinal axons project to SCs, this pathway is thought to 

support relatively basic visual perception. Finally, with approximately 90% of retinal 

projections terminating in the LGN, this geniculo-cortical pathway comprises the 

principal route through which visual information is sent to the cortex, and will be 

discussed in greater detail below.  



 
3 

 

There are multiple types of ganglion cells in the retina that each process and convey 

separate aspects of the visual scene (Kandel et al., 2000). The majority of ganglion cells 

comprise the larger magnocellular (M-cells) and the smaller parvocellular (P-cells) cells. 

These cells can process signals from the same photoreceptor in parallel to convey 

functionally distinct information (Kaplan and Shapley, 1986) and project to separate 

layers of the LGN (Kandel et al., 2000; Kaplan and Shapley, 1982). Within LGN, M-cells 

have larger RFs and respond with shorter latencies compared to P-cells. They are 

furthermore selective for lower spatial frequencies and have much higher contrast 

sensitivity (Kaplan and Shapley, 1982). P-cells, on the other hand, have smaller RFs and 

respond to higher spatial frequencies. Additionally, P-cells respond selectively to specific 

wavelengths, and thus allow colour processing (Kaplan and Shapley, 1982; Livingstone 

and Hubel, 1988). Because of these functional differences, M-cells are thought to mainly 

process features such as depth and movement, whereas P-cells process more fine 

features such as form and colour (Kandel et al., 2000; Livingstone and Hubel, 1988). 

These functionally distinct layers in LGN remain segregated and project to separate 

cortical layers in primary visual cortex (V1). 

 

1.2.2 - The cortical microcircuit 

Although many differences exist between areas of the neocortex and across species, 

similarities in the anatomical structure, input-output connectivity patterns and 

information flow have led to the proposal of the canonical cortical microcircuit that is 

repeated across the neocortex (Douglas and Martin, 2004). The cortex is made up of six 

layers that show organisation according to an area’s afferents, the connectivity of 

neurons within this area and its efferents. These layers can be coarsely subdivided (from 

superficial to deep layers) into supragranular, granular and infragranular layers. 

Additionally, in higher animals such as cats and primates, the cortex is also organised 

into cortical microcolumns (Hubel and Wiesel, 1968; Mountcastle, 1957). Spanning the 

cortical layers, cells within these columns receive the same restricted input from 

upstream areas and therefore show similar response characteristics such as RF location 

and orientation tuning. 

Within a column, granular layers receive and integrate input from the thalamus or 

upstream areas. From here, excitatory cells project towards the cortical surface (vertical 

along the direction of the column) and terminate in supragranular layer 2/3. This 

information is then sent to infragranular layer 5, which projects further to layer 6 and to 

subcortical structures and provides feedback to supragranular layers. Layer 6 projects 

back to the thalamus and provides modulatory feedback to the input layer, thereby 

controlling the input to the cortical column. Lateral connections between columns, and 

feedforward projections to other brain areas occur across cortical layers but are most 

common in supragranular layers 2/3 (Blasdel et al., 1985; Rockland and Lund, 1983). 

Feedback projections predominantly originate in infragranular layers and mainly target 

layer 1, which consists mostly of the apical (long range) dendrites of pyramidal cells and 
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axon terminals, and layer 5 (Markov et al., 2014). Feedback can, however, also target 

other layers. 

Although this basic framework of cortical organisation is found across the cortex, 

variations on this central theme can indicate some important functional differences. For 

instance, differences in the thickness of the granular layer in V1 (~500 µm) compared to 

those in other (visual) cortical areas such as V4 (200 µm) highlight their anatomical and 

functional dissociation (Hof and Morrison, 1995; Lund and Yoshioka, 1991). Accordingly, 

the granular layer in V1, but not in V4, can be subdivided into layers 4A, 4B, 4Cα and 

4Cβ. This particular laminar segregation supports the functional separation of the two 

different cortical pathways processing visual information. 

 

1.2.3 - Visual pathways: two cortical pathways 

The clear anatomical and functional segregation of M and P-cells, originating in the 

retina and continuing through cortex, has led to the influential theory that there are two 

largely distinct parallel cortical pathways: a dorsal and a ventral stream (Mishkin et al., 

1983). The dorsal stream runs along V1, V2, V3, the middle temporal area (MT) and the 

medial superior temporal area (MST) before projecting to the parietal cortex. The ventral 

stream includes cortical areas V1, V2, V3, and V4 and runs further along the temporal 

lobe to areas TEO, TE and inferior temporal cortex (IT). Although both pathways process 

input from both M and P-cells and their segregation might not be as straightforward as 

often thought (Merigan and Maunsell, 1993), the ventral stream primarily processes 

input from P-cells and is specialised in object and colour vision, whereas the dorsal 

stream predominantly processes information originating in M-cells and is associated 

with spatial and motion processing. Accordingly, the ventral and dorsal pathway were 

named the “what” and “where” pathway (Mishkin et al., 1983).  

In V1, projections from M-cells in LGN terminate in layer 4Cα and are relayed to layer 

4B (Boyd et al., 2000), where cells are orientation and often movement direction 

selective, from where direct and indirect afferents to MT originate. The indirect afferents 

first project to the thick stripes in V2 before relaying to MT (and further to parietal 

areas). Projections from P-cells, on the other hand, terminate in layer 4Cβ and project 

further to layer 2/3 (Boyd et al., 2000). The projections that terminate in layer 2/3 can be 

further subdivided in those that project to blobs, and those that terminate in the 

interblob regions. Cells in blobs, which likely also receive magnocellular input (Callaway 

and Wiser, 1996; Livingstone and Hubel, 1988), have relatively large RFs and are selective 

to colour but not to orientation. Cells in the interblob do not have explicit colour-coding 

but have fine orientation selectivity and the capacity of discriminating high spatial 

frequencies. Cells in blobs and interblobs project to separate regions in V2, the thin and 

pale stripes, respectively. 

Thus, information from the same retinal image is segregated and processed by different 

groups of retinal ganglion cells and projected to separate layers of the LGN. Although 

there is substantial mixing of the input provided by M and P-cells in V1, there is also 
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considerable functional segregation along areas in the dorsal and ventral pathway 

(Livingstone and Hubel, 1988; Mishkin et al., 1983). The dorsal pathway primarily 

processes movement, luminance differences and is involved in stereopsis. The ventral 

pathway, on the other hand, processes more fine-grained information about higher 

spatial frequencies and colour. This functional specialisation is highlighted by visual 

illusions which revealed that various visual features mediated by the dorsal “where” 

pathway (e.g. depth perception) depend strongly on differences in luminance 

(Livingstone and Hubel, 1988). With equiluminance, contextual perspective cues such 

as converging lines that normally bring about e.g. size illusions are greatly diminished.  

 

1.2.4 - Corticocortical communication 

Visual information from V1 is thus sent downstream along the two pathways described 

above. The nature of this across-area communication, and how it is influenced by task 

demands, is an area of active research. Although the progression of information across 

the visual hierarchy can be examined by investigating the timing of the response to a 

stimulus across visual areas (Schmolesky et al., 1998), to investigate the direct 

communication between areas, simultaneous recordings across these areas are required.  

Signal transmission can be measured through correlations of spiking activity across 

areas (Munk et al., 1992; Nowak et al., 1999, 1995). In these studies, the strength of cross-

correlations between cells across visual areas was shown to depend on retinotopic 

alignment and similarities in stimulus preferences. Stronger correlations (on a faster 

temporal scale) were found for cell pairs with RFs that were closer together and had 

similar orientation tuning curves.  

In addition to stronger pairwise correlations, findings of synchronous oscillatory 

activity, particularly in the gamma frequency range (30-60 Hz), were thought to benefit 

signal transmission between cells within and across areas (Eckhorn et al., 1988; Engel et 

al., 1992). Although early theories that proposed a role for synchronous activity in 

perceptual binding (Singer, 1999) were not supported by experimental findings (Thiele 

and Stoner, 2003), later theories argued that “communication through coherence” is 

crucial for efficient signal transmission and cognition (Fries, 2005). In this framework, 

oscillatory synchrony allows a spike sent by one cell to arrive during a time window of 

excitability in the other cell, thereby serving effective communication. These oscillatory 

interactions are often measured in the local field potential (LFP), where electrodes 

inserted into brain tissue measure activity from the inhibitory and excitatory synaptic 

processes of large neural populations (Kajikawa and Schroeder, 2011). Feedforward and 

feedback components of interareal interactions have been proposed to map onto 

different frequency bands. Specifically, gamma frequency synchronisation has been 

proposed to carry feedforward signals, whereas feedback signals are mediated by 

frequencies in the alpha (9-12 Hz) or beta (13-20 Hz) range (Bastos et al., 2015; Bosman 

et al., 2012; van Kerkoerle et al., 2014). Accordingly, feedforward stimulus processing is 

associated with directional gamma-band coupling (Bastos et al., 2015; Bosman et al., 

2012; van Kerkoerle et al., 2014), estimated using granger causal analyses, whereas task-
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related feedback activity is mediated through lower frequencies in the alpha and beta 

range (Bastos et al., 2015; van Kerkoerle et al., 2014).  

Whether oscillatory coupling between areas is indeed necessary for across areas 

communication remains to be determined, but within-area synchrony of activity 

plausibly benefits signal transmission. Within V1, spikes locked to specific phases of the 

gamma oscillation were more selective for stimulus orientation and showed a reduction 

of information-limiting correlations (see section 1.4.2 - below), suggesting that the 

gamma phase can modulate information coding (Womelsdorf et al., 2012). Additionally, 

Jia et al. (2013) found that pairwise spiking correlations between V1 and V2 were 

enhanced with stronger gamma oscillations in the V1 LFP. Although spikes in V1 were 

more often followed by a spike in V2 with enhanced gamma oscillations in V1, these 

spikes were more strongly locked to the V1 gamma phase compared to the V2 gamma 

phase. This suggested that gamma, rather than allowing bidirectional synchronous 

activity across V1 and V2, synchronised activity in V1 to more effectively elicit a spike in 

V2. This hypothesis was supported by Zandvakili and Kohn (2015), who found that V2 

spikes were preceded by temporally synchronous bursts of spikes in V1. In these studies, 

however, recordings were performed in anaesthetised animals (Jia et al., 2013; Zandvakili 

and Kohn, 2015), and varying levels of gamma were induced by different visual stimuli 

(Jia et al., 2013). As emphasised by the authors (Jia et al., 2013), modulation of oscillatory 

coupling might thus still be relevant in task performing animals during cognitive tasks 

(see below).  

Finally, another, perhaps more biologically plausible, mechanism of information 

transfer across areas is through selective combination of input from a subset of the 

upstream neural population (Semedo et al., 2019). Here, rather than sending the 

combined information from an entire neural population downstream, information 

transfer occurs through a “communication subspace” in which a lower dimensional 

signal (only selected information) is passed on to the next information processing stage. 

More specifically, the activity in downstream neurons can only be predicted from 

activity fluctuations in upstream areas along a specific dimension (the subspace). 

Activity fluctuations in the upstream areas along other dimensions are not predictive of 

activity changes downstream and are considered private dimensions. Fluctuations along 

private dimensions are thus hidden from the target neurons, allowing for selective 

across-area information transmission. The exact information that is sent depends on the 

presented stimulus, and speculatively, might depend on task-demands and could be 

determined in a feedback manner by selectively adjusting the synaptic weights of 

feedforward connections.  

 

1.3 - Cortical state 

Cortical activity reveals spontaneous activity fluctuations that are not solely determined 

by external inputs, but reflect changes to the underlying excitability of neurons, referred 

to as cortical state. These fluctuations in network activity are often studied using electro-

encephalography (EEG), where electrodes placed on the scalp measure the activity of 
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large populations of neurons (Steriade et al., 1993b), LFP, or intracellular membrane 

potential recordings, as there is a strong relationship between the membrane potential 

(Vm) of individual neurons and the activity of the surrounding population (Steriade et 

al., 1993c).  

Cortical states were originally studied under anaesthesia and as part of the sleep-wake 

cycle. Under either condition dramatic changes in the EEG signal, the firing rate, and 

Vm were observed (Contreras and Steriade, 1995; Steriade et al., 2001). Especially during 

slow-wave sleep, hyperpolarised states with low firing rates and high amplitude low-

frequency EEG and Vm dynamics alternate with depolarised states during which firing 

rates are higher and EEG and the Vm reveals reduced levels of low-frequency and 

increased levels of high-frequency activity (Steriade et al., 2001). During slow-wave sleep, 

the histogram of Vm reveals a bimodal distribution, indicative of the occurrence of 

depolarised and hyperpolarised states (Steriade et al., 2001), classically referred to as Up 

and Down states, respectively. 

Although cortical states fluctuate strongly between sleep-wake states and prolonged 

periods of hyperpolarisation (Down states) were found to be abolished during rapid eye 

movement (REM) sleep and wakefulness (Steriade et al., 2001), more recent research has 

found that state fluctuations also occur during wakefulness (McGinley et al., 2015b; 

Figure 1-1. The visual attention network in the macaque brain and its proposed modulation by 

neuromodulatory influences. Visual information traverses from the eye through the LGN to various areas in 

the cortex via glutamatergic feedforward projections. Contextual information is thought to originate in 

higher-order areas and sent back to early visual areas via glutamatergic feedback projections. Spatially 

focused attention affects neural processing at specific retinotopic locations throughout the cortical hierarchy. 

Neuromodulatory influences can modulate activity at various information processing stages. LGN: Lateral 

geniculate nucleus; V1-V4: early visual areas 1-4; LIP: lateral intraparietal area; FEF: frontal eye field. Adapted 

with permission from Harris & Thiele (2011). 
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Ringach, 2009), even if activity fluctuations are somewhat reduced. Activity fluctuations 

within wakefulness states, from quiet and inattentive to active and vigilant, have been 

associated with changes in cognitive functions, such as arousal and attention, and can 

influence neural responses, information coding and behaviour (Harris and Thiele, 2011; 

Lee and Dan, 2012). During less active/inactive states, cortical activity is highly 

synchronous, characterised by increased low-frequency oscillations and high spike-

spike correlations. During active states, the cortex is more desynchronised and displays 

suppressed low-frequency and increased high-frequency activity, as well as lower 

correlations in population spiking activity. During synchronous states, individual 

neurons fire in a more correlated manner, which is thought to lead to more redundancy 

across the neural population and limit the amount of information that can be processed 

(Zohary et al., 1994). In support of this, fluctuations in cortical state can modulate 

sensory responses (Arieli et al., 1996; Beaman et al., 2017; McGinley et al., 2015a; Reimer 

et al., 2014; Scholvinck et al., 2015), and perception can be impaired from optogenetically 

induced low-frequency spike-spike correlations in V4 (Nandy et al., 2019). 

Several neural mechanisms have been proposed to bring about fluctuations in cortical 

state (Harris, 2013; Harris and Thiele, 2011), including by thalamic drive (Poulet et al., 

2012), neuromodulatory regulation (Lee and Dan, 2012) and/or driven by feedback 

projections (Zagha et al., 2013). These mechanisms show great overlap with the 

mechanisms thought to drive the neural activity changes associated with attention.  

 

1.4 - Attention 

Attention describes the ability to prioritise and preferentially process one or several 

stimuli out of all the currently available (sensory) information. Attention can be driven 

exogenously, by external events, or endogenously, according to internal goals (Posner, 

1980). With exogenous (bottom-up) attention, a stimulus is automatically attended to 

due to the physical salience of the stimulus. Endogenous attention is voluntarily directed 

towards a stimulus according to internal goals (Posner, 1980) and is therefore often 

referred to as top-down, or selective, attention. Selective attention, by filtering irrelevant 

and amplifying behaviourally relevant information, is an essential intervention between 

perception and action and is therefore critical for many aspects of human behaviour (e.g. 

learning, decision making and action selection).  

Within a typical visual scene, attention can be directed towards a location in visual space 

(spatial attention) (Posner, 1980), an object (object-based attention) (Duncan, 1984) or 

feature (feature-based attention, e.g. colour or orientation) (Rossi and Paradiso, 1995). 

A further subdivision of attention can be made according to overt or covert attention 

(Posner, 1980; Posner et al., 1982). With overt attention, orientation towards the object 

of attention is achieved via explicit eye or head movements. During covert attention, on 

the other hand, attention is directed towards the stimulus without any overt movement 

that brings the object in the centre of gaze. Behaviourally, spatial cueing of a target 

stimulus results in faster reaction times (RT) (Posner, 1980) and increased perceptual 

sensitivity (Bashinski and Bacharach, 1980). In addition to these behavioural effects of 
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selective visual attention, attentional modulation of neural activity has been observed in 

various visual areas along the visuocortical hierarchy (Figure 1-1). 

 

1.4.1 - Attentional modulation of firing rates 

1.4.1.1 - Visual cortex 

In one of the early studies to show attentional effects on neural activity, monkeys 

attended to one of two stimuli during a match-to-sample task whilst either one or both 

of the stimuli were placed inside the RF of V4 neurons (Moran and Desimone, 1985). 

Additionally, the stimuli were chosen such that one of the stimuli elicited a large 

response (effective stimulus) whereas the other was ineffective at driving cellular 

activity. With attention directed towards the effective stimulus, the cells had higher 

firing rates compared to when attention was directed towards the ineffective stimulus. 

This attentional modulation was not seen when only a single stimulus was presented 

inside the RF and attention was directed in- or outside of the RF. Moreover, this effect 

was not specific to V4, as comparable effects were found in IT.  

Similar results were found by Motter (1993), who tested the responses of V1, V2 and V4 

cells in an orientation discrimination task during which attention was directed towards 

or away from a bar stimulus inside the RF. Here, monkeys reported whether the 

orientation of the bar was left or right tilted. On some trials, the target was the only 

stimulus on the screen, but on the majority of trials 2-7 distractor stimuli were also 

presented. Roughly a third of recorded cells in all areas revealed attentional modulation, 

but most of these cells only showed modulation in the presence of distracting stimuli. 

In line with the idea that attention can selectively process specific information by 

filtering out distracting information, these early results thus suggested that attention 

mainly affected neuronal activity in visual cortex when there is competition between 

stimuli in the visual field. Qualitatively similar results, with larger attentional effects 

when multiple stimuli were presented, were found for area V2 and V4 (Luck et al., 1997) 

and area MT and MST (Treue and Maunsell, 1996). These findings (amongst others) led 

to the proposal of the biased competition model of attention (Desimone, 1998; 

Desimone and Duncan, 1995). In this framework, limited processing capacity leads to 

stimuli competing for resources through mutual inhibition. Attention can prioritise the 

processing of one (or several) of these stimuli (or their features) by introducing a bias in 

the representation of these stimuli, thereby selectively biasing the competition and 

preferentially processing the object of attention. 

In the following years, investigations into the mechanism by which attention biases 

stimulus representations led to mixed results. Attentional modulation was found to 

differentially affect the response to different orientations, usually with larger effects for 

the preferred orientation in absolute terms, but not in relative terms. Specifically, 

relative to the non-attended condition, proportional changes were identical for all 

orientations (McAdams and Maunsell, 1999; Motter, 1993). This led to the hypothesis 

that attention multiplicatively scales the response of sensory neurons (with a constant 
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factor) by changing its response gain (Figure 1-2a), without changing its selectivity 

(McAdams and Maunsell, 1999). Other studies found attention to increase the response 

sensitivity by altering the contrast response function, i.e. increasing the contrast gain 

(Figure 1-2b) (Reynolds et al., 2000). Here, neurons specifically showed stronger 

responses to stimuli of lower salience, without affecting its response to highly salient 

stimuli. This type of attentional modulation leads to a leftward shift, rather than a 

multiplicative increase, in the contrast-response function. Additionally, feature-based 

attention has been found to multiplicatively increase the response gain as well as to 

simultaneously decrease activity to non-preferred stimuli, adding a suppressive 

component to the modulatory effects of attention (Martinez-Trujillo and Treue, 2004; 

Treue and Trujillo, 1999). The combination of these two effects can be described as a 

bimodal gain change (Figure 1-2c), increasing the response to preferred and decreasing 

the response to non-preferred stimuli (which sharpens the neural tuning function), and 

led to the formulation of the feature similarity gain model (Treue and Trujillo, 1999).  

These different findings, describing varying modulatory effects of attention on neural 

activity gain changes, have later been incorporated into one normalisation model of 

attention (Lee and Maunsell, 2009; Ni et al., 2012; Reynolds and Heeger, 2009; Sanayei 

et al., 2015). In this framework, attention is not only considered to change the response 

gain of excitatory cells, but also of inhibitory cells. The inhibitory influence normalises 

the attention-induced increased excitation, but this normalisation is dependent on the 

stimulus size and the neural tuning function, as well as on the size of the attentional 

field. Variation in these parameters can reproduce the different effects of gain change 

described above (Reynolds and Heeger, 2009).  

 

1.4.1.2 - Parietal and frontal cortex 

Alongside these studies in visual cortex, others investigated the effects of attention in 

parietal and frontal areas (Figure 1-1), in particular in the lateral intraparietal area (LIP), 

frontal eye fields (FEF) and the dorsolateral prefrontal cortex (dlPFC).  

Although the parietal cortex is classically seen as an integration and association area, 

fundamental to the combination of sensory, motor and cognitive information, its role in 

selective attention has long been relatively controversial. Central to this debate was the 

distinction between attention and intention, arguing that the parietal cortex is either 

primarily involved in attention-related processes (Colby and Goldberg, 1999), or that its 

main role is action-related to control motor output (Snyder et al., 2000). Here I discuss 

only a subset of the studies that have revealed the role of the parietal cortex in visual 

attention, but an extensive review of this debate can be found elsewhere (Freedman and 

Ibos, 2018).  

Some of the first studies to show attentional modulation of activity in parietal cortex 

revealed that cells in area 7 showed stronger responses to stimuli that were viewed 

actively (reporting a luminance change) compared to when these stimuli were viewed 

passively (Bushnell et al., 1981). Later studies particularly focused on LIP, a subdivision 
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of the posterior parietal cortex which lies in the intraparietal sulcus and receives input 

from thalamic nuclei and early visual areas (e.g. V4 and MT), sends projections to the 

superior colliculus and is reciprocally connected to frontal areas (e.g. FEF) (Blatt et al., 

1990; Lewis and Van Essen, 2000; Patrick Hardy and Lynch, 1992). LIP neurons moreover 

have visual receptive fields (Blatt et al., 1990), and are involved in oculomotor control 

(Andersen et al., 1992). Their role in cognitive processes was established when neurons 

in LIP were found to display spatially specific delay-period activity during memory-

guided saccade tasks (Gnadt and Andersen, 1988). In this task, the monkeys were briefly 

presented with a peripheral target stimulus during fixation. After a variable delay period, 

the monkey was required to make a saccade to the remembered location in order to 

obtain a reward. LIP neurons revealed working-memory related activity, showing 

spatially selective activity which persists throughout delay periods when all visual cues 

have been removed.  

A further role in attention was underscored by the finding that LIP neurons respond 

selectively to task-relevant or salient stimuli (Gottlieb et al., 1998) and that their visual 

response is enhanced and sustained when task relevant features or locations are 

attended to (Bisley and Goldberg, 2010; Colby et al., 1996). These and other findings have 

led to the hypothesis that LIP acts as a priority map, where objects are represented by 

neural activity proportional to their behavioural relevance (Bisley and Goldberg, 2010; 

Thompson et al., 2005). Selective attention is thought to signal this priority by 

modulating the representation of visual space given by sensory input, filtering irrelevant 

and enhancing relevant information (Baluch and Itti, 2011; Reynolds and Heeger, 2009).  

Similar to parietal areas, frontal areas such as the FEF and the dlPFC, that respectively 

lie posterior to or along the posterior end of the arcuate sulcus, are typically associated 

with the control of cognitive functions such as top-down attention and working memory 

(Buschman and Miller, 2007; Corbetta and Shulman, 2002). FEF and dlPFC activity 

reflects the relevance of task-related visual information, showing spatially selective 

activity which persists throughout delay periods when all visual cues have been removed 

(Armstrong et al., 2009; Funahashi et al., 1989). 

Further support for the implication of these areas in attention and target selection comes 

from studies where direct activity manipulations have been performed. For instance, 

subthreshold microstimulation of either the FEF (Moore and Fallah, 2001) or the LIP 

Figure 1-2. Neural gain and the neuromodulatory dose-response curve. The effects of a change in (a) response 

gain, (b) contrast gain or (c) bimodal gain on a neuron’s output given a certain input. The grey and black 

curve represent the input-response curve before and after gain change, respectively. (d) Neuromodulatory 

dose-response curve. Optimal performance is achieved at intermediate levels of receptor stimulation. 
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(Cutrell and Marrocco, 2002) influences behavioural performance on spatial attention 

tasks, and subthreshold microstimulation in dlPFC biases behaviour during saccadic 

choice tasks (Opris et al., 2005). Moreover, inactivation of the LIP (Wardak et al., 2004) 

or the FEF (Wardak et al., 2006) demonstrated that both areas play an important role in 

attentional selection at the behavioural level. These studies showed that LIP inactivation 

caused the largest behavioural deficits during difficult (low salience) tasks, while FEF 

inactivation resulted in deficits that were independent of task difficulty. These results 

mirror studies in humans which demonstrate that activity in parietal, but not FEF, 

increases with increasing attentional load (Culham et al., 2001). Similarly, inactivation 

of dlPFC resulted in deficits during a memory-guided, but not a visually-guided, saccade 

task (Sawaguchi and Iba, 2001), showing that dlPFC is particularly important for 

retaining information ‘online’ after visual stimulation has been removed. Furthermore, 

subthreshold microstimulation of the FEF enhances visually driven responses in lower 

visual areas (V4), revealing how feedback connections implement attentional 

enhancement of sensory signals in visual cortex (Moore and Armstrong, 2003). 

Importantly, subthreshold microstimulation of V4 neurons did not alter detection 

thresholds for luminance changes (Dagnino et al., 2015), suggesting that attentional 

control is regulated in higher-order areas. A specific role for the FEF in regulating visual 

areas during cognitive tasks is further underscored by the finding that nearly all cells 

that project from FEF to V4 show delay period activity during a memory-guided saccade 

task (Merrikhi et al., 2017). It is thus likely that feedback projections from higher areas 

provide the modulatory signals that alter visual stimulus representations in visual 

cortex. 

Thus, their spatially tuned activity, causal involvement in cognitive functions such as 

attention, together with their strong interconnectivity (Blatt et al., 1990; Lewis and Van 

Essen, 2000; Selemon and Goldman-Rakic, 1988) and functional interdependence 

(Chafee and Goldman-Rakic, 2000), suggests that parietal and frontal areas form part of 

a network and jointly contribute to the attentional signals seen across visual and higher-

order areas.  

 

1.4.2 - Attentional modulation of response reliability and neuronal 

correlations 

In addition to changes in firing rate, attention can also modulate the reliability of 

responses and the correlation structure of the neuronal population that represents the 

focus of attention. One often used measure of trial-to-trial firing rate variability is the 

Fano factor (FF), calculated as the ratio of the across-trial variance in the firing rates of 

a single neuron and its mean. Attention has been found to reduce FF (Cohen and 

Maunsell, 2009; Herrero et al., 2013; Mitchell et al., 2009, 2007; Rabinowitz et al., 2015), 

which together with neuronal gain increases can enhance a neuron’s coding ability, 

leading to higher signal-to-noise ratios (Thiele and Bellgrove, 2018).  

In addition to decreasing FF, attention also changes neuronal co-variability, termed 

noise correlations, that measure to what extent the trial-to-trial variability in neuronal 
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responses are correlated across pairs of neurons. Changes in the co-variability of a 

neuronal population can alter the amount of information that is encoded by this 

population. More specifically, neural coding is enhanced when neurons with highly 

similar tuning curves, i.e. high signal correlation, show a reduction in noise correlations, 

while neurons with low signal correlation show an increase in noise correlation (Abbott 

and Dayan, 1999; Averbeck et al., 2006; Panzeri et al., 1999). Here, the effect on coding 

can thus be investigated by determining the relationship (slope) between signal and 

noise correlation. Attention was indeed found to decrease noise correlations across pairs 

of neurons (Cohen and Maunsell, 2009; Herrero et al., 2013; Mitchell et al., 2009), which 

in several studies was additionally shown to depend on their signal correlation strength 

(Rabinowitz et al., 2015; Ruff and Cohen, 2014), revealing a decreased slope in the 

relationship between noise and signal correlation (Ruff and Cohen, 2014).  

 

1.4.3 - Attentional modulation of corticocortical communication 

Within a cortical area, attention can thus selectively in- and decrease firing rates and 

response reliability for specific neural populations, as well as modulate their neuronal 

co-variability. Recent studies have additionally investigated how information is 

transferred across areas (see section 1.2.4 - above) and how attention influences this 

communication.  

Buschman and Miller (2007) recorded simultaneously from LIP and FEF/dlPFC in 

macaque monkeys during both a bottom-up and top-down attention task. Here, parietal 

neurons signalled the location of the target stimulus during bottom-up attention before 

frontal neurons, whereas this was reversed during top-down attention. Coherence 

between parietal and frontal areas was furthermore stronger in the gamma range during 

bottom-up stimulus processing, whereas it was stronger in the beta range during top-

down attention. These results suggest that top-down attention is initiated in frontal 

cortex, after which other areas are recruited.  

Attention has also been found to modulate synchronous activity between frontal and 

visual areas (Gregoriou et al., 2012, 2009). During simultaneous recordings in V4 and 

FEF in macaques, it was found that FEF firing rates distinguished between the direction 

of attention (towards or away from RF) before V4 (Gregoriou et al., 2009), in line with 

attentional signals being initiated in higher-order areas. Additionally, attention 

increased the between-area synchrony in the gamma frequency range (30-70 Hz), and 

conveyed directionally selective information from FEF to V4 as well as in the reversed 

direction. In line with the firing rate changes, attention specific granger causal 

interactions from FEF to V4 appeared earlier than those from V4 to FEF. Furthermore, 

attention also increased the between-area spike-field coherence, representing the 

alignment of spikes to the LFP phase, in both directions. Indicating that spikes in V4 

were aligned to FEF LFP, and vice-versa. A follow-up study found that these effects were 

specific to certain cell categories in the FEF (Gregoriou et al., 2012). Cells were classified 

as visual, visuomovement and movement cells, of which only the visual cells showed 

synchronous activity with V4. Finally, lesions of frontal areas (FEF and dlPFC) both 
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delayed and reduced attentional modulation in V4, providing further support for a 

causal role of frontal areas in the control of attention (Gregoriou et al., 2014). 

Bosman et al. (2012) recorded from multiple V1 and V4 locations in macaques using 

cortical surface electrodes during a top-down attention task. In this study, attention was 

directed to one of two stimuli placed inside a single V4 RF, each of which covered a 

separate V1 RF. The V4 location showed selective synchrony in the gamma frequency 

range with one of the two V1 locations, depending on which stimulus was attended, 

revealing retinotopically specific coherent activity between visual areas. Furthermore, 

gamma phase synchronisation between V1 and V4 was found to be predictive of 

behavioural performance (Rohenkohl et al., 2018). When attention was directed towards 

the RF, RTs were faster when coherence was strong. The phase relationship was, 

however, not predictive of RT during attend away conditions, suggesting a specific 

dependence of behavioural performance on attention-induced gamma synchronisation.  

Finally, a more direct effect of attention on across area spiking co-variability has been 

described by Ruff and Cohen (2016a). In simultaneous recordings in macaque V1 and MT 

during a motion change detection task, attention was directed to one of two drifting 

gratings that each covered the RF of separate neurons in V1, but were both inside the 

MT RF. Although co-variability within each area was reduced with attention towards the 

RF, in line with previous studies (see section 1.4.2 - above), the co-variability between V1 

and MT neurons was higher when attention was directed towards the RF. This effect was 

moreover dependent on the retinotopic location, rather than direction tuning, 

suggesting that attentional modulation of across area coordination is spatially 

determined. Lastly, it was found that microstimulation of V1 elicited more spikes in MT 

when attention was directed towards the RF, indicating that corticocortical 

communication is enhanced by attention.  

 

1.4.4 - Attention and cortical state 

As described above, switching from an inactive to an active state results in (widespread) 

desynchronisation of cortical activity. When attention is selectively directed towards the 

RF of the recorded neuronal population, this local area of the cortex desynchronises in 

a comparable manner to that seen during cortical state fluctuations, albeit on an overall 

reduced scale (i.e. less dramatically). Because of these similarities, it has been suggested 

that these functions rely on comparable underlying circuit mechanisms (Harris and 

Thiele, 2011). Indeed, both cortical state fluctuations and selective attention have been 

found to (partially) depend on neuromodulator availability (see below) as well as 

feedback from higher-level cortical areas. Both attentional engagement and cortical 

state fluctuations, in turn, are likely to influence perceptual decision making through 

their effects on sensory processing and evidence accumulation. 

Although much has been learned over the last 40 years since Posner conducted his 

studies on visual attention in human subjects, the exact mechanisms by which attention 

elicits the activity changes observed throughout the network of brain areas described 
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above are largely unknown. Similar to cortical state fluctuations, attentional modulation 

has been proposed to be regulated by input from subcortical structures such as the LGN 

(O’Connor et al., 2002), superior colliculus (Krauzlis et al., 2013) and pulvinar (Petersen 

et al., 1987), feedback projections (Buschman and Miller, 2007; Desimone and Duncan, 

1995; Gregoriou et al., 2014, 2012, 2009; Merrikhi et al., 2017; Moore and Armstrong, 2003; 

Noudoost and Moore, 2011a) and/or neuromodulatory drive (Clark and Noudoost, 2014; 

Herrero et al., 2008; Noudoost and Moore, 2011a, 2011b; Thiele and Bellgrove, 2018). 

Indeed, although neuromodulators are increasingly implicated in cognitive functioning, 

their influence on specific signatures of attentional processes is poorly understood.  

 

1.5 - Decision making 

During decision making, information from the external world, previous experience and 

current cognitive state is combined and evaluated in the formation of an action plan. 

This high-level process relies heavily on other cognitive functions such as attention and 

working memory, and is a crucial part of animal and human interaction with their 

environment. Perceptual decision making can generally be subdivided in multiple 

information processing stages consisting of sensory encoding (of often noisy 

information), decision formation, motor execution and choice evaluation (Doya, 2008; 

Gold and Shadlen, 2007; Kelly and O’Connell, 2015). Although there is substantial 

evidence for a neuromodulatory influence during reinforcement learning and reward 

processing (Cox and Witten, 2019; Doya, 2008; Schultz, 1998), here I mainly focus on the 

neural mechanisms underlying sensory encoding and in particular decision formation 

and how processing variability can lead to variability in behaviour.  

Decision formation, during which information is collected and evaluated, acting as the 

translation from perception (and cognition) into action, has received much interest 

(Gold and Shadlen, 2007). Decision formation can be further subdivided into multiple 

components, including the accumulation and evaluation of evidence, setting a threshold 

that indicates when sufficient evidence has been collected, and the selection of the 

appropriate motor response. In this framework, evidence accumulation depends on the 

sequential sampling of momentary evidence of which the integration is represented into 

a single total, the decision variable (DV), that represents the evidence in favour of a 

certain choice (Kelly and O’Connell, 2015; Smith and Ratcliff, 2004). Evidence 

accumulation is terminated when the DV exceeds a threshold, which allows 

commitment to a categorical choice.  

Whereas sensory areas represent the momentary evidence, parietal and frontal areas 

have been shown to represent the DV, representing the cumulative evidence in favour 

of a certain choice during perceptual decisions (Gold and Shadlen, 2007; Kelly and 

O’Connell, 2015). For example, neurons in area MT respond strongly during a motion 

discrimination task (Albright, 1984) and microstimulation of MT biases direction 

discrimination (Salzman et al., 1990), revealing their direct involvement in decision 

making as the source of sensory evidence.  
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Neural correlates of the DV have been found across oculomotor areas, such as the 

parietal (Platt and Glimcher, 1999; Roitman and Shadlen, 2002; Shadlen and Newsome, 

2001), frontal (Ding and Gold, 2012; Kim and Shadlen, 1999) as well as subcortical areas 

such as the superior colliculus (Horwitz et al., 2004). Neurons in LIP, for example, reveal 

a gradual build-up of activity during motion discrimination that depends on stimulus 

strength (Platt and Glimcher, 1999; Roitman and Shadlen, 2002; Shadlen and Newsome, 

2001), although this has recently been debated (Latimer et al., 2016, 2015; Shadlen et al., 

2016). When aligned to the response, this activity reaches a fixed level approximately 50-

100 ms prior to saccade onset (Roitman and Shadlen, 2002). Furthermore, during studies 

that used discrete epochs wherein stimulus shapes conferred a fixed amount of evidence, 

LIP neurons revealed stepwise in- or decreases directly proportional to the amount of 

evidence (Kira et al., 2015; Yang and Shadlen, 2007).  

Additionally, both microstimulation as well as optogenetic stimulation in LIP can bias 

choices (Dai et al., 2014; Hanks et al., 2006), and inactivation of LIP leads to strong 

behavioural decrements (Zhou and Freedman, 2019), confirming LIP’s causal role during 

perceptual decision making. In addition to firing rate changes following the presentation 

of sensory evidence, firing rate variability in sensory (Britten et al., 1996; Shadlen et al., 

1996; Yates et al., 2017), as well as parietal areas (Shadlen and Newsome, 2001; Yates et 

al., 2017) influences choices and reaction times during motion discrimination. Here, 

when presented with the same sensory information (even without any net motion), both 

neural activity and behavioural performance varies. This suggests that endogenous 

variability in neural activity determines, in part, the behavioural response to sensory 

evidence.  

Recent developments have made it possible to study the DV, in addition to multiple 

other components of decision making, using EEG in humans (Kelly and O’Connell, 2013; 

O’Connell et al., 2012). In these studies, the task paradigm was adjusted such that sudden 

transients in the visual stimulus were absent. This allowed the investigation of gradual 

activity changes over parietal cortex that exhibited some of the same characteristics as 

the DV in single cell electrophysiology, termed the centroparietal positivity (CPP) (Kelly 

and O’Connell, 2013; O’Connell et al., 2012). Additionally, this allowed investigation into 

which (and how) other information processing stages influence sensory evidence 

accumulation. For example, deflections over sensory cortex that reflect the selection of 

target stimuli can modulate the onset and build-up rate (rate of evidence accumulation) 

of the CPP (Loughnane et al., 2016). Moreover, endogenously fluctuating levels of 

attentional engagement, indexed by pre-target occipital α-band activity, correlates 

strongly with the build-up rate of the CPP (Kelly and O’Connell, 2013). Lastly, pre-target 

occipital α-band activity and RT were modulated by exposure to blue light before the 

experiment, thought to influence (noradrenaline-related) arousal (Newman et al., 2016). 

These results suggest that the speed and reliability of decision making to some degree 

relies on (endogenous) variability in attentional engagement, cortical state and 

neuromodulator availability. The full extent of their effects on separate stages of the 

decision making process is, however, largely unknown.  

 



 
17 

 

1.6 - Neuromodulators 

Neuromodulators are assumed to affect single neuron and local network excitability in 

systematic ways. Rather than processing the content of (sensory) information, 

neuromodulators can influence neuronal functioning by modulating responsiveness to 

excitatory and inhibitory inputs (Berridge and Waterhouse, 2003; Winterer and 

Weinberger, 2004). In other words, they can ‘tune’ neural activity. One way through 

which these modulatory effects are hypothesised to occur is through neural gain 

regulation (Servan-Schreiber et al., 1990). Neural gain regulates a neuron’s sensitivity by 

controlling the input-output function of a cell (Figure 1-2) and is a nonlinear, 

multiplicative way to combine or integrate information (Salinas and Sejnowski, 2001a; 

Silver, 2010). Via their effects on neural gain and excitability, neuromodulators can 

implement moment-by-moment changes in synaptic strength according to behavioural 

demands without making changes to the underlying anatomical connections (Arnsten 

et al., 2012; Thiele and Bellgrove, 2018). As described above, cognitive functions such as 

attention rely on gain modulation of neural responses to preferentially process specific 

sensory input (Martinez-Trujillo and Treue, 2004; Reynolds et al., 2000; Treue and 

Trujillo, 1999). Correspondingly, modelling studies where gain regulated neurons 

represent visual object locations have been able to mimic neglect, a pattern of cognitive 

symptoms typical after parietal lesions (Posner et al., 1984), by systematically removing 

nodes from the network (Salinas and Sejnowski, 2001a).  

Neural manifestations of attentional gain changes are present in several areas along the 

visual hierarchy. Chen et al. (2008) found that neural activity in early visual cortical area 

V1 was strongly modulated by varying the difficulty, and thereby attentional demands, 

of various visual detection tasks. Similar results of modulations of neural activity by 

attention and task difficulty have been found for areas higher up the hierarchy, such as 

visual area V4 (Spitzer et al., 1988), the inferotemporal cortex (Spitzer and Richmond, 

1991) and the frontal cortex (Bichot et al., 2001; Thiele et al., 2016). Whether these 

(multiplicative) changes in neural activity are facilitated by neuromodulators is 

currently unknown. There are, however, indications of changes in neural excitability 

elicited by the application of neuromodulators that suggest their direct involvement in 

neural gain changes that affect for instance signal-to-noise ratios (Oades, 1985), and that 

could explain (part of) their effects on cortical state (Harris and Thiele, 2011) and 

selective attention (Herrero et al., 2008; Thiele et al., 2012; Thiele and Bellgrove, 2018). 

Although little is known about neuromodulatory influences during specific stages of 

perceptual decision making, the reliance of decision making on cognitive functions such 

as attention and working memory, as well as its relationship with specific pupil diameter 

measures (see below) suggest a strong modulatory influence during perceptual decision 

making.  

Here, I focus on the role of neuromodulators during attention and cortical state 

fluctuations, but also draw on studies that have investigated their effects during other 

cognitive functions such as working memory (in which specific information is kept 

‘online’ for a short period of time), as the neural mechanisms supporting those functions 

are likely involved in selective attention as well. Specifically, I will discuss the 
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contribution of the catecholamines dopamine and noradrenaline as well as acetylcholine 

to the neural mechanisms that subserve selective attention and cortical state. Although 

other neuromodulators such as 5-hydroxytryptamine (5-HT, serotonin) are also involved 

in cortical state changes and selective attention (Harris and Thiele, 2011; Thiele and 

Bellgrove, 2018), their relationship to the measures of cortical state discussed in this 

thesis (e.g. pupil diameter, see below) is less well-described and will therefore not be 

discussed in detail.  

 

1.6.1 - Catecholamines 

Catecholamines (CA) are tyrosine amine derived hormones and neurotransmitters. Of 

the latter, dopamine (DA) and noradrenaline (NA) are most often associated with 

cognitive functions. Cortical areas receive dopaminergic projections from the ventral 

tegmental area (VTA) and the substantia nigra (SN), whereas noradrenergic inputs 

originate in the locus coeruleus (LC) (Figure 1-1) (Levitt et al., 1984; Loizou, 1969; Mark 

Williams and Goldman-Rakic, 1998; Porrino and Goldman‐Rakic, 1982; Williams and 

Goldman-Rakic, 1993). Importantly, stimulation of rat LC increases both NA and DA 

release in parietal and frontal cortices (Devoto et al., 2005), possibly through co-

transmission of DA in NA neurons (Devoto and Flore, 2006).  

CA, and especially NA, were originally thought to be involved in rather general and 

unselective processes (e.g. arousal) due to their unselective projections in rodents. 

Regional and laminar specific afferents of CA projections in primates however suggested 

their involvement in more selective cognitive processes (Levitt et al., 1984). Both 

neurotransmitters act on metabotropic receptors, and influence the production of, for 

instance, the second messenger cyclic adenosine monophosphate (cAMP) and have 

widespread effects throughout the brain such as reward processing (DA) and arousal 

(NA). In addition, both have been implicated in more selective processes such as 

working memory, rule based decision making, and attentional processes (Arnsten, 1998; 

Noudoost and Moore, 2011a, 2011b; Ott et al., 2014; Ott and Nieder, 2019; Thiele and 

Bellgrove, 2018; Williams and Goldman-Rakic, 1995).  

DA and NA receptor stimulation follow a non-linear dose response function (Figure 

1-2d). DA stimulation follows an inverted-U dose response, whereby too little or too 

much stimulation produces suboptimal performance (Arnsten, 1998; Vijayraghavan et 

al., 2007; Zahrt et al., 1997). Likewise, NA stimulation in small doses improve, whereas 

higher doses decrease cognitive abilities (Arnsten, 1998; Aston-Jones et al., 1999; Aston-

Jones and Cohen, 2005a). Furthermore, genetic variation in a polymorphism of the 

catechol O-methyltransferase (COMT) gene, an enzyme regulating central CA levels by 

inactivating CA neurotransmitters, correlates both with behaviour and blood 

oxygenated level dependence (BOLD) during a planning task (Williams-Gray et al., 

2007). Specifically, significantly slower reaction times and lower BOLD activity in frontal 

and parietal regions were found in participants with genotypes leading to lower COMT 

activity, and thus higher available CA levels, compared to participants with genotypes 

expressing higher levels of COMT. Dependent on available baseline levels of DA and NA, 
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cognitive function may thus improve or decrease after administration of additional CA 

receptor agonists and antagonists.  

Finally, a role for catecholamines during perceptual decision making comes from human 

studies that have investigated the P3, a parietal target detection signal that is closely 

related to the CPP and reflects evidence accumulation (Twomey et al., 2015) and has 

additionally been hypothesised to reflect the NA phasic response upon target selection 

(see section 1.6.1.2 - below) (Nieuwenhuis et al., 2005). Administration of 

methylphenidate or atomoxetine, two drugs that increase monoamine levels and 

thereby increase DA and NA availability, decreases RTs in a target detection task 

(Loughnane et al., 2019). This behavioural benefit was mediated by the build-up rate and 

peak latency of the P3, suggesting specific CA effects on evidence accumulation.  

 

1.6.1.1 - Dopamine 

DA acts on several subclasses of dopaminergic metabotropic receptors in the brain (D1-

D5). The D1 and D5 receptors are typically classed as D1-type receptors (D1R), while D2, 

D3 and D4 are classed as D2-type receptors (D2R), based on similarities in their 

functioning (Missale et al., 1998; Seamans and Yang, 2004). The dosage of DA and the 

location (e.g. pre- or postsynaptic) of its receptors on the neuron determine, in part, 

their role and efficiency in modulating activity. Optimal stimulation of DA receptors has 

been hypothesised to stabilize neural activity, making it more robust to distracting 

stimuli, possibly through the increase and/or maintenance of GABAergic (Gamma-

aminobutyric acid) receptor currents (Durstewitz et al., 2000), or by changing the 

synaptic strength through stimulation of N-Methyl-D-aspartate (NMDA) receptors 

(Arnsten et al., 2012; Flores-Hernandez, 2002). On the other hand, over stimulation 

could produce a situation where neural activity is overly stable and inflexible, or where 

activity is diminished due to excess inhibition, thereby reducing performance 

(Durstewitz et al., 2000).  

In a cued target detection task, Clark and colleagues (1989) studied the effects of 

intravenously administering droperidol, a D2R antagonist, and clonidine, an α2-AR 

agonist (see below), on behavioural performance in humans. Overall, droperidol 

significantly slowed RTs, and although it had no effect on the benefit of valid cueing it 

decreased the relative cost of invalid cueing. This difference between valid and invalid 

cueing shows that DA does not unselectively increase reaction times. Instead, because 

it does not increase the benefit of valid but does decrease the cost of invalid cueing, D2R 

might be involved in attentional switching rather than engagement. A specific 

involvement of D1R was suggested by Müller et al. (1998). During a delayed match to 

sample task, oral administration of the drug pergolide, an agonist for both D1R and D2R, 

resulted in reduced error rates in human subjects. These effects were thought to be 

specific to D1R, as administration of the D2R agonist bromocriptine did not produce any 

changes in performance (Müller et al., 1998), suggesting that D1R is involved in working 

memory performance. Further evidence for dopaminergic involvement in attention 

comes from genetic studies. Newman et al. (2014) found that common deoxyribonucleic 
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acid (DNA) variations in DA transporter genes, regulating available DA levels, predicted 

distractibility during selective attention tasks in humans (Newman et al., 2014). In these 

studies, however, dopaminergic effects could not be ascribed to particular brain regions 

because neural activity was not measured and drug administration or genetic 

distinctions resulted in systemic differences in dopamine levels, rather than one 

localised to a specific brain region. 

Several previous studies have investigated drug effects by directly applying them to a 

specific brain area. Sawaguchi and Goldman-Rakic (1991) applied D1R antagonists to the 

dlPFC while monkeys performed a memory-guided saccade task. In this task the animals 

had to fixate centrally while a peripheral target stimulus was presented for a short period 

of time. Without breaking fixation, the monkeys had to remember the target location 

after the stimulus was turned off, subsequently a ‘go-signal’ was given by removing the 

fixation spot and the monkeys were required to saccade towards the location where the 

target had previously been. Injection of these antagonists produced reversible deficits in 

behaviour for a few specific target locations, and because control tasks excluded visual 

or motor deficits these findings implicated D1R in attention/working memory processes. 

Furthermore, the degree of task difficulty correlated with the degree of impairment 

brought about by the application of the drug (Sawaguchi and Goldman-Rakic, 1994), 

suggesting a role in neural gain modulation. In addition to working memory, during 

decision making in a free choice saccade task, where the monkey is rewarded for 

executing a saccade towards either of two targets, administration of a D1R antagonist 

(SCH23390) or a D2R agonist (quinpirole) in the FEF increased the tendency of the 

monkey to choose to saccade towards a target in the receptive field (Noudoost and 

Moore, 2011a).  

Other studies also investigated cellular effects of DA in awake behaving animals. Local 

iontophoretically administered D1R and D2R agonists altered simultaneously recorded 

firing rates of nearby cells in frontal cortex (Williams and Goldman-Rakic, 1995). Upon 

application of a D1R antagonist, cell firing in its preferred direction increased during the 

memory period of the task, which was reversed by the application of a D1R agonist. 

Unlike the specific neural and behavioural effects of D1R blockage (Sawaguchi and 

Goldman-Rakic, 1991; Williams and Goldman-Rakic, 1995), application of D2/3R 

antagonists in the frontal cortex produced general inhibitions in firing rates, seemingly 

unrelated to task performance (Williams and Goldman-Rakic, 1995). This could suggest 

that the D1R mediates attentional changes in neural gain. Indeed, the modulation by 

D1R antagonists followed an inverted-U dose response curve, implying the need for a 

delicate balance of DA for optimal performance.  

Additional to the effects of D1R stimulation, Ott et al. (2014) found effects on more 

abstract rule-based decision making by stimulating D1R or D2R with the specific D1R 

agonist (SKF81297), antagonist (SCH23390) or D2R agonist (quinpirole) in the prefrontal 

cortex. Monkeys compared the number of dots by judging whether there were more or 

less in a test versus a sample stimulus. The specific rule, less or greater than, within a 

given trial depended on the cue presented between the sample and test stimulus. 

Because cues from different sensory modalities were used to indicate the same rule and 
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cues from the same modality were used to indicate different rules, neural activity related 

to specific physical properties of the cue was dissociated from the rule that it 

represented. Ott et al. (2014) found that the application of both the D1R and D2R agonist 

increased the differentiation between the neural representations for the preferred over 

the non-preferred rule, whereas this difference was decreased by administration of the 

D1R antagonist. Interestingly, D1R and D2R stimulation influenced rule coding in a 

different manner. Although both similarly increased the difference in the representation 

of preferred versus non-preferred rule coding, D1R stimulation increased the responses 

to the preferred rule, whereas D2R stimulation decreased the responses to the non-

preferred rule. In this study, the pattern of DA stimulation thus resembled the bimodal 

gain change depicted in Figure 1-2c. These results show that D1R and D2R have 

complementary roles in enhancing the neural representation of rule-based decision 

making and that DA influences executive cognitive functions.  

DA can have both excitatory and inhibitory effects, depending on the type of cell that is 

targeted. During a working memory paradigm, Jacob et al. (2013) iontophoretically 

released DA in the lateral prefrontal cortex whilst recording from nearby neurons. DA 

selectively inhibited fast-spiking and excited broad-spiking cells. Cells that were 

differently affected by the application of DA were moreover found to process visual 

stimuli on different temporal scales. Cells that were inhibited by DA showed fast visual 

responses and their firing rates were affected quickly after DA application. On the 

contrary, cells that were excited by DA responded to visual stimuli on a slower timescale 

and reached peak modulation by DA only after several minutes. By differently targeting 

distinct cell types on different time scales, DA is in the unique position to modulate the 

flow of information after stimulus presentation.  

Finally, the administration of DA in one area can also exert effects on other areas up- or 

downstream along the visual pathway (Noudoost and Moore, 2011a). Indeed, 

administration of a D1R antagonist (SCH23390), but not a D2R agonist, in the frontal eye 

fields (FEF) enhanced orientation selectivity, response magnitude and response 

reliability in area V4, comparable with the effects of top-down attention (Noudoost and 

Moore, 2011a). However, as acknowledged by the authors, these studies do not exclude 

the possibility that these signals stimulate other areas (e.g. LIP), i.e. the effects might 

not be direct, but instead mediated by other structures. As mentioned above, almost all 

FEF neurons that provide feedback to V4 reveal delay-period activity during working 

memory tasks (Merrikhi et al., 2017). It therefore seems likely that D1R stimulation in 

FEF influences attention-related V4 activity by modulating sensory input (Noudoost and 

Moore, 2011a) through modulation of cells that show delay period activity. Indeed, D1R 

expression is higher in supragranular layers, where most feedback projections originate 

(Markov et al., 2014), compared to infragranular layers (Mueller et al., 2019). D2R, on the 

other hand, might be more involved in regulation of motor output (Soltani et al., 2013).  

From the above studies it becomes clear that both D1R and D2R play a role in attentional 

processes. On a cellular level DA has selectively been investigated in the context of 

frontal/prefrontal functioning, often based on the argument that dopaminergic receptor 

density in other regions such as the posterior/parietal cortex is rather sparse. However, 
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this notion was derived from rodent data, while in primates DA innervation is 

comparatively strong, matching that of many primate prefrontal areas (Berger et al., 

1991; Lewis et al., 1988).  

As opposed to acetylcholine and noradrenaline (see below), dopamine has not been 

described as a main driver to influence cortical state fluctuations (Harris and Thiele, 

2011; Lee and Dan, 2012). Several studies, however, suggest a modulatory role for 

dopamine in controlling cortical state. Bath application of dopamine increases the 

excitability of pyramidal cells as shown by intracellular membrane potential recordings 

in rodent (Yang and Seamans, 1996) and in primate (Henze et al., 2000) prefrontal cortex 

(PFC) slices. Excitability was specifically enhanced by lowering action potential 

thresholds, increasing firing to a depolarising current step, and decreasing inter-spike-

intervals. This enhancement is mediated by D1R, as application of D1R-antagonist 

SCH23390, but not D2R-antagonist sulpiride, prevented the increased excitability 

(Henze et al., 2000). Furthermore, intracellular recordings in rats have revealed that 

stimulation of VTA, but not hippocampal or thalamic afferents, increases the duration 

of cortical up-states of medial or orbital PFC pyramidal cells (Lewis and O’Donnell, 

2000). Again, this effect was mediated by D1R, as systemic injections of SCH23390 

prevented the modulation of up-state durations.  

 

1.6.1.2 - Noradrenaline 

LC has two main modes of activity, a tonic continuously firing mode and a phasic 

bursting mode (Usher et al., 1999). Together these modes reveal a close relationship to 

arousal (Foote et al., 1980) and behavioural performance during sensory detection tasks 

(Aston-Jones, 1985; Aston-Jones et al., 1994; Aston-Jones and Bloom, 1981; Clayton, 2004; 

Rajkowski et al., 2004, 1994; Usher et al., 1999). They have been hypothesised to 

adaptively adjust the gain of widespread cortical circuits, thereby facilitating or 

disengaging from task-specific processes (Aston-Jones and Cohen, 2005a). With low 

tonic activity, performance is low because of drowsiness or inattentiveness, and with 

high tonic activity, performance is low because the subject is in a distractible (or 

inflexible) behavioural state. Both during low and high tonic activity, phasic responses 

to target stimuli are small or largely absent. On the other hand, with intermediate tonic 

activity phasic responses to target stimuli are prominent and behavioural performance 

is accurate (Aston-Jones et al., 1994). Tonic LC activity, reflecting arousal, has therefore 

been suggested to follow the Yerkes-Dodson law (Yerkes and Dodson, 1908), which 

proposed that arousal and performance follow an inverted-U relationship. 

NA acts on 3 receptor families: alpha-1, alpha-2 and beta-adrenergic receptors (α1-AR, 

α2-AR, β-AR), of which there are several subtypes (e.g. alpha-2A, alpha-2B, etc.) 

(Arnsten, 1998). These subclasses of receptors, depending on their location and dosage, 

often have opposing effects on cellular activity and cognitive functioning (Arnsten, 1998; 

Thiele and Bellgrove, 2018). Whereas α1-AR stimulation generally causes excitation, 

stimulation of α2-AR causes inhibition and β-AR stimulation increases excitability 

(Berridge and Waterhouse, 2003; Devilbiss and Waterhouse, 2000; Thiele and Bellgrove, 
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2018). This opposing functionality of different receptor subtypes, in addition to their 

different affinities for NA, could explain the inverted-U shaped relationship between NA 

levels and performance (Arnsten, 1998; Aston-Jones and Cohen, 2005a; Thiele and 

Bellgrove, 2018). Lower levels of NA might engage the higher affinity α2-AR, improving 

working memory performance (see below), whereas higher levels of NA can additionally 

engage the lower affinity α1-AR, impairing task-related performance (Arnsten, 2011, 1998; 

Aston-Jones and Cohen, 2005a; Thiele and Bellgrove, 2018). Given the spread and 

abundance of NA terminals throughout the brain, NA is capable of acting on and 

modulating vast numbers of distributed cellular populations (Séguéla et al., 1990), and 

is therefore in a unique position of modulating cognitive behaviour. NA receptors most 

often associated with cognitive functions such as working memory are postsynaptic α-

2A-adrenoceptors (α2A-AR) (Arnsten, 1998).  

Cellular evidence of the association of NA in attentional processes comes from 

extracellular recordings of the LC (Aston-Jones and Cohen, 2005b). Aston-Jones et al. 

(1994) investigated LC neural activity in monkeys performing an oddball discrimination 

task, testing their ability to detect and respond to unpredictable and infrequent target 

cues embedded amongst distractor stimuli. LC neurons showed selective phasic activity 

after target presentation, but did not respond to distractor presentation, fixation spot 

onset, lever presses or juice rewards. Moreover, when switching the stimuli used for 

target and distractor, the target response profile reversed and neurons became 

selectively active for the new target stimuli (Aston-Jones et al., 1997, 1994). These results 

show that LC selectively responds to task-relevant stimuli, ignoring non-targets.  

Alongside phasic responses, variations in tonic activity predicted variations in 

behavioural performance (Rajkowski et al., 1994). During periods of poor behaviour, the 

monkey could less reliably distinguish between targets and distractors, and the tendency 

to respond to any stimulus increased. This behavioural variation correlated with LC 

phasic response magnitude, during periods of high performance the onset of LC phasic 

activity correlated strongly with the timing of the behavioural response (Aston-Jones et 

al., 1994). Indeed, Clayton et al. (2004) found the LC activity to be more tightly coupled 

to the behavioural response than to the presentation of the target stimulus. Thus, an 

important characteristic of phasic LC activity is that its timing and widespread 

projections allows for fast acting effects on distributed brain regions and behaviour, 

influencing the stimulus-response relationship within the same trial. Thus, task-related 

decision processes may be facilitated by phasic LC firing whereas a lack of phasic 

responses, also characterised by higher tonic activity, helps to disengage from the task 

at hand and explore other options (Aston-Jones and Cohen, 2005b). This task 

(dis)engagement due to variations in tonic LC activity could be related to the variations 

in neural gain that lead to differences in task strategy (Eldar et al., 2013). Indeed, in a 

model of LC activity, phasic and tonic modes were mimicked solely by varying 

interaction strengths between LC neurons (Usher et al., 1999). Their output directly 

determined the neural gain of other nodes in the network, which reproduced all the 

behavioural signatures described above.  
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In a cued target detection task, clonidine, an α2-AR agonist, has similar effects (see 

section 1.6.1.1 - above) on spatial attention as droperidol (Clark et al., 1989), it did not 

show an effect on the benefit of valid cueing but it decreased the cost of invalid cueing. 

This result implicates both CA in the disengagement or the shifting of attention. Similar 

effects of disengagement and orienting of attention have been found in patients with 

parietal, but not with frontal, midbrain or temporal lesions (Posner et al., 1984). These 

two findings, taken together, potentially implicate CA in the parietal cortex in these 

attentional processes. In addition to spatial cues, Coull et al. (2001) also used temporal 

cueing in a visuospatial orienting task while subjects were administered with clonidine 

or guanfacine, both α2-AR agonists. After the administration of clonidine, but not 

guanfacine, impairments in the behavioural alerting effect and temporal attentional 

orienting were found. Moreover, clonidine speeded reaction times to invalidly cued 

targets in the spatial orienting task compared to placebo. Indicating that attentional 

focus was not just directed towards the target but also towards the distractors, 

facilitating attentional shifts. In addition to an effect on distractor suppression, 

clonidine also attenuated BOLD activity in the parietal cortex during spatially, but not 

during temporally cued trials, implicating α2-AR in parietal cortex in spatial distractor 

suppression.  

Because both guanfacine and clonidine act upon α2-AR it was unexpected that 

guanfacine did not affect behavioural performance (Coull et al., 2001). According to the 

authors, this could be caused either by the use of an insufficient dose of guanfacine to 

alter NA activity or it could be due to differences in the affinities of the drugs for different 

receptor subtypes. Arnsten et al. (1988) reported a similar dissociation between different 

α2-AR agonists, albeit of opposite sign. They tested the effects of 3 separate α2-AR 

agonists (clonidine, guanfacine and B-HT920) on delayed memory performance of aged 

monkeys and found stronger and longer lasting effects using guanfacine compared to 

the other drugs. Interestingly, the in- or decrease in behavioural performance was dose-

dependent for all drugs tested, but showed opposite signs across them. Whereas with 

little, intermediate and large amounts of drugs, performance respectively decreased, 

increased and decreased for clonidine and B-HT920. Guanfacine, although also acting 

on the α2-AR, showed the opposite relationship, possibly by acting on different α2 

receptor subtypes or because of differences in its effect on pre- or  postsynaptic receptors 

(Arnsten et al., 1988). Thus in- or decreases of α2-AR stimulation is associated with task-

related changes in behaviour as well as functional magnetic resonance imaging (fMRI) 

activity. The effects of these drugs on the BOLD response in specific brain areas cannot, 

however, unquestionably be attributed to effects occurring within these areas 

themselves. As, for example, an effect of these drugs on the input signals to these areas 

may have brought about the observed changes in activity. The only way to elucidate the 

role of a neurotransmitter within an area is to administer the drug directly to this region.  

Cellular effects of NA during cognitive tasks have focused on the effects of α2-AR during 

working memory (Li et al., 1999; Wang et al., 2007). Both systemic and local 

administration of α2-AR agonist clonidine increases dlPFC firing during a delayed 

response task. This effect was reversed by local iontophoretic application of α2-AR 
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antagonist yohimbine, confirming the local noradrenergic effect on α2-AR (Li et al., 

1999). In an elegant series of experiments, Wang et al. (2007) revealed that stimulating 

α2A-AR promoted spatial mnemonic firing of frontal neurons in a dose-dependent 

manner. Interestingly, similar effects were found by blocking hyperpolarisation-

activated cyclic nucleotide-gated (HCN) channels. Low doses of HCN antagonists 

improved direction selective firing, slightly higher levels improved selectivity but also 

increased overall firing rates, whereas higher levels impaired or did not affect cognitive 

function. Because α2A-ARs are thought to affect endogenous levels of cAMP which in 

turn affects the opening and closing of HCN channels, the authors next investigated the 

effects of both inhibition and amplification of cAMP levels and found in- and decreased 

delay related firing for the preferred direction of the cell, respectively. This suggested 

inhibitory effects of α2A-ARs on cAMP production, which blocks HCN channels. Indeed, 

either amplification of cAMP actions or blocking HCN channels reversed the effects of 

the application of α2A-AR agonists and antagonists. Altogether, these results show that 

NA affects working memory functioning, by altering cAMP mediated HCN channel 

function in frontal cortex.  

In addition to the role of NA in arousal, goal-directed behaviour, and likely also selective 

attention (described above) NA has been found to influence specific signatures of 

cortical state. Direct stimulation or inhibition of LC respectively induces cortical 

depolarisation and desynchronisation or hyperpolarisation and synchronisation of 

frontal cortex in rats (Berridge and Foote, 1991; Berridge et al., 1993). Furthermore, local 

application of NA drugs can induce changes in neural activity associated with cortical 

state changes.  

Constantinople et al. (2011) described the effects of anaesthesia and wakefulness on rat 

barrel cortex Vm. During anaesthesia, barrel cortex Vm displayed prolonged periods of 

synaptic quiescence alternated with short ‘up-state’ periods of increased activity during 

which Vm was more depolarised and desynchronised. Consequently, Vm displayed a 

bimodal distribution during anaesthesia. Similar to the activity during up-states, 

transitioning from the anaesthetised to the awake state eliminated the synaptic 

quiescence and induced a depolarised and desynchronised Vm. Local application of ACh 

(see section 1.6.2.1 - below) and NA markedly affected the effects of wakefulness on Vm. 

Infusion of various concentrations of NA α1, α2 or β antagonists (prazosin, yohimbine 

and propranolol, respectively) prevented cells from achieving prolonged depolarisation, 

under both anaesthesia and wakefulness, and resulted in bimodality of cortical Vm 

during wakefulness. Similarly, Polack et al. (2013) investigated the role of ACh (see 

section 1.6.2.1 - below) and NA in the changes elicited by locomotion on neuronal 

(network) activity in mouse V1. During locomotion, compared to stationary periods, the 

LFP and Vm were more depolarised, desynchronised, and showed less variability. 

Blocking NA activity through local injections of both low and high doses of α1, α2 and β 

noradrenergic receptor antagonists (prazosin, yohimbine and propranolol, respectively) 

led to Vm hyperpolarisation and it strongly decreased spontaneous variability and firing 

rate. Moreover, it abolished the depolarisation associated with locomotion. These 
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studies thus revealed a crucial role for NA in state-associated modulation of neuronal 

activity. 

 

1.6.2 - Other neuromodulators 

1.6.2.1 - Acetylcholine  

Acetylcholine (ACh) is present both in the peripheral and central nervous system and 

acts on two receptor types, the ionotropic/nicotinic (nACh) and metabotropic (mACh) 

ACh receptor (Thiele, 2013). The cortex receives cholinergic projections from the nucleus 

basalis (NB), located inside the basal forebrain (BF) (Thiele, 2013). Both receptor types, 

but especially the mACh, have been implicated in cognitive functions such as attention 

and working memory (Levin and Simon, 1998a; Warburton and Rusted, 1993). There are 

various subtypes of the nACh receptor, composed of numerous possible arrangements 

consisting mainly of different α and β subunits (Dani and Bertrand, 2007). There are five 

subtypes of the mACh receptor (M1-M5), with M1, M2 and M4 most abundant in cortex, 

that subdivide into M1-type (M1, M3 and M5) and M2-type (M2 and M4) receptors, based 

on the family of G-proteins they interact with (Thiele, 2013).  

Similar to NA and DA, ACh was originally implicated in relatively unspecific functions, 

such as the sleep-wake cycle and arousal, affecting brain-wide activity (Everitt and 

Robbins, 1997). However, lesion studies (Voytko et al., 1994) and systemic drug 

manipulations (Witte et al., 1997) in monkeys suggested their more specific involvement 

in cognitive functions such as attentional orienting. More specifically, nACh stimulation 

decreased the validity effect, the benefit in behavioural performance obtained from 

being validly cued to a spatial location, whereas mACh blockade (atropine) mainly 

affected alerting effects by decreasing the benefit obtained from being presented with a 

temporally (non-spatial) informative cue (Witte et al., 1997). Furthermore, systemic 

injection of mACh antagonist scopolamine affects attentional orienting in monkeys 

(Davidson et al., 1999). These orienting effects might be driven by parietal cortex, as the 

local infusion of scopolamine slowed attentional orienting, with stronger effects for the 

region of visual space affected by the drug administration (Davidson and Marrocco, 

2000).  

Cholinergic modulation of attention is furthermore bidirectional, inhibiting cholinergic 

functioning can decrease behavioural performance whereas stimulation can increase 

performance (Furey et al., 2008). Here, human subjects performed a task in which face 

and house stimuli were to be discriminated (matching task) in small blocks of five to 

seven trials. Overall, subjects displayed a bias to face stimuli, as reaction times were 

faster when attention was directed to faces compared to houses. Systemic injections of 

anticholinesterase physostigmine (reuptake inhibitor) improved task performance 

especially when attending to house stimuli. Scopolamine, on the other hand, reduced 

performance when attending to face stimuli. Because face stimuli were preferentially 

processed, this indicated that ACh can selectively modulate the ability to attend to 

houses (and suppress salient distracting information) and thus suggests that ACh 
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influences stimulus processing both through stimulus-driven and goal directed 

mechanisms. Additionally, as these effects were stronger during the later trials of the 

block, rather than the first trial after switching attention from face to house stimuli or 

vice-versa, ACh was thought to affect the maintenance of attention, rather than 

attentional switching (Furey et al., 2008). Furthermore, temporally precise phasic 

transients of ACh in prefrontal cortex aid cue detection during attention tasks in rats 

(Parikh et al., 2007). Deafferentation of cholinergic inputs to PFC can moreover reduce 

behavioural performance during attention in rats (Parikh et al., 2007) and spatial 

working memory in monkeys (Croxson et al., 2011). The increased ACh in frontal cortex 

with attention is further amplified by making the task more challenging with the 

introduction of distracting stimuli (St. Peters et al., 2011). Together, these results suggest 

a strong influence of ACh on both bottom-up salience processing, as well as top-down 

attentional signals.  

Recent studies have also described the cellular effects that supported a role of ACh 

during cognitive functions such as attention. Herrero et al. (2008) revealed the 

attentional effects of ACh in Macaque V1 during a spatial luminance change detection 

task. Firstly, iontophoretic application of ACh increased attentional rate modulation, 

showing that ACh affects attentional signals as early as V1. Next it was shown that ACh-

mediated amplification of attention was dependent on muscarinic, but not nicotinic 

receptor subtypes. Whereas the nicotinic antagonist mecamylamine did not affect 

attentional coding, the muscarinic antagonist scopolamine decreased attentional signals 

(Herrero et al., 2008). In early visual areas, nicotinic receptors are mainly found either 

presynaptically on thalamic efferents to V1, or on interneurons within V1, and influence 

response gain and contrast detection specifically in the V1 input layer (Disney et al., 

2007). As nicotinic receptors do not contribute to attentional signals in V1 (Herrero et 

al., 2008) but have behavioural effects during attentional tasks (Levin and Simon, 1998b), 

they have been suggested to contribute to cognitive processing in higher-order areas 

(Thiele and Bellgrove, 2018). Indeed, iontophoretic application of either mecamylamine 

or the specific nicotinic α7 antagonist methyllycaconitine in Macaque dlPFC decreased 

delay period firing during a spatial working memory task (Yang et al., 2013). Various 

selective α7 agonists, on the other hand, increased delay period firing activity, and their 

effects were found to follow an inverted-U shaped dose response curve. These 

cholinergic effects on working memory were moreover shown to depend on NMDA 

receptors, responsible for the maintenance of recurrent excitation of pyramidal cells 

during working memory (Wang et al., 2013), as the effects of both NMDA and NMDA 

blockers were reversed by α7 antagonists and agonists, respectively (Yang et al., 2013). 

Additional to a role for nicotinic receptors in working memory, systemic (Zhou et al., 

2011) or local (Major et al., 2015) application of the muscarinic antagonist scopolamine 

decreased spatial or rule-based delay-period firing in Macaque dlPFC.  

In addition to the effects of ACh on cognitive functions such as attention and working 

memory, similar to NA, ACh also influences specific neuronal signatures of cortical state. 

Electrical stimulation of the NB elicited desynchronisation of EEG over rat auditory 

cortex (Metherate et al., 1992). Additionally, both systemic as well as local application of 
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the muscarinic antagonist atropine prevented the desynchronisation due to NB 

stimulation, and increased Vm synchronisation. Interestingly, the effect of NB 

stimulation on auditory cortex was specific to a subset of stimulation locations, 

suggesting that the topographic nature of NB projections could produce localised 

desynchronisation. Furthermore, although local electrical stimulation in auditory cortex 

increased firing rates, it did not alter the pattern of Vm fluctuations (Metherate et al., 

1992). This suggested that cortical desynchronisation does not solely rely on mere 

excitatory input, but that modulatory influences (such as ACh) are required for state 

changes. Similar results were described by Polack et al. (2013), who found that local 

perfusion of atropine or nACr antagonist mecamylamine specifically elicited cortical 

synchronisation, but did not prevent the locomotion-induced depolarisation of mouse 

V1 Vm (see above). Together these studies thus described dissociable effects of NA and 

ACh on cortical state, NA affected Vm depolarisation whereas ACh affected 

desynchronisation.  

Simultaneous BF stimulation and V1 recording studies have allowed the characterisation 

of ACh-induced desynchronisation on sensory coding (Goard and Dan, 2009; Minces et 

al., 2017; Pinto et al., 2013). Electrical stimulation of NB in anaesthetised rats increased 

the trial-to-trial reliability of visual responses to natural movies, and decreased the 

between cell correlation of activity (Goard and Dan, 2009). Together, these effects 

improved stimulus classification, and decreased the redundancy between cells. The 

degree of decorrelation was reduced by local application of atropine, suggesting that 

desynchronisation is (partly) dependent on local ACh muscarinic receptor activation. It 

is, however, impossible to unequivocally ascribe these effects to cholinergic neurons of 

the BF, as electrical stimulation likely also engages non-cholinergic cells. Moreover, it is 

uncertain whether the effects in V1 rely (in part) on network effects, as other brain areas 

affected by BF stimulation could bring about the reported activity changes in V1. In a 

follow up study, Pinto et al. (2013) addressed these limitations by injecting a viral 

construct in the BF that selectively targeted cholinergic neurons, and optogenetically 

stimulating and recording in V1. Both BF and V1 stimulation elicited desynchronisation 

in V1, improved sensory coding, and increased behavioural performance in orientation 

discrimination. Additionally, inhibiting the BF had the opposite effect. In a re-analysis 

of this dataset Minces et al. (2017) suggested that ACh modulated sensory coding by 

influencing the signal-to-noise ratio of the population by affecting the relationship 

(slope) between signal and noise correlations, an effect found critical for population 

information coding (Averbeck et al., 2006; van Kempen et al., 2017). Cholinergic 

stimulation specifically increased the ability of neural responses to vary across different 

stimuli (signal), but left the trial-to-trial variability of responses to the same stimuli 

(noise) unchanged (Minces et al., 2017; van Kempen et al., 2017). Importantly, as 

mentioned above, selective attention has previously been described to have a similar 

effect on the population correlation structure in Macaque V4 (Ruff and Cohen, 2014). 

Altogether, these studies reveal a clear role for ACh in the modulation of attentional 

processes and cortical state fluctuations.  
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1.7 - Pupil diameter 

Pupil diameter controls the amount of light that hits the retina through the pupillary 

light reflex (PLR), which constricts the pupil upon retinal luminance increases 

(Loewenfeld, 1993; McDougal and Gamlin, 2014). Pupillary dynamics are controlled 

through a small network that receives input from both the sympathetic (‘fight-or-flight’) 

and parasympathetic (‘rest-and-digest’) autonomic nervous system and drives the iris 

sphincter and dilator pupillae that constrict and dilate the pupil, respectively 

(Loewenfeld, 1993; McDougal and Gamlin, 2014). Retinal stimulation is relayed via 

bilateral efferents to the pretectal olivary nucleus of the midbrain, which projects 

bilaterally to the Edinger-Westphal (EW) nucleus. From here, projections via the ciliary 

ganglion stimulate the iris sphincter muscle (McDougal and Gamlin, 2014). Additional 

control of pupil size is provided by the dilator muscle, stimulated through sympathetic 

innervation via the superior cervical ganglion (McDougal and Gamlin, 2014). In addition 

to responding to increases and decreases in luminance, pupil diameter also reflects 

central arousal levels and the cognitive state of animals and humans (Aston-Jones and 

Cohen, 2005a; Gilzenrat et al., 2010; McDougal and Gamlin, 2014; McGinley et al., 2015b), 

potentially driven via direct or indirect projections from the superior colliculus (Wang 

and Munoz, 2015a).  

Direct electrophysiological and imaging recordings in animals (Aston-Jones and Cohen, 

2005a; Joshi et al., 2016; Reimer et al., 2016; Varazzani et al., 2015) as well as indirect fMRI 

recordings in humans (de Gee et al., 2017; Murphy et al., 2014a) suggest that under 

conditions of constant illumination, fluctuations in pupil diameter can index activity in 

multiple of the neuromodulatory nuclei discussed above. Although originally associated 

with activity in the LC (Aston-Jones and Cohen, 2005a), more recent research has 

highlighted that fluctuations in pupil diameter are also partly dependent on activity in 

other neuromodulatory centres. Indeed, pupil diameter not only tracks LC activity, but 

may also reflect cortical cholinergic activity (Reimer et al., 2016). Rapid changes in pupil 

dilation, the pupil derivative, were strongly related to cortical NA activity, whereas 

slower changes in pupil diameter correlated more strongly with the sustained activity in 

cholinergic axons (Reimer et al., 2016). Additionally, fMRI activity in other 

neuromodulatory nuclei, such as the dopaminergic substantia nigra and ventral 

tegmental area, as well as the cholinergic basal forebrain, were also found to correlate 

with pupil diameter (de Gee et al., 2017). In addition to its relationship to activity in 

these neuromodulatory nuclei, pupil diameter also correlates to activity in non-

neuromodulatory brainstem nuclei, such as the superior colliculus (de Gee et al., 2017; 

Joshi et al., 2016; Wang et al., 2012; Wang and Munoz, 2015a). The activity in LC, however, 

displayed activity most strongly time-locked to pupillary dilations and might reflect LC 

mediated coordination of neuronal activity throughout distributed parts of the brain 

(Joshi et al., 2016).  

Basic sensory and cognitive functioning varies strongly with neuromodulator availability 

(Harris and Thiele, 2011; Thiele and Bellgrove, 2018), and may thus be tracked by 

pupillary measures. It has been suggested that pupil diameter measured in a pre-target 

time window (baseline pupil diameter) is a reflection of the tonic mode of the LC, and 
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pupillary responses post stimulus-onset (task-evoked pupil diameter) reflect the 

complimentary phasic LC response (Einhäuser et al., 2010; Eldar et al., 2013; Gilzenrat et 

al., 2010). Because of its relationship with additional neuromodulators, this hypothesis 

may extend to the tonic and phasic responses of other neuromodulatory nuclei. Indeed, 

under conditions of constant illumination, both baseline pupil diameter (Gilzenrat et 

al., 2010; Kristjansson et al., 2009; McGinley et al., 2015a; Murphy et al., 2011) as well as 

the size of the pupillary response (Beatty, 1982a; Kristjansson et al., 2009) can be 

predictive of behavioural performance. Additionally, the pupil response has been shown 

to vary systematically with a variety of cognitive processes such as solving multiplication 

problems (Hess and Polt, 1964), attention (Hoeks and Levelt, 1993), visual target 

detection (Privitera et al., 2010, 2008), and has also been related to decision making 

(Cheadle et al., 2014; de Gee et al., 2017, 2014; Einhäuser et al., 2010; Murphy et al., 2014b; 

Simpson and Hale, 1969; Urai et al., 2017), generally scaling with the workload required 

to perform the task (Hess and Polt, 1964; Hoeks and Levelt, 1993).  

In conjunction with the relationship between pupil diameter and activity in 

neuromodulatory nuclei, recent research has also revealed a close relationship to various 

(other) measures of cortical and behavioural state (McGinley et al., 2015b). Fluctuations 

in pupil diameter closely track fluctuations in the membrane potential of neurons in 

sensory cortex (McGinley et al., 2015a; Reimer et al., 2014). Specifically, the membrane 

potential variability of visual and somatosensory neurons was reduced during pupil 

dilation versus constriction (Reimer et al., 2014), and a subsequent study reported U-

shaped relationships between baseline pupil diameter and the membrane potential 

variability as well as the evoked spike rate and neural gain of auditory neurons 

(McGinley et al., 2015a). In addition to the effects on neural activity, behavioural 

performance was optimal at intermediate baseline pupil diameter (McGinley et al., 

2015a).  

Additionally, there is some evidence that activity in higher-order association areas also 

varies with pupil diameter. During auditory target detection, human subjects displayed 

the least variable RT at intermediate baseline pupil diameter, as well as the highest 

amplitudes of the P3 event-related potential (ERP), an EEG component measured over 

parietal areas that is reliably elicited by task-relevant stimuli (Murphy et al., 2011). 

Furthermore, larger pupil diameter has been associated with lower spontaneous firing, 

higher signal-to-noise ratios and lower noise correlations in mouse V1 (Vinck et al., 2015) 

as well as increased durations of On episodes, i.e. periods of high firing activity, in 

Macaque V4 (Engel et al., 2016). Additionally, pupil diameter’s strong relationship to 

network activity in mouse V1 (Lu et al., 2017) as well as fMRI measures of brain-wide 

neural gain (Eldar et al., 2013) indicate that these pupillometric measures reflect global 

changes in network state, likely driven by fluctuations in neuromodulatory drive.  

 

1.8 - Outstanding questions and current studies 

Although the (neuromodulatory) mechanisms driving (brain-wide) fluctuations in 

neural excitability, as well as their effect on sensory processing and behaviour, are 
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starting to be elucidated, the spatiotemporal scale on which these fluctuations occur, 

their effects on other stages of information processing, their interaction with cognitive 

functions, and their modulation by specific receptor agonists and antagonists during 

cognitive tasks are largely unknown.  

In this thesis, I investigate these unknown characteristics by studying cortical state 

fluctuations across spatiotemporal scales and across species. To explore the effects of 

global excitability fluctuations, I investigated the effects of central arousal, as measured 

by pupil diameter, on activity throughout the brain during perceptual decision-making 

in human subjects. Here, I found that fluctuations in both tonic and phasic arousal 

affected behavioural performance as well as specific EEG signatures associated with 

successive neural processing stages of decision-making, revealing that pupil-linked 

arousal affects brain-wide task-related activity. 

In the following two studies, In order to investigate these fluctuations on smaller 

spatiotemporal scales, I studied cortical state and selective attention in Macaque 

monkeys. First, I focused on how selective attention influences cortical state in and 

between Macaque V1 and V4. I describe how the local effects of top down attention 

modulate signatures of cortical state in each area individually, and how selective 

attention and the coordination of cortical state across areas interact to support 

behaviour. 

Finally, in the third study, I examined the role of dopamine in the posterior parietal 

cortex during top-down attention. Specifically, I tested the effects of iontophoretic 

application of dopaminergic drugs on single and multi-unit activity in parietal cortex 

during top-down attention. Dopamine inhibited activity across the population of 

recorded cells, this modulation furthermore followed an inverted U-shaped dose-

response curve for dopamine, and a monotonically increasing function for the D1-

selective antagonist. In addition to general firing rate changes, for particular cell types, 

activity specific to top-down attention was affected. These results confirmed that 

dopamine plays an important role in shaping neural activity, including during selective 

attention, in parietal cortex. 
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2.1 - Abstract 

The timing and accuracy of perceptual decision making is exquisitely sensitive to 

fluctuations in arousal. Although extensive research has highlighted the role of various 

neural processing stages in forming decisions, our understanding of how arousal impacts 

these processes remains limited. Here we isolated electrophysiological signatures of 

decision making alongside signals reflecting target selection, attentional engagement 

and motor output and examined their modulation as a function of tonic and phasic 

arousal, indexed by baseline and task-evoked pupil diameter, respectively. Reaction 

times were shorter on trials with lower tonic, and higher phasic arousal. Additionally, 

these two pupil measures were predictive of a unique set of EEG signatures that together 

represent multiple information processing steps of decision making. Finally, behavioural 

variability associated with fluctuations in tonic and phasic arousal, indicative of 

neuromodulators acting on multiple timescales, was mediated by its effects on the EEG 

markers of attentional engagement, sensory processing and the variability in decision 

processing. 

 

2.2 - Introduction 

The speed and accuracy with which humans, as well as non-human animals, respond to 

a stimulus depends not only on the characteristics of the stimulus, but also on the 

cognitive state of the subject. When drowsy, a subject will respond more slowly to the 

same stimulus compared to when she is attentive and alert. Central arousal also 

fluctuates across a smaller range during quiet wakefulness, when the subject is neither 

drowsy nor inattentive, nor overly excited or distractible. Although these trial-to-trial 

fluctuations can impact on behavioural performance during decision making tasks 

(Aston-Jones and Cohen, 2005a), it is largely unknown how arousal modulates the 

underlying processes that support decision formation. Perceptual decision making 

depends on multiple neural processing stages that represent and select sensory 
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information, those that process and accumulate sensory evidence, and those that 

prepare and execute motor commands. Variability in central arousal could affect any 

one or potentially all of these processing stages, which in turn could influence 

behavioural performance. 

The neuromodulatory systems that control central arousal state, such as the 

noradrenergic (NA) locus coeruleus (LC) and the cholinergic basal forebrain (BF), have 

also been suggested to drive fluctuations in endogenous activity linked to changes in 

cortical (de)synchronisation, i.e. cortical state (Harris and Thiele, 2011; Lee and Dan, 

2012). They are furthermore linked to cognitive functions such as attention (Thiele and 

Bellgrove, 2018), both known to affect information processing and behavioural 

performance. These modulatory systems have both tonic and phasic firing patterns that 

are recruited on different timescales and support different functional roles (Aston-Jones 

and Cohen, 2005a; Peter Dayan and Yu, 2006; Parikh et al., 2007; Parikh and Sarter, 2008; 

Sarter et al., 2016). Tonic changes in neuromodulator activity occur over longer 

timescales that can span multiple trials, whereas fast (task-evoked) recruitment through 

phasic activation occurs on short enough timescales to influence neural activity and 

behavioural decisions within the same trial (Aston-Jones and Cohen, 2005a; Bouret and 

Sara, 2005; Peter Dayan and Yu, 2006; Parikh et al., 2007).  

Pupil diameter correlates strongly with a variety of measurements of cortical state and 

behavioural arousal (Eldar et al., 2013; Engel et al., 2016; McGinley et al., 2015b, 2015a; 

Reimer et al., 2014; Vinck et al., 2015), and can thus be considered a reliable proxy of 

central arousal state. Indeed, there is a strong correlation between pupil size and activity 

in various neuromodulatory centres that control arousal (Aston-Jones and Cohen, 2005a; 

de Gee et al., 2017; Gilzenrat et al., 2010; Joshi et al., 2016; Murphy et al., 2014a; Reimer et 

al., 2016; Varazzani et al., 2015). Both pre-stimulus baseline pupil diameter, reflecting 

tonic activity levels in neuromodulatory centres (tonic arousal), and task-evoked pupil 

diameter changes (phasic arousal), have been related to specific neural processing stages 

of perceptual decision making. Baseline pupil diameter correlates with sensory 

sensitivity (McGinley et al., 2015a, 2015b) and is predictive of behavioural performance 

during elementary detection tasks (McGinley et al., 2015a; Murphy et al., 2011). Pupil 

diameter also changes phasically in the course of a single decision (Beatty, 1982b; de Gee 

et al., 2017, 2014; Lempert et al., 2015; Murphy et al., 2016; Urai et al., 2017), and has been 

related to specific elements of the decision making process, such as decision bias (de 

Gee et al., 2017, 2014), uncertainty (Urai et al., 2017), and urgency (Murphy et al., 2016). 

This suggests that these neuromodulatory systems do not only dictate network states 

(through tonic activity changes), but that they are recruited throughout the decision 

making process (Cheadle et al., 2014; de Gee et al., 2017, 2014). Although both baseline 

pupil diameter and the phasic pupil response have been associated with specific aspects 

of decision making, the relationship between pupil-linked arousal and the 

electrophysiological correlates of decision making are largely unknown.  

Recently developed behavioural paradigms have made it possible to non-invasively 

study the individual electroencephalographic (EEG) signatures of perceptual decision 

making described above (Kelly and O’Connell, 2013; Loughnane et al., 2018, 2016; 



 
35 

 

Newman et al., 2017; O’Connell et al., 2012). In these paradigms, participants are required 

to continuously monitor (multiple) stimuli for subtle changes in a feature. Because 

stimuli are presented continuously, target onset times (and locations) are unpredictable, 

and sudden stimulus onsets are absent, eliminating sensory evoked deflections in the 

EEG traces. These characteristics allow for the investigation of the gradual development 

of build-to-threshold decision variables as well as signals that code for the selection of 

relevant information from multiple competing stimuli, a critical feature of visuospatial 

attentional orienting that impact evidence accumulation processes (Loughnane et al., 

2016). 

Here, we asked how arousal influences EEG signals that relate to each of the separate 

processing stages described above. Specifically, we tested the effects of pupil-linked 

arousal on pre-target preparatory parieto-occipital α-band activity, associated with 

fluctuations in the allocation of attentional resources (Kelly and O’Connell, 2013); early 

target selection signals measured over contra- and ipsilateral occipital cortex, the N2c 

and N2i (Loughnane et al., 2016); perceptual evidence accumulation signals measured as 

the centroparietal positivity (CPP), which is a build-to-threshold decision variable 

demonstrated to scale with the strength of sensory evidence and predictive of reaction 

time (RT) (Kelly and O’Connell, 2013; O’Connell et al., 2012); and motor-preparation 

signals measured via contralateral β-band activity (Donner et al., 2009; O’Connell et al., 

2012). Of these signals, we extracted specific characteristics such as the latency, build-

up rate and amplitude, and tested whether these were affected by pupil-linked arousal. 

Additionally, because the variance and response reliability of the membrane potential 

of sensory neurons varies with pupil diameter (McGinley et al., 2015a; Reimer et al., 

2014), we also investigated whether arousal affected the inter-trial phase coherence 

(ITPC), a measure of across trial consistency in the EEG signal, of the N2 and the CPP.  

We found that both baseline pupil diameter as well as the pupil response were predictive 

of behavioural performance, and that this relationship was best described by non-

monotonic, but not U-shaped, second-order polynomial model fits. Furthermore, we 

found that both tonic and phasic arousal bore a predictive relationship with the neural 

signals coding for baseline attentional engagement, early target selection, decision 

processing as well as the preparatory motor response. Although neural activity 

representing all these stages varied with changes in arousal, unique variability in task 

performance due to tonic arousal (baseline pupil diameter) could only be explained by 

the amplitude of target selection signals and the consistency of the CPP, reflecting 

decision processing. In contrast, variability due to phasic arousal (pupil response) was 

explained by pre-target α-band activity as well as the consistency of the CPP.  

 

2.3 - Methods  

2.3.1 - Task procedures 

Subjects (n=80, 42 female) and methods are largely overlapping with the details and 

procedures described elsewhere (Newman et al., 2017). Here we summarise details 
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necessary to understand this study, and we also describe procedures that differ from the 

previous study. Healthy right-handed participants, ages 18-37 (mean 23.2 years), with 

normal or corrected-to-normal vision were seated in a darkened room, 56 cm from the 

stimulus display (21 inch cathode ray tube (CRT) monitor, 85 Hz 1024 × 768 resolution), 

asked to perform a continuous bilateral variant (Kelly and O’Connell, 2013; O’Connell et 

al., 2012) of the random dot motion task (Britten et al., 1992; Newsome et al., 1989). 

Subjects fixated on a central dot while monitoring two peripheral patches of 

continuously presented randomly moving dots (Figure 2-5a). At pseudorandom times, 

an intermittent period of coherent downward motion (50%) occurred in either the left 

or the right hemifield. Upon detection of coherent motion, participants responded with 

a speeded right-handed button press. A total of 288 trials were presented over 16 blocks 

(18 trials per block). Data were collected under identical experimental procedures at 

either Monash University, Australia, or Trinity College Dublin, Ireland. The 

experimental protocol was approved by each University’s human research ethics 

committee before testing (Project number Monash University: 3658, Trinity College: 

SPREC012014-1), and carried out in accordance with each University’s approved 

guidelines. Informed consent was obtained from all participants before testing. 

 

2.3.2 - Data acquisition and preprocessing 

Electroencephalogram (EEG) was recorded from 64 electrodes using an ActiveTwo 

(Biosemi, 512Hz) system at Trinity College Dublin, Ireland or a BrainAmp DC 

(Brainproducts, 500Hz) at Monash University, Australia. Data were processed using 

both custom written scripts and EEGLAB functions (Delorme and Makeig, 2004) in 

Matlab (MathWorks). Noisy or broken channels (mean 1.9±0.18 channels, range: 0-7) 

were identified by investigation of the detrended average power spectrum (0.5 – 40 Hz) 

and interpolated. Hereafter, the data were notch filtered between 49-51 Hz, band-pass 

filtered (0.1-35Hz), and rereferenced to the average reference. Data recorded using the 

Biosemi system were resampled to 500Hz and combined with the data recorded with 

the Brainproducts system. Epochs were extracted from -800 to 2800 ms around target 

onset and baselined with respect to -100 to 0 ms before target onset. To minimize volume 

conduction and increase spatial specificity, for specific analyses the data were converted 

to current source density (Kayser and Tenke, 2006). We rejected trials from analyses if 

the reaction times were <150 or >1700 ms after coherent motion onset, or if either the 

EEG on any channel exceeded 100 mV, or if the subject broke fixation or blinked 

(Pupillometry) during the analysis period of the trial, the 500 ms preceding target onset 

(26.59 ± 2.94) for pre-target α power activity or the interval of 100 ms before target onset 

to 200 ms after the response (33.66 ± 3.95). 

Pre-target α-band power (8-13 Hz), N2 amplitude and latency, CPP onset and build-up 

rate and response related β-power amplitude and build-up rate were computed largely 

in the same way as in Newman et al. (2017). Briefly, α-band power was computed over 

the 500 ms preceding target onset using temporal spectral evolution (TSE) methods 

(Thut, 2006), and pooled over two symmetrical parietal regions of interest, using 
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channels O1, O2, PO3, PO4, PO7 and PO8. The N2 components were measured at 

electrodes P7 and P8, ipsi- and contralateral to the target location (Loughnane et al., 

2016; Newman et al., 2017), and the CPP was measured at central electrode Pz. These 

signals were aggregated to an average waveform for each pupil bin and each participant. 

We determined the latency of the N2c/N2i as the time point with the most negative 

amplitude value in the stimulus-locked waveform between 150-400/200-450 ms, while 

N2c/N2i amplitude was measured as the mean amplitude inside a 100 ms window 

centred on the stimulus-locked grand average peak (266/340 ms) (Loughnane et al., 

2016; Newman et al., 2017). 

Onset latency of the CPP was measured by performing running sample point by sample 

point t-tests against zero across each participant’s stimulus-locked CPP waveforms. CPP 

onset was defined as the first point at which the amplitude reached significance at the 

0.05 level for ≥15 consecutive points. Because we decreased our statistical power by 

binning the trials into 5 bins (see pupillometry), we did not find an onset for every bin 

for a subset of subjects (baseline pupil diameter: 13 bins over 11 subjects, pupil response: 

16 bins over 12 subjects). Because of our use of linear mixed effect analyses, these subjects 

could still be included in the analysis, with only the missing values being omitted. Both 

CPP build-up rate and amplitude were computed using the response-locked waveform 

of the CSD transformed data to minimize influence from negative-going fronto-central 

scalp potentials (Kelly and O’Connell, 2013). Build-up rate was defined as the slope of a 

straight line fitted to this signal in the window from -250 ms to -50 ms before response. 

CPP amplitude was defined as the mean amplitude within the 100 ms around the 

response. 

Response related left hemisphere β-power (LHB, 20-35 Hz) was measured over the left 

motor cortex at electrode C3 using short-time Fourier transform (STFT) with a 286 ms 

window size and 20 ms step size (Newman et al., 2017; O’Connell et al., 2012). We 

baselined LHB using an across-trial baseline for each subject. LHB amplitude was 

measured from the response-locked waveform in the window from -130 to -70 ms 

preceding the response, whereas the LHB build-up rate was defined as the slope of a 

straight line fitted to this same waveform in the 300 ms before the response.  

Inter-trial phase coherence (ITPC) was estimated using single-taper spectral methods 

from the Chronux toolbox (Bokil et al., 2010) and adapted scripts. We used a 256 sample 

(512 ms) sliding short time window, with a step size of 25 samples (50 ms). This gave us 

a half bandwidth (W) of 1.95 Hz: W = (K+1)/2T, with K being the number of data tapers, 

K=1, and T (s) being the length of the time window. Frequencies were estimated from 0.1 

to 35Hz. 

 

2.3.3 - Pupillometry 

Eye movements and pupil data were recorded using an SR Research EyeLink eye tracker 

(Eye-Link version 2.04, SR Research/SMI). Automatically identified blinks and saccades 

were linearly interpolated from 100 ms before to 100 ms after the event, the interpolated 



 
38 

 

pupil data was then low-pass (< 6 Hz) or band-pass (0.01-6Hz) filtered (second order 

butterworth). The instantaneous phase of the pupil diameter was calculated by taking 

Figure 2-1. The neural input to the pupil diameter system is best described by a linear up-ramp.(a) The nine 

different general linear models (GLM) fit to the pupil diameter data of three example trials with short (blue), 

medium (red) and long (yellow) reaction times. Top, the canonical pupil input response function (IRF) 

convolved with target onset (black tick mark) and response (coloured tick marks) that were used for all 

models. In addition to target onset and response, models 2-9 also contain a sustained temporal component of 

varying shape. For each model, the left column illustrates the temporal components that described the neural 

input to the pupil diameter system, and the right column illustrates these components convolved with the 

pupil IRF. (b) Bayes Information Criterion (BIC) scores for the nine models fit to the pupil diameter time 

course, relative to the winning model (model 3, linear up-ramp). (c) Effect sizes (t-statistics) for each of the 

temporal components from the linear up-ramp model. Error bars denote ±1 standard error of the mean (SEM). 

Statistics: Wilcoxon signed rank test. This figure is based on Figure 5 in Murphy et al, (2016). 
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the angle of the analytic signal acquired by using the Hilbert transform of the filtered 

data. Epochs were extracted from -800 to 4800 ms around coherent motion onset. Trials 

in which fixation errors or blinks occurred within the analysis period, from 100 ms before 

target onset to 200 ms after response, were excluded from analysis. Fixation errors were 

defined as gaze deviations of more than 3°. The pupil diameter was normalised by 

dividing by the maximum pupil diameter on any trial in the analysis window from 100 

ms before target onset to 200 ms after the response for each subject, and baselined on a 

single trial basis. We computed the baseline pupil diameter by averaging the pupil 

diameter in the 100 ms before target onset, and the baseline phase was calculated as the 

average phase angle in the 100 ms preceding target onset. 

We identified the shape of the neural input to the pupil system by applying various 

general linear models (GLM) to the pupil time course (de Gee et al., 2014; Hoeks and 

Levelt, 1993; Murphy et al., 2016) with two temporal components corresponding to target 

and response onset (all models), and a third sustained component (models 2-9) for 

which the shape varied across eight candidate models tested previously (Murphy et al., 

2016). In model 1, only the stimulus and response onset were modelled. The sustained 

component in the remaining models took the shape of: (model 2) a boxcar component 

with a constant amplitude throughout the decision interval; (model 3) a linear up-ramp 

that grew in amplitude with increasing decision time; (model 4) a ramp-to-threshold; 

(model 5) a linear decay with a starting amplitude that was larger for slower RTs but 

whose amplitude always terminated at zero; (model 6) a linear decay-to-threshold which 

began at a fixed amplitude and terminated at zero; (model 7-9) versions of the boxcar, 

up-ramp and down-ramp models in which the sustained component was normalised by 

the number of the samples in that trial’s decision interval (Figure 2-1a). We convolved 

these onset, response and/or sustained temporal components with a pupil impulse 

response function (IRF): 

ℎ(𝑡) =  𝑡𝑤𝑒−𝑡∙𝑤 𝑡𝑚𝑎𝑥⁄  

Equation 2-1 

where 𝑤 is the width (10.1) and 𝑡𝑚𝑎𝑥 is the time-to-peak (930 ms) of the IRF (de Gee et 

al., 2014; Hoeks and Levelt, 1993; Murphy et al., 2016). Each model was regressed onto 

the concatenated band-pass filtered pupil diameter time series (from -800 ms before 

target onset to 2500 ms after the response). Bayes information criterion (BIC) was used 

to assess model fit: 

BIC = 𝑛 + 𝑛 log(2𝜋) +  log (𝑆𝑆𝑅 𝑛)⁄ + (𝑘 + 1) log(𝑛) 

Equation 2-2 

where 𝑛 is the number of samples, SSR is the residual sum of squares, and 𝑘 is the 

number of free parameters. The goodness of fit between any two models was assessed 

non-parametrically by applying Wilcoxon signed rank tests to their difference score. We 

found that the linear up-ramp model (model 3) provided the best fit to the data. Figure 
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2-1b-c illustrates the relative goodness-of-fit of each model, compared to the best fitting 

linear up-ramp model, as well as the effect size of each of the components of the linear 

up-ramp model.  

To investigate the relationship between pupil-linked arousal and behavioural 

performance during decision making, we binned our behavioural and EEG data 

according to either the baseline pupil diameter or the post target pupil response (see 

below) into 5 equally sized bins (mean 49.63 ± SEM 0.81 trials, minimum bin size = 20 

trials). The division into 5 bins allowed us to investigate possible quadratic trends in the 

data. We used linear regression to remove the trial-by-trial fluctuations in single-trial 

pupil amplitudes that could be due to inter-trial interval, target side, as well as baseline 

pupil diameter amplitude or phase, all factors that are known to influence either the 

post target pupil response and/or behavioural response times (Kristjansson et al., 2009; 

de Gee et al., 2014; Kloosterman et al., 2015; Newman et al., 2017). To partial out the effect 

of phase, a circular variable, we used the sine and cosine of the phase as orthogonal, 

linear predictor variables (Fisher, 1993). To verify the (absence of) correlation between 

pupil baseline phase and response before and after the regression, we made use of the 

circstat toolbox (Berens, 2009). 

We estimated the task-evoked phasic arousal response according to various single-trial 

scalar measurements of the amplitude of the pupil response, and investigated their 

relation to behaviour (Figure 2-2). The relationship between the average pupil diameter 

around RT and behavioural performance was best described by a non-monotonic, U-

shaped, relationship (Figure 2-2a). Because of the temporal low-pass characteristics of 

the peripheral pupil system (Hoeks and Levelt, 1993), trial-to-trial variation in RT can 

affect the measurement of the size of the pupil response. To remove the trial-to-trial 

fluctuations in pupil responses due to variations in RT, we removed these components 

via linear regression (de Gee et al., 2017; Urai et al., 2017). After the elimination of the 

contribution of RT to the pupil response, we still observed a U-shaped relationship with 

behavioural performance (Figure 2-2b). This measure of the pupil response, however, 

likely reflects both the transient response to target onset as well as any activity that 

occurs thereafter (e.g. during decision formation). Therefore, we aimed to isolate activity 

specific to the phasic response to target onset. To this end, we computed the mean, slope  

and linear projection (de Gee et al., 2014; Kloosterman et al., 2015) over a 400 ms time 

window around the peak of the derivative of the pupil IRF (636 ms using the canonical 

IRF illustrated in Figure 2-1a), a time-window in which activity occurring after the target 

onset transient is, presumably, not yet reflected. We found an inverse relationship 

between each of these measures and behavioural performance (Figure 2-2c-e), with 

better behavioural performance for larger pupil responses. Although these results 

suggest that measurements of the pupil response in this time-window reflect a different 

component of the neural input to the pupil system than the measurements of the 

amplitude around RT (Figure 2-2a-b), the use of any specific time window can be 

interpreted as arbitrary.  
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To further disentangle the pupil response into separate temporal components, we 

applied the best-fitting GLM, the linear up-ramp model (Figure 2-1), to individual trials 

by considering each individual trial as a separate condition (Bach et al., 2018). Because 

we reduced the amount of data used for the regression analysis by applying it to single-

trial data, we tested whether this led to collinearity amongst the temporal components 

by computing the variance inflation factor (VIF). Although large VIF values do not 

necessarily imply that no conclusions can be drawn from regression analysis (O’Brien, 

2007), as a rule of thumb, VIF values larger than 5 or 10 indicate that predictors are 

collinear (James et al., 2017; Sheather, 2009). When applying the GLM across all trials, 

the average VIF values are within the range of collinearity (Figure 2-3a). When we apply 

the same model to single trial data, however, the average VIF values are substantially 

higher (Figure 2-3b). It seemed particularly problematic to reliably estimate the 

sustained and the response component as their average VIF scores are larger than 10. 

The target onset component, on the other hand, has an average VIF score of 

approximately 5. Single-trial VIF estimates larger than 5 for target onset (39.34 ± 2.84% 

Figure 2-2. Relating various measures of the phasic pupil response to behavioural performance. The pupil time 

course (left) and behavioural performance (right) as measured by RT and RTcv binned by: (a) the mean pupil 

diameter in the 400 ms around RT; (b) the mean pupil diameter in the 400 ms around RT in which 

fluctuations in the measurement of pupil diameter due to fluctuations in RT were removed via linear 

regression; and (c-e) the mean pupil diameter (c) the slope as measured by fitting a straight line (least 

squares) (d) and linear projection (e) during the 400 ms around the maximum of the derivative of the pupil 

input response function (636 ms after target onset) used for the GLM analysis. Error bars and shaded regions 

denote ±1 standard error of the mean (SEM). Statistics: linear mixed effects model analyses. 
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of trials) were mainly found on trials with short RT (Figure 2-3e), revealing that it is 

difficult to distinguish between these temporal components on short trials. The overall 

results were, however, not affected by these trials. Repeating the analysis when 

excluding trials with VIF values larger than 5 revealed the same relationship pattern 

between pupil response amplitude and behavioural performance (Figure 2-3f-g). Sorting 

the pupil diameter according to the estimate of the amplitude of the sustained 

component, revealed that the largest sustained component occurred on trials with a 

small (or absent) response to target onset (Figure 2-3h). Rather than solely reflecting 

phasic arousal during decision formation, the presence of the sustained component 

could, for instance, indicate a compensatory mechanism for the absence of an early 

target onset transient. As the relationship with behavioural performance followed a 

downward trend when plotted against the target onset component (Figure 2-5c), and an 

upward trend when plotted against the sustained component (Figure 2-3i), together 

Figure 2-3. Application of the linear up-ramp model on a single-trial basis. (a-d) Variance inflation factor 

(VIF) values for each of the temporal components of the (a) linear up-ramp model applied across trials, (b) 

linear up-ramp model applied to individual trials, (c) target and response onset model applied across trials, 

and (d) target and response onset model applied to individual trials. (e) Single-trial VIF values for the target 

onset component of the linear up-ramp model, plotted against RT. (f) The pupil time course and (g) the 

relationship between the size of the pupil response to target onset and behavioural performance when trials 

with VIF values larger than five were excluded. (h-i) Same conventions as f-g, but binned by the estimated 

amplitude of the sustained component of the linear up-ramp model. (j) Average difference in R2 between a 

single trial linear up-ramp model and the target-response onset model per subject, inset displays this same 

difference value for one example subject across trials. (k-l) Same conventions as f-g, but sorted by the 

estimated amplitude of the target onset component in the target-response onset model. (m) Pupil time 

course and (n) fitted pupil diameter time course binned by the estimated amplitude of the target onset 

component in the linear up-ramp model. Error bars and shaded regions denote ±1 standard error of the mean 

(SEM). Statistics: linear mixed effects model analyses. 
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these effects could explain the U-shaped relationship between behavioural performance 

and the pupil response when measured as the average pupil diameter around RT (Figure 

2-2a-b). 

Although a target-response onset only model was the worst fitting model across trials 

(Figure 2-1a), we tested whether a target-response only model could reliably estimate 

the single-trial target-onset response amplitude. The relationship between this 

component and behavioural performance (Figure 2-3k-l), however, strongly resembled 

the U-shaped relationship between behaviour and the pupil response amplitude when 

calculated as the mean amplitude around RT (Figure 2-2a), a measure likely to be 

confounded by both RT and the neural input that occurs after the target onset transient. 

This supports the notion that the inclusion of a sustained component can make the 

estimation of the target onset component (amongst others) more accurate, despite the 

potential collinearity of these predictors. Indeed, the difference in model fit (R2) is 

significantly larger than 0 for each individual subject (one-sided Wilcoxon signed rank 

test, data not shown). Figure 2-3j illustrates the average difference in R2 values between 

single-trial models with and without the sustained component. Lastly, Figure 2-3m-n 

illustrate the actual pupil diameter time course and the single trial fitted pupil diameter, 

revealing that this model is able to capture considerable variability in the pupil diameter 

trace. 

Next, we applied the same linear up-ramp model to 5 subsets of trials, binned by RT 

(average bin size: 50.01 ± 0.82 trials). This analysis revealed that the relationship between 

RT bin and the estimated amplitude of the target component (Figure 2-4a) follows a 

pattern that is highly similar to the relationship between single-trial estimates of the 

phasic pupil response to target onset and RT (Figure 2-5c), further supporting the notion 

that the single-trial GLM approach can accurately estimate the target onset transient. 

We again investigated the VIF values for each of the temporal components of the model 

applied to the binned data. Although the sustained and response components displayed 

relatively large values, the target onset component was smaller than 5. Again, large VIF 

values by themselves are not necessarily cause for concern, if a regression coefficient is 

statistically significant, even when its VIF value is large, it is significant “in the face of  

 that collinearity” (O’Brien, 2007). To further exclude the possibility that large VIF values 

brought about these results, we repeated this analysis using the data binned according 

to RT in 3 or 2 bins (Figure 2-4b-c). These analysis also revealed smaller target onset 

component coefficients for larger RT, with progressively lower VIF values. Finally, we 

investigated the relationship between RT and the target onset component after Gram-

Schmidt orthogonalisation of the predictors (Figure 2-4d-e), which eliminated 

collinearity amongst the temporal components. After orthogonalisation, we also found 

that the estimates of the β weights of the target onset component were inversely related 

to RT, both when estimated across bins of trials (Figure 2-4d) as well as when estimating 

this component on a single trial basis (Figure 2-4e). 

Altogether, these analyses reveal that although the estimation of different temporal 

components contributing to a single-trial pupil diameter time course has to be done 
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with caution, in the context of the various measures of the phasic pupil response (Figure 

2-2) and the interpretation of VIF factors (Figure 2-3 & Figure 2-4), it is possible (in this 

dataset) to extract meaningful estimates of the target onset component. 

 

2.3.4 - Statistical analyses 

We used RStudio (RStudio Team (2016). RStudio: Integrated Development for R. 

RStudio, Inc., Boston, MA URL http://www.rstudio.com) with the package lme4 (Bates 

et al., 2015) to perform a linear mixed effects analysis of the relationship between 

baseline pupil diameter or the pupil response and behavioural measures and EEG 

signatures of detection. As fixed effects, we entered pupil bin (see Pupillometry) into the 

model. As random effects, we had separate intercepts for subjects, accounting for the 

repeated measurements within each subject. We sequentially tested the fit of a 

monotonic relationship (first-order polynomial) against a baseline model (zero-order 

polynomial), and a non-monotonic (second-order polynomial) against the monotonic 

Figure 2-4. Application of the linear up-ramp model across bins of trials. Target onset component β weights 

for the linear up-ramp model applied to (a) five, (b) three or (c) two subsets of trials binned by RT (Left), and 

the average VIF values across bins and subjects for each of the temporal components in the linear up-ramp 

model (Right). (d) As in a, but after Gram-Schmidt orthogonalisation of the predictors. (e) The pupil time 

course (left), and task performance (right), binned by the estimated amplitude of the target onset component 

after orthogonalisation of the predictors. Error bars denote ±1 standard error of the mean (SEM). Statistics: 

linear mixed effects model analyses for trend across bins. 

http://www.rstudio.com/
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fit by means of maximum likelihood ratio tests, using orthogonal polynomial contrast 

attributes. The behavioural or EEG measure 𝑦 was modelled as a linear combination of 

polynomial basis functions of the pupil bins (𝑋): 

𝑦 ~ 𝛽0 +  𝛽1𝑋 + 𝛽2𝑋2 

with 𝛽 as the polynomial coefficients. This multilevel approach was preferred over a 

standard repeated measures analysis of variance (ANOVA), because it allowed us to test 

for first and second-order polynomial relationships, as well as to account for missing 

values in the CPP onset estimation. We used a variant of the ‘two-lines’ approach 

(Simonsohn, 2017), to test for the presence of (inverted) U-shape relationships when a 

second-order polynomial best fit the data. Using the same multilevel model, we fit two 

straight lines to the first and last set of two/three bins. For a non-monotonic relationship 

to be classified as U-shaped, both components needed to have significant coefficients of 

opposite sign. We iteratively tested the first 3 against the last 2, the first 2 against the 

last 3 or the first 2 against the last 2 bins (omitting the middle bin), stopping if both 

criteria were met (p < 0.05, Bonferroni corrected).  

To verify that the relationship between pupil diameter and task performance was not 

dependent on the binning procedure, we ran another regression analysis wherein we 

predicted single trial RT by sequentially adding the linear and quadratic coefficients for 

baseline pupil diameter (𝐵𝑃𝐷) and pupil response (𝑃𝑅): 

𝑅𝑇 ~ 𝛽0 +  𝛽1𝐵𝑃𝐷 + 𝛽2𝐵𝑃𝐷2 + 𝛽3𝑃𝑅 +  𝛽4𝑃𝑅2 

with 𝛽 as the polynomial coefficients. We compared the first model to a random-

intercept-only model including subject ID, inter-trial interval, stimulus side, as well as 

the trial and block number (to control for potential time on task effects), and tested the 

fit of subsequent models to the previous model fit. This analysis revealed a significant 

improvement for each step of the sequential analysis, for which the results and 

parameters estimates are shown in Table 2-1. These analyses confirm that both the size 

of the baseline pupil diameter and the pupil response are predictive of task performance 

on a single trial basis. This relationship moreover follows a non-monotonic, quadratic, 

function. 

After testing the relationship between behavioural and neural signatures of decision 

making and pupillometric measures individually, the neural signals were added 

sequentially into consecutive regression models predicting RT and RTcv. This model had 

both a random intercept for each subject, allowing for different baseline-levels of 

behavioural performance, as well as a random slope of pupil bin for each subject, which 

allowed for across-subject variation in the effect of pupil bin on behavioural 

performance. The hierarchical entry of the predictors allowed us to model the individual 

differences in behavioural performance, as a function of the EEG signals representing 

each temporal stage of neural processing. Starting with preparatory signals (α-power), 

to early target selection signals (N2), to evidence accumulation (CPP), to motor 

preparation (LHB). The hierarchical addition of the predictors informed us whether 
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each of the EEG signals reflecting successive stages of neural processing improved the 

fit of the model predicting behavioural data. The signals that explained unique variance 

were then simultaneously forced into a simplified model predicting RT or RTcv, which 

made it possible to obtain accurate parameter estimates not contaminated by signals 

that were shown not to improve model fits. Note that only subjects for which we could 

determine the CPP onset latency for all bins were included in this hierarchical model. 

For this final model, all behavioural and neural variables were scaled between 0 and 1 

across subjects according to the formula: 𝑦𝑖 = (𝑥𝑖 − min 𝑥𝑖)/(max 𝑥𝑖 − min 𝑥𝑖), where 𝑦𝑖 

is the scaled variable, 𝑥𝑖 is the variable to be scaled. This scaling procedure did not 

change the relationship of the variable within or across subjects, but scaled all predictor 

variables to the same range. Again, significance values were obtained by means of 

maximum likelihood ratio tests. 

Data plotted in all figures are the mean and the standard error of the mean (SEM) across 

subjects. Linear fits are plotted when first-order fits were superior to the zero-order 

(constant) fit, quadratic fits are plotted when second-order fits were superior to the first-

order fit.  

 

2.4 - Results 

80 subjects performed a continuous version of the random dot motion task in which 

they were asked to report temporally and spatially unpredictable periods of coherent 

motion within either of two streams of random motion (Figure 2-5a). We investigated 

whether the trial-to-trial fluctuations in behavioural performance and EEG signatures of 

perceptual decision making could, in part, be explained by trial-to-trial differences in 

the size of the baseline pupil diameter (reflecting tonic arousal) and the post-target pupil 

response (reflecting phasic arousal). We quantified this relationship by allocating data 

into 5 bins based on the size of either the baseline pupil diameter or the phasic pupil 

diameter response (Figure 2-5b-c). Baseline pupil diameter was computed as the average 

pupil diameter over the 100 ms preceding target onset. The phasic pupillary response 

was estimated using a single trial general linear model (GLM) approach. We first 

assessed the neural input to the peripheral pupil system by applying multiple models 

with onset and response components as well as various different shapes for the sustained 

component (Murphy et al., 2016) across all trials for each subject (Figure 2-1). Next we 

applied the grand average best-fitting model (linear up-ramp) on individual trials (Bach 

et al., 2018). This provided us with a trial-by-trial estimate of the amplitude of each 

temporal component. Comparison against several other measures of the pupil diameter 

response (Figure 2-2), controlling for variance inflation factors (Figure 2-3) and applying 

the same model across bins of trials, or orthogonalising the predictors (Figure 2-4) 

provided support for the reliability of the estimated amplitude of the pupillary response. 

Here we present the relationship of the amplitude of the target onset component to the 

behavioural and EEG signatures of perceptual decision making. We then used sequential 

multilevel model analyses and maximum likelihood ratio tests to test for fixed effects of 

pupil bin. We determined whether a linear fit was better than a constant fit and 
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subsequently whether the fit of a second-order polynomial, indicating a non-monotonic 

relationship between pupil diameter and behaviour/EEG, was superior to a linear fit. We 

furthermore used a variant of the ‘two-lines’ approach (Simonsohn, 2017) to test whether 

any non-monotonic relationship was best described by an (inverted) U-shape. 

 

2.4.1 - Both tonic and phasic arousal are predictive of task performance 

We first investigated the relationship between trial-by-trial pupil dynamics and 

behavioural performance. As stimuli were presented well above perceptual threshold, 

our subjects performed at ceiling (mean, 98.7%; range: 92–100%, Newman et al., 2017). 

We therefore focused on RT and the RT coefficient of variation (RTcv), a measure of 

performance variability calculated by dividing the standard deviation in RT by the mean 

(Bellgrove et al., 2004), rather than accuracy. We found that baseline pupil diameter 

displayed a non-monotonic relationship with both measures of behavioural 

performance (RT χ2
(1) = 8.84, p = 0.003; RTcv χ2

(1) = 4.43, p = 0.035). Neither effects were,  

Figure 2-5. The effect of baseline pupil diameter on the relationship between the pupil response and 

behavioural performance. (a) Paradigm. Subjects fixated on a central dot while monitoring two peripheral 

patches of continuously presented randomly moving dots. At pseudorandom times an intermittent period of 

coherent downward motion (50%) occurred in either the left or the right hemifield. A speeded right handed 

button press was required upon detection of coherent motion. (b) Pupil diameter time course and task 

performance sorted by baseline pupil diameter. (Left) Pupil time-course for the five bins. (Right) Behavioural 

performance for the five bins. Markers indicate mean reaction times (RT, blue, left y-axis) and reaction time 

coefficient of variation (RTcv, red, right y-axis), lines and shading indicate significant model fits. (c) Same 

conventions as b, but sorted by the pupil diameter response. Error bars and shaded regions denote ±1 

standard error of the mean (SEM). Statistics: β weights: linear mixed effects model analyses, U: indicates 

presence (+) or absence (-) of significant U-shaped relationship. 
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however, significantly U-shaped (Figure 2-5b). Rather, RT was slower on trials with  

higher baseline arousal levels. The pupil diameter response, on the other hand, displayed 

a non-monotonic (but not U-shaped) relationship with RT (χ2
(1) = 51.89, p < 0.001) and 

an inverse linear relationship with RTcv (χ2
(1) = 45.94, p < 0.001). For both RT and RTcv, 

best performance was found on trials with the largest pupil responses (Figure 2-5c). This 

relationship remained very similar when trial-by-trial fluctuations in the pupil response 

that are due to variability in the amplitude or phase of the baseline pupil diameter were 

not removed (Figure 2-6). We furthermore repeated the sequential regression analysis 

in single-trial, non-binned data, in which we additionally controlled for time-on-task 

effects, confirming that these effects were not dependent on the binning procedure 

(Table 2-1). Additionally, we noticed that when we band-pass filtered the pupil diameter, 

rather than low-pass filtered, the relationship between baseline pupil diameter and task 

performance was not significant (Figure 2-7). This suggests that slow fluctuations in 

baseline pupil diameter (<0.01Hz) are driving the effect on task performance.  

 

Table 2-1. Parameter estimates for the single-trial mixed effect model analysis predicting RT using linear 

and polynomial basis functions of baseline pupil diameter (BPD) and the pupil response (PR). 

 Model comparison Parameter estimates 
 

χ2 p β β SEM t p 

BPD 5.28 0.021 0.099 0.062 1.59 0.112 

BPD2 57.47 3.43E-14 0.297 0.049 6.119 9.86E-10 

PR 302.01 1.20E-67 -0.757 0.043 -17.55 1.85E-68 

PR2 118.68 1.23E-27 -0.489 0.045 -10.91 1.22E-27 
 

Figure 2-6. The effect of baseline pupil diameter on the relationship between the pupil response and 

behavioural performance.(a) Behavioural performance binned by the size of the phasic pupil response to 

target onset without removing the trial-to-trial fluctuations in baseline pupil diameter. (b) The relationship 

between the pre-target phase (radians) of the pupil diameter, and the amplitude of the post-target pupil 

response, before (blue) and after (red) the regression procedure for an example subject. Dots denote 

individual trials, lines indicate third order polynomial fits to the data. (c) As in a, but without the removal of 

the trial-to-trial fluctuations due to fluctuations in the phase of the baseline pupil diameter. Error bars and 

shaded regions denote ±1 standard error of the mean (SEM). Statistics: linear mixed effects model analyses 

and the circular correlation coefficient. 
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2.4.2 - Phasic arousal has an approximately linear relationship with 

decision processing 

During decision making, perceptual evidence has to be accumulated over time. This 

accumulation process has long been related to build-to-threshold activity in single 

neurons in parietal cortex (Gold and Shadlen, 2007; but see Latimer et al., 2016, 2015; 

Shadlen et al., 2016). The centro-parietal  positivity (CPP) measured from scalp EEG 

exhibits many of these same properties, including a representation of the accumulation 

of sensory evidence towards a decision bound (Kelly and O’Connell, 2013; O’Connell et 

al., 2018, 2012). Because in this study we used relatively strong sensory evidence (50% 

coherence), it is possible that subjects may not have relied upon any temporal 

integration of this motion signal to reach a decision. Rather, variability in RT could be 

brought about by variation in the onset transient of target selection due to the temporal 

and spatial uncertainty of the target stimulus. On single trials, decision formation could 

be a step-like signal that averaged across trials looks like an accumulate-to-bound signal 

(Latimer et al., 2015). Although we cannot discount this possibility, aligning the visual 

early target selection signals (N2c) to response reveals a much lower signal amplitude 

compared to aligning it to target onset (Figure 2-8). This indicates that there is no fixed 

delay between target selection and the response, and that there is variability in the 

duration of the sustained period of this task. This variation could indicate different trial-

to-trial strategies (e.g. comparing motion in one stimulus against the stimulus on the 

other side of the screen), or in addition some variability in accumulation rate. Because 

of this uncertainty, we refer to the functional significance of the CPP as decision 

processing.  

Here we tested the relationship between the pupil diameter response and the onset, 

build-up rate, amplitude and consistency (ITPC) of the CPP (Figure 2-9). We found that 

the onset latency of the CPP, defined as the first time point that showed a significant 

Figure 2-7. The relationship between baseline pupil diameter and task performance, for band-pass (0.1–6 Hz), 

rather than low-pass (<6 Hz) filtered pupil diameter data. (a) Pupil time-course for the five bins. (b) 

Behavioural performance for the five bins. Markers indicate mean reaction times (RT, blue, left y-axis) and 

reaction time coefficient of variation (RTcv, red, right y-axis). Error bars and shaded regions denote ±1 

standard error of the mean (SEM). Statistics: linear mixed effects model analyses. 
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difference from zero for 15 consecutive time points, displayed an inverse monotonic 

relationship with the size of the pupil response (χ2
(1) = 5.60, p = 0.018), such that the 

fastest onsets were found for the largest pupil response bins (Figure 2-9a). Likewise, the 

build-up rate (χ2
(1) = 4.45, p = 0.035), but not the amplitude (p = 0.15), of the CPP varied 

with the pupil response, displaying the steepest slope on trials with the largest pupil 

dilations (Figure 2-9b). Because the membrane potential of sensory neurons shows the 

least variance and highest response reliability at intermediate baseline pupil diameter 

(McGinley et al., 2015a), we additionally investigated the ITPC, a measure of across trial 

consistency, of the CPP. We computed ITPC with a single-taper spectral analysis in a 512 

ms sliding window computed at 50 ms intervals, with a frequency resolution of 1.95 Hz. 

Based on the stimulus-locked grand average time-frequency spectrum, we selected a 

time (300-550 ms) and frequency window (<4 Hz) for further statistical analyses (Figure 

2-9c). We found an approximately linear relationship between pupil diameter response 

and the consistency of the CPP signal (χ2
(1) = 41.79, p < 0.001), indicating that the CPP 

signal is less variable for larger pupil response bins (Figure 2-9d). This relationship was 

also present when we aligned the CPP to the response (Figure 2-10), indicating that this 

effect is unlikely to solely reflect variability in the onset of the CPP. Thus, we found that 

the size of the pupillary response was predictive of both the onset latency, build-up rate 

as well as the ITPC of the CPP. Moreover, the relationship with the neural parameters of 

the CPP resembled the relationship between the pupil response and behavioural 

performance (Figure 2-5c). Large pupil dilations were predictive of faster responses, 

earlier CPP onset latencies, as well as steeper build-up rates and more consistent CPP. 

Next, we asked whether other stages of information processing underpinning perceptual 

decision making also varied with the pupil response.  

Figure 2-8. N2c amplitude is reduced when aligned to the response. (a) N2c signal aligned to target onset. (b) 

N2c signal aligned to response. (c) N2c amplitude over a 100 ms window (black bars in panels a and b) aligned 

to target onset and response. Error bars denote ±1 standard error of the mean (SEM). Statistics: Wilcoxon 

signed rank test. 
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Figure 2-9. The centro-parietal positivity (CPP) in relation to phasic arousal. (a) The stimulus-locked CPP 

time-course showed faster onset times for larger pupil response bins. The inset shows the scalp topography of 

the CPP. Vertical lines and markers indicate the onset latencies per bin. (b) The response- locked CSD-

transformed CPP time-course. Horizontal lines and markers indicate the CPP amplitude, and the inset 

displays the build-up rate of the CPP across pupil response bins. The black bar represents the time window 

used for the calculation of the CPP amplitude and the grey bar the time window used for the calculation of 

the build-up rate. (c) Grand average inter-trial phase coherence (ITPC) per time-frequency point for the CPP. 

The white box represents the time-frequency window selected for statistical analyses. (d) ITPC per pupil bin 

over time for frequencies below 4 Hz. The black bar indicates the time window used for further analysis. 

Horizontal lines and markers indicate the averaged ITPC in the time-frequency window indicated by the 

white box in panel c. Error bars and shaded regions denote ±1 SEM. Statistics: linear mixed effects model 

analyses. Lines and shading indicate significant fits to the data. 
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2.4.3 - The phasic pupil response relates monotonically to spectral 

measures of baseline attentional engagement, but not motor output 

We next investigated pre-target preparatory α-band power (8-13 Hz), a sensitive index 

of attentional deployment that has been shown to vary with behavioural performance. 

Specifically, previous studies have found higher pre-target α-band power preceding 

trials with longer RT, and that fluctuations in α-power may reflect an attentional 

influence on variability in task performance (Ergenoglu et al., 2004; Kelly and O’Connell, 

2013; O’Connell et al., 2009; van Dijk et al., 2008). We first verified the relationship 

between α-band power and behavioural performance by binning the data into 5 bins 

according to α-band power and performing the same sequential regression analysis as 

described above (Figure 2-11a). We replicated previous findings (Kelly and O’Connell, 

2013) and found an approximately linear relationship between α-band power and RT 

(χ2
(1) = 25.27, p < 0.001) but not RTcv (p = 0.48). In line with previous research (Hong et 

al., 2014), pupil diameter response was inversely related to α-band power (Figure 2-11b), 

displaying an approximately linear relationship (χ2
(1) = 28.24, p < 0.001), suggesting that 

pre-target attentional engagement is related to phasic arousal.  

We next focused on response-related motor activity in the form of left hemispheric β-

power (LHB). LHB decreases before a button press and has been shown to reflect the 

motor-output stage of perceptual decision making, but also to trace decision formation, 

reflecting the build-up of choice selective activity (Donner et al., 2009). Here we 

investigated the LHB amplitude and build-up rate preceding response (Figure 2-11c). We 

found that neither LHB amplitude (p = 0.63) nor LHB slope (p = 0.20) varied with phasic 

arousal, suggesting that phasic arousal does not influence the build-up rate of choice-

related activity over motor cortex.  

 

Figure 2-10. CPP ITPC aligned to response. (a) Grand average inter-trial phase coherence (ITPC) per time-

frequency point for the CPP aligned to response. The white box represents the time-frequency window 

selected for statistical analyses. (b) ITPC per pupil response bin over time for frequencies below 4 Hz. The 

black bar indicates the time window used for further analysis. Horizontal lines and markers indicate the 

averaged ITPC in the time-frequency window indicated by the white box in panel a. (c) Same as b, but binned 

by baseline pupil diameter. Error bars and shaded regions denote ± 1 SEM. Statistics: linear mixed effects 

model analyses. Lines and shading indicate significant fits to the data. 
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2.4.4 - Target selection signals do not correlate with the phasic pupil 

response 

Next we investigated the N2 (Figure 2-11d-f), a stimulus-locked early target selection 

signal that has been shown to predict behavioural performance and modulate the onset 

and build-up rate of the CPP (Loughnane et al., 2016). Because of the spatial nature of 

the task, we analysed the negative deflection over both the contra- (N2c) and ipsi-lateral 

Figure 2-11. The phasic pupil response in relation to EEG signatures of attentional engagement, motor 

response and early target selection. (a) RT and RTcv in relation to pre-target α power. (b) Pre-target α power 

in relation to the pupil response. (c) Response-related left hemispheric β power (LHB) per pupil bin. 

Horizontal lines and markers indicate the average LHB in the time window indicated by the black bar. Inset 

shows LHB build-up rate, as determined by fitting a straight line through the LHB in the time window 

indicated by the grey bar. Note the reverse y-axis direction. (d) The stimulus- locked N2c (solid lines) and N2i 

(dashed lines) time-course binned by the pupil response. Vertical lines and markers show the peak latencies. 

Horizontal lines and markers show the average N2 amplitude during the time period indicated by the black 

(N2c) and grey (N2i) bars. (e-f) N2c (e) and N2i (f) ITPC per pupil bin over the time and frequency window 

determined based on the grand average ITPC (data not shown). Insets show the scalp topography of each 

neural signal. Error bars and shaded regions denote ±1 SEM. Statistics: linear mixed effects model analyses. 

Lines and shading indicate significant fits to the data. 
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(N2i) hemisphere, relative to the target location. The pupil response was not predictive 

of any aspect of the N2. Specifically, phasic arousal was not predictive of N2c latency (p 

= 0.82) or amplitude (p = 0.64), nor did we find any relationship between the pupil 

response and the N2c ITPC (p = 0.14). Likewise, the pupil response was not predictive of 

N2i latency (p = 0.64), amplitude (p = 0.11) or ITPC (p = 0.87). 

 

2.4.5 - The impact of phasic arousal on task performance is mainly 

mediated by the consistency in decision processing 

We found that pupil-linked phasic arousal was predictive of specific neural signals at 

multiple information processing stages of perceptual decision making. To test which of 

these signals explained unique variability in behavioural performance across the 5 pupil 

response bins and subjects, the neural signals were added to a linear mixed effects model 

predicting either RT or RTcv with their order of entry determined hierarchically by their 

temporal order in the decision making process. This allowed us to test whether each 

successive stage of neural processing would improve the fit of the model to the 

behavioural data, over and above the fit of the previous stage.  

Compared to the baseline model predicting RT with pupil bin, the addition of pre-target 

α-power significantly improved the model fit (χ2
(1) = 10.30, p < 0.001). None of the 

measures of early target selection improved the fit of the model; neither N2c latency 

(χ2
(1) = 0.14, p = 0.70) or amplitude (χ2

(1) = 0.94, p = 0.33), nor N2i latency (χ2
(1) = 2.39, p = 

0.12) or amplitude (χ2
(1) = 2.39, p = 0.12). We found that both the addition of CPP onset 

(χ2
(1) = 8.24, p = 0.004) as well as the build-up rate (χ2

(1) = 4.90, p = 0.027) significantly 

improved the model fit. Whereas the addition of CPP amplitude did not (χ2
(1) = 1.43, p = 

0.23), the addition of CPP ITPC substantially improved the fit of the model (χ2
(1) = 19.25, 

p < 0.001). Neither the LHB build-up rate nor amplitude improved the fit of the model 

(LHB build-up rate χ2
(1) = 0.02, p = 0.88; amplitude χ2

(1) = 0.64, p = 0.42). Overall, this 

model suggested that pre-target α-power, CPP onset, build-up rate and ITPC exert 

partially independent influences on RT. Because some variables were highly correlated 

(e.g. CPP onset and ITPC) we used an algorithm for forward/backward stepwise model 

selection (Venables and Ripley, 2002) to test whether each neural signal indeed 

explained independent variability that is not explained by any of the other signals. This 

procedure eliminated CPP onset (F(1) = 0.06, p = 0.80) and build-up rate (F(1) = 1.86, p = 

0.17) from the final model. Thus, only pre-target α-power and CPP ITPC significantly 

improved the model fit for predicting RT. These two variables were forced into one linear 

mixed effects model predicting RT (Statistical analyses), and comparison to a baseline 

model revealed a good fit (χ2
(2) = 38.61, p < 0.001). The fixed effects of the model (the 

neural signals) explained 15.8% of the variability in RT (marginal r2) across the 5 pupil 

response bins, and together with the random effects (across subject variability) it 

explained 92.6% of the variability (conditional r2).  

We performed the same hierarchical regression analysis to see which neural signals 

explained variability in RTcv. We summarised the results of this analysis in Table A. 1 

and report the most important results here. The hierarchical regression analysis revealed 



 
55 

 

that both CPP onset and CPP ITPC improved the model fit, but eliminated CPP onset 

after the forward/backward model selection. Consequently, CPP ITPC was the only 

variable that exerted independent influence on RTcv. Comparison against a baseline 

model revealed a significant fit (χ2
(1) = 15.36, p < 0.001) that had a marginal r2 of 16.0% 

and a conditional r2 of 45.9%.  

To test whether our assumptions about the temporal order of the neural signals 

influenced these results, we fitted a model in which all EEG signatures were added at 

the same time and investigated their coefficients. This analysis did not identify any 

additional neural components to those that were found using the hierarchical regression 

analysis (Table A. 2). 

Table 2-2 shows the final parameter estimates for the neural signals that significantly 

predicted variability in RT or RTcv that is due to variability in phasic arousal. From this 

analysis we can conclude that CPP ITPC was the strongest predictor for RT and the only 

predictor for RTcv. These results provide novel insight into the mechanism by which the 

neuromodulators that control arousal can influence behaviour. The impact of these 

modulators on decision making, is thus mainly mediated by their effects on the 

consistency in decision formation. Next, we turn to tonic arousal and its relationship to 

these same EEG components of perceptual decision making. 

 

2.4.6 - Baseline pupil diameter is inversely related to the consistency of 

decision processing 

Figure 2-12 illustrates the relationship between baseline pupil diameter and the CPP. 

Unlike the pupil response, baseline pupil diameter was not predictive of the onset (p = 

0.20) or build-up rate (p = 0.12), but it displayed an inverse relationship with both the 

amplitude (χ2
(1) = 7.09, p = 0.01) and the consistency of the CPP (χ2

(1) = 9.34, p = 0.002). 

In line with previous research that revealed increased variability in the rate of evidence 

accumulation during periods with larger baseline pupil diameter (Murphy et al., 2014b), 

Table 2-2. Parameter estimates for the final linear mixed effect model of RT and RTcv binned by the pupil 

diameter response or baseline. The only parameters included are the neural signals that significantly 

improved the model fit. 

 
RT RTcv 

 β β SE T p β β SEM t P 

Pupil response          

pre-target α-power 0.20 0.065 3.07 0.002     

CPP ITPC -0.19 0.034 -5.51 <0.001 -0.21 0.049 -4.22 <0.001 

Baseline pupil diameter         

N2c amplitude 0.06 0.027 2.33 0.021     

CPP ITPC -0.17 0.033 -5.21 <0.001 -0.31 0.056 -5.48 <0.001 
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we found an inverse, approximately linear, relationship in which higher baseline pupil 

diameter displayed lower EEG signal consistency (Figure 2-12d). Thus, states of higher 

arousal are characterised by less consistency, i.e. more variability, in decision processing. 

Additionally, states of higher tonic arousal also display lower task performance (Figure 

2-5b), indicating that higher variability in decision processing (due to higher tonic 

arousal) can affect behavioural performance.  

 

2.4.7 - Baseline pupil diameter relates to spectral measures of baseline 

attentional engagement and motor output as well as early target 

selection 

We found a relationship between baseline pupil diameter and specific characteristics of 

multiple neural processing stages of perceptual decision making. Specifically, as 

observed before (Hong et al., 2014), pre-target alpha power (Figure 2-13a) varied with 

baseline pupil diameter in a non-monotonic, but not inverted-U shaped, manner (χ2
(1) = 

4.49, p = 0.034). This suggests that with higher tonic arousal, alpha activity is higher (or 

less desynchronised). Next, we tested whether baseline pupil diameter was predictive of 

EEG characteristics representing motor output (Figure 2-13b). We found an inverse 

relationship with LHB build-up rate (χ2
(1) = 10.99, p < 0.001), decreasing with larger 

baseline pupil diameter, but we did not find a relationship with LHB amplitude (p = 

0.34).  

Lastly, we investigated whether baseline pupil diameter affected early target selection 

signals, the N2 (Figure 2-13c-d). Previous studies have revealed that baseline pupil 

diameter affected the size and variability of neural responses to visual and auditory 

stimuli (McGinley et al., 2015a; Reimer et al., 2014). Here we found that baseline pupil 

diameter was not predictive of the peak latency of the N2c (p = 0.75), but that it did 

display a monotonic relationship with the N2c amplitude (χ2
(1) = 13.72, p < 0.001). Trials 

Figure 2-12. Relationship between baseline pupil diameter and the CPP. (a) CPP onset latency, (b) build-up 

rate, (c) amplitude and (d) ITPC per pupil bin over time for frequencies below 4 Hz. The black bar indicates 

the time window used for further analysis. Horizontal lines and markers indicate the averaged ITPC in the 

time-frequency window indicated by the white box in Figure 2-9c. Error bars and shaded regions denote ±1 

SEM. Statistics: linear mixed effects model analyses. Lines and shading indicate significant fits to the data. 
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with larger baseline pupil diameter displayed smaller N2c amplitudes, suggesting that 

higher arousal has a negative impact on sensory encoding. N2c ITPC did not vary with 

baseline pupil diameter (p = 0.25), and nor did N2i ITPC (p = 0.33), N2i latency (p = 0.78) 

or amplitude (p = 0.06). We thus found that, similar to the phasic pupil diameter 

response, baseline pupil diameter is predictive of specific characteristics of each of the 

processing stages of perceptual decision making. Next, we investigated which of these 

components explained unique variance in task performance across pupil size bins.   

 

2.4.8 - N2c amplitude and CPP ITPC are predictive of variability in task 

performance due to tonic arousal 

We again performed the same hierarchical regression analysis as described above, to see 

which of the neural signals explained unique variability in task performance associated 

Figure 2-13. Baseline pupil diameter in relation to EEG signatures of attentional engagement, motor response 

and early target selection. (a) Pre-target α power by baseline pupil diameter. (b) Response-related left 

hemispheric β power (LHB) per pupil bin. Horizontal lines and markers indicate the average LHB in the time 

window indicated by the black bar. Inset shows the LHB build-up rate, as determined by fitting a straight line 

through the LHB in the time window indicated by the grey bar. Note the reverse y-axis direction. (c) The 

stimulus-locked N2c time-course binned by baseline pupil diameter. Vertical lines and markers show the peak 

latencies. Horizontal lines and markers show the average N2c amplitude during the time period indicated by 

the black bar. (d) N2c and N2i ITPC per pupil bin averaged in a time-frequency window based on the grand 

average. Insets show the scalp topography of each neural signal. Error bars and shaded regions denote ±1 

SEM. Statistics: linear mixed effects model analyses. Lines and shading indicate significant fits to the data. 
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with tonic arousal. The full results of this analysis are summarised in (Table A. 3). Here 

we discuss the main findings. After the application of a forward/backward model 

selection algorithm (Venables and Ripley, 2002), N2c amplitude and CPP ITPC were the 

only parameters that were predictive of RT. These variables were forced into one 

regression model predicting RT, and comparison against a baseline model with baseline 

pupil diameter as a factor revealed a significant fit (χ2
(2) = 31.6, p < 0.001) with a marginal 

(conditional) r2 of 4.1% (94.4%). This same hierarchical regression procedure revealed 

that CPP ITPC was the only EEG component that explained unique variability in RTcv 

(Table A. 3). Comparison against a baseline model also led to a significant fit (χ2
(1) = 

26.83, p < 0.001), with a marginal (conditional) r2 of 11.9% (44.5%). None of the other 

EEG parameters that were excluded from the final model due to potential false 

assumptions about their temporal order revealed significant coefficients in a multilevel 

model analysis in which all components were added simultaneously (Table A. 4). Thus, 

additional to an effect of N2c amplitude on RT, the consistency of the CPP was the only 

stage of information processing that explained unique within and across-subject 

variability in task performance associated with changes in baseline pupil diameter.  

 

2.5 - Discussion 

Here we investigated whether behavioural and neural correlates of decision making 

varied as a function of baseline or task-evoked pupil diameter, indexing tonic and phasic 

arousal, respectively. The perceptual decision making paradigm employed (Figure 2-5a) 

allowed us to monitor the relationship between pupil diameter and independent 

measures of attentional engagement, early target selection, decision formation and 

motor output. We found that the trial-by-trial variability in both tonic and phasic 

arousal were predictive of behavioural performance (Figure 2-5b-c). For tonic arousal, 

this relationship was best described by a non-monotonic polynomial fit with slower RT 

for higher baseline pupil diameter. Higher phasic arousal, on the other hand, was 

predictive of better task performance.  

We furthermore established that both tonic and phasic arousal were predictive of a 

subset of EEG signatures, together reflecting discrete aspects of information processing 

underpinning perceptual decision making. A hierarchical regression analysis allowed us 

to determine which of these processing stages exerted an independent influence on 

behavioural performance associated with central arousal. We found that pre-target α 

power, indexing baseline attentional engagement, and the consistency of the CPP, 

reflecting the decision formation, each explained unique variability in task performance 

that was due to variability in phasic arousal. Variability in task performance due to 

fluctuations in tonic arousal was explained by the amplitude of the target selection signal 

N2c and the consistency of the CPP. We thus revealed a direct relationship between both 

tonic and phasic measures of arousal, and a distinct but overlapping set of EEG 

signatures of perceptual decision making, and in particular the CPP. 
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2.5.1 - The functional significance of the CPP during perceptual decision 

making 

Although the CPP has previously been found to reflect the accumulation of evidence 

(Kelly and O’Connell, 2013; Loughnane et al., 2018, 2016; Newman et al., 2017; O’Connell 

et al., 2012), as discussed in the results section, our task design does not allow us to 

unequivocally relate the CPP to a specific characteristic of the decision making process 

such as evidence accumulation. Because of the temporal and spatial uncertainty of the 

target stimulus, rather than accumulating evidence over an extended period of time on 

trials with slower RT, target onset transients could be delayed or subjects could be 

employing different strategies for motion detection on different trials (e.g. verifying the 

presence of coherent motion in one stimulus versus the other stimulus). Decision signals 

such as the CPP or LHB could on single trials behave analogously to a step-like signal 

that across trials seems to be accumulating to a threshold (Latimer et al., 2015;  but see 

Shadlen et al., 2016), potentially supported by neural mechanisms in V4 that increase 

their activity transiently in response to changes in motion coherence (Costagli et al., 

2014). Although we cannot discount that subjects use different strategies on different 

trials, previous studies in which subjects were required to monitor either one or multiple 

dot kinematograms revealed no differences in either RT or hit rate and both the early 

target selection signals and the CPP scaled with the percentage of coherently moving 

dots (Loughnane et al., 2016). We additionally showed here that there is no fixed delay 

between target selection and response (Figure 2-8) and that there is thus variability in 

the duration of the sustained period of the task. Any relationship between arousal and 

the CPP is therefore not solely the result of fluctuations in the latency of the target onset 

transient.  

 

2.5.2 - Large phasic pupil responses are predictive of better task 

performance 

We estimated the variability in phasic arousal using the amplitude of the task-evoked 

pupil diameter. Because of the sluggish nature of the pupil diameter response, pupil 

dilation after target onset likely reflects a combination of specific aspects of phasic 

arousal such as a response to target onset, decision formation as well as a motor 

response. Here we aimed to disentangle these different components by applying a 

general linear model on a single trial basis. First we determined the fit for various models 

for each subject across trials (Figure 2-1), after which we applied the best (across subject) 

fitting model to each individual trial. We addressed the reliability of the estimation of 

each of the temporal components by comparing their relationship to behavioural 

performance to those of other measures of the amplitude of the pupil diameter response 

(Figure 2-2), excluding trials with high VIF values (Figure 2-3), orthogonalising the 

predictors, and comparing the results from the single trial parameter estimation to those 

of groups of trials binned by RT (Figure 2-4). These results revealed that we can reliably 

estimate the target onset component, but that the estimation of the sustained 

component might not be as straightforward (Figure 2-3). Although the current measure 
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of the pupil response to target onset is unlikely to be completely independent of the 

estimation of the sustained component, inclusion of this predictor increased the fit of 

the model and captured variability in the pupil time course likely to reflect the influence 

of phasic arousal specific to decision formation. This reduced the influence of this 

sustained part of the arousal response on the estimation of the target onset component 

(Figure 2-3). To the extent that we could reliably estimate the amplitude of the target 

onset component, we investigated its relationship to the behavioural and neural 

signatures of perceptual decision making. 

Larger target onset responses, presumably reflecting a phasic response in 

neuromodulatory brainstem centres, were predictive of faster and less variable RT 

(Figure 2-5c), faster onset, larger build-up rates and higher consistency of the CPP 

(Figure 2-9), as well as lower pre-target occipital α-power (Figure 2-11). These results can 

be interpreted in light of the relationship between pupil dilations and the activity in 

brain areas such as the LC or BF (Aston-Jones and Cohen, 2005a; de Gee et al., 2017; 

Gilzenrat et al., 2010; Joshi et al., 2016; Reimer et al., 2016; Varazzani et al., 2015). Direct 

electrophysiological recordings from the LC have revealed a positive correlation 

between LC phasic activity and behavioural performance on elementary target detection 

tasks (Aston-Jones et al., 1997, 1994; Rajkowski et al., 2004, 1994). Likewise, cue detection 

is enhanced on trials with a larger cholinergic response (Parikh et al., 2007), and previous 

studies have found that large pupil responses were predictive of higher behavioural 

performance (Beatty, 1982a;  but see Kristjansson et al., 2009), and decreased decision 

bias (de Gee et al., 2017). Additionally, poor performance upon pupil constrictions is in 

line with studies showing that sensory target detection is suboptimal when a transient 

LC or BF response is absent (Aston-Jones et al., 1994; Gritton et al., 2016; Parikh et al., 

2007; Rajkowski et al., 1994). Moreover, naturally occurring pupillary constrictions are 

preceded by transient activity decreases in the LC (Joshi et al., 2016), and are associated 

with increased synchronisation of cortical activity, a signature of cortical down states, 

as well as suboptimal processing of visual stimuli (Reimer et al., 2014). Our results 

suggest that event-related pupillary constrictions could be associated with similar neural 

mechanisms.  

Trials with large pupil responses, and better task performance, were preceded by lower 

pre-target occipital α-power, i.e. more α desynchronisation (Figure 2-11). In line with 

these results and previous studies (Kelly and O’Connell, 2013), lower pre-target α-power 

itself was predictive of higher task performance. Fluctuations in α synchronisation have 

previously been related to variation in both arousal and attentional deployment 

(Ergenoglu et al., 2004; Kelly and O’Connell, 2013; Newman et al., 2016; O’Connell et al., 

2009; van Dijk et al., 2008), often interpreted as a neurophysiological correlate of cortical 

excitability. Here, on trials with both higher phasic arousal and more α 

desynchronisation, behavioural performance was better. This could indicate that 

fluctuations in phasic arousal and attentional engagement rely on similar 

neuromodulatory mechanisms.  

We additionally found that larger pupil responses were predictive of earlier onset 

latencies, faster build-up and higher consistency of the CPP signal (Figure 2-9). Thus, 
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the effects of the fluctuations in phasic arousal and attentional deployment on task 

performance are likely mediated by their effect on decision signals, and insofar as the 

CPP represents evidence accumulation (see above), these fluctuations could influence 

the build-to-threshold dynamics during perceptual decision making. 

 

2.5.3 - Large baseline pupil diameter is predictive of relatively poorer task 

performance 

We found a non-monotonic relationship between baseline pupil diameter and task 

performance (Figure 2-5b). This relationship was, however, not significantly U-shaped, 

but rather we found slower RT with higher baseline pupil diameter. This effect was 

moreover only observed when the pupil diameter data was not high-pass filtered (Figure 

2-7), indicating that slow changes (<0.01 Hz) in pupil diameter are driving the effects on 

task performance.  

In line with previous research (Hong et al., 2014), out of all the investigated EEG 

components, only pre-target α power displayed a small non-monotonic relationship 

with baseline pupil diameter. Approximately linear relationships were found with N2c 

amplitude, LHB build-up rate, as well as an inverse relationship with CPP amplitude and 

ITPC. Of these, only N2c amplitude and CPP ITPC explained within and across subject 

variability in task performance (Table 2-2). It thus seems that the effects of tonic arousal 

on task performance are mainly driven by an approximately linear relationship with 

target selection and consistency of decision formation.  

These results appear at odds with a U-shaped relationship as predicted by the adaptive 

gain theory (Aston-Jones and Cohen, 2005a), and found during auditory target detection 

tasks (McGinley et al., 2015a; Murphy et al., 2011). One potential reason that we did not 

find a U-shaped relationship with task performance, is that we might not have observed 

the full range of possible baseline pupil diameter values, and thus not the full range of 

possible tonic arousal levels. Trials were presented in blocks of 18, after which subjects 

were allowed to take a short break, preventing them from becoming overly drowsy or 

too distracted. However, depending on the behavioural paradigm and task demands, the 

relationship between central arousal, performance and neural activity may take different 

forms (McGinley et al., 2015b; Shimaoka et al., 2018). Membrane potential recordings 

from sensory and association areas, as well as direct electrophysiological recordings from 

neuromodulatory brainstem centres during decision making tasks, are needed to gain 

further insight in the exact mechanisms that drive the relationship between cortical 

state, sensory encoding, decision formation and task performance.  

 

2.5.4 - Variability in task performance due to pupil-linked arousal is best 

predicted by the consistency in decision formation 

During epochs of quiet wakefulness, membrane potential fluctuations of neurons in 

visual, somatosensory and auditory cortex are closely tracked by baseline pupil diameter 
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(McGinley et al., 2015a; Reimer et al., 2014). These fluctuations in subthreshold 

membrane potential are characteristic of changing cortical state. Small pupil diameter 

is characterised by prominent low-frequency (2-10 Hz) and nearly absent high-frequency 

oscillations (30-80 Hz), whereas larger pupil diameter is characterised by reduced low-

frequency, but increased high-frequency oscillations (McGinley et al., 2015a, 2015b). 

Thus, the average subthreshold membrane potential is most stable during intermediate 

pupil diameter, when neither low nor high-frequency components predominate. States 

of lower variability are furthermore characterised by more reliable sensory responses, 

higher spike rates, increased neural gain and better behavioural performance (McGinley 

et al., 2015a, 2015b; Reimer et al., 2014). In addition to activity in early sensory areas, there 

is some evidence that activity in higher-order association areas is also more reliable with 

intermediate arousal. During auditory target detection, human subjects displayed the 

least variable RT at intermediate baseline pupil diameter, as well as the highest 

amplitudes of the P3 component elicited by task-relevant stimuli (Murphy et al., 2011).  

Here we found that the consistency of the CPP was the main EEG predictor of variability 

in task performance associated with both tonic and phasic arousal. For tonic arousal, 

our findings are largely in line with modelling studies which suggested that higher 

arousal is specifically predictive of more variability in evidence accumulation (Murphy 

et al., 2014b). For phasic arousal, higher consistency, and thus less variability, was found 

for larger pupil bins, which also displayed the best behavioural performance. These 

results suggest that similar neural mechanisms of cortical state described for sensory 

cortex (McGinley et al., 2015b, 2015a; Reimer et al., 2014; Vinck et al., 2015) might also 

affect neurons in higher-order association areas (e.g. parietal cortex) and thereby 

influence evidence accumulation and task performance. Simultaneous pupil diameter 

and membrane potential recordings in parietal cortex during decision making are 

needed to confirm this hypothesis.  

 

2.5.5 - Target selection signal amplitude is modulated by pupil-linked 

arousal 

In the present study, we used a paradigm in which two stimuli were continuously 

presented and target occurrence was both spatially and temporally unpredictable. 

Successful target detection thus relied on locating and selecting sensory evidence from 

multiple sources of information. Loughnane et al. (2016) have shown that early target 

selection signals, which occur contralateral to the target stimulus (N2c), modulate 

sensory evidence accumulation and behavioural performance. Although previous 

studies have characterised the dependence of the quality of sensory responses on 

fluctuations in cortical state, as measured by baseline pupil diameter (McGinley et al., 

2015a; Reimer et al., 2014; Vinck et al., 2015), to the best of our knowledge, the influence 

of pupil-linked arousal on target selection signals has not been described before. Here, 

we showed that early target selection signals are modulated by tonic arousal such that 

larger baseline pupil diameter was predictive of smaller N2c amplitudes (Figure 2-13c). 
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Moreover, the amplitude of the N2c also explained unique variability in task 

performance across pupil bins and subjects (Table 2-2).  

At first glance it seems counterintuitive that target selection signal amplitudes are 

decreased, whereas visual encoding in early visual cortex is enhanced on trials with 

larger baseline pupil diameter (Vinck et al., 2015), or during pupil dilation (Reimer et al., 

2014). These differences could be due to differences in the nature of the recordings, as 

these previous studies used invasive electrophysiology and calcium imaging whereas we 

used scalp EEG, limiting especially the spatial resolution of our analyses that might be 

necessary to elucidate these effects (e.g. single neuron orientation tuning). Alternatively, 

they could constitute differential effects of arousal on visual encoding and target 

selection. More likely, however, they are due to specific task demands, in particular our 

use of multiple simultaneously presented competing stimuli. Indeed, there is some 

evidence that an increase in arousal, as measured by pupil diameter, can increase the 

ability of a distractor to disrupt performance on a Go/No-Go task in non-human 

primates (Ebitz et al., 2014). At high arousal levels, performance might thus be negatively 

affected when the task requires the successful suppression of distracting information, 

i.e. with higher arousal it is more difficult to focus on the task at hand (Aston-Jones and 

Cohen, 2005a; McGinley et al., 2015b). On the current task, it might thus be more 

difficult to select and process information from one of the two competing stimuli during 

states of high arousal, leading to reduced N2c amplitude as well as reduced performance. 

 

2.5.6 - The overlap and dissociation between baseline pupil diameter and 

the pupil response 

As in previous studies (de Gee et al., 2014; Gilzenrat et al., 2010; Murphy et al., 2011), we 

found a negative correlation between baseline pupil diameter and the size of the 

pupillary response. Both measures were predictive of task performance as well as a 

unique, but overlapping, set of EEG signatures of perceptual decision making. Because 

of the overlap in their effects on these EEG markers, in particular pre-target α power and 

CPP ITPC, it is possible that both (in part) reflect the same component of central arousal 

state. Although we removed (via linear regression) the variance in the pupil response 

that is due to fluctuations in the amplitude and the phase of the baseline pupil diameter, 

some variability in the baseline pupil diameter might not be fully dissociable from the 

pupil response, and both might thus reflect a noisy measure of tonic arousal. This 

interpretation is further supported by the finding that the relationship between the pupil 

response and task performance did not substantially change regardless of whether 

variability in the pupil response due to fluctuations in baseline amplitude and/or phase 

was removed or not (Figure 2-6). Importantly, however, the dissociation in the effect of 

baseline pupil diameter and the pupil response on these EEG markers, such as the effect 

on N2c amplitude, indicates that these measures also capture independent variability in 

central arousal (tonic and phasic) predictive of distinct information processing stages of 

decision making. 
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2.6 - Concluding remarks 

In this study we investigated the relationship between measures of tonic and phasic 

pupil-linked arousal and behavioural and EEG measures of perceptual decision making. 

We found that trial-to-trial variability in both tonic and phasic arousal accounted for 

variability in task performance and were predictive of a unique, but overlapping, set of 

neural metrics of perceptual decision making. Specifically, tonic arousal exerted its 

influence on task performance through its effects on early target selection signals and 

the consistency of decision formation. Phasic arousal, on the other hand, affected 

behaviour through its relation with attentional engagement as well as the consistency of 

decision formation. These results indicate that during decision making both tonic and 

phasic activity in the (network of) neuromodulatory centres that control central arousal 

can affect behaviour during perceptual decision making. Thus, fluctuations in central 

arousal, mediated by neuromodulatory brainstem centres, act on multiple timescales to 

influence task performance through its effects on attentional engagement, sensory 

processing as well as decision formation. 

 

2.7 - Notes 

Raw data are open access and available under a Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 International Licence 

(https://figshare.com/s/8d6f461834c47180a444). Analysis scripts are freely available on 

github (https://github.com/jochemvankempen/2019_pupil_decisionMaking). 

 

2.8 - Acknowledgements 

We thank Peter R. Murphy for advice on data analysis. J.K. and A.T. are supported by 

research funding from the Henry Wellcome Trust (093104). M.A.B. is supported by 

fellowship and project grant support from the Australian Research Council (ARC; 

FT130101488; DP150100986; DP180102066). A.T. and M.A.B. are supported by research 

funding from a strategic research partnership between the Newcastle University and 

Monash University. M.A.B, R.O.C and A.T are supported by research funding from the 

Office of Naval Research Global (ONR Global).  

  

https://figshare.com/s/8d6f461834c47180a444
https://github.com/jochemvankempen/2019_pupil_decisionMaking


 
65 

 

Chapter 3 - Top-down retinotopic coordination of cortical 

states across Macaque V1 and V4 during selective 

attention 
 

3.1 - Abstract 

Spontaneous activity fluctuations are ubiquitous in cortex. The strength and 

coordination of these fluctuations between neuronal populations are affected by cortical 

state, reflecting changes to neural excitability that can influence sensory processing and 

behaviour. Although long assumed to reflect brain-wide activity changes, these 

dynamics were recently found to be modulated locally by spatially selective attention. 

in V4. Global cortical states can thus be coordinated by cognitive demands and operate 

on a local scale. Whether similar local attention-related state changes occur in primary 

sensory cortex, and whether (and how) cortical state changes are coordinated between 

cortical areas is currently unknown. We recorded simultaneously from V1 and V4 using 

16-contact laminar electrodes in 3 Macaque monkeys performing a selective attention 

task. We used a Hidden Markov Model (HMM) to characterise On-Off dynamics in 

multi-unit activity, and investigated the effects of these dynamics on activity within and 

across areas. We found that cortical states are correlated between V1 and V4. State 

transitions in either area are preceded and followed by activity changes in the other area. 

Although coordination of state changes is not deterministic, on average, state transitions 

in V4 precede state transitions in V1 during selective attention. This suggests that V4 

activity-changes drive cortical state changes in V1. Additionally, the strength of the 

coordination of cortical states across V1 and V4 was dependent on their receptive field 

(RF) separation, with higher correlations when RFs were closer together. Together, these 

results suggest that On-Off transitions traverse along retinotopically aligned cortical 

areas in a top-down manner. We tested the relationship between state transitions in V1 

and V4 more directly by fitting a 4-state HMM simultaneously to activity from both 

areas. This model, in which either or both areas could be in an Off or On state, revealed 

that, when both areas were in an Off state, it was more likely for V4 than V1 to transition 

to an On state. Moreover, when both areas were in an On state, it was more likely for V4 

than V1 to transition to an Off state. Critically, behavioural performance increased from 

when both areas were Off, through V1 On - V4 Off, through V1 Off - V4 On, to V1 and 

V4 On. Thus, our results show that ongoing cortical dynamics are shared across brain 

regions, modulated by cognitive demands and relevant for behaviour. 

 

3.2 - Introduction 

Cortical activity fluctuates across a continuum of highly synchronous activity and 

periods of desynchronised activity (Harris and Thiele, 2011; Kohn et al., 2009). These 

fluctuations are not solely determined by external inputs, but reflect spontaneous 

fluctuations in neural excitability referred to as cortical state. Endogenously produced 

variability in cortical state has been found to shape sensory responses and influence 
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behavioural performance (Arieli et al., 1996; Gutnisky et al., 2017; McGinley et al., 2015a; 

Renart and Machens, 2014; Scholvinck et al., 2015). Although these fluctuations were 

long thought to be a global phenomenon that influences activity throughout the cortex 

and relates to the behavioural state of the animal, recent evidence revealed that 

signatures of cortical state are modulated locally by spatially selective attention in V4 of 

the Macaque monkey (Engel et al., 2016). Global cortical state can thus be coordinated 

by cognitive demands and operate on a local scale. Whether such attention-related state 

changes occur in primary visual cortex, whether (and how) fluctuations in cortical state 

are coordinated across areas along the cortical hierarchy, and whether this coordination 

is relevant for behaviour is currently unknown. 

In V4 of awake behaving macaques, fluctuations in cortical state bring about transitions 

between episodes of vigorous (On) and faint (Off) spiking activity that occur 

synchronously across cortical laminae (Engel et al., 2016). During On compared to Off 

episodes, the cortex was more desynchronised, as low-frequency power (<10 Hz) in the 

local field potential (LFP) was suppressed whereas high-frequency power (>40 Hz) was 

increased. Additionally, On-Off dynamics were modulated by central arousal, as larger 

pupil diameter was predictive of increased On episode durations. Fluctuations in pupil 

diameter reflect activity changes in neuromodulatory brainstem centres such as the 

noradrenergic (NA) locus coeruleus (LC) and the cholinergic basal forebrain (BF). On-

Off dynamics are thus likely influenced by the global gain changes elicited by these 

neuromodulators. In addition to this influence of central arousal, spatially selective 

attention was also found to increase the duration of On episodes independently of 

arousal. Thus, On-Off dynamics in V4 relate to measures of global network state, but 

are also influenced by cognitive processes recruiting specific retinotopic locations. 

To determine whether similar signatures of state changes can be found in area V1, and 

whether these are coordinated between areas, we simultaneously recorded in areas V1 

and V4 with laminar electrodes while monkeys performed a feature based covert top-

down spatial attention task. We investigated On-Off dynamics in Macaque V1 and V4 

by applying a Hidden-Markov Model (HMM) to multi-unit activity (MUA) recorded 

from across all laminae. We replicated previous findings that revealed modulation of 

cortical state by spatially selective attention in V4, and additionally found a similar 

modulation in V1. Furthermore, On-Off dynamics were coordinated in a top-down 

manner between V1 and V4. This coordination was predictive of task performance, and 

the strength of the coordination depended on the distance between retinotopic 

locations of these two areas, suggesting that cortical state transitions, or the modulation 

of their dynamics, are driven in a top-down manner. 

 

3.3 - Methods 

3.3.1 - Animals and Procedures 

The subjects in our study were 3 male rhesus macaque monkeys (Macaca mulatta, age 

10-12 years, weight 8.5-12.5 kg). All animal procedures were performed in accordance 
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with the European Communities Council Directive RL 2010/63/EC, the National 

Institutes of Health’s Guidelines for the Care and Use of Animals for Experimental 

Procedures, and the UK Animals Scientific Procedures Act.  

 

3.3.2 - Surgical Preparation 

The animals were implanted with a head post and recording chambers over area V1 and 

V4 under sterile conditions and general anaesthesia. Surgical procedures and 

postoperative care conditions have been described in detail previously (Thiele et al., 

2006). 

 

3.3.3 - Behavioural paradigm  

Stimuli were presented on a cathode ray tube (CRT) monitor at 120 Hz, 1280 × 1024 

pixels, at a distance of 54 cm. The location and size of the receptive field (RF) was 

measured as described in detail previously (Gieselmann and Thiele, 2008). Briefly, the 

location and size of RF was measured by a reverse correlation method. During fixation, 

a series of black squares (0.5-2° size, 100% contrast) were presented for 100 ms (with 100 

ms interstimulus interval) at pseudorandom locations on a 9 × 12 grid (5-25 repetitions 

for each location) on a bright background. RF eccentricity ranged from 3.4 - 7.5° in V1, 

and from 2.5 to 8.9° in V4. 

During the main task (Figure 3-1), the monkeys initiated a trial by holding on to a lever 

and fixating on a central white fixation spot (0.1°) displayed on a gray background (1.41 

cd/m2). After a fixed delay (614, 424, 674 ms, for monkey 1, 2 and 3), three coloured 

(Table 4-1 for colour values) square wave gratings appeared equidistant from the fixation 

spot, one of which was centred on the RF of the V1 neurons under study. The colour 

locations of these gratings were fixed for each recording session, and were 

pseudorandomly assigned across sessions. Stimulus size varied between 2 and 4° 

diameter, depending on RF eccentricity and size. For most recordings we used drifting 

gratings, but presented one monkey with stationary gratings on 22 out of 34 recording  

Table 3-1. Colour values used for the 3 coloured gratings across recording sessions and subjects, indicated 

as [RGB] – luminance (cd/m2). a = Undimmed values, b = Dimmed values. For monkey 1, we used a variety 

of dimmed values across recordings. 

 Red Green Blue 

Monkey 2 & 3,  
and monkey 1 (n=4) 

a. [220 0 0] – 12.8 
b. [140 0 0] – 4.2 

a. [0 135 0] – 12.9 
b. [0 90  0] – 4.6 

a. [60 60 255] – 12.2  
b. [30 30 180] – 4.6 

Monkey 1 (n=1) b. [170 0 0] –6.7 b. [0 105  0] – 6.4 b. [37 37 210] – 6.6 

Monkey 1 (n=1) b. [175 0 0] –7.2 b. [0 105  0] – 6.4 b. [40 40 220] – 7.7 

Monkey 1 (n=8) b. [180 0 0] –7.7 b. [0 110  0] – 7.3 b. [40 40 220] – 7.7 
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days. The drifting gratings moved perpendicular to the grating orientation, with the 

motion direction pseudorandomly assigned on every trial. After a random delay (618-1131 

ms for monkey 1, 618-948 ms for monkey 2 and 3; uniformly distributed), a central cue 

appeared that matched the colour of one of the gratings, indicating that this grating 

would be behaviourally relevant on the current trial. After a variable delay (1162-2133 ms 

for monkey 1, 1162-1822 ms for monkey 2 and 3; uniformly distributed), one of the 

pseudorandomly selected gratings changed luminance (Table 3-1 for colour values), 

Figure 3-1. Behavioural paradigm. (a) The monkey holds on to a lever to initiate the trial, hereafter a central 

fixation spot turned on. (b) Upon fixation 3 coloured gratings appeared, one of which was presented inside 

the receptive field (RF) of the V1 neuron. (c) After a variable delay a cue matching one of the grating colours 

surrounded the fixation spot, indicating which grating was behaviourally relevant (target). (d-f) In 

pseudorandom order the stimuli decreased in luminance (dimmed). Upon dimming of the target, the 

monkey had to respond by releasing the lever. 
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hereafter referred to as dimming. If the cued grating (target) dimmed, the monkey had 

to release the lever in order to obtain a reward. If, however, a non-cued grating 

(distractor) dimmed, the monkey had to ignore this and keep hold of the lever until the 

target dimmed on the second or third dimming event (each after another 792-1331 ms 

for monkey 1; 792-1164 ms for monkey 2 and 3; uniformly distributed).  

 

3.3.4 - Animal training 

All three animals had received training on fixation (e.g. RF mapping), simple luminance 

change detection (wherein target stimuli were presented without distractors) and 

visually guided saccade tasks prior to being trained on the main task (Figure 3-1). We 

began training on the main task by presenting a single grating with a circle surrounding 

this grating in the same colour, acting as a cue, presented after a random delay. During 

this stage, the monkeys were required to respond to the dimming of the only presented 

grating. As this stage did not differ too much from previously learned tasks, the monkeys 

did not require more than one week to become familiar with this version of the task. 

Next, we introduced the distractor stimuli. During this training stage, we presented all 

three gratings simultaneously, with the cue presented around one of the gratings after a 

random delay. During the first days of this stage, the first grating that dimmed was 

always the cued stimulus. Afterwards, one or two of the distractors could change 

luminance before the target stimulus, which had to be ignored. Depending on how 

difficult the monkey found this training stage, the distracting gratings could initially be 

presented at lower contrast than the target grating.  

Once the monkeys consistently performed well at this step (after approximately two 

months), we moved the cue incrementally closer to the fixation spot. Simultaneously, 

we gradually decreased the size (and shape) of a large circle that surrounded an entire 

grating, to smaller circles halfway between the fixation spot and the target grating, to a 

small square surrounding the fixation spot. This stage also took approximately two 

months for the monkeys to learn.  

 

3.3.5 - Data acquisition 

We recorded from all cortical layers of visual areas V1 and V4 using 16-contact laminar 

electrodes (Plexon V-probes & Atlas silicon probes). The electrodes were inserted 

perpendicular to the cortex on a daily basis. Neuronal data were acquired with 

Neuralynx preamplifiers and a Neuralynx Digital Lynx amplifier. Unfiltered data were 

sampled with 24 bit at 32.7 kHz and stored to disc. Data were replayed offline and band-

pass filtered at 0.5-300 Hz, and down sampled to 1 kHz for local field potential (LFP) 

data, and filtered at 0.6-9 kHz for spike extraction. Eye position and pupil diameter was 

recorded at 220 Hz using a ViewPoint eyetracker (Arrington Research). Pupil diameter 

was recorded for 75 (90.4 %) recordings. 
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3.3.6 - Data preprocessing 

We corrected for any noise common to all channels via common average reference, in 

which the average of all included channels (based on criteria described below) is 

subtracted from each individual channel. We extracted population activity by 

progressively lowering spike extraction thresholds until approximately 100 Hz spiking 

activity was detected on each channel (Engel et al., 2016). Next, we computed the 

envelope of MUA (MUAe) by low-pass filtering (<300 Hz, fifth order butterworth) the 

rectified 0.6-9 kHz filtered signal. Because we noticed that during some recording 

sessions the electrode seemed to have moved (e.g. due to movement of the monkey), we 

visually inspected the stability of each recording by investigating the stimulus aligned 

firing rates, MUAe and their baseline (-500 to -50 ms) energy across all trials and 

channels (Figure 3-2). With energy (𝐸) defined as: 

Figure 3-2. Trial selection based on recording stability. (a) Multi unit activity (MUA) aligned to stimulus onset 

across all trials of the attention task. Each vertical line indicates one spike. The red bar along the y-axis 

indicates the included trials. (b) Energy of the population activity during the baseline period (from 500 to 50 

ms before stimulus onset), smoothed across 3 consecutive trials. (c) MUA envelope (MUAe) aligned to 

stimulus onset. (d) Energy of the MUAe during the baseline period smoothed across 3 consecutive trials. 
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𝐸 =  ∫ 𝑉(𝑖)2
𝑡

𝑖

 

Equation 3-1 

, where 𝑡 is the number of time points in the vector (𝑉) representing the single-trial 

histogram or MUAe. We selected the largest continuous time window that showed 

stable activity across all V1 & V4 channels.  

In addition to selecting trials from stable periods, we selected channels for further 

processing that were determined to be in gray matter (Figure 3-3). Using current source 

density (CSD), we investigated on which channels currents were entering (sinks) and 

exiting (sources) cortical tissue, which allowed us to determine the relative recording 

depth compared to the known cortical anatomy (Schroeder, 1998; Schroeder et al., 1991). 

The CSD profile can be calculated according to the finite difference approximation, 

taking the inverse of the second spatial derivative of the stimulus-evoked voltage 

potential 𝜑, defined by: 

𝐶𝑆𝐷(𝑥) =  
𝜑(𝑥 + ℎ) − 2 𝜑(𝑥) + 𝜑(𝑥 − ℎ)

ℎ2
 

Equation 3-2 

, where 𝑥 is the depth at which the CSD is calculated and ℎ the electrode spacing (150 

μm). We used the iCSD toolbox (Pettersen et al., 2006) to compute the CSD. With this 

toolbox we used a spline fitting method to interpolate 𝜑 smoothly between electrode 

contacts. We used a diameter of cortical columns of 500 µm (Mountcastle, 1957), and 

tissue conductance of 0.4 Sm-1 (Logothetis et al., 2007). 

To aid determination of recording depth, we computed the signal-to-noise ratio (SNR), 

the RF estimation (see below) and the response latencies to stimulus onset (Figure 3-3d-

f) for each channel. SNR was computed as: 

𝑆𝑁𝑅 =  
𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑁𝑜𝑖𝑠𝑒

𝜎𝑛𝑜𝑖𝑠𝑒
 

Equation 3-3 

, with 𝑆𝑖𝑔𝑛𝑎𝑙 defined as the average MUAe amplitude in one of eight 50 ms time 

windows, from 30 to 80 ms, with 10 ms steps, to 100 to 150 ms after stimulus onset, and 

𝑁𝑜𝑖𝑠𝑒 as the average MUAe amplitude during the baseline period (-200 to 50 ms) before 

stimulus onset. SNR in at least one of these eight estimates was required to be higher 

than 3 for a channel to be included for further analyses.  

We computed the response latency to stimulus onset for each channel (inset Figure 3-3f) 

according to the method described by Roelfsema et al. (2007). We fitted the visual 

response as a combination of an exponentially modified Gaussian and a cumulative 

Gaussian using a non-linear least-squares fitting procedure (function lsqcurvefit) to the 

average MUAe time course. There are two assumptions implicit in this method. First, 

the onset latency has a Gaussian distribution across trials and neurons that contribute 
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to the MUAe, and second, that (part of) the response dissipates exponentially. The visual 

response 𝑦 across time 𝑡 was modelled as: 

𝑦(𝑡) = 𝑑 ∙ 𝐸𝑥𝑝(𝜇𝛼 + 0.5𝜎2𝛼2 − 𝛼𝑡) ∙ 𝐺(𝑡, 𝑢 + 𝜎2𝛼, 𝜎) + 𝑐 ∙ 𝐺(𝑡, 𝜇, 𝜎) 

Figure 3-3. Determining the recording depth. (a) Baseline corrected, trial-averaged LFP signals aligned to 

stimulus onset for all recording channels (n=16) on one linear probe. (b) Baseline corrected MUAe signals. (c) 

Baseline corrected, CSD transformed LFP signals. Current sinks are displayed as red whereas sources are 

displayed as blue. The magenta line indicates the selected alignment channel. (d) Signal-to-noise (SNR) ratio 

for each channel. (e) Receptive field (RF) locations. (f) MUAe response latencies to stimulus onset. The inset 

illustrates the model fit used to determine the stimulus-response latency (channel 5), as described in 

Equation 3-4. 
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Equation 3-4 

, where 𝜇 is the mean, 𝜎 is the standard deviation, 𝛼−1 is the time constant of the 

dissipation, 𝐺(𝑡, 𝜇, 𝜎) is a cumulative Gaussian, and 𝑐 and 𝑑 are the factors scaling the 

non-dissipating and dissipating modulation of the visual response. The response latency 

was defined as the time point where 𝑦(𝑡) reached 33% of the maximum of the earliest 

peak, the first Gaussian (Roelfsema et al., 2007; Self et al., 2013). Data was aligned to the 

earliest current sink, the presumed thalamic input layer (L4), channels were excluded if 

they were more than 1 mm more superficial or 0.75 mm deeper than this layer.  

 

3.3.7 - Receptive field estimation 

Offline RFs were determined for each channel via reverse correlation of the MUAe signal 

to stimuli (0.5 – 2 ° black squares) presented on a 9 × 12 grid (Gieselmann and Thiele, 

Figure 3-4. RF locations. (a) RF location for one example recording. Contour of RF location for included 

channels for V1 (top), V4 (middle) and their average (bottom). The bottom panel illustrates the overlap 

(yellow, O) between the V1 and V4 RF, expressed as the proportion of the V1 RF, and separation (Δ). (b) 

Average RF centre locations (across channels) for each recording, separately for each subject (M1-M3) and 

area. (c) RF separation between V1 and V4 plotted against their overlap, expressed as the proportion of the V1 

RF. The histograms along the top (right) indicate the distribution of RF separation (overlap) across all 

recordings. 
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2008). The stimulus-response map was converted to z-scores, after which the RF for each 

channel was indicated by a contour (thresholded at a z-score of 3) surrounding the peak 

activity (Figure 3-3e, Figure 3-4a). These z-scored maps were averaged across all 

channels for each area (the population average z-score was computed according to 

stouffer’s Z-score method according to 𝑍 =  ∑ 𝑍𝑖/√𝑘𝑘
𝑖=1 , with 𝑘 as the number of 

channels), after which we determined the overlap and separation between the V1 and 

V4 RFs (Figure 3-4a, bottom panel). Figure 3-4b and Figure 3-4c illustrate the RF 

locations, separation and overlap for the population, for each individual monkey. 

 

3.3.8 - Bipolar re-referencing 

To ensure that global signals, common to multiple channels, did not affect our LFP and 

spectral analyses (see below), we re-referenced our LFP signals according to the bipolar 

derivation. Bipolar re-referenced LFP signals (LFPb) were computed by taking the 

difference between two neighbouring channels. 

 

3.3.9 - Attentional modulation  

The effect of selective attention on neural activity was computed via an attention 

modulation index (𝑎𝑡𝑡𝑀𝐼), defined as: 

𝑎𝑡𝑡𝑀𝐼 =
𝐴𝑅𝐹 −  𝐴𝑜𝑢𝑡

𝐴𝑅𝐹 +  𝐴𝑜𝑢𝑡
 

Equation 3-5 

, with 𝐴𝑅𝐹 as the neural activity when attention was directed towards the RF, and 𝐴𝑜𝑢𝑡 

the activity when attention was directed away from the RF. This index ranges from -1 to 

1, with zero indicating no attentional modulation and with positive (negative) values 

indicating higher activity when attention was directed towards (away) from the RF. 

 

3.3.10 - Hidden Markov Model (HMM) 

To quantify On-Off dynamics in V1 and V4, we applied a Hidden Markov Model (HMM) 

to the population activity across all laminae. We fit the HMM both to activity from each 

individual area, following the procedures described by Engel et al. (2016), as well as to 

the activity from both areas simultaneously. 

Our HMM assumes that spike counts on the recorded channels can be well characterised 

as a doubly-stochastic stochastic process, of which the parameters can be accurately 

estimated (Rabiner, 1989). In this study, spike counts on each channel are assumed to 

be produced by a Poisson process with different (constant) mean rates during On or Off 

phases of the underlying ‘hidden’ (latent) process 𝑠 common to all channels that we need 

to infer (Engel et al., 2016). The mean firing rate on each channel 𝑗 in phase 𝑠 is defined 

by entry 𝜆𝑗
𝑠 in the emission matrix Λ. The transition matrix 𝑃 gives the probabilities of 
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transitioning between these latent phases. In the transition matrix 𝑃, each entry 

indicates the probability of transitioning between two specific phases. For instance, 𝑃11 

indicates the probability of transitioning from 𝑠 = 0 to 𝑠 = 0 (remaining in the Off 

phase), whereas 𝑃12 indicates the probability of transitioning from 𝑠 = 0 to 𝑠 = 1, more 

formally: 𝑃11 =  𝑃𝑜𝑓𝑓 = 𝑃(𝑠𝑡+1 = 0|𝑠𝑡 = 0), 𝑃12 =  1 − 𝑃𝑜𝑓𝑓 = 𝑃(𝑠𝑡+1 = 1|𝑠𝑡 = 0). These 

probabilities do not depend on time, at any time step 𝑡, the probability of transitioning 

between phases depends only on the value of 𝑠 at time 𝑡 (𝑠𝑡). The latent dynamics 

estimated by the HMM thus follows a discrete time series in which 𝑠𝑡 summarises all 

information before time 𝑡. For each channel, MUA was discretised by determining spike 

counts in 10 ms bins following each time 𝑡, with the probability of observing spike count 

𝑛 on channel 𝑗 during phase 𝑠 defined as  

𝑃(𝑛|𝑠) =  
(𝜆𝑗

𝑠)𝑛

𝑛!
𝑒−𝜆𝑗

𝑠

 

Equation 3-6 

The full description of an HMM is given by the emission matrix Λ, transition matrix 𝑃 

and the probabilities 𝜋0 that indicate the initial values 𝑠0, in which 𝜋𝑖
0 ≡ 𝑃(𝑠0 = 𝑖). 

These parameters were estimated using the Expectation Maximisation (EM) algorithm 

(Bishop, 2006), maximising the probability of observing the data given the model 

according to the Baum-Welch algorithm (Rabiner, 1989). Because the EM procedure can 

converge to a local maximum, rather than the global maximum, we repeated the EM 

procedure ten times with random parameter initialisations, and chose the model with 

the highest likelihood. Random values were drawn from Dirichlet distributions for 𝜋0 

and P, and from a uniform distribution between zero and twice the channel’s mean firing 

rate for Λ. The EM procedure was terminated if the relative change, computed as 

|𝑛𝑒𝑤 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|/|𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|, in the log-likelihood was smaller than 10-3 and the change 

in the transition and emission matrix was smaller than 10-5, or if it reached the maximum 

number of iterations (n = 500).  

Once the optimal parameters were estimated, we used the Viterbi algorithm to 

determine the most likely latent trajectory for each individual trial. We applied the 

HMM separately to each attention condition. For every trial, we applied the HMM 

during multiple time periods of the task, during fixation, around stimulus onset and 

during the time window from 400 ms after cue onset to 30 ms after the first dimming 

event. For the behavioural analysis (Figure 3-19), we additionally analysed the period up 

to 30 ms after the second dimming event for trials in which target dimming did not occur 

on the first dimming event, and for which the first distractor dimming was not inside 

the RFs. 

To determine what number of latent phases best described the data, we fit HMMs with 

the number of phases ranging from 1 to 8, and used a four-fold cross-validation 

procedure to compute the cross-validation error for each HMM (Engel et al., 2016). We 

fit the HMM to a randomly selected subset of 3/4 of the trials, and computed the cross-

validation error on the remaining 1/4 of trials. This procedure was repeated 4 times using 

a different 3/4 of trials for training and 1/4 of trials for testing the HMM. We computed 
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the cross-validation error 𝐶𝑉𝑣𝑎𝑟 for each channel 𝑗 across all trials 𝐾 and time bins 𝑇 as 

the difference between the actual and expected spike count according to: 

𝐶𝑉𝑣𝑎𝑟[𝑛𝑗] = ∑ ∑ (𝑛𝑡
𝑗

− 𝜆𝑗
𝑠𝑡)2

𝑇

𝑡=1

𝐾

𝑘=1
 

Equation 3-7 

We normalised 𝐶𝑉𝑣𝑎𝑟 to the error in the 1-phase HMM, averaged across channels, cross-

validations and conditions, and determined the difference in 𝐶𝑉𝑣𝑎𝑟 with each additional 

phase in the HMM. Figure 3-5 depicts the normalised mean cross-validation error across 

each of the eight HMM models for all recordings. For most recordings, and for both V1 

and V4, 𝐶𝑉𝑣𝑎𝑟 decreased with the addition of a second phase, but did not decrease much 

further with additional phases. This allowed the identification of the elbow (kink) in this 

error plot as the model with two phases. We included areas/recordings for further 

analysis that revealed a reduction in cross-validation error of at least 10% with the 

addition of a second phase, but did not decrease by more than 10% with additional 

Figure 3-5. Determining the number of HMM phases in V1 and V4 MUA. (a-b) Cross validation (CV) error 

plotted against the number of phases in each HMM for V1 (a) and V4 (b). (c-d) The difference in cross 

validation error between the 1-phase and 2-phase model, plotted against the difference between 2-phase and 

3-phase model, for V1 (c) and V4 (d). Most recordings show a large reduction in cross-validation error with 

the addition of a second phase, and only marginal changes with additional phases. Blue (red) lines and 

markers indicate the recordings included (excluded) for further analysis. 
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phases. For a small subset of recordings, a three or a four-phase model fit the data best, 

these recordings were excluded from further analysis. 

To investigate the across-area coordination of On-Off dynamics, we fit a 4-state HMM 

to V1 and V4 data simultaneously. Across these four states, both V1 and V4 could be in 

either an Off or On phase, with the states defined as: 𝑉1𝑜𝑓𝑓 − 𝑉4𝑜𝑓𝑓 (state 1), 𝑉1𝑜𝑛 −

𝑉4𝑜𝑓𝑓 (state 2), 𝑉1𝑜𝑓𝑓 − 𝑉4𝑜𝑛 (state 3) and 𝑉1𝑜𝑛 − 𝑉4𝑜𝑛 (state 4). This model was fit 

according to the same steps as the HMM applied to individual areas, with one exception. 

For each channel 𝑗, the emission rate 𝜆 was constrained to be the same across states for 

which this channel (area) was in the same phase. For example, rates were constant for a 

V1 channel across state 1 and state 3 during which V1 was in an Off phase (𝜆𝑗
𝑠=1 = 𝜆𝑗

𝑠=3,

𝑗 ∈ 𝑉1).  

 

3.3.11 - Cross correlation 

The temporal relationship between On-Off time series and transitions, microsaccade 

onset times and activity in V1 and V4 were investigated using cross-correlations. The 

cross-correlations based on HMM time series (𝐶𝐶𝐻𝑀𝑀) were calculated using the 

function xcorr in Matlab, according to: 

𝐶𝐶𝐻𝑀𝑀(𝜏) =
1

𝑀
∑

∑ 𝑥(𝑡)𝑦(𝑡 + 𝜏) 𝑇
𝑡=1

√∑ |𝑥(𝑡)|2 ∙ ∑ |𝑦(𝑡)|2𝑇
𝑡=1

𝑇
𝑡=1

𝑀

𝑚=1

 

Equation 3-8 

, where M is the number of trials, 𝑇 is the number of discrete time bins, 𝑥 and 𝑦 the 

mean subtracted On-Off time series in V1 and V4 as determined by the HMM, and 𝜏 is 

the time lag. Here, the numerator indicates the cross-covariance, which is normalised 

(the denominator) such that the autocorrelation for each time series at zero lag is 1. This 

procedure normalised 𝐶𝐶𝐻𝑀𝑀 such that correlation coefficients were obtained. We 

furthermore subtracted the shift predictor 𝐶𝐶𝑠ℎ𝑖𝑓𝑡 from 𝐶𝐶𝐻𝑀𝑀 to remove any task-

related (stimulus-locked) correlations between 𝑥 and 𝑦. 𝐶𝐶𝑠ℎ𝑖𝑓𝑡 was computed by 

shifting 𝑦 trials such that trial 1 becomes 2, 2 becomes 3, …, M becomes 1, ensuring that 

𝑥 and 𝑦 were obtained from different trials. 

Cross-correlations (𝐶𝐶) between state transitions and microsaccade onset times were 

computed in the same way as described in Equation 3-8, but for a different normalisation 

(denominator) factor. Here we normalised by the geometric mean rate (transition × 

saccade rate), resulting 𝐶𝐶 to be on the order of coincidences of state transitions per 

microsaccade. 

For transition time cross correlations across areas, we used a jitter correction method 

that corrects for slow temporal and stimulus-locked correlations (Amarasingham et al., 

2012; Engel et al., 2016; Smith and Kohn, 2008). Within a jitter time window (300 ms), 

each spike or transition (event) on each trial is randomly replaced by an event (with 

replacement) from the set of all events in the same time bin across all trials. This method 
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preserves the original event rate within each trial and time bin, but destroys the 

relationship on timescales greater than the jitter time window. We computed z-scores 

of the jitter-corrected cross-correlations by subtracting the mean and dividing by the 

standard deviation of the distribution of resampled cross-correlations (Engel et al., 

2016). 

To investigate the neural activity around the time of On-Off transitions, we computed 

the transition-triggered average (TTA). The TTA was estimated by computing the cross 

covariance, the numerator in Equation 3-8, divided by the number of transitions for each 

channel, and then averaged across channels and recordings.  

 

3.3.12 - Power estimation 

We estimated the power spectra of the LFPb, separately for On and Off states 

determined by the HMM, using a custom multitaper approach based on the Chronux 

toolbox (Bokil et al., 2010), only using epochs that lasted longer than 250 ms. Because 

epoch durations were variable, we zero-padded each segment to the next highest power 

of 2 of the longest epoch duration (2048 time points), ensuring we could extract the 

same frequencies for each segment. This approach gave us a half bandwidth (𝑊) of 

approximately 1.95 Hz, according to 𝑊 = (𝐾 + 1)/2𝑇, with 𝐾 being the number of data 

tapers (𝐾 = 7) and 𝑇 the length of the time window in seconds. Frequencies were 

estimated from 4 to 200 Hz.  

In order to analyse whether deflections in specific frequency bands in the LFPb were 

time-locked to HMM state transitions, we filtered the LFPb into the canonical frequency 

bands: δ (<4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12-30 Hz), γ𝑙𝑜𝑤 (30-60 Hz), γℎ𝑖𝑔ℎ (60-100 

Hz), and γℎ𝑖𝑔ℎ+ (100-200 Hz) using a fourth order butterworth filter. Next, we computed 

the instantaneous power by rectifying the Hilbert transformed band-passed LFPb.  

 

3.3.13 - Microsaccade detection 

We low-pass filtered the horizontal and vertical eye traces at 30 Hz (2nd order 

Butterworth filter) after which we detected microsaccades by using the algorithm 

developed by Engbert and Kliegl (2003). This algorithm converts eye position (Figure 

3-6a-b) to velocity (Figure 3-6c), and classifies an eye movement as a microsaccade if the 

velocity is larger than a threshold for at least three consecutive time points. The 

threshold is set to 6 times the median estimator, given by: √𝑚𝑒𝑑𝑖𝑎𝑛(𝑥2) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)2, 

where 𝑥 is either eye position channel x or y. Thus the threshold is determined separately 

for the two eye position channels and for each single trial. The use of the median 

estimator and this threshold ensured that microsaccade detection is relatively robust to 

different levels of noise (Engbert and Kliegl, 2003). We stored microsaccade onset times, 

amplitudes and directions (Figure 3-6d).  
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3.3.14 - Statistical testing 

To determine whether there were significant differences between attention conditions 

or HMM states (e.g. in firing rate or epoch duration) we made use of multiple statistical 

methods. We used (paired-sample) Wilcoxon signed rank tests whenever a comparison 

was made between two conditions (e.g. attend RF versus attend away), or to test whether 

a distribution was significantly different from zero. When a comparison involved 

multiple conditions, or multiple factors (e.g. attention and state), we used repeated 

measures analysis of variance (ANOVA) and linear mixed effect models to test for main 

effects of each condition/factor and interaction effects between factors. For the multi-

level models, factors were defined as fixed effects, and we included random intercepts 

for each recording as random effects, accounting for the repeated measurements within 

each recording. We sequentially tested the fit of the relationship between the dependent 

variable (e.g. RT) and each of these factors by means of maximum-likelihood ratio tests. 

The addition of the first factor was tested against a baseline (intercept-only) model, and 

the addition of subsequent factors was tested against the previous model fit. 

We used false discovery rate (FDR) to correct for multiple comparisons (Benjamini and 

Yekutieli, 2001). Error bars in all figures indicate the standard error of the mean (SEM).  

 

Figure 3-6. Microsaccade detection. (a) Eye position over time, separately for the x and y channel. 

Microsaccades are indicated by black lines. (b) Eye position channel x plotted against channel y. (c) Eye 

position velocity. Magenta line indicates the threshold. If the eye position velocity is outside of this threshold 

for at least 3 consecutive time points, it is classified as a microsaccade. (d) The direction and amplitude of the 

detected microsaccades. 



 
80 

 

3.4 - Results 

We recorded simultaneously from V1 and V4 using 16-contact laminar electrodes in 

three awake behaving macaque monkeys performing the selective attention task 

illustrated in Figure 3-1 (Gregoriou et al., 2009). For all three monkeys, receptive fields 

(RFs) were close together (Figure 3-4b) and showed good overlap (Figure 3-4c). During 

task performance we placed one of three coloured gratings inside the RF of the recorded 

neurons. As V4 RF have been shown to remap towards target stimuli (Neupane et al., 

2016) and V4 RFs are larger than those in V1, we centred this grating on the V1 RF. On 

each trial, the monkey attended to one of the coloured gratings, indicated by a centrally 

presented coloured square (cue) around the fixation spot. Attention was directed 

towards the grating inside the RF (‘Attend RF’) or to one of the gratings outside the RF 

(‘Attend Away’) to detect a change in luminance (dimming). After a variable delay, a 

sequence of one to three dimming events started, in which distractors and the target 

stimulus dimmed in pseudorandom order. Distractor dimmings were to be ignored, 

whereas the detection of the target dimming was indicated by the release of the lever. 

After the dimming of the target grating (plus the allocated maximal RT), which could 

occur on any of the dimming events, the trial was aborted. 

We first examined, for each recording and independently for V1 and V4, whether 

population activity displayed spontaneous transitions between periods of high (On) and 

low (Off) spiking across the cortical layers, as has been described previously for V4 

(Engel et al., 2016). To this end, we extracted population activity such that approximately 

100 Hz of spiking activity was detected on each channel. Next, we binned spike count 

data in 10 ms time bins and fit a HMM to segment this across layer multi-unit activity 

into On and Off episodes, focusing on the time window from 400 ms after cue onset to 

30 ms after the first grating dimmed. Out of a total of 77 V1 and 79 V4 recording sessions 

(of which 73 simultaneous V1-V4 recordings), we found a reduction of >10% in cross-

validation error when fitting a 2-state versus 1-state model in 62 V1 (80.5 %), and 72 V4 

(91.1 %) recordings; in 57 (78.1 %) recordings we found evidence for a 2-state model in 

both V1 and V4. Thus in addition to the previously described transitions in V4 (Engel et 

al., 2016), we found On-Off state transitions in V1 as well. 

For a representative recording, Figure 3-7 illustrates the raw and colour coded 

(according to HMM state) V1 and V4 firing rates across cortical laminae aligned to 

stimulus and cue onset for 20 trials. On and Off transitions occurred irregularly and 

without ostensible periodicity (Figure 3-9) within and across trials during stimulus 

presentation. Critically, transitions occurred both independently as well as 

synchronously across V1 and V4.  

 

3.4.1 - Selective attention modulates On-Off transition dynamics both in V1 

and V4 

Engel et al. (2016) revealed that selective attention modulates the On-Off dynamics 

found in V4. In particular, it was found that the duration of On episodes was increased 
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when attention was directed towards the RF compared to away from the RF. 

Additionally, firing rates were increased when attention was directed towards the RF 

during both Off and On phases. Together, this indicates that selective attention and the 

circuit mechanisms controlling cortical states interact on a local spatial scale. Here we 

replicated these findings: we found that when spatially selective attention was directed 

towards the RF, firing rates were higher during both On and Off phases (indicated by a 

rightward skew, Figure 3-8a) and the duration of On episodes was increased (Figure 

3-8b). For V1, but not V4, the duration of Off episodes was also increased (Figure 3-8b). 

Additionally, we found that the total time spent in an On phase was increased in both 

Figure 3-7. Raster plot of HMM fit to population activity in V1 and V4. Simultaneously recorded multi-unit 

spiking activity on 16-contact laminar electrodes in V1 and V4 for 20 example trials, aligned to stimulus (left) 

and cue onset (middle and right). Each trial shows across laminar activity in V1 (bottom) and V4 (top), as raw 

raster plots (left two columns) and colour coded according to HMM state estimation (right). Note that the 

middle and right column depict the same activity. The HMM was fit from 400 ms after cue onset to 30 ms 

after the first dimming event. Cue onset and first-dimming are indicated for each trial by purple and red 

vertical bars, respectively. 
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areas when attention was directed towards the RF (Figure 3-8c). Furthermore, we found 

that selective attention increased the probability for V4 to switch from an Off to an On 

state, and it decreased the probability for both V1 and V4 to switch from an On to an Off 

state (Figure 3-8d). These results indicate that selective attention increases both the 

duration of On episodes as well as the probability of being in an On state, for both V1 

and V4.  

The increase in On-episode duration could be interpreted as activity overcoming 

inhibition, specific to an oscillatory frequency band, earlier when attention is directed 

towards the RF. This explanation is, however, unlikely, as the distribution of epoch 

durations follows an approximately exponentially decreasing function without obvious 

peaks at any particular duration (Figure 3-9), arguing against the premise that On-Off 

state transitions are brought about by any oscillatory influence on cortical state.  

 

3.4.2 - State transitions coordinate activity across V1 and V4 

To examine whether population spiking activity is coordinated between V1 and V4, we 

investigated spiking activity in one area time locked to transitions in the other area 

(Figure 3-10a). Around the time of a transition in V1, V4 activity changes in a specific 

way, so that when V1 transitions to an On-state, V4 activity increases, and when V1 

transitions to an Off-state, V4 activity reduces. Likewise, state transitions in V4 elicit 

Figure 3-8. Attentional modulation of cortical state. (a) Attention increases firing rates during Off and On 

phases, both in V1 and V4. (b) Attention increases the duration of On episodes, both in V1 and V4, whereas it 

increases the duration of Off episodes only in V1. (c) The fraction of time spent in an On state is increased 

when attention is directed towards the RF. (d) Attentional influence on state-transition probabilities. Colour 

coding of arrows shows the change in state transition probabilities due to attention. Statistics: Wilcoxon 

signed rank tests; *, **, ***, indicate significance levels of p < 0.05, p < 0.01 and p < 0.001, respectively (FDR 

corrected). 
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similar firing rate changes in V1. Interestingly, this analysis also revealed that activity 

changes in V4 precede state transitions in V1, whereas activity changes in V1 shortly 

follow state transitions in V4. This suggests that V4 activity changes lead V1 state 

transitions.  

To further investigate the coordination of cortical states, and the transition times 

between the two areas, we performed cross correlations between the V1 and V4 time 

courses as well as between V1 and V4 transition times. The cross correlation between the 

V1 and V4 state time courses revealed a correlation between V1 and V4 states that was 

skewed to negative values, again implying that V4 state transitions occur before 

transitions in V1 (Figure 3-10b). Indeed, the area under the cross correlation curve was 

larger for times < 0 compared to times > 0 (Figure 3-10b inset). Importantly, the strength 

of the cross-correlation between V1 and V4 states was inversely related to the distance 

between their RF locations (Figure 3-10c), showing that coordination of state transitions 

is stronger when V1 and V4 RFs were closer together. To get a more accurate estimate of 

the time delay between V1 and V4 state transitions, we performed a cross correlation 

between transition times using jitter-corrected cross-correlations (Amarasingham et al., 

2012; Smith and Kohn, 2008). Figure 3-10d and Figure 3-10e illustrate that on average, V4 

transitions precede V1 transitions, both for On-Off as well as Off-On transitions. 

Altogether, these results show that V1-V4 states are correlated, but that state transitions 

also occur independently within each area, i.e. the relationship between state transitions 

in V1 and V4 was not deterministic.  

Figure 3-9. Distributions of On and Off episode durations. (a) Off episode durations in V1, (b) On episode 

durations in V1, (c) Off episode durations in V4, and (d) On episode durations in V4, overlaid by the average 

exponential model fits (red, 𝑁(𝑡) = 𝑁0𝑒−𝜆𝑡, where 𝑁(𝑡) is the quantity at time 𝑡, 𝑁0 the initial quantity, and 𝜆 

the exponential decay constant) and decay time-constants (𝜏 = 1/𝜆) computed for each recording and phase. 

Good match for these models indicates that On-Off dynamics were not driven by an oscillatory phenomenon. 

Individual recordings and their mean are indicated by grey and thick black lines, respectively. 
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Next, we investigated whether the coordination of cortical state was specific to the 

attention period of the trial by additionally computing the cross-correlation between V1 

and V4 HMM states during fixation and around stimulus onset. During fixation, as well 

as around stimulus onset, V1 and V4 states were correlated (Figure 3-11). Only during the 

period between cue onset and first-dimming, however, was the area under the cross-

correlation curve larger for negative time lags (Figure 3-11c). This indicates that V4 state 

transitions preceded transitions in V1 more often when attention was engaged. 

In addition to the firing rate changes described above, state transitions in either V1 or 

V4 were phase-locked to LFPb fluctuations across both areas (Figure 3-12). Both V1 and 

V4 LFPb displayed strong deflections when aligned to state transitions in either area. 

When LFPb and state transitions were from the same area, the pattern looked relatively 

similar for V1 and V4, with a slightly stronger oscillatory influence in V4 (Figure 3-12a & 

d). When LFPb and state transitions were from different areas, however, the activity 

patterns were more distinct. Around the time of a state transition in V4, the deflections 

in V1 LFPb resembled those after a transition in V1, albeit of smaller magnitude (Figure 

3-12c). On the other hand, around the time of a transition in V1, V4 LFPb shows very 

Figure 3-10. Across area coordination of cortical state. (a) Spiking activity in one area aligned to state 

transitions from the other area, averaged across all channels and recordings. Only epochs without transitions 

preceding or following the alignment transition within 100 ms were included. (b) Cross correlation coefficient 

between V1 and V4 state time series, relative to V1 state. The yellow and purple lines indicate the average and 

difference between the correlation coefficient for negative and positive times, respectively. The above-zero 

purple line indicates that the distribution is skewed to negative values. The inset shows the area under the 

cross correlation curve for times smaller and larger than zero. (c) RF separation plotted against the area under 

the cross-correlation curve from panel b. The least-squares regression and standardized major axis regression 

are indicated by the solid and broken line, respectively. (d-e) Cross correlation between V1 and V4 state 

transition times for an example subject (d) and across the population (e). Statistics: Wilcoxon signed rank 

tests; *, **, ***, indicate significance levels of p < 0.05, p < 0.01 and p < 0.001, respectively. Shaded regions 

denote ±1 SEM. 
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little modulation, with a small difference preceding V1 state transitions, and only 

moderate deflections afterwards. These results show that V4 transitions affect V1 LFPb 

to a larger degree than vice-versa. 

A broadly similar pattern of activity is seen in the frequency specific (band-pass filtered) 

LFPb (Figure 3-13) and its power decomposition (Figure 3-14). We band-pass filtered the 

LFPb into multiple frequency bands, computed their spectral power using the Hilbert 

transform for the analysis depicted in Figure 3-14, and aligned them to state transitions. 

Specifically, we examined δ: <4 Hz, θ: 4-8 Hz, α: 8-12 Hz, β: 12-30 Hz, γ𝑙𝑜𝑤: 30-60 Hz, 

γℎ𝑖𝑔ℎ: 60-100 Hz, and γℎ𝑖𝑔ℎ+: 100-200 Hz. When LFPb and state transitions were from 

the same area (Figure 3-12 panel a and d), the transition aligned activity was comparable 

between V1 and V4, with clear phase-locked activity below 60 Hz (Figure 3-13), and clear 

power changes in frequency bands higher than 30 Hz (Figure 3-14). When V1 LFPb was 

aligned to V4 state transitions, the phase-locking looked qualitatively similar to the 

within-area phase-locking in either area (Figure 3-13b). With V4 LFPb aligned to V1 

transitions, the phase-locking pattern seemed to have shifted compared to the 

oscillatory cycle (Figure 3-13c). Although it is not possible to say whether the V4 LFPb 

leads or lags the transition in V1 based on this analysis, in line with the firing rates 

aligned to state transitions (Figure 3-10a), high-frequency power changes in V4 occur 

before V1 transitions whereas V1 high-frequency power changes occur after V4 state 

transitions (Figure 3-14b-c). In addition to an increase in high-frequency power across 

areas around the time of a transition from an Off to an On state, power in the θ and α-

band revealed an increase after a transition to the Off-state.  

To test to what extent V4 activity influences state transitions in V1, and vice-versa, we 

fitted a 4-state HMM to V1 and V4 data simultaneously in which either or both areas 

could be in an On or Off state (Figure 3-15). We defined state 1 as V1 Off – V4 Off, state 

2 as V1 On – V4 Off, state 3 as V1 Off – V4 On, and state 4 as V1 On – V4 On (Figure 

3-15a). Figure 3-15a illustrates this 4-state HMM fit to the MUA for one example trial. We 

were interested in two specific scenarios, illustrated in Figure 3-15b. In the first (yellow) 

Figure 3-11. Cross correlation between V1 and V4 state time series during various time periods. Cross 

correlation during fixation (a), around stimulus onset (b) and between cue onset and the first dimming event 

(c). The insets show the area under the cross correlation curve for times smaller and larger than zero. Note 

that any event-locked components have been removed by the subtraction of the shift predictor. Statistics: 

Wilcoxon signed rank tests. Shaded regions denote ±1 SEM. 
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scenario, we asked the question: from a situation in which both areas are in an Off state 

(state 1), is it more likely for V1 (a, state 2) or V4 (b, state 3) to transition to an On state? 

The second scenario (purple) addresses a related question: from a situation in which 

both areas are in an On state (state 4), is it more likely for V1 (b, state 3) or V4 (a, state 

2) to transition to an Off state? Investigation of the transition probabilities (Figure 3-15c 

& Figure 3-15d) revealed that when both areas were in an Off state, it was more likely for 

V4 to transition to an On state first (p<0.001). Likewise, if both areas were in an On state, 

it was more likely for V4 to transition to an Off state (p<0.001). Thus, when both areas 

are in the same state, it is more likely for V4 to transition away from this state first. 

As indicated above, V1 and V4 states are correlated, but transitions are not deterministic. 

This suggests that some substantial amount of time is spent in state 2 and 3, the states 

where V1 and V4 are in opposite states. Indeed, the fraction of time spent in each of the 

4 states illustrates that V1 and V4 are not always in the same state (Figure 3-15e). 

Although more time is spent in state 1 and 4, 30 to 40% of time was spent in state 2 and 

3. 

Next, we investigated how attention affected the time spent in each state and the 

estimated transition probabilities (Figure 3-15f). With attention directed towards the RF, 

the fraction of time spent in state 1 was reduced (p < 0.001) whereas the time spent in 

Figure 3-12. Transition triggered LFPb. (a) LFPb from area V1 aligned to HMM state transitions in V1. (b-d) 

Same conventions as in panel a, but for V1 LFPb and V4 HMM (b), V4 LFPb and V1 HMM (c) and V4 LFPb 

and V4 HMM. Only epochs without transitions preceding or following the alignment transition within 150 ms 

were included. Shaded regions denote ±1 SEM. 
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state 3 (p = 0.013) and 4 was increased (p < 0.001). Attention thus decreased the time 

that both areas were in an Off state (state 1), while it increased the time either V4 was in 

an On state (state 3) or both areas were in an On state (state 4). As states 1 and 4 were 

most strongly affected, attention seemed to mainly influence the times that V1 and V4 

states were aligned, perhaps driven top-down by state changes in V4. The effect of 

attention on the transition probabilities seemed to support this viewpoint (Figure 3-15g). 

With attention directed towards the RF, the probability of transitioning to state 1 from 

either state 2 (p < 0.001) or 3 (p = 0.002) was reduced. Additionally, the probability of 

Figure 3-13. Transition triggered band-pass filtered LFPb. (a) Band-pass filtered LFPb from area V1 aligned to 

HMM state transitions in V1. (b-d) Same conventions as in panel a, but for V1 LFPb and V4 HMM (b), V4 

LFPb and V1 HMM (c) and V4 LFPb and V4 HMM (d). δ: 0-4 Hz, θ: 4-8 Hz, α: 8-12 Hz, β: 12-30 Hz, γ𝑙𝑜𝑤: 30-60 

Hz, γℎ𝑖𝑔ℎ: 60-100 Hz, and γℎ𝑖𝑔ℎ+: 100-200 Hz. Only epochs without transitions preceding or following the 

alignment transition within 150 ms were included. Shaded regions denote ±1 SEM. 
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transitioning to a state where V4 was in an On phase, either from state 1 (p = 0.009), 

state 2 (p = 0.007) or state 3 (p = 0.001) was increased. Together, these results again 

suggest that attention directed towards the RF increases the coordination of V1 and V4 

cortical state, driven by recruitment of V4.  

 

Figure 3-14. Transition triggered band-pass filtered LFPb power spectrum. (a) Band-pass filtered LFPb power 

spectrum from area V1 aligned to HMM state transitions in V1. (b-d) Same conventions as in panel a, but for 

V1 LFPb and V4 HMM (b), V4 LFPb and V1 HMM (c) and V4 LFPb and V4 HMM (d). δ: 0-4 Hz, θ: 4-8 Hz, α: 

8-12 Hz, β: 12-30 Hz, γ𝑙𝑜𝑤: 30-60 Hz, γℎ𝑖𝑔ℎ: 60-100 Hz, and γℎ𝑖𝑔ℎ+: 100-200 Hz. Only epochs without transitions 

preceding or following the alignment transition within 150 ms were included. Shaded regions denote ±1 SEM. 
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3.4.3 - Coordination of cortical states across V1 and V4 does not solely rely 

on microsaccades 

Although Engel et al. (2016) showed that cortical state transitions can occur 

independently of microsaccades, it could be that V1 and V4 state coordination only 

occurs after a microsaccade. To test for this possibility, we first performed a cross 

correlation between microsaccade onset times and On-Off transition times (Figure 

3-16a-b). Comparable to the previously described relationship between microsaccades 

and cortical state transitions (Engel et al., 2016), we found an increased probability of 

Off-On transitions following microsaccades. This relationship, however, did not 

influence the correlation between V1 and V4 states. After exclusion of trials in which 

microsaccades occurred, the cross-correlation between V1 and V4 (Figure 3-16c) closely 

resembled the relationship without trial exclusion (Figure 3-10b). This confirmed that 

Figure 3-15. HMM with 4 states fit simultaneously to V1 and V4. (a) Example trial with the state trajectory 

(bottom) and across-laminar raster plot for V1 (middle) and V4 (top). (b) Schematic describing two scenarios 

accompanying the following questions; Left yellow box: from a state where both V1 and V4 are Off, is it more 

likely for V1 or V4 to transition to an On state first? Right purple box: from a state where both V1 and V4 are 

On, is it more likely for V1 or V4 to transition to an Off state first? (c) Transition probability matrix, indicating 

the probability of staying in a state (diagonal) or transitioning from one state to another. Highlighted are the 

scenarios set out in panel b. (d) Comparison of transition probabilities indicated in panel b and c. (e) The 

fraction of time spent in each of the 4 states. (f) The difference in time spent in each of the 4 states when 

attention is directed towards or away from the RF (attend RF – attend Away). (g) Attentional influence on 

state-transition probabilities, shown is the difference transition matrix (attend RF – attend Away). Statistics: 

Wilcoxon signed rank test (FDR corrected), error bars denote ±1 SEM across recordings and *, ** and *** 

indicate significance levels of p < 0.05, p < 0.01 and p < 0.001, respectively. 
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coordination of V1-V4 cortical state does not solely rely on the occurrence of 

microsaccades. 

 

3.4.4 - Local On-Off dynamics relate to spectral power in LFPb 

We compared the power spectrum in V1 and V4 between On and Off states in either 

area. When V1 was in an On compared to an Off state, the LFPb power spectrum showed 

decreased low-frequency and increased high frequency power across both areas (Figure 

3-17a-b). Likewise, V4 On states elicited similar power changes across both V1 and V4 

(Figure 3-17c-d), in line with the power changes described for V4 previously (Engel et al., 

2016). Next, we investigated the power spectra across the four states of the HMM applied 

to both V1 and V4. Specifically, we tested whether power spectra within one area differed 

across the two states for which this area was in the same phase (i.e. the difference 

between these states is determined by the phase of the other area). For instance, there 

are two states in which V1 was found to be in an On phase across which V4 was in an On 

(state 4) or Off phase (state 2). The power spectra across these four states are depicted 

in Figure 3-17e (V1) and Figure 3-17f (V4), with the change in power in the panels beneath 

(Figure 3-17g-h). Across the two states where V1 was in an On phase (state 4 versus state 

2), high frequency power (>50 Hz) was increased if V4 was also in an On phase, whereas 

low frequency power was reduced. Importantly, this change in high-frequency power 

occurred without corresponding increases in firing rate (Figure 3-17g-inset), showing 

that these changes are not driven by spike intrusion in the LFPb signal. Additionally, 

across the two states where V1 was in an Off phase (state 1 versus state 3), high frequency 

power was reduced when V4 was also in an Off phase. V4 phase thus modulated high 

frequency power in V1 regardless of what phase V1 was in. Interestingly, although high 

frequency power in V4 across Off phases (state 2 versus state 1) was decreased if V1 was 

also in an Off phase, high-frequency power between On phases (state 4 versus state 3) 

Figure 3-16. Relationship between microsaccades and cortical state transitions. (a) Cross-correlation of 

cortical state transitions in V1 triggered to microsaccade onset. (b) Same as panel a, but for cortical state 

transitions in V4. (c) Cross correlation between V1 and V4 cortical state time series after exclusion of trials in 

which microsaccades occurred. Statistics: Wilcoxon signed rank test. Shaded regions denote ±1 SEM across 

recordings, *, ** and *** indicate significance levels of p < 0.05, p < 0.01 and p < 0.001, respectively. 
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was not modulated by the state in V1 state. Together this suggests that during spatial 

attention, V4 state has a larger effect on high frequency activity in V1 than vice-versa. 

 

Figure 3-17. LFPb power spectrum for On and Off states. (a) Power in V1 during On and Off states in V1. (b) 

Power in V4 during On and Off states in V1. (c) Power in V1 during On and Off states in V4. (d) Power in V4 

during On and Off states in V4. Right y-axis indicates the percentage change in power during On versus Off 

states (On-Off). (e-f) Power spectrum in V1 (e) and V4 (f) for the 4-state HMM fit across V1 and V4. (g-h) The 

within-area power difference between On phases (red, V1: state 4-2; V4: state 4-3), or off phases (blue, V1: 

state 1-3; V4: state 1-2). Insets show the firing rate differences during these same epochs. Only state epochs of 

at least 250 ms were included. Grey, red and blue bars indicate the significantly modulated frequencies (p < 

0.05, Wilcoxon signed rank test, FDR corrected). Shaded regions denote ±1 SEM. 
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3.4.5 - Local On-Off dynamics relate to global network state 

In addition to finding changes in the LFPb power spectrum between On and Off phases, 

we found that baseline pupil diameter was predictive of the duration of On episodes in 

both V1 and V4 (Figure 3-18), as has been described for V4 before (Engel et al., 2016). 

Specifically, with higher baseline pupil diameter, indicative of higher central arousal 

state, the average duration of On episodes in both V1 and V4 was increased (Figure 3-18a-

c). Furthermore, for the 4-state model (applied to both V1 and V4 simultaneously, see 

above) baseline pupil diameter was only predictive of the average epoch duration of state 

1 and 4, the two states in which V1 and V4 are both in the same phase (Figure 3-18d). 

This is in line with pupil diameter being a proxy for central arousal, driving global 

network states that coordinate activity across distant brain areas. Note that the pupil 

diameter did not differ between attend RF and attend away conditions (Figure 3-18e), 

and that therefore differences in central arousal cannot explain the effect of selective 

attention on the duration of On episodes.  

Figure 3-18. The relationship between baseline pupil diameter and state epoch duration. (a) Example 

recording showing that baseline pupil diameter is positively correlated to the average On episode duration in 

V4. Each dot represents one single trial, r is the Pearson correlation coefficient. The purple and red dot 

indicate the example trials used in panel c. (b) Across recordings, the average duration of On epochs in both 

V1 and V4 is positively correlated with the size of the baseline pupil diameter. (c) Two example trials in which 

the average On epoch duration is larger on the trial with larger (bottom) compared to the trial with smaller 

(top) baseline pupil diameter. (d) Across recordings, baseline pupil diameter is negatively (positively) 

correlated with the average epoch duration when both V1 and V4 or in an Off (On) state. (e) The average 

baseline pupil diameter does not differ between attention conditions. Each dot represents a recording session. 

Statistics: Wilcoxon signed rank test (FDR corrected) (b, d, e). Error bars and shaded regions denote ±1 SEM, 

and *, ** and *** indicate significance levels of p < 0.05, p < 0.01 and p < 0.001, respectively. 
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3.4.6 - State at target dimming is predictive of task performance 

Finally, we tested whether cortical state influenced behaviour by investigating RT as a 

function of cortical state at the time of target dimming. In line with Engel et al., (2016), 

who found higher target detection probabilities if V4 was in an On-phase, we found 

faster RT on trials that ended in an On phase (Figure 3-19). Based on the 2-state HMM, 

we found that, individually for V1 and V4, cortical state was predictive of RT (Figure 

3-19a). We found a significant interaction (2-factor repeated measures ANOVA) between 

attention and state for both V1 (F = 23.8, p < 0.001) and V4 (F = 13.0, p < 0.001), in neither 

area was there a main effect of attention (p > 0.05), but both showed a main effect of 

state (V1: F = 6.7, p = 0.01; V4: F = 10.4, p = 0.002). For both V1 and V4, task performance 

was better on trials where the target stimulus was inside the RF, and the population of 

neurons that coded for this stimulus was in an On phase around target dimming. 

Additionally, for V1, if the population of neurons inside the RF was in an On state, 

responses to targets away from the RF were slower.  

Next, we tested how cortical state coordination across V1 and V4 influenced behavioural 

performance (Figure 3-19b). We used sequential multilevel model analyses and 

maximum likelihood ratio tests to test for fixed effects of attention and state on RT. 

From an intercept only model, the addition of the factor attention did not improve the 

fit of the model (χ(1) = 1.34, p = 0.247). However, both the addition of state (χ(1) = 8.09, p 

= 0.004) as well as the interaction between attention and state (χ(1) = 12.60, p < 0.001) 

significantly improved the model fit. As illustrated in Figure 3-19b, behavioural 

performance increased from when both areas were Off, through V1 On - V4 Off, through 

Figure 3-19. On-Off dynamics influence behavioural performance. (a) Cortical state at the time of target 

dimming, determined individually for V1 and V4, influences behavioural performance by decreasing RT when 

attention is directed towards the RF and either V1 or V4 is in an On state. Additionally, in V1 when neurons 

inside the RF are in an On state when attention is directed away from the RF, RT increases. (b) RT decreased 

from when both areas were Off, through V1 On - V4 Off, through V1 Off - V4 On, to V1 and V4 On when 

attention was directed towards the RF. Statistics: Wilcoxon signed rank test (a), and multilevel linear mixed 

effect model (b), FDR corrected. Error bars denote ±1 SEM, and *, ** and *** indicate significance levels of p < 

0.05, p < 0.01 and p < 0.001, respectively. 
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V1 Off- V4 On, to V1 and V4 On, showing that there is an increased benefit for 

behavioural performance if cortical On phases are coordinated across visual cortex. 

 

3.5 - Discussion 

In this study we investigated the coordination of cortical state fluctuations across area 

V1 and V4 of the macaque monkey in the context of a selective spatial attention task. In 

both V1 and V4, periods of vigorous spiking alternated with periods of faint spiking 

activity. We classified these periods as On and Off periods using a 2-state HMM (Engel 

et al., 2016). We found that V1 and V4 states are correlated, and that On and Off periods 

in either area influenced activity in the other area such that transitions to an On state 

increased firing rates and high-frequency power and decreased low-frequency power, 

whereas transitions to an Off state had the opposite effect. We furthermore found that 

V4 activity changes, on average, preceded state transitions in V1, and concurrently that 

V1 activity changes followed state transitions in V4, suggesting that V4 generally takes 

the lead in driving cortical state transitions in V1 during spatial attention. This finding 

was further supported by a cross correlation analysis between V1 and V4 transition times 

and the application of a 4-state HMM simultaneously to V1 and V4 data. These analyses 

indicated that V4 transitions occurred before those in V1 and that it is more likely for V4 

to transition away from a state in which V1 and V4 states correspond. Additionally, the 

correlation strength between V1 and V4 states was dependent on the distance between 

RF locations. Together, these results suggest that cortical state transitions and their 

coordination are driven in a retinotopically specific top-down manner.  

We furthermore replicated previous findings which revealed that selective attention 

directed towards the RF increases the duration of On episodes in V4 (Engel et al., 2016), 

and found similar results for V1 (Figure 3-8). Testing the effect of selective attention on 

the fraction of time spent in each of the 4 states of the HMM applied to V1 and V4 

moreover revealed that selective attention specifically increases the time spent in state 

4 (Figure 3-15), suggesting that attention directed towards the RF increases the 

coordination of cortical state, through top down recruitment, between retinotopic 

locations in V1 and V4.  

Finally, On-Off dynamics were predictive of behavioural performance. For V1 and V4, 

RT was faster on trials in which either area was in an On-state around the time of target 

dimming. Furthermore, we found an increased benefit on behavioural performance if 

both V1 and V4 were in an On-state at the time of target dimming, showing that the 

coordination of cortical state across these areas is relevant to behaviour.  

Thus, On-Off transitions, which occur synchronously across the cortical layers, are 

found in V1 and V4. Coordination of these transitions is retinotopically organised, driven 

in a top-down manner, and beneficial for behavioural performance.  
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3.5.1 - Mechanisms of cortical state  

What could be the neural mechanism that drives On-Off transitions across cortical areas 

during selective attention? Cortical state fluctuations, defined as activity varying along 

a continuum between periods of synchronisation and desynchronisation, have largely 

been ascribed to neuromodulatory influences that dynamically regulate network state 

(Buzsaki et al., 1988; Constantinople and Bruno, 2011; Lee and Dan, 2012). Direct 

stimulation (inhibition) of LC (Berridge and Foote, 1991; Berridge et al., 1993) or 

cholinergic nuclei (Metherate et al., 1992; Steriade et al., 1993a) can induce cortical 

depolarisation (hyperpolarisation) and desynchronisation (synchronisation). 

Additionally, both stimulation as well as locomotion-induced effects on cortical state 

are reversed by local application of noradrenergic or cholinergic antagonists (Goard and 

Dan, 2009; Metherate et al., 1992; Pinto et al., 2013; Polack et al., 2013), suggesting that 

the effects on cortical state depend (in part) on local neuromodulatory influences, rather 

than solely on large scale network effects.  

In addition to neuromodulatory effects, cortical state can also be affected by feedback 

projections from downstream areas (Zagha et al., 2013), possibly through similar circuit 

mechanisms by which top-down attention influences sensory cortex (Harris, 2013; Harris 

and Thiele, 2011). In an elegant series of experiments Zagha et al., (2013) showed that 

feedback from primary motor cortex (vM1) influences cortical state in primary 

somatosensory cortex (S1). Inactivation of vM1 synchronised S1 by increasing low-

frequency (1-5 Hz) and decreasing high-frequency (30-50 Hz) LFP power whereas 

stimulation had the opposite effect. In addition, vM1 stimulation increased firing rates 

in S1 but not V1, showing that vM1 stimulation produces pathway-specific, rather than 

general (brain-wide) cortical state changes. Furthermore, the influence of vM1 

stimulation on S1 was rapid (~10 ms) and beneficial to sensory information coding in S1, 

reducing response variability both in MUA and LFP (Zagha et al., 2013). Together these 

results illustrate that feedback projections can selectively influence cortical state in 

sensory areas, and that these network dynamics can affect sensory stimulus processing.  

Here we showed that On-Off dynamics relate to both these mechanisms. As the average 

On epoch duration was related to fluctuations in pupil diameter (Engel et al., 2016) 

(Figure 3-18), they are likely influenced by similar arousal-related neuromodulatory 

influences that drive cortical depolarisation and desynchronisation. Additionally, we 

found that activity changes and cortical state transitions in downstream areas preceded 

those in upstream areas, revealing that cortical state fluctuations can be influenced in a 

top-down manner.  

Because projections from neuromodulatory nuclei to cortex are diffuse (Mesulam et al., 

1992) and their effects of stimulation on cortical activity are relatively sluggish, the 

effects of neuromodulators are often assumed to lack the temporal and spatial specificity 

to support specific moment-to-moment (cognitive) demands (but see Sarter et al., 2009; 

Thiele and Bellgrove, 2018). Our findings provide support for the previously suggested 

neural mechanism (Deco and Thiele, 2011; Zagha et al., 2013), that feedback projections, 

together with thalamic feedforward drive (Poulet et al., 2012), operate in conjunction 
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with (global) neuromodulatory influences. Together, they provide both the required 

anatomical specificity and functional means to allow cortical state fluctuations to 

influence information-processing capacity and behaviour. 

In addition to the well-established role of noradrenaline and acetylcholine in driving 

cortical state fluctuations (Harris and Thiele, 2011; Lee and Dan, 2012; Thiele and 

Bellgrove, 2018), dopaminergic effects might explain (part of) these results as well. VTA 

stimulation can increase the duration of UP-states in rat PFC, an effect prevented by 

systemic injection of a D1R-antagonist (Lewis and O’Donnell, 2000). Prefrontal 

dopamine has moreover been found to influence attentional signalling (Noudoost and 

Moore, 2011b; Thiele and Bellgrove, 2018), and within FEF, dopamine has been found to 

modulate activity in V4 neurons with overlapping RF in an “attention-like” manner 

(Noudoost and Moore, 2011a). Together, these results reveal that prefrontal dopamine 

can influence both the duration of cortical state epochs as well as modulate activity in 

extrastriate visual cortex through feedback projections, in line with a role for both 

feedback projections and neuromodulatory influences in the regulation of cortical state 

and attention. 

 

3.5.2 - Relationship between On-Off dynamics and (global) signatures of 

cortical state 

How do On-Off dynamics in visual cortex relate to the larger scale fluctuations in 

cortical state? As described above, cortical states do not only fluctuate between sleep 

and wake states, but also during wakefulness. During less active states, cortical activity 

displays highly synchronous activity characterised by low-frequency oscillations. During 

active states, on the other hand, the cortex is more desynchronised and displays 

suppressed low-frequency and increased high-frequency activity. Recent research has 

revealed that fluctuations in central arousal, as indicated by pupil diameter, closely 

tracks fluctuations in the subthreshold membrane potential (McGinley et al., 2015a; 

Reimer et al., 2014), as well as the LFP power spectrum (Vinck et al., 2015) of sensory 

neurons, characteristic of changing cortical state. Furthermore, the relationship 

between state fluctuations and pupil diameter provides additional support for a 

neuromodulatory influence on cortical state, as fluctuations in pupil diameter reliably 

reflect activity in various neuromodulatory centres that project to cortex (Aston-Jones 

and Cohen, 2005a; de Gee et al., 2017; Joshi et al., 2016; Murphy et al., 2014a; Reimer et 

al., 2016; Varazzani et al., 2015).  

Here we found differences in the LFPb power spectrum between On and Off states, with 

decreased low-frequency and increased high-frequency power across both areas during 

On phases in either V1 or V4 (Figure 3-17a-d). Additionally, we found that V4 state 

modulated LFPb power in V1, even if V1 phase was constant. Specifically, On phases in 

V4 increased high-frequency power in V1, whereas Off phases in V4 decreased high-

frequency power in V1. On the other hand, Off phases in V1 suppressed high-frequency 

power in V4, but On phases did not elicit any changes to the V4 power spectrum (Figure 

3-17e-h). In addition to the important role of feedback projections in driving state 
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transitions, these results suggest that high-frequency power in V1 is also modulated in a 

top-down manner during spatial attention. 

In addition to top-down attention, central arousal was also predictive of On-Off 

dynamics across V1 and V4. Higher arousal, characterised by larger baseline pupil 

diameter, was predictive of longer On epoch durations in both V1 and V4 (Figure 3-18b). 

In particular, higher arousal was predictive of epoch duration in the states where V1 and 

V4 were both in an Off (state 1) or On (state 4) phase (Figure 3-18d). Importantly, 

although central arousal was predictive of the time V1 and V4 were in the same state, 

pupil diameter did not differ across attention conditions (Figure 3-18e). This showed 

that arousal and attention interact, but that each had an independent contribution to 

cortical state dynamics.  

 

3.5.3 - Across area interaction of cortical state and selective attention 

As described above, the influence of selective attention and cortical state on local 

network dynamics might rely on similar circuit mechanisms (Harris, 2013; Harris and 

Thiele, 2011). Within visual cortical areas, spatial attention directed towards the RF 

generally increases mean firing rates (Desimone and Duncan, 1995), and decreases spike 

count correlations across neuronal pairs (Cohen and Maunsell, 2009; Mitchell et al., 

2009; Ruff and Cohen, 2016a), depending on the signal correlation between these pairs 

(Rabinowitz et al., 2015; Ruff and Cohen, 2014). 

It is currently unknown how information transfers across areas, and how this transfer is 

modulated by attention and cortical state on a trial-to-trial basis. Within visual areas, 

the attentional effects on the correlation structure of neural populations has been found 

to largely depend on feedback from higher order areas (Bondy et al., 2018), and can be 

modelled by a single modulator (per hemisphere, and weighted individually for each 

neuron) that affects each neuron’s response gain (Rabinowitz et al., 2015). Although the 

attention-related modulation of correlated variability can improve coding within a 

sensory area, it is unclear how this modulation affects either activity on shorter 

timescales or transmission across areas. As neural codes are noisy, coordination of 

activity, and thus redundancy, might be a prerequisite for successful information 

transfer from one area to the next (Harris and Mrsic-Flogel, 2013). Indeed, retinotopically 

aligned visual areas reveal sharper peaks in their cross correlogram (Nowak et al., 1995), 

and V2 spikes are preceded by coordinated spiking bursts (activity packets) in V1 

(Zandvakili and Kohn, 2015). Additionally, attention has been found to increase, rather 

than decrease, correlated variability in retinotopically aligned V1 and MT neurons (Ruff 

and Cohen, 2016a). This suggests that trial-by-trial coordination of activity across brain 

regions is beneficial for information transfer and can be selectively modulated according 

to task demands.  

The periods of high firing activity observed here, occurring at seemingly random times 

during the trial, could constitute the transmission of “activity packets”. During 

wakefulness, spontaneous fluctuations in population spiking activity have been 
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observed across sensory cortex in different modalities (Arieli et al., 1996; Engel et al., 

2016; Luczak et al., 2013, 2009; Sakata and Harris, 2009; Shimaoka et al., 2018). These 

seemingly random periods of high firing rate can occur spontaneously, after stimulus 

onset, as well as during sustained stimulus presentation, and regardless of when they 

occur, their structure (partially) follows a stereotypical activity pattern (Luczak et al., 

2013, 2009). Within activity packets, small variations in the temporal relationship and 

firing rates across the population code for distinct stimuli. Because of the structural 

similarity of activity packets across different conditions, it has been suggested that these 

packets might constitute a basic building block of information coding and a biologically 

plausible way for the cortex to transmit information between cortical areas (Luczak et 

al., 2015). Additionally, during sustained stimulus presentation, these packets have 

similar structure between synchronised and desynchronised states, but occur more 

frequently during cortical desynchronisation (Luczak et al., 2013).  

Within this framework (Luczak et al., 2015), information is transmitted in discrete 

packets, occurring reliably at stimulus onset but irregularly otherwise. Even during 

sustained stimulus presentation, population activity is not constant or sustained. Rather, 

periods of high firing rates alternate with periods of relative network silence. Activity 

packets can also be initiated in higher-order areas, providing context to local processes 

in sensory areas by sending information through feedback projections. Top-down 

attention could hereby send information upstream that outlines which specific 

information about a stimulus should be processed preferentially. With a duration of 50-

200 ms (Luczak et al., 2015, 2013), activity packet transmission might allow integration 

of feedforward and feedback activity. As activity packets are more likely to occur during 

the desynchronised state, in which desynchronised activity could be constituted of 

multiple overlapping packets, this could indicate an increase in packet transmission. 

It is unclear, however, to what extent packet transmission propagates across brain areas. 

While the spread of sensory activity in rodents is well-characterised as travelling waves 

that extends to most of the cortex (Luczak et al., 2015; Mohajerani et al., 2013), the spatial 

extent of activity transmission in primate cortex is less-well described and might be 

much smaller. Indeed, in anaesthetised monkeys coordinated bursts of V1 activity only 

reach as far as the input layer of V2, without spreading further across other V2 layers, 

and depend strongly on retinotopic alignment (Zandvakili and Kohn, 2015). Similarly, 

our results also show that across-area coordination strongly depends on retinotopic 

alignment. Activity packet transmission might thus be much more constrained in 

primate cortex.  

The increased duration of On episodes with attention directed towards the RF could 

reflect an increase in package transmission resulting in overlapping activity packets, 

which the HMM would not distinguish as distinct states and would therefore classify as 

a single longer state epoch. One reason why activity packets are unlikely to be the sole 

reason for the effects we have described here, is that activity packets usually last between 

50 and 200 ms (Luczak et al., 2015, 2013). In our data, on the other hand, we find both 

much shorter epoch durations (10 ms), as well as much longer epochs (> 1 s), even in the 

attend away conditions. In fact, as the distribution of epoch durations seems to follow 
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an exponentially decaying function (Figure 3-9), these short epoch durations, in 

particular those of On phases, are the most common ones. 

The mechanisms supporting cortico-cortical communication likely depend on some 

form of coordinated spiking activity, but the exact manner in which information is 

transmitted is still unclear. Cognitive processes such as attention have been found to 

selectively modulate across-area oscillatory coupling (Bosman et al., 2012; Gregoriou et 

al., 2009; Rohenkohl et al., 2018; Salazar et al., 2012) and correlated spiking variability 

(Oemisch et al., 2015; Ruff and Cohen, 2016a). Here we show that trial-by-trial across-

area coordination of rapidly fluctuating On-Off dynamics was modulated by attention 

and improved behavioural performance, suggesting enhanced information 

transmission. It will be important to determine the specificity of these dynamics, in 

terms of their spatial extent (i.e. can spatial attention selectively modulate On-Off 

dynamics between two nearby cortical regions?), their functional extent (i.e. would 

coordination be higher for neurons with high signal correlation (e.g. similar orientation 

tuning curves)?), their relation to frequency-specific coherence, as well as the selectivity 

by which single neurons are recruited (Okun et al., 2015) to transmit stimulus-specific 

information (Semedo et al., 2019). 

 

3.6 - Conclusion 

Although the effects of attention and cortical state within cortical areas are relatively 

well characterised, little is known about how either affects the across-area coordination 

of activity deemed crucial for cognition. Our results show that cortical state can 

influence population activity on both short and long timescales, and that attention can 

modulate these network activity fluctuations both within and across brain regions in 

support of behaviour. 
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Chapter 4 - Dopamine influences attentional rate 

modulation in Macaque posterior parietal cortex 
 

4.1 - Abstract 

Selective attention facilitates the prioritisation of task-relevant sensory inputs over those 

which are irrelevant. Although cognitive neuroscience has made great strides in 

understanding the neural substrates of selective attention, our understanding of its 

neuropharmacology is incomplete. Cholinergic and glutamatergic contributions have 

recently been demonstrated, but emerging evidence also suggests an important 

influence of dopamine. Dopamine (DA) has historically been investigated in the context 

of frontal/prefrontal function arguing that dopaminergic receptor density in the 

posterior/parietal cortex is rather sparse. However, this notion was derived from rodent 

data, whereas in primates DA innervation is comparatively strong, matching that of 

many primate prefrontal areas. Using recently developed techniques, we recorded 

single- and multi-unit activity whilst iontophoretically administering dopaminergic 

agonists and antagonists to posterior parietal cortex of awake, behaving rhesus 

macaques engaged in a covert feature based spatial attention task. Across the 

population, drug application resulted in general modulations in firing rate as well as 

modulation of attentional signals. More specifically, we show that unselective DA 

receptor agonists as well as D1 receptor antagonists diminish spike rates across the 

population. In addition, unselective DA receptor agonists modulate attentional signals 

in broad, but not narrow-spiking cells. Out of 97 neurons, the majority of which showed 

a visual response and attention selectivity, we found 55 that show modulation of activity 

induced by drug administration, out of these 10 showed an interaction effect between 

drug administration and attention Additionally, the unselective DA receptor agonist 

decreased attentional rate modulation and revealed an inverted-U shaped dose-

response curve, whereas the dose-response curve of the D1 antagonist followed a 

monotonic function. These data show that dopamine plays an important role in shaping 

neuronal responses in macaque parietal cortex, and contribute to attentional processing. 

 

4.2 - Introduction 

Selective attention refers to the prioritisation of behaviourally relevant, over irrelevant, 

sensory inputs. Convergent evidence from human neuropsychological, brain imaging 

and non-human primate studies shows that fronto-parietal brain networks are critical 

for selective attention (Corbetta and Shulman, 2011; Desimone and Duncan, 1995; 

Posner, 1990). Neuromodulation of attention-related activity in these fronto-parietal 

networks occurs at least in parts via glutamatergic (Herrero et al., 2013) and cholinergic 

inputs (Furey et al., 2008; Herrero et al., 2008; Levin and Simon, 1998b; Nelson et al., 

2005; Parikh et al., 2007; Sarter et al., 2005; Warburton and Rusted, 1993). Multiple lines 

of evidence, however, also suggest catecholamine modulation (Bellgrove and 

Mattingley, 2008; Thiele and Bellgrove, 2018). Here we sought to understand how 
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dopamine applied to the posterior parietal cortex modulates attention-related activity 

in non-human primates.  

The functional significance of dopamine for behaviour is well established for a number 

of brain areas, including the frontal cortex (executive control) and basal ganglia (motor 

control). For these brain areas, the substantial similarities between rodents, non-human 

primates and humans, have allowed the development of mechanistic models with 

clinical translational value for a number of disorders (e.g., Parkinson’s disease, 

schizophrenia or attention deficit hyperactivity disorder (ADHD)) (Arnsten et al., 2012; 

Thiele and Bellgrove, 2018). Species differences with respect to patterns of dopamine 

innervation do however exist for a number of posterior cortical areas, including the 

posterior parietal cortex. Although dopaminergic innervation of posterior parietal cortex 

is sparse in the case of rodents, work in non-human primates demonstrated that 

dopaminergic innervation to parietal regions is largely comparable in strength to 

prefrontal areas (Berger et al., 1991). Moreover, high densities of dopamine transporter 

(DAT) immunoreactive axons have been reported in the posterior parietal cortex of 

macaques (Lewis et al., 2001). These observations align with data from human studies 

that revealed dense dopamine receptor expression in parietal cortex (Caspers et al., 

2013), as well as brain imaging studies of clinical disorders such as ADHD and 

schizophrenia, where medications targeting dopamine receptors or transporters 

modulate activity in parietal cortex (Mehta et al., 2000). Given these data and the clinical 

significance of posterior parietal function for a number of clinical disorders, a greater 

understanding of the functional role of dopamine in this region is warranted. 

One cognitive process, which relies heavily on the integrity of the posterior parietal 

cortex, is selective attention. A number of lines of evidence from both non-human 

primates and humans suggest that dopamine may modulate selective attention. First, 

dopamine agonists reduce the extent of spatial inattention in both neurological 

(Gorgoraptis et al., 2012) and psychiatric patients with disorders such as schizophrenia 

(Maruff et al., 1995) and ADHD (Bellgrove et al., 2008; Silk et al., 2014). Second, 

psychopharmacological studies in healthy volunteers suggest that dopamine antagonists 

modulate parameters of spatial cueing paradigms (e.g. validity effect) which are often 

associated with parietal function (Clark et al., 1989). Third, DNA variation in a 

polymorphism of the dopamine transporter gene (DAT1) has been associated with 

individual differences in measures of spatial selective attention (Bellgrove et al., 2009, 

2007; Newman et al., 2014). Fourth, studies in non-human primates have shown that 

dopamine contributes to working memory signals in dorsolateral prefrontal cortex 

(dlPFC) (Williams and Goldman-Rakic, 1995), and in frontal eye fields (FEF) dopamine 

affects target selection and modulates V4 activity in an ‘attention-like’ manner by 

altering orientation selectivity and response variability (Noudoost and Moore, 2011a). 

Dopamine thus contributes to working memory, target selection and plausibly also 

spatial attention in dlPFC and FEF (Clark and Noudoost, 2014; Noudoost and Moore, 

2011a, 2011b; Williams and Goldman-Rakic, 1995), critical nodes of the fronto-parietal 

attention networks. Nevertheless, a specific effect of dopamine on attention-related 

activity in posterior parietal cortex is yet to be established. 
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Here we sought to address this knowledge gap by directly infusing dopamine (including 

specific agonists and antagonist) into the posterior parietal cortex of two macaque 

monkeys while they performed a selective attention task. We show that single and multi-

unit (SU, MU) activity is inhibited by iontophoresis of dopaminergic drugs into the gray 

matter of the intraparietal sulcus (IPS). The effects of the unselective agonist dopamine 

(DA) followed an inverted U-shaped dose-response curve, whereas the dose-response of 

the D1-selective antagonist SCH23390 followed a monotonic function. Additionally, we 

found cell-type specific effects on attentional modulation, whereby DA only affected 

attention-related activity in broad-spiking cells but not in narrow-spiking units.  

 

4.3 - Materials & Methods 

4.3.1 - Procedures and animals 

All procedures were performed in accordance with the European Communities Council 

Directive RL 2010/63/EC, the National Institutes of Health’s Guidelines for the Care and 

Use of Animals for Experimental Procedures, and the UK Animals Scientific Procedures 

Act. In the present investigation, two adult awake male macaques (Macaca mulatta, age 

9-11 years, weight 8-12.9 kg) were used. 

 

4.3.2 - Surgical preparation 

The monkeys were implanted with a head post and recording chambers over the lateral 

intraparietal sulcus under sterile conditions and under general anaesthesia. Surgery and 

postoperative care were identical to those published in detail previously (Thiele et al., 

2006). 

 

4.3.3 - Saccade field (SF) and receptive field (RF) mapping 

The location of SF was mapped using a visually guided saccade task. Here, monkeys 

fixated centrally for 400 ms after which a saccade target was presented in one of nine 

possible locations (8-10° from fixation, equally spaced between). After a random delay 

(800-1400 ms, uniformly distributed) the fixation point was extinguished, which 

indicated the monkey to perform a saccade towards the target. Online analysis of visual, 

sustained and saccade related activity determined an approximate SF location which 

guided our subsequent RF mapping. The location and size of RF was measured by a 

reverse correlation method. During fixation, a black square (1-3° size, 100% contrast) was 

presented at pseudorandom locations on a 9 × 12 grid (5-25 repetitions for each location, 

100 ms stimulus presentation, 100 ms interstimulus interval) on a bright background. 

This RF mapping procedure followed published details (Gieselmann and Thiele, 2008). 

RF eccentricity ranged from 2.5° to 17° and were largely confined to the contralateral 

visual field. 
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4.3.4 - Identification of recording sites 

The location of the intraparietal sulcus (IPS) was initially guided by means of 

postoperative structural magnetic resonance imaging (MRI), displaying the recording 

chamber (Figure 4-1a). During each recording, neuronal response properties where 

determined using SF and RF mapping tasks. During the SF mapping task, we targeted 

cells that showed spatially selective persistent activity and preparatory activity before 

the execution of a saccadic eye movement (Figure 4-1b).  

 

4.3.5 - Behavioural task and stimuli 

The task (Figure 3-1) and stimuli have been described previously (Thiele et al., 2016). In 

brief, stimuli were presented on a cathode ray tube (CRT) monitor (120 Hz, 1280 × 1024 

pixels, 55 cm from the animal). The monkey initiated a trial by holding a touch bar and 

fixating a white fixation spot (0.1° diameter). After 425/674 ms (monkey 1/monkey 2) 

three coloured square wave gratings (2° - 6°, dependent on RF size and distance from 

fixation) appeared equidistant from the fixation spot, one of which was centred on the 

RF of the recorded neuron. Red, green and blue gratings (Table 4-1 for colour values) 

were presented on a gray background (0.8 cd/m2), with an orientation at a random angle 

to the vertical meridian (the same orientation for the three gratings in any given 

session). The locations of the colours, as well as the orientation, were pseudorandomly 

assigned between recording sessions and held constant for a given recording session. 

Figure 4-1. Identification of recording sites. (a) Targeting of recording site using structural magnetic 

resonance imaging (MRI). (b) Neural responses during saccade field mapping task aligned to saccade onset. 

Each panel shows the spiking activity as raster plots (each vertical line is a spike) across multiple trials and the 

average histogram (black line) to a visual stimulus presented in one of nine target locations around fixation (° 

from fixation, indicated in the title of each panel). The grey line indicates the average response across all 

stimulus locations for comparison. This example neuron showed selectivity for the targets presented in the 

upper left quadrant from fixation. Statistics: ANOVA across 50 trials distributed over 9 conditions (target 

locations). 
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Gratings moved perpendicular to the orientation, whereby the direction of motion was 

pseudorandomly assigned for every trial. After a random delay (570-830/620-940 ms 

[monkey 1/monkey 2], uniformly distributed) a central cue appeared that matched the 

colour of the grating that would be relevant on the current trial. After 980-1780/1160-

1780 ms [monkey 1/monkey 2] (uniformly distributed), one pseudorandomly selected 

grating changed luminance (dimmed). If the cued grating dimmed, the monkey had to 

release the touchbar within 600 ms. If a non-cued grating dimmed, the monkey had to 

ignore this and wait for the cued grating to dim. This could happen when the second or 

third (each after 750-1130/800-1130 ms [monkey 1/monkey 2], uniformly distributed) 

grating changed luminance. Drugs were administered in blocks of 36 trials.  

 

4.3.6 - Electrode-pipette manufacturing 

We recorded from the lateral (and in a few occasions medial) bank of the intraparietal 

sulcus (IPS) using custom-made electrode-pipettes (Figure 4-2) that allowed for 

simultaneous iontophoretic drug application and extracellular recording of spiking 

activity (Thiele et al., 2006). The manufacture of these electrodes was similar to the 

procedures described by Thiele et al., (2006), with minor changes to the design in order 

to reach areas deeper into the IPS, such as the laterial intraparietal area (LIP).  

We sharpened tungsten wires (125 µm diameter, 75 mm length, Advent Research 

Materials Ltd., UK) by electrolytic etching off the tip (10-12 mm) in a solution of NaNO2 

(172.5 g), KOH (85 g) and distilled water (375 ml). We used  borosilicate glass capillaries 

with three barrels (custom ordered, Hilgenberg GmBH, www.hilgenberg-gmbh.de), 

with the same dimensions as those described previously (Thiele et al., 2006). The 

sharpened tungsten wire was placed in the central capillary and secured in place by 

bending the non-sharpened end (approximately 10 mm) of the wire over the end of the 

barrel. After marking the location of the tip of the tungsten wire, shrink tubing was 

placed around the top and bottom of the glass. The glass was pulled around the tungsten 

wire using a PE-21 Narashige microelectrode puller with a heating coil made from 

Kanthal wire (1 mm diameter, 13 loops, inner loop diameter 3 mm) and the main (sub) 

magnet set to 30 (0) and the heater at 100. The electrode-pipette was placed such that 

the tip of the tungsten wire protruded 11 mm from the bottom of the heating coil. After 

pulling, we filled the central barrel (with the tungsten electrode inside) with superglue 

Table 4-1. Colour values used for the 3 coloured gratings across recording sessions and subjects, indicated 

as [RGB] – luminance (cd/m2). a = Undimmed values, b = dimmed values. 

 Red Green Blue 

Monkey 1 
Early recordings (n=29) 

a. [255 0 0] - 14.5 
b. [100 0 0] - 1.4 

a. [0 128 0] – 9.1 
b. [0 70  0] – 1.9 

a. [60 60 255] - 11.5  
b. [10 10 140] – 2.2 

Monkey 2 
Early recordings (n=5) 

a. [220 0 0] – 12.8 
b. [180 0 0] – 7.7 

a. [0 135 0] – 12.9 
b. [0 110  0] – 7.3 

a. [60 60 255] – 12.2  
b. [35 35 220] – 7.4 

Monkey 1/2 (n=12/8) 
Late recordings  

a. [220 0 0] – 12.8 
b. [140 0 0] – 4.2 

a. [0 135 0] – 12.9 
b. [0 90  0] – 4.6 

a. [60 60 255] – 12.2  
b. [30 30 180] – 4.6 

 

http://www.hilgenberg-gmbh.de/
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using a syringe and fine flexible injection canullae (MicroFil 28 AWG, MF28G67-5, 

World Precision Instruments, Ltd.). We found that if we did not fill (most of) the central 

barrel with superglue after pulling, the recorded signal was often very noisy, possibly 

due to small movements of the animal (such as drinking), which caused the free 

tungsten wire to resonate inside the glass. Using a micro grinder (Thomas Recording 

GmBH, tip grinding machine), we removed excess glass, sharpened the tip of the 

electrode and opened the flanking barrels of the pipette.  

 

4.3.7 - Electrode-pipette filling and iontophoresis 

Electrode-pipettes were back-filled with the same drug in both pipettes using a syringe, 

filter units (Millex® GV, 22 μm pore diameter, Millipore Corporation), and fine flexible 

injection canullae (MicroFil 34 AWG, MF34G-5, World Precision Instruments, Ltd.). The 

pipettes were connected to the iontophoresis unit (Neurophore-BH- 2, Medical systems 

USA) with tungsten wires (125 μm diameter) inserted inside the flanking barrels. Because 

of the exploratory nature of these recordings (it is unknown whether DA influences 

parietal neurons during spatial attention tasks and what modulation can be expected 

with different amounts of drug applied), we used a variety of iontophoretic ejection 

currents (20 - 90 nA). The details regarding concentration and pH of the drugs were: 

Dopamine (0.1M in water for injections, pH 4-5), SCH23390 (0.005-0.1M in water for 

injections, pH 4-5.5) and SKF81297 (0.01M in water for injections, pH ~5). 

 

4.3.8 - Data acquisition  

Stimulus presentation, behavioural control and drug administration was regulated by 

Remote Cortex 5.95 (Laboratory of Neuropsychology, National Institute for Mental 

Health, Bethesda, MD). Raw data were collected using Remote Cortex 5.95 (1-kHz 

sampling rate) and by Cheetah data acquisition (32.7-kHz sampling rate, 24 bit sampling 

resolution) interlinked with Remote Cortex 5.95. Data were replayed offline, band-pass 

Figure 4-2. Micropipettes used for the simultaneous recording of neural activity and iontophoretical 

application of drugs in the near vicinity of the recording site. Two glass pipettes flank the etched tungsten 

wire. Electrode-pipette design based on that described by Thiele et al. (2006) 
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filtered (0.6-9 kHz) and spikes were sorted manually using SpikeSort3D (Neuralynx). 

Eye position and pupil diameter were recorded using a ViewPoint eyetracker (Arrington 

research) at 220 Hz. Pupil diameter was recorded in 40 out of 54 recording sessions. 

 

4.3.9 - Pupillometry 

Pupil diameter was low-pass filtered (10 Hz) using a second-order butterworth filter. 

Baseline activity was estimated as the average activity before stimulus onset (-300 to -50 

ms), which was used to normalise the pupil diameter time course. Stimulus evoked 

constriction was baseline corrected (on a trial by trial basis) and averaged in a 250 ms 

time window centred on 500 ms after stimulus onset. Cue-evoked (250 ms window 

centred on 500 ms after cue onset) and pre-dimming (-300 to -50 ms) pupil diameter, 

was baseline subtracted with a pre-cue baseline (-300 to -50 ms). For visualisation, pupil 

diameter in each epoch was scaled to a range from zero to one, before averaging across 

trials. 

 

4.3.10 - Analysis of cell type. 

We distinguished between different cell types based on the duration of the extracellular 

spike waveform as described in Thiele et al. (2016). Specifically, we classified cells based 

on the peak-to-trough ratio, i.e. the duration between the peak and the trough of the 

interpolated (cubic spline) spike waveform (Figure 4-3a). To test whether the 

distribution of peak-to-trough distance of the spike waveforms was unimodal (null 

hypothesis) or bimodal, indicating that our distribution contained different cell types, a 

modified Hartigan’s dip test was used (Ardid et al., 2015; Thiele et al., 2016). We used a 

cut-off of 250 µs to classify cells as narrow or broad spiking, as this was where our 

distribution revealed the main ‘dip’ (Figure 4-3). Note that during occasional recordings 

the iontophoresis unit introduced interference which, if spike waveforms were relatively 

small and multi rather than single-units were extracted, led to small oscillations on top 

of the spike waveforms. 

 

4.3.11 - Fano factor 

The variability of neural responses was quantified using Fano factors (𝐹𝐹), computed as 

the ratio between the variance (𝜎2) and the mean (𝜇) spike counts within the time 

window of interest, defined as:         

𝐹𝐹 =  
𝜎2

𝜇
 

Equation 4-1 
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4.3.12 - Drug modulation 

The strength of the effect of drug application on neural activity (firing rates) was 

determined via a drug modulation index (𝑑𝑟𝑢𝑔𝑀𝐼), defined as:   

𝑑𝑟𝑢𝑔𝑀𝐼 =
𝑑𝑟𝑢𝑔𝑜𝑛 − 𝑑𝑟𝑢𝑔𝑜𝑓𝑓

𝑑𝑟𝑢𝑔𝑜𝑛 + 𝑑𝑟𝑢𝑔𝑜𝑓𝑓
 

Equation 4-2 

with 𝑑𝑟𝑢𝑔𝑜𝑛 as the neural activity when drug was applied, and 𝑑𝑟𝑢𝑔𝑜𝑓𝑓 the activity when 

the drug was not applied. This index ranges from -1 to 1, with zero indicating no 

modulation due to drug application and with positive (negative) values indicating higher 

(lower) activity when the drug was applied. 

 

4.3.13 - Quantification of attentional rate modulation. 

To quantify the difference between neural responses when attention was directed 

towards the RF versus away from the RF, we computed the area under the receiver 

operating characteristic (AUROC) curve (Figure 4-4). Stemming from signal detection 

theory (Green and Swets, 1966), this measure represents the difference between two 

distributions as a single scalar value, taking into account both the average difference in 

magnitude as well as the variability of each distribution. This value indicates how well 

an ideal observer would be able to distinguish between two distributions, for example 

the neural response when attention is directed towards versus away from its RF. It is 

computed by iteratively increasing the threshold and computing the proportion (from 

the first sample to the threshold) of hits and false alarms (FA), i.e. the correct and false 

classification as samples belonging to one of the activity distributions (Figure 4-4a). The 

ROC curve is generated by plotting the proportions of hits against the proportion of FAs, 

Figure 4-3. Distribution of broad and narrow-spiking cells. (a) Average spike waveforms for the population of 

cells. (b) Distribution of peak-to-trough ratios. Statistics: calibrated Hartigan’s dip test (Ardid et al., 2015). 
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and AUROC is taken as the area under the ROC curve (Figure 4-4c). An AUROC of 0.5 

indicates that the two distributions were indistinguishable, whereas an AUROC of 0 or 

1 indicates that the two distributions were perfectly separable. 

 

4.3.14 - Statistical testing and data selection 

To determine whether DA significantly affected neural activity across the population of 

single and multi-units, we used paired-sample Wilcoxon signed rank tests. For 

comparisons within one recording, e.g. spike rates across trials for different conditions, 

we used analysis of variance (ANOVA) with three factors: attention (towards or away 

from the RF), drug (on or off) and stimulus direction. To test whether drug application 

affected behavioural performance, we used sequential linear mixed effects models with 

attention and drug as fixed effects and with the recording number as a random effect, to 

account for the repeated measurements in the data. 

To test for significant linear or quadratic trends in the drug dose-response curve, we 

used sequential linear mixed effects models and likelihood ratio tests. Specifically, we 

tested whether a first-order (linear) polynomial fit was better than a constant (intercept-

only) fit and subsequently whether a second-order (non-monotonic) polynomial fit was 

better than a linear fit. The modulation due to drug application of the neural response 

𝑦 was modelled as a linear combination of polynomial basis functions of the 

iontophoretic ejection current (𝑋): 

𝑦 ~ 𝛽0 +  𝛽1𝑋 + 𝛽2𝑋2 

Figure 4-4. Graphic representation of receiver operating characteristic (ROC) computation. (a) Schematic 

illustrating the classification of samples belonging to the blue (hit) and red (false alarm, FA) distribution. The 

proportion of hits and FAs is computed for each iterative updating of the threshold. (b-c) Two sets of 

distributions, probability density functions (b) and their accompanying ROC curves (c) for which the blue 

and red distribution are relatively easy (top) or hard (easy) to classify. An AUROC value of 0.5 indicates that 

the two distributions are indistinguishable, in which case the ROC curve would fall along the unity line. 
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, with 𝛽 as the polynomial coefficients. When a significant quadratic relationship was 

found, we used the two-lines approach to determine whether this relationship was 

significantly U-shaped (Simonsohn, 2017). Error bars in all figures indicate the standard 

error of the mean (SEM), unless stated otherwise.  

We selected which cells to include in each of the analyses based on the output of the 3-

factor ANOVA described above. For example, if we wanted to investigate whether drug 

application affected attentional modulation of firing rates, we only included cells that 

revealed a main or interaction effect for both attention and drug application. 

 

4.4 - Results 

We recorded activity from 97 (73 from monkey 1, 24 from monkey 2) single (SU, n=46) 

and multi-units (MU, n=51) from intraparietal sulcus (IPS) in two awake, behaving 

Macaque monkeys performing a selective attention task (Figure 3-1). Of these cells, 95 

(97.9%) showed a visual response to stimulus onset, and 81 (83.5%) were modulated by 

attention (Figure 4-5). During recording, we used an electrode-pipette combination 

(Figure 4-2) to iontophoretically administer dopaminergic (DA) drugs in the near 

vicinity of the recorded cells (Thiele et al., 2006). Across the two monkeys, we recorded 

from 59 units whilst administering the unselective agonist dopamine, from 29 units 

during which we administered the selective D1R antagonist SCH23390 and 9 units with 

the D1R agonist SKF81297. In line with previous studies (Jacob et al., 2016, 2013), firing 

rates in 36 (61%), 14 (48.3%), and 5 (55.6%) units were modulated by application of the 

unselective agonist dopamine, SCH23390 and SKF81297, respectively (Figure 4-5). Of 

these cells, 4 (11.1%), 5 (35.7%) and 1 (20%) units revealed an interaction effect between 

drug application (dopamine, SCH23390 and SKF81297) and attention. Although only a 

Figure 4-5. Selectivity of units. (a) Proportion of units that are visually responsive, that are modulated by 

attention, drug application, or that show an interaction between attention and drug application. (b) Venn 

diagram of unit selectivity. Note that 1 unit was not selective for any of the experimental factors. 
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small subset of units revealed an interaction effect, approximately half the units were 

modulated both by attention and drug application (Figure 4-5). Because of the low 

number of cells recorded during the application of SKF81297 (which were recorded from 

only one monkey), we focused our analyses on the recordings in which dopamine or 

SCH23390 was applied. 

Figure 4-6 illustrates the population activity aligned to stimulus onset, cue onset and 

the first-dimming event, for both the no-drug and the drug conditions. For a given drug 

condition, neural activity between attention conditions did not differ when aligned to 

stimulus onset but started to diverge approximately 200 ms after cue onset, which 

indicated which of the three gratings was behaviourally relevant on that trial, and 

diverged further leading up to the first dimming event. Across the population, dopamine 

strongly reduced firing rates throughout the duration of the trial, including during 

baseline periods as well as stimulus and cue presentation (Figure 4-6a), whereas the 

effects of SCH23390 were of the same sign but weaker (Figure 4-6b). Although upon 

visual inspection, dopamine seemed to affect neural activity similarly when attention 

was directed towards or away from the RF of the neuron under study (compare the 

difference between the dark and light blue lines and the difference between the red and 

orange lines), a subset of neurons revealed an interaction between attention and drug 

application (Figure 4-5), as illustrated for an example neuron in Figure 4-7. Next, we 

specifically examined units for which the activity was modulated by attention and/or 

drug application, i.e. units that revealed a main effect or interaction effect for these 

Figure 4-6. Population histograms for all cells recorded during dopaminergic drug application. Population 

activity aligned to stimulus onset (left), cue onset (middle) and the first dimming event (right), for the non-

specific agonist dopamine (a) and the D1 antagonist SCH23390 (b). Error bars denote ±1 SEM. 
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factors, and investigated whether activity modulation due to attention and drug 

application mapped onto different cell types.  

Cells were classified as narrow or broad-spiking cells according to the median duration 

of the peak-to-trough time of the spike waveforms (Figure 4-3). These cell types have 

previously been found to respond differently to dopaminergic drug application (Jacob et 

al., 2016, 2013). Although narrow and broad-spiking cells have been argued to constitute 

inhibitory interneurons and excitatory pyramidal cells, respectively (Mitchell et al., 

2007), a more recent study found that output cells in primary motor cortex (unequivocal 

pyramidal cells) had a narrow action potential waveform (Vigneswaran et al., 2011), and 

most pyramidal cell in macaque PFC express the Kv3.1b potassium channel, associated 

with the generation of narrow spikes (Soares et al., 2017). Therefore, the narrow-broad 

categorization thus solely allows us to distinguish between cell-types, without mapping 

this classification specifically onto interneurons or pyramidal cells. 

The application of DA reduced firing rates across the population for both broad and 

narrow spiking cells, and for both attend towards or away from RF conditions (Figure 

4-8a). Fano factors were unaffected by dopamine application (Figure 4-8b). The 

application of SCH23390 elicited a small but significant reduction of the average firing 

rates of broad-spiking cells during both attention conditions (Figure 4-8c) without 

affecting FFs (Figure 4-8d). Dopaminergic drug application thus mainly inhibited 

cellular activity, without affecting the variability. 

Figure 4-7. Activity from a representative cell recorded during application of the non-specific agonist 

dopamine. This cell’s activity, aligned to the first dimming event, was significantly modulated by attention 

and drug application and showed a significant interaction between these factors. The grey bar indicates the 

time window used for statistical analyses. Statistics: two-factor ANOVA. 
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To investigate whether dopamine affected attention-specific activity, we tested whether 

attention AUROC values were modulated by drug application. Attention AUROC values 

indicate how well an ideal observer can distinguish between neural activity during 

attend RF or attend away trials (Figure 4-4). A value of 0.5 indicates that the 

distributions are indistinguishable, whereas values of 0 or 1 indicate perfectly 

distinguishable distributions. The application of the non-specific agonist dopamine 

reduced AUROC values only for broad-spiking cells, whereas narrow-spiking cells were 

unaffected (Figure 4-9a). SCH23390 application did not modulate AUROC values for 

either cell type (Figure 4-9b). Dopamine thus had a cell-type specific effect on 

attentional rate modulation.  

As drug application strongly inhibited firing rates across the population (Figure 4-8), 

and we found cell-type specific effects on attention-specific activity (Figure 4-9), we next 

investigated whether drug application affected behavioural performance (Figure 4-10). 

To this end, we used sequential multilevel model analyses to test for fixed effects of 

attention and drug application, as well as their interaction, on RT. Neither attention 

(Dopamine: β = -13.49±8.88, p = 0.132; SCH23390: β = 2.86±11.34, p = 0.802), nor drug 

application (Dopamine: β = -3.47±8.88, p = 0.697; SCH23390: β = 10.38±11.34, p = 0.363) 

nor their interaction (Dopamine: β = 2.87±5.62, p = 0.611; SCH23390: β = -4.33±7.17, p = 

0.548) were predictive of RT for either drug. Given the focal nature of micro-

iontophoretic drug application (Herz et al., 1969), the absence of an effect of drug 

application on behavioural performance is not surprising and in-line with comparable 

work on DA in PFC (Jacob et al., 2016, 2013; Vijayraghavan et al., 2007). 

Figure 4-8. Dopaminergic modulation of population firing rates and Fano factors during the 500 ms before 

first-dimming. (a) Average firing rates between no drug and drug conditions for the non-specific agonist 

dopamine for attend RF (left) and attend away (right) conditions. (b) Fano factors between no drug and drug 

conditions for the non-specific agonist dopamine. (c-d) Same conventions as (a-b) but for the D1 antagonist 

SCH23390. Only cells that revealed a main or interaction effect for the factor drug were included in this 

analysis. Statistics: Wilcoxon signed rank tests. 
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Because of the exploratory nature of this study, we applied dopaminergic drugs with a 

variety of iontophoretic ejection currents (20-90 nA). Since dopamine has previously 

been shown to modulate neural activity according to an inverted U-shaped dose-

response curve (Vijayraghavan et al., 2007), with maximal modulation at intermediate 

dopamine levels, we tested whether the ejection current was predictive of the firing rate 

modulation associated with drug application, estimated by a drug modulation index 

(drugMI). Specifically, we used sequential linear mixed effects model analyses and 

likelihood ratio tests to test for linear and quadratic trends. U-shaped trends were 

verified using the two-lines approach (Materials & Methods). Figure 4-11 illustrates the 

dopaminergic dose-response curves. The non-specific agonist dopamine displayed a 

non-monotonic relationship with drugMI (χ2
(1) = 7.18, p = 0.007) and revealed an inverted 

U-shaped curve (p < 0.05) in which intermediate ejection currents elicited the most 

negative drugMI, i.e. the largest inhibition of activity (Figure 4-11a). For SCH23390, on 

the other hand, we found a monotonic dose-response relationship (χ2
(1) = 4.21, p = 0.040), 

with more inhibition of firing rates with higher drug ejection currents (Figure 4-11b). To 

investigate whether drug dosage was also predictive of attentional rate modulation, we 

performed the same analysis on the difference score (drug – no drug) of attention 

AUROC values. Neither dopamine (χ2
(1) = 0.95, p = 0.330), nor SCH23390 (χ2

(1) = 0.33, p 

= 0.568) dosage were predictive of attention AUROC (Figure 4-11c-d). Because the effect 

of D1R stimulation can depend on the spatial tuning of the neuron (Vijayraghavan et al., 

2007), we also tested whether drugMI was predictive of the drug induced modulation of 

attention AUROC values. DrugMI was neither predictive of attention AUROC for 

dopamine (χ2
(1) = 0.27, p = 0.604) nor SCH23390 (χ2

(1) = 0.01, p = 0.929) (Figure 4-11e-f). 

Comparable results were obtained when these analyses were limited to only broad 

spiking cells, or cells that showed both an attention and drug effect. 

Figure 4-9. Dopaminergic modulation of attention AUROC values. Area under the receiver operating 

characteristic (AUROC) curve between no drug and drug conditions for the non-specific agonist dopamine 

(a) and the D1 antagonist SCH23390 (b). Only cells that revealed a main or interaction effect for the factors 

drug and attention were included in this analysis. Statistics: Wilcoxon signed rank tests. 
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Interestingly, we additionally found that the application of both DA and SCH23390 

influenced pupil diameter. We conducted a sliding-window Wilcoxon signed rank 

analysis for each 200 ms window, in 10 ms increments, comparing baseline normalised 

pupil diameter on drug compared to no-drug trials (Figure 4-12a). This analysis revealed 

a significant difference in pupil diameter that started after stimulus onset, and lasted 

until after cue onset. Specifically, we found a small, but significant, modulation of the 

pupillary light reflex (Figure 4-12). The magnitude of the constriction of the pupil upon 

stimulus onset was reduced during dopaminergic drug application compared to control 

trials, but neither drug influenced pupil diameter during any other time window (Figure 

4-12b-e). Another sliding window analysis using a two factor (drug by attention) 

repeated measures ANOVA revealed no effect of attention (main or interaction) on pupil 

diameter (data not shown). Thus, locally applied dopaminergic drugs in parietal cortex 

modulated the pupillary light reflex.  

 

4.5 - Discussion 

We recorded from single and multi-units in intraparietal sulcus from two monkeys 

performing a selective attention task whilst iontophoretically applying dopaminergic 

drugs in the near vicinity of the recorded cells. The non-specific agonist dopamine, 

inhibited activity across the population of recorded cells, throughout the duration of the 

trial. This modulation furthermore followed an inverted U-shaped dose-response. The 

application of the D1-receptor specific antagonist SCH23390 also decreased firing rates, 

but much less than dopamine and only for broad-spiking cells, for which the modulation 

followed a monotonic dose-response curve. In addition to affecting overall firing rates, 

dopamine also reduced top-down attention-related firing rate modulations (attention 

Figure 4-10. Behavioural performance is unaffected by iontophoretic application of dopaminergic drugs. 

Average RT on attend RF and attend away trials for the non-specific agonist dopamine (a) and the D1 

antagonist SCH23390 (b). Dots represent average RT during a single recording session. Statistics: linear 

mixed-effects model analysis. Error bars denote ±1 SEM. 
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AUROC) in broad-spiking cells. Finally, local application of dopaminergic drugs in 

parietal cortex decreased the pupil light reflex to stimulus onset.  

Figure 4-11. Dopaminergic dose-response curves in relation to attention AUROC. (a-b) Drug modulation 

index (before first-dimming, only for cells that were modulated by drug application) plotted against ejection 

current for the non-specific agonist dopamine (a) and the D1 antagonist SCH23390 (b). (c-d) Same 

conventions as (a-b) but for the difference score (drug – no drug) of attention AUROC values. (e-f) Attention 

AUROC values plotted against drug modulation index. Note the reversed y-axis in all panels. Solid and dotted 

lines represent significant model fits (applied to all cells simultaneously) and their 95% confidence intervals, 

respectively. A monotonic relationship is shown if a first-order fit was better than a constant fit, and a non-

monotonic relationship is shown if a second-order fit was better than a linear fit. U+ indicates a significant U-

shaped relationship. Only cells that revealed a main or interaction effect for the factor drug were included in 

this analysis. Statistics: linear mixed-effects model analysis. 
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As the influence of dopamine on cognitive signals has largely been studied in the context 

of prefrontal cortex (Clark and Noudoost, 2014; Ott and Nieder, 2019), this is the first 

study to show that dopaminergic modulation plays an important role in ‘tuning’ top-

down attention-related neuronal activity in parietal cortex. 

 

4.5.1 - General and cell-type specific dopaminergic modulation in parietal 

cortex 

We distinguished between cell classes based on the shape of the extracellularly recorded 

waveform. Specifically, we classified cells based on the median duration of the peak-to-

trough time as narrow or broad-spiking cells, with a cutoff of 250 µs (Thiele et al., 2016). 

Even though, as discussed above, this classification does not reflect a one-to-one 

mapping onto inhibitory interneurons and excitatory pyramidal cells, this distinction 

does allow functional differentiation which may explain some of the results described in 

this study (Jacob et al., 2016, 2013). 

Dopamine has a well-established role in modulating prefrontal signalling supporting 

cognitive functions such as working memory and attention (Noudoost and Moore, 2011b; 

Ott and Nieder, 2019; Thiele and Bellgrove, 2018; Vijayraghavan et al., 2007; Watanabe 

et al., 1997; Williams and Goldman-Rakic, 1995). Although D1R and D2R are expressed 

broadly throughout the cortex and fulfil complementary roles in the prefrontal cognitive 

control (Ott and Nieder, 2019), modulation of delay period activity during working 

Figure 4-12. Modulation of pupil diameter by dopamine in Parietal cortex. (a) Baseline normalised pupil time 

course aligned to stimulus onset (left), cue onset (middle) and the first dimming event (right). The grey bar 

indicates the times where drug application brought about a significant difference in pupil diameter. (b-e) 

Average normalised pupil diameter during pre-stimulus baseline period (b), after stimulus onset (c), after cue 

onset (d), and before the first dimming event (e). Shaded regions denote ±1 SEM. Statistics: Wilcoxon signed 

rank test. FDR correction was applied for the analysis in panel a. 
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memory tasks has mostly been associated with stimulation or blockade of D1Rs 

(Sawaguchi et al., 1990; Sawaguchi and Goldman-Rakic, 1991, 1994; Williams and 

Goldman-Rakic, 1995), although D2Rs have also been implicated (Ott et al., 2014). 

Additionally, although manipulation of either receptor subtype in FEF can modulate 

behaviour by increasing saccadic choices towards the RF, only D1R blockade elicited 

activity that resembled the effects of attention in extrastriate visual areas (Noudoost and 

Moore, 2011a). Interestingly, D1-like receptors (D1 and D5) are expressed in higher 

proportions on excitatory pyramidal cells compared to inhibitory interneurons in FEF, 

and are expressed in particularly high numbers on neurons projecting towards 

extrastriate visual areas (Mueller et al., 2019, 2018).  

Here, we found that both broad and narrow-spiking cells were inhibited by the 

application of dopamine, but only broad-spiking cells were significantly inhibited by 

SCH23390. Furthermore, dopamine modulated attention AUROC values only for broad-

spiking cells. Although it is currently unknown whether the expression of D1 and D2-

like receptors differs across pyramidal cells and interneurons in posterior parietal cortex, 

if it is similar to what has been found in FEF (Mueller et al., 2019, 2018), it could be that 

modulation of attentional signals in parietal cortex also relies on higher expression of 

D1-like, rather than D2-like, receptors in broad-spiking putative pyramidal cells. 

It is remarkable that the majority of the recorded neurons were inhibited by dopamine 

and SCH23390 application, as previous studies (in prefrontal cortex) found mixed 

responses to unselective dopamine (Jacob et al., 2013) or D1R stimulation (Vijayraghavan 

et al., 2007; Williams and Goldman-Rakic, 1995). These effects could theoretically be due 

to our recording/iontophoresis setup. As both agonists and antagonists elicited 

responses of the same sign, unexpected effects unrelated to drug application could have 

been ruled out by control recordings using saline instead of (or in addition to) drugs, or 

compensating the ejection current from one pipette barrel by increasing the hold 

current in the other barrel. Similar control experiments from our lab have, however, 

never resulted in systematic (condition specific) effects on firing rates (Herrero et al., 

2008). Further, the cell-type and attention specific effects, as well as the U-shaped dose-

response curve argue against our results being an iontophoresis artefact. 

Alternatively, these effects may be explained in part by the drug dosages, as increases in 

activity have been found for low dosages of D1-agonists and antagonists, and decreases 

with higher dosages (Vijayraghavan et al., 2007; Williams and Goldman-Rakic, 1995). 

Unfortunately, our sample size using lower dosages was rather small, but positive and 

less negative drugMI were found for lower ejection currents (Figure 4-11). However, 

Jacob et al. (2013) also used a variety of ejection currents (25-100 nA) and the proportion 

of cells that were inhibited or excited by dopamine application did not differ by dosage.  

Another factor that could have influenced our low numbers of cells that are excited by 

dopaminergic drugs is the short duration of the blocks of trials used in our task. It has 

previously been reported that cells that were excited by dopamine application 

responded much slower to drug application compared to cells that were inhibited by 

dopamine (Jacob et al., 2013). This up-ramping modulation had an estimated average 
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time constant of 221.9 s. In our task, drug application was performed in blocks of 36 

trials. With a median trial duration, including inter-trial interval, of approximately 8 s, 

a block of trials lasted approximately 288 s (depending on the number trials completed 

correctly). Therefore, it could be that neurons excited by dopamine only started to show 

modulation towards the end of the block, and therefore did not display significant 

modulation by drug application. This would result in a neural population of cells that 

are largely inhibited by dopamine. Alternatively, it could be that dopamine has mostly 

inhibitory effects in Macaque parietal cortex. Vijayraghavan et al. (2007) found that low 

doses (10-20 nA) of D1-agonists reduced firing rates, but increased spatial specificity of 

prefrontal neurons during a spatial working memory task mainly by reducing activity to 

non-preferred directions, and that high dosages (20-100 nA) further reduced activity, 

abolishing spatially selective information for single-units.  

In sum, dopaminergic effects on (task-related) activity are complex (Seamans and Yang, 

2004) and depend on various factors that have not been controlled for in this study, such 

as endogenous levels of dopamine. Within prefrontal cortex, coding can be enhanced by 

D1R agonists, and diminished by antagonists (Ott et al., 2014; Vijayraghavan et al., 2007), 

or vice-versa (Noudoost and Moore, 2011a; Williams and Goldman-Rakic, 1995). Indeed, 

dopaminergic effects show regional variability across different brain areas, even within 

PFC (Arnsten et al., 2012). Thus, the mechanisms discussed above might not apply to 

PPC. Future studies are needed to further elucidate the cell-type and receptor-subtype 

specific effects of dopamine in parietal cortex during task performance.  

 

4.5.2 - Dopaminergic dose-response curve 

Dopamine receptor stimulation has repeatedly been found to follow an inverted-U dose-

response curve whereby too little or too much receptor stimulation leads to suboptimal 

behavioural performance (Arnsten et al., 1994; Zahrt et al., 1997) or neural coding 

(Vijayraghavan et al., 2007) during cognitive tasks. Indeed, low levels of D1R blockade 

(Williams and Goldman-Rakic, 1995), or stimulation (Vijayraghavan et al., 2007) can 

increase firing, whereas higher levels of either blockade or stimulation decreased cell 

firing in prefrontal cortex (Vijayraghavan et al., 2007; Williams and Goldman-Rakic, 

1995). On a behavioural level, infusion of D1R-agonists in frontal cortex of rats (Zahrt et 

al., 1997) as well as monkeys (Arnsten et al., 1994; Cai and Arnsten, 1997) decreased 

performance on a spatial working memory task in a dose dependent manner, which was 

reversible by pre-treatment of D1R antagonists. In the latter studies the effect of the drug 

depended on the age of the monkey, presumably because of different levels of 

endogenous dopamine availability. In addition to the effects of D1R stimulation, D2R 

stimulation also reveals age and dose-dependent effects on working memory 

performance (Arnsten et al., 1995). The effects of dopaminergic drugs thus depend on 

endogenous levels of dopamine, as well as baseline levels of arousal, stress, and 

availability of other neuromodulators such as noradrenaline (Arnsten et al., 2012). In 

addition, the effects of dopamine on neural coding depends on the initial spatial tuning 

specificity; stronger increases in tuning were found for neurons with a wider tuning 
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profile, i.e. neurons that showed less spatially specific activity (Vijayraghavan et al., 

2007). Whereas optimal levels of dopamine receptor stimulation can stabilize and tune 

neural activity, suboptimal levels decrease both neural coding and behavioural 

performance.  

Here, we found an inverted-U shaped dose-response curve for the unselective agonist 

dopamine, and a monotonic function for the D1R antagonist SCH23390. Rather than 

predicting neural coding, however, ejection currents were merely predictive of drug 

modulation indices (Figure 4-11a), without any relationship to attention AUROC values 

(Figure 4-11b-c). For dopamine, maximal inhibition of firing rates was found at 

intermediate dosages, whereas inhibition was higher for higher dosages of SCH23390, 

although our sample size, especially for SCH23390, might have been too small to reliably 

determine the shape of the dose-response curve. Additionally, the observed effects for 

dopaminergic stimulation are likely partly driven by other receptor subtypes (e.g. D2R) 

that are not usually associated with modulation of delay period activity. This study 

therefore provides the initial early evidence of the effects of dopamine in parietal cortex 

during cognitive tasks, which requires further research to elucidate the underlying 

mechanism.  

 

4.5.3 - Dopaminergic modulation of the pupil light reflex 

The pupil light reflex (PLR) transiently constricts the pupil after exposure to increases 

in illumination or presentation of bright stimuli (Loewenfeld, 1993; McDougal and 

Gamlin, 2014). Although the PLR is found in most vertebrates, and is considered an 

elementary mechanism controlling the amount of light that hits the retina (McDougal 

and Gamlin, 2014), recent studies have shown that this behavioural reflex can be 

modified by covert attention (Binda and Murray, 2015a, 2015b; Naber et al., 2013). 

Specifically, when attention is directed towards a light or dark stimulus, the PLR is 

enhanced or decreased compared to when attention is directed away (Binda and Murray, 

2015a; Naber et al., 2013). Additionally, subthreshold electrical microstimulation of the 

FEF enhanced the PLR when a light stimulus was presented inside the saccade field of 

the stimulated region, whereas it reduced the PLR when the light stimulus was 

presented away from the saccade field (Ebitz and Moore, 2017). Together these studies 

show that the PLR depends both on the change in luminance and the location of spatial 

attention, modulated by FEF stimulation. Top-down modulation of sensory processing 

can thus start as early as the PLR, although whether this also influences behavioural 

performance is currently unknown (Binda and Murray, 2015b). 

To our surprise, we found that dopaminergic drug application in parietal cortex reduced 

the PLR (Figure 4-12). As we also found a reduction in attentional rate modulation with 

drug administration, these results are in agreement with the electrophysiological results. 

Our task design, however, did not allow differentiation between the effect of drug 

application and stimulus location, as all three gratings were presented simultaneously. 

Two (non-exclusive) mechanisms have been proposed by which FEF stimulation can 

modulate the PLR (Binda and Gamlin, 2017). Either by direct or indirect projections to 
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the olivary pretectal nucleus, or via indirect projections to the constrictor neurons in the 

Edinger-Westphal nucleus, for which the indirect projections were hypothesised to go 

through extrastriate visual cortex and/or the superior colliculus (SC).  

Subthreshold microstimulation of the intermediate (SCi), but not superficial (SCs), 

layers of the superior colliculus elicits a short latency pupillary dilation (Joshi et al., 2016; 

Wang et al., 2012). Whereas the SCs receives input from early visual areas, including the 

retina, the SCi receives input from higher order association cortices. Along with 

preparing and executing eye movements, the SCi is involved in directing covert attention 

(Ignashchenkova et al., 2004; Kustov and Lee Robinson, 1996; Lovejoy and Krauzlis, 2010; 

Muller et al., 2005), and provides an essential contribution to the selection of stimuli 

amongst competing distractors (McPeek and Keller, 2004, 2002; reviewed in Mysore and 

Knudsen, 2011). Moreover, the SC receives dense projections from parietal cortex 

(Becker, 1989; Kuypers and Lawrence, 1967), and has been hypothesised to play an 

important role in pupil diameter modulation (Wang and Munoz, 2015b). 

It is currently unclear whether dopaminergic modulation of frontal (or parietal) cortex 

modulates SC activity, as has been found for extrastriate cortex (Noudoost and Moore, 

2011a), but this pathway seems a strong candidate for the modulation of the PLR (Wang 

and Munoz, 2015b). In addition to a role for dopamine, impairments in cholinergic 

signalling have been associated with an impaired PLR (Artoni et al., 2019), showing that 

the PLR is likely modulated by multiple neuromodulatory systems.  

 

4.6 - Conclusion 

Dopamine is an important modulator of high-level cognitive functions such as attention 

and working memory, both in the healthy and ageing brain as well as for a variety of 

clinical disorders (Arnsten et al., 2012; Robbins and Arnsten, 2009; Thiele and Bellgrove, 

2018). Although the workings of dopamine within PFC are starting to be elucidated, the 

effects of dopamine in other brain areas such as parietal cortex, despite their well-

established role in cognition and cognitive dysfunction, has largely been overlooked. 

This study is the first to show dopaminergic modulation of parietal activity in general, 

and activity specific to spatial attention in the non-human primate. Although valuable 

mechanistic insights have been gained from studies focused on neuromodulation of the 

prefrontal cortex, our work here encourages comparable studies in posterior areas, such 

as the parietal cortex, and across broader networks for cognition. 
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Chapter 5 - General discussion 
 

In this thesis I have shed light on the neural mechanisms by which cortical state 

fluctuations, neuromodulatory influences and selective attention modulate neural 

activity and behaviour. In the first chapter I revealed that global state fluctuations, 

assessed through pupillometry, influence perceptual decision making at various 

information processing stages. These fluctuations were moreover strongly predictive of 

task performance, underscoring the relevance of these global dynamics for behaviour. 

In the second chapter I investigated the effects of cortical state fluctuations on 

population activity within and across visual areas. Here, brain-wide cortical state 

fluctuations, as well as those localised to smaller networks, interacted with the more 

nuanced effects of attention on neural activity and behaviour. Finally, in chapter three, 

I showed through causal intervention that dopaminergic innervation in parietal cortex 

modulates attentional signals. Together, these results reveal the effects of cortical state 

fluctuations and attention across different neural scales, from global brain-wide activity 

fluctuations, to smaller scale network operations, to their effects on single cell activity. 

In this section, I will relate these findings to our current knowledge of neural and 

cognitive functioning and discuss areas for future research.  

 

5.1 - Spatiotemporal scales of neuromodulation 

Each modulatory system discussed in this thesis has both tonic and phasic firing modes 

that can affect neural activity and behaviour across different timescales (Aston-Jones 

and Cohen, 2005a; P Dayan and Yu, 2006; Parikh et al., 2007; Parikh and Sarter, 2008; 

Sarter et al., 2016, 2009). Comparatively slow changes in tonic firing support modulation 

of neural activity across timescales from seconds to hours (Totah et al., 2019), in support 

of functions such as the sleep-wake cycle and fluctuations in wakefulness (Aston-Jones 

and Cohen, 2005a; Harris and Thiele, 2011). The faster phasic activation can support 

behavioural task performance within the same trial, on a sub-second basis (Aston-Jones 

and Cohen, 2005a; Bouret and Sara, 2005; Peter Dayan and Yu, 2006; Ott and Nieder, 

2019; Parikh et al., 2007; Totah et al., 2019). These different firing patterns have very 

different effects on their target structures (Devilbiss and Waterhouse, 2011). Compared 

to tonic activity, phasic activation of neuromodulatory systems leads to a larger 

instantaneous increase in neuromodulator availability within or nearby the synaptic 

cleft than tonic activity (Berridge and Waterhouse, 2003; Florin-Lechner et al., 1996; 

Schultz, 2007). Phasic arousal could therefore affect target structures and behaviour 

more strongly and selectively than tonic arousal. Because neuromodulator availability 

increases transiently upon phasic activation, and these modulators can rapidly be 

removed from the synaptic cleft (Sarter et al., 2009; Schultz, 2007), target structures 

could also be less affected by the effects of adaptation for instance, and would thus not 

display sensitivity decreases to neuromodulators that might be expected during tonic 

stimulation. Phasic, versus tonic, activity could thus lead to a more local modulator 
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release that supports attentional processes rather than global brain states per se (Thiele 

and Bellgrove, 2018).  

In addition to a variety of temporal scales, neuromodulators can also affect their target 

structures in spatially specific manners. Although neuronal populations in 

neuromodulatory centres were long thought to fire synchronously, thereby eliciting 

changes throughout the brain, recent research has revealed more specificity in the 

spatial extent of their effects (Aston-Jones and Waterhouse, 2016; Chandler et al., 2014, 

2013; Totah et al., 2018). For example, segregation between locus coeruleus (LC) neurons 

projecting to various regions of the cortex suggest that subsets of LC neurons could, for 

example through differences in excitability, asynchronously release noradrenaline (NA) 

and thereby differentially innervate cortical sub-regions (Aston-Jones and Waterhouse, 

2016; Chandler et al., 2014). A similar segregation has been found for other 

neuromodulatory centres, such as the ventral tegmental area (VTA) (Chandler et al., 

2013). Likewise, basal forebrain (BF) neurons have much more precise input and output 

projections than previously thought (Gielow and Zaborszky, 2017; Zaborszky et al., 2015). 

Furthermore, recent multi-electrode recordings revealed ensemble organisation in the 

LC, indicating that subsets of LC neurons, rather than large populations, fire 

synchronously (Totah et al., 2018). Thus, rather than the joint activity of entire 

neuromodulatory nuclei affecting global, brain-wide activity fluctuations, 

neuromodulators can likely exert their effects within relatively localised brain regions 

with specific functional roles. Finally, another neural mechanism that could contribute 

to both the temporal and spatial specificity of their effects is local neuromodulator 

release, controlled by glutamatergic inputs, through activation of presynaptic 

neuromodulatory projections terminals (Parikh et al., 2008; Schultz, 2007; Thiele and 

Bellgrove, 2018). These actions could locally control cellular and cortical state dynamics 

without altering activity of the neuromodulatory projection neurons themselves.  

This spatial specificity of neuromodulatory projections, or the local stimulation of 

presynaptic terminals, described above, could bring about local excitability changes that 

allows segregation within and across brain areas in support of specific cognitive 

functions. Additionally, neuromodulators can functionally align activity through 

simultaneous modulation of neural populations along sensory pathways (Devilbiss et al., 

2006; Devilbiss and Waterhouse, 2011; Noudoost and Moore, 2011a). For example, LC 

stimulation can modulate both the correlated activity within thalamus and cortex as well 

as between these areas (Devilbiss and Waterhouse, 2011). Together, these local and 

across-area effects could allow functionally specific activity to be processed within a 

brain area and effectively communicated across related brain areas. Selective attention, 

however, operates with very fine spatial resolution, between objects within a neuron’s 

receptive field (Bosman et al., 2012; Luck et al., 1997), or even within a fraction of a visual 

degree within the foveola (Poletti et al., 2017). Although it is currently unknown whether 

neuromodulatory drive is precise enough to subserve these attentional mechanisms that 

operate on such a small scale, their modulatory influence likely has a finer resolution 

than has been assumed up to now. 
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In this thesis I found that, across spatial scales, both tonic changes in neuromodulatory 

drive (chapter 2, 3 and 4) as well as variability in the amplitude of phasic activity (chapter 

2) can influence neural activity and behaviour. In addition to the modulatory effects on 

these timescales, we found modulation of the faster across-laminar activity fluctuations 

that occurred on timescales of the order of tens of milliseconds (chapter 3). Although 

we do not know whether these fluctuations were directly caused by neuromodulator 

release, neuromodulators likely affect the local network state, thereby affecting the 

durations and depths of these fluctuations. More insight into the mechanisms that drive 

neural variability during attention might be gained from modelling studies. For example, 

Rabinowitz and colleagues (2015) modelled the shared modulatory influence on 

population activity recorded from two arrays implanted bilaterally in left and right V4. 

It was shown that the trial-to-trial activity fluctuations during attention could largely be 

captured by a single model parameter per hemisphere. In this study, however, the fastest 

temporal scale considered was the activity fluctuation across trials. Additionally, 

although modulatory influences were considered to affect individual neurons 

differently, the two stimuli were presented in different hemifields, effectively limiting 

the spatial resolution of attentional effects to a single hemisphere. As a single model 

parameter captured much of this variability, it seems plausible that a limited number of 

(additional) parameters could capture neural variability on the timescales that we 

observed On-Off dynamics. Thus, more extensive models that consider modulatory 

actions across multiple (faster) timescales, as well as various spatial scales, could shed 

light on the neural mechanisms underlying the differential effects of tonic, phasic, and 

faster neuromodulation on its target structures and how they support cognitive 

behaviour.  

Alongside modelling efforts, an experimental investigation of the neuromodulatory 

influences on faster timescales could be conducted through local optogenetic 

stimulation of the neuromodulatory axon terminals in sensory areas (Minces et al., 2017; 

Pinto et al., 2013). The effects of these fast modulations resembled those of cortical state 

changes and attention (van Kempen et al., 2017), which seemed to be induced on a sub-

second scale. These techniques, applied on even faster timescales and during cognitive 

tasks, could provide important new insights into the local modulatory role of 

neuromodulators during cognition. Crucial to this endeavour will be to analyse large 

scale population activity on a single-trial basis, such as those described in chapter 3, in 

order to capture the trial-to-trial variability in these modulatory effects. Likewise, it will 

be important to control for fluctuations in global gain and behavioural state of the 

animal, for example through simultaneous measurement of pupil diameter.  

Furthermore, investigations into the neuromodulatory mediation of across-area 

information transfer will determine their importance for the network interactions on 

which cognitive functions rely. As discussed above, attention benefits the across-area 

transfer of spikes, as spike-spike co-variability increases and microstimulation of V1 

elicits more spikes in MT when attention is directed towards the receptive field (RF) 

(Ruff and Cohen, 2016a), likely mediated by divisive normalisation (Ruff et al., 2016; Ruff 

and Cohen, 2017, 2016b). During which step or at which level of information transfer do 
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neuromodulators exert their effects? Do they mediate temporally synchronous firing in 

a source area such that information is sent more reliably (Jia et al., 2013; Zandvakili and 

Kohn, 2015)? Can they influence the mutual inhibition seen during biased competition 

(Desimone, 1998; Desimone and Duncan, 1995)? Do they mediate divisive normalisation 

(Schmitz and Duncan, 2018)? And/or do they set the state of the target area such that 

postsynaptic activity is maximally modulated by its input? The latter could be achieved 

in various ways, such as by changing membrane potential dynamics from a synchronised 

to a desynchronised state (Constantinople and Bruno, 2011; Metherate et al., 1992; 

Minces et al., 2017; Pinto et al., 2013; Polack et al., 2013), or by regulating the balance 

between excitation and inhibition (e.g. by differently affecting pyramidal cells and 

interneurons) and thereby making a region more or less receptive to correlated input 

(Salinas and Sejnowski, 2001b). Alternatively, they could alter both feedforward and 

feedback activity, thereby allowing enhanced bidirectional communication, as 

suggested by previous studies (Noudoost and Moore, 2011a). Laminar recordings in 

multiple visual areas wherein either area is targeted by neuromodulators and/or 

microstimulation, or imaging widespread neuromodulator availability (Bonis-O’Donnell 

et al., 2017; Kruss et al., 2014; Reimer et al., 2016) combined with localised 

electrophysiology, ideally in task-performing animals, could shed light on these 

questions. Finally, speculatively following this line of reasoning even further, if indeed 

the spatiotemporal scale of neuromodulatory influence is smaller than assumed up to 

now, might neuromodulators even selectively modulate synaptic weights depending on 

task demands? If so, this could (de)couple neurons with (dis)similar tuning preferences 

by altering the correlation structure of the neural population, thereby supporting 

behaviour (Bondy et al., 2018; Nienborg et al., 2012). This could also allow the selective 

combination and weighting of neural activity that is sent to the next cortical area (Ruff 

and Cohen, 2017; Semedo et al., 2019). 

In summary, given that it is likely that neuromodulators affect their target structures on 

much finer spatial and temporal scales than previously assumed, their effects could 

support more detailed (cognitive) functions that rely on activity modulations of smaller 

local neural populations, and inter-area communication of functionally related brain 

regions.  

 

5.2 - Contribution of neuromodulators throughout the brain during 

cognition 

The neuromodulators discussed in this thesis likely have varying but overlapping roles 

across different cognitive tasks. Many of these cognitive tasks are conceptually related 

to each other and to the degree they are different, they are likely intertwined and 

interdependent. During attention tasks the behaviourally relevant stimuli are 

distributed in (feature/object) space, whereas during working-memory tasks relevant 

stimuli and the corresponding response are distributed in time (Desimone, 1998). 

Decision making, in turn, relies on both the spatial and temporal distribution of 

stimulus-response associations, and additionally depends on successful accumulation of 
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stimulus information that is evaluated and translated into a (categorical) choice (Gold 

and Shadlen, 2007; Kelly and O’Connell, 2015; Smith and Ratcliff, 2004). During 

attention, working memory and perceptual decision making, the selection of a stimulus 

(or feature/object) has been argued to consist of attentional decisions that assign value 

to perceptual information, whereas motor decisions select the appropriate motor output 

given this information (Gottlieb and Balan, 2010). In this framework, attention encodes 

the selection of information through assigning weight (i.e. utility or value) to all 

alternatives. Selection is based on this utility, which allows focusing on stimuli or 

filtering distracting information. Here, attentional modulation of neural activity might 

thus reflect the decision between the relative utility of different sources of information. 

Top-down attention, in this definition, is much more dependent on (learned) stimulus-

reward associations and might more directly address how higher-order neurons initiate 

attentional signals, how they determine where to direct attention before they elicit 

activity modulations upstream (Baluch and Itti, 2011; Gottlieb, 2012). Indeed, the effects 

of attention on neural activity are inherently difficult to dissociate from those of reward 

(expectation) (Maunsell, 2004).  

Learning these associations, through reinforcement learning, is strongly associated with 

neuromodulatory systems, in particular DA and NA (Aston-Jones and Cohen, 2005a; 

Cohen et al., 2007; Mcclure et al., 2005; Montague et al., 2004). Stimulus-response 

associations are progressively strengthened by the DA-reward system (Montague et al., 

2004), allowing exploitation of learned relationships (Cohen et al., 2007). This system, 

however, would prevent flexibly updating associations upon changing situations, when 

current stimulus-response associations need to be re-evaluated and the environment 

explored for alternatives. The NA system has been proposed to fulfil this role, thereby 

allowing flexible updating of learned associations in favour of exploring new situations 

(Aston-Jones and Cohen, 2005a; Cohen et al., 2007; Mcclure et al., 2005). Part of this 

exploitation-exploration trade-off is the coding of expected and unexpected uncertainty, 

proposed to be mediated by ACh (Yu and Dayan, 2005). During exploitation, reward 

variability that is within the expected range (coded by ACh) should not elicit a change 

in behaviour. Whereas variability that is larger than expected (unexpected uncertainty, 

coded by NA) should initiate an adjustment of the behavioural strategy (Cohen et al., 

2007; Yu and Dayan, 2005). Neuromodulators, through signalling of prediction errors, 

are therefore thought to play a key role in predictive coding (Glimcher, 2011; Schultz, 

2016, 2007).  

In addition, neuromodulators have been implicated in a large variety of other functions 

spanning different spatiotemporal scales, such as long-term depression or potentiation 

(Bissière et al., 2003; Ge and Dani, 2005; Kirkwood et al., 1999; Pawlak and Kerr, 2008; 

Shen et al., 2008) and memory consolidation (Hasselmo, 1999; Packard and White, 1991). 

Further to these specific functions, they might also support flexible cognitive behaviour 

by determining the brain-wide balance between integrated and segregated information 

processing, thought to dynamically regulate network reconfiguration according to task 

demands (Shine, 2019). Central to all these functions is that neuromodulatory centres 

receive input from prefrontal areas thought to encode the value and cost of the options 
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presented (Jodo et al., 1998; Mesulam and Mufson, 1984; Nauta, 1971; Ongur, 2000; 

Sesack et al., 1989). These areas can thereby control (brain-wide) coding of utility, and 

regulate the trade-off between exploration and exploitation, reinforcement learning and 

selective attention amongst other cognitive functions. Because of the widespread effects 

of neuromodulators on cognitive functioning, their dysfunction has been associated 

with a large variety of cognitive disorders such as schizophrenia, attention deficit 

hyperactivity disorder (ADHD), Parkinson’s disease, autism spectrum disorder and 

Alzheimer (Arnsten et al., 2012; Arnsten and Rubia, 2012; London, 2018; Mesulam, 1996; 

Nakamura et al., 2010; Nieoullon, 2002; Robbins and Arnsten, 2009; Rolls et al., 2008; 

Schultz, 2007; Winterer and Weinberger, 2004). Additionally, disruption of 

neuromodulatory functioning due to e.g. stress or aging can (temporarily) interfere with 

cognitive functioning (Arnsten, 2015; Arnsten et al., 2012).  

The cognitive functions described above rely to varying degrees on the selection of the 

relevant sensory information, either through bottom-up salience or top-down selection, 

their evaluation (in the context of reward history) and selection and execution of the 

appropriate motor response. Neuromodulators have been implicated at every one of 

these stages of the information processing hierarchy and are thus central to cognitive 

functioning.  

In the studies discussed in this thesis, attentional stimulus selection, i.e. the assignment 

of weight, utility or value (Gottlieb, 2012; Gottlieb and Balan, 2010), varied with global 

cortical state (chapter 2 and 3), On-Off dynamics (chapter 3) and dopamine levels in 

parietal cortex (chapter 4), and can thus vary with various modulatory sources and 

spatiotemporal scales at different levels in the cortical hierarchy. Additionally, 

neuromodulatory control of cortical state might have served the integration of disparate 

brain areas in support of task performance (chapters 2 and 3). The extent to which these 

functions are related and rely on similar underlying circuit mechanisms likely depends 

on similarities in both the time courses and spatial spread of their effects, but also on 

different neuromodulatory receptor subclass expression across laminae and cell types, 

as well as their sensitivity/affinity and response dynamics. More work is needed to 

elucidate their specific effects on neural activity and cognitive behaviour, but what is 

clear is that there is no one single role for each neuromodulator and interactions 

between them allow great behavioural flexibility.  



 
127 

 

Appendix A. Supplementary tables Chapter 2 
 

Table A. 1: Results from model comparisons of the hierarchical regression analysis predicting variability in 

task performance due to phasic arousal. Boldface font indicates parameters that significantly improved the 

model fit compared to the addition of the neural signal associated with the previous neural processing stage. 

Red text indicates the parameters that were excluded from the final model during the forward/backward 

stepwise regression (main text). Final model fits revealed a marginal (conditional) r2 of 15.8% (92.6%) and 

16.0% (45.9%) for RT and RTcv, respectively. 

 RT RTcv 

 Model comparison Stepwise model 

selection 

Model comparison Stepwise model 

selection 

EEG component χ2 p F p χ2 p F p 

Pre-target α Power  10.30 < 0.001 9.41 0.002 0.14 0.71   

N2c latency 0.14 0.70   2.07 0.15   

N2c amplitude 0.94 0.33   1.18 0.28   

N2i latency 2.39 0.12   0.04 0.84   

N2i amplitude 2.39 0.12   0.77 0.38   

CPP onset 8.24 0.004 0.06 0.80 0.87 0.35   

CPP build-up rate 4.90 0.027 1.86 0.17 0.32 0.57   

CPP amplitude 1.43 0.23   0.12 0.73   

CPP ITPC 19.25 < 0.001 30.38 < 0.001 15.18 0.001 17.83 < 0.001 

LHB build-up rate 0.02 0.88   0.13 0.72   

LHB amplitude 0.64 0.42   0.19 0.66   
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Table A. 2: Coefficients from the multilevel model analysis in which all EEG components were added 

simultaneously to predict variability in task performance due to variability in phasic arousal. 

 RT RTcv 

EEG component β se t p β se t p 

Pre-target α Power  0.19 0.07 2.87 4.5E-03 -0.03 0.06 -0.42 0.68 

N2c latency 7.5E-04 0.02 0.04 0.97 0.06 0.04 1.41 0.16 

N2c amplitude 0.04 0.03 1.25 0.21 0.04 0.06 0.73 0.47 

N2i latency 0.02 0.02 1.27 0.20 -0.01 0.03 -0.38 0.70 

N2i amplitude 0.04 0.03 1.27 0.20 0.01 0.06 0.25 0.81 

CPP onset 0.05 0.04 1.04 0.30 -0.09 0.08 -1.12 0.26 

CPP build-up rate -0.14 0.06 -2.25 0.03 1.0E-03 0.11 0.01 0.99 

CPP amplitude 0.15 0.07 2.27 0.02 0.07 0.12 0.54 0.59 

CPP ITPC -0.18 0.04 -4.43 1.3E-05 -0.26 0.06 -4.13 5.4E-05 

LHB build-up rate -0.01 0.04 -0.29 0.77 -0.03 0.08 -0.33 0.74 

LHB amplitude 0.05 0.06 0.86 0.39 0.03 0.09 0.27 0.78 
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Table A. 3:  Results from model comparisons of the hierarchical regression analysis predicting variability in 

task performance due to tonic arousal. Boldface font indicates parameters that significantly improved the 

model fit compared to the addition of the neural signal associated with the previous neural processing stage. 

Red text indicates the parameters that were excluded from the final model during the forward/backward 

stepwise regression (main text). Final model fits revealed a marginal (conditional) r2 of 4.2% (94.4%) and 

11.9% (44.5%) for RT and RTcv, respectively. 

 RT RTcv 

 Model comparison Stepwise model 

selection 

Model comparison Stepwise model 

selection 

EEG component χ2 p F p χ2 p F p 

Pre-target α Power  0.56 0.46   0.01 0.90   

N2c latency 0.83 0.36   0.06 0.80   

N2c amplitude 6.18 0.013 6.38 0.012 0.87 0.35   

N2i latency 0.10 0.75   0.01 0.93   

N2i amplitude 0.33 0.57   0.03 0.87   

CPP onset 5.86 0.016 0.01 0.92 2.50 0.11   

CPP build-up rate 4.06 0.044 2.02 0.16 0.47 0.49   

CPP amplitude 0.01 0.91   0.77 0.39   

CPP ITPC 21.49 < 0.001 28.43 < 0.001 24.53 < 0.001 30.37 < 0.001 

LHB build-up rate 0.01 0.91   2.50 0.11   

LHB amplitude 0.07 0.80   0.27 0.60   
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Table A. 4: Coefficients from the multilevel model analysis in which all EEG components were added 

simultaneously to predict variability in task performance due to variability in tonic arousal. 

 RT RTcv 

EEG component β se t p β se t p 

Pre-target α Power  0.07 0.07 1.00 0.32 -0.06 0.08 -0.75 0.46 

N2c latency 0.03 0.02 1.31 0.19 -0.01 0.04 -0.16 0.87 

N2c amplitude 0.06 0.03 2.17 0.03 0.04 0.06 0.71 0.48 

N2i latency -2.2E-03 0.01 -0.16 0.87 0.00 0.03 0.14 0.89 

N2i amplitude 0.02 0.03 0.46 0.65 -0.05 0.07 -0.64 0.52 

CPP onset 0.01 0.04 0.22 0.83 -0.09 0.09 -0.97 0.33 

CPP build-up rate -0.12 0.06 -1.97 0.05 -0.04 0.13 -0.29 0.78 

CPP amplitude 0.10 0.07 1.50 0.13 0.15 0.14 1.05 0.29 

CPP ITPC -0.19 0.04 -4.80 2.6E-06 -0.39 0.07 -5.40 1.71E-07 

LHB build-up rate -0.01 0.05 -0.18 0.86 -0.15 0.09 -1.63 0.10 

LHB amplitude 0.01 0.05 0.26 0.79 0.05 0.09 0.53 0.60 
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