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Abstract  

Chronic otitis media with effusion (COME) is the most common cause of acquired 

hearing loss in young children. Bacterial biofilm is an important contributor to the 

aetiopathogenesis of COME, although conventional culture generally recovers few 

microorganisms from the middle ear. Extracellular DNA (eDNA) is a key structural 

component within the matrix of many microbial biofilms including those associated with 

COME. The aims of this study were to characterise microbial populations associated with 

COME, and to explore the efficacy of the DNase, NucB, to control in vitro biofilms 

associated with COME. 

Methods were established to culture biofilms in vitro and to challenge with NucB. 

NucB efficiently disrupted biofilms of clinically isolated Staphylococcus aureus strains either 

alone or in combination with the antibiotic Co-amoxiclav. Concentrations of NucB 100-fold 

higher than those required for biofilm inhibition had no toxic effects on human epithelial 

cells. 

Twenty-seven bacterial species were isolated from middle ear effusion fluids (MEEFs) 

of 34 patients with COME. Culture-positive MEEFs were increased two-fold following 

optimisation of the culture methods. Microbiome analysis of MEEFs by 16S rDNA 

sequencing identified the majority of the cultured species and several additional species. 

Similar species were also detected by 16S rRNA gene sequencing of microbial DNA from 

adenoids.  

The ability of 23 bacterial isolates from MEEF to form biofilm was assessed. Twenty 

strains formed biofilms, and 16 of these were sensitive to NucB. Imaging analysis showed 

significant structural alterations in biofilms of the selected COME isolates after NucB 

treatment. 

In conclusion, this study has provided further insights into the microbiology of middle 

ear infections and has shown that many bacteria from this environment are capable of forming 

biofilms. NucB alone or in combination with antibiotics may potentially be a potent and safe 

agent to control biofilm-associated conditions including COME.  
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Chapter 1. Review of the literature  

1.1 Chronic otitis media with effusion  

 Chronic otitis media with effusion (COME) is defined as the persistence of non-

purulent middle ear fluid behind the intact ear drum (tympanic membrane) beyond 12 weeks 

in the absence of signs and symptoms of acute inflammation. It is distinct from persistent 

effusion after acute otitis media, which resolves spontaneously after two months in 90% of 

cases (Blanc et al., 2018). Hearing impairment is the most common presenting symptom of 

COME. The effusion fluid may be thin (serous) or thick (mucoid). When it is tenacious and 

very thick, it is also known as “glue ear” (Robb and Williamson, 2012). Histologically, 

COME is characterised by chronic inflammation in the middle ear mucosa which leads to 

overproduction of mucin-predominant middle ear effusion. Other components including 

bacteria have been identified in the middle ear effusion fluid (Kubba et al., 2000).   

Chronic otitis media with effusion is the most common childhood ear problem and the 

commonest cause of hearing loss in children in the developed world. COME is commonly 

asymptomatic, and therefore accurate determination of its prevalence and incidence in 

children is difficult. Nevertheless, estimates demonstrate that children between one and six 

years old are most likely to be affected. The prevalence of COME in children around 2 years 

of age is approximately 20% (Atkinson et al., 2015). There are two peaks in the prevalence of 

COME, an initial one at the age of 2 years, and a second at the age of 5 years. The incidence 

rate of COME then decreases to around 8% at 8 years of age (Atkinson et al., 2015, Zielhuis 

et al., 1989). It is estimated that COME affects about 80% of children at some stage in their 

development (Kubba et al., 2000, NICE, 2016).  

Although COME resolves spontaneously in most cases, complications are not 

uncommon. A persistence of hearing loss particularly in younger children may negatively 

impact speech, language development, behaviour, social skills, and school performance (Hall 

et al., 2009, Qureishi et al., 2014, Rosenfeld et al., 2016). In cases where COME persists for 

over 3 months of watchful waiting and has considerable effects on the child’s quality of life, 

the insertion of ventilation tubes (VTs, grommets) may be indicated (Lous et al., 2005, NICE, 

2016). Currently, tympanotomy and insertion of VT is the gold standard for surgical 

management of COME, and in some cases may be combined with an adenoidectomy 

(Qureishi et al., 2014, NICE, 2016). COME is the leading cause of elective surgery in 

children in the developed world (Rovers et al., 2004), and throughout 2018/2019, 22,000 

operations of myringotomy with the insertion of VT were performed in England (HES, 2019). 
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COME should be differentiated from other closely related middle ear infections such as acute 

otitis media (AOM) and recurrent AOM (rAOM). Acute otitis media (AOM) involves a rapid 

onset of inflammation that may be caused by bacteria or viruses (Kubba et al., 2000, Schilder 

et al., 2016). It is characterised by otalgia and fever in a generally ill child. By contrast, 

COME is a chronic inflammatory condition with an absence of pain and fever that can persist 

for several months. Within 7 days of AOM, a proportion of cases may be complicated by 

tympanic membrane perforation which is associated with drainage of the purulent discharge 

out of the middle ear and subsequent improvement of the symptoms. Acute otitis media may 

also affect patients with existing VTs resulting in purulent ear discharge (otorrhoea) which is 

also classified as AOM with tympanic membrane perforation. Persistence of purulent 

otorrhoea for more than 2 weeks is described as chronic suppurative otitis media. Recurrent 

AOM is characterised by 3 or more episodes of AOM in 6 months or more than 4 episodes 

within 12 months (Berman, 1995, Schilder et al., 2016). The clinical types of otitis media are 

shown in Figure 1. 1 with an illustration of ear anatomy in Figure 1. 2. 

The diagnostic criteria for COME include a history of hearing impairment, poor 

attention, delayed speech and language development, and abnormal behaviour (SIGN, 2003, 

Rosenfeld et al., 2016). Furthermore, COME is the leading cause of balance problems in 

childhood that are observed in approximately 50% of children with COME (Golz et al., 

1998). The most important diagnostic method is pneumatic otoscopic examination of the 

tympanic membrane, which combines visual inspection of the tympanic membrane with 

assessment of its mobility, and has an estimated sensitivity and specificity of 94% and 80%, 

respectively (Shekelle et al., 2002). Other clinical findings are less clear, and include changes 

in the colour (yellow, amber, blue), shape (retracted or concave) of the ear drum, and ear-fluid 

levels. The gold standard for diagnosing COME is confirmation of middle ear effusion via 

needle aspiration of middle ear effusion fluid (tympanocentesis); however, tympanocentesis is 

an invasive procedure and difficult to perform in outpatient clinic. Further adjunctive 

confirmation of the diagnosis is obtained via tympanogram and tone audiometric 

measurement. The tympanogram quantitatively measures both tympanic membrane mobility 

and middle ear function, and usually demonstrates a flat curve. Many studies have 

demonstrated high reliability of the tympanogram for the diagnosis of COME (NICE 2008). 

The sensitivity and specificity are approximately 93% and 70%, respectively (NICE, 2008, 

Sassen et al., 1994, Shekelle et al., 2002, Watters et al., 1997). Audiometric examination can 

be applied on children around the age of 4 years. Most children with COME show a hearing 

impairment and can only detect sounds above 20-30 dB (normal hearing is between 0 and 20 
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dB). The extent of impairment is dependent on the amount of the middle ear fluid, but not the 

viscosity. In contrast to the tympanogram, the reliability of audiometry is not entirely clear 

and studies on this topic are rare. The estimated sensitivity and specificity are in the region of 

52-88% and 53-92%, respectively (Haapaniemi, 1997, Mitchell et al., 1990, Vaughan-Jones 

and Mills, 1992). 
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Figure 1. 1 Types of otitis media and clinical images  

List of otitis media types (upper box). Clinical images show normal tympanic membrane (TM); pale, 

grey semi-translucent membrane (A), AOM; congested and bulged TM (B), COME; effusion fluid 

behind dull and retracted TM (C), severe retraction of TM (Atelectasis) (D), CSOM; perforated TM 

with purulent middle ear discharge (E), Cholesteatoma; whitish-yellow cystic skin lesion can be seen 

in the middle ear (F). A-D and F (Hawke, 2004), E (Rudyard, 2012). 

A                                                    B                                                 C 

       D                                                     E                                                   F 

Otitis Media  

Acute otitis media (AOM): Acute onset of middle ear space infection. 

Recurrent AOM (rAOM): 3 or more attacks of AOM within 6 months or more than 4 episodes 

within 12 months. 

Chronic otitis media with effusion (COME): Accumulation of fluid in middle ear without signs 

and symptoms of acute infection beyond 12 weeks. 

Chronic suppurative otitis media: Persistent middle ear inflammation usually associated with a 

perforated ear drum and persistent drainage from middle ear for more than 2-6 weeks. 

Cholesteatoma: Abnormal skin cells accumulation in middle ear predisposing to chronic erosive 

inflammation. 
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Figure 1. 2 Anatomy of the ear (Biographix, 2006)   

The external ear formed by the pinna and external auditory canal is separated by the TM from 

the middle ear cavity that houses auditory ossicles (Malleus, Incus and Stapes). This in turn is 

connected to the nasopharynx via the Eustachian tube and is medially related to the inner ear 

that consists of semi-circular canals and the cochlea.  
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1.2 Current therapeutic options for COME 

Children with COME should undergo an age-specific hearing test to establish their 

baseline hearing level. Visual response audiometry is commonly used to assess hearing in 

children aged 8 months to 2.5 years and can provide reliable results in infants as young as 6 

months when performed by an experienced audiologist (Widen et al., 2000). Play audiometry 

is the most suitable hearing test to assess hearing in children aged 2.5-4 years. This involves 

children carrying out a task such as placing a toy in a container in response to an auditory 

stimulus (Rosenfeld et al., 2016). For children older than 4, formal audiometric examination 

using a pure tone audiogram is the gold standard test to assess hearing (Harlor and Bower, 

2009). The current NICE guidelines recommend a 3-month period of active “watchful 

waiting” in children presenting with persistent bilateral (affecting both ears) COME unless the 

hearing loss is judged to have a significant impact on the child’s developmental, social and 

educational status (NICE, 2016). During this “watchful waiting”, all children with COME 

undergo frequent evaluations of their hearing loss and the impact it has on their 

developmental status prior to indicating the need for surgical intervention. However, there is 

frequent non- compliance with these guidelines (NICE 2008). 

   One reason for the lack of compliance with guidelines is that COME resolves 

spontaneously in the majority of cases without treatment and the possibility of the 

spontaneous resolution depends on the cause and duration of COME (Rosenfeld and Kay, 

2003). Approximately 75-90% of children who develop COME following an episode of AOM 

show spontaneous resolution of the symptoms within 3 months (Teele et al., 1989). However, 

in children with COME of unknown duration, the rate of spontaneous resolution is estimated 

to be as low as 28% after 3 months, 42% at 6 months, and 59% by 9 months as determined by 

tympanometric criteria (Rosenfeld and Kay, 2003). Therefore, the decision between 

conservative treatment and surgical intervention should be weighed cautiously. 

 Many other medical treatments have been trialled for COME, such as antibiotics, 

steroids, and antihistamines. The use of antibiotics for the treatment of COME is controversial 

(Venekamp et al., 2016). Although short term benefits of antibiotic administration have been 

reported, there was no significant long-term benefit after discontinuation of the treatment 

(Venekamp et al., 2016, Rosenfeld et al., 2016). Furthermore, there are adverse effects, 

elevated costs, and a risk of bacterial resistance (van Zon et al., 2012, Venekamp et al., 2016).  

A meta-analysis studied the effects of topical or oral steroids in conjunction with or 

without antibiotics for the treatment of COME (Simpson et al., 2011b). Although there was a 
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short-term benefit consistent with increasing COME resolution rate, there was no evidence of 

long-term advantages. Specifically, oral steroids did not significantly resolve the effusion or 

reduce the level of hearing loss in children with COME. However, steroids were associated 

with significant adverse effects including behavioural disturbances, weight gain, and 

idiosyncratic reactions (Berkman et al., 2013). The application of antibiotics, steroids, 

antihistamines, and decongestants either alone or in combination are not recommended in the 

UK (NICE, 2016). Additional conservative strategies include the Politzer manoeuvre to 

relieve Eustachian tube dysfunction by blowing air up the nostril using a balloon or other 

devices. However, these approaches, in order to be effective, should be carried out frequently 

and it is difficult for the younger children to comply with them (Bidarian-Moniri et al., 2014, 

Robb, 2006). 

According to the current NICE guidelines, the only efficient surgical treatment to 

improve hearing is myringotomy with or without ventilation tube placement (NICE, 2016). 

This approach is recommended only in children with bilateral and persistent COME beyond 3 

months with a degree of hearing loss degree in the better ear of 25-30 dB or more. According 

to the guidelines, surgical intervention is not recommended in children with short-term 

COME or when COME has a minimal or negligible impact on the child’s quality of life and 

development. Different types of ventilation tubes have been used over the last decades. These 

are either short-term tubes such as Shepard, Shah, Armstrong and Reuter Bobine devices that 

last from 6 months to 24 months and are indicated for most children who undergo primary VT 

insertion, or long-term tubes including T-tubes and Permavents that last for several years and 

are generally used in cases where multiple sets of short acting VTs fail to resolve the disease 

(Lindstrom et al., 2004, Yaman et al., 2010). 

The placement of VTs has been shown to reduce the duration of middle ear effusion 

symptoms by 32% and is also associated with short-term mild improvement of hearing loss by 

4.2-10 dB at 6-9 months when compared with the conservative therapy. However, this 

improvement in hearing level was lost after 1 year (Berkman et al., 2013, Browning et al., 

2010). Furthermore, the impact of VTs insertion on children’s language development remains 

inconclusive. No improvement in language development was found in surgical treatment 

compared with conservative management of COME in several trials (Berkman et al., 2013, 

Browning et al., 2010). Nevertheless, the insertion of VTs has been shown to improve speech 

and language development in COME patients with cleft palate (Kuo et al., 2014).    
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Several short- and long-term complications have been associated with the insertion of 

VTs including purulent ear discharge (10%-26%), early expulsion of VTs (4%), displacement 

of VT into middle ear cavity (0.5%), tympanosclerosis (39%-65%), permanent ear drum 

perforation (3% overall, and around 24% of patients with long-term T-tubes), and retraction 

pockets (21%) (Kay et al., 2001, Rosenfeld et al., 2013). Furthermore, a trial reported that 

20%-25 % of the cases treated with short-lasting tubes required further surgical intervention 

within 2 years, and on average more than two operations per case were performed (Daniel et 

al., 2012a, Vlastarakos et al., 2007). 

Another surgical treatment which is considered effective in preventing the recurrence of 

COME is adenoidectomy as an adjunct treatment to VT placement. Adenoidectomy is not 

recommended in children younger than 4 years undergoing a primary grommet insertion 

because of COME unless there is a strong indication such as nasal obstruction or chronic 

adenoiditis that exists other than COME (NICE, 2016, Rosenfeld et al., 2016). This is because 

the surgical risks of adenoidectomy do not outweigh the limited, short-term advantage in 

young children without previous history of VT placement (Paradise et al., 1999). Risks 

associated with adenoidectomy include longer duration of anaesthesia, small risk of post-

surgical bleeding and a prolonged recovery period (24-48 h). Therefore,  adenoidectomy is 

usually preserved for children older than 4 years of age with recurrent or chronic upper 

respiratory tract infections (van den Aardweg et al., 2010, NICE, 2016).  

1.3 Pathogenesis of COME 

The pathogenesis of COME is still not well understood. There is a general agreement that 

COME is a multifactorial disease and a combination of several host and environmental factors 

are thought to be involved in the development of COME (Blanc et al., 2018, Qureishi et al., 

2014). Eustachian tube dysfunction, laryngopharyngeal reflux, cleft palate, and several 

genetic factors are important host factors that predispose for the development of COME. 

Furthermore, there are a number of environmental factors that have been implicated in 

increasing the risk of AOM and COME such as bacterial infection, allergy, childcare 

attendance, exposure to tobacco smoke, and lack of breastfeeding. Many of these 

environmental factors also have an impact on general health in the population and they have 

been the subject of interest for policy makers and public health authorities. Regardless of the 

mechanism involved in pathogenesis of COME, the resulting middle ear effusion fluids 

generally consist of water, host cells and cell debris, bacterial cells and products, and many 
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other components that may be produced secondary to bacterial inflammatory reactions such as 

immunoglobulins, complement, cytokines, and others. In addition many other components 

such as minerals and macromolecules including proteins, lipids, mucins and DNA have been 

detected in middle ear effusions, indicating that middle ear fluid is an exudate (Kubba et al., 

2000, Smirnova et al., 2002).      

Eustachian tube (ET) dysfunction has been considered an important underlying 

pathophysiological factor implicated in the pathogenesis of COME. The ET is a muscular 

tube that provides a connection between the middle ear cavity and the nasopharynx (Figure 1. 

2). It is lined by ciliated respiratory epithelium and it is involved in maintaining normal 

middle ear function through three essential roles: (i) pressure balance between the outer and 

middle ear, (ii) drainage of middle ear fluid, and (iii) prevention of retrograde ascension of 

pathogens and other external insults from the upper respiratory and gastrointestinal tracts into 

the middle ear (Rovers et al., 2004). In children, the ET is shorter, more horizontal, and less 

rigid than in adults, which is thought to increase the risk of otitis media (Minovi and Dazert, 

2014). For this reason, the prevalence of COME decreases with age (approximately 3-7 years) 

in correlation with the normalisation of ET function. The potential role of ET dysfunction in 

the pathogenesis of COME has been studied extensively for decades. Traditionally, it has 

been thought that mechanical obstruction of the ET in the nasopharynx due to enlarged 

adenoids, nasopharyngeal mass or other factors leads to negative pressure within the middle 

ear cavity which ultimately results in transudation of fluid from the epithelial mucosa into 

middle ear space (Coticchia et al., 2013, Minovi and Dazert, 2014). This concept has some 

limitations including that middle ear effusion fluid in COME is an actively secreted exudate 

and it does not adequately explain the chronic inflammatory process and metaplasia 

associated with COME (Sade and Weissman, 1977).  

The aetiopathogenesis of COME is much more complicated than can be explained by 

ET obstruction only. Evidence is accumulating that ET dysfunction, rather than ET 

obstruction, is the major contributor to the pathogenesis of COME. Children with premature, 

horizontally oriented malfunctioning ET are more likely to develop COME (Iwano et al., 

1993). However, there is still some controversy regarding whether ET dysfunction is the 

primary cause of COME or whether it is the result of a prolonged chronic inflammatory 

reaction. In experimental animal models, it has been shown that creation of negative pressure 

within the middle ear cavity by ET occlusion did not lead to the accumulation of effusion 

fluid unless bacterial infection was present (Ovesen and Borglum, 1998). Furthermore, it is 
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still debated whether the observed therapeutic efficacy of adenoidectomy in children with 

recurrent COME is due to removal of the potential physical obstruction, or due to the removal 

of the reservoir that allows direct ascension of pathogens from the nasopharynx into the 

middle ear (Hoa et al., 2010, Saafan et al., 2013). A combination of ET dysfunction and 

retrograde ascending infection is perhaps the most likely mechanism that leads to the 

development of COME.   

Pathologically, COME is a chronic inflammatory condition of the middle ear. The 

inflammatory irritation of the middle ear mucosa leads to the production of cytokines and 

secretion of an exudate rich in proteins and other inflammatory mediators. Furthermore, the 

associated vasodilatation enhances absorption of the air and ultimately induces negative 

pressure within the middle ear space (Li et al., 2013). Prolonged inflammation of the middle 

ear mucosa leads to epithelial metaplasia and an increase in the number of mucous secreting 

cells which leads to over-secretion of mucous and the production of altered mucin types 

(Kubba et al., 2000). These changes in the mucous result in the impairment of middle ear 

mucosal ciliary clearance action and ET dysfunction with subsequent retention of thick, 

tenacious, mucin-enriched middle ear fluid (Rovers et al., 2004). Although COME is clearly a 

chronic inflammatory condition, the source of the persistent inflammatory stimulus has been 

difficult to establish (Kubba et al., 2000). Chronic otitis media with effusion is hypothesized 

to be initiated by inflammation and immune reaction against ascending infections from the 

adenoid and nasopharynx (Vanneste and Page, 2019).  

1.3.1 The role of bacteria in COME 

Bacterial infections have been implicated to play a key role in the pathogenesis of 

AOM and COME. Lines of evidence that support an “infective aetiology” of COME include a 

strong association between AOM and COME: more than 50% of cases of COME are 

preceded by an episode of AOM (Kubba et al., 2000). Moreover, some of the high-risk groups 

of children such as younger siblings, nursery children, and absence of breast feeding, are 

those that are susceptible to infections, also supporting an infective aetiology of COME 

(Robb, 2006). In addition, as noted above, the nature of the effusion fluid in COME is an 

exudate not transudate, which is again consistent with a localised infection. However, lack of 

the typical signs and symptoms of acute bacterial infections such as ear pain, fever, and other 

constitutional symptoms is more difficult to rationalise with an infective aetiology. 
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COME has been considered by some researchers to be a non-infective inflammatory 

condition because of the failure to culture bacteria from middle ear effusion in approximately 

half of samples (21%-70%) (Bluestone et al., 1992, Gok et al., 2001, Hall-Stoodley et al., 

2006). However, additional studies that examined middle ear effusions using polymerase 

chain reaction (PCR) found pathogenic bacterial DNA in more than 80% of culture-negative 

effusions (Kubba et al., 2000, Post et al., 1995, Rayner et al., 1998). Furthermore, this DNA is 

simultaneously present with a short half-life bacterial-specific mRNA, indicating the presence 

of metabolically active bacteria in culture-negative COME (Rayner et al., 1998). One 

hypothesis behind this inconsistency between the high negative cultures and high PCR-

positive rate is that the majority of bacteria within the middle ear of patients with COME exist 

within a biofilm form and are not easily recovered and isolated (Fergie et al., 2004). Previous 

studies using experimental chinchilla otitis media models have demonstrated biofilm 

formation on the middle ear mucosa using confocal laser microscopy and/or scanning electron 

microscopy (SEM) (Ehrlich et al., 2002, Post, 2001). 

 Strong evidence for the role of biofilms in COME was obtained though the direct 

detection of bacterial biofilms by confocal laser microscopy on the middle ear mucosa of 

children with COME and rAOM in up to 92% of cases, but not in any studied control 

samples, strongly supporting the role of bacterial biofilms in the pathogenesis of COME and 

rAOM (Hall-Stoodley et al., 2006). Similarly, polymicrobial biofilms have been demonstrated 

on 65% of middle ear mucosal samples collected from 20 children with both COME and 

rAOM (Thornton et al., 2011). In addition to the polymicrobial biofilms, intracellular bacteria 

resembling cocci were also observed within epithelial cells of the middle ear mucosa using 

transmission electron microscopy. Using both universal and species-specific fluorescence in 

situ hybridization (FISH) probes, they were able to visualise unidentified bacterial species in 

addition to the three common otopathogens (Streptococcus pneumoniae, Haemophilus 

influenzae, and Moraxella catarrhalis) within these samples, suggesting that previously 

unidentified bacterial species are also involved in biofilm formation within the middle ear of 

COME and rAOM patients. 

 Furthermore, middle ear bacterial biofilms have also been demonstrated in patients 

with chronic suppurative OM (CSOM) (Homoe et al., 2009, Jensen et al., 2017) and with 

cholesteatoma (Chole and Faddis, 2002, Park et al., 2009). Recently, biofilms have also been 

shown on the surface of ventilation tubes removed from children with COME (Barakate et al., 
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2007, Wang et al., 2014) or free floating within the middle ear effusion fluids recovered from 

patients with COME (Daniel et al., 2012b, Van Hoecke et al., 2016)   

The most common bacterial species identified in patients with AOM are S. 

pneumoniae (27.8%), H. influenzae (23.1), and M. catarrhalis (7%). H. influenzae is more 

frequently isolated from patients with rAOM and AOM with a perforated tympanic membrane 

(H. influenzae 22.8% versus 18.6% for S. pneumoniae and 4.1% M. catarrhalis (Ngo et al., 

2016). However, in patients with COME, the most commonly identified bacterial pathogen is 

H. influenzae (11.6%), followed by S. pneumoniae (6.5%), although bacteria are less likely to 

be identified compared to AOM (Ngo et al., 2016). All the three most commonly recognised 

otopathogens have been shown to have the ability to form biofilms in vitro and in vivo 

(Bakaletz, 2012, Hall-Stoodley and Stoodley, 2009, Silva and Sillankorva, 2019). 

Staphylococcus aureus, coagulase-negative staphylococci, Veillonella species, and numerous 

other bacterial pathogens are also often isolated from middle ear effusions (Bluestone et al., 

1992, Hyden et al., 2006, Daniel et al., 2012b, Papp et al., 2016).  

Studies suggest that the existence of biofilms on adenoids may be an essential pre-

requisite for the initiation and development of biofilms within the middle ear, and that the 

adenoids potentially act as a reservoir for biofilm-forming otopathogens (Hoa et al., 2009, 

Hoa et al., 2010, Zuliani et al., 2009, Van Hoecke et al., 2016). With this in mind, it is 

believed that the therapeutic advantages of adenoidectomy are related to the debulking of 

nasopharyngeal biofilms, changing the microbial community in the nasopharynx, and 

minimizing the rate of H. influenzae and S. pneumoniae colonization (Aarts et al., 2010). 

Significantly higher biofilm formation on the adenoid mucosa was reported in children with 

rAOM and/or COME in comparison with children with adenoid hypertrophy only (Hoa et al., 

2010, Saafan et al., 2013, Zuliani et al., 2009). The adenoids play key roles in regulating 

systemic and local immunity in children. However, evidence confirming their role in the 

pathogenesis of COME is scarce and further investigations are still required.  

1.3.2 Other etiological theories for the pathogenesis of COME 

A range of hypotheses have been proposed to explain the role of underlying 

pathophysiological factors that are thought to have a contribution in the pathogenesis of 

COME. A common process unifying these hypotheses is inflammation resulting in over-

secretion and accumulation of thick and viscous mucus in the middle ear cavity combined 
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with impaired mucociliary clearance because of high mucous viscosity. The complex 

interaction of different risk factors predisposing to COME is illustrated in Figure 1. 3. 

The potential role of ET dysfunction whether as a primary cause of inflammation or as 

a sequela of prolong inflammation that ultimately leads to development of COME are 

described in detail above. Several other host and environmental factors are also thought to 

have a role in COME including laryngopharyngeal reflux (LPR), respiratory allergy, genetic 

factors and exposure to tobacco smoking. 

The link between LPR and COME has been suspected ever since digestive enzymes of 

the stomach such as pepsin and its proenzyme form, pepsinogen, were detected in high 

concentrations in middle ear aspirates of patients with COME (Miura et al., 2012, Formánek 

et al., 2015, Doğru et al., 2015). Furthermore, Helicobacter pylori DNA, retrieved from 

bacteria that primarily colonise the stomach and duodenum, have been detected in 6-18% of 

middle ear effusion samples using PCR and enzyme-linked immunosorbent assay (ELISA) 

(Boronat-Echeverría et al., 2016). However, despite these findings, a direct causal relationship 

between LPR and COME has not been determined (Miura et al., 2012, Kariya et al., 2014). 

Similarly, several published studies have suggested an association between respiratory 

allergy, specifically allergic rhinitis, and COME (Kreiner‐Møller et al., 2012, Pau and Ng, 

2016). Again, a causal relationship has been difficult to prove, and no significant alteration in 

COME progression was demonstrated when anti-allergy treatments such as topical and oral 

steroids were used (Simpson et al., 2011a). 

Chronic otitis media with effusion might also be initiated by the activation of certain 

inherited genes regulating mucin expression, mucin production, and host response against 

bacteria in the middle ear. Twelve such genes have been identified to date (Kubba et al., 2000, 

Vanneste and Page, 2019). Higher concentrations of mucins have been found to correlate with 

increased viscosity of middle ear effusions (Carrie et al., 1992), which can subsequently result 

in impaired mucociliary clearance of middle ear effusion. MUC5AC and MUC5B that are 

encoded at chromosome 11p15 are examples of respiratory mucin molecules that are thought 

to be involved in the accumulation of mucous in the middle ear cavity (Tsuboi et al., 2001, 

Kubba et al., 2000). Furthermore, hereditary diseases such as primary ciliary dyskinesia that 

affect mucociliary clearance and congenital malformations including cleft palate, Down 

syndrome and immune deficiency have also been associated with ET dysfunction followed by 

COME (Flynn et al., 2009, Hoffman et al., 2013, Qureishi et al., 2014). The association 

between COME and exposure to cigarette smoke has been highlighted in many studies, 
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however, a causal relationship has not yet been established. The presence of parental smoking 

has been shown to increase the risk of COME and rAOM by 66% (Jacoby et al., 2008), and 

the risk associated with passive smoking increases with age (Mansour et al., 2018). One 

potential mechanism is due to overexpression of mucin genes in response to passive smoking, 

which impairs the normal mucociliary function of the middle ear and leads to COME 

(Preciado et al., 2010).  

Several clinical features of COME are consistent with biofilm infection including 

frequent spontaneous resolution, but higher rates of disease recurrence and the failure of 

antibiotic treatment to eradicate bacteria present in the middle ear (Harimaya et al., 2006). In 

addition, bacteria within biofilms may initiate low grade subacute inflammation and thus 

ultimately prolong the presence of middle ear effusion. However, dispersal of planktonic 

bacteria from the biofilm can result in an episode of acute infection with an associated intense 

inflammatory reaction. Therefore, children with COME are 5 times more likely to develop 

AOM compared to those without COME (Teele et al., 1989). A better understanding of the 

role of bacteria and biofilms in the pathogenesis of COME requires further investigation. 
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Figure 1. 3 Pathogenesis of COME, adapted from (Qureishi et al., 2014).  

The figure shows the interaction of different host and environmental risk factors that are 

thought to have role in the pathogenesis of COME. A common mechanism unifying these 

factors is the inflammatory irritation of the middle ear mucosa leading to the production of 

cytokines, over-secretion and accumulation of thick and viscous mucus in the middle ear 

cavity combined with impaired mucociliary clearance that ultimately leads to development of 

COME. Eustachian tube dysfunction, either caused by an enlarged adenoid or as a sequela of 

acute viral or bacterial infection, leads to impaired mucociliary clearance that eventually 

result in COME. Prolonged inflammatory irritation induced by biofilms, allergy, and LPR can 

result in COME as described above. Exposure to cigarettes smoke or activation of certain 

inherited genes may lead to overexpression of mucin, which impairs the normal mucociliary 

function of the middle ear and leads to COME.    
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1.4 Bacterial biofilms and their formation 

It has been estimated that approximately 40-80% of bacteria on Earth tend to aggregate 

on surfaces within biofilms rather than living in a planktonic (free-living) state (Flemming 

and Wuertz, 2019). The term ‘biofilm’ refers to an aggregation of microbial cells enclosed in 

a self-produced extracellular polymeric matrix that is irreversibly attached to an inert or living 

surface or interface (Costerton et al., 1999, Fergie et al., 2004, Yang et al., 2008). Parsek and 

Singh (2003) have proposed additional criteria to define medically relevant biofilm infections. 

These criteria include tolerance of biofilm cells to antibiotic treatment, despite the sensitivity 

of their planktonic counterparts to the antibiotic, and that the infection must be localised to a 

particular site. The protective structure of biofilms facilitates bacterial survival in hostile 

environments, the dissemination of genetic material, and resistance to the host's immune 

system  (Hoiby et al., 2011, de la Fuente-Nunez et al., 2013).  

The mechanism of biofilm formation and development has been extensively investigated 

in model microorganisms such as Pseudomonas aeruginosa (Sauer et al., 2002, Reichhardt 

and Parsek, 2019) and Bacillus subtilis (Vlamakis et al., 2013, Kovács and Dragoš, 2019). 

Basically, biofilm formation involves several phases initiated by reversible attachment of 

microorganisms to the surface which occurs when the attractive forces (Lifshitz-Van der 

Waals forces) overcome the repulsive forces (electrostatic forces on the microbial cell surface 

and substratum). This early phase is facilitated by the pre-coating of the substratum by a 

conditioning film, commonly consisting of proteins or glycoproteins, that forms on surfaces 

when they are exposed to a fluid or gas. Furthermore, complex interactions between other 

forces such as gravity, surface hydrophobicity, steering tensions, and Brownian motion can 

also influence initial microbial adhesion. Following the establishment of a stable attachment 

to the surface, the ability of microorganisms to stay irreversibly adherent is determined by a 

critical interaction between bacterial surface adhesins and specific receptors in the 

conditioning film (Gupta et al., 2016).  

Following irreversible adhesion, microbes multiply, form micro-colonies and initiate 

production of extracellular matrix which enhances microbial adhesion to the surface, cell to 

cell cohesion and has many other functions. The mechanism of synthesis of the components 

of the biofilm matrix is not well understood. It has been proposed that quorum-sensing signals 

participate in P. aeruginosa and Vibrio cholerae polymeric matrix synthesis (Gupta et al., 

2016, Bridges and Bassler, 2019). When the essential structure of the biofilms has 
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established, the biofilm enters the maturation phase in which the microorganisms multiply 

and aggregate, in some cases forming three-dimensional towers. Eventually, the bacterial cells 

in the outer layers will be detached and dispersed either individually or in aggregates to start a 

new cycle of surface colonisation and establishment of new biofilms (Otto, 2013). Bacterial 

dispersal and seeding from the biofilm surface is thought to be important for the 

dissemination of infections to the other parts of the host like a septic embolus (Fleming and 

Rumbaugh, 2018) and is driven by external forces such as the shearing force of high fluid 

flow (Oder et al., 2018) or by self-induced processes of dispersal such as enzymatic 

degradation of the extracellular polymeric matrix (Cho et al., 2015, Guilhen et al., 2017). 

Increasingly, these bacterial enzymes have been investigated for their potential to disperse 

pathogenic biofilms. Examples of these biofilm degrading microbial enzymes include the 

glycosidases dispersin B and alginate lyase, and deoxyribonucleases such as NucB of Bacillus 

licheniformis (Nijland et al., 2010, Fleming and Rumbaugh, 2017, Bou Haidar et al., 2020). 

1.5  Biofilms and their clinical importance 

Bacteria residing in biofilms display complex biological characteristics and activities. 

For example, cell-to-cell communication through quorum sensing involves dissemination of 

signalling molecules and genetic material among microbes which impacts on microbial 

virulence, co-aggregation, biofilm structure, and responses to environmental stresses (Hall-

Stoodley and Stoodley, 2009, Wolska et al., 2016). Furthermore, the high tolerance of the 

biofilm to antibiotic treatment and host immune actions is linked to complex microbial 

communities within biofilms and the protective functions of the biofilm matrix (Hoiby et al., 

2011, Flemming et al., 2016). 

The potential role of bacterial biofilms in chronic infections was first described when 

P. aeruginosa was found colonizing the bronchial tree of patients with cystic fibrosis (Hoiby 

et al., 1977, Lam et al., 1980). Subsequently, biofilms were shown to contribute to the 

pathogenesis of chronic human infections such as chronic rhinosinusitis (CRS), otitis media, 

dental caries and others  (Jakubovics, 2015, Van Hoecke et al., 2016, Rostami et al., 2017, Di 

Luca et al., 2017). Moreover, the increasing application of different kinds of medical implants 

poses challenges for controlling biofilm infections since artificial surfaces within the body 

provide new sites for microbial attachment and colonisation resulting in biofilm formation on 

almost all kinds of indwelling medical implants and devices (Donlan and Costerton, 2002, 

Arciola et al., 2018, Zatorska et al., 2017). 
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The US National Institutes of Health have estimated that biofilms account for over 

80% of chronic infections and 65% of all microbial infections in the human body  (Jamal et 

al., 2018). The role of bacterial biofilms in the pathogenesis of chronic infectious diseases can 

be difficult to establish because microorganisms residing within biofilms tend to resist 

traditional culture methods (Hall-Stoodley et al., 2006). Parsek and Singh (2003) have 

proposed a number of specific criteria that should be present in a medically relevant infection 

in order to be considered as a biofilm infection. These criteria include (i) bacterial attachment 

to a surface or substratum, (ii) bacterial aggregates or micro-colonies should be embedded in 

extracellular matrix, (iii) the infection is generally localised to one site, and (iv) biofilm cells 

are resistant to eradication by antibiotics, despite the sensitivity of planktonic counterparts to 

the same antibiotic. Later on, an additional feature was suggested to be added to the 

diagnostic criteria of biofilm infections by Hall-Stoodley and Stoodley (2009): evidence of 

impaired host immunity against bacterial aggregates in culture-negative cases with 

documented signs and symptoms of bacterial infection. Visualisation of localised bacterial 

aggregates surrounded by immune cells such as neutrophils and macrophages significantly 

increases the suspicion of biofilm infection. Furthermore, additional culture-independent 

diagnostic tools such as PCR and FISH were also recommended in addition to traditional 

culture approaches to increase the detection rate of bacteria within biofilms (Hall-Stoodley et 

al., 2006). Increasingly, other culture-independent molecular based techniques such as high 

throughput 16S rRNA gene sequencing are being employed to identify bacteria which are 

fastidious, non-cultivable, and those that are living within biofilms (Di Luca et al., 2017). 

Culture-independent molecular analysis is discussed in more detail in sections 1.8 and 1.9.  

Due to the intrinsic tolerance of bacteria within biofilms to antimicrobial therapy and 

the immune response, the treatment and prevention of biofilm-associated chronic infections 

have been difficult. The protective organisation of biofilms enhances bacterial survival 

against different external stresses such as UV light, heavy metals, and changes in temperature, 

moisture, acidity, and host phagocytic defences (Espeland and Wetzel, 2001, Le Magrex-

Debar et al., 2000, Leid et al., 2002, Teitzel and Parsek, 2003, Flemming et al., 2016). 

Furthermore, bacteria in biofilms exhibit tolerance to high concentrations of antimicrobials, 

typically more than 1,000 times higher than their planktonic counterparts. Different possible 

mechanisms have been proposed to explain this characteristic (Singh et al., 2017, Flemming 

et al., 2016). These include: (i) the nature of biofilm matrix impairs the penetration of 

antibiotics to reach bacteria within biofilms, (ii) diverse physiochemical niches within biofilm 

structure may affect antimicrobial efficacy directly or indirectly by altering the growth of 
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microorganisms in the anaerobic environment within the core of the biofilm, (iii) surface-

attached bacterial cells in biofilms exhibit phenotypic and genotypic alterations consistent 

with changes in gene transcription and physiologic parameters that may ultimately affect their 

sensitivity to antibiotics, (iv) the presence of metabolically dormant populations of bacterial 

cells known as persister cells which exhibit high tolerance to antimicrobial agents, (v) slow 

bacterial growth rate makes them less vulnerable to antibiotics. These mechanisms can act 

individually or in combination (Yan and Bassler, 2019).  

Bacteria within biofilms behave differently from their planktonic counterparts. 

Therefore, treatment of biofilm infections using planktonic bacteria-based Minimum 

Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) is often not 

suitable (Andrews, 2001). The need for an assay that can provide relevant and effective 

antibiotic dose recommendations for the eradication of bacterial biofilms led to the 

development of Minimum Biofilm Eradication Concentration (MBEC) assay as an alternative 

to MIC (Ceri et al., 1999). Minimum Biofilm Eradication Concentration is up to 1,000 times 

greater than MIC. Unfortunately, it is often not possible to deliver such high effective 

concentrations of antimicrobial agents due to toxicity. Therefore, attention has been directed 

towards the development of anti-biofilm agents that can return bacteria to their susceptible 

planktonic state. Extracellular polymeric substances (EPS) in the matrix of biofilms provide 

bacteria within biofilms with a wide range of protective advantages that will be discussed in 

the next section. Several components of EPS, including proteins, extracellular DNA (eDNA), 

and exopolysaccharides can be involved in these protective functions (Fleming and 

Rumbaugh, 2017). Of these components, eDNA has increasingly been shown to be a key 

structural component within the biofilm matrix of many bacteria that plays a pivotal role in 

enhancing biofilm formation and maintaining the structural integrity of biofilms (Jakubovics 

et al., 2013, Jakubovics and Burgess, 2015, Okshevsky et al., 2015).    

1.6       Extracellular DNA and its role in bacterial biofilms 

The amount and the composition of EPS in biofilms differ greatly among different 

microbial species. It has been estimated that EPS constitutes around 90% of the overall 

biomass in many biofilms, whereas the microbial cells accounts for less than 10% (Flemming 

and Wingender, 2010). The EPS of microbial biofilms plays a key role in maintaining the 

stable adhesion of the bacterial colonies to the substratum, boosting cell to cell cohesion, 

conserving nutrients, and disseminating genetic material. Furthermore, EPS helps to protect 

the microorganisms from external stresses such as heavy metals, antibiotics, and host 
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phagocytic activity (Flemming et al., 2016). Originally, polysaccharides were considered 

ubiquitous and thought to be the key component of biofilm EPS, hence it was often known as 

“exopolysaccharides”. Later on, further investigations demonstrated that there are numerous 

other macromolecules including eDNA, proteins, and lipids present in considerable amounts 

in the biofilm matrix (Flemming and Wingender, 2010, Fleming and Rumbaugh, 2017). The 

heterogeneous composition of biofilm EPS, in addition to the complexity of the mechanisms 

via which the EPS components are produced and act, make it difficult to target bacteria within 

biofilms using traditional antimicrobial agents and disinfection procedures. Therefore, some 

researchers have switched their focus to targeting the EPS of biofilms to interfere with its 

protective functions, and disperse the bacteria which are sheltered within it. In theory, the 

release of bacterial cells from biofilms will enhance their susceptibility to antimicrobial 

treatment and host defence actions. One approach to target extracellular matrices of biofilms 

is through the application of DNase enzymes to degrade eDNA in the matrix (Jakubovics et 

al., 2013, Okshevsky et al., 2015). 

Initially, eDNA was described as a “slime” enclosing bacteria and predisposing to the 

formation of a thin film in broth cultures (Catlin, 1956, Catlin and Cunningham, 1958). This 

eDNA was observed in Staphylococcus aureus broth cultures in spite of the well-known 

ability of S. aureus to synthesize abundant amounts of DNase enzymes. Importantly, 

inhibition of DNase in S. aureus, using low calcium with low pH culture conditions, was 

associated with excess production of eDNA (Catlin and Cunningham, 1958) . The critical role 

of eDNA in maintaining the structural integrity of bacterial biofilms was first described by 

Whitchurch et al. (2002) when they found substantial dispersal of P. aeruginosa biofilms 

treated with DNase I enzyme. These observations have led researchers to focus on 

understanding the structural roles of eDNA with the EPS of biofilms formed by wide range of 

microorganisms. The exact role of eDNA within biofilm is not well-understood. However, 

eDNA appears to have several functions within the extracellular matrix of many bacterial 

biofilms. These include facilitating the initial adhesion of microbial cells, maintaining the 

structural stability of biofilm, promoting the exchange of genetic material, acting as a nutrient 

source, and providing protection against antimicrobial and host defence actions.  

 

1.6.1  Extracellular DNA enhances biofilm formation and structural stability 

As mentioned earlier, the first study that discovered the role of eDNA in supporting 

the structural stability of P. aeruginosa biofilm was performed by Whitchurch et al. using 
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DNase I. Subsequently, several other investigations have confirmed important roles of eDNA 

in enhancing bacterial adhesion and maintaining the structural stability of biofilm using 

DNase enzymes as a tool (Table 1. 1). The amount of eDNA present within biofilm matrix 

varies greatly among different bacterial strains and is not necessarily related to its role in 

maintaining the structural integrity of biofilms (Izano et al., 2008, Mann et al., 2009). 

Importantly, mature biofilms have been shown to be less sensitive to DNase treatment in 

comparison to newly formed biofilms. This finding has been found in biofilms formed by 

different bacterial species such as Staphylococcus epidermidis (susceptibility to DNase 

reduced at 12 hours) (Qin et al., 2007b), P. aeruginosa (after 80 hours) (Whitchurch et al., 

2002), and for Vibrio cholerae (after 72 hours) (Seper et al., 2011b). In contrast, efficient 

disruption of young biofilms as a result of an exogenous addition of DNase suggests that the 

eDNA plays a key role in maintaining the structural stability of newly formed biofilms 

(Fredheim et al., 2009, Harmsen et al., 2010, Nijland et al., 2010, Tetz et al., 2009, Rose et al., 

2015, Ibáñez de Aldecoa et al., 2017). The reasons for the observed reductions in the efficacy 

of DNases against mature biofilms are not well understood. However, the transient sensitivity 

of young biofilms to DNase treatment suggests either that other components of EPS such as 

exopolysaccharides or proteins are replacing or complementing the structural role of eDNA 

within mature biofilms or that eDNA is being protected from the enzymatic degradation of 

DNases by forming complexes with other components of the matrix (Okshevsky et al., 2014, 

Sugimoto et al., 2018, Zetzmann et al., 2015b). Alternatively, eDNA may form duplexes with 

RNA over time. It has recently been shown that eDNA in Pseudomonas spp. biofilms forms 

complexes with RNA including non-canonical base paired structures that contribute to the 

elasticity of the biofilm (Seviour et al., 2019). 

Several studies have investigated the role of eDNA in enhancing bacterial adhesion in 

the early phase of biofilm formation. For instance, in the case of Bacillus cereus, eDNA 

surrounded bacterial cells and enhanced biofilm formation when cells reached the exponential 

phase of growth, whereas these cells did not exhibit the same behaviour during the stationary 

growth phase (Vilain et al., 2009). In contrast, other studies have shown that Bacillus cereus 

and S. pneumoniae produce eDNA in the stationary growth phase (Lorenz et al., 1991, 

Moscoso and Claverys, 2004). This difference may be due to different methods, growth 

conditions and bacterial species used in these studies.  

Furthermore, other studies also have highlighted the important role of eDNA in 

facilitating the initial attachment of S. epidermidis and Acidovorax temporans cells to abiotic 

substrata such as glass or polystyrene and glass wool (Heijstra et al., 2009, Qin et al., 2007a). 
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However, subsequent investigations suggested that eDNA requires other components to 

enhance the early adhesion. This may explain why numerous DNase treated bacterial species 

cannot regain their biofilm formation capability by the exogenous addition of DNA (Lappann 

et al., 2010, Harmsen et al., 2010, Das et al., 2011). Dispersal of Listeria monocytogenes 

biofilms using exogenous DNase I demonstrated that eDNA is necessary for the initial 

attachment of young biofilm. However, in the absence of eDNA, it was shown that the 

addition of genomic DNA could not restore the ability of L. monocytogenes cells to adhere 

and form biofilm in the absence of other essential components, such as N-acetylglucosamine. 

These observations indicate that the interaction of other components with eDNA is necessary 

for eDNA-mediated biofilm formation (Harmsen et al., 2010).   

Indeed, it seems that eDNA enhances early microbial adhesion to the surface and boosts 

cell to cell cohesion in young biofilms. However, the role of eDNA in maintaining the 

structural integrity of mature biofilms and its interaction with other components in the matrix 

requires further investigation.   
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1.6.2 Extracellular DNA provides protection from antimicrobial and host defense action 

Potential mechanisms contributing to the observed increased tolerance of biofilms 

bacteria to antimicrobials were described in section 1.5. Impaired penetration of antibiotics 

through EPS is suggested to be caused by interactions of matrix components such as proteins 

and exopolysaccharide with antibiotics (Flemming and Wingender, 2010). The protective role 

of eDNA against antibiotics and host immune action is linked to its ability to bind and chelate 

host-produced cationic antimicrobial peptides or cationic antimicrobials. For instance, eDNA 

has been shown to bind and inhibit the antimicrobial activity of the antimicrobial host defence 

protein β-defensin-3 (hBD-3) against biofilms formed by non-typeable H. influenzae, a 

pathogen commonly implicated in COME (Jones et al., 2013). Interestingly, exogenous 

addition of both DNase I and recombinant hBD-3 led to substantial decreases in biofilm 

formation and enhanced the antimicrobial action of hBD-3. Similarly, the susceptibility of P. 

aeruginosa  biofilms to aminoglycoside antibiotics was reduced by exogenous addition of 

DNA through the same mechanism (Chiang et al., 2013).  

Numerous other investigations have demonstrated that eDNA can indirectly enhance 

resistance of biofilms to antibiotics  by chelating divalent cations such as Mg+2, Mn+2, Zn+2, 

and Ca+2  which leads to expression of  genes or other virulence factors that modify 

physiological parameters of bacterial cells and make them more tolerant to cationic antibiotics 

and antimicrobial peptides (Johnson et al., 2012, Mulcahy et al., 2008).  Furthermore, 

acidification produced by eDNA within biofilms formed by P. aeruginosa is a stimulus to 

induce resistance against aminoglycosides and antimicrobial peptides (Mulcahy et al., 2008, 

Wilton et al., 2016, Lewenza, 2013). However, eDNA may also have a negative impact on the 

viability of bacterial cells. It has been shown that excess eDNA can significantly affect the 

integrity of bacterial cell membrane by chelating cations such as Mg+2 and Ca+2 and leading to 

bacterial cell lysis (Mulcahy et al., 2008). It is unknown whether excess eDNA will have 

same effect on pathogenic bacteria in vivo.  

Moreover, bacterial eDNA is thought to play a role  in stimulating immune 

inflammatory reactions in the lungs of patients with cystic fibrosis (Lipford et al., 1998).  

Human inflammatory cells, such as macrophages, lymphocytes and dendritic cells identify 

eDNA on the bacterial surface as a foreign antigen. This results in triggering host innate 

immune action by stimulating Toll-like receptors of host immune cells (Pietrocola et al., 

2011, Dapunt et al., 2016). The inflammatory reaction associated with chronic biofilm-

mediated diseases such as COME and CRS may also be attributed to the role of bacterial 
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surface eDNA in triggering the host immune system. Although, eDNA can play a role in 

stimulating host immunity against pathogenic bacteria, bacteria within biofilms can develop 

complex protective strategies against host immune action. A good example is that biofilm 

growth can increase S. aureus resistance to the phagocytic action of host macrophages  

(Thurlow et al., 2011, Herzog et al., 2019). There is mounting evidence that eDNA is a key 

component within biofilm matrix of a wide range of microorganisms, and its critical roles in 

enhancing biofilm formation and maintaining biofilm stability outweigh the disadvantage of 

triggering host immune responses (Jakubovics et al., 2013, Okshevsky et al., 2015). 

 

1.6.3 eDNA origin and turnover 

Extracellular DNA is a ubiquitous structural component with the EPS of biofilms 

formed by many bacteria. Several  studies have investigated the origin (whether plasmid 

DNA, or genomic DNA, or something else) or production of eDNA in bacterial biofilms such 

as L. monocytogenes, P. aeruginosa, and Aspergillus fumigatus (Harmsen et al., 2010, 

Steinberger and Holden, 2005, Allesen-Holm et al., 2006, Rajendran et al., 2013). Most of 

these studies found that eDNA in the biofilm matrix is identical to genomic DNA in mono-

species biofilms. However, in multispecies biofilms, one study found that eDNA within 

biofilm matrix formed by four different species was significantly different from either 

genomic DNA of cells or total DNA of the same multispecies biofilm (Steinberger and 

Holden, 2005). Furthermore, it has been shown that eDNA within biofilms present in the 

sputum of patients with cystic fibrosis mostly originates from the human body (Lethem et al., 

1990, Gray et al., 2018). It was also shown that the presence of some cellular components of 

host neutrophils can serve as biological matrix to enhance biofilm formation by P. aeruginosa 

(Walker et al., 2005). The role of eDNA in enhancing the ability of E. coli to form biofilms 

has been shown to be unrelated to its origin. The exogenous addition of genomic, plasmid, 

and even mammalian DNA to E. coli cultures did not enhance the ability of E. coli to form 

biofilm (Liu et al., 2012). However, further investigations are still required to validate these 

findings. 

Many studies have shown that cell lysis is the main source for the release of eDNA 

into the extracellular compartment. Cells lysis leading to eDNA release in bacterial biofilms is 

mediated by different mechanisms. For instance, in P. aeruginosa and S. pneumoniae, it was 

shown that bacteriophage-mediated lysis constitutes an important source of eDNA for the 

biofilm matrix (Carrolo et al., 2010, Webb et al., 2003). In several species of Streptococcus, 
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including S. pneumoniae, eDNA production is thought to mediated by production of hydrogen 

peroxide (Regev-Yochay et al., 2006).  Autolysis is the most commonly described mechanism 

of cell lysis, which is similar in some regards to apoptosis or programmed cell death in 

eukaryotes (Rice and Bayles, 2003, Bao et al., 2015, Domenech and Garcia, 2018) . In 

microbial fratricide a proportion of cells in a microbial population trigger the lysis of their 

siblings. The eDNA released from damaged cells enhances biofilm formation and 

coaggregation of the rest of microbial population. Several studies have shown that autolysins 

play a key role in quorum sensing-based cell lysis. Deletion of genes encoding these 

autolysins in S. aureus resulted in mutants lacking biofilm formation capacity (Bao et al., 

2015). Autolysins are surface-attached enzymes that can degrade peptidoglycan. Their roles in 

eDNA production and biofilm formation have been extensively studied in several bacteria  

including  S. epidermidis (Qin et al., 2007b, Wu et al., 2018), S. aureus (Mann et al., 2009, 

Fernández et al., 2017), Neisseria meningitidis (Lappann et al., 2010, Sigurlasdottir et al., 

2019), S. warneri (Yokoi et al., 2008), and S. pneumoniae (Havarstein et al., 2006, Domenech 

and Garcia, 2018).  

Another form of fratricide-mediated cell lysis has been described in E. faecalis 

biofilms, and is linked to protease (gelatinase)-mediated cell lysis involving a minor 

proportion of bacterial cells lacking the quorum sensing and gelatinase production (Thomas et 

al., 2009). Production of gelatinase by the overwhelming predatory population causes 

fratricidal cell lysis of a minority prey subpopulation. Co-expression of an immunity protein 

by the predatory population protects them from the cell lysis activity of their gelatinase. 

Another suggested mechanism leading to eDNA release in bacterial cells is the formation of 

DNA-containing membrane vesicles (Dorward and Garon, 1990, Schooling et al., 2009, 

Grande et al., 2015, Puca et al., 2019) . These vesicles have been demonstrated in 

exponentially growing Acinetobacter baunmannii (Sahu et al., 2012), in single-species 

biofilms of P. aeruginosa, and in mixed-species biofilms of dental plaque (Schooling and 

Beveridge, 2006, Frank, 1970, Holliday et al., 2015). Furthermore, the formation of vesicles 

in Pseudomonas spp. has been associated with increased biofilm formation (Baumgarten et 

al., 2012). It has been shown that these membrane vesicles can fuse to the outer membrane of 

cells in Gram-negative bacteria and attach to the external cell wall of Gram-positive bacteria 

(Domenech and Garcia, 2018).  

A genomic screen of 3,985 non-lethal mutations in  E. coli has shown that the global 

regulator hns gene is required for eDNA production. Deletion of the hns gene was associated 

with a dramatic reduction in eDNA production, but only a mild decrease in cell lysis and a 
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three-fold increase in membrane vesicle production. Therefore, it appears that there is another 

mechanism for eDNA release in E. coli cells lacking hns, possibly the active secretion of 

eDNA from living bacterial cells (Sanchez-Torres et al., 2010). In N. gonorrhoeae, a genetic-

based eDNA releasing system via the type IV secretion system was observed in 80% of 

bacterial cell genomes, and disruption of this secretion system led to a profound reduction in 

eDNA release (Hamilton et al., 2005). Recently, Jurcisek et al. (2017) have shown that eDNA 

and associated DNABII proteins can also be actively released to the extracellular matrix of  

H. influenzae biofilms. These components are translocated from the bacterial cytoplasm to the 

periplasm via an inner-membrane pore complex (TraC and TraG) with homology to the type 

IV secretion system. The exact contribution of each mechanism to the total eDNA present 

within the extracellular matrix still not well understood (Jakubovics et al., 2013). 

Many microbial species have been shown to produce extracellular DNase enzymes that 

are either attached to the bacterial cell wall or released to  the extracellular niche (Jakubovics 

et al., 2013). The secretion of DNases by various bacterial strains seem to be independent of 

their reliance on eDNA during biofilm formation (Shields et al., 2013). The release of 

extracellular DNase enzymes appears to be a common feature for wide range of 

microorganisms, including Cryptococcus neoformans (Almeida et al., 2015), many oral 

bacteria (Palmer et al., 2012, Jakubovics and Burgess, 2015), anaerobic bacteria such as 

Fusobacterium spp. (Porschen and Sonntag, 1974, Doke et al., 2017), S. pneumoniae (Zhu et 

al., 2013, Jhelum et al., 2018), Streptococcus pyogenes (Hasegawa et al., 2010, Chalmers et 

al., 2017), H. influenzae (Cho et al., 2015, Chan et al., 2018), Streptococcus suis  (de Buhr et 

al., 2015), S. aureus (Tang et al., 2011, Herzog et al., 2019),  and P. aeruginosa (Mulcahy et 

al., 2010, Cherny and Sauer, 2019).   

Several functions have been linked to extracellular DNases. For example, many of 

these enzymes have been considered important for bacterial virulence through their ability to 

digest DNA-rich neutrophil extracellular traps (NETs), which are complex networks of DNA 

and extracellular proteins produced by neutrophils as a part of host immune action to kill 

bacteria (de Buhr et al., 2015, Herzog et al., 2019, Jhelum et al., 2018). Thus, DNases are 

particularly important for pathogenic microorganisms to digest NETs and escape their 

potential antimicrobial activity. It has been also shown that the ability of isogenic nuclease-

deficient strains of S. aureus to digest and escape NETs was significantly reduced compared 

to the wild-type parent strain (Berends et al., 2010). Additionally, the efficacy of 

Streptococcus agalactiae NucA to digest NETs was disrupted by substituting alanine with 

histidine at the active site (Derre-Bobillot et al., 2013). 
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Extracellular DNases have been shown to play important roles in regulating microbial 

biofilm formation. For example, in Shewanella oneidensis, deletion of extracellular nuclease 

genes exeM and exeS was associated with a significant increase in biofilm formation and 

eDNA accumulation within the biofilm matrix (Godeke et al., 2011). Similar findings have 

been reported in strains of Vibrio cholerae disrupted in the xds gene encoding extracellular 

DNase (Seper et al., 2011a) and in nuc1 and nuc2- deficient strains of S. aureus (Beenken et 

al., 2012, Kiedrowski et al., 2011). However, other extracellular DNases of Vibrio cholerae 

and S. oneidensis have been shown to have functions other than controlling biofilm formation. 

For instance, disruption of endA affected the ability of S. oneidensis to scavenge eDNA as a 

phosphorus source (Heun et al., 2012b). Extracellular nuclease Dns of V. cholerae has been 

associated with genetic transformation. In addition, extracellular nucleases, Dns and Xds of V. 

cholerae, have been shown to play important roles in the degradation of NETs (Seper et al., 

2013).  Extracellular DNA is considered an important nutrient source for microorganisms in 

hostile environments, and therefore its degradation by extracellular DNases can provide 

nucleotides to be reused by bacteria as a source for phosphorus, carbon, and nitrogen 

(Mulcahy et al., 2010, Pinchuk et al., 2008, McDonough et al., 2016) . Furthermore, eDNA 

digestion by extracellular DNase likely impairs chelation of cations such as Mg+2, and Ca+2 by 

eDNA and  enhances scavenging of these cations by bacterial cells within the biofilm while 

also protecting cells from chelation-mediated lysis (Mulcahy et al., 2010). There is a strong 

association between the roles of extracellular DNases in bacterial nutrient scavenging and 

genetic transformation. Cell wall-associated  nucleases, such as EndA in S. pneumoniae 

(Lacks and Neuberger, 1975, Bergé et al., 2013) have been shown to degrade eDNA into 

single-stranded DNA, which is a substrate for cellular DNA uptake systems involved in 

genetic transformation. Membrane associated  nucleases in S. oneidensis also allow other 

enzymes such as extracellular phosphatases to scavenge DNA as a phosphorous source 

(Mulcahy et al., 2010, Heun et al., 2012a).  

In conclusion, bacterial extracellular nucleases play a potential role in several 

functions including enhancing NETs digestion, using DNA as a nutrient source, regulating 

biofilm formation and facilitating natural genetic transformation. 
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1.7 Extracellular DNase enzymes as a potential anti-biofilm approach 

Since eDNA is a key structural component within the matrix of many microbial 

biofilms, it is a promising target for biofilm control by DNase enzymes. As previously 

described, DNases are released by wide range of biofilm-forming microbial species that can 

naturally inhibit or eradicate the biofilms of other microorganisms (Rendueles and Ghigo, 

2012). A good illustration of this is the extracellular nuclease NucB, which is released by a 

strain of B. licheniformis isolated from the surface of seaweed. It has been proposed that B. 

licheniformis naturally uses NucB to eradicate the biofilms of its competitors. Interestingly, 

exogenous addition of NucB to pre-established biofilms formed by E. coli, Micrococcus 

luteus and B. subtilis led to almost complete dispersal of these biofilms (Nijland et al., 2010). 

Moreover, the addition of NucB to monospecies in vitro biofilms formed by a wide range of 

bacteria freshly isolated from patients with chronic rhinosinusitis resulted in significant 

disruption of biofilms formed by 50% of these clinical isolates (Shields et al., 2013). 

Extracellular nuclease, Nuc1, of S. aureus has also been shown to disrupt biofilms formed by 

Haemophilus parasuis, Actinobacillus  pleuropneumoniae, and P. aeruginosa (Tang et al., 

2011). Consistent with the critical roles of eDNA in biofilm formation and maintaining the 

structural stability of mature biofilm, the exogenous addition of DNases can potentially 

inhibit biofilm formation, disperse pre-established biofilms, or increase the susceptibility of 

biofilms to antibiotics (Okshevsky et al., 2015). Different species appear to have different 

requirements for eDNA in biofilm formation and stability, and DNases could potentially 

interfere with any of the key functions of eDNA. For example, the DNase could digest eDNA 

associated with the microbial cell wall that serves as an adhesin for initial adhesion of 

microbial cells to biotic or abiotic surfaces. This would inhibit the initial stages of biofilm 

formation. Alternatively, the DNase enzyme could hydrolyse eDNA within the matrix of 

established biofilms, and degrade the adhesive network holiding the biofilm together. This 

would compromise the structural role of eDNA and promote biofilm dispersal. Furthermore, 

DNases have also been shown to enhance the sensitivity of bacteria within established 

biofilms to the killing action by various antibiotics or biocides, possibly by preventing the 

eDNA from sequestering the antibiotics (Kaplan et al., 2012, Tetz et al., 2009). Therefore, the 

ability of these enzymes to degrade eDNA within the matrix of biofilms makes them an 

excellent strategy for biofilm control.   

Different types of DNases have been used as a tool to assess the role of eDNA in 

biofilm development. In vitro biofilms of many bacterial species and fungi have been shown 
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to be sensitive to nucleases when they were included during the early stages of biofilm 

formation or when they were added to pre-established mature biofilms (Table 1. 1). A number 

of studies have investigated the potential clinical application of DNase enzymes in treating 

biofilm-associated human diseases. Exogenous addition of bovine DNase I to dual-species 

biofilms formed by P. aeruginosa and S. aureus resulted in a substantial decrease in biofilm 

thickness (Yang et al., 2011). In addition, B. licheniformis NucB efficiently promoted the 

release of microorganisms from mixed-species biofilms on tracheoesophageal speech valves 

(Shakir et al., 2012). Together these data indicate that DNase enzymes can potentially be 

applied to control clinically relevant polymicrobial biofilms. Furthermore, DNases such as 

recombinant human DNase I (rhDNase I), also known as Dornase alfa, and Varidase ®   have 

been used clinically in treating patients with cystic fibrosis and chronic wound infections, 

respectively, before the structural roles of eDNA in microbial biofilms were discovered. The 

application of inhaled Dornase alfa in patients with cystic fibrosis has been associated with 

increased pulmonary function through reducing the viscosity of DNA-rich bronchial 

secretions (Shak et al., 1990, Yang and Montgomery, 2018). More recently, a study has 

demonstrated that Dornase alfa can be used as an adjuvant therapy to increase the 

susceptibility of pulmonary biofilms to antibiotic therapy (Manzenreiter et al., 2012, 

Frederiksen et al., 2006). Varidase ®, which is a combination of a DNase (streptodornase) and 

a tissue plasminogen activator (streptokinase), has previously been used in vivo to enhance 

wound healing (Smith et al., 2011). However, due to doubts about its purity and its activity, 

Varidase ® has been withdrawn from the market in most countries (Steed, 2004). Dornase alfa 

is clinically being applied as an inhaled mucolytic agent in patients with cystic fibrosis and 

there is some evidence that Dornase alfa efficiently disrupted in vitro biofilms formed by S. 

pneumoniae and S. aureus (Hall-Stoodley et al., 2008, Kaplan et al., 2012). However, data 

confirming its anti-biofilm activity in vivo are scarce. Recently, it has been shown that 

Dornase alfa is potentially non-ototoxic in experimental animal models, and in a clinical trial, 

Dornase alfa showed an ability to unclog tympanostomy tubes in 59% of children with 

clogged tympanostomy tubes. However, this effect was not significantly different when 

compared with the treatment with antibiotics (Chan et al., 2018). One of the critical 

disadvantages of mammalian DNases, such as Dornase alfa, is that they require glycosylation 

for full activity and thermal stability, and therefore, it is difficult to produce them cheaply at 

scale using bacterial expression systems (Fujihara et al., 2008). This significantly increases 

the costs of production and limits potential medical and biotechnological applications. 

Nevertheless, different recombinant DNases including glycosylated mammalian DNase and 
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DNase I have been produced in a modified yeast Picia pastoris expression system which may 

reduce the cost of producing mammalian DNases (Cho et al., 2012).  

 Purified bacterial nucleases such as NucB from a marine strain of B. licheniformis 

(Rajarajan et al., 2013) have been successfully produced in large quantities and have been 

shown to be more effective than bovine DNase I in dispersing and inhibiting monospecies  

bacterial biofilms (Nijland et al., 2010, Shields et al., 2013). Furthermore, the onset of biofilm 

dispersal by NucB was much faster than DNase I. Recently, Basle et al. (2018) analysed the 

biochemical properties of B. licheniformis NucB and determined its crystal structure. This 

study revealed that NucB belongs to a unique subfamily of ββα metal-dependent non-specific 

endonucleases and shares less than 12% amino acid sequence identity with its closest 

structural neighbour (endonucleases of His-Me finger family), such as Smendo, an 

endonuclease from Serratia marcescens. The NucB family of endonucleases is characterised 

by its small size. For example B. licheniformis NucB contains only 110 amino acid residues, 

approximately 50% shorter than the length of the crystallized secreted endonucleases 

from Anabaena and Serratia marcescens, and half the size of the Dornase alfa used for the 

treatment of patients with cystic fibrosis (Horton N.C.Rice PA, 2008). As previously 

described, NucB has shown a potent ability to disrupt bacterial biofilms by degradation of 

eDNA (Nijland et al., 2010). Consistent with this behaviour, it has been shown that NucB is a 

non-specific endonuclease that can hydrolyse both single and double stranded DNA, and 

structurally complex molecules, such as supercoiled plasmid DNA. Both single- and double-

stranded DNA play roles in biofilm formation (Zweig et al., 2014), and therefore it is entirely 

consistent that the non-specific endonuclease activity of NucB will potentially enable the 

enzyme to be effective against different types of DNA in the biofilm matrix (Nijland et al., 

2010, Shakir et al., 2012, Shields et al., 2013, Rostami et al., 2017). Furthermore, NucB has 

been shown to be thermally stable enzyme that can regain significant nuclease activity after a 

heat-inactivation and cooling cycle (Basle et al., 2018). In contrast, Dornase alfa does not 

refold passively after thermal denaturation (Chan et al., 1996). Furthermore, as previously 

described, Dornase alfa requires glycosylation for full activity, thermal stability, and protease 

resistance (Fujihara et al., 2008). No data are currently available about the biological half-life 

(t1/2) of NucB, and approaches to further enhance the  in vivo biocompatibility, activity, and 

stability of NucB are required before it can be used for biofilm-associated health problems. 

Other purified bacterial nucleases include Nuc isolated from Neisseria gonorrhoeae 

(Steichen et al., 2011), and extracellular nuclease, Nuc2, from S. aureus (Kiedrowski et al., 

2014). An important step to increase the potential applications of nucleases is to scale up their 
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cost-effective laboratory production. A B. subtilis protein production system to improve the 

production of B. licheniformis NucB has been described by Rajarajan et al. (2013). 

Another therapeutic potential of DNases is to enhance the susceptibility of bacterial 

biofilms to antibiotics (Hymes et al., 2013, Kaplan et al., 2012, Martins et al., 2012, Tetz et 

al., 2009). For example, degradation of eDNA by exogenous DNases can inhibit the chelating 

activity of DNA against cationic antimicrobials such as aminoglycosides which will increase 

their permeability through the biofilm matrix (Chiang et al., 2013). An alternative approach to 

control biofilms through DNases is to stimulate the production of natural bacterial nucleases 

within the biofilm by targeting control mechanisms of bacteria that are involved in 

suppressing nuclease production. This will stimulate the natural biofilm dispersal systems of 

different biofilm-producing microorganisms, as seen in B. licheniformis and P. aeruginosa 

(Blokesch and Schoolnik, 2008, Kiedrowski et al., 2011, Nijland et al., 2010, Cherny and 

Sauer, 2019) . However, this approach requires a full understanding of the control 

mechanisms for nuclease production in a wide range of bacteria. Moreover, stimulation of the 

endogenous nucleases can also serve a variety of purposes including genetic transformation, 

escaping from NETs, and microbial nutrient scavenging which increase the difficulty of 

establishing a universal regulatory mechanism for a wide range of microbial species relying 

on eDNA for biofilm formation (Okshevsky et al., 2014).  
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Table 1. 1 Examples of the effects of treatment with exogenous DNases on microbial 

biofilm formation adopted from (Okshevsky et al., 2014)   

Microorganism 

Inhibition 

of biofilm 

formation 

Dispersion 

of pre-

established 

biofilm 

DNase enzyme Reference 

Gram-negative bacteria     

Acinetobacter baumannii ✓ ✓ DNase I (Tetz et al., 2009) 

(Sahu et al., 2012) 

Actinobacillus 

actinomycetemcomitans 
 ✓ DNase I 

 

(Inoue et al., 2003) 

Bdellovibrio bacteriovorus ✓ ✓ DNase I (Medina and Kadouri, 2009) 

Bordetella pertussis  ✓ ✓ DNase I (Conover et al., 2011) 

Bordetella bronchiseptica  ✓ ✓ DNase I (Conover et al., 2011) 

Campylobacter jejuni   ✓  DNase I (Svensson et al., 2009) 

Comamonas denitrificans  ✓  DNase I (Andersson et al., 2009) 

Escherichia coli ✓ ✓ DNase I, NucB (Nijland et al., 2010, Tetz 

and Tetz, 2010) 

Haemophilus influenzae  

 

✓ ✓ DNase I (Izano et al., 2009) 

Klebsiella pneumonia 

 

 ✓ DNase I 

 

(Tetz et al., 2009) 

Neisseria meningitides  

 

✓  DNase I (Lappann et al., 2010) 

Pseudomonas aeruginosa  

 

✓ ✓ DNase I, DNase 

1L2, DNase 

EndA 

(Eckhart et al., 2007, 

Whitchurch et al., 2002, 

Cherny and Sauer, 2019) 

Shewanella oneidensis 

 

✓  DNase I (Godeke et al., 2011) 

Vibrio cholera  

 

✓ ✓ Nuclease Dns 

and Xds 

(Seper et al., 2011a) 

Gram-positive bacteria 

 

    

Bacillus licheniformis  ✓ NucB (Nijland et al., 2010) 

Bacillus subtilis   ✓ NucB (Nijland et al., 2010) 

Enterococcus faecalis   ✓ DNase I (Thomas et al., 2008, Torelli 

et al., 2017) 
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Table 1.1 (continued) 

Microorganism 

Inhibition 

of biofilm 

formation 

Dispersion 

of pre-

established 

biofilm 

DNase 

enzyme 
Reference 

Listeria monocytogenes  ✓ ✓ DNase I (Harmsen et al., 2010, 

Zetzmann et al., 2015a) 

Micrococcus luteus   ✓ NucB (Nijland et al., 2010) 

Staphylococcus aureus  
✓ ✓ rhDNase I, 

NucB, DNase 

I 

(Kaplan et al., 2012, 

Shields et al., 2013, 

Sugimoto et al., 2018) 

Staphylococcus epidermidis   NucB (Shields et al., 2013) 

Staphylococcus haemolyticus    DNase I (Fredheim et al., 2009) 

Streptococcus anginosus  ✓ NucB (Shields et al., 2013) 

Streptococcus constellatus   ✓ NucB (Shields et al., 2013) 

Streptococcus salivarius   ✓ NucB (Shields et al., 2013) 

Staphylococcus lugdunesis   ✓ NucB (Shields et al., 2013) 

Streptococcus intermedius   ✓ NucB (Shields et al., 2013) 

Streptococcus intermedius  ✓  DNase I (Petersen et al., 2004) 

Streptococcus mutans  ✓  DNase I (Petersen et al., 2005) 

Streptococcus pneumonae  ✓ rhDNase I (Hall-Stoodley et al., 

2008) 

Streptococcus pyogenes   ✓ DNase I (Tetz et al., 2009) 

Fungi 

 

    

Aspergillus fumigatus   ✓ DNase I (Rajendran et al., 2013) 

Candida albicans ✓ ✓ DNase I (Martins et al., 2010, 

Farisa Banu et al., 2019) 
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1.8 Human microbiome and its clinical significance 

The full range of microorganisms that live on or inside the human body is called the 

microbiota, whereas, human microbiome comprises the overall collection of microbial 

genomes that contribute to the wider genetic profile or metagenome of a human body(Rogers, 

2016). Recent analysis has shown that the number of microbial cells in the body is roughly of 

the same order as the number of human cells and their overall mass is approximately 0.2 Kg 

(Sender et al., 2016). Increasing evidence indicates that the composition of the human 

microbial population has an important contribution to human health and certain disease 

conditions (Janssens et al., 2018). Microbial communities play a number of key roles in 

human health. For example, gut microbiota were initially thought to have a role mainly in 

preventing overgrowth of pathogenic bacteria within gastrointestinal tract, however, there is 

increasing evidence indicating that gut microbiota play important roles in digestion, 

inflammation, maintaining intestinal integrity, modify the host immune response, and 

affecting the health status of human body(Mueller et al., 2015, Rowland et al., 2018).  

Human microbiome analysis has been revolutionized by the advanced culture-

independent molecular-based methods such as Illumina ® and Roche/454 pyrosequencing 

platforms that can employ complete or partial high throughput bacterial 16S or fungal 18S 

ribosomal RNA (rRNA) gene sequencing to characterise the microbial communities 

colonising different anatomical sites of the human body at a level of detail that far exceeds 

previous culture-dependent or other targeted-molecular based methods (Huttenhower et al., 

2012, Pollock et al., 2018). The 16S rRNA gene is a universal gene among all bacteria that 

contains both conserved and hypervariable genetic regions, which can be employed for 

phylogenetic classification to the species level of many complex bacterial communities. The 

eukaryotic equivalent of the 16S rRNA is the 18S rRNA, and this has been commonly used 

for fungal population analysis (Begerow et al., 2010, Johnson et al., 2019). Various internal 

transcribed spacer regions are becoming more commonly used for fungal (mycobiome) 

analysis than 18S rRNA sequencing (McTaggart et al., 2019).   

There are many advantages that favour the use of 16S rRNA (or 18S rRNA) gene next 

generation sequencing in microbiome analysis. Firstly, this method involves simultaneous 

targeted sequencing of a short region of DNA for numerous samples, therefore it is much 

cheaper than classical Sanger sequencing. Furthermore, this method can provide important 

species level information about microbial communities that may harbour a high proportion of 

fastidious and difficult to culture microorganisms without the need for cultivation (Ranjan et 
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al., 2016). Finally, culture-independent methods are also superior to culturing for microbes 

residing in biofilms (Swearingen et al., 2016). 

Human Microbiome Project (HMP), which commenced in 2007 and was run by the 

National Institute of Health, is the most well-known microbiome survey in healthy humans 

(Turnbaugh et al., 2007).The HMP conducted by Huttenhower et al. (2012) aimed to 

characterise the ecology of human-associated microbial communities of 242 healthy young 

western individuals in five different anatomical regions (skin, nose, oral cavity, 

gastrointestinal tract (GIT), and vagina), and to determine site-specific environmental factors 

that may influence the composition of gut microbiome. Samples were collected from 18 body 

habitats in women and 15 in men (excluding three vaginal sites), distributed among five major 

anatomical regions which were mentioned above.   

The HMP has shown that the microbiome in healthy young adults is individual- 

specific and site-specific over time. Interestingly, each anatomical site was dominated by a 

single or a small number of certain microbial taxa almost in all studied individuals. For 

example, in the GIT, Firmicutes and Bacteroides were the most abundant families, while, 

Proteobacteria and Actinobacteria were more abundant in skin. These differences in the 

microbial abundance support the notion of microbiome involvement in the physiological and 

molecular processes that are specific to the human body system (Huttenhower et al., 2012). 

Whilst the HMP focussed on health, many studies have investigated links between 

shifts in the microbiome at specific body sites (‘dysbiosis’) and different diseases. There have 

been so many of these studies, that a database has been created to catalogue the associations 

(Janssens et al., 2018). Association surveys have provided evidence that alteration of the 

microbiota composition can be associated with a variety of local (including recurrent 

Clostridium difficile infections, Crohn’s disease, ulcerative colitis, necrotizing enterocolitis, 

irritable bowel syndrome) and systemic diseases (diabetes mellitus, obesity, malignancy, 

bacterial vaginosis, autism and coronary heart diseases).   

In recent years a number of culture-independent studies have investigated the 

microbiome in various regions of the head and neck in health and disease. These culture-

independent analyses would be of particular importance in understanding the role of bacteria 

and biofilms in aetiopathogenesis of chronic head and neck diseases including COME and 

CRS. Ultimately, this will greatly assist in treating these diseases effectively.  
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1.9 Microbiome of middle ear and pharynx 

An early comparative microbiome study of the oropharynx and nares in seven 

individuals using 16S rRNA gene and PhyloChip sequencing analysis found that the 

oropharynx houses a much more diverse microbiota than the nose (Lemon et al., 2010). At the 

phylum level, Firmicutes were the most dominant microbes in both anatomical sites, whereas 

Staphylococcaceae and Lachnospiraceae were most abundant bacterial families in nostrils, 

and Streptococcaceae, Lachnospiraceae and an unclassified group of Clostridia were most 

dominant families in the oropharynx.  

Recently, a population-based microbiome study has analysed anterior nasal and 

oropharyngeal swabs collected from 524 participants using 16S rRNA gene sequencing 

techniques (Akmatov et al., 2017). Again, oropharyngeal microbial communities have shown 

higher species richness and diversity than the anterior nasal communities. The most dominant 

phyla in the anterior nose were Actinobacteria, Firmicutes, and Proteobacteria. 

Corynebacterium accolens/segmentosum, Propionibacterium acnes, Staphylococcus 

epidermidis, and Staphylococcus aureus were the most abundant bacterial species within 

anterior nasal communities, which collectively formed an average abundance of 47%.  In 

contrast, oropharyngeal communities were dominated by a variety of bacterial species 

(Leptotrichia sp., Fusobacterium periodonticum, Streptococcus salivarius/vestibularis, 

Veillonella atypical, Prevotella melaninogenica and Prevotella histicola) that were detected at 

an average abundance of only 3.3-5.1%. Despite the anatomical relation between the nose and 

oropharynx, these findings support the concept that each body site has its own unique 

microbiome  

As noted in section 1.3.1, the ascension of bacteria from the adenoids to the middle ear 

through the ET is thought to be important factor in the pathogenesis of AOM and COME. The 

adenoids are submucosal mass of lymphoid tissue located at the nasopharynx adjacent to the 

opening of the ET. The mucosal surface of the adenoids shows numerous depressions called 

crypts and elevations called folds which are known to house a diverse normal bacterial flora 

(Winther et al., 2009). Although adenoids are thought to play an important role in the 

pathogenesis of COME by acting as a reservoir for otopathogens, it has proved difficult to 

characterise the microbial population in enough detail to demonstrate clearly whether it is the 

primary source of bacteria that reach the middle ear space. Early surveys used traditional 

culture-based assays, which are relatively insensitive for identifying the total population of 

microorganisms, particularly fastidious, uncultivable microbes and bacteria residing in 
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biofilms (Swidsinski et al., 2007). Therefore, these studies potentially delivered partial or 

biased characterisation of the composition of the microbial communities colonising these 

anatomical niches (Ren et al., 2013). 

When the work on this project started, there were only two published studies that had 

utilised culture-independent techniques to characterise microbial communities present in the 

middle ear effusion and adenoids of COME patients (Liu et al., 2011, Stol et al., 2013). Stol et 

al. (2013) obtained microbial community profiles of nasopharyngeal swabs and middle ear 

effusion samples from patients with rAOM and those with COME using quantitative real-time 

PCR analysis. In both groups of patients, H. influenzae and rhinovirus were the most 

abundant microbial pathogens in nasopharyngeal and middle ear effusion samples, and the 

abundance of microorganisms in the middle ear effusions of these patients was not 

significantly different. This PCR-based study was targeted to three common otopathogens (S. 

pneumoniae, H. influenzae, and M. catarrhalis) and 15 different viruses, and therefore it is 

not clear which other species were present. 

Liu et al. (2011) analysed the microbiome in middle ear effusion, adenoid and tonsil 

samples recovered from a child with COME using 16S rRNA gene-based pyrosequencing. 

Pseudomonadaceae was the most abundant microbial family in the MEEF sample. Families 

of the three major otopathogens: Streptococcaceae, Pastuerellaceae (Haemophilus) and 

Moraxellaceae were also detected. There was a difference in the microbial communities in the 

three set of samples and the results indicated that the adenoid may be a potential source for 

both the middle ear and tonsil microbiota. However, differentiation at genus or species level 

and relative abundance of microorganisms were not reported. Furthermore, this study was 

restricted to samples from a single patient and its findings cannot be generalized until 

reproduced in a larger study population.  

During the course of this project, several studies utilising culture-independent 16S 

rRNA gene sequencing methods to characterise the members of the microbiota associated 

with MEEF, adenoid, nasopharynx of COME children, were published and these are 

summarised in Table 1. 2. 

The three common otopathogens were the most frequently detected genera in the 

MEEFs of children with COME; however, Alloiococcus otitis was the most predominant 

bacterial species in several microbiome studies (Ari et al., 2019, Boers et al., 2018, Chan et 

al., 2017a, Chan et al., 2016, Jervis-Bardy et al., 2015). A. otitis was not frequently cultured 

from the MEEFs before the widespread utilisation of PCR due to its fastidious growth 

requirements. However, since the use of culture-independent methods including 16S rRNA 
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gene sequencing, it has been shown to be the most abundant organism detected in MEEFs of 

children with COME, but not in those with AOM (see Table 1. 3). Turicella otitidis has also 

been reported as a dominant bacteria within middle ear microbiota of children with COME 

(Ari et al., 2019, Boers et al., 2018, Krueger et al., 2017).  

The roles of adenoids or the nasopharynx as a reservoir for bacterial pathogens 

implicated in the pathogenesis of COME and AOM has been investigated in several studies 

which are summarised in Table 1. 2 and Table 1. 3. Differences in the cohort of patients 

studied, methods of DNA extraction, the region of 16S rRNA gene sequenced, and 

bioinformatics analysis pipelines can make the comparison of these microbiome studies 

difficult. However, there are some common patterns in what have been found. Overall, it has 

been demonstrated that the nose and nasopharynx of children with otitis media are more 

commonly colonised by the three major otopathogens compared with healthy controls, 

supporting the hypothesis that otopathogen colonisation of the nasopharynx is an important 

risk factor for the development of otitis media. Some of these microbiome studies have also 

observed that commensal genera, particularly Corynebacterium and Dolosigranulum, are 

more prevalent in the nose or nasopharynx of healthy children than children with otitis media 

(Pettigrew et al., 2012a, Man et al., 2019). These observations suggest that an imbalance in 

the composition of the nasopharyngeal microbiota as a result of the arrival of new pathogens, 

concomitant viral infection or other factors such as antibiotic treatment or exposure to 

cigarettes smoke, could be critical for otitis media. These microbiome studies have also 

observed that the microbial profiles of the nose or nasopharynx in children with otitis media 

are less diverse than those of healthy controls, and that the microbiome of the nasopharynx is 

more diverse than that of MEEFs (Jervis-Bardy et al., 2015, Man et al., 2019). 

 An important challenge in microbiome studies involving low microbial biomass 

clinical samples such as MEEFs of patients with COME, is contamination with DNA from 

exogeneous sources such as nucleic acid extraction kits, laboratory reagents or the skin of 

people handling the samples. This contaminating DNA can obscure the signal from the 

bacterial population present in these samples during the sequencing process (Salter et al., 

2014, Eisenhofer et al., 2019). Thus, it is of particular importance to include negative 

sequencing controls concurrently with samples for low biomass microbiome analyses. There 

are also several challenges in the analysis of 16S rRNA gene sequencing data. Techniques 

have been developed to uncover hidden biases in sequencing, annotation, and bioinformatics 

analysis to overcome these limitations (Tripathi et al., 2016, Eisenhofer et al., 2019). 
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Even the best currently available methods for culture-independent microbiome analysis 

have a number of limitations. One key issue is that the identification of microbial DNA 

sequences does not necessarily indicate the presence of viable bacteria. For detection of viable 

bacteria, it is necessary to employ improved culture techniques or use RNA analysis methods 

to identify short-lived microbial transcripts in clinical samples (Wolk, 2016). Therefore, in 

order to provide a robust characterisation of complex microbial communities such as those 

present in MEEFs and adenoids of patients with COME, it is necessary to employ a 

combination of culture-based and culture-independent techniques. A “microbial culturomics” 

approach has been developed by incorporating the use of several culture conditions and mass 

spectroscopy microbial identification with the culture-independent molecular methods that 

enabled species-level identification of rare and new microorganisms of gut microbiota (Lagier 

et al., 2012). The key goal of this project was to characterise both the culturable and the total 

population of microorganisms in MEEFs and adenoids of patients with COME in the North 

East of England. This would then provide insights and isolates that could be employed to 

understand biofilm formation mechanisms in more detail.   

  



40 

 

Table 1. 2 Studies utilising culture-independent 16S rRNA gene sequencing methods to characterise microbiome of middle ear effusions, 

adenoids and/or nasopharynx in children with COME.  

Microbiome study Type of sample Age of 

patients 

Number and type of 

cases 

Controls* Key findings 

Jervis-Bardy et al. 

(2015) 

MEEF, adenoid and 

nasopharyngeal swabs 

3-9 y 11 indigenous 

Australian children 

with COME 

NA ● MEEFs were dominated by A. 

otitis, followed by H. influenzae. 

● A. otitis not detected in 

nasopharynx or adenoid. 

● Microbiomes of MEEFs were less 

diverse than that of nasopharynx.  

Chan et al. (2016) MEEF, adenoid swabs 1-12 y 23 children with 

COME 

10 children 

without ear 

diseases 

undergoing other 

forms of surgery  

● MEEFs were dominated by A. 

otitis, followed by H. influenzae. 

● A. otitis almost absent from 

adenoid. 

● Microbiomes of adenoids were 

similar in patients and controls, 

microbiomes of MEEFs and adenoids 

in patients were dissimilar. 

Chan et al. (2017b) MEEF, external ear 

canal (EEC) lavages 

1-14 y 18 children with 

COME 

NA ● MEEFs were dominated by A. 

otitis, followed by H. influenzae. 

● EEC dominated by A. otitis and 

Staphylococcus. Otopathogens were 

rare in EEC. 

● Both adenoid and EEC may act as 

reservoirs for middle ear bacteria.  
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Table 1.1 (continued) 

Microbiome 

study 

Type of sample Age of 

patients 

Number and type 

of cases 

Controls* Key findings 

Krueger et al. 

(2017) 

MEEF 3 m-14.6 

y 

55 children with 

COME 

NA ● MEEFs were dominated by Haemophilus followed by 

Moraxella and Turicella 

● Higher abundance of Turicella in children aged 

>24months, less abundant in children with hearing loss. 

● Haemophilus associated with increased mucin 

production.    

Boers et al. 

(2018) 

MEEF, 

nasopharyngeal 

swabs 

< 12 y 9 children with 

gastroesophageal 

reflux-associated 

OM  

21 children with 

OM only 

● MEEFs were dominated by Alloiococcus and Turicella 

● Gastroesophageal reflux had no obvious impact on 

middle ear and nasopharyngeal microbiomes  

Ari et al. 

(2019) 

MEEF, adenoid 

specimens 

1.5-9 y 25 children with 

OME 

NA ● MEEFs were dominated by Alloiococcus, followed by 

Turicella 

● Abundance of predominant bacteria was significantly 

different between MEEFs and adenoids microbiome  

Johnston et al. 

(2019) 

MEEF, adenoid 

and tonsil swabs 

3 m-14.6 

y 

50 children with 

COME 

NA ● Fusobacterium, Haemophilus, Neisseria, and 

Porphyromonas were most abundant genera in all sites. 

● Haemophilus and Moraxella were most abundant in 

adenoid than in MEEFs. 

● Tonsil and adenoid microbiomes similar to one 

another, adenoid and MEEF microbiomes less similar. 

Kolbe et al. 

(2019) 

MEEF 3 m-14.6 

y 

50 children with 

COME (13 with 

lower respiratory 

illness and 37 

without) 

NA ● Haemophilus, Moraxella, and Turicella were most 

abundant genera. MEEF microbiome less diverse in 

COME patients with lower respiratory illness than in 

patients without. 

*NA= not applicable. 
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Table 1. 3 Studies utilising culture-independent 16S rRNA gene sequencing methods to characterise microbiome of middle ear and/or 

nasopharynx in patients with AOM.  

Microbiome study Type of sample Age of 

patients 

Number and type 

of cases 

Controls* Key findings 

Pettigrew et al. 

(2012a) 

Anterior nasal 

swabs 

< 3 y 72 children with 

AOM 

95 children 

without AOM, 

but with URTI 

and 73 healthy 

controls 

● Colonisation with otopathogens associated 

with lower diversity of URT commensals 

● High abundance of Lactococcus, 

Propionibacterium, Corynebacterium and 

Dolosigranulum less likely to develop AOM.  

Sillanpää et al. 

(2017) 

MEEF 5 m-3.5 y 79 children with 

AOM 

NA ● S. pneumoniae most dominant bacteria 

● A. otitis, T. otitidis and Staphylococcus 

auricularis detected less frequently than classical 

otopathogens.  

● No novel pathogens were detected. 

Chonmaitree et al. 

(2017) 

Nasopharyngeal 

swabs 

< 1 y 65 children with 

AOM 

47 children 

without AOM 

● Colonisation of otopathogens positively 

associated with higher URTI frequencies  

● High abundance of Staphylococcus and 

Sphingobium associated with reduced risk of 

AOM complicating URTI 

● Abundance of Corynebacterium reduced in 

AOM but had no effect on UTRI/AOM 

progression.  

Man et al. (2019) Paired middle 

ear fluid 

(otorrhoea) and 

nasopharyngeal 

swabs 

< 5 y 94 children with 

AOM and 

tympanostomy tubes 

NA ● Paired nasopharynx and MEF greatly 

correlated  

● Microbiome of nasopharynx much more 

diverse than that of MEF 

● Abundance of Corynebacterium and 

Dolosigranulum associated with shorter duration 

of otorrhoea   

*NA= not applicable; URTI= upper respiratory tract infection.



43 

 

1.10 Aim and objectives of the study 

       Evidence from previously published studies points to a clear deficiency in the 

current treatment of COME. Many clinical criteria for the diagnosis of COME are consistent 

with biofilm infections. The complex microbial community associated with COME is not well 

understood and there is pressing need to develop novel therapeutic approaches to improve 

treatment outcomes of this disease. The main aim of this thesis was to investigate the potential 

of the bacterial nuclease, NucB from Bacillus licheniformis, to improve the diagnosis and/or 

management of COME.    

The objectives of the study were as follows: 

1. To optimise methods for quantification of biofilm formation and to evaluate the 

potential of NucB for biofilm control.  

2. To characterise and isolate bacterial population present in MEEFs and adenoids of 

patients with COME by a combination of culturing and 16S rRNA gene sequencing. 

3. To study the sensitivity of in vitro biofilms formed by representative COME isolates 

to NucB treatment.  
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Chapter 2. Materials and Methods 

2.1 Reagents and equipment 

2.1.1 Reagents  

Reagents are described in the text with their manufacturers and are abbreviated 

subsequently if needed. 

2.1.2 List of equipment used in the study 

Table 2. 1 List of equipment. 

Application 

 

Device 

 

Manufacturer 

 

Centrifugation 

 

SK10 

 

J2-21 

Sigma Centrifuges, Osterode am 

Harz, Germany. 

Beckman Coulter Ltd., High 

Wycombe, UK 

Bench-top Centrifugation MiniSpin® Eppendorf UK Ltd., Stevenage, UK 

Static Incubator 30°C /37°C LTE Scientific Ltd., Oldham, UK 

Anaerobic Incubator 

 

Bug Box Plus Ruskinn Technology Ltd., 

Bridgend,UK 

Incubation Water bath Grant instruments, Cambridge, UK 

Orbital shaker IKA KS 4000i control IKA® England LTD., Oxford, UK 

Microplate reader 

 

Synergy™ HT 

Microplate Reader 

BioTek UK, Swindon, UK 

Measuring DNA 

concentration 

 

NanoDrop® ND-1000 Thermo Fisher Scientific Ltd, 

Loughborough, UK 

Measuring optical density Libra S11 Biochrom Ltd., Cambridge, UK 

Light/ Phase contrast 

Microscopy 

Leica DM 750 Leica Biosystems Newcastle Ltd, 

Newcastle upon Tyne, UK 

Fluorescence microscopy Eclipse Ti-E Nikon, Surrey, UK. 

Confocal Laser Scanning 

Microscopy 

 

TCS SP2 

A1R-HD (Invert) 

Leica, UK. 

Nikon, Surrey, UK. 

Bead beater Tissuelyzer LT Qiagen, Manchester, UK 

Microfluidics Biofilm Culture Bioflux™ Fluxion Biosciences Inc., San 

Francisco, USA 
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2.2 Ethical approval  

Ethical approval for this project was sought from the NHS National Research Ethics 

Service Committee (North East Newcastle and North Tyneside 2). Initially an online 

application was prepared via the Integrated Research Application System (IRAS) and 

submitted to the Research Ethics Service Committee electronically. The application form and 

the supporting documents of the study were prepared by me with regular review and editing 

by the supervisors. These documents included the research protocol (Appendix A), five age-

specific participant information sheets (Appendix B) (for parents/carers, for younger children 

aged 3-6 years, children aged 6-11 years, young persons aged 12-15 years, and young persons 

aged 16 years), two participant consent forms (for parents/carers, and for younger persons 

aged 16 years), two age-specific assent forms (children aged 6-11 years, and young persons 

aged 12-15 years) (Appendix C), and in addition to other documents including research 

project insurance (Appendix D), letter of sponsorship review (Appendix E), and a letter from 

the project funder (Appendix F). All documents that were submitted to Research ethic 

committee (REC) are listed in the REC checklist (Appendix G).  

Two rounds of amendments and revisions were required by NHS Research Ethics 

Service Committee (North East- Newcastle and North Tyneside 2) before ethical approval 

was granted for this study (no.15/NE/0225) titled “Investigation of biofilms associated with 

chronic otitis media with effusion and adenoids hypertrophy” (Appendix H (1)). Prior to the 

start of the study, it was necessary to obtain management permission or approval from all 

NHS organisations involved in this study in accordance with NHS research governance 

arrangements. Therefore, another application was submitted to the NHS host organisation 

(Newcastle upon Tyne Hospitals NHS Foundation Trust Research and Development) to 

obtain their management approval. This application also involved completing the relevant 

online application forms such as NHS Research and Development (R&D) form and NHS site 

specific information (SSI) form from IRAS and providing the supporting documentation 

listed in R&D valid submission checklist (see Appendix I). A full Newcastle upon Tyne 

Hospitals NHS Foundation Trust R&D approval (no. 7514) for the present study was obtained 

(Appendix H (2)) and patient recruitment was started. 

The recruitment target of this project for the middle ear effusion samples of patients 

with COME was at least 60, whereas the sample size for adenoids tissue was 60 in total 

divided into two groups: those with COME (n=30) and those without COME (controls) (n= 

30). 
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During the collection of clinical samples, I approached patients fulfilling inclusion 

criteria of the study and their parents/carers on the surgery day. Relevant information about 

the aims of the research project, methodology, and potential outcomes were explained to 

patients and their parents/carers in simple language. Parents and patients were given plenty of 

time to read the study participant information sheet. Any questions or concerns from the 

patients or their parents were answered by me. Parents/carers and patients who agreed to 

participate in the study were asked to sign the relevant consent form prior to enrolment in the 

study. 

2.3 Sample collection   

2.3.1 Middle ear effusion fluids 

A total of 59 middle ear effusion fluid (MEEF) samples were collected from 34 

patients aged less than 16 years, who were recruited in the Freeman and Royal Victoria 

Infirmary Hospitals, Newcastle upon Tyne, during the period between November 2015 and 

December 2016. Patients were listed for myringotomy and grommet tube insertion according 

to the standard clinical practice, for the treatment of persistent symptomatic COME for at 

least 3 months duration. Patients with previous history of grommet insertion, middle ear 

surgery, congenital craniofacial malformations, recurrent AOM, or those who did not have 

any visible MEEF in both ears during the operation were excluded from the study. Detailed 

instructions for the collection of samples were given to the operating surgeon to minimise the 

risk of contaminating MEEF samples by external ear canal flora. During the operation, wax 

and other debris was atraumatically removed from the ear canal using crocodile forceps or a 

separate suction catheter. Myringotomy (a small surgical incision in the eardrum) was 

performed using standard aseptic technique without prior ear canal sterilisation, and the 

MEEF aspirated through the myringotomy using a sterile suction catheter. Stringent 

precautions were taken to avoid contact with the external ear canal, and a new sterile set of 

suction catheter was used to aspirate MEEF from each ear. The MEEF was collected into a 

sterile mucous trap by aspiration of 2 ml of 0.9% saline solution through the suction catheter 

and transported by me on ice to the Oral Microbiology laboratory, Newcastle University for 

immediate processing. 
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2.3.2 Adenoid tissue  

A total of 10 adenoid tissue specimens were collected from patients who were listed 

for either adenoidectomy plus grommet tube insertion (5/10), or adenotonsilectomy (5/10) 

according to standard clinical practice, for the treatment of persistent symptomatic COME of 

at least 3 months duration, or obstructive sleep apnea, respectively. Adenoidectomy was 

performed using the standard curette technique. The surgically removed adenoids tissue was 

immediately placed into a sterile collection tube containing 20 ml of a sterile reduced 

transport fluid (RTF) (Syed and Loesche, 1972). RTF contained per litre the following 

mineral salt mix (0.6 g K2HPO4, 1.2 g NaCl, 1.2 g (NH4)2SO4, 0.6 g KH2PO4 and 0.25 g 

MgSO4), 0.1 M EDTA, 8 g Na2CO3 and 1 g dithiothreitol. Specimens were transported on ice 

to the Oral Microbiology laboratory, Newcastle University and stored at -20°C. All specimens 

were processed within 24 h.  

2.3.3 Processing of middle ear effusion fluid samples 

MEEF samples were divided into 3 equal portions using a pipette and 50 μl portions 

were inoculated on each blood, chocolate, and Fastidious anaerobe agar (FAA) agar plates 

(see section ). Pipetting was not possible for some very thick tenacious mucoid MEEF 

samples (see Figure 2. 1). In these cases, the sample was placed in a sterile petri dish and 

divided by surgical scalpel and a pipette into 3 equal portions, in the biological safety cabinet. 

The first portion of the sample was treated with NucB (see section 2.8.3), Recombinant NucB 

from B. licheniformis DSM13 was produced and purified as described in section 2.6.4. The 

second portion of the sample was used as a negative control (incubation control) for NucB 

treated portion (section 2.8.3). The last portion of MEEF underwent microbial DNA 

extraction for 16S rRNA gene sequencing (see section 2.6.1). 

2.3.4 Processing of adenoid tissue samples  

Adenoid tissue samples were thawed on ice. After thawing, 300-500 mg of tissue for 

each sample was transferred to a sterile petri dish and diced with a sterile surgical scalpel in 

the biological safety cabinet. This was transferred to a 2 ml disposable tube containing 0.5 ml 

of sterile phosphate buffer saline (PBS) and homogenized for 2 min using a cordless plastic 

pistol motor (Sigma Aldrich, UK). An additional 1 ml of PBS was added to the homogenate, 

vortexed briefly at high speed and filtered through a 40 µm cell culture strainer to dissociate 

cells from tissue clumps. The residual tissue from the filtration was washed three times with 1 

ml PBS and filtered again. In selected samples, the filtered tissue homogenate was divided 
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into 2 equal portions using a pipette. The first portion was used to culture and isolate bacteria 

present in adenoid samples (see section 2.4.3). Microbial DNA was extracted from the second 

portion of the filtered tissue homogenate for 16S rRNA gene sequencing (see section 2.6.2).  

 

 

 

Figure 2. 1 A photograph of Middle ear effusion sample. 

Shows yellowish orange coloured thick tenacious middle ear effusion fluid (21R) from patient 

number 21 placed in a sterile petri dish (47 mm in diameter) in a Class I biological safety 

cabinet before being divided by a surgical scalpel and a pipette into 3 portions for processing.  
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2.4 Microbiological methods 

2.4.1 Culture media and chemicals  

All growth media (broth or agar) were sterilised by autoclaving at 121˚C for 20 min. 

For the solidified media, 15 g/L of agar granules (Melford Laboratories Ltd, Suffolk, UK) 

were included prior to autoclaving. All growth media containing agar were allowed to cool in 

water bath at 45-50˚C before being poured into petri dishes. Chemicals were purchased from 

Sigma Aldrich, Dorset, UK unless stated otherwise. 

Brain heart infusion with yeast extract (BHYE) was prepared by dissolving 37 g brain 

heart infusion (Melford, Suffolk, UK), and 5 g yeast extract (Melford, Suffolk, UK) in 1 L of 

distilled water (dH2O). 

Blood agar contained 5% (v/v) defibrinated horse blood (TCS Biosciences, 

Buckingham, UK) in pre-cooled BHYE agar. 

Chocolate agar was prepared using the same ingredients as blood agar except that, 

following the addition of defibrinated horse blood, the medium was incubated in a water bath 

at 75-80˚C for 10-15 min until it turned a chocolate brown colour. 

Fastidious anaerobe agar (FAA) was prepared by mixing 46 g of fastidious anaerobe 

broth (Lab-M, Lancashire, UK) and 15 g of agar granules in 1 L of dH2O. Following 

autoclaving, 5% (v/v) defibrinated horse blood was added to the pre-cooled medium before 

being poured into petri dishes. 

Tryptone soya broth (TSB) was used as a rich nutrient medium to culture 

Staphylococcus aureus strains. This was prepared by dissolving 30 g Trypto soya broth 

powder (Melford, Suffolk, UK) in one litre of dH2O and autoclaved as described above. 

Cation adjusted Mueller Hinton broth (CAMHB) was used for testing antibiotic 

sensitivity of both planktonic and biofilm cultures of Staphylococcus aureus. The medium 

was prepared by adding 17.3 g Casein acid hydrolysate (Oxoid, Hampshire, UK), 3 g Beef 

extract (Lab-Lemco broth, Oxoid, Hampshire, UK) and 1.5 g Soluble Starch to 1 L of dH2O. 

The mixture was dissolved completely by heating in an oven at 70°C and, after cooling, the 

pH was adjusted to 7.3 +/- 0.2 before being autoclaved for sterilisation. Prior to use, Mg+2 

stock solution (prepared by dissolving 8.36 g of MgCl2•6H2O in 100 ml of dH2O; the final 

concentration is 10 mg ml-1 Mg+2) was added to a final concentration of 10 mg L-1 Mg+2. 

Calcium stock solution (prepared by dissolving 3.68 g of CaCl2 •2H2O in 100 ml of dH2O; the 

final concentration is 10 mg ml-1 Ca+2) was also added to a final concentration of 20 mg L-1 

Ca+2.   
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Tryptone yeast extract glucose (TYEG) is an enriched growth medium used to culture 

streptococci and Actinomyces odontolyticus. TYEG was prepared by adding 10 g Bacto 

tryptone (Melford, UK), 5 g Yeast extract (Melford, UK), 3 g K2HPO4 (VWR International 

BVBA, Leuven, Belgium) and 2 g of glucose (Sigma, UK) to 1L of dH2O. The pH was 

adjusted to 7.5 before autoclaving.   

Todd Hewitt Yeast Extract (THYE) is a non-selective medium that was prepared by 

mixing 37 g of Todd Hewitt (Melford, UK) with 5 g of Yeast Extract (Melford, UK) per L of 

dH2O before autoclaving. 

Supplemented BHYE medium was used to culture Haemophilus influenzae strains. It 

was prepared by adding 1% (v/v) of Difco™ Supplement VX (Becton, Dickinson and 

Company, Sparks, USA) to pre-cooled sterile BHYE broth or agar.  

2.4.2 Culture and isolation of chronic otitis media with effusion microbial population   

To culture and isolate the microbial population present in MEEF samples, each sample 

was gently mixed and 50 μl was plated on blood agar, chocolate agar, and FAA in duplicate. 

Blood and chocolate agar plates were incubated at 37˚C with 5% CO2 for 10-14 days and the 

cultures were checked for growth daily. Pre-reduced FAA plates were incubated anaerobically 

(Bug Box Plus, Ruskinn, Bridgend,UK) under a mixture of gases consisting of 10% CO2, 

10% H2 and 80% N2  for 7-14 days. The cultures were read at >40 hr, at 5 day, and at 14 day.  

2.4.3 Culture and isolation of adenoid microbial population 

Selected samples of adenoid tissue were cultured in an attempt to isolate and identify 

bacteria colonising paired adenoid and MEEF samples collected from the same patients. Ten 

microlitres of the filtered adenoid tissue homogenate was plated on non-selective blood agar, 

chocolate agar, and FAA in duplicate. Blood and chocolate agar plates were incubated at 37˚C 

with 5% CO2 for up to 7 days and the cultures were checked for growth daily. Pre-reduced 

FAA plates were incubated anaerobically under a mixture of gases consisting of 10% CO2, 

10% H2 and 80% N2 for 7-14 days. The cultures were read at >40 hr, at 5 days, and at 14 

days.    

2.4.4 Glycerol stocks of bacteria 

During examination of the agar plates, individual colonies were picked, and sub-

cultured three times to establish a pure culture. Colonies were suspended in 20 ml BHYE 

broth and incubated for 24-48 h at 37˚C with 5% CO2. The cultures were checked for 

contamination using a light microscope (Leica DM 750) prior to centrifugation (3,600 g) for 
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10 min at 4˚C. The pellet was suspended in 1 ml of BHYE medium and diluted by the 

addition of one volume of glycerol (Sigma Aldrich, UK) before being stored at -80˚C. 

2.4.5  Routine culture of bacterial strains used in this study  

Staphylococcus aureus SB14, SB17, NCTC 6571, 38, 35, and Staphylococcus 

auricularis 29, 33 were routinely grown in TSB medium overnight at 37˚C aerobically. 

Turicella otitidis 24, 28, 42, 43, 44, 45, 47 were grown in THYE medium for 48 h at 37˚C 

aerobically (see Table 2. 2 for more details about strains’ names). Haemophilus influenzae 38, 

52, SB11BBAII were cultured in SBHYE medium overnight at 37˚C with 5% CO2. 

Streptococcus pneumoniae 28, 51, 11, Streptococcus pyogenes 28, Streptococcus oralis 31, 

37, and Streptococcus mitis 37 were cultured in TYEG medium overnight at 37˚C with 5% 

CO2. Actinomyces odontolyticus 31 was grown in TYEG medium for 48 h anaerobically at 

37˚C. 

2.4.6 Total viable count 

The total viable count of bacterial cells was determined by preparing ten-fold serial 

dilutions of bacterial suspensions in PBS and placing triplicate 20 μl drops of each dilution 

(103 -106) on organism specific agar medium. The agar plates were incubated in air, 5% CO2, 

or anaerobically at 37˚C for various time periods. At the end of incubation, plates were 

photographed using a Canon IXUS 22HS camera and the number of colonies was counted 

using ImageJ (1.48v) computer software (http://imagej.nih.gov/ij/). Taking into account the 

dilutions, the colony forming units (CFU) per millilitre were then calculated. 

2.4.7 Biofilm formation in a 96-well microtitre plate model 

Bacterial stock cultures (5 μl) were added to triplicate wells of a sterile 96-well plate 

(Greiner Bio-One GmbH, Germany) containing 200 μl of organism specific culture media. 

The plate was covered, sealed with parafilm, and incubated statically for 24-48 h in 

appropriate growth conditions in a humid environment. At the end of incubation period, the 

OD600 was read in a microplate reader (BioTek Synergy HT) to quantify total growth. Biofilm 

formation was quantified using crystal violet (CV) staining assay (refer to section 2.8.1).  

http://imagej.nih.gov/ij/
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2.4.8 Bacterial strains used in this study  

Table 2. 2 Bacterial strains used in this study 

Strain NU 

number* 

Details Source or Reference 

Staphylococcus aureus   
  

SB14  NU118 Wild type CRS project (Shields et al., 

2013) 

SB17 NU119 Wild type CRS project  

NCTC6571 N/A Wild type NCTC 

18 NU85 Isolated from MEEF 18L   This project 

21 NU84 Isolated from MEEF 21L   This project 

Staphylococcus auricularis  
  

12 NU83 Isolated from MEEF 12L   This project 

16 NU82 Isolated from MEEF 16L   This project 

Turicella otitidis   
  

8 NU95 Isolated from MEEF 8R   This project 

11 NU69 Isolated from MEEF 11R   This project 

18 NU96 Isolated from MEEF 18L This project 

19 NU105 Isolated from MEEF 19L This project 

24 NU62 Isolated from MEEF 24L This project 

25 NU109 Isolated from MEEF 25R   This project 

26 NU106 Isolated from MEEF 26R   This project 

27 NU107 Isolated from MEEF 27R   This project 

29 NU108 Isolated from MEEF 29R   This project 

Haemophilus influenzae  
  

21 NU79 Isolated from MEEF 21L   This project 

33 NU78 Isolated from MEEF 33L   This project 

SB11BBAII N/A Wild type CRS project  

Streptococcus pneumoniae   
  

11 NU75 Isolated from MEEF 11R   This project 

32 NU77 Isolated from MEEF 32R   This project 

B10BBAI N/A Wild type CRS project  

SB11BBAI N/A Wild type CRS project  

Streptococcus pyogenes     

11 NU86 Isolated from MEEF 11R   This project 

Streptococcus oralis   
  

14 NU88 Isolated from MEEF 14L   This project 

20 NU39 Isolated from MEEF 20L   This project 

Streptococcus mitis     

20 NU90 Isolated from MEEF 20L   This project 

Actinomyces odontolyticus     

14 NU94 Isolated from MEEF 14L   This project 
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Table 2.2 (continued) 

Strain NU number* Details Source or Reference 

Moraxella catarrhalis    

22 NU74 Isolated from MEEF 

22L   

This project 

SB11BBAIV N/A Wild type CRS project  

*A new nomenclature that recently has been adopted for the clinical isolates in Newcastle 

Oral Microbiology laboratory. These were included to avoid future confusion about the 

bacterial strains used in this thesis. ‘N/A’ – ‘not applicable’.  

 

2.5 Microbial identification 

2.5.1 Conventional microbiological identification 

During culturing of clinical isolates, the agar plates were examined for the presence of 

contaminant growth by employing conventional microbiological techniques such as checking 

microbial cell morphology under light microscope, Gram stain, and growth in anaerobic 

conditions. Furthermore, the characteristic morphology of colonies on agar medium was also 

utilised as a guide for isolation of the correct microorganism.     

2.5.2 Microbial identification by Matrix Assisted Laser Desorption/Ionization Time-of-

Flight Mass Spectrometry ((MALDI-TOF MS) 

The screened clinical isolates were further identified to species-level using MALDI-

TOF MS, Bruker Daltonik MALDI Biotyper (Bruker UK Ltd., Coventry, UK). The clinical 

isolates were grown on blood or chocolate agar, incubated at appropriate growth conditions 

for various time periods and transferred to Dr Michael Ford at the Pathology Department in 

the Freeman Hospital, Newcastle upon Tyne for identification.    

2.5.3 Microbial DNA next generation sequencing 

The composition of microbial communities present in MEEF and adenoid samples was 

further characterized using culture-independent 16S rRNA gene sequencing. DNA was 

extracted from MEEFs and adenoids (see sections 2.6.1 and 2.6.2). The 16S rRNA gene V1-

V3 variable region amplification, sequencing, and bioinformatics analysis were performed by 

Dr. Scot E. Dowd (www.mrdnalab.com, Shallowater, TX, USA) as previously described by 

Rostami et al. (2017) in the supplemental appendix of the paper. 
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2.5.4 Microbial full genome sequencing    

To investigate whether similar bacterial strains colonising both adenoid and middle ear 

of COME patients are genetically identical, full genome sequencing of the similar bacterial 

species isolated from matched adenoid and MEEF samples of COME patient was performed 

by MicrobesNG in Birmingham University. Briefly, two putative Streptococcus oralis and 

Streptococcus parasanguinis strains (identified on the basis of MALDI-TOF) that were 

isolated from different sites of the same patient (patient 20) were grown overnight on blood 

agar at 37˚C with 5% CO2. A single colony of the strain to be sequenced was taken from an 

overnight culture plate and mixed in 100 μl sterile PBS buffer. The strain was plated on blood 

agar from the 100 μl bacterial suspension. Around 1/3 of the plate was made as a lawn of 

bacteria and then the rest was streaked out to check that the culture was pure. A large sterile 

loop was used to harvest the bacterial culture from the plate and mix into the barcoded bead 

tube supplied by MicrobesNG. This included the 1/3 plate lawn of bacteria. The tube was 

mixed by inverting 10 times. The tube was sealed and sent at room temperature to 

MicrobesNG for DNA extraction and full genome sequencing 

(https://microbesng.uk/microbesng-faq/). The sequencing data of the similar bacterial species 

that were obtained from MicrobesNG were compared using Mauve multiple genome 

alignment software version 2.4.0 (http://darlinglab.org/mauve/download.html) and the 

numbers of different single nucleotide polymorphisms (SNPs) between the two similar 

bacterial genome were determined as one of the indications for genetic compatibility of these 

bacterial strains. Genome sequences were submitted to GenBank under BioProject ID 

PRJNA454893. 

2.6 Molecular biology methods 

2.6.1 Extraction of microbial DNA from middle ear effusion fluid samples 

 To characterise microbial community members present in MEEFs of COME patients, 

at least 250 μl of each sample underwent DNA extraction using QIAamp® DNA Microbiome 

Kit (Cat. No. 51704) (Qiagen,UK) according to the manufacturer’s instructions for Next 

generation DNA sequencing. Initially the sample was centrifuged at 14,000 g for 10 minutes 

to pellet the cellular components. The pellet was resuspended in 500 μl of Buffer AHL in a 2 

ml tube and incubated for 30 min at room temperature with end-over-end mixing at 18 rpm 

using Dynal sample mixer (Model MXICI, UK). The sample was then centrifuged at 10,000 x 

g for 10 min and supernatant was removed carefully. A 190 μl aliquot of Buffer RDD and 2.5 

https://microbesng.uk/microbesng-faq/
http://darlinglab.org/mauve/download.html
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μl of Benzonase were added, mixed well and incubated at 37°C for 30 min at 600 rpm in a 

water bath to digest host DNA. The microbial genomic DNA was extracted and purified as 

per manufacturer’s protocol (QIAamp® DNA Microbiome Handbook, version May 2014).  

The concentrations and purity of DNA were measured using a Nanodrop® ND-1000 

spectrophotometer (ThermoFisher scientific Ltd, Loughborough, UK). The eluted DNA 

samples were stored in 1.5 ml microcentrifuge tubes at -80°C until they were sent for 16S 

rRNA next generation sequencing by Dr. Scot E. Dowd (www.mrdnalab.com, Shallowater, 

TX, and USA).   

2.6.2 Extraction of microbial DNA from adenoid tissue samples 

DNA extraction were performed using the PowerLyzer® PowerSoil® DNA Isolation Kit 

(Cat. No. 12855-50) (MO BIO Laboratories, Inc, Germany). The cellular pellet was re-

suspended in 750 µl of Bead Solution, vortexed briefly, and transferred to the Power Bead 

Tubes before being vortexed briefly again. The tubes were placed in a Tissue Lyser LT 

(Qiagen, Manchester, UK) for 10 min at 50 Hz. Genomic DNA was extracted and purified as 

per the manufacturer’s protocol (PowerLyzer® PowerSoil® DNA Isolation Kit instruction 

manual, version 07272016). The eluted DNA samples were stored in 2 ml microcentrifuge 

collection tubes at -80°C. 

2.6.3 Agarose gel electrophoresis 

The digestion products of NucB-treated calf thymus DNA samples were separated and 

visualised using 1% agarose gel electrophoresis. To prepare 1% agarose gels, 1 g of 

Molecular Biology Grade Agarose (Melford,UK) was dissolved by boiling in 100 ml of TAE 

buffer consisting of 40 mM Tris, 20 mM glacial acetic acid (Fisher Scientific), and 1 mM 

ethylenediaminetetraacetic acid (EDTA) (Sigma Aldrich), pH 8.0. The solution was allowed 

to cool for approximately 20 min before the addition of 5 μL of GelRed™ Nucleic Acid Gel 

Stain (10 000x in DMSO) (Cambridge Bioscience Ltd, UK). The solution was poured into a 

gel tray with comb and allowed to set. Solidified gel was then submerged in 1x TAE buffer in 

a gel tank. DNA samples were mixed with 5x DNA Loading Buffer (1:5 ratio) (Bioline 

Reagents Ltd., London, UK) before loading. To determine the molecular weight of DNA 

products, 5 μL of HyperLadder 1 kb Plus (250-12,007 bp) (Bioline, UK) was compared 

against DNA samples. Gel electrophoresis was undertaken for 90 min at 100 V using a Bio-

Rad Power Pac 300 and then transferred to a G:BOX Transilluminator (Syngene, Cambridge, 

UK) to visualise DNA bands and capture images using GeneSnap software (Syngene, UK). 
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2.6.4 Production and purification of NucB 

Recombinant NucB from B. licheniformis DSM13 was produced in Bacillus subtilis 

NZ8900 using the SURE expression system as previously described (Nijland et al., 2010) and 

purified as previously described (Rostami et al., 2017) by Professor Alastair Hawkins. 

Briefly, secreted NucB was precipitated from cell-free spent growth medium by making it 

65% saturated with ammonium sulphate and incubating for 15 h at 6°C. NucB pellet was 

recovered by 4 serial centrifugation steps at 10,000 g for 60 min at 4°C. A minimal volume of 

50 mM potassium phosphate pH 7.2, 1 mM dithiothreitol (buffer 1) was used to dissolve the 

NucB-containing pellet. All subsequent chromatography steps were performed at 6°C. 

Following clarification by centrifugation at 10,000 g for 60 min at 4°C, the soluble protein 

was dialyzed against buffer 1 at 6°C and loaded onto a Q sepharose column previously 

equilibrated with buffer 1. Following a wash with buffer 1, the sample flow through and 

column wash were collected as individual fractions and assayed by SDS PAGE (12% 

separating gel) for the presence of NucB. NucB-containing fractions were pooled 

appropriately and loaded onto a hydroxyapatite column previously equilibrated with buffer 1. 

The column was washed with buffer 1 and the sample flow through and column wash were 

collected as individual fractions. Following assay of individual fractions by SDS PAGE (12% 

separating gel) and UV absorbance spectroscopy, NucB-containing fractions were pooled 

appropriately. Using this procedure 50 mg of NucB at >95% purity was routinely recovered 

from a starting cell culture volume of 10 L. The purity of NucB was assessed using multiple 

independent and complementary methods. The presence of any nucleic acid contamination 

was assessed by measuring the UV absorption spectrum from 400 – 240 nm. Preparations had 

a typical A260/A280 ratio of 0.57 (+/- 0.2) indicating an absence of nucleic acid contamination. 

Purity in terms of protein content was assessed by overloading an SDS PAGE gel and by 

differential scanning calorimetry analysis. A further indication of purity of NucB was 

provided by the observation that purified NucB crystallized under defined conditions thereby 

facilitating determination of its structure (Basle et al., 2018).   

2.7 Measurement of NucB activity  

2.7.1 Measurement of NucB nuclease activity in the optimal buffer solution  

The main aim of this method was to monitor NucB DNase activity and ensure adding a 

consistent amount of active NucB in each experiment. The DNase activity of NucB was 

determined using the method developed by Kunitz (1950) with a slight modification. Each 
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assay contained the following: 25 μL of 50 mM Tris-HCl pH 8.0 (stock 500 mM), 12.5 μL of 

5 mM MnSO4  (stock 100 mM), 168.9 μL equivalent to  125 μg  Calf thymus (CT) DNA 

(Sigma Aldrich D1501 - 1G, UK)(Stock 0.74 mg ml-1), 2.5 μL equivalent to  10 ng NucB 

(Stock 1 μg ml-1), and  41.1 μL of sterile dH2O. The final reaction volume was 250 μL. The 

buffer and DNA mixture were incubated at 37oC for 10 min before the reaction was started by 

addition and gentle mixing of NucB followed by further incubation for 15 min, 30 min, and 

60 min intervals at 37oC. A negative control made up with buffer and CTDNA with no 

enzyme was included. 

 For analysis by agarose gel (1% w/v) electrophoresis, 50μl of the reaction was halted 

by the addition and mixing of 50 μl of phenol/chloroform/isoamyl alcohol mixture (Sigma 

Aldrich, UK) for both enzyme and control. The mixture was shaken vigorously for 30 sec to 

form an emulsion. The sample was centrifuged at 13,000 rpm at 4oC for 3 min in a benchtop 

microcentrifuge (Prism R, Labnet International Inc, New Jersey, USA) forming two layers. 

The DNA was carefully removed from the upper layer and stored at 4oC until all time 

intervals were processed.  

Gel electrophoresis was performed as described in section 2.6.3. For spectroscopic 

measurement, at the end of 60 min incubation, the reaction was stopped and the high 

molecular weight CTDNA was precipitated by the addition and mixing of 250 μl of cold 

(4oC) 4% (v/v) perchloric acid (Sigma Aldrich, UK). The mixture was incubated on ice for 40 

min before being centrifuged at 13,000 rpm at 4oC for 3 min in a benchtop microcentrifuge to 

precipitate the residual high molecular weight CTDNA and to recover low molecular weight 

CTDNA in the supernatant. After this, 250 μl of the supernatant was transferred into a new 

microcentrifuge tube, and the amount of low molecular weight CTDNA produced by NucB 

was determined by reading the absorbance at 260 nm using Nanodrop® ND-1000 

spectrophotometer.  

In subsequent experiments, a range of NucB concentrations (0.25, 1, 5, 10, 25, 50, 100 

ng) was used to generate a line graph for NucB activity which included the absorbance 

readings at 260 nm (A260) against NucB concentration. This approach in conjunction with gel 

electrophoresis analysis enabled us to determine the optimal concentration of NucB to be used 

in measuring the unit of activity. A unit of NucB activity was defined as a production of 

perchloric acid soluble low molecular weight CTDNA that generated an absorbance of 1.0 at 

260 nm, per hour at 37oC in 50 mM Tris pH 8.0, 5 mM MnSO4 buffer. Since 1 ml of DNA 

with A260 of 1.0 contains 50 µg of DNA, one unit of activity is equivalent to the production of 
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50 μg of perchloric acid soluble low molecular weight CTDNA per hour at 37oC in 50 mM 

Tris pH 8.0, 5 mM MnSO4 buffer. 

2.7.2 Measurement of NucB nuclease activity in culture medium and saline solutions 

Experiments investigating the anti-biofilm activity of NucB against different microbial 

biofilms involve addition of NucB into different culture media and solutions. It was important 

to ensure that ingredients of these solutions would not inhibit the nuclease activity of NucB. 

Therefore, the nuclease activity of NucB was measured in the representative solutions such as 

TSB and 0.9% saline solution.       

For both solutions, each assay contained the following: 12.5 μL of 5mM MnSO4 (stock 

100mM), 168.9 μL equivalent to 125 μg CTDNA (Stock 0.74mg/ml), 2.5 μL equivalent to 

10ng NucB (Stock 1μg/ml), and 66.1 μL of either 0.9% normal saline solution or TSB. The 

final reaction volume was 250 μL. The mixtures were incubated at 37oC for 10 min before the 

reaction was started by addition and gentle mixing of NucB followed by further incubation for 

15 min, 30 min, and 60 min intervals at 37oC. A negative control made up with the same 

ingredients with no enzyme was included. A standard NucB activity assay in the optimal 

buffer was performed as previously described in section 2.7.1 under the same conditions. The 

NucB activity was then determined using both spectroscopic measurement and gel 

electrophoresis as described previously in section 2.6.3. 

2.7.3 Nanodrop spectrophotometry 

DNA concentrations and purity were measured using a Nanodrop® ND-1000 

spectrophotometer. The device was blanked using 2 μL of elution buffer loaded on the 

NanoDrop stage. Following this, 2 μL of the DNA sample was placed on the stage to measure 

DNA concentration. To estimate DNA purity, the ratio of A260 to A280 was determined and a 

ratio of 1.8-2.0 was deemed acceptable.   

2.8 Anti-biofilm activity of NucB against bacterial biofilms 

2.8.1 Quantification of biofilm formation by crystal violet staining assay 

Crystal violet assay was employed to quantify both the ability of bacterial strains to 

form biofilms and to determine the anti-biofilm efficacy of NucB against monospecies 

biofilms using the method described by Shields et al. (2013)  with some modifications. 

Biofilms were grown in 96-well microtitre plates (see section 2.4.7). At the end of the 

incubation, the supernatants were discarded, and the extent of biofilm formation was 
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determined by staining with 100 μL 0.5 % (w/v) crystal violet (per well). The plate was 

incubated for 15 min at room temperature (20-25°C), before the wells were rinsed 3 times 

with PBS. The microtiter plate was turned upside down in the oven at 60°C to dry for 5 min. 

The residual stain was dissolved in 100 μL 7 % acetic acid (v/v) and the A570 was measured 

using a microplate reader (Synergy HT). The A570 values of a negative controls (stained and 

washed wells with no bacterial cells) were subtracted from sample absorbance values. Each 

assay was performed independently at least three times. 

2.8.2  Assessing the sensitivity of in vitro biofilms to DNase enzymes 

To quantify the efficacy of DNase enzymes (NucB, Bovine DNase I (catalogue no. 

04716728001, Roche Diagnostics, Mannheim, Germany) to disperse pre-formed bacterial 

biofilms, bacterial biofilms were established in 96-well microtitre plates, treated with nuclease 

enzyme (DNase I at 5 μg ml-1, NucB at 10-1000 ng ml-1) for 1 h at 37°C, and biofilm biomass 

was quantified using CV staining method. When assessing the efficacy of DNase enzymes to 

inhibit biofilm formation, the filter-sterilised enzyme was added with growth media and 

bacterial inoculae at the beginning of biofilm formation. Again, the biofilm biomass was then 

measured using CV staining assay. These were compared with control biofilms that had been 

treated with enzyme buffer only. Each assay was repeated at least three times independently.  

2.8.3 Assessing efficacy of NucB for improving culturing recovery of bacteria from MEE 

fluids 

The efficacy of NucB for improving the recovery of microorganisms from MEEFs of 

COME patients was assessed by incubating MEEF with or without NucB. Initially, two 

aliquots of MEEF were placed in separate sterile microcentrifuge tubes. The first was treated 

with 100 units of NucB and the second left without treatment as a control. Samples were 

incubated for 1 h at 37°C in air. Following the incubation period, 50 μl inoculum from each 

sample was spread evenly on blood agar, chocolate agar, and FAA in duplicate. Blood and 

chocolate agar plates were incubated at 37˚C with 5% CO2 for 10-14 days and the cultures 

were checked for colony growth daily. Pre-reduced FAA plates were incubated anaerobically 

for 7-14 days. The cultures were checked for growth at >40 hr, at 5 days, and at 14 days. 

Plates were photographed periodically using a Canon IXUS 22HS camera and the number of 

colonies was counted using ImageJ (1.48v) computer software. Taking into account the 

dilutions, the colony forming units (CFU) per millilitre were then calculated for both NucB 

treated and control samples. Only plates containing 1-400 colonies were counted.  



61 

 

2.9 Antibiotic susceptibility of bacterial biofilms 

2.9.1 Determination of minimum inhibitory and minimum bactericidal concentrations of 

planktonic bacterial cultures 

Before assessing antibiotic susceptibility of bacterial cells within biofilms, the 

minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 

planktonic cultures were determined using the broth microdilution method as previously 

described (Andrews, 2001). MIC represents a standard parameter used in clinical practice to 

determine the sensitivity and resistance of free-living bacterial cells to antibiotics. Co-

amoxiclav (Amoxicillin + Clavulanic acid 5:1, Duchefa Biochemie, Netherland) was selected 

for use in antibiotic susceptibility assays of S. aureus strains in planktonic cultures and within 

biofilms. 

 Co-amoxiclav stock solution was prepared at 40 mg ml-1 in sterile dH2O, filter 

sterilised and stored at -80°C. The working solution of Co-amoxiclav was prepared at twice 

the maximum concentration to be tested in the challenge plate to compensate for the addition 

of an equal volume of inoculum. To prepare antibiotic challenge plates, twofold dilutions of 

Co-amoxiclav were made in CAMHB. A suitable range of antibiotic concentrations was 

chosen (0.0625-16 mg L-1). Each well contained 100 μL of Co-amoxiclav, and triplicate wells 

were used for each concentration. Growth (no antibiotics) and sterility (uninoculated) controls 

were included in each plate. Following this, the inoculum was prepared by suspending 3-4 

large or 6-8 small isolated colonies selected from an overnight culture on agar plate (a 

nonselective medium, such as blood agar) in 5 ml of PBS. The suspension was adjusted to 

achieve a turbidity equivalent to a 0.5 McFarland standard. This results in a suspension 

containing approximately 1 to 2 × 108 CFU ml-1 that was validated by determination of the 

total viable counts on TSA plates. This solution was diluted 1 in 20 with CAMHB and it was 

used within 30 min. An equal volume of the adjusted bacterial inoculum (100 μL of 106 CFU 

ml-1) was added to each well except the sterility control wells. The plate was covered with the 

lid, sealed with parafilm and incubate aerobically overnight at 37°C. The MIC endpoint was 

recorded as the minimum concentration of antibiotic at which there was no visible growth. 

Each experiment was repeated three times independently. 

2.9.2 Minimal Biofilm Eradication Concentration (MBEC) assay 

Bacterial biofilms can tolerate high concentrations of antibiotics in comparison to their 

planktonic counterparts. Thus, it was important to determine minimal biofilm eradication 
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concentration (MBEC) of Co-amoxiclav for S. aureus strains before assessing the effects of 

NucB on this susceptibility. 

 MBEC™ Biofilm Inoculator (peg lid with 96-well microtiter plate base) (Innovotech 

Inc., Canada) was used to measure MBECs for S. aureus strains according to the 

manufacturer’s instructions with minor modifications. An overnight culture was prepared by 

streaking out from a -80°C cryogenic stock of desired S. aureus strain on a blood agar plate. 

The culture was checked for purity the next day. The inoculum was prepared as previously 

described in section 2.9.1. The subsequent steps were carried out in a biological safety 

cabinet. Each well of the MBEC plate was inoculated with 150 μl of the adjusted inoculum, 

the peg lid was placed onto the plate and sealed by Parafilm. The device was placed on an 

orbital shaker (IKA KS 4000i control, IKA® England LTD., Oxford, UK) at 100 rpm in a 

humid environment at 37°C for 18- 24 h in air. A sample of the inoculum was validated by 

determination of the total viable counts on TSA plates to verify the starting cell number for 

biofilm formation.  

At the end of the incubation period, the peg lid was removed from the plate and pegs 

were submersed in the wells of a pre-prepared PBS rinse plate (200 μl in each well) for 1 to 2 

min to remove loosely adherent cells. Using flamed sterilised pliers, three pegs were removed 

from different points on the lid, placed in microcentrifuge tubes containing 200 μl of TSB, 

and sonicated with an Aquasonic sonicating water bath (Decon FS200 frequency sweep, 

Decon Ultrasonics Ltd, Sussex, UK) for 30 min at energy of 44 kHz frequency, 10 kPa rms 

pressure, and 67 w/m2 intensity as calculated using a calibrated Hydrophone. Viable counts 

were determined on TSA plates to establish the number of CFU per peg prior to exposure to 

Co-amoxiclav. 

The antibiotic challenge plate was prepared as previously described in section 2.9.1. A 

suitable range of Co-amoxiclav concentration was chosen (0.25-1024 mg L-1). The final 

volume of Co-amoxiclav solution in each well of the challenge plate was 200 μl. This was to 

ensure complete submersion of the biofilm in the antibiotic solution. Each plate included 

growth and sterility control wells in triplicate. 

 The peg lid of the MBEC™ device was transferred to a standard 96-well plate in 

which desired dilutions of Co-amoxiclav were prepared in CAMHB. Antibiotic plates were 

incubated for 20-24 h at 37°C in air. After 24 h, the challenge plate was removed from the 

incubator. In the laminar flow hood, the lid was removed, rinsed in PBS for 1-2 min, and 

placed in a second 96-well plate containing 200 μl of CAMHB in each well. The biofilm was 

removed from the peg lid of the MBEC™ device by sonication for 30 min, and a new cover 
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was placed over the plate. The biofilm recovery plate was incubated overnight at 37°C in air. 

To determine the MIC values, the wells of the challenge plate were examined for turbidity. 

Alternatively, a plate reader was used to measure A650. The MIC is defined as the lowest 

concentration of antibiotic that inhibits growth of the organism. Wells with A650 < 0.1 were 

considered to be growth-inhibited. To determine the minimum biofilm eradication 

concentration (MBEC) values, the wells of the recovery plate were examined for turbidity. 

Alternatively, a plate reader was used to measure A650. Wells with A650 < 0.1 were considered 

to be evidence of biofilm eradication. 

2.9.3  Colorimetric tetrazolium salt XTT viability assay  

Another method used to assess the susceptibility of bacterial biofilms to antibiotics 

treatment was the tetrazolium salt XTT viability assay. The assay is based on the ability of 

viable and metabolically active cells to reduce the tetrazolium salt XTT into a highly-coloured 

water soluble formazan salt which can be measured spectrophotometrically. Dead or damaged 

cells will rapidly lose the ability to produce formazan salt. There is a proportional relationship 

between the amount of formazan produced and the number of live cells present in the culture.  

The bacterial inoculum for XTT assay was prepared and verified as described 

previously in section 2.9.1. Each well of a 96-well plate was inoculated with 150 μL of the 

adjusted bacterial inoculum. Plates were incubated statically for 18-20 h at 37◦C in humid 

environment to allow biofilm formation.  

At the end of the incubation period, the supernatants were discarded, and biofilms were 

washed once with 200 μL of PBS. Biofilms were then treated in triplicate with 200 μL of Co-

amoxiclav solution prepared in CAMHB for 18-20 h at 37◦C in air. Growth with no antibiotic 

and sterility controls were included. The applied concentrations of the Co-amoxiclav solution 

were 32-8192 mg L-1. After incubation, the antibiotic solution was removed, and each well 

was rinsed three times with 200 μL of PBS. To quantify the antibiotic susceptibility of 

biofilms with XTT staining, the method described by Koban et al. (2012) was used with some 

modifications. Biofilms in each well were incubated with 200 μL of XTT solution (Cell 

proliferation kit II (XTT), version 17, Roche Diagnostics GmbH, Mannheim, Germany) in the 

plate chamber of the plate reader for 1 h at 37◦C and A450 was measured every 10 min. The 

rate of XTT reduction (MAX V (A450 test- A450 blank)) per min was calculated over the time 

period. The XTT solution was prepared freshly in 10% TSB as per the manufacturer’s 

instructions. The mixture contained 0.2 mg ml-1 XTT, and 0.02 mg ml-1 phenazine 

methosulphate (PMS). Each experiment was repeated three times independently.    
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2.10 Assessing effects of NucB on the antibiotic susceptibility of bacterial cells  

2.10.1 Assessing effects of NucB on antimicrobial sensitivity of planktonic bacterial 

cultures 

The XTT viability assay was used to determine effects of NucB on MICs and cell 

viability of planktonic bacterial cultures. The challenge plate containing treatment groups 

(NucB alone, NucB+ Co-amoxiclav, Co-amoxiclav alone) was set up.  

The antibiotic challenge plate was prepared as previously described in section2.9.1. A 

suitable range of Co-amoxiclav concentration was chosen (0.0625- 8 mg ml-1). Each well 

contained 100 μL of either Co-amoxiclav alone, Co-amoxiclav plus NucB (0.5 µg ml-1), or 

NucB (0.5 µg ml-1) alone in triplicate. Each plate included growth and sterility (uninoculated) 

controls. The bacterial inoculum was prepared as previously described in section 2.9.1. An 

equal volume of an adjusted inoculum of the test microorganism (100 μL) was added to each 

well except the sterility control wells. Wells containing Co-amoxiclav only received buffer 

solution equivalent to the volume of NucB added to wells containing either NucB alone or 

NucB plus Co-amoxiclav. The plate was covered with the lid, sealed with parafilm and 

incubated at 37◦C for 18- 20 h in air.  

The MIC endpoint was recorded as the minimum concentration of Co-amoxiclav or 

Co-amoxiclav plus NucB (0.5 µg ml-1) at which no turbidity was observed. To determine 

effects of NucB on planktonic bacterial cell viability and MIC, 80 μL of each treatment group 

solution were transferred onto a new sterile 96-well plate in triplicate and 20 μL of XTT 

solution (0.2 mg ml-1 XTT, and 0.02 mg ml-1 PMS) prepared in PBS were added to each well. 

Absorbance at 450 nm was measured using a plate reader. Each experiment was repeated 

three times independently.    

2.10.2 Assessing effect of NucB on antibiotic sensitivity of in vitro S. aureus biofilms  

The XTT viability assay was also used to assess effect of NucB on antibiotic 

susceptibility of in vitro biofilms of S. aureus clinical isolates. Biofilms of the tested S. aureus 

strains were grown in a 96-well microtitre plate for 18-20 h as previously described in section 

2.4.7. At the end of the incubation, the supernatants were discarded, and biofilms were 

washed once with 200 μL of PBS to remove loosely attached bacterial cells. Biofilms were 

then treated in triplicate with 200 μL of either NucB (1 µg ml-1) alone, or NucB (1 µg ml-1) 

plus Co-amoxiclav (512 µg ml-1 or 1024 µg ml-1) or Co-amoxiclav (512 µg ml-1 or 1024 µg 

ml-1) alone for 18-20 h at 37°C in air. The treatment solutions were prepared in CAMHB. 
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Negative (no treatment) and sterility (no cells) controls were included. Following the 

treatment period, all solutions were discarded and biofilms were washed three times with 200 

μL of PBS. Each well then received 200 μL of freshly prepared XTT solution in 10% TSB 

and the plate was incubated in the microplate reader for 1 h at 37°C. Absorbance at 450 nm 

was measured every 10 min. The rate of XTT reduction (MAX V (A450 test- A450 blank)) per 

min was calculated over the time period. Each experiment was repeated at least three times 

independently. 

2.11 Investigation of NucB toxicity for bacterial and human respiratory epithelial cells 

2.11.1 Human bronchial epithelial cell culture   

BEAS-2B (obtained from ATCC; LGC Standards, Teddington, UK) is a human 

bronchial epithelial cell line derived from normal human epithelial cells immortalised using a 

hybrid of adenovirus 12 and simian virus 40. Using a Costar™ 12-well flat bottom cell 

culture plate (Thermo Fisher Scientific, UK), BEAS-2B cells were seeded at a density of 6-7 

× 105 cells ml-1 and allowed to adhere and grow in 500 μL of bronchial epithelial growth 

medium (BEGM) (Lonza, Cambridge, MA, USA) on 5% CO2 at 37◦C. BEGM was 

supplemented with 2 mL bovine pituitary extract (0.004 mL−1), 0.5 mL insulin (5 μg mL−1), 

0.5 mL hydrocortisone (0.5 μg mL−1), 0.5 mL retinoic acid (0.1 ng mL−1), 0.5 mL transferrin 

(10 μg mL−1), 0.5 mL tri-iodothyronine (6.7 ng mL−1), 0.5 mL adrenaline (0.5 μg mL−1), 0.5 

mL recombinant epidermal growth factor human (10 ng mL−1), 2 mM L-glutamine, 100 

U mL−1 penicillin G and 100 μg mL−1 streptomycin (Sigma, Gillingham, UK). 

 

2.11.2  CellTiter-Blue® cell viability assay  

The effect of NucB on human bronchial cell viability and proliferation was assessed 

using a fluorometric CellTiter-Blue® viability assay according to the manufacturer 

instructions.  This assay utilises the ability of cells to convert dark blue resazurin reagent into 

highly fluorescent and pink colour resorufin as an indicator for their viability and active 

metabolic status. Compromised or non-viable cells rapidly lose this ability to reduce resazurin 

dye, and therefore do not produce a florescent signal.  

BEAS-2B cells were cultured as previously described in section 2.11.1. At the end of 

incubation, the culture medium was removed and  cells were challenged with a range of NucB 

concentrations (final concentrations: 1, 10, 50, 100 μg ml-1), NucB buffer (50 mM Tris pH 

8.0) or Dornase alfa (100 μg ml-1) (from Dornase Alfa stock concentration of 2.5 mg ml-1, 
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Roche, UK), that were prepared in 500 μl of BEGM, or left untreated with BEGM only  and 

incubated for 24–48 h in 5% CO2 at 37°C. Following each treatment period, 100 μl of thawed 

CellTiter-Blue® reagent was added into each well and shaken gently before being incubated 

for 2 h on 5% CO2 at 37°C. Positive controls in triplicate were treated with 500 μl of absolute 

methanol (Sigma Aldrich, Dorset,UK) for 2 min at room temperature before the addition of 

CellTiter-Blue® reagent. The plate was shaken for 20 sec and the fluorescence at 560/590 nm 

was recorded using the plate reader (Infinite® 200Pro, Tecan Life Sciences, UK). Each 

experiment was repeated three times independently.  

2.11.3 Assessing effects of NucB on bacterial cell viability within biofilms  

 To assess the potential toxicity of NucB against cells in pre-formed S. aureus 

biofilms, 6-well tissue culture plates containing 3 ml of BHYE were inoculated with 50 μl of 

stock bacterial cultures per well and incubated statically in air at 37◦C for 18-20 h. Medium 

was carefully removed after 24 h and wells were washed once with PBS to remove loosely 

attached bacterial cells. Biofilms were treated with 1 ml of NucB solution (0.5 μg ml-1) for 1 

hr at 37ºC, and the control treated with 1 ml of PBS. The NucB, and PBS were aspirated and 

collected in sterile tubes separately. Biofilms were rinsed twice with 2 ml of PBS and the 

rinsing PBS from each well was collected and pooled to give a final volume of 5 ml. This was 

labelled ‘Planktonic cells’. After addition of 2 ml PBS, the residual biofilms were scraped 

using a tissue scraper (Greiner bio-one GmbH, Germany). The PBS containing scraped 

biofilm cells was collected in a separate sterile tube of 2 ml final volume. The harvested cells 

(planktonic & biofilm phases) were serially ten-fold diluted in PBS and spot plated on 

organism specific agar plates using the method of Miles et al, (1938). After incubation at 

37°C for 24 h aerobically, colonies were enumerated and total viable counts in initial samples 

were calculated.  

2.12 Imaging 

2.12.1 Quantification of NucB effects on biofilm structure using confocal laser scanning 

microscopy (CLSM) 

Confocal laser scanning microscopy (CLSM) was used to visualise and quantify the 

structural alterations within biofilms grown on glass surfaces and treated with NucB as 

previously described by Shields et al. (2013) with some modifications. The acquired stacks of 

each image were further analysed using 3D imaging software (Imaris 8.0, Bitplane) and the 

COMSTAT2 plugin for ImageJ (Heydorn et al., 2000). 
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Sterile 13 mm coverslips were placed in wells of a 12-well tissue culture plate (Greiner 

Bio-One GmbH, Germany). When testing for biofilm dispersal, wells containing 2 ml of 

organism-specific culture medium were inoculated with 40 μL of -80oC bacterial stock 

cultures equivalent to 5-10 x 106 CFU. The plate was incubated statically at the appropriate 

growth conditions in humid environment for 24-48 h. Culture medium was carefully removed 

after 24 h and replaced with fresh medium. At the end of incubation period, medium removed, 

coverslips were rinsed with PBS to removed loosely attached cells. Then 0.5 ml of NucB (0.5-

1 μg ml-1) was added to each well for 1 h at 37°C. This was compared with control biofilms 

that had been treated with NucB buffer only. Coverslips were rinsed again with PBS and then 

submerged in 300 μl of LIVE/DEAD® BacLightTM stain solution (Molecular Probes) and 

incubated at room temperature in the dark for 15 min. 

LIVE/DEAD® BacLightTM stain consists of a combination of two fluorescent dyes, 

SYTO® 9 and propidium iodide (PI), which are employed to assess microbial cell viability 

(Boulos et al., 1999). Both stains can selectively bind to DNA but SYTO® 9 specifically 

stains intracellular genomic DNA, whereas PI binds to both intracellular and extracellular 

DNA. In intact cells, SYTO® 9 outcompetes and excludes PI from cells. In membrane-

damaged cells,  PI can enter the cells more easily and outcompetes the SYTO® 9 for DNA 

binding. These features allow the application of LIVE/DEAD® BacLightTM stain for assessing 

the viability of bacterial cells, and for visualising eDNA within biofilms. 

Excess stain was removed by careful washing in PBS twice. Coverslips were inverted 

onto adhesive Gene Frame® (Thermo Fisher Scientific, UK) that had been placed on a 

microscope slide and filled with 25 μl PBS. Biofilms were examined using a Leica confocal 

microscope (Leica TCS SPE) with an argon/neon laser for visualisation of SYTO 9 

(excitation 485 nm, emission 519 nm), and PI (excitation 536 nm, emission 617 nm). For 

biofilm inhibition, NucB was included (with the culture media and inoculae) during biofilm 

formation and processed using same protocol described above. Each experiment was repeated 

three times independently.     

2.12.2 Testing antibiotic susceptibility of bacterial biofilms using combined microfluidic 

biofilm system and Live/Dead CLSM imaging 

  To assess effects of antibiotics on biofilm structure and viability, a combination of 

BioFlux microfluidic system (BioFlux200 system, Fluxion Biosciences Inc., San Francisco, 

USA), with  LIVE/DEAD® BacLightTM staining and a Nikon A1R (invert) CLSM imaging 

was used (Nance et al., 2013). A forty-eight-well BioFlux plate (Biosciences Inc., San 
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Francisco, USA) was pre-conditioned with Tryptone soya broth (TSB) to enhance cell 

adhesion and biofilm formation. One hundred microlitres of TSB were added to each outlet 

well then flowed towards the inlet well at 1.0 dyn/cm2 for 2 min at room temperature. Flow 

was stopped and the plate was incubated for 20 min at room temperature. At the end of pre-

conditioning incubation, the residual growth medium in the outlet wells was transferred to 

matching inlet wells. The outlet wells were inoculated with 100 µl of adjusted inoculum (20x 

diluted and filtered overnight culture). The inoculum was flowed again towards the inlet at 1.0 

dyn/cm2 for 6 sec at 37°C to insert bacterial cells into BioFlux channel for biofilm formation. 

The plate was then incubated at 37°C for 45 min cell attachment and early growth. When 

bacterial seeding was confirmed with a Nikon Eclipse TCS-100 inverted light microscope, the 

inoculum was removed from each outlet well and 750 µl of growth medium was added into 

each inlet well. The plate was then incubated at 37°C for 18-20 h at 0.2 dyn/cm2 for biofilm 

formation. 

 At the end of incubation, the remaining growth medium and culture were removed 

from each inlet and outlet well. Biofilms were challenged in triplicate with a range of Co-

amoxiclav concentrations diluted in CAMHB (2048, 512, 128, 32, 8, 2 µg ml-1) at 37°C for 

18-20 h at a flow rate of 2.0 dyn/cm2. Growth controls with no antibiotics were included. 

Following overnight incubation, all wells were aspirated and rinsed with 100 µl of PBS at 

room temperature for 20 min at a flow rate of 0.2 dyn/cm2 to remove residual antibiotics 

solution. Following this, biofilms were stained with LIVE/DEAD® BacLightTM stain. The 

stain solution was prepared according to the manufacturer instructions by mixing 3 µl of 

SYTO 9 and 3 µl of PI per ml of PBS and flowed at room temperature, in dark for 45 min at 

0.2 dyn/cm2. 

 Following biofilm staining, the stain solution that remained in each inlet well were 

aspirated and followed by washing with 100 µl of PBS in each inlet at room temperature for 

20 min at a flow rate of 0.2 dyn/cm2 to remove excess stain in the channel. Biofilms in the 

channels were imaged using Nikon A1R (invert) CLSM.    

2.12.3 Assessing effects of NucB on human cell apoptosis using Dual acridine 

orange/ethidium bromide staining and Microscopy 

Effects of NucB on epithelial cell viability and the morphology of their nuclei were 

assessed using dual acridine orange (AO)/ethidium bromide (EB) staining technique in 

conjugation with microscopic imaging as described previously (Shin et al., 2015). Both AO 

(Sigma-Aldrich, St Louis, USA) and EB (Sigma-Aldrich, St Louis, USA) can selectively bind 
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to nucleic acid, and these dyes can be used in combination to assess cellular apoptosis and 

functional integrity of epithelial cell membrane. Using a 12-well flat bottom cell culture plate 

(Thermo Fisher Scientific, UK), cells were seeded at around 1.5- 2 × 104 cells/cm2 and 

allowed to adhere and spread over 3-4 days in 5% CO2 at 37°C. The culture medium was 

carefully removed after 48 h and replaced with fresh medium. Following 3-4 days of 

incubation, cells were treated with a range of NucB concentrations (final concentrations: 1, 

10, 50, 100 μg ml-1), NucB buffer (50 mM Tris pH 8.0), Dornase alfa (100 μg ml-1), that were 

prepared in 500 μl of BEGM, or left untreated with BEGM only and incubated for the 

following 24–48 h on 5% CO2 at 37°C. After 24 or 48 h incubation, the supernatants were 

discarded and the cells were stained with 300 μl of AO/EB stain solution for two min under 

gentle shaking. Positive control wells were treated with 500 μl of absolute methanol for 2 min 

before staining with AO/EB dye solution. The AO/EB dye solution was prepared by mixing 

100 μg ml-1 of EB with 100 μg ml-1 of AO in PBS. The dye solution was aspirated, replaced 

by PBS and the cells were imaged using an inverted fluorescence microscope (Eclipse Ti-E 

fluorescence wide field, Nikon,UK) at 40x magnification. AO and EB were excited at 488 

nm and emission detected at 525/20-nm and 635/20-nm respectively.  
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2.13 Statistical analysis 

Experimental data were analysed using statistical software IBM SPSS Statistics ver. 

23. Graphs and tables were produced using either Microsoft Excel or Sigma-plot® ver.12.5. 

Experiments were performed independently at least three times. Data values were represented 

as the mean ± standard error. Sample values were analysed for normality using Shapiro-Wilk 

test where data with a significance value of > 0.5 were considered normally distributed, 

whereas those with a significance value of < 0.5 were considered not normally distributed 

(non-parametric data). Normally distributed data were also checked for homogeneity of the 

variance by measuring the Levene statistic p value, where data with a p value > 0.5 meant that 

there was non-significant difference in the variances and data with p value <0.5 meant that 

there was significant difference in the variances and the probability that the difference is due 

to chance is very small. Student’s paired t-test was used to determine the statistical 

significance between two treatment groups with homogenic and normally distributed data 

(parametric data), whereas Mann-Whitney U test was used for non-parametric data. ANOVA 

with Tukey’s post hoc test was used to determine the statistical significance among more than 

two treatment groups with parametric data, whereas Kruskal-Wallis test was used with non-

parametric data. Differences with a p-value of < 0.05 were considered statistically significant.   

  



71 

 

Chapter 3. Anti-biofilm activity of marine nuclease, NucB, against 

Staphylococcus aureus biofilms 

3.1 Introduction  

Staphylococcus aureus is a major pathogen implicated in a variety of biofilm-

associated human diseases. In the head and neck region, S. aureus infections include chronic 

rhinosinusitis (CRS), chronic supportive otitis media, COME, and indwelling medical device-

related infections such as those on cochlear implants, ventilation tubes, and speech valves 

(Zheng et al., 2018). S. aureus is one of the most common members of the microbial flora 

inhabiting the human skin and anterior nasal linings. Between 9% and 37% of the population 

have their nasal mucosal surfaces persistently colonised by S. aureus and transient carriage of 

S. aureus varies between 9% and 69% in different studies (Mehraj et al., 2016) . Possible host 

factors that may be involved in carriage include ABO-/secretor status, Toll-like receptor 

(TLR) 9 polymorphisms and a range of other gene polymorphisms (Nurjadi et al., 2012, 

Nurjadi et al., 2018, Brown et al., 2015). Alternatively, the phenotypic properties of the 

strains of S. aureus that a person encounters may affect the outcome of colonisation (Jenkins 

et al., 2015). 

S. aureus can form a robust biofilm encased within self-produced extracellular 

polymeric substances (EPS). These polymers play key roles in maintaining the structure of 

biofilms through cell-cell cohesion and cell-to-surface adhesion, conserving nutrients, 

facilitating the dissemination of genetic material among biofilm cells, and shielding biofilm 

cells from harsh external environmental stresses such as heavy metals, UV light, host immune 

action and antimicrobial agents (Teitzel and Parsek, 2003, Leid et al., 2002, Flemming et al., 

2016). Furthermore, EPS plays an important role in providing a nutrient-limited 

environmental niche within biofilms which promotes the appearance of metabolically 

dormant cells and persister cells. These cells are well-known to be tolerant to high 

concentrations of antimicrobials and their presence may be a major factor in the reduced 

susceptibility of bacterial biofilms to treatment with antimicrobials that has been termed 

‘antimicrobial recalcitrance’. Other mechanisms that elicit reduced susceptibility of biofilm 

microorganisms to treatment with antimicrobials include phenotypic alteration of the biofilm 

cells trigged by cellular attachment to a surface, for example by up-regulation of efflux 

pumps, or variations in pH, nutrients, or O2 tension across the intracellular milieu of biofilm, 

which may inactivate antibiotics directly or enhance the growth of anaerobic cells toward the 



72 

 

core of biofilm (Hall and Mah, 2017). In addition, reduced permeability of certain antibiotics 

through the biofilm EPS matrix may protect cells in the inner regions of the biofilm. These 

mechanisms may act individually or collectively (Goltermann and Tolker-Nielsen, 2017). 

The EPS of S. aureus can consist of different structural compounds including poly-N-

acetyl-glutamate (PNAG), proteins, lipids and extracellular DNA (eDNA) (Fleming and 

Rumbaugh, 2017). Originally, teichoic acids and proteins derived from host and 

staphylococcal cells were considered to be ubiquitous and vital constituents of S. aureus 

biofilm EPS (Hussain et al., 1993). Increasingly, evidence indicates that eDNA is also a key 

structural component within the EPS of many microbial biofilms including S. aureus (Kaplan 

et al., 2012, Rice et al., 2007, Shields et al., 2013). The critical role of eDNA in maintaining 

the structural integrity of bacterial biofilms was first discovered in vitro by Whitchurch et al. 

(2002) when they demonstrated dramatic dispersal of P. aeruginosa biofilms treated with 

DNase I enzyme. Dornase alfa (rhDNase) is in current use as a therapeutic, and is applied to 

reduce the sputum viscosity in cystic fibrosis patients by disrupting neutrophil extracellular 

traps derived from microorganisms and host neutrophils (Manzenreiter et al., 2012). 

Subsequent studies performed in various bacterial species including S. aureus have provided 

evidence that eDNA plays a variety of roles in the biofilm matrix, such as facilitating the 

exchange of genetic material, acting as a nutrient source, maintaining structural stability in 

mature biofilms, enhancing initial adhesion of bacterial cells to the surface, and contributing 

to protection from antimicrobials and host immune actions (Kaplan et al., 2012, Mulcahy et 

al., 2008, Rice et al., 2007, Shields et al., 2013). Therefore, the addition of DNase enzymes 

could potentially inhibit biofilm formation, disperse pre-established biofilms, or increase the 

susceptibility of biofilms to antibiotics (Okshevsky et al., 2014).  

Previous studies have largely employed crystal violet staining or qualitative 

microscopy methods to characterise the effects of deoxyribonuclease (DNase) enzymes on 

bacterial biofilms, such as those formed by S. aureus. To provide more detailed information 

on the role of eDNA in biofilm structure, this section of the study focused on optimising 

quantitative image analysis tools and developing an in vitro biofilm model that could be 

employed to investigate the sensitivity of clinically relevant bacterial isolates to DNase 

treatment, and to combination therapy with DNase and antibiotics. Bacteria that had 

previously been isolated from paranasal sinuses of patients with chronic rhinosinusitis 

(Shields et al., 2013) were employed since these were readily available in the laboratory and 

could be used while the application for ethical approval was in process. While these strains 

were not from otitis media, they were recent clinical isolates that had already been isolated 
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and identified. The microbiota of chronic rhinosinusitis is similar to that of chronic otitis 

media, and both are related to species found on the adenoids (Ren et al., 2013). Therefore, it 

was felt that strains from chronic rhinosinusitis were appropriate for developing techniques to 

be employed later with isolates from COME.  

 

3.2 Aims and objectives 

The main aims of this section were to optimise methods for quantification of biofilm 

formation and to investigate the potential of NucB to be employed as a safe (non-toxic) anti-

biofilm therapy against in vitro biofilms of relevant S. aureus clinical isolates. The objectives 

were as follows: 

1. To assess the ability of clinical isolates relevant to COME to form biofilms. 

2. To develop techniques for assessing the sensitivity of in vitro biofilms of relevant 

clinical isolates to NucB treatment. 

3. To investigate the ability of NucB to enhance the impact of antibiotics against in vitro 

biofilms. 

4. To investigate the potential toxicity of NucB against bacteria, and the possible 

cytotoxicity to human epithelial cells relevant to the middle ear.  
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3.3 Efficacy of NucB against in vitro biofilm models of S. aureus 

3.3.1 Test the sensitivity of S. aureus biofilms to NucB treatment using 96-well microtitre 

plate model  

While waiting for ethical approval for isolation of COME strains, we established the 

key techniques for biofilm growth and analysis using clinically relevant strains that had 

previously been isolated from a project on chronic rhinosinusitis (CRS). A range of isolates 

derived from patients with CRS were assayed for biofilm formation in 96-well MTP using 

organism-specific media and growth conditions. The selected isolates are shown in Table 3. 1. 

Staphylococcus aureus SB14 and SB17 strains showed the greatest capability to form robust 

and consistent in vitro biofilms (Table 3. 1). Therefore, these strains were taken forward as 

model organisms for optimising the methodologies that would be employed later in the thesis.  

 

Table 3. 1 Biofilm formation of selected CRS isolates quantified by CV staining assay    

Bacterial species and strain Biofilm formation (A570 (SE))  

Haemophilus influenzae SB11BBAII 0.47 (0.08) 

Moraxella catarrhalis SB11BBAIV 0.62 (0.09) 

Streptococcus pneumoniae SB11BBAI 0.21 (0.04) 

Streptococcus pneumoniae SB10BBAI 0.50 (0.1) 

Staphylococcus aureus SB14 2.43 (0.2) 

Staphylococcus aureus SB17 1.52 (0.3) 

S. aureus SB14 and SB17 showed the highest capabilities to form in vitro biofilms among the 

assayed CRS clinical isolates.   

In order to determine the effective biofilm inhibitory and dispersal concentration of 

NucB to be used in subsequent experiments, a range of NucB concentrations (see Figure 3. 1 ) 

were either included during biofilm formation for 20 h (for inhibition assays) or incubated for 

one hour with 24 h old pre-established biofilms of S. aureus SB14 grown in a 96-well MTP 

(for dispersal assays; see Materials and Methods section 2.8.2). For the inhibitory effect of 

NucB on biofilm formation (see Figure 3. 1(A)), a statistically significant concentration-

dependent reduction in biofilm formation was observed over a concentration range of 25-500 

ng ml-1 in comparison to PBS treated controls (p<0.05; One-Way ANOVA with Tukey’s 

Honestly Significant Difference (HSD)  post-hoc test after Normality and Homogeneity of 

variances test had indicated that the data satisfied the assumptions for ANOVA test). Biofilm 

biomass was reduced by approximately 50% in the presence of 500 ng ml-1 of NucB. When 

testing the efficacy of NucB to disperse pre-formed S. aureus SB14 biofilms (see Figure 3. 1 
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(B)), similarly significant dose-dependent biofilm removal was demonstrated over a 

concentration range of 10-500 ng ml-1 NucB. Interestingly, NucB at 100-500 ng ml-1 

concentrations showed more than 50% dispersal of pre-established biofilm when compared to 

PBS treated control biofilms. For the inhibition assay, NucB at 10 ng ml-1 showed a 

borderline effect, and for both inhibition and dispersal assays NucB did not show significant 

disruption of biofilms at concentrations lower than 10 ng ml-1 (data not shown). A similar 

trend of biofilm inhibition and dispersal activities of NucB was obtained when biofilms 

formed by S. aureus SB17 strain were treated with the similar range of NucB concentrations 

(data not shown). Based on these findings, NucB at 500 ng ml-1 was selected as the most 

suitable concentration to be used in subsequent experiments. 
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Figure 3. 1 NucB inhibits biofilm formation and disperses pre-formed biofilms of S. 

aureus SB14. 

A range of concentrations of NucB were incubated with preformed (24 h) S. aureus SB14 

biofilms at 37°C for 1 h (B), or included during biofilm formation for 20 h (A). Biofilms were 

stained with crystal violet, and the biofilm biomass was quantified by measuring A570. Mean 

values from three independent assays are shown and error bars represent standard error of the 

mean. Statistical significance was calculated using One-Way ANOVA test with Tukey’s HSD 

post-Hoc comparison (* p<0.05, **p <0.01). NucB showed concentration-dependent 

inhibition and dispersal of S. aureus SB14 biofilms over the assayed concentration range.  
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To validate the DNase activity of NucB against S. aureus biofilms, commercial bovine 

DNase I at 5 µg ml-1 was included during biofilm formation for 20 h (inhibition assays) or 

was added to the 24 h-old pre-established biofilms of S. aureus SB14 (dispersal assays) using 

the standard 96-well MTP crystal violet staining assay (see Material and Methods section 

2.8.2). In both biofilm inhibition and dispersal assays, DNase I showed just above 50% 

reduction in biofilm formation and around 50% removal of preformed biofilm of S. aureus 

SB14 (see Figure 3. 2). These reductions in biofilm biomass were similar to those observed 

with NucB, which is consistent with NucB acting through a DNA-degrading mechanism. 

Figure 3. 2 Effect of Bovine DNase I on S. aureus SB14 biofilms 

For biofilm dispersal, DNase I (5 µg ml-1) was added to pre-formed (24 h) S. aureus SB14 

biofilms at 37°C for 1 h or included during biofilm formation for 20 h for the inhibition assay. 

Biofilms were stained with crystal violet, and the biofilm biomass was quantified by 

measuring A570. Mean values from three independent assays are shown and error bars 

represent standard error of the mean. DNase I significantly inhibited biofilm formation and 

dispersed pre-formed biofilms of S. aureus SB14 (**p <0.01; paired two samples t-test).  
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3.3.2 Image analysis of the structure of NucB treated S. aureus biofilms  

Having demonstrated a potent anti-biofilm activity of NucB against biofilms of 

selected S. aureus clinical isolates, it was considered important to obtain more comprehensive 

information about the structural changes within the biofilms treated with NucB. A 

combination of CLSM and LIVE/DEAD fluorescent stains were employed to study the 

typical three-dimensional architecture of biofilms. Biofilms of the chosen microorganisms 

were grown on the surface of glass coverslips, stained with LIVE/DEAD® BacLight™ stain, 

and imaged by CLSM (see Materials and Methods section 2.12.1). This assay was focused on 

the same S. aureus clinical isolates (SB14 and SB17) that had been investigated in previous 

experiments. In the absence of NucB, biofilms of S. aureus SB14 were relatively thick and 

were mainly composed of several layers of cells that covered the majority of the surface (see 

Figure 3. 3 and Figure 3. 4). In most areas, heterogeneous patches or clumps of cells 

protruded from the surface at a thickness ranging between 7-10 μm. However, biofilms of S. 

aureus SB17 were relatively thin and consisted mostly of a single layer or a few layers of 

cells that were spread widely over the surface with medium size patches or clusters of cells 

projecting from the surfaces at 3-6 μm thickness (Figure 3. 3 and Figure 3. 4 C, G). Using 

LIVE/DEAD® BacLight™ stain, we were able to visualise both live cells (green) and dead or 

damaged cells (red). The majority of cells were alive (green) in biofilms of both S. aureus 

SB14 and SB17. 

When NucB at 0.5 μg ml-1 was included during biofilm formation of S. aureus SB14 

and SB17 for 20 h, biofilm formation was significantly inhibited compared with controls 

lacking NucB (see Figure 3. 3). Biofilms grown in the presence of 0.5 µg ml-1 were less 

extensive than the untreated controls, and were composed of irregularly distributed individual 

cells or very small clumps of cells (Figure 3. 3 B, F and D, H). Red (compromised) cells were 

difficult to be see in printed images. However, visual inspection of the images on screen 

showed that the proportion of dead and live cells in biofilms treated with NucB was almost 

equal to the control biofilms, indicating that NucB had no killing effect on biofilm cells.  

Visual observation of 3D-rendered images indicated that the treatment of biofilms with 

NucB during growth altered the biofilm structure. In order to assess and quantify this 

alteration, COMSTAT 2 software was used to determine some of the key structural 

parameters of biofilms such as the biomass, average thickness and roughness coefficient of 

the biofilms (Table 3. 2). 
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Figure 3. 3 Effect of NucB on biofilm formation by S. aureus SB14 and SB17, observed by CLSM 

NucB (0.5 μg ml-1) was included during biofilm formation on glass surfaces for 24 h and visualised with 

CLSM using fluorescent LIVE/DEAD® BacLight™ stain. Merged images show live cells with green 

signals(Syto9) and cells with red signals (propidium iodide) are dead or damaged cells. Note that it is 

difficult to see red signals in the printed images, however they were clearly evident when the images were 

inspected on the sceen, albeit in low numbers compared with green cells. (A, E and C, G) represent 

control biofilms with no NucB, and (B, F and D, H) represent biofilms incubated with NucB. (A-D) 

represent x–y plane, (E-H) represent an angled view of each plane (x–y–z) and the scale bars are 30 µm. 

NucB-treated biofilms are less extensive than controls, without NucB.  

 

Table 3. 2 COMSTAT analysis of S. aureus SB14 and SB17 biofilm formation in the 

presence or absence of NucB (0.5 μg ml-1). 

Data [mean (SE)] were generated from the imaging of three randomly selected areas on each 

coverslip from at least three independent experiments. NucB greatly altered the structure of S. 

aureus biofilms by significantly reducing biomass and average thickness of biofilms (p<0.05, 

regarded as statistically significant differences from no NucB controls; two samples t-test).   

 

 

Biofilm parameters  

S. aureus SB14 S. aureus SB17 

- NucB 
+ NucB 

(0.5 μg ml-1) 
P-Value  - NucB 

+ NucB 

(0.5 μg ml-1) 
P-Value 

Biomass (µm3/µm2) 2.9 (0.2) 1.3 (0.3) 0.002 3.1 (0.6) 1.1 (0.4) 0.02 

Average thickness: (µm) 4.9 (0.4) 2.2 (0.5) 0.001 4.0 (0.5) 1.2 (0.5) 0.001 

Roughness coefficient 0.5 (0.1) 0.8 (0.2) 0.27 0.6 (0.2) 1.1 (0.3) 0.2 
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For S. aureus SB14, the average biofilm biomass and thickness of the untreated 

biofilms were 2.9 μm3/μm2 and 4.9 μm, respectively (Table 3. 2). The mean biofilm biomass 

and thickness of the NucB-treated biofilms were 1.3 μm3/μm2 and 2.2 μm, respectively (Table 

3. 2). Therefore, the average biomass and average thickness of NucB treated biofilms were 

significantly reduced by more than 50% compared to untreated controls. In the case of S. 

aureus SB17, the inclusion of NucB during biofilm growth of S. aureus SB17 significantly 

decreased the average biofilm biomass and thickness by more than 70% in comparison with 

untreated controls (Table 3. 2). For both S. aureus SB14 and SB17, the roughness coefficient 

values of the biofilms incubated with NucB were increased compared with the control, 

although the differences were not statistically significant. Collectively, these data indicate that 

inclusion of NucB (0.5 μg ml-1) efficiently inhibited biofilm formation by two clinically 

relevant S. aureus strains. 

To determine the impact of NucB on the structure of pre-formed S. aureus biofilms, S. 

aureus SB14 and SB17 were cultured on glass coverslips for 48 h, and treated for 1 h (see 

Material and Methods section 2.12.1). Treatment with NucB resulted in significant reduction 

of biofilm biomass when compared to the PBS treated controls (see Figure 3. 4). From CLSM 

imaging, pre-established biofilms that were incubated with NucB had greatly reduced biomass 

than the control. No differences in the viability of biofilms cells were detected and again 

NucB-treated biofilms consisted of isolated cells or very small aggregates of cells. Further 

quantitative analysis of the images demonstrated that the mean biomass and mean thickness of 

S. aureus SB14 biofilms incubated with buffer alone were 9.5 μm3/μm2 and 12.7μm, 

respectively (Table 3. 3). The mean biomass and thickness of the preformed biofilms 

incubated with NucB at 0.5 μg ml-1 were 1.1 μm3/μm2 and 1.2 μm, respectively which were 

decreased by about 75% compared with the untreated controls. For S. aureus SB17, in the 

absence of NucB, the average biofilm biomass and thickness were 3.5 μm3/μm2 and 7.0 μm. 

The average biofilm biomass and thickness of NucB treated biofilms were 2.1 μm3/μm2 and 

2.5 μm. When compared to biofilms incubated with PBS alone, NucB treated biofilms 

showed significant reduction in average biomass and thickness by about 50%. It should be 

noted that an approximately 3-fold reduction in the average thickness of S. aureus SB17 

biofilms treated with NucB was associated with only a 1.7-fold reduction in biomass of the 

same biofilms (Table 3.3). This apparent discrepancy may have arisen because COMSTAT 2 

software includes the voids (empty spaces) within the biofilm in the measurement of the 

average thickness but excludes them in the measurement of the biomass of biofilm (Heydorn 
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et al., 2000). Similar patterns were also observed in the inhibition assays of S. aureus SB17 & 

SB14 (see Table 3. 2).     

Overnight (24 h-old) grown biofilms of S. aureus SB14 and SB17 on the glass surface, 

which were used in the inhibition assay, were much thinner than 48 h-old biofilms which 

were used in the dispersal assay (see Figure 3. 3 and Figure 3. 4). In the absence of NucB 

treatment, average biofilm biomass and average thickness were more than twofold less than 

those of untreated 48 h-old biofilms of the same strain (Table 3. 2 and Table 3. 3). 

Overall, the qualitative and quantitative outputs of CSLM imaging analysis were 

consistent with the quantitative results obtained from 96-well plate crystal violet staining 

assay, and showed that eDNA is a key structural component of the extracellular matrix (EPS) 

of the clinically relevant S. aureus biofilms. Furthermore, the addition of NucB at 0.5μg ml-1 

could efficiently inhibit biofilm formation and efficiently detach pre-established biofilms of S. 

aureus clinical isolates without negative impact on the viability of cells within these biofilms. 
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Figure 3. 4 Effect of NucB on the structure of established biofilms of S. aureus SB14 and SB17 

observed by CLSM 

Biofilms were grown on glass surfaces for 48 h, treated with 0.5 μg ml-1 NucB for 1 h at 37°C, stained with 

LIVE/DEAD® BacLight™ stain and imaged with CLSM. Merged images show live cells with green 

signals (Syto9) and cells with red signals (propidium iodide) are dead or damaged. NucB at 0.5 μg ml-1 

substantially dispersed pre-established biofilms of S. aureus SB14 and SB17 (B, F and D, H) when 

compared to control (PBS) treated biofilms (A, E and C, G). (A-D) represent x–y plane, (E-H) represent an 

angled view of each plane (x–y–z) and the scale bars are 30 µm. 

 

 

 

Table 3. 3 COMSTAT analysis of S. aureus SB14 and SB17 biofilms dispersal by NucB 

(0.5μg ml-1) 

Data [mean (SE)] were generated from the imaging of three randomly selected areas on each 

coverslip from at least three independent experiments. NucB substantially altered pre-

established biofilms structure by significantly reducing biomass and average thickness of 

biofilms (p<0.05 regarded as statistically significant difference from no NucB controls; two 

samples t-test).   

  

Biofilm parameters  

S. aureus SB14 S. aureus SB17 

- NucB 
+ NucB 

(0.5 μg ml-1) 
P-Value - NucB 

+ NucB 

(0.5 μg ml-1) 

 

 

P-Value 

Biomass (µm3/µm2) 9.5(1.1) 2(0.6) 0.0001 3.5(0.5) 2.1(0.2) 0.03 

Average thickness: (µm) 12.7(1.7) 2.7(0.8) 0.0001 7.0(1.1) 2.5(0.4) 0.003 

Roughness coefficient 0.26(0.1) 0.9(0.3) 0.09 0.78(0.2) 0.2(0.04) 0.006 
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3.4 Testing the antimicrobial susceptibility of S. aureus planktonic cells  

In clinical practice, the measurement of minimum inhibitory concentration (MIC) and 

minimum bactericidal concentrations (MBC) are the standards to determine the sensitivity of 

bacteria to antibiotics, and they provide important supportive information for clinicians to 

treat infections (Andrews, 2001). MIC and MBC represent the sensitivity of bacteria in a free-

living state. However, in infections such as otitis media, bacteria are present in a biofilm, and 

may be significantly more tolerant than planktonic cells to antimicrobial agents. To compare 

the level of antimicrobial tolerance of S. aureus biofilms with planktonic cells, it was 

necessary to assess antimicrobial sensitivity in both biofilm and planktonic cultures. Initially 

the standard MICs and MBCs of S. aureus SB14 and SB17 clinical strains for Co-amoxiclav 

(clavulanic acid/amoxicillin) were determined using the standard micro-dilution method (see 

Material and Methods section 2.9.1). Co-amoxiclav was selected because of its well-known 

action against S. aureus which was the focus of the in vitro experimental investigations 

outlined in this chapter. Moreover, Co-amoxiclav is also effective against the three most 

common pathogens associated with COME (Haemophilus influenzae, Streptococcus 

pneumoniae, and Moraxella catarrhalis), and has been used for the treatment of CRS and 

otitis media. To validate the method, the MIC and MBC of S. aureus NCTC 6571 reference 

strain were also determined (see Table 3. 4). The MIC and MBC obtained for S. aureus 

NCTC 6571 was similar to the quality control (QC) value for this organism (0.12 μg ml-1) 

(Andrews, 2001). Measurement of the Co-amoxiclav susceptibilities of the planktonic 

cultures of these clinical strains enabled us to estimate the concentration range to be used in 

measuring the antimicrobial sensitivity of biofilms. 

Table 3. 4 MICs and MBCs of S. aureus strains for Co-amoxiclav determined by 

standard microdilution method. 

S. aureus strains MIC (μg ml-1) MBC (μg ml-1) 

SB14 1 4 

SB17 1 4 

NCTC6571 0.125 0.25 
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3.5 Investigating the antibiotic susceptibility of S. aureus biofilms   

Following determination of MICs and MBCs of the selected planktonic S. aureus 

cultures for Co-amoxiclav, the sensitivities of these bacterial biofilms to Co-amoxiclav 

treatment were investigated using a range of assays that had been described in the literature.  

 

3.5.1 Testing the susceptibility of S. aureus biofilms to antibiotics using MBEC assay.  

The minimum biofilm eradication concentration (MBEC) assay is a quick and 

reproducible high-throughput technique developed for measuring the antimicrobial sensitivity 

of microbial biofilms. Thus, MBEC™ (HTP) microtitre plates with peg inserts attached to the 

lids were used to determine MBECs of S. aureus SB14, SB17, and NCTC6571 for Co-

amoxiclav. Initially, the time of sonication required to dislodge biofilms cells attached to pegs 

were optimized using a combination of total viable counts and crystal violet (CV) staining to 

determine release of cells. Biofilms of S. aureus SB14 were grown on pegs in MBEC™ 

(HTP) plates for 24 h according to the manufacturer’s instructions (see Materials and Methods 

section 2.9.2). After 24 h, the peg lid was rinsed for 1-2 min and three pegs from randomly 

selected places were removed. The extent of biofilm formation was assessed by CV staining 

which represented the ‘0’ sonication time point (see Figure 3. 5). Following this, the peg lid 

was placed in fresh 96-well plate containing 200 μl of TSB and sonicated for different time 

periods (10, 20, 30, 60 min). After each sonication time, 3 pegs were removed, and biofilm 

biomass was quantified by CV (see Figure 3. 5 (B)). At the same time, the bacterial 

suspension released from each peg was serially diluted and spot plated to calculate total viable 

count (see Figure 3. 5(C)). A sonication time of 30 min released the majority of cells from 

biofilm formed on the peg surface (see Figure 3. 5). Longer sonication times dislodged greater 

numbers of cells, which was evident by reduced biofilm biomass in comparison to other time 

points. However, this increase in bacterial release was associated with a negative impact on 

cell viability. Therefore, sonication for 30 min was applied in subsequent experiments.  

  



85 

 

 

Figure 3. 5 Optimisation of biofilm removal from MBEC pegs using 

sonication. 

S. aureus SB14, SB17, and NCTC6571 biofilms were grown on MBEC pegs 

for 24 h. The pegs were sonicated for 10-60 min. (A) The number of cells 

released from biofilm, determined by plating and calculating mean total 

viable counts of released bacteria (CFU per peg); ‘ND’ = ‘not determined’. 

(B) Extent of biofilm remained per peg, quantified by CV staining assay. (C) 

Mean numbers of S. aureus CFU released from biofilms by sonication for 30 

min. In all panels, bars represent means and standard deviations from 3 

independent repeats are shown. The majority of cells were released from 

biofilm formed on peg by sonication for 30 min without negative impact on 

cell viability.    
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To assess the reproducibility of biofilm formation on each peg, biofilms of each S. 

aureus strain were grown for 24 h (see Materials and Methods section 2.9.2). The peg lid was 

sonicated for 30 min and the suspensions of at least 3 randomly selected wells were 

individually serially diluted and spot plated. There were no significant differences in biofilm 

formation among the selected pegs for each strain, and the mean biofilm formation for each S. 

aureus strain is shown in Figure 3. 5(A). 

Following these optimisation steps, the determination of MBECs of S. aureus SB14, 

SB17 and NCTC6571 for Co-amoxiclav was performed. One of the well-recognized features 

of bacterial biofilms is a reduced susceptibility to antimicrobial treatment compared with their 

planktonic counterparts. Hence, a higher range of Co-amoxiclav concentrations, up to 1000 

fold greater than their MICs, was used to challenge preformed biofilms of these S. aureus 

strains in order to determine the concentration of antibiotics necessary to eradicate bacterial 

cells within biofilms. Pre-established 24 h biofilms of S. aureus SB14, SB17, and NCTC6571 

were formed on the peg lids of MBEC plates (see Materials and Methods section 2.9.2), and 

treated with a range of Co-amoxiclav concentrations (0.25-1,024 μg ml-1 for SB14 and SB17 

and 0.25- 256 μg ml-1 for NCTC6571) for 24 h. Biofilms were removed from the peg lid by 

sonication and placed in a fresh 96-well plate containing recovery medium (CAMHB), and 

the MBEC values were determined following 24 h of incubation at 37°C in air by checking 

for turbidity in the wells and measuring OD650 using a microtitre plate reader. Also, it was 

possible to determine the MICs of these bacteria from MBEC device by reading OD650 in 

wells of the challenge plate following 24 h incubation of the isolates in Co-amoxiclav. 

The MICs of Co-amoxiclav for the tested S. aureus strains (SB14, SB17, and 

NCTC6571) determined by MBEC device were similar to those obtained by standard 

microdilution methods (see Table 3. 4). However, despite several attempts, it was not possible 

to obtain consistent and reproducible readings for the MBEC values for all tested strains (see 

Figure 3. 6). An inability to obtain reproducible MBEC values could be due to the step of 

overnight incubation of biofilm cells released from pegs by sonication in the recovery 

medium (CAMHB) according to the manufacturer’s instructions following 24 h antibiotic 

challenge. Low numbers of surviving cells such as persisters would potentially lead to growth 

in samples that had been almost eliminated by antibiotic treatment. Survival of even a single 

bacterial cell could eventually produce heavy bacterial growth during overnight incubation 

resulting in inconsistent and non-reproducible MBECs. Furthermore,  minor modifications in 

the method employed such as using an incubator with a rotating shaker rather than tilting one 

during biofilm formation could also influence the reproducibility of the MBEC assay, as has 
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been reported in other studies (Dall, 2013). The MBECs of Co-amoxiclav for S. aureus SB14, 

SB17, and NCTC6571 were greater than the highest concentration of antibiotic in all attempts 

and were at least 100-1000 fold greater than the MICs for planktonic culture of these strains. 

 

Figure 3. 6 Determination of MBECs of Co-amoxiclav for S. aureus biofilms.  

Biofilms of S. aureus (SB14 and NCTC6571) were grown in MBEC plates as described in 

Materials and Methods, challenged with a range of Co-amoxiclav concentrations for 24 h at 

37°C  and biofilms were recovered from peg lids by sonication. MBEC values were 

determined by measuring OD650 following 24 h incubation at 37°C in air. (A) and (B) are 

examples of many experiments performed showing inconsistent MBECs of co-amoxiclav 

determined for S. aureus SB14 and NCTC6571 biofilms. MBEC values for S. aureus 

NCTC6571 were 0.5 and 128 μg ml-1 in the two different assays. The MBEC values of S. 

aureus SB14 were 8 and 16 μg ml-1, with significant growth in cultures at concentrations 

higher than the estimated MBEC values. Therefore, overall the MBEC data must be treated 

with caution.     
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3.5.2 Testing antibiotic susceptibility of S. aureus biofilms using combined microfluidic 

biofilm system and Live/Dead CLSM imaging 

As an alternative to the MBEC device and for illustration purposes, a medium-

throughput microfluidic biofilm system was used to assess the susceptibility of S. aureus 

SB14 biofilms to a range of Co-amoxiclav concentrations using combined LIVE/DEAD 

BacLight stain and CLSM imaging. Biofilms were grown within the channels of 48-well 

plates (24 channels) for 24 h according to the protocol described in Materials and Methods 

section 2.12.2 and challenged with Co-amoxiclav ranging from 2- 2048 μg ml-1 ml for up to 

24 h. Negative (no antibiotics) and positive (treated with 70% ethanol) controls were included 

and samples were stained using LIVE/DEAD BacLight stain and imaged by CLSM. One of 

the drawbacks observed using this system was the inability to obtain uniform biofilm 

formation in all channels despite several attempts at optimisation, which included using 

different dilutions of organism specific broth, bacterial inoculae, and using different flow 

rates for biofilm formation.          

Visual inspection of the preliminary 3D-rendered images showed that the treatment of 

biofilms with different concentrations of Co-amoxiclav caused an increased cell death which 

was proportional to the increased Co-amoxiclav concentrations (see Figure 3. 7). The vast 

majority of biofilm cells were dead/damaged at Co-amoxiclav concentrations ranging from 

128-2048 μg ml-1. By contrast, the majority of cells in the negative control remained viable. 

In conclusion, the preliminary results obtained using the microfluidic biofilm system 

combined with LIVE/DEAD staining and CLSM imaging showed that the concentration of 

Co-amoxiclav required to kill the vast majority of cells within S. aureus SB14 biofilm was 

about 128-fold greater than the MIC for Co-amoxiclav (compare with the MIC of Co-

amoxiclav for S. aureus SB14, which was 1 μg ml-1; see Table 3. 4).
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Figure 3. 7 Confocal laser scanning microscopy of S. aureus SB14 biofilms treated with a range of Co-amoxiclav concentrations 

A Bioflux microfluidic plate was inoculated with S. aureus SB14 and fed with 25% TSB for 20 h at 37°C. Biofilms were treated with Co-

amoxiclav (2-2048 μg ml-1) for 24 h at 37°C, stained with LIVE/DEAD® BacLightTM stain and examined using CLSM and 3D imaging software 

(Imaris, Bitplane). Merged images are shown; green signal indicates viable live cells (Syto 9), red signal indicates damaged/dead cells 

(propidium iodide). Negative (no Co-amoxiclav) and positive (Ethanol 70% - ‘70%eth’) controls were also shown. The majority of S.aureus 

SB14 cells were compromised (red) at Co-amoxiclav concentrations of 128 μg ml-1 and above. Scale bars are 30 µm.
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3.5.3 Antibiotic susceptibility of S. aureus biofilms using colorimetric tetrazolium salt 

(XTT) assay 

Due to the limitations of the previous assays in providing consistent and reproducible 

data about the antibiotic susceptibility of S. aureus biofilms, a colorimetric tetrazolium salt 

(XTT) assay was used. The XTT assay is a quick method which measures the vitality and the 

metabolic activity of eukaryotic and prokaryotic cells based on lactate dehydrogenase enzyme 

activity of the viable and metabolically active cells, which causes a reduction of a yellow 

color XTT salt to a soluble orange coloured formazan derivative. The degree and the rate of 

color changes are proportional to the number of live and metabolically active cells present in 

biofilms.  

Biofilms of S. aureus SB14 and NCTC6571 were formed in 96-well MTPs for 24 h 

(see Material and Methods section 2.9.3), and challenged with a range of Co-amoxiclav 

concentrations (32-4096 μg ml-1) for 24 h. The viability of biofilms was quantified by the 

addition of XTT solution and measuring A450 after incubation for 2 h at 37°C aerobically. 

Despite several attempts, it was not possible to obtain end-point readings for the biofilm 

eradication concentrations for S. aureus SB14 and NCTC6571 (see Figure 3. 8), even though 

extremely high concentrations of Co-amoxiclav (up to 4,000 fold greater than the MICs for 

planktonic cells) were used. 

Therefore, as an alternative to a simple endpoint measurement, the rate of XTT 

reduction over one hour of incubation was measured. Over this time, there was a linear 

increase in XTT reduction (data not shown). Biofilms of S. aureus SB14 and NCTC6571 

were grown in 96-well MTPs for 24 h (see Method and Materials section 2.9.2) and processed 

as previously described. The range of Co-amoxiclav concentrations used in this assay was 

250-16,384 µg ml-1 for S. aureus SB14 and 128-8,192 µg ml-1 for S. aureus NCTC6571. 

Biofilm cell viability was quantified by obtaining A450 every 10 min for 1 h at 37ºC following 

the addition of XTT solution, and calculating the increase in Relative Light Units per min 

(RLU.min-1) (see Figure 3. 9).  
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Figure 3. 8 Testing antibiotic susceptibility of S. aureus biofilms by XTT assay. 

Biofilms of S. aureus (SB14 and NCTC6571) were grown in 96-well MTPs for 24 h, 

challenged with a range of Co-amoxiclav concentrations for 24 h at 37ºC, and bacterial cell 

viability within biofilm was determined by XTT staining assay through measuring endpoint 

A450. Even at high Co-amoxiclav concentrations, colour was observed in S. aureus SB14 and 

NCTC6571 cultures, indicating that XTT had been reduced.    
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 Using the kinetic assay, there was statistically significant concentration-dependent 

reduction in the rate of XTT conversion over the whole concentration range assayed for both 

S. aureus SB14 & NCTC6571 biofilms in comparison with controls without Co-amoxiclav 

(One Way ANOVA and Dunnett Multiple Comparison with control) (see Figure 3. 9). For S. 

aureus SB14, there was more than 50% reduction in the rate of XTT conversion at the 

concentration range 4,096-16,384 µg ml-1 when compared with no antibiotic controls (see 

Figure 3. 9 (B)). Co-amoxiclav at 2,048 µg ml-1 produced approximately a 50% decrease in 

XTT reduction rate. There was approximately 30-40% decrease at Co-amoxiclav 

concentrations between 512-1,024 µg ml-1. For S. aureus NCTC6571, again there was 

statistically significant reduction (>50%) in the rate of XTT conversion at concentrations 

4,096-8,192 µg ml-1 in comparison with controls lacking Co-amoxiclav (see Figure 3. 9 (A)). 

There was an approximately 45% decrease in XTT reduction rate at 2,048 µg ml-1 of Co-

amoxiclav, whereas, XTT reduction was decreased by approximately 27-35% at 

concentrations ranging from 512-1,024 µg ml-1. Co-amoxiclav at concentrations less than 512 

µg ml-1 showed minimal effects on XTT reduction rate within biofilms of both S. aureus 

SB14 & NCTC6571 (decreased by ≤ 25%). Co-amoxiclav concentrations of 512 and 1,024 µg 

ml-1 demonstrated statistically significant moderate impacts on cell viability (represented by 

XTT conversion rate) within the biofilms of both S. aureus SB14 & NCTC6571 which were 

between the highly effective concentrations (4,096-16,384 µg ml-1) and minimally effective 

concentrations (128-256 µg ml-1).  On the basis of these observations, it was decided to use 

concentrations of 512 and 1,024 µg ml-1 for the next series of experiments, investigating the 

potential for a DNase enzyme (NucB) to enhance antibiotic killing.  
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Figure 3. 9 Antibiotic susceptibility of S. aureus biofilms determined by XTT 

assay 

 Biofilms of S. aureus (NCTC6571 (A) and SB14 (B)) were grown on 96-well 

MTP plates for 24 h as described in Materials and Methods, challenged with a 

range of Co-amoxiclav  concentrations for 24 h at 37ºC, and bacterial cell 

viability within biofilms was determined by measuring the rate of XTT reduction 

at 450 nm for 1 h (RLU.min-1). Asterisks indicate a significant difference from 

the control (ANOVA, post-hoc Dunnett’s test). There was a significant dose-

dependent decrease in cell viability (RLU.min-1) within biofilms of both S. aureus 

SB14 and NCTC6571 by Co-amoxiclav.   
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3.6 Investigating effects of NucB on antibiotic susceptibility of in vitro biofilms of S. 

aureus 

3.6.1 Effects of NucB on the antimicrobial sensitivity of planktonic bacterial cultures of S. 

aureus 

To investigate the effects of NucB on MICs of planktonic cultures of the same S. 

aureus clinical isolates (SB14 & SB17), an adjusted planktonic bacterial suspension of S. 

aureus SB14 & SB17 in 96-well plates was challenged with a range of Co-amoxiclav 

concentrations with and without NucB (0.5 µg ml-1) for 24 h (see Materials and Methods 

section 2.10.1), and quantified by colorimetric XTT viability assay. 

The MICs of Co-amoxiclav determined for S. aureus SB14 & SB17 in the absence of 

NucB were similar to the MICs determined in the presence of NucB (see Figure 3. 10 A&B). 

Interestingly, MICs of Co-amoxiclav measured by the standard microdilution method and 

XTT viability assay were also similar for S. aureus SB14 & SB17 (1 µg ml-1). Similarly, there 

was no significant difference in the cellular viability of both S. aureus strains over the assayed 

Co-amoxiclav concentration range with or without NucB (0.5 µg ml-1). Finally, the cell 

viability in planktonic cultures of both S. aureus clinical isolates treated with NucB alone 

were almost equivalent to those of negative controls (no NucB and no antibiotics), which 

indicates that NucB has no bacteriostatic or bactericidal effect on S. aureus cells (see Figure 

3. 10 A&B). This finding confirms the previous result obtained from visual analysis of 

LIVE/DEAD stained CLSM images, which showed no killing effects of NucB on both S. 

aureus SB14 & SB17 biofilm cells. In conclusion, NucB at 0.5 µg ml-1 did not affect the 

antimicrobial sensitivity and viability of both S. aureus SB14 and SB17 planktonic cultures.  
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Figure 3. 10 Effect of NucB on antibiotic susceptibility of planktonic S. aureus cells. 

Standardised bacterial cultures of S. aureus SB17 (A) and SB14 (B) were challenged 

with a range of Co-amoxiclav concentrations with or without NucB (0.5 µg ml-1) in 96-

well MTPs for 24 h at 37ºC. NucB alone and untreated controls were included. Bacterial 

cell viability was determined by measuring endpoint A450 using XTT assay. NucB had no 

effect on cell viability and antibiotic susceptibility of both S. aureus SB17 and SB14 

planktonic cells.   
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3.6.2 Effect of NucB on antimicrobial susceptibility of in vitro S. aureus biofilms  

After assessing the effects of NucB on antimicrobial sensitivity of planktonic cultures 

of S. aureus, the next step was to investigate the ability of NucB to enhance the susceptibility 

of S. aureus biofilms to antibiotic treatment. Initially, the sensitivity of 24 h old pre-formed S. 

aureus SB14 biofilms to a range of NucB concentrations (0.156-1 µg ml-1) with or without 

Co-amoxiclav  (512 µg ml-1) was studied using XTT viability (see Material and Methods 

section 2.10.2) to identify an appropriate concentration range of NucB for more detailed 

investigations. There was concentration-dependent decrease in the rate of XTT reduction 

observed in biofilms treated with NucB alone in comparison with growth controls (Figure 3. 

11), which was likely due to the dispersal action of NucB on these biofilms. At the highest 

concentrations tested (0.5-1 µg ml-1) the reduction was generally more than 50% compared 

with controls lacking NucB. The pattern and the extent of XTT reduction within pre-formed 

biofilms of S. aureus SB14 mediated by NucB were consistent with the pattern of reduction in 

biofilm biomass obtained using the crystal violet staining assay (see Figure 3. 1(B)). 

Interestingly, combinations of NucB at different concentrations (0.156-1 µg ml-1) with 

512 µg ml-1 Co-amoxiclav appeared to show additional dose-dependent reduction in cell 

viability of S. aureus SB14 biofilms when compared with biofilms treated with Co-amoxiclav 

only (512 µg ml-1). However, this experiment was only performed once, and it was not 

possible to determine statistical significance. Therefore, to investigate the effects of NucB on 

antibiotic susceptibility in more detail,  experiments were repeated using Co-amoxiclav at 

512 µg ml-1 or 1,024 µg ml-1 and NucB at 1 µg ml-1. These experiments were performed on S. 

aureus SB14 & SB17 clinical isolates as well as the reference strain S. aureus NCTC6571.  
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Figure 3. 11 Effects of different NucB concentrations on antibiotic susceptibility of S. 

aureus biofilms. 

Biofilms of S. aureus SB14 were grown on 96-well MTPs for 24 h as described in Materials and 

Methods, and challenged with a range of NucB concentrations with or without Co-amoxiclav  

(512 µg ml-1) for 24 h at 37ºC. Co-amoxiclav only and untreated controls were included. 

Bacterial metabolic activity within biofilms was determined by measuring the rate of XTT 

reduction at 450 nm for 1 h (RLU.min-1). NucB with or without Co-amoxiclav showed dose-

dependent decreases in cell viability within biofilms compared with biofilms treated with Co-

amoxiclav alone or with no treatment.     
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NucB alone at 1 µg ml-1 or in combination with Co-amoxiclav at either concentration 

significantly reduced XTT reduction rate within pre-established biofilms of all tested S. 

aureus strains compared with controls that were not treated with NucB (see Figure 3. 12). For 

S. aureus SB14, there was a significant reduction in metabolic activity of cells within biofilms 

amongst all treatment groups compared with no treatment controls (one way ANOVA, p 

<0.001). The metabolic activity in biofilms treated with NucB alone was approximately 58% 

reduced compared with the negative control and this difference was significant (Tukey’s post 

hoc test, p <0.001, see Figure 3.12A). Under similar conditions, the combination of NucB 

with Co-amoxiclav at 512 or 1,024 µg ml-1 resulted in further dose-dependent reductions in 

activity compared with biofilms treated by Co-amoxiclav only (p <0.001 in both cases). 

Similarly, addition of NucB alone at 1 µg ml-1 to pre-formed S. aureus SB17 biofilms 

significantly reduced (p <0.001) viable cells remained in biofilms by approximately 55% 

compared with no treatment controls (see Figure 3. 12 (B)). Again, NucB together with Co-

amoxiclav at 512 or 1,024 µg ml-1 produced an additional significant dose-dependent decrease 

in cell viability within biofilms by approximately >35% compared to biofilms treated with 

Co-amoxiclav alone. Finally, pre-formed biofilms of S. aureus NCTC6571 were more 

sensitive than those of the clinical isolates to NucB treatment alone. Treatment with NucB 

substantially decreased the metabolic activity within biofilms by approximately 80% 

compared with the control biofilms (see Figure 3. 12 (C)). Once again, NucB in combination 

with Co-amoxiclav at 512 or 1,024 µg ml-1 showed an additional significant reduction (p 

<0.001) in metabolic activity of S. aureus NCTC6571 biofilms by >50% compared with Co-

amoxiclav only treated biofilms.                

In conclusion, NucB at 1 µg ml-1 significantly reduced the metabolic activity of cells 

within biofilms formed by all assayed S. aureus strains by approximately 55-80%. This 

reduction in activity was likely due to the dispersal of attached cells from the biofilm. 

Importantly, when NucB was combined with Co-amoxiclav, there was an additional reduction 

in the metabolic activity of biofilms over and above Co-amoxiclav treatment alone. These 

data demonstrate that NucB has the potential to enhance the efficacy of Co-amoxiclav against 

S. aureus biofilms. 
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Figure 3. 12 Effects of NucB on the antibiotic susceptibility of S. aureus biofilms. 

Biofilms of S. aureus SB14 (A), SB17 (B), and NCTC6571 (C) were grown on 96-well 

MTPs for 24 h as described in Materials and Methods. Biofilms were challenged for 24 h 

at 37 ºC with Co-amoxiclav (0, 512 µg ml-1  or 1,024 µg ml-1) in the presence or absence 

of 1µg ml-1 NucB. Bacterial metabolic activity within biofilms was determined by 

measuring the rate of XTT reduction at 450 nm for 1 h (RLU.min-1). NucB treatment 

resulted in significant reductions in metabolic activity at all Co-amoxiclav concentrations 

compared with equivalent samples without NucB treatment (**p <0.001; ANOVA with 

Tukey’s HSD post-hoc comparison test). 
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3.7 Investigating the toxicity of NucB against microbial and human cells 

3.7.1 Testing the effects of NucB on bacterial cell viability 

 Previous data from LIVE/DEAD microscopic analysis and colorimetric XTT assays 

indicated that incubation of NucB at up to 1 µg ml-1 with S. aureus biofilms and planktonic 

cells for 1-24 h at 37ºC did not have a negative impact on the cell integrity or metabolic 

activity of these cells. To assess the impact of NucB on cell viability, S. aureus SB14 biofilms 

were grown in a 6-well tissue culture plate for 24 h and treated with 1 ml NucB (0.5 µg ml-1) 

for 1 h at 37ºC (see Materials and Methods 2.11.3). The concentration of NucB at 0.5 µg ml-1 

is similar to that which was used in the LIVE/DEAD microscopic analysis. Non-bound or 

loosely bound planktonic cells were recovered directly from the supernatant, whereas biofilm 

cells were recovered using a cell scraper. Viability was assessed by viable cell counting. 

Treatment with NucB did not lead to an overall reduction in the total CFU/ml present in 

planktonic or biofilm cells compared to the control group (see Table 3. 5). In fact, the total 

number of cells was slightly, though not significantly, increased with NucB, as noted below. 

Treating S. aureus biofilms with NucB resulted in approximately two-fold more viable cells 

in the planktonic phase (increased from 2.0 x 108 to 4.2 x 108 CFU/ml) in comparison to 

buffer-treated controls. By contrast, the number of viable cells in the biofilm phase was 

reduced by approximately 15%. Biofilms in other wells on the same plates, which were also 

treated with NucB under same conditions and quantified simultaneously by CV staining, 

showed approximately two-fold decrease in biofilm biomass compared to control biofilms, 

confirming that NucB was effectively dispersing biofilms (Figure 3. 13). 

It is not clear why the total CFU appeared to be approximately two-fold higher 

following NucB treatment than in controls treated with PBS. It is possible that bacterial cells 

aggregates were present in control samples, and that these led to an artificially low viable 

count  (see Table 3. 5). To address this hypothesis, the harvested cells from both NucB- and 

PBS-treated biofilms (planktonic and biofilm phases) were sonicated with a high power 

sonicator to break down cell aggregates. Samples were compared with the matched non-

sonicated cell suspensions. However, in both treatment conditions, sonication for 1 or 3 min 

significantly reduced the total viable counts present in planktonic and biofilm phases from 

9.25 x 108 and 5.13 x 107 to 2.98 x 108 and 2.54 x 107, respectively. Due to this significant 

negative impact on cell viability, sonication of the harvested cells suspension was avoided. 

Nevertheless, the results overall indicate that NucB acts specifically through disruption of pre-

established biofilms without influencing cell viability.  
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Table 3. 5 Total viable counts (CFU ml-1) of in vitro S. aureus biofilms following 

treatment with NucB. 

NucB did not reduce viable cell counts within S. aureus biofilms  

 

 

 

Figure 3. 13 Crystal violet quantitative analysis of the effect of NucB on pre-

formed S. aureus SB14 biofilms 

S. aureus SB14 biofilms were grown on the same 6-well tissue culture plates as 

those in table 3.5 for 24 h and treated with 0.5 µg ml-1 NucB for 1 hr at 37ºC. 

Biofilms were stained with crystal violet, and the biofilm biomass was 

quantified by measuring A570. PBS treated control biofilms were included. Mean 

values from three independent assays are shown and error bars represent 

standard error of the mean. NucB treated biofilms had approximately two-fold 

less biomass compared to control biofilms.  

 

  

  

Bacterial phase Control CFU ml-1 ± SE NucB (0.5 µg ml-1) CFU ml-1 ± SE 

Planktonic (P) 2.0x108 (1.9x108) 4.2 x108 (3.8x108) 

Biofilm (B) 2.8 x107 (7.5x106) 2.4 x107 (1.3x107) 

Total (P+B) 2.3 x108 (2.0x108) 4.4 x108 (3.8x108) 
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3.8 Investigation of NucB toxicity for human respiratory epithelial cells  

Following the in vitro evaluation of the anti-biofilm activity of NucB against clinically 

relevant S. aureus biofilms, it was important to assess the safety of NucB on human cells 

relevant to the epithelial lining of the middle ear as a mandatory preliminary stage in the 

process of developing new drug for medicinal use. Human bronchial epithelial cells (BEAS-

2B) were treated with different concentrations of NucB (1-100 µg ml-1) and cell viability and 

morphology were quantified using fluorometric CellTiter-Blue® cell viability assay and Dual 

acridine orange(AO)/ethidium bromide (ED) staining apoptosis assay respectively. 

3.8.1 Assessing NucB safety on human cells using CellTiter-Blue® cell viability assay   

To assess the effects of NucB on human cell viability, BEAS-2B cells were seeded in 

12-well tissue culture plate (see Materials and Methods section 2.11.2) and allowed to grow in 

a 5% CO2 atmosphere at 37ºC. Cells were challenged with different concentrations of NucB 

(1-100 µg ml-1) and Dornase alfa (rhDNase I) at 100 µg ml-1 for 24-48 h. Positive (absolute 

methanol treated) and negative (media treated) controls for cell death were included. 

Subsequently, cell viability was quantified using the CellTiter-Blue® cell viability assay. The 

CellTiter-Blue® cell viability assay is a quick high-throughput fluorometric method that 

utilises resazurin dye as an indicator to monitor the metabolic activity of viable cells. Live and 

metabolically active cells can reduce dark blue resazurin into fluorescent pink resorufin. 

However, damaged or non-viable cells lose their capability to convert the indicator dye and 

therefore fluorescent signals will not be generated by these cells. 

At the end of both incubation time points (24-48 h), the epithelial cells exhibited 

normal cell viability with the addition of  NucB at concentration up to 100 µg ml-1 and 

Dornase alfa at 100 µg ml-1 compared with cells incubated with growth medium only (see 

Figure 3. 14). There was essentially no metabolic activity (<5% reduction of dye) in positive 

controls that were treated with absolute methanol for 2 min. Cells treated with Dornase alfa at 

100 µg ml-1 for 24-48 h, displayed similar proportions of viability and metabolic activity as 

those treated with medium alone (>99%). Treatment of cells with up to 50 µg ml-1 NucB had 

no significant effect on their viability (approximately 95% activity remained). Only a slight 

reduction in the activity of cells (to 86.3% of levels in untreated controls) was observed after 

24 h treatment with NucB at 100 µg ml-1. However, the activity of cells was slightly higher at 

93% after 48 h treatment with 100 µg ml-1 NucB. Again, no significant differences in 

metabolic activity were observed following 48 h incubation of bronchial cells with NucB at 

concentrations up to 100 µg ml-1 compared with negative controls. After 24-48 h, the viability 

of cells treated with NucB at an anti-biofilm concentration (1 µg ml-1) was generally remained 
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unaffected (93-98%) in comparison to control cells. Overall, NucB at concentrations up to 

100-fold greater than those required for anti-biofilm activity was not toxic to human bronchial 

epithelial cells.  

  

Figure 3. 14 Effects of NucB on viability of human bronchial epithelial cells. 

Using a 12-well plate, BEAS-2B cells were grown at a density of 6-7 × 105 cells ml-1 and 

incubated for 24–48 h in the presence of NucB (1–100 μg ml-1), and Dornase alfa (100 μg ml-

1). Positive (100% methanol) and negative (no treatment) controls were included. At 24 and 

48 h time points, cell viability were assessed using CellTiter-Blue® Cell Viability assay by 

measuring florescence (560Ex/590Em). Mean values from three independent assays are 

shown and error bars represent standard error of the mean. Addition of NucB and Dornase 

alfa at concentrations up to 100 µg ml-1 for 24-48 h had no significant effects on the viability 

of human bronchial cells (One-Way ANOVA test with Tukey’s HSD post-Hoc comparison). 
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3.8.2 Effects of NucB on the apoptosis of human cells using Dual acridine orange 

(AO)/ethidium bromide (EB) apoptosis assay   

To obtain more detailed information about the effects of NucB on the viability and 

nuclear morphology of human cells, AO/EB DNA binding fluorescent stains coupled with 

microscopic imaging were employed as described in Materials and Methods section 2.12.3. 

Again, human BEAS-2B cells were treated with a range of NucB concentrations (1-100 µg 

ml-1) and Dornase alfa (100 µg ml-1) for 24-48 h. Cells were then stained with AO/EB and 

imaged using fluorescent microscopy. A combination of AO/EB and microscopic imaging can 

quickly and accurately assess nuclear apoptotic alterations and cytoplasmic membrane 

integrity simultaneously. At both time points (24-48 h), in the absence of NucB, almost all 

cells were alive with intact cell membranes and appeared green by AO. In these cultures, a 

negligible number of cells were orange-stained apoptotic or red-stained necrotic cells stained 

by EB. It was possible to recognise bright green stained spindle, oval or kidney shape shaped 

cellular nuclei with smooth outline in the majority of live cells (see Figure 3. 15). Under cell 

death-inducing conditions (positive controls), the majority of the epithelial cells were either 

apoptotic or necrotic. Apoptotic cells showed abnormal shape nuclei contained condensed and 

fragmented chromatin (green or orange colour), whereas necrotic cells had red or orange-

stained nuclei which were similar in shape to those of live cells with the absence of condensed 

chromatin.  

At both time points, qualitative observation of images showed that cells exhibited 

tolerance to high concentrations of NucB and Dornase alfa. After 24 h treatment with Dornase 

alfa at 100 µg ml-1 and NucB of up to 100 µg ml-1, the majority of cells were viable with a 

normal nuclear morphology. Minimal apoptotic changes were observed in a small proportion 

of cells at 100 µg ml-1 NucB (see Figure 3. 15 white circles).  However, under similar 

conditions these nuclear apoptotic changes were absent in cells treated with the same 

concentration of NucB for 48 h. Similarly, the vast majority of cells were alive with normal 

morphological features after 48 h of treatment with NucB at concentrations 1-100 µg ml-1 and 

Dornase alfa at 100 µg ml-1. Once more, cells at anti-biofilm concentrations of NucB (1 µg 

ml-1) exhibited normal viability and nuclear morphology in comparison to negative controls. 

In conclusion, the results obtained from the morphological examination of human bronchial 

epithelial cells treated with NucB of up to100 µg ml-1 were consistent with the results derived 

using CellTiter-Blue® cell viability analysis which indicate that NucB has no toxic effect on 

human bronchial epithelial cells. 
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Figure 3. 15 Effects of NucB on human bronchial epithelial cells morphology and apoptosis observed by fluorescence microscope. 

BEAS-2B cells were grown as described in Material and Methods and challenged with NucB (1–100 µg ml-1), and Dornase alfa (100 µg ml-1) for 24–48 h in 

5% CO2 at 37ºC. Positive (100% methanol treated) and negative (no treatment) controls for cell death were included. Cells were stained with dual AO/EB stains 

and visualised by fluorescence microscopy. Merged images show that the nuclei of cells with normal membrane integrity stained green by AO. Early apoptotic 

cells stained green but contained bright green dots in the nuclei due to chromatin condensation and nuclear fragmentation. Late apoptotic cells stained with EB 

and appeared orange, and characteristic apoptotic phenotypes were observed in some samples (white circles). Necrotic cells stained orange or red but the 

nuclear morphology resembled the viable cells with absence of chromatin condensation. Representative images from three independent experiments are shown. 

Scale bars are 20 µm. After 24-48 h incubation, NucB and Dornase alfa at concentrations up to 100 µg ml-1 had no obvious effect on cell viability and nuclear 

morphology of human bronchial cells.      
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3.9 Discussion  

Up to now, over 80% of all bacterial infections affecting humans are estimated to be 

associated with biofilm formation (Romling and Balsalobre, 2012, Davies, 2003). 

Staphylococcus aureus is among the most common pathogens isolated from human head and 

neck biofilm-associated infections including chronic rhinosinusitis and chronic otitis media 

with effusion (Daniel et al., 2012b, Shields et al., 2013). Biofilm formation by S. aureus is 

thought to be critical for infection since it provides bacterial cells with a plethora of 

advantages including, but not limited to, protection against host immunity and up to 1000- 

fold increase in resistance to antibiotics and antimicrobials (Elgharably et al., 2013, Rogers et 

al., 2010). Increasing evidence indicates that extracellular DNA (eDNA) is a key structural 

component within the matrix of many microbial biofilms including Staphylococcus aureus 

(Tetz et al., 2009, Fleming and Rumbaugh, 2017). In this section of the study, the main aim 

was to assess the efficacy of NucB, a DNase from Bacillus licheniformis, as a potential anti-

biofilm treatment against clinically relevant in vitro biofilms of Staphylococcus aureus.  

To date, many researchers have employed a variety of DNases such as bovine DNase I, 

recombinant human DNase I (rhDNase I), also known as Dornase alfa, restriction 

endonucleases, and micrococcal nuclease to control in vitro and in vivo biofilms formed by 

different Gram positive and Gram-negative bacterial species by targeting eDNA with the 

extracellular matrix of these bacterial biofilms (Fleming and Rumbaugh, 2017, Kaplan et al., 

2012, Tetz et al., 2009). In this study, among the assayed microorganisms relevant clinically 

to COME, S. aureus exhibit greatest capability to form robust and reproducible in vitro 

biofilms. Daniel et al. (2012a) also chose S. aureus as a suitable model microorganism to 

investigate eradication of biofilms with biodegradable modified-release antibiotic pellets due 

to its superior biofilm formation capability compared to other bacterial species implicated in 

COME. It follows that the species that produces the strongest biofilms will present the 

greatest challenge for approaches to eradicate biofilm-associated infections. Therefore S. 

aureus was felt to be a suitable species for developing methods to investigate biofilms and to 

assess the efficacy of biofilm control agents. It should be noted that S. aureus was among the 

species that were subsequently identified in COME patients and strains isolated from COME 

were analysed in Chapters 4 and 5.  

The next objective was to determine the best therapeutic concentration, which would 

efficiently inhibit biofilm formation and disperses pre-established biofilm of S. aureus clinical 

isolates. Results of this study showed that incubation of NucB at 25-500 ng ml-1 during 
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biofilm formation resulted in efficient dose–dependent inhibition (25-50%) of S. aureus 

biofilm formation as quantified by CV staining (Figure 3. 1 (A)). A maximum reduction of 

around 50% in the amount of attached biofilm biomass was observed in the presence of 500 

ng ml-1 of NucB. This finding is consistent with that of Kaplan et al. (2012) who found that 

the inclusion of rhDNase I (Dornase alfa) at 0.125-4 µg ml-1 under conditions similar to those 

employed in the current study caused efficient inhibition of biofilm formation by five 

different strains of S. aureus. In dispersal assays, the concentration of rhDNase I required to 

induce about 90% reduction in biofilm biomass of these S. aureus strains was approximately 

1 µg ml-1.  Bovine DNase I at 100 mg ml-1 also significantly inhibited biofilm formation by S. 

aureus strains SH1000, MRSA252 (Izano et al., 2008). Furthermore, Mann et al. (2009) 

found that inclusion of 28 units of bovine DNase I at different time-points of biofilm 

formation up to 24 h resulted in more than 50% decrease in cell attachment of S. aureus 

UAMS-1 in a static model. This study also revealed that addition of 500 mg ml-1 of 

polyanethole sulfonate (PAS), a chemical agent that inhibits cell lysis without affecting 

bacterial growth, at up to 2 h post-inoculation caused great reduction in biofilm biomass. 

Conversely, addition of PAS after 4 h of inoculation had negligible effect on cellular 

adhesion, highlighting the importance eDNA generated by cell lysis in mediating the 

attachment of bacterial cells during the early stage of biofilm formation by S. aureus which is 

consistent with the present study. There is evidence that eDNA is particularly important 

during infections. For example, a recent study found the amount of eDNA in 6 h biofilms of 

S. aureus and S. epidermidis was higher in strains isolated from infected knee and hip 

prostheses that in control isolates from the skin of healthy volunteers (Zatorska et al., 2017). 

Therefore, targeting eDNA is a promising approach to prevent the accumulation of 

staphylococcal biofilms in a variety of clinical situations.  

Data in this study also revealed  that the exogenous addition of NucB at 10-500 ng ml-1 

to 24 h pre-formed S. aureus static biofilms resulted in efficient detachment of approximately 

30-60% of biofilm biomass in comparison to the buffer treated control biofilms (Figure 3. 1 

(B)). The addition of various DNases such as NucB, rhDNase, and bovine DNase I to 

staphylococcal biofilms including S. aureus clinical isolates also exhibited significant 

biomass dispersal effect, indicating that eDNA is important for promoting the stability of 

mature biofilms (Izano et al., 2008, Kaplan et al., 2012, Shields et al., 2013, Sugimoto et al., 

2018).  Pre-established biofilms produced by many bacterial species such as E. coli, 

Micrococcus luteus, Bacillus subtilis, Haemophilus influenzae, Klebsiella pneumoniae, 

Pseudomonas aeruginosa, Streptococcus pyogenes, and Acinetobacter baumannii have also 
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been found to be sensitive to NucB or DNase I treatment (Nijland et al., 2010, Tetz et al., 

2009). Overall, the data presented here are consistent with a model in which eDNA is 

important both at the early stages of attachment and biofilm formation by S. aureus and later, 

for the stability of mature biofilms.  

It was noted in this study that NucB at 500 ng ml-1 was the best therapeutic 

concentration that dramatically inhibited and detached biofilms produced by the assayed S. 

aureus clinical isolates. Consequently, this concentration was employed in subsequent 

experiments. To validate this DNase activity, a commercial bovine DNase I at 5µg ml-1 was 

used under conditions identical to those applied for NucB biofilms inhibition and dispersal 

assays. In both assays, DNase I resulted in significant inhibition of biofilm formation and 

disruption of pre-formed biofilms of S. aureus by about 50% (Figure 3. 2). Therefore, 

bacterial DNase, NucB at 0.5 µg ml-1, has approximately 10-fold greater anti-biofilm 

(inhibitory and dispersal) activity against S. aureus biofilms than bovine DNase I (5 µg ml-1). 

The bovine DNase I used here was not highly purified, and therefore it is impossible to know 

how much DNase I was in the preparation. Although it was not possible to compare specific 

activities of NucB versus DNase I, the findings here supported the hypothesis that the 

antibiofilm action of NucB against biofilms is due to its DNase activity rather than any other 

property of the protein. One of the limitations with this study is that we did not included heat 

inactivated NucB enzyme in our control. However, a previous study found no anti-biofilm 

activity associated with the addition of heat inactivated NucB (Shields et al., 2013).This 

finding is consistent with other studies that compared the dispersal activity of different 

concentrations of two different NucB preparations with the similar range of commercial 

bovine DNase I concentrations against B. licheniformis biofilms (Nijland et al., 2010). Nijland 

et al. (2010) have found that the concentration of NucB required for efficient dispersal of B. 

licheniformis was approximately 5-fold lower than that of bovine DNase I. However, no 

previous study has compared the inhibitory activities of NucB and DNase I as reported in this 

study. 

Another objective of the present study was to assess effects of NucB on the structure of 

biofilms using CLSM imaging and LIVE/DEAD® BacLight™ staining. CLSM images of 48 h 

old S. aureus biofilms exposed to NucB were visibly reduced in comparison to control 

biofilms (Figure 3. 3 and Figure 3. 4). Shields et al. (2013) also have found that CLSM 

images of S. aureus FH7 and S. constellatus FH20 biofilms treated with 3 µg/ml NucB were 

clearly more dispersed compared to PBS treated control biofilms. To provide quantitative data 

on biofilm structure, we employed a well-developed computer software (COMSTAT 2) to 
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analyse 9 stacks of CLSM images for each treatment condition and calculated a range of 

parameters representing the spatial and three-dimensional structure of biofilms (Heydorn et 

al., 2000).        

Consistent with observational analysis, in both inhibition and dispersal studies, 

quantification of CLSM images by COMSTAT 2 software generally showed that biofilms 

treated with NucB had significantly reduced average thickness and biomass attached to the 

surface than those treated with the buffer only (see Table 3. 2 and Table 3. 3). Interestingly, in 

accordance with a previous study (Shields et al., 2013), CLSM images of biofilms grown on 

glass coverslip surface treated with NucB showed a slightly greater reduction in biomass than 

that observed in 96-well MTP model. In the MTP system, the reduction in biomass was 

approximately 50% for both assays (Figure 3. 1) compared to approximately 50-75% on glass 

coverslips (Table 3. 2 and Table 3. 3). This difference may arise from variation in the 

interactions of eDNA with the substrata, either glass coverslips or the polystyrene of MTPs. 

Alternatively, differences may have been due to the analysis techniques. It was noted that 

CLSM imaging shows microbial cells only in contrast to CV staining technique, which stains 

bacterial cells and matrix together. Consistent with our findings, CLSM imaging of 48 h old 

S. aureus UAMS-1 biofilms established in a flow-cell system and treated with 0.5 U ml-1 

DNase I for 24 h, showed significant reductions in biomass compared to control biofilms 

imaged before the addition of DNase I (Mann et al., 2009). Furthermore, S. aureus UAMS-1 

biofilms cultured for three days using a higher inoculum (1x108 CFU ml-1) were more 

sensitive to DNase I treatment. In contrast, 72-h old biofilms initiated with lower inoculum 

(5x105 CFU ml-1) were more resistant to treatment with DNase I, indicating that biofilm 

dispersal by DNases could be influenced by different growth conditions such as biofilm age 

and the amount of inoculum. In both techniques (CV staining and CLSM imaging) higher 

numbers of bacterial cells (2-5 x108 CFU ml-1) were used to grow biofilms in our study which 

may explain the observed sensitivity of these assayed biofilms to NucB treatment. However, 

further work is required to assess the sensitivity of S. aureus biofilms older than 48 h to NucB 

treatment.  

Having shown that NucB efficiently controls biofilms of clinically isolated S. aureus 

strains, the next stage aimed to assess the effects of NucB on antibiotic susceptibility of 

biofilms. To compare the level of antimicrobial tolerance of S. aureus biofilms with 

planktonic cells, it was necessary to assess antimicrobial sensitivity in both biofilm and 

planktonic cultures. Initially, MICs and MBCs of S. aureus clinical strains for Co-amoxiclav 

were determined. The rationale behind selecting Co-amoxiclav in this study was described in 
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section 3.4. Both strains were susceptible to Co-amoxiclav because their MICs were within 

MIC breakpoints according to the NCCLS criteria and methodology that separates susceptible 

organisms from intermediately susceptible or resistant organisms. A range of methods was 

attempted to measure antimicrobial sensitivity of these bacterial biofilms. Although the 

minimum biofilm eradication concentration (MBEC) assay is a well-established approach for 

determining the sensitivity of in vitro biofilms to antibiotics (Ceri et al., 1999), it did not 

perform well here. Difficulties in getting reproducible MBEC values with this device in 

addition to other disadvantages such as high cost of the device, risk of contamination when 

pegs are removed from the device’s lid for additional analysis and the possibility of 

incomplete dislodgement of biofilms cells from pegs by sonication have been reported 

previously (Dall, 2013). These limitations in the MBEC assay indicate that more 

standardization of the methods are required in order to be confidently introduced in clinical 

practice to guide clinicians’ decisions about treatment of biofilm infections (Coenye et al., 

2018). 

As an alternative, a colorimetric tetrazolium salt (XTT) assay was used to assess 

effects of antibiotics on metabolic activity of S. aureus biofilms. The principle of this assay 

was described in section 3.5.3. There are many advantages to the XTT assay. Perhaps the 

most important is the ability to be automated with a microplate reader for a quick processing 

of multiple biofilm samples without sample manipulation as biofilm removal from the surface 

is not required. However, there are also some limitations which should be considered in this 

assay, such as the difference in the metabolic rate of bacteria between biofilm and planktonic 

states and the susceptibility of the assay to bacterial growth rate and biofilm thickness 

(Bueno, 2014). The relationship between the time required by XTT reagents to reach the core 

of biofilms and biofilm thickness requires further investigation.  Here, the MICs of Co-

amoxiclav measured for planktonic S. aureus SB14 & SB17 cells using colorimetric XTT 

assay were similar to those determined using the standard microdilution method. Assessment 

of bacterial viability in this study showed that cells within biofilms of S. aureus SB14 & 

NCTC6571 were not susceptible to killing even when the concentrations of Co-amoxiclav 

reached as high as 4000 times greater than their MICs (Figure 3. 8). Since the metabolic 

activity of bacterial cells has been shown to be in linear relationship with the production of 

orange water-soluble formazan (Alonso et al., 2017, Peeters et al., 2008), we assumed that 

measuring the rate of tetrazolium salt conversion over the incubation time of 1 h (at 10 minute 

intervals) would provide greater sensitivity to determine differences in cell viability among 

the treatment groups of the assay. This approach revealed a significant dose-dependent 
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reduction in bacterial viability (represented by the rate of XTT salt reduction during the 

incubation period) in biofilms associated with S. aureus SB14 & NCTC6571 (Figure 3. 9). 

The MBEC values obtained in this assay were extremely elevated and they were more than 

8000- fold greater than the established MIC breakpoints. This finding broadly supports 

previous studies demonstrating that bacterial cells within biofilms are highly tolerant to very 

high concentrations of antibiotics in comparison to their free-living counterparts (Fleming and 

Rumbaugh, 2017). A recent study has also shown that biofilms of 11 staphylococcal clinical 

isolates including three S. aureus strains were resistant to wide range of antibiotics including 

Penicillin and Oxacillin at the highest concentration assayed (256 µg ml-1) when compared 

with their sensitive planktonic bacteria (Brady et al., 2017). Assessment of bacterial viability 

also showed that Co-amoxiclav at 512 and 1,024 µg ml-1 demonstrated borderline killing 

efficacy against biofilms of both S. aureus SB14 and NCTC6571, and these concentrations 

were used for investigating the effect of NucB on the antibiotic sensitivity of these S. aureus 

biofilms. 

 An important goal of this study was to assess the effects of NucB on susceptibility of 

S. aureus planktonic cells and biofilms to antibiotic treatment. Incubation of NucB at 0.5 µg 

ml-1 with S. aureus planktonic cultures in the presence of a range of Co-amoxiclav 

concentrations did not enhance their susceptibility to killing by Co-amoxiclav ( Figure 3. 10) ,  

indicating that eDNA possibly do not have a role in protecting S. aureus cells from Co-

amoxiclav action at the planktonic state phase. This observation agrees with that of Tetz and 

Tetz (2010) who showed that cultivation of E.coli and S. aureus planktonic cells in nutrient 

media in the presence and absence of DNase I (5 µg ml-1) had no effect on the susceptibilities 

of these bacteria to Ampicillin and Levofloxacin. Moreover, NucB showed no effect on the 

cell viability of these planktonic S. aureus cultures when compared with the growth controls 

without NucB. This finding was also observed in the bacterial cells within biofilms quantified 

by total viable counts (CFU ml-1) in parallel with CV staining where NucB was shown to be 

acting specifically through degradation of the pre-formed biofilms rather than by affecting 

cell viability itself (Table 3. 5 & Figure 3. 13). These findings are in agreement with Shields 

et al. (2013), who showed that incubation of NucB at 5 µg ml-1 for an hour had no effect on 

the cell viability of S. aureus FH7, S. constellatus FH20, S. salivarius FH29 and M. 

catarrhalis FH4 planktonic cultures in comparison to controls lacking the enzyme. 

Furthermore, previous studies carried out on in vitro S. aureus biofilms also have shown that 

addition of DNase I and rhDNase I for up to 24 h did not exhibit significant effects on 

bacterial growth and viability (Kaplan et al., 2012, Mann et al., 2009, Rice et al., 2007).         
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 The next stage was to use a combination of 1 µg ml-1 of NucB with Co-amoxiclav at 

512 and 1,024 µg ml-1 to assess the effect of NucB in enhancing antibiotic susceptibility of the 

selected S. aureus biofilms. Our results showed that addition of NucB alone at 1 µg ml-1 to 

pre-formed S. aureus biofilms significantly reduced the viability of bacterial cells within these 

biofilms by approximately 55-80% (Figure 3. 12). This reduction most likely owing to its 

dispersal action on these pre-formed biofilms without having a killing effect on bacterial cells 

within these biofilms. Importantly, when NucB was combined with Co-amoxiclav at either 

concentration (512 or 1,024 µg ml-1), there was an additional reduction in the metabolic 

activity of biofilms by approximately >35% compared to Co-amoxiclav treatment alone. 

These data demonstrate that NucB has the potential to enhance the susceptibility of S. aureus 

biofilms to Co-amoxiclav treatment. Furthermore, these data also show that anti-biofilm 

activity of NucB was not compromised when it was used in combination with Co-amoxiclav. 

Additional investigation of the compatibility of NucB with other antibiotics is required. In 

accordance with present findings, previous studies showed that bovine DNase I effectively 

disrupted in vitro biofilms formed by many bacterial species and enhanced their susceptibility 

to various antimicrobial agents (Kaplan, 2009, Tetz et al., 2009, Waryah et al., 2017). 

Similarly, rhDNase I has been demonstrated to inhibit biofilms produced by S. aureus and S. 

epidermidis and increase the sensitivity of bacterial cells within biofilms to biocide treatment 

(Kaplan et al., 2012).  

Finally, another important aim of this section was to investigate the safety of NucB on 

human cells relevant to the middle ear and nasal cavity. Data in this study demonstrated that 

human bronchial epithelial cells were highly tolerant to high concentrations of NucB up to 

100 µg ml-1 when compared with negative controls. Incubation of human bronchial epithelial 

cells for up to 48 h with NucB at concentrations >200-fold greater than the minimum 

concentration for anti-biofilm activity (0.5 µg ml-1) did not demonstrate significant effect on 

the viability of these cells (Figure 3. 14) . Consistent with the cell viability assay, when these 

cells were incubated in direct contact with NucB at 1-100 µg ml-1 for 24-48 h, apoptosis was 

almost absent (Figure 3. 15). These data, while preliminary, show that in vivo application of 

NucB, even at high concentrations possibly would be safe. Kaplan et al. (2012) have shown 

that treatment of the in vivo model of S. aureus infection with a combination of tobramycin 

and rhDNase I (2.5mg/l) successfully extended the survival of C. elegans in comparison to the 

control treated with antibiotic only. Moreover, in many clinical trials, daily administration of  

rhDNase I (Dornase alfa) inhalational solution, which also had no effect on cell viability and 

apoptosis in this study, has proven to be effective in slowing down the deterioration of 
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pulmonary function and reducing the frequency of lung infections in young and elderly 

patients with mild to advanced cystic fibrosis by reducing the viscosity of bronchial secretions 

(Parsiegla et al., 2012, Pressler, 2008). In conclusion, the key techniques to quantify in vitro 

biofilm formation were successfully developed and have shown that NucB effectively disrupts 

biofilms both alone and in combination with antibiotics. It was also shown that NucB is 

potentially non-toxic for in vivo use. Next, it will be important to determine whether NucB is 

effective against isolates from COME. In order to do this, representative fresh clinical isolates 

from the MEEFs of COME patients were required. Isolation of strains was a key goal of the 

next section. 
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Chapter 4. Characterisation of microbial populations associated with 

COME patients  

4.1 Introduction  

Chronic otitis media with effusion (COME) is a chronic inflammatory condition of 

multifactorial cause, characterised by the persistence of middle ear fluid behind an intact ear 

drum for more than 12 weeks, typically without clinical manifestations of acute inflammation. 

It is the most common cause of acquired hearing loss and elective surgery in childhood. It is 

estimated that 80% of children have had at least one episode of COME by the age of 10 years 

(Kubba et al., 2000, NICE, 2016). Most cases of COME are self-limiting and may undergo 

spontaneous resolution. However, unfavourable consequences are not uncommon. Long-

standing hearing loss due to COME at this critical stage of young children development may 

significantly deteriorate speech and language development in addition to negative impacts on 

older children’s social skills and progress at school (Rosenfeld et al., 2016, NICE, 2016). The 

aetiopathogenesis of COME is still not well understood. In the past, middle ear effusion fluids 

from COME patients were considered sterile because a high percentage of them were culture 

negative. However, subsequent studies conducted using culture-independent approaches such 

as targeted PCR have demonstrated the presence of pathogenic bacterial DNA co-existing 

with bacterial-specific mRNA in more than 80% of culture-negative cases, indicating the 

presence of metabolically active microorganisms in these effusions (Rayner et al., 1998, 

Kubba et al., 2000). This discrepancy between high culture-negative rate and high PCR-

positive rate in middle ear effusions of COME patients was later attributed to the presence of 

surface associated bacterial communities known as biofilms (Fergie et al., 2004). Biofilms of 

otopathogens were frequently observed on middle ear mucosa and effusions of patients with 

COME (Daniel et al., 2012b, Hall-Stoodley et al., 2006, Thornton et al., 2011, Van Hoecke et 

al., 2016, Kania et al., 2019, Novotny et al., 2019), strongly supporting the important role of 

biofilm infection in the aetiology of COME. 

The most commonly cultured bacterial pathogens from middle ear effusions of children 

with COME are Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, 

Staphylococcus aureus, and coagulase-negative staphylococci. All of these have the capability 

to develop biofilms in vitro and in vivo (Hall-Stoodley and Stoodley, 2009, Starner et al., 2006, 

Van Hoecke et al., 2016, Daniel et al., 2012b, Silva and Sillankorva, 2019). Studies suggest that 

biofilms on adenoids may be essential for the initiation and development of biofilms in the 
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middle ear, and that adenoids potentially act as a reservoir for biofilm-forming otopathogens 

(Hoa et al., 2009, Hoa et al., 2010, Van Hoecke et al., 2016, Kania et al., 2019, Nistico et al., 

2011). 

 Traditional culture-based surveys generally underestimate the total population of 

fastidious, uncultivable microbes and bacteria residing in biofilms because they tend to detect 

only dominant bacterial species that can grow efficiently and are present in high numbers in 

the samples (Swidsinski et al. 2007a; Stol et al. 2013). Therefore, these studies potentially 

delivered partial or biased characterisation of the microbial community composition (Ren et 

al. 2013). The development of advanced culture-independent molecular-based techniques 

such as 16S rRNA gene sequencing now enables characterisation of microbial communities 

present in different anatomical sites of human body, especially those that reside in biofilms, at 

a level of detail that far exceeds previous culture-dependent or other targeted-PCR based 

molecular methods (Ari et al., 2019, Boers et al., 2018, Chan et al., 2017b).  Culture-

independent methods are also biased to some extent. There are biases in DNA extraction, 

PCR amplification, DNA sequencing, and bioinformatics analysis (Fouhy et al., 2016, 

Eisenhofer et al., 2019). Detection of microbial DNA also does not necessarily indicate the 

presence of viable bacteria. Even so, the culture independent analysis still provide a new and 

detailed understanding of microbial community composition. Recent microbiome studies 

utilising 16S rRNA gene sequencing have shown that Alloiococcus otitis is the most 

predominant bacteria in the MEEFs of children with COME, followed by three common 

otopathogens genera (Haemophilus influenzae, Streptococcus pneumoniae, Moraxella 

catarrhalis) (Ari et al., 2019, Boers et al., 2018, Chan et al., 2016, Chan et al., 2017b, Jervis-

Bardy et al., 2015). Furthermore, Turicella otitidis has also been reported as a dominant 

bacteria within middle ear microbiota of children with COME (Ari et al., 2019, Boers et al., 

2018, Krueger et al., 2017). To our best knowledge, there are no published studies on the 

identification of bacterial population present in middle ear effusion fluids (MEEFs) of patients 

with COME using a combination of conventional culture and 16S rRNA gene sequencing 

techniques.  
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4.2 Aims and objectives  

The aims of this section were to characterise microbial populations present in MEEFs 

and adenoids of patients with COME using combined culturing and culture-independent 16S 

rRNA gene sequencing methods, and to investigate the efficacy of NucB enzyme in improving 

the recovery of bacteria from middle ear effusions. The objectives were as follow: 

1. To culture and identify microorganisms present in MEEFs collected from patients 

undergoing myringotomy and grommet tube insertion to obtain representative clinical 

isolates that can be used in the subsequent experiments.  

2. To measure the potential efficacy of NucB to disperse putative bacterial biofilms present 

in MEEFs. 

3. To analyse the microbiome of selected MEEFs and adenoids of COME patients 

including uncultivable species and estimate the efficacy of traditional culture methods 

in identifying microbial community members of COME. 
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4.3 Patients and samples 

In total, 39 patients were recruited in this study. Thirty-four of these were listed for 

myringotomy and grommet tube insertion for the treatment of COME, seven with 

adenoidectomy, and 27 without adenoidectomy. Control adenoid samples were also collected 

from 5 patients who were listed for adenotonsillectomy for the treatment of obstructive sleep 

apnoea (OSA) without clinical features of COME. From 34 patients, a total of 59 MEEF 

samples were collected. Twenty-five (73.5%) of 34 patients had bilateral COME, whereas 9 

had unilateral COME. There was significant variation in MEEFs consistency, colour, and 

volume. 

4.4 Isolation and identification of microbial populations associated with COME 

To characterise microbial populations associated with COME, a portion of MEEF was 

inoculated on a range of growth media such as blood, chocolate, and fastidious anaerobe agars 

using methods adopted from the UK Standards for Microbiology Investigations for ear 

infections and associated specimens (UKSMI )(PHE, 2014)(see Materials and Methods 2.4.2). 

Initially, a pilot isolation and identification of microorganisms from 12 MEEFs of 6 

COME patients was performed using the standard operating procedure for the investigation of 

ear infections. The plates were inoculated in duplicates with 20 µl of thawed MEEF that had 

been stored overnight at -80˚C. Blood and chocolate agars were incubated at 37˚C with 5% 

CO2 for 40-48 h, whereas FAA was incubated anaerobically for 7-14 days. To monitor the 

development of different colony types, plates were inspected for growth daily. Microbial 

colonies with different morphologies, colours, or sizes were sub-cultured three times on agar 

to establish axenic cultures. This approach was also employed for samples that produced 

abundant microbial colonies (> 400 colonies) (Figure 4. 6). All samples were plated in 

duplicate on each type of agar, and the total number and type of colonies were similar on each 

duplicate. In total, 8 strains of bacteria were isolated from 6 patients, consisting of 2 different 

genera and 6 separate species (Table 4. 1). In total, 7 (58.3%) out of 12 MEEFs were culture 

positive for at least one bacterium, whereas 5 (41.7%) were culture negative. 
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Table 4. 1 Bacteria isolated from MEEFs of 6 patients with COME in the pilot sample 

set 

Species  Number of MEEFs Number of patients  

Staphylococcus auricularis 4 2 

Staphylococcus epidermidis 1 1 

Staphylococcus pastueri  2 2 

Staphylococcus spp. 2 1 

Staphylococcus caprae 2 1 

Micrococcus luteus 1 1 

Staphylococcus spp. (CoNS) were most frequently isolated bacteria from pilot set of MEEFs 

 

Table 4. 2 Bacteria isolated from MEEFs of patients with COME in a follow-up set of 16 

patients, using an improved culture method 

Species  Number of MEEFs Number of patients  

Turicella otitidis 5 4 

Alloiococcus otitis 2 2 

Staphylococcus auricularis 4 3 

Staphylococcus epidermidis 3 2 

Staphylococcus aureus 2 2 

Staphylococcus simulans 2 1 

Staphylococcus schleiferi 1 1 

Staphylococcus pastueri  1 1 

Staphylococcus sp. 1 1 

Streptococcus oralis 2 2 

Streptococcus parasanguinis 1 1 

Streptococcus pneumoniae 1 1 

Streptococcus pyogenes 1 1 

Streptococcus mitis 1 1 

Haemophilus influenzae 1 1 

Moraxella catarrhalis 1 1 

Neisseria sp. 1 1 

Actinomyces odontolyticus 1 1 

Pseudomonas nitroreductans 2 1 

Wide range of bacterial species were isolated using the “improved” culture method. 
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Coagulase-negative staphylococci (CoNS) including Staphylococcus auricularis and 

Staphylococcus pastueri were the most commonly isolated bacteria that were present in 

almost all culture positive MEEFs. These data in combination with the early culture 

independent 16S rRNA gene sequencing data obtained from these MEEF samples (see section 

4.8) clearly showed that the culturing methods used needed improvement as they failed to 

isolate most of the potential middle ear colonisers identified by 16S rRNA gene sequencing. 

Therefore, the methods used to culture and isolate microorganisms from the subsequent 26 

MEEFs collected from 16 patients (10 with bilateral COME, 6 with unilateral COME) were 

optimised. Modifications included (i) transferring MEEF samples quickly (within 30-60 min) 

following collection for immediate processing, (ii) inoculating the plates with 50 µl of MEEF 

instead of 20 µl, and (iii) incubating blood and chocolate agars at 37˚C with 5% CO2 for a 

longer duration (10-14 days instead of 40-48 h; see Materials and Methods section 2.4.2).  

Following these optimisation steps, 32 strains of bacteria were isolated from the 16 

patients, comprising 9 different genera and 19 different bacterial species (Figure 4. 2). 

Fourteen (53.8%) of the 26 MEEFs were culture positive, and 12 (46.2%) MEEFs were 

culture negative. The most prevalent bacterial species present in MEEFs of COME was 

Turicella otitidis, which was isolated from 19.2% of the samples. Colonies of T. otitidis 

started to appear on culture media (blood, chocolate, FA agars) after 72 h. Coagulase-negative 

staphylococci (CoNS) were still the most frequent microorganisms associated with COME 

and were isolated from 12 of 26 MEEFs (46.2%). S. auricularis (15.4%), Staphylococcus 

epidermidis (11.5%), and Staphylococcus simulans (7.7%) were the most frequently isolated 

species among CoNS. Alloiococcus otitis was isolated from 7.7% of samples. Colonies started 

to appear on growth media after around 5-7 days of incubation. S. aureus, Streptococcus 

oralis, and Pseudomonas nitroreductans were each isolated from 2 MEEFs (7.7%). Other 

bacterial species that were less frequently isolated from MEEFs included H. influenzae, M. 

catarrhalis, S. pneumoniae, Streptococcus pyogenes, Streptococcus mitis, and Actinomyces 

odontolyticus. The modifications adopted in culture methods significantly improved the 

isolation of many bacterial species associated with COME, particularly fastidious 

microorganisms such as T. otitidis, A. otitis, H. influenzae, M. catarrhalis, S. pneumoniae, S. 

mitis, Streptococcus parasanguinis, and A. odontolyticus.  

However, an extended incubation of a significant number of samples was associated 

with an increase in the rate of contamination, which started to appear on blood and chocolate 

agars as patches of fungal growth with an appearance resembling cotton wool following 72-96 

h incubation at 37˚C with 5% CO2. These patches occasionally covered most of the surface of 



121 

 

the agar, which made the visualisation of bacterial growth impossible and interfered with 

attempts to obtain axenic cultures (Figure 4. 1). Therefore, further optimisation was required 

to prevent contamination during long incubation of the growth media. Initially, this work 

focussed on determining the source of contamination. Blood agar plates were prepared as 

described in Materials and Methods section 2.4.1. Plates were poured on the bench and left 

uncovered to solidify, or were poured in the Class 1 biological safety cabinet and either left 

uncovered to solidify or covered immediately. Empty (uninoculated) control blood agar plates 

were incubated at 37˚C with 5% CO2 for up to 10 days and checked for growth daily. At the 

end of incubation, plates that were left uncovered to solidify on either the bench or in the 

biological safety cabinet showed patches of growth similar to those that had appeared on 

culture plates during the extended incubation. By contrast, no growth was observed on plates 

that were covered immediately after being poured in the biological safety cabinet (see Figure 

4. 2). These results were consistent with contamination being introduced to the plates from the 

air during growth media preparation. To minimise the risk of airborne contamination by 

fungal spores or bacteria, the biological safety cabinet was cleaned and thoroughly 

decontaminated using both antibacterial and antifungal disinfectants. The benchtop incubator 

and the candle jars were also disinfected, and plates were always covered immediately after 

pouring from this point forward. Overall, these steps dramatically reduced the levels of 

contamination during the longer (10-14 day) incubation period. 
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Figure 4. 1 Appearance of contamination on growth media. 

(A) Chocolate agar from MEEF 20L, (B) blood agar from MEEF 17L. The growth of white 

patches of fungal contamination (black arrows) are visible on both blood and chocolate agars. 

Occasionally, these patches covered a large area of the plate’s surface. Alloiococcus otitis 

small colonies are also visible (black circle), covering the agar surface following 5-7 days of 

incubation at 37˚C with 5% CO2. 

Figure 4. 2 Outcomes of an extended incubation of empty (control) blood agar plates 

Blood agar was prepared as described in Materials and Methods before being poured into 

petri dishes and either left uncovered to solidify on the bench or in the biological safety 

cabinet or covered immediately in the biological safety cabinet. Empty (uninoculated) plates 

were incubated for up to 10 days at 37˚C with 5% CO2. Patches of white growth were 

observed on plates that were left uncovered on the bench (A) or in the biological safety 

cabinet (B) at the end of the incubation time. No growth was observed on plates that were 

covered immediately after the growth medium was poured in the biological safety cabinet (C). 

These results show that contamination was likely introduced from the air during growth 

media preparation.       
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Following these additional optimisation steps, a total of 21 MEEF samples from 12 

patients (9 with bilateral COME, and 3 with unilateral COME) were analysed. Nineteen 

(90.5%) MEEFs were culture positive for at least one microorganism, whereas only 2 (9.5%) 

MEEFs were culture negative. Forty-five microbial strains were identified in total from 12 

patients, including 10 different genera and 16 separate species (Table 4. 3). Each MEEF 

contained between 1 to 6 microbial species, and an average of 2.3 (SE 0.5) bacterial species 

were identified per MEEF sample. There was no significant difference (p= 0.47; unpaired two 

samples t-test) in the number of bacterial species isolated from both ears in patients with 

bilateral COME. T. otitidis again was the most common microorganism detected in MEEFs 

and was isolated from 11 of 21 samples (52.4%). A. otitis was the second most common 

bacterial species and was identified in 38.1% of samples. CoNS were isolated from 76.2% of 

samples including S. epidermidis (28.6%), S. auricularis (19%), Staphylococcus capitis 

(14.3%), and in addition to other CoNS, which were isolated from 14.3% of samples. H. 

influenzae, M. catarrhalis, and S. pneumoniae have previously been shown to be the most 

frequently isolated pathogens. These microorganisms were isolated from 4 of 21 MEEFs 

(19%), and they frequently co-existed with other bacterial species. Other microbial species 

such as Propionibacterium acnes, Streptococcus salivarius, Neisseria flavescens, Kocuria 

rhizophila, and Candida parapsilosis were also identified, although less frequently. The vast 

majority of microbial isolates were facultative anaerobes. However, obligate aerobes (such as 

N. flavescens and M. catarrhalis) and obligate anaerobes (P. acnes) were also identified. In 

conclusion, adoption of the optimised culture techniques significantly improved culturing and 

isolation of microorganisms associated with COME. Moreover, a significantly higher number 

of culture positive MEEF samples were identified using the optimised culture methods in 

comparison to the traditional culture methods used in this study. 
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  Table 4. 3 Bacteria isolated from middle ear fluids of 12 patients with COME 

Species  Number of MEEFs Number of patients  

Turicella otitidis 11 6 

Alloiococcus otitis 8 5 

Staphylococcus epidermidis 6 4 

Staphylococcus auricularis 4 3 

Staphylococcus capitis 3 2 

Haemophilus influenzae 2 1 

Propionibacterium acnes 2 2 

Staphylococcus simulans 1 1 

Staphylococcus hominis 1 1 

Staphylococcus pettenkofen 1 1 

Streptococcus pneumoniae 1 1 

Streptococcus salivarius 1 1 

Moraxella catarrhalis 1 1 

Neisseria flavescens 1 1 

Kocuria rhizophila 1 1 

Candida parapsilosis 1 1 

Most of MEEFs were culture positive when the modified “improved” culture method was 

used. High proportion of fastidious species such as Turicella otitidis and Alloiococcus otitis in 

addition to other microorganisms were isolated.   
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4.5 Efficacy of NucB for improving culturing recovery of microorganisms from a pilot 

set of MEEF samples 

Bacteria residing in biofilms are often difficult to culture. In Chapter 3, it was shown 

that NucB from Bacillus licheniformis can disperse biofilms formed by clinically relevant S. 

aureus strains. I hypothesised that NucB can disperse biofilms present in MEEFs and boost 

recovery of microorganisms from these biofilms. Initially, 12 MEEFs collected from 6 

patients with COME were used to optimise methods. These samples were divided into two 

portions. The first portion was stored at -80˚C until microbial DNA extraction for 16S rRNA 

gene sequencing could be performed. The second portion of MEEF was used for culturing 

cells and was either processed immediately or stored at -80˚C for processing the next day. 

Twenty microliters of MEEF were inoculated on blood agar, chocolate agar, and FA agar in 

duplicate (see section 4.4) before being treated with NucB (1 µg ml-1) for 1 h at 37°C 

aerobically. Following the incubation, 20 µl from NucB-treated MEEF were plated on each 

growth medium and incubated under the same conditions as described in section 4.4. The 

colony forming units (CFU) per millilitre were then calculated for NucB-treated and control 

samples. Of the 12 MEEFs, 6 were excluded from analysis because 5 were culture-negative, 

and one produced heavy growth (>400 colonies) that was impossible to count accurately.  

Overall, MEEFs treated with NucB a showed 2-fold or more increase in the number of 

CFU ml-1 of microorganisms in 3 out of 6 MEEFs cultured on blood agar plate in comparison 

to negative controls (Table 4. 4), whereas only 1 out of 6 MEEFs showed greater counts of 

bacteria in the absence of NucB, which could be due to uneven distribution of microbial cells 

across the MEEF samples. By contrast, in 2 out of 6 MEEFs there were at least two-fold 

greater CFU ml-1 on FA agar in untreated controls compared with NucB-treated cultures 

(Table 4. 5). Only one NucB-treated MEEF had more microorganisms cultured on FA agar 

than the control.  
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Table 4. 4 Colony forming unit numbers (CFU ml-1) of microorganisms cultured from 

middle ear fluids, in the presence and absence of NucB (1 µg ml-1), on chocolate agars.   

Patient No.a Control   (+) NucB (1 µg ml-1 )* 

1L 2400 150 

2R 0 12550 

3R 50 200 

3L 100 200 

4R 100 100 

6L 500 400 

 

Table 4. 5 Colony forming unit numbers (CFU ml-1) of microorganisms cultured from 

middle ear fluids, in the presence and absence of NucB (1 µg ml-1), on FA agar. 

Patient No. a  Control   (+) NucB (1µg ml-1 )* 

1L 450 150 

2R 0 0 

3R 1600 100 

3L 0 300 

4R 0 0 

6L 250 150 
a MEEF 1R,2L,4L,5R,5L, and 6R were excluded from analysis. 

*  Values in bold and underlined indicate NucB increased CFU ml-1 by 2-fold or more, 

whereas values that are underlined only indicate 2-fold or more CFU ml-1 were cultured in the 

absence of NucB. The CFU numbers represent the averages of CFU ml-1 calculated from two 

plates. In general, NucB did not consistently increased the recovery of bacteria from MEEFs 

that were cultured on both blood and FA agars.     

 

The results obtained from these initial experiments showed an inconsistent efficacy of 

NucB at improving the recovery of bacteria from MEEF samples. It is likely that microbial 

cells were unevenly distributed across the MEEF samples, resulting in a great deal of inherent 

variability in the assay. These problems may have been compounded by inconsistent levels of 

NucB activity, since NucB was standardised based on mass rather than activity, and different 

preparations were used for different assays. To eliminate issues arising from inconsistent 

levels of NucB activity, it was important to develop methods to measure NucB nuclease 

activity. This would then enable consistent amounts of active NucB enzyme to be added to 

each experiment. 
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4.6 Measurement of NucB enzymatic activity 

4.6.1 Measurement of NucB specific activity in the optimal buffer solution 

In order to be able to add a consistent amount of active NucB to each experiment, the 

specific activity of NucB in the optimal buffer (50 mM Tris pH 8.0, 5 mM MnSO4) was 

measured using both spectroscopic and gel electrophoresis techniques (see Materials and 

Methods section 2.7.1). It should be noted that in Chapter 3 the inhibition and dispersal of S. 

aureus biofilms by NucB was demonstrated to be dose-dependent over a concentration range 

of 10-500 ng ml-1 (see Figure 3. 1). To ensure that differences in the enzyme activity of 

different NucB preparations would not interfere with the assay, the enzyme was used in 

excess (0.5 μg ml-1) during subsequent experiments throughout Chapter 3. However, the 

continued use of high concentrations of enzyme was problematic due to the high cost of 

producing the purified enzyme. Therefore, it was important to develop an assay for measuring 

and standardising enzyme activity.    

The principle of the assay was to digest high molecular weight calf thymus DNA 

(CTDNA) with NucB for a certain time period and then quantitatively recover and measure 

the amount of perchloric acid-soluble low molecular weight DNA produced. Spectroscopic 

measurement does not provide accurate quantification of DNA degradation during early stage 

of the reaction because only DNA digestion products of less than approximately 500 bp in 

length are quantitatively solubilised by the addition of perchloric acid, whereas high 

molecular weight DNA fragments are not. Thus, the early part of the reaction was monitored 

by agarose gel electrophoresis (Figure 4. 3), which showed that maximum degradation of high 

molecular weight CTDNA into low molecular weight DNA was reached by 60 minutes in 

comparison with the negative controls. The spectroscopic analysis of the digestion of CTDNA 

(125 µg) by NucB revealed that on average 10 ng of NucB generated an A260 of 5.6 

absorbance units (+/- 0.3, n=3), equivalent to 70 µg of DNA, in 1 h at 37ºC in 250 µl of Tris 

buffer containing 5 mM Mn+2 after taking into account the various dilutions made. A unit of 

NucB activity was defined as a production of perchloric acid soluble low molecular weight 

CTDNA that generated an absorbance of 1.0 at 260 nm, per hour at 37oC in 50 mM Tris 

pH 8.0, 5 mM MnSO4 buffer. Thus, the mean specific activity of NucB calculated was 1.4 x 

105 units mg-1.  

To determine the best concentration of NucB to be used in the measurement of specific 

activity, the activity of a range of NucB concentrations (0.25, 1, 5, 10, 25, 50, 100 ng) was 

measured (see Materials and Methods section 2.7.1). The extent of DNA digestion increased 
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up to 50 ng NucB, which generate an A260= 10.7 (+/- 0.3, n=3). Therefore, NucB concentration 

of 25 ng was considered as an ideal concentration for the assay work because it produced a 

large signal (A260= 8.1 (+/- 0.25, n=3), 101 µg of DNA), and it lay approximately in the middle 

of the range (see Figure 4. 4 (B)). Visualisation of the DNA digestion products using gel 

electrophoresis confirmed that NucB at 25 ng fully digested high molecular weight CTDNA 

into low molecular weight DNA products and there were no intermediate molecular weight 

DNA fragments as seen with other concentrations below 25 ng (see Figure 4. 4 (A)). 

Furthermore, 25 ng of NucB was the lowest concentration of NucB that produced an A260 

value that was approximately 80% of the overnight value when 125 µg CTDNA was digested 

to completion, using 100 ng NucB incubated overnight (A260= 10 (+/- 0.6, n=3), 125 µg). On 

the other hand, NucB concentrations above 50 ng will saturate the reaction. Moreover, 

addition of NucB at concentrations lower than 25 ng produced partial digestion products that 

would be precipitated by perchloric acid and therefore not measured as assay products. In 

conclusion, the correct incubation time and NucB concentration of the assay were determined 

and the assay was used to monitor NucB specific activity subsequently to ensure the addition 

of a consistent amount of enzyme activity in the experiments. 
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Figure 4. 3 NucB activity against high molecular weight calf thymus DNA. 

Calf thymus DNA (125 µg) was incubated with (+) or without (-) 10 ng of NucB in Tris 

buffer containing 5 mM Mn+2 ions for 15, 30 and 60 min at 37ºC. Agarose (1% w/v) gel 

electrophoresis was used to separate the digestion products of samples and DNA visualised by 

staining with GelRed™. (M) represents a molecular weight marker (HyperLadder 1 kb Plus 

(250-12,007 bp). The CTDNA was completely digested by 60 min. The image shows total 

degradation of high molecular weight CTDNA into low molecular weight DNA in the 

presence of NucB at each time point when compared to negative controls.      
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Figure 4. 4 The nuclease activity of NucB against calf thymus DNA. 

(A) Calf thymus DNA (125 µg) was incubated with a range of NucB concentrations in Tris 

buffer containing 5 mM Mn+2 ions for 60 min at 37ºC. CTDNA was also incubated with or 

without 100 ng of NucB overnight (ON). Agarose (1% w/v) gel electrophoresis was used to 

separate the digestion products of samples, and DNA visualised by staining with GelRed™. 

(M) represents a molecular weight marker (HyperLadder 1 kb Plus (250-12,007 bp). (B) 

Absorbance values (A260) of perchloric acid soluble DNA products generated by the digestion 

of 125 µg of CTDNA with a range of NucB concentrations in 250 µl of Tris buffer containing 

5 mM Mn2+ ions for 60 min at 37ºC were measured by Nanodrop spectrophotometry. NucB 

showed dose-dependent degradation of High molecular weight CTDNA into low molecular 

weight DNA over 60 min with the full digestion of CTDNA was obtained at 25ng compared 

to the control (A). There was also proportional correlation between the increase in the A260 of 

perchloric acid soluble DNA products and the increase in the concentration of NucB (B).         
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4.6.2 Measurement of NucB nuclease activity in growth media and normal saline  

The nuclease activity of NucB was measured in different solutions such as TSB and 

0.9% saline solution used in the experimental methods assessing the anti-biofilm activity of 

NucB against various bacterial biofilms (see Materials and methods section2.7.2). These were 

chosen because both media were used for experiments involving NucB digestion. For 

example, 0.9% saline solution was used during the collection of MEEF samples (see Material 

and Methods section 2.3.1) that were treated by NucB to assess the efficacy in improving the 

recovery of bacteria. TSB was used as a culture medium to grow S. aureus biofilms that were 

treated with NucB to investigate the capacity to inhibit biofilm formation by different S. 

aureus strains as previously described in chapter 3. Generally, the nuclease activity of NucB 

was lower in both solutions compared with the NucB buffer. The calculated specific activity 

of NucB in TSB was 6.8 x 104 units mg-1, which was approximately 2-fold less than that 

calculated in the optimal buffer (1.4 x 105 units mg-1) containing 50 mM Tris-HCl pH 8.0, 5 

mM MnSO4. In 0.9% saline solution, the findings were similar. The calculated specific 

activity of NucB was 8.0 x 104 units mg-1, which was again just 50% less than that calculated 

in NucB buffer (1.3 x 105 units mg-1). The reduced DNase activity was also observed by 

agarose gel electrophoresis (see Figure 4. 5). In conclusion, NucB was still able to efficiently 

digest high molecular weight CTDNA in both TSB and 0.9% saline solution. However, the 

specific activity was significantly lower in TSB than in the optimal NucB buffer.  
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Figure 4. 5 The nuclease activity of NucB against CTDNA in 0.9% saline solution 

Calf thymus DNA (125 µg) was incubated with 10 ng NucB in Tris buffer containing 5 mM 

Mn2+ (N) or in 0.9% saline solution (NS) for 15, 30 and 60 minutes at 37ºC.  Control samples 

with no NucB (-) were included. Agarose (1% w/v) gel electrophoresis was used to separate 

the digestion products and DNA visualised by staining with GelRed™. (M) represents a 

molecular weight marker (HyperLadder 1 kb Plus (250-12,007 bp)). NucB was still able to 

degrade high molecular weight CTDNA into low molecular weight DNA over 15-60 min 

incubation in 0.9% NS but at slightly slower rate compared to that in Tris buffer.    
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4.7 Efficacy of NucB in improving culturing recovery of microorganisms from MEEFs 

of COME patients 

Having established methods for measuring NucB specific activity, subsequent samples 

of MEEFs were treated with 100 units of NucB to assess its efficacy at improving culture 

recovery of bacteria from these samples. Furthermore, it was important to include additional 

controls that consisted of samples treated exactly the same way as the NucB samples, but 

without the inclusion of NucB. This ‘incubation control’ was included in the analysis of the 

subsequent MEEF samples (see Materials and Methods section 2.8.3). 

A total of 44 MEEFs from 26 patients with COME were assessed. After plating 50 µl 

of the MEEF sample on each growth medium (blood, chocolate and FA agar) in duplicate, the 

remaining sample was divided into 3 portions and processed according to the optimised 

methods described previously in Materials and Methods section 2.8.3. Of the 44 MEEFs 

treated, 19 were excluded from statistical analysis because 14 were culture–negative in all 

conditions, 3 were lacking incubation controls, and two samples produced abundant microbial 

colonies in all conditions that could not be counted accurately (Figure 4. 6). Generally, 

addition of 100 units of NucB to MEEF did not cause a statistically significant increase (p = 

0.38; paired two samples t-test) in the total numbers of microorganisms cultured on blood and 

chocolate agar plates when compared with controls incubated without NucB for 1 h at 37°C in 

ambient air (Table 4. 6). In the presence of NucB, 5 out of 25 samples (20%) showed 2-fold 

or more CFU ml-1 on blood and chocolate agar in comparison to incubation controls with no 

NucB (Figure 4. 7). Furthermore, 5 out of 25 MEEFs (20%) treated with NucB also showed 

just below 2-fold increase in the total bacterial CFU ml-1 cultured on blood and chocolate 

agar. However, there was a statistically significant reduction (p = 0.007; paired two samples t-

test) in the total numbers of microbes cultured from MEEFs incubated without NucB for 1 h 

at 37°C aerobically on blood and chocolate agars when compared with the control MEEFs 

that were cultured immediately on these plates without incubation (see Figure 4. 8). 

Surprisingly, this reduction affected the majority of the bacterial species cultured in this study 

and it was not species-specific, though fastidious and slow growing bacteria were affected 

more than other bacteria. However, under the same conditions the total numbers of microbial 

colonies cultured from MEEFs treated with NucB was not significantly different (p = 0.08; 

paired two samples t-test) from those cultured from negative controls without incubation.  

Under anaerobic conditions using FAA, microbial cells were released in greater 

numbers when treated with NucB than the incubation controls in only 3 out of 25 MEEFs 
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(12%) ( Table 4. 7), which was not statistically significant (p = 0.8; paired two samples t-test). 

Again, 11 out of 25 MEEFs (44%) incubated for 1h at 37°C aerobically in the absence of 

NucB had 2-fold or more decrease in the total numbers of microorganisms when compared 

with the negative controls cultured on FAA without incubation (Table 4. 7). In conclusion, 

addition of 100 units of NucB to the MEEFs collected from patients with COME did not 

efficiently improved the recovery of the bacteria from these samples onto culture media, and 

the incubation of these samples for 1 h at 37°C on air without NucB had a significant negative 

impact on the viability of the microbial cells present in these samples.  
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Figure 4. 6 Abundant colonies isolated from COME samples on two different growth 

media. 

(12R) Sample from the right ear of patient 12 cultured on blood agar. (33R) Sample from the 

right ear of patient 33 cultured on chocolate agar. Many colonies of different morphology are 

visible covering both agar plate surfaces in all treatment conditions. 
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Table 4. 6 Colony forming units (CFU ml-1) of microorganisms cultured from MEEFs, in 

the presence and absence of NucB (100 unit), on blood and chocolate agars. 

MEEF No.a Fresh control 

CFU  

(+)100 unit NucB 

CFU ml-1 b  

Incubation control CFU ml-1 
b 

9L 1845 (2385) 540 

11L 3060 2112 2340 

11R 1600 3476 3460 

12L 7880 3740 3800 

14L 580 (242) 40 

16L 8000 0 0 

19R 120 (182.4) 80 

20L 16000 14700 23870 

21L 3760 2275 1440 

22L 400 110 120 

23R 7720 5865 3000 

23L 4700 3105 3600 

24L 180 92 100 

25R 160 138 80 

25L 980 0 0 

26R 1700 1311 780 

26L 140 184 160 

27R 700 207 120 

27L 1820 (230) 80 

29R 100 0 0 

30L 12000 184 160 

32R 3180 (3837) 1560 

32L 4560 0 0 

33L 160 430 360 

34L 7640 5221 5160 

a MEEF 7R, 7L,18L were excluded from analysis because of lack of incubation controls, 12R 

and 33R were excluded because their CFU count were >400, and the rest for being culture 

negative.b * Values in bold and underlined  indicate MEEFs incubation for 1h at 37°C 

aerobically reduced total CFU ml-1 by 2-fold or more in comparison to fresh controls, whereas 

values between parentheses indicate NucB increased CFU ml-1 by 2-fold or more compared to 

incubation controls. The CFU numbers represent the averages of CFU ml-1 calculated from 
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two plates. NucB did not significantly improved culture recovery of bacteria from MEEF 

samples.  

Table 4. 7 Colony forming unit numbers (CFU ml-1) of microorganisms cultured from 

MEEFs, in the presence and absence of NucB (100 unit), on FAA agar anaerobically 

MEEF No.a Fresh control CFU  (+)100 unit NucB 

CFU ml-1 b 

Incubation control 

CFU ml-1 b  

9L 3330 (2790) 1040 

11L 2100 748 1360 

11R 1780 4532 3760 

12L 7160 4114 2460 

14L 0 0 0 

16L 10400 0 0 

19R 140 0 0 

20L 880 210 372 

21L 2860 2100 3380 

22L 0 0 0 

23R 3980 3588 3140 

23L 2120 1610 2020 

24L 0 0 0 

25R 140 92 60 

25L 660 184 220 

26R 260 (621) 280 

26L 40 0 0 

27R 260 (414) 140 

27L 1480 138 140 

29R 80 0 0 

30L 220 115 100 

32R 3300 3750 2280 

32L 0 0 0 

33L 220 344 320 

34L 3400 3312 3980 

a MEEF 7R, 7L,18L were excluded from analysis because of lack of incubation controls, 12R 

and 33R were excluded because their CFU count were >400, and the rest for being culture 

negative. 

b * Values in bold and underlined  indicate MEEFs incubation for 1h at 37°C aerobically 

reduced total CFU ml-1 by 2-fold or more in comparison to fresh controls, whereas values 

between parentheses indicate NucB increased CFU ml-1 by 2-fold or more compared to 
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incubation controls. The CFU numbers represent the averages of CFU ml-1 calculated from 

two plates. NucB also did not significantly increased CFU ml-1 of bacteria cultured on FAA. 

  

 
 

Figure 4. 7 Recovery of COME microorganisms from MEEF samples using NucB 

enzyme.  

MEEFs were incubated for 1 h at 37°C in ambient air with or without 100 units of NucB, then 

cultured on agar plates and compared with negative controls that were not subjected to 

incubation (Fresh control). This method enabled the counting of the total number of microbial 

colonies released from MEEFs. An illustration of this, on chocolate agar (19R) and blood agar 

(9R), show greater numbers of microbes recovered with the addition of NucB, in comparison 

to the incubation control.     
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Figure 4. 8 Effect of aerobic incubation on COME microorganisms.  

Examples of chocolate agars from MEEF No. 16L and 30L shows significantly less 

microorganisms were cultured from MEEFs incubated for 1h at 37°C aerobically with or 

without NucB in comparison to fresh controls that were not subjected to incubation. The 

microorganisms affected were Alloiococcus otitis, Propionibacterium acnes, and 

Staphylococcus epidermidis in case of 16L, and Staphylococcus auricularis in case of 30L. 
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4.8  Characterisation of microbial communities associated with COME and adenoids by 

16S rRNA gene sequencing  

To verify the efficacy of the traditional culture methods for identifying the bacterial 

population present in the MEEFs of patients with COME, and to study co-occurrence of 

otopathogens in the middle ear and adenoids, the composition of the microbiota present in the 

selected MEEFs and adenoids was also characterised using culture-independent 16S rRNA 

gene sequencing. MEEF and adenoid samples underwent microbial DNA extraction as 

previously described (see Materials and Methods, section 2.6.1 and 2.6.2) and the 

concentrations of DNA extracted from the samples are listed in Table 4. 8. The sequencing of 

PCR- amplified V1-V3 (27F-519R) fragments of 16S rRNA gene using Illumina®MiSeq™ 

platform alongside with bioinformatics analysis of these DNA sequences were performed by 

Dr Scott Dowd (see Materials and Methods, section 2.5.3). The results of 16S rRNA gene 

sequencing were received in the form of text files and the processed data in the form of 

FASTA files. The numbers and percentages of OTUs that were taxonomically assigned at 

kingdom, phylum, class, order, family, genus, and species level for each sample set were 

received in a separate text file. These data were transferred into an Excel spreadsheet by me 

for further analysis including sorting OTUs according to their percentages in each sample, 

removing OTUs with relative abundance of less than 1%, removing common contaminants 

that were identified based on negative control samples and literature screening, and finally 

presenting the processed data in bar charts and graph for further observational analysis.  

Initially, a pilot sequencing of 8 MEEFs from 4 patients with bilateral COME and 5 adenoids 

(two from patients with COME, and 3 without COME (controls)) was performed. These 8 

MEEF samples in addition to 4 MEEFs from 2 other patients were also analysed using the 

traditional culture methods (see Table 4. 1). The bacterial profile identified in 8 MEEFs with 

16S rRNA gene sequencing was greatly different from that identified using standard culture 

methods recommended by UKSMI (see Table 4. 1 and Figure 4. 9). Culture-negative samples 

(2R, 2L, 6R, and 6L) appeared to have a more diverse microbial profile when compared with 

culture – positive samples. It is likely that this was due to the high proportion of the 

contaminant DNA that was detected because of the low bacterial loads in these samples (see 

Table 4. 9). Therefore, common contaminant DNA were manually identified and removed 

based on the literature (Salter et al., 2014, Eisenhofer et al., 2019). In total, 14 different 

bacterial genera consisting of 18 separate species with a relative abundance of >1% were 

identified (see Figure 4. 9). A. otitis and Pseudomonas tolaasii were the most dominant 
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bacterial species, which were present in 4 out of 8 (50%) MEEF samples. S. epidermidis and 

P. acnes were the second most common species identified in 3 out of 8 (37%) of MEEFs. H. 

influenzae and Mycoplasma pneumoniae were present in 2/8 MEEF samples. Other bacterial 

species including Prevotella spp., S. mitis, and S. petrasii were less frequently present in 

MEEF specimens. The traditional culture methods for the initial pilot set of MEEF samples 

failed to identify the majority of the microorganisms present in these samples including 

fastidious or slow-growing bacteria such as A. otitis, H. influenzae, P. acnes, M. pneumoniae, 

and others. Furthermore, when 16S rRNA gene sequencing was used, the bacterial profiles in 

the culture positive bilateral MEEFs collected from the same patients were similar. For 

example, in patient 1, 3 out of 4 bacterial species identified were detected in both samples and 

they were dominated by H. influenzae, whereas in patient 6, A. otitis was the only dominant 

species in both MEEFs. Although A. otitis, H. influenzae, and P. acnes did not appear in the 

initial “pilot culturing” for the first set of MEEFs sample, these organisms did appear in the 

other sets of MEEF samples when ‘improved’ culturing methods were used (see Table 4. 3).      

The microbiota of the adenoids consisted mainly of Haemophilus spp., Fusobacterium 

spp., Prevotella spp., Neisseria spp., Streptococcus spp., and Gemella spp. (see Figure 4. 10). 

In general, the microbial profiles of all adenoids were similar, but proportions of the microbial 

genera were different. The microbiota of adenoids was less diverse in patients with COME 

when compared with control adenoids from patients without COME, and Haemophilus, the 

classical otopathogen, was the most dominant genus with a relative abundance of about 70%. 

Interestingly, H. influenzae was detected in MEEFs of a patient (patient 1) whose adenoids 

were also concurrently colonised with an unidentified Haemophilus sp. (See Figure 4. 9 and 

Figure 4. 10). In conclusion, the pilot culture-independent analysis of MEEF samples showed 

that the traditional culture methods used here required improvement in order to improve the 

isolation of the species present. Additionally, the data showed that it is important to include 

negative controls during the process of DNA extraction from samples in order to confidently 

filter the background contaminant signals. Moreover, bilateral effusions from a single patient 

had similar microbiota. Therefore, in future the focus will be on analysing single MEEF 

samples from more patients. Finally, adenoids of patients with COME were dominated by 

otopathogens and to further investigate this, it was decided to analyse more matched adenoids 

and MEEF samples in future.  

Following this pilot analysis, 12 unpaired MEEFs from 12 patients with COME and 5 

adenoids (3 with COME, and 2 without COME (controls)) were analysed using 16S rRNA 

gene sequencing. A negative control of 1 ml of a sterile 0.9% saline solution that was 
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processed exactly the same way as MEEF samples was included. Again, culture-negative 

MEEFs and those with low microbial biomass showed high levels of contaminant sequences 

(data not shown). The negative control and common contaminant sequences were removed 

and only microbial genera or species with a relative abundance of >1% were included.  

The most commonly identified genera in the MEEF samples were Staphylococcus 

(10/12 MEEFs), Alloiococcus (8/12 MEEFs), Moraxella (6/12 MEEFs), Turicella (5/12 

MEEFs), and Haemophilus (3/12 MEEFs). Identification to the species level revealed that S. 

epidermidis was the most frequently detected Staphylococcus species, which was present in 

6/12 (50%) samples, whereas S. simulans, S. pasteuri, Staphylococcus pseudolugdunensis, 

and Staphylococcus sp. were present in 4/12 (33.3%) of samples (see Figure 4. 11). A. otitis, 

M. catarrhalis, Turicella spp. were the only species identified in their corresponding bacterial 

genera. H. influenzae was the most dominant Haemophilus species present in 3/12 (25%) of 

samples. Pseudomonas tolaasii was not identified in this set of MEEF samples though it was 

one of the dominant species identified in the pilot set of MEEFs. It was identified in MEEF 

samples that showed higher rate of contaminant DNA (60-85%) see Table 4. 9. 

Pseudomonas tolaasii is a gram-negative soil bacterium that is the most common 

causative agent of brown bacterial blotch on several species of edible cultivated mushroom 

and it is not regarded as a pathogen of humans(Lo Cantore et al., 2015). Therefore, it is likely 

that DNA from this species was a contaminant from environmental sources. In agreement 

with this hypothesis, Pseudomonas tolaasii was never cultured from clinical samples. Further 

investigations are required to determine whether it is genuinely present in human middle ear 

infections. Burkholderia pyrrocinia was also detected in 3/12 (25%) of samples with a 

relative abundance of 3-5%. The majority of MEEFs were dominated by a single species, with 

A. otitis, M. catarrhalis, T. otitidis, or H. influenzae at a relative abundance ranging between 

58-97%. Comparison of the bacterial species identified using the improved culture methods 

and 16S rRNA gene sequencing showed that the improved culture methods were successful in 

isolating the majority of the representative microorganisms present in MEEF samples (see 

Figure 4. 11). S. epidermidis, S. simulans, Staphylococcus sp. (very likely to be S. auricularis 

basing on comparison with culture results), and T. otitidis were identified using both methods. 

A. otitis was successfully cultured in 5 out of 8 MEEF samples in which A. otitis was 

identified at relative abundance of >1%. However, the improved culture failed to isolate A. 

otitis in two MEEFs (28L and 31R) where A. otitis was detected at relative abundance of less 

than 3%, possibly due to its low relative abundance in these samples. Other bacterial species 
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that were also identified with both techniques were N. flavescens (1/1 MEEF), S. pneumoniae 

(1/1 MEEF), and P. acnes (1/2 MEEFs).  

M. catarrhalis was the most common bacterial species that the improved culture 

methods failed to isolate, and it was cultured in 2 out of 6 MEEF samples, which may be due 

to low oxygen growth conditions. Other microorganisms that were not cultured with the 

improved culture methods were B. pyrrocinia, Mycobacterium brisbanense, Corynebacterium 

kroppenstedtii, S. pseudolugdunensis, Haemophilus haemolyticus, S. pasteuri, and 

Peptoniphilus asaccharolyticus. Most of these difficult-to-culture bacterial species were 

identified by 16S rRNA gene sequencing in culture-negative MEEF samples (see Figure 4. 

11). 

To study the hypothesis that adenoids act as a reservoir for otopathogens in patients 

with COME, the microbiota identified in 3 matched MEEFs and adenoid samples of patients 

with COME were compared (Figure 4. 12). In general, the microbiota of adenoids showed 

more diverse microbial profiles that included many species present in MEEFs. Again, the core 

microbiota of adenoids commonly consisted of Haemophilus spp., Prevotella spp., 

Streptococcus spp., Veillonella spp., and Porphyromonas spp. A total of 11 OTUs 

(operational taxonomic units) were identified in both sample types, of which 9 OTUs 

including H. influenzae, S. pneumoniae, P. acnes, and M. catarrhalis were detected in both 

matched sample types from 3 patients. There were 6 unique OTUs identified in these 3 

MEEFs samples. These were Staphylococcus sp., Turicella sp., S. pasteuri, S. 

pseudolugdunensis, Peptoniphilus asaccharolyticus, and Flavobacterium sp. To assess 

whether the bacterial species concurrently colonising both middle ear and adenoid of COME 

are genetically identical, matched adenoid and MEEF samples from one patient (patient 

number 20) were analysed using traditional culture methods. Bacterial species isolated from 

matched samples are listed in Table 4. 10. 

Interestingly, strains of S. oralis and S. parasanguinis were isolated from both samples 

(adenoid and MEEF) of the same patient. Unfortunately, both adenoid and MEEF samples of 

this patient were not analysed using 16S rRNA gene sequencing with the other matched 

samples mentioned in Figure 4. 12. Therefore, none of 9 OTUs, that were identified in both 

matched adenoids and MEEF samples, appeared in Table 4. 10 Bacteria isolated from 

matched MEEF and adenoid of one patient with COME.. To assess the genetic relatedness 

between these isolates, full genome sequencing was performed. Genomic comparison using 

Mauve multiple genome alignment software showed that they were not genetically identical: 

there were ~150,000 single nucleotide polymorphisms (SNPs) between the two S. oralis 
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strains and ~300,000 SNPs between the strains that were labelled ‘S. parasanguinis’. In fact, 

one of the S. parasanguinis was re-classified as Streptococcus australis on the basis of the 

genome sequence indicating that MALDI-TOF MS is good for identification of the bacterial 

species, but it is not 100% accurate for closely related species such as oral streptococci. 
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Table 4. 8 Concentrations of DNA extracted from MEEF and adenoids samples. 

Sample code Concentration of DNA (ng µl-1)  

1R 45.4 (1.8) 

1L 22.7 (1.8) 

2R 3.2 (2.6) 

2L 2.1 (2.6) 

3R 8.6 (1.7) 

3L 37.7 (1.8) 

6R 1.4 (2.1) 

6L 6.8 (1.6) 

22R 103 (1.83) 

23L 100 (1.81) 

25R 12.2 (1.8) 

26L 17 (1.6) 

27R 354 (1.87) 

28L 9.2 (1.57) 

29R 120.9 (1.83) 

30L 113 (1.85) 

31R 49 (1.76) 

32R 9.2 (1.42) 

33R 83 (1.73) 

34L 75 (1.86) 

Control (NS) 10 (1.35) 

1* 115.2 (1.8) 

2 165.5 (1.8) 

3* 282.3 (1.8) 

4 149.7 (1.8) 

5 257.3 (1.8) 

6 115.2 (1.8) 

7 60.9 (1.88) 

30* 19 (1.74) 

31* 110 (1.89) 

33* 53 (1.9) 

(*) Adenoid samples from patients with COME. (NS) 0.9% normal saline 

solution. 
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Table 4. 9 List of contaminant microbial species identified in the sequenced set of MEEF 

samples. 

  Contaminant Species 1R 1L 2R 2L 3R 3L 4R 4L 

Acidovorax temperans 4.5 11.8 31.4 13.9 
  

33.0 3.3 

Mesorhizobium sp. 
  

29.0 
     

Sphingomonas paucimobilis 2.5 5.5 18.4 
   

14.9 
 

Methylobacterium sp. 
  

2.3 3.8 
   

10.3 

Chitinophaga spp. 
  

1.8 
     

Delftia spp. 
  

1.6 14.0 
   

3.7 

Gordonia polyisoprenivorans 
  

1.1 
     

Riemerella columbipharyngis 
       

11.4 

Curvibacter spp. 
       

5.8 

Acetobacter senegalensis 
       

5.0 

Agrobacterium rhizobium 

rhizogenes 

      
2.5 

 

Ochrobactrum intermedium 
      

1.8 
 

Sphingomonas koreensis 
      

1.8 
 

Nocardioides aquaticus 
   

7.2 
    

Acetobacter aceti 
       

1.7 

Paenibacillus provencensis 
       

1.0 

Reyranella spp. 
      

2.8 
 

Stenotrophomonas sp. 
   

6.8 
    

Massilia timonae 
       

3.3 

Paenibacillus sp. 
   

4.2 
   

1.7 

Ralstonia pickettii 
   

9.8 
    

Geobacillus spp. 
      

5.2 
 

Chryseobacterium hominis 
      

3.0 
 

Pseudomonas syringae 
       

2.3 

Halomonas sp. 
   

2.2 
    

Bacillus pumilus 
       

1.7 

Bacillus simplex 
       

2.1 

Prevotella ruminicola 1.4 
       

Corynebacterium vitaeruminis 
       

9.2 

Total (%) 8.3 17.3 85.6 61.9 0.0 0.0 65.1 62.6 
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Table 4. 10 Bacteria isolated from matched MEEF and adenoid of one patient with 

COME. 

Species MEEF Adenoid  

Streptococcus intermedius - + 

Streptococcus parasanguinis + + 

 Streptococcus salivarius - + 

Streptococcus oralis + + 

Rothia mucilaginosa - + 

Staphylococcus aureus - + 

Actinomyces odontolyticus - + 

Streptococcus anginosus group - + 

Streptococcus pneumoniae - + 

Streptococcus mitis + - 

Alloiococcus otitis + - 

Staphylococcus pastueri + - 

Various bacterial species were isolated from adenoid than that from MEEF. Similar strains of 

Streptococcus parasanguinis and Streptococcus oralis were isolated from the adenoid and 

MEEF of the same patient.  
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 Figure 4. 9 The microbiota present in the pilot set of MEEF samples of patients with 

COME. 

Data represent OTUs that were present at a relative abundance (%) of ≥ 1% in at least one 

sample. Taxonomic assignment of each OTU is at species level, except in case where OTUs 

were not identified below the genus level (*). Microbial communities of bilateral MEEFs are 

similar and consisted mainly of Alloiococcus otitis, Pseudomonas tolaasii, and 

Staphylococcus epidermidis in addition to other bacterial species.   
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Figure 4. 10 The microbiota present in the pilot set of adenoid samples derived from 

patients with COME (*) and without COME. 

Data represent OTUs that were present at a relative abundance (%) of ≥ 1% in at least one 

sample. Taxonomic assignment of each OTU is at genus level. Microbial profiles of adenoids 

were similar, less diverse in patients with COME (*) when compared with control adenoids 

without COME and they were mostly dominated by Haemophilus sp.       
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Figure 4. 11 Characterisation of bacterial populations present in MEEFs of patients with COME using both 16S rRNA gene sequencing 

and the improved culture methods. 

The bar chart shows the bacterial taxa identified per MEEF sample compared with bacterial species cultured and isolated by the improved 

culture methods. Data represent OTUs that were present at a relative abundance (%) of ≥ 1% in at least one sample. Taxonomic assignment of 

each OTU is at species level. Alloiococcus otitis, Moraxella catarrhalis, Turicella spp., and Staphylococcus epidermidis were the most 

frequently detected species from MEEFs and the “improved” cultured method was successful in isolating the majority of representative bacteria 

present in MEEFs when compared to those identified by 16S rRNA gene sequencing. 
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Figure 4. 12 Comparison of microbiota present in 3 matched MEEF and adenoids samples of patients with COME. 

Taxonomic assignment of each OTU is at species level, unless the OTU was not classified below the genus level (*). OTUs with ≥ 1% relative 

abundance in at least on sample were included in visual differentiation between both types of samples. Circle sizes and bracketed numbers 

[adenoid/MEEF] represent the number of samples that contain the presented OTU. Similar OTUs are presented in the middle and matched by a 

solid line when the identified OTU in both samples was obtained from the same patient or by a dashed line if it is derived from different patient. 

The figure shows that matched adenoids and MEEFs of patients with COME were concurrently colonised with 9 similar OTUs that were 

dominated mainly by classical otopathogens (Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis).       
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4.9 Discussion  

In this chapter, the study aimed to characterise bacterial populations present in the 

MEEFs of COME patients. Bacterial species present in the MEEFs of patients with COME 

were isolated using conventional culture methods and the potential impact of culturing 

techniques on the isolation of different types of microorganisms was explored. The efficacy of 

NucB to improve the culture of bacteria from MEEFs was also investigated and finally 16S 

rRNA gene sequencing of MEEFs and adenoid microbiota was used to verify the efficacy of 

the culture methods to capture the correct microorganisms present in MEEFs of COME 

patients and to explore the potential co-occurrence of COME-related bacteria in the middle 

ear and adenoids of the same patients. 

Initially, the pilot analysis of MEEF samples derived from 6 patients with bilateral 

COME using the standard culture methods recommended by the UK Standards for 

Microbiology Investigations (UKSMI) for ear infections and associated specimens was not 

successful in capturing most of the fastidious microorganisms, including A. otitis, H. 

influenzae, M. pneumoniae, and P. acnes that were identified in the same sample set using 

16S rRNA gene sequencing. For this reason, several modifications to culture methods were 

applied to improve capturing of fastidious and slow-growing bacterial species. These 

modifications included immediate processing of the MEEF samples within 1 h following 

sample collection, culturing larger volumes of up to 50 µl of MEEF sample per growth 

medium used, extending the incubation period of the MEEF samples culture at 37˚C with 5% 

CO2 to up to 2 weeks, and adopting stringent sterilisation precautions to reduce 

contamination. The percentage of culture positive MEEFs increased from just under 58% to 

90.5% using the improved traditional culture methods of this study. The most frequently 

isolated microorganisms were T. otitidis (52.4%), A. otitis (38.1), and CoNS (76.2%) 

including S. epidermidis (28.6%), and S. auricularis (19%).   

The exact role of T. otitidis, A. otitis, and CoNS in the aetiology of COME is still 

debated. They are thought to be part of the commensal microbiota that may be translocated 

from external ear canal to the middle ear cavity following tympanic membrane perforation 

(Chan et al., 2017b, Harimaya et al., 2006, von Graevenitz and Funke, 2014). On the other 

hand, A. otitis, and T. otitidis are the most prevalent bacterial species repeatedly identified in 

COME patients, and there is evidence that A. otitis has a considerable immune stimulating 

ability, at least in vitro (Himi et al., 2000, Harimaya et al., 2007). Furthermore, A. otitis has a 

capability to produce both single-species and polymicrobial biofilms with H. influenzae. 
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When A. otitis was co-cultured with H. influenzae in multi-species biofilms, both survival and 

persistence of H. influenzae were enhanced compared with monospecies controls (Chan et al., 

2017a). As with other studies, CoNS, S. auricularis, and S. aureus were also the frequently 

isolated microorganisms from most MEEF samples (Daniel et al., 2012b, Yoo et al., 2018). 

Most of these CoNS have an ability to produce biofilms and have a recognised pathogenic 

role in medical implant-associated infections, and possess genetic and phenotypic features 

that would allow them to form biofilms in vivo, highlighting their pathogenic potential to 

induce otitis media (Paluch-Oles et al., 2011). 

The traditionally-considered otopathogens H. influenzae, M. catarrhalis, and S. 

pneumoniae were found in only 19% of MEEF samples (9.5%, 4.8%, and 4.8% respectively). 

These pathogens have been long considered to be the most common species implicated in the 

aetiology of COME (Holder et al., 2015, Lundgren and Rundcrantz, 1976). Our findings are 

broadly consistent with the other observations that found H. influenzae in 3-9%, M. 

catarrhalis 3-3.8%, and S. pneumoniae in around 6.5% of samples (Papp et al., 2016, Daniel 

et al., 2012b). However, the findings of this study are contrary to those of Van Hoecke et al. 

(2016)  who cultured H. influenzae in 35% of samples. It is likely that the difference is due to 

the use of both aerobic and anaerobic conditions for incubation of chocolate agar in the study 

by Van Hoecke et al. This approach was not used here because it was considered more 

appropriate to employ the standard culture methods recommended by UKSMI for ear 

infections and associated specimens in choosing types of growth media and growth 

conditions. The current study used a variety of different types of agar designed to isolate a 

broad range of species. It should be noted that there is no perfect culture method that can 

accurately isolate all the representative bacteria present in MEEFs of COME patients. Indeed, 

many other microorganisms that were cultured in this study were overlooked in Van Hoecke 

et al’s paper, which exclusively employed Chocolate agar for microbial isolation. Other less 

frequently identified microorganisms including S. oralis, S. pyogenes, S. mitis, S. salivarius, 

P. acnes, A. odontolyticus and N. flavescens were also less frequently identified in most other 

studies that used traditional culture methods (Daniel et al., 2012b, Yoo et al., 2018, Poetker et 

al., 2005).  

Although only 21 MEEF samples were analysed using the improved culture methods,   

the proportion of culture positive MEEFs (90.5%) was higher compared to other studies, 

where up to 60% of samples were positive for at least one type of bacteria (Poetker et al., 

2005, Daniel et al., 2012b, Gok et al., 2001, Papp et al., 2016). Nevertheless, our finding is in 

agreement with that of Daniel et al. (2012b) who found live bacteria in more than 90% of 
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MEEF samples from children with COME using extended culture techniques and CLSM 

imaging.  Although the MEEFs were cultured in the present study for a longer duration (with 

the aim to capture fastidious and slow-growing bacteria) compared to that in the standard 

culture approach used in diagnostic laboratories, it is unlikely that these results represent 

contamination as utmost care was taken during MEEF sample collection to avoid contact with 

the external ear canal. For example, the suction catheter used occasionally to clean external 

ear canal wax was exchanged with a new sterile suction catheter to aspirate MEEFs following 

myringotomy. Furthermore, the range of bacterial species identified in this study is similar to 

those identified in the other studies where EEC was decontaminated with 70% ethanol prior to 

MEEF sample collection (Daniel et al., 2012b, Papp et al., 2016). The most likely explanation 

for the higher number of culture positive MEEFs in this study is the adoption of the improved 

culture approaches as previously described, which were successful in culturing a wide range 

of microorganisms including fastidious and slow growing bacterial species such as T. otitidis, 

A. otitis, H. influenzae, A. odontolyticus, and P. acnes. These may have been missed by other 

studies adopting a more limited conventional culturing approach. The higher culture rate here 

could also be explained by the younger age of patients included in this study (the majority 

were below 10 years old) in comparison to previous studies that also recruited adults and 

older children. It has been shown that the proportion of culture positive MEEF samples was 

much higher in younger children than those in adults with COME (Gok et al., 2001, Poetker 

et al., 2005). Furthermore, NICE guidelines in UK for the treatment of COME recommend 

drainage of MEEF and grommet tube insertion in patients with persistent COME following 6 

months of watchful-waiting during which no systemic antibiotics are used. The lack of 

antibiotic usage by these patients may also explain the greater number of culture positive 

MEEF samples compared to other studies where antibiotics were used before MEEF sample 

collection (Gok et al., 2001, Poetker et al., 2005).  

Based on the hypothesis that bacteria associated with COME are present within 

biofilms, the efficacy of NucB in disturbing these biofilms and improving the recovery of 

bacteria from MEFFs was investigated. The results obtained from the pilot set of MEEF 

samples treated with NucB showed inconsistent efficacy of NucB at improving the recovery 

of bacteria from these samples. This finding may be explained by the addition of NucB with 

inconsistent activity and also lack of appropriate control MEEF samples that were treated 

exactly the same as NucB treated samples (see Table 4. 4 and Table 4. 5). Addition of a 

constant amount (mass) of NucB to each sample does not necessarily mean addition of NucB 

with a constant nuclease activity. In this study, nuclease activity of NucB was shown to be 
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different between different preparations of NucB and was affected by storage of NucB 

including repeated freezing and thawing (data not shown). Following this, methods were 

optimised to measure NucB specific activity in order to be able to add consistent amount of 

NucB in the subsequent experiments. Consistent with a previous study, NucB was able to 

completely degrade high molecular weight CTDNA into low molecular weight digestion 

products within 60 minutes (Basle et al., 2018). However, the calculated specific activity of 

NucB in this study (1.4 x 10-5 units mg-1) was approximately 44% less than that calculated by 

Basle et al. (2018)(2.5 x10-5 units mg-1). Furthermore, semi-quantitative analysis of NucB 

nuclease activity in 0.9% saline solution and TSB medium showed that NucB had retained 

approximately 50% of its activity compared to its activity in the optimal buffer.          

Overall, NucB did not produce a significant increase in the total number of 

microorganisms recovered on blood or FA agar compared to control MEEFs with no NucB, 

even though 20% of samples treated with NucB showed a 2-fold or more increase in the 

number of bacteria cultured on blood agar in comparison with the negative controls. The 

finding in this study is contrary to that of Shakir et al. (2012) who found that NucB was 

effective in releasing higher number of microorganisms from fouled Tracheoesophageal 

speech valves (TESVs) compared to PBS treated controls. A possible explanation for this 

might be due to the low biomass of bacterial biofilms present in the MEEF compared to the 

higher load of microbial biofilms present on the surface of TESV. Another possible 

explanation is that there was a degree of sample heterogenesity when MEEFs were divided 

between different treatment groups, and so bacterial biofilms might be localised to one part of 

the MEEF. Surprisingly, incubation of MEEF samples in the absence of NucB for 1 h at 37˚C 

aerobically was associated with a significant reduction (p = 0.007) in the total number of 

viable bacteria cultured under 5% CO2 and anaerobic growth conditions compared to control 

MEEFs that were cultured immediately without aerobic incubation for 1 h. A possible 

explanation for this finding might be that a low oxygen conditions, which resemble the 

natural environment of the middle ear cavity in patients with COME, is the favourable 

environment for the survival of microorganisms present in MEEFs. Thus, incubation of 

microorganisms aerobically adversely affected their viability or their ability to regrow on 

culture media. This is consistent with clinical practice, where grommet insertion frequently 

resolves middle ear effusion in patients with COME by improving middle ear ventilation. It 

should be noted that there was no statistically significant reduction in total viable counts 

recovered from the biofilm when MEEFs were incubated in the presence of NucB for 1 h at 

37˚C compared with controls that were cultured immediately (p = 0.08). It is possible that the 
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negative impact of incubation on recovery of microorganisms was counteracted to some 

extent by the action of NucB in releasing microbial cells from biofilms. Therefore, future 

studies should focus on employing shorter incubation times with NucB to optimise the 

benefits of NucB treatment while minimising problems associated with extended processing 

times. 

To verify the efficacy of traditional culture methods in identifying the bacterial 

populations present in the MEEFs of patients with COME, 16S rRNA gene sequencing was 

also used to study microbiota present in these MEEFs. The results showed that the traditional 

culture methods recommended by UKSMI was not successful in culturing most of the 

microorganisms representing members of bacterial communities present in MEEFs compared 

to the 16S rRNA gene sequencing data of the same samples. Thus, the culture methods were 

subsequently optimised. Also results from the pilot set of samples showed that culture-

negative MEEFs, which are likely contain low microbial biomass, had higher proportions of 

DNA from environmental bacteria compared to culture-positive samples (see Table 4. 9). This 

finding is in accord with recent studies indicating that contaminanting DNA from 

environmental sources is common in microbiome studies involving low microbial biomass 

samples and have a significant negative impact on the interpretation of microbiome data 

(Salter et al., 2014, Eisenhofer et al., 2019). In general, two kinds of contamination can be 

introduced in microbiome studies: contaminant DNA and cross-contamination (Eisenhofer et 

al., 2019). Contaminant DNA can arise from different sources despite stringent precautions 

and care during sample collection and preparation, including sampling and laboratory 

environments, human commensals on laboratory workers, laboratory consumables, DNA 

extraction kits and laboratory reagents. On the other hand, cross-contamination arises when 

DNA is transferred from other samples and sequencing runs from adjacent wells or tubes, 

resulting in ‘batch-effects’ during microbiome sample processing. To date, more than 60 

common contaminant taxa have been detected in DNA extraction blank controls and no-

template controls in many microbiome studies. Most of the contaminant taxa, that were 

identified and removed in this study (see Table 4. 9), were listed within these 60 common 

contaminant taxa and the majority of these taxa were soil, water, or non-human 

microorganisms (Eisenhofer et al., 2019, Salter et al., 2014). The presence of low levels of 

microbial DNA within low microbial biomass samples including MEEF and blood can result 

in the signals generated by contaminant DNA and cross-contamination to be perceived as 

biological signals since the contaminant sequences can easily dominate the true biological 

signals within the samples. It is important to use negative sequencing controls concurrently 
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with samples in these cases.Therefore, a DNA extraction blank control (negative control) was 

included when the second set of MEEFs was processed for16S rRNA gene sequencing. The 

dominant bacterial species identified in 3 out of 4 patients with bilateral COME, were similar, 

and there was a high degree of similarity in the overall composition of the bacterial 

communities identified (see Figure 4.9). Similar findings have also been reported in another 

microbiome study of bilateral COME, although the comparison was limited to the genus level 

(Jervis-Bardy et al., 2015). Therefore, it was decided to focus on analysing unpaired MEEF 

samples from more patients. 

Species-level microbiome analysis of 12 unpaired MEEFs showed that the improved 

culture techniques adopted in this study in combination with MALDI-TOF MS were 

successful in capturing most of the representative members of bacterial communities 

identified in MEEFs by 16S rRNA gene sequencing, including A. otitis, T. otitidis, S. 

pneumoniae, H. influenzae, and most Staphylococcus spp. including CoNS. M. catarrhalis 

was the most common bacterial species that was identified by 16S rRNA gene sequencing and 

not by the improved culture methods. In the present study, MEEFs were cultured under 5% 

CO2 and anaerobic conditions only, which is not well suited to culture the obligate aerobe M. 

catarrhalis. which may explain the low number of M. catarrhalis cultured in these samples. 

Other less frequently identified bacteria such as B. pyrrocinia, M. brisbanense, C. 

kroppenstedtii, H. haemolyticus, and P. asaccharolyticus were also not cultured by the 

improved culture methods. Indeed, it has been estimated that below 2% of bacteria present on 

the environment can be cultured on the artificial culture media, though the percentage of 

culturable bacteria present in human body is higher (Wade, 2002). Nevertheless, traditional 

culture methods combined with MALDI-TOF MS are still considered a convenient 

microbiological technique to identify bacterial isolates because they are quick and cost-

effective (Navrátilová et al., 2016).  

Of 12 MEEFs analysed by16S rRNA gene sequencing, A. otitis, S. epidermidis, M. 

catarrhalis, T. otitidis, and H. influenzae were the most commonly detected bacterial species, 

and were present in 66%, 50%, 50%, 41.6%, and 25% of samples, respectively. 

Approximately 75% of MEEF samples were dominated by one of four species: A. otitis, M. 

catarrhalis, H. influenzae, and T. otitidis, which were present at 58-97% relative abundance. 

Similar bacterial profiles have also been reported in other recent microbiome studies of 

COME, such as Boers et al. (2018), who detected Alloiococcus spp., Turicella spp., 

Haemophilus spp., and Staphylococcus spp. in 63%, 57%, 47%, and 36.8% of MEEF samples 

respectively. Furthermore, Jervis-Bardy et al. (2015) also detected Alloiococcus spp., 
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Turicella spp., Haemophilus spp., Staphylococcus spp. in 63%, 27%, 63%, and 27% of 

samples respectively. In this study, bacterial communities dominated by Alloiococcus spp., or 

Haemophilus spp. were also detected at relative abundances ranging between 57-95% in 90% 

of MEEF samples from patients with COME (Jervis-Bardy et al., 2015). S. pneumoniae, the 

third most common otopathogen previously implicated in the aetiology of COME following 

H. influenzae, and M. catarrhalis, was found in only 16.7% (2 out of 12) of samples. This 

finding is consistent with the other microbiome studies of COME that detected Streptococcus 

spp. in 9-31.5% of samples. Variations in S. pneumoniae prevalence between studies could be 

due to the pattern of vaccination that has be introduced against S. pneumoniae. A recent 

systematic review, assessed the global prevalence of the three common pathogens implicated 

in otitis media, and found that patterns of S. pneumoniae colonisation have changed in 

response to the introduction of vaccination (Ngo et al., 2016). However, the microbiome 

identified in the present study was different from previous reports to some extent. For 

example, M. catarrhalis was detected in higher numbers of the MEEF samples here (50%) 

compared to other studies, where M. catarrhalis was identified in only 5-18% of samples 

(Boers et al., 2018, Jervis-Bardy et al., 2015).  

Finally, correlations between the microbiome of adenoid tissue and the microbiome 

present in the MEEFs of patients with COME was investigated. Consistent with the other 

studies, higher bacterial diversity was detected in adenoids compared to MEEF samples 

(Boers et al., 2018, Jervis-Bardy et al., 2015). In general, the core microbiota of adenoids 

from patients with or without COME consisted of mainly Haemophilus spp., Prevotella spp., 

Streptococcus spp., Fusobacterium spp., Veillonella spp., and Porphyromonas spp. This 

finding is in agreement with previous studies that showed similar bacterial profiles on 

adenoids or nasopharyngeal swabs of patients with COME (Boers et al., 2018, Chan et al., 

2017b, Jervis-Bardy et al., 2015). Comparison of the microbiome present in 3 matched 

adenoids and MEEF samples from 3 patients with COME showed both matched sample types 

were concurrently colonised with similar bacterial OTUs consistent with common paediatric 

otopathogens such as H. influenzae, S. pneumoniae, and M. catarrhalis. Other bacterial 

species including P. acnes, A. otitis, S. epidermidis, S. infantis, S. salivarius, and H. 

haemolyticus were also identified in both sample types. This finding is consistent with several 

other studies (Boers et al., 2018, Chan et al., 2017b, Jervis-Bardy et al., 2015). 

However, many bacterial species were specific to one or other anatomical site or were 

present at markedly different proportions of the total microbiome. For example, A. otitis was 

detected on MEEF and adenoid tissue of 1 patient, at a relative abundance of 90% and 1.2% 
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respectively. A. otitis has also been identified in the nasopharyngeal swabs of patients with 

COME (Harimaya et al., 2006). In a different study, Alloiococcus spp., Staphylococcus spp., 

and Pseudomonas spp. were detected in higher abundance in the EEC of patients with COME 

than in healthy volunteers but they were absent in adenoids, suggesting that the EEC can 

serve as a reservoir for middle ear pathogens (Chan et al., 2017b).  In this study, T. otitidis, A. 

otitis, and Staphylococcus spp. that were detected in higher number of MEEF samples might 

also have been introduced to the middle ear cavity from the EEC. It is estimated that around 

80% of children will have at least one attack of acute otitis media by the age of 3 years (Teele 

et al., 1989), and around 30% of these children are reported to have tympanic membrane 

rupture (Berger, 1989). This episode could be responsible for the introduction of EEC 

microorganisms shown in the present study. Patients with previous history of grommet 

insertion were excluded from our study. However, history of previous episodes of AOM and 

tympanic membrane perforation was not obtained from our patient group. Furthermore, the 

relative abundance of Alloiococcus was significantly higher in patients with a previous history 

of grommet tube insertion than those without, which increases the possibility of translocating 

EEC microorganisms to the middle ear cavity (Chan et al., 2017b). Many EEC bacterial flora 

such as S. aureus and P. aeruginosa are reported to induce middle ear infections through the 

perforated tympanic membrane in patients with chronic suppurative otitis media (Mittal et al., 

2015). In contrast to S. aureus and P. aeruginosa, the role of A. otitis, T. otitidis, and CoNS in 

the aetiology of COME remains unclear. Further investigations are needed to elucidate their 

roles in the pathogenesis of COME. Culture analysis of matched MEEF and adenoid samples 

obtained from the same patient successfully identified S. oralis and S. parasanguinis that 

were present in both the adenoid and the middle ear. Genomic comparison of these similar 

strains showed that they were not genetically identical. In fact, one of the S. parasanguinis 

strains was re-classified as Streptococcus australis on the basis of the genomic DNA 

sequence. This indicates that MALDI-TOF MS identified three of the four oral Streptococcus 

spp. correctly, but failed to identify S. australis. Accurate species identification within 

viridans group streptococci and more specifically within the mitis subgroup is traditionally 

difficult. It has also been shown that MALDI-TOF MS is not always accurate in species level 

identification of oral streptococci and specifically within the Mitis group (Angeletti et al., 

2015). Overall, there was no evidence that precisely the same strains were located in the 

adenoid and middle ear of a single patient based on the very limited sampling and analysis 

presented here. The role of adenoids as a reservoir for otopathogens needs further analysis in 

larger patient cohorts using both traditional culture methods and full genome comparisons. 
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In conclusion, the improved culture methods adopted in this study were able to detect a 

wide spectrum of representative bacterial species present in MEEFs of COME patients 

compared to the conventional culture approach. The presence of these polymicrobial species 

in the MEEFs of COME may play a crucial role in the aetiopathogenesis of COME. In 

accordance with the evidence that bacteria associated with COME are present within biofilms 

and that NucB can disrupt biofilms both alone and in combination with antibiotics, it will be 

important next to determine whether NucB is effective against in vitro biofilms of the 

representative isolates of COME. 

  



161 

 

Chapter 5. Efficacy of NucB against biofilms of COME isolates 

5.1 Introduction   

Bacterial biofilms have been identified in the majority of COME patients, suggesting 

that biofilms may play a key role in the aetiopathogensis of the disease (Daniel et al., 2012b, 

Hall-Stoodley et al., 2006, Thornton et al., 2011, Van Hoecke et al., 2016). The otopathogens 

clasically associated with COME are H. influenzae, S. pneumoniae and M. catarrhalis. All 

have the ability to form single and multispecies biofilms in vitro and in vivo (Hall-Stoodley 

and Stoodley, 2009, Starner et al., 2006, Bakaletz, 2012, Silva and Sillankorva, 2019). 

Biofilm is defined as surface-associated microbial communities that are embedded in a self-

produced matrix, consisting of macromolecules such as polysaccharides, lipids, proteins, and 

nucleic acids (Flemming et al., 2016). Bacteria within biofilms have evolved a range of 

complex protective mechanisms against hostile external insults. Therefore, they are often 

more resistant to antibiotics, cellular and humoral immune actions than planktonic cells of the 

same species (Gu et al., 2014, de la Fuente-Nunez et al., 2013). Increasing evidence has 

accumulated that eDNA is a ubiquitous structural component in the EPS of biofilms formed 

by many Gram-positive and Gram-negative bacteria (Jakubovics et al., 2013, Okshevsky et 

al., 2015). The eDNA plays a critical role in maintaining the structural integrity of biofilms, 

facilitating initial adhesion of bacterial cells, protecting biofilms against antimicrobial and 

immune actions, facilitating genetic material exchange, and acting as a nutrient source.  

The current treatment options for persistent COME involve myringotomy and 

grommet insertion or hearing aids in patients who are unfit for surgery. Occasionally, 

insertion of grommets is combined with adenoidectomy in patients with recurrent or persistent 

upper respiratory tract infections (NICE, 2016, Rosenfeld et al., 2016).  However, the current 

treatment options for COME are far from ideal. Several complications have been reported 

with grommet insertion such as purulent ear discharge, tympanic membrane (TM) scarring, 

and permanent TM perforation. In addition, further grommet insertion is required in about 

25% of cases within 2 years (Kubba et al., 2000, Vlastarakos et al., 2007, Rosenfeld et al., 

2013). This significant rate of recurrence is consistent with the essential role of bacterial 

biofilms in the pathogenesis of COME because grommet insertion likely will only drain 

MEEF that is produced secondary to the middle ear mucosal inflammation and will not treat 

the underlying biofilm, which may subsequently grow again following the grommet extrusion 

(Daniel et al., 2012b).  
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The possibility that biofilms are central to the pathogenesis of COME opens potential 

new avenues for the development of better treatment approaches. With the realisation that 

eDNA plays critical roles in bacterial biofilms, targeting eDNA within the biofilm matrix by 

DNases could potentially provide a new strategy to reduce the present high rate of revision 

surgery required for COME patients. 

5.2 Aims and objectives     

Work presented in the previous section clearly showed the presence of multiple species 

of bacteria in the MEEFs of patients with COME. In accordance with the increasing evidence 

that bacteria present in COME are organised in biofilms, the aim of this chapter was to 

investigate the sensitivity of in vitro biofilms of representative COME isolates to treatment 

with the DNase NucB from B. licheniformis. The objectives were as follow: 

1. Assess biofilm formation capacity of representative species isolated from 

COME. 

2. Test the efficacy of NucB to disperse and inhibit in vitro biofilms formed by 

COME isolates. 

3. Analyse changes in the structure of biofilms formed by the selected NucB- 

sensitive COME isolates using CLSM imaging. 
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5.3 Biofilm formation of COME isolates  

The biofilm formation capacity of 23 bacteria, isolated from MEEFs of patients with 

COME, were investigated. These bacteria were selected as representative strains of most 

bacterial species that were isolated from MEEF aspirates including the most frequently 

detected bacterial species and the classical otopathogens implicated in COME (see Table 5. 

1). Alloiococcus otitis strains were excluded from this analysis because they did not grow on 

rich liquid culture media such as THYE or BHYE. Bacteria were cultured in a 96-well MTPs 

and the extent of biofilm formation was assessed using the CV staining assay (see Materials 

and Methods 2.8.1). The cut off absorbance (A570C) for biofilm formation was defined as the 

mean absorbance (A570) plus three times the standard deviation (SD) of a negative control 

consisting of just organism-specific growth medium with no cells (Vuotto et al., 2017). 

Bacterial strains were classified on the basis of their biofilm formation capacity into the 

following categories: no biofilm formation (A570 ≤ A570C), weak biofilm formation (A570C < 

A570 ≤ 2 x A570C), moderate biofilm formation (2 x A570C < A570 ≤ 4 x A570C), strong biofilm 

formation (4 x A570C < A570).  

In total, 21 out of 23 (91.3%) bacterial strains produced biofilms that were detectable 

by CV staining assay (Table 5. 1). On the basis of the A570C cut off = 0.2, 69.5% (16/23) of 

the isolates showed strong biofilm formation (SBF) ability, 17.4% (4/23) showed moderate 

biofilm formation (MBF) ability, 4.3% (1/23) showed weak biofilm formation (WBF) ability, 

and 8.7% (2/23) did not form biofilms (NBF) in vitro (see Table 5. 1). In general, there was 

considerable variation in the extent of biofilm formation between different species, and 

between different strains of the same species. As an example, out of 11 strains of T. otitidis 

assayed, five strains were strong biofilm producers, two were moderate biofilm producers, 

whereas T. otitidis 18 and 26 produced weak or no biofilm in vitro, respectively. All the 

classical otopathogens such as S. pneumoniae and H. influenzae were strong biofilm 

producers except M. catarrhalis 21, which did not produce detectable biofilm in vitro. 

Similarly, all Staphylococcus species showed strong ability to produce biofilms, whereas 

strains of other less frequently detected species such as S. pyogenes 11 and S. mitis 20 were 

moderate biofilm producers. 
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Table 5. 1 Biofilm formation of selected isolates from MEEFs of COME patients 

quantified by CV assay      

Species  Strain c Mean A570(SE)a Biofilm formation 

capacityb 

S. aureus 

  

18 2.14 ± 0.05 SBF 

21 2.52 ± 0.16 SBF 

S. auricularis 

  

16 1.6 ± 0.15 SBF 

12 2.1 ± 0.03 SBF 

T. otitidis 

  

  

  

  

  

  

  

  

8 1.57 ±0.14 SBF 

11 0.35 ± 0.01 MBF 

18 0.2 ± 0.01 WBF 

19 0.4 ± 0.03 MBF 

24 1.61 ± 0.06 SBF 

25 2.82 ± 013 SBF 

26 0.16 ± 0.02 NBF 

27 2.3 ± 0.2   SBF 

29 1.82 ± 0.04 SBF 

S. pneumoniae 

  

11 2.43 ± 0.13 SBF 

32 1.01 ± 0.03 SBF 

S. oralis 

  

14 4.67 ± 013 SBF 

20 2.27 ± 0.48 SBF 

S. pyogenes 11 0.45 ± 0.06 MBF 

S. mitis 20 0.27 ± 0.1 MBF 

H. influenzae 

  

21 1.31 ±0.1 SBF 

33 1.33 ± 0.3 SBF 

M. catarrhalis 22 0.17 ± 0.01 NBF 

A. odontolyticus 14 3.18 ± 0.07 SBF 

 
aData were generated from at least three independent experiments. bSBF= strong biofilm 

formation, MBF= moderate biofilm formation, WBF= weak biofilm formation, NBF= no 

biofilm formation, SE= standard error. Most of the COME isolates were strong biofilm 

formers. cStrain designations are explained in more detail in Table 2.2.  
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Figure 5. 1 Categories of crystal-violet stained biofilms formed by COME isolates. 

Biofilms were grown in 12-well plates for 24-48 h and stained with CV to assess biofilm 

formation capacity of COME isolates. (A) A. odontolyticus 14 represents SBF bacteria, (B) T. 

otitidis 11 represents MBF bacteria, (C) T. otitidis 18 represents WBF bacteria, (D) T. otitidis 

26 represent NBF bacteria, and (E) represents negative control (contains growth medium 

only). The intensity of CV staining was proportional to the biofilm formation capacity of the 

microorganism.        

 

5.4 Efficacy of NucB against in vitro biofilms of COME isolates 

All SBF bacteria and 2 MBF isolates were treated with NucB to assess the role of 

eDNA in promoting biofilm formation and in maintaining the structural stability of pre-

formed biofilms. 

5.4.1 Effects of NucB on biofilm formation of COME isolates 

As previously stated, eDNA plays an important role in promoting the initial attachment 

of bacterial cells to living or inert surfaces during the early stages of biofilm formation 

(Whitchurch et al., 2002). To investigate the inhibitory effect of NucB on biofilm formation, 

100 units ml-1 of NucB with a specific activity of 1.4 x10-5 units mg-1 were included with the 

culture media and the inoculum during biofilm formation for 24-48 h in the 96-well or 12-

well plate model (see Material and Methods 2.8.2). Biofilms of T. otitidis, H. influenzae, S. 

pneumoniae, and A. odontolyticus were grown for 48 h, whereas other bacterial biofilms were 

grown for 24 h in the appropriate culture media and conditions (see Materials and Methods 

2.4.5).  

In general, biofilm formation by 14 out of 18 (77.8%) COME isolates was 

significantly inhibited by NucB (p<0.05, n=3; paired two samples t-test) (see Figure 5. 2). 

Biofilm formation by all isolates of the closely related species S. aureus and S. auricularis 

was significantly reduced by NucB. The amount of reduction on average was just above 50% 

compared to control biofilms. In the presence of NucB, biofilm formation by 4 out of 6 T. 

otitidis strains was significantly impaired by 47-65% in comparison with controls. Biofilms 

formed by T. otitidis 29 were the most strongly inhibited. Interestingly, all the SBF classical 
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otopathogens of COME (H. influenzae, and S. pneumoniae strains) were sensitive to NucB 

treatment, and biofilm formation was decreased by approximately 50%. A. odontolyticus 14 

was the most sensitive microorganism to NucB treatment; biofilm formation was reduced by 

80%. S. oralis 20 was less sensitive to NucB treatment, but biofilm formation was still 

impaired significantly by 28% (p = 0.02, n=3; paired two samples t-test). However, NucB 

treatment did not significantly inhibit biofilm formation by T. otitidis 24, T. otitidis 11, S. 

pyogenes 11, or S. oralis 11.   

5.4.2 Efficacy of NucB against pre-formed biofilms of COME isolates 

 With the realisation over the past few years that eDNA within biofilm matrix of many 

microorganisms has an essential role in maintaining the structural integrity of biofilms, the 

efficacy of NucB against pre-formed biofilms of COME isolates was assessed. For these 

experiments, mature biofilms of T. otitidis, H. influenzae, S. pneumoniae, and A. 

odontolyticus were grown for 48 h, whereas other bacterial biofilms were grown for 24 h in 

the appropriate culture media and conditions (see Materials and Methods 2.5.1). These pre-

formed biofilms were again treated with 100 units ml-1 of NucB with a specific activity of 1.4 

x10-5 unit mg-1 for 1 h at 37°C in ambient air (see Materials and Methods 2.8.2). Biofilms 

formed by 14 out of 18 (77.8%) COME isolates were significantly dispersed by NucB 

compared to buffer treated controls (see Figure 5. 3). Pre-established biofilms of A. 

odontolyticus 14 were again remarkably sensitive to NucB treatment, and biofilm biomass 

was significantly reduced by more than 70% compared with control biofilms. Similarly, pre-

formed biofilms of all S. aureus and S. auricularis isolates were significantly dispersed by 

NucB treatment. On average, the amount of reduction in biofilm biomass of these species was 

approximately 50%. Biofilms formed by 5 out of 6 T. otitidis strains were significantly 

dispersed by NucB, and the extent of biofilm decreased by 31.5-62.7% compared with 

negative controls that lacked enzyme. Biofilms of all classical otopathogens were dispersed 

by more than 56% in the presence of NucB, except H. influenzae 33 biofilms in which the 

dispersal effect of NucB (37% reduction) was lower than its inhibition effect (49% reduction) 

on biofilm formation. In contrast, the dispersal efficacy of NucB was higher than its inhibitory 

efficacy on biofilm formation by T. otitidis 7, 24, 25, 27, S. pneumoniae 11, 32, and S. oralis 

20. Reductions in biomass of A. odontolyticus 14, H. influenzae 21, T. otitidis 29, and all S. 

aureus and S. auricularis isolates were broadly similar in assays of inhibition of biofilm 

formation and biofilm dispersal (see Figure 5. 2 and Figure 5. 3). As had been observed with 

assays for inhibition of biofilm formation, NucB did not significantly dispersed mature 
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biofilms formed by T. otitidis 11, S. pyogenes11, and S. oralis 11. In conclusion, NucB 

efficiently dispersed pre-formed biofilms and inhibited biofilm formation by more than 75% 

of bacteria isolated from MEEFs of COME patients.  
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Figure 5. 2 NucB-mediated inhibition of biofilm formation by COME isolates. 

Biofilms were grown in 96 or 12 well plates in the presence or absence of 100 units ml-1 of 

NucB for 24-48 h. Biofilms were stained by crystal violet and the extent of biofilm formation 

was quantified by measuring A570. (A) Bars represent mean data from at least three 

independent experiments and standard errors are presented. (B) Representative images of 

crystal violet stained biofilms grown in 12-well plates without or with 100 units of NucB 

treatment. Biofilms formed by the majority of COME isolates were significantly inhibited by 

NucB treatment (*p < 0.05, **p< 0.01, ***p< 0.001; paired two samples t-test). T.o= T. 

otitidis, H.i= H. influenzae, S.pn= S. pneumoniae, A.od= A. odontolyticus, S.a= S. aureus, 

S.au= S. auricularis, S.o= S. oralis, S.pg= S. pyogenes. 
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Figure 5. 3 Dispersal of pre-formed biofilms of COME isolates by NucB treatment. 

Biofilms of COME isolates were grown in 96- or 12-well plates for 24-48 h. Biofilms were 

treated with 100 units ml-1 of NucB for 1 h at 37°C aerobically and quantified by CV staining. 

(A) Bars represent mean data from at least three independent experiments and standard errors 

are presented. (B) Representative images of crystal violet stained pre-formed biofilms treated 

with 100 units ml-1 of NucB in Tris buffer (+) or with Tris buffer only (-) for 1 h at 37°C 

aerobically. NucB significantly reduced the biomass of pre-formed biofilms of the majority of 

COME isolates compared to controls treated with buffer only (*p < 0.05, **p< 0.01, ***p< 

0.001; paired two samples t-test). T.o= T. otitidis, H.i= H. influenzae, S.pn= S.pneumoniae, 

A.od= A. odontolyticus, S.a= S. aureus, S.au= S. auricularis, S.o= S. oralis, S.pg= S. 

pyogenes. 
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5.5       Effects of NucB on biofilm structure of selected COME isolates 

Crystal violet assay data provided a quantitative measure of the inhibitory effects of 

NucB against biofilms, but did not give information on the structure of the biofilms formed. 

To understand the effects of NucB on biofilm structure, biofilms of selected bacteria were 

grown on the surface of glass coverslips and analysed using LIVE/DEAD® BacLight™ stain 

and CLSM imaging (see Materials and Methods section 2.12.1). As the imaging is time-

consuming and labour-intensive, it was not practical to analyse all strains. Therefore, this 

work focused on representative species of the most commonly isolated bacterial genera from 

COME such as Turicella and Staphylococcus, as well as classical otopathogens of COME, 

which were shown to be sensitive to NucB treatment. T. otitidis 27, T. otitidis 29, S.aureus 18, 

S. pneumoniae 11, H. influenzae 21, and A. odontolyticus 14 were selected for this analysis. 

Visualisation of 3D images of CLSM showed that biofilms formed by all these bacteria in the 

absence of NucB generally had a complex structure in which dense, dome-shaped 

microcolonies consisting of several layers of cells covered most of the glass surface, 

occasionally separated by poorly colonised zones (see Figure 5. 4 and Figure 5. 5). There was 

considerable variation in biofilm thickness and structure between different species, and 

between different strains within the same species. For example, biofilms formed by A. 

odontolyticus 14 were more extensive and thicker than those formed by other bacterial species 

and consisted of unorganised, multicellular layers of dense microcolonies covering most of 

the surface with an average thickness of 51.6 μm. Biofilms produced by T. otitidis 27 were 

more extensive, thicker and structurally different than those produced by T. otitidis 29. Both 

live (green) and dead (red) cells were visualised when biofilms were stained by 

LIVE/DEAD® BacLight™ stain, and in general the proportions of live cells were far greater 

than dead/compromised cells within the biofilms of all bacterial species.  

Consistent with the CV quantification of NucB efficacy against COME isolates, 

biofilm formation by all tested species was significantly inhibited in the presence of 100 units 

ml-1  of NucB compared with negative controls (Figure 5. 4). Observation of 3D reconstructed 

CLSM images showed that biofilms developed in the presence of NucB by all tested species 

were substantially less extensive than those of the untreated controls, and they generally 

consisted of randomly distributed single cells or very small clusters of cells on the surface. 

Again, inspection of the CLSM images showed that proportions of live cells to 

dead/compromised cells in biofilms formed in the presence of NucB were almost equal to 
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those formed in the absence of NucB, confirming that NucB has no obvious killing effect on 

bacterial cells within biofilms. 

Visualisation of 3D rendered CLSM images showed that the structure of each biofilm 

treated with NucB was different from that of the negative controls. To obtain quantitative 

information about these structural changes, COMSTAT was used to determine the important 

structural parameters such as biomass, average thickness and roughness coefficient of the 

biofilm (Table 5. 2).  Generally, the average biomass of biofilms reflected the visual 

observations, and significant reductions (p < 0.05) of between 60-85% were observed in 

biofilms of all tested species formed in the presence of NucB compared with controls. 

Biomass levels of S. pneumoniae 11 and S. aureus 18 biofilms were the most strongly 

reduced by NucB, and each was decreased by more than 80% in the presence of the enzyme. 

By contrast, T. otitidis 27, T. otitidis 29, and H. influenzae 21 biofilm biomasses were 

decreased on average by 65% compared with untreated controls. Also consistent with visual 

observations, the average thickness of biofilm formed by all tested species was significantly 

(p < 0.05) reduced by 50-80% in the presence of NucB. Biofilms of S. pneumoniae 11 and S. 

aureus 18 were also strongly reduced in thickness by 75-85%, whereas the thickness of 

biofilms formed by T. otitidis 27, T. otitidis 29, and H. influenzae 21 was reduced on average 

by 60%. The roughness coefficient of biofilms formed by all tested COME isolates in the 

presence of NucB was significantly changed compared to biofilms formed in the absence of 

NucB, once again consistent with a shift in biofilm architecture upon treatment with NucB.  

Again in agreement with CV data, visualisation of CLSM images further showed that 

48 h old pre-formed biofilms of the selected COME isolates were substantially dispersed by 

the addition of 100 units of NucB in Tris buffer, for 1 h at 37°C aerobically, compared with 

controls treated with Tris buffer with no NucB (see Figure 5. 5). Generally, NucB treated pre-

established biofilms of all tested COME isolates were less extensive than the control biofilms, 

and consisted of either irregularly scattered isolated cells with very small clumps of cells or a 

single layer of cells containing many cell-free zones. Again, no differences in the viability of 

biofilm cells were detected between NucB treated biofilms and control biofilms. Quantitative 

analysis of the CLSM images by COMSTAT software showed that the average biomass and 

average thickness of the pre-established biofilms formed by the selected COME isolates were 

significantly (p < 0.05) reduced, by 55-80%, when they were incubated with 100 units ml-1 of 

NucB compared to the control biofilms (Table 5. 3). Biofilms of A. odontolyticus 14 and 

H.influenzae 21 were remarkably sensitive to NucB treatment. In both cases, the average 

biomass and thickness of biofilms was reduced by more than 76% compared to the untreated 
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controls. Consistent with CV data and visual observations of the CLSM images, the average 

biomass and thickness of the pre-formed biofilms of T. otitidis 27, T. otitidis 29, S. 

pneumoniae 11 and S.aureus 18 were also significantly decreased by 55-70 % compared to 

the negative controls. Finally, pre-established T. otitidis 27, T. otitidis 29, and S. aureus 18 

biofilms exposed to NucB were significantly altered in roughness coefficient compared to the 

untreated controls. However, in the case of A. odontolyticus 14, H. influenzae 21, and S. 

pneumoniae 11 no significant changes in biofilm roughness were evident even though there 

were clear differences in biofilm architecture (see Figure 5. 5). 

In conclusion, quantitative data obtained by COMSTAT support the qualitative data 

obtained from the observation of 3D rendered CLSM images and show that the architecture of 

biofilms formed by selected COME isolates is significantly different following exposure to 

NucB during or after biofilm formation compared with controls lacking enzyme. By contrast, 

no detrimental effects on the viability of cells within biofilms were observed following NucB 

treatment.  
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Figure 5. 4 Effects of NucB on biofilm structure and formation by COME isolates observed by CLSM. 

Biofilms were grown on glass surfaces in the presence or absence of 100 units ml-1 of NucB for 24-48 h and visualised with CLSM using 

LIVE/DEAD® BacLight™ stain. Cells with green signals (Syto9) are alive and cells with red signals (propidium iodide) are dead or damaged. 

Upper lines represent x–y plane, lower lines represent 3D reconstruction of a z stack. The scale bars represent 20 µm for upper lines, and 30 µm 

for lower lines. Images show that biofilms formed by the selected COME isolates in the presence NucB were remarkably less extensive than that 

of untreated controls.   
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Table 5. 2 COMSTAT analysis of biofilm formation by the COME isolates in the 

presence or absence of NucB (100 units ml-1 ). 

Species Treatment 

Group 

Biomass 

(µm3/µm2)a 

Average thickness 

(µm)a 

Roughness coefficienta 
 

S. pneumoniae 11 (-) NucB 2.8 (0.4) 9.5 (1.5) 0.5 (0.2) 

(+) NucB 0.4 (0.0)** 1.8 (0.3)** 1.5 (0.1)** 

H. influenzae 21 (-) NucB 3.3 (0.7) 12.9 (2.3) 0.8 (0.2) 

(+) NucB 0.9 (0.3)** 5.7 (2.7)* 1.4 (0.1)* 

S. aureus 18 (-) NucB 3.3 (0.5) 7.7 (1.1) 0.6 (0.1) 

(+) NucB 0.6 (0.1)** 2 (0.3)** 1.3 (0.1)** 

T. otitidis 27 (-) NucB 4.8 (0.6) 10.9 (1.4) 0.8 (0.1) 

(+) NucB 1.9 (0.7)* 5.7 (1.9)* 1.5 (0.2)* 

T. otitidis 29 (-) NucB 2 (0.5) 9.7 (2.5) 0.8 (0.1) 

(+) NucB 0.6 (0.1)* 3.1 (0.8)* 1.5 (0.1)** 

 
aData [mean (SE)] were generated from images of three randomly selected areas on each 

coverslip from at least three independent experiments. NucB significantly altered the structure 

of biofilms formed by the selected COME isolates, leading to significant reductions in biofilm 

biomass, average thickness, and roughness coefficient compared to no NucB controls (*p < 

0.05, **p< 0.01, ***p< 0.001; One-Way ANOVA test with Tukey’s HSD post-Hoc 

comparison).  
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Figure 5. 5 Effects of NucB on the structure of established biofilms of COME isolates observed by CLSM. 

Biofilms were grown on glass surfaces for 48 h, treated with NucB (100 units ml-1 ) for 1 h at 37°C and visualised with CLSM using LIVE/DEAD® 

BacLight™ stain. Cells with green signals (Syto9) are alive and cells with red signals (propidium iodide) are dead or damaged. For each biofilm, upper 

panels represent x–y plane, lower panels represent 3D reconstruction of a z stack. The scale bars represent 20 µm for upper panels, and 30 µm for 

lower panels. Images show that NucB substantially dispersed pre-formed biofilms of selected COME isolates compared to control biofilms. 
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Table 5. 3 COMSTAT analysis of COME isolates biofilm dispersal by NucB (100 units 

ml-1 ). 

Species 
Treatment 

Group 

Biomass 

(µm3/µm2)a 

Average thickness 

(µm)a Roughness coefficienta 

S. pneumoniae 11 
(-) NucB 8.4 (1.7) 24.7 (4.1) 0.6 (0.2) 

(+) NucB 3.0 (1.1)** 11.8 (2.9)* 1.0 (0.2) 

H.influenzae 21 
(-) NucB 6.2 (1.1) 21.6 (3) 0.7 (0.1) 

(+) NucB 1.0 (0.2)*** 5.2 (1.7)*** 1.1 (0.2) 

S.aureus 18 
(-) NucB 4.8 (1.1) 21.6 (3.2) 0.4 (0.1) 

(+) NucB 2.3 (0.6)* 9.0 (2.6)** 1.3 (0.1)*** 

T. otitidis 27 
(-) NucB 9.6 (1.6) 23.9 (1.6) 0.5 (0.1) 

(+) NucB 4.4 (1.2)* 8.7 (1.3)*** 1.2 (0.1)*** 

T. otitidis 29 
(-) NucB 4.3 (0.7) 8.4 (1.6) 1 (0.1) 

(+) NucB 1 (0.1)*** 3.5 (0.4)* 1.3 (0.1)* 

A. odontolyticus 14 
(-) NucB 10.7 (2.3) 51.6 (10.6) 0.6 (0.1) 

(+) NucB 2.0 (0.26)*** 9.4 (1.38)*** 0.9 (0.1) 
aData [mean (SE)] were generated from images of three randomly selected areas on each 

coverslip from at least three independent experiments. NucB greatly altered pre-formed 

biofilms structure by significantly reducing biomass and average thickness of biofilms 

compared to the untreated controls ( *p < 0.05, **p< 0.01, ***p< 0.001; One-Way ANOVA 

test with Tukey’s HSD post-Hoc comparison). 
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5.6 Discussion  

Using the 96-well MTP model and CV staining assay, more than 90% of the COME 

isolates that were assayed in this Chapter formed biofilms in vitro, and around 70% of them 

were strong biofilm forming (SBF) strains. This is not surprising as it has been suggested that 

more than 99% of microorganisms can demonstrate the phenotypic characteristic of biofilm 

formation (Costerton et al., 1978). Although no previous studies have systematically screened 

COME isolates for their biofilm formation capacity as performed in this study, several studies 

have focused on in vitro and in vivo biofilms formed by classical otopathogens implicated in 

the aetiology of COME including S. pneumoniae and H. influenzae  (Hall-Stoodley and 

Stoodley, 2009, Starner et al., 2006, Van Hoecke et al., 2016). All strains of S. pneumoniae, 

H. influenzae, and S. aureus that were isolated in this study also showed strong biofilm 

formation ability. T. otitidis and CoNS are frequently isolated from MEEFs of children with 

COME (Daniel et al., 2012b, Gomez-Garces et al., 2004, Holzmann et al., 2002, Papp et al., 

2016). Their roles in the aetiology of COME are debated as they also have been cultured from 

the external ear canal of healthy individuals, although the frequency of T. otitidis detection in 

patients with COME appears to be higher than in controls (Funke et al., 1994, Gomez-Garces 

et al., 2004, Holzmann et al., 2002). Interestingly, most of the T. otitidis strains that were 

assayed formed robust biofilms in vitro under the conditions employed. Furthermore, in 

agreement with this study, CoNS isolated from patients with COME and CRS also showed 

phenotypic and genotypic characteristics compatible with the formation of biofilms in vitro 

and in vivo (Paluch-Oles et al., 2011). The ability to form biofilms may potentially protect 

these species against hostile external insults such as antimicrobials and host immune actions 

(Longauerova, 2006). Furthermore, T. otitidis and CoNS have also been found to be 

associated with other infection-related conditions such as medical implant-associated 

infections for CoNS, and mastoiditis, auricular and a cervical abscess caused by T. otitidis 

(Paluch-Oles et al., 2011, von Graevenitz and Funke, 2014). It is likely that these 

microorganisms are opportunistic pathogens. 

Consistent with the roles of eDNA in facilitating initial microbial adhesion during 

early biofilm formation and in maintaining the structural integrity of established biofilms, 

NucB was effective in inhibiting biofilm formation and disrupting established biofilms in 

more than 75% of the COME isolates. Staphylococci and T. otitidis were the most frequently 

cultured bacteria in MEEFs of COME patients and the majority of strains investigated here 

were sensitive to NucB treatment. S. aureus and CoNS including S. epidermidis, which is 
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closely related to S. auricularis, have been shown to be sensitive to rhDNase (Dornase alfa), 

DNase I and NucB in previous studies (Qin et al., 2007a, Shields et al., 2013, Tetz et al., 

2009, Kaplan et al., 2012, Sugimoto et al., 2018), indicating a critical importance of eDNA 

within the biofilm matrix of these species. Importantly, biofilms formed by S. pneumoniae 

and H. influenzae, which are two of the most commonly implicated pathogens in COME, 

were significantly inhibited and dispersed by NucB treatment. Evidence from previous studies 

clearly indicates that eDNA is a key structural component within the biofilm matrix of S. 

pneumoniae and H. influenzae (Domenech and Garcia, 2018, Hall-Stoodley et al., 2008, 

Jurcisek et al., 2017, Tetz et al., 2009), which may explain their significant sensitivity to 

NucB. Several distinct mechanisms have been reported to be responsible for the accumulation 

of eDNA within the biofilm matrix of S. pneumoniae and H. influenzae including cellular 

autolysis, the formation of extracellular vesicles, and active release of DNA from the bacterial 

cytoplasm to the extracellular environment through an inner-membrane pore complex 

(Jurcisek et al., 2017, Domenech and Garcia, 2018). 

A. odontolyticus is a commensal of the oral cavity that can cause serious infections in 

individuals with defects in the mucosal barrier and/or with immune deficiency. Although A. 

odontolyticus has been reported to be associated with about 25 cases of invasive pathology 

over last 50 years including cardiopulmonary, mediastinal, bacteraemia, and soft tissue 

infections (Broly et al., 2016), it has not been isolated in middle ear disease. Therefore, it was 

considered interesting to study the biofilm formation capacity and sensitivity to NucB 

treatment of this strain. NucB had a substantial effect on A. odontolyticus biofilms. In our 

laboratory, we have also observed that Actinomyces oris MG1, an isolate originally from the 

oral cavity, also forms biofilms that are markedly sensitive to treatment with DNases such as 

NucB or DNase I (N. Jakubovics, unpublished data). Therefore, a reliance on eDNA for 

biofilm formation may be a characteristic of Actinomyces species. NucB also significantly 

reduced S. pneumoniae biofilms. However, the sensitivity of biofilms formed by other 

streptococcal species to NucB was variable. S. oralis 20 biofilms were significantly dispersed 

and inhibited by NucB, but S. oralis 14 and S. pyogenes 11 were not significantly sensitive to 

NucB. This finding is consistent with other research which also reported marked differences 

in  DNase sensitivity between different species of bacteria or occasionally, between different 

strains of the same species (Lappann et al., 2010, Shields et al., 2013). It is not clear why 

some strains are more sensitive to NucB than others. This could be due to the differences in 

the pathways of eDNA production or in the dependence for eDNA to maintain biofilm 

structural stability. Genomic DNA sequencing of these different strains may help to reveal the 
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genes responsible for release of eDNA into the biofilm matrix. T. otitidis would be an 

interesting target for this investigation, because marked variations in NucB sensitivity were 

detected between different strains of T. otitidis. Apparently eDNA production and 

accumulation is strictly regulated and relies on several factors such as growth phase and the 

availability of nutrient source. Other factors such as growth conditions including temperature 

and pH, differences in the structure of eDNA, production and accumulation of inhibitors, 

differences in the nuclease activity of DNases against eDNA within biofilm matrix, and the 

type of surfaces used to grow bacterial biofilms were also found to have significant impact on 

DNase-mediated biofilm control (Lappann et al., 2010, Shields et al., 2013).      

Using CLSM and quantitative image analysis by COMSTAT, significant alterations in 

the structure of biofilms formed by six different strains could be observed (T. otitidis 27, T. 

otitidis 29, S.aureus 18, S. pneumoniae 11, H. influenzae 21, and A. odontolyticus 14). This 

was displayed by substantial reductions in biomass and average thickness of the biofilms 

when compared with the negative controls, suggesting that degradation of eDNA by NucB 

within the matrix of established biofilms or during biofilm formation by these isolates had 

weakened the biofilm architecture and led to biofilm collapse, or prevented the eDNA from 

enabling biofilm formation in the first place. Consistent with the present study, established 

biofilms of S. pneumoniae clinical isolates treated with rhDNase (Dornase alfa) showed 

significant reductions in biomass and average thickness in a dose-dependent manner 

regardless of their biofilm formation capacity (Hall-Stoodley et al., 2008). These studies 

highlight the important role of eDNA in maintaining structural integrity of biofilm in this 

species. Similarly, eDNA is considered one of the key structural constituents of the biofilm 

matrix of H. influenzae and has been shown to exhibit an important role in protecting in vivo 

biofilms of H. influenzae against the antimicrobial action of human β-defensin-3 (hBD-3), an 

important antimicrobial host defence peptide which is critical in innate immunity of the 

middle ear mucosa (Jones et al., 2013). Interestingly, degradation of eDNA within the in vitro 

biofilm matrix of H. influenzae enhanced the antimicrobial activity of recombinant hBD-3 and 

markedly reduced overall biomass and thickness of biofilms. These observations are in 

agreement with the high sensitivity of H. influenzae strains to NucB treatment that was 

observed in this study. 

Quantitative analysis of biofilms using CLSM imaging and COMSTAT analysis 

showed higher levels of dispersal and inhibition of biofilms formed by COME isolates than 
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those observed in the 96-well MTP model. For example, when testing biofilm inhibition, 

NucB significantly reduced biofilm biomass of, S. aureus 18, S. pneumoniae 11, H. influenzae 

21, T. otitidis 27, and T. otitidis 29 by 56.5%, 45%, 56.3%, 47.3%, and 65%, respectively, as 

quantified using the 96-well MTP biofilm model and CV staining. By comparison, biomass of 

biofilms formed by the same bacteria was significantly reduced by 81.8%, 85.7%, 72.7%, 

60.4%, and 70%, respectively, as quantified using combined CLSM and COMSTAT analysis. 

A similar finding was shown with S. aureus SB14 and SB17 biofilms in Chapter 3. As discussed 

previously, growing biofilms on different surfaces, glass in the case of the CLSM imaging and 

polystyrene for the 96-well MTP and CV staining model, may cause variability in the reliance 

of biofilms on eDNA for the structural support. Second, the CLSM approach shows bacterial 

cells only, whereas the CV staining technique quantifies overall biofilm biomass including 

cells and extracellular matrix, which may have affected the measurements of dispersal and 

inhibition of biofilm formation by NucB. 

 Although the underlying aetiology of COME is unclear, there is increasing evidence 

that bacterial biofilms are the key stimulus of the chronic inflammatory process that leads to 

overproduction and accumulation of effusion fluid in the middle ear of COME patients. There 

is a clear deficiency in the current treatment of COME as evidenced by the significant rate of 

recurrence following myringotomy and grommet insertion (Kubba et al., 2000, Vlastarakos et 

al., 2007). Therefore, there is pressing need for the development of better treatment 

techniques that can be used to improve the current treatment options. This study showed that 

most COME-associated microorganisms formed robust biofilms in vitro that were efficiently 

inhibited and dispersed by NucB treatment, indicating that NucB may be useful in the therapy 

of COME. Further validation of these in vitro data is required in a more realistic animal model 

of COME and ultimately in human clinical trials.  
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Chapter 6. General Discussion  

The most important inherited challenge in targeting otopathogens associated with otitis 

media including COME is the ability to isolate and identify the microbial population, and 

monitor the abundance of each species (Stol et al., 2013, Rettig and Tunkel, 2014). 

Traditionally, S. pneumoniae, H. influenzae and M. catarrhalis are the most frequently 

isolated otopathogens in approximately 40% of patients with COME using conventional 

culture methods (Ngo et al., 2016). More fastidious microorganisms including A. otitis, T. 

otitidis and P. acnes are also often isolated, though their role in infection is not so clear 

(Leskinen et al., 2002, Harimaya et al., 2006, von Graevenitz and Funke, 2014, Ngo et al., 

2016, Barron et al., 2019). Initial attempts to replicate laboratory procedures recommended by 

UKSMI (PHE, 2014) had limited success for isolating fastidious microorganisms including A. 

otitis, H. influenzae, and Propionibacterium acnes, even though these were detected using 

culture independent methods. Culturing techniques were improved by processing MEEF 

samples immediately following sample collection, extending the incubation of initial cultures 

for up to 2 weeks, and adopting stringent precautions to prevent contamination. These 

optimisation steps dramatically increased the diversity of species that were cultured. 

Overall,16 different species were isolated from 21 MEEF samples collected from 12 patients 

on three different agar media. The microbial communities present in MEEFs of COME 

patients were dominated by T. otitidis, A. otitis, and CoNS including Staphylococcus 

epidermidis and Staphylococcus auricularis. Bacterial strains identified in our cohort were 

broadly consistent with those previously observed in other studies (Daniel et al., 2012b, Papp 

et al., 2016, Min et al., 2019, Barron et al., 2019, Harimaya et al., 2006, von Graevenitz and 

Funke, 2014, Bosley et al., 1995). However, T. otitidis and A. otitis were identified in our 

cohort at higher frequencies (52.4% and 38.1%, respectively) than reported in these studies 

(0-10% and 0-4.7 % respectively). It is possible that the adoption of the improved culture 

techniques in this study, particularly the extended incubation period, may have been 

responsible for the increased isolation frequency. 

Recently, the development of culture-independent technologies such as 16S rRNA 

gene sequencing have allowed a non-selective, quantitative characterisation of the microbial 

communities present in complex samples such as MEEFs. It is important to note that 16S 

rRNA gene sequencing has a number of limitations, particularly for low biomass samples. 

Many of the extraction kits are contaminated with microbial DNA and it is important to 

include negative controls. In this study, many of the major contaminating sequences were 
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identified and removed by sequencing and analysing DNA extraction blanks. However, since 

this work was done, new guidelines have been published that recommend the use of multiple 

negative controls (Eisenhofer et al., 2019). Overall, the 16S rRNA gene sequencing 

performed here identified A. otitis, CoNS, Moraxella catarrhalis, T. otitidis, and Haemophilus 

influenzae as the most common species in MEEFs of patients with COME. Importantly, there 

was excellent agreement between microbial culture and culture-independent analysis, 

providing confidence in the microbiological analyses. Consistent with this study, recently 

published papers using both traditional culture dependent and 16S rRNA gene sequencing 

techniques have found that six main species or genera of bacteria as the most common 

microorganisms in COME: A. otitis, H. influenzae, staphylococci (mainly CoNS), T. otitidis, 

Moraxella catarrhalis and S. pneumoniae (Van Hoecke et al., 2016, Boers et al., 2018, Chan 

et al., 2017b, Min et al., 2019, Kolbe et al., 2019, Papp et al., 2016). The use of culture-

independent methods has shown that A. otitis and T. otitidis have a high prevalence in COME, 

and are consistent with both our culture and 16S rRNA sequencing data (Ari et al., 2019, 

Kolbe et al., 2019, Boers et al., 2018, Chan et al., 2017b). A. otitis appears to be more 

dominant than T. otitidis in the previously published literature, likely due to lack of 

appropriate primer pairs for the identification of T. otitidis (von Graevenitz and Funke, 2014). 

It is difficult to differentiate T. otitidis from closely-related commensal Corynebacterium 

species, and in fact it has recently been propsed that T. otitidis should be reclassified as 

Corynebacterium otitidis (Baek et al., 2018, von Graevenitz and Funke, 2014). 

The role of T. otitidis, A. otitis and staphylococci in the pathogenesis of COME is still 

unclear due to their high abundance in EEC (Stroman et al., 2001, Chan et al., 2017b), which 

is a potential source of contamination of samples. Even when proper procedures for collecting 

MEEF samples are followed, including sterilisation of EEC and adopting measures to avoid 

contact with it during sampling, the possibility of a sample becoming contaminated with a 

EEC commensal flora cannot be eliminated (Buzatto et al., 2017, Chan et al., 2017b, Daniel et 

al., 2012b). Evidence supporting the potential pathogenicity of T. otitidis, A. otitis and 

staphylococci, and the possible mechanism of transmission into the middle ear through 

retrograde ascension of the Eustachian tube from the adenoids was considered in chapter 4 

and chapter 5. This retrograde ascension is thought to be important for transmission of three 

major otopathogens (S. pneumoniae, H. influenzae and M. catarrhalis) to the middle ear, 

since these species are commonly increased in the adenoids when COME is present 

(Marchisio et al., 2003, Chan et al., 2017b, Van Hoecke et al., 2016). T. otitidis, A. otitis and 

staphylococci (mainly CoNS) are rarely detected in the adenoid. The pattern of high 
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abundance of T. otitidis, A. otitis and staphylococci in the EEC and middle ear and low 

abundance in adenoids suggests that EAC can also serve as a reservoir for these species to 

reach the middle ear, possibly through a perforated tympanic membrane (whether from 

spontaneous rupture or in the presence of grommet tube) as discussed in chapter 4 (Lappan et 

al., 2018, Chan et al., 2017b). Although I did not investigate the microbial species in the EEC, 

comparisons were made between the middle ear microbiome and that of adenoids. In general, 

the microbial profiles of adenoids were more diverse than those observed in MEEFs of 

patients with COME. Consistent with recent microbiome studies, the microbiome of adenoids 

in our cohort consisted mainly of Haemophilus spp., Prevotella spp., Streptococcus spp., 

Fusobacterium spp., Veillonella spp., and Porphyromonas spp. (Boers et al., 2018, Chan et 

al., 2017b, Johnston et al., 2019, Jervis-Bardy et al., 2015). However, the microbiome of 

adenoids of patients with COME appeared to be less diverse than those of patients without 

COME (controls) and they were concurrently colonised by the three classical otopathogens 

(H. influenzae, S. pneumoniae, and M. catarrhalis), in addition to other bacterial species that 

were detected at lower levels in MEEFs of the same patients. This finding supports the notion 

that the co-colonisation of adenoid with otopathogens is an important predisposing factor for 

the development of COME. 

I attempted to directly demonstrate translocation events by sequencing the genomes of 

two paired species from adenoids and MEEFs, with the idea that identification of identical 

clones would be strong evidence for transmission between the two environments. However, 

all strains were distinct from one another and direct evidence for translocation through the 

Eustacian tube is therefore still lacking. On the other hand, commensal genera such as 

Corynebacterium and Dolosigranulum, that were observed at very low relative abundance in 

our cohort, have been detected at high abundance in the nose and adenoids of healthy controls 

and at low relative abundance in the nasopharynx of children with middle ear infections 

(Laufer et al., 2011, Man et al., 2019, Pettigrew et al., 2012b). This suggests that either the 

risk for middle ear infections including COME increases by a reduction in the abundance of 

these key adenoid commensals. Alternatively, middle ear infections themselves or antibiotic 

treatment may result in the loss of these important commensals creating a state of dysbiosis. 

One implication is that probiotic bacteria may be an efficient alternative approach to prevent 

the onset or recurrence of otitis media (Marchisio et al., 2015). The work from chapter 4 

provided an overview of the overall bacterial communities present in the MEEFs and 

adenoids of patients with COME. Most importantly, a wide range of representative fresh 

clinical isolates, which included both classical otopathogens (H. influenzae, S. pneumoniae, 
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and S. aureus) and novel potential otopathogens (A. otitis, T. otitidis, and CoNS (, S. 

auricularis)), were obtained that could be used in in vitro biofilm models to assess the anti-

biofilm activity of NucB in Chapter 5. 

The majority of COME isolates exhibited a strong capacity to form biofilms in vitro, 

although the clinical isolates of A. otitis were excluded from the analysis due to their 

fastidious growth requirements. Previous studies have studied the biofilm-forming ability of 

the classical otopathogens implicated in COME including S. pneumoniae, H. influenzae, and 

S. aureus (Daniel et al., 2012a, Hall-Stoodley et al., 2008, Jones et al., 2013). However, the 

ability of other COME isolates has not been thoroughly explored. It appears that eDNA was 

critical for more than 75% of biofilms formed by the COME isolates tested since NucB 

significantly inhibited biofilm formation and dispersed established biofilms. In particular, all 

strains of S. pneumoniae, H. influenzae and S. aureus were sensitive to NucB. S. aureus 

strains isolated from two cases of COME exhibited similar behaviour to that shown by CRS 

clinical isolates assayed in chapter 3, since they formed robust in vitro biofilms that were 

substantially susceptible to NucB treatment. Consistent with these findings, a recent study 

also found that CoNS were the most frequently cultured bacteria from MEEFs of children 

with COME and the detection rate of Methicillin resistant S. aureus (MRSA) was 

significantly higher in children with recurrent COME than those with non-recurrent COME 

(Min et al., 2019). This work further supports my decision to select S. aureus as a model 

microorganism relevant to COME in chapter 3. The finding that eDNA was frequently 

important in biofilm formation was also consistent with previous research. For example, in 

vitro and in vivo biofilms formed by S. pneumoniae, H. influenzae and S. aureus have been 

shown to contain significant amounts of eDNA and were susceptible to DNase treatment 

(Hall-Stoodley et al., 2008, Jones et al., 2013, Cavaliere et al., 2014a, Jurcisek and Bakaletz, 

2007, Sugimoto et al., 2018). Overall, there is accumulating evidence that DNase enzymes 

such as NucB may potentially be effective for controlling biofilms associated with COME. 

In accordance with previously published studies (Lappann et al., 2010, Shields et al., 

2013, Sugimoto et al., 2018), the results here also demonstrated differences in DNase 

sensitivity between different species of bacteria or occasionally, between different strains of 

the same species. There was variability in the efficacy of NucB against biofilms formed by 

different Streptococcus spp. and T. otitidis, for example. It is not clear why some strains are 

more sensitive to DNase than others. This could be due to differences in the pathways of 
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eDNA production or in the adhesion of cells to the eDNA matrix. It appears that eDNA 

production and accumulation is strictly regulated and relies on several factors such as growth 

phase and the availability of nutrient source (Zetzmann et al., 2015b, Windham et al., 2018) . 

It has been found that eDNA plays an important role during early stages of H. pylori biofilm 

formation but does not play a significant structural role in mature biofilms (Windham et al., 

2018, Grande et al., 2012). The authors have attributed this shift to the contribution of other 

biofilm matrix components that may take on the role of maintaining structural stability as the 

biofilm matures. Furthermore, Zetzmann et al. (2015b) have shown that Listeria 

monocytogenes forms DNase-sensitive biofilms in diluted complex medium and these 

biofilms contained abundant eDNA within the matrix. By contrast, in full strength medium 

biofilms were resistant to DNase I treatment and lacked eDNA within their matrix, suggesting 

that low nutrient medium may favour bacterial cell lysis and the release of chromosomal 

DNA. Other factors such as growth conditions including temperature and pH, interspecies and 

intraspecies variability in the composition of the extracellular matrix of the biofilm, 

differences in the structure of eDNA, and type of surfaces used to grow bacterial biofilms 

were also found to have significant impacts on DNase-mediated biofilm control (Zetzmann et 

al., 2015b, Sugimoto et al., 2018, Windham et al., 2018). It has been shown that the structural 

role of eDNA is not proportional to its level within the matrix of many DNase sensitive S. 

aureus biofilms. However, in a small number of S. aureus strains where polysaccharide-

intracellular adhesins or proteins were present in large amounts within the extracellular matrix 

(ECM), biofilms were insensitive to DNase I treatment. It is likely that these dominant 

components of the ECM may either prevent DNase enzyme from acting on eDNA or 

compensate the structural roles of eDNA within the ECM of these biofilms (Sugimoto et al., 

2018). Comprehensive approaches such as transcriptomics or proteomics help to identify the 

key genes responsible for release of eDNA and other ECM components into the biofilm 

matrix and explain the differences in eDNA sensitivity between closely related strains of the 

same species.   

6.1 Impact and applications of the study 

This study significantly enhances our understanding of the composition of microbial 

populations associated with COME and the efficacy of a DNase, NucB, against relevant in 

vitro biofilms. There have been several previous investigations studying the anti-biofilm 

action of DNases, but very few have looked at biofilm-associated ear diseases, particularly 

COME. Most previous studies have focused on investigating eDNA and DNase-sensitivity of 
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the classical pathogens implicated in middle ear infections such as S. pneumoniae (Hall-

Stoodley et al., 2008), H. influenzae (Jones et al., 2013, Cavaliere et al., 2014b), S. aureus 

(Mann et al., 2009, Sugimoto et al., 2018), and P. aeruginosa (Whitchurch et al., 2002, 

Swartjes et al., 2013). This study built on this body of previous work and broadened the 

investigation to a much wider range of microbial strains freshly isolated from children with 

COME. A key finding was that biofilms formed by the majority of the tested COME isolates 

were significantly dispersed, inhibited or structurally altered by NucB treatment. These 

observations add further weight to the hypothesis that eDNA is a key structural component 

within the ECM of biofilms formed by a wide range of bacteria associated with COME and 

that NucB has promise as a novel eDNA-targeting approach to control biofilm diseases 

including COME. 

While our study has shown promising results in vitro, it is important to determine the 

extent to which eDNA is important in clinical otitis media including COME. Recently 

published in vivo studies have also identified both host- and bacterial-derived extensive 

strands of eDNA matrix which are often associated with DNABII proteins such as integration 

host factor (IHF), and histone-like protein (HU) in the MEEF samples recovered from 

children with rAOM (Thornton et al., 2013), COME (Barron et al., 2019) and in persistent 

otorrhea samples retrieved from paediatric patients with tympanostomy tubes (Idicula et al., 

2016). Targeting these extensive strands of eDNA directly using Dornase alfa was associated 

with complete and rapid fragmentation of this DNA matrix in 7 MEEF samples collected 

from children with rAOM (Thornton et al., 2013). Alternatively, indirect targeting of eDNA 

using antibody against DNABII proteins has been shown to: 1) induce disruption of biofilms 

and rapid resolution of the disease in an experimental model of H. influenzae-induced otitis 

media (Goodman et al., 2011), 2) promote dissolution of sputum solids collected from patient 

with cystic fibrosis (Gustave et al., 2013) and exudate samples retrieved from EEC of children 

with persistent post-tympanostomy tube otorrhoea (Idicula et al., 2016), 3) prevent 

development of experimental otitis media in a multispecies model of ascending disease 

(Novotny et al., 2017), and 4) trigger disruption of H. influenzae biofilms in the chinchilla 

model of experimental otitis media by redirecting the immune response toward immuno-

protective domains of DNA-binding (DNABII) proteins (Novotny et al., 2019). Therefore, the 

presence and ubiquity of eDNA in clinical specimens of the different types of otitis media 

including COME can serve as an important clinical target for our novel eDNA-directed 

approach (NucB) to control biofilm associated diseases including COME.  
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Before an agent such as NucB can be used in clinical applications, it is essential to 

ensure that they are non-toxic and safe for human use. Our results, though preliminary, have 

provided evidence that NucB is a safe anti-biofilm agent as it had no cytotoxicity to human 

bronchial epithelial cells relevant to the middle ear cavity. It is important to further investigate 

the immunogenic effect of NucB on human cells in vitro by measuring the release of 

inflammatory markers such cytokines, determining glutathione and leukocyte proliferation, 

before progressing to investigate the safety of NucB using an animal model. There is some 

evidence from this study and other studies that NucB, as a DNase, would very likely to be 

safe for the use in the clinical setting (Chan et al., 2018).  

 If NucB is shown to be safe for use, there are a number of different options available 

for delivery of the enzyme. Drug formulations such as ear drops generally contain salts at low 

concentrations and could be administered locally into the middle ear following myringotomy 

and grommet insertion to reduce recurrence of disease and the need for further surgery. 

Furthermore, our preliminary results have shown that NucB can be effective in combination 

with antibiotics. Potentially, NucB could be incorporated with antibiotics either in ear drops 

or in other drug formulations such as biodegradable modified-release antibiotic pellets (Daniel 

et al., 2012a). A combination of NucB and antibiotics potentially can also be applied locally 

to treat persistent post-tympanostomy otorrhoea. In a recent clinical trial, it was shown that 

Dornase alfa can facilitate the clearing of grommets in 59% of children with clogged 

grommets, though this effect was not significantly different from treatment with antibiotics 

(Chan et al., 2018). 

 Another potential approach for the local delivery of NucB for the treatment of COME 

is through the transtympanic route. NucB can potentially be incorporated into phage-based 

therapeutic preparations to pass through the intact tympanic membrane into the middle ear 

cavity for the treatment of biofilms associated with otitis media including COME. In 

experimental animal models, phage-based products armed with specific peptide sequences 

have been used to deliver payload across the tympanic membrane into the middle ear cavity 

with minimal or no delivery into the inner ear (Kurabi et al., 2018). Other forms of trans-

tympanic drug delivery system that potentially can be used to deliver NucB for the treatment 

of COME include the penta-block copolymer of poloxamer 407–polybutylphosphoester 

(P407-PBP). This system has been developed to deliver an entire course of 

antimicrobial therapy to the middle ear when applied once to the tympanic membrane through 

the EEC (Yang et al., 2016). The product flows easily during application and forms a strong 

hydrogel on the tympanic membrane. When this therapy was tested on H. influenzae-induced 
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experimental otitis media, it eradicated AOM in the chinchilla model in 100% of cases, 

whereas only 63% of animals receiving 1% ciprofloxacin alone had cleared infection by day 

7. NucB can also potentially be incorporated into mouthwash or nasal spray to control 

biofilms associated with dental diseases or chronic rhinosinusitis, respectively (Jakubovics 

and Burgess, 2015, Shields et al., 2013). Alternatively, NucB could be used to coat artificial 

surfaces such as polymethylmethacrylate (PMMA), stainless steel or titanium, that are 

commonly used in the manufacture of prosthetic medical devices including dentures, dental 

implants or orthopaedic implant materials, in order to delay or prevent medical device-related 

biofilm infections (Swartjes et al., 2013, Jakubovics and Burgess, 2015, Khatoon et al., 2018).  

Another important issue necessary for the application of NucB in the clinical setting is 

to develop systems for the cost-effective production at scales that would be needed for clinical 

use. Towards this goal, an optimized B. licheniformis NucB expression system has been 

developed that potentially could be scaled up (Rajarajan et al., 2013). 

6.2 Limitations of the study and future work 

The work presented in this thesis has provided a greater understanding of the 

composition of microbial populations associated with MEEFs and adenoids in patients with 

COME and the role of eDNA in maintaining stability of in vitro biofilms formed by 

representative microbial isolates. However, there are a number of limitations that need to be 

considered.  

Here, bacterial communities colonising the middle ear and adenoids of children with 

COME were characterised using culture-independent 16S rRNA gene sequencing. In general, 

this approach can provide a comprehensive overview of the composition of microbiome from 

which DNA is present at the time of sampling. However, it does not provide information on 

the viability and the function of microorganisms in their environment. Additionally, there are 

some important biases to consider when conducting these studies (Eisenhofer et al., 2019). 

The efficacy of DNA extraction methods and amplicon primers can be variable across 

different bacterial species, which can ultimately result in underrepresentation of some 

microorganisms. Samples can possibly be contaminated by DNA from different sources 

including laboratory reagents, people, environment, DNA extraction kits, and cross-

contamination from other high biomass samples and sequencing runs from adjacent wells or 

tubes which can heavily confound true biological signals within low biomass samples or 

environments (Eisenhofer et al., 2019, Salter et al., 2014). In this study, the use of an 

optimised microbial identification approach that incorporated both improved culture methods 
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and culture-independent 16S rRNA gene sequencing techniques enabled a more complete 

characterisation of microbial communities of COME than either technique alone. This is of 

particular importance in order to validate that species isolated from MEEFs were 

representative of the total microbial population present. Together, these methods showed that 

COME samples are dominated by T. otitidis, A. otitis, and CoNS and also harboured a wide 

range of other bacterial species including H. influenzae, S. pneumoniae, and M. catarrhalis. 

Furthermore, preliminary microbiome and genomic comparisons of the co-occurrence of 

COME pathogens in paired MEEFs and adenoids from 3 patients revealed more complex 

microbial profiles in adenoids that were concurrently colonised with similar bacterial species 

to those found in MEEFs, including major paediatric otopathogens such as H. influenzae, S. 

pneumoniae, M. catarrhalis and a variety of other bacterial species. Bacterial genera such as 

Haemophilus, Streptococcus, and Moraxella that colonise adenoids may contain both 

pathogenic species and commensal species. Therefore, there is a need to characterise these 

genera at the species and even the strain level. 

Genome sequencing is the most powerful approach to characterise microbial strains 

and to explore differences between closely related isolates. Here, genome sequencing was 

employed in a preliminary attempt to identify identical strains in paired MEEF and adenoid 

swabs. However, streptococcal species that were detected in both sample types from the same 

patient were not genetically identical. Therefore, there was no clear evidence that strains had 

translocated between adenoids and the middle ear. The hypothesis that adenoids act as a 

source for otopathogens in COME needs further validation. Further microbiome 

investigations should focus on establishing causal relationships between microorganisms and 

COME. In particular, it is important to assess the role of controversial pathogens such as T. 

otitidis, A. otitis, and CoNS in addition to the major paediatric otopathogens such as H. 

influenzae, S. pneumoniae, M. catarrhalis as this may lead to new avenues for treatment. This 

could be addressed by the characterisation of microbial communities present in matched 

adenoids and MEEFs from a larger cohort of COME patients with appropriate controls using 

both traditional culture and 16S rRNA gene sequencing techniques, detailed bioinformatics 

analysis and full genome comparisons of similar species isolated from both the adenoids and 

middle ear of the same patient. More advanced culture-independent techniques such as 

metagenomics would enable investigation of the functional roles and characteristics of the 

microbial community by identifying the entire coding potential of the microbial community. 

Proteomics could allow characterisation of the expression of proteins, although currently this 

approach may be limited by the need for relatively large quantities of biomass. 
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Transcriptomics is more sensitive and would allow characterisation of mRNA expression. 

Together, these approaches could be applied to further explore the functional role and causal 

relationships of the middle ear microbiome. 

Another limitation to our work is that the in vitro biofilm models used in this research 

may not be closely relevant to the in vivo biofilms found in COME patients. A key step will 

be the development of improved model systems that more closely mimic the in vivo 

environment. For example, a well-controlled in vitro model that will simulate epithelial 

mucosa of the middle ear with its secretions would be of great benefit.  This could be 

performed by incorporating human epithelial cells similar to the approach used by Marks et 

al. (2012) to model in vivo biofilms of S. pneumoniae or a 3-D host tissue model. It would be 

interesting to assess the anti-biofilm action of NucB against biofilms cultured in these more 

realistic in vitro models and ultimately in already established animal models of otitis media 

and biofilms (Goodman et al., 2011, Novotny et al., 2019). Data from models such as these 

would provide strong proof-of-concept evidence to support further development and 

ultimately human clinical trials. 

Our results have provided evidence that NucB can potentially increase the efficacy of 

antibiotics against in vitro biofilms. It is important to note that this analysis was limited to 

only one type of antibiotic (Co-amoxiclav) and a limited number of S. aureus clinical isolates. 

It would be interesting to extend this research, including assessing the efficacy of NucB in 

combination with other types of penicillin (amoxicillin), macrolides (azithromycin), 

aminoglycosides (gentamicin), and quinolones (ciprofloxacin). In addition, these 

combinations could be assessed against biofilms formed by a greater number of relevant 

clinical isolates from cases of COME. This analysis could be performed using the methods 

optimised in this thesis such as colorimetric XTT and MBEC assays. It is important to 

consider including total viable count calculations during determination of the minimum 

biofilm eradication concentration (MBEC) values of antibiotics when using the MBEC assay 

in addition to the measurement of absorbance (A650) that was performed in this investigation. 

If DNases such as NucB are to be used in a clinical setting using the potential formulations 

that were previously described in section 6.1, it is of particularly important to ascertain their 

efficacy in treatment solutions. Our preliminary results have shown that NucB efficacy was 

not affected when it was combined with high concentrations of Co-amoxiclav. Further 

investigations are required to assess compatibility of NucB with common components of ear 

drops, nasal sprays or mouthwash products. It will be important to design a formulation that 

permits optimal activity of NucB if it is to prove useful at disrupting COME biofilms in vivo.  
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6.3 Conclusion   

In conclusion, the work presented in this thesis has provided a detailed characterisation 

of microbial populations associated with COME through incorporating a combination of 

improved culture and culture-independent techniques. This approach is of particular 

importance in order to provide a rich resource of representative isolates from COME patients 

which were shown to have the ability to form robust biofilms in vitro. NucB has been shown 

to be potentially nontoxic on human cells and exhibited a potent anti-biofilm action against 

the majority of COME isolates. Several clinical characteristics of COME are typical of 

biofilm infection. Greater understanding of the role of bacterial biofilms in the pathogenesis 

of COME will allow the development of novel therapeutic approaches to prevent recurrence 

of the disease. NucB alone or in combination with antibiotics may potentially be a potent and 

safe agent to control a wide range of biofilm-associated conditions including COME. 
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Appendix B: 1. Participant information sheets for parents  
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2. Participant Information Sheet for Children Aged 3-5 
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3. Participant Information Sheet for Children Aged 6-11 
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4. Participant Information Sheet for Young Persons Aged 12-15 
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5. Patient information Sheet for Young Persons Aged 16  
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use 
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Finance 

Commercial Projects 

NIHR Industry Costing Template: 
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(pdf & XML) 
YES  

NHS SSI Form (draft) YES   

* Research Protocol with version and date YES  

* Participant Information Sheet and Consent Form with version and date YES  

* All other participant related documents (GP letter, questionnaires, 

patient diaries, posters etc) 
YES  

For ctIMP projects:  Confirmation from Pharmacy that they have received 

Pharmacy Manual from Sponsor  
N/A  

2-page CV for Principal Investigator  YES  

GCP Training Certificate for Principal Investigator (please see guidance) YES  

* Evidence of Sponsorship if not confirmed by Study Agreement or 

authorised copy of NHS R&D Form 
MANDATORY  

* Evidence of Insurance or Indemnity (studies with non-NHS sponsors or 

protocol authors who hold honorary NHS contracts)  
YES/CSP/NA  

* Investigator Brochure/ Summary of Product Characteristics - ctIMPs only NA  

Signed Investigator Responsibilities Form MANDATORY  

Draft Contract/Agreements with completed financial appendix 

If sponsor will not provide a completed financial appendix, then R&D 

will require email confirmation of this from sponsor  

YES/NA 

 

Recruitment End Date  please note this is not the study end date 

recorded in the IRAS documents, if unsure please check with sponsor 
MANDATORY 

 

Documents marked with * do not need to be sent to NuTH FT R&D if they are available via 

the NIHR Coordinated System for gaining NHS Permission (CSP) document repository.  

NuTH FT must be listed as a research site on Part C of the NHS R&D Form in order for the 

R&D team to be able to access the study documents in the document repository.  

The NIHR CSP Reference must be provided for any documents marked as available on CSP 

 

 

Documents listed below are not mandatory for study submission for 

R&D Approvals Committee review but may be required for R&D 

approval 

ENCLOSED 

For 

R&D  

use 

only 

 

Favourable Ethical opinion from NHS Research Ethics Committee 

(REC) 

Yes  

Notice of Acceptance letter from MHRA  NA  

Caldicott approval (it is advisable to submit this as early as possible to 

prevent delays) or confirmation this has been applied for 

NA  

Confirmation of any PIC sites used to aid recruitment at NuTH NA  

Other approvals if relevant – eg CAG, IRMER, ARSAC  NA  

Has this project been submitted for adoption to the NIHR Portfolio? 

If so, provide the Portfolio UKCRN ID (this is not the IRAS/NIHR 

CSP reference) 

NA 

UKCRN ID: 
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R&D may request further information or documentation after review of the submission 

 

If you have any questions about the above please contact the R&D team: 

 

The Newcastle upon Tyne Hospitals NHS Foundation Trust 

Newcastle Joint Research Office, Research & Development 

Level 1, Regent Point 

Regent Farm Road  

Gosforth  

Newcastle upon Tyne  

NE3 3HD 

 
Trust.R&D@nuth.nhs.uk 

0191 282 5959 

 

 

 

  

mailto:Trust.R&D@nuth.nhs.uk
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Appendix J: Conferences and Meetings Attendance  

1. 23-26 June 2015: EUROBIOFILMS 2015 - Fourth European Congress on 

Microbial Biofilms, Brno, Czech Republic (poster presentation). 

 

 

  

Title: Extracellular DNA in biofilms associated with chronic otitis media with effusion 

Chronic otitis media with effusion (COME) is the most common cause of acquired hearing 

loss and elective surgery in children in the developed world. Numerous studies have 

implicated bacterial biofilm infections of middle ear as an important contributor to the 

pathogenesis of COME. Biofilm polymeric matrix shelters bacterial cells and protects them 

from antimicrobial therapy and the host immune system. Increasing evidence indicates that 

extracellular DNA (eDNA) is a key structural component within the matrix of many microbial 

biofilms. Therefore, the addition of DNase enzymes could potentially inhibit biofilm 

formation, disperse pre-established biofilms, or increase the susceptibility of biofilms to 

antibiotics. This study aimed to assess the efficacy of a DNase, NucB from Bacillus 

licheniformis, to inhibit biofilm formation by clinically relevant strains of Staphylococcus 

aureus.  Initial experiments, using crystal violet staining, indicated that biofilm formation by 

two different S. aureus isolates was reduced by >50% in the presence of NucB. Structural 
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changes in biofilms were identified using confocal laser scanning microscopy (CLSM), 

IMARIS, and COMSTAT 2 computer programs. Further investigations will include testing 

the inhibitory effect of NucB on a variety of different bacterial species from COME patients 

using crystal violet assays and quantification of NucB effects on the structure of biofilms by 

CLSM, IMARIS, and COMSTAT2 computer programs. 

 

2. 5-7 October 2016: ESGB & EPASG international conference “Antimicrobial 

resistance in microbial biofilms and options for treatment”, Ghent, Belgium (oral 

presentation). 

Title: Antibiofilm Activitiy of the marine DNase, NucB, in biofilms associated with 

chronic otitis media with effusion. 

Chronic otitis media with effusion (COME) is the most common disease of the ear in 

childhood. Numerous studies have confirmed bacterial biofilm infections as an important 

contributor to the pathogenesis of COME. Increasing evidence indicates that extracellular 

DNA (eDNA) is a key structural component within the matrix of many microbial biofilms. 

The aim of this study to assess the antibiofilm activity of a DNase, NucB, from Bacillus 

licheniformis against in vitro biofilms of COME clinical isolates. NucB treatment of some 

clinical isolates biofilms at concentrations range of 100-5 units/mL showed significant dose- 

dependent inhibition of biofilm formation and dispersion of pre-established biofilms 

quantified by 96-well microtiter plate crystal violet assay. Profound structural changes in 

biofilms were identified without affecting cells viability using confocal laser scanning 

microscopy (CLSM) imaging of LIVE/DEAD® stained biofilms grown on glass coverslips. 

There was more than 50% reduction in biomass, average thickness of the biofilms when 100 

units/mL of NucB either included during biofilm formation for 24h or incubated for 1h with 

pre-established biofilms (48h) as calculated using COMSTAT 2. Just below 50% reduction in 

XTT conversion rate was observed in biofilms of these clinical biofilms which had been 

subjected to antimicrobial treatment at concentration 8000 – fold or greater than the minimal 

inhibitory concentration (MIC). Addition of NucB (100 units/mL) on these biofilms 

significantly increased their sensitivity to antimicrobial killing by more than 20% compared 

with antimicrobial treatment alone and this sensitisation was more with lower antimicrobial 

concentration . In summary, NucB showed efficient antibiofilm and antimicrobial –sensitizing 

actions against tested clinical isolates. NucB, alone or in combination with antibiotics, may 

potentially help in controlling biofilms associated infections including COME.  

3. 18 May 2017: Annual COHR Research Afternoon, Newcastle (poster 

presentation). 

The same poster of  EUROBIOFILMS 2015 (displayed above) was presented. Poster 

award winner. 

 

 

 

 

 

 


