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Abstract 

 

Aberrant activation of the NF-κB signalling pathway is associated with the 

development of many cancers. We have previously demonstrated that global NFKB1 

knock-out mice (Nfkb1-/-) develop spontaneous low-level chronic inflammation, liver 

disease and cancer as they age. In addition, when they are given the carcinogen 

diethylnitrosamine (DEN) to induce liver cancer they develop significantly more 

tumours and at an earlier stage. Nfkb1-/- mice present with defects in both the 

immune and the epithelial compartment, therefore it is not possible to dissect the cell-

specific role of NFKB1 as a tumour suppressor.  

To determine the hepatocyte-specific tumour suppressor role of NFKB1, we have 

generated a novel hepatocyte-specific NFKB1 knock-out mouse (Nfkb1hep-/-). WT or 

Nfkb1hep-/- mice were subjected to different treatment regimens with either the 

hepatotoxin CCl4 or the carcinogen DEN to induce acute inflammation, fibrosis or 

hepatocellular carcinoma, to assess the role of hepatocyte NFKB1 in the progression 

from liver inflammation to cancer. In addition, acute CCl4 injury and chronic DEN 

injury experiments were conducted in AAV-TBG-CRE mice, whereby adenoviral 

deletion of hepatocyte NFKB1 was induced. 

Here we demonstrate that, while hepatocyte Nfkb1 showed a limited protective role in 

acute inflammation and fibrosis, mice lacking hepatocyte Nfkb1 displayed a 

significant increase in tumour number and grade when compared with WT mice in 

the chronic DEN model. Importantly, they also displayed a higher percentage of 

PCNA+ proliferative tumours, indicative of a more aggressive tumour phenotype. 

Immune cell infiltration including monocytes, macrophages and neutrophils was 

significantly increased in Nfkb1hep-/- mice.  

These data provide strong evidence that NFKB1 acts as a hepatocyte-specific 

tumour suppressor, playing an essential role in the control of inflammation, tumour 

initiation, progression and proliferation. 
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Chapter 1. Introduction 

 

1.1 Nuclear Factor Kappa B (NF-κB) 

The NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) family of 

transcription factors, discovered in 1986, plays a fundamental role in living organisms 

by regulating a number of key cellular pathways involved in immune responses, 

inflammation and cancer (Hoesel & Schmid, 2013).  

 

1.1.1 NF-κB transcription factor family members and structures 

The NF-κB family of transcription factors consists of five members, including RelA (also 

known as p65), RelB, c-Rel, NF-κB1 and NF-κB2. NF-κB1 and NF-κB2 are synthesized 

as precursors (p105 and p100) then proteolytically cleaved to p50 and p52 

respectively. The NF-κB proteins, which form homo- and hetero- dimers, all possess a 

Rel homology domain (RHD) which contains a nuclear localisation sequence and is 

essential for dimerization, DNA binding and interaction with the IκB inhibitory proteins. 

In addition, RelA, RelB and c-Rel have a transcriptional activation domain (TAD), 

enabling them to activate transcription when bound to genes. This domain is absent in 

NF-κB1 and NF-κB2, and thus prevents them from activating transcription in the 

absence of co-activating factors. RelB additionally has a leucine zipper (LZ) domain, a 

leucine-rich N-terminal extension, which is important for transactivation (alterations in 

the LZ structure lead to a decrease in RelB transcriptional capacity) (Dobrzanski et al., 

1993). NF-κB1 p105 and p50, and NF-κB2 p100 and p52 have a glycine rich region 

(GRR) domain which is important for proteasomal processing (Collins et al., 2016). 

p105 and p100 also have an Ankyrin repeat domain (ANK), enabling them to act as 

inhibitors of  NF-κB dimers (Savinova et al., 2009). 

The following NF-κB dimers are therefore transcription-activating: p50:p65, p50:c-Rel, 

p50:RelB, p52:p65, p52:c-Rel, p52:RelB, p65:p65, p65:c-Rel, and c-Rel:c-Rel. The 

dimers with no TAD domain, p50:p50, p50:p52 and p52:p52 are unable to activate 

transcription alone and generally act as repressors of gene transcription, competing 

with activatory dimers to bind DNA (Hoesel & Schmid, 2013; Lawrence, 2009). When 

in complex with activatory cofactors however, these dimers can activate transcription. 

p65:RelB, c-Rel:RelB and RelB:RelB dimers are thought to have limited DNA binding 
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capacity. p65 and p50 form the most commonly seen heterodimer in the NF-κB family, 

activated in the canonical NF-κB pathway (Lawrence, 2009; Hoesel & Schmid, 2013). 

 

 

Figure 1.1 NF-κB subunit structures and dimeric combinations (Concetti & Wilson, 2018). 

Figure shows the different NF-κB subunits and their structure, as well as the different NF-κB 

dimer possibilities and their function.  

 

1.1.2 NF-κB activation pathways 

In response to stimuli, such as pro-inflammatory cytokines or genotoxic stress, the NF-

κB pathway is activated, initiated by the activation of the IKK-complex. This complex 

consists of two catalytic subunits, IKKα and IKKβ, as well as a regulatory subunit, 

NEMO (NF-κB essential modifier), also known as IKKγ. IKKα and IKKβ phosphorylate 

IκB proteins, which leads to their proteasomal degradation, thus allowing for NF-κB 

protein activation and translocation to the nucleus (Hayden & Ghosh, 2004). In the 

canonical NF-κB pathway (the classical NF-κB pathway), IKKβ is the predominant IκB 

kinase, whereas IKKα is mainly implicated in the alternative pathway, where it leads to 

processing of p100 to p52 by the 26S proteasome. NEMO represents a key player in 

the activation of the IKK complex, whereby it undergoes Lys63-linked ubiquitylation 

through the interaction with upstream signalling molecules, allowing it to recruit kinases 
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which will in turn activate IKKβ by phosphorylating their activation loops (Perkins, 

2007). Stimulation of the IL-1R or TLR receptor leads to their dimerization and 

recruitment of the Myddosome complex, consisting of MyD88, IRAK4 and IRAK1 (or 

IRAK2). IRAK1 is phosphorylated by IRAK4 then associates with ubiquitin E3 ligase 

TRAF6, subsequently activating it. TRAF6 and the ubiquitin E2 complex, comprising 

Ubc13 and Uev1A, catalyze the synthesis of K63-linked polyubiquitin chains which are 

conjugated to other proteins or unanchored. Unanchored K63 polyubiquitin chains bind 

the TAB2 subunit of the TAK1 kinase complex, promoting autophosphorylation of 

TAK1, and thus resulting in its activation. The polyubiquitin chains also bind NEMO to 

recruit the IKK complex, which facilitates the phosphorylation of IKKβ by TAK1. IKK is 

then activated to phosphorylate IκBα. 

Once IκB is phosphorylated at serines 32 and 36, this is recognised by SCFBeta-TrCP 

(Skp1-cullin1-F-box protein, beta-transducin repeat-containing proteins), a ubiquitin 

ligase complex which ubiquitinates it, marking IκB for proteasomal degradation. This 

subsequently allows the rapid translocation of NF-κB dimers to the nucleus, where they 

will bind to κB sites in promoter and regulatory regions of NF-κB target genes and 

activate transcription (Figure 1.2) (Orian et al., 2000). 

Upon activation and translocation to the nucleus, NF-κB also activates the transcription 

of IκBα, generating a negative feedback loop in order to limit the NF-κB-mediated 

response, whereby IκBα dissociates NF-κB-DNA complexes, shuttling NF-κB back to 

the cytoplasm. Additionally, ubiquitination of NF-κB subunits also leads to the 

degradation of NF-κB and termination of transcription (Collins et al., 2016). 
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Figure 1.2 NF-κB1 activation and regulation of gene expression in cancer (Concetti & 

Wilson, 2018). NF-κB1 p105/p50 regulation of gene expression in cancer. Following 

inflammatory stimulation, IKK functions as the key activator of the NFKB1 signalling pathway. 

Phosphorylation and ubiquitination of IκB releases p50:p65 dimers which can drive the 

transcription of tumour-promoting inflammatory genes and anti-apoptotic and proliferative 
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genes. p50 phosphorylation at the S329 site impairs p50:p65 dimer binding to DNA, 

decreasing Bcl-xL expression leading to increased apoptosis, hindering cancer progression. 

p105 phosphorylation and ubiquitination leads to its processing by the 26S proteasome, 

releasing p50 homodimers. The p50:p50:HDAC1 complex represses tumour-promoting 

inflammatory gene expression thus acting as a tumour-suppressor complex, while p50 

homodimers in complex with Bcl-3 or BAG-1 can drive proliferation. In macrophages, aberrant 

p50 homodimer repression of CXCL10 and IL-12 leads to impaired M1 polarisation. Whilst 

p50:p50 repression of pro-inflammatory and proliferative mediators can also promote tumour 

suppression. 

 

 

1.1.3 NF-κB activity modulation 

NF-κB is known to play a central role in the regulation of inflammation, immunity, cell 

proliferation and apoptosis, and increasing evidence suggests a crucial role for NF-κB 

in the development of cancer. A variety of different stimuli are able to trigger the 

activation of the NF-κB pathway, which culminates in positive or negative regulation of 

gene transcription (Oeckinghaus et al., 2011). Cytokines, notably TNFα (Tumour 

necrosis factor α) and IL-1 (interleukin 1), and pathogen-associated molecular patterns 

(PAMPs) including LPS (lipopolysaccharide), found in the outer membrane of Gram-

negative bacteria, represent three main activators of the NF-κB signalling cascade 

(Lawrence, 2009). These bind cell-surface receptors, including TNFRs, IL-1Rs and 

TLRs (Toll-like receptors), resulting in the translocation of NF-κB dimers to the nucleus, 

driving the transcription of genes involved in orchestrating the immune response. TLRs 

are specifically involved in recognising PAMPs, and thus represent key players in 

pathogen recognition and defence mechanisms (Mogensen, 2009). Downstream of the 

pathway, dimers bind to their target genes, activating the transcription of inflammatory 

genes coding for cytokines and chemokines such as TNFα, IL1-β, IL-8 and RANTES; 

this in turn further enhances the NF-κB signalling pathway through additional binding 

to chemokine and cytokine receptors, creating a positive feedback loop (Bonizzi & 

Karin, 2004). 

NF-κB’s role in the regulation of immune responses extends from the innate to the 

adaptive immune system. It is responsible for triggering the first line of defence through 

mediating transcription of pro-inflammatory genes. These not only include cytokines 

and chemokines, but also genes encoding adhesion molecules, allowing for the 

extravasation of immune cells, as well as matrix metalloproteinases which mediate 
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chemotaxis (Eck et al., 1993; Vincenti et al., 1998). Cells of the innate immune system, 

including macrophages, neutrophils and DCs (dendritic cells), migrate to the site of 

infection in response to the detection of foreign particles. This is followed by APCs 

(antigen-presenting cells), notably DCs, interacting with T cells in the initiation of the 

adaptive immune response.  

The successful activation of T cells requires the upregulation of costimulatory molecule 

expression on the surface of APCs (CD80 and CD86), a process dependent on NF-κB 

(Hoebe et al., 2003). Subsequently, antigen recognition by TCRs (T cell receptors) and 

BCRs (B cell receptors) also leads to the activation of NF-κB in order to upregulate 

cytokines that support proliferation and differentiation, as well as anti-apoptotic factors 

(Gerondakis & Siebenlist, 2010). 

It is known that NF-κB plays a central role in hematopoeisis, the formation of blood 

cells, derived from the lymphoid, myeloid and granulocytic lineages. These include B 

cells and T cells (lymphoid lineage), monocytes, macrophages and dendritic cells 

(myeloid lineage), as well as basophils, neutrophils and eosinophils (granulocytes). 

Most immune cells undergo rapid turnover and therefore require a tight regulation of 

proliferation and apoptosis. NF-κB is a key player in this, ensuring rapid expansion of 

immune cells during immune responses, as well as targeted cell death in the resolution 

of the immune response (Hayden et al., 2006). The role of NF-κB is therefore 

contrasted in that it can exhibit pro-survival and anti-apoptotic properties, in addition to 

its ability to mediate apoptosis in different conditions. 

With increasing research linking inflammation and dysregulated immune responses to 

cancer, evidence has suggested that the NF-κB pathway is strongly involved in 

carcinogenesis (Okamoto et al., 2007; Brücher & Jamall, 2019). It is now widely 

accepted that chronic inflammation and infection represent major risk factors for certain 

cancers. An example includes chronic HBV (hepatitis B virus) and HCV (hepatitis C 

virus) infections which significantly increase the risk of developing HCC (hepatocellular 

carcinoma). Similarly, Helicobacter pylori infections have been associated with gastric 

cancers (Karin, 2006). NF-κB has also been implicated in several inflammation-linked 

cancers, including colitis-associated cancer and MALT (mucosal-associated lymphoid 

tissue) lymphoma. These are characterized by elevated expression of NF-κB, whereby 

NF-κB is persistently activated, leading to the suppression of apoptosis and to 

uncontrolled proliferation (Viennois et al., 2013; Ruland et al., 2001). Chronic infection 

and inflammation lead to the NF-κB-dependent transcription of genes coding for 
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inflammatory cytokines, cell cycle modulators, growth factors and survival signals, and 

angiogenic factors which contribute to tumorigenesis. The expression of these factors 

culminates in the activation of other signalling pathways, further enhancing tumour 

promotion (Karin, 2006). 

 

 

Figure 1.3 NF-κB-activating stimuli and target genes. Diagram shows the different NF-κB 

stimuli including infection, antigen receptors, cytokines and genotoxic stress, and some of the 

different NF-κB target genes including chemokines, cytokines, apoptosis/cell survival genes, 

proliferation genes and genes involved in tumour promotion and metastasis. 

 

1.2 Nuclear Factor Kappa B1 (NF-κB1) 

NF-κB1 comprises p105 and p50. The p50 subunit of NF-κB results from the proteolytic 

cleavage of its precursor, p105. Studies have established different means of p105 

processing to p50, including co-translational proteasomal degradation of p105 (Lin et 

al., 1998), and signal-induced degradation of p105 by phosphorylation and 

ubiquitination (Fujimoto et al., 1995). In the latter case, upon stimuli, p105 is 

phosphorylated in its C-terminal domain containing an ankyrin repeat, followed by 

degradation in a ubiquitin-proteasome dependent manner. The degradation of the 

inhibitory C-terminal region subsequently leads to p50 activation. This mechanism is 

similar to that of IκBs, which undergo the same degradation pathway, releasing the 
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inhibition of NF-κB dimers. A recent study identified KPC1 (KIP1 ubiquitination-

promoting complex) as the ubiquitin ligase that ubiquitinates p105 following binding to 

the ankyrin repeat domain. Interestingly, overexpression of KPC1 led to the inhibition 

of tumour growth; this was suggested to be caused by the increased production of p50, 

and the subsequent downregulation of p65, thus leading to an increase in p50:p50 

complexes and a decrease in tumorigenic p50:p65 complexes (Kravtsova-Ivantsiv et 

al., 2015a). 

 

1.2.1 p105 structure and function 

p105 has a dual function. It acts as a precursor for p50, undergoing processing and 

thus regulating the availability of p50 for NF-κB dimer formation. Upon stimuli, p105 is 

phosphorylated in its C-terminal domain containing an ankyrin repeat (ANK), similar to 

that of the IκB inhibitory proteins, followed by partial degradation in an ubiquitin-

proteasome dependent manner. The degradation of the inhibitory C-terminal region 

subsequently leads to p50 activation (Perkins, 2007). p105 also inhibits preformed NF-

κB dimers, acting in an IκB manner via its ANK domain. In mice where p105 serine 

residues 927 and 932 are mutated to alanine, there is impaired p105 processing and 

as a result p50:p65 release and activity is inhibited (Sriskantharajah et al., 2009; 

Jacque et al., 2014). Aside from its direct role in the control of NF-κB activation, p105 

also plays an additional role in stabilising Tpl2 kinase (tumour progression locus 2). 

p105 inhibits Tpl2-mediated activation of the MEK/ERK (mitogen-activated protein 

kinase kinase/extracellular regulated kinase) pathway and this inhibition is abrogated 

following IKK-induced proteolysis of p105  (Beinke et al., 2004; Concetti & Wilson, 

2018). 

 

1.2.2 p50 structure and function 

The function of the p50 subunit of NF-κB differs depending on its dimerization partner. 

When dimerised with p65, the p50:p65 complex activates the transcription of NF-κB 

target genes. However, when p50 is dimerized with another p50 subunit, these dimers 

are unable to activate transcription due to the lack of a TAD, and thus act as 

transcriptional repressors when bound to DNA, preventing activatory NF-κB dimers 

from binding. Although p50 homodimers are unable to activate transcription alone, they 
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are able to turn genes on when complexed with activatory cofactors; in contrast 

inhibitory cofactors enhance the repressive function of p50 homodimers (Lawrence, 

2009). 

 

1.2.3 p105 and p50 cofactor complexes 

p105 proteins are known to interact with several factors to modulate apoptosis and cell 

cycle. Of these, Tpl2 (tumour progression locus 2) and ABIN2 (A20‐binding inhibitor of 

NFKB2) have been shown to be stabilised and inhibited by p105, leading to the 

repression of MEK/ERK pathway signal transduction, with p105 acting as a competitive 

inhibitor of Tpl2 substrates (Babu et al., 2006; Beinke et al., 2003). p105 has also been 

shown to interact with c-FLIP (Cellular FLICE (FADD-like IL-1β-converting enzyme)-

inhibitory protein), ZUD (also known as DD-containing protein Unc5CL) and LYL1 

(lymphoblastic leukaemia associated haematopoiesis regulator 1)(Zhang et al., 2004; 

Ferrier et al., 1999; Li et al., 2003). 

p50 homodimers repress inflammation by competing with activating NF-κB dimers and 

preventing them from binding to κB sites on the promoters of target genes, further 

strengthened by the recruitment of co-repressors. Histone deacetylases (HDAC) 

repress gene transcription by removing acetyl groups from histones, often leading to 

chromatin condensation and transcriptional repression. The p50:p50:HDAC1 complex 

is able to repress multiple inflammatory genes, including GM-CSF, CCL2, CXCL-10, 

and MMP-13 (Elsharkawy et al., 2010).  We have recently identified the site of 

p50:HDAC1 interaction and shown that mutagenesis of this binding site on p50 

prevents HDAC1 binding with p50 homodimers. As a result of this loss of p50:HDAC1 

interaction, we observed increased expression of the inflammatory genes CXCL1, 

CXCL2, and IL-6 both basally and in response to stimulus (Cartwright et al., 2018).  

The IκB family protein B cell lymphoma 3 (Bcl-3) plays a dual role in p50 transcriptional 

regulation. As a co-activator it can bind p50 via ankyrin repeats and help drive gene 

transcription when complexed with p50 homodimers, and is also able to recruit other 

transcriptional regulators including STAT1, AP-1, c-Jun, c-fos (Chang & Vancurova, 

2014). However, Bcl-3 can also stabilize the p50 homodimer by masking ubiquitination 

sites and preventing removal from gene promoters. Therefore, Bcl-3 can also function 

as a co-repressor of gene transcription by preventing transcriptionally active NF-κB 

dimers from binding to these gene promoters and driving transcription (Collins et al., 
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2014). Indeed, following LPS (lipopolysaccharide) stimulation of macrophages, 

p50:p50:Bcl-3 complexes negatively regulate TNFα (tumour necrosis factor), IL-1α, 

and IL-1β expression, while activating anti-inflammatory IL-10 gene transcription 

(Collins et al., 2014). In this context Bcl-3 enhances p50 homodimer-dependent TNF 

repression, as p50 is also able to repress TNF in the absence of Bcl-3, though to a 

lesser extent (Wessells et al., 2004a). However, it is highly unlikely that these 

complexes are as simple as this; it is far more realistic to view these known protein 

interactions as parts of the jigsaw when in reality they are likely to form large multimeric 

complexes consisting of numerous co-factors. In support of this, both HDAC1 and Bcl-

3 have also been found in nuclear complexes together in LPS stimulated cells 

(Wessells et al., 2004a).  

Other factors known to interact with and modulate p50 homodimer activity include IκBζ 

and C/EBP (CCAAT enhancer binding protein) which has been shown to displace 

HDAC1 and HDAC3 bound to p50 homodimers, abrogating anti-apoptotic gene 

repression and contributing to aberrant p50 activity in acute myeloid leukemia (Paz-

Priel et al., 2011; Yamamoto et al., 2004). Also, the PARP (Poly (ADP-ribose) 

polymerase) regulation of the co-activator p300 is necessary for p50 transcriptional 

activation in primary lung fibroblasts following TNF and LPS stimulation (Hassa et al., 

2003). EHMT1 can also be recruited by p50 homodimers and catalyses repressive 

methylation (H3K9) in antiviral immunity genes regulated by IFN-1 (interferon type 1) 

(Ea et al., 2012). The various p105 and p50 complexes are illustrated in Figure 1.4. 

The dual ability of p50 to both activate and repress gene transcription instigates a 

complex relationship between this NF-κB subunit and cancer, with much controversy 

as to its role played in carcinogenesis. Given the complex and diverse nature of cancer 

as a disease, it is not surprising that the function of NF-κB1 can differ substantially in 

a cell, organ, and cancer specific manner. I will discuss how NF-κB1 is implicated in 

carcinogenesis, acting both as a pro- and anti-tumorigenic transcription factor. 
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Figure 1.4 p105 and p50 homodimer complexes. p105 has been shown to interact with 

ABIN2, Tpl2, LYL1, ZUD and c-FLIP, while p50 homodimers have been shown to interact 

with Bcl-3, HDAC-1, CREB, IκB and EHMT. 

 

1.2.4 NF-κB1 in inflammation 

Studies in Nfkb1-/- mice have shown that, in the absence of p105/p50, multifocal 

defects in immune responses can be observed. Mice lacking this subunit exhibit 

impaired B lymphocyte proliferation and responses to infection. However, they do not 

display any developmental abnormalities (Sha et al., 1995a). In contrast, RelA knock-

out mice are embryonic lethal, as a result of foetal hepatocyte apoptosis (Doi et al., 

1999a). Nfkb1-/- mice have also been shown to experience accelerated ageing, driven 

by underlying chronic inflammation (Bernal et al., 2014; Jurk et al., 2014). Additionally, 

the absence of p105 also affects the Tpl2–MAPK–ERK (Tumour progression locus-2- 

mitogen-activated protein kinase- extracellular signal-regulated kinase) pathway, 

whereby Tpl2 and ABIN-2 (A20-binding inhibitor of NF-κB 2) expression is dramatically 

decreased (Lee et al., 2015). Tpl2 is thought to induce TNFα expression in 

inflammatory responses. 

Due to the absence of transactivation domains, p50 homodimers are unable to activate 

gene transcription alone. In order to drive transcription, they must recruit co-activating 

factors. p50 homodimers are, however, mostly recognised as repressors of 

transcription. This has led to the belief that p50 plays a crucial role as an anti-

inflammatory transcription factor and in the resolution of inflammation, by dampening 

the expression of pro-inflammatory genes (Lawrence, 2009). A study conducted by S. 
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Kang et al. showed that p50:p50 complexes repress IL-2 (interleukin-2) expression in 

CD4+ T lymphocytes. This was supported by the observations that p50 overexpression 

led to repressed IL-2 expression, and increased expression of IL-2 correlated with a 

decrease in p50 homodimers (Kang et al., 1992). Additionally, it was also shown by J. 

Bohuslav et al. that increased p50 expression leads to a downregulation of TNF 

production following LPS stimulation (Bohuslav et al., 1998). Conversely, p50 has been 

shown to promote the expression of IL-10, an anti-inflammatory cytokine, with the help 

of the co-activator CREB (cAMP response element-binding protein), a known activator 

of transcription (Cao et al., 2006). The same group showed that p50 homodimers 

negatively regulate TNF and IL-12, thus suggesting a contrasted role for these dimers 

in the modulation of cytokine production. Combined together this evidence strongly 

supports the role of p50 as an anti-inflammatory transcription factor. 

Furthermore, it was shown that p50 is able to limit the inflammatory injury during 

pneumonia (Mizgerd et al., 2003). J. P. Mizgerd et al. showed that Nfkb1-/- mice 

displayed an increase in the expression of NF-κB-regulated cytokines including KC, 

MIP-2, TNFα, IL-6 and IL1-β. They subsequently postulated that p50 homodimers are 

essential to limit later inflammatory gene expression in the context of E.coli pneumonia. 

This further supports a role for p50 in the resolution of inflammatory responses. 

Additionally, another study found that following carbon tetrachloride injection (repeated 

intraperitoneal hepatotoxin injection throughout 12 weeks), which leads to hepatic 

injury, Nfkb1-/- mice displayed more inflammation and fibrosis compared to wild type 

mice. TNFα expression was increased in the absence of p50, which our group showed 

to be the result of the inability of p50 to repress TNFα in a HDAC (histone deacetylase)-

dependent manner (Elsharkawy et al., 2010). 

The mechanisms by which p50 homodimers bring about repression of transcription still 

remain incompletely understood; however several studies have supported a role for 

the recruitment of transcriptional co-repressors, including HDAC1. This enzyme 

deacetylates histones, causing these to bind DNA more tightly and thus leading to 

chromatin condensation. This is in contrast to HATs (histone acetylases), which lead 

to the decondensation of chromatin, making gene promoters more readily accessible 

for transcription activators to bind (Choudhary et al., 2009). It has been shown that the 

p50:p50:HDAC1 complex represses the transcription of multiple pro-inflammatory 

genes (Elsharkawy et al., 2010). Here, HDAC1 was shown to be recruited to several 

promoters of genes repressed by p50, including GM-CSF, CCL2 and CXCL10. The 
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same study also showed that HDAC1 mediates the repression of MMP-13 (matrix 

metallopeptidase 13) through the interaction with p50 homodimers. S. A. Williams et 

al. also found that p50 recruitment of HDAC1 led to transcriptional repression, 

promoting HIV virus latency (Williams et al., 2006). Additionally, work from our lab 

showed through chromatin immunoprecipitation assays that p50 and HDAC1 are both 

recruited to the promoters of the CXCL1, CXCL2 and S100A9 genes, which represent 

neutrophil chemokines (Wilson et al., 2015). In contrast, HDAC1 was absent in these 

regions in Nfkb1-/- mice. 

Conversely, Bcl-3 (B-cell lymphoma 3 encoded protein) can act as a transcriptional co-

activator as well as being able to repress transcription, depending on the context. A 

study looking at the role of p50 and Bcl-3 in LPS (lipopolysaccharide)-induced 

inflammatory responses in macrophages found that p50-Bcl-3 complexes negatively 

regulate TNFα, IL-1α and IL-1β, while activating anti-inflammatory IL-10 gene 

transcription (Wessells et al., 2004b). They proposed that Bcl-3 can enhance p50-

dependent TNFα repression, since p50 is able to repress TNFα in the absence of Bcl-

3 as well. Their results also suggested that HDAC1 was involved in the Bcl-3-mediated 

repression of TNFα, as HDAC1 and Bcl-3 were found to be in nuclear complexes 

together in LPS-stimulated cells (demonstrated by co-immunoprecipitation assays). 

p50 homodimers in complex with HDAC1 and Bcl3 were found to gradually replace 

NF-κB-activating dimers in response to LPS stimulation in macrophages, so as to 

attenuate NF-κB target genes (Wessells et al., 2004b). Furthermore, another group 

demonstrated that p50 homodimers and Bcl-3 repress gene transcription in tolerant 

CD4+ T cells, including transcription of the cytokine IL-2 (Grundström et al., 2004). 

This further supports the idea that p50 plays a major role in the resolution of 

inflammatory responses. Additionally, N. Watanabe et al. showed that Bcl-3 activates 

p50 homodimers and mediates their translocation to the nucleus, where they are able 

to modulate transcription (Watanabe et al., 2003). 

 

1.2.5 NF-κB1 in cancer 

Current evidence strongly suggests that aberrant activation of the NF-κB signalling 

pathway is associated with carcinogenesis. A number of key cellular processes are 

governed by the effectors of this pathway, including immune responses and apoptosis, 

both crucial in the development of cancer. Therefore, it is not surprising that 
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dysregulated and chronic NF-κB signalling can have a profound impact on cellular 

homeostasis. 

p50 homodimers are primarily considered to repress gene transcription, dampen 

inflammatory responses, and abrogate anti-apoptotic signalling (Elsharkawy et al., 

2010; Wilson et al., 2015; Schmitt et al., 2011). Chronic inflammation and the evasion 

of apoptosis are hallmarks of cancer (Hanahan & Weinberg, 2011), hence it is no 

surprise that there is an abundance of emerging evidence supporting a role for p50 

homodimers as tumour-suppressors. KPC1 (KIP1 ubiquitination promoting complex 1) 

was recently identified as the ubiquitin ligase that mediates the processing of p105 to 

p50 (Kravtsova-Ivantsiv et al., 2015b). Kravtsova-Ivantsiv and colleagues showed that 

KPC1 overexpression in a mouse xenograft tumour model derived from either the 

glioblastoma cell line (U87-MG cells) or the human breast cancer cell line (MDA-MB 

231 cells) inhibits tumour growth via increased p50 generation. This was further 

supported by p50 overexpression that also reduced the growth of both tumours. 

Interestingly, p65 expression was significantly decreased in KPC1 and p50 

overexpressing tumours, and an increase in the formation of p50 homodimers over 

p50-p65 heterodimers was confirmed by EMSA. The increase in p50 homodimer 

formation resulted in downregulated genes including HMGI-C, lin-28 homolog A, IL-6, 

IL-6R and VEGFA and an upregulation of tumour suppressor genes including PTEN 

(Phosphatase and tensin homolog). Moreover, in support of this, in a human context 

both p50 and KPC1 expression was significantly decreased in human head, neck, and 

glioblastoma tumours compared to normal tissue, and p50 expression decreased in 

breast cancer tumours (Kravtsova-Ivantsiv et al., 2015b). Together their findings 

strongly suggest that KPC1, and hence p50, inhibit the growth of various tumours, 

likely via inhibition of p50:p65-mediated pro-tumorigenic gene transcription. 

 

One of the main infection-driven gastric cancers is caused by Helicobacter pylori. 

Helicobacter Pylori produces a number of virulence factors able to activate the NF-κB 

pathway, which in turn lead to the recruitment of inflammatory cells and the production 

of inflammatory mediators that help drive tumorigenesis (Sokolova & Naumann, 2017). 

In conjunction with liver cancer studies the complexity of NF-κB activation in gastric 

tumorigenesis has also been highlighted using IKK cell-specific knockouts. IKK-/- in the 

gastric epithelial cell compartment leads to accelerated development of dysplasia, 

whereas knockout in only myeloid cells inhibited progression to gastric atrophy and 

dysplasia (Shibata et al., 2010). However, also in correlation with liver cancer 
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development, mice lacking Nfkb1 develop spontaneous invasive GC. Here the Nfkb1-

/- mice display characteristics of gastric cancer in humans including T cell and NK cell 

infiltration, increased pro-inflammatory gene expression including IL-1b, IL-6, TNFa 

and osteopontin, and the metalloproteinases MMP-7, MMP-9 and MMP-13. 

Mechanistically, this is explained by aberrant JAK-STAT (Janus kinase-Signal 

transducer and activator of transcription) signalling via increased pro-inflammatory 

mediators, STAT1 expression and increased expression of the immune checkpoint 

inhibitor PD-L1 (Abstract, 2018). Importantly, in this model Nfkb1 expression was 

required in both the epithelial and immune cell compartments in order to prevent GC. 

The findings of this study are consistent with human GC patient data linking NFKB1 

gene polymorphisms, including rs28362491, with reduced p105/p50 expression and 

GC development (Hua et al., 2014; Arisawa et al., 2013). In contrast, both NFKB1 and 

p65 have been shown at higher levels in GC cell lines and primary human GC tumours 

when compared to normal gastric epithelial cells which correlated with poor survival in 

patients (Huang et al., 2016). Mechanistically, it was revealed that the NFKB1 targeting 

miRNA miR-508-3p was downregulated in GC cells, suggesting a tumour-suppressive 

function for this miRNA (Huang et al., 2016). This reiterates the potentiality that 

p50:p65 dimers are pro-tumorigenic drivers as opposed to p50 homodimers in this 

context. 

 

Aside from the suppressive effects of p50 homodimers, p105 itself can also exert a 

tumour-suppressive function. A recent study highlighted a role for p105 as a tumour 

suppressor via stabilisation of Tpl2. In a urethane-induced lung cancer mouse model 

which re-enacts human lung cancers associated with tobacco smoking, both Nfkb1-/- 

and Tpl2-/- mice showed a significant increase in lung tumour size and number when 

compared to wild type mice. Following the observation that Tpl2 expression was also 

decreased in a NFKB1-/- human lung cancer cell line, Fan Sun and colleagues (Sun et 

al., 2016) demonstrated that re-expressing p105, and not p50, restored Tpl2 levels in 

these cells, resulting in reduced tumour growth. Contrastingly, Tpl2 knockdown 

increased lung tumour cell growth. This study highlights the importance of p105 

stabilisation of Tpl2 in suppressing lung carcinogenesis (Sun et al., 2016). Analysis of 

human non-small-cell lung carcinoma (NSCLC) tumours graded from stage 1 to 3A 

revealed that p105 stromal and epithelial tumour cell expression was a positive 

prognostic indicator of disease-specific survival (Al-Saad et al., 2008). However, it has 

also recently been shown that co-expression of p65 and phosphorylated p105 is 
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associated with poor prognosis in NSCLC, whereas expression of p65 or 

phosphorylated p105 alone was not associated with this (Lin et al., 2018). Again, this 

strongly suggests that it is p50:p65 dimer activity and not p50 homodimer activity that 

is detrimental in NSCLC. 

 

mRNA expression analysis has revealed that NFKB1 is downregulated in multiple 

human haematological malignancies, including T and B-cell lymphoma and acute 

myeloid leukemia, while p65 expression is upregulated. DNA alkylation damage leads 

to increased lymphomas in Nfkb1-/- mice when compared with wild type mice. Mice 

heterozygous for Nfkb1 exhibit an intermediary phenotype whilst maintaining p50 

function, indicating the haploinsufficient nature of Nfkb1 as a tumour suppressor (Voce 

et al., 2015). Interestingly, p50 phosphorylation by CHK1 (checkpoint kinase 1) at 

serine 329 ensures the elimination of replication-associated DNA-damaged cells and 

is necessary for genome maintenance. Phosphorylation of p50 at this site during the 

S phase of the cell cycle inhibits its activity and DNA binding, downregulating the 

expression of the anti-apoptotic protein Bcl-xL sensitizing cells to DNA strand breaks. 

Transfection of Nfkb1-/- MEFs (mouse embryonic fibroblasts) with S329A mutant p50 

prevents p50 phosphorylation and inhibition, and blocks the observed decrease in Bcl-

xL expression during S phase (Crawley et al., 2015). Similarly, it has also been shown 

that S329 p50 phosphorylation is involved in promoting apoptosis in cells that have 

undergone O6-methylguanine (O6-MeG) DNA lesions, by preventing the expression 

of anti-apoptotic genes (Schmitt et al., 2011). Therefore, p50 may play a protective role 

in preventing the survival of DNA-damaged cells that have the potential to become 

cancerous. In support of this, it was shown by EMSA that in adult T-cell leukemia (ATL) 

patients, NF-κB-DNA complexes consist of both p50:p65 heterodimers and p50 

homodimers, whereas in healthy patients they are predominantly p50 homodimers. 

Moreover, only p50:p65 dimers, and not p50 homodimers, were able to activate the 

transcription of IL-2Ra in ATL patients, demonstrating that constitutive activation of 

p50:p65 is a major driver of ATL (Mori et al., 1999). These studies highlight that 

aberrant p50:p65, rather than p50:p50 signalling could be implicated in haematological 

malignancies where DNA-damaged cells have evaded apoptosis. 

 

In contrast to p50:p50 homodimers, an increase in DNA bound p50:p65 heterodimers 

leads to increased expression of NF-κB regulated genes including pro-inflammatory 

(IL-1β, TNFα, CXCL1), anti-apoptotic (Bcl-xL, Bcl-2, Gadd45β) and proliferative (IL-6, 



17 
 

GM-CSF) to name a few. Therefore, it is not surprising that NF-κB1 acts as a tumour 

promoter in this context. In addition, there are also a number of cancers including 

lymphomas and colorectal cancer where recruitment of co-activators will actually 

promote the expression of a similar array of tumour-promoting genes. 

 

The aforementioned Bcl-3 complexed with p50 homodimers is associated with 

tumorigenesis in several malignancies (Mathas et al., 2005). Notably, classical 

Hodgkin/Reed-Sternberg (HRS), anaplastic large cell lymphoma (ALCL) and T cell 

lymphomas, exhibit constitutive p50 homodimer activity associated with Bcl-3, verified 

by EMSA and IP shift. Additionally, increased p50 and Bcl-3 expression in HRS and 

ALCL cell lines are mainly in the nuclear fractions verified by co-immunoprecipitation 

and is associated with increased expression of the anti-apoptotic genes Bcl-xL, c-IAP2, 

and TRAF-1 in the HRS cell lines (Mathas et al., 2005). 

  

In accordance with this, several other studies confirm that increased tumour 

expression of p50 (and not p65) correlates with an increased expression of Bcl-3. For 

instance, mouse skin papillomas and squamous cell carcinomas (SCC) display 

increased p50 and p52 expression compared to normal epithelial tissue from the 

middle stages of cancer development, while p65 levels remained unchanged. This 

correlates with increased Bcl-3 expression in late stage skin papillomas and SCC, 

suggesting a role for the p50:p50:Bcl-3 complex in tumour promotion (Budunova et al., 

1999). Other examples of co-expression in malignant tissue include HPV16 (human 

papilloma virus 16) positive oral cancers, nasopharyngeal carcinoma and breast 

cancer (Cogswell et al., 2000; Thornburg et al., 2003; Mishra et al., 2006). Together 

these findings suggest that p50 homodimers in complex with Bcl-3 may play an 

important role in carcinogenesis, likely via the upregulation of NF-κB target genes. 

Importantly, to verify where p50:p50:Bcl3 complexes truly function as tumour 

promoters in-depth molecular analysis such as EMSA, nuclear localisation, IP and 

analysis of other NF-κB subunits should be included. 

 

Studies involving breast and gynaecological cancers suggest an association with 

increased NFKB1 expression and nuclear localisation. Increased p50 DNA binding and 

to a lesser extent p65 binding has been observed in a subset of high-risk estrogen 

receptor positive breast cancers (Zhou et al., 2005). Also, knock-down of NFKB1 in the 

inflammatory breast cancer cell line (SUM-149) suggests that NFKB1 expression 
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positively regulates Rho C expression and cell motility, which may contribute to the 

metastatic phenotype of inflammatory breast cancer (Brenner et al., 2008). 

Overexpression of p105 along with p100 in cervical carcinoma-derived keratinocytes 

expressing the HPV16 oncoproteins E7 or E6, show localisation is predominantly 

cytoplasmic when E7 is expressed, and nuclear in the case of E6; therefore, these viral 

oncoproteins may actually dictate the subcellular localisation of p105 and p100 and 

hence activity of p105 and p100 (Havard et al., 2005). Contrasting results exist in 

cervical cancer describing both increased nuclear p50 and p65 correlating with poor 

tumour grade and larger tumour size, and increased expression of predominantly p50 

homodimers with no observed increase in p65 (Prusty et al., 2005; Li et al., 2009). 

Whereas in ovarian cancer it is both p50 and p65 that are increased when compared 

to borderline and benign tumours, indicating the involvement of p50:p65 heterodimers 

rather than p50 homodimers (I et al., 2014).  

 

However, caution must be applied when thinking about mechanism and the cell-

specific implications of NF-κB. Whilst there are many studies focused on subunit 

expression in tumours, specifically that of p50 and p65, as suggested earlier, epithelial 

versus immune cell NF-κB activation could have very different outputs. For instance, 

p50 and not p65 is overexpressed in tumour-associated macrophages from human 

ovarian cancer. As a result, p50:p50 homodimers repress the activation signals 

required for M1 polarisation leading to defective IL-12 production. When Nfkb1-/- mice 

are implanted with murine fibrosarcoma there is no observed defect in M1 cytokine 

production and tumour growth is significantly reduced. The Nfkb1-/- mice also show 

enhanced CXCL-10 chemokine expression and hence CD4+ and CD8+ T cell 

infiltration that help combat tumour growth in this model (Saccani et al., 2006). Thus, 

highlighting the importance of dissecting cell-specific roles of NF-κB1 if we are to 

attempt to manipulate its function as a potential future therapy for inflammation and 

cancer. 

 

Similar to the previously mentioned study (Saccani et al., 2006), it has also been 

recently described that p50 homodimers impair macrophage M1 polarisation, driving 

the development of colorectal cancer (Porta et al., 2018). In this study, Nfkb1-/- mice 

displayed fewer colorectal tumours and increased expression of IL-12 and CXCL-10, 

supporting the idea that p50 homodimers repress these genes in macrophages, 

orchestrating their pro-tumorigenic phenotype (Porta et al., 2018). BAG-1 (Bcl-2 
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associated athanogene) is an anti-apoptotic protein highly expressed in pre-malignant 

and colon cancer tissue. The interaction between BAG-1 and p50 homodimers has 

been demonstrated in both colorectal epithelial cells and in the colorectal carcinoma 

cell line HCT116 with knockdown of either protein leading to cell death. This complex 

is present at both the EGFR and the COX2 gene (PTGS2) promoters. Furthermore, 

the complex is able to differentially regulate gene expression by suppressing 

transcription of EGFR and promoting COX-2 transcription, both known to promote 

colon cancer (Southern et al., 2012). 

 

Increased p50 signalling is also implicated in pancreatic carcinogenesis. Annexin A2 

(ANXA2), is a calcium-dependent phospholipid binding protein involved in the 

progression and metastasis of a number of tumours and is shown to interact and 

translocate to the nucleus in a complex with p50 (Jung et al., 2015). Increased NF-κB 

activity is observed in both resting and TNF stimulated pancreatic cancer cells (Mia-

Paca2). Furthermore, TNF treatment of HeLa cells expressing ANXA2 leads to the 

induction of several NF-κB target genes linked to anti-apoptotic signalling and drug 

resistance in cancer, including GM-CSF, IL-1β, IL-6 and Gadd45β. This suggests a 

link between increased ANXA2 expression and p50 interaction leading to increased 

anti-apoptotic gene expression and drug resistance in pancreatic cancer cells (Jung et 

al., 2015). However, in a mouse pancreatic tumour model, increased tumour growth 

was observed when pancreatic cancer cells were co-injected with p50-/- compared to 

wild type PSC (pancreatic stellate cells), suggesting a potential role for PSC p50 in 

pancreatic prevention (Giri et al., 2016). Thus, NF-κB1 plays very contrasting roles in 

the development of colon and pancreatic cancers, and further research is needed to 

elucidate its cellular and context-dependent function. 

 

In an E-TCL1 mouse model of chronic lymphocytic leukemia, the incidence of leukemia 

is significantly lower in mice lacking Nfkb1, with CD19/CD5+ B cell numbers decreased 

despite no difference in overall survival. Nfkb1+/- TCL1 mice still show a significant 

reduction in leukemia incidence, demonstrating that even a partial reduction in Nfkb1 

can impede disease development (Chen et al., 2017). It is known that intrinsic B cell 

defects are characteristic of mice deficient in Nfkb1, including proliferative defects and 

impairment in antibody class-switching (Sha et al., 1995b). Therefore, NF-κB1 could 

be directly linked to B cell proliferation in chronic lymphocytic leukemia, characterised 
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by an abnormally increased level of B cells in the lymph nodes, bone marrow, and 

blood (Kipps et al., 2017). 

 

Diffuse large B-cell lymphoma (DLBCL) has two distinct molecular subtypes: germinal 

centre B cell like (GCB) and activated B cell like (ABC). ShRNA silencing of either p105 

or p100 in two lymphoma cell lines identified a set of distinctly regulated genes that 

were later confirmed in primary DLBCL samples. Pathway analysis identified patterns 

of predominantly p105 signalling associated with the GCB lymphoma subtype, 

whereas p100 was associated with ABC potentially as a consequence of mutations in 

upstream activators of either the canonical or non-canonical pathway respectively 

(Guo et al., 2017). Moreover, in a study conducted on 465 patients, p50 activation in 

ABC DLBCL was associated with poorer survival, despite significant correlations 

between p50 nuclear expression and downregulation of Bcl-2, p53, phospho-AKT, 

CXCR4 and Myc. The poor outcome in p50 positive patients was attributed to immune 

dysregulation including immune suppression by TIM-3 and TNF upregulation. A similar 

correlation was found in GCB DLBCL patients with wild-type TP53, however p50 

expression in GBC DLBCL patients with TP53 mutants was associated with a 

significantly improved outcome, as well as reduced expression of Bcl-2, Myc and p53 

(Cai et al., 2017).  

 

The role of p50 therefore differs substantially depending on its dimerization partner and 

the co-factors involved, as well as the cell type and cancer type, whereby gene 

expression can either be repressed or activated, hindering or driving tumorigenesis 

(summarised in Figure 1.4) (Concetti & Wilson, 2018). 

 

 

 

1.3 Liver function, inflammation, disease and fibrosis 

The liver is an essential organ in the body with diverse functions owed to the numerous 

cell types it harbours. Dysregulation of these functions or aberrant cell activity can lead 

to pathogenesis of the liver in different ways. 
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1.3.1 Cells of the liver 

As the largest and one of the most complex organs of the body, the liver harbours 

many different cell types, the majority of which are hepatocytes. These represent the 

main functional liver cell and account for 60-80% of all liver cells (Stanger, 2015) 

(Figure 1.5). Hepatocyte functions include lipid, amino acid and carbohydrate 

metabolism, as well as protein synthesis and xenobiotic detoxification (Zhou et al., 

2016).  

Non-hepatocyte liver cells, which make up 20-40% of the liver, comprise endothelial 

cells, kupffer cells, lymphocytes, cholangiocytes and stellate cells (Bouwens et al., 

1992). Endothelial cells act as barriers between hepatocytes and the blood, regulating 

the exchange of material between them. Kupffer cells are liver-resident macrophages, 

whose main function is the regulation of the liver’s inflammatory response, by 

responding to stresses including infection and toxins, performing phagocytosis, 

processing and presentation of antigens, and through the release of pro-inflammatory 

cytokines. Liver lymphocytes include T cells, NK (natural killer cells) and B cells, which 

are important in the liver’s immune defence mechanism. Cholangiocytes, also known 

as biliary epithelial cells, transport bile from the liver to the gall bladder and duodenum. 

Hepatic stellate cells, located in the space of Disse, are quiescent in normal conditions 

and function as storage cells for vitamin A, and excrete extracellular matrix. When 

activated, by injury and pro-inflammatory signals, these differentiate into fibrogenic 

myofibroblasts, characterised by an increased expression of a-SMA (a-smooth muscle 

actin) and cytokines, and increased production of extracellular matrix (Kmiec, 2001; 

Bouwens et al., 1992). 
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Figure 1.5 Cells of the liver. Diagram showing the proportion of different cells comprising the 

liver, with the majority being hepatocytes (60-80%) and non-hepatocyte cells accounting for 

20-40%. 

 

1.3.2 Structure and function of the liver 

The liver structure can be defined as microscopic lobule structural units, which take 

the form of a polygonal shape and comprise portal triads, consisting of a hepatic artery, 

a portal vein and a bile duct. This system highlights the blood flow from the peripheral 

portal vein and hepatic artery to the central vein, and bile duct flow from the central 

vein to the bile duct (Krishna, 2013; Corless, 1983) (Figure 1.6). 
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Figure 1.6 Liver lobule structure. Diagram shows liver lobule structure with blood flow from 

the hepatic artery and portal vein to the central vein and bile flow from the central vein to the 

bile duct. 

 

The microstructure of the liver can also be represented longitudinally, with the 

exchange of material between the blood and hepatocytes occurring in the sinusoid 

(Vekemans & Braet, 2005) (Figure 1.7). 
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Figure 1.7 Liver microstructure. Diagram showing the blood flow from the portal vein and 

hepatic artery to the central vein through the sinusoid, where exchange of materials take place 

between the blood and hepatocytes, and the bile flow from the central vein to the bile duct. 

 

The liver carries out many essential functions, including nutrient metabolism 

(carbohydrates, proteins and lipids), as mentioned previously (Zhou et al., 2016). It 

also plays an important role in the storage of iron, copper, vitamins A, D and B12, as 

well as the excretion of a number of different materials including bile salts, bilirubin, 

drugs, phospholipids and cholesterol (Bonkovsky, 1991). Additionally, the liver is a 

major site for the synthesis of proteins including albumin, coagulation factors, 

complement factors and protease inhibitors (de Feo & Lucidi, 2002). The liver also 

carries out important immune defence functions, notably through the action of kupffer 

cells (Gao, 2016; Concetti & Wilson, 2018) (Figure 1.8). 
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Figure 1.8 Functions of the liver. Diagram shows the different functions carried out by the 

liver including nutrient metabolism, storage, excretion, protein synthesis and immune 

functions. 

 

1.3.3 Hepatocyte injury mechanisms and resolution 

Liver injury can arise from various different causes. These include drug and alcohol 

toxicity, pathogen infection (notably viral hepatitis), aberrant immune function, and 

inadequate diet quality and quantity (de Boer et al., 2017; Sijamhodžić et al., 2019; 

Canbay et al., 2011).   

In response to liver injury, the liver employs various defence and injury resolution 

mechanisms. Hepatocyte apoptosis (programmed cell death) represents an essential 

part of this process (Cao et al., 2016; Guicciardi & Gores, 2005). Injured hepatocytes 

undergo apoptosis which is characterised by cytoplasmic shrinkage, nuclear 

fragmentation, chromatin condensation and cellular rounding up, following caspase 

activation. These caspase proteases cleave at aspartate residues. This process allows 

for the elimination of injured cells that could cause further damage in their 

microenvironment, exhibit abnormal functions and potentially undergo mutations which 

could render them cancerous, in an orderly manner (Guicciardi & Gores, 2005; Cao et 

al., 2016). In certain conditions, hepatocyte cell necrosis (unprogrammed cell death) 
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can also occur, which is characterised by swelling, and rupture of the plasma 

membrane (Guicciardi et al., 2013). Mitochondria play an important role in hepatocyte 

cell death, with their outer membrane polarisation leading to the activation of signalling 

cascades leading to cell death. A number of anti-apoptotic and apoptotic factors are 

also involved in this, including BAX and Bcl-2 family proteins (Tsujimoto, 1998). 

The immune cells present in the liver also play a crucial role in injury resolution 

mechanisms. The different immune cells of the liver exhibit distinct functions, and their 

interaction with hepatocytes generates an epithelial-immune cell crosstalk which plays 

an important role in determining the overall response. 

 

1.3.4 Liver epithelial-immune cell crosstalk 

By secreting innate immunity proteins, including cytokines and chemokines, 

hepatocytes are able to signal to and activate surrounding immune cells in their 

environment (Zhou et al., 2016). While certain hepatocyte-secreted factors are able to 

provide direct defence, such as bactericidal proteins and iron-sequestering proteins 

that block iron uptake from bacteria, others activate the innate immune system, such 

as fibrinogen (a coagulation factor) and pro-inflammatory mediators including IL-6 and 

TNF-α. The upregulation of these pro-inflammatory factors is in part mediated by the 

activation of NF-κB in response to liver injury (Ambrosino et al., 2003). 

 

1.3.5 Liver disease progression 

While the liver hosts a range of mechanisms to combat injury, these can sometimes 

prove insufficient and the injury can prevail when it is persistent. Additionally, aberrant 

immune responses can also be a driver of chronic liver inflammation leading to liver 

disease (Meli et al., 2014). Liver disease can take different forms which largely 

depends on the injury. Poor diet can lead to NAFLD (non-alcoholic fatty disease) which 

can sometimes develop into NASH (non-alcoholic steatohepatitis) (Benedict & Zhang, 

2017), while alcohol consumption can also lead to liver disease (Bruha et al., 2012). 

Regardless of the chronic liver injury though, liver disease is characterised by 

excessive inflammation which culminates in similar disease scenarios (Robinson et al., 

2016). Chronic liver inflammation can lead to the development of fibrosis initially, 

characterised by scarring of the liver tissue through excessive production of 
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extracellular matrix. This can progress onto cirrhosis, a more severe fibrotic phenotype 

with loss of liver architecture and function. This later stage liver disease can then turn 

into liver cancer, of which hepatocellular carcinoma is the most common, although 

some HCC livers have no underlying late stage liver disease. 

 

1.3.6 Liver fibrosis 

Liver fibrosis occurs in response to chronic liver injury. As a means of repairing itself, 

the liver undergoes wound healing through the deposition of collagen and other 

extracellular matrix components (Bataller & Brenner, 2005; Brenner, 2009). However, 

repeated injury can lead to excessive wound healing and therefore excessive 

extracellular matrix production, leading to scarring of the liver tissue. Hepatic stellate 

cells play a major role in this process. While normally quiescent and responsible for 

vitamin A storage, these cells can become activated and differentiate into 

myofibroblasts which secrete collagen upon liver injury. Remodelling of fibrotic tissue 

can occur through MMP (matrix metalloproteinase) digestion of extracellular matrix, 

which can in turn be modulated by TIMPs (tissue inhibitors of matrix 

metalloproteinases), notably TIMP-1. This dynamic process ensures the regression of 

fibrosis is possible, however once an advanced stage of fibrosis has been reached this 

becomes more challenging for the liver to overcome.  

Additionally, chronic inflammation mediated by an excessive response from immune 

cells in the liver leads to the release of pro-inflammatory and fibrogenic factors which 

further drive fibrogenesis. These include TNFα (tumour necrosis factor α) and TGF-β 

(tumour growth factor β) (Yang et al., 2015). Fibrosis can eventually progress onto end-

stage cirrhosis, and a proportion of patients with cirrhosis will then go on to develop 

liver cancer (O’Rourke et al., 2018a). The triggers for fibrosis and liver cancer 

development remain incompletely understood, though many factors have been linked 

to liver disease. Of these, NF-κB plays an essential role, acting as a central immune 

regulator and modulating the expression of pro-inflammatory and fibrogenic genes. 

 

1.3.7 NF-κB1 in liver disease and fibrosis 

NF-κB is known to play a key role in immune responses and regulating inflammatory 

responses. While canonical NF-κB signalling drives the expression of pro-inflammatory 
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factors, NF-κB1 is generally thought to repress these genes when in its p50 homodimer 

form, and therefore p50 homodimers are thought to play a protective role in fibrosis 

and liver disease progression. Previous work has shown that in a chronic CCl4 model 

of induced fibrosis, Nfkb1-/- mice exhibited worse inflammatory and fibrotic phenotypes 

(Oakley, Meso, et al., 2005). This was notably characterised by increased neutrophil 

infiltration in the liver and the upregulation of pro-inflammatory cytokines, including 

TNFα. Furthermore, Nfkb1-/- mice exhibited increased α-SMA gene and protein 

expression, and increased Sirius red stain compared to WT mice. 

 

1.4 Hepatocellular Carcinoma (HCC) 

Hepatocellular carcinoma (HCC) is currently the second leading cause of cancer-

related deaths worldwide, and the sixth most prevalent cancer (McGlynn et al., 2015; 

Ghouri et al., 2017). Despite this, to date treatments have remained limited, with 

options often restricted to surgical resection and/or conventional chemotherapy and 

radiotherapy. The only molecular-targeted therapy proven to have a beneficial effect is 

sorafenib, which is given in some cases of advanced HCC, however this tyrosine 

kinase leads to a number of side effects and has demonstrated limited efficacy. With 

increasing incidence of HCC yet poor long-term prognosis, the need for more research 

towards developing therapeutics is becoming greater. 

 

1.4.1 HCC initiation and progression 

Most patients who develop HCC often have an underlying chronic liver disease. 

Hepatitis viral infection with HBV or HBC is one of the most frequent causes of HCC 

(Xie, 2017). Another major contributing factor is the progression from non-alcoholic 

fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH), characterized by 

inflammation and lipid accumulation in the liver (Anstee et al., 2019). Some patients 

also present with fibrosis and cirrhosis, the latter being at the highest risk of developing 

HCC (Ramakrishna et al., 2013). Fibrosis represents the hardening and/or scarring of 

tissue, with the excessive deposition of collagen and other extracellular matrix 

components. Cirrhosis represents an advanced stage of liver tissue scarring. Overall, 

only a minority of patients with liver disease will progress to HCC; the mechanisms 

behind this progression are still incompletely understood, though it is thought that 
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multiple ‘pathogenic hits’ are needed. Some of the key risk factors include obesity, 

insulin resistance and a sedentary lifestyle.  

Additionally, several mutations associated with hepatocarcinogenesis have been 

identified. Recent studies have shed the light on the mutational landscape of HCC 

thanks to recent advances in genomic technologies. TERT (Telomerase reverse 

transcriptase), TP53 (Tumour protein 53), CTNNB1 (Catenin beta 1), ARID1A and 

ARID2 (both belonging to the AT-rich interaction domain family) are among the most 

frequently mutated genes in HCC, in descending order of frequency, with TERT 

mutations classified as the most potent drivers of HCC (mutated in 47.1% of cases). 

ARID1A and ARID2 are involved in chromatin remodelling, and hence highlight the 

importance of epigenetic aberrations in carcinogenesis (Lee, 2015). These findings 

provide important insights into potential therapeutic targets that could be exploited to 

generate personalised medicines in order to treat liver cancer. 

An increasing role for epigenetics is being recognised in disease progression, and 

epigenetic dysregulation plays a major role in the development of hepatocellular 

carcinoma. These include alterations in DNA methylation, histone modifications, as 

well as changes in microRNA expression. More specifically to HCC, global 

hypomethylation has been documented, caused by altered expression of DMNTs 

(DNA methyltransferases) or reduced availability of SAM (S-adenosyl-L-methionine), 

the universal methyl donor. Aberrant expression of histone modifying enzymes and 

dysregulation of histone modifications have also been established as emblematic 

characteristics of HCC. Among these histone deacetylase enzymes including HDAC1 

have been implicated in hepatocarcinogenesis (Pogribny & Rusyn, 2014). 

Given that over 90% of HCC develops on the background of chronic inflammation 

(Hayato & Shin, 2012), it is important to deepen the understanding of the mechanisms 

linking inflammation and hepatocarcinogenesis, which has led to the success of 

immunotherapies. NF-κB, a well-established master regulator of inflammation and 

apoptosis, has been proposed to mediate a central link between liver injury, fibrosis 

and hepatocellular carcinoma (Luedde & Schwabe, 2011a). The role of NF-κB in liver 

disease has been underlined in mouse models of NF-κB subunit specific knock-outs 

leading to spontaneous liver injury, fibrosis and HCC. Among these, Nfkb1 global 

knockouts exhibit increased inflammation, early onset ageing and higher incidence of 

liver cancer (Wilson et al., 2015). The role of NF-κB is compartmentalised in the 

different cells in the liver, where it influences survival in hepatocytes, inflammation in 
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Kupffer cells (liver-resident macrophages), as well as inflammation, survival and 

activation in hepatic stellate cells (HSCs). The complex and diverse functions of NF-

κB render this transcription factor a key player in chronic liver disease. 

 

1.4.2 NF-κB1 in HCC 

A study by H. Yokoo et al. highlighted the implication of p50 in hepatocellular 

carcinoma. Following histological analysis of HCC patient samples, they found that 

increased p50 expression was correlated with higher recurrence of HCC. They 

subsequently suggested that p50 expression could potentially be used as a prognostic 

marker for HCC recurrence following surgery. These suggestive findings however 

provided insufficient evidence to establish p50 staining as a prognosis marker and 

metastatic potential in HCC (Yokoo et al., 2011). A more recent study conducted by 

our group demonstrated that NF-κB1 functions as a suppressor of neutrophil-driven 

carcinoma (Wilson et al., 2015). Here, it was shown that p50 homodimers in complex 

with the HDAC1 co-repressor exert a tumour suppressor function. C. Wilson et al. 

demonstrated that p50:p50:HDAC1 complexes are recruited to the promoters of 

neutrophil chemokines S100A9, CXCL1 and CXCL2, where they repress the hepatic 

expression of these genes, thus reducing inflammation. They also found that disrupting 

p50 homodimer assembly by mutation of Ser342 (which they established as a key 

residue for p50 homodimer assembly) increased the susceptibility to HCC. More 

research into the tumour suppressive and anti-inflammatory function of p50 is required 

in order to elucidate the mechanisms by which it protects against liver disease 

progression and HCC. 

The role of NF-κB in liver cancer has been extensively studied and its first role in liver 

homeostasis highlighted in p65 deficient mice which suffer embryonic lethality due to 

TNF-induced hepatocyte death during development (Doi et al., 1999b). Contrasting 

and cell-specific effects of IKK deletion in liver epithelial versus myeloid cells highlight 

the complexity of its role at different stages of HCC development. Knockdown of IKK 

in hepatocytes leads to increased liver cancer, whereas knockdown in myeloid cells 

results in significantly decreased hepatocarcinogenesis (Maeda et al., 2005). These 

studies of course merely highlight the implications of inhibiting the entire canonical NF-

κB pathway which researchers are beginning to appreciate is far more complex and 

requires further refinement if we are to manipulate it in a more specific and productive 
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way, including a more in-depth understanding of the epigenetic regulation and post-

translational modifications of the individual subunits.  

We have previously provided evidence that NF-κB1, acting through p50 homodimers, 

is a suppressor of neutrophil-driven hepatocellular carcinoma (HCC).We previously 

demonstrated using a model of diethylnitrosamine (DEN)-induced HCC that Nfkb1-/- 

mice exhibited accelerated HCC and significantly increased tumour numbers 

compared to wild type mice. This was mediated in part by p50 homodimers complexed 

with HDAC1 repressing the hepatic expression of the neutrophil chemokines S100A9, 

CXCL1, and CXCL2. Treatment with a neutrophil-depleting antibody (anti-Ly6G) 

reduced tumour growth considerably in Nfkb1-/- mice. Furthermore, we identified that 

the phosphorylation of Ser342 is critical for p50 homodimer assembly, and that Nfkb1-

/- mice with a serine to alanine mutation at position 342(S342A) display increased 

neutrophil numbers, neutrophil chemokine expression, and increased tumour burden 

in the DEN HCC mouse model. Combined this data confirmed that p50 homodimers in 

complex with HDAC1 play an important role in preventing liver inflammation and 

tumorigenesis by repressing neutrophil recruitment and as a result, neutrophil tumour-

promoting effects. Interestingly, in a non-experimentally-induced context, aged 20 

month old Nfkb1-/- mice also develop spontaneous chronic liver disease and liver 

cancer characterised by dysplastic nodules, increased tumour incidence, features of 

steatohepatitis and fibrosis (Wilson et al., 2015).  

In HCC patients where ~90% of cancers develop on a background of aberrant liver 

inflammation, we have also confirmed that an increase in neutrophil to lymphocyte ratio 

is associated with a poorer prognosis and worsened survival outcome (Margetts et al., 

2018). Furthermore, mRNA, miRNA, and methylation profiling of 337 HCC patients 

identified NF-κB1 and the MAPK (mitogen-activated protein kinase) pathway as 

important players in HCC progression. Here, NFKB1 inhibition was mediated via the 

miRNA let-7a at all stages of HCC, resulting in aberrant target gene regulation 

including Gadd45b and dysregulated cell proliferation and apoptosis. In addition, 

NFKB1 was differentially methylated in stage II and III HCC, but not stage IV (Li et al., 

2016). The miRNA silencing of NFKB1 and its differential methylation could therefore 

be a potential mediator of HCC development; however, further research is needed in 

order to elucidate the specific role of p50 in different stages of HCC including liver 

inflammation and disease, and cancer initiation and progression. Whilst contrasting 

studies exist including correlating p50 expression with early recurrence of HCC and 
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Akt phosphorylation, p65 expression was not assessed here (Yokoo et al., 2011). 

Increased p50 and Bcl-3 co-expression in tumours compared to adjacent tissue has 

also been described. However, these studies simply describe p50 expression levels 

and fail to address functionality and mechanism. 

 

1.5 Project Aims 

This project aims to elucidate the role that hepatocyte NF-κB1 plays in damaged 

hepatocytes in educating the immune system and inflammation in the context of acute 

liver injury, as well as the role of NF-κB1 in controlling hepatocyte damage and 

progression to cancer in chronic liver injury. 

For this, acute CCl4 and DEN liver injury models were carried out to assess the role of 

NF-κB1 in acute liver injury. A chronic CCl4 fibrosis model was also carried out to 

assess the role of hepatocyte NF-κB1 in fibrogenesis. Lastly, a 40-week DEN-induced 

HCC model was carried out to assess the role of NF-κB1 in liver carcinogenesis.  

The overall aim is to determine the importance of hepatocyte NF-κB1 in regulating 

gene expression to modulate liver disease progression. Understanding the process 

bridging acute liver injury through chronic injury and cancer development is crucial to 

understand the causes underlying liver carcinogenesis.  

NF-κB1 being a central regulator of inflammatory processes and cell survival, and p50 

homodimers being known to repress gene transcription, it was hypothesized that 

hepatocyte NF-κB1 would play a protective role in liver disease, and that mice lacking 

hepatocyte NF-κB1 would exhibit a worse phenotype in response to liver injury, 

particularly increased HCC development. 
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Chapter 2. Materials and Methods 

 

2.1 Animals 

2.1.1 Ethics and husbandry 

All animal work was carried out in accordance to Home Office regulations and 

experiments were performed under a UK Home Office license (PPL - P1FF204BF). 

Protocols were designed for each study and approved by a Senior Animal 

Technician/Named Animal Care and Welfare Officer before the start of the study. 

Animals were housed in the Comparative Biology Centre (CBC) at Newcastle 

University and were kept in an air-conditioned environment on a 12-hour light/dark 

cycle with a humidity of 50% ± 10% and a temperature of 23°C ± 1°C. Mice were kept 

in saw-dust filled and filter topped, individually ventilated cages and kept no more than 

6 to a cage. Food and water were provided ad-libitum and bedding was changed twice 

weekly. 

2.1.2 Strains 

All experiments were performed on male C57BL/6 mice. Mice used include Nfkb1 

floxed mice (Nfkb1fl/fl), hepatocyte-specific Nfkb1 knockout mice (Nfkb1hep-/-), Nfkb1 

global knockout mice (Nfkb1-/-), albumin-cre recombinase heterozygous mice (Alb-

cre+/-), and albumin-cre recombinase homozygous mice (Alb-cre+/+). Nfkb1fl/fl mice 

were used as a control for all experiments. These mice have 2 LoxP recombination 

sites that flank exon 3 of the Nfkb1 gene, and are comparable to wild type mice as they 

have no gene expression alterations. Nfkb1hep-/- mice were generated using an albumin 

promoter-cre recombinase system, by crossing Nfkb1fl/fl mice with Alb-cre mice in 3 

different mating steps. The first step consists of crossing a homozygous cre transgene 

mouse with a homozygous floxed mouse. This generates mice which are heterozygous 

for both the cre and Nfkb1 floxed gene. The second mating step consists of crossing a 

heterozygous cre and floxed mouse with a homozygous floxed mouse. This generates 

3 different offspring genotypes: cre heterozygous floxed homozygous, floxed 

homozygous, and cre and floxed heterozygous. The final mating step consists of 

crossing a heterozygous cre homozygous floxed mouse with a homozygous floxed 

mouse. All mice generated from this mating are homozygous floxed and approximately 

50% will contain the cre transgene. The mice expressing cre will be Nfkb1hep-/-. 
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The cre recombinase enzyme introduces Nfkb1 exon 3 gene deletions in these mice 

by splicing the DNA sequence flanked by LoxP sites. The DNA strands are cut by cre 

recombinase and rejoined by DNA ligase. Nfkb1hep-/- mice thus lack exon 3 of Nfkb1, 

preventing Nfkb1 protein expression. In Alb-cre+/- and  Nfkb1hep-/-  mice, the expression 

of cre recombinase is driven by an albumin promoter, which is hepatocyte and 

cholangiocyte specific; Nfkb1 is therefore only knocked out in these cell types (liver 

epithelial cells). 

Additionally, a viral-induced Nfkb1hep-/- mouse model was generated by injecting AAV8-

TBG-Cre (Adeno-associated virus 8-thyroid hormone-binding globulin-Cre) 

intravenously in Nfkb1fl/fl mice, whereby the TBG-Cre system specifically targets 

hepatocytes. Full knock-out of Nfkb1 was observed 2 weeks after AAV8-TBG-Cre 

injection. In experiments where AAV8-TBG-Cre was used to knock out Nfkb1 in 

NFKB1fl/fl mice, AAV8-Null control virus was injected in a control group of Nfkb1fl/fl mice 

to account for any virus-mediated effects. AAV8-TBG-Cre and AAV8-Null virus was 

obtained from Pennysylvania University. 

 

 

Figure 2.1 LoxP recombination of exon 3 in the Nfkb1 gene. Schematic diagram showing 

the Albumin-driven Cre-recombinase-mediated recombination of the Nfkb1 gene at the LoxP 

sites which flank exon 3 of the gene. 
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Figure 2.2  Nfkb1hep-/- mice generation. Schematic diagram of Nfkb1fl/fl and Alb-Cre mice 

matings to generate Nfkb1hep-/- mice. 
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32 cycles 

2.1.3 Genotyping 

All DNA isolation from mouse ear punches was performed using the REDExtract-N-

Amp Tissue PCR (Polymerase chain reaction) Kit (Sigma Aldrich, UK). Ear punches 

were incubated in 100μL of extraction solution and 25μL of tissue preparation solution 

at 95°C for 4 minutes, after which 100μL of neutraliser solution was added to the 

samples and mixed by vortexing. The solution containing the genomic DNA was stored 

at -30°C until required. All PCR reactions were carried out with the same reagents, 

with different forward and reverse primers. PCR reactions consisted of 4μL of genomic 

DNA, 10μL REDExtract-N-Amp PCR Reaction Mix, 0.2μL of each 10μM primer, and 

were made up to a final volume of 16μL with nuclease-free water. PCR reactions were 

carried out as follows: initial 5 minute incubation at 95°C followed by 32 PCR cycles of 

30s denaturation step at 95°C, 45s annealing step at 55°C, followed by a 1 minute 

elongation step at 72°C. The PCR reaction was terminated by incubating at 4°C after 

a final elongation reaction of 10 minutes at 72°C. PCR products were then separated 

by electrophoresis at 100V for 30 minutes through a 2% w/v agarose gel containing 

ethidium bromide and visualised under UV light.  

 

 

 

Table 2.1 Genotyping PCR cycle 

 

 

 

 

 

Step Temperature Time 

Initial denaturing 95°C 5mins 

Denaturing 95°C 30s 

Annealing 55°C 45s 

Elongation 72°C 1min 

Final Elongation 72°C 10min 

Hold 4°C ∞ 
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Primer Sequence 

Alb-cre WT FW TGCAAACATCACATGCACAC 

Alb- cre Common RV TTGGCCCCTTACCATAACTG 

Alb-cre Mutant FW GAAGCAGAAGCTTAGGAAGATGG 

Generic Cre Forward CGTACTGACGGTGGGAGAAT 

Generic Cre Reverse CCCGGCAAAACAGGTAGTTA 

Nfkb1-5arm-WTF CTAAGACCTCCAGCCAGCAA 

Nfkb1-Crit-WTR CATCTTCGGAGCCAAGAGAG 

5mut-R1 GAACTTCGGAATAGGAACTTCG 

 

Table 2.2 Genotyping primers 

 

2.2 Cell culture 

2.2.1 Isolation of primary mouse hepatocytes 

Hepatocytes were isolated from Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice livers using a 

collagenase perfusion method. Mice were first culled by ketamine and xylazine 

anaesthesia overdose, their abdomen opened and the inferior vena cava cannulated. 

The diaphragm was then opened to clamp the superior vena cava. The liver was 

perfused with 50ml Krebs-ringer bicarbonate buffer (Sigma) with EDTA followed by 

50ml Krebs-ringer bicarbonate buffer with calcium chloride and 1mg/ml collagenase 

(collagenase from clostridium histolyticum, Sigma), using the portal vein as an outlet. 

The liver was dissected out, removing the bile duct, and the hepatocytes isolated by 

tearing and agitating the perfused liver in Krebs-ringer buffer, then filtering it through a 

100μm cell strainer. The cells were then centrifuged at 500 rpm for 10 minutes, the 

supernatant was either kept for non-parenchymal liver cell isolation (500 x g 5 minutes 

centrifugation) or removed, and the cells were washed 3 times in PBS (Dulbecco’s 

phosphate buffer saline, Sigma) with 3 minute 500 rpm centrifugation steps. After the 

last wash, the cell pellet was resuspended in 10ml of 10% Williams E medium (Gibco) 

containing 10% fetal bovine serum (FBS), 2mM glutamine, 100U/ml penicillin and 

100μg/ml streptomycin. A percoll gradient was then carried out to get rid of non-viable 

cells. For this, 40% percoll (40ml percoll (GE Healthcare), 54ml water, 6ml 10% PBS) 

was added drop by drop to the falcon tube (tilted sideways) containing the cells in 

Williams E medium, followed by a centrifugation step at 200 x g  for 7 minutes. The 



38 
 

supernatant was then removed and the pellet (containing viable hepatocytes) 

resuspended in Williams E medium. Hepatocytes were either cultured or stored at -

80C for protein extraction. For hepatocyte culture, as an additional verification, cell 

viability was determined by trypan blue stain, then counted with a haemocytometer and 

plated in collagen (collagen I, Rat Tail, Gibco)-coated 6-well plates at a density of 1 

million cells per well with Williams E medium. The medium was replaced with fresh 

medium after 24 hours. 

2.2.2 Primary mouse hepatocyte culture  

Primary mouse hepatocytes were cultured in Williams E medium as described in the 

previous section. Cells were maintained at 37C and 5% CO2 and treated the day 

following isolation. 

2.2.3 Primary mouse hepatocyte treatment 

Nfkb1fl/fl and Nfkb1hep-/- mice were treated with either 250μM H2O2 for 1h or DEN 

(diethylnitrosamine, Sigma) for 6h or 24h to induce genotoxic injury. Nfkb1fl/fl mice were 

treated with 10ng/ml or 20ng/ml TNFα for either 2h, 6h or 24h to optimise the best 

conditions to assess inflammatory gene expression. Treatment of 20ng/ml TNFα for 

24h was subsequently carried out in Nfkb1hep-/- and Nfkb1-/- mice. The cells were then 

washed and collected with a cell scraper for RNA in RLT buffer containing 

betamercaptoethanol (Sigma).  

2.2.4 Isolation of immune cells 

Mice primary immune cells were isolated from femur and tibia bone marrow. The skin 

was removed by nicking and tearing, and the tissue removed from the femur and tibia. 

The bones were then flushed with a 25G needle in HBSS- (Corning) and the immune 

cells recovered by centrifugation for 5 minutes at 500 x g. The pellet containing the 

immune cells was washed twice with PBS and stored at -80°C for protein extraction. 

2.2.5 Isolation of primary mouse tumour cells 

Primary mouse tumour cells were isolated from mice at the time of harvest for the 40 

week DEN study. Tumours were excised from the liver and the tissues minced with a 

sterile scalpel in a petri dish in a sterile hood until disaggregated. The disaggregated 

tissue was then washed 3 times with HBSS+ (LONZA) without EDTA, containing 2mM 

glutamine, 100U/ml penicillin and 100μg/ml streptomycin. The HBSS+ was removed 

and 10ml of 1mg/ml collagenase in HBSS+ was added to the petri dish, and incubated 
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at 37°C for 20 minutes. After 10 minutes of incubation the collagenase suspension was 

pipetted up and down to mix. The suspension was then filtered through a 100μm cell 

strainer to separate the dispersed cells and tissue fragments from the larger pieces. 

The suspension was then washed 3 times by centrifugation in HBSS at 1200 rpm for 

5 minutes. The pellet was resuspended in DMEM High Glucose medium (Biosera) 

comprising 10% FBS, 2mM glutamine, 100U/ml penicillin and 100μg/ml streptomycin. 

Cells were seeded in a 6 well plate at a density of 1 million cells per well and the 

medium changed the next day.  

2.2.6 Primary mouse tumour cell culture 

When adherent cells reached 75-95% confluence, they were passaged with Accutase 

(Corning) and transferred to T25 flasks. For passaging, the cell medium was removed, 

the cells washed twice with PBS and incubated with Accutase at 37°C and 5% CO2 

for 5-10 minutes to detach cells. When confluent in T25 flasks, cells were passaged 

and transferred to T75 flasks. The medium was changed and cells passaged as 

necessary. 

2.2.7 Long term cell storage 

Primary mouse tumour cells were frozen down and stored long term in liquid nitrogen 

(-200°C). The cells were detached as described in 2.2.6 and pelleted by centrifugation 

at 1000 x g for 5 minutes. Cells were resuspended in freezing medium comprising 10% 

DMSO in FBS. The cell suspension was then aliquoted in sterile cryovials 

(1ml/cryovial). Aliquots were cooled in an isopropanol filled Mr Frosty freezing 

container (Thermo scientific UK) and chilled at -80°C, where the cells were cooled at 

a rate of 1°C per hour. The next day the cells were transferred to liquid nitrogen for 

long term storage. 

 

2.3 In vivo models of liver injury  

2.3.1 Adeno-associated virus knockout models 

Where the AAV8-TBG-CRE viral knockout model of hepatocyte Nfkb1 was used, mice 

were injected with a single intravenous tail vein injection of 1 x 1011 virus 2 weeks prior 

to acute liver injury (CCl4 and DEN). Where the AAV8-TBG-CRE viral knockout model 

of hepatocyte Nfkb1 was used in the 40 week DEN model of HCC, mice were injected 

with virus at 32 weeks (8 weeks prior to harvest). In all experiments where virus was 
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used, AAV8-TBG-CRE virus was injected in Nfkb1fl/fl mice to induce the knockout of 

Nfkb1 (full knockout observed 2 weeks post-injection), and AAV8-Null control virus was 

injected to a control group of Nfkb1fl/fl mice. 

2.3.2 Acute carbon tetrachloride (CCl4) injury 

Mice received a single intraperitoneal (IP) injection of CCl4 (carbon tetrachloride) at 

roughly 8 weeks of age, at a dose of 2ml/kg of body weight (1:1 v/v in olive oil) to 

induce liver injury. Mice were harvested at either 24h or 48h post-injection. 5-7 mice 

were used per group. CCl4 is a strong hepatotoxin widely used in research to produce 

liver injury. It is metabolised in the liver by cytochrome p450 CYP enzymes into CCl3 

radicals, which react with lipids, proteins and nucleic acids. This leads to lipid 

peroxidation, ROS (reactive oxygen species) formation, lowered membrane 

permeability, mutations and generalized hepatic damage characterized by 

inflammation. 

 

 

Figure 2.3 CCl4 mechanism of hepatotoxicity. (D. Scholten et al., 2015). Diagram showing 

the biochemical steps of CCl4 liver metabolism leading to hepatotoxicity. 
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2.3.3 Acute diethylnitrosamine (DEN) injury 

Mice received a single IP injection of DEN at roughly 8 weeks of age, at a dose of 4μl/g 

of body weight of 25mg/ml DEN. Mice were harvested either 24h or 48h post-injection. 

5-7 mice were used per group. DEN is a hepatotoxin and carcinogen metabolised by 

cytochrome p450 CYP2E1 in the liver and leads to the production of reactive 

metabolites which results in DNA alkylation and the formation of DNA lesions, including 

N7-methylguanine and O6-methylguanine. This gives rise to DNA mutations, from 

guanine to thymine transversions and base mispairing. A single IP injection of DEN in 

8 week old mice causes generalized hepatic damage and inflammation, notably ROS 

production and NF-κB activation, but does not suffice to promote tumorigenesis. 

2.3.4 Chronic CCl4 injury 

Mice received biweekly IP injections of CCl4 at a dose of 2ml/kg of body weight (1:3 

v/v in olive oil) for 6 weeks to induce fibrosis. Control mice received biweekly IP 

injections of olive oil at a dose of 1ml/kg of body weight for 6 weeks. Mice were 

humanely culled by anaesthesia 24h after the last CCl4 injection. 4-6 mice were used 

per group. Chronic administration of CCl4 is a widely used liver injury model in research 

to induce fibrosis. 

2.3.5 Chronic DEN injury 

14 day old mice received a single IP injection of 30mg/kg DEN in 0.9% saline to induce 

HCC (hepatocellular carcinoma). Mice were harvested at 40 weeks post DEN injection. 

11-12 mice were used per group. This model of DEN IP injection in 14 day old mice is 

commonly used in research to study HCC. At this age, the liver cells are still undergoing 

rapid proliferation, therefore the DNA lesions caused by DEN metabolites lead to a 

significant number of mutations which ultimately lead to liver carcinogenesis. The 

majority of liver tumours that result from this model harbour Ha-ras or B-raf gene 

mutations. The pathophysiological alterations in this model have high similarity with 

what is observed in HCC in humans. 
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Figure 2.4 Mouse harvest set up. Diagram showing the set up with the anaesthetic machine 

used for mouse harvest. 

 

2.4 RNA isolation and quantification 

2.4.1 RNA isolation 

Total RNA (ribonucleic acid) was isolated from tissue samples and cells using the 

RNeasy Kit (Qiagen). Tissues and cells were homogenised with a pestle and lysed in 

350μl of RLT lysis buffer containing β-mercaptoethanol (1:100). The lysate was 

transferred to a Qiashredder column and centrifuged at 13 000 rpm for 2 minutes for 

homogenisation. The flow-through was then transferred to a new tube and an equal 

volume of 70% ethanol (350μl) was added and mixed repeatedly by pipetting. The 

sample was then transferred to an RNeasy spin column, centrifuged for 30s at 8000 

rpm, and the flow-through discarded. The column was then washed with 700μl of RW1 

buffer followed by with 500μl of RPE buffer, each time spun for 30s at 8000 rpm and 

the flow-through discarded. A final wash step was carried out with a 500μl RPE wash 

with a 2 minute spin at 8000 rpm and the flow-through discarded. The column was then 

spun at 13000 rpm to dry the membrane. The columns were subsequently placed in 

fresh collection tubes and the RNA eluted with 30μl of nuclease-free water. The RNA 
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was then quantified using a nanodrop 2000 spectrophotometer by measuring 

absorbance at 260nm and 280nm. Both concentration and purity were calculated, with 

absorbance A260/A280 ratios between 1.8 and 2 indicating acceptable purity. 

2.4.2 cDNA synthesis 

Promega kit reagents were used for cDNA synthesis. 1μg of RNA template was diluted 

in nuclease-free water to make a total volume of 8μl. The diluted RNA was first 

incubated at 37°C for 30 minutes with 1μl of DNase buffer and 1μl of DNase to digest 

any potential remaining genomic DNA carried over from the RNA isolation. DNase 

activity was then stopped with 1μL of DNase stop solution (0.5M EGTA), then 0.5μl of 

random hexamers (primers) and 2μl of nuclease-free water was added to the sample 

and incubated for 5 minutes at 70°C. The samples were then placed on ice for 5 

minutes and the reverse transcriptase mixture comprising 0.5μl RNAsin (25 units), 1μl 

MMLV-RT (200 units), 1μl 10mM dNTPs oligonucleotides and 4μl 5 x MMLV-RT buffer 

(250mM Tris-HCl, 375mM KCl, 15mM MgCl2 AND 50mM DTT) was added. The 

reaction was then incubated at 42°C for 60 minutes and the cDNA diluted to 10ng/ml 

in nuclease-free water and stored at -30°C. 

2.4.3 Primer design 

All primers were designed using cDNA sequences from Ensembl. The Primer3 primer 

design software was used to analyse the cDNA sequences and generate primers 

between 18-22 base pairs in length capable of amplifying and yielding products 

approximately 200bp long, with a guanine and cytosine content between 40-60% and 

a melting temperature Tm close to 60°C. Oligonucleotide primer pairs were ordered 

from Sigma and reconstituted to 100μM in 1 x Tris-EDTA buffer, and the optimum 

annealing temperature was determined for each pair of primers. Primers were stored 

at -30°C.  

 

Gene Forward Sequence Reverse Sequence 

GAPDH GCACAGTCAAGGCCGAGAAT GCCTTCTCCATGGTGGTGAA 

S100A9 CACCCTGAGCAAGAAGGAAT TGTCATTTATGAGGGCTTCATTT 

CXCL1 CTGGGATTCACCTCAAGAACATC CAGGGTCAAGGCAAGCCTC 

CXCL2 CCAACCACCAGGCTACAGG GCGTCACACTCAAGCTCTG 

CXCL10 GGATGGCTGTCCTAGCTCTG ATAACCCCTTGGGAAGATGG 
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CCL2 CCAATGAGTAGGCTGGAGAG TTCAAAGGTGCTGAAGACCT 

CCL5 TGCTGCTTTGCCTACCTCTCC TGGCACACTTGGCGGTTCC 

IL-6 GAGGATACCACTCCCAACAGA AAGTGCATCATCGTTGTTCATA 

TNFA GACCAGGCTGTCGCTACATCA CGTAGGCGATTACAGTCACGG 

BCL-2 CACACACACACATTCAGGCA GGCAATTCCTGGTTCGGTTT 

BCL-XL CCCAGAGACTGACAGCCTGA TGTAGGGTGAGGGGAGAGG 

GADD45B CTCCTGGTCACGAACTGTCA TTGCCTCTGCTCTCTTCACA 

XIAP ACCCTGCCATGTGTAGTGAA ACGATCACAGGGTTCCCAAT 

ASMA TCAGCGCCTCCAGTTCT AAAAAAAACCACGTAACAA 

TIMP1 GCAACTCGGACCTGGTCATAA CGGCCCGTGATGATGAGAAACT 

COL1A1 TTCACCTACAGCACGCTTGTG GATGACTGTCTTGCCCCAAGTT 

TGF-B CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG 

MMP-13 CTTCTTCTTGTTGAGCTGGACTC CTGTGGAGGTCACTGTAGACT 

ARG1 GGAAAGCCAATGAAGAGCTG GCTTCCAACTGCCAGACTGT 

ARG2 TCCTCCACGGGCAAATTCC GCTGGACCATATTCCACTCCTA 

 

Table 2.3 qPCR mouse primer sequences 

 

2.4.4 Quantitative real-time PCR 

Quantitative real-time PCR was performed using a 7500 Fast System. A master mix 

containing 6.5μl SYBR Green Master Mix (Sigma-Aldrich), 1μl of each 2.5μM primer, 

made up to a total volume of 11μl with nuclease free water. 2μl of cDNA was then 

added to each well and the plate was sealed with an optical film (Applied Biosystems). 

The plates were centrifuged at 1000 rpm for 30s before being placed in the PCR 

machine. The reaction consisted of 40 cycles of denaturing for 15s at 95°C, annealing 

at 55-60°C (depending on the primer) for 30s and elongation at 72°C for 30s. A melt 

curve was obtained with a cycle of 95°C for 10s, 60°C for 60s and 95°C for 30s, to 

check primer specificity. All results were normalised to a house-keeping gene control 

(GAPDH), and the data displayed as relative levels of transcriptional difference 

(RTLD), relative to a control sample arbitrarily given a value of 100%. Relative 

transcriptional differences were calculated using the (1/2A)_100 calculation. 
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40 cycles 

 

 

 

 

Table 2.4 qPCR cycle 

 

2.5 Protein isolation and analysis 

2.5.1 Cell lysate preparation 

Cells were washed twice with PBS then scraped in ice cold PBS and transferred to a 

microcentrifuge tube. Samples were centrifuged at 1200 rpm for 5mins, the 

supernatant removed, and the pellet resuspended in 300μl RIPA (radio immune-

precipitation assay) lysis buffer containing 50mM Tris-HCl pH8, 1% Triton x-100, 0.5% 

sodium deoxycholate, 0.1% SDS, 150mM NaCl, 10μl/ml phosphatase inhibitors and 

4μl/ml protease inhibitors. Cells were lysed with a pestle and transferred to a 

Qiashredder column and centrifuged at 13 000 rpm for 2 minutes for homogenisation. 

The flow-through was transferred to a new tube and centrifuged at 10 000 rpm for 10 

minutes at 4°C to remove cellular debris. The supernatant was transferred to a new 

tube, taking care not to disturb the pellet. Samples were then either stored at -80°C or 

protein quantified by BCA assay. 

2.5.2 Tissue lysate preparation 

Tissue was snap frozen in liquid nitrogen and stored at -80°C until required. 700μl of 

RIPA lysis buffer was added to each sample and tissues were homogenised with a 

pestle then transferred to a Qiashredder column and centrifuged at 13 000 rpm for 2 

minutes. The flow-through was transferred to a new tube and centrifuged at 10 000 

Step Temperature Time 

Initial denaturing 95°C 10s 

Denaturing 95°C 10s 

Annealing 55-60°C 30s 

Elongation 72°C 30s 

Melt curve  

95°C 15s 

60°C 1min 

95°C 30s 
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rpm for 10 minutes at 4°C to remove cellular debris. The supernatant was transferred 

to a new tube, taking care not to disturb the pellet. Samples were then either stored at 

-80°C or protein quantified by BCA assay. 

2.5.3 Protein quantification (Bio-Rad assay) 

Protein concentration of samples was determined by Bio-Rad assay (BD biosciences). 

2μl of protein sample was added to 18μl of distilled water, with the blank sample 

consisting of 2μl of RIPA lysis buffer and 18μl of distilled water. 100μl of AS mixture 

(98% buffer A and 2% buffer S) was added to each sample, followed by 800μl of buffer 

B. The samples were incubated in the dark at room temperature for 20 minutes then 

the absorbance measured at 750nm on the spectrophotometer. Protein concentration 

was calculated with the following formula: (absorbance/0.0157)/2. The concentration 

was obtained in μg/ul. 

2.5.4 Western blotting 

40μg of protein sample was diluted in distilled water to a final volume of 20μl. 5μl of 5 

x SDS (sodium dodecylsulfate)-loading dye containing 10% SDS, 50% glycerol, 0.25M 

Tris pH 6.8, betamercaptoethanol (160μl/ml) and bromophenol blue was added to each 

sample and samples were incubated at 95°C for 5 minutes for protein denaturation. 

Samples were then loaded on a gel consisting of a 10% SDS-polyacrylamide resolving 

gel and a 4% stacking gel, and run for approximately 2 hours at 100V. The gels were 

then transferred to a nitrocellulose membrane at 100V for 1.5 hours, sandwiched 

between filter paper and scouring pads in a transfer cassette and placed in a tank 

containing ice cold transfer buffer and an ice pack. Membranes were then washed in 

TBS-T (Tris-buffered saline containing 200mM NaCl, 20mM Tris and 0.01% v/v Tween 

20 at pH 7.4) and stained with Ponceau Red (Ponceau S Solution, Sigma) to verify 

accurate sample loading. Membranes were washed again in TBS-T to remove the 

Ponceau Red, then blocked in 5% w/v skimmed milk powder in TBS-T for 1 hour at 

room temperature to prevent non-specific binding. Membranes were then incubated 

with a primary antibody diluted in TBS-T at 4°C overnight. The next day the primary 

antibody was removed, the membrane washed 3 times for 5 minutes in TBS-T and a 

HRP (horseradish peroxidase)-conjugated secondary antibody added for a 1 hour 

incubation at room temperature. Membranes were then washed again 3 times for 5 

minute sin TBS-T and developed using the Pierce ECL substrate (Thermo Scientific) 

for chemiluminescent detection. Membranes were incubated for 1 minute at room 
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temperature in a solution containing equal amounts of reagent 1 and 2. Excess 

substrate was then removed and membranes placed in a film cassette. X-ray films 

were exposed to the membranes in a dark room and developed using an automated 

developer (RP X-OMAT, Kodak, Hertfordshire, UK). 

 

 

Antigen Primary Antibody Secondary Antibody 

Nfkb1 p105/p50 
Rb mAb to NFkB p105/p50 HRP 

(ab195854) 
/ 

p65 
Rb pAb to NFkB p65 

(ab2615-100) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

c-REL 
Rb pAb to c-Rel  

(sc-71, Santa Cruz Biotechnology) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

p52 

Mouse mAb to NFkB p52  

(sc-7386, Santa Cruz 

Biotechnology) 

Anti-mouse IgG 

peroxidase Ab (A4416, 

Sigma) 

BCL-2 
Rb mAb to Bcl-2  

(#2870, CST) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

BCL-XL 
Rb mAb to Bcl-xL  

(#2052A, R&D systems) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

GADD45β 
Rb pAb to GADD45β  

(orb215494, biorbyt) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

ERK 
Rb Ab to p44/42 MAPK (Erk1/2)  

(#9102, CST) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

p-ERK 
Rb Ab to p-p44/42 MAPK 

(T202/Y204) (#9101. CST) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

JNK 
Rb Ab to SAPK/JNK  

(#9252, CST) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

p-JNK 
Mouse mAb to p-SAPK/JNK 

(T183/Y185) (#9255, CST) 

Anti-mouse IgG 

peroxidase Ab (A4416, 

Sigma) 

Caspase 3 
Rb mAb to cleaved caspase-3 

(D175) (5A1E) (#9664, CST) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 
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γH2AX 
Rb mAb to γH2AX         

(CST #9718) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

Cyclin D1 
Rb mAb to cyclin D1 

(#2978, CST) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

GAPDH 
Rb pAb to GAPDH  

(ab22555) 

Anti-rabbit IgG HRP-

linked Ab (#7073, CST) 

β-Actin 
Mouse mAb to β-actin  

(A5441, Sigma) 

Anti-mouse IgG 

peroxidase Ab (A4416, 

Sigma) 

 

Table 2.5 Western blot antibodies 

 

2.6 Immunohistochemistry and histology 

2.6.1 Paraffin embedded section preparation 

Tissue samples were fixed in 10% formalin for 24 hours then transferred to 70% 

ethanol until processed. Samples were processed and embedded by the BioBank 

laboratory and cut by microtome onto Superfrost Plus slides (Fisher) with a thickness 

of 6um. 

2.6.2 Haematoxylin and Eosin staining (H&E) 

H&E staining was carried out to examine tissue histology. Paraffin-embedded formalin-

fixed sections were dewaxed in clearene for 2 x 5 minutes, then rehydrated in 100% 

ethanol for 5 minutes followed by 70% ethanol for 5 minutes. Sections were then 

washed in tap water and placed in Mayer’s haemotoxylin for 1.5 minutes, then washed 

in running tap water to remove any unbound stain. Sections were then placed in Scott’s 

water for 1 minute to blue to Haemotoxylin stain, then washed again in running tap 

water and placed in Eosin for 1.5 minutes. Sections were washed in running tap water 

to remove any residual unbound eosin followed by dehydration through graded 

ethanols (10s in 50%, 10s in 70%, 2 minutes in 100% and 2 minutes again in 100%), 

before being transferred to clearene for 2 x 5 minutes. The sections were then mounted 

in pertex. 
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2.6.3 Sirius Red staining  

Paraffin-embedded formalin-fixed sections were dewaxed and rehydrated as 

described above then washed in distilled water. Sections were incubated in 0.2% 

phosphomolybidic acid for 5 minutes, then washed in distilled water and stained with 

0.1% Sirius Red F3B in saturated picric acid for 2 hours. Sections were then washed 

twice in 0.01M HCl and dehydrated in graded ethanols and transferred to clearene as 

described above, followed by mounting in pertex.  

2.6.4 Immunostaining 

Formalin-fixed paraffin-embedded tissue sections were dewaxed and rehydrated as 

described above. Sections were incubated in a 0.6% hydrogen peroxide methanol 

solution for 15 minutes to block endogenous peroxidase activity. Antigen retrieval was 

dependent on the antibody used (Table 2.6). Endogenous avidin and biotin was then 

blocked using the Avidin/Biotin Blocking Kit (Vector Laboratories), with a 3 x 5 minutes 

PBS wash after incubation with each reagent for 20 minutes.  20% swine serum in PBS 

was then added for 20-60 minutes to block non-specific binding, followed by the 

primary antibody incubated at 4°C overnight. The next day slides were returned to 

room temperature and left for 30 minutes, then washed 3 x 5 minutes in PBS. 

Appropriate biotinylated secondary antibody was added for 1-2 hours. Slides were then 

washed 3 x 5 minutes in PBS and incubated with Vectastain Elite ABC Reagent for 1 

hour. Staining was visualised using the DAB peroxidase substrate kit and 

counterstained in Mayer’s Haemotoxylin, followed by dehydration through graded 

ethanols (5 minutes in 50%, 70%, 100% and 100%), then incubated in clearene for 10 

minutes before mounting in pertex. 

 

Antigen Antigen 

Retrieval 

Primary Antibody Secondary Antibody 

CD68 

Citrate 

(Vectorshield) 

Micowave 15 

mins 

Rb pAb to CD68 

(OABB00472)  

1:200 dilution 

Swine anti-rabbit 

biotin 

conjugated  

1:200 dilution 

Ly6G 
Citrate  

(Vectorshield) 

Rat mAb to Ly6G (clone 

1A8, InVivoPlus) 

Goat anti-rat biotin 

conjugated  
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Microwave 15 

mins 

+ 

0.2% trypsin 

37°C 30 mins 

1:700 dilution 1:200 dilution 

NIMP 

Citrate 

(Vectorshield) 

Microwave 15 

mins 

+ 

0.2% trypsin 

37°C 30 mins 

Rat mAb to NIMP-R14 

(Ab2557)  

1:200 dilution 

Goat anti-rat biotin 

conjugated  

1:200 dilution 

CD3 

1mM EDTA pH8 

Microwave 15 

mins 

Rat anti-human CD3 

(MCA1477)  

1:200 dilution 

Goat anti-rat biotin 

conjugated 

 1:200 dilution 

CD4 

Citrate 

(Vectorshield) 

Microwave 15 

mins 

Rat anti-mouse 

eBioscience (14-9766-

82) 

1:100 dilution 

Goat anti-rat biotin 

conjugated 

 1:200 dilution 

CD8 

1mM EDTA pH8 

Microwave 15 

mins 

Rat anti-mouse 

eBioscience (14-0808-

82) 

1:100 dilution 

Goat anti-rat biotin 

conjugated  

1:200 dilution 

CD45R 

Citrate 

(Vectorshield) 

Microwave 15 

mins 

Rat mAb to CD45R 

(Ab64100) 

1:200 dilution 

Goat anti-rat biotin 

conjugated  

1:200 dilution 

FOXP3 

1mM EDTA pH8 

Microwave 15 

mins 

Rat anti-mouse 

eBioscience (14-5773-

82)  

1:100 dilution 

Goat anti-rat biotin 

conjugated  

1:200 dilution 

CASPASE 

3 

Citrate 

(Vectorshield) 

Rb mAb to cleaved 

caspase-3 (Asp175, 

Swine anti-rabbit 

biotin 

conjugated 
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Microwave 15 

mins 

5A1E, #9664 CST) 1:200 

dilution 

1:200 dilution 

PCNA 

Citrate 

(Vectorshield) 

Microwave 15 

mins 

Rb pAb to PCNA 

(Ab18197) 1:6000 

dilution 

Swine anti-rabbit 

biotin 

conjugated 1:200 

dilution 

γH2AX 

1mM EDTA pH8 

Microwave 15 

mins 

Rb mAb to γH2AX         

(CST #9718) 

1:100 dilution 

Swine anti-rabbit 

biotin 

conjugated 1:200 

dilution 

αSMA Citrate 

(Vectorshield) 

Microwave 15 

mins 

Ms mAb to αSMA-FITC 

conjugated (F3777) 

1:1000 dilution 

anti-FITC biotin 

conjugated 1:300 

dilution 

 

Table 2.6 Immunostaining antibodies 

 

2.6.5 Image analysis 

A Nikon Eclipse microscope and NIS-Elements BR analysis software was used for 

brightfield image analysis. 15 fields per slide/mouse (5 fields per liver lobe: large lobe, 

bilobulated lobe and triangular lobe) were used for image analysis. Densitometry was 

performed for Sirius Red and alpha-SMA stains, by applying a predefined threshold to 

images acquired at x10 magnification. A percentage of positively stained area was 

subsequently calculated from this. Cell counts were performed on x20 images using 

the ImageJ software cell counter tool. 

 

2.7 Enzyme-linked immunosorbent assay (ELISA) 

An R&D systems kit was used to quantify the amount of mouse MCP-1 protein present 

within the liver tissue harvested from the acute CCl4 study. High-binding 96 well plates 

(Greiner) were coated with assay appropriate concentrations of capture antibody 

diluted in PBS and incubated overnight at room temperature. The next day the capture 

antibody was removed and the plate washed 3 times with wash buffer containing 
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0.05% PBS-Tween 20. The plate was then blocked with blocking buffer (1% BSA in 

PBS) for 1 hour at room temperature. The blocking buffer was then aspirated and the 

plate washed three times, followed by the addition of standards and optimum dilutions 

of samples and incubation for 2 hours at room temperature. The plate was then washed 

3 times and detection antibody added to the plate and incubated for 2 hours at room 

temperature. The plate was then washed 3 times and HRP-streptavidin antibody added 

for 30 minutes at room temperature, followed by another 3 washes. 25μl of a 1:1 ratio 

of Substrate Reagent A (stabilised hydrogen peroxide) and Reagent B (stabilized TMB) 

substrate was added to each well for 20 minutes at room temperature in the dark. The 

reaction was quenched with 25μl stop solution 2N H2SO4 (ABT Trinitorm) and the OD 

was measured spectrophotometrically at 450nm using a SpectraMax Plate reader. The 

background level of MCP-1 expression in control samples was determined and 

subtracted from conditioned samples and samples were quantified using the Softmax 

Pro Software. 

2.8 RNA-Sequencing 

mRNA sequencing was carried out in 5 DEN-induced HCC tumour samples from each 

of Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice (a total of 15 samples). Only samples with a 

purity A260/A280 ratio of approximately 2 to exclude the presence of protein or other 

contaminants, and a RIN (RNA Integrity Number) value above 7 were used. Samples 

were sequenced at >25 M 75 bp single reads. Salmon was used to directly quantify 

RNA-Seq reads against a reference transcriptome (from GenCode: 

gencodegenes.org). This quantification data was then read into R using tximeta and 

analysed for differential expression using DESeq2 which applies a Negative Binomial 

model to determine differentially expressed genes. Cut-offs of 2-fold change in either 

direction, and a p-value (adjusted for multiple tests by the Benjamini-Hochberg FDR 

correction) of 0.05 were applied. The expression ratios between conditions are 

expressed by DESeq2 in log2 space – therefore a 2-fold change is a log2(fold change) 

of > 1 or < -1. The genes which passed these thresholds were then submitted for GO 

and KEGG analysis using Fisher’s Exact Test to determine over-represented functional 

terms amongst the DEGs when compared to the ‘background’ of all the genes 

expressed in the experiment. Again, an adjusted p-value (BH correction, as before) 

was used to determine statistically significant over-representation. 
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2.9 Statistics 

Statistical analysis was performed using the GraphPad Prism software. Data are 

reported as means +/- the SEM (standard error of the mean). For comparison between 

2 groups, a Student’s 2-tailed t-test was used to determine statistical significance, 

which was considered when p<0.05. For comparison between more than 2 groups, a 

one-way or two-way ANOVA was carried out, followed by a Tukey post-hoc text for 

multiple comparisons, with values of p<0.05 accepted as statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

Chapter 3. The role of hepatocyte NF-κB1 in acute liver injury 

 

3.1 Introduction 

The NF-κB transcription factor family plays a central role in the resolution of acute liver 

injury and inflammation, with a key role in innate immune response activation and in 

the regulation of cell survival and proliferation (Karin, 2009). Upon liver injury, 

activation of the NF-κB pathway leads to the translocation of NF-κB dimers into the 

nucleus, where they activate the transcription of genes involved in the resolution of 

liver injury including cytokines, chemokines and apoptotic regulatory genes. While this 

response represents a means of overcoming cell injury, over-activation of the NF-κB 

pathway can have detrimental effects. NF-κB1 p50, unable to activate transcription 

alone due to the lack of a transactivation domain, is generally thought to repress gene 

transcription in its homodimer form, dampening inflammatory and anti-apoptotic 

signalling (Cartwright et al., 2016).  

Several different models of acute liver injury in mice exist and are commonly used in 

research. Of these, the CCl4 and DEN-induced hepatotoxicity models represent useful 

tools for understanding the role of genetic alterations in liver injury mechanisms. These 

acute models are particularly used for the study of inflammation, ROS damage and 

apoptosis (Tolba, Kraus, Liedtke, Schwarz, Weiskirchen, et al., 2015a; Uehara et al., 

2014). 

The primary aim of this study was to assess whether the knockout of Nfkb1 in 

hepatocytes leads to a worse phenotype in mice when subjected to hepatotoxin IP 

injections. NF-κB1 p50 homodimers being known for their anti-inflammatory function, 

it was hypothesized that knocking out p50 in hepatocytes, and thus eliminating p50 

homodimers, would lead to a worse outcome compared to control mice with normal 

p50 homodimer expression. 

 

3.2 Characterisation of the Nfkb1hep-/- mice 

To validate the hepatocyte-specific knockout of Nfkb1 in Nfkb1hep-/- mice, hepatocytes 

and non-parenchymal liver cells were isolated from Nfkb1fl/fl control and Nfkb1hep-/- 

mice, and western blot analysis was performed to look at p50 expression. p50 was 

abundantly expressed in Nfkb1fl/fl mice hepatocytes while showing no expression in 
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Nfkb1hep-/- mice hepatocytes, whereas p50 expression levels were similar in non-

parenchymal cells across both genotypes, demonstrating the hepatocyte-specific 

knockout by Alb-Cre recombinase (Figure 3.1a). p50 western blot analysis was also 

performed on spleen tissue and isolated bone marrow cells from these mice, to ensure 

similar p50 expression between control and Nfkb1hep-/- mice in immune cells, where 

p50 is known to play an important role and be expressed in high levels. Similar p50 

expression was observed between both genotypes, additionally confirming the 

hepatocyte-specific knockout of Nfkb1 p50 in Nfkb1hep-/- mice (Figure 3.1b). To further 

confirm this, p50 expression was assessed in several different organs in control and 

Nfkb1hep-/- mice. As expected, p50 expression levels were comparable between both 

groups (Figure 3.1c). 

 

 

 

 

Figure 3.1 Western blot analysis of NF-κB1 p50 expression comparison between 

control and Nfkb1hep-/- mice. Western blots show p50 expression in Nfkb1fl/fl and Nfkb1hep-/- 

mice in hepatocytes and non-parenchymal liver cells (a), in spleen and bone marrow cells (b), 

and in kidney, heart, lung, brain, colon and pancreas tissue (c). 

 

To determine the genotype of mice resulting from Nfkb1fl/fl X Alb-Cre+/- breeding, DNA 

was extracted from mice small ear punches and PCR performed with the relevant 
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primers (see methods section) followed by agarose gel electrophoresis to determine 

the presence or absence of cre expression (cre is expressed in Nfkb1hep-/- mice), and 

the presence of LoxP sites on both alleles (representative of Nfkb1fl/fl mice). For cre 

expression genotyping, the presence of a band means cre is expressed and therefore 

the mouse is Nfkb1hep-/-. When no band is present, cre is not expressed and the mouse 

is Nfkb1fl/fl. 

 

Figure 3.2 Genotyping analysis of mice from Nfkb1fl/fl X Alb-Cre+/- breeding. Gel images 

from PCR products show the presence or absence of cre expression (top) and homozygous 

Nfkb1 floxed genes (single band). 

 

To further confirm Nfkb1 knockout specificity, Nfkb1 immunohistochemistry was 

performed on WT and Nfkb1-/- formalin-fixed paraffin-embedded mouse liver tissue, 

with different anti-Nfkb1 antibodies, with 1 day and 2 day protocols, however none 

appeared to be successful (Figure 3.3, 3.4, 3.5, and 3.6). 
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Figure 3.3 NF-κB1 immunohistostain with ab32360 antibody, 1 and 2 day protocols. 

Images show X20 NF-κB1 1-day and 2-day immunostaining with ab32360 anti-NF-κB1 

antibody in WT and Nfkb1-/- formalin-fixed paraffin-embedded mice liver tissue. 



58 
 

 

Figure 3.4 NF-κB1 immunohistostain with D4P4D antibody, 1 and 2 day protocols. 

Images show X20 NF-κB1 1-day and 2-day immunostaining with D4P4D anti-NF-κB1 antibody 

in WT and Nfkb1-/- formalin-fixed paraffin-embedded mice liver tissue. 
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Figure 3.5 NF-κB1 immunohistostain with sc-114 antibody, 1 and 2 day protocols. 

Images show X20 NF-κB1 1-day and 2-day immunostaining with sc-114 anti-NF-κB1 antibody 

in WT and Nfkb1-/- formalin-fixed paraffin-embedded mice liver tissue. 
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Figure 3.6 NF-κB1 immunohistostain with D7H5M antibody, 1 and 2 day protocols. 

Images show X20 NF-κB1 1-day and 2-day immunostaining with D7H5M anti- NF-κB1 

antibody in WT and Nfkb1-/- formalin-fixed paraffin-embedded mice liver tissue. 

 

3.3 The role of hepatocyte NF-κB1 in acute CCl4 liver injury 

Acute treatment with the hepatotoxin CCl4 is known to cause inflammation and cell 

death in mice livers (Scholten et al., n.d.). An acute CCl4 experiment was carried out 

at two time-points, with mice livers harvested after 24h and after 48h following a single 

CCl4 intraperitoneal (IP) injection, to assess the role of NF-κB1 in acute liver 

inflammation. 24h following the liver injury represents the peak of inflammation and 

increased apoptosis is usually observed after 48h (Tzirogiannis et al., 2003; Horiguchi 

et al., 2010). Three different groups of mice were used in this study: Nfkb1fl/fl and Alb-

Cre+/- control mice, and Nfkb1hep-/- mice, with Nfkb1fl/fl representing wild type littermate 
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controls for Nfkb1hep-/- mice, and Alb-Cre+/- mice representing a control group 

accounting for any Cre enzyme expression specific effects (Nfkb1hep-/- mice express 

Cre recombinase). Cre recombinase expression has been shown to increase 

inflammation and cell death in certain conditions (Xiao et al., 2012). 6 mice were used 

per group and per time-point. 

3.3.1 p50 protein expression after acute CCl4 liver injury 

CCl4 was injected IP in 8 week old Nfkb1fl/fl and Nfkb1hep-/- mice and their livers were 

harvested 24h or 48h post-injection. 6 mice from each genotype were used per time-

point. Western blot analysis was performed to assess p105 and p50 expression in 

these livers, to ensure the correct knockout of Nfkb1 in Nfkb1hep-/- mice. Figure 3.7 

shows significantly lower expression levels of p105 and p50 in Nfkb1hep-/- mice livers, 

indicating successful Cre recombination. The low levels of p105/p50 expression in 

Nfkb1hep-/- mice can be attributed to non-parenchymal liver cells, accounting for around 

25% of the liver (Seo & Jeong, 2016), since western blot analysis was performed on whole 

liver tissue lysate samples.  

 

 

 

Figure 3.7 Western blot analysis of NF-κB1 p50 expression in control and Nfkb1hep-/- mice 

livers following CCl4 injection. Western blots show p105 and p50 expression in Nfkb1fl/fl and 

Nfkb1hep-/- mice in livers harvested 24h post-CCl4 injection (a), and 48h post-CCl4 injection (b) 

 

 

3.3.2 Hepatocyte Nfkb1 knock-out does not alter liver damage serum ALT 

(alanine transaminase) and AST (aspartate transaminase) enzyme levels 

following acute CCl4 liver injury  
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Serum levels of ALT and AST were measured to assess liver damage. These 

transaminase enzymes are commonly used as biomarkers of liver damage, with higher 

levels indicating increased liver damage (Giannini et al., 2005). No significant 

difference in serum ALT or AST levels was observed at either the 24h or the 48h time 

point across the three groups, though there appeared to be a slight decrease in ALT 

(p=0.1) and AST (p=0.188) in Nfkb1hep-/- mice compared to Nfkb1fl/fl mice 24h following 

CCl4 injection (Figure 3.8). This demonstrates similar liver injury levels caused by the 

CCl4 hepatotoxin, indicating that hepatocyte Nfkb1 knockout does not affect the initial 

liver damage caused by CCl4. 

 

 

Figure 3.8 Serum ALT and AST enzyme level comparison at 24h and 48h post-CCl4 

injection. Graphs show serum levels of ALT 24h post-CCl4 injection (a), AST 24h post-CCl4 

injection (b), ALT 48h post-CCl4 injection (c), and AST 48h post-CCl4 injection. Data are mean 

± SEM of n=6 Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. Statistical significance 

was determined using a one-way ANOVA followed by a post-hoc Tukey test.  P values below 

0.05 were considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 
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3.3.3 Hepatocyte Nfkb1 knock-out does not alter neutrophil recruitment to the 

liver  

Previous work has shown important involvement of NF-κB1 p50 in dampening 

neutrophil recruitment to the liver in the context of liver injury and inflammation. 

Increased neutrophil chemoattractant chemokine expression was observed in global 

Nfkb1 knockout mice and hepatocytes, however the direct effect of hepatocyte Nfkb1 

knockout remains unknown (Wilson et al., 2015). It was therefore hypothesized that 

Nfkb1hep-/- mice would display increased neutrophil liver infiltration compared to control 

mice. Ly6G immunohistochemistry staining, which is specific for neutrophils, was 

carried out in formalin-fixed paraffin-embedded liver tissue from the CCl4-injured mice. 

However, no significant difference in Ly6G positive staining was observed between the 

three groups, indicating that hepatocyte p50 does not contribute to neutrophil 

recruitment in the liver following CCl4 injury (Figure 3.9). 

 

 

Figure 3.9 Ly6G immunostain of mice livers following acute CCl4 injury. Images show 

X20 Ly6G immunostaining in Nfkb1fl/fl, Alb-Cre+/- and Nfkb1hep-/- formalin-fixed paraffin-
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embedded liver tissue 24h following CCl4 injection (a), and 48h following CCl4 injection (b). 

Graphs show Ly6G+ cells per field at 24h (c) and at 48h (d). Data are mean ± SEM of n=6 

Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. Statistical significance was determined 

using a one-way ANOVA followed by a post-hoc Tukey test.  P values below 0.05 were 

considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

3.3.4 Hepatocyte Nfkb1 knock-out does not affect the neutrophil chemokine 

expression network 

The gene expression levels of neutrophil chemokines S100A9, CXCL1 and CXCL2, 

known to be controlled by p50, were also assessed by RT-qPCR, as they were found 

to be significantly upregulated in global Nfkb1 knockout mice (Wilson et al., 2015). 

CXCL1 mRNA expression was significantly decreased in Nfkb1hep-/- mice compared to 

Alb-Cre+/- mice at the 48h time-point (p=0.005), however it was comparable to CXCL1 

expression in Nfkb1fl/fl mice at this time-point (Figure 3.10). No significant difference 

was observed in the expression of S100A9, CXCL1 (p=0.292 Nfkb1fl/fl vs Nfkb1hep-/-, 

and p=0.211 Alb-Cre+/- vs Nfkb1hep-/-), CXCL2 between the three groups 24h post-CCl4 

injection, and no significant difference was observed in the expression of S100A9 

(p=0.063 Alb-Cre+/- vs Nfkb1hep-/-) and CXCL2 (p=0.067 Alb-Cre+/- vs Nfkb1hep-/-) 

between the three groups 48h post-CCl4 injection. 
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Figure 3.10 Neutrophil chemokine network gene expression in acute CCl4-injured mice 

livers. Graphs show liver mRNA expression obtained by RT-qPCR analysis 24h after CCl4 

injection of S100A9 (a), CXCL1 (b), and CXCL2 (c), and 48h after CCl4 injection of S100A9 

(d), CXCL1 (e), and CXCL2 (f). Data are mean ± SEM of n=6 Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 

Nfkb1hep-/- mice livers. Statistical significance was determined using a one-way ANOVA 

followed by a post-hoc Tukey test.  P values below 0.05 were considered statistically 

significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

Additionally, given the implication of NF-κB1 p50 in inflammation (Cartwright et al., 

2016), the gene expression of the chemokines TNFα and IL-6 was also assessed by 

RT-qPCR, however no significant difference was observed between the three groups 

at either time-point. TNFα and IL-6 expression appeared to be slightly increased in Alb-

Cre+/- mice livers compared to the other two groups 48h post-CCl4 injection, but this 

did not reach significance.  
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Figure 3.11 TNFα and IL-6 liver gene expression in acute CCl4 injury. Graphs show liver 

mRNA expression obtained by RT-qPCR analysis 24h after CCl4 injection of TNFα (a) and IL-

6 (b), and 48h after CCl4 injection of TNFα (c) and IL-6 (d). Data are mean ± SEM of n=6 

Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. Statistical significance was determined 

using a one-way ANOVA followed by a post-hoc Tukey test.  P values below 0.05 were 

considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

3.3.5 Hepatocyte NF-κB1 knock-out increases macrophage recruitment to the 

liver  

With NF-κB1 p50 known to be a regulator of innate immune responses (Wilson et al., 

2015), macrophage recruitment to the liver was assessed by F4/80 

immunohistochemistry, a marker for liver macrophages, in formalin-fixed paraffin-

embedded tissues. A significant increase in F4/80 positive cells was observed in 

Nfkb1hep-/- mice compared to both control groups 24h post-CCl4 injection (p=0.0062 

Nfkb1fl/fl vs Nfkb1hep-/- and p=0.0045 Alb-Cre+/- vs Nfkb1hep-/-), indicating a significant 

increase in macrophage liver infiltration in the absence of NF-κB1 p50 (Figure 3.12). 
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No significant difference in F4/80 positive cells was observed across the three groups 

at the 48h time-point. 

 

 

Figure 3.12 F4/80 immunostain of mice livers subjected to acute CCl4 injury. Images 

show X20 F4/80 immunostaining in Nfkb1fl/fl, Alb-Cre+/- and Nfkb1hep-/- formalin-fixed paraffin-

embedded liver tissue 24h following CCl4 injection (a), and 48h following CCl4 injection (b). 

Graphs show F4/80+ cells per field at 24h (c) and at 48h (d). Data are mean ± SEM of n=6 

Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. Statistical significance was determined 

using a one-way ANOVA followed by a post-hoc Tukey test.  P values below 0.05 were 

considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 
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3.3.6 Hepatocyte Nfkb1 knock-out does not affect CCL2 and CCL5 liver 

chemokine expression  

It was subsequently hypothesized that the observed increase in macrophages in 

Nfkb1hep-/- mice livers was due to an increase in the expression of monocyte 

chemoattractant chemokines, thereby recruiting monocytes to the liver, which then 

differentiate into macrophages. CCL2 and CCL5 are both known potent monocyte 

chemoattractants (Bartfai et al., 2020; Keepers et al., 2007; Deshmane et al., 2009), 

and therefore the gene expression of these two chemokines was assessed by RT-

qPCR. Surprisingly, no significant difference in CCL2 or CCL5 expression was 

observed between the three groups at the 24h and the 48h time-point, and CCL5 

expression appeared slightly decreased in Nfkb1hep-/- mice compared to the control 

groups (Figure 3.13). This suggests other chemokines must be responsible for the 

observed increase in macrophage infiltration in the livers of Nfkb1hep-/- mice after 24h, 

such as CCL7, or liver-resident macrophages, kupffer cells, are being activated. 
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Figure 3.13 Monocyte chemoattractant chemokine gene expression in the liver following 

acute CCl4 injury. Graphs show liver mRNA expression obtained by RT-qPCR analysis 24h 

after CCl4 injection of CCL2 (a) and CCL5 (b), and 48h after CCl4 injection of CCL2 (c) and 

CCL5 (d). Data are mean ± SEM of n=6 Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. 

Statistical significance was determined using a one-way ANOVA followed by a post-hoc Tukey 

test.  P values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 

 

3.3.7 Hepatocyte Nfkb1 knock-out does not affect anti-apoptotic gene 

expression  

Another major effect caused by acute CCl4 hepatotoxicity is apoptosis and cell death 

(Keepers et al., 2007). The gene expression of apoptotic genes Gadd45β, Bcl-xL and 

Bcl-2 was therefore assessed by RT-qPCR in the livers of CCl4 injured mice, to assess 

the role of NF-κB1 in this process. A significant decrease in Gadd45β expression was 

observed in Nfkb1hep-/- mice compared to Alb-Cre+/- mice (p=0.031), but not compared 

to Nfkb1fl/fl mice, 24h post-CCl4 injection (Figure 3.14). Bcl-xL was significantly 

upregulated in Alb-Cre+/- mice compared to Nfkb1fl/fl (p=0.0054) and Nfkb1hep-/- mice 

(0.006) at the 48h time-point. Bcl-xL expression in Nfkb1hep-/- mice is therefore 

decreased compared to the Alb-Cre+/- control mice but comparable to Nfkb1fl/fl mice, 

48h following CCl4 injection. This suggests that lack of hepatocyte Nfkb1 p50 

decreases Bcl-xL- and Gadd45β-mediated anti-apoptotic signalling, thereby increasing 

apoptosis, when the comparison is made with Alb-Cre+/- mice, however if comparison 

is made with Nfkb1fl/fl mice, it can be concluded that lack of NF-κB1 p50 does not affect 

Bcl-xL- and Gadd45β-mediated anti-apoptotic signalling in acute CCl4 injury. 

Additionally, Gadd45β gene expression seemed to be slightly increased in Alb-Cre+/- 

mice compared to the two other groups, and Bcl-2 expression seemed to be slightly 

decreased compared to the other groups at the 48h time-point. 
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Figure 3.14 Anti-apoptotic gene expression in acute CCl4 injury. Graphs show liver mRNA 

expression obtained by RT-qPCR analysis 24h after CCl4 injection of Gadd45β (a), Bcl-xL (b), 

and Bcl-2 (c), and 48h after CCl4 injection of Gadd45β (d), Bcl-xL (e), and Bcl-2 (f). Data are 

mean ± SEM of n=6 Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. Statistical 

significance was determined using a one-way ANOVA followed by a post-hoc Tukey test.  P 

values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 

 

The expression of apoptotic signalling genes XIAP (anti-apoptotic) and BAX (pro-

apoptotic) was also assessed by RT-qPCR. XIAP expression was significantly 

decreased in Alb-Cre+/- mice compared to Nfkb1fl/fl mice after 24h CCl4 (p=0.021), and 

Nfkb1hep-/- mice were comparable to Alb-Cre+/- mice, but no significant difference in 

XIAP expression was observed in Nfkb1hep-/- mice compared to the control groups at 

the 24h and 48h time-point (Figure 3.15). No significant difference in BAX expression 

levels was observed across all three groups at either time-point. 
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Figure 3.15 XIAP and BAX gene expression in acute CCl4 injury. Graphs show liver mRNA 

expression obtained by RT-qPCR analysis 24h after CCl4 injection of XIAP (a) and BAX (b), 

and 48h after CCl4 injection of XIAP (c) and BAX (d). Data are mean ± SEM of n=6 Nfkb1fl/fl, 

n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. Statistical significance was determined using a 

one-way ANOVA followed by a post-hoc Tukey test.  P values below 0.05 were considered 

statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

3.3.8 Hepatocyte Nfkb1 knock-out does not affect apoptosis or cell death  

While overall no major difference in apoptotic signalling gene expression was observed 

between Nfkb1hep-/- mice and both control groups, mRNA expression does not always 

translate to equivalent protein expression, and not all apoptotic signalling genes were 

covered in this study, therefore apoptosis and cell death was assessed at the 

phenotypic level. Cleaved caspase 3 immunohistochemistry, which shows activation 

of the apoptosis pathway (Crowley & Waterhouse, 2016; McIlwain et al., 2013; Porter 

& Jänicke, 1999), was carried out on formalin-fixed paraffin-embedded liver tissues to 

assess the role of NF-κB1 p50 in apoptosis, and percentage necrosis area was 
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quantified using H&E staining. Unsurprisingly, no significant difference in cleaved 

caspase 3 positive hepatocytes was observed between the three groups 24h post-CCl4 

injection (Figure 3.16). Interestingly, after 48h, cleaved caspase 3 hepatocyte staining 

was significantly increased compared to Alb-Cre+/- mice (p=0.0495), but not compared 

to Nfkb1fl/fl mice. This shows that apoptosis may be increased in Nfkb1hep-/- mice if 

comparison is made with Alb-Cre+/- mice, but if comparison is made with Nfkb1fl/fl mice 

then it can be concluded that lack of hepatocyte NF-κB1 p50 does not alter apoptotic 

signalling in acute CCl4 liver injury. 

 

 

Figure 3.16 Cleaved caspase 3 immunostain of livers following acute CCl4 injury. Images 

show X20 cleaved caspase 3 immunostaining in Nfkb1fl/fl, Alb-Cre+/- and Nfkb1hep-/- formalin-

fixed paraffin-embedded liver tissue 24h following CCl4 injection (a), and 48h following CCl4 

injection (b). Graphs show cleaved caspase 3 + cells per field at 24h (c) and at 48h (d). Data 

are mean ± SEM of n=6 Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. Statistical 

significance was determined using a one-way ANOVA followed by a post-hoc Tukey test.  P 

values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 
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Necrosis being another form of cell death in response to liver injury, it was 

hypothesized that NF-κB1 p50 could play a role in this cellular process. Unlike 

apoptosis, which is a highly regulated process, necrosis is characterised by 

uncontrolled cell death (Fink & Cookson, 2005; Syntichaki & Tavernarakis, 2002). 

Percentage necrosis area was quantified from H&E stains of formalin-fixed paraffin-

embedded liver tissues. Bands of lighter pink cells represent necrotic cells while the 

darker cells are normal and healthy (Elmore et al., 2016). No significant difference was 

observed between the three groups at either time-point, however necrosis seemed to 

be slightly decreased in Nfkb1hep-/- mice compared to both control mice after 24h, and 

slightly increased compared to Alb-Cre+/- mice after 48h (Figure 3.17). 

 

 

Figure 3.17 Percentage necrosis area quantified by H&E stain in acute CCl4 liver injury. 

Images show H&E staining in Nfkb1fl/fl, Alb-Cre+/- and Nfkb1hep-/- formalin-fixed paraffin-

embedded liver tissue 24h following CCl4 injection (a), and 48h following CCl4 injection (b). 

Graphs show percentage necrosis area at 24h (c) and at 48h (d). Data are mean ± SEM of 
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n=6 Nfkb1fl/fl, n=6 Alb-Cre+/- and n=6 Nfkb1hep-/- mice livers. Statistical significance was 

determined using a one-way ANOVA followed by a post-hoc Tukey test.  P values below 0.05 

were considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

3.4 The role of hepatocyte NF-κB1 in acute CCl4 liver injury in an adeno-

associated viral Nfkb1 knock-out model  

While the albumin-cre recombinase system represents a useful tool to study the effects 

of hepatocyte-specific Nfkb1 knockout, cholangiocytes can also express albumin 

(Tanimizu et al., n.d.), therefore these cells may also lack Nfkb1 in this model. The 

AAV-TBG-Cre system, whereby transfection with the AAV-TBG-Cre virus leads to the 

Cre recombinase knock-out of Nfkb1, driven by the TBG promoter, is completely 

hepatocyte specific (TBG is not expressed in cholangiocytes, whereas albumin can 

be). This therefore allows for a more specific study of the role NF-κB1 plays in 

hepatocytes (Yan et al., 2012a; Carrillo-Carrasco et al., 2010; Yan et al., 2012b). 

Initially, AAV-TBG-Cre virus was injected intravenously (IV) in Nfkb1fl/fl mice, and mice 

were harvested at different time-points to establish the optimum time to knock out 

hepatocyte Nfkb1 and carry out CCl4 injury following virus injection. After establishing 

the time required to effectively knock-out Nfkb1 in hepatocytes, a similar acute CCl4 

injury study as the previous one mentioned was conducted, with liver harvest after 24h 

and 48h following CCl4 IP injection. AAV-TBG-Null virus was injected in Nfkb1fl/fl mice 

as control. 

The aim of this study was to assess the role of hepatocyte NF-κB1 in acute liver injury 

resolution, with a focus on inflammation and cell death. The results from this study can 

also be compared to those from the previous acute CCl4 study, in order to validate the 

previously observed results and consolidate conclusions on the role hepatocyte p50 

plays. 

 

3.4.1 Validation of AAV-TBG-Cre Nfkb1 hepatocyte-specific knockout  

Nfkb1fl/fl mice were injected IV with AAV-TBG-Cre virus, and livers and spleens were 

harvested at 3, 6, 10, 13 and 16 days to assess p50 expression. Additionally, 

hepatocyte isolation, along with non-parenchymal cell, bone marrow cell, kidney and 

spleen isolation, was carried out two weeks and 1 month post-AAV-TBG-Cre injection. 
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Western blot analysis showed a gradual decrease in p50 expression from 3 days to 16 

days post-injection (Figure 3.18). Hepatocytes isolated from AAV-TBG-Cre injected 

mice showed no expression of p50 after 2 weeks and after 1 month, while WT 

hepatocytes as well as non-parenchymal cells, bone marrow cells, kidney and spleen 

showed abundant p50 expression at these time-points, demonstrating the AAV-TBG-

Cre hepatocyte-specific knockout of p50. Full hepatocyte knock-out of p50 was 

therefore observed two weeks from virus injection, thus CCl4 was injected two weeks 

after AAV-TBG-Cre injection for this study. 

 

 

Figure 3.18 Western blot analysis of p50 expression following AAV-TBG-Cre injection. 

a) Western blot showing p50 expression in the liver and spleen in WT mice and AAV-TBG-

Cre-IV injected Nfkb1fl/fl mice between 3 and 16 days post-AAV-TBG-Cre injection. b) Western 

blot showing p50 expression in WT hepatocytes, hepatocytes isolated from AAV-TBG-Cre-

injected mice, non-parenchymal liver cells, bone marrow cells, kidney and spleen 2 weeks 

post-AAV-TBG-Cre injection in Nfkb1fl/fl mice. c) Western blot showing p50 expression in WT 

hepatocytes, hepatocytes isolated from AAV-TBG-Cre-injected mice, non-parenchymal liver 

cells and spleen 1 month post-AAV-TBG-Cre injection in Nfkb1fl/fl mice. 
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Western blot analysis was performed on livers from CCl4-injured mice to assess p50 

expression. AAV-TBG-Null-injected mice display notably higher p50 expression 

compared to AAV-TBG-Cre-injected mice at both the 24h and 48h time-point, 

indicating successful hepatocyte Nfkb1 p50 knockout. The observed p50 expression 

in AAV-TBG-Cre-injected mice livers can be attributed to non-parenchymal liver cells, 

including immune cells. 

 

 

Figure 3.19 Western blot analysis of p50 expression in acute CCl4 injury. Western blots 

show liver p50 expression in Nfkb1fl/fl mice injected with AAV-TBG-Null or AAV-TBG-Cre virus 

24h post-CCl4 injection (a), and 48 post-CCl4 injection (b). 

 

3.4.2 Hepatocyte Nfkb1 knock-out limits serum AST, but not ALT, liver damage 

enzyme levels 24h post-CCl4 injection 

Liver damage was assessed by measuring the serum levels of ALT and AST. ALT 

levels appeared slightly reduced in AAV-TBG-Cre mice 24h post-CCl4 injection, though 

this did not reach significance. However, AST levels were significantly reduced in AAV-

TBG-Cre mice at this time-point (p=0.0322). No difference was observed in ALT or 

AST at the 48h time-point. This suggests the initial damage caused by CCl4 may be 

lower in AAV-TBG-Cre mice compared to control mice, though by 48h there is no 

difference in liver damage. 
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Figure 3.20 Serum ALT and AST levels following acute CCl4 injury. Graphs show serum 

levels of ALT 24h post-CCl4 injection (a), AST 24h post-CCl4 injection (b), ALT 48h post-CCl4 

injection (c), and AST 48h post-CCl4 injection. Data are mean ± SEM of n=6 AAV-TBG-Null 

and n=6 AAV-TBG-Cre mice livers. Statistical significance was determined using a Student’s 

two-tailed t-test.  P values below 0.05 were considered statistically significant, with *P<0.05, 

**P<0.01 and ***P<0.001. 

 

3.4.3 Hepatocyte knock-out does not alter neutrophil recruitment to the liver 

Similarly to the previous acute CCl4 study, neutrophil recruitment to the liver was 

assessed by Ly6G immunohistochemistry in formalin-fixed paraffin-embedded liver 

tissues. As previously observed, there was no significant difference in neutrophil 

recruitment to the liver between AAV-TBG-Cre and AAV-TBG-Null mice, though there 

appeared to be a slight increase in Ly6G+ staining in AAV-TBG-Cre mice (p=0.1109 

at 24h and p=0.0616 at 48h) (Figure 3.21). 
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Figure 3.21 Liver Ly6G immunostain in acute CCl4 injury. Images show X20 Ly6G 

immunostaining in AAV-TBG-Null and AAV-TBG-Cre formalin-fixed paraffin-embedded liver 

tissue 24h following CCl4 injection (a), and 48h following CCl4 injection (b). Graphs show 

Ly6G+ cells per field at 24h (a) and at 48h (b). Data are mean ± SEM of n=6 AAV-TBG-Null 

and n=6 AAV-TBG-Cre mice livers. Statistical significance was determined using a Student’s 

two-tailed t-test.  P values below 0.05 were considered statistically significant, with *P<0.05, 

**P<0.01 and ***P<0.001. 

 

 

3.4.4 Hepatocyte Nfkb1 knock-out does not affect the neutrophil chemokine 

expression network 

The mRNA expression of neutrophil chemoattractant chemokines S100A9, CXCL1 

and CXCL2 was assessed by RT-qPCR. No significant difference was observed 

between AAV-TBG-Cre and AAV-TBG-Null mice after 24h and after 48h following CCl4 

injection (Figure 3.22). Neutrophil chemokine expression was however evidently 

increased in AAV-TBG-Cre and AAV-TBG-Null mice compared to WT uninjured mice, 

indicating that CCl4 injury is inducing an increase in the expression of these 

chemokines. The low n number of WT uninjured mice (3) may explain why this 

difference did not reach significance. 
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Figure 3.22 Neutrophil chemokine liver mRNA expression in acute CCl4 injury. Graphs 

show liver mRNA expression obtained by RT-qPCR analysis 24h after CCl4 injection of 

S100A9 (a), CXCL1 (b), and CXCL2 (c), and 48h after CCl4 injection of S100A9 (d), CXCL1 

(e), and CXCL2 (f). Data are mean ± SEM of n=6 AAV-TBG-Null and n=6 AAV-TBG-Cre mice 

livers. Statistical significance was determined using a one-way ANOVA followed by a post-hoc 

Tukey test (a,b,c) or a Student’s two-tailed t-test (d,e,f).  P values below 0.05 were considered 

statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

To further assess whether Nfkb1 knockout has an effect on inflammation caused by 

acute CCl4 liver injury, the gene expression of the chemokines IL-6 and TNFα was 

measured by RT-qPCR. No significant difference was observed between AAV-TBG-

Cre and AAV-TBG-Null mice at the 24h and 48h time-points, and a notable increase 

was observed in these mice compared to WT uninjured mice 24h following CCl4 

injection, indicating that IL-6 and TNFα expression is upregulated in response to acute 

CCl4 liver injury (Figure 3.23). 
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Figure 3.23 IL-6 and TNFα chemokine expression in the liver in acute CCl4 injury. Graphs 

show liver mRNA expression obtained by RT-qPCR analysis 24h after CCl4 injection of TNFα 

(a) and IL-6 (b), and 48h after CCl4 injection of TNFα (c) and IL-6 (d). Data are mean ± SEM 

of n=6 AAV-TBG-Null and n=6 AAV-TBG-Cre mice livers. Statistical significance was 

determined using either a one-way ANOVA followed by a post-hoc Tukey test (a,b), or a 

Student’s two-tailed t-test.  P values below 0.05 were considered statistically significant, with 

*P<0.05, **P<0.01 and ***P<0.001. 

 

 

3.4.5 Hepatocyte Nfkb1 knock-out increases macrophage recruitment to the 

liver after 48h, but not 24h, CCl4 liver injury  

To further examine the role of hepatocyte NF-κB1 in acute CCl4 liver injury, F4/80 

immunohistochemistry was carried out on formalin-fixed paraffin-embedded liver 

tissues to compare macrophage recruitment to the liver. No significant difference in 

F4/80+ cells was observed at 24h, however the number of F4/80+ cells was 

significantly increased in AAV-TBG-Cre mice at 48h (p=0.0181) (Figure 3.24). This 

shows that in the presence of hepatocyte NF-κB1 p50, macrophage recruitment to the 
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liver is limited, likely due to the repression of monocyte chemoattractant chemokines 

by p50 homodimers; however when hepatocytes lack NF-κB1 p50, this repression is 

abrogated, leading to an increase in the expression of monocyte chemoattractant 

chemokines, resulting in an increase in macrophages. 

Interestingly, the previous acute CCl4 study showed a significant increase in F4/80+ 

staining in Nfkb1hep-/- mice compared to control mice at 24h, but not at 48h, whereas 

here the difference is observed at the 48h later time-point. The AAV virus may be 

affecting immune responses by delaying them, or earlier hepatocyte Nfkb1 knock out 

in Nfkb1hep-/- mice may alter compensatory mechanisms affecting immune responses, 

but both studies should be repeated to better understand the underlying mechanism 

for this. 

 

Figure 3.24 F4/80 liver immunostain in acute CCl4 injury. Images show X20 F4/80 

immunostaining in AAV-TBG-Null and AAV-TBG-Cre formalin-fixed paraffin-embedded liver 

tissue 24h following CCl4 injection (a), and 48h following CCl4 injection (b). Graphs show 

F4/80+ cells per field at 24h (a) and at 48h (b). Data are mean ± SEM of n=6 AAV-TBG-Null 

and n=6 AAV-TBG-Cre mice livers. Statistical significance was determined using a Student’s 

two-tailed t-test.  P values below 0.05 were considered statistically significant, with *P<0.05, 

**P<0.01 and ***P<0.001. 
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3.4.6 Hepatocyte Nfkb1 knock-out does not affect CCL2 and CCL5 liver 

chemokine expression  

To further investigate the increase in macrophage recruitment, the liver gene 

expression of monocyte chemoattractant chemokines CCL2 and CCL5 was assessed 

by RT-qPCR. No significant difference was observed between AAV-TBG-Cre and 

AAV-TBG-Null mice at 24h or 48h, although CCL2 appeared increased in AAV-TBG-

Cre mice compared to control mice at the 48h time-point (0=0.0522) (Figure 3.25). 

However, no similar observation was made on CCL2 expression at this time-point in 

the previous acute CCl4 study. CCL2 expression was significantly increased in AAV-

TBG-Null (p=0.0005) and AAV-TBG-Cre mice (p=0.004) compared to WT uninjured 

mice at the 24h timepoint. Overall this shows that other monocyte chemoattractant 

chemokines must be responsible for the observed increase in macrophages when 

Nfkb1 p50 is knocked out in hepatocytes. Assessment of the expression of further 

monocyte chemoattractant chemokines is necessary to elucidate this. However, it is 

important to remember that protein expression trends don’t always follow gene 

expression trends, therefore CCL2 and/or CCL5 may be increased at the protein level 

in the absence of NF-κB1 p50, despite no apparent significant difference in gene 

expression. 
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Figure 3.25 Gene expression of monocyte chemoattractant chemokines in the liver in 

acute CCl4 injury. Graphs show liver mRNA expression obtained by RT-qPCR analysis 24h 

after CCl4 injection of CCL2 (a) and CCL5 (b), and 48h after CCl4 injection of CCL2 (c) and 

CCL5 (d). Data are mean ± SEM of n=6 AAV-TBG-Null and n=6 AAV-TBG-Cre mice livers. 

Statistical significance was determined using either a one-way ANOVA followed by a post-hoc 

Tukey test (a,b), or a Student’s two-tailed t-test.  P values below 0.05 were considered 

statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

 

3.4.7 Hepatocyte Nfkb1 knock-out does not affect anti-apoptotic gene 

expression 

Similarly to the previous acute CCl4 study, the role of NF-κB1 p50 in apoptosis was 

assessed. The mRNA expression of anti-apoptotic genes Gadd45β, Bcl-xL and Bcl-2 

was determined by RT-qPCR. No significant difference was observed between AAV-

TBG-Cre and AAV-TBG-Null mice (Figure 3.26). Gadd45β (p=0.013) and Bcl-2 

(p=0.0058) gene expression was significantly increased in AAV-TBG-Cre mice 

compared to WT uninjured mice after 24h, and Bcl-xL was significantly increased in 
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AAV-TBG-Null mice compared to WT uninjured mice after 24h (p=0.0074). This shows 

that acute CCl4 injury leads to the upregulation of anti-apoptotic genes Gadd45β, Bcl-

xL and Bcl-2. 

 

 

 

Figure 3.26 Anti-apoptotic gene expression in the liver in acute CCl4 injury. Graphs show 

liver mRNA expression obtained by RT-qPCR analysis 24h after CCl4 injection of Gadd45β 

(a), Bcl-xL (b), and Bcl-2 (c), and 48h after CCl4 injection of Gadd45β (d), Bcl-xL (e), and Bcl-

2 (f). Data are mean ± SEM of n=6 AAV-TBG-Null and n=6 AAV-TBG-Cre mice livers. 

Statistical significance was determined using a one-way ANOVA followed by a post-hoc Tukey 

test (a,b,c) or a Student’s two-tailed t-test (d,e,f).  P values below 0.05 were considered 

statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

Additionally, the gene expression of BAX (pro-apoptotic) and XIAP (anti-apoptotic) was 

determined. No significant difference was found between AAV-TBG-Cre and AAV-

TBG-Null mice after 24h and 48h (Figure 3.27). BAX was significantly increased in 

AAV-TBG-Cre (p=0.0046) and AAV-TBG-Null mice (p=0.0182) compared to WT 

uninjured mice after 24h, indicating that the expression of this gene is upregulated in 

response to acute CCl4 injury. However, the expression of XIAP remained unchanged 
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between WT uninjured mice and virus-injected mice, indicating that XIAP is unaffected 

by acute CCl4 injury. 

  

 

Figure 3.27 Gene expression of BAX and XIAP in acute CCl4 liver injury. Graphs show 

liver mRNA expression obtained by RT-qPCR analysis 24h after CCl4 injection of BAX (a) and 

XIAP (b), and 48h after CCl4 injection of BAX (c) and XIAP (d). Data are mean ± SEM of n=6 

AAV-TBG-Null and n=6 AAV-TBG-Cre mice livers. Statistical significance was determined 

using either a one-way ANOVA followed by a post-hoc Tukey test (a,b), or a Student’s two-

tailed t-test.  P values below 0.05 were considered statistically significant, with *P<0.05, 

**P<0.01 and ***P<0.001. 

 

 

3.4.8 Hepatocyte Nfkb1 knock-out does not affect apoptosis or cell death  

To further investigate whether NF-κB1 p50 plays a role in apoptotic signalling in 

response to acute CCl4 injury, cleaved caspase 3 immunohistochemistry was carried 

out on formalin-fixed paraffin-embedded liver tissues. However, no significant 

difference in casp3+ hepatocytes was observed between AAV-TBG-Cre and AAV-
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TBG-Null mice. This is comparable to what was observed in the previous acute CCl4 

study. 

 

 

Figure 3.28 Cleaved caspase 3 liver immunostain in acute CCl4 injury. Images show X20 

Cleaved caspase 3 immunostaining in AAV-TBG-Null and AAV-TBG-Cre formalin-fixed 

paraffin-embedded liver tissue 24h following CCl4 injection (a), and 48h following CCl4 injection 

(b). Graphs show cleaved caspase 3 + cells per field at 24h (a) and at 48h (b). Data are mean 

± SEM of n=6 AAV-TBG-Null and n=6 AAV-TBG-Cre mice livers. Statistical significance was 

determined using a Student’s two-tailed t-test.  P values below 0.05 were considered 

statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

 

Percentage necrosis area was also determined using H&E stained formalin-fixed 

paraffin-embedded liver tissue. No significant difference was observed between AAV-

TBG-Cre and AAV-TBG-Null mice (Figure 3.29). These results suggest that 

hepatocyte NF-κB1 p50 is not fundamentally implicated in cell death modulation, 

including apoptosis and necrosis, in the context of acute CCl4 liver injury. 
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Figure 3.29 Percentage necrosis area quantification from H&E stained liver tissue in 

acute CCl4 injury. Images show X10 H&E staining in AAV-TBG-Null and AAV-TBG-Cre 

formalin-fixed paraffin-embedded liver tissue 24h following CCl4 injection (a), and 48h following 

CCl4 injection (b). Graphs show average percentage necrosis area at 24h (a) and at 48h (b). 

Data are mean ± SEM of n=6 AAV-TBG-Null and n=6 AAV-TBG-Cre mice livers. Statistical 

significance was determined using a Student’s two-tailed t-test.  P values below 0.05 were 

considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

 

3.5 The role of NF-κB1 in acute DEN liver injury  

DEN (diethylnitrosamine) is a well-established carcinogen known to cause 

hepatotoxicity, notably though the generation of reactive metabolites (Tolba, Kraus, 

Liedtke, Schwarz, & Weiskirchen, 2015). To explore the role of NF-κB1 p50 in the 

pathogenic alterations underlying the formation of liver cancer, an acute DEN 

experiment was carried out, whereby mice were injected IP with one single dose of 

DEN, and their livers harvested 24h and 48h post-injection. 6 Nfkb1fl/fl and 6 Nfkb1hep-

/- mice used per time-point for this study. Due to Nfkb1fl/fl and Alb-Cre+/- mice showing 

results that were not comparable in the acute CCl4 study, Nfkb1fl/fl was chosen as 

control for subsequent experiments. Nfkb1fl/fl mice and Nfkb1hep-/- being litter mates and 
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with an N background (Alb-Cre+/- mice had a J background, which means they differed 

in their genetic background). 

 

3.5.1 Validation of Nfkb1 hepatocyte-specific knockout 

Western blot analysis was performed on liver tissue protein lysate to ensure correct 

knock-out of Nfkb1 p50 in Nfkb1hep-/- mice. Results show abundant p50 expression in 

Nfkb1fl/fl mice while Nfkb1hep-/- mice display significantly lower p50 liver expression, 

confirming correct Cre recombination and Nfkb1 p50 knock-out.  

 

 

Figure 3.30 Western blot analysis of p50 expression in Nfkb1fl/fl and Nfkb1hep-/- mice. 

Western blots show p50 expression in Nfkb1fl/fl and Nfkb1hep-/- mice livers 24h and 48h following 

DEN injection. β-actin expression was used as loading control. 

 

3.5.2 Hepatocyte Nfkb1 knock-out limits serum AST, but not ALT, liver damage 

enzyme levels 48h post-DEN injection  

Liver damage was assessed by measuring serum ALT and AST levels. AST was 

significantly reduced in Nfkb1hep-/- mice compared to Nfkb1fl/fl control mice 48h following 

acute DEN injury (p=0.0392) (Figure 3.31). No significant difference in ALT levels was 

found at this time-point, and no significant difference in ALT or AST levels was 

observed 24h after DEN injury. This implies that the damage experienced by Nfkb1hep-

/- livers is inferior to the damage experienced by Nfkb1fl/fl livers after 48h. In acute CCl4 

liver injury, lower AST levels were observed 24h post-injury, but not 48h post-injury, 

indicating that the damage incurred by acute DEN is delayed compared to that incurred 

by acute CCl4 injury. 
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Figure 3.31 Serum ALT and AST levels in acute DEN liver injury. Graphs show serum 

levels of ALT 24h post-DEN injection (a), AST 24h post-DEN injection (b), ALT 48h post-DEN 

injection (c), and AST 48h post-DEN injection. Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 

Nfkb1hep-/- mice livers. Statistical significance was determined using a Student’s two-tailed t-

test.  P values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 

 

3.5.3. Hepatocyte Nfkb1 in acute DEN-induced Inflammation 

In response to hepatotoxin exposure and subsequent liver injury, the triggered 

inflammatory process is fundamental to the resolution of the liver injury. Immune cell 

infiltration in the liver was assessed by H&E stain of formalin-fixed paraffin-embedded 

liver tissue. No visible difference in immune cell infiltration, particularly around the 

blood vessels, was observed between Nfkb1fl/fl and Nfkb1hep-/- mice after 24h and after 

48h following DEN injection. Additionally TNFα gene expression was assessed by RT-

qPCR. No significant difference in the expression of this inflammatory chemokine was 

found between Nfkb1fl/fl and Nfkb1hep-/- mice. These results suggest that lack of NF-κB1 
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p50 does not affect the inflammatory process and immune cell recruitment following 

acute DEN liver injury. 

 

Figure 3.32 Immune cell infiltration assessed by H&E stain and TNFα gene expression 

in response to acute DEN liver injury. Images show X10 H&E staining and immune cell 

infiltration in Nfkb1fl/fl and Nfkb1hep-/- formalin-fixed paraffin-embedded liver tissue 24h following 

DEN injection (a), and 48h following DEN injection (b). Graphs show mRNA expression of 

TNFα after 24h (c) and after 48h (d). Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 Nfkb1hep-

/- mice livers. Statistical significance was determined using a Student’s two-tailed t-test.  P 

values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 

 

 

3.5.4 Hepatocyte Nfkb1 knock-out does not alter neutrophil recruitment in 

acute DEN liver injury 

DEN is known to cause an increase in neutrophil liver infiltration as part of the 

inflammatory response (Tolba, Kraus, Liedtke, Schwarz, & Weiskirchen, 2015). 

Neutrophil recruitment to the liver was therefore assessed by NIMP 

immunohistochemistry on formalin-fixed paraffin-embedded liver tissue (NIMP stain 

was carried out as part of Sam Murray’s undergraduate project under my supervision). 
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NIMP predominantly stains for neutrophils, but can also stain monocytes. It is specific 

for Ly-6G and Ly-6C which are components of the myeloid differentiation antigen Gr-1 

(Wang et al., 2012). No significant difference in NIMP+ staining was observed between 

Nfkb1fl/fl and Nfkb1hep-/- mice 24h and 48h post-DEN injection (Figure 3.33). This 

suggests hepatocyte NF-κB1 p50 is not implicated in the recruitment of neutrophils to 

the liver in response to acute DEN injury. 

 

 

Figure 3.33 NIMP immunostain of the liver in acute DEN injury. Images show X20 NIMP 

immunostaining in Nfkb1fl/fl and Nfkb1hep-/- formalin-fixed paraffin-embedded liver tissue 24h 

following DEN injection (a), and 48h following DEN injection (b). Graphs show NIMP+ cells per 

field at 24h (c) and at 48h (d). Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 Nfkb1hep-/- mice 

livers. Statistical significance was determined using a Student’s two-tailed t-test.  P values 

below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

3.5.5 Hepatocyte Nfkb1 knock-out does not alter neutrophil chemokine 

expression in acute DEN liver injury  

Additionally, gene expression of neutrophil chemoattractant chemokines CXCL1, 

CXCL2 and S100A9 was determined by RT-qPCR. No significant difference between 

Nfkb1fl/fl and Nfkb1hep-/- mice was observed in either chemokine expression at either 



92 
 

time-point (Figure 3.34). This confirms that hepatocyte NF-κB1 p50 is not involved in 

neutrophil recruitment in response to acute liver injury. 

 

 

Figure 3.34 Gene expression of neutrophil chemoattractant chemokines in acute DEN 

liver injury. Graphs show liver mRNA expression obtained by RT-qPCR analysis 24h after 

DEN injection of S100A9 (a), CXCL1 (b), and CXCL2 (c), and 48h after DEN injection of 

S100A9 (d), CXCL1 (e), and CXCL2 (f). Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 

Nfkb1hep-/- mice livers. Statistical significance was determined using a Student’s two-tailed t-

test.  P values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 

 

3.5.6 Hepatocyte Nfkb1 knock-out does not alter monocyte/macrophage 

recruitment in acute DEN liver injury 

To further assess the involvement of hepatocyte NF-κB1 p50 in the inflammatory 

response in acute DEN liver injury, monocyte/macrophage recruitment to the liver and 

the presence of resident kupffer cells were assessed by CD68 immunohistochemistry 

in formalin-fixed paraffin-embedded tissues (CD68 stain was carried out as part of Sam 

Murray’s undergraduate project under my supervision). Interestingly no difference in 

CD68+ staining was observed between Nkb1fl/fl and Nfkb1hep-/- mice after 24h and after 
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48h, indicating that hepatocyte Nfkb1 p50 is not implicated in monocyte and 

macrophage recruitment to the liver in response to acute DEN injury (Figure 3.35). This 

differs from the findings in the acute CCl4 liver injury model, where macrophage 

numbers were significantly increased in Nfkb1hep-/- mice. It is important to note that 

CD68 stains for both monocytes and macrophages, whereas F4/80 (used in the acute 

CCl4 model), only stains macrophages, which may explain the difference observed 

between the two models. There may be more macrophages in Nfkb1hep-/- mice, but not 

more monocytes, or more monocytes may be differentiating into macrophages in 

Nfkb1hep-/- mice, or the macrophages may have different characteristics to those from 

Nfkb1fl/fl mice. 

 

 

Figure 3.35 CD68 immunostain of the liver in acute DEN injury. Images show X20 CD68 

immunostaining in Nfkb1fl/fl and Nfkb1hep-/- formalin-fixed paraffin-embedded liver tissue 24h 

following DEN injection (a), and 48h following DEN injection (b). Graphs show CD68+ cells per 

field at 24h (c) and at 48h (d). Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 Nfkb1hep-/- mice 

livers. Statistical significance was determined using a Student’s two-tailed t-test.  P values 

below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

3.5.7 Hepatocyte Nfkb1 knock-out does not alter expression of chemokines 

involved in monocyte recruitment in acute DEN liver injury 
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To further assess monocyte recruitment to the liver in response to acute DEN injury, 

the gene expression of monocyte chemoattractant chemokines CCL2 and CCL5 was 

determined by RT-qPCR. No significant difference in CCL2 or CCL5 expression was 

found between Nfkb1fl/fl and Nfkb1hep-/- mice 24h and 48h post-DEN injection (Figure 

3.36). This suggests that lack of hepatocyte NF-κB1 p50 does not affect monocyte 

recruitment to the liver in response to acute DEN liver injury. 

 

  

Figure 3.36 Gene expression of monocyte chemoattractant chemokines in acute DEN 

liver injury. Graphs show liver mRNA expression obtained by RT-qPCR analysis 24h after 

DEN injection of CCL2 (a) and CCL5 (b), and 48h after DEN injection of CCL2 (c) and CCL5 

(d). Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 Nfkb1hep-/- mice livers. Statistical significance 

was determined using either a Student’s two-tailed t-test.  P values below 0.05 were 

considered statistically significant, with *P<0.05, **P<0.01 and ***P<0.001. 

 

3.5.8 Hepatocyte Nfkb1 knock-out does not alter anti-apoptotic/oncogene 

expression in acute DEN liver injury 
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Acute liver injury caused by DEN leads to cell death, notably apoptosis, as an injury 

resolution response (Tolba, Kraus, Liedtke, Schwarz, & Weiskirchen, 2015). The gene 

expression of anti-apoptotic genes Gadd45β, Bcl-xL and Bcl-2 was therefore assessed 

by RT-qPCR to investigate the role of hepatocyte NF-κB1 p50 in apoptotic signalling in 

response to DEN-induced acute liver damage. No significant difference between 

Nfkb1fl/fl and Nfkb1hep-/- was found in the expression of these anti-apoptotic genes 24h 

and 48h after DEN injection (Figure 3.37). These results show that hepatocyte p50 

likely doesn’t play a role in apoptotic signalling in the context of acute DEN liver injury, 

although further experiments investigating protein expression for example would be 

necessary to confirm this. 

 

 

Figure 3.37 Expression of anti-apoptotic genes Gadd45β, Bcl-xL and Bcl-2 in acute DEN 

liver injury. Graphs show liver mRNA expression obtained by RT-qPCR analysis 24h after 

DEN injection of Gadd45β (a), Bcl-xL (b), and Bcl-2 (c), and 48h after DEN injection of 

Gadd45β (d), Bcl-xL (e), and Bcl-2 (f). Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 Nfkb1hep-

/- mice livers. Statistical significance was determined using a Student’s two-tailed t-test.  P 

values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 

 



96 
 

3.5.9 Hepatocyte Nfkb1 knock-out does not alter proliferation in acute DEN liver 

injury 

As part of the liver regeneration process following acute injury, proliferation represents 

an essential process in liver injury resolution. Uncontrolled proliferation however can 

have detrimental effects and promote carcinogenesis (Feitelson et al., 2015). 

Proliferation was therefore assessed by PCNA immunohistochemistry in formalin-fixed 

paraffin-embedded liver tissue, to evaluate the role of hepatocyte NF-κB1 p50 in 

proliferation following acute DEN liver injury (PCNA stain was carried out as part of 

Sam Murray’s undergraduate project under my supervision). No significant difference 

in PCNA+ hepatocytes was observed between Nfkb1fl/fl and Nfkb1hep-/- mice after 24h 

and after 48h (Figure 3.38). This indicated that hepatocyte NF-κB1 p50 does not 

modulate proliferation in acute DEN liver injury. 

 

Figure 3.38 PCNA liver immunostain in acute DEN liver injury. Images show X20 PCNA 

immunostaining in Nfkb1fl/fl and Nfkb1hep-/- formalin-fixed paraffin-embedded liver tissue 24h 

following DEN injection (a), and 48h following DEN injection (b). Graphs show PCNA+ 

hepatocytes per field at 24h (c) and at 48h (d). Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 

Nfkb1hep-/- mice livers. Statistical significance was determined using a Student’s two-tailed t-

test.  P values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 
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3.5.10 Hepatocyte Nfkb1 knock-out does not alter DNA damage in acute DEN 

liver injury 

Acute DEN liver injury is also known to cause DNA damage (Tolba, Kraus, Liedtke, 

Schwarz, & Weiskirchen, 2015), therefore the role of NF-κB1 p50 in DNA damage 

modulation in acute DEN liver injury was assessed by γH2AX immunohistochemistry 

on formalin-fixed paraffin-embedded liver tissue (γH2AX stain was carried out as part 

of Sam Murray’s undergraduate project under my supervision). No significant 

difference was observed in γH2AX+ stain between Nfkb1fl/fl and Nfkb1hep-/- mice after 

24h and after 48h. This suggests hepatocyte NF-κB1 p50 does not modulate DNA 

damage in acute DEN liver injury. 

 

Figure 3.39 γH2AX liver immunostain in acute DEN liver injury. Images show X20 γH2AX 

immunostaining in Nfkb1fl/fl and Nfkb1hep-/- formalin-fixed paraffin-embedded liver tissue 24h 

following DEN injection (a), and 48h following DEN injection (b). Graphs show γH2AX+ 

hepatocytes per field at 24h (c) and at 48h (d). Data are mean ± SEM of n=6 Nfkb1fl/fl and n=6 

Nfkb1hep-/- mice livers. Statistical significance was determined using a Student’s two-tailed t-

test.  P values below 0.05 were considered statistically significant, with *P<0.05, **P<0.01 and 

***P<0.001. 
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3.7 Chapter Discussion  

Acute liver hepatotoxic injury triggers a number of cellular responses including immune 

responses, cell survival and proliferation signalling processes. NF-κB1 p50 is known to 

play an anti-inflammatory role by limiting excessive immune responses following liver 

injury (Cartwright et al., 2016; Wilson et al., 2015; Southern et al., 2012). The aim of 

these acute liver injury studies was to understand the importance of NF-κB1 p50 in 

inflammatory responses in acute CCl4 and acute DEN liver injury. 

Results show that in acute CCl4 liver injury, mice lacking NF-κB1 display increased 

macrophage numbers. This indicates that NF-κB1 plays an important role in limiting 

macrophage infiltration in the liver in acute injury. While macrophages are important 

for the resolution of injury, excessive numbers may be detrimental to the liver due to 

excessive release of inflammatory chemokines for example (Krenkel & Tacke, 2017). 

NF-κB1 could be playing an important protective role, limiting the damage caused by 

the liver inflammatory response. NF-κB1 may likely be acting by repressing gene 

expression of monocyte chemoattractant chemokines through p50 homodimers (Guan 

et al., 2005). CCL2 and CCL5 gene expression showed no significant difference in the 

presence or absence of hepatocyte NF-κB1, therefore other monocyte chemoattractant 

chemokines are likely being repressed by p50 homodimers, although CCL2 and CCL5 

protein expression levels may be increased in the absence of hepatocyte NF-κB1. 

Another possible explanation for the observation of increased macrophages in the 

absence of NF-κB1 could be that more monocytes are being differentiated into 

macrophages, suggesting that p50 homodimers may limit monocyte differentiation into 

macrophages by limiting the expression of monocyte differentiation chemokines such 

as CXCL12 and CCL18. It would also be interesting to explore macrophage 

polarisation, to see whether NF-κB1 modulates M1/M2 phenotype. Acute DEN liver 

injury however did not affect macrophage infiltration in the liver, therefore hepatocyte 

p50-specific responses defer depending on the initial liver injury. 

Interestingly, lack of hepatocyte NF-κB1 did not affect the neutrophil chemokine 

network expression or neutrophil infiltration in the liver in both the acute CCl4 and acute 

DEN models. While previous research has shown that NF-κB1 p50 is an important 

player in limiting neutrophil recruitment, this was shown in chronic liver injury studies, 

therefore prolonged injury to the liver may be required for any hepatocyte NF-κB1 p50 

effects to be observed (Wilson et al., 2015).  
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Overall, no clear differences or trends were observed between control mice and 

Nfkb1hep-/- mice in terms of apoptosis and necrosis. Anti-apoptotic genes were not 

differentially expressed and cleaved caspase 3 staining showed similar results, except 

48h after CCl4 injection where staining was significantly increased in Nfkb1hep-/- mice 

compared to Alb-Cre+/- mice, however no significant difference was observed between 

Nfkb1hep-/- and Nfkb1fl/fl control mice. Additionally, no significant difference in 

percentage necrosis area was observed between Nfkb1hep-/- mice and the control 

groups. Thus, it can be concluded from these results that hepatocyte NF-κB1 p50 does 

not modulate cell death in the context of acute CCl4 liver injury. 

Proliferation and DNA damage was additionally assessed in the acute DEN model, 

through PCNA and H2AX staining, to investigate the role of hepatocyte NF-κB1 p50 in 

compensatory proliferation and DNA damage following acute injury. No difference was 

observed indicating that hepatocyte NF-κB1 p50 does not modulate proliferation or 

DNA damage in the context of acute DEN liver injury. 

Importantly, serum AST levels were significantly decreased in mice lacking hepatocyte 

NF-κB1 24h after CCl4 injection in the AAV-TBG-Cre model, and 48h after DEN 

injection. This suggests that hepatocyte damage was inferior in AAV-TBG-Cre and 

Nfkb1hep-/- mice following acute CCl4 and DEN injection. It would be interesting to 

evaluate the expression of enzymes metabolising CCl4 and DEN: cytochrome p450 

enzymes (Chowdhury et al., 2012; Stoyanovsky & Cederbaum, 1996), to see whether 

the hepatotoxins are metabolised differently in the absence of hepatocyte NF-κB1.  

Altogether, these results demonstrate that lack of hepatocyte NF-κB1 has minimal 

effect in acute liver injury, with the main observation being an increase in macrophage 

infiltration in the liver. Other cellular processes could be explored in this model, such 

as cell cycle protein expression and the infiltration of other immune cell types. 
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Chapter 4. Global, but not hepatocyte-only, NF-κB1 restricts the 

liver inflammatory and fibrotic phenotype in a chronic CCl4 model of 

liver injury 

 

4.1 Introduction 

The NF-κB pathway plays an essential role in inflammatory and fibrotic responses in 

the liver, regulating cell survival, proliferation and immune cell responses, as well as 

wound healing and repair (Luedde & Schwabe, 2011b). NF-κB1 has been implicated in 

the protection against liver fibrosis by dampening and limiting cellular responses 

through gene repression by p50 homodimers (Oakley, Mann, et al., 2005). Global 

Nfkb1 knockout in mice has been associated with a more severe inflammatory and 

fibrotic phenotype, notably characterised by increased neutrophil immune cell 

infiltration in the liver and increased liver collagen deposition (Oakley, Mann, et al., 

2005). This indicates that NF-κB1 exerts a protective function in liver fibrogenesis, likely 

via p50 homodimer repression of inflammatory and fibrogenic gene transcription. 

However, to date, NF-κB1 cell-specific roles have not been characterised in the liver. 

With hepatocytes making up the majority of liver cells (70-80%) (Miyaoka et al., 2012; 

Manco et al., 2018a, 2018b; Tanaka & Miyajima, 2016), we hypothesized that p50 

homodimers may play an important protective role in injured hepatocytes in terms of 

regulating the responses to inflammatory and fibrogenic stimuli, preventing excessive 

activation of the NF-κB pathway. We therefore chose to assess the role of hepatocyte 

NF-κB1 in liver chronic inflammatory and fibrotic responses, employing a chronic CCl4 

model of liver fibrosis in mice. 

Chronic liver damage and inflammation is widely associated with increased liver cancer 

risk (Bishayee, 2014), and therefore understanding the biology behind the different 

stages of liver damage is essential to understand liver cancer development. Many liver 

fibrosis cases develop into cirrhosis, characterised by a more severe fibrotic 

phenotype, which often leads to the development of HCC (Keenan et al., 2019; 

Alexander et al., 2019; O’Rourke et al., 2018b). However, the links between liver 

disease and cancer remain incompletely understood. The aim of this study was to 

characterise the role of hepatocyte NF-κB1 in chronic liver inflammation and fibrosis, 

with the ultimate aim being to understand how repeated liver damage can progress to 

liver carcinogenesis.  
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For this, we used a well-established chronic CCl4 model of liver fibrosis, where mice 

were injected with the hepatotoxin CCl4 biweekly for 6 weeks. CCl4 is metabolised by 

cytochrome P450 producing reactive radicals which impair key cellular processes, 

notably leading to lipid peroxidation and the destruction of polyunsaturated fatty acids, 

subsequently lowering membrane permeability and leading to generalised hepatic 

damage characterised by inflammation and fibrosis (D Scholten et al., 2015). Three 

different groups of mice were compared: Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice. Nfkb1fl/fl 

mice were used as a control, and levels of inflammation and fibrosis were compared 

between hepatocyte-specific Nfkb1 knockout mice and global Nfkb1 knockout mice to 

assess whether the inflammatory and fibrotic phenotype observed in Nfkb1-/- mice can 

be attributed to the lack of NF-κB1 in hepatocytes. Mice injected with olive oil only were 

used as controls. 

4.2 Liver/body rate ratio in chronic CCl4 liver injury 

Mice body weight, liver weight and liver/body weight ratios were determined at the time 

of harvest. Nfkb1-/- mice treated with CCl4 had significantly reduced body and liver 

weights, as well as liver/body weight ratio compared to both Nfkb1fl/fl (p=0.0002) and 

Nfkb1hep-/- mice (p=0.0001) (Figure 4.1). Nfkb1-/- mice also looked notably thinner at 

the time of harvest. This indicates that Nfkb1-/- mice develop a poorer phenotype in 

response to chronic CCl4 liver damage compared to Nfkb1fl/fl and Nfkb1hep-/- mice. 
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Figure 4.1 Liver/body weight ratio after chronic CCl4 treatment. Graphs show average liver 

weights (a), average mouse body weights (b) and liver/body weight ratios of Nfkb1fl/fl, Nfkb1hep-

/- and Nfkb1-/- mice after olive oil or CCl4 treatment. 

 

4.3 p50 expression in Nfkb1fl/fl and Nfkb1hep-/- mice 

The expression of NF-κB1 p105 and p50 was assessed by western blot analysis in 

Nfkb1fl/fl and Nfkb1hep-/- mice livers treated with CCl4. Results show abundant 

expression of p105 and p50 in Nfkb1fl/fl mice with little to no expression in Nfkb1hep-/- 

mice. 
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Figure 4.2 p50 expression in Nfkb1fl/fl and Nfkb1hep-/- mice. Western blot showing p105 and 

p50 expression in Nfkb1fl/fl and Nfkb1hep-/- mice livers treated with CCl4. 

 

4.4 Global, but not hepatocyte, Nfkb1 knock-out increases liver damage serum 

ALT and AST enzymes  

ALT and AST levels were measured in the serum to assess liver damage. Interestingly, 

ALT and AST levels were significantly increased in the serum of CCl4-treated Nfkb1-/- 

mice (p=0.005 for ALT and p<0.0001 for AST), but not in CCl4-treated Nfkb1hep-/- mice, 

compared to CCl4-treated Nfkb1fl/fl control mice (Figure 4.3). No significant difference 

between the three groups was observed when mice were treated with olive oil, 

confirming the damage caused by chronic CCl4. ALT levels were also significantly 

increased in CCl4-treated Nfkb1-/- mice compared to CCl4-treated Nfkb1hep-/- mice 

(p=0.0087) and uninjured Nfkb1-/- mice (p=0.0014), and AST levels were significantly 

increased in CCl4-treated Nfkb1-/- mice compared to CCl4-treated Nfkb1hep-/- mice 

(0.0015) and uninjured Nfkb1-/- mice (0.0003). Of note, while there does appear to be 

a slight increase in serum AST and ALT levels in Nfkbhep-/- mice compared to Nfkb1fl/fl 

mice, this may be attributed to the outlier observed in Figure 4.2, whereby Nfkb1 

hepatocyte knockout could be incomplete, or immune cell infiltration dramatically 

increased in the liver. 
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Figure 4.3 Serum ALT and AST levels after CCl4 treatment. Graphs show serum ALT (a) 

and AST (b) levels in Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice treated with either olive oil or CCl4. 

 

4.5 Lack of global NF-κB1, but not hepatocyte p50, increases liver inflammation 

NF-κB1 p50 is known to protect against chronic inflammation. Previous research has 

shown that global Nfkb1-/- mice exhibit increased immune cell liver infiltration and 

inflammatory gene expression compared to control mice which express p50 (Margetts 

et al., 2018). Specifically, Nfkb1-/- mice displayed increased neutrophil infiltration in the 

liver and increased neutrophil chemokine network expression (CXCL1, CXCL2, 

S100A9). Immune cell infiltration in the liver and the expression of inflammatory 

chemokine genes was therefore assessed to evaluate the role of hepatocyte p50 

specifically. 

4.5.1 Increased liver neutrophil infiltration in global, but not hepatocyte-specific, 

NF-κB1 knock-out mice  

Previous studies have shown that global Nfkb1-/- mice exhibit increased inflammation, 

particularly characterised by an increase in neutrophil infiltration in the liver (Wilson et 

al., 2015). We therefore sought to assess whether the knockout of Nfkb1 in 

hepatocytes specifically would cause a similar effect. Neutrophil infiltration in the liver 

was assessed by Ly6G immunohistochemistry on formalin-fixed paraffin-embedded 

mouse liver sections. The number of Ly6G positive cells was significantly increased in 

Nfkb1-/- mice (p<0.0001), but not in Nfkb1hep-/- mice, compared to Nfkb1fl/fl mice (Figure 

4.4). Ly6G staining was also significantly increased in CCl4-treated Nfkb1-/- mice 

compared to CCl4-treated Nfkb1hep-/- mice (p<0.0001) and uninjured Nfkb1-/- mice 
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(p<0.0001). Olive oil treated mice showed little neutrophil infiltration in the liver, 

demonstrating the CCl4-mediated inflammation. 

 

Figure 4.4 Ly6G liver immunostaining after chronic CCl4 treatment. Images show X20 

Ly6G immunostaining in the liver in Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice treated with either 

CCl4 (a) or olive oil (b). Graph shows average Ly6G positive cell count per field in Nfkb1fl/fl, 

Nfkb1hep-/- and Nfkb1-/- mice treated with either olive oil or CCl4 (c). 

 

4.5.2 Increased chemokine expression in global, but not hepatocyte-specific, 

Nfkb1 knock-out mice 

The expression of several chemokines in the liver was assessed by RT-qPCR in order 

to further characterise liver inflammation and the recruitment of immune cells to the 

liver. The increase in neutrophil recruitment to the liver was reflected in the significant 

upregulation of neutrophil chemokines S100A9 and CXCL1 in Nfkb1-/- mice compared 

to Nfkb1fl/fl (p=0.0013 for S100A9 and p=0.0013 for CXCL2) and Nfkb1hep-/- mice 

(p=0.0120 for S100A9 and p=0.0027 for CXCL2), with no significant difference in 

Nfkb1hep-/- mice compared to control mice (Figure 4.5). S100A9 and CXCL2 were also 

significantly upregulated in Nfkb1-/- mice treated with CCl4 compared to Nfkb1-/- mice 

treated with olive oil (p=0.0089 for S100A9 and p=0.0103 for CXCL2). Other 

inflammatory chemokines including TNFα (p=0.0041), CCL2 (p=0.0012) and CXCL10 
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(p<0.0001) were also significantly upregulated in Nfkb1-/- mice, but not in Nfkb1hep-/- 

mice compared to Nfkb1fl/fl mice (Figure 4.6), suggesting that NF-κB1 does not function 

as an inflammatory suppressor in hepatocytes in the context of chronic CCl4 injury.  

These chemokines were also significantly expressed in Nfkb1-/- mice treated with CCl4 

compared to Nfkb1-/- mice treated with olive oil. 

 

 

Figure 4.5 Neutrophil chemoattractant chemokine expression following chronic CCl4 

treatment. Graphs show gene expression of neutrophil chemoattractant chemokines S100A9 

(a), CXCL1 (b) and CXCL2 (c) in Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice treated with either olive 

oil or CCl4. 
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Figure 4.6 Inflammatory chemokine expression following chronic CCl4 treatment. 

Graphs show gene expression of inflammatory chemokines TNFα (a), IL-6 (b), CCL2 (c) and 

CXCL10 (d) in Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice treated with either olive oil or CCl4. 

 

4.5.3 NF-κB1 does not modulate liver monocyte infiltration in a chronic CCl4 liver 

injury model  

Interestingly, despite a marked increase in immune cell infiltration in the liver, 

particularly of neutrophils, in Nfkb1-/- mice, no significant difference in liver 

monocyte/macrophage infiltration was observed in either Nfkb1-/- mice or Nfkb1hep-/- 

mice, assessed by CD68 immunohistochemistry (Figure 4.7). NF-κB1 therefore plays 

an important role in neutrophil recruitment to the liver in CCl4-induced inflammation 

and fibrosis, acting in non-hepatocyte cells, but does not modulate monocyte and 

macrophage recruitment to the liver in this model of liver injury. 
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Figure 4.7 CD68 liver immunostain following chronic CCl4 injury. Images show X20 CD68 

immunostaining in the liver in Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice treated with either CCl4 (a) 

or olive oil (b). Graph shows average CD68 positive cell count per field in Nfkb1fl/fl, Nfkb1hep-/- 

and Nfkb1-/- mice treated with either olive oil or CCl4 (c). 

 

Though no difference was found in macrophage numbers between the three groups, 

the gene expression levels of pro-inflammatory M1 marker Arg2 and anti-inflammatory 

M2 marker Arg1 were assessed by RT-qPCR. Arg2 expression was significantly 

increased in Nfkb1-/- mice treated with CCl4 compared to Nfkb1fl/fl (p=0.0088) and 

Nfkb1hep-/- (p=0.0021) mice treated with CCl4, suggesting that the macrophages in 

Nfkb1-/- mice have a more pro-inflammatory phenotype (Figure 4.8). In contrast, no 

significant difference was found in Arg1 expression between the three groups. These 

results suggest that NF-κB1 p50 may modulate macrophage polarisation, but not via 

hepatocytes. Additionally, Arg2 expression was significantly increased in Nfkb1-/- mice 

treated with CCl4 compared to Nfkb1-/- mice treated with olive oil, which shows the 

CCl4-specific mediated inflammation. 
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Figure 4.8 Macrophage polarisation chemokine expression following chronic CCl4 

injury. Graphs show gene expression of ARG1 (a) and ARG2 (b) in Nfkb1fl/fl, Nfkb1hep-/- and 

Nfkb1-/- mice treated with either olive oil or CCl4. 

 

4.6 Lack of global NF-κB1, but not hepatocyte NF-κB1, increases liver fibrosis 

As well as assessing the role of hepatocyte NF-κB1 p50 in inflammation following 

chronic CCl4 treatment, another important aim of this study was to assess the role of 

hepatocyte NF-κB1 p50 in fibrosis. For this, fibrotic gene expression was assessed in 

the liver, and collagen deposition as well as myofibroblast activation was also 

assessed.  

4.6.1 Increased fibrogenic gene expression in global, but not hepatocyte-

specific, Nfkb1 knock-out mice  

To assess whether hepatocyte NF-κB1 was important in modulating fibrotic responses 

and the liver fibrotic phenotype, fibrotic gene expression was assessed by RT-qPCR. 

Surprisingly, no significant difference was observed in α-SMA and COL1A1 expression 

in neither Nfkb1-/- mice nor Nfkb1hep-/- mice compared to Nfkb1fl/fl control mice (Figure 

4.9). While a previous similar study showed an increase in α-SMA and COL1A1 

fibrogenic gene expression, it was conducted over 12 weeks (biweekly CCl4 injections 

for 12 weeks), suggesting that the 6 week CCl4 model is insufficient to mirror this 

response. However, fibrogenic genes TIMP1 (p=0.0006) and TGF-β (p=0.0051) were 

significantly increased in Nfkb1-/- mice, but not in Nfkb1hep-/- mice, compared to Nfkb1fl/fl 

mice. Additionally, TIMP1 (p=0.0014) and TGF-β expression (p=0.01) was significantly 

increased in CCl4-treated Nfkb1-/- mice compared to Nfkb1hep-/- mice. This shows that 

while NF-κB1 functions as an important regulator of fibrogenic gene expression, this is 
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not due to its activity in hepatocytes but rather in other cells of the liver, such as innate 

immune cells including neutrophils and macrophages, or hepatic stellate cells. 

 

 

Figure 4.9 Fibrogenic gene expression following chronic CCl4 treatment. Graphs show 

gene expression of fibrotic genes α-SMA (a), COL1A1 (b), TIMP1 (c) and TGF-β (d) in Nfkb1fl/fl, 

Nfkb1hep-/- and Nfkb1-/- mice treated with either olive oil or CCl4. 

 

4.6.2 Increased collagen deposition and fibrosis score in global, but not 

hepatocyte-specific, Nfkb1 knock-out mice  

Collagen deposition, which is characteristic of fibrosis (Wynn, 2008), was assessed by 

Sirius red stain. Percentage positive Sirius red staining was measured by thresholding. 

A significant increase in collagen deposition was observed in Nfkb1-/- mice compared 

to Nfkb1hep-/- mice (p=0.0241), but not compared to Nfkb1fl/fl control mice (Figure 4.10). 

Additionally, the fibrosis score of Nfkb1-/- mice livers was higher compared to Nfkb1hep-

/- mice (p=0.0405). No difference was observed in collagen deposition or fibrosis score 

between Nfkb1fl/fl mice and Nfkb1hep-/- mice. This shows that hepatocyte NF-κB1 does 



111 
 

not modulate collagen deposition in liver fibrosis, and therefore that NF-κB1 exerts an 

important role in the regulation of collagen deposition and fibrosis in other liver cells. 

 

 

Figure 4.10 Sirius red stain following chronic CCl4 treatment. Images show X10 sirius red 

staining of liver tissue from Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice treated with either CCl4 (a) or 

olive oil (b). Graphs show average percentage sirius red staining per field (c) and fibrosis score 

in Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice (d). 

 

4.6.3 NF-κB1 does not modulate liver alpha-SMA expression in a chronic CCl4 

liver injury model  

α-SMA immunohistochemistry was carried out to assess myofibroblast activation, 

characteristic of liver fibrosis (Nagaraju et al., 2019; Hinz et al., 2007). In accordance 

with the α-SMA RT-qPCR results, no significant difference was observed in a-SMA 

expression between all three groups (Figure 4.11). However previous research 

showed increased α-SMA expression in Nfkb1-/- mice livers in a 12 week chronic CCl4 

fibrosis model (Oakley, Mann, et al., 2005).  Longer exposure to CCl4 would have likely 

led to an increase in α-SMA expression in Nfkb1-/- mice compared to Nfkb1hep-/- mice 

and Nfkb1fl/fl mice. α-SMA expression was significantly increased in Nfkb1fl/fl, Nfkb1hep-
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/- and Nfkb1-/- mice treated with CCl4 compared to Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice 

treated with olive oil respectively, demonstrating CCl4-induced fibrosis in this model. 

 

 

Figure 4.11 α-SMA immunostain following chronic CCl4 treatment. Images show X10 α-

SMA immunostaining of liver tissues in Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice treated with either 

CCl4 (a) or olive oil (b). Graph shows average percentage α-SMA staining per field in Nfkb1fl/fl, 

Nfkb1hep-/- and Nfkb1-/- mice treated with either olive oil or CCl4 (c). 

 

4.7 Chapter Discussion  

The above results show that loss of global NF-κB1 p50 negatively impacts the liver 

inflammatory and fibrotic phenotype in a chronic CCl4 liver fibrosis model, whereas 

hepatocyte NF-κB1 p50 does not modulate inflammation and fibrosis in this liver injury 

model. This coincides with what has previously been observed in a 12-week chronic 

CCl4 fibrosis model, where Nfkb1-/- mice livers also exhibited increased neutrophil 

infiltration, neutrophil chemoattractant chemokine expression, fibrogenic gene 

expression and collagen deposition, as observed here in this 6-week CCl4 model 

(Oakley, Mann, et al., 2005). 
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Interestingly, this phenotype was not replicated in Nfkb1hep-/- mice, indicating that 

hepatocyte NF-κB1 p50 does not modulate inflammation and fibrosis following chronic 

CCl4 injury. This is surprising as hepatocytes represent the majority of liver cells 

(around 75%). Therefore, NF-κB1 p50 must be modulating inflammation and fibrosis in 

response to chronic CCl4 treatment in other cell types in the liver. These could be 

immune cells (e.g. neutrophils or macrophages) or hepatic stellate cells. Further 

studies could explore the role of NF-κB1 p50 in different cell types, using cell-specific 

knock-out mice (e.g. PDGF-Cre for hepatic stellate cells or LyZM-Cre for myeloid-

derived immune cells) in order to understand where NF-κB1 p50 is acting to limit the 

inflammatory and fibrotic phenotype. 
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Chapter 5. The tumour-suppressive role of hepatocellular NF-κB1 in 

hepatocellular carcinoma 

 

5.1 Introduction 

Liver inflammation and fibrosis represent underlying factors for the development of liver 

cancer (O’Rourke et al., 2018c). Hepatocellular carcinoma (HCC) often develops on 

the background of chronic liver disease (Shiani et al., 2017). NF-κB1 p50 is a central 

regulator of inflammation and immune responses (Liu et al., 2017; Li & Verma, 2002), 

and has been implicated in HCC as a tumour suppressor. Previous research has 

shown that global Nfkb1-/- mice develop significantly more tumours compared to control 

WT mice in a DEN-induced HCC cancer model (Wilson et al., 2015). This was 

accompanied by a significant increase in inflammation, notably increased neutrophil 

infiltration in the liver and increased neutrophil chemoattractant chemokine expression 

in Nfkb1-/- mice. Additionally, it was shown in WT mice that p50 homodimers were 

bound to the promoters of the neutrophil chemokine network genes, repressing the 

expression of these chemokines and thus acting as a tumour-suppressor (Wilson et 

al., 2015). 

DEN-induced HCC is a commonly used mouse model to study gene-specific effects 

on HCC development (Tolba, Kraus, Liedtke, Schwarz, Weiskirchen, et al., 2015b; 

Tang et al., 2017; Heindryckx et al., 2009). In this model, mice are injected with a single 

dose of the carcinogen DEN at 14 days old, when hepatocytes are still proliferating, 

and by 40 weeks they develop visible macroscopic tumours. By incorporating into 

proliferating hepatocytes, DEN leads to the formation of DNA adducts which increases 

mutations, leading to cancer (Tolba, Kraus, Liedtke, Schwarz, & Weiskirchen, 2015). 

Here, the DEN-induced HCC model was carried out in Nfkb1fl/fl and Nfkb1hep-/- mice to 

assess the role of hepatocyte NF-κB1 p50 in liver carcinogenesis. Additionally, DEN-

induced HCC was carried out in AAV-TBG-Null and AAV-TBG-Cre mice, where 

hepatocyte NF-κB1 was knocked out at 32 weeks following AAV-TBG-Cre virus 

injection in Nfkb1fl/fl mice. Control Nfkb1fl/fl mice were injected with AAV-TBG-Null virus, 

which does not knock out Nfkb1. The purpose of this viral Nfkb1 knock-out model was 

to assess the role of Nfkb1 p50 in tumour progression, knocking out Nfkb1 in 
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hepatocytes when tumours have started to form, whereas the previous model aimed 

to assess the role of NF-κB1 in tumour initiation. 

It was hypothesized that Nfkb1hep-/- and AAV-TBG-Cre mice would have more tumours 

at 40 weeks, and display a worse cancer phenotype than WT control mice. Increased 

inflammation, notably neutrophil infiltration in the liver and neutrophil chemoattractant 

chemokine expression, was also expected in Nfkb1hep-/- and AAV-TBG-Cre mice, as 

observed in Nfkb1-/- mice. 

 

5.2 p50 expression in Nfkb1fl/fl and Nfkb1hep-/- mice 

NF-κB1 p50 expression was assessed by western blot analysis in Nfkb1fl/fl and Nfkb1hep-

/- mice livers harvested at 40 weeks post-DEN injection (Figure 5.1). While Nfkb1fl/fl 

mice livers showed abundant p50 protein expression, Nfkb1hep-/- mice livers showed 

notably less p50 expression, confirming the hepatocyte specific knock-out of Nfkb1 

p50 in these mice. Where p50 is expressed in Nfkb1hep-/- mice, this can be attributed 

to p50 expression in other cells of the liver, of which immune cells. 

 

 

Figure 5.1 Western blot analysis of p50 expression in Nfkb1fl/fl and Nfkb1hep-/- mice. 

Western blots show p50 expression in the tumours and livers of Nfkb1fl/fl and Nfkb1hep-/- mice 

40 weeks after DEN injection. 

 

5.3 Liver damage ALT and AST serum enzymes not affected by hepatocyte Nfkb1 

knock-out 

Serum ALT and AST levels were measured from Nfkb1fl/fl and Nfkb1hep-/- mice after 40 

weeks DEN to assess liver damage. No significant difference in ALT or AST levels 
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were found between the two groups, indicating that Nfkb1fl/fl and Nfkb1hep-/- mice 

experienced similar levels of liver damage caused by DEN (Figure 5.2). 

 

 

Figure 5.2 Serum ALT and AST levels in Nfkb1fl/fl and Nfkb1hep-/- mice. Graphs show serum 

ALT (a) and AST (b) levels in Nfkb1fl/fl and Nfkb1hep-/- mice 40 weeks after DEN injection. 

 

5.4 Hepatocyte-specific Nfkb1 knock-out increases tumour incidence in vivo 

Mice livers from Nfkb1fl/fl and Nfkb1hep-/- mice harvested at 40 weeks post-DEN injection 

were assessed for tumour number, proliferation and tumour grade to investigate the 

role of hepatocyte NF-κB1 in HCC outcome. 

 

5.4.1 Hepatocyte Nfkb1 knock-out increases tumour incidence 

Macroscopic liver tumours were counted at the time of harvest and large tumours 

(above 0.5 cm) were also counted. Nfkb1hep-/- mice displayed significantly more 

tumours compared to Nfkb1fl/fl mice (p=0.0397), and no significant difference in large 

tumour number was found, though this appeared slightly increased in Nfkb1hep-/- mice 

(p=0.0936) (Figure 5.3). This shows that hepatocyte NF-κB1 plays a role in limiting 

tumour development in HCC.  Of note, while tumour numbers were significantly 

increased in Nfkb1hep-/- mice compared to Nfkb1fl/fl mice, the increase in tumour 

numbers previously observed in global Nfkb1-/- mice is much greater (~5 fold difference 

in Nfkb1-/- mice vs ~ 1.7 fold in Nfkb1hep-/- mice). Additionally, liver/body weight ratio 
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was measured, with no significant difference found between the two groups but a slight 

increase in Nfkb1hep-/- mice compared to Nfkb1fl/fl mice (p=0.1477). 

 

Figure 5.3 Liver tumours and liver/body weight ratio in Nfkb1fl/fl and Nfkb1hep-/- mice. 

Graphs show total number of liver tumours (a), the number of large tumours (b), and the 

liver/body weight ratio (c). Images show Nfkb1fl/fl and Nfkb1hep-/- tumorous livers (d). 

 

5.4.2 Hepatocyte Nfkb1 knock-out increases hepatocyte proliferation 

To further characterise the tumour phenotype, proliferation was assessed by PCNA 

immunohistochemistry in formalin-fixed paraffin-embedded liver tissues (PCNA stain 

was carried out as part of Sam Murray’s undergraduate project under my supervision). 

There were significantly more PCNA positive hepatocytes in Nfkb1hep-/- mice livers 

compared to Nfkb1fl/fl mice livers (p<0.0001) (Figure 5.4). High proliferative PCNA 
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positive hepatocytes were also significantly increased in Nfkb1hep-/- mice (p<0.0001), 

as well as PCNA positive tumour hepatocytes (p=0.001).  

 

Figure 5.4 PCNA immunostain of Nfkb1fl/fl and Nfkb1hep-/- mice livers after 40 weeks DEN. 

Images show X20 PCNA immunostaining of formalin-fixed paraffin-embedded liver tissue in 

Nfkb1fl/fl and Nfkb1hep-/- mice (a). Graphs show average PCNA+ hepatocytes per field (b), 

average highly proliferative PCNA+ hepatocytes per field (c), and total PCNA staining per mm2 

tumour (d). 

 

5.4.3 Higher HCC tumour grade in Nfkb1hep-/- mice 

To characterise tumour burden, tumour grade was determined in Nfkb1fl/fl and Nfkb1hep-

/- liver tumours using a grading system taking into account the presence of mitotic 

figures, proteoglycan globules, irregular nuclear contours, nuclear hyperchromasia 

and increased nuclear to cytoplasmic ratio, with grade 2 HCC being the most severe 

phenotype and HCA being the least severe (tumour grade was determined as part of 

Sam Murray’s undergraduate project under my supervision). Nfkb1hep-/- mice liver 

tumours had overall higher tumour grades compared to Nfkb1fl/fl mice, with more HCC2 

and HCC1 tumours (Figure 5.5). In Nfkb1fl/fl mice, 34.78% of tumours were HCC2, 

30.43% were HCC1 and 34.78% were HCA. In Nfkb1hep-/- mice, 50.65% of tumours 

were HCC2, 29.87% were HCC1 and 19.48% were HCA. 
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Figure 5.5 Liver tumour grade in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show X10 H&E liver 

staining with irregular nuclear contour (1) and nuclear hyperchromasia and increased nuclear 

to cytoplasmic ratio (2&3) (a), and mitotic figures (1) and proteoglycan globules (2) (b). Graph 

shows tumour grade in Nfkb1fl/fl and Nfkb1hep-/- liver tumours. 

 

5.5 Hepatocyte-specific Nfkb1 knock-out increases liver immune cell infiltration 

HCC is accompanied by inflammation and immune cell infiltration (Rohr-Udilova et al., 

2018), and Nfkb1 being an important regulator of immune responses, immune cell 

infiltration in the liver was characterised to determine the role of hepatocyte NF-κB1 as 

an immune effector in HCC. 

 

5.5.1 Increased immune cell infiltration in hepatocyte Nfkb1 knock-out mice  

H&E staining was carried out on Nfkb1fl/fl and Nfkb1hep-/- mice liver tissue to assess 

immune cell infiltration in the liver. Increased immune cell infiltration was observed in 

Nfkb1hep-/- mice compared to Nfkb1fl/fl mice (Figure 5.6). Total tumour area was also 

measured by H&E staining and was significantly increased in Nfkb1hep-/- mice 

compared to Nfkb1fl/fl mice (p=0.0005). Additionally, tumour and liver TNFα gene 

expression was determined by RT-qPCR, and appeared increased in Nfkb1hep-/- mice 

though this did not reach significance (p=0.0952). 
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Figure 5.6 H&E stain and TNFα gene expression of Nfkb1fl/fl and Nfkb1hep-/- liver tissue. 

Images show X10 H&E staining of Nfkb1fl/fl and Nfkb1hep-/- liver tissue with immune cell 

infiltration (a). Graphs show total tumour area (b), tumour TNFα gene expression (c) and liver 

TNFα expression (d). 

 

5.5.2 Increased neutrophil infiltration in hepatocyte Nfkb1 knock-out mice  

To determine which immune cells were significantly increased in the livers of Nfkb1hep-

/- mice compared to Nfkb1fl/fl, immunostaining of several different immune cells was 

carried out on formalin-fixed paraffin-embedded liver tissues. NIMP 

immunohistochemistry was carried out to assess neutrophil infiltration in the liver. 

NIMP positive staining was significantly increased in Nfkb1hep-/- mice compared to 

Nfkb1fl/fl mice (p=0.048), indicating increased migration of neutrophils to the liver in 

Nfkb1hep-/- mice (Figure 5.7). Staining was visible in the tumours and the surrounding 

tissue. This demonstrates a role for NF-κB1 p50 in limiting neutrophil migration to the 

liver, which is associated with a worse outcome. This result mirrors what has previously 

been observed in Nfkb1-/- mice, whereby a significant increase in neutrophil infiltration 

in the liver was seen compared to WT mice. It is important to note however that some 

monocytes can also be NIMP positive, therefore not all the NIMP positive cells counted 

can be attributed to neutrophils. 
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Figure 5.7 NIMP liver immunostaining in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show X20 

NIMP immunostaining in formalin-fixed paraffin-embedded liver tissue from Nfkb1fl/fl and 

Nfkb1hep-/- mice (a). Graph shows average NIMP+ staining per high-powered field in Nfkb1fl/fl 

and Nfkb1hep-/- mice livers (x20 magnification) (b). 

 

5.5.3 Neutrophil chemokine S100A9, CXCL1 and CXCL2 expression unaltered 

in hepatocyte Nfkb1 knock-out mice 

In order to understand how more neutrophils were recruited to Nfkb1hep-/- livers, the 

gene expression of neutrophil chemoattractant chemokines S100A9, CXCL1 and 

CXCL2 was determined in the tumour and in the liver by RT-qPCR. Surprisingly, no 

significant difference was found between Nfkb1fl/fl and Nfkb1hep-/- mice in the expression 

of these genes in the tumour and in the liver (Figure 5.8). This suggests that hepatocyte 

Nfkb1 p50 does not regulate the expression of the S100A9, CXCL1 and CXCL2 

chemokines. Since Nfkb1-/- mice exhibited increased S100A9, CXCL1 and CXCL2 

expression, hepatocyte NF-κB1 p50 must be regulating the expression of these genes 

in other liver cell types, such as immune cells. Other chemokines may be responsible 

for attracting more neutrophils to Nfkb1hep-/- mice livers, such as CXCL8. Also, since 

NIMP can also stain for monocytes, the increase in NIMP positive cells observed in 

Nfkb1hep-/- may be attributed to monocytes rather than neutrophils. 

 



122 
 

 

Figure 5.8 Gene expression of neutrophil chemoattractant chemokines S100A9, CXCL1 

and CXCL2 in tumour and liver tissue. Graphs show gene expression determined by RT-

qPCR of tumour S100A9 (a), CXCL1 (b) and CXCL2 (c) and of liver S100A9 (d), CXCL1 (e) 

and CXCL2 (f) in Nfkb1fl/fl and Nfkb1hep-/- mice. 

 

5.5.4 Increased monocyte and macrophage infiltration in hepatocyte Nfkb1 

knock-out mice 

To assess the role of hepatocyte p50 in modulating the recruitment of 

monocytes/macrophages to the liver in DEN-induced HCC, CD68 

immunohistochemistry was carried out on formalin-fixed paraffin-embedded liver tissue 

from Nfkb1fl/fl and Nfkb1hep-/- mice. Interestingly, significantly more CD68 positively 

stained cells were found in Nfkb1hep-/- mice compared to Nfkb1fl/fl mice (p=0.0009) 

(Figure 5.9). This reflects what was observed in the acute CCl4 liver injury model where 

more F4/80 positive cells were found in Nfkb1hep-/- mice. It can thus be concluded that 

hepatocyte NF-κB1 p50 modulates monocyte chemotaxis to the liver or monocyte 

differentiation into macrophages in DEN-induced HCC. 

 



123 
 

 

Figure 5.9 CD68 liver immunostain in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show X20 

CD68 immunostaining in formalin-fixed paraffin-embedded liver tissue from Nfkb1fl/fl and 

Nfkb1hep-/- mice (a). Graph shows average CD68+ cell count per field in Nfkb1fl/fl and Nfkb1hep-

/- mice (b). 

 

5.5.5 Monocyte chemoattractant chemokine CCL2 and CCL5 expression 

unaltered in hepatocyte Nfkb1 knock-out mice 

To understand what drives the increased influx of monocytes and macrophages in 

Nfkb1hep-/- mice livers, gene expression of monocyte chemoattractant chemokines 

CCL2 and CCL5 was determined by RT-qPCR in the tumour and in the liver. 

Surprisingly, no significant difference in CCL2 or CCL5 expression was observed 

between Nfkb1fl/fl and Nfkb1hep-/- mice in the tumour and in the liver. This suggests that 

other chemokines are responsible for attracting monocytes to the liver and/or 

differentiating them into macrophages, such as CCL7 for example. 
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Figure 5.10 Tumour and liver gene expression of CCL2 and CCL5 in Nfkb1fl/fl and 

Nfkb1hep-/- mice. Graphs show tumour expression of CCL2 (a) and CCL5 (b) and liver 

expression of CCL2 (c) and CCL5 (d) in Nfkb1fl/fl and Nfkb1hep-/- mice, determined by RT-qPCR. 

 

5.5.6 Lack of hepatocyte NF-κB1 does not affect T cell liver infiltration or T cell 

subsets  

To further investigate the role of hepatocyte NF-κB1 p50 in the recruitment of immune 

cells to the liver in DEN-induced HCC, liver T cell infiltration and T cell subsets was 

assessed by immunohistochemistry of formalin-fixed paraffin-embedded liver tissue 

from Nfkb1fl/fl and Nfkb1hep-/- mice.  

CD3 immunostaining was carried out to determine overall T cell recruitment to the liver. 

No significant difference in CD3 positive cells was found between Nfkb1fl/fl and 

Nfkb1hep-/- mice, though there appeared to be slightly more CD3 positive cells in 
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Nfkb1hep-/- mice (p=0.0959). This suggests that hepatocyte NF-κB1 p50 does not 

significantly modulate T cell infiltration in the liver in DEN-induced HCC. 

 

 

Figure 5.11 CD3 liver immunostain in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show X20 CD3 

immunostaining of formalin-fixed paraffin-embedded liver tissue from Nfkb1fl/fl and Nfkb1hep-/- 

mice (a). Graph shows average CD3 positive cell count per field in Nfkb1fl/fl and Nfkb1hep-/- mice 

(b). 

 

While no significant difference was observed in overall T cell infiltration in the liver 

between Nfkb1fl/fl and Nfkb1hep-/- mice, it was hypothesized that hepatocyte NF-κB1 p50 

may modulate the type of T cell that is recruited to the liver. T helper cells (CD4+), 

cytotoxic T cells (CD8+) and regulatory T cells (FOXP3+) recruitment to the liver was 

therefore assessed by immunohistochemistry in Nfkb1fl/fl and Nfkb1hep-/- liver tissue. No 

significant difference in CD4 positive cells (Figure 5.12), CD8 positive cells (Figure 

5.13) or FOXP3 positive cells (Figure 5.14) was observed between Nfkb1fl/fl and 

Nfkb1hep-/- mice. However, CD8 positive cells appeared slightly increased in Nfkb1hep-/- 

mice (p=0.1523), as observed with CD3 positive cells, with infiltration in tumour and 

surrounding tissue, suggesting that NF-κB1 p50 may limit cytotoxic CD8+ T cell 

recruitment to the liver. 
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Figure 5.12 CD4 liver immunostaining in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show X20 

CD4 liver immunostaining in Nkb1fl/fl and Nfkb1hep-/- mice (a). Graph shows average CD4 

positive cells per field in Nfkb1fl/fl and Nfkb1hep-/- mice (b). 

 

 

Figure 5.13 CD8 liver immunostaining in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show X20 

CD8 liver immunostaining in Nkb1fl/fl and Nfkb1hep-/- mice (a). Graph shows average CD8 

positive cells per field in Nfkb1fl/fl and Nfkb1hep-/- mice (b). 

 

 

Figure 5.14 FOXP3 liver immunostaining in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show 

X20 FOXP3 liver immunostaining in Nkb1fl/fl and Nfkb1hep-/- mice (a). Graph shows average 

FOXP3 positive cells per field in Nfkb1fl/fl and Nfkb1hep-/- mice (b). 
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5.5.7 Lack of hepatocyte NF-κB1 does not affect B cell liver infiltration 

Nfkb1-/- mice are known to have B cell defects. It was therefore hypothesized that 

hepatocyte Nfkb1 p50 may play a role in this. B220 immunohistochemistry, which is 

specific for B cells, was thus carried out on formalin-fixed paraffin-embedded liver 

tissue in Nfkb1fl/fl and Nfkb1hep-/- mice. However no significant difference in B220 

positive cells was found between Nfkb1fl/fl and Nfkb1hep-/- mice. This shows that 

hepatocyte NF-κB1 p50 does not modulate B cell recruitment to the liver in DEN-

induced HCC. 

 

 

Figure 5.15 B220 liver immunostain in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show X20 

B220 liver immunostaining in Nkb1fl/fl and Nfkb1hep-/- mice (a). Graph shows average B220 

positive cells per field in Nfkb1fl/fl and Nfkb1hep-/- mice (b). 

 

5.6 Hepatocyte NF-κB1 regulation of apoptosis and oncogene expression 

Dysregulation of cell survival and apoptosis, as well as oncogene overexpression is 

widely associated with carcinogenesis (Plati et al., 2008). NF-κB1 p50 is known to 

regulate the expression of genes that modulate cell survival and apoptosis, notably 

Gadd45β, Bcl-xL and Bcl-2. The expression of these genes was therefore determined 

by RT-qPCR in Nfkb1fl/fl and Nfkb1hep-/- tumour and liver tissue.  Apoptotic signalling 

was also evaluated through protein expression of phosphorylated JNK and 

phosphorylated ERK, both marks of apoptotic signalling activation, as well as through 

protein expression of cleaved caspase 3, activated in anti-apoptotic signalling, cyclin 

D1, a cell cycle control protein found overexpressed in certain cancers, and γH2AX, a 

marker for DNA damage which is also overexpressed in certain cancers. 
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5.6.1 Anti-apoptotic genes and oncogenes expression upregulated in the 

absence of hepatocyte NF-κB1 in liver tumours but not in adjacent liver tissue  

Gadd45β, Bcl-xL and Bcl-2 tumour and liver gene expression was determined by RT-

qPCR. These genes were all significantly upregulated in Nfkb1hep-/- tumours compared 

to Nfkb1fl/fl control tumours (p=0.0019 for Gadd45β, p=0.049 for Bcl-xL and p=0.0261 

for Bcl-2), but not in non-tumorous adjacent liver tissue (Figure 5.16). These results 

show that hepatocyte NF-κB1 p50 controls the expression of oncogenic and anti-

apoptotic genes Gadd45β, Bcl-xL and Bcl-2 in DEN-induced HCC tumours. This 

suggests that hepatocyte NF-κB1 p50 limits anti-apoptotic signalling, and therefore that 

mice lacking hepatocyte NF-κB1 p50 have less cells undergoing apoptosis. 

 

 

Figure 5.16 Tumour and liver gene expression of Gadd45β, Bcl-xL and Bcl-2. Graphs 

show gene expression of tumour Gadd45β (a), Bcl-xL (b) and Bcl-2 (c), and of liver Gadd45β 

(d), Bcl-xL (e) and Bcl-2 (f), determined by RT-qPCR. 

 

 

5.6.2 Hepatocyte NF-κB1 does not modulate anti-apoptotic gene and oncogene 

expression at the protein level 
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To confirm the increased tumour expression of Bcl-xL and Bcl-2 in Nfkb1hep-/- mice 

compared to Nfkb1fl/fl mice at the protein level, western blot analysis was carried out in 

tumour and non-tumorous liver tissue from Nfkb1fl/fl and Nfkb1hep-/- mice. Surprisingly, 

Bcl-2 and Bcl-xL tumour protein expression showed little difference between Nfkb1fl/fl 

and Nfkb1hep-/- mice (Figure 5.17). Interestingly, Bcl-2 and Bcl-xL liver protein 

expression appeared slightly increased in Nfkb1hep-/- mice compared to control Nfkb1fl/fl 

mice. This shows that the increased gene expression of Bcl-2 and Bcl-xL in Nfkb1hep-/- 

mice tumours is not reflected at the protein level, therefore while hepatocyte p50 affects 

the gene expression level of Bcl-2 and Bcl-xL in DEN-induced HCC tumours, it does 

not affect the anti-apoptotic signalling function of the translated proteins. Additionally, 

western blot analysis was carried out on Nfkb1fl/fl and Nfkb1hep-/- tumours samples for 

γH2AX expression to assess the role of hepatocyte Nfkb1 in DNA damage, for cyclin 

D1 to assess the role of hepatocyte Nfkb1 p50 in cell cycle control, and for cleaved 

caspase 3 to further assess the role of hepatocyte NF-κB1 p50 in the modulation of 

apoptosis. No clear difference was observed in the tumour expression of these proteins 

between Nfkb1fl/fl and Nfkb1hep-/- mice. β-actin expression was used as a loading 

control. 

 

 

Figure 5.17 Liver and tumour expression of apoptotic signalling proteins. Western blots 

show Bcl-2 liver and tumour expression (a), Bcl-xL liver and tumour expression (b), and 

γH2AX, cyclin D1 and cleaved caspase 3 tumour expression (c) in Nfkb1fl/fl and Nfkb1hep-/- mice. 
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To further assess the role of hepatocyte NF-κB1 p50 in apoptotic signalling, western 

blot analysis was carried out to compare phosphorylated ERK (p-ERK) and 

phosphorylated JNK (p-JNK) expression between Nfkb1fl/fl and Nfkb1hep-/- mice, ERK 

and JNK being phosphorylated when activated, leading to apoptotic signalling. No 

difference in p-ERK expression was apparent between Nfkb1fl/fl and Nfkb1hep-/- mice 

tumour and liver tissue (Figure 5.18). Total ERK was also expressed at comparable 

levels in Nfkb1fl/fl and Nfkb1hep-/- tumours and livers. p-JNK protein expression levels in 

the tumour appeared to be slightly increased in some Nfkb1hep-/- mice compared to 

control Nfkb1fl/fl mice, while total JNK tumour expression levels were similar. No 

difference in p-JNK protein expression was observed in the liver however. 

 

 

Figure 5.18 Tumour and liver expression of ERK and JNK signalling proteins. Western 

blots show p-ERK and total ERK tumour and liver protein expression (a), and p-JNK and total 

JNK tumour and liver protein expression (b) in Nfkb1fl/fl and Nfkb1hep-/- mice. 

 

5.6.3 Lack of NF-κB1 does not alter cleaved caspase 3 protein expression 

To further confirm the similarity in cleaved caspase 3 protein expression between 

Nfkb1fl/fl and Nfkb1hep-/- mice, cleaved caspase 3 immunohistochemistry was carried 

out on formalin-fixed paraffin-embedded liver tissue from Nfkb1fl/fl and Nfkb1hep-/- mice. 

Unsurprisingly, no significant difference in average cleaved caspase 3 positive 

hepatocytes per field was observed between Nfkb1fl/fl and Nfkb1hep-/- mice. This 

indicated that hepatocyte NF-κB1 p50 does indeed not modulate apoptotic signalling in 

DEN-induced HCC. 
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Figure 5.19 Cleaved caspase 3 liver immunostain in Nfkb1fl/fl and Nfkb1hep-/- mice. Images 

show X20 cleaved caspase 3 immunostaining of formalin-fixed paraffin-embedded liver tissue 

from Nfkb1fl/fl and Nfkb1hep-/- mice (a). Graph shows average cleaved caspase 3 positive 

hepatocyte cell count per field in Nfkb1fl/fl and Nfkb1hep-/- mice (b). 

 

To further confirm the similarity in γH2AX protein expression and thus DNA damage 

between Nfkb1fl/fl and Nfkb1hep-/- mice, γH2AX immunohistochemistry was carried out 

on formalin-fixed paraffin-embedded liver tissue from Nfkb1fl/fl and Nfkb1hep-/- mice. No 

significant difference in average γH2AX positive hepatocytes per field was found 

between Nfkb1fl/fl and Nfkb1hep-/- mice, suggesting that lack of hepatocyte NF-κB1 does 

not affect DNA damage. 

 

 

 

Figure 5.20 γH2AX liver immunostain in Nfkb1fl/fl and Nfkb1hep-/- mice. Images show X20 

γH2AX immunostaining of formalin-fixed paraffin-embedded liver tissue from Nfkb1fl/fl and 

Nfkb1hep-/- mice (a). Graph shows average γH2AX positive hepatocyte cell count per field in 

Nfkb1fl/fl and Nfkb1hep-/- mice (b). 
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5.7 NF-κB subunit expression comparison in Nfkb1 floxed and Nfkb1 hepatocyte 

knock-out mice 

In order to determine whether any compensatory NF-κB subunit expression was 

occurring in the absence of NF-κB1 p50, western blot analysis was performed to 

evaluate cRel, p65 and p52 protein expression in the liver in Nfkb1fl/fl and Nfkb1hep-/- 

mice. These subunits showed similar expression levels in Nfkb1fl/fl and Nfkb1hep-/- mice, 

indicating that no compensatory NF-κB subunit expression took place in Nfkb1hep-/- 

mice (Figure 5.21). p52 protein expression appeared slightly decreased in 2 Nfkb1hep-

/- mice compared to Nfkb1fl/fl control mice. 

 

 

 

Figure 5.21 NF-κB subunit protein expression in Nfkb1fl/fl and Nfkb1hep-/- mice. Western 

blots show protein expression of NF-κB subunits cRel, p65 and p52 in Nfkb1fl/fl and Nfkb1hep-/- 

mice livers. β-actin protein expression was used as a loading control. 

 

5.8 Differential mRNA expression profile in Nfkb1 hepatocyte knock-out mice 

tumours 

15 liver tumour RNA samples (5 Nfkb1fl/fl, 5 Nfkb1hep-/- and 5 Nfkb1-/-) were sequenced 

on an Illumina NextSeq (high output), 75bp single end reads (Centre for LIFE, 

Newcastle University), in order to compare liver tumour mRNA expression profiles in 

Nfkb1fl/fl, Nfkb1hep-/- and Nfkb1-/- mice, in a 40-week DEN-induced HCC model. RNA-

Seq analysis was carried out by Simon Cockell, Newcastle University. 

PCA (Principal Component Analysis) was performed to project the multivariate data 

vector of each RNA-Seq sample into a two-dimensional plot, such that the spatial 



133 
 

arrangement of the points in the plot reflects the overall data (dis)similarity between 

the samples. 

 

Figure 5.22 PCA plot comparing Nfkb1-/-, Nfkb1hep-/- and Nfkb1fl/fl samples. Nfkb1-/- samples 

are represented by green dots, Nfkb1hep-/- samples are represented by blue dots and Nfkb1fl/fl 

samples are represented by red dots. 

 

A sample distance heatmap was also generated, which shows the Euclidian distance 

between the samples; the lower this distance, the more closely related 2 samples are. 

Clustering is then applied over this distance, to give an idea of the relatedness of the 

samples. 
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Figure 5.23 Sample distance heatmap comparing Nfkb1-/-, Nfkb1hep-/- and Nfkb1fl/fl 

samples. Nfkb1-/- samples are represented in red, Nfkb1hep-/- samples are represented in blue 

and Nfkb1fl/fl samples are represented in green. 

 

From these two plots, it can be seen that the ‘Global KO’ samples form a group, 

separated from the other samples. The ‘Hep KO’ samples overlap with the controls 

somewhat, but there may be sufficient difference between the samples as groups for 

subsequent analysis to be informative. 

 

Comparing the Global KO samples to the controls gives 2,919 genes with a fold-

change > 2 in either direction and an adjusted p-value < 0.05. Here is a volcano plot 

showing the DEGs (Differential Expression of Genes) for this comparison (FC>2, 

p<0.05): 
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Figure 5.24 Volcano plot comparing Nfkb1-/- and Nfkb1fl/fl samples. Differentially expressed 

genes are represented by blue dots. Upregulated genes are shown in positive log2FoldChange 

and downregulated genes are shown in negative log2FoldChange. 

 

Comparing the Hep KO samples to the controls gives 96 genes with a fold-change > 2 

in either direction and an adjusted p-value < 0.05. Here is a volcano plot showing the 

DEGs for this comparison (FC>2, p<0.05): 
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Figure 5.25 Volcano plot comparing Nfkb1hep-/- and Nfkb1fl/fl samples. Differentially 

expressed genes are represented by blue dots. Upregulated genes are shown in positive 

log2FoldChange and downregulated genes are shown in negative log2FoldChange. 

 

Comparing the Global KO samples to the Hep KO samples gives 1,841 genes with a 

fold-change > 2 in either direction and an adjusted p-value < 0.05. Here is a volcano 

plot showing the DEGs for this comparison (FC>2, p<0.05): 
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Figure 5.26 Volcano plot comparing Nfkb1-/- and Nfkb1hep-/- samples. Differentially 

expressed genes are represented by blue dots. Upregulated genes are shown in positive 

log2FoldChange and downregulated genes are shown in negative log2FoldChange. 

 

Gene ontology and pathway analysis was also performed, filtered at FC>2, p<0.05 and 

removing genes with no annotation. 
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Figure 5.27 Gene ontology and pathway analysis plot comparing Nfkb1-/- and Nfkb1fl/fl 

samples. Differentially expressed genes include genes involved in responses to bacteria, 

leukocyte migration, regulation of cell activation and leukocyte cell-cell adhesion. 
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Figure 5.28 Gene ontology and pathway analysis plot comparing Nfkb1-/- and Nfkb1fl/fl 

samples. Differentially expressed genes include genes involved in responses to bacteria, 

regulation of cell activation, taxis, and T cell activation. 

 

Among differentially expressed genes were genes involved in responses to bacteria, 

leukocyte migration, regulation of cell activation, leukocyte cell-cell adhesion, positive 

regulation of cytokine production, taxis and T cell activation. 
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Figure 5.29 KEGG analysis plot comparing Nfkb1-/- and Nfkb1fl/fl samples. Differentially 

expressed genes include genes relating to the ribosome, Staphylococcus aureus infection, 

hematopoietic cell lineage, and genes involved in graft-versus-host disease. 
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Figure 5.30 KEGG analysis plot comparing Nfkb1-/- and Nfkb1fl/fl samples. Differentially 

expressed genes include genes involved in cytokine-cytokine receptor interaction, genes 

relating to the ribosome, Epstein-Barr virus infection and Tuberculosis. 

 

Among differentially expressed genes were genes relating to the ribosome, 

hematopoietic cell lineage, cell adhesion molecules (CAMs), cytokine-cytokine 

receptor interaction and chemokine signalling pathway genes. 
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Figure 5.31 Gene ontology and pathway analysis plot comparing Nfkb1hep-/- and Nfkb1fl/fl 

samples. Differentially expressed genes include genes involved in neutrophil migration, 

positive regulation of defense responses, neutrophil chemotaxis, and positive regulation of 

responses to external stimuli. 
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Figure 5.32 Gene ontology and pathway analysis plot comparing Nfkb1hep-/- and Nfkb1fl/fl 

samples. Differentially expressed genes include genes involved in responses to bacteria, 

positive regulation of defense responses, chemotaxis and taxis. 

 

Among differentially expressed genes were genes involved in neutrophil migration and 

chemotaxis, myeloid leukocyte activation, chemotaxis and taxis, tumour necrosis factor 

production, responses to bacteria, positive regulation of defence responses, and 

regulation of leukocyte activation. 
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Figure 5.33 KEGG pathway analysis plot comparing Nfkb1hep-/- and Nfkb1fl/fl samples. 

Differentially expressed genes include genes involved in viral protein interaction with cytokines 

and cytokine receptors, Tuberculosis, chemokine signalling pathways and osteoclast 

differentiation. 
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Figure 5.34 KEGG pathway analysis plot comparing Nfkb1hep-/- and Nfkb1fl/fl samples. 

Differentially expressed genes include genes involved in Tuberculosis, chemokine signalling 

pathways, viral protein interaction with cytokines and cytokine receptors and osteoclast 

differentiation. 

 

Among differentially expressed genes were genes involved in chemokine signalling 

pathways, viral protein interaction with cytokines and cytokine receptors, and genes 

related to the phagosome. 
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Figure 5.35 Gene ontology and pathway analysis plot comparing Nfkb1-/- and Nfkb1hep-/- 

samples. Differentially expressed genes include genes involved in responses to bacteria, 

leukocyte migration, positive regulation of defense responses, and adaptive thermogenesis. 
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Figure 5.36 Gene ontology and pathway analysis plot comparing Nfkb1-/- and Nfkb1hep-/- 

samples. Differentially expressed genes include genes involved in responses to bacteria, 

positive regulation of defense responses, leukocyte migration, and positive regulation of 

responses to external stimuli. 

 

Among differentially expressed genes were genes relating to responses to bacteria, 

leukocyte migration, myeloid leukocyte activation, positive regulation of defence 

responses, positive regulation of responses to external stimuli, adaptive 

thermogenesis and temperature homeostasis. 
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Figure 5.37 KEGG pathway analysis plot comparing Nfkb1-/- and Nfkb1hep-/- samples. 

Differentially expressed genes include genes relating to the ribosome. 
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Figure 5.38 KEGG pathway analysis plot comparing Nfkb1-/- and Nfkb1hep-/- samples. 

Differentially expressed genes include genes relating to the ribosome. 

 

Differentially expressed genes shown form the KEGG pathway analysis comparing 

Nfkb1-/- and Nfkb1hep-/- liver tumour samples included genes relating to the ribosome. 

34 genes were found to be upregulated in Nfkb1hep-/- liver tumours compared to Nfkb1fl/fl 

liver tumours, shown in Table 5.1. Among these, genes linked to cancer were 

upregulated in Nfkb1hep-/- mice, including S100A6, GPNMB, Arl4c, Lgals3, Ear2 and 

bcl2a1a. Of these, the anti-apoptotic gene bcl2a1 and S100A6, involved in cell cycle 

progression and differentiation and known to promote proliferation in gastric cancer 

cells for example, could explain the increased proliferation observed in Nfkb1hep-/- 

tumours compared to Nfkb1fl/fl tumours. 

Gene log2FoldChange p value p adj 

S100a6 1.52537 4.65E-07 0.000876 

Crip1 1.113166 3.34E-09 2.53E-05 

Acod1 4.964179 7.88E-08 0.000239 

Ms4a7 1.708827 5.82E-06 0.004785 

Gpnmb 2.991602 9.11E-06 0.005753 

Hpgds 1.917221 7.87E-07 0.001192 

Clec4e 4.232158 5.20E-07 0.000876 
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Rgs10 1.902592 6.87E-06 0.004785 

Tlr13 1.586137 1.81E-05 0.009467 

Gpsm3 1.482099 1.98E-05 0.009951 

Saa3 2.402127 3.85E-08 0.000194 

Atp1a3 2.440687 1.24E-05 0.006944 

Gng2 2.441919 1.01E-05 0.005955 

Gvin1 2.038723 5.28E-06 0.004785 

Atg16l2 -1.46795 1.06E-06 0.001457 

Arl4c 1.337008 2.17E-05 0.009951 

Lgals3 2.027498 6.95E-06 0.004785 

Rab7b 1.795152 6.43E-06 0.004785 

Pla2g4a 3.620063 2.88E-06 0.002909 

AB124611 1.422205 1.73E-05 0.009356 

NA 4.943784 1.02E-05 0.005955 

NA 22.05414 1.53E-09 2.31E-05 

Lyz2 1.781101 6.37E-06 0.004785 

Ear2 1.327194 2.14E-05 0.009951 

Fign -0.995062 2.76E-06 0.002909 

Cyp3a41b 19.32369 1.24E-07 0.000313 

Gm4070 2.420106 6.38E-06 0.004785 

Evi2a 1.820405 4.29E-07 0.000876 

Bcl2a1b 1.917961 1.45E-06 0.001686 

Gm21188 2.262038 1.23E-06 0.001556 

Bcl2a1a 2.646425 2.14E-05 0.009951 

Lilr4b 1.414487 7.73E-06 0.005089 

NA 19.70366 6.93E-08 0.000239 

 

Table 5.1 Differentially expressed genes in Nfkb1hep-/- tumours compared to Nfkb1fl/fl liver 

tumours in DEN-induced HCC.  

 

Together, these results demonstrate a significant difference in mRNA expression 

profile between Nfkb1-/- liver tumours and control Nfkb1fl/fl tumours, while the mRNA 

expression profile in Nfkb1hep-/- samples differs from that of the control tumours but has 

fewer genes differentially expressed. It can be concluded from this that hepatocyte NF-

κB1 plays an important role in liver tumorigenesis, but that NF-κB1 present in other cell 

types (likely immune cells) plays a more substantial role in liver tumorigenesis given 

the increased difference in gene expression observed. 

Moreover, most differentially expressed genes found relate to immune responses, 

notably chemotaxis and leukocyte activation, demonstrating an important role for NF-

κB1 in immune function.  
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Nfkb1-/- and Nfkb1hep-/- mRNA expression profiles also differed, confirming the 

differential role of NF-κB1 in different cell types. It is important to note that the mRNA 

expression profiles reflect different cell types, given that tumours are heterogeneous 

in cell types, and therefore while most tumour cells are hepatocytes, other cells such 

as immune cells are likely contributing to the expression profiles observed. 

 

5.9 The role of hepatocyte NF-κB1 in tumour progression in an adeno-associated 

viral NF-κB1 knock-out 

After establishing that hepatocyte NF-κB1 p50 plays a role in tumour initiation in DEN-

induced HCC when hepatocyte NF-κB1 is knocked out from an early age, limiting 

tumorigenesis, proliferation and monocyte/macrophage liver infiltration, it was 

hypothesized that hepatocyte NF-κB1 p50 could also play a role in tumour progression. 

AAV-TBG-Cre-mediated knock-out of hepatocyte NF-κB1 was therefore carried out at 

32 weeks, in a 40 week DEN-induced HCC model where mice were injected IP with a 

single dose of DEN at 14 days of age. Nfkb1fl/fl mice were injected with either AAV-

TBG-Cre or AAV-TBG-Null virus to knock out hepatocyte Nfkb1 or as a control, 

respectively, 32 weeks post-DEN injection. Previous research has shown that at 32 

weeks, liver tumours have started to develop and become macroscopically visible in 

Nfkb1-/- mice, therefore this represents a good time-point to assess the role of 

hepatocyte NF-κB1 in tumour progression. 

 

5.9.1. p50 expression in AAV-TBG-Null and AAV-TBG-Cre mice 

Western blot analysis was carried out to assess NF-κB1 p50 expression in AAV-TBG-

Null and AAV-TBG-Cre injected Nfkb1fl/fl mice livers and liver tumours. Results show 

abundant p50 expression in AAV-TBG-Null mice, and little or no expression of p50 in 

AAV-TBG-Cre mice (Figure 5.39). Where p50 is expressed in AAV-TBG-Cre mice, this 

can be attributed to non-parenchymal liver cells, such as immune cells. These results 

confirm the successful hepatocyte knock-out of Nfkb1 p50 in mice injected with AAV-

TBG-Cre virus. 
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Figure 5.39 p50 expression in Nfkb1fl/fl and Nfkb1hep-/- livers and tumours. Western blots 

show Nfkb1 p50 expression in AAV-TBG-Null and AAV-TBG-Cre mice livers and tumours. β-

actin protein expression was used as a loading control. 

 

5.9.2 Liver damage ALT and AST serum enzymes unaltered by hepatocyte 

Nfkb1 knock-out in chronic DEN liver injury 

To assess liver damage in AAV-TBG-Null and AAV-TBG-Cre mice, serum ALT and 

AST levels were measured. No significant difference was found between the two mice 

groups, however both ALT (p=0.1379) and AST (p=0.1101) appeared slightly 

increased in AAV-TBG-Cre mice, suggesting that hepatocyte NF-κB1 p50 may limit liver 

damage in liver tumour progression (Figure 5.40). 

 

 

Figure 5.40 Serum ALT and AST levels in AAV-TBG-Null and AAV-TBG-Cre mice. Graphs 

show serum ALT (a) and AST (b) levels in AAV-TBG-Null control mice and AAV-TBG-Cre mice 

lacking hepatocyte NF-κB1 in 40 week DEN-induced HCC. 
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5.9.3 Tumour number and grade 

Total macroscopic liver tumour number was counted at the time of harvest in AAV-

TBG-Null and AAV-TBG-Cre mice livers. Significantly more liver tumours were found 

in AAV-TBG-Cre mice compared to AAV-TBG-Null control mice (p=0.0099) (Figure 

5.41a). No significant difference in the number of large tumours above 0.5cm was 

found however (Figure 5.41b).  Tumour grade was evaluated histologically in the same 

way as the previous 40 week DEN study, using formalin-fixed paraffin-embedded H&E 

stained liver tissue, with the grade HCC2 representing the most severe cancer 

phenotype (tumour grade was determined as part of Sam Murray’s undergraduate 

project under my supervision). AAV-TBG-Cre mice had notably more HCC1 and HCC2 

grade tumours compared to AAV-TBG-Null mice, indicating a more aggressive 

phenotype in AAV-TBG-Cre mice (Figure 5.41c). In AAV-TBG-Null, 34.78% of tumours 

were HCC2, 30.43% were HCC1 and 34.78% were HCA. In AAV-TBG-Cre, 50.65% of 

tumours were HCC2, 29.87% were HCC1 and 19.48% were HCA. This shows that the 

lack of hepatocyte NF-κB1 in HCC tumour progression leads to increased tumour 

burden, demonstrating that hepatocyte NF-κB1 plays a protective role in HCC 

development. Additionally, the liver/body weight ratio was significantly increased in 

AAV-TBG-Cre mice compared to AAV-TBG-Null mice (p=0.0403), in line with the 

increased tumour number observed in AAV-TBG-Cre mice (Figure 5.41d). Images of 

AAV-TBG-Cre mice livers also show more tumorous and diseased livers (Figure 

5.41e). These results confirm the tumour-protective role of hepatocyte NF-κB1 in HCC, 

shown in Nfkb1hep-/- mice. Hepatocyte NF-κB1 therefore plays an important tumour-

suppressive role in DEN-induced HCC at the tumour initiation and progression stages.  
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Figure 5.41 HCC liver tumour number and grade in AAV-TBG-Null and AAV-TBG-Cre 

mice. Graphs show total tumour number (a), large tumour number (b), tumour grade (c) and 

liver/body weight ratio (d) in AAV-TBG-Null and AAV-TBG-Cre mice. Images show tumorous 

livers of AAV-TBG-Null and AAV-TBG-Cre mice in DEN-induced HCC (e). 

 

5.9.4 Proliferation 

As Nfkb1hep-/- mice livers were found to be significantly more proliferative compared to 

control mice in DEN-induced HCC, proliferation was assessed in AAV-TBG-Null and 

AAV-TBG-Cre mice by PCNA immunohistochemistry of formalin-fixed paraffin-

embedded liver tissue. The average number of PCNA positive hepatocytes per field 

(p=0.0001), as well as the average number of highly proliferative PCNA positive 

hepatocytes per field (p=0.0090), was significantly increased in AAV-TBG-Cre mice 

compared to AAV-TBG-Null mice. This shows that AAV-TBG-Cre mice have more 

hepatocytes undergoing proliferation and that the hepatocytes undergoing proliferation 

are more highly proliferative. This mirrors what was observed in Nfkb1hep-/- mice with 

DEN-induced HCC. These results confirm that hepatocyte NF-κB1 plays an important 

role in limiting hepatocyte proliferation, associated with carcinogenesis. Therefore, in 

the absence of hepatocyte NF-κB1, hepatocytes become more proliferative and they 

develop into more tumour cells in DEN-induced HCC. 
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Figure 5.42 PCNA liver immunostain in AAV-TBG-Null and AAV-TBG-Cre mice. Images 

show X20 PCNA immunostaining of formalin-fixed paraffin-embedded liver tissue from AAV-

TBG-Null and AAV-TBG-Cre mice (a). Graphs show average PCNA+ hepatocytes per field (b) 

and average highly proliferative PCNA+ hepatocytes per field (c). 

 

5.9.5 Immune cell infiltration  

DEN-induced HCC is accompanied by an inflammatory phenotype, notably immune 

cell infiltration and inflammatory chemokine expression (Wilson et al., 2015). Therefore 

inflammatory chemokine expression and the recruitment of different immune cell types 

to the liver was assessed in AAV-TBG-Null and AAV-TBG-Cre mice. Tumour and liver 

TNFα gene expression was determined by RT-qPCR, however no difference was 

observed between AAV-TBG-Null and AAV-TBG-Cre mice, though TNFα expression 

appeared slightly increased in AAV-TBG-Cre tumours compared to AAV-TBG-Null 

tumours (p=0.2466), and in AAV-TBG-Cre livers compared to AAV-TBG-Null livers 
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(p=0.0654) (Figure 5.43). This result is comparable to what was observed in Nfkb1hep-

/- mice. 

 

 

Figure 5.43 Tumour and liver TNFα gene expression in AAV-TBG-Null and AAV-TBG-Cre 

mice. Graphs show gene expression of tumour TNFα (a) and liver TNFα (b) in AAV-TBG-Null 

and AAV-TBG-Cre mice, determined by RT-qPCR. 

 

5.9.6 Neutrophil recruitment to the liver in AAV-TBG-Null and AAV-TBG-Cre mice 

Neutrophil recruitment to the liver was assessed by NIMP immunohistochemistry of 

formalin-fixed paraffin-embedded liver tissue from AAV-TBG-Null and AAV-TBG-Cre 

mice. As observed in Nfkb1hep-/- mice, AAV-TBG-Cre mice displayed significantly 

higher NIMP positive cells compared to AAV-TBG-Null mice (p=0.0189), indicating 

increased neutrophil infiltration in the livers of AAV-TBG-Cre mice, in the tumour and 

surrounding tissues. This shows that the lack of hepatocyte NF-κB1 p50 leads to 

increased neutrophil infiltration in the liver in DEN-induced HCC, therefore hepatocyte 

NF-κB1 p50 plays a role in limiting neutrophil recruitment to the liver in DEN-induced 

HCC. Although NIMP predominantly stains for neutrophils, some monocytes may stain 

positive for NIMP (Rehg et al., 2012), therefore the observed increase in NIMP+ cell 

staining could also be attributed to monocytes. 
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Figure 5.44 NIMP liver immunostain in AAV-TBG-Null and AAV-TBG-Cre mice. Images 

show X20 NIMP immunostaining of formalin-fixed paraffin-embedded liver tissue from AAV-

TBG-Null and AAV-TBG-Cre mice (a). Graph shows average NIMP+ cells per field in AAV-

TBG-Null and AAV-TBG-Cre mice (b). 

 

5.9.7 Neutrophil chemokines 

To elucidate the mechanism behind the increased neutrophil infiltration in AAV-TBG-

Cre mice livers, the gene expression of neutrophil chemoattractant chemokines 

S100A9, CXCL1 and CXCL2 in AAV-TBG-Null and AAV-TBG-Cre mice tumours and 

livers was determined by RT-qPCR. Surprisingly, no significant difference was found 

in the expression of these genes in either tumour or liver tissue between AAV-TBG-

Null and AAV-TBG-Cre mice (Figure 5.45). However, this is similar to what was 

observed in Nfkb1hep-/- mice, which exhibited increased liver neutrophil recruitment 

compared to control mice, but no difference in S100A9, CXCL1 and CXCL2 neutrophil 

chemoattractant chemokine gene expression. Therefore, hepatocyte NF-κB1 p50 must 

be regulating the expression of other neutrophil chemoattractant chemokines, such as 

CXCL5. 
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Figure 5.45 Tumour and liver gene expression of neutrophil chemoattractant 

chemokines. Graphs show gene expression of tumour S100A9 (a), CXCL1 (b) and CXCL2 

(c), and of liver S100A9 (d), CXCL1 (e) and CXCL2 (f) in AAV-TBG-Null and AAV-TBG-Cre 

mice. 

 

5.9.8 Monocytes/macrophages recruitment to the liver in AAV-TBG-Null and 

AAV-TBG-Cre mice 

To further assess the role of hepatocyte NF-κB1 p50 in the recruitment of immune cells 

to the liver in DEN-induced HCC, CD68 immunohistochemistry was carried out on 

formalin-fixed paraffin-embedded liver tissue from AAV-TBG-Null and AAV-TBG-Cre 

mice to determine the role of hepatocyte NF-κB1 p50 in monocyte and macrophage 

recruitment to the liver. Interestingly, significantly more CD68 positive cells were found 

in AAV-TBG-Cre mice livers compared to AAV-TBG-Null control mice (p=0.0083), 

indicating that in the absence of hepatocyte NF-κB1 p50, significantly more monocytes 

and macrophages are recruited to the liver in DEN-induced HCC (Figure 5.46). 
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Figure 5.46 CD68 liver immunostain from AAV-TBG-Null and AAV-TBG-Cre mice. Images 

show X20 CD68 immunostaining of formalin-fixed paraffin-embedded liver tissue from AAV-

TBG-Null and AAV-TBG-Cre mice (a). Graph shows average CD68+ cell count per field in 

AAV-TBG-Null and AAV-TBG-Cre mice (b). 

 

5.9.9 Monocyte chemoattractant chemokines 

To elucidate the mechanism behind the increased liver monocyte infiltration in AAV-

TBG-Cre mice, the gene expression of monocyte chemoattractant chemokines CCL2 

and CCL5 was determined in AAV-TBG-Null and AAV-TBG-Cre mice tumours and 

livers by RT-qPCR. No significant difference in tumour or liver CCL2 and CCL5 

expression was found between AAV-TBG-Null and AAV-TBG-Cre mice (Figure 5.47). 

These results confirm what was observed in Nfkb1hep-/- mice in DEN-induced HCC, 

whereby the lack of hepatocyte NF-κB1 lead to increased recruitment of monocytes 

and macrophages to the liver, but no increase in CCL2 and CCL5 tumour and liver 

gene expression, compared to control Nfkb1fl/fl mice. Therefore, other monocyte 

chemoattractant chemokines, such as CCL7, are responsible for recruiting an 

increased number of monocytes to the liver. More monocytes may also be 

differentiated into macrophages in the absence of hepatocyte NF-κB1. It can thus be 

concluded from these results that hepatocyte NF-κB1 limits monocyte and macrophage 

infiltration into the liver and may limit monocyte differentiation to macrophages in DEN-

induced HCC. 

 



160 
 

 

Figure 5.47 Tumour and liver gene expression of monocyte chemoattractant 

chemokines in AAV-TBG-Null and AAV-TBG-Cre mice. Graphs show gene expression of 

tumour CCL2 (a) and CCL5 (b), and of liver CCL2 (c) and CCL5 (d) in AAV-TBG-Null and AAV-

TBG-Cre mice, determined by RT-qPCR. 

 

5.9.10 Tumour and liver anti-apoptotic/oncogene expression in AAV-TBG-Null 

and AAV-TBG-Cre mice 

Subsequently, the gene expression of anti-apoptotic oncogenes Gadd45β, Bcl-xL and 

Bcl-2 was determined in AAV-TBG-Null and AAV-TBG-Cre mice tumours and livers by 

RT-qPCR. Surprisingly, no significant difference was found in the tumour or liver 

expression of these genes between AAV-TBG-Null and AAV-TBG-Cre mice (Figure 

5.48). These results show that hepatocyte NF-κB1 p50 may not play as important a role 

in the regulation of these genes in tumour progression compared to tumour initiation, 

though it may limit their expression slightly. 
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Figure 5.48 Tumour and liver apoptotic signalling gene and oncogene expression in 

AAV-TBG-Null and AAV-TBG-Cre mice. Graphs show gene expression of tumour Gadd45β 

(a), Bcl-xL (b) and Bcl-2 (c), and of liver Gadd45β (d), Bcl-xL (e) and Bcl-2 (f) in AAV-TBG-Null 

and AAV-TBG-Cre mice. 

 

5.10 The role of hepatocyte NF-κB1 in aged 19 month mice 

Nfkb1-/- mice have been shown to experience accelerated ageing and a worsened 

ageing phenotype, as well as the spontaneous development of tumours by around 15 

months (Jurk et al., 2014). A pilot study was therefore carried out in Nfkb1hep-/- mice to 

see whether hepatocyte NF-κB1 plays a role on liver phenotype in ageing. WT and 

Nfkb1hep-/- mice were aged for 19 months and their livers harvested. Initial H&E staining 

analysis showed a remarkable difference, with Nfkb1hep-/- mice exhibiting increased 

steatosis. This can be seen in Figure 5.49a and Figure 5.49b, with a notable increase 

in white lipid droplets in the liver compared to WT mice. Liver steatosis was also visible 

macroscopically at the time of harvest, as shown in Figure 5.49c. Additionally, small 

macroscopic nodules were visible on Nfkb1hep-/- mice livers, indicating that aged 

Nfkb1hep-/- mice may be more prone to carcinogenesis. These initial results show an 

important role for hepatocyte NF-κB1 in lipid metabolism in aged mice, with further 
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investigation required to elucidate the mechanism behind this, and they additionally 

support the tumour-suppressive function of hepatocyte NF-κB1. 

 

 

Figure 5.49 Liver steatosis in Nfkb1hep-/- 19 month old aged mice. Images show X20 H&E 

staining of WT (a) and X10 H&E staining of Nfkb1hep-/- (b) liver tissue from 19 month old aged 

mice, and liver harvest images from 19 month old aged Nfkb1hep-/- mice (c). 

 

5.11 Chapter Discussion 

The role of hepatocyte NF-κB1 p50 in immune cell recruitment to the liver, proliferation, 

apoptosis and carcinogenesis has been assessed here in a 40 week DEN-induced 

HCC model. The role of hepatocyte NF-κB1 p50 was assessed in tumour initiation, with 

Nfkb1fl/fl control and Nfkb1hep-/- mice, where hepatocyte Nfkb1 is knocked out from an 

early age, and in tumour progression, with AAV-TBG-Null control and AAV-TBG-Cre 

mice, where hepatocyte Nfkb1 was knocked out at a stage where macroscopic 

tumours have already started to develop: 32 weeks post DEN-injection. 
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Both models showed a significant increase in tumour number in the absence of 

hepatocyte Nfkb1, and an increased liver/body weight ratio, indicative of more tumours. 

This was accompanied by an increased tumour burden, with an increased number of 

higher grade HCC tumours (HCC1 and HCC2). Hepatocytes were also significantly 

more proliferative in the absence of NF-κB1 in both models. This greater proliferative 

capacity leads to the development of more HCC tumours in the absence of hepatocyte 

NF-κB1. Hepatocyte NF-κB1 p50 therefore plays a role in limiting tumour development 

and tumour proliferation in DEN-induced HCC, at the cancer initiation and progression 

stages. 

Interestingly, mice lacking hepatocyte NF-κB1 displayed increased neutrophil, 

monocyte and macrophage recruitment to the liver in both models. This shows that 

hepatocyte NF-κB1 plays an important role in limiting neutrophil, monocyte and 

macrophage to the liver in the initiation and progression of DEN-induced HCC, and 

thus acts as a repressor of immune responses. The chemokines responsible for 

recruiting an increased number of neutrophils, monocytes and macrophages were not 

identified here, as no difference in S100A9, CXCL1, CXCL2, CCL2 and CCL5 gene 

expression was found between mice lacking hepatocyte NF-κB1 and control mice. 

However, their protein expression levels were not assessed, and therefore these 

chemokines may have increased protein expression despite not showing a difference 

at the gene expression level. Recruitment of cells of the adaptive immune system to 

the liver was also assessed in Nfkb1fl/fl and Nfkb1hep-/- mice, but no significant difference 

was found in the number of B cells, T cells, and T cell subsets, though there appeared 

to be a slight increase in overall T cells and in CD8+ cytotoxic T cells in Nfkb1hep-/- 

mice. This could indicate that mice lacking hepatocyte NF-κB1 may require more 

cytotoxic T cells to kill their liver cancer cells, since they have more tumours. Overall 

these results show that hepatocyte NF-κB1 predominantly plays a role in innate immune 

responses, with little modulation of adaptive immune responses. 

The role of hepatocyte NF-κB1 in cell survival and apoptosis was also assessed. 

Overall, the results showed some evidence for hepatocyte NF-κB1 modulation of 

apoptotic signalling, with tumour Gadd45, Bcl-xL and Bcl-2 being significantly more 

expressed at the gene level in Nfkb1hep-/- mice compared to Nfkb1fl/fl control mice, 

however this was not mirrored at the protein level, and no significant difference in the 

expression of these genes was found in AAV-TBG-Cre mice compared to AAV-TBG-

Null mice. Additionally, cleaved caspase 3 immunostaining, which marks apoptotic 
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signalling activation, showed no difference in Nfkb1hep-/- mice compared to Nfkb1fl/fl 

mice. While p-JNK western blots showed some evidence for increased anti-apoptotic 

signalling in Nfkb1hep-/- mice, this was not striking. Together these results show that 

hepatocyte NF-κB1 is not a key modulator of apoptotic signalling in DEN-induced HCC. 

RNA-Seq analysis comparison between Nfkb1fl/fl, Nfkb1-/- and Nfkb1hep-/- mice liver 

tumours resulting from the DEN-induced HCC model showed differential gene 

expression in the three groups. While more differentially expressed genes were found 

between Nfkb1fl/fl and Nfkb1-/- mice, Nfkb1fl/fl and Nfkb1hep-/- mice displayed important 

differences in gene expression. Notably, genes involved in neutrophil migration and 

chemotaxis, positive regulation of defence responses and responses to external 

stimuli, chemotaxis, myeloid leukocyte activation, regulation of TNF production and 

positive regulation of inflammatory responses were upregulated in Nfkb1hep-/- mice, 

supporting the increased immune cell infiltration observed in these mice. The 

differences in mRNA expression observed between Nfkb1-/- and Nfkb1hep-/- mice 

highlight the different roles played by NF-κB1 in different cell types; while hepatocyte 

NF-κB1 plays an important tumour-suppressive role, dampening inflammation, NF-κB1 

also has important functions in other cell types, such as immune cells. 

Importantly, the protein expression levels of NF-κB subunits cRel, p65 and p52 were 

similar between Nfkb1fl/fl and Nfkb1hep-/- mice livers, eliminating the possibility of NF-κB 

subunit compensation for the loss of NF-κB1. 

19 month old aged Nfkb1hep-/- mice displayed a high amount of liver steatosis, 

characterised by the accumulation of fat lipid droplets in the liver, compared to WT 19 

month old aged mice. Additionally, aged Nfkb1hep-/- mice displayed small 

macroscopically visible nodules in the liver, indicative of carcinogenesis. These results 

provide an additional insight into the role of hepatocyte NF-κB1 in cancer and ageing. 

Further investigation is required to understand the mechanisms behind the increased 

steatosis observed in Nfkb1hep-/- mice, and to deepen the understanding of how 

hepatocyte NF-κB1 limits liver cancer development. 
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Chapter 6. Discussion 

 

The NF-κB1 transcription factor plays a central role in a number of key cellular 

functions, including immune responses, cell cycle regulation, cell survival and 

carcinogenesis (Best et al., 2019). Previously, NF-κB1 has been shown to act in a 

protective manner in cells, dampening the expression of pro-inflammatory and pro-

tumorigenic genes (Wilson et al., 2015). NF-κB1 can exert several different functions 

depending on the cell type it is expressed in, regulating the expression of different 

genes. Here, the role of hepatocyte NF-κB1 in liver response to injury, inflammation, 

fibrosis and hepatocellular carcinoma was assessed through different in vivo mouse 

models. 

Initial experiments involving acute liver injury in mice revealed a limited protective role 

for hepatocyte NF-κB1 in response to acute liver injury, comparing Nfkb1fl/fl and 

Nfkb1hep-/- mice livers. Acute CCl4 injury experiments where mice were injected with 

the hepatotoxin CCl4 and the livers harvested 24h and 48h post-injection were 

conducted in conditional knock-out mice, whereby the hepatocyte Nfkb1 gene was 

deleted through albumin cre recombinase LoxP site recombination. Hepatocyte Nfkb1 

knockout was also triggered 2 weeks prior to acute liver injury in a TBG-AAV virus-

induced knockout model. 

Following acute CCl4 liver injury, the liver inflammatory profile from Nfkb1hep-/- mice did 

not differ from that of Nfkb1fl/fl control mice. More specifically, the mRNA expression of 

neutrophil chemoattractant chemokines S100A9, CXCL1 and CXCL2 was comparable 

in both genotype groups, as well as monocyte chemoattractant chemokines CCL2 and 

CCL5. In support of this, no difference in neutrophil recruitment to the liver was seen 

in the absence of hepatocyte NF-κB1. Interestingly, macrophage liver infiltration was 

increased in Nfkb1hep-/- mice, indicating that hepatocyte NF-κB1 plays a role in limiting 

macrophage recruitment to the liver in response to injury. Previous studies have 

demonstrated a similar role for NF-κB1 in macrophage recruitment (Ward et al., 2008). 

While the monocyte chemoattractant chemokines responsible for the observed 

increase in macrophage numbers were not identified, RNA-Seq analysis would likely 

reveal differential expression of monocyte chemoattractant chemokines between 

Nfkb1fl/fl and Nfkb1hep-/- mice, providing interesting insights into the role of hepatocyte 

NF-κB1 relating to immune cell recruitment.  
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Similarly, following acute liver injury with the carcinogen DEN, Nfkb1fl/fl and Nfkb1hep-/- 

mice livers displayed no difference in their inflammatory gene expression profile, while 

previous studies have shown that Nfkb1-/- mice exhibit a higher inflammatory profile 

following acute DEN injury (Wilson et al., 2015). In support of this, liver infiltration of 

neutrophils was not affected by the lack of hepatocyte NF-κB1. Interestingly, while 

acute CCl4 injury led to increased macrophage liver infiltration in Nfkb1hep-/- mice, acute 

DEN injury did not have this effect and no difference in macrophage liver infiltration 

was seen between Nfkb1fl/fl and Nfkb1hep-/- mice. The type of injury inflicted on the liver 

therefore affects which genes are modulated by hepatocyte NF-κB1, notably genes 

involved in immune responses, and therefore dictates immune cell recruitment to the 

liver. While CCl4 liver hepatotoxicity leads to massive cell death, which may be 

triggering the observed increase in monocyte and macrophage infiltration in the liver 

in the absence of hepatocyte NF-κB1, DEN liver injury is mainly characterised by DNA 

damage, cell death and compensatory proliferation. Hepatocyte NF-κB1 may therefore 

play a more important role in monocyte/macrophage recruitment to the liver during 

hepatic cell death, while being less implicated in the regulation of genes in response 

to DNA damage and proliferation in acute liver injury. 

No difference in liver apoptosis or necrosis was observed between Nfkb1fl/fl and 

Nfkb1hep-/- mice, suggesting that hepatocyte Nfkb1 does not modulate cell death in 

response to both CCl4 and DEN acute liver injury. However, investigating the gene 

expression of different biomarkers, such as activated caspases (2, 3, 7, 8 and 9), 

cytochrome c, Apo-1, and p53 (Elsharkawy et al., 2010), could reveal differences in 

anti-apoptotic signalling for example. Experiments additionally showed no difference 

in proliferation and DNA damage between Nfkb1fl/fl and Nfkb1hep-/- mice, indicating that 

hepatocyte NF-κB1 does not play a protective role in DNA damage and does not 

modulate hepatocyte proliferation following CCl4 or DEN induced acute liver injury. 

Similar observations were made in AAV-TBG-Cre and AAV-TBG-Null mice, whereby 

no significant differences between the two genotypes were found in inflammatory cell 

recruitment to the liver, hepatocyte cell death and proliferation, following acute CCl4-

induced liver injury. Therefore, it can be concluded that hepatocyte NF-κB1 does not 

play a protective role in acute liver injury triggered by CCl4 or DEN, and, more 

specifically, hepatocyte NF-κB1 does not modulate neutrophil inflammatory gene 

expression and recruitment to the liver, apoptosis, necrosis and DNA damage in this 

context. Additional experiments would be required to validate this further. 
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Previous work has shown that NF-κB1 protects against CCl4-induced liver fibrosis in 

vivo, however cell-specific roles were not defined (Elsharkawy et al., 2010). Here, the 

role of hepatocyte NF-κB1 in liver fibrosis was investigated. Fibrosis was induced in 

vivo following biweekly CCl4 IP injections carried out for 6 weeks in Nfkb1-/-, Nfkb1hep-/- 

and control Nfkb1fl/fl mice, after which mice livers were harvested for analysis. 

Interestingly, while a more severe liver fibrotic phenotype was found in Nfkb1-/- mice 

compared to Nfkb1fl/fl mice, in line with previous studies and further demonstrating a 

protective role for Nfkb1 in liver fibrosis, Nfkb1fl/fl mice were not protected against 

fibrosis compared to Nfkb1hep-/- mice. More specifically, increased neutrophil 

chemoattractant chemokine expression, neutrophil liver infiltration, fibrogenic gene 

expression and collagen deposition was observed in Nfkb1-/- mice, but not in Nfkb1hep-

/- mice compared to control Nfkb1fl/fl mice. This is consistent with previous findings in a 

12 week CCl4-induced fibrosis in vivo model (Oakley, Mann, et al., 2005). 

These results strongly suggest that, while NF-κB1 exerts an important protective role 

in liver fibrosis, when looking into cell-specific roles, hepatocyte NF-κB1 offers no 

protection against liver fibrosis. It can be concluded from this that NF-κB1 exerts an 

important anti-fibrotic and anti-inflammatory function in cells other than hepatocytes, 

with further experiments required to determine which cell types specifically. These 

could be hepatic stellate cells, which play a key role in liver fibrosis initiation, 

progression and regression (Zhang et al., 2016), or immune cells residing in the liver 

such as Kupffer cells. Cell-specific conditional knockout mice models could be used to 

test the involvement of these cell types in modulating responses to pro-fibrotic and pro-

inflammatory stimuli, notably through the hepatotoxin CCl4. Notably, similar PDGF Cre 

experiments are underway, whereby a mouse model of hepatic stellate cell knockout 

of nfkb1 has been generated through Nfkb1fl/fl mice and PDGF-Cre+/- mice 

recombination. 

While no immune-modulatory role was revealed for hepatocyte NF-κB1 in the context 

of acute CCl4, acute DEN or Chronic CCl4 liver injury, hepatocyte NF-κB1 showed an 

important protective anti-tumorigenic role in DEN-induced hepatocellular carcinoma. 

Mice were injected IP with DEN at 2 weeks of age and sacrificed at 40 weeks, at which 

point macroscopic tumours had developed. Interestingly, Nfkb1hep-/- mice exhibited a 

significantly higher tumour incidence compared to Nfkb1fl/fl mice, demonstrating a 

tumour-protective role for hepatocyte NF-κB1. This was further reinforced by the 

increased prevalence of higher tumour grade tumours (HCC1 and HCC2) as well as 
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increased expression of the proliferation marker PCNA in Nfkb1hep-/- mice, in line with 

previous studies in Nfkb1-/- mice (Wilson et al., 2015). This demonstrates that 

sustained knockout of hepatocyte Nfkb1 has a profound effect on cellular function and 

homeostasis over time, leading to chronic inflammation and carcinogenesis. In 

contrast, knockout of hepatocyte Nfkb1 leads to little effect in the short term and in 

acute liver injury. Therefore mice must reach a certain age before pathological 

differences become significant between Nfkb1fl/fl and Nfkb1hep-/- mice. Also, the type of 

liver injury mice are subjected to lead to the generation of different metabolites which 

can act on different pathways leading to different phenotypes. While chronic DEN injury 

in Nfkb1hep-/- mice leads to a significantly more severe phenotype compared to Nfkb1fl/fl 

mice, no such effect is observed in a chronic CCl4 model. 

In addition, neutrophil recruitment to the liver was significantly increased in Nfkb1hep-/- 

mice compared to Nfkb1fl/fl mice, demonstrating that hepatocyte NF-κB1 restricts 

neutrophil liver chemotaxis in chronic DEN liver injury. Surprisingly, neutrophil 

chemoattractant chemokines S100A9, CXCL1 and CXCL2, previously shown to be 

significantly more expressed in the same DEN model in Nfkb1-/- mice compared to 

control mice, showed no differential expression between the two phenotypes. 

However, other chemokines involved in neutrophil migration and chemotaxis were 

found to be expressed at higher levels in Nfkb1hep-/- mice, as shown through RNA seq 

analysis. Additionally, monocyte and macrophage liver infiltration was significantly 

increased in Nfkb1hep-/- mice compared to Nfkb1fl/fl mice, however the chemokines 

responsible for this were not identified. However, genes involved in positive regulation 

of defence responses and responses to external stimuli, chemotaxis, myeloid 

leukocyte activation, regulation of TNF production and positive regulation of 

inflammatory responses were upregulated in Nfkb1hep-/- mice, shown by RNA seq 

analysis. These include Tlr13, MS4A7, ACOD1, CLEC4E, Lgals3, Rab7b, Lyz2 and 

Bcl2a1b. Overall these results demonstrate that hepatocyte NF-κB1 plays an anti-

inflammatory role in DEN-induced hepatocellular carcinoma, restricting innate immune 

cell recruitment to the liver and thus dampening immune responses. T cell and B cell 

liver infiltration was unaffected by hepatocyte Nfkb1 knockout, demonstrating a specific 

role for hepatocyte NF-κB1 in the modulation of innate immune responses. 

Interestingly, the increased inflammatory infiltrate observed in DEN-induced HCC 

Nfkb1hep-/- mice compared to Nfkb1fl/fl mice could be a consequence, rather than the 

cause, of the increased tumour burden. Since Nfkb1hep-/- mice exhibited more tumours, 
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this would likely lead to an increase in immune cells due to their known presence in 

tumour microenvironments. This could explain the lack of difference observed in 

neutrophil and macrophage chemoattractant chemokine expression; the total liver 

expression of these chemokines is therefore likely to be increased in Nfkb1hep-/- mice. 

It was also shown that hepatocyte NF-κB1 plays a role in cell apoptosis modulation in 

DEN-induced hepatocellular carcinoma. The expression of anti-apoptotic genes 

Gadd45β, Bcl-2 and Bcl-xL was significantly increased in Nfkb1hep-/- mice compared to 

Nfkb1fl/fl mice, suggesting that hepatocyte NF-κB1 dampens anti-apoptotic signalling of 

tumorous cells, though this increase was not reflected at the protein level. Furthermore, 

genes linked to cancer were upregulated in Nfkb1hep-/- mice, including S100A6, 

GPNMB, Arl4c, Lgals3, Ear2 and bcl2a1a, further supporting the tumour suppressive 

function of hepatocyte NF-κB1. 

Similar results were observed in AAV-TBG-Cre mice compared to AAV-TBG-Null mice, 

further supporting the anti-tumorigenic and anti-inflammatory function of hepatocyte 

Nfkb1. 

Of note, while this was not performed here, controls for cre recombinase expression 

mediated toxicity would be valuable in demonstrating that the observed effects of 

Nfkb1 hepatocyte knockout are caused by the lack of hepatocyte Nfkb1 only rather 

than cre toxicity. Possible controls include performing similar experiments (e.g. acute 

or chronic CCl4 or DEN) comparing WT mice and WT mice crossed with Alb-Cre mice, 

therefore expressing the cre recombinase enzyme. This would allow for the 

determination of any cre-specific mediated effects, particularly with regards to immune 

cell recruitment, apoptosis and tumorigenesis. Additionally, similar experiments could 

be conducted to as AAV control to account for any AAV-mediated effect; here, 

experiments should be carried out in WT mice injected with AAV8-TBG-Cre, WT mice 

injected with AAV8-TBG-Null, and Nfkb1fl/fl mice injected with AAV8-TBG-Cre. 

In conclusion, while hepatocyte NF-κB1 demonstrated little protective and anti-

inflammatory role in acute liver injury as well as in a CCl4-induced fibrosis model, its 

anti-tumorigenic role was apparent in a DEN-induced hepatocellular carcinoma model. 

Future studies may further elucidate the cell-specific roles of NF-κB1, which is important 

in order to understand the full landscape of Nfkb1 gene expression modulation. 
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Table 6.1 Summary table of data from all liver injury models 

Serum 24h CCl4 48h CCl4 24h DEN 48h DEN 6 wks CCl4 40 wks DEN

ALT ns ns ns ns ns ns

AST ns
ns Nfkb1fl/fl vs Nfkb1hep-/-

Sig decrease in AAV-TBG-Cre
ns Sig decrease in Nfkb1hep-/- ns ns

Immunohistochemistry 24h CCl4 48h CCl4 24h DEN 48h DEN 6 wks CCl4 40 wks DEN

F4/80
Sig increase in Nfkb1

hep-/-

ns AAV-TBG-Null vs AAV-

TBG-Cre

ns Nfkb1
fl/fl

 vs Nfkb1
hep-/-

Sig increase in AAV-TBG-Cre
- - - -

CD68 - - ns ns ns
Sig increase in Nfkb1

hep-/-
 and 

AAV-TBG-Cre

Ly6G ns ns - - ns -

NIMP - - ns ns
Sig increase in Nfkb1

hep-/-
 and 

AAV-TBG-Cre

Cleaved caspase-3 ns ns - - - ns

PCNA - - ns ns -
Sig increase in Nfkb1

hep-/-
 and 

AAV-TBG-Cre

High PCNA - - - - -
Sig increase in Nfkb1hep-/- and 

AAV-TBG-Cre

Tumour PCNA - - - - - Sig increase in Nfkb1
hep-/-

γH2AX - - ns ns - ns

Sirius Red - - - - ns -

α-SMA - - - - ns -

CD3 - - - - - ns

CD4 - - - - - ns

CD8 - - - - - ns

FOXP3 - - - - - ns

B220 - - - - - ns

Liver mRNA expression 24h CCl4 48h CCl4 24h DEN 48h DEN 6 wks CCl4 40 wks DEN

S100A9 ns ns ns ns ns ns

CXCL1 ns ns ns ns ns ns

CXCL2 ns ns ns ns ns ns

CCL2 ns ns ns ns ns ns

CCL5 ns ns ns ns ns ns

TNFα ns ns ns ns ns ns

IL-6 ns ns - - ns -

CXCL10 - - - - ns -

Gadd45β ns ns ns ns - ns

Bcl-2 ns ns ns ns - ns

Bcl-xL ns ns ns ns - ns

XIAP ns ns - - - -

BAX ns ns - - - -

ARG1 - - - - ns -

ARG2 - - - - ns -

α-SMA - - - - ns -

COL1A1 - - - - ns -

TIMP1 - - - - ns -

TGF-β - - - - ns -

Tumour mRNA expression 24h CCl4 48h CCl4 24h DEN 48h DEN 6 wks CCl4 40 wks DEN

TNFα - - - - - ns

S100A9 - - - - - ns

CXCL1 - - - - - ns

CXCL2 - - - - - ns

CCL2 - - - - - ns

CCL5 - - - - - ns

Gadd45β - - - - -
Sig increase in Nfkb1hep-/-

ns in AAV-TBG-Cre

Bcl-xL - - - - -
Sig increase in Nfkb1hep-/-

ns in AAV-TBG-Cre

Bcl-2 - - - - -
Sig increase in Nfkb1hep-/-

ns in AAV-TBG-Cre

Liver protein expression 24h CCl4 48h CCl4 24h DEN 48h DEN 6 wks CCl4 40 wks DEN

p-ERK - - - - - ns

p-JNK - - - - - ns

cREL - - - - - ns

p65 - - - - - ns

p52 - - - - - ns

Bcl-2 - - - - - ns

Bcl-xL - - - - - ns

Tumour protein expression 24h CCl4 48h CCl4 24h DEN 48h DEN 6 wks CCl4 40 wks DEN

p-ERK - - - - - ns

p-JNK - - - - - ns

Bcl-2 - - - - - ns

Bcl-xL - - - - - ns

γH2AX - - - - - ns

Cyclin D1 - - - - - ns

Cleaved caspase 3 - - - - - ns

Weight 24h CCl4 48h CCl4 24h DEN 48h DEN 6 wks CCl4 40 wks DEN

Liver weight - - - - ns -

Mouse weight - - - - ns -

Liver/Body weight ratio - - - - ns
ns in Nfkb1fl/fl vs Nfkb1hep-/-

Sig increase in AAV-TBG-Cre

HCC 24h CCl4 48h CCl4 24h DEN 48h DEN 6 wks CCl4 40 wks DEN

Total tumours - - - - -
Sig increase in Nfkb1

hep-/-
 and 

AAV-TBG-Cre

Large tumours - - - - - ns

Tumour grade - - - - -

Sig increase in HCC2/HCC1 

tumours in Nfkb1
hep-/-

 and 

AAV-TBG-Cre

Total tumour area - - - - - Sig increase in Nfkb1hep-/-
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