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Abstract 

 

Background 
 

Pancreatic beta cells cultured in 2D systems display similar characteristics to 

dysfunctional beta cells of patients with diabetes. This thesis explores the impact of cell 

connectivity on functional and metabolic characteristics of insulin secreting beta cells. 

 

Methods 
 

The MIN6 mouse beta cell line was cultured as 2D monolayers and 3D structures named 

pseudoislets. The insulin secretion response and metabolic function of 2D and 3D MIN6 

cultures, along with islets from human donors were compared. Roles for cell-cell 

interactions in regulating metabolic changes were explored with focus on the gap 

junctional protein, connexin36, using an inducible knockdown MIN6 cell line. 

 

Results 
 

MIN6 pseudoislets displayed improved functional responses compared to monolayers 

with 7.4-fold and 1.5-fold increases in glucose-induced insulin secretion respectively. 

XFe24 seahorse bioanalyser data showed the improved glucose-stimulated 

pseudoislet response was fuelled by large increases in glycolytic flux and a more 

moderate increase in oxidative phosphorylation. Basal insulin secretion and basal 

oxidative phosphorylation were both higher in monolayers but there were no 

differences in basal glycolysis. Human islets displayed a similar phenotype to 

pseudoislets with high contributions of glycolysis to glucose-induced ATP production. 

Pseudoislets indicated some hypoxia through trends towards increased lactate 

dehydrogenase and phosphoinositide-dependent kinase-1 expression and increased 

glycolytic activity of phosphfructokinase-1 and glyceraldehyde 3-phosphate 
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dehydrogenase but superior glucose sensing through decreased hexokinase I and 

increased GLUT2 expression and more active mitochondrial activities of pyruvate 

carboxylase, citrate synthase, α-ketoglutarate dehydrogenase, and malate 

dehydrogenase. Knockdown of connexin36 did not alter glucose-stimulated insulin 

secretion or metabolic flux. However, there was a trend towards increased basal 

insulin secretion and basal oxidative phosphorylation indicating a possible role for 

this connection in regulating basal metabolic flux.  

 

Conclusions 
 

The improved glucose-stimulated secretion conferred by pseudoislet configuration was 

accompanied by an increase in ATP production suggesting a role for alteration in 

metabolic flux in the improved functionality. Improved functional responses of beta cells 

in 3D structures was accompanied by a small increase in oxidative phosphorylation but 

a large increase in glycolysis that cannot be fully explained by hypoxia. Connexin36 may 

play a role in regulating the basal response but other connections are involved in 

regulating the glucose-stimulated response.   
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CHAPTER 1. INTRODUCTION 
 

1.1. Regulation of Blood Glucose 
 

Blood glucose levels are maintained within strict boundaries between 4mmol/l and 

7.8mmol/l to maintain blood glucose homeostasis and avoid detrimental effects of 

hyperglycaemia. Islets of Langerhans are essential for blood glucose homeostasis, these 

are regions of endocrine tissue contained within the pancreas. Cells within these islets 

monitor glucose levels and respond to low and high glucose by synthesising and 

releasing glucagon and insulin [1]. Following a rise in blood glucose, such as after a meal, 

insulin released by beta cells binds to receptors on cells of insulin sensitive tissues to 

initiate three key responses that counteract the rise of glucose. Uptake of glucose into 

muscle, fat and liver cells is increased; storage of glucose as glycogen in the liver through 

glycogenesis is upregulated; and the production of glucose through gluconeogenesis is 

inhibited. When blood glucose levels begin to drop due to exercise or lack of food, 

glucagon triggers the conversion of glycogen back to glucose and the production of 

glucose through gluconeogenesis restoring the homeostatic balance. The ability of beta 

cells to regulate blood glucose via insulin can be compromised; the conditions where 

this occurs are collectively termed diabetes mellitus [2]. 

 

1.2. Islet Architecture 
 

Islets of Langerhans consist of three main cell types, insulin producing beta cells, 

glucagon producing alpha cells, and somatostatin producing delta cells. Due to the high 

availability, relatively low costs, and ease of genetic selection, rodent islets are often 

used experimentally to further understanding of islet biology and further develop 

therapeutic options for patients with diabetes [3]. Figure 1 shows the structures of 

rodent and primate islets. Both consist mostly of beta cells along with alpha cells, delta 

cells and blood vessels that provide the islet with oxygen and metabolic cues [4]. The 

beta cells of rodent islets are located mostly in the core and surrounded by alpha and 

delta cells, while primate islets have a more heterogeneous distribution of cell types. A 
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small proportion of the islet, <5%, is made up of cells not pictured in figure 1. These 

include pancreatic polypeptide producing PP cells and ghrelin producing epsilon cells 

and are randomly distributed throughout primate islets and found mostly around the 

beta cell core of rodent islets  [5]. The primate islet contains a lower proportion of beta 

cells than the rodent islet, 65% compared to 80% respectively. Despite some differences 

in the islet architecture, both rodent and primate islets display a robust insulin secretion 

response stimulated through similar metabolic pathways meaning rodent islets are 

often used in islet studies [6-16]. 

 

Figure 1. Diagram showing the architecture of rodent and primate islets [4]. 

 

1.3. Diabetes Mellitus 
 

1.3.1. Type 1 Diabetes  
 

Type 1 diabetes mellitus (T1DM) accounts for 5-10% of people diagnosed with diabetes. 

It is a chronic disease characterised by autoimmune destruction of insulin-producing 

beta cells, leading to absolute insulin deficiency [17]. The cause is the combination of a 

genetic predisposition and one or more environmental triggers, which are currently 



19 
 

poorly defined but are thought to include viral infections, stress and diet [18]. 

Presentation of the disease typically occurs between the ages of 5 and 7 years although 

it can present later in life and the onset can be variable, often slower in adults [19]. 

Symptoms develop over several weeks or days and typically begin at 90-95% β-cell loss. 

They can range from severe hyperglycaemia and ketoacidosis, to excessive thirst, 

urination, tiredness and weight loss [17]. 

 

1.3.2. Type 2 Diabetes 
 

As opposed to T1DM, patients with Type 2 diabetes mellitus (T2DM) do not suffer from 

absolute insulin deficiency, but experience a relative insulin decrease as well as 

peripheral insulin resistance [20]. There are five stages in the progression of beta cell 

dysfunction towards T2DM described by Weir in 2004 [21]. First is compensation where 

the rate of insulin secretion increases to compensate for increasing insulin resistance. 

The second is stable adaption characterised by fasting blood glucose levels between 5.0 

and 7.3mmol/l, blood glucose levels in this stage can be maintained at these levels for 

years with the right diet and exercise regimen. Beta cells in stage two display impeded 

GSIS. Stage three is known as unstable early decompensation, this is a relatively short 

phase in which beta cells reach a critical stage due to loss of beta cell mass and/or 

increases in insulin resistance leading in a rapid increase in blood glucose levels until 

they stabilise in stage four at ~16–20mmol/l. Patients in stage four, stable 

decompensation, retain enough insulin secretion to avoid diabetic ketoacidosis and will 

often remain in this stage for the remainder of their lives. Patients reaching stage five, 

severe decompensation, are reliant on exogenous insulin to maintain blood glucose 

levels but it is rare for T2DM patients to progress to this stage [21]. The primary cause 

of T2DM is obesity; other risk factors include genetics, lack of physical activity, and 

increasing age. The incidence of T2DM correlates with the increase in life expectancy, 

world population, and levels of obesity. It is estimated that the prevalence of diabetes 

mellitus will increase from 2.8% of the world population in 2000, to 4.4% by 2030 [22]. 

T2DM can take years to diagnose as the symptoms are less obvious. However, if 
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untreated the high glucose levels can cause damage to the microvascular and 

macrovascular systems [23]. 

 

1.3.3. Complications Associated with Diabetes 
 

Hypoglycaemic attacks more typically associated with T1DM, range in severity. Mild 

hypoglycaemia can be recognised by symptoms such as blurred vision, confusion, and 

shaking. During a severe hypoglycaemic attack, the availability of glucose to the brain is 

reduced and can result in a diabetic coma, which if untreated can lead to death. 

Hyperglycaemia leads to microvascular complications such as nephropathy, retinopathy, 

and neuropathy and macrovascular complications such as cardiovascular disease [24, 

25]. Complications caused by hyperglycaemia affect most patients with diabetes and can 

seriously impact on the patients’ quality of life and life expectancy. Around 60% of T2DM 

patients' deaths are caused by cardiovascular disease [26] and more than 10% of annual 

healthcare spending in developed countries is currently spent on diabetes and its related 

conditions [27]. Tight control of blood glucose levels can help reduce the impact of these 

complications making the development of effective treatments essential.  

1.4. Current Treatments for T1DM 
 

1.4.1. Exogenous Insulin 
 

The current standard treatment for T1DM is injection with exogenous insulin, 

administered through multiple daily injections or continuous subcutaneous insulin 

infusions. These infusions consist of a combination of rapid or short acting insulin around 

mealtimes and long or medium acting insulins to provide background insulin throughout 

the day. Continual insulin therapy with regular blood glucose testing has the capability 

to dramatically increase quality of life [25]. Unfortunately the treatment for T1DM is an 

expensive one meaning that there are many patients, primarily in developing countries 

who are not able to access the necessary treatments and hence have a very poor 

prognosis [28].  For those able to access it, exogenous insulin is not a perfect treatment 

as it is not able to mimic the actions of endogenous insulin completely. The dosage 
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required varies depending on food eaten and physical activity. This means it can be 

difficult to calculate, especially in the early stages of diagnosis, leading to large 

fluctuations in blood glucose [25]. 

1.3.2. Islet Transplantation 
 

Islet transplantation is a current treatment option for patients with T1DM, who are 

unable to regulate their blood glucose levels through exogenous insulin therapies and 

have reduced hypoglycaemia awareness. These patients are at high risk of microvascular 

and macrovascular diseases. Islets are isolated from a donor pancreas and infused into 

the patient's liver through the portal vein as shown in Figure 2 [29]. 

 

Of the patients who received transplants between 2007 and 2010, 44% were insulin 

independent after 3 years (Figure 3 [30]). Partial function of the graft can provide 

protection from severe hypoglycaemia and hypoglycaemic unawareness. By 2017,  more 

than 1500 patients had received islet transplantations [31]. The Collaborative Islet 

transplant Registry (CITR) reported that by 2012 44% of patients were free of severe 

hypoglycaemic events four years post-transplant and the most recent CITR report states 

that around 20% of recipients are insulin independent at five years post-transplant [32].  

 

Figure 2. Image depicting process of islet isolation and transplantation from 

donor to recipients’ hepatic portal vein [29] 
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1.3.3. Islet Isolation 
 

Before transplantation, islets must first be isolated from the surrounding exocrine tissue 

of the donor pancreas by enzymatic digestion, as was first described in 1965 [33]. Lacy 

and Kostianovsky used these enzymatic digestion techniques, along with gradient 

purification, to successfully isolate metabolically active islets from the pancreas of 

rodents [34]. The islets were transplanted into diabetic rats, resulting in some recovery 

of glucose control [34]. Isolation and purification techniques continued to improve, and 

human islet transplantation trials began in the mid 1980’s. Subsequent studies showed 

that long term insulin independence could be achieved in humans through islet 

transplants, but with a limited success rate (16-18). Between 1990 and 2001, 267 islet 

transplants were recorded in the Islet Transplant Registry but only 8.2% of these 

achieved insulin independence for over one year [35] [36].  

 

The success rates of islet transplantations improved following the publication of a study 

by the Edmonton group, who reported insulin independence in all seven recipients at 

one-year post-transplant. The key changes introduced in the Edmonton protocol include 

Figure 3. Rate of insulin independence after islet infusion as reported by the 

Collaborative Islet Transplantation Registry. Image taken from [36] 

 



23 
 

an increase in the number of islets transplanted and a steroid-free immunosuppressive 

regime [37]. Although the outcomes of islet transplants have improved, the treatment 

still has limitations which prevent it from being a widely available option for patients.  

 

1.3.4. Limitations of Islet Transplantation 
 

The long-term success of islet transplantation is highly variable between patients. A low 

donor availability along with other limiting factors mean that the treatment is not widely 

available. Careful selection of donors and recipients has resulted in a steady 

improvement in patient outcome over the last few years [38]. 

 

The isolation and processing techniques used to prepare the islets for transplantation 

also influence patient outcome. During isolation the beta cells within the islets begin to 

lose some function, causing them to become less responsive to stimuli such as glucose. 

Patients often require multiple infusions from different donors so understanding why 

function is lost and how to maintain it could lower the number of infusions needed 

allowing more patients to benefit from the same number of donors [39]. Improvements 

have been made in the enzymatic isolation and purification methods of islets from the 

pancreas. The use of enzyme blends containing class I collagenase and class II 

collagenase, along with varying concentrations of non-collagenolytic enzymes, allows 

digestion to be tailored to the requirements of each pancreas [12, 40]. Careful control 

over digestion is necessary as too much can cause islets to fragment and disintegrate 

reducing viability and yield.  

 

A clearer understanding of mechanisms involved in the loss of function in transplanted 

beta cells could lead to improved isolation and preparation of pancreas endocrine tissue 

before transplantation and hence improved treatment of T1DM. Optimising the culture 

conditions beta cells are exposed to between extraction and implantation is a necessary 

step towards retaining greater beta cell function.  
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1.5. Pancreatic Β-cell Physiology 
 

1.5.1. Regulation of Insulin Secretion 
 

Glucose metabolism within beta cells provides the primary stimulus for the secretion of 

insulin. Amino and fatty acid metabolism also contribute to signals resulting in release 

of insulin. Glucose is transported into the beta cell through glucose transporters; GLUT1 

in human and GLUT2 in rodent cells, [41] causing a rapid increase in intracellular glucose 

levels [30] [42]. The glucose is then phosphorylated by glucokinase in the rate limiting 

step of glycolysis. The glycolytic pathway leads to the production of pyruvate. During 

aerobic metabolism the pyruvate is oxidised to form one of two metabolites that can be 

transported into the mitochondria for further metabolism and optimum energy 

production. The metabolism of glucose through glycolytic and mitochondrial 

metabolism results in an increase in the ATP to ADP ratio which causes ATP sensitive 

potassium (KATP) channels situated in the plasma membrane to close and the membrane 

to depolarise. The KATP channels are composed of a core made of Kir6.2 and a regulatory 

subunit made of sulfonylurea receptor 1 (SUR1). Voltage gated Ca2+ channels open in 

response to the depolarised membrane allowing influx of Ca2+ ions into the cell. An 

increase in intracellular Ca2+ is essential for the activation of exocytosis of insulin 

containing granules (Figure 4). The importance of KATP channels in the insulin secretion 

pathway has been demonstrated through the addition of pharmacological agents such 

as sulfonylureas that bind to and induce closure of KATP channels depolarising the 

membrane and triggering insulin release. Agents such as diazoxide that interact with 

SUR1 to open KATP channels have been shown to inhibit glucose stimulated insulin 

secretion (GSIS) [43]. 
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Figure 4. Βeta-cell insulin secretion mechanism in response to glucose stimulus. 

Abbreviations: monocarboxylate transporter 1 (MCT-1), lactate dehydrogenase 

(LDH), glucose transporter (GLUT2), glucokinase (GK), pyruvate (Pyr), tricarboxylic 

acid cycle (TCA), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), adenosine 

triphosphate (ATP), mitochondrial calcium uniporter (MCU), nicotinic acid adenine 

dinucleotide phosphate (NAADP), exchange protein directly activated by cAMP 

(EPAC2), protein kinase A (PKA), cholecystokinin (CCK), glucagon-like peptide 1 (GLP-

1), glucose dependent insulinotropic polypeptide (GIP), vasoactive intestinal peptide 

(VIP), and peptide YY (PYY). [44] 

 

In addition to glucose-stimulated secretion, secretagogues such as gut-derived incretins 

amplify the insulin release under high glucose conditions [45]. These include glucagon-

like peptide-1 (GLP-1), glucose dependent insulinotropic polypeptide (GIP), 

cholecystokinin (CCK), peptide YY (PYY), and oxyntomodulin which are released in 

response to food transit [46]. These incretins trigger an increase in intracellular cAMP 

through the activation of G protein-coupled receptors [44]. Insulin secretion can also be 

inhibited by activation of inhibitory G protein-coupled receptors by adrenaline or 

somatostatin [10]. 
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An alternative mechanism for GSIS that is not reliant on Ca2+ oscillations was discovered 

by blocking the KATP channels using sulfonylurea [47], this is known as the KATP channel 

independent pathway. This pathway has been shown to function in the absence of 

extracellular Ca2+ and to a higher extent when the intracellular Ca2+ concentration is 

consistently high [48]. The mechanism for this pathway is still unclear but is thought to 

involve coupling factors such as NAD(P)H, glutamate, Acyl CoA, reactive oxygen species, 

and / or AMP activated protein kinase (AMPK) [44]. 

 

GSIS is biphasic. This is possibly due to two distinct pools of insulin granules, one docked 

to the plasma membrane ready for release, and one that requires trafficking to the 

membrane [49]. It is proposed that the initial pulse is caused by the release of docked 

insulin granules responding to the Ca2+ increase driven by glucose metabolism and the 

second pulse of insulin is triggered by subsequent oscillations in Ca2+ [50]. The Ca2+ 

oscillations are thought to be regulated in part by the positive product feedback of 

glycolytic enzyme phosphofructokinase (PFK).  

 

1.5.2. Metabolic Phenotype 
 

For optimal insulin secretion in response to glucose it is important that glycolytic and 

mitochondrial metabolism are tightly coupled to produce the maximum amount of ATP 

with oxidative phosphorylation being the main source of ATP. It is estimated that 

mitochondrial metabolism generates 98% of beta cell ATP production [51]. The 

conversion of glucose to pyruvate through glycolysis is shown in figure 5 [52] then, once 

the pyruvate has been shuttled into the mitochondria, it is metabolised through the 

steps of the tricarboxylic acid (TCA) cycle (figure 6) [30] 



27 
 

.  

Figure 5. Schematic showing the steps involved in glycolysis leading to the 

generation of pyruvate from glucose [51] 
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Tight coupling between glycolysis and mitochondrial metabolism relies on a number of 

characteristics of the beta cell such as the expression of glycerol-3-phosphate and 

malate/aspartate shuttles that transfer glycolytic derivatives into the mitochondria for 

ATP generation, and low hexokinase-1 [53], lactate dehydrogenase (LDH), and 

monocarboxylate transporter (MCT) expression [54, 55], as well as the presence of 

anaplerotic reactions [56]. To achieve these metabolic characteristics, the beta cell relies 

on a specific metabolic phenotype comprising several allowed and disallowed genes. 

expression These genes are listed in table 1.  

Figure 6. Schematics showing enzymes and intermediates involved in the TCA cycle 

taken from [42] 
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Table 1. Metabolic phenotype for optimal insulin secretion 

 

The expression of either GLUT1 or GLUT2 ensures that rapid equilibrium between the 

extracellular and intracellular glucose concentrations is achieved. This enables the beta 

cell to respond quickly to small changes in blood glucose concentration.  

 

Glucokinase is the rate limiting step for GSIS due to its high S0.5 for glucose ensuring that 

it is most active at physiological glucose concentrations. Due to this it is deemed the 

glucose sensor for GSIS and ensures low rates of insulin secretion [57]. This step relies 

on exclusive expression of glucokinase with minimal expression of low Km hexokinase 

isoforms [58]. The utilisation  of glucose-6-phosphate in other pathways such as 

glycogen synthesis and the pentose-phosphate pathway is low enabling most of the 

glucose to enter the glycolytic pathway [59]. The cytosolic NADPH/NADP+ 

ratio increases in response to increased pyruvate/malate shuttle activity resulting in 

further inhibition of the pentose-phosphate pathway. 

 

A high NAD:NADH ratio is required by the beta cell to sustain glycolytic flux. However, 

the low LDH activity in the beta cell means NAD+ cannot be regenerated through the 

production of lactate as it is in other cell types. High expression of the G3P and malate 

aspartate shuttles are therefore necessary for the transfer of reducing equivalents into 

the mitochondrial matrix and the regeneration of NAD+ in the cytosol. The G3P shuttle 

Optimal Insulin Secretion 

High Expression Low Expression 

• GLUT1/GLUT2 

• Glucokinase 

• Glycerol-3-phosphate 

shuttle 

• Malate/aspartate shuttle 

• Anaplerotic reactions 

• Hexokinase-1 

• Lactate Dehydrogenase 

• Monocarboxylate 

Transporter 
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(Figure 7) converts dihydroxyacetone phosphate to glycerol-3-phosphate in the cytosol 

in a NADH reduction coupled reaction and then converts glycerol-3-phosphate back to 

dihydroxyacetone phosphate in a reaction coupled to the oxidation of FAD to form 

FADH2  [60, 61]. The Malate/aspartate shuttle (Figure 8) is made up of two antiporters, 

the malate/α-ketoglutarate antiporter and the glutamate/aspartate antiporter [61, 62]. 

In the cytosol, aspartate is converted to malate via oxaloacetate resulting in the 

oxidation of NADH to NAD+, the malate can then be transported across the 

mitochondrial membrane by the malate/α-ketoglutarate antiporter. Once in the 

mitochondrial matrix the malate is converted back to aspartate via oxaloacetate and 

NAD+ is reduced to generate NADH, the aspartate is transported back to the cytosol by 

the glutamate/aspartate antiporter [60]. These mechanisms have the overall effect of 

transporting electrons in the form of NADH or FADH2 into the mitochondrial space to 

enter the electron transfer chain as shown on the inner mitochondrial membrane in 

Figure 7 and thereby increasing the potential ATP generation from glycolysis [57]. 

Inhibition of both G3P and malate/aspartate shuttles in rodent beta cells severely 

decreases the glucose stimulated insulin secretion response [63] and decreased activity 

of either shuttle is associated with T2DM [64]. 
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Figure 7. Diagram showing G3P shuttle and electron transfer chain. [61] 

 

 

Figure 8. Diagram showing malate/aspartate shuttle [60] 
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Anaplerosis is the process by which the intermediates in the TCA cycle are replenished 

and is necessary for the transfer of glucose derivatives through the TCA cycle. One of 

the most important anaplerotic reactions involves the conversion of pyruvate to 

oxaloacetate by pyruvate carboxylase (PC). Around 60% of glucose in beta cells is 

oxidised by pyruvate dehydrogenase to produce acetyl CoA whilst around 40% is 

carboxylated by PC [55]. Together these intermediates produce citrate which can enter 

the TCA cycle. PC activity is higher in beta cells than in most other tissues and its 

inhibition through either the addition of the inhibitor phenylacetic acid or small 

interfering RNA knockdown has been shown to inhibit GSIS [56, 65]. Mutations in the PC 

gene do not lead to a clinically detectable decrease in GSIS but its activity correlates with 

the glucose concentration beta cells are exposed to and the consequent insulin release 

[65]. At higher extracellular glucose concentrations PC is more active as the rates of 

metabolism increase and intermediates must be replenished at a higher rate [66].  

 

In most mammalian cells, pyruvate can also be metabolised by LDH to produce lactate 

which is transported across the plasma membrane by MCT but the expression of LDH 

and MCT in beta cells can interfere with glucose sensing. When LDH was overexpressed 

in INS-1 cells, insulin secretion could be stimulated at low lactate concentrations and 

MCT overexpression resulted in a 3.7-fold increase in lactate transport activity [54]. An 

increase in LDH activity would indicate a shift towards anaerobic metabolism meaning a 

loss in the tight coupling between glycolytic and mitochondrial metabolism required for 

maximal ATP production [54, 59, 67]. Uptake of lactate into the beta cell from the blood 

via MCT can stimulate inappropriate insulin release leading to hypoglycaemia.  The 

expression of LDH and MCT genes in beta cells is repressed during early postnatal islet 

maturation [55, 68] and Sekine et al reported that LDH activity was 100 fold lower in 

beta cells than in other cell types investigated in the same study such as lymphocytes, 

macrophages, heart tissue, and brain cortex [52, 69]. 
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1.6. Cell Connectivity 
 

1.6.1. Cell Connectivity is Essential for GSIS 
 

Insulin secretion from beta cells is dependent on connections with adjacent cells. When 

islets are dispersed into individual beta cells, the insulin secretion response to nutrient 

stimulation is reduced. When beta cells are allowed to reaggregate they can form islet-

like structures known as pseudoislets that mimic the 3D architecture seen in the primary 

islets [70]. The insulin content does not differ between monolayer and 3D culture [71]. 

However, there is a greatly enhanced insulin secretory response in the pseudoislets [72]. 

Beta cell lines are often grown in monolayer culture which prevents the formation of 

the 3D architecture of islets seen in vivo but pseudoislets provide an ideal model for 

investigating the effect of homotypic connections on insulin secretion. The insulin 

secretion response is also higher in islets than in monolayer cultures when other 

stimulus is applied such as sulphonylureas, the KATP receptor stimuli carbachol or 

tolbutamide, and protein kinase activators [71]. The integrated insulin secretion 

response of the islet is greater than the sum of the responses of the individual beta cells 

suggesting that the 3D arrangement is necessary for an efficient insulin secretion 

response. If culture conditions are favourable beta cells will begin to reaggregate into 

3D structures over time in culture, if not, beta cells can adhere to plastic and outgrow. 

 

The improved insulin secretion response of islets is thought to be due to synchronisation 

of calcium oscillations. Beta cells within primary islets display synchronised oscillations 

in cytoplasmic Ca2+ concentration [73, 74]. The response of individual beta cells can vary 

greatly in the threshold for stimulation, the change in calcium concentration and the 

magnitude of the insulin secretion response [75]. If 3D structures begin to form, the 

insulin secretion response can be restored and the synchronisation of the amplitude and 

frequency of the cytoplasmic Ca2+ oscillations is regained [76, 77]. The cytoplasmic Ca2+ 

oscillations in beta cells that occur in response to glucose have been shown to be 

synchronised within islets whilst isolated beta cells do not display this synchronisation 

and have a much larger variability in the threshold for stimulation.  
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It has been reported that the decrease in insulin secretion response is immediate when 

islet or pseudoislets are dispersed. This shows that it is a result of short-term 

intracellular interactions rather than a change in the beta cell phenotype. However, it 

has also been demonstrated that connections between beta cells result in chronic 

changes to the cell proteome. Chowdhury et al used mass spectrometry and 

immunometric-based approaches to show that pathways involved in glycolysis, the TCA 

cycle, and oxidative phosphorylation were enhanced in beta cells cultured as 

pseudoislets when compared to those cultured in monolayer [78]. Phosphofructokinase 

(PFK) and pyruvate kinase were two of the proteins upregulated and showed a 2-fold 

and 4-fold increase in protein expression respectively in pseudoislets compared to 

monolayers. Both of these enzymes are involved in the glycolytic pathway with PFK 

being one of the key regulatory enzymes. PFK is also involved in the generation of 

rhythmic insulin oscillations [79]. All enzymes of the TCA cycle investigated were 

upregulated in pseudoislets, particularly citrate synthase, isocitrate dehydrogenase 

(ICD), and succinate dehydrogenase. Of the proteins involved in the oxidative 

phosphorylation pathway, 19 out of 22 were upregulated in pseudoislets. The 

enhancement of this pathway is supported by another study in which expression of 84 

genes involved in oxidative phosphorylation was quantified in monolayers and 

pseudoislets [80]. It was found that 76% of the genes showed at least a 1.4-fold increase 

in expression but the effect these changes have on glucose metabolism and insulin 

secretion was not investigated. The increased intercellular connectivity within 

pseudoislets was demonstrated by the increase in expression of proteins involved in gap 

junctions, tight junctions and adherent junctions.  

 

1.6.2. Pseudoislet Culture 
 

Due to the difficulty in retaining function in primary rodent beta cells and the scarce 

availability of human islets for use in research, most of the studies mentioned have used 

rodent derived insulinoma beta cell lines such as INS1, MIN6, RINm5F, and BRIN BD11.  

These cell lines have been shown to retain an insulin secretory response to glucose over 

prolonged culture periods. Three insulin secreting human beta cell lines have recently 
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been generated, but are still in the early stages of characterisation [81, 82]. The human 

cell line EndoC-βH1 shows improved GSIS when configured as pseudoislets [83].  

 

The preparation of pseudoislets requires culture on a surface with low negative charge 

to prevent adhesion of the cells to the surface. Ideal surfaces that have been shown to 

allow pseudoislet formation include ultralow adhesion plates [84] , gelatine coated 

plates [77], agarose gels [85] and PEG wells produced by contact photolithography [86]. 

Functioning pseudoislets produced by these methods have been used to generate 

valuable data but the consistency in islet size can be low and larger islets are prone to 

formation of necrotic cores. In an attempt to improve the quality of the pseudoislets, 

stirred suspension methods have been used by culturing the beta cells on an orbital 

shaker [86] or in a spinner flask [87]. This minimises the formation of pseudoislets that 

are too large and improves flow of nutrients to the cells, thereby preventing the 

formation of necrotic cores. Pseudoislets that have been produced in stirred suspension 

have been shown to have enhanced cell survival, propagation, and insulin secretion 

when compared to pseudoislets from static culture over a ten day culture period [88]. 

Pseudoislets can also be produced using a hanging drop method which involves the 

seeding of single drops containing a specified number of beta cells onto a culture dish 

which is then inverted for five to eight days [13]. The size of the pseudoislet can be 

controlled by changing the number of cells in the drop. The outcome was similar to that 

of the stirred suspension methods with smaller and more consistent pseudoislets. The 

hanging drop method is labour intensive but can be considered as a cheaper alternative 

to stirred suspension cultures when only small numbers of pseudoislets are required. 

 

Communication within islets occurs through autocrine and paracrine actions of 

hormones such as insulin, glucagon and somatostatin. Beta cells in islets are also linked 

directly by intracellular junctions, integrins, receptors, and cell adhesion molecules. 

Many of these connections have been implicated in the regulation of insulin secretion 

in response to glucose [89]. 
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1.6.3. Cell-Cell Interactions 
 

i.  Cell Adhesion Molecules 
 

The cell adhesion molecule (CAM), N-CAM acts to maintain cell-cell interactions and may 

be involved in regulating beta cell proliferation [90]. The transmembrane CAM E-

Cadherin is present in the beta cell plasma membrane and forms calcium dependent 

homodimers with cadherins on neighbouring cells [1]. E-cadherin plays an important 

role in the formation of pseudoislets as shown by the culture of MIN6 in the presence 

of an E-cadherin antibody which inhibits the formation of pseudoislet structures [77]. 

The aggregation of beta cells is calcium dependent and can be reversed through culture 

in Ca2+ free media. The intracellular region of the E-Cadherin interacts with the actin 

cytoskeleton of the beta cell and contributes to the regulation of beta cell function and 

proliferation through coupling to the β-catenin/Wnt signalling pathway [77]. The 

aggregation of beta cells facilitated by E-cadherins enables other cell-cell interactions to 

form such as through connexins and EphA/Ephrin-As.  

 

ii. EphA-Ephrin-A system.  
 

EphA receptor tyrosine kinases and their Ephrin-A ligands are located on the plasma 

membrane of beta cells and are classified into A and B subclasses  [91]. Most EphAs bind 

to Ephrin-As and most EphBs bind to Ephrin-Bs activating either a forward or a reverse 

signalling pathway. When Ephrin-A-Fc-fusion proteins bind to EphAs the forward 

signalling pathway is activated resulting in inhibition of basal insulin secretion. The 

reverse signalling is activated when EphA-Fc-fusion proteins bind to Ephrin-As. This 

pathway is predominant in the presence of glucose and enhances glucose stimulated 

insulin secretion [1]. When beta cells are arranged in pseudoislets the ephAs and Ephrin-

As can interact with those of adjacent cells as shown in Figure 9.  
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Konstantinova et al discovered that EphAs are concentrated on insulin granules and are 

incorporated into the plasma membrane of beta cells during insulin secretion. The 

EphAs are then either phosphorylated at low glucose concentrations resulting in further 

inhibition of insulin secretion in a negative feedback mechanism or they are 

dephosphorylated under high glucose conditions favouring the reverse signalling 

pathway and increasing insulin secretion. It is proposed that the coexpression of EphA 

and Ephrin-A in β-cells is important for the regulation of the insulin secretion response 

[91]. A study by Jain et al showed that insulin secretion at high glucose concentrations 

could be further increased by the addition of small molecular weight Eph inhibitors  [6]. 

 

iii. Connexins  
 

A gap junction is formed when a connexon in the plasma membrane of a cell docks to a 

connexon of a neighbouring cell to form a channel that permits the transfer of small 

molecules up to 900 Da between cells. So far, 21 different connexin isoforms have been 

identified; these are expressed in varying proportions throughout different tissues in the 

body [92]. Connexons can dock with a connexon of the same isoform to form homomeric 

channels or with one made from different connexins to form heterotypic channels, this 

allows a large diversity of possible channels with varying properties. Connexin 

Figure 9. EphA-Ephrin-A bidirectional signalling between two β-cells [91] 
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hemichannels are involved in paracrine signalling, ATP, glutamate, NAD+, and 

prostaglandins. In neurons, connexins can increase rates of synaptic transmission and 

enable cells within excitable tissue to coordinate a synchronised response [93]. They 

also play a role in proliferation and apoptosis, and homeostasis in non-excitable tissue 

[92].  

The principal connexin isoform expressed in pancreatic beta cells, as well as neurons 

within the central nervous system, is connexin 36. Deletion of Cx36 in mouse models 

results in impaired function of neuronal and retinal cells and an increase in basal insulin 

secretion in the beta cells [94]. Evidence of other connexins within the islet has also been 

reported. Cx43 and Cx45 in mice, and Cx30.3, Cx31, Cx31.1, Cx31.9, Cx37, and Cx45 in 

human models. It is possible that these connexins form heterotypic channels with the 

Cx36 in beta cells aiding communication between the beta cells and vasculature or 

exocrine tissue [95].  

 

The synchronisation of the beta cell insulin response relies largely on connexin 36 (Cx36) 

gap junctions that provide electrical and metabolic coupling between cells. In the case 

of beta cells, the alignment of connexons relies on E-Cadherins. Gating of the Cx36 is 

controlled through a variety of environmental factors such as pH, the voltage across the 

channel, or the intracellular Ca2+. 

 

The importance of Cx36 in beta cells was first investigated by comparing monolayer and 

islet cultures since intercellular connexin channels cannot form between the isolated 

cells in monolayer. It was documented that beta cells that lack the intercellular 

connections displayed irregular Ca2+ oscillations that were not synchronised between 

beta cells and reduced overall GSIS indicating that the connections are essential for the 

optimal functioning of the beta cells [89]. This has since been confirmed in multiple 

studies both in vitro and in vivo through genetic Cx36 knockdown and reversibly blocking 

channels using lipophilic drugs [96]. Some studies have reported lower basal insulin 

secretion in beta cells connected by Cx36 channels than in isolated cells, this could be 

explained by the diffusion of Ca2+ ions throughout the beta cells allowing the less active 
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beta cells to prevent the more active cells from initiating an insulin secretion response 

at low glucose. However, the change in basal insulin secretion was not consistent in all 

studies with some reporting no increase in Cx36 deficient islets [95]. 

 

It has been shown that it is not necessary for all beta cells within the islet to be 

interconnected by Cx36 channels with an improvement in function detected when only 

two or three beta cells are connected and (fluorescence recovery after photobleaching) 

FRAP images have shown that not all neighbouring beta cells are connected but that 

connection patterns occur over long distances [97]. Overexpression of Cx36 may provide 

some protection against ER and oxidative stress and pro-inflammatory cytokines.  

 

Work by Squires et al suggests that intercellular communication via gap junctions is not 

solely responsible for the synchronisation of Ca2+ oscillations or the increase in insulin 

response [98]. MIN6 cells were cultured as monolayers or pseudoislets and gap junctions 

were blocked with the addition of either heptanol or 18-a-glycyrrhetinic acid (GA). The 

addition of heptanol at low concentrations resulted in a decrease in frequency of Ca2+ 

oscillations but the synchronisation of the oscillations between beta cells was not 

affected. Addition of GA, which has a higher potency in the uncoupling of gap junctions, 

decreased the amplitude of the Ca2+ oscillations. However, like the heptanol, GA did not 

interrupt the synchronisation of the oscillations between the β-cells or the initiation of 

insulin secretion. 

 

1.7. Hypothesis 
 

Evidence suggests that efficient glucose stimulated insulin secretion in beta cells is 

dependent on both tight coupling between glycolysis and mitochondrial metabolism and 

through the maintenance of intercellular connectivity present in islets or pseudoislets. 

However, it is not clear if the cell connectivity influences the metabolic phenotype of 

the beta cell. The hypothesis of this study is that cell connectivity within islet structures 
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maintains the tight coupling between glycolysis and mitochondrial metabolism which is 

essential for appropriate GSIS. 

 

1.8. Aims 
 

This thesis aims to explore the impact of cell connectivity on the metabolic 

characteristics of beta cells and determine the consequent impact on GSIS in both 

mouse and human models. The three main objectives are: 

1. To compare effects of 2D vs 3D culture on the metabolic function of beta cells. 

2. To determine whether any changes in function correlate with changes in the 

metabolic phenotype of the beta cells. 

3. To explore a role for cell-cell interactions in regulating these metabolic changes.  

  



41 
 

CHAPTER 2. METHODS 
 

2.1. Reagents 
 

All reagents were obtained from Sigma Aldrich unless otherwise stated. High range rat 

insulin ELISA kits were obtained from Mercodia (Uppsala, Sweden). Dulbecco’s modified 

eagle medium (DMEM), foetal bovine serum (FBS), penicillin-streptomycin, trypsin-

EDTA, sodium pyruvate, and Hepes buffer were obtained from Thermo Scientific 

(Paisley, UK). Magnesium chloride, glucose, Triton-X 100, sodium hydroxide, 

triethanolamine buffer, and EDTA were obtained from BDH Laboratory Supplies (Poole, 

Dorset, UK). MIN6 cells were kindly provided by Prof. J.-I. Miyazaki (University of Tokyo, 

Japan). 

 

2.2. Cell Culture 
 

2.2.1. MIN6 

 

i. MIN6 Maintenance 
 

Mouse insulinoma MIN6 cells (between passages 21 to 29) were cultured in 25cm2 and 

75cm2 cell culture flasks (Greiner Bio-one Ltd) in Dulbecco’s modified Eagle’s Medium 

(DMEM) containing 25mM glucose and 25mM HEPES and supplemented with 100mM 

pyruvate, 15% foetal bovine serum (FBS), 5µl/l β-mercaptoethanol, 75mg/l penicillin, 

50mg/l streptomycin and cultured in a humidified incubator at 37°C in 5% CO2. Media 

was replaced every 2 to 3 days and the cells were passaged when confluent using 

trypsin-EDTA.  

ii. MIN6 counting 
 

For counting, media was removed, and cells were washed twice with PBS, then 0.5ml 

trypsin-EDTA was added to a 25cm3 flask of confluent cells and incubated at room 

temperature for three to five minutes. Once cells had detached the suspension was 

transferred to a universal containing 5ml of media. A stock solution was prepared by 
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adding 5µl cell suspension to 45µl PBS. A glass coverslip was placed on a 

haemocytometer and 10µl of the diluted cell suspension was added to the coverslip. 

Cells were counted in the four corner squares and the centre squares and the number 

of cells was calculated using Equation 1. 

𝑻𝒐𝒕𝒂𝒍 𝑪𝒆𝒍𝒍𝒔/𝒎𝒍 = 𝒄𝒆𝒍𝒍𝒔 𝒄𝒐𝒖𝒏𝒕𝒆𝒅
𝒅𝒊𝒍𝒖𝒕𝒊𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓

𝒏𝒐. 𝒔𝒒𝒖𝒂𝒓𝒆𝒔
𝟏𝟎, 𝟎𝟎𝟎 

Equation 1. calculation for total number of cells per ml 

 

 

iii. MIN6 Experimental Culture 
 

The monolayer cultures were prepared by culturing MIN6 on either 6 or 24 well plates 

for five days. The seeding density used reflected the density used in the pseudoislet 

culture ranging from 5x103 to 5x105 cells/cm2. 

 

Pseudoislets were initially prepared by culturing MIN6 on 1% (wt) gelatin coated 6 well 

plates and petri dishes at seeding densities of 2.5x104, 2.5x105 and 2.5x106 cells/ml. To 

compare seeding densities MIN6 were then cultured in petri dishes at densities of 

2.5x104, 2.5x105 and 2.5x106 cells/ml or 3x103, 3x104, and 3x105 cells/cm2 respectively. 

All further pseudoislets were cultured on petri dishes for five to six days with an initial 

seeding density of either 4.3x105 cells/cm2 or 2.8x105 cells/ml. The media was replaced 

by carefully transferring the pseudoislets into a Falcon® 15mL polystyrene conical 

centrifuge tube, allowing the pseudoislets to form a pellet by gravity so that the media 

could be aspirated and replaced. The petri dishes were washed with (phosphate 

buffered saline) PBS and the pseudoislets in the fresh media replaced.  

 

2.2.2. Human Islets 
 

Human islets (LDIS247, LDIS248, and LDIS256) were isolated from three donors without 

diabetes at NHS Blood and Transplant, Barrack road, UK, with appropriate ethical 

approval. Table 2 shows Islet donor information. Islets were maintained in CMRL media 
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supplemented with 0.5% human albumin serum, 50μg/ml streptomycin and 50μg/ml 

penicillin. On receipt, Islets were given one day to recover from transportation before 

being used for experiments. 

Code Age Gender BMI Donor Type Purity 

LDIS247 48 F 32.49 DBD 80% 

LDIS248 49 F 26.63 DCD 82.5% 

LDIS246 53 M 25 DBD 80% 

Table 2. Islet Donor Information 

DBD = donor after brain death, DCD – donor after cardiac death 

 

2.3. Generation of Stable Inducible MIN6 Cx36 Knockdown Cell Line 
 

2.3.1. Lentiviral Promotor Selection 
 

The optimal promotor for transduction of MIN6 was selected using a SMARTchoice 

promotor selection kit. This kit allowed transduction of MIN6 with seven different 

promotors, hCMV, mCMV, hEF1α, mEF1α, PGK, and UBC. The most active promotor 

could be selected through assessment of visual intensity (SP-001000-01, Dharmacon).  

 

2.3.2. Transduction of Lentiviral Particles 
 

Three SMARTvector shRNA lentiviral constructs listed in table 3 were ordered containing 

the mCMV promotor and targeting Cx36 expression along with a non-targeting control 

(VSC6570).  

KD Catalogue Code Antisense Sequence Target 

1 V3SM7672-232247995 CGTAATTCCCTCTAGCTTG 3’ UTR 

2 V3SM7672-233160478 TAGAGTACCGGCGTTCTCG ORF 

3 V3SM7672-235462855 TTGATGCAGGGGTAACGGT ORF 

Table 3. SMARTvector shRNA Lentiviral Constructs 

 

On day one of transduction, a 96 well plate was seeded with P25 MIN6 cells at a density 

of 30,000 cells/well. On day two cells were transduced with the three constructs and the 
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control with anticipated functional titres of 2.5x106 TU/ml for the targeting constructs 

and an anticipated functional titre of 3x106 TU/ml for the control. The MIN6 and shRNA 

constructs were incubated with 8μg/ml polybrene in FBS free media for six hours. After 

six hours the transduction medium was replaced with MIN6 culture medium. On day 

four 1μg/ml puromycin was added for at least three days to select transduced cells. The 

shRNA expression was induced by addition of 1mg/ml doxycycline for 48 hours and 

transduction was confirmed by checking TurboGFP expression using fluorescence 

microscopy and through western blot analysis.  

 

2.3.3. Maintenance of Stable Cell Line 
 

The stable MIN6 cell line with inducible Cx36 knockdown along with another cell line 

transfected with a scrambled control were cultured in the same conditions as the MIN6 

with 1μg/ml puromycin added. Pseudoislets were generated by culturing the cells on 

petri dishes for five days. Puromycin was removed during pseudoislet formation. The 

knockdown was induced over the final 48 hours of the pseudoislet formation by the 

addition of 1µg/ml doxycycline on day three of pseudoislet culture.  

 

2.4. Islet Equivalent Counts 
 

Islet equivalent quotients (IEQ) were calculated where one islet equivalent is equal to 

an islet with a diameter of 150µm. The volume of media in each petri dish containing 

pseudoislets was measured and recorded as the pool volume. The pseudoislets were 

mixed by inverting and 100µl samples were transferred to a six well plate for counting. 

Counting was performed at 10x magnification on a microscope with a measuring grid in 

the eyepiece. The islets were measured and classified according to size and the totals 

were multiplied by an islet equivalent conversion factor. The total number of free islet 

equivalents was defined as the sum of all islet equivalents x pool volume/sample size 

[99].  
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2.5. Propidium Iodide Viability Staining 
 

A viability stain was prepared by adding 10µl of prodidium iodide dye (P1304MP, 

Thermo Fisher) and 1µl 10mM H33342 to 1ml of media. A sample of 100 pseudoislets 

(P21 to P25) was incubated in 500µl of the PI stain for 10 minutes at room temperature 

then the stain was replaced with fresh media. The pseudoislets were transferred to a 24 

well plate and imaged using light microscopy and fluorescence microscopy on a Nikon 

Eclipse TE2000-S. Images were analysed using CellProfiler software to calculate the 

percentage viability of each islet.  

 

2.6. Enzyme Activity Assays 
 

Enzyme activity assays were performed at 37°C in 96 well plates using the Spectramax 

plate reader (Molecular Devices) and analysed using Softmax pro software. Absorbance 

was read at 340nm every minute for 20 minutes unless otherwise specified. The enzyme 

activity is expressed as mU/mg protein.  

 

For each sample 500µl of extraction buffer was added to either one well of a 6 well plate 

for monolayer culture or 800 pseudoislets. The extraction buffer was prepared with 

150mM KCl, 3mM Hepes, 1mM dithiothreitol (DTT), 1mM Benzamidine, and 10µl PIC 

(P8340 Sigma Aldrich). Supernatant and cell pellet fractions were then separated by 

transferring half of each sample to a separate 1.5ml Eppendorf and centrifuged at 9000 

rpm (Harrier 18/80R) for five minutes. The supernatant was removed and saved, and 

the remaining pellet was resuspended in 400µl of the extraction buffer. The total cell 

homogenate, pellet and supernatant were then assayed individually. Enzyme 

concentrations were calculated on Microsoft excel using equation 2.  
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𝑐 =

𝐴
(𝜀 × 𝑙)

× 𝐷𝐹 × 𝑉

𝑃
 

 

Equation 2 

 

Originally all enzyme activity assays were completed using earlier passage, P21 to P25 

MIN6. When data showed a trend towards changes in activity but did not reach 

statistical significance, these assays were repeated using higher passage MIN6, P26 to 

P29. 

2.6.1. Glycolytic Enzyme Activity Assays 
 

i Hexokinase/Glucokinase 

 

Hexokinase (HK) and glucokinase (GK) activities were assayed by measuring the NADH 

production in the following reaction.  

Glucose + ATP    glucose 6-phosphate + ADP 

 

Glucose 6-phosphate + NAD       6-phosphogluconate + NADH 

 

Each sample was centrifuged at 9000 rpm (Harrier 18/80) in a 1.5ml Eppendorf and the 

supernatant transferred to a new Eppendorf. 80µl of each supernatant was pipetted into 

wells of a 96 well with 80µl of the main reagent containing 50mM Hepes (pH 7.8), 

100mM KCl, 2mM MgCl2, 6mM ATP/Mg2+, 1mM NAD, 2mM DTT, and 1.5U/ml glucose 

6-P dehydrogenase. A glucose concentration of 0.5mM was used to measure low Km HK 

activity and 50mM glucose to measure total HK activity. GK activity was calculated by 

the difference in activity between these two conditions.  

 

 

Equation 1. Equation based on the beer lambert law used to calculate the enzyme 

concentration (mU/mg).  c=enzyme activity concentration, A=absorbance, ε=molar 

extinction coefficient (NADH=6.22 and DTNB=13.6), l=path length (0.45 for 200μl 

sample, and 0.36 for 160μl sample), v=volume of initial cell suspension, DF=dilution 

factor, and P=protein concentration. 

G6PDH 

GK/HK 
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ii Phosphoglucoisomerase 

 

Phosphoglucoisomerase (PGI) activity was measured by recording the NADH production 

in the following reaction. 

Fructose 6-phosphate                    Glucose 6-phosphate 

Glucose 6-phosphate + NAD    Glucose 1-phosphate + NADH 

 

Each sample was diluted 1:5 with the extraction buffer described above then 20µl was 

pipetted into a 96 well plate with 180µl of the main reagent containing 50mM Hepes, 

1mM MgCl2, 0.5mM NAD, 2mM fructose 6-phosphate, 1mM DTT, and 2.5U/ml glucose 

6-P dehydrogenase.  

 

iii Phosphofructokinase 

 

PFK1 activity was measured by recording the rate of oxidation of NADH in the following 

reactions. 

Fructose 6-phosphate  + ATP                       Fructose 1,6-bisphosphate  + Pi 

Fructose 1,6-bisphosphate                  Dihydroxyacetone phosphate + Glyceraldehyde 3P 

Glyceraldehyde 3-phosphate                     Dihydroxyacetone phosphate 

Dihydroxyacetone phosphate + H+ + NADH                Glycerol 3-phosphate + NAD+ 

For each sample, 20µl of the total cell homogenate was pipetted into a 96 well plate 

with 180µl of the main reagent containing, 20mM Tris, 100mM KCl, 2mM NH4Cl2, 3mM 

MgCl2, 1mM ATP/MgCl2, 0.16mM NADH, 2mM AMP, 10mM fructose 6-phosphate, 12µl 

α-glycerophosphate dehydrogenase-triosephosphate isomerase from rabbit muscle 

(sigma Aldrich, G1881), and 24µl aldolase. 

 

 

G6PDH 

PGI 

aldolase 

TPI 

G3P 

PFK-1 
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iv Aldolase 

 

Aldolase activity was recorded by measuring the oxidation of NADH in during the 

following reactions: 

Fructose 1,6-bisphosphate               Dihydroxyacetone phosphate  +  Glyceraldehyde 3-P 
 

Glyceraldehyde 3-phosphate                     Dihydroxyacetone phosphate 
 

Dihydroxyacetone phosphate + H+ + NADH                Glycerol 3-phosphate + NAD+ 
 

For each sample, 20µl of the total cell homogenate was pipetted into a 96 well plate 

with 180µl of the main reagent containing, 20mM Tris, 100mM KCl, 0.32mM NADH, 

10mM fructose 1,6-bisphosphate, and 12µl α-glycerophosphate dehydrogenase-

triosephosphate isomerase from rabbit muscle (G6755, Sigma Aldrich). 

 

v Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

 

GAPDH activity was measured by recording the rate of oxidation of NADH during the 

following reactions: 

Glycerate 3-phosphate  +  ATP                 glycerate 1,3-bisphosphate  + ADP 

G1,3-P2 + NADH + H+                 Glyceraldehyde 3-phosphate + NAD+ + Pi 

For each sample 20µl of the sample to a 96 well plate with 180µl of main reagent 

containing, 0.1M triethanolamine (pH 8), 6mM glycerate 3-phosphate, 0.18mM EDTA, 

1.12mM ATP, 0.4mM NADH, 5mM MgSO4, and 5µl Phosphoglycerokinase (E6126, Sigma 

Aldrich). 

 

 

 

 

TPI 

G3P 

aldolase 

PGK 

GAPDH  
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vi Pyruvate Kinase 

 

Pyruvate kinase activity was measured by recording the rate of oxidation of NADH during 

the following reactions: 

PEP  +  ADP          Pyruvate  +  ATP 

Pyruvate  +  NADH  +  H+       L-lactate  +  NAD+ 

 

Each sample was diluted 1 in 5 with the extraction buffer and 20µl of the total cell 

homogenate was pipetted into a 96 well plate with 180µl of the main reagent 

containing, 0.1M triethanolamine, 4mM phospho(enol)pyruvic acid (PEP), 4mM ADP, 

0.4mM NADH, 5mM MgSO4, and 5µl 25mg/ml LDH. 

 

vii Lactate Dehydrogenase 

 

LDH activity was measured by recording the rate of oxidation of NADH during the 

following reaction: 

Pyruvate  +  NADH  +  H+              L-lactate  +  NAD+ 

For each sample, 50µl of the total cell homogenate was pipetted into a 96 well plate 

with 150µl of the main reagent containing 0.2M KPi, 0.2mM NADH, and 2.8mM 

pyruvate.  

  

LDH 

PK 

LDH 
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2.6.2. Mitochondrial Enzyme Activity Assays 
 

viii Pyruvate Carboxylase 

 

PC activity was measured by recording the rate of oxidation of NADH during the following 

reactions: 

Pyruvate  +  ATP  +  CO2          Oxaloacetate  +  ADP  +  Pi 
 

Oxaloacetate  +  NADH  +  H+       malate  +  NAD+ 

Samples were assayed by adding 20µl of the sample to a 96 well plate with 180µl of main 

reagent containing 80mM Tris, 2mM ATP, 16mM Sodium pyruvate, 22mM KHCO3, 9mM 

MgSO4, 0.32mM acetyl CoA, 0.16mM NADH, and 10µl malate dehydrogenase L(MDH-

RO, Roche) 

ix Citrate Synthase 

 

Citrate Synthase activity was measured by recording the rate of TNB production during the 

following reaction: 

Acetyl CoA  +  OAA  +  H2O     Citrate  +  CoA-SH  +  H+  +  H2O 
 

CoA-SH  +  DTNB          TNB  +  CoA-S-S-TNB 

Samples were assayed by adding 20µl of the sample to a 96 well plate with 180µl of main 

reagent containing 50mM Tris (pH8), 0.3mM Acetyl CoA, 0.24mM oxaloacetate, and 

0.2mM DTNB. Absorbance was read at 412nm every minute for 20 minutes. 

 

x Isocitrate Dehydrogenase (NADP linked) 

 

ICD activity was measured by recording the rate of NADP reduction in the following reaction: 

Isocitrate + NADP+ + Mg2+                    α-ketoglutarate + NADPH + H+ +CO2 

MDH 

PC 

CS 

ICD 
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Samples were assayed by adding 20µl of the sample to a 96 well plate with 180µl of main 

reagent containing 50mM KPi (pH 7.4), 10mM MgCl2, 2.5mM isocitrate, and 0.25mM NADP 

(94596). 

 

xi α-ketoglutarate Dehydrogenase 

 

α-ketoglutarate Dehydrogenase activity was measured by recording the rate of NAD 

reduction in the following reaction: 

α-ketoglutarate  +  NAD+ +  Co-ASH+ TPP           succinyl CoA  +  NADH  +  H+  +  CO2 

 

Samples were assayed by adding 40µl of the sample to a 96 well plate with 160µl of main 

reagent containing 100mM Tris (pH 8), 0.5mM NAD, 3mM MgCl2, 0.2mM Thiamine 

Pyrophosphate (TPP), 0.04mM Coenzyme A, 0.0025mM rotenone, and 5mM α-

ketoglutarate. 

xii Malate Dehydrogenase 

 

Malate dehydrogenase activity was measured by recording the rate of NAD reduction in 

the following reaction: 

Oxaloacetate  +  NADH  +  H+       malate  +  NAD+ 

Each sample was diluted 1:5 with the extraction buffer then 20µl of the sample to a 96 

well plate with 180µl of main reagent containing, 0.2M KPi, 0.2mM NADH, and 2.78mM 

oxaloacetate. 

 

2.7. Western Blotting 
 

MIN6 cells (P26 - P29) from each well of a confluent 6 well plate were extracted in 2ml 

of extraction buffer comprising of 100mM Tris-HCL pH 7.4, 100mm NaCl, 2mM EDTA, 

25mM NaF, 0.1% Triton X-100, 0.1mM Na3VO4, 1mM Benzamidine, 1:1000 dilution 

Protease Inhibitor Cocktail (Sigma Aldrich, P8340). Samples were mixed 1:4 with loading 

MDH 

αKG 
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buffer (121.4 mM Tris (pH6.8), 1.94% SDS, 10% glycerol, 0.04% bromophenol blue, 4% 

mercaptoethanol) and heated to 100°C for five mins and 10-40μg of protein were loaded 

in the gels. The gels were either made from 10% resolution gel (10% acrylamide, 39mM 

Tris (pH 8.8), 0.1% SDS, 1mM Temed, 1.7mM APS) and stacking gel (3% acrylamide, 

0.217mM Tris pH 6.8), 0.05%  SDS, 1.7mM Temed and 2.6mM APS) or readymade gels 

were used (4-12% SDS-PAGE gels (Bio-Rad, Hertfordshire, UK). Gels were run at 90V 

while samples moved through the stacking gel then 180V for 45-60 mins.  

 

Proteins were then electro-transferred at 15V and 0.8 Amps from the gels to PVDF paper 

that had been pre-soaked in methanol. The Blot was then blocked in 5% milk for 1 hour 

then washed in TBST, TBST was composed of 25mM Tris (pH7.4), 144mM NaCl, 5ml/L 

Tween-20 (P1379, Sigma Aldrich). Blots were incubated with primary antibodies 

prepared in 0.5% milk overnight at 4°C, 1:200 (GLUT2 (NBP2-22218SS), 1:100 anti-

monocarboxylic acid transporter 1 (ab90582), 1:200 connexin 36/GJA9 (QG219843), 

1:200 anti-hexokinase 1 (sc-46695). The blot was then washed in TBST and incubated 

with the secondary antibody in a 1:2500 dilution with 0.5% milk for 1 hour at room 

temperature (ant-rabbit HRP (P0448) and anti-mouse HRP (P0260)). Bands were 

detected using enhanced chemiluminescence and quantified using image J. 

 

2.8. Glucose Stimulated Insulin Secretion Enzyme-Linked Immunosorbent 
Assay (GSIS ELISA) 

 

MIN6 (P21 – P29) were cultured for five days in 24 well plates for monolayer cultures 

and petri dishes for pseudoislet culture. On day five the monolayers and pseudoislets 

were washed in Krebs-Hepes buffer containing 119mM NaCl, 4.74mM KCl, 2.54mM 

CaCl2, 1.19mM MgCl2, 1.19mM KH2PO4, 25mM NaHCO3, 10mM Hepes (pH 7.4), and 0.5% 

bovine serum albumin (BSA). The petri dish was washed in phosphate buffered saline 

and the pseudoislets were replaced in 7ml of the Krebs-Hepes buffer with 0.5mM 

glucose. Both the pseudoislets and the monolayers were incubated in the 0.5mM buffer 

for 30 minutes at 37°C then washed twice in the glucose free buffer. Approximately 200 

pseudoislets were transferred to each well of a 24 well plate and incubated along with 
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corresponding monolayers for a further hour in Krebs-Hepes buffer containing either 

5mM glucose or 25mM glucose. The supernatant was removed, and the insulin content 

measured using a high range rat insulin ELISA kit. The remaining cells were washed in 

PBS and extracted into 0.05% Triton-X 100 so that the protein concentration could be 

calculated through a Bradford assay and used to normalise the insulin activity. 

 

2.9. Protein Quantification using the Bradford Method 
 

Cells extracted for western blotting, enzyme activity analysis and GSIS ELISAs were 

diluted in 0.05% Triton X-100 solutions and sonicated for 20 seconds. The protein 

content was calculated using the Bradford method. 200μl of 1:5 v/v Biorad reagent 

(#5000006, Biorad) was added to 10μl of each sample as well as to 10μl samples of 

protein standards at 25, 50, 100, 150, 200, 300, and 500μg/ml in a 96 well plate. The 

plate was assayed on a plate reader using end point assay at 595nm. The concentrations 

of samples were calculated against the standard curve using Microsoft excel.  

 

2.10. Metabolic Analysis  
 

2.10.1. Seahorse XFe96 Analyser  
 

The seahorse bioanalyser requires a microplate in which cells or 3D structures are plated 

and a cartridge in which drugs and compounds to be injected into the plate are loaded 

[100]. The cartridge contains wells for four different injections to be preloaded and 

injected over the course of the experiment into each well. It also has a probe which sits 

above the samples with two sensors, one to measure pH and one to measure O2 

concentration. 

 

MIN6 monolayers (P26 – P29) were seeded onto plates five days before the assay. 

Pseudoislets were formed over five days in a petri dish then transferred to a spheroid 

microplate. Monolayers were seeded at a density of 1x104 cells/well onto a XF96 cell 
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culture microplate the day before testing. The pseudoislets were placed in XFe96 

spheroid microplates. The wells of the spheroid plate were first coated with cell-takTM 

(Corning) in 0.093mM NaHCO3 pH8 and incubated at 37°C for 20 minutes before washing 

in distilled water. One pseudoislet was then placed in the centre of each well with 180μl 

culture media and the plate was centrifuged at 200g for one minute to aid attachment.  

On the day before the assay, the cartridge was hydrated by filling each well of the utility 

plate with 200μl of XF calibrant (100840-000, Agilent) ensuring each sensor of the 

cartridge is submerged then incubated in a non-CO2 incubator overnight. On the day of 

the assay, the media on the assay plates was replaced with either mitochondrial stress 

test base media (103015-100, Agilent) containing 10mM Glucose, 1mM sodium 

pyruvate and 2mM L-glutamine or glycolysis stress test medium (103020-100, Agilent) 

containing 0.5mM glucose and 2mM L-Glutamine and the plate was incubated for one 

hour in a non-CO2 incubator. During the incubation, the injections were prepared and 

loaded into the cartridge. For measurement of the extracellular acidification rate (ECAR), 

injections were 200mM glucose, 20μM oligomycin then 500mM 2-DG. For measurement 

of the oxygen consumption rate (OCR), the injections prepared were 20μM oligomycin, 

5μM FCCP, then 5μM rotenone and antimycin A. These solutions are 10 times the final 

concentrations achieved once the compounds are injected into the well.   

 

2.10.2. Seahorse XFe24 Analyser  
 

Monolayer plates were set up as they were for the XFe96 but using 24-well plates 

instead of 96-well plates. Initially seeding densities of 60,000, 80,000, and 100,000 cells 

per well were used then 80,000 cells per well were plated in each subsequent 

experiment. Around 300 pseudoislets were placed in the centre of each well (excluding 

blanks) of a seahorse islet capture plate and an islet capture screen was placed on top 

of each sample. Plates were incubated in the seahorse base described in the previous 

step for one hour prior to incubation. Compounds injected for both OCR and ECAR 

measurements were glucose, oligomycin, FCCP, and antimycin A. Protein was then 

extracted in 0.05% Triton-X 100 so that the protein concentration could be calculated 

through a Bradford assay and used to normalise readings. ATP from oxidative 
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phosphorylation = OCRbasal – OCRoligo where OCRbasal is the OCR measured after the 

respiration of the MIN6 has reached equilibrium after addition of glucose and OCRoligo is 

the minimum OCR after addition of oligomycin. ATP from glycolysis = ECARtot/BP – (10 

(pH-pK1) /(1+10 (pH-pK1) ))(max H+/O2)(OCRtot – OCRAA) where ECARtot/BP is the total 

cellular ECAR divided by the buffering capacity of the media and OCRtot – OCRAA is the 

remaining OCR after mitochondrial metabolism is blocked by the addition of the 

complex III inhibitor, antimycin A. (1)  

 

2.11. RT-PCR 
 

RNA was extracted from MIN6 samples (P26 – P29) using a High Pure RNA Isolation kit 

(Roche, 11828665001). To quantify the RNA, 2µl of each sample of the sample was 

added to 100µl of distilled water and RNA standards were prepared at 5, 10, 20, 40, and 

50µg/ml. The samples and standards were pipetted in 100µl volumes onto a UV 

microtitre plate and absorbance was measured at 260nm by a spectramax plate-reader. 

Then cDNA was synthesised from 0.5μg RNA made up to 9μl with distilled water and 

treated with 2μl of 50µM random hexamers and incubated for 10 minutes at 70°C. the 

RT mix was prepared containing 4μl MMLV buffer, 0.5μl MMLV, 0.5μl 10mM dNTP mix 

and 4μl water per sample. From this mix, 9μl were added to each sample and this was 

incubated at 37°C for 50 minutes followed by 70°C for 15 minutes.  

 

Taqman based real time RT-PCR was performed using 18μl of taqman mix with 2μl of 

either H2O blank, RNA control, cDNA standard or sample. Primer sequences are listed in 

4. Relative mRNA levels were calculated from Δ cycle thresholds and corrected for the 

Rplp0 gene.  
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Gene Gene Symbol Species Transcript detected 

Lactate Dehydrogenase A LDHa 
Mouse, 

Human 

Mm01612132_g1 

Hs01378790_g1 

Glucose Transporter Protein 1 Slc2a1 
Mouse, 

Human 

Mm00441480_m1 

Hs00892681_m1 

Ribosomal Protein Lateral 

Stalk Subunit P0 
RPLP0 

Mouse, 

Human 

Mm00725448_s1 

Hs99999902_m1 

Table 4. Primer Sequences for RT-PCR 

 

2.12. Statistical Analysis 
 

All statistical analysis was carried out on GraphPad Prism 6 software. The mean and 

standard error mean were calculated in each case and means were compared using a 

paired t test to test for significance at P<0.05, n numbers are representative of number 

of experiments.  
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CHAPTER 3. OPTIMISATION OF PSEUDOISLET FORMATION 
 

3.1. Introduction 
 

Loss of functional beta cell mass is central to the development of both type 1and type 2 

diabetes. One indicator of good beta cell function is the insulin secretion response under 

basal and stimulating levels of glucose. Many independent investigations have shown 

that increasing cell-cell contacts improved glucose stimulated insulin secretion (GSIS) 

from beta cells in human and rodent models, in both primary cells and cell-lines [14, 76-

78, 83, 88, 89, 101-103]. However, the specific pathways that lead to the improved 

response are unknown. From further studies, it is known that appropriate GSIS relies on 

ATP production in response to nutrients, particularly glucose[11, 43, 51, 67]. However, 

whether improved cell-cell interactions alter metabolic flux and/or ATP production by 

beta cells has not been examined. In this study the influence of cell to cell connections 

on metabolic function in the MIN6 pancreatic beta cell line will be assessed. 

 

One way to introduce intracellular connections between beta cells is to allow the cells 

to aggregate in solution to form 3D structures known as pseudoislets as described in 

section 1.5.2. A variety of culture methods have been used to allow the pseudoislets to 

form (Figure 10), they have been grouped into four different methods. The culture 

duration, seeding density used, cell passage number, and resulting islet size for some 

studies utilising these methods are collated in table 5 where available. The most 

common method used is static culture on surfaces which prevent attachment either by 

applying a coating with a low static charge or using pre-treated wells that are 

commercially available [77, 84-86, 104]. Stirred suspension methods are also common, 

this involves agitating the cells throughout the culture to maintain them in suspension 

[88, 105]. It has been suggested that these stirred suspension techniques result in 

smaller, more consistent, islets forming. Smaller islets may be advantageous as this 

could reduce the occurrence of necrotic cores within the pseudoislets as nutrients have 

a smaller distance to travel as they diffuse to the innermost cells. Other methods include 
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the “hanging drop” technique and co culture with other cells such as endothelial cells. 

Since the hanging drop technique is labour intensive and will not produce the number 

of islets needed for this study, this method will not be investigated further [106]. 

 

Once the pseudoislets have formed, the function of the beta cells in the pseudoislet 

structure in response to glucose can be assessed by investigating the amount of insulin 

secreted in response to glucose stimulation. This is known as the glucose stimulated 

insulin secretion (GSIS) response. The comparison of the GSIS of MIN6 pseudoislets to 

the GSIS of MIN6 cultured as monolayers can give an indication of how the formation of 

the 3D structure influences beta cell function in response to glucose. 

 

3.2. Aims 

The aim of this chapter was to optimise a method for pseudoislet formation, a 

combination of static and stirred suspension culture technique were used. The viability, 

size and function of the resulting pseudoislets was recorded by a variety of methods. 

Objectives 
 

1. Determine the optimal conditions for culture of MIN6 as pseudoislet structures. 

2. Compare static vs stirred culture of pseudoislets. 

3. Assess the impact of pseudoislet formation on beta cell function compared to 

monolayer culture.

Figure 10 – Pseudoislet preparation methods described in current literature 
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Table 5. Pseudoislet Production Methods 

Method 
Culture 

duration 
Cell Type Seeding density Passage Islet size Comments 

Gelatin coated wells 
[107] 

6-8 days MIN6  43-54 
3,000-5,000 
MIN6/PI 

 

Agarose microwell 
[108] 

7 days 
Primary 
human 
islets 

Microwell – 
10,25,50,100,250,500 
Control - 1x105 cells 

 

Microwell 93µm 
± 16 
Control 88µm ± 
49 

Aggregates 
containing 1000 cells 
were unstable. 

PEG microwell [109] 5 days MIN6 3x106 cells/mL (x2)   
Incubated on an 
orbital shaker for at 
least 2 hours 

Ultra-low attachment 
wells 2010 [110] 

7 days 
MIN6 

αTC1.9 
TGP52 

2 x 105 cells per well on 
6 well plate. 

 
4000 ± 379 cells 
per pseudoislet 

 

Ultra-low attachment 
2015 [104] 

 1.1B4 Cells 
1 x 105 per well on 6 
well plate 

25-35   

ProCulture spinner 
flask [87] 

2 weeks (PIs in 
static didn’t grow 

after 8 days) 
MIN6 2-5 x 104 cells/ml 25-40 100-200µm  

Shaking culture [88] 10 days RIN5F    
reciprocal shaker at 
70rpm for up to 10 
days 

Table showing how pseudoislet production methods vary between studies using different culture methods. Pseudoislets are produced from 

the MIN6 mouse pancreatic beta cell line unless otherwise specified.  
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3.3. Selection of optimal surface for MIN6 pseudoislet formation 
 

First, the ideal seeding density and culture surface for the formation of pseudoislets was 

determined, initial densities investigated were based on the ranges of densities used 

previously as reported in table 3. A culture period of five days was selected as 

preliminary data in the lab deemed five days to be optimal to achieve an improvement 

in GSIS without development of a necrotic core and this culture period had been used 

in previous studies [78, 86]. MIN6 were cultured at seeding densities of 2.5x104, 2.5x105 

and 2.5x106 cells/ml on standard tissue culture 6 well plates, 6 well plates coated with 

(1% Wt/Vol) gelatin, and low adhesion petri dishes for five days. Images in Figure 11 

show that cells on the standard 6 well plate formed a monolayer particularly at the 

higher seeding density. Cells in the gelatin coated wells formed pseudoislets with the 

most consistently sized islets forming at the middle density. However, the pseudoislets 

began to attach to the gelatin coated wells making extraction of intact pseudoislets 

difficult and the pseudoislets at the higher density began to fragment. Free floating 

pseudoislets formed in the petri dish and the middle density also seemed to produce 

the most consistent islets. The islets at the higher density varied greatly in size and the 

larger islets had darkened centres indicating the possibility of necrotic cores. 
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Figure 11. Images of Monolayer and Pseudoislet Formation on Various Surfaces 

 

3.4. Selection of seeding density for optimal pseudoislet diameter 
 

As the MIN6 seeded in the petri dish seemed to form the best islets in the initial culture 

all future pseudoislets were cultured in petri dishes. To further investigate the optimal 

seeding density, MIN6 were cultured for five days in petri dishes at seeding densities of, 

1.4x105, 2.9x105, and 4.3x105 cells/ml. Islets can vary in size and shape so islet equivalent 

counts (IEQs) provide a method of standardising measurement of these islets relative to 

a standard islet of 150μm. Islets around the standard islet measurement are preferable 

1A 2A 3A 

1B 2B 3B 

1C 2C 3C 

Light microscope images at 10x magnification of MIN6 cultured for 5 days on A) a 6 well 

plate, B) a gelatin coated 6 well plate and C) a low attachment petri dish each at densities 

of 1) 2.5x104 cells/ml, 2) 2.5x105 cells/ml and 3) 2.5x106 cells/ml. Representative of 1 

experiment. 
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as islets smaller than this are likely to be fragments of islets that haven’t formed properly 

and as islet size increases above 150μm the risks of necrotic cores increases. The IEQ 

counts show that as the seeding density increased the diameters of the pseudoislets 

became more varied with islets over 251μm in diameter being formed at the highest 

density (Figure 12).  

 

Next the viability of the pseudoislets at the three seeding densities was determined. A 

propidium iodide stain was used to identify dead cells (red) and a Hoechst 33342 stain 

to identify all cells (blue) (Figure 13). For each image the percentage area covered by red 

or blue was calculated using CellProfiler so that the percentage viability for pseudoislets 

at each density could be calculated (Figure 14). The highest percentage viability was 

seen in the islets cultured at an initial seeding density of 2.9x105 cells/ml (Figure 15). At 

densities higher than this, the viability began to decrease and the variability between 

viability of islets began to increase. A seeding density to be used to produce pseudoislets 

in this study was selected based on the highest percentage viability and most desirable 

range of islet size, between 100 and 200μm. The seeding density of 2.9 x105 cells/ml 

with a percentage viability of 84% was selected. Due to the limitations of fluorescence 

microscopy, calculations were made based only on signal from surface of the islet and 

does not include cells in the core of the islet.  
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Figure 12 - IEQ counts of MIN6 cultured for 5 days in low attachment petri dishes at 

three different densities. N=1 

 

 

 

Figure 13. Viability Images of Pseudoislets 

 

 

 

A B C 

Images at 10x magnification of pseudoislets after five days of culture and stained 

with Propidium iodide (red) and Hoechst stain (blue). Cultures were prepared with 

an initial seeding density of a) 1.4x105cells/ml b) 2.9x105cells/ml and c) 4.3x105 

cells/ml 
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Figure 14 – Image Processing using Cell Profiler 

Example of Image processing steps used to calculate percentage viability of 

pseudoislets using cell profiler. First calculating the % area covered by live cells 

shown using a Hoescht stain then the percentage area covered by dead cells using a 

propidium iodide stain. 
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Figure 15. Seeding Density influence on Pseudoislet Viability 

 

3.5. Comparison of static or stirred suspension culture methods for 

Pseudoislet formation 
 

Previous studies have reported that pseudoislets cultured in stirred suspension display 

improved viability and consistency in size to those cultured in a static system [88, 105]. 

Preliminary data in the laboratory deemed five days to be optimal to achieve an 

improvement in GSIS without development of a necrotic core, this culture period has 

also been used elsewhere [80]. To compare pseudoislets formed in each culture system 

and to determine whether a stirred suspension culture system would be beneficial, 

MIN6 were cultured for either five days on static culture or two days of static followed 

by three days of stirred suspension on an orbital shaker. The IEQ counts show that in 

this case the pseudoislets that formed in static culture were smaller and more consistent 

in size than those in stirred suspension (Figure 16). The viability of pseudoislets was then 

compared with a propidium iodide and Hoechst stain (Figure 17). The islets produced 

through just static culture were mostly between 100 and 200μm in diameter which is 

accepted in this study as the optimal size (Figure 16). The viability of islets from both 

Percentage viability of pseudoislets cultured for five days at 3 different initial seeding 

densities. Calculated using a propidium iodide stain to identify dead cells and a 

Hoechst stain to identify viable cells. Mean ± SEM N=5 
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culture systems was similar with a high proportion of viable cells. Stirred culture offered 

no improvement in viability and unfortunately did not produce consistently sized 

pseudoislets so static culture was used for the formation of pseudoislets for the 

remainder of the study. 
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Figure 16 - IEQ counts of MIN6 cultured for five days in either stirred suspension 

(stirred) or in low attachment petri dishes (static). N=1 
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Figure 17. Pseudoislet Viability Images of Static Vs Stirred Culture 
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Figure 18. Pseudoislet Viability in Static Vs Stirred Culture Methods 

1A 2A 

1B 2B 

Propidium iodide (red) and Hoechst stain (blue) to show viability of pseudoislets 

cultured in A) static culture and B) stirred suspension for five days. Images are 

taken at 1) 10x and 2) 20x magnification. 

 

Percentage viability of pseudoislets cultured for either five days in static culture or 4 

days in static plus one day in a stirred suspension. Calculated using a propidium iodide 

stain to identify dead cells and a Hoechst stain to identify viable cells. Based on one 

experiment, error bars based on technical replicates. 
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3.6. Impact of pseudoislet formation on insulin secretion 
 

3.6.1. Optimisation of GSIS measurements for Pseudoislets 
 

To confirm that pseudoislet formation increased the glucose stimulated insulin secretion 

response as described in previous studies [65], insulin secretion was measured at 3mM 

glucose and 16.7mM glucose. To test this, we incubated pseudoislets and monolayers in 

media without glucose for 30 minutes and then stimulated with 3mM versus 16.7mM 

glucose for 1 hour. However, the results showed that the insulin secretion was higher at 

3mM glucose than at 16.7mM glucose, particularly in the pseudoislet cultures (Figure 

19). This may be because the cells at the lower glucose concentration were releasing 

insulin under stress, to avoid this the glucose concentrations used were altered.  
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Figure 19. Initial GSIS Measurements 

 

Instead of starving the MIN6 before glucose stimulation, samples were incubated in 

either 0.5mM or 3mM glucose for 30 minutes. The insulin secretion response was 

Insulin secretion response of MIN6 (P21-P25) cultured as either monolayers or 

pseudoislets for 5 days and incubated for 30 minutes in glucose free media then 1 

hour at either 3mM glucose or 16.7mM glucose. N=1 
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stimulated by one hour of incubation at either 3mM, 5mM, 16.7mM, or 25mM glucose 

(Figure 20). There was no difference between samples incubated at the initial 

concentration of 0.5mM or 3mM glucose. The basal insulin secretion was lower at 5mM 

glucose than at 3mM glucose. Incubation at both 16.7mM and 25mM glucose increased 

insulin secretion with the 25mM glucose concentration stimulating the highest 

secretion. In future assays, islets will be preincubated at 0.5mM glucose and 5mM and 

25mM glucose concentrations will be used to compare non-stimulating and stimulating 

conditions. 
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Figure 20. Optimising Glucose Concentration for GSIS. 

 

3.6.2. Effect of Seeding Density on Insulin Secretion 
 

The insulin secretion response measured was still not optimal so the effect of using 

different seeding densities when setting up the pseudoislet cultures was investigated. 

The seeding densities used when plating the MIN6 for pseudoislet formation were 

1.4x105 cells/ml, 2.8x105cells/ml, or 4.2x105 cells/ml. Insulin secretion was measured 

Insulin secretion response of MIN6 (P21-P25) cultured as pseudoislets for 5 days and 

incubated for 30 minutes at either 0.5mM or 3mM glucose then 1 hour at either 

3mM glucose or 16.7mM glucose. N=1 
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during incubation with 5mM glucose and 25mM glucose. There was no difference in 

insulin secretion response between the monolayers and pseudoislets formed from any 

of the three cell densities (Figure 21). The viability was highest in the pseudoislets 

seeded at the middle density, 2.8x105cells/ml so this is the density that will be used in 

future experiments.  
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Figure 21. Optimisation of Seeding Density for GSIS 

 

 

 

  

Insulin secretion response of MIN6 (P21-P25) cultured as monolayers or 
pseudoislets with one of 3 different initial seeding densities for 5 days and 
incubated for 30 mins in 0.5mM Glucose media then 1 hour at either 5mM glucose 
or 25mM glucose. N=1. 
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3.6.3. Effect of cell passage on insulin secretion 
 

MIN6 cells have been characterised as stable for 30 to 40 passages but the GSIS response 

tends to decrease beyond P30 [111]. This loss is associated with changes in gene 

expression, protein levels and metabolism [7]. The high passage MIN6 cells display 

decreased glucose uptake and oxidation resulting in reduced ATP levels in cells under 

high glucose [112]. Due to the loss of responsiveness of the older MIN6 monolayers, the 

influence of passage number on basal insulin secretion was determined. A comparison 

of insulin secretion response in MIN6 monolayers at low and high passage numbers, 

defined as <P26 and >P26, respectively, showed a significantly higher basal insulin 

secretion in the high passage cells (Figure 22). Low passage ranged from P22 to P25, 

whilst high passage ranged from P26 to P29. The glucose responsiveness was impaired 

in the higher passage cells with low passage displaying a 3.5-fold increase in insulin 

secretion and high passage displaying only a 1.6-fold increase. This was also shown by 

plotting the basal insulin secretion against passage number, here there is a clear 

upwards trend in basal insulin secretion with passage number (Figure 23). The basal 

insulin secretion response of pseudoislets was not influenced by passage number but 

the increase in insulin secretion at high glucose only became significant at high passage 

(Figure 24). 

 



72 
 

 

Figure 22. MIN6 Monolayer Insulin Secretion at High and Low Passage 
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Figure 23. Monolayer Basal Insulin Increase with Passage Number 
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* *

Basal insulin secretion of MIN6 (P21-P29) cultured as monolayers and incubated for 
30 minutes at 0.5mM glucose then 1 hour at 3mM glucose N=13 (R2=0.3675, P=0.02, 
linear regression) 

Insulin secretion response of MIN6 cultured as monolayers for 5 days then 
incubated in 0.5mM glucose for 30 minutes before being exposed to low glucose 
≤5mM or high glucose ≥16.7mM. N=7 for low passage (P21-P25), n=6 for high 
passage (P26-P29) (** P<0.007).  
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Figure 24. MIN6 Pseudoislet Insulin Secretion at High and Low Passage 

 

 

3.6.4. comparing glucose induced insulin secretion in 2D vs 3D Structures 

 

Once it had been established that changes in function between 2D and 3D structures 

are more obvious at higher passages when the beta cells begin to function less 

efficiently, GSIS was assessed in monolayer and pseudoislet MIN6 using only higher 

passage cells, P25-P28. The monolayers showed no significant increase in insulin 

secretion between low glucose and high glucose but a significant increase in insulin 

secretion was seen between pseudoislets at low glucose and high glucose (P<0.001) 

(Figure 25). The pseudoislet increase in insulin secretion was 7.4-fold whilst the 

monolayers were much less responsive showing only a 1.5-fold increase in insulin 

secretion. The basal insulin secretion may be slightly higher in monolayers, but this is 

not statistically significant.  

Basal insulin secretion of MIN6 (P21-P29) cultured as pseudoislets for 5 days and 
incubated for 30 minutes at 0.5mM glucose then 1 hour at low glucose ≤5mM or 
high glucose ≥16.7mM. N=5 * P<0.03 



74 
 

M o n o la ye r s P s e u d o is le ts

0

1

2

3

4

5

G S IS  R e s p o n s e  in  M o n o la y e r

V s  P s e u d o is le t  M IN 6
In

s
u

li
n

/p
r
o

te
in

 (


g
/ 

l)

5 m M  G lu co se

2 5 m M  G lu co se

*

*

 

Figure 25. GSIS Response in Monolayer Vs Pseudoislet MIN6 

  Insulin secretion response of MIN6 (P25 to P29) cultured as either monolayers or 
pseudoislets for 5 days and incubated for 30 minutes in 0.5mM glucose media then 
1 hour at either 5mM glucose or 25mM glucose. N=5,  * = p<0.005,   ** = p<0.001. 
No significant differences between basal insulin secretion in monolayers and 
pseudoislets.  
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3.7. CONCLUSION 
 

3.7.1. Pseudoislet Formation 
 

The first aim of this investigation was to develop a protocol to produce pseudoislets that 

were consistent in size, viability and function. Review of previous studies utilising 

pseudoislets showed that the methods currently used to produce pseudoislets vary and 

so different culture methods and seeding densities were compared to determine the 

optimal method for producing consistent pseudoislets. In most studies pseudoislets 

were formed over five to eight days on either a non-adhesive tissue culture plate [84] or 

in gelatin coated wells [77] and seeding densities ranged from 2x104 cells/ml [105] to 

1x105 cells/ml [84]. 

 

In this study it was found that MIN6 cultured in gelatine coated wells and in petri dishes 

both aggregated to form pseudoislets but in the gelatine coated wells the pseudoislets 

began to attach to the bottom of the well after the first day. Therefore, petri-dishes 

were used for the remainder of the study. The ideal islet size to be used in this study is 

between 100 and 200μm based on the average diameter of a native islet being 150μm 

[8]. Approaches to optimise seeding density showed that many of the pseudoislets 

formed at the lowest density (1.4x105 cells/ml) were small, below 100µm in diameter, 

and often fragmented whilst pseudoislets formed at the highest seeding density 

displayed a much greater range in size but also showed lower viability. This may be 

because the larger islets, particularly those over 200µm in diameter, developed necrotic 

cores due to the restricted flow of nutrients to the cells in the centre of the islet. The 

middle seeding density of 2.9x105 cells/ml produced the pseudoislets with the highest 

viability and the lowest variability in size with most islets being between 50 and 200 µm 

in diameter. The insulin secretion response of pseudoislets formed from MIN6 seeded 

at the three densities was also measured and it was found that seeding density had no 

influence on insulin secretion response when the cells were at a low passage number 

but at a higher passage number the response of pseudoislets from the highest seeding 

density was lower. From these findings the seeding density of 2.9x105 cells/ml in petri 
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dishes was selected as the optimal conditions for static culture, this was similar to the 

seeding density used by Bernard, 2012 [86]. 

 

Some studies have suggested that over prolonged culture, stirred suspension culture 

systems offer tighter control over cluster sizes and improved transfer in metabolites, 

which may maintain the viability of the cells [105]. In this study, pseudoislets were 

formed over 5 days either on continuous static culture or with stirred suspension for the 

final 2 days. There was no change in the size and viability of the pseudoislets on day 5 

suggesting that over 5-day culture, stirred suspension doesn’t offer any benefit. Other 

studies reporting improved viability with stirred suspension were cultured over longer 

time periods, up to two weeks [105]. It may be that there was less clustering of fully 

formed islets in the stirred suspension system, but this was not quantified. Propidium 

iodide staining showed that the stirred suspension offered slightly more consistency in 

viability but not enough to outweigh the benefits of the islet size distribution offered by 

the static culture. The static culture system showed viability of more than 80% and so 

provided a good model for the formation of all further pseudoislets used in this study. 

 

3.7.2. Passage Number Influences Insulin Secretion 
 

At low passage number, <P26, the monolayers displayed good GSIS that was similar to 

the GSIS seen in pseudoislets. However, at high passage number, >P26, the GSIS 

response in monolayers was less efficient. Basal insulin secretion was higher and the 

increase in insulin secretion at high glucose compared to low glucose was small, this is 

similar to the functional phenotype in models of T2DM [20, 113]. Using both in situ tissue 

technology and acute human pancreas specimens, Cohrs et al showed that functional 

deterioration occurred in beta cells during early stages of T2DM before stages where 

loss of beta cell mass was observed [114]. This deterioration in function included an 

increase in basal insulin release and a loss in first phase insulin release. Function declined 

further as the pathogenesis as T2DM progressed with the second phase insulin secretion 

beginning to also decline. In another study, dynamic parameters of beta cell function 
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were measured in 188 individuals (19 lean NGT, 42 obese NGT, 22 IGT, and 105 

T2DM)[115]. The parameters included glucose sensitivity, rate sensitivity, and 

potentiation. They showed that impaired glucose sensitivity began in the early stages of 

IGT and beta cell function continued to decline through progression to T2DM.  

Longitudinal studies involving Pima Indians indicated that both insulin secretion and 

insulin action significantly decrease early in the development of T2DM [116], and that a 

high fasting plasma insulin concentration is predicative of T2DM [117]. Pseudoislets 

showed an improved GSIS response compared to monolayers which was only evident at 

a higher passage number. Hauge-Evans et al also report that differences in function 

between monolayers and pseudoislets become more obvious at higher passages, P43-

P53 [77]. Studies reporting that pseudoislets display a superior insulin secretion 

response compared to monolayers do not always include the cell passage number or 

include a large range of passage numbers (P20-P35 [104], P25-P40 [105]). This means 

the effect of passage number on insulin secretion is not clear. It is possible that at low 

passages the function of the beta cells is already optimal and cannot be improved by 

arranging the cells as pseudoislets so differences in insulin secretion response between 

pseudoislets and monolayers only becomes clear in older cells to drop. This is only 

relevant to the MIN6 system as changes have been shown in dispersed versus 

reaggregated rodent islets [16]. 

 

3.7.3. Pseudoislet Formation Appears to Improve Insulin Secretion Response 
 

Once the insulin secretion assay was optimised, our studies showed that pseudoislets 

offered an improved insulin secretion response similar to that shown in previous studies. 

There is a large increase in insulin secretion in the pseudoislets with glucose stimulation 

from 0.4 to 3µg/µl but only a slight increase is seen in the monolayers (0.6 to 0.8 µg/µl). 

It appears that the basal insulin secretion was slightly higher in monolayers than in 

pseudoislets, although this did not reach statistical significance. Previous studies have 

also shown that basal insulin secretion is higher in cells lacking connections through 

either dispersion, monolayer culture or Cx36 knock down [70, 118]. It is important that 
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basal insulin secretion is low to prevent inappropriate insulin secretion in the absence 

of glucose so this increase could indicate a less efficient insulin secretion pathway [53].  
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CHAPTER 4. ANALYSIS OF METABOLIC FUNCTION IN 2D VS 3D 

STRUCTURES 
 

4.1. Introduction 
 

It has been shown, both in previous literature [14, 76-78, 83, 88, 89, 101-103] and using 

the pseudoislets formed in this study, that beta cells arranged as a 3D structure display 

a greater insulin secretion response to glucose than beta cells cultured in monolayer. As 

a good insulin secretion response relies on optimal metabolism through the glycolytic 

and mitochondrial pathways [57] it is of interest to investigate differences in metabolic 

function between the two culture systems. It is known that an optimal insulin secretion 

response relies on the beta cells displaying a specific metabolic phenotype. This 

metabolic phenotype is discussed in section 1.4.2. but in summary involves tight 

coupling between glycolytic and mitochondrial metabolism [53] with low expression of 

hexokinase-1, lactate dehydrogenase, and monocarboxylate transporters [54, 55]. This 

phenotype exists to optimise ATP production from glucose metabolism to ensure a 

robust GSIS response from beta cells. 

 

The oxygen consumption rate of islets has been measured using Clark oxygen electrodes 

and using Seahorse XF Bioanalysers [100, 119-121]. Oxygen consumption rate is directly 

linked to the flow through the electron transport chain and therefore ATP produced in 

the mitochondria. High oxygen consumption rates in islets have been shown to improve 

transplant efficacy [122]. However, proton leak across the mitochondrial membrane 

leads to some oxygen consumption which is not linked to ATP production. A high level 

of proton leak in beta cells indicates a lower bioenergetic efficiency. Wilkstrom et al 

compared the extent of mitochondrial proton leak in the rat insulinoma cell line, INS-1, 

and islets from both mouse and human donors.  This study used oxygen consumption 

rate in the presence of oligomycin and FCCP to calculate the rate of proton leak as a 

percentage of basal respiration. They reported that mouse islets displayed the highest 

levels of proton leak, between 50 and 60% whilst INS-1 cells and human islets from both 

diabetic and non-diabetic donors all displayed around 38% proton leak, a significantly 
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lower amount than the mouse islets. This highlights possible differences in the 

bioenergetic profile of mouse and human islets [123]. Investigation into the stimulation 

of human islets by four different fatty acids showed 1.1 to 1.5 fold increases in OCR and 

1.2 to 1.6 fold increases in ECAR when compared to basal rates [124]. The metabolic 

phenotype of insulin producing human embryonic stem cell derived beta cells (SC-β) was 

compared with that of human embryonic stem cells (hESCs). The highly glycolytic stem 

cells increased their mitochondrial mass and activity as they differentiated towards a 

beta cell like phenotype thereby switching to oxidative phosphorylation as the primary 

energy source. The ratio of glycolytic to mitochondrial respiration (ECAR/OCR) was 

calculated at high (20mM) and low (2mM) glucose. This ratio was shown to be higher in 

hESCs than in SC-βs indicating relatively higher glycolysis in hESCs. The ratio increased 

slightly when the glucose concentration increased which may indicate an increase in 

glycolytic contributions to energy production under stimulating conditions [121]. 

 

In this study, to determine whether the improved GSIS in pseudoislets could be due to 

improved coupling of glycolysis to mitochondrial metabolism, flux through glycolysis and 

mitochondrial respiration was assessed using the seahorse bioanalyser (Agilent). This 

system allows accurate measurement of the oxygen consumption rate oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) in real time by 

lowering a probe containing an oxygen sensor and a pH sensor into each well and taking 

measurements in a transient micro-chamber above each cell sample [100]. Compounds 

can then be injected into the wells and the influence on the metabolism recorded. 

Typically, the first measurements will be taken before any injections; these initial 

measurements record basal metabolism. At seven-minute intervals, the oxygen 

consumption and proton excretion rate were measured for a period of three minutes, 

from this the OCR and ECAR can be calculated. After three measurements of basal 

cellular OCR and ECAR have been recorded, compounds or substrates to activate or 

inhibit respiration were added sequentially through injection ports. The first injection 

was either base media at 0.5mM glucose, 25mM glucose or 10mM pyruvate. The second 

injection contained the ATP synthase inhibitor oligomycin to block oxidative 

phosphorylation so that the mitochondrial respiration associated with ATP production 
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can be calculated from the resulting decrease in OCR. The third injection used in the 

Agilent seahorse protocols is the uncoupling agent FCCP which results in the uninhibited 

electron flow through the electron transport chain so that oxygen is maximally 

consumed by complex IV to establish maximal respiratory capacity. Finally, either 

Antimycin A is injected inhibiting complex III to assess non-mitochondrial respiration or 

2-DG to block glycolysis and measure non-glycolytic acidification. Figure 26 shows 

common cellular responses to the compounds listed in the Agilent protocols and some 

of the mitochondrial and glycolytic parameters that can be calculated from the data.  

 

Glycolytic rate is determined by measurement of extracellular acidification which is 

predominantly determined by lactate release from cells since lactate separates at 

neutral pH to form two lactate ions and two protons, leading to a decrease in pH. 

However, CO2 produced during the mitochondrial metabolism of glucose through the 

TCA cycle also contributes to extracellular acidification. In the TCA cycle, one glucose 

molecule will yield six CO2 molecules resulting in six HCO3
- and six protons [125]. From 

this we can see that the ECAR due to mitochondrial metabolism is three times greater 

than that due to glycolysis. The rate of mitochondrial metabolism is already calculated 

from the OCR, so any contributions of mitochondrial metabolism to the ECAR can be 

subtracted allowing the rate of glycolysis to be calculated from the remaining ECAR. The 

pH and buffering potential of the media was also considered in this calculation. This 

method of measuring the contributions of ATP production from glycolysis has been 

verified by Mookerjee et al [126]. 

 

4.1.2. Aims 
 

The aim was to compare the metabolic flux of 2D vs 3D structures to determine whether the 

improvement in GSIS can be explained by changes in the metabolic profile of the cells. 

Objectives 
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• Optimise seahorse bioanalyser protocols to compare metabolism of beta cells 

cultured in 2D or 3D structures 

• Measure ATP production from glycolysis and mitochondrial metabolism in beta 

cells  

• Compare metabolic responses to glucose and pyruvate in the 2D and 3D 

structures. 

• Assess metabolic profile of human islets and comparison with pseudoislets 
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Figure 26. Seahorse Bioanalyser Parameters [100] 

  

Examples or metabolic function parameters that can be calculated from Seahorse 

Bioanalyser data taken from the “Agilent Seahorse XF Cell Mito Stress Test Kit User 

Guide” and the “Agilent Seahorse XF Glycolysis Stress Test Kit User Guide”  
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4.2. XFe96 Bioanalyser Optimisation 
 

To begin optimisation for measuring the metabolic function of beta cells in 2D and 3D 

structures, the Agilent Seahorse XF user guides were used. The utilisation of the XFe96 

bioanalyser was explored first as this machine was in the same building as the cells and 

would avoid any unnecessary transport of the samples to other locations. Initially, the 

Agilent user guide was used to determine whether this format would be appropriate for 

accurate measurement of flux in both 2D and 3D structures. The plan was to determine 

the appropriate conditions and concentrations of oligomycin to assess ATP-linked 

mitochondrial respiration and FCCP to assess the maximal respiration capacity. This was 

done first in monolayer culture as it is a more simplistic model. The next step was to use 

these optimised conditions to assess the validity of the method to measure metabolic 

flux in 3D structures. Using a 96 well plate format, the oligomycin and FCCP 

concentrations required to gain maximal functional response in MIN6 cells were 

optimized. All other concentrations used throughout the use of the XFe96 bioanalyser 

were according to those listed in the user guides. The concentrations of compounds 

placed in the cartridge to be injected were 10 times higher than the final concentration 

in the well after injection. To avoid confusion, the concentrations described always refer 

to the final concentration in each well. 

 

4.2.1. Selection of oligomycin and FCCP concentrations for seahorse analyser 
 

ECAR and OCR measurements were recorded at varying concentrations of oligomycin 

and FCCP respectively (figures 27-30). ECAR changes were measured by subtracting the 

third ECAR measurement after glucose addition from the highest measurement after 

oligomycin addition, the resulting values showed an increase between 0.5µM and 2µM 

oligomycin with the greatest response seen at 2µM oligomycin which is the highest 

recommended dose in the seahorse Agilent protocols (Figure 27, Figure 28). OCR 

changes were measured by subtracting the third OCR measurement after oligomycin 

addition from the highest measurement after FCCP addition, this showed an increase 
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between 0.125μM FCCP and 0.5μM FCCP but no further increase was seen at higher 

doses so 0.5µM FCCP was selected to be used in future experiments (figures 29 and 30). 
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Figure 27. ECAR Response to Oligomycin Titrations 

ECAR response in MIN6 (P21 - P25) monolayers after addition of 25mM glucose, either 

0 µM, 0.5 µM, 1µM or 2µM oligomycin, then 50mM 2-DG measured on a seahorse 

XFe96 bioanalyzer. MIN6 were cultured for 24 hours on a 96 well microplate and 

starved for one hour in 0.5mM glucose prior to the experiment. 4 to 5 technical 

repeats per data point, n=1. 
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Figure 28. ECAR Increase After Oligomycin Injections 

ECAR response on MIN6 (P21 – P25) monolayers after addition of oligomycin at 

0.5µM, 1µM, or 2µM measured on a seahorse XFe96 bioanalyzer. MIN6 were 

cultured for 24 hours on a 96 well microplate and starved for one hour in 0.5mM 

glucose prior to the experiment. n=4. * = P<0.01 
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Figure 29. OCR Response to FCCP Titrations 
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Figure 30. OCR Increase after FCCP Injections

 

OCR increase shown by MIN6 (P21 – P25) monolayers under 2µM oligomycin 

after addition of FCCP at 0µM, 0.125µM, 0.25µM, 0.5µM, or 1µM measured on 

the XFe96 seahorse bioanalyzer. MIN6 were cultured for 24 hours on a 96 well 

microplate and starved for one hour in 0.5mM glucose prior to the 

experiment.14-16 technical repeats N=1, * = p<0.005, *** p<0.0001 

OCR response in MIN6 (P21 – P25) monolayers after addition of 2µM oligomycin, 

FCCP at one of six different concentrations, then 0.5µM rotenone and antimycin A 

measured on a seahorse XFe96 bioanalyzer. MIN6 were cultured for 24 hours on a 

96 well microplate and starved for one hour in 0.5mM glucose prior to the 

experiment. 14 to 16 technical repeats per data point, n=1. 
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4.2.2. OCR and ECAR Measurements of 2D vs 3D Structures  
 

i. Monolayers 
 

The OCR of MIN6 monolayers was measured in response to injections of oligomycin, 

FCCP, and a combined injection of antimycin A and rotenone added sequentially and 

recorded over time (figure 31). Injection of oligomycin decreased OCR enabling a clear 

measurement of ATP production from mitochondrial respiration. The FCCP injection 

caused the OCR to return to the basal level recorded in the initial measurements before 

any injections showing that basal respiration is similar to maximal respiration and the 

rotenone and antimycin A were successful in blocking mitochondrial respiration. 

 

The measurement of ECAR to establish glycolytic function involved an initial injection of 

25mM glucose, this concentration was chosen because it is known to stimulate insulin 

secretion in beta cells. The second and third injections contained oligomycin and 2-DG 

respectively (figure 32). After the first injection of 25mM glucose a clear increase in ECAR 

is seen, followed by a decrease in response to the oligomycin injection. There didn’t 

seem to be any effect when 2-DG was added.  
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Figure 31. Monolayer OCR Response in XFe96 Analyser 

OCR response on MIN6 (P21 – P25) monolayers in 10mM glucose after addition of 

2µM oligomycin, 0.5μM FCCP, then 0.5μM rotenone and antimycin A. Measured on 

a seahorse XFe96 bioanalyzer, MIN6 were cultured for 24 hours on a 96 well 

microplate and starved for one hour in 0.5mM glucose prior to the experiment. 

Representative of 5 experiments.  
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Figure 32. Monolayer ECAR Response in XFe96 Analyser 

 

ii. Pseudoislets 
 

Once concentrations were optimised for the MIN6 monolayers, the same protocols were 

used for pseudoislets plated onto the 96 well plates. For accurate measurement of 

metabolic flux it is essential that 3D structures are located in the centre of the well to 

allow for alignment with the sensors on the probe. Any movement would cause 

disruption of these measurements. Therefore, pseudoislets were attached to the wells 

of a XFe96 spheroid microplate through 20 minutes of pre-incubation with Cell-Tak at 

room temperature. The pseudoislets were then placed into each well with seahorse 

base media and the plate was centrifuged to help the pseudoislet to attach firmly. After 

the final wash before the seahorse run around one third of the pseudoislets remained 

ECAR response on MIN6 (P21 – P25) monolayers after addition of 25mM glucose, 

2µM oligomycin, and then 50mM 2-DG measured on a seahorse XFe96 bioanalyzer. 

MIN6 were cultured for 24 hours on a 96 well microplate and starved for one hour 

in 0.5mM glucose prior to the experiment. Data shown is representative of 5 

experiments, error bars based on technical replicates. 
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in place attached to the bottom of the well, the metabolic function of these pseudoislets 

was recorded.   

 

The OCR and ECAR was measured in pseudoislets following the same protocol used for 

the monolayer samples. Due to difficulties in securely attaching the pseudoislets to the 

bottom of each well the measurements were much more variable with large error bars 

(figures 33-34). Often the pseudoislets were washed away before the protein content 

could be analysed. In other cases, pseudoislets moved out of alignment with the sensor 

meaning no or minimal function was recorded. The OCR response of pseudoislets 

showed indications of responsiveness to oligomycin and FCCP but again the data is too 

variable to determine any clear changes (figure 33). The final injection containing 

rotenone and antimycin A successfully blocked mitochondrial respiration in all wells. The 

pseudoislets appear to respond to the addition of glucose by showing an increased ECAR 

after an initial delay but the data shown in figure 34 along with other data is too variable 

to determine a clear pattern or to be reliably used in any further analysis.  

 

As with the monolayers, these measurements were repeated in four other experiments 

all showing some very slight indication of responsiveness but with too much variability 

to make any accurate conclusions from the data produced.  
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Figure 33. Pseudoislet OCR Response in XFe96 Analyser 

 

  

OCR response of MIN6 (P21 – P25) pseudoislets after addition of 2µM oligomycin, 

0.5μM FCCP, then 0.5μM rotenone and antimycin A, measured on a seahorse XFe96 

bioanalyzer. MIN6 pseudoislets formed over 5 days then were cultured for 24 hours 

on a 96 well microplate and starved for one hour in 0.5mM glucose prior to the 

experiment. Representative of 5 experiments, error bars representative of technical 

repeats.  
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Figure 34. Pseudoislet ECAR Response in XFe96 Analyser 

 

  

ECAR response on MIN6 (P21 – P25) pseudoislets after addition of 20mM glucose, 

2µM oligomycin, and then 50mM 2-DG measured on a seahorse XFe96 bioanalyzer. 

MIN6 pseudoislets formed over 5 days were then cultured for 24 hours on a 96 well 

microplate and starved for one hour in 0.5mM glucose prior to the experiment. 

Representative of 5 experiments.  
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4.3. Seahorse XFe24 analyser optimisation 
 

Due to the large variation in function and protein measurements for the pseudoislets, 

an alternative method was investigated. In previous literature islet capture plates have 

been used during the metabolic analysis of islets and pseudoislets [127-129]. Using the 

islet capture plate, the islets are placed in a depression at the base of the well and held 

in place by a capture screen eliminating the need to secure the pseudoislets to the base 

of the well. This type of plate is only available in a 24 well format so requires the use of 

the XFe24 analyser.  The 24 well plate allows a larger number of islets to be plated per 

well reducing the problems associated with accurate protein quantification of a single 

islet. The number of islets per well could be increased from 1 islet to up to 500.  

 

Figure 35 shows light microscope images of the pseudoislets as they are placed in the 

well under the islet capture screen.  

 

 

Protocols using the XFe24 analyser were optimized. First the optimal seeding density for 

the monolayer plates was established (Figure 36). There was an increase in recorded 

Light microscope images of MIN6 pseudoislets in a 24 well plate under an islet 
capture screen with the focus on a) the mesh of the islet capture screen and b) the 
pseudoislets underneath the screen. 

A B 

Figure 35. Light Microscope Image of Pseudoislets in Islet Capture Plate 



95 
 

function seen by a higher basal OCR at a seeding density of 80,000 cells/well than 60,000 

cells/well but negligible difference seen between the two highest seeding densities of 

80,000 cells/well and 100,000 cells/well, flux was corrected for protein concentration. 

From this, the seeding density of 80,000 cells/well was selected for future investigations. 

The FCCP concentration was optimised again this time following advice from protocols 

in the laboratory where the XFe96 bioanalyser was used. The first FCCP injection at 3μM 

FCCP was followed with a further FCCP injection of 1μM to establish if there was any 

further increase in maximal respiration. The second injection had little effect so a 

concentration of 3.5μM FCCP was chosen to be sufficient.  
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Figure 36. Monolayer Density and FCCP Optimisation 

 

The optimal protocol for the plating of the islets was then investigated (Figure 37). Islets 

were seeded at either 100 or 300 islets per well and half were plated on the morning of 

OCR response in MIN6 (P26 – P29) monolayers cultured at densities of 60,000 

cells/well, 80,000 cells/well and 100,000 cells/well after addition of 1mM oligomycin, 

3µM FCCP, a further 1µM FCCP then at Antimycin A. Measured on a seahorse XFe24 

bioanalyzer and starved for one hour in 0.5mM glucose prior to the experiment. Six 

technical repeats per data point, n=1.  
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the run (day six) with the other half being plated into the islet capture plate the night 

before the run (day five). The highest basal measurements and greatest responsiveness 

to stimulating compounds were seen in pseudoislets plated at the higher density (300 

islets) and plated the night before the run allowing them time to recover after moving. 

However, it was also clear from these results that more adjustments needed to be made 

to the protocol. With the exception of the initial basal measurements, the OCR did not 

reach a plateau meaning the maximal respiration after each injection couldn’t be 

measured. To allow the pseudoislets time to reach a plateau, the time between 

injections was increased. This was not necessary for the monolayers as a clear maximal 

response was seen after each injection. Also, there was no clear response to glucose or 

oligomycin in the pseudoislet measurements and this needed to be understood before 

collecting the final data.  
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Figure 37. Pseudoislet Seahorse Plating Optimisation 

 

Measurements taken on the XFe24 seahorse bionanlyser. OCR measurements of 
MIN6 (P26 – P29) pseudoislets plated at low or high densities either on the morning 
of the seahorse experiment (Day 6) or the night before (Day 5). Initial measurements 
were taken in basal media at 0.5mM glucose then injections of 25mM glucose, 2µM 
oligomycin, then antimycn A were added sequentially. MIN6 pseudoislets were 
cultured for 24 hours on a 24 well microplate and starved for one hour in 0.5mM 
glucose prior to the experiment. Representative of 5 experiments. 
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The OCR measurements of monolayer and pseudoislet cultures were compared (figure 

38). Whilst the monolayers reached a clear plateau after the addition of oligomycin, the 

pseudoislets did not respond to the oligomycin injection. It has been reported that 

higher concentrations of oligomycin are required to penetrate through 3D structures 

[130]. To explore if this was the case with pseudoislets, the oligomycin concentration 

was increased by 10 times in future experiments (figure 39). 

M IN 6  M o n o la y e r  a n d  P s e u d o is le t

R e s p o n s e  to  G lu c o s e  a n d  O lig o m y c in

T im e  (m in u te s )

O
C

R
 (

p
m

o
le

s
/m

in
)

0 2 0 4 0 6 0

0

1 0 0

2 0 0

3 0 0

4 0 0

M o n o la y e rs

P se u d o is le ts

B a sa l G lu c o se O lig o m y c in

 

Figure 38. MIN6 Monolayer and Pseudoislet Response to Oligomycin 

 

Neither culture type, monolayers nor pseudoislets, responded to the glucose injection 

(figures 38). These MIN6 are known to produce a large insulin secretion response under 

the levels of glucose injected as shown in chapter 3 which would rely on a high level of 

metabolism and therefore oxygen consumption. It is possible that the pyruvate in the 

base media is providing the MIN6 with fuel for the insulin secretion, which is masking 

the effect of the added glucose, so it was removed from the media in the next 

OCR response of monolayer and pseudoislet MIN6 (P26 – P29) after addition of 
25mM Glucose then 2µM oligomycin. Measured on a seahorse XFe24 bioanalyzer. 
MIN6 pseudoislets formed over 5 days were then cultured for 24 hours on a 24 well 
islet capture plate. Monolayer samples were cultured for one hour in a 24 well 
microplate. Samples were starved for one hour in 0.5mM glucose prior to the 
experiment N=1 
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experiment. As beta cells are not expected to be responsive to pyruvate [54], the effect 

of a pyruvate injection on the beta cell metabolism will also be investigated. 

 

4.4. Comparison of Metabolic Function for monolayer and pseudoislet MIN6 
 

4.4.1. OCR Measurements  
 

Using the optimal seeding protocols and compound concentrations determined above 

the OCR and ECAR of MIN6 monolayers and pseudoislets were measured in order to 

calculate the ATP contributions from both glycolytic and mitochondrial metabolism. The 

OCR measurements required for these calculations included the OCR under the 

following conditions:  

1. basal glucose 

2. glucose stimulation 

3. pyruvate  

4. oligomycin 

5. antimycin A.  

 

The use of both rotenone and antimycin A was not deemed necessary as antimycin A 

would sufficiently block mitochondrial respiration [131]. For the calculation of the 

glycolytic contribution to ATP production, only the maximal ECAR under stimulation was 

used. The use of 2-DG to block glycolysis was not effective in beta cells due to the low 

expression of low Km of hexokinase [58] and as ECAR was reduced to negligible levels in 

the presence of antimycin A, 2-DG was omitted.  

 

The MIN6 cultured as monolayers showed a similar increase in OCR after addition of 

either glucose or pyruvate (figure 39). There was a decrease in OCR after addition of 

oligomycin indicating successful inhibition of oxidative phosphorylation and a further 

decrease in OCR after addition of antimycin A indicating complete inhibition of the 

electron transfer chain. Rates reached a plateau before each subsequent injection. In 
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contrast, pseudoislets responded robustly to glucose but not to pyruvate (figure 40). As 

with monolayers, a clear response to oligomycin and antimycin A was recorded. 
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Figure 39. OCR of Monolayer MIN6 

 

OCR response in MIN6 (P26 – P29) monolayers after addition of either i) 25mM 
glucose, 0.5mM glucose injection (Basal), or 1mM pyruvate; ii) 2µM oligomycin; iii) 
0.5µM Antimycin A. Measured on a seahorse XFe24 bioanalyzer. Monolayer 
samples were cultured for 24 hours in a 24 well microplate then starved for 1 hour 
in 0.5mM glucose for one hour prior to the experiment. N=3. 
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Figure 40. OCR of Pseudoislet MIN6 

 

 

 

4.4.2. ECAR Measurements 
 

The ECAR measurements for the monolayer cultures showed a small but consistent 

response to glucose (figure 41). However, these responses were much more evident in 

the pseudoislet cultures suggesting a larger reliance on glycolysis for GSIS (figure 42).  

 

 

 

OCR response in MIN6 (P26 – P29) pseudoislets after addition of either i) 25mM 
glucose, 0.5mM glucose injection (Basal), or 1mM pyruvate; ii) 20µM oligomycin; 
iii) 0.5µM Antimycin A. Measured on a seahorse XFe24 bioanalyzer. MIN6 
pseudoislets formed over 5 days then were cultured for 24 hours on a 24 well 
microplate and starved for one hour in 0.5mM glucose prior to the experiment. 
N=4. 
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Figure 41. ECAR of Monolayer MIN6 
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Figure 42. ECAR of Pseudoislet MIN6 

ECAR response in MIN6 (P26 – P29) monolayers after addition of either i) 25mM 
glucose, 0.5mM glucose injection (No Stimulation), or 1mM pyruvate; ii) 2µM 
oligomycin; iii) 0.5µM Antimycin A. Monolayer samples were cultured for 24 hours 
in a 24 well microplate then starved for 1 hour in 0.5mM glucose for 1 hour prior 
to the experiment. Measured on a seahorse XFe24 bioanalyzer.  N=3 

ECAR response in MIN6 (P26 – P29) pseudoislets after addition of either i) 25mM 
glucose, 0.5mM glucose injection (Basal), or 1mM pyruvate; ii) 20µM oligomycin; 
iii) 0.5µM Antimycin A. Measured on a seahorse XFe24 bioanalyzer. MIN6 
pseudoislets formed over 5 days then were cultured for 24 hours on a 24 well 
microplate and starved for one hour in 0.5mM glucose prior to the experiment. 
N=4. 
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4.4.3. Contribution of oxidative phosphorylation and glycolysis to ATP Production in 

MIN6 monolayers and pseudoislets 
 

The mitochondrial oxygen consumption rate correlates to mitochondrial ATP production 

and can be calculated from the total cellular oxygen consumption rate minus the cellular 

consumption rate not associated with mitochondrial activity such as through proton leak 

across the mitochondrial inner membranes (see calculation in methods [131]). Increases 

in ECAR in response to the production of lactate through glycolysis and glycolytic ATP 

production can be calculated from the total cellular ECAR minus the contribution to 

extracellular acidification from carbonic acid generated from CO2 produced during the 

complete oxidation of glucose in mitochondrial metabolism [131]. The ATP production 

per mg protein was calculated using the OCR and ECAR data generated to find the total 

ATP production from oxidative phosphorylation and glycolysis. 

 

The overall ATP production from the monolayers was more variable than that of the 

pseudoislets possibly due to being more sensitive to MIN6 passage number (figure 43). 

There was no significant difference between the basal ATP production between 

monolayers and pseudoislets but there was a trend towards lower basal ATP in 

pseudoislets which is consistent with the trend towards lower basal insulin secretion in 

section 3.7.4. Pseudoislets showed a significantly (P=0.0111) larger insulin secretion 

response to glucose stimulation compared to monolayers (figure 25). There appears to 

be a slightly higher ATP production in monolayers stimulated by pyruvate than in 

pseudoislets although the response measured was quite variable and no statistical 

significance was found. This suggests that monolayers responded to both glucose and 

pyruvate whilst pseudoislets responded only to glucose and not pyruvate.  

 

Monolayers showed a significantly higher basal ATP production from oxidative 

phosphorylation. Neither glucose nor pyruvate increased ATP production from oxidative 

phosphorylation in the monolayers but this may be due to a high variability between 

samples (figure 44). However, pseudoislets showed a clear increase in ATP production 

via OCR response to glucose stimulation but not pyruvate.  
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Figure 44. ATP Production from Oxidative Phosphorylation in Monolayers and 

Pseudoislets 

Total ATP produced per minute by monolayers and pseudoislets stimulated by either 

glucose or pyruvate. Measured by the seahorse XFe24 bioanalyser. MIN6 (P26 – P29) 

pseudoislets formed over five days were then cultured for 24 hours on a 24 well islet 

capture plate. Monolayer samples were cultured for 24 hours in a 24 well microplate. 

N=3, *=P<0.05, **=P<0.01. Statistical analysis performed but not found to be significant 

when not indicated.  

Total ATP produced per minute by oxidative phosphorylation in MIN6 (P26 – P29) 

cultured as monolayers and pseudoislets and stimulated by either glucose or 

pyruvate compared with glycolytic ATP production of MIN6 monolayers and 

pseudoislets kept in basal media at 0.5mM glucose. Measured by the seahorse 

XFe24 bioanalyser N=3, *=P<0.05 

Figure 43. Total ATP Production in Monolayers and Pseudoislets 
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Basal glycolytic rates were low in both monolayers and pseudoislets (figure 45). 

However, pseudoislets showed a greater (4-fold) increase in glycolysis in response to 

glucose compared to monolayers.  
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Figure 45. ATP Production from Glycolysis in Monolayers and Pseudoislets 

4.5. Analysis of Metabolic Function in Human Islets Stimulated by Glucose or 

Pyruvate 
 

Comparison of the MIN6 pseudoislet function with isolated human islet function will 

help in understanding whether aspects of the metabolic function are a feature of the 

MIN6 model. In previous studies, human islets have been analysed using the seahorse 

bioanalyser [124, 132, 133], where the OCR has been shown to increase on addition of 

glucose [134]. The ECAR is not mentioned in most studies but one paper reported that 

the enhanced insulin secretion in response to addition of fatty acids was due to both 

Total ATP produced per minute by glycolysis in MIN6 (P26 – P29)  

cultured as monolayers and pseudoislets and stimulated by either glucose or pyruvate 
compared with ATP production of MIN6 monolayers and pseudoislets kept in basal 
media at 0.5mM glucose. Measured by the seahorse XFe24 bioanalyser N=3, 
****=P<0.0001. Statistical analysis performed but not found to be significant when 
not indicated. 



105 
 

OCR and ECAR increases indicating an increase in both glycolytic and mitochondrial ATP 

contributions [124].  To explore the metabolic function of human islets, OCR and ECAR 

were measured using the same seahorse bioanalyser protocols used to measure 

metabolic function in the MIN6 monolayer and pseudoislets. Human islets were cultured 

for one day post isolation to allow recovery from any stresses before experiments.  

 

The OCR measurements shown in figure 46 appear to show a slight increase in OCR 

following addition of glucose and no response in islets with no stimulation or pyruvate 

stimulation. There are many factors of different natures before, during, and after 

isolation which can affect the function of the human islets. This led to a large variability 

in the function of the islets. 

 

Investigations into the effect of glucose and pyruvate on the ECAR of human islets (figure 

47) showed a similar metabolic function to that seen in the MIN6 pseudoislet samples. 

The ECAR does show a very clear increase after glucose is added suggesting uncoupling 

of glycolysis from mitochondrial metabolism.  
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Figure 46. OCR of Human Islets 

 

OCR response in human islets after addition of either i) 25mM glucose, 0.5µM 
glucose injection (No Stimulation), or 1mM pyruvate; ii) 20µM oligomycin; iii) 0.5µM 
Antimycin A. Measured on a seahorse XFe24 bioanalyzer. Islets were cultured for 24 
hours on a 24 well microplate and starved for one hour in 0.5mM glucose prior to 
the experiment. N=4. 
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Figure 47. ECAR of Human Islets 

 

 

4.6. Contribution of oxidative phosphorylation and glycolysis to ATP 

Production in Human Islets 
 

The total ATP production in response to glucose was significantly higher (3-fold) for 

human islets stimulated by glucose than for those with no stimulation (figure 48). There 

is no difference between the overall ATP production of islets with no stimulation and in 

the presence of pyruvate. This was similar to the response of the pseudoislets with a 

large glucose triggered ATP production and no response to the pyruvate.  

ECAR response in human islets after addition of either i) 25mM glucose, 0.5µM 
glucose injection (No stimulation), or 1mM pyruvate; ii) 20µM oligomycin iii) 0.5µM 
Antimycin A. Measured on a seahorse XFe24 bioanalyzer. Islets were cultured for 24 
hours on a 24 well microplate and starved for one hour in 0.5mM glucose prior to the 
experiment. N=4. 
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Figure 48. Total ATP Production in Human Islets 

 

 

The individual contributions of oxidative phosphorylation and glycolysis to ATP 

production in human islets mirrored the pattern seen in the overall contribution. 

Calculations showing ATP production from both oxidative phosphorylation and 

glycolysis showed that there was no response after the addition of pyruvate. 

 

ATP production due to oxidative phosphorylation increased on addition of glucose 

(figure 49). A large portion, around 75%, of ATP production at basal glucose levels was 

contributed to by oxidative phosphorylation. 

Total ATP produced per minute by human islets stimulated by either glucose or 

pyruvate. Measured by the seahorse XFe24 bioanalyser. Islets were plated on a 24 

well islet capture microplate 24 hours before the run and kept in basal media at 

0.5mM glucose. N=3, **=P<0.005 
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A larger contribution to the increased ATP in response to glucose was made by glycolysis 

(figure 50). There was no statistically significant increase in ATP Production between 

islets with no stimulation and glucose stimulation but a large statistically significant 

increase in glycolytic ATP production between these two conditions.  
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Figure 49. ATP Production from Oxidative Phosphorylation in Human Islets 

 

 

Total ATP produced per minute by oxidative phosphorylation in human islets 
stimulated by either glucose or pyruvate. Measured by the seahorse XFe24 
bioanalyser. Islets were plated on a 24 well islet capture microplate 24 hours before 
the run and kept in basal media at 0.5mM glucose. N=3. Statistical analysis 
performed but not found to be significant. 
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Figure 50. ATP Production from Glycolysis in Human Islets 

 

4.7. Conclusion 
 

4.7.1. Seahorse Bioanalyser Optimisation 
 

Attempts to optimize protocols for bioenergetic measurements using the XFe96 

analyser were successful for monolayer cultures. Measurements recorded using the 96 

well spheroid plates for pseudoislets showed some responsiveness to the compounds 

injected but the variation between wells was too great to obtain accurate data. This was 

mainly caused by difficulties in securing islets in the base of the well causing pseudoislets 

to move out of alignment with the sensors during measurements or to be lost during 

washes meaning protein could not be quantified. Other studies have successfully used 

both coated 96 well spheroid plates [133, 134] to analyse islets and 24 well islet capture 

plates [132, 135]. 

 

Total ATP produced per minute by glycolysis in human islets stimulated by either 

glucose or pyruvate. Measured by the seahorse XFe24 bioanalyser. Islets were 

plated on a 24 well islet capture microplate 24 hours before the run and kept in 

basal media at 0.5mM glucose.  N=3, ***=P<0.001 
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The protocols developed on the XFe96 analyser were further developed on the XFe24 

analyser. This larger well volume allowed more islets to be plated per well and 

incorporated an islet capture screen which held the islets in place throughout 

measurements. After further optimization, the variation in the data generated for the 

pseudoislet OCR and ECAR was reduced so that responses to the compounds injected 

could be measured accurately. Additionally, some changes were made to the media and 

compounds used in the injections in a movement away from the Agilent seahorse 

protocols to focus only on data relevant to this study. Initially, in data produced during 

optimisation of the oligomycin concentration, the OCR was not affected by injection of 

high glucose for either culture types which may be explained by base media containing 

pyruvate. To assess the influence of glucose stimulation on OCR the pyruvate was 

removed from the base media. Previous studies have shown that cells are unable to 

reach their maximum respiration capacity in the presence of FCCP when pyruvate is not 

present in the media and as the use of FCCP was not required in the calculation for the 

ATP production of the MIN6 cells this injection was removed. Finally, 2-DG was judged 

to be ineffective in the inhibition of glycolysis due to the low expression of low Km 

hexokinases in beta cells, so the final injection contained only antimycin A [58].  

 

In early experiments pseudoislets appeared slower to respond to compounds and to 

reach a plateau or seemed to not respond at all. This may be due to the time taken for 

the diffusion of compounds, particularly oligomycin, through the 3D structure of the 

pseudoislets. The number of measurements between each injection was therefore 

increased during pseudoislet experiments and a higher concentration of oligomycin was 

used to fully inhibit ATP linked respiration. This optimisation approach allowed 

development of the technique to allow for accurate comparison of monolayer and 

pseudoislet samples. Although there are limitations due to some differences in the 

experimental setup for 2D and 3D structures, the Seahorse XF bionanalyser has been 

successfully used to compare metabolic characteristics of 2D and 3D structures [130, 

136, 137]. Russell et al also showed that in comparison to 2D structures, 3D structures 

showed delayed effects after addition of oligomycin but not after addition of FCCP, 

rotenone, or antimycin A. Oligomycin has a relatively larger molecular weight which 
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could slow penetration through the 3D structure but it was shown that this feature was 

not solely responsible for the delayed response [130]. Using this system to compare 

monolayer and pseudoislet samples provides useful information but limitations in direct 

comparisons caused by the different cultures requiring different experimental set ups 

should be considered at all stages.  

 

4.7.2.  Total ATP Production in Response to Glucose is Greater in 3D Structures 
 

The total cellular ATP production rate was calculated using the data generated by the 

seahorse bioanalyser. An increase in ATP production under high glucose by pseudoislets 

would indicate improved cell functionality as insulin secretion is tightly linked to ATP 

production [54, 59, 67]. The MIN6 consistently responded to glucose stimulation with 

pseudoislets showing a significantly larger ATP production rate than monolayers under 

high glucose conditions. The improved ATP production response mirrors glucose 

stimulated insulin secretion data in chapter 3. Pseudoislets stimulated by high glucose 

levels showed a 4.8-fold increase in overall ATP production (figure 43) and a 7.4-fold 

increase in insulin secretion levels (figure 25). The MIN6 monolayers were much less 

responsive showing only a 1.6-fold increase in ATP production (figure 43) and a 1.5-fold 

increase in insulin secretion (figure 25). This data shows that changes in metabolic flux 

directly correlate with insulin secretion. 

 

There was no significant effect of glucose on monolayer ATP production, this may be 

complicated by the high levels of variation evident in these data sets, possibly due to 

varying passage numbers. Previous data presented in section 3.5.3 and discussed in 

section 3.8.2 showed that the insulin secretion response of monolayers decreased with 

passage number whilst the MIN6 arranged as pseudoislets retained their function 

regardless of passage number. It may also be due to differences in functionality of the 

MIN6 between batches [138]. The more consistent levels of response displayed by the 

pseudoislets may be due to improved connections and therefore communications 

between beta cells resulting in a more co-ordinated response. Previous studies have 
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shown that cell-cell communication between beta cells is necessary for efficient GSIS, 

the secretion response of dispersed islets was reported to be lower than that of intact 

islets and return to near previous levels when the beta cells were allowed to re-

aggregate [72]. The data in this study suggests that the effect of pseudoislet formation 

on GSIS is perhaps not only due to Ca2+ synchronisation as previously suggested [98] but 

supports a role for a change in metabolic phenotype. We hypothesised that pseudoislets 

would show improved coupling of glycolysis to mitochondrial metabolism. We did see 

an increase in glucose-induced oxidative phosphorylation in pseudoislets compared to 

monolayers, but the largest effect was in uncoupled ATP production which is not 

consistent with the original hypothesis. Very few studies have investigated the 

relationship between glycolysis and GSIS. However, Chowdhury et al reported higher 

protein expression levels of both glycolytic and mitochondrial enzymes in pseudoislets 

compared to monolayers [78] and a significant increase in glycolysis in response to fatty 

acid stimulation has been reported in human islets [124].  

 

4.7.3. Increased Basal ATP Production in 2D Beta Cells is caused by an Increase in 

Oxidative Phosphorylation 
 

The ATP contributions from both oxidative phosphorylation and glycolysis were then 

examined separately. The most obvious difference within the production of ATP from 

oxidative phosphorylation was the increased level of basal ATP production in the 

monolayer samples. The lack of significant effect of glucose on total ATP production in 

monolayers may be explained by the higher level of basal ATP production. The overall 

ATP production and the insulin secretion data both showed slightly raised basal levels in 

monolayer samples, but this is much more pronounced in OCR data suggesting it is a 

feature of increased oxidative phosphorylation. High ATP production in beta cells at low 

glucose levels can trigger inappropriate insulin release and is indicative of a less efficient 

pathway [14, 87, 112, 139].  

 

It has also been shown that inhibition of Cx36 in beta cells results in a higher basal insulin 

secretion [140]. This is because hyperpolarising Ca2+ waves can spontaneously occur in 
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beta cells, these waves can be dispersed throughout the islet when there is 

communication between beta cells but isolated beta cells are not able to do this and so 

prone to increased basal insulin secretion rates [73, 74, 98, 140]. Dispersed beta cells 

such as those cultured as monolayers have much fewer intercellular connections such 

as Cx36 than beta cells within islets and pseudoislets and so the lack of this gap junction 

serves as another potential cause of the increased basal ATP production [94, 103]. This 

is a more likely cause for the increased basal OCR in monolayers and investigation into 

the effect of Cx36 expression on basal OCR would be of interest in understanding the 

mechanisms behind this. 

 

All samples showed an increase in OCR with high glucose which correlates to increased 

ATP production from oxidative phosphorylation. There was no difference in ATP 

production under high glucose between monolayer and pseudoislet samples suggesting 

ATP was being produced through a different pathway, so this was further explored in 

the next section through the analysis of glycolytic ATP contributions.  

 

4.7.4. Pancreatic Beta Cells Display Improved ATP Production Responsiveness When 

Cultured as 3D Structures due to Increased Glycolysis 
 

The increased ATP production seen in the pseudoislets was mainly due to the increased 

glycolytic contribution and human islets used in this study also displayed a similar 

increase in glycolysis in response to high glucose. Both human islets and MIN6 

pseudoislets produced more than half of the overall ATP under high glucose from 

glycolytic contributions. Existing literature investigating pseudoislet metabolism using 

the seahorse bioanalyser focuses only on the OCR portion of metabolism. Some articles 

that do include ECAR data consistently show an increase in ECAR in response to glucose 

stimulation [141-143]. However, none of this data is analysed further or discussed and 

ATP contributions are not calculated so it is not comparable with the OCR data.    
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A large glycolytic response could be a sign of hypoxia. Isolation of islets requires 

disrupting the vascular network supplying the islets with oxygen and leaves diffusion as 

the only option to supply the nutrients and oxygen required by the islets. This means 

that all islets suffer some effects of hypoxia following isolation, particularly in the core 

of the islet. The effects of hypoxia are present to some degree until transplantation and 

revascularisation is complete [144]. The increase in glycolysis seen in the islets and 

pseudoislets may indicate a limitation in the study of islets outside their natural 

environment.  

 

To maintain blood glucose at sufficient levels to meet the body’s demands it is important 

that insulin is not released at low glucose levels. GLUT2 is a major glucose transporter in 

rodent beta cells that allows rapid equilibrium between intracellular and extracellular 

glucose concentrations [145]. This transporter is vital in enabling the cells to respond 

almost immediately to any changes in glucose concentration. Once glucose has been 

transported into the beta cell, glucokinase acts as a glucose sensor; metabolising glucose 

only once it exceeds physiological levels [58]. It is important that the low km hexokinase-

1 is not expressed in beta cells. High expression of hexokinase-1 would lead to 

inappropriate insulin secretion during fasting [53]. There is evidence that hypoxia 

decreases basal OCR but it also decreases maximal respiratory capacity [146]. The 

maximal capacity wasn’t recorded in this study as the use of FCCP was deemed 

unsuitable, however, the pseudoislets indicated an increase in glucose mediated OCR 

suggesting the data is not consistent with a loss of aerobic respiration that would be 

expected in hypoxia. Hypoxia increases basal insulin secretion through increased basal 

glycolysis so investigation into the expression of GLUT2 and hexokinase in the 

pseudoislets compared to monolayers could help clarify any changes in the glucose 

sensing pathways and hence, basal glycolysis. 
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4.7.5. Beta Cells in 2D Structures Show Some Response to Pyruvate Stimulation 
 

The metabolic response of MIN6 and human islets to pyruvate stimulation was also 

measured. To achieve good blood glucose control it is important that beta-cells do not 

respond to extracellular pyruvate [54]. The levels of pyruvate and lactate in the blood 

increase following exercise. If these molecules were to be transported into the beta cells 

to be metabolised, they would stimulate insulin secretion causing a potentially 

dangerous drop in blood glucose levels. To prevent this inappropriate insulin secretion 

response the expression of monocarboxylate transporter 1 (MCT 1) is repressed in beta 

cells so that the lactate and pyruvate cannot enter the cell [53].  

 

The MIN6 pseudoislets and human islets in this study did not respond to pyruvate 

stimulation. ATP production in the presence of pyruvate was similar to the ATP 

production with no stimulation. However, the monolayers showed an increase in ATP 

production through oxidative phosphorylation in response to pyruvate stimulation.  This 

suggests that configuration of beta cells as monolayers changes the metabolic 

properties of the beta cell to allow them to respond to pyruvate which is not 

physiological. Further analysis is required to further explore this mechanism. Insulin 

secretion in response to pyruvate has also been seen in cases of exercise induced 

hyperinsulinemic hypoglycaemia (EIHI), which is characterised by inappropriate insulin 

secretion following anaerobic exercise [147]. It has been shown that this form of 

hyperinsulininemic hypoglycaemia is caused at least in part by overexpression of the 

MCT1 transporter. Investigating the expression of this transporter in the MIN6 could 

help to explain the pyruvate response seen in this study.  
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CHAPTER 5. COMPARISON OF BETA CELL METABOLIC ACTIVITY IN 

2D VS 3D STRUCTURES 
 

5.1. Introduction 
 

Data in previous chapters showed that MIN6 cells cultured as pseudoislets display an 

improved glucose stimulated insulin secretion response compared to monolayer MIN6. 

This insulin secretion data mirrors metabolic data which was then produced using the 

seahorse bionanalyser showing that there is a strong link between ATP production and 

insulin secretion. The data from the seahorse bioanalyser provided some insight into the 

effects of cell culture technique on the metabolic function of beta cells under stimulating 

and non-stimulating conditions. This chapter aims to further investigate how metabolic 

pathways are influenced by the improved connectivity seen in beta cells cultured as 3D 

structures and will seek to explain the mechanisms behind the changes in function 

described in the previous chapters. MIN6 pseudoislets showed a similar metabolic 

phenotype to human islets. This includes a low basal ATP production, high ATP 

production in high glucose conditions, and a large proportion (over 50%) of the high ATP 

production being due to an increase in glycolysis. MIN6 monolayers also showed an 

insulin secretion response to extracellular pyruvate. Insulin secretion in response to 

pyruvate can lead to inappropriate insulin secretion causing hypoglycaemia so this 

indicates another potential area of beta cell dysfunction found in 2D culture.  

 

Optimal insulin secretion is thought to rely on tight coupling between glycolytic and 

mitochondrial metabolism so a beta cell functioning in optimal conditions would be 

expected to produce most of its ATP through oxidative phosphorylation [57, 148]. The 

high glycolytic contribution suggests aerobic respiration is being prevented from 

performing at full capacity and so the beta cells are relying on glycolysis to meet the 

energy demands of the cell [149]. It is possible that this is due to hypoxia. Hypoxia can 

be defined as either an oxygen level at which mitochondrial metabolism is compromised 

or as an oxygen concentration lower than that normally experienced by the cell [144, 

149-152]. Hypoxia is known to be a common issue in the core of the pseudoislets and 
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human islets due to the distance required for the oxygen to diffuse to reach the inner 

cells, because of this, larger islets are inherently more prone to the effects of hypoxia 

[13, 85, 105]. Beta cells have a carefully regulated molecular response to hypoxic 

conditions which begins with the hypoxic inducible factor (HIF) complex which is known 

to influence the expression of at least 70 genes [149]. The genes of interest in this 

chapter are those that allow the cell to adapt to anaerobic metabolism. Metabolic 

markers known to be upregulated in response to hypoxia include GLUT1, PFK, Aldolase, 

GAPDH, and PGK1 along with the down regulation of glucokinase and GLUT2 [145, 153]. 

MCT4 is also upregulated as it is required to transport lactate produced from the 

pyruvate out of the cell [154]. Studies have shown that HIF expression in beta cells leads 

to increased glycolysis, higher basal insulin secretion and impaired glucose tolerance 

demonstrated by a reduced GSIS response [144, 151, 152].  

 

The metabolic profile of pseudoislets showed some properties consistent with a hypoxic 

response but also other features that are not. One feature consistent with hypoxia was 

a high glycolytic component of ATP production in response to glucose stimulation. 

However, the overall increase in ATP production and insulin secretion in pseudoislets 

compared to monolayers suggests the high glycolytic contribution recorded was not a 

result of hypoxia. Previous studies report a blunted GSIS response when hypoxia was 

present [144, 149, 151, 152, 154]. Features of the pseudoislet and human islet metabolic 

phenotype inconsistent with hypoxia included a lower basal insulin secretion and basal 

rate of oxidative phosphorylation and a high glucose stimulated rate of oxidative 

phosphorylation.  Although the oxidative phosphorylative contributions to overall ATP 

production weren’t as high as the glycolytic contributions, 3D structures displayed an 

increased glucose stimulated OCR compared to monolayers. This suggests that the 3D 

arrangement of beta cells allowed for some enhancement of the pathways in 

mitochondrial metabolism.  

 

As described previously, efficient glucose sensing should prevent insulin secretion at low 

glucose as this can lead to hyperinsulinemic hypoglycaemia. It would be expected that 
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inappropriate glucose sensing would result in an increase in glycolysis, which was not 

seen. To investigate the mechanisms causing the increased basal insulin secretion in 

monolayers, the expression of GLUT2 and hexokinase 1 were investigated as these 

proteins act together in sensing and responding to extracellular glucose levels. It is clear 

that there are complex mechanisms involved in the metabolic and functional changes 

between the 2D and 3D structures and these may be elucidated by further exploring the 

changes in activity and expression levels of enzymes within glycolysis and oxidative 

phosphorylation.  

 

 

5.2. Aims 
 

To identify the underlying mechanism driving the changes in metabolic profile of 

pseudoislets. 

  

Objectives 

• Determine the impact of pseudoislet formation on the expression and activity of 

enzymes involved in glycolysis and the TCA cycle 

• Assess whether pseudoislet formation alters the basal flux of glucose in the beta 

cell. 

• Explore expression of hypoxic markers in pseudoislets compared to monolayers. 

 

  



120 
 

5.3. Comparison of Glycolytic Enzyme Activities in 3D vs 2D Structures 
 

An increase in glycolytic enzyme activity may indicate an increase in glycolysis. The 

activity of the glycolytic enzymes, phosphoglucose isomerase (PGI), 

phosphofructokinase 1 (PFK1), Aldolase, GAPDH, and pyruvate kinase (PK) were 

measured for both monolayer and pseudoislet cultures to determine whether formation 

of pseudoislets influenced glycolytic activity (figures 51-55). PFK1 activity was 

significantly higher in pseudoislets compared to monolayers (figure 52). GAPDH activity 

was measured in high passage MIN6 and found to be consistently higher in pseudoislets 

than monolayers P= 0.00014 based on n=4 (figure 54). The culture system had no effect 

on the remaining three enzymes (figures 51, 53, and 55). 
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Figure 51. Phosphoglucose Isomerase Activity in Monolayers and Pseudoislets 

  Mean ± SEM of phosphoglucose isomerase (PGI) activity in cell homogenate of low 

passage MIN6 cells cultured as monolayers vs pseudoislets. N=8. Statistical analysis 

performed but not found to be significant when not indicated. 
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Figure 52. Phosphofructokinase 1 Activity in Monolayers and Pseudoislets 
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Figure 53. Aldolase Activity in Monolayer and Pseudoislets 
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Figure 54. GAPDH Activity in Monolayers and Pseudoislets 

Mean ± SEM of GAPDH activity in total cell homogenate of high passage MIN6 cells 

cultured as monolayers (ML) vs pseudoislets (PI). N=4, P<0.0001 

* 

* 

Mean ± SEM of phosphofructokinase 1 (PFK1) activity in cell homogenate of low 

passage MIN6 cells cultured as monolayers (ML) vs pseudoislets (PI). N=8, P<0.05 

Mean ± SEM of aldolase activity in cell homogenate of low passage MIN6 cells 

cultured as monolayers (ML) vs pseudoislets (PI). N=8. Statistical analysis 

performed but not found to be significant when not indicated. 
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Figure 55. Pyruvate Kinase Activity in Monolayers and Pseudoislets 

 

 

 

It is necessary for LDH activity to be low in beta cells in order to maintain the tight 

coupling between glycolytic and mitochondrial metabolism [69]. LDH activity was 

measured in the same culture systems as the previous glycolytic enzymes (figure 56). 

The activity was consistently higher in the MIN6 cultured as pseudoislets however this 

difference was too small to be statistically significant with a P value of 0.0613.  
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Figure 56. Lactate Dehydrogenase Activity in Monolayers and Pseudoislets 

 

Mean ± SEM of lactate dehydrogenase (LDH) activity in total cell homogenate of 

high passage MIN6 cells cultured as monolayers (ML) vs pseudoislets (PI). N=8. 

Statistical analysis performed but not found to be significant when not indicated. 

Mean ± SEM of pyruvate kinase (PK) activity in cell homogenate of low passage 

MIN6 cells cultured as monolayers (ML) vs pseudoislets (PI). N=8. Statistical 

analysis performed but not found to be significant when not indicated. 
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The higher enzyme activity of several glycolytic enzymes is consistent with the increased 

glycolytic flux measured using the seahorse XFe24 bioanalyser in section 4.4. 

  

5.4. Comparison of Mitochondrial Enzyme Activities in 2D vs 3D Structures 
 

Mitochondrial enzyme activity of TCA cycle enzymes was investigated in monolayer and 

pseudoislet cultures. An increase in mitochondrial enzyme activity could indicate 

increased mitochondrial metabolism which would contribute to enhanced insulin 

secretion. The activities of a few key enzymes for which methods could be optimised 

were measured. The activities of pyruvate carboxylase, citrate synthase, α-ketoglutarate 

dehydrogenase, and malate dehydrogenase (MDH) were higher in pseudoislets than in 

monolayers as shown in figures 57, 58, 60, and 61 respectively.  

 

ICD is an enzyme involved in the TCA cycle that is carefully regulated to avoid over 

accumulation of α-ketoglutarate. This was the only mitochondrial enzyme that was not 

consistently higher in all pseudoislet sample fractions.  
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Figure 57. Pyruvate Carboxylase Activity in Monolayers and Pseudoislets 

 

 

 

  

Mean ± SEM of Pyruvate carboxylase activity in cell homogenate of high passage 

MIN6 cells cultured as monolayers (ML) vs pseudoislets (PI). N=5 P<0.05 

* 
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Figure 58. Citrate Synthase Activity in Monolayers and Pseudoislets 
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Figure 59. Isocitrate Dehydrogenase Activity in Monolayers and Pseudoislets 
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Figure 60. α-Ketogluterate Dehydrogenase Activity in Monolayers and Pseudoislets 

Mean ± SEM of isocitrate dehydrogenase (ICD) activity in low passage MIN6 

cultured as monolayers vs pseudoislets for five days. N=4. Statistical analysis 

performed but not found to be significant when not indicated.   

 

Mean ± SEM of α-ketoglutarate dehydrogenase activity in low passage MIN6 cultured as 
monolayers vs pseudoislets for five days. N=4 P<0.03  

 

Mean ± SEM of Citrate Synthase activity in cell homogenate of high passage MIN6 

cells cultured as monolayers (ML) vs pseudoislets (PI). N=5 P<0.03 

* 

* 
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Figure 61. Malate Dehydrogenase Activity in Monolayers and Pseudoislets 

 

 

 

The higher activity of the enzymes from the TCA cycle investigated is consistent with the 

increased rates of oxidative phosphorylation measured using the seahorse XFe24 

bioanalyser in section 4.4.  

 

5.5. Assessment of Hypoxia in Monolayer Vs Pseudoislets 
 

The pseudoislets and human islets used in this study showed a high glycolytic 

contribution to ATP which may be explained by hypoxia. In hypoxic conditions HIFs 

promote a change from aerobic to anaerobic respiration. This involves increasing the 

activity of some glycolytic enzymes along with GLUT1, PDK1, and LDH. The overall effect 

of this is a decrease in mitochondrial oxygen consumption and an increase in glycolytic 

ATP production.  

 

The expression of these genes, GLUT1, PDK1, and LDH, in pseudoislet and monolayer 

MIN6 was quantified using PCR. The results in figure 62 show that the expression of 

hypoxic genes does seem to be higher in pseudoislets but that it is also very variable. 

This is probably due to the variability in sizes of the pseudoislets and the fact that beta 

Mean ± SEM of MDH activity in cell homogenate of high passage MIN6 cells 

cultured as monolayers (ML) vs pseudoislets (PI). N=3 P<0.05 

* 
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cells in the centre of the pseudoislets were much more susceptible to hypoxia than the 

outer beta cells.  
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Figure 62. PCR Analysis of Hypoxic Markers in Monolayers and Pseudoislets 

 

5.6. Investigation into increased Basal ATP Production in 2D structures 
 

The next aim of this chapter is to understand the underlying mechanisms for the 

increase in basal ATP production and insulin secretion that has been shown in monolayer 

MIN6. GLUT2 and glucokinase work together in a glucose sensing mechanism that allows 

the cell to respond almost immediately to changes in extracellular glucose 

concentrations. A decrease in GLUT2 expression is associated with diabetes onset in 

rodents and a reduced ability for the beta cells to respond to changes in glucose 

concentration [153, 155] . GLUT2 is also positively related to the state of differentiation 

of beta cells [156].  

 

Mean ± SEM mRNA expression of genes indicative of hypoxia, Glut1, PDK1, and 

LDH. Expression was measured in monolayer (ML) and pseudoislet (PI) MIN6 (P26 

– P29) after five days of culture. N=4,3,3 respectively. Statistical analysis performed 

but not found to be significant when not indicated. 
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Western blotting (figure 63) showed that GLUT2 expression was significantly higher, 

P=0.0343, in pseudoislet MIN6 than in monolayer MIN6 suggesting that the monolayer 

cultures have a reduced capability in responding quickly to changes in glucose 

concentration.  

 

Figure 63. Western Blot Analysis of GLUT2 Expression  

 

The second part of the glucose sensing mechanism requires low expression of low Km HK 

and high expression of glucokinase [78]. First, the activities of these enzymes were 

measured in monolayer and pseudoislet cultures to determine whether pseudoislet 

formation altered expression. There was a slight increase in low Km hexokinase activity 

in the monolayer cultures that was approaching significance with a P value of 0.0595 

(figure 64).  No differences were found between activities glucokinase in the two 

different culture systems (figure 65).  
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after 5 days of culture. Beta actin was the housekeeping protein used to normalise. 
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GLUT2 expression.  N=4 P<0.05 
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Figure 64. Hexokinase Expression in Monolayers and Pseudoislets 
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Figure 65. Glucokinase Expression in Monolayers and Pseudoislets 

 

The expression of hexokinase I was then also measured using western blotting, the 

expression of hexokinase II and hexokinase III were not investigated due to lack of 

specific antibodies in house. This also showed a higher expression of hexokinase I in 

monolayers than in pseudoislets (figure 66). The increased hexokinase expression and 

decreased GLUT2 expression in the monolayer MIN6 both suggest a decreased glucose 

sensing capacity when the beta cells aren’t cultured in 3D pseudoislet structures 

consistent with the trend towards higher basal insulin secretion in the 2D structures. 

Mean ± SEM of hexokinase activity in the supernatant of low passage MIN6 cells 

cultured as monolayers vs pseudoislets. N=6. Statistical analysis performed but not 

found to be significant when not indicated. 

Mean ± SEM of glucokinase activity in the supernatant of low passage MIN6 cells 

cultured as monolayers vs pseudoislets. N=6. Statistical analysis performed but not 

found to be significant when not indicated. 
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Figure 66. Western Blot Analysis of Hexokinase I Expression in Monolayers and 

Pseudoislets 

 

5.7. UK5099 Inhibition 
 

Pyruvate produced through glycolysis is shuttled into the mitochondria via 

mitochondrial pyruvate carriers (MPCs) where it is either used as a substrate in oxidative 

phosphorylation, or to replenish intermediates in the TCA cycle [54, 56, 58, 65]. MPC 

plays a role in the beta cell insulin secretion response to glucose and amino acids [157]. 

It has been shown that the addition of the MPC inhibitor, α-cyano-β-(1-phenylindol-3-

yl)-acrylate (UK5099), impairs respiration under both basal and high glucose conditions 

meaning that continuous transport of pyruvate into the mitochondria is required to 

maintain respiratory rates [158]. 

 

UK5099 was used to inhibit transport of endogenous pyruvate through the MPC 

transporters in monolayer and pseudoislet MIN6 and the change in OCR was measured 

using the seahorse bioanalyser. The MIN6 media contained basal levels of glucose and 

L-glutamine and 1mM pyruvate. Figures 67 and 68 show OCR data for monolayers and 

pseudoislets respectively from one experiment and is representative of three 
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experiments. Calculations from this data found that pseudoislets showed a significantly 

higher percentage reduction in OCR than monolayers (figure 69). This suggests that 

more pyruvate is being shuttled into the mitochondria under basal conditions meaning 

that the oxidative phosphorylation pathway is more active in pseudoislets than 

monolayers in basal conditions.  
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Figure 67. Monolayer OCR Reduction with UK5099 

 

 

OCR response in MIN6 (P26 – P29) monolayers in media containing 0.5mM glucose 
and 1mM pyruvate after addition of 100μM UK5099 then 2µM oligomycin. 
Measured on a seahorse XFe24 bioanalyzer. Monolayer samples were cultured for 
24 hours in a 24 well microplate then starved for 1 hour in 0.5mM glucose for 1 
hour prior to the experiment. N= 4 technical repeats, data representative of 3 
experiments. 
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Figure 68. Pseudoislet OCR Reduction with UK5099 

M o n o la ye r s P s e u d o is le ts

0

1 0

2 0

3 0

4 0

O C R  re d u c tio n  w ith  U K 5 0 9 9

%
 R

e
d

u
c

ti
o

n

M o n o la y e rs

P s e u d o is le ts

 

Figure 69.OCR Reduction with UK5099 

 

Mean ± SEM of the percentage reduction in OCR of monolayer and pseudoislet 

MIN6 (P26 – P29) after addition of 100μM  of the MPC inhibitor, UK5099. Data was 

recorded using a Seahorse Bioanalyser XFe24  N=3, P<0.05 

* 

OCR response in MIN6 (P26 – P29) pseudoislets in media containing 0.5mM glucose 
and 1mM pyruvate after addition of 100μM of the MPC transporter UK5099 then 
2µM oligomycin. Measured on a seahorse XFe24 bioanalyzer. Monolayer samples 
were cultured for 24 hours in a 24 well microplate then starved for 1 hour in 0.5mM 
glucose for 1 hour prior to the experiment. N= 4 technical repeats, data 
representative of three experiments. 
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5.8. MCT1 Inhibition 
 

Antibodies were optimised for the detection of MCT1 expression through western 

blotting. Figure 70 shows detection of MCT1 in mouse brain and heart tissue. However, 

no MCT1 was detected in either monolayer or pseudoislets samples of MIN6, results not 

shown. 

 

 

 MCT1          54kDa 

GAPDH 35.8kDa 

Figure 70.Western Blot Analysis of MCT1 Expression 

 

 

Brain Heart 

Western blot analysis of monocarboxylate transporter 1 (MCT1) in murine 
brain and heart tissue. Protein loaded at 20μg, 10μg, and 5μg for both brain 
and heart tissue. 
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5.9. Conclusion 
 

Understanding how metabolic pathways are influenced by differences in intercellular 

connections between beta cells in 2D and 3D architectures could help in understanding 

why beta cell function is lost during the isolation process. Using this knowledge to 

improve isolation techniques could lead to improved outcomes in islet transplant 

therapies.  

 

5.9.1. Increased Glycolytic Contribution in Pseudoislets 

 

i. Glycolytic Enzyme Activity 
 

Seahorse data showed higher glycolytic ATP production in pseudoislet and human islets 

compared to monolayer MIN6. An increase in glycolytic enzyme activity may indicate an 

increase in glycolysis so the activities of PGI, PFK1, aldolase, glucokinase, GAPDH, and 

PK were compared in the monolayer and pseudoislet samples. The enzymes that were 

significantly influenced by culture system were PFK1 and GAPDH. These were increased 

in the pseudoislet samples when compared to monolayers. PFK1 is associated with the 

regulation of the glycolytic pathway and the generation of insulin oscillations that are 

present in pseudoislets but not monolayers [79].  

 

LDH activity can interfere with glucose sensing as anaerobic metabolism of pyruvate 

produces less ATP than would be produced through mitochondrial metabolism [54]. It 

would therefore be expected that pseudoislets which are reported to have a high insulin 

secretion response would express lower levels of LDH than monolayers which are 

reported to be less responsive to glucose. However, the results in figure 56 show that 

there was a slight trend towards higher LDH activity in pseudoislets than in monolayers. 

Although this trend is inconsistent with the insulin secretion responses reported it does 

support the findings in Chowdhury et al where a 1.4 fold increase in LDH expression was 

reported in pseudoislets when compared to monolayers [80]. It also supports the 

seahorse data which showed that although the pseudoislets were producing more ATP 
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and therefore secreting more insulin than monolayers, a large percentage of this ATP 

was produced through uncoupled glycolysis. 

 

To investigate whether the increase in uncoupled glycolysis was due to the presence of 

hypoxia within the pseudoislet structures, the expression of some key markers of 

hypoxia were measured in pseudoislets and monolayers using RT-PCR. The genes 

included LDH, GLUT1, and PDK1. PDK1 and LDH displayed a trend towards increased 

expression in pseudoislets but with high variability. Hypoxia is known to be a common 

issue in islets as oxygen cannot freely diffuse to the centre of larger islets and this can 

lead to a reduction in function and necrosis [144, 149, 151, 152, 154]. The high variability 

in hypoxic gene markers suggests that at least some beta cells within the islets are 

displaying signs of hypoxia but the effect this will have on the overall function of the islet 

is not certain. However, the decrease in basal ATP production and basal insulin secretion 

is not consistent with a classical hypoxic response. In hypoxia there is an upregulation 

of hexokinase II which increases flux at low glucose concentrations [150]. Pseudoislets 

would be expected to respond to hypoxia through an increase in basal ATP production 

and insulin secretion but in this case the converse is true. Hypoxia may be driving the 

increase in uncoupled glycolysis, but it cannot explain the pseudoislet decrease in basal 

insulin secretion nor the increased glucose responsiveness.  

 

ii. Mitochondrial Enzyme Activity 
 

The activities of the mitochondrial enzymes, PC, citrate synthase, ICD, α-Ketoglutarate 

dehydrogenase, and MDH were recorded in monolayers and pseudoislets. Pseudoislets 

showed an increase in the activities of all these enzymes with the exception of ICD. 

These results suggest an increase in TCA cycle activity in MIN6 cultured as pseudoislets 

compared to in those cultured as monolayers. The reason for this increase in activity is 

unclear. An increase in mitochondrial activity could offer a greater capacity for coupling 

and improved flux through the TCA cycle, this is consistent with increased OCR in 

pseudoislets compared to monolayers and is consistent with data from Chowdhury et al 
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[80]. It could also be a result of increased mitochondrial biogenesis which can be 

investigated through mitochondrial staining or PCR analysis of mitochondrial mRNA.  

 

5.9.2. Increased Basal Insulin Secretion 
 

Monolayer MIN6 showed an increased level of basal insulin secretion compared to 

pseudoislets and human islets. Glucokinase has a low affinity for glucose and so plays an 

important role in maintaining the low basal rate of insulin secretion. Overexpression of 

low Km hexokinase which has a high affinity for glucose is associated with an increase in 

insulin secretion response at low glucose levels [57]. The results of this study show that 

there was no change in Glucokinase activity but that there was a trend towards 

increased hexokinase activity in MIN6 cultured as monolayers and a significant increase 

in hexokinase I expression when compared to those cultured as pseudoislets. High 

GLUT2 expression is required for rapid glucose sensing as extracellular levels fluctuate 

[145, 153]. A higher GLUT2 expression was found in pseudoislets than in monolayers. 

This suggests that pseudoislets are more efficient in sensing changes in extracellular 

glucose concentration. Monolayers showed no change in basal ATP production from 

glycolysis, but a higher basal oxidative phosphorylation rate (figures 44 and 45). This 

increased basal insulin secretion is a feature seen in T2DM. Proposed mechanisms for 

this increase include hypertrophy of the beta cells, an increase in intercellular glycogen 

stores, and an increase in a constitutive secretory pathway working independent of 

metabolic signals [139].  

 

5.9.3. MPC inhibition 
 

Transport of exogenous pyruvate into the beta cell is restricted through a lack of the 

plasma membrane transporter MCT1 [147]. On the other hand, transport into the 

mitochondria of endogenous transport produced through glycolysis within the beta cell 

is necessary for optimal ATP production and therefore insulin secretion [58]. In this study 

endogenous pyruvate transport into the mitochondria was blocked through the MPC 

inhibitor UK5099. This resulted in a greater percentage reduction in the OCR of 
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pseudoislets than monolayers. Possibly because the high insulin secretion response seen 

in pseudoislets is reliant on the shuttling of pyruvate into the mitochondria to produce 

maximal ATP through oxidative phosphorylation. When Islets are cultured under 

starvation conditions, leucine promotes anaplerotic flux of glutamine through 

glutaminase and GDH [159]. As the glucose concentration of the media was low (0.5mM) 

it is possible that L-glutamate was a key fuel source. Future experiments involving 

UK5099 would assess changes in OCR in media containing stimulating levels of glucose.  
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CHAPTER 6. INFLUENCE OF CX36 KNOCKDOWN ON BETA CELL FUNCTION 
 

6.1. Introduction 
 

3D structures showed an improved functional response to 2D cultures as described in 

chapters 3-5. This improved function is also well documented in other studies [80, 85, 

86, 97, 101, 104, 105]. Further analysis into the pathways involved in the metabolic 

function of beta cells in 2D and 3D structures showed two key features. One is that 3D 

structures display a superior glucose sensing function at both basal and high glucose 

levels when compared to 2D culture. The second is that there are still some limitations 

in the pseudoislet and human islet models most likely caused by the difficulties 

associated with maintaining the high oxygen demand to all parts of the islet. 

Nonetheless pseudoislets functioned in a very similar manner to human islets and 

remain the most accessible and relevant model in studying pathways associated with 

diabetes.  

 

Changes in blood glucose concentrations result in oscillations in Ca2+ concentrations 

within the beta cell which trigger insulin secretion [73, 160]. Dispersed beta cells display 

a high variability in Ca2+ responses to glucose stimulation. Once beta cells have formed 

3D structures cytoplasmic Ca2+ concentrations become synchronised leading to 

synchronised insulin secretion oscillations. It is currently believed that the increased 

GSIS response seen in 3D structures in comparison to dispersed beta cells is due to 

synchronisation of calcium signals [98, 140]. This synchronisation results in a greater 

insulin secretion response under stimulation and a more predictable threshold for 

insulin secretion stimulation [107]. The integrated insulin secretion response of the islet 

is greater than the sum of the individual responses of the beta cell within the islet [98]. 

It has been shown that direct contact between the cells is necessary for the 

improvements in the secretory response to be seen so this is not thought to be an effect 

of paracrine activity [98].  
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The formation of the 3D structures has been shown to rely on and result in the formation 

of intercellular connections discussed in section 1.5. These connections include cells 

adhesion molecules, gap junctions and communication via paracrine signalling. E-

cadherins are a common cell adhesion molecule that have been shown to play an 

important role in maintaining the structural integrity of the islet and to act as 

mechanoreceptors. Although required for the formation of the islets or pseudoislets, e-

cadherins have not been found to influence the synchronised responses of beta cells [9, 

107]. Paracrine signalling from both beta cells and non-beta cells has not been shown to 

play an important role in regulating the insulin secretion response. Gap junctions 

provide metabolic and electrical coupling between beta cells and have been directly 

correlated with insulin content in the beta cells [9]. It is thought that these gap junctional 

couplings are also responsible for the synchronised insulin secretion response seen in 

3D structures.  

 

One gap junction which has been shown to be important in the co-ordination of beta 

cell responses within islets is Connexin 36 (Cx36) also known as gap junction delta 2 

protein (GJD2). Six protein subunits of Cx36 together form a pore in the beta cell which 

will form a channel when aligned with Cx36 subunits of a neighbouring cell. Molecules 

are then able to pass freely between the beta cells. Cx36 expression has been associated 

with expression of the insulin gene [161]. Pharmacological modulation of connexins has 

so far been non-specific, there are no current pharmacological agents that act 

exclusively on Cx36 and compounds that are used for Cx36 inhibition such as mefloquine 

and heptanol have a limited half-lives so this method of investigation has not reported 

any successful investigations into the effects of Cx36 on beta cell function [95]. 

Knockdown of Cx36 in mice has shown that deleting the Cx36 gene resulted in a lack of 

Cx36 gap junctions forming and this had various effects on the islets. Lucifer yellow is a 

fluorescent tracer compound used to visualise intracellular communication. The lack of 

Cx36 channels prevented the exchange of the lucifer yellow between cells suggesting 

that the gap junction is required to functionally couple the cells. Secondly, the 

knockdown in Cx36 islets resulted in a lack of Ca2+ synchronicity and therefore loss of 

pulsatile insulin secretion which was accompanied by a significant increase in basal 
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insulin secretion [140]. Another study investigating partial and complete knockdown of 

Cx36 reported that islets with partial Cx36 knockdown showed no changes in basal 

insulin secretion but a decrease in the stimulated insulin secretion response. Total 

knockdown of Cx36 in this study resulted in a raised basal insulin secretion as well as the 

lack of insulin secretion response to glucose [94]. The expression of Cx36 has also been 

shown to increase in beta cells arranged in 3D structures compared to those cultured as 

monolayers [82]. 

 

6.2. AIMS 

This chapter aims to investigate the involvement of Cx36 in regulating beta cell 

metabolic function and consequent insulin secretion response.  

Objectives: 

• To develop a mouse beta cell model with inducible Cx36 knockdown. 

• To use this model to determine the influence of Cx36 on insulin secretion and 

metabolic function. 

 

6.3. MIN6 CELL CONNEXIN 36 KNOCKDOWN MODEL DEVELOPMENT 
 

With the main aim of this chapter being to determine if Cx36 mediates the improved 

functionality of pseudoislets versus monolayers, the first step was to develop MIN6 with 

stable knockdown of Cx36 using shRNA. The pseudoislets form over five days so a stable 

inducible transfection system was chosen over a transient system. This allowed the 

MIN6 cells time to form the pseudoislets before the Cx36 knockdown was induced to 

ensure that experiments focused only on the effects of Cx36 knockdown on function and 

not on the formation of the pseudoislets. A SMARTvector inducible lentiviral shRNA 

system was used. Figure 71 shows the elements that make up the vector and the 

purpose of each one is explained in table 6. This system enabled selection of the 

transduced cells through antibiotic selection, visual identification of transduced cells, 

and an inducible knockdown response in the presence of doxycycline.  
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Figure 71. SMARTvector Inducible Lentiviral shRNA Vector 

 

VECTOR ELEMENT PURPOSE 

5’ LONG TERMINAL REPEAT (5’ LTR) Necessary for lentiviral production and integration into the 

host cell. 

PSI PACKAGING SEQUENCE (Ψ) Allows lentiviral genome packaging. 

REV RESPONSE ELEMENT (RRE) Increases packaging efficiency to enhance titre. 

TERTRACYCLINE RESPONSE 

ELEMENTS (TRE3G) 

Allows induction of promotor in the presence of doxycycline. 

TGFP OR TRFP Reporter for visual tracking of transduction. In this case tGFP 

was used. 

SMARTVECTOR UNIVERSAL 

SCAFFOLD 

Scaffold based on native primary microRNA in which gene 

targeting sequence is embedded. 

PUROMYCIN RESISTANCE GENE 

(PUROR) 

Allows antibiotic selection of transduced cells 

2A Self-cleaving peptide enabling PuroR and Tet-On 3G 

transactivator expression from a single promotor.  

TET-ON 3G Encodes doxycycline-regulated transactivator protein. 

WOODCHUCK HEPATITIS POST-

TRANSCRIPTIONAL REGULATORY 

ELEMENT (WPRE) 

Enhances transgene expression in target cells. 

3’ SELF-INACTIVATING LONG 

TERMINAL REPEAT (3’ SIN LTR) 

For generation of replication incompetent lentiviral particles. 

Table 6. shRNA Construct Elements 

Elements of SMARTvector inducible lentiviral shRNA vector. Image taken from 

SMARTvector Inducible Lentiviral shRNA technical manual.  

Explanation of utilities of lentiviral shRNA construct elements. Table adapted from 

information in the SMARTvector Inducible Lentiviral shRNA technical manual. 
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6.3.1. Optimisation of Transduction Conditions 
 

Before selecting the construct to be used in this investigation, the optimal conditions for 

transduction of MIN6 cells with the shRNA lentiviral constructs were determined. This 

included cell seeding density, polybrene concentration and FBS presence. Two plates 

were set up following the plate layout shown in figure 72. On the second day the 

confluency of the wells was visually inspected, the seeding density of 30,000 cells/well 

provided the optimal confluency for transduction. Transduction media both with and 

without FBS and at varying concentrations of polybrene was then prepared and added 

to the wells of each plate as shown in figure 43. After six hours, culture medium was 

added to each well of one plate while the other plate was left overnight before culture 

medium was added. The following day, the cell confluency and morphologies were 

examined using a microscope. The MIN6 cells were seen to be detaching and less 

confluent on the plate which had been left overnight but growing well on the six-hour 

transduction plate. The cells also appeared to tolerate the lack of FBS during the six-hour 

transduction and the highest concentration of polybrene tolerated without effecting cell 

growth was 8µg/mL. These were the conditions selected to use in further transductions 

and the selected wells have been marked by a red box in figure 72. 
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Figure 72. Plate Format for Transduction Optimisation 

 

6.3.2. Selection of optimal Promotor for MIN6 Transduction 
 

To determine the promotor that is most active in MIN6 cells, a SMARTchoice shRNA 

promotor selection plate was used. Using the transduction conditions determined 

previously, MIN6 cells were transduced with seven different SMARTvector non targeting 

controls, each containing a different promotor. The cells were transduced at a range of 

multiplicity of infections (MOIs). The activities of seven different promoters in MIN6 cells 

were imaged and the images displaying the highest expression of GFP for each promotor 

is displayed in figure 73. The mCMV promoter produced the highest fluorescence 

intensity indicating it would be the optimal promoter for use in MIN6.  

 

Template for 96 well plate layout used to select optimal transduction conditions in 

MIN6 cells. The optimal conditions chosen to use in further transductions has been 

marked by a red rectangle.  
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Figure 73. Fluorescence Microscopy Images of SMARTchoice Promotoers 

 

6.3.3. Analysis of Doxycycline induced Connexin 36 knockdown in 

transduced MIN6 
 

Three different shRNAs expressing the mCMV promotor and an inducible shRNA against 

Cx36 were used. These were designated KD1, KD2, and KD3. MIN6 were transduced with 

each shRNA and a scrambled control using conditions described in section 6.3.1. Growth 

media was then supplemented with 1µg/mL of freshly dissolved doxycycline to activate 

the knockdown at various time points over 48 hours. To select the shRNA producing the 

cell line with optimal inducible Cx36 knockdown, western blots were used to measure 

Cx36 expression.  

 

The results from these western blots (figure 74) show that each of the three shRNA 

constructs tested resulted in a lower Cx36 expression than in the MIN6 transduced with 

the scrambled control. There was a gradual reduction in Cx36 expression proportional 

to increased exposure time to the doxycycline with all constructs KD3 showed the 

greatest effect on the Cx36 levels and thus was used for further experiments.  

  

No Promoter hCMV mCMV hEF1α 

mEF1α CAG PGK UBC 

Fluorescence microscopy of MIN6 transduced with SMARTvector 8.0 Non-
targetting control particles from the Dharmacon SMARTchoice Promoter Selection 
Plate. 
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Figure 74. Western Blot Analysis of Cx36 KD 

 

 

  

Western blot showing connexin 36 expression in high passage MIN6 pseudoislets 

after five days of culture with doxycycline added for the final 0, 6, 12, 24, 36, and 

48 hours. Samples include MIN6 transduced with three different shRNAs containing 

a Cx36 knockdown gene (KD1, KD2, and KD3) and a scrambled control. Beta actin 

was the housekeeping protein used to normalise. Graph shows mean of normalised 

connexin 36 expression.  N=1 
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6.4. INFLUENCE OF CONNEXIN 36 KNOCKDOWN ON THE INSULIN 

SECRETION RESPONSE OF MIN6 PSEUDOISLETS  
  

The insulin secretion response of the MIN6 pseudoislets with Cx36 knockdown was 

measured in comparison to the response of MIN6 transduced with the scrambled 

control (figure 75). Pseudoislets used in this study were formed in standard MIN6 culture 

media for three days then in media with doxycycline present for a further two days, 

there was no obvious effect of Cx36 KD on pseudoislet formation (results not shown). 

The MIN6 with Cx36 KD showed much higher variability in insulin secretion response at 

both basal and high glucose. The basal insulin secretion was almost 4-fold higher in the 

Cx36 KD compared to scrambled control. The insulin secretion at high glucose also 

appeared higher with the induced knockdown but due to the high basal insulin secretion 

the fold increase in insulin secretion was lower, 2.5 for the Cx36 KD and a 3.7-fold 

increase in the control.   

 

G S IS  o f M IN 6  P s e u d o is le ts

w ith  C x 3 6  K D

In
s

u
li

n
/p

r
o

te
in

 (


g
/m

g
)

S c r a m b le d

C o n tr o l

K D 3

0

2

4

6

8

5 m M  G lu co se

2 5 m M  G lu co se

 

Figure 75. GSIS of MIN6 Pseudoislets with Cx36 KD 

 

 

 

 

Insulin secretion response of high passage MIN6 cultured as pseudoislets for five 
days with connexin 36 knockdown induced on day two. Pseudoislets were 
incubated for 30 minutes in 0.5mM glucose media then one hour at either 5mM 
glucose or 25mM glucose. N=3. Statistical analysis performed but not found to be 

significant when not indicated. 
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6.5. INFLUENCE OF CONNEXIN 36 KNOCKDOWN ON ATP PRODUCTION 

 

Using the seahorse bioanalyser protocols developed in chapter 4 and the pseudoislet 

protocol as described for GSIS in 6.4, the impact of the Cx36 KD on metabolic function 

was analysed. MIN6 transduced with scrambled control or shRNA encoding inducible 

Cx36 knockdown formed pseudoislets over five days. Doxycycline was present in the 

final two days of pseudoislet culture to induce the knockdown. The pseudoislets were 

then treated for one hour in 0.5mM glucose media before analysing the metabolic 

activity. Figures 76 and 77 show an example experiment displaying the OCR and ECAR 

measurements respectively. There was no consistent effect of Cx36 KD on both basal 

and glucose-stimulated glycolysis as assessed by ECAR. However, there was a clear 

increase in basal rates of OCR following Cx36 KD. The data from three of these 

experiments were then analysed to calculate the ATP production from oxidative 

phosphorylation and glycolysis both with and without Cx36 KD, figures 78-80. 
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Figure 76. OCR of Pseudoislets with Cx36 KD 

 

OCR response in high passage MIN6 Cx36 stable KD model cultured as pseudoislets for 
five days and with doxycycline induction on day two or no induction in the controls. The 
first injection contained either 25mM glucose or 0.5µM glucose injection and 
subsequent injections contained 20µM oligomycin, then 0.5µM Antimycin A. Measured 
on a seahorse XFe24 bioanalyzer. Islets were cultured for 24 hours on a 24 well 
microplate and starved for one hour in 0.5mM glucose prior to the experiment. N=3. 
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Figure 77. ECAR of Pseudoislets with Cx36 KD 

 

The total ATP production from all metabolic pathways in Cx36 KD and control cell were 

then calculated and are shown in figure 78. This data suggests that the knockdown of 

Cx36 results in a slightly higher basal ATP production and higher ATP production at high 

glucose. However, the fold change in overall ATP Production was 3.03-fold for MIN6 

pseudoislets with the scrambled control and 2.9-fold for the pseudoislets with Cx36 KD. 

These differences between these fold changes is smaller between the differences seen 

between the fold changes in insulin secretion response but do support trends in insulin 

secretion shown in figure 75. The total ATP production is expected to be tightly linked 

to insulin secretion but analysing the separate contributions of glycolysis and oxidative 

phosphorylation to the ATP production can provide more insight into the pathways.  

 

ECAR response in high passage MIN6 Cx36 stable KD model cultured as pseudoislets 
for five days and with doxycycline induction on day 2 or no induction in the 
controls. The first injection contained either 25mM glucose or 0.5µM glucose 
injection and subsequent injections contained 20µM oligomycin, then 0.5µM 
Antimycin A. Measured on a seahorse XFe24 bioanalyzer. Islets were cultured for 
24 hours on a 24 well microplate and starved for one hour in 0.5mM glucose prior 
to the experiment. N=3. 
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The ATP contributions from oxidative phosphorylation are shown in figure 79. These 

results show that the increased basal ATP production in Cx36 KD MIN6 is at least in part 

caused by an increase in basal oxidative phosphorylation. The MIN6 with Cx36 

Knockdown also showed a slight increase in ATP production at high glucose. The fold 

increase between oxidative phosphorylation contributions to ATP production at basal 

and stimulating glucose levels was 1.4 for MIN6 with Cx36 knockdown and 2-fold for the 

control however these increases did not reach statistical significance.  

 

Figure 80 shows the ATP contribution from glycolytic metabolism.  This data shows that 

Cx36 expression does not influence glycolytic activity at basal glucose levels but that ATP 

production through glycolysis is higher at stimulating levels of glucose in MIN6 with the 

Cx36 knockdown.  
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Figure 78. ATP Production in Pseudoislets with Cx36 KD 

Total ATP produced per minute by pseudoislets stimulated by glucose. Measured by 
the seahorse XFe24 bioanalyser. MIN6 pseudoislets formed over five days were then 
cultured for 24 hours on a 24 well islet capture plate. N=3,  **=P<0.01, ***=P<0.005 
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Figure 79. ATP Production from Oxidative Phosphorylation in Pseudoislets with 

Cx36KD 

Total ATP produced per minute through oxidative phosphorylation by pseudoislets 
stimulated by glucose. Measured by the seahorse XFe24 bioanalyser. MIN6 
pseudoislets formed over five days were then cultured for 24 hours on a 24 well 
islet capture plate. N=3. Statistical analysis performed but not found to be 
significant when not indicated.   
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Figure 80. ATP Production from Glycolysis in Pseudoislets with Cx36 KD 

6.6. CONCLUSION 
 

6.6.1. Development of Cx36 Knockdown Model 
 

This chapter aimed to investigate the role of Cx36 in regulating the function of 

pancreatic beta cells. The influence of Cx36 on beta cell function has been investigated 

through a variety of approaches. Firstly, beta cells cultured as dispersed 2D monolayers 

have limited intercellular communication. This dispersal of islets is well known to have 

an immediate negative impact on beta cell secretory function [16, 101].  

Pharmacological agents are able to create chronic or acute inhibition of transport 

through gap junctions without preventing the formation of the islets. However, the 

mechanism of action and specificity of these drugs are not well understood, and 

nonspecific interactions may influence results [95, 162]. Rodent models with partial or 

complete Cx36 KO have reported beta cell dysfunction [89, 94, 140, 163]. Due to the 

time and cost restraints in this study generating a mutant mouse model was not an 

option and as the specificity and half-lives of the pharmacological agents are uncertain, 

Total ATP produced per minute through glycolysis by pseudoislets stimulated by 
glucose. Measured by the seahorse XFe24 bioanalyser. MIN6 pseudoislets formed 
over five days were then cultured for 24 hours on a 24 well islet capture plate. N=3,  
**=P<0.01, ****=P<0.001 
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the influence of Cx36 was investigated through a cell line with inducible Cx36 KD in this 

study.  

 

First the inducible Cx36 knockdown cell line was generated in MIN6 cells. The ideal 

transduction conditions, promotor, and shRNA constructs were identified. The 

transduction conditions and promotor conditions found to be optimal in this chapter are 

similar to the ideal MIN6 transduction conditions reported in previous studies [164]. This 

chapter only focused on MIN6 cultured as 3D structures either with Cx36 KD or 

transduced with a scrambled control. The pseudoislets formed over five days with 

doxycycline added over the final two days to induce the knockdown. The addition of 

doxycycline did not inhibit the continued formation of the islets which were inspected 

regularly under a light microscope. Western blots reporting Cx36 expression along with 

fluorescence microscopy to check for GFP expression confirmed successful transduction 

and Cx36 knockdown in the MIN6.  

 

6.6.2. Increased functional activity at Basal Glucose in Cx36 Knockdown 
 

The functional activity of MIN6 pseudoislets with Cx36 knockdown was measured at 

basal glucose conditions. This included measuring insulin secretion through an insulin 

enzyme linked immunosorbent assay (ELISA) and ATP production using a seahorse XFe96 

bioanalyser. The pseudoislets carrying the Cx36 knockdown displayed a higher basal 

insulin secretion and ATP production than the pseudoislets expressing Cx36. This 

increased activity at basal levels was also shown in monolayers in sections 3.7.4, and 4.4 

when compared to 3D structures. It is well known that basal insulin secretion is 

increased when beta cells are dispersed and there is evidence to show that Cx36 is 

required to maintain function at basal levels, so this is consistent with previous studies 

[94, 96, 140, 163, 165]. The Cx36 channels are thought to maintain a low basal insulin 

secretion response by coordinating the basal response between beta cells within the 3D 

structure. Spontaneous bursts of [Ca2+] can sometimes occur in isolated beta cells 

stimulating insulin secretion at basal glucose levels, the Cx36 channels distribute these 

[Ca2+] waves throughout the islet allowing the less active cells to diminish the effects of 
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these bursts from more active cells [95]. It is also for this reason that beta cell function 

measurements are less variable in 3D structures than in 2D structures. The error bars on 

the insulin secretion measurements in figure 75 are much larger for the samples with 

Cx36 knockdown suggesting that the hyperpolarizing waves from individual islets could 

be less well-regulated within these islets.   

 

The data generated using the seahorse bioanalyser suggests that the increased basal 

activity is due to an increase in metabolism through oxidative phosphorylation. The 

levels of glycolytic activity did not alter between pseudoislets with or without Cx36 

knockdown whilst the levels of oxidative phosphorylation increased 1.6-fold with the 

knockdown. This was also the case for monolayers which showed a 1.3-fold increase in 

basal insulin secretion and a 1.7-fold in ATP produced from oxidative phosphorylation 

when compared to pseudoislets. Possible reasons for the increased basal ATP 

production in pseudoislets compared to monolayers was discussed in section 5.9.2 and 

similar mechanisms could be contributing to the increase seen in the pseudoislets with 

Cx36 knockdown.  

 

6.6.3. Reduced Insulin Secretion Response in Cx36 Knockdown 
 

The pseudoislets with Cx36 knockdown demonstrated a lower fold increase in insulin 

secretion and in total ATP production than the scrambled control. However, the ATP 

production from glycolysis was slightly higher in Cx36 deficient pseudoislets. The higher 

rates of glycolytic metabolism may be a sign that the metabolism in the Cx36 deficient 

pseudoislets is not operating at optimal efficiency. Cx36 deficient mice have shown a 

loss of glucose stimulated insulin secretion [140, 163] and so pseudoislets with Cx36 

knockdown would be expected to be glucose insensitive and not produce more ATP or 

secrete more insulin in response to glucose. The responses of the Cx36 KD pseudoislets 

was also much more variable with larger error bars which may be due to reduced 

synchronicity of Ca2+ between beta cells.    
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The increase in glycolysis seen in pseudoislets does not seem to be mediated by 

increased Cx36 channels since this was not reversed by Cx36 knockdown. The GSIS was 

not dramatically inhibited by the Cx36 KD in the pseudoislets and certainly not back to 

the levels seen in monolayer samples suggesting that the effects of pseudoislet 

formation on GSIS was not mediated by Cx36. Overall, it appears that basal insulin 

secretion in the pseudoislets was regulated by Cx36 but GSIS was not.  

 

Insulin release is biphasic starting with an initial burst of insulin from granules that are 

already docked to the beta cell membrane and followed by a pulsatile release but the 

mechanisms behind this are poorly understood [95, 166]. A lack of Cx36 is thought to 

lower the response of the first insulin secretion phase and reduce the frequency but not 

amplitude of the second phase [163]. Further investigation into how the two phases of 

insulin secretion are affected by Cx36 knockdown in vitro could help to improve 

understanding of these mechanisms. It would also be of interest to explore whether the 

improved glucose sensing of pseudoislets displayed through the increased GLUT2 and 

decreased hexokinase I expression are altered during knockdown of Cx36. 
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CHAPTER 7. FINAL DISCUSSIONS 
 

7.1. Effects of 3D structure on beta cell function 
 

7.1.1. Improved Function of Beta Cells in 3D Structures 
 

MIN6 beta cells showed improved function when configured as 3D structures known as 

pseudoislets including an enhanced GSIS response (figure 25) mirrored by increased ATP 

production at high glucose (figure 43) and decreased basal insulin secretion. This is 

consistent with previous reports [14, 76-78, 83, 88, 89, 101-103]. Further investigation 

into the changes in metabolic pathways found that the increased basal insulin secretion 

in monolayers was a result of increased oxidative phosphorylation (figure 44) and in 

pseudoislets an increase in glycolysis was largely responsible for the increased insulin 

secretion at high glucose (figure 45). The metabolic enzyme activity of MIN6 maintained 

in 25mM growth media was measured. The activities of most mitochondrial enzymes 

investigated including pyruvate carboxylase, citrate synthase, alpha-ketoglutarate 

dehydrogenase, and malate dehydrogenase, were increased in pseudoislets compared 

to monolayers. The rate of ATP production in response to glucose was the same in 

monolayers and pseudoislets but the glucose responsiveness of pseudoislets was 

greater due to the lower basal OCR. 

 

The activities of glycolytic enzymes were also measured including phosphoglucokinase 

isomerase (PGI), glucokinase, phosphofructokinase 1 (PFK1), aldolase, GAPDH, and 

pyruvate kinase. Most glycolytic enzymes did not show any changes in activity between 

monolayer and pseudoislet samples except PFK1 and GAPDH activities, which were 

higher in pseudoislets. PFK1 activity is an important regulatory enzyme in the glycolytic 

pathway which stimulates the glycolytic pathway [80]. These results show that although 

the 3D configuration improved beta cell function as was expected [14, 76-78, 83, 88, 89, 

101-103], the mechanisms behind the improved function are not simple and more 

investigation was needed to understand them.  
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Pyruvate carboxylase expression was higher in pseudoislets than in monolayers, this 

enzyme plays an important anaplerotic role in catalysing the conversion of pyruvate to 

replenish intermediates in the TCA cycle. It is known that changes in beta cell PC activity 

correlate with glucose induced insulin secretion as inhibition of pyruvate carboxylase 

inhibits insulin secretion and the islets of diabetic rodents show decreased Pyruvate 

carboxylase expression [156, 159]. It is also thought that pyruvate carboxylase plays a 

role in beta cell proliferation [11]. 

 

7.1.2. Beta Cell Response to Pyruvate 
 

It is important that beta cells do not respond to pyruvate stimulation to maintain good 

blood glucose control as this would result in inappropriate insulin secretion [54, 55]. It 

is not ideal for beta cells to express MCT1 as these would allow transport of pyruvate or 

lactate into the cell and stimulate unwanted insulin secretion causing blood glucose 

levels to drop [147]. MCT1 is a monocarboxylate transporter known to be expressed in 

beta cells of patients with exercise induced hyperinsulinemia. These patients suffer a 

drop in blood glucose levels following exercise as the pyruvate produced enters the beta 

cell [147]. The MIN6 monolayer rate of ATP production through oxidative 

phosphorylation increased in response to pyruvate stimulation, the pyruvate response 

was only seen in monolayers and not pseudoislets or human islets. One explanation for 

this may be an increase in monolayer MCT1 expression. Antibodies were optimised for 

MCT1 detection in control tissue and expression was not detected in the MIN6 beta cells 

from monolayers or pseudoislets. However, this may be because the levels expressed 

were below detection levels but still present. Further investigation through PCR analysis 

would help to rule out inappropriate MCT1 expression as a cause for the pyruvate 

response.  
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7.1.3. Possible Amino Acid Stimulated ATP Production 
 

The transport of endogenous pyruvate into the mitochondria was also investigated using 

the mitochondrial pyruvate carrier (MPC) inhibitor, UK5099 to further understand how 

pyruvate is metabolised once inside the cell. Both monolayers and pseudoislets showed 

a reduction in OCR after addition of UK5099 indicating that the ATP production is reliant 

on pyruvate uptake into the mitochondria.  

 

The fuel source providing the pyruvate being transported into the mitochondria is 

unclear. Although there is some pyruvate present in the media, 1mM, it has been shown 

that the pseudoislets do not respond to extracellular pyruvate, we assume that this is 

because it cannot be transported into the beta cell. Glucose levels in the media are low 

too low to be considered a plausible fuel source, 0.5mM. It is possible that the L-

glutamine in the media is providing a fuel source allowing for the reduction in OCR seen 

after the addition of UK5099. It is also possible that L-glutamine is acting through other 

pathways to influence the beta cell metabolism. L-glutamine is one of the most 

abundant amino acids found in extracellular fluid in vivo and is thought to have both 

acute and chronic effects on insulin secretion [167]. It has been shown to chronically 

alter insulin secretion rates by up regulating 148 genes and downregulating 18 genes 

leading to changes in the beta cells capability to respond to changes in the external 

environment [168]. The acute effects of L-glutamine involve generation of coupling 

factors such as glutathione and glutamate which lead to enhanced insulin secretion by 

indirectly stimulating ATP production [167]. The L-glutamate generated can also act to 

prime insulin secretory granules accelerating the second phase of insulin secretion 

[169]. The investigation of the effects of amino acids on beta cell metabolism goes 

beyond the scope of this study so it was not investigated beyond noting that an effect 

may be present.  
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7.1.4. Role of Cx36 in the Metabolic Phenotype of the 3D Structure 
 

A MIN6 cell line with inducible Cx36 knockdown was generated and another transfected 

with a scrambled control. Functional analysis of pseudoislets formed from these cell 

lines found that inhibition of Cx36 expression increased basal insulin secretion. The 

increase in basal insulin secretion appeared to be due to contributions from oxidative 

phosphorylation. Increased basal insulin secretion in the absence of Cx36 is well known 

and is thought to be due to random hyperstimulating Ca2+ waves generated in isolated 

beta cells that would be dampened if the cell were able to transfer ions between cells in 

a 3D structure [94, 98, 140]. Increases in basal insulin secretion in MIN6 monolayers also 

correlated with an increase in oxidative phosphorylation suggesting that Cx36 plays an 

important role in maintaining oxidative phosphorylation rates at basal glucose.  This 

suggests that Cx36 may be playing a more upstream role in regulating energy production 

rather than exclusively regulating calcium. The overall rates of insulin secretion and ATP 

production at high glucose were higher with the Cx36 knockdown but when the basal 

insulin secretion was considered the fold increase was lower. The previous studies using 

Cx36 deficient rodents have shown a decrease in glucose stimulated insulin secretion 

[94]. There was however, an increase in glycolytic ATP production in the Cx36 deficient 

pseudoislets as was seen in the pseudoislets expressing Cx36 and in the human islets.  

 

This data collected using Cx36 deficient pseudoislets demonstrated that a lack of Cx36 

resulted in a similar phenotype at basal glucose to MIN6 cultured as monolayers. Cx36 

seems to be pivotal in regulating basal insulin secretion and this seems to be at least in 

part due to changes in basal ATP production through oxidative phosphorylation. There 

is a trend towards a lower GSIS response, but further studies are required to further 

explore this effect. Cx36 deficient pseudoislets provide a suitable model to further 

investigate the influence of gap junctional proteins on beta cell function involved in the 

improved function of beta cells cultured as 3D structures.  
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7.1.5. Comparison of Function with Human Islets 
 

To demonstrate the relevance of the MIN6 beta cell line model studies to human 

studies, the metabolic function of human islets was also measured using the XFe24 

seahorse bioanalyser. The data collected from the human islets was more variable than 

data from the MIN6 cell line due to the large number of factors human islets are exposed 

to which can influence function. However, even with this variability it was clear that the 

metabolic phenotype of the human islets was similar to the MIN6 pseudoislets. Both 

exhibited low ATP production without glucose stimulation and had no response to 

pyruvate stimulation as would be expected of islets but had been a feature in monolayer 

samples.  

 

There were comparable fold increases in ATP production under high glucose, 3-fold for 

human islets and 4-fold for pseudoislets. There was an increase in oxidative 

phosphorylation, but this was only 2-fold for both MIN6 pseudoislets and human islets 

so was not sufficient in explaining the overall increase in ATP production rate seen in 

either islet type or the subsequent increased insulin secretion response seen in the 

pseudoislets and reported previously in human islets [3, 5, 85]. Both pseudoislets and 

human islets gained most of the stimulated ATP production through glycolysis. This was 

not an expected result as it is largely accepted that tight coupling between oxidative 

phosphorylation and glycolysis is required for optimal insulin secretion [57, 170]. There 

has been very little investigation into the glycolytic contributions to insulin secretion in 

islets so these findings could not be compared to those described in previous literature. 

It is probable that the glycolytic increases were at least in part due to beta cells in the 

centre of the 3D structure being exposed to hypoxic conditions as is explored further in 

the following section, section 7.2.1. but may also indicate that there are other factors 

yet to be elucidated involved in meeting the ATP demands of stimulated insulin 

secretion. 
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7.2. In vitro Limitations 
 

7.2.1. Possible Hypoxia in 3D structures 

 

It is known that isolated islets and pseudoislets will normally express levels of hypoxic 

cores to some degree. This is because once removed from the highly vascularised 

pancreas the cells in the centre of the islets are not able to receive enough oxygen as it 

is not able to freely diffuse to the islet core [106, 152]. The levels of hypoxia in the 

pseudoislets used in this study was investigated. An increase in lactate dehydrogenase 

activity would indicate anaerobic metabolism occurring in the beta cells, possibly due 

hypoxia. There was a trend towards increased LDH activity in pseudoislets although this 

did not reach statistical significance. The presence of down-stream targets of hypoxic 

inducible factors (HIFs) was also measured in pseudoislets, these included GLUT1, PDK1, 

and LDH. PCR results indicated a trend towards upregulation of HIFs in pseudoislets 

compared to monolayers but the pseudoislet data was very variable so this could not be 

reliably concluded. It is likely that the variability in the data is due to beta cells towards 

the centre of the pseudoislets being exposed to a much higher risk and potential level 

of hypoxia than those on the outside. The trend towards increased expression of hypoxic 

markers and LDH activity along with the large glycolytic contribution to ATP production 

and lower basal OCR indicate that the pseudoislets and human islets are suffering some 

effects of hypoxia. This supports reports that the presence of hypoxia in in vitro studies 

involving islets and pseudoislets is a factor which must be managed carefully and taken 

into account when analysing results [13, 144, 151, 152, 171, 172].  However, the increase 

in pseudoislet glucose stimulated insulin secretion which is fuelled in part by an increase 

in oxidative phosphorylation compared to monolayers, the lack of increase in basal 

glycolysis and the lower basal insulin secretion compared to monolayers do not support 

a hypoxic phenotype. This implies the changes in the metabolic phenotype are more 

complicated and cannot be fully explained hypoxia. 
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7.2.2. Influence of Passage number on Results 
 

Pseudoislet formation only increased the GSIS response at high passage, above passage 

26. It was only at the higher passage numbers that differences between the pseudoislet 

and monolayers became obvious as the formation of the 3D structures returned the loss 

of the aging cells. To achieve clear data with minimal variability, only the higher passage 

cells were used in this study. Other studies have also chosen to select only older passage 

MIN6 [7, 77, 111, 112]. 

 

7.3. Long Term Significance of findings 
 

This research holds potential for improving treatment of both type 1 and type 2 

diabetes. Pseudoislets showed improved functionality mostly due to increased glycolysis 

which may be a feature of islets in vitro. The high glycolytic contribution to ATP 

production in both pseudoislets and native islets used in research should be noted as a 

possible limitation when using these 3D structures as a research model. Oxygen 

consumption rates of donated islets have already been shown to give an indication of 

transplant outcome [122, 123]. Measuring the individual contributions of glycolytic and 

mitochondrial metabolism could give further information on islet efficiency when 

selecting optimal islets for transplant.  

 

Cx36 has been found to be more abundant in 3D structures than in beta cells cultured 

as monolayers [92, 94, 96, 103, 140, 163]. In this thesis, a potential role for Cx36 

expression in maintaining the ideal metabolic phenotype and insulin secretory function 

at basal levels of glucose has been explored. The preservation of these connections 

through 3D culture describes another area in which improvements in islet culturing 

protocols could reduce loss of function in isolated islets resulting in a higher success rate 

in islet transplants for the treatment of type 1 diabetes. 
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The functional and metabolic features of the MIN6 monolayers and Cx36 knockdown 

pseudoislets were similar to that of beta cells from patients with type 2 diabetes [173]. 

Cx36 has also been shown to have decreased levels in the islets of some T2DM patients 

[174]. Cx36 provides a possible target in the treatment of T2DM, furthering 

understanding behind these mechanisms leading to the loss of function could improve 

preventative and therapeutic drug development.  

 

7.4. Future Directions 
 

 7.4.1. Short term 
 

• To produce a conclusive assessment on the extent of hypoxia in the pseudoislets 

and human islets used through pimonidazole staining, western blot analysis of 

LDH expression, and PCR analysis of MCT4 expression. 

• To investigate whether the increased mitochondrial enzyme activities were due 

to tighter coupling between glycolytic and mitochondrial metabolism or 

increased mitochondrial biogenesis through mitochondrial staining and PCR 

analysis of mitochondrial mRNA.  

• To extend Cx36 knockdown studies through enzyme activity analysis, PCR to 

measure chronic effects on metabolism, and imaging of calcium signalling. 

• To extend human islet studies by dispersing and reaggregating islets and 

assessing the resulting effect on metabolic function. 

 

7.4.2. Long term 
 

Long term goals would be to investigate the effect of transplant-associated stresses on 

cell connectivity. This can be achieved by exposing islets to transplant-associated 

stresses such as hypoxia, glucotoxicity, and pro-inflammatory cytokines and assessing 

changes in Cx36 expression.  The importance of cell contacts in preserving function in 

the transplant setting could be explored by manipulating cell contacts through 

monolayer and pseudoislet culture as well as Cx36 expression to establish whether any 

function lost through transplant associated stresses and Cx36 inhibition can be restored.  
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Pseudoislets could also be maintained in a more normoxic environment through stirred 

suspension cultures to investigate whether this would prevent changes seen in this 

study, this would show if the impact on glycolysis could be prevented and the 

consequent impact on GSIS.  
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