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Abstract 

Heterogeneous catalysts comprising of noble metal nanoparticles (such as Pt, Pd and 

Rh) supported on oxides, play a key role in a wide range of important chemical 

transformations including automotive exhaust control. However, due to the increasing 

demand for these catalysts and scarce resources of noble metals, there is a pressing 

need to reduce the consumption of noble metals in catalysts. Sintering of nanoparticles 

can cause catalyst deactivation, hence stabilizing nanoparticles can be a solution to 

reduce the loss of noble metals. Moreover, by improving the catalytic activity of noble 

metal nanoparticles, the amount of noble metals in catalysts can be reduced while still 

maintaining the required catalytic performance. Therefore, this thesis focuses on some 

novel nanostructures of noble metal catalysts that can potentially lead to enhanced 

stability and improved activity, in order to use noble metals more efficiently. CO 

oxidation was chosen as the model reaction in this study, because of its importance in 

automotive exhaust control. 

Interactions between metal nanoparticles and the support can have big influences on 

particle stability, as it was demonstrated in this thesis that weak particle-support 

interactions would lead to nanoparticle sintering under reaction conditions and hence 

destroy the dedicatedly designed nanostructures. In addition, the particle-support 

interactions may also bring some emergent functionalities that can affect the catalytic 

activity. Hence, different approaches were attempted to enhance the particle-support 

interactions, and their effects on the stability and activity of the catalysts were 

investigated. 

In the first approach, noble metal nanoparticles (Pd) were enclosed into porous organic 

cages (POCs, a class of hollow, cage-like macromolecules). The POCs were able to 

confine the nanoparticles, which resulted in a uniform particle size distribution. 

However, the limited accessibility of active sites in POCs and the thermal 

decomposition of the POC support (~300 °C) largely restricted the activity of the 

resulted catalysts hence their practical applications.  

The alternative approach was to partially embed (socket) noble metal nanoparticles in 

perovskite oxides via redox exsolution method. This has been previously demonstrated 

to produce highly stable transition metal nanoparticles. For the first time this thesis 

investigates the in situ formation of the socketed particles while at the same time 
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providing valuable mechanistic insight for designing more efficient exsolved materials. 

Experiments have been conducted in situ in a latest generation environmental 

transmission electron microscope (ETEM) which allowed for the direct observation of 

the socket formation, metal particle nucleation and growth. The socket was found to 

form simultaneously with the particle growth due to the rise of perovskite lattice around 

particles. The particle growth seemed to be limited by the availability of exsolvable ions 

near the perovskite surface, which highlighted the importance to reduce the perovskite 

grain size when attempting to exsolve from dilute compositions. All the above 

mechanistic insight was employed to design materials that can exsolve from dilute 

substitution of noble metals thus potentially allowing for more efficient use of noble 

metals. Parameters such as substitution levels and reduction time and temperature 

were used to control exsolved particle characteristics and relate them to the catalytic 

activity. By comparing with the state-of-the-art Rh catalyst, the exsolved Rh catalyst 

with the same nominal metal loading exhibited similar activity despite that only a part 

of Rh in the bulk of perovskite exsolved on the surface. This indicates that the activity 

of exsolved catalysts can be enhanced probably due to the emergent functionalities 

that arise from the strained particles, which could potentially reduce the amount of 

noble metals in catalysts if the extent of exsolution can be increased. 

This thesis highlights the following design principles for noble metal catalysts. The 

stability of metal nanoparticles on the support must be high enough to maintain the 

designed nanostructures. That means that we need to have stronger particle-support 

interactions. Attempting to do this by full encapsulation was successful but 

compromised activity. Therefore, a partial embedding via the exsolution method results 

in a combined stabilizing effect and increased activity due to strain. Ultimately, this 

appeared to be the most promising method for designing efficient noble metal catalysts. 
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Chapter 1: Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter briefly introduces the background of noble metal nanoparticles in 

heterogeneous catalysis and the need to improve their stability and activity, the aim of 

this study and the outline of the thesis. 
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1.1 Noble metal nanoparticles in heterogeneous catalysis 

Catalysis is one of the most important disciplines of the chemistry-related research, 

and a catalyst is the substance that can increase the rate of a chemical reaction without 

being consumed. After hundreds of years of development, catalysts have been 

employed everywhere in our lives nowadays, as they are widely used in about 90% of 

chemical processes in all fields [1] and contribute to nearly 35% of GDP all over the 

world [2]. There is no doubt that catalysts will continue to play a vital role in areas such 

as energy conversion, pollution abatement, medical applications and food production 

[2]. 

Catalysts can be generally classified into homogeneous and heterogeneous catalysts. 

Homogeneous catalysts stay in the same phase as the reactants (normally liquid), 

while heterogeneous catalysts are in a different phase from the reactants (normally a 

solid catalyst in liquid or gas phase). Heterogeneous catalysts are more frequently 

used in industry because they are easier to be recycled from the process as compared 

with the homogeneous counterparts, although their activity may be slightly lower than 

that of the homogeneous catalysts due to the lower surface area [3]. 

Noble metals are key materials for heterogeneous catalysts, and they play important 

roles in reactions such as hydrogenations, oxidations, dehydrogenations and 

environmental catalysis [4]. The catalysts used in automotive exhaust control are the 

one of the biggest consumers of noble metals, which uses roughly 34% Pt, 55% Pd 

and 95% Rh every year [5]. Usually, these catalysts comprise noble metal 

nanoparticles on a high-surface area support (normally oxides like Al2O3 or SiO2). It is 

mainly because, as compared with the bulk counterparts, metal nanoparticles possess 

much higher surface area per unit volume, which could result in higher catalytic 

activities as heterogeneous catalytic processes are typically thought to occur on the 

metal surface and/or at the interface between the metal and support [6, 7]. Moreover, 

as the metal particle size becomes smaller, more atoms will be located at the edges 

and corners on the surface of particles, and these coordinatively unsaturated atoms 

may possess high catalytic activity as they are prone to coordinate with other species 

nearby such as reactants to increase their coordination number [8]. 

However, due to the rapidly increasing demand of these catalysts and the limited 

resources of noble metals, it is desired to replace noble metals or reduce their 

consumption in catalysts. Efforts have been made to replace or partly substitute noble 

metals in these catalysts with base metals or their oxides (e.g., Co3O4, NiO) [9, 10], 
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spinel materials (e.g., copper chromite, cobalt manganite) [11] or perovskites [12], but 

it is still challenging to achieve the same activity as noble metal catalysts. Therefore, 

there is a pressing need to improve the design of the catalysts to reduce the 

consumption of noble metals. To achieve this goal, the problem of particle 

agglomeration at high temperatures (known as sintering), one of the major 

mechanisms which cause catalyst deactivation [13], should be solved. What is worse, 

only small amounts of noble metals can be recycled from those deactivated catalysts 

[5], which results in considerable loss of noble metals. Hence, improving the stability 

of noble metal nanoparticles against sintering can be an effective way to reduce the 

loss of noble metals in catalysts. On the other hand, if the reactivity of noble metal 

nanoparticles can be improved, the amount of noble metals in catalysts can be reduced 

while still maintaining the required catalytic performance, which will also make the use 

of noble metals more efficiently. Some novel nanostructures for the noble metal 

catalysts can be designed to solve these problems. For instance, the interactions 

between metal particles and the support were reported to not only affect the stability 

of particles against sintering, but also play an important role to determine the catalytic 

activity [14, 15]. Therefore, this thesis studies novel catalyst systems with different 

particle-support interfaces, aiming to improve the stability and activity of noble metal 

nanoparticles. 

 

1.2 Aim of the thesis 

As introduced above, noble metal nanoparticles including Pt, Pd and Rh are intensively 

used in the application of automotive exhaust control. However, it is desired to improve 

the stability and activity of noble metal nanoparticles, in order to reduce the 

consumption of these noble metals in catalysts and hence to use them more efficiently, 

which is the primary aim of this study. CO oxidation was selected as the model reaction 

to test the samples in this study, because of its importance for automotive exhaust 

control. In order to achieve the aim of this study, efforts have been made to: 

 Prepare supported metal nanoparticles with different nanostructures (e.g., 

nanoparticle pairs with controlled separation distance, nanoparticles 

encapsulated in porous organic cages, and nanoparticles partially socketed in 

perovskite supports via exsolution). 

 Evaluate the thermal stability and activity of these resulted catalysts under CO 

oxidation conditions. 
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 Metal nanoparticles exsolved from perovskite were most promising, hence 

mechanistic insight into exsolution was explored for designing more efficient 

exsolved materials. 

 Employ mechanistic insight to control the exsolution of noble metals and their 

particle characteristics, in order to improve catalytic activity. 

 

1.3 Outline of the thesis 

This thesis contains the chapters organized as shown below: 

Chapter 2 (Background of catalyst preparation and metal nanoparticle stabilization) 

introduces some common preparation techniques of supported metal catalysts. 

Besides, as metal particle sintering is a major challenge for these catalysts, the 

sintering mechanisms and the parameters affecting the sintering process are also 

introduced, followed by some strategies for particle stabilization. The contents in this 

chapter aimed to provide guidance for the catalyst design to stabilize metal 

nanoparticles in the later studies. 

Chapter 3 (Experimental) introduces the methodology employed in this study. 

Characterization techniques that were used to analyze materials are described as well 

as their working principles. The preparation methods of the perovskite-based materials 

are also described there. It should be mentioned that except the metal exsolution from 

perovskites (Chapter 7), the other two studies (Chapter 5 and 6) were both 

collaborative and the sample preparations were conducted by my collaborators, hence 

their preparation methods will be introduced briefly in the respective chapters. 

Moreover, the experimental setups and operation conditions for sample reduction and 

catalytic experiments are also briefly described in Chapter 3. 

Chapter 4 (State-of-the-art noble metal catalysts in CO oxidation) introduces the 

application of noble metals (Pt, Pd and Rh) in heterogeneous catalysis, especially in 

the application of automotive exhaust control. The state-of-the-art catalysts of these 

metals are tested in catalytic experiments, in order to show the classic behaviors of 

noble metal catalysts in CO oxidation reaction and the differences between these 

metals. Hence, the results obtained from this chapter can help understand the catalytic 

behaviors of the samples designed in the later studies. 
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Chapter 5 (Demonstration of metal nanoparticle sintering) describes a specific 

example to demonstrate how the mobility of metal nanoparticles would lead to the 

particle sintering and hence destroy the well-designed nanostructure. In this research, 

efforts are made to prepare the novel nanoparticle pairs with controlled separation 

distance, but the stability tests indicate that the metal nanoparticles loosely dispersed 

on the support can easily agglomerate under reaction conditions. This emphasizes the 

importance of the particle stability when designing catalysts. Therefore, in the next two 

chapters, different catalyst systems are investigated, which can stabilize metal 

nanoparticles by enhancing the particle-support interactions to suppress particle 

migration. 

Chapter 6 (Stabilizing noble metal nanoparticles via encapsulation in porous organic 

cages) demonstrates the approach to stabilize noble metal nanoparticles by enclosing 

them in porous organic cages. The sample preparation is successful, and the well-

defined pore structures of porous organic cages can control the growth of metal 

nanoparticles and protect them from sintering under the given reaction conditions. 

However, the resulted catalyst demonstrates low activity for CO oxidation, probably 

due to the limited accessibility of active sites surrounded by the cages. Moreover, the 

thermal decomposition of the organic support also limits the application of this catalyst 

at high temperatures. Therefore, a catalyst system with both high stability and activity 

is desired. 

Chapter 7 (Towards stabilization and high activity of noble metal nanoparticles via 

exsolution) demonstrates the alternative approach to stabilize noble metal 

nanoparticles by partially socketing them in perovskite oxides via in-situ exsolution. 

The modification of the preparation method for perovskites is firstly introduced, which 

allows for the control over the stoichiometry and microstructure of perovskites. Then 

the experiments conducted in environmental TEM are demonstrated to in situ study 

the mechanism of the formation of the socketed particles. The mechanistic insight 

obtained is also employed to improve the design of exsolved materials for more 

efficient use of noble metals. Hence, then the investigations of exsolution of noble 

metal (Rh) from dilute compositions are described. Different parameters are 

investigated to control the particle characteristics of the exsolved Rh, in order to 

improve catalytic activity. The exsolved Rh catalyst exhibits similar activity as the state-

of-the-art Rh catalyst, despite the limited extent of exsolution, indicating the activity 

enhancement for the exsolved noble metal particles. Therefore, noble metals can be 
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used more efficiently via exsolution, considering the high stability and increased activity 

of the exsolved particles. 

Chapter 8 (Summary and future work) summarizes the major findings in this thesis 

and provides some recommendations for future work. 
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Chapter 2: Background of catalyst 

preparation and metal nanoparticle 

stabilization  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, different techniques are used to prepare supported metal nanoparticle 

catalysts, and hence some common preparation methods in literature are summarized 

here and their advantages/disadvantages are also introduced. Then the mechanisms 

of metal particle sintering and some stabilizing strategies for metal particles are also 

introduced, in order to provide some guidance for the particle stabilization.  
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2.1 Preparation methods of supported metal catalysts 

As mentioned before, nanoparticles of active metals dispersed on porous supports are 

extensively used as heterogeneous catalysts. There is a wide range of preparation 

methods for the supported metal catalysts, and these methods can have different 

effects on the properties of the produced metal particles (e.g., size, shape, distribution) 

and hence the catalytic performance (e.g., activity, selectivity, stability) [16, 17]. The 

two most traditional preparation methods of supported metal catalysts are 

impregnation and precipitation in which the metal precursor is firstly introduced onto 

the support followed by the dying, calcination and reduction steps [16, 18]. Apart from 

the traditional methods, there are also some emerging techniques being studied in 

recent years, such as melt infiltration, colloidal methods, chemical vapor deposition 

[16], etc. Here, some common preparation methods and their advantages and 

disadvantages will be introduced. 

 

2.1.1 Impregnation 

The one of the most widely used preparation methods for supported metal catalysts is 

called impregnation in which the solid support is infiltrated with a certain amount of 

solution containing the metal precursor (normally the metal salt) [19]. When the 

solution contacts with the porous support, it will enter and fill the pores of the support, 

and the infiltrated support will be dried, calcined and reduced in sequence. Depending 

on the amount of solution used with respect to the amount of the support involved, the 

impregnation method can be classified into two main types. The first type is called 

“incipient wetness” or “dry” impregnation, in which the amount of solution used is just 

enough to fill the total pore volume of the support without excess [16, 18], which can 

reduce the use of metal precursors especially when costly components are used [18]. 

On the other hand, the other type of impregnation is called “wet” or “soaking” 

impregnation where excess amount of solution is used as compared with the pore 

volume, which can be conducted by aging the support in the solution of metal precursor 

for a period under continuous stirring [20].  

Although widely used due to its extensive flexibility, the impregnation method lacks the 

adequate control over the morphology of the resulted metal particles and large 

particles are usually produced due to the metal agglomeration during the heating steps 

[21]. 
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2.1.2 Precipitation 

Co-precipitation is also a very popular preparation method for supported metal 

catalysts. In this method, the precursor of the active metal and the salt precursor of the 

support material are mixed in the same solution, and hence they can be simultaneously 

precipitated as hydroxides and/or carbonates by adding a base into the mixed solution 

under stirring [18, 19]. The co-precipitation method is able to disperse the metal 

particles throughout the support and achieve high metal loadings [16], and it has been 

widely employed to produce catalysts in large scale for some industrially important 

processes, such as Ni/Al2O3 for steam reforming [22] and Cu-ZnO/Al2O3 for synthesis 

of methanol [23]. 

Another preparation method which is similar as co-precipitation is called deposition-

precipitation, which was initially proposed by Haruta et al. [24]. In the deposition-

precipitation method, the metal precursor is dissolved in the solution with the 

suspension of the support material in presence, and then the precipitation of the metal 

hydroxide is triggered normally by increasing the PH of the solution. The surface of the 

existing support can provide sites for nucleation, hence the metal precursor can be 

deposited on the surface of support. 

The chemical precipitation is not a controlled process, and the nucleation and 

subsequent growth of particles are dependent on the precipitation reactions and hence 

are highly sensitive to the reaction conditions. Therefore, the catalysts prepared via 

precipitation methods always have a broad particle size distribution and uncontrolled 

particle morphology [19, 25]. Moreover, in the catalysts prepared by using co-

precipitation, probably not all the active metal would be at the surface, hence this 

method may not be suitable for noble metals. 

 

2.1.3 Emerging methods 

As mentioned above, although traditional preparation methods like impregnation and 

precipitation have been used for long time, they still cannot effectively control the 

properties of the prepared metal particles (size, shape, distribution, etc.). Furthermore, 

these traditional methods also have very limited control over the interactions between 

metal particles and support, which would result in agglomeration and hence low 

stability [26]. Therefore, a range of emerging preparation techniques for supported 

metal catalysts have been reported over the years. 
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Melt infiltration, for instance, is a relatively new preparation method. In this method, the 

metal precursor contacts with the support and is subsequently heated above its melting 

point, and hence the molten metal precursor can enter the pores of the support via 

capillary forces [16]. Big difference between the melting point and the decomposition 

temperature of the metal precursor is required, otherwise the precursor will decompose 

before entering the pores.  Hence, hydrated transition metal nitrates were reported as 

the most suitable precursors to be used in this method, because of their low melting 

points coined to dissolution in their own crystal water [27]. Melt infiltration is similar as 

impregnation and drying, but it is simpler and no solvent is required, which can limit 

the redistribution of the metal during the heating steps hence achieving a more 

homogeneous distribution [16]. However, currently this preparation method is only 

applied for a limited number of metals such as Co, Ni and Cu, because a lot of metal 

precursors would decompose before infiltrating the support as mentioned before [16]. 

Another emerging preparation method is chemical vapor deposition. In this method, a 

volatile metal precursor is vaporized (sublimed) and the vaporized metal precursor 

reacts with the support and is hence deposited onto the surface of the support, then 

the adsorbed precursor can be thermally treated to decompose and get reduced [19, 

28, 29]. Chemical vapor deposition can produce highly dispersed metal particles on a 

wide range of both organic and inorganic supports under mild conditions [19]. However, 

the systems for chemical vapor deposition are costly, which is a big disadvantage for 

this preparation method. 

Supported metal catalysts can also be prepared in the colloidal method. Metal 

nanoparticles can be prepared in colloidal sols with a well-defined particle size 

distribution and the produced metal nanoparticles are stabilized by some ligands or 

surfactants against coalescence and growth in the solution. These preformed metal 

nanoparticles in colloids can be then deposited onto a support with little change of the 

particle size [16, 30]. Hence, by controlling the parameters during the colloid 

preparation step such as the selection of reducing agent, stabilizer and solvent which 

can affect the size and shape of particles, these particle properties can also be well 

controlled when they are deposited on the support [30]. However, after deposition, the 

ligands or surfactants attached to the metal particles need to be removed, which is 

normally done by thermal decomposition and hence will result in changes of particle 

size and shape. Recent studies reported that ligands can also be removed via solvent 

extraction, which has little effects on the deposited metal particles [30, 31].  
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Apart from the methods mentioned above, there are still many other novel preparation 

methods for supported metal catalysts, such as sputtering [32] and flame spray 

pyrolysis [33], which will not be discussed further here. With the advances of the 

preparation methods, the control over the particle properties have been improved a lot. 

However, these emerging preparation methods do not improve the thermal stability of 

catalysts much and it is still a major problem for state-of-the-art catalysts. 

 

2.2 Metal nanoparticle sintering and its mechanisms 

As mentioned before, the nanosized particles of noble metals play vital roles in 

heterogeneous catalysis, but they always suffer from an inherent weakness that is the 

inadequate stability at high temperatures. Small metal nanoparticles will demonstrate 

a great tendency to agglomerate to form larger but fewer particles during reactions in 

order to minimize their surface energies, and this process is called sintering of 

nanoparticles, which is one of the major deactivation mechanisms for supported 

catalysts [13, 34, 35]. The problem of nanoparticle sintering is especially severe for 

some industrially important processes such as catalytic combustion, steam reforming, 

and automotive exhaust control where high temperatures are required for reactions 

[36]. Once the sintering happens, the surface area of the metal nanoparticles will 

decrease considerably, which will result in the loss of active sites hence the 

degradation of the catalytic activity. Moreover, for the applications which are sensitive 

to the particle size [37, 38] or dependent on the metal-support interface sites [39], the 

growth of nanoparticles also means the changes of the catalytic activity and selectivity. 

According to earlier studies, the sintering of metal nanoparticles can happen via two 

possible mechanisms which are particle migration and subsequent coalescence 

(Figure 2-1(a)), and Ostwald ripening (Figure 2-1(b)), respectively [40]. In the former 

mechanism, two or more metal nanoparticles migrate over the support surface in the 

term of Brownian-like motion, which finally results in the coalescence when particles 

move too close to each other. On the other hand, in the Ostwald ripening mechanism, 

some individual metal atoms have the tendency to detach from the surface of small 

metal nanoparticles and subsequently migrate to join other larger particles, which is 

due to the lower chemical potential in larger metal particles. The detached metal atoms 

can be transferred either across the surface of the support or through the vapor phase, 

while the former is more common for supported catalysts unless the nanoparticles are 

composed of volatile metals. However, the real sintering process is much more 
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complicated as the dominant sintering mechanism may change or those two 

mechanisms may happen simultaneously, and more physical and chemical processes 

may also be involved [35, 40]. 

 

Figure 2- 1 Schematic demonstration of two possible mechanisms for nanoparticle 

sintering: (a) particle migration and coalescence and (b) Ostwald ripening. [40] 

The nanoparticle sintering is a very complex process and it can be affected by several 

parameters. The first and maybe the most important parameter, of course, is the 

temperature. In both mechanisms introduced above for sintering, some bonds (either 

between the atoms within a metal particle or between the particle and the support) 

need to be broken, and a higher temperature can make bond breakage more facile, 

hence the sintering will happen more readily [41]. Apart from the temperature, sintering 

can also be influenced by the atmosphere which the catalyst is exposed to [42]. It was 

reported that the sintering of metal particles like Pt happens more easily when exposed 

to oxidizing atmospheres as compared with the inert or reducing atmospheres [43], 

and this might be attributed to the changes of the surface structure caused by the 

adsorbed species like H, O or OH depending on the atmosphere [42]. 

Sintering is also affected by the properties of metal particles. The melting point of the 

metal particles is one of the key parameters. The migration of species during the 

sintering process can be described by the so-called Hüttig and Tamman temperatures. 

When the Hüttig temperature (𝑇𝐻ü𝑡𝑡𝑖𝑔) is reached, atoms at defects on the particles 

become mobile, while the Tamman temperature (𝑇𝑇𝑎𝑚𝑚𝑎𝑛) is related to the mobility of 

bulk atoms, and these two temperatures are closely related to the melting point 

(𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔) according to the semi-empirical equations [41, 44]: 

𝑇𝐻ü𝑡𝑡𝑖𝑔 = 0.3𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔                               Equation 2-1 

𝑇𝑇𝑎𝑚𝑚𝑎𝑛 = 0.5𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔                             Equation 2-2 
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Therefore, metal particles with higher melting points are generally more thermally 

stable. In addition, other parameters like particle size and shape can also affect the 

mobility of solids hence their stability [44-46]. For instance, Wang et al. reported that 

tetrahedral particles of Pt are more stable than cubic particles [45]. Lu et al. also found 

that the melting point hence stability of Au particles not only changes with the particle 

shape, but also increases with the increasing particle size [46]. Besides, the loading or 

dispersion of metals is also a parameter that affects the sintering process [47]. 

Apart from the properties of metal particles, the interaction between the metal and the 

support also plays an important role to determine the particle stability, as it can affect 

the mobility of metal atoms or particles on the support. If the support surface has a lot 

of defects or pores, the migration of metal on the surface will be more difficult and 

hence the particles will be more stable. Moreover, the effects of the particle-support 

interaction can be altered by the presence of some promoters or impurities [35, 42]. 

For instance, if Cl remains on the support when chloride precursors are used, it can 

increase the surface mobility of metals hence the sintering by weakening the particle-

support interaction [48], and other species such as F and S also show the similar 

effects [42]. On the contrary, species like C, O, Ca, Ce and Ba can lower the surface 

mobility of metals, and hence the sintering process can be inhibited [42]. 

 

2.3 Strategies to stabilize metal nanoparticles 

The sintering leads to severe deactivation of metal nanoparticles and the sintering 

process is usually irreversible [44], hence the deactivated catalysts have to be replaced 

regularly, which increases the costs for using catalysts especially the ones rely on 

noble metals. Additionally, the recycling of these metals from the spent catalysts is 

challenging. For instance, catalysts used in automotive exhaust control are the biggest 

consumer of noble metals which use about 60% total amount of Pt, Pd and Rh every 

year, but only less than 10% of these metals are recycled [5]. Therefore, in order to 

reduce the consumption of noble metals, the sintering process must be prevented by 

stabilizing the metal nanoparticles. Based on the parameters that affect the sintering 

process as introduced above, some strategies for particle stabilization can be 

proposed. Basically, the temperature and atmosphere belong to the external 

parameters that are determined by the conditions of specific applications, so normally 

they cannot be altered easily. Hence, attention should be given on the modification of 
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properties of metal particles and support as well as particle-support interactions [41]. 

Some current strategies to stabilize metal nanoparticles will be introduced below. 

 

2.3.1 Stabilization by alloying 

Since reported by Sinfelt [49], the bimetallic systems, in which two different metal 

species together form the individual particles, have become a hot research area for 

catalysis, because bimetallization can provide unique properties which the 

monometallic particles do not have [50]. Aside from the catalytic properties, the 

sintering of the bimetallic particles may also be suppressed if a metal is alloyed with a 

second metal which has a higher melting point [41]. Cao and Veser reported that Pt 

can be stabilized by forming bimetallic particles with Rh and the resulted Pt-Rh 

particles can stay stable at the size of ~4 nm up to 850 °C while the monometallic Pt 

particles sinter at 600 °C. However, the behavior of the Pt-Rh particles with the 

increasing temperature is dependent on the Pt/Rh ratio [51]: with high Rh amount 

(Pt/Rh=1), the Pt-Rh particles can remain almost unchanged up to 850 °C; with low Rh 

amount (Pt/Rh>3), a de-alloying process will happen, in which Pt bleeds from the Pt-

Rh particles to form big Pt particles and the Rh concentration in the remaining Pt-Rh 

particles increases, and in this way the Pt-Rh particles can be stabilized on the sacrifice 

of some Pt. Moreover, it is important to choose the appropriate second metal, because 

the melting point of the bimetallic particles normally changes nonlinearly with the 

composition and the addition of a second metal may also change the activity and 

selectivity of the catalyst. 

Also, for some bimetallic particles, phase transformation may happen to generate an 

outer shell to protect the core inside [41]. Unlike the normal core-shell structure that 

will be introduced later, this shell is grown from the bimetallic particles themselves. For 

instance, Liu et al. reported that by reducing the preformed bimetallic Au-Ag particles 

in NaBH4, a core-shell nanostructure (~3 nm) with Au-Ag inside and Ag shell outside 

can be produced, and it is stable up to 500 °C and highly active for CO oxidation [52]. 

However, this phase transformation is not always beneficial in bimetallic systems. The 

surface segregation can happen for most bimetallic particles by increasing the 

temperature, and it can significantly change the composition at the particle surface, 

ending up with one metal accumulating on the surface or the totally reverse result in 

which the intended core-shell structures are converted to well-mixed bimetallic 
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particles [41]. This will inevitably change the catalytic properties of the sample, and 

how it will change is nearly unpredictable. Therefore, this particle stabilizing strategy 

through alloying is limited by the surface segregation phenomenon. 

 

2.3.2 Stabilization by particle encapsulation 

Another effective strategy to stabilize metal nanoparticles is encapsulation of 

nanoparticles in hollow porous shell materials. The basic roles of the outer shell 

material include physically isolating and hence protecting the core nanoparticles from 

coalescence [53], providing confinement and growth control to the core nanoparticles 

[54], and in some cases modifying the metal-support interface [55]. In order to protect 

the core nanoparticles, the shell material itself is required to be thermally and 

chemically stable, and mechanically strong enough to survive the harsh reaction 

conditions [41]. When used in catalytic applications, the access of reactants to the 

active metal surface is vital, so high porosity is also an important requirement for shell 

materials.  

A wide range of materials have been used as the shell to encapsulate metal 

nanoparticles, and according to the characteristics of the final structure, they can be 

classified into three types including the core-shell, core-sheath and mesoporous 

structures [41]. 

The core-shell structure is the most typical and straightforward way to encapsulate 

metal nanoparticles by directly wrapping them with some porous oxide shells to isolate 

the individual nanoparticles. Porous silica is often used as the shell material to from 

the core-shell structure, which can provide excellent stabilization to metal 

nanoparticles [55-57]. Joo et al. successfully prepared the core-shell structure of 

Pd@SiO2 (Figure 2-2(a)), by preparing the Pd nanoparticles first followed by coating 

the preformed Pd nanoparticles with the silica shell [55]. The resulted sample remained 

stable up to 750 °C and the particle size of Pd remained unchanged. At the same time 

the core-shell structure did not collapse and the sample also showed very high activity 

for CO oxidation and C2H4 hydrogenation. Apart from silica, some transition metal 

oxides such as Fe2O3, TiO2 and SnO2 can also be used to encapsulate noble metal 

nanoparticles to form the core-shell structure, which can also provide synergistic 

effects at the noble metal-metal oxide interface [58]. For instance, Yin et al. prepared 

Au@Fe2O3 core-shell structure by coating the preformed Au nanoparticles with Fe2O3, 
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and their sample was stable up to 700 °C and it was more active in CO oxidation as 

compared with Au deposited on Fe2O3 [59]. Moreover, it is worth mentioning that the 

yolk-shell structure, a variation of the core-shell ones, has also been studied a lot 

recently [60, 61]. Unlike the core-shell structure, the yolk-shell structure consists of a 

hollow shell and a core metal nanoparticle, and there is a big interstitial space between 

the shell and core (Figure 2-2(b)). Hence, the core nanoparticle is free in the hollow 

shell with homogeneous surrounding environment, and more surface area of the 

nanoparticle can be accessed by reactants [61]. For instance, Pablo et al. coated Au 

nanoparticles in turn with shells of SiO2 and ZrO2, and then the inner shell SiO2 was 

remove by using the NaOH solution, which resulted in the Au@ZrO2 yolk-shell 

structure [62]. The structure of the sample and hence its activity in CO oxidation were 

unchanged after being aged at 800 °C. 

 

Figure 2- 2 Examples showing the (a) core-shell structure (Pt@SiO2) [55] and (b) yolk-

shell structure (Au@ZrO2) [62]. 

The core-sheath concept was adopted by Cao et al. [41] for another encapsulating 

structure where active metal nanoparticles are confined inside tubular supports which 

are open from both sides. Hence, the hollow tubular support can strengthen the mass 

transfer of reactants, which benefits the catalytic processes. A typical support for the 

core-sheath structure is the carbon nanotube (CNT) which can not only control the size 

of metal nanoparticles but also provide unique properties and chemical reactivities to 

metal nanoparticles due to the interaction between the metal and interior walls of CNTs 

[63]. A good example is the multi-metallic nanoparticles (Rh, Mn, Li and Fe) confined 

in the CNTs (Figure 2-3), as reported by Pan et al. [64]. They found that the activity of 

the CNT confined nanoparticles was much higher (more than twice) for ethanol 

formation from syngas as compared to the same nanoparticles on SiO2 support, and 

this high activity was maintained in the long-term experiment. 
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Figure 2- 3 Multi-metallic nanoparticles (Rh, Mn, Li and Fe) confined in CNT. [64] 

Also, some porous materials have been widely used to stabilize metal nanoparticles. 

The most popular one is mesoporous silica such as MCM41 and SBA-15 which can 

serve as good templates to confine metal nanoparticles [65]. The advantages of silica 

supports include high surface area, narrow pore size distribution, tunable pore 

dimension and the ordered pore structure which enables the facile diffusion of both 

reactants and products during the catalytic processes [41, 65]. Therefore, a wide range 

of metal nanoparticles such as Pt, Rh, Au and Ni has been reported to be confined 

using mesoporous silica [66-68]. Apart from silica, mesoporous carbon can also be 

used as a good support, and for example, Li et al. prepared ~1.2 nm Pd nanoparticles 

on the ordered mesoporous carbons which showed good stability as well as enhanced 

activity and selectivity for hydrogenation of phenol [69]. Besides, metal nanoparticles 

can also be stabilized using the materials with irregular pore networks, and their high 

interconnectivity can allow for better mass transfer [41]. For instance, Veser and co-

workers reported Pt nanoparticles embedded in the thermally stabilized alumina matrix, 

and the sample showed good activity and selectivity in methane partial oxidation and 

the sintering did not happen at 1000 °C [70]. 

 

2.3.3 Stabilization by enhancing particle-support interaction 

Based on the mechanisms of metal sintering as introduced above, the sintering 

process can be suppressed if the mobility of the metal species on the support is 

reduced, which can be achieved by strengthening the particle-support interaction. As 

mentioned before, some elements appearing on the support can modify the particle-

support interaction, which means that some species can be used as the stabilizer for 

nanoparticles [71, 72]. For example, CeO2 is often added in catalysts to improve the 
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oxygen storage ability, but it is also important to stabilize the metal nanoparticles. CeO2 

can stabilize support materials by suppressing the transformation from the high-

surface phase (like γ-Al2O3) to the low-surface phase (like α-Al2O3) [73], but more 

importantly it can provide a stronger anchoring strength to metal nanoparticles on the 

support by forming the metal-O-Ce bond and hence inhibiting the sintering process [71, 

74]. Some other species such as CoOx and In2O3 have been reported to have similar 

effects as CeO2 [75, 76]. 

Another stabilizing method relating to the particle-support interaction was reported 

through modification of the support with another layer of oxides [77, 78]. For instance, 

Dai and co-workers reported that they prepared the Au/Al2O3/TiO2 structure (Figure 2-

4), by modifying the surface of the TiO2 support with an extra layer of amorphous Al2O3 

followed by deposition of Au nanoparticles on the surface-modified TiO2 [78]. They 

found that Au nanoparticles could be strongly anchored to the Al2O3 overlayer and 

were more stable against sintering as compared to the Au nanoparticles deposited on 

the unmodified TiO2 surface, although the mechanism for this stabilization is unclear. 

It is possible that the Al2O3 overlayer physically confines the migration of Au 

nanoparticles, or some chemical bonds might form between Au and the overlayer. 

 

Figure 2- 4 Au nanoparticle deposited on the Al2O3 modified TiO2 surface 

(Au/Al2O3/TiO2). [78] 

 

2.4 Conclusions 

From this literature study, it can be found that despite the development of preparation 

techniques of supported metal catalysts, the metal nanoparticle sintering still remains 

a big challenge for these catalysts. The sintering mechanisms and the typical 
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stabilizing strategies described in this chapter provide valuable guidance for the 

catalyst design in this study. Therefore, different approaches will be demonstrated to 

stabilize noble metal nanoparticles, which include encapsulation of nanoparticles and 

modification of particle-support interface by partially socketing nanoparticles in support 

surface. 
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Chapter 3: Experimental 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter introduces the methodology used in this study, including the 

characterization techniques, sample preparation methods, experimental setups and 

operation conditions for reduction and catalytic experiments. 
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3.1 Characterization techniques 

3.1.1 Powder X-ray diffraction (PXRD) 

X-ray diffraction (XRD) is widely used as a non-destructive technique to analyse the 

crystalline phases, both qualitatively and quantitatively. This includes identification of 

the crystal structure, crystallite size and lattice strain, through analysing the diffraction 

patterns of the sample [79, 80]. 

When waves impinge on two adjacent slits, if the wavelength is similar to the spacing 

between slits, interference of the waves (constructive, destructive or partially 

destructive) can happen depending on the incident angle of the waves. In crystalline 

materials, planes of atoms are periodically ordered at a certain spacing, which can be 

treated as diffraction grating. In XRD, a beam of X-rays hits the sample and the X-ray 

waves are scattered on different planes of atoms in different directions. The 

wavelength of incident X-rays (~1 Å) is comparable with the distance between atoms, 

which fulfils the requirement for wave interference as mentioned above. Therefore, 

interference patterns can be generated. In most directions, destructive interference 

occurs, but when the path length difference of the X-rays scattered from two adjacent 

layers is an integral multiple of the wavelength [79, 81], constructive interference 

occurs, as described by Bragg’s law [81] (shown in Figure 3-1): 

2𝑑𝑖𝑠 sin 𝜃 = 𝑛𝜆                                      Equation 3-1 

where 𝑑𝑖𝑠 and 𝜃 are the interplanar spacing and incident angle of X-rays respectively, 

and they together determine the path length difference between the X-rays scattered 

by two adjacent planes to be 2𝑑𝑖𝑠 sin 𝜃. While 𝜆 is the wavelength of the X-ray, and 𝑛 

is the diffraction order which can be an arbitrary integer.  

 

Figure 3- 1 X-ray waves scattered from adjacent planes. 

In the crystal lattice, the interplanar spacing varies with the orientations of the lattice 

(shown in Figure 3-2). In powder XRD, fine powders serve as the diffracting target, and 
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X-rays can impinge all the different planes in the lattice. Hence, constructive 

interference can form from all the planes at their corresponding specific angles that 

fulfil the Bragg’s equation, which can lead to the formation of diffraction cones as 

shown in Figure 3-3. Therefore, the diffraction pattern that contains characteristic 

peaks of the sample can be obtained, which provides important structural information 

of the sample. For instance, interplanar spacing can be calculated at different 

diffracting peak positions because 𝜆 and 𝜃 are known. 

 

Figure 3- 2 Different lattice planes (200) and (220) in a NaCl unit cell [82]. 

 

 

Figure 3- 3 Diffraction cones generated by illuminating powders with X-rays at different 

incident angles [83]. 

Normally, the powder XRD instrument consists of several basic components, such as 

X-ray generator, monochromator, goniometer, powder sample holder, and detector. 

Figure 3-4 shows the configuration of a typical modern Powder XRD. X-rays are 

normally generated by hitting a metal target (typically Cu) with electrons emitted by 

tungsten filament and accelerated in high voltage. In XRD, the X-rays are required to 

be monochromatic as the diffraction angle is related to the X-ray wavelength according 

to Bragg’s equation, and hence the X-rays must be monochromatized to selectively 
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filter the Cu Kα radiation. The powder sample is packed in a sample holder that is 

located at the centre of the cycle of goniometer, and the X-rays illuminate the sample 

from different angles that will be collected by the detector finally. These basic 

components of XRD can be assembled in two geometries that are the reflection (also 

known as Bragg-Brentano) geometry and the transmission geometry respectively, as 

shown in Figure 3-5. The component geometry displayed in Figure 3-4 is a typical 

reflection geometry that is used more often than the transmission geometry. 

 

Figure 3- 4 The main components in a typical XRD [84]. 

 

 

Figure 3- 5 Two XRD component geometries: (a) reflection geometry and (b) 

transmission geometry. 

It has been mentioned above that the X-rays must be monochromatized in XRD, and 

the quality of this step can affect the analysis for the material purity and structure. 

Conventional X-ray sources contain Kα (Kα1/Kα2 doublet) and Kβ signals while the 

undesirable characteristic wavelength (such as Kβ) needs to be removed, which can 

be achieved by using a β-filter or a single crystal monochromator. A β-filter possesses 

an adsorption edge between Kα and Kβ, which can selectively adsorb Kβ radiation 
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while transmit the Kα1 and Kα2, as shown in Figure 3-6 [85]. For instance, Ni can be 

used as the β-filter for Cu radiation. However, the β-filter is not able to completely 

eliminate the Kβ signals and it will also cause a sudden change of the diffraction 

background near the adsorption edge. Hence, the remaining signal of Kβ and a 

terrace-like intensity change near the adsorption edge would be observed in the 

diffraction pattern (as shown in Figure 3-6(b)). 

 

Figure 3- 6 (a) Schematic of the X-ray emission spectrum (solid line) overlapped with 

the schematic of the adsorption function μ(λ) of a β-filter material (dotted line). (b) 

Changes of the X-ray intensity after being filtered as a function of the wavelength. [85] 

On the other hand, a single crystal monochromator would have better performance to 

filter the X-rays, and its basic principle is shown in Figure 3-7. When a divergent beam 

of X-rays reaches the crystal from a small range of angles between θ1 and θ2, different 

wavelengths 𝜆𝑖 will be diffracted at different angles based on the Bragg’s law (Equation 

3-1), and hence the spatial distribution of wavelengths becomes uneven in the 

reflected beam. Longer wavelengths (like the Kα1/ Kα2 doublet) will be grouped at high 

Bragg angles while shorter wavelengths (like Kβ) will fall into low angles, and hence 

Kβ can be easily removed by placing a narrow slit in the path of the reflected beam 

[85]. Some more complicated configurations of monochromators are also able to 

separate Kα1 and Kα2, and consequently eliminate the Kα2 intensity. 

 

Figure 3- 7 Schematic demonstration of the principle for using a single crystal 

monochromator. [85] 



25 
 

In this thesis, XRD was used routinely to identify the composition, crystal structure and 

phase purity of the perovskite materials. The XRD instrument at Newcastle University 

is a PANalytical X’Pert Pro Multipurpose Diffractometer operating in a reflection-type 

geometry. The instrument is equipped with a PW1730 X-ray generator and a sample 

spinner stage. The diffraction patterns were generated by using Cu Kα radiation 

(𝜆𝑘α1=1.540598 Å, 𝜆𝑘α2=1.544426 Å). The voltage and current employed in the X-ray 

tube were 40 kV and 40 mA, respectively. The samples were scanned at the range 2θ, 

starting from θ =20 – 90 °. 

 

3.1.2 Scanning electron microscope (SEM) 

Scanning electron microscope (SEM) is a very versatile instrument for examining the 

microstructure, morphology and the chemical composition of materials. 

During the operation of SEM, a beam of electrons will hit the specimen, leading to 

various interactions between the electrons and the specimen, and the signals resulted 

from these interactions can be used to generate images [86]. There are two kinds of 

interactions between electrons and specimen in general: elastic and inelastic. Elastic 

scattering means that the incident electrons are deflected by the atomic nucleus or the 

electrons in outer shells that have similar energy, without significant energy loss. The 

direction of scattered electrons will be changed considerably and, for instance, 

electrons being elastically scattered with an angle change more than 90ºare known as 

backscattered electrons (BSE) [86]. In inelastic scattering, incident electrons lose 

substantial energy that is transferred to the specimen atoms, hence the specimen 

atoms may become ionised and their electrons get excited. This can give rise to 

secondary electrons (SE) of low energies (< 50 ev) which represent the main radiation 

used for surface imaging. The signals from different interactions are summarised in 

Figure 3-8, in which we can find that, apart from BSE and SE, there are many other 

signals such as Auger electrons and characteristic x-rays [86]. 
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Figure 3- 8 Schematic demonstration of different signals formed by electron-specimen 

interactions, and the regions within specimen where these signals are generated. [87] 

It is worth mentioning that the interactions do not only happen on the top-most surface 

of the specimen, but some electrons would penetrate in some depth into the specimen 

until they interact with atoms in the specimen. Therefore, a small volume near the 

specimen surface will be excited and produce signals, which is called primary 

excitation region. Depending on the voltage used for the incident electrons and the 

atomic number of the specimen, the shape and size of the excitation region will change 

as shown in Figure 3-9. When the atomic number of the atoms in the specimen 

increases, the shape of the excitation region will change from a “tear drop” to a 

hemisphere. The excitation region will be deeper when accelerating voltage increases 

and the specimen atomic number decreases, because higher voltage endows incident 

electrons with higher energy and lower specimen atomic number has less blocking 

effects for incident electrons. In that case, more signals from the depth in the specimen 

will be obtained, and details of the material surface will be compromised. Therefore, 

lower accelerating voltage is preferred if more surface details and high resolution are 

desired [86]. In SEM, specimen is irradiated with electron beams and adequate 

conductivity is needed for specimen to discharge the electrons. For poorly conducting 

specimens, electrons will accumulate on the scanning area on sample surface, which 

is known as charging. It would cause incident electrons to be repelled from the 

scanning area or result in distorted SEM images. Different methods can be used to 

minimise the charging effects. Coating the specimen with a conducting layer can be 

applied, but the relatively thick layer of the coating will mask the detailed features of 
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the sample surface. Besides, charging effects can also be reduced by lowering the 

voltage and current of incident electrons and using thinner specimen.   

 

Figure 3- 9 Schematic demonstration of the excitation region changing with the 

accelerating voltage and the atomic number of specimen: (a) low atomic number and 

(b) high atomic number. 

SEM images can be generated by using different signals, which can give different 

information of the sample. Secondary electron (SE) is the most common signal to be 

used in SEM. Secondary electrons are emitted from the volume within several 

nanometers from the sample surface, hence they are normally used to generate high-

resolution images to show the sample surface texture and roughness with excellent 

topographic contrast. Backscattered electron (BSE) is another important signal that 

contains the information about sample composition and topography. Incident electrons 

interact with the atomic nucleus of the sample and will be deflected back as shown in 

Figure 3-10. Nucleus of the atoms in specimen with higher atomic numbers will have 

more positive charges and hence more incident electrons will be backscattered. If the 

material is compositionally inhomogeneous, the areas containing heavier elements will 

generate more backscattered electrons hence becoming brighter in the ultimate image, 

while other areas that contain lighter elements will be darker. Therefore, BSE images 

can be used to determine the compositional homogeneity of the material by checking 

the contrast across the surface. 

 

Figure 3- 10 Formation of the backscattered electron via interaction between the 

incident electron and the atomic nucleus of the material. 
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Figure 3-11 demonstrates the major components in a typical SEM instrument. 

Electrons are generated and accelerated by an electron gun at the top of the column. 

The beam of electrons is converged to a focused electron spot (1-100 nm), by passing 

a system of electromagnetic lenses. Then the focused electrons pass through 

scanning coils, and interact with the specimen placed on the sample holder. Finally, 

the signals generated on the specimen reach the detector. Scanning coils can deflect 

the electron beam, so the beam scans the specimen in a raster pattern (along x and y 

axes). The whole system should be operated in high vacuum to avoid electrons being 

scattered by air. 

 

Figure 3- 11 Schematic demonstration of configuration of a typical SEM column. [86] 

In this study, SEM was used as a routine technique especially for the perovskite 

samples. Regarding the as-prepared perovskite samples, they were scanned in BSE 

mode to determine the compositional homogeneity of the samples by checking the 

contrast across the sample surface as mentioned above. Regarding the perovskite 
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samples after reduction, they were scanned in the SE mode to visualize the 

nanoparticles grown on the surface, which could be used to determine the particle 

characteristics such as particle size and population. Two instruments of SEM were 

used: a low-resolution Tescan Vega 3LMU SEM fitted with a Bruker XFlash® 6 | 30 

detector for EDS at Newcastle University, and a high-magnification and high-resolution 

Helios Nanolab 600 SEM from FEI at Durham University. The SEM scans were 

operated under high-vacuum mode and with a voltage ranging from 1 to 30 kV. 

  

3.1.3 Helium ion microscope (HIM) 

Although electron microscopes such as SEM are widely used in material study, their 

performance is limited by the spot size of the electron beam on the sample. The 

diameter 𝑑𝑓 of the theoretical smallest focused spot of any radiation can be calculated 

as [88]: 

𝑑𝑓 = 𝑘𝑓𝜆/ 𝛼                                          Equation 3-2 

where, 𝜆  is the wavelength of the radiation; 𝑘𝑓 is a parameter and 𝛼  is the semi-

convergence angle of the radiation beam. The wavelength of electrons used in SEM is 

in the magnitude of 0.01 nm, which sets a limit for the imaging quality. This can be 

improved by replacing the electrons with heavier ions that have substantially smaller 

wavelengths as shown in Figure 3-12. Therefore, a new microscope technique has 

been developed based on helium ions, which is hence called as helium ion microscope 

(HIM). 

 

Figure 3- 12 Wavelengths of electrons and some ions as a function of energies. [88] 

https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/eds-wds-ebsd-sem-micro-xrf-and-sem-micro-ct/quantax-eds-for-sem/quantax-hardware/xflashr-6-30-detector.html
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HIM has similar working principles as SEM, but it illuminates the specimen with helium 

ions instead of electrons. Interaction between the incident ions and specimen atoms 

leads to the formation of secondary electrons and scattered ions, and the secondary 

electrons are usually used to generate images [89]. HIM shows advantages in many 

aspects over SEM. Helium ions have smaller probe size and their interaction volume 

with the specimen is considerably smaller as compared with electrons, which can 

generate images with higher resolution, stronger topographic contrast and improved 

depth of focus [89, 90]. In addition, as compared with SEM, HIM can produce 

secondary electrons in larger quantities, which enables imaging at lower beam currents 

and hence reducing the damage to the sample [89, 91]. 

Figure 3-13 briefly describes the configuration of a HIM column, which is similar as that 

of an SEM. Helium ion source is a key component in HIM, and it normally consists of 

a single crystal metal that is fabricated in the shape of needle with a pyramidal structure 

at the apex. Under positive voltages, electric field will form at the apex atoms. Helium 

gas in the vicinity of the needle will be affected by the electric field gradient, and then 

be polarized and drawn towards the apex. Only those helium atoms at the tip of the 

apex which consists of only three atoms (trimer, as shown in Figure 3-14) can be 

ionised by the relatively higher electric field [92, 93]. Then the generated helium ion 

beams will pass through two electrostatic lens to be focused before interacting with the 

specimen surface. The interaction will generate different signals (e.g., secondary 

electrons, scattered ions, polarized photons), so there is a variety of detectors to collect 

these signals. Normally secondary electrons are used to generate images. 

Although HIM has a lot of advantages over SEM, this technique is still in development 

and the availability of the instrument is limited. Additionally, samples are required to be 

thermally equilibrated within the microscope for long time before scanning, making HIM 

more difficult to use on a routine basis. Therefore, in this study, SEM was still used as 

a routine technique for microstructure characterization of most samples. However, in 

the stability test of supported metal nanoparticles in Chapter 5, clear visualisation of 

individual nanoparticles was required and hence the evolution of the nanoparticles 

could be recorded to determine their thermal stability. This required high-resolution 

images with excellent surface details, and because of the limited resolution of the SEM 

instrument at Newcastle, HIM was used instead. The HIM instrument used in this study 

was a Zeiss ORION NanoFab HIM at NEXUS of Newcastle University. 
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Figure 3- 13 Simplified schematic of a HIM column (Zeiss ORION HIM). [94] 

 

 

Figure 3- 14 Generation of helium ions at the tip of the emitter (trimer). [89] 

 

3.1.4 Transmission electron microscope (TEM) 

Transmission electron microscope (TEM) is also one of the main techniques for the 

microstructural characterization of materials in catalyst study. Unlike SEM in which the 

image is generated based on the scattered electrons, TEM uses the electrons 

transmitting through the specimen. In TEM, a high-energy electron beam (100-400 keV) 
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is applied to probe an ‘electron transparent’, thin specimen (less than 100 nm), and the 

electrons which pass through the specimen are collected for imaging [95, 96].  

TEM resembles an optical microscope, but it uses electromagnetic rather than optical 

lenses to focus electron beams. A TEM instrument is typically composed of electron 

gun, probe-forming lenses and apertures, specimen holder, image-forming lenses and 

apertures, electron detectors and vacuum system (Figure 3-15) [96]. The electron gun 

at the top of the microscope column generates electrons and they travel in vacuum 

along the column. The emitted electron beam goes through a system of condenser 

lenses that demagnifies the beam and controls its size, and then it will transmit the 

specimen. In order to make the specimen electron transparent, additional preparation 

for TEM samples is required to control their thickness. The objective lenses can 

generate an intermediate magnified image, and it will be enlarged by projector lenses 

on the fluorescent screen, and finally the image can be exported by an operator or a 

camera [97]. 

 

Figure 3- 15 Schematic demonstration of configuration of a typical TEM column. [98] 
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In this study, TEM was also used to visualise the metal nanoparticles dispersed on the 

supports such as Al2O3 and porous organic cages, and the TEM images obtained could 

be used to determine the particle characteristics such as size and population. The TEM 

instrument used in this study was a JEOL 2100F FEG TEM at Durham University, 

which was operated at 200 kV in scanning TEM mode. Besides, in the research of 

metal exsolution from perovskite, an environmental TEM was used to in situ observe 

the exsolution of metal particles from perovskites, which will be introduced in 

subchapter 3.1.5. 

 

3.1.5 Environmental TEM (ETEM) 

In heterogeneous catalysis, catalytic performance can be affected by many properties 

of the catalyst system, such as metal particle size, shape and interparticle interactions. 

However, the configuration and evolution of the system are subject to temperature, 

ambient atmosphere and associated gas-solid reactions. Thus development of 

techniques to in situ observe the evolution of nanoparticles under reaction conditions 

is always desired, which can provide researchers with better understanding of the 

behaviour of nanoparticles in reactions. To achieve this goal, conventional TEM 

columns can be modified to confine gas or liquid in the area around the sample and 

allow the sample to be heated according to a desired temperature programme, and 

this kind of TEM is called environmental TEM (ETEM) (also known as controlled 

atmosphere TEM) [99]. 

However, in a TEM, high-energy electrons are employed to transmit the sample and 

thus a high vacuum environment is required to avoid electrons being scattered by gas 

molecules. Therefore, in ETEM, gas must be confined in the region where the 

specimen holder is located (typically 10-3-150 Torr), whereas the microscope column 

and the gun chamber still need to be maintained in high vacuum (<10-6 Torr), to 

minimise the scattering from gas molecules and also extend the lifetime of the electron 

gun. Design of the sample region (environmental cell) is the key to fulfil this 

requirement, and two methods were proposed in the early developments of ETEM. 

The first method uses a closed cell as the sample holder, where a specially designed 

holder confines gas or liquid around the sample between two thin electron transparent 

windows of low electron scattering power (e.g., C or SiN films) [100]. This closed cell 

method has advantages to handle high gas pressures (depending on the thickness 

and strength of the window) and to be used in different instruments without further 
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modifications to the column [99, 101]. However, the closed cell has a big disadvantage 

that high-resolution images can be difficult to obtain as the windows cause additional 

scattering. Besides, the windows can rupture, and the holder also has less space for 

tilting because of its increased thickness. More importantly, the sample region cannot 

to heated, which limits its application in many reactions that require high temperatures. 

Therefore, more ETEMs nowadays use the second method which is based on a 

differential pumping design [102]. In differentially pumped systems, pressure difference 

is maintained by inserting small apertures both above and below the sample region 

and also applying additional pumping [99]. The typical configuration of a commercial 

ETEM column using differentially pumped cell can be found in Figure 3-16. Normally 

two pairs of pressure limiting apertures are installed, and turbo molecular and ion getter 

pump systems are used separately [101]. Majority of the gas leaking through the first 

pair of apertures is removed by a turbo molecular pump system, and the gas left in the 

column is further restricted by the second pair of apertures. Moreover, the most 

important part in TEM columns, which needs to be maintained under high vacuum, is 

the electron gun, so a separated pumping system is applied to evacuate above the 

condenser aperture [99]. By using this method, a controlled gas environment can be 

generated around sample region up to 3000 Pa, and all the conventional TEM sample 

holder can be used in the column without any modifications [101].  

ETEM uses the same detectors as conventional TEM for data collection, but at a much 

higher rate. ETEM is often used to investigate dynamic processes, so it is required to 

continuously collect data with good temporal resolution to record how the process 

happens, which results in a huge amount of data being collected in a single experiment. 
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Figure 3- 16 Schematic demonstration of configuration of a typical differentially 

pumped ETEM column. FEG- field emission gun; IGP- ion getter pump; TMP- turbo 

molecular pump; RGA- residual gas analyser; PC- plasma cleaner; C- condenser 

aperture; SA- selected area aperture. [101] 

One important application of ETEM is to investigate the transformation mechanism of 

nanostructures happening in gas-solid reactions. The environmental cell in an ETEM 

can be regarded as a tiny micro-reactor that mimics a reactor under near real 

conditions and allows researchers to observe the evolution of nanostructures in situ. 

For instance, Baker and co-workers used ETEM to study a number of metal catalysts 

and investigate the relationship between the transformation of particle morphology and 

the gaseous environment [103, 104]. Here in the research of metal exsolution from 

perovskite (which will be introduced in Chapter 7), experiments were conducted in situ 
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in ETEM to explore mechanistic insights into the exsolution process. This was 

conducted by my co-supervisor Dr Dragos Neagu and our collaborator Dr Mihalis 

Tsampas from Dutch Institute for Fundamental Energy Research (DIFFER). The 

instrument used was a new generation FEI TITAN G2 80-300 kV ETEM equipped with 

an objective Cs aberration corrector and a double tilt holder at Institute of Research on 

Catalysis and Environment of Lyon (IRCELYON), which allows for the operation under 

gas pressure up to at 20 mbar and temperature up to 1300 °C [105]. This instrument 

can continuously record 4K videos at a spatial resolution of 0.09 nm in TEM mode and 

a time resolution of ~50 ms (or equivalently 20-30 frames per second). 

 

3.1.6 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) is a technique to precisely record the mass loss 

(e.g., reduction, drying, desorption, decomposition) or mass gain (e.g., oxidation, 

wetting, adsorption) of a material versus temperature or time under a certain gas 

atmosphere [106]. TGA can provide a range of information about the materials 

depending on the temperature programme and the atmosphere applied in the testing, 

such as thermal stability, oxidative stability, and decomposition kinetics of materials 

and composition of multi-component systems. The major components in a TGA 

instrument include a crucible to hold samples, a balance connected with the crucible 

and a furnace with control over the atmosphere.  

In the research of porous organic cage confined metal nanoparticles (Chapter 6), TGA 

was used to determine the reduction temperature and thermal stability of the samples, 

which was conducted by our collaborators at Durham University by using a Perkin 

Elmer Pyris 1 TGA. Mass change of the sample was negligible before the sample was 

heated to a certain temperature in reducing gas or air, and significant mass loss was 

observed when the temperature went higher, indicating the occurrence of the reduction 

of metals or the thermal decomposition of the material, respectively. Therefore, the 

TGA results can provide guidance for the appropriate temperature ranges to be used 

for the sample reduction and the catalytic tests. 

 

3.1.7 Gas sorption analysis (BET surface area) 

The BET method, pioneered by three scientists Brunauer, Emmet and Teller, is the 

most commonly used technique to calculate the surface area of solid materials. Based 
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on the BET model, the monolayer volume of the adsorbate gas can be determined and 

hence the sample surface area can be calculated according to the equation [107]: 

𝐴𝑠 = (𝑉𝑚 22414⁄ )𝑁𝑎𝜎                               Equation 3-3 

where 𝐴𝑠 is the surface area of material; 𝑉𝑚 is the monolayer volume of the adsorbate 

(N2 is normally used); 𝑁𝑎  is Avogadro number; 𝜎  is the area covered by a single 

adsorbate molecule (0.162 nm2 is usually used for N2). 

𝑉𝑚 can be estimated from the BET model which was established by making several 

important assumptions [107, 108]: firstly, when forming the first monolayer of 

adsorbates, the heat of adsorption stays constant (the surface of the material is treated 

to be uniform for adsorption); secondly, there is no lateral interaction between the 

adsorbed molecules; thirdly, the molecules already adsorbed in one layer serve as new 

adsorption sites for additional molecules in the next layer; finally, the heat of adsorption 

of the first layer is 𝐸1, while all other layers have the same heat of adsorption which 

equals the heat of liquefaction (𝐸2 = 𝐸3 = ⋯ = 𝐸𝑛 = 𝐸𝐿). 

Based on these assumptions, the adsorbed volume of molecules (𝑉𝑎𝑑𝑠) at a given 

pressure can be expressed by BET equation as [107-109]: 

𝑉𝑎𝑑𝑠 = 𝑉𝑚
𝑐𝑝 𝑝0⁄

1−𝑝 𝑝0⁄

1−(𝑛+1)(𝑝 𝑝0⁄ )𝑛+𝑛(𝑝 𝑝0⁄ )𝑛+1

1+(𝑐−1)(𝑝 𝑝0⁄ )−𝑐(𝑝 𝑝0⁄ )𝑛+1
             Equation 3-4 

where 𝑝 𝑝0⁄  is the relative pressure; 𝑛 is the number of layers; 𝑐 is a constant which is 

related to the energy of adsorption: 

𝑐 ≈ 𝑒𝑥𝑝 (
𝐸1−𝐸𝐿

𝑅𝑇
)                                Equation 3-5 

Equation 3-4 can be simplified if 𝑛 → ∞: 

𝑉𝑎𝑑𝑠 = 𝑉𝑚
𝑐𝑝 𝑝0⁄

(1−𝑝 𝑝0⁄ )(1+(𝑐−1)𝑝 𝑝0⁄ )
                     Equation 3-6 

(𝑝 𝑝0⁄ )

𝑉𝑎𝑑𝑠(1−(𝑝 𝑝0⁄ ))
= (

𝑐−1

𝑉𝑚𝑐
) (𝑝 𝑝0⁄ ) +

1

𝑉𝑚𝑐
                Equation 3-7 

This simplified form of BET equation is valid for 𝑛 > 4 and for 𝑝 𝑝0⁄ < 0.35. A BET plot 

can be generated by plotting 
(𝑝 𝑝0⁄ )

𝑉𝑎𝑑𝑠(1−(𝑝 𝑝0⁄ ))
 versus 𝑝 𝑝0⁄ . In the linear region of the BET 

plot, the values of 
𝑐−1

𝑉𝑚𝑐
 and 

1

𝑉𝑚𝑐
 can be found as the slope (𝑆) and the intercept (𝐼), 

respectively, and hence the values of 𝑉𝑚 and 𝑐 can be determined: 
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𝑉𝑚 =
1

𝑆+𝐼
                                    Equation 3-8 

𝑐 =
𝑆

𝐼
+ 1                                   Equation 3-9 

Normally, the linear region appears between 0.05 < 𝑝 𝑝0⁄ < 0.35, but a lower 𝑝 𝑝0⁄  

range may be used for microporous materials [108]. Then the BET surface area per 

unit mass of the material can be determined: 

𝑆𝐵𝐸𝑇 =
𝐴𝑠

𝑚
=

𝑉𝑚𝑁𝑎𝜎

22414𝑚
                        Equation 3-10 

where 𝑚 is the mass of the material. 

In this study, the adsorption and desorption of nitrogen (at 77.3 K) was employed to 

determine the surface area of materials relating to porous organic cages. The nitrogen 

adsorption and desorption experiments were conducted by our collaborators at 

Durham University by using a Micromeritics ASAP 2020 volumetric adsorption 

analyzer. The samples were degassed at offline (100 °C, 15 h) under dynamic vacuum 

prior to the experiments, and they were then degassed on the analysis port also at 

100 °C. 

 

3.1.8 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is one of the most commonly used techniques 

for surface chemical analysis, which is based on the principle of photoelectric effect. In 

XPS, the surface of a material is irradiated by X-ray with a characteristic energy ℎ𝑣. 

The X-ray interacts with electrons in the core level and also transfers energy to these 

electrons, hence some of these electrons will be emitted from the surface of the 

material as photoelectrons that have a kinetic energy 𝐸𝑘. The relationship between ℎ𝑣 

and the kinetic energy of the emitted photoelectrons 𝐸𝑘 can be found as [110]: 

ℎ𝑣 = 𝐸𝑘 + 𝐸𝑏 + ∅                         Equation 3-11 

where 𝐸𝑏 is the binding energy of a core-level electron (with reference to the Fermi 

level), and ∅ is the work function of spectrometer. Since the energy of X-ray used in 

experiments is known and the work function is constant, the kinetic energy measured 

can be used to determine the binding energy of electrons. Therefore, the intensity of 

photoelectrons measured can be plotted as a function of the binding energy, which 

forms XPS spectra. The binding energies obtained can be used to determine the 

surface composition as well as the oxidation states and chemical environments of the 
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elements appearing at the sample surface. The energy of the X-ray used in commercial 

XPS instruments is usually low (<1.5 keV), hence XPS is only sensitive for a shallow 

depth (~10 nm) from the surface of materials. 

In this study, XPS was used to analyse the oxidation states of elements on the surface 

of perovskites, which was conducted by using a Thermo Scientific KAlpha 

photoelectron spectrometer using monochromatic Al X-ray sources. The software 

CasaXPS was used for data analysis. 

 

3.2 Preparation of perovskite materials 

In this thesis, different techniques are investigated to prepare supported noble metal 

catalysts as mentioned before, where the metal exsolution from perovskites has been 

mostly studied. Efforts have been made to modify the preparation method for 

perovskites to precisely control the stoichiometry and tailor the microstructure. The 

procedures that have been attempted to modify the preparation method are introduced 

here. 

 

3.2.1 Conventional solid-state method 

The preparation of perovskites was firstly attempted by using the conventional solid-

state method as shown in Figure 3-17. For example, to prepare La0.8Ce0.1Ni0.4Ti0.6O3, 

high-purity metal precursors including La2O3, CeO2, Ni(NO3)2·6H2O and TiO2 were 

used. The metal oxides were dried at different temperatures (400 °C for CeO2 and TiO2, 

800 °C for La2O3) for 3 hours before they were cooled down to approximately 300 °C, 

and then they were weighed while hot into a beaker. Ni(NO3)2·6H2O was also weighed 

in the same beaker at room temperature. All the metal precursors were weighed 

according to the desired stoichiometric ratios. The powders in the beaker were mixed 

before being transferred into a cup of the planetary ball mill, in which small amounts of 

acetone and dispersant (ATLOX LP-1, from CRODA) were added as well as the milling 

media (zirconia balls). The mixed powders were milled at 400 rpm for 2 hours, and 

then acetone was evaporated at room temperature and subsequently in a drying oven. 

The dried powder was transferred into an alumina crucible and calcined in air at 

1000 °C for 12 hours (5 °C min-1 ramp rate). The powder after the calcination was ball 

milled again using the same procedure as mentioned above (400 rpm, 2 hours). The 

powder obtained was pressed into dense pellets that were moved into an alumina boat 
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and sintered in air at 1400 °C for 14 hours (5 °C min-1 ramp rate) to form the perovskite 

phase. The sample prepared in the method above was referred to as the 1st batch 

sample which was found to contain secondary phases (impurities). Hence, the resulted 

sample was grounded and ball milled into fine powder, and then pressed into pellets 

to be sintered again (1400 °C, 6 hours) as demonstrated by the red arrows in Figure 

3-17, attempting to facilitate more solid-state reactions to get rid of secondary phases. 

Hence, the 2nd batch sample was obtained. However, the purity of the 2nd batch sample 

did not seem to be improved a lot as secondary phases were still seen. Therefore, the 

solid-state method was modified a lot as introduced below. 

 

Figure 3- 17 Flow diagram demonstrating the procedures in the conventional solid-

state method for perovskite synthesis (exemplified by La0.8Ce0.1Ni0.4Ti0.6O3). 
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3.2.2 Modified solid-state method 

In order to avoid the secondary phases hence to precisely control the stoichiometry of 

perovskites, the solid-state method was modified as shown in Figure 3-18. The metal 

precursors were dried and weighed in the same way as used in the conventional solid-

state method above. However, instead of being mixed in the ball mill, the solids of 

precursors were mixed directly in the beaker where they were initially weighed under 

sonication (Figure 3-18(b-d)): small amounts of acetone and dispersant were added 

into the beaker and then an ultrasonic probe (Hielscher UP200S) was used to break 

down the agglomerates and consequently homogenize precursors in acetone to form 

a fine and stable dispersion. The mixing performance achieved by sonication would be 

better as compared to the ball milling that was used previously, which could lead to 

better homogeneity of the final product. The property of the dispersant could also affect 

the dispersion of precursor solids in acetone, hence two different types of dispersant 

were tried, namely ATLOX LP-1 (from CRODA, with low solubility in acetone) and 

Hypermer KD1 (from CRODA, with high solubility in acetone), which gave rise to the 

3rd and 4th batch of La0.8Ce0.1Ni0.4Ti0.6O3, respectively. After sonication, acetone was 

evaporated under continuous stirring (Figure 3-18(e)), which resulted in the 

homogeneous mixture after drying (Figure 3-18(f)). The following steps were similar as 

described in the conventional solid-state method. The mixture was transferred into a 

crucible (Figure 3-18(g)) and calcined at 1000 °C for 12 hours (Figure 3-18(h)), 

followed by ball milling (400 rpm, 2 h). Finally, after the acetone was completely 

evaporated, the resulted powder was pressed into dense pellets that were 

subsequently sintered in air at 1100-1400 °C for 14-24 hours. As exemplified by 

La0.8Ce0.1Ni0.4Ti0.6O3, this modified solid-state method (by using dispersant Hypermer 

KD1) could produce highly pure perovskite without secondary phases, hence it was 

also used to prepare other perovskites in the study. Additionally, the conditions of the 

final sintering step could be further modified in order to prepare the Rh-substituted 

perovskites and also to modify the microstructure of the perovskite, which will be 

demonstrated in detail in subchapter 7.2.  
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Figure 3- 18 Flow diagram demonstrating the modified solid-state method. Some 

pictures are added to show the status of the sample at different stages: (a) precursors 

weighed after drying; (b) precursors mixed by using spatula; (c and d) precursors being 

mixed under sonication to form homogenous dispersion; (e) acetone being evaporated 

under continuous stirring; (f) powder obtained after acetone was evaporated; (g) dried 

powder before calcination; (h) powder after calcination and was transferred into the 

ball mill cup; (i) powder being pressed into dense pellets before sintering. 
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3.2.3 Impregnated catalyst 

An impregnated sample, 0.6 wt% Rh on commercial γ-Al2O3 (Rh/Al2O3), was also 

prepared to compare with the exsolved Rh catalyst from perovskite. The support 

material was added into the dilute Rh(NO3)3 aqueous solution under continuous stirring, 

followed by evaporation of water and drying in oven (90 °C) overnight. The dried 

material was calcined at 500 °C for 4 hours (10 °C min-1 for heating and cooling). After 

calcination, the material was sieved to get powders with particle size between 80-160 

µm. Then the sample was reduced in 5% H2/Ar at the flow rate of 25 mL min-1 (flow 

rates in all experiments are given at normal temperature and pressure, NTP, which will 

not be stressed again henceforth) at 550 °C for 4 hours (5 °C min-1 for heating and 

cooling). 

 

3.3 Reduction setup 

Some samples in this study need to be reduced to convert the metal oxides to metallic 

nanoparticles, especially for the perovskite samples as reduction is highly important to 

trigger the exsolution of metal nanoparticles from perovskites. The setup used for the 

sample reduction is schematically described in Figure 3-19. 

 

Figure 3- 19 Experimental setup for sample reduction. 

As shown in the figure, samples were reduced in a control atmosphere furnace that 

consists of a tubular furnace and an alumina tube going through the furnace. Samples 

were placed in a small alumina boat and located at the centre of the furnace. The 

reducing gas was supplied from a cylinder (5% H2/Ar, from BOC), and the flow rate (25 

mL min-1) was regulated by a mass flow controller (MFC). However, the gas from the 

cylinder could not be used directly for reduction, as the cylinder contained a small 

amount of moisture that could increase the oxygen partial pressure in the reducing gas. 
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Hence, a moisture trap was installed before the reduction furnace in order to remove 

the moisture from the gas. Prior to reduction, the system needed to be purged with the 

reducing gas (~250 mL min-1) for 1 hour to remove the air from the system. Then the 

reducing gas was flowed at 25 mL min-1, and the furnace could be set to the desired 

temperature for reduction (5 oC min-1 for heating and cooling). 

 

3.4 Catalytic experimental setup 

3.4.1 Experimental system 

The catalysts in this study were designed for the application of automotive exhaust 

control, and CO oxidation was selected as the model reaction to evaluate the activity 

of these catalysts as mentioned before. 

𝐶𝑂 +
1

2
𝑂2 = 𝐶𝑂2                               Equation 3-12 

In this study, different catalyst systems were investigated and their thermal stability 

and activity were evaluated in catalytic experiments. All the samples were tested in CO 

oxidation conditions by using a setup as schematically described in Figure 3-20 

(different reactors were used for powder and pellet samples, respectively).  

 

Figure 3- 20 Experimental setup for catalytic experiments with: (a) reactor for powder 

samples and (b) reactor for pellet samples. 
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Gases used in the catalytic experiments were supplied by cylinders as summarized in 

Table 3-1. The reaction mixtures were supplied from 20% CO/He, 20% O2/He and the 

balance gas (helium) by varying their flow rates. Apart from these three gas cylinders, 

a 1% CO2/He cylinder was also used to calibrate the gas analyser. The gas flow rate 

from each cylinder was regulated by a mass flow controller (MFC), depending on the 

desired composition of the reaction mixtures. The mixed reaction gases first entered a 

pre-reactor consisting of a quartz tube containing inert alumina inside, which was used 

to remove metal carbonyls (iron carbonyl for instance) that may exist in gas cylinders. 

Since metal carbonyls normally start decomposing at temperatures ranging from 35 to 

80 oC [111], the pre-reactor was heated to 90 oC to remove the possible metal 

carbonyls. Then the mixed reaction gases were directed into the main reactor in which 

the samples were placed. Reaction took place in a conventional continuous flow 

reactor, and depending on the form of the samples, a horizontal or a vertical reactor 

was used for powder or pellet sample, respectively, which will be introduced in the 

following subchapter. Finally, the outlet gases from the main reactor were directed into 

an IR CO2 analyser (RosemountTM X-STREAM from Emerson), which could measure 

the concentration of CO2 in the outlet gases with a minimum value of 1 ppm. 

Table 3- 1 Summary of gas cylinders used for catalytic experiments. 

Gas cylinders Vendor Usage 

CO/He (20%) BOC To form reaction mixture 

O2/He (20%) BOC To form reaction mixture 

He (99.996%) BOC 
To blend reaction mixture and 

for IR analyser calibration 

CO2/He (1%) BOC For IR analyser calibration 

 

3.4.2 Experimental reactors 

Two types of reactors were used for catalytic experiments. For powder samples, a 

horizontal fixed-packed bed reactor was used, which is schematically described in 

Figure 3-21 below. The powder reactor was a quartz tube with an inner diameter of 7 

mm. The sample region of the quartz tube was held inside a tubular furnace, and the 

sample was placed at the centre of the furnace (8.0 cm away from each side of the 

furnace). The powder sample was closely packed between two pieces of quartz wool 

of equal amount (25 mg), so the powders did not move in the gas flow. Catalytic tests 

for powder samples were conducted normally by using a total gas flow rate (𝐹𝑡) of 450 
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mL min-1, however the flow rate might be changed according to the requirements for 

specific tests. The flow rate was checked both before and after each experiment at the 

outlet of the gas analyser by using a Varian digital flow meter (1000 series). The part 

of the quartz tube reactor prior to the furnace was wrapped with heating tapes and 

insulation, to provide pre-heating to the gases and ensure that the temperature of the 

gases could increase fast to reach the required reaction temperature around the 

sample region. The furnace used for the main reactor was a tubular furnace from 

Vecstar that was calibrated prior to the catalytic experiments by measuring the 

temperatures at different positions in the furnace, and the temperature distribution 

profile obtained is shown in Figure 3-22. If an isothermal zone in the furnace was 

defined as the region in which the temperature variation was less than 5 °C as 

compared with the temperature measured at the centre of the furnace, it can be found 

that the length of the isothermal zone was around 1 cm (0.5 cm to the centre of the 

furnace from both sides). It is important to control the reaction temperature accurately 

during the catalytic experiments to obtain the correct kinetic data. Therefore, the 

sample in every catalytic experiment was placed precisely at the centre of the furnace 

to ensure that the whole sample is in the isothermal zone. It is worth mentioning that a 

thermocouple (type K) was placed in proximity to the catalyst bed to measure the 

sample temperature during the reaction. 

 

Figure 3- 21 Schematic drawing of the single chamber reactor for powder samples. 
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Figure 3- 22 Temperature distribution profile in the tubular furnace for main reactor, 

with isothermal zone labelled between two red dashed lines. 

Pellet samples were tested in the other reactor that was designed in a vertical form, as 

schematically presented in Figure 3-23. The pellet reactor mainly consisted of a quartz 

tube reactor with one end closed, and Swagelok Ultra-Torr fittings to seal the reactor 

and avoid leaking from the air. The pellet sample was placed on a dedicated quartz 

holder in the reactor, and the height of the reactor was adjusted to ensure that the 

sample was located in the isothermal zone at the centre of the furnace. The inlet gas 

tube was inserted in proximity (5 mm above) to the surface of the sample to ensure the 

adequate contact between reaction gases and the sample surface. A thermocouple 

(type K), in a thin quartz tube with one end closed, was also placed close to the surface 

of the sample, which measured the sample temperature during experiments. Total gas 

flow rate used for the pellet sample tests was 150 mL min-1. The total flow rate was 

checked before and after the catalytic experiments at the outlet of the gas analyser by 

using the digital flow meter.  
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Figure 3- 23 Schematic drawing of the single chamber reactor for pellet samples. 

 

3.4.3 Gas analyser (Infrared measurement) 

The concentration of CO2 in the gases in the outlet of the reactor was measured by 

using an infrared CO2 analyser (IR analyser, RosemountTM X-STREAM from Emerson) 

which could measure the minimum detectable CO2 mole fraction of 1 ppm. The working 

principle of an IR analyser is based on the adsorption of IR radiation by the sample 

gas. Different gases have their own distinguishing spectrum for IR adsorption, hence 

the wavelength of the IR adsorption can be used to characterize the gas component 

and the intensity of adsorption can be used to determine the concentration [112]. IR 

analyser utilizes an analysis cell with two separated sides. One side of the analysis cell 

is flowed with the gas to be measured (sample side), and the other side is filled with 

either inert gas such as N2 or reference gases (reference side), as shown in Figure 3-

24(a). IR light would irradiate both sides of the analysis cell alternately with the same 

intensity. Then the light leaving the analysis cell passes a filter cell and reaches an 

opto-pneumatic detector that is shown in Figure 3-24(b). The detector consists of an 

adsorption chamber, a compensation chamber, and a flow channel connecting these 

two chambers in which a micro flow detector is installed. The gas to be measured is 

filled in the detector chambers, so it is only sensitive to the characteristic wavelength 
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band of this specific gas. The IR transparent CaF2 window is used to seal the 

adsorption chamber. When the IR radiation from the reference side reaches the 

detector, gas in the adsorption chamber will adsorb the radiation of the characteristic 

wavelength and be heated, hence the gas will expend and flow towards the 

compensation chamber, which produces a voltage signal by the micro flow detector. 

However, the radiation of the characteristic wavelength would lose some intensity 

when passing through the sample side. Hence, when it reaches the detector, 

temperature of the gas in the adsorption chamber decreases and the gas flows back 

from the compensation chamber, which produces a reverse voltage signal. Therefore, 

alternating voltage signals can be produced, and the intensity change of the signals is 

proportional to the concentration of the sample gas [112]. In this way, the concentration 

of a certain gas can be measured. 

 

Figure 3- 24 (a) Configuration of IR analyser. (b) Opto-pneumatic detector design 

principle. [112] 

 

3.4.4 Conditions of catalytic experiments 

The activities of the catalysts in this study were mainly tested in the model reaction of 

CO oxidation as a function of temperature (referred to as light-off experiment 

henceforth). During the catalytic tests, the reaction temperature was increased 
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stepwise from the room temperature to a desired temperature depending on samples, 

and at each temperature, enough time was given for the reaction rate to stabilize (i.e. 

changes of CO2 concentration in the product are less than ±5% within 60 min). Hence 

the stable reaction rate in term of CO2 production (𝑟𝐶𝑂2) as well as the conversion of 

CO (𝑋𝐶𝑂) can be calculated as: 

𝑟𝐶𝑂2(𝑚𝑜𝑙 𝑠
−1) =  𝑦𝐶𝑂2𝐹𝑡  ×  10

−6                  Equation 3-13 

𝑋𝐶𝑂 = 
𝑦𝐶𝑂2

𝑦𝐶𝑂,𝑖𝑛𝑙𝑒𝑡
 × 100%                             Equation 3-14 

where 𝑦𝐶𝑂2  is the CO2 concentration (in ppm) in the product measured by the IR 

analyser, 𝐹𝑡 is the gas total flow rate (in mol s-1), and 𝑦𝐶𝑂,𝑖𝑛𝑙𝑒𝑡 is the CO concentration 

(in ppm) in the inlet of reaction mixture. Prior to experiments, the system would be 

flown with reaction mixture without being heated, in order to detect the CO2 level in the 

inlet hence to be subtracted from the measurements in experiments. The calculations 

shown above are only accurate by using the data from differential conditions (low CO 

conversion, i.e. <20%) as the conditions (such as temperature and pressure) under 

which the data are measured are known, while the data from the integral conditions 

(high CO conversion) should not be over-interpreted. The CO2 production rate can be 

further normalised on different bases such as the weight of catalyst, the amount of 

active metals and the metal coverage (surface area of metal per surface area of 

support, µm2 µm-2). 

Table 3-2 below shows the gas compositions of the automotive exhaust used in 

literature. Compositions of the automotive exhaust vary with the ratio of air and fuel, 

and normally the conditions of the exhaust are slightly oxidising or stoichiometric. In 

this study, different catalyst systems were investigated, and depending on the nature 

of these catalyst systems, different compositions of the reaction mixture were selected 

for the catalytic experiments. 
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Table 3- 2 Gas compositions of automotive engine exhausts reported in literature. 

Components Concentrations 

Hydrocarbons* 350 ppm [113], 1000-5000 ppm [114], 0.062/0.052/0.040%** 
[115], 0.1067% [116], 900 ppm [117] 

NOX 900 ppm [113], 100-1000 ppm [114], 0.099/0.10/0.10%** [115], 
0.1% [116], 900 ppm [117] 

CO 0.5% [113], 0.05-0.5% [114], 1.3/0.6/0.28%** [115], 0.7% [116], 
1.60/0.40%*** [117] 

H2 0.17% [113] 

CO2 10% [113, 115-117] 

O2 0.5% [113], 0.5-5% [114], 0.28/0.58/1.1%** [115], 0.78% [116], 
0.465/1.26%*** [117] 

H2O 10% [113, 115-117] 

* only C3 is considered. 

** under air/fuel ratio of 14.1, 14.6 and 15.1, respectively. 

*** with air/fuel ratio changing between 14.13 and 15.17. 

In the study of spatially controlled metal nanoparticle pairs (Chapter 5), metal 

nanoparticles were dispersed on silicon wafer substrate and experiments were 

conducted to evaluate their thermal stability. Hence, the experiments were carried out 

in the pellet reactor as introduced before, and stoichiometric CO oxidation conditions 

were selected where the partial pressures of CO (𝑃𝐶𝑂) and O2 (𝑃𝑂2) were 1.0 kPa and 

0.5 kPa, respectively, and 𝐹𝑡=150 mL min-1 (1 x 10-4 mol s-1)). 

For the sample of metal nanoparticles stabilized by porous organic cages (Chapter 6), 

different experimental conditions were used. The sample was in the powder form, so 

the experiments were carried out in the powder reactor as introduced before. Because 

it is a relatively new catalyst system which has not been studied much before, 

stoichiometric CO oxidation conditions (𝑃𝐶𝑂=1.0 kPa, 𝑃𝑂2=0.5 kPa and 𝐹𝑡=450 mL min-

1 (3 x 10-4 mol s-1)) were selected first, which could provide a preliminary activity for the 

sample without concerning the effects of CO and O2 ratio. However, the activity of the 

sample obtained under stoichiometric conditions was not good, hence the effect of O2 

partial pressure was investigated in order to make the sample present its best activity. 

This was conducted via the “O2 kinetics” experiments where CO partial pressure was 

kept constant (𝑃𝐶𝑂=1.0 kPa) while O2 partial pressure 𝑃𝑂2 was increased stepwise from 

0.5 to 7.5 kPa. Based on the results from O2 kinetics experiments, the new oxidising 



52 
 

reaction conditions (𝑃𝐶𝑂=3.0 kPa, 𝑃𝑂2=15.0 kPa and 𝐹𝑡=60 mL min-1 (4.5 x 10-5 mol s-

1)) were employed to test the activity of the sample, which also allowed for the 

comparison with other samples that were tested under similar conditions in literature. 

For the exsolved catalysts from perovskites (Chapter 7) and the conventional alumina 

supported catalysts, they have been studied a lot previously in literature. Hence, the 

slightly oxidising CO oxidation conditions (𝑃𝐶𝑂=0.6 kPa, 𝑃𝑂2=1.0 kPa and 𝐹𝑡=450 mL 

min-1 (3 x 10-4 mol s-1)) were selected for these samples to mimic the real working 

conditions for the catalysts which are used for automotive exhaust control. These 

samples were all in the powder form, so the experiments were carried out in the powder 

reactor as introduced before. 

It is worth mentioning that for the determination of kinetic parameters, only the data 

measured under “gradientless” conditions where the reactor was operated under 

differential conversion (low CO conversion, i.e. <20%) should be used. Otherwise, the 

reactor would be considered to operate under integral conditions at high conversions, 

where the conditions such as temperature and pressure would vary across the reactor. 

Hence, the rates measured under such conditions are averaged values, and analysis 

based on these values would be unreliable.  
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Chapter 4: State-of-the-art noble metal 

catalysts in CO oxidation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, the application of noble metals of Pt, Pd and Rh as three-way catalysts 

for automotive exhaust control is introduced first. CO oxidation is one of the most 

important reactions in automotive exhaust control and it is also the most extensively 

studied reaction in heterogeneous catalysis, hence it was chosen as the model 

reaction to evaluate the catalysts in this study. Previous study of CO oxidation on noble 

metal catalysts in literature is summarized, and the most commonly used noble metal 

catalysts (Pt, Pd and Rh on alumina) were tested to understand their catalytic 

behaviors in CO oxidation as well as their differences, which could provide some 

guidance for this study in the following chapters.  
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4.1 Introduction to noble metal catalysts 

4.1.1 Origin of activity for noble metal catalysts 

Noble metals especially Pt, Pd and Rh are widely used in state-of-the-art catalysts in 

oxidations, hydrogenations, dehydrogenations, catalytic reforming, environmental 

catalysis, and so on [4, 118]. The origin of their catalytic activity for a wide range of 

reactions could be attributed to the appropriate adsorption/desorption properties of 

different reactant/product molecules on the surface of these metals [119, 120]. In most 

heterogeneous catalytic processes, reaction steps include adsorption of reactants on 

the catalyst surface, surface reaction between the adsorbed reactants, and desorption 

of the products, giving the vacant sites back to reactants. Therefore, the 

adsorption/desorption of reactants and products is a very important property for a 

catalyst. If the adsorption strength of either reactant or product on catalyst surface is 

too strong, the adsorption equilibria will be partial to the adsorbed state, which will lead 

to a slow reaction rate. Conversely, if the adsorption strength of reactant is too weak, 

there will be insufficient reactant molecules adsorbed on the active sites and the 

reaction rate will be slow as well. Hence, the relative adsorption strength of both 

reactant and product molecules on a metal surface is critical to determine the catalytic 

activity of this metal, and a high activity is normally achieved only if the metal surface 

provides intermediate adsorption strength for reactants but lower adsorption strength 

for products [120, 121]. Noble metals adsorb many reactant molecules of interest with 

moderate strengths, which makes them favourable candidates for a variety of catalytic 

processes as compared to other metals which are cheaper and more abundant in 

reserve [120]. 

Therefore, the unique catalytic property of noble metals makes them nearly 

irreplaceable in many important applications. For example, automotive exhaust control 

is the most important catalytic application of noble metals and a lot of efforts have been 

made to replace them with base metals [9-12], but this replacement without 

compromising activity is still challenging. Automotive exhaust control by using noble 

metals is also chosen as a topic of this study, and it will be introduced below.  

 

4.1.2 Application of noble metals in three-way catalysts 

The past few decades have witnessed the explosive growth of the number of vehicles 

on the road, and the majority of these vehicles still rely on traditional internal 

combustion engines rather than electric power motors. According to the forecast from 
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the International Energy Agency (IEA), the number of total vehicles around the world 

will increase from 1.1 billion in 2015 to 2 billion between 2035 and 2040, while only 220 

million of them will be electric cars [122]. The fuels used for internal combustion 

engines come from crude oil (hydrocarbons). If the hydrocarbons are completely 

combusted, only H2O and CO2 will be generated, but in reality, the combustion of fuels 

is always incomplete in engines and also the temperature in engines can be very high 

(up to 1100oC), which gives rise to the formation of many harmful substances in the 

exhausting gases from the engine [123]. People started to be aware of the impact of 

automotive emission long time ago but the situation is becoming worse with the rapid 

growth of car ownership, hence a series of regulations have been announced by 

governments over the years to set the threshold limits on different pollutants in the 

automotive exhausts. The first official regulation for automotive emission was put 

forward in 1970 when the Clean Air Act was agreed in the U.S. Congress [124], and 

today all regions have their own regulations. For instance, the European emission 

standards have come to the 6th edition (Euro 6) in 2015 (shown in Table 4-1), and it 

has become much more stringent than the older editions. Therefore, automakers must 

develop their technologies for emission abatement to fulfill the requirements of new 

emission standards. 

Table 4- 1 Emission standards (g/km) of different pollutants for passenger cars 

regulated by Euro 6. [125] 

 Petrol engine Diesel engine 

CO 1.0 0.50 

HCs 0.10 - 

NOx 0.06 0.08 

HCs + NOx - 0.17 

Particulate matters 0.005 0.005 

 

The composition of the exhaust gases varies a lot with the type of engines, and the 

common exhaust compositions from typical petrol engines and diesel engines can be 

found in Table 4-2. For a typical petrol engine, the major harmful substances in the 

exhausts are unburned hydrocarbons (HCs), CO (from incomplete combustion of HCs) 

and NOx (NO and NO2, from high-temperature reaction between N2 and O2), together 

with some small amount of SOx. If the exhaust gases from engines do not go through 

any purification before emitting, the amount of the harmful substances entering the 

atmosphere will be far higher than the threshold limits regulated by standards like the 

one listed in Table 4-1, which will pose highly negative impacts on our environment. 
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Table 4- 2 Compositions and conditions of exhausts from typical petrol and diesel 

engines, respectively. [126] 

Exhaust substances and 

conditions 

Four-stroke spark ignited-

engine (Petrol) 

Diesel engine 

CO 0.1-6% 300-1200 ppm 

HCs (ppm C) 500-5000 50-330 

NOx (ppm) 100-4000 350-1000 

O2 (%) 0.2-2 10-15 

H2O (%) 10-12 1.4-7 

CO2 (%) 10-13.5 7 

SOx (ppm) 15-60 10-100 

PM (mg m-3) - 65 

Temperatures (°C) 1100 650 

Gas hourly space 

velocity (h-1) 
30,000-100,000 

A/F ~14.7 ~26 

In order to eliminate the environmental impacts of the automotive exhausts, catalytic 

converters are used to simultaneously transform the major pollutants to less harmful 

substances through either oxidation or reduction reactions depending on the nature of 

the pollutants. Therefore, a range of reactions can occur in the catalytic converter and 

the main reactions are shown in Table 4-3, although there can be many other 

undesirable reactions. 

Table 4- 3 Major reactions taking place in the catalytic converter to transform the 

harmful substances in automotive exhausts. [123, 126, 127] 

Oxidations 
CO + 1 2⁄ O2 → CO2 

CxHy + (x + y 4⁄ ) O2 → x CO2 + y 2⁄  H2O 

Reductions/three-way 

CO + NO → 1 2⁄ N2 + CO2 

2(x + y 4⁄ ) NO + CxHy → (x + y 4⁄ ) N2 + y 2⁄  H2O + x CO2 

NO + H2 → H2O + 1 2⁄  N2 

WGS CO + H2O → CO2 + H2 

Steam reforming CxHy + 2x H2O → x CO2 + (2x + y 2⁄ ) H2 
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In the first generation of catalytic converters, only the two oxidation reactions listed in 

Table 4-3 were promoted by the automotive catalysts because there was much 

catalytic knowledge towards the oxidation reactions at that time, and hence these 

catalysts are referred to as “two-way” catalysts [128]. Nevertheless, the two-way 

catalysts could only transform CO and HCs, but the stricter regulations required the 

removal of NOx as well. This led to the new generation of automotive catalysts, which 

can simultaneously transform CO and HCs via oxidation reactions and NOx via 

reduction reactions, hence the new generation catalysts are termed as “three-way” 

catalysts (TWCs). The performance of TWCs highly depends on the operating 

conditions of engines, especially the air-to-fuel ratio (A/F), because of the 

corresponding variation of the exhaust compositions as summarized in Figure 4-1.  The 

stoichiometric condition means that the amount of O2 in air that enters the engine is 

just enough to react with all the fuels, where the A/F value is ~14.6 (wt/wt) for petrol. It 

is obvious that the oxidations of CO and HCs are favoured under lean burn conditions 

(excess air, A/F>14.6), while the reduction of NOx is favoured under rich conditions 

(excess fuel, A/F<14.6). Only near the stoichiometric conditions, the ratio between 

reducing and oxidizing agents present in the exhausts is appropriate for TWCs to 

transform CO, HCs and NOx to less harmful substances simultaneously and efficiently 

(as shown in Figure 4-2) [126]. Therefore, TWCs are only applied for those engines 

that are operated under stoichiometric conditions, and it is important to maintain the 

stoichiometric A/F ratio during the operation. 

 

Figure 4- 1 Compositions of engine emissions vary with A/F ratio (wt/wt). λ is the 

air/fuel equivalence ratio which shows the ratio of the actual A/F to the stoichiometric 

A/F value. [126] 
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Figure 4- 2 Conversion of pollutants catalysed by TWCs at different A/F ratio. [126] 

The structure of a common three-way catalytic converter can be found in Figure 4-3. 

In general, the converter is a stainless steel container in which a ceramic honeycomb 

monolith is mounted. An oxygen sensor is also installed near the inlet of the catalytic 

converter and it gives feedback to the injection control loop of the engine to maintain 

the A/F ratio within the narrow operating window around 14.6, which allows for the 

optimum operation of TWCs as mentioned above. A washcoat containing active 

catalysts is supported on the monolith. The active catalysts comprise of noble metals 

(Pt, Pd, and Rh) supported on high surface area alumina. In addition, some mixed 

oxides of CeO2 and ZrO2 are added in the washcoat to improve the oxygen storage, 

and BaO and/or La2O3 are also included to stabilize the structure and avoid 

degradation which leads to the loss of surface area of the alumina support against the 

varying temperatures during operation [126].  

The noble metals Pt, Pd and Rh have been used in TWCs since 1974 [129, 130], and 

it is clear that they play the most critical role among all the components in TWCs to 

determine the performance for the abatements of CO, HCs and NOx. Rh is included in 

TWCs mainly to promote the reduction of NOx [126, 129, 131], as Rh was found to be 

active for NOx dissociation [132, 133]. On the other hand, Pt and Pd are used to 
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promote the oxidation reactions of CO and HCs, although Rh has high catalytic activity 

for oxidation reactions as well [126]. Different combinations of these three metals have 

been used in TWCs over the years,  and nowadays the most common combination is 

Pd/Rh, mainly due to the lower price of Pd as compared to Pt in recent years [129]. 

However, this combination will keep changing in the future. Normally there is only a 

small fraction (0.1-0.15%) of noble metals in the TWC, and the common Pd/Rh or Pt/Rh 

ratio is ~5 [134]. 

 

Figure 4- 3 Typical design of a three-way catalytic converter for petrol engines. [135] 

However, the deactivation of TWCs during the vehicle operation can happen mainly 

via the thermal and chemical mechanisms. Firstly, the sintering of noble metal particles, 

resulting in the loss of active sites, is the main pathway for deactivation of TWCs, as 

the temperature of a stoichiometric petrol engine can reach ~1100 °C [126]. Secondly, 

TWCs can also be chemically poisoned by some substances such as phosphates [136], 

sulphur compounds [137, 138] and some other elements like zinc [139]. Moreover, the 

sintering of Al2O3 support and oxygen storage promoter CeO2-ZrO2 can also contribute 

to the deactivation of TWCs [126]. Once a TWC is deactivated, the regenerating work 

can be very challenging, and the best method to extend the service life of the TWC is 

preventing the deactivation by improving the thermal stability and the poisoning 

resistance for the catalysts. What is more, in consideration of the high price and the 

limited reserve of these noble metals, more efficient use of these metals is extremely 

desirable. 
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4.1.3 CO oxidation over noble metals 

The oxidation of CO is one of the principal reactions taking place in the three-way 

catalytic converter, and it is one of the most investigated reactions for heterogeneous 

catalysis over the years. CO oxidation is always used as a model reaction for the test 

of catalysts because of its simplicity, which makes the measurement and interpretation 

of kinetic results relatively straightforward [140]. Therefore, CO oxidation was also 

selected as the model reaction here to evaluate the performance of the catalysts 

involved in this study as mentioned before. 

CO oxidation taking place over transition metal catalysts has been widely studied and 

researchers tried to explain this catalytic process by several different reaction 

mechanisms. The two main kinetic mechanisms for CO oxidation reaction proposed 

earlier are called Langmuir-Hinshelwood (L-H) mechanism and Eley-Rideal (E-R) 

mechanism, respectively (Table 4-4) [141-144].  

Table 4- 4 Elementary steps of catalytic CO oxidation reaction, according to Langmuir-

Hinshelwood and Eley-Rideal mechanisms, respectively. 

 Langmuir-Hinshelwood Eley-Rideal 

Adsorption 
COgas  →  COads 

O2 gas  →  2 Oads 
O2 gas  →  2 Oads 

Reaction COads + Oads  →  CO2 ads COgas + Oads  →  CO2 gas 

Desorption CO2 ads  →  CO2 gas  

According to the L-H mechanism (as shown in Figure 4-4(a)), CO and O2 molecules in 

the gas phase are firstly absorbed onto the surface of active metals, and dissociation 

of O2 also takes place on the metal surface. Then the surface reaction between the 

chemisorbed CO molecules and oxygen atoms happens, which gives rise to the CO2 

as the product, and finally the produced CO2 molecules desorb from the metal surface 

and enter the gas phase. 

On the other hand, the E-R mechanism (as shown in Figure 4-4(b)) suggests that the 

reaction does not happen between the two chemisorbed surface species. Instead, the 

CO molecules in the gas phase directly strike the dissociatively adsorbed oxygen 

atoms, and the collisions have chances to generate CO2, which escapes directly from 

the metal surface into the gas phase. 
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Figure 4- 4 Schematic demonstration of elementary steps of CO oxidation on metal 

surface, according to (a) the Langmuir-Hinshelwood and (b) the Eley-Rideal 

mechanisms, respectively. The white balls and black balls represent oxygen atoms 

and carbon atoms, respectively. 

Furthermore, there are also some other reaction mechanisms trying to explain the CO 

oxidation reaction. For instance, Mars van Krevelen (MvK) mechanism (as shown in 

Figure 4-5) was initially proposed to explain the CO oxidation over reducible metal 

oxides [145, 146], but recently some researchers claimed that the MvK mechanism 

also applies for metallic surfaces such as Pt and Pd. They observed that the metal 

catalyst can switch between the metallic and oxide states [147, 148]. Basically, the 

MvK mechanism emphasizes the participation of the catalyst as an intermediate in the 

reaction, in which the metal catalyst is firstly oxidized under O2-rich conditions and the 

oxygen from the metal oxides can react directly with the chemisorbed CO molecules 

to generate CO2 which then desorbs. The oxygen vacancies left on the catalyst surface 

will absorb oxygen from the gas phase hence being refilled. 

 

Figure 4- 5 Schematic demonstration of elementary steps of CO oxidation according 

to the Mars van Krevelen mechanism. The white balls, black balls and textured ball 

represent oxygen atoms from gas phase, carbon atoms and the oxygen atom from 

metal oxides, respectively. 

Although there is some debate on the mechanisms of CO oxidation reaction, it is widely 

accepted by most of researchers that the CO oxidation on noble metal catalysts follows 

the L-H mechanism [149-156]. Goodman et al. have published a series of articles that 
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adequately showed that the CO oxidation kinetics over Pt, Pd and Rh in a wide range 

of pressures follows the L-H mechanism [149, 157, 158]. According to the L-H 

mechanism, CO and O2 need to competitively adsorb on the metal surface, and the 

reaction only takes place between the chemisorbed CO and oxygen, therefore the 

adsorption/desorption behavior of CO and O2 on the metal surface will become a key 

factor to determine the reaction rate. In fact, it is well known that CO can exhibit 

inhibiting effect on the CO oxidation reaction at low temperatures by predominantly 

adsorbing on noble metal surface, whereas the active surface for CO oxidation was 

proved to be the one with less CO occupied but more O2 adsorbed. This was clearly 

shown by the works from Goodman et al. in which they found that the increase of the 

reaction probability corresponded well with the decrease of CO coverage on metal 

surface by using the polarization modulation infrared reflection absorption 

spectroscopy (PM-IRAS), as shown in Figure 4-6 [149].  

 

Figure 4- 6 (a) CO PM-IRAS signal area and (b) the corresponding reaction probability 

over Pd(100) at different temperatures, indicating CO oxidation reaction rate increases 

when CO coverage decreases. [149] 
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Three different kinetic regimes for CO oxidation on the surface of Pt, Pd and Rh can 

be summarized as a function of temperature [149, 150], which is illustrated in Figure 

4-7. The first regime is CO-inhibited regime at low temperatures, and the reaction 

activation energy obtained in this regime is ~110 kJ mol-1 that is similar as the 

corresponding desorption energy of CO. The adsorption and dissociation of O2 are 

inhibited in this kinetic regime and the reaction rate is limited by the desorption of CO. 

As the temperature increases, the second kinetic regime begins. This is a transient 

regime where the reaction rate would increase rapidly (known as light-off), as 

predominantly CO chemisorbed surface changes to the oxygen chemisorbed surface 

which is highly active. Finally, the reaction rate becomes invariant with the temperature 

as the reactants at the metal surface can be readily consumed and the mass transfer 

becomes the limiting factor for the reaction in the third kinetic regime. However, under 

some oxidizing conditions, the reactivity decrease might happen at high temperatures 

[149, 157, 159], probably due to the metal oxidation or O2 inhibition in the third regime. 

Moreover, the transition of the inactive surface (CO-dominant) to the highly active 

surface (oxygen-dominant) is dependent on the relative adsorption energies of CO and 

O2. The CO adsorption energies on Rh, Pd and Pt surfaces are similar, which are 130, 

142 and 138 kJ mol-1, respectively [160, 161]. However, the O2 dissociative adsorption 

energies vary for these metals that 234, 230 and 188 kJ mol-1 were reported for Rh 

[162], Pd [163] and Pt [164], respectively. Therefore, it is easiest to form the active 

surface on Rh, followed by Pd and Pt. This manifests in some aspects that, for instance, 

at a given temperature, the activation of catalyst can be motivated by increasing O2/CO 

ratio to a critical value, and the critical O2/CO ratio needed for these three metals ranks 

in the order: Rh < Pd < Pt [150, 165]. 
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Figure 4- 7 Schematic demonstration of three kinetic regimes of CO oxidation reaction 

on noble metal catalysts, with some brief description of the features in each regime. 

As aforementioned, the state-of-the-art TWCs use different combinations of Pt, Pd and 

Rh as the active metals and they play different roles in the pollutant abatement. The 

catalysts in this study are designed for the application of automotive exhaust control 

and CO oxidation is used as the model reaction. Therefore, before starting to design 

catalysts, the commercially available catalysts of these three metals were tested first 

in CO oxidation, in order to get an insight into catalytic behaviors of these three metals 

and also their differences. The results of these experiments were expected to provide 

guidance for the catalyst design in the later studies. 

 

4.2 Investigation of catalytic behavior of noble metals in CO oxidation  

4.2.1 Activity of individual noble metals (Pt, Pd and Rh) 

As mentioned before, the major active components in state-of-the-art TWCs consist of 

Pt, Pd and Rh dispersed on Al2O3 support. In order to investigate the catalytic 

behaviors of these noble metal catalysts, the commercially available catalysts (Pt/Al2O3, 

Pd/Al2O3 and Rh/Al2O3, all from Alfa Aesar) were tested in CO oxidation. These 

commercial catalysts are similar as those that are used in the conventional TWCs. 

They have the same nominal amount (1 wt%) of respective noble metals, which 

allowed for the comparison of the activities for these three metals. TEM images of the 
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commercial catalysts are shown in Figure 4-8, and the particle sizes of Pt, Pd and Rh 

were estimated to be ~1.9±0.2, ~2.5±0.3 and ~1.8±0.2 nm, respectively. 

 

Figure 4- 8 TEM images of commercial catalysts of (a) 1 wt% Pt/Al2O3, (b) 1 wt% 

Pd/Al2O3 and (c) 1 wt% Rh/Al2O3. 

The assumption was made that there is no synergistic effect among these three metals 

when they are employed together in TWCs, therefore the activity obtained for the 

individual metals can be treated as the same activity as they exhibit in real TWCs. The 

light-off experiments (Figure 4-9(a)) of these commercial noble metal catalysts (10 mg) 

were conducted in CO oxidation under slightly oxidizing conditions (𝑃𝐶𝑂=0.6 kPa, 

𝑃𝑂2=1.0 kPa and 𝐹𝑡=450 mL min-1) to mimic the real working conditions of TWCs as 

introduced in Chapter 3. Figure 4-9(a) shows that the catalytic behavior of these 

catalysts was similar and it was also consistent with the characteristic behavior of noble 

metal catalysts where three kinetic regimes can be observed as introduced in Figure 

4-7. Their activities can be compared based on the temperatures at which they achieve 

5% and 50% CO conversion (referred to as T5 and T50, respectively). Taking Pt/Al2O3 

as an example, its activity for CO oxidation increased slowly in the first kinetic regime 

with T5 of ~225 °C, as the metal surface was predominately occupied and inhibited by 

CO. As the temperature increased, the second kinetic regime started where the 

reaction rate increased suddenly, with the value of T50 to be around 240 °C. The 
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sudden activity increase is likely to be ascribed to the rapid decrease of CO bound to 

the metal surface due to the faster CO desorption and the formation of the oxygen-

dominant surface that is much more active as compared with the CO-dominant surface 

[149, 150, 157, 158]. Finally, the CO conversion reached 100% in the third kinetic 

regime and the reaction rate became invariant with temperature. Pd/Al2O3 and 

Rh/Al2O3 also showed the similar catalytic behavior in the experiments, while as 

compared to Pt/Al2O3, their T5 and T50 values were lower (Pd/Al2O3 showed T5 and T50 

of 190 and 205 °C, while Rh/Al2O3 showed T5 and T50 of 160 and 180 °C). 

Moreover, the relation between the activation energy and the reaction rate can be 

found from Arrhenius equation: 

𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅𝑇                                      Equation 4-1 

𝑙𝑛 𝑘 = −
𝐸𝑎

𝑅
(
1

𝑇
) + 𝑙𝑛 𝐴                              Equation 4-2 

where 𝑘  is rate constant,  𝐴  is pre-exponential factor,  𝐸𝑎  is activation energy, 𝑇  is 

temperature, and 𝑅 is gas contant. Therefore, the Arrhenius plots can be generated as 

shown in Figure 4-9(b), and the activation energies can be estimated by using the data 

measured in the low temperature range of activity. For Rh/Al2O3, a good linear relation 

can be found in low temperature regime, while for Pd/Al2O3 and Pt/Al2O3, inspite of 

some slope changes occuring at 161 and 163 °C respectively, their Arrhenius plots 

can still be reasonably fitted with straight lines. Hence the activation energies (𝐸𝑎) 

calculated for Rh, Pd and Pt catalysts are 120, 104 and 77 kJ mol-1, respectively. In 

addition, a big step change of Arrhenius plots happened for all these catalysts at the 

temperatures near T50, which also suggested a sudden change of the active surfaces. 
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Figure 4- 9 (a) Light-off experiments over commercial catalysts of 1 wt% Rh/Al2O3, 1 

wt% Pd/Al2O3 and 1 wt% Pt/Al2O3 in CO oxidation reaction under conditions of 𝑃𝐶𝑂=0.6 

kPa, 𝑃𝑂2=1.0 kPa and 𝐹𝑡=450 mL min-1. (b) Corresponing Arrhenius plots for each 

catalyst. 

Furthermore, the values of T50 for these three metals were in the sequence of Rh < Pd 

< Pt as shown in Figure 4-10, and this sequence is also consistent with the results 

reported previously in literature [156, 159, 166, 167]. This indicates that Rh is most 
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active among these three metals followed by Pd, while Pt is least active. To explain 

the difference in the activity of these metals, the reaction steps of CO oxidation in L-H 

mechanism (listed in Table 4-4 above) must be examined one by one. Firstly, the CO 

adsorption energies on these three metals are similar as discussed in subchapter 4.1.3 

above, therefore the CO adsorption step does not account for the activity difference for 

these metals. On the other hand, the adsorbed CO reacts very fast with the adsorbed 

oxygen on the surface of all noble metals, so it is not the reason for activity difference 

either. However, it is shown in Figure 4-10 that these metals have quite different 

energies for O2 dissociative adsorption that indicates obvious correlation with T50, so 

the step of O2 dissociative adsorption is believed to be the reason for the activity 

difference. In the low temperature regime, when CO and O2 need to competitively 

adsorb onto the metal surface, higher O2 dissociative adsorption energy means more 

efficient formation of adsorbed oxygen on the vacant sites on the metal surface, which 

leads to faster subsequent generation of new vacant sites via the reaction between 

oxygen and CO adsorbed on adjacent sites [156, 159]. Hence, the reaction is easier 

to occur on Rh surfaces at low temperatures and the values of T50 (as well as T5) for 

these metals were found as Rh < Pd < Pt from the experiments.  

 

Figure 4- 10 T50 of CO oxidation reaction and O2 dissociative adsorption energy on 

Pt, Pd and Rh.  
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4.2.2 Effect of amount of noble metal on catalytic activity 

For noble metal supported on an inert support, such as Al2O3 here, it is well known that 

the majority of the catalytic activity is contributed by the noble metal particles on which 

the active sites locate [168, 169], so the amount of noble metals in the catalyst is 

expected to affect the activity. On the other hand, in order to use noble metals more 

efficiently, their amount in the catalyst is desired to be reduced and it is also one of the 

objectives in this thesis to use dilute noble metal systems. Therefore, here experiments 

were conducted to investigate how the amount of noble metals would normally affect 

the catalytic activity, by using the commercial catalyst. The commercial Rh/Al2O3 

sample was chosen to be tested, because Rh-based samples would be mostly 

investigated in the later studies as shown in Chapter 7. The noble metal can be treated, 

to some extent, to be uniformly dispersed on Al2O3 support in commercial samples, 

hence the amount of noble metal in each test can be controlled by directly controlling 

the total amount of the sample used (as Al2O3 can be treated inert). Figure 4-11(a) 

shows the light-off experiments over 1 wt% Rh/Al2O3 sample of different amounts (10, 

5 and 2.5 mg, respectively) in CO oxidation reaction by using the same experimental 

conditions as shown above in subchapter 4.2.1. If we assume that the amount of 

sample used in these three experiments was always 10 mg (the 5 and 2.5 mg 

experiments can be treated to be balanced by extra 5 and 7.5 mg inert Al2O3, 

respectively), the apparent metal loading of Rh in these experiments would be 1, 0.5 

and 0.25 wt%, respectively. It can be found that their light-off curves under low CO 

conversion conditions (<~5%) were similar (Figure 4-11(a)) and the activation energies 

calculated under these conditions were also very close (Figure 4-11(b)), while the 

sample with higher metal loading exhibited relatively higher reactivity because of more 

active sites. However, the light-off curves started to diverge at higher conversions, and 

the value of T50 increased gradually with the decreasing metal loading as shown in 

Figure 4-12. The shift of T50 might be mainly ascribed to the heat transfer effect. CO 

oxidation is an exothermic reaction and a big amount of heat would be released at high 

reaction conversions. The heat cannot be dissipated to the environment quickly, and 

the actual temperature of the active sites might be higher than the average temperature 

of the catalyst bed or gas measured by thermocouple [170]. Hence, as mentioned 

before, the data obtained at high conversions (integral conditions) should not be over-

interpreted, but it still shows that the sample with higher metal loading can achieve 

high conversions earlier. 
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Figure 4- 11 (a) Light-off experiments over commercial catalyst 1 wt% Rh/Al2O3 of 

different amounts (10, 5 and 2.5 mg, respectively) in CO oxidation reaction under 

conditions of 𝑃𝐶𝑂 =0.6 kPa, 𝑃𝑂2 =1.0 kPa and 𝐹𝑡 =450 mL min-1. (b) Corresponing 

Arrhenius plots for 10 and 2.5 mg samples showing the activation energies.  



71 
 

 

Figure 4- 12 T50 of CO oxidation reaction as a function of apparent loading of Rh. 

 

4.3 Conclusions 

In this chapter, the application of noble metals in catalysis especially in automotive 

exhaust control was introduced. The commercial noble metal catalysts (Pt, Pd and Rh 

on Al2O3, respectively) were tested in the model reaction of CO oxidation, and the 

results indicated: 

 All these three metals exhibited excellent activity for CO oxidation. 

 There were three kinetic regimes in which noble metal catalysts had different 

behaviors (CO inhibited, activity rapid increase and highly active regimes, 

respectively), which followed the L-H reaction mechanism. 

 Rh was the most active one among these three metals as it showed the lowest 

T5 and T50 values, despite that Rh is normally regarded as the active component 

for the conversion of NOx in TWCs. 

 Catalyst with higher amount of noble metals would exhibit higher reactivity. 

These results revealed the classic catalytic behaviors of noble metal catalysts in CO 

oxidation, which could help to understand the behavior of the catalysts designed in the 

later studies. Reduced amount of noble metal in catalyst could result in lower activity, 

but attempts could be made to find a way to enhance the activity, probably by 
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controlling the particle characteristics and particle-support interactions. More 

importantly, as introduced in literature, particle sintering is a big problem for these 

noble metal catalysts, and a specific example will be given in the next chapter to 

demonstrate how a novel catalyst system can be destroyed by sintering, hence the 

importance of particle stabilization will be highlighted in the later studies. 
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Chapter 5: Demonstration of metal 

nanoparticle sintering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, a specific example is given to demonstrate how the mobility of metal 

nanoparticles can lead to agglomeration. A well-defined system of spatially controlled 

metal nanoparticle pairs was attempted to be produced, but the movement of the 

particles under reaction conditions at high temperatures could cause agglomeration 

and hence the failure of the system. 
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5.1 Design principles of spatially controlled nanoparticle pairs  

Purposefully designed catalysts can be used as model systems for the investigation of 

the mechanisms of reaction processes on the surfaces of catalysts. For instance, 

surface diffusion of reacting and/or intermediate species can occur during some 

catalytic processes and the hydrogen spillover is a well-known example, but this 

phenomenon is often overlooked mainly due to the lack of well-defined systems in 

which the catalytic functions can be clearly separated to probe the surface diffusion 

phenomenon [171]. However, for catalyst systems where sites of different activities 

exist, the surface diffusion may have big influence on the catalytic performance (e.g., 

activity and selectivity), hence a well-defined system is desired to understand this 

process. The spatially controlled nanoparticle pairs seem to be promising, where pairs 

of two metals with fixed separation distance can be formed as illustrated in Figure 5-1. 

Hence, the diffusion length between the particles can be controlled and its effects on 

the catalytic performance can be studied. To prepare the particle pairs with controlled 

separation distance, the method pioneered by Dong et al. [172] could be used, which 

will be introduced in detail together with the preparation steps in subchapter 5.2.2. 

In this study, nanoparticle pairs of Au and Pt were attempted to be prepared, and they 

were subsequently deposited on the support. Silicon wafer was selected to be the 

support as its flat surface can allow the controlled distance between particles to be 

maintained when introduced onto the support. Moreover, the mobility of metal 

nanoparticles on the support surface should also be considered, as it could lead to the 

failure of the system if particles move and agglomerate. Hence, preliminary 

experiments were conducted to test the thermal stability of the supported nanoparticles 

under reaction conditions of CO oxidation. The results of nanoparticle pair preparation 

and the preliminary stability test will be demonstrated in the following subchapters. 

 

Figure 5- 1 Schematic demonstration of spatially controlled metal nanoparticle pairs. 

Red and blue balls represent two different metal species, respectively. 
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5.2 Sample preparation 

This project was collaborative, and the preparation work for the samples was 

conducted by collaborators Dr. Shan Jiang and Dr. Simon Beaumont from Chemistry 

Department at Durham University. The principles of their preparation process as well 

as some characterization information of the samples will be presented here. 

 

5.2.1 Synthesis of metal nanoparticles 

Pt nanoparticles were synthesized by using the Schlenk method [173] under N2 flow. 

Platinum(II) 2,4-pentanedione (Pt(acac)2, 0.13 mmol) was added to a 3-neck round 

bottom flask, which was evacuated and refilled with N2 for three times. Then oleylamine 

(15 mL) was added and the flask was heated to 100 °C and stirred for 20 minutes, 

which allowed Pt(acac)2 to get fully dissolved. Borane triethylamine (200 mg) in 

oleylamine (2 mL) was added into the solution resulted from previous steps, which 

changed the colour of solution from yellow to dark brown. The solution was then heated 

to 120 °C and held for 60 minutes before it was cooled down to room temperature. 

Hexane (5 mL) and ethanol (30 mL) were added to the suspension, followed by 

centrifugation. Add another 60 mL of ethanol to the resulting suspension before 

centrifugation. The produced nanoparticles were re-dispersed in hexane (4 mL) for 

storage. 

Au nanoparticles were synthesized using a different method [174]. HAuCl4 (0.1 g) was 

dissolved in tetralin (10 mL) and oleylamine (10 mL) at 45 °C under N2 flow and stirring. 

Dissolve borane tert-butylamine complex (0.5 mmol) in tetralin (1 mL) and oleylamine 

(1 mL) by applying sonication, and the solution obtained was added into the HAuCl4 

solution previously made, followed by stirring at 45 °C for 1 hour. Then add acetone 

(40 mL) in the solution and collect the Au nanoparticles by applying centrifugation. The 

solid obtained was dispersed in hexane (20 mL), precipitated by adding ethanol (40 ml) 

and centrifugation. Finally, the nanoparticles were re-dispersed in hexane for storage. 

 

5.2.2 Fabrication of nanoparticle pairs 

In this study, the method proposed by Dong et al. [172] was used to fabricate the pairs 

of metal nanoparticles, which can be schematically summarized as Figure 5-2. Firstly, 

hetero-bifunctional polyethylene glycols (PEG) of COOH-PEG-SH and BOC-NH-PEG-

SH are crystallized to form the single crystals. Metal nanoparticles can be adsorbed 
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onto these single crystals by covalently bonding to the thiol (-SH) groups excluded on 

the surface of crystals. Some capping agents such as dodecanethiol can be used to 

cap the free surface of the nanoparticles. Then, by dissolving the crystals, the metal 

nanoparticles are detached from the crystal surface with linking polymers selectively 

attached to only one side of these nanoparticles [172]. The linking polymers attached 

to metal nanoparticles have different terminal groups (-COOH and -NH2), which allows 

for the directional linking of two nanoparticles. Finally, the linked metal nanoparticles 

can be deposited onto the support.  

 

Figure 5- 2 Schematic demonstration of preparation route for metal nanoparticle pairs. 

Crystallizations of COOH-PEG-SH and BOC-NH-PEG-SH were both carried out in the 

self-seeding process [172]. For COOH-PEG-SH, 4-5 mg of it was dissolved in pentyl 

acetate (10 mL) at 60 °C for 10 minutes, before the solution was cooled down to 4 °C 

for 2 hours. The solution was heated to 35 °C (seeding temperature) and held for 10 

minutes, and then it was crystallized at 22 °C (crystallization temperature) for 2 days. 

Similarly, BOC-NH-PEG-SH (8 mg) was dissolved in pentyl acetate (10 mL) at 60 °C 

for 10 minutes, before the solution was cooled down to 4 °C for 2 hours. Then the 

solution was heated to 33 °C for 10 minutes and crystallized at 17 °C for 2 days. SEM 

images of the obtained single crystals of COOH-PEG-SH and BOC-NH-PEG-SH are 

shown in Figure 5-3(a) and (b), respectively. Then Au and Pt nanoparticles were 

separately adsorbed onto these two crystals, and the TEM images of nanoparticle 

adsorbed crystals can be found in Figure 5-3(c-f). The crystals were then dissolved to 

obtain the metal nanoparticles with different linking polymers, and finally the pairing of 

nanoparticles was attempted for Au via reactions between -COOH and amine groups. 
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The resulted Au nanoparticle pairs were deposited on the support, which can be seen 

in Figure 5-4. Generally, the pairs of Au nanoparticles were formed, but the distance 

between the nanoparticle pairs was not well controlled as some pairs were too close 

to each other. Moreover, the pairing of Au and Pt nanoparticles still needs to be studied 

further. 

 

Figure 5- 3 SEM images showing single crystals of (a) COOH-PEG-SH and (b) BOC-

NH-PEG-SH. TEM images of (c) Au nanoparticles adsorbed on COOH-PEG-SH, (d) 

Au nanoparticles adsorbed on BOC-NH-PEG-SH, (e) Pt nanoparticles adsorbed on 

COOH-PEG-SH, and (f) Pt nanoparticles adsorbed on BOC-NH-PEG-SH. Images 

were collected by collaborators at Durham University.  

 

Figure 5- 4 Au nanoparticle pairs on support. Images were collected by collaborators 

at Durham University. 
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5.3 Thermal stability test of the supported nanoparticles 

In the meantime, experiments were conducted to test the thermal stability of the 

supported metal nanoparticles. Because the preparation technique for nanoparticle 

pairs was not mature at the time of the study, discrete nanoparticles were used instead 

of pairs for the preliminary thermal stability tests. Nanoparticles were deposited onto 

the silicon wafer support via the drop casting method, where a small amount of dilute 

solution of nanoparticles was dropped on the support and the solvent was evaporated 

at room temperature to leave nanoparticles on the support. If preliminary tests show 

that these metal nanoparticles will not move and agglomerate, then the experiments 

can be continued to test the nanoparticle pairs. 

The thermal stability tests were carried out for supported Au nanoparticles (as Pt 

nanoparticles have not been successfully prepared at that time), by tracking groups of 

nanoparticles when they were subjected to a series of temperature treatments, which 

therefore will be referred to as “particle tracking” experiments henceforth. The 

supported Au sample would be heated under mixtures of CO and O2 (to mimic real 

reaction conditions) to a series of temperatures (gradual increase), and the sample 

would be scanned in helium ion microscope (HIM) before and after the heat treatment 

at each temperature to track the groups of nanoparticles that were selected before the 

treatment and check if these nanoparticles coalesced at the corresponding 

temperature. HIM, which could provide higher resolution images as compared to the 

conventional SEM, enabled the visualization of individual nanoparticles and it was 

crucial for the particle tracking. Prior to the experiments, some groups of metal 

nanoparticles needed to be selected to be traced throughout the experiments. 

Therefore, the as-prepared sample was scanned first in HIM. However, the HIM 

images of the as-prepared sample (Figure 5-5(a)) were very blurry, due to a thin layer 

of impurities covering the surface of the sample. That was probably due to some 

organic residue originated from the Au solution that was not completely evaporated at 

room temperature. Hence the sample was treated in 20% O2/He flow (90 mL min-1) at 

150 °C for 3 hours, aiming to remove the organic residue and expose the Au 

nanoparticles underneath (as shown in Figure 5-5(b)). Then a cross-shaped mark 

(shown in Figure 5-5(c)) was made on the surface of the support by using the focused 

ion beam (FIB), and a small area in the vicinity of the mark was selected as the target 

area for observation. The cross-shaped mark was used to help search for the target 
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area in HIM. Several groups of metal nanoparticles were selected in the target area to 

be tracked before and after each temperature treatment. 

 

Figure 5- 5 HIM images of (a) as-prepared sample of Au nanoparticles on silicon 

support, (b) after being treated in 20% O2/He at 150 °C for 3 hours, (c) with cross-

shaped mark made on the support and a small target area was selected, and (d) close 

view of the target area for particle tracking.  

Then the marked sample was treated in CO oxidation reaction and the experiments 

were carried out in the pellet reactor introduced in Chapter 3, using the stoichiometric 

reaction conditions (𝑃𝐶𝑂 =1.0 kPa, 𝑃𝑂2 =0.5 kPa and 𝐹𝑡 =150 mL min-1). In each 

experiment, the sample was heated from room temperature to a certain temperature 

and was then cooled down back to room temperature once the reaction rate was 

stabilised. The sample was scanned in HIM before and after the experiment to obtain 

the status changes of the selected groups of nanoparticles (such as particle size, 

number and dispersion) happening at the corresponding temperature of experiment. 

Then the temperature of the experiment was increased gradually, and a series of HIM 

images were collected from all the experiments (as shown in Figure 5-6). Therefore, 

the evolution of the selected groups of nanoparticles with the increasing temperature 

could be observed directly, which was used to determine whether and at which 

temperature the nanoparticles would start to agglomerate under the CO oxidation 

reaction conditions. 
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The rate of CO2 production (𝑟𝐶𝑂2) was measured as a function of temperature as it can 

be found in Figure 5-6(a), and the numbers (1 to 6) shown in the graph highlight the 

stages at which the sample was taken out from the reactor and scanned in HIM for 

particle tracking. Two groups of nanoparticles were selected to present the evolution 

of nanoparticles with the temperature, as shown in Figure 5-6 (b) and (c), respectively 

(the numbers on the top left corner of HIM images correspond to the stages highlighted 

in Figure 5-6(a)). Although the sample has been heated in 20% O2/He at 150 °C before, 

the temperature might not be high enough to burn out all the organic residue as the 

images of the sample treated at low temperatures were still blurry. It can be found that, 

as the reaction temperature increased, the nanoparticles in HIM images became 

sharper, and individual nanoparticles could be visualized clearly after the sample was 

treated at 350 °C. By observing the HIM images which show clear nanoparticles, 

changes can be easily noticed: the number of nanoparticles decreased when reaction 

temperature went higher, and some small particles disappeared; Also, the size of 

nanoparticles grew larger and the distance between these nanoparticles became 

bigger as well. For instance, detailed particle analysis was conducted for one of the 

selected nanoparticle groups, and the changes of the size and number of Au 

nanoparticles with the temperature of treatment (from 350 to 500 °C) can be found in 

Figure 5-7. All these results indicate that agglomeration of Au nanoparticles happened 

on the silicon support at elevated temperatures and small nanoparticles in vicinity 

coalesced to form larger particles. Unfortunately, clear images of the sample that was 

treated at the temperatures below 350 °C could not be obtained, so it was difficult to 

tell at which temperature the nanoparticle agglomeration initiated. However, the 

changes of nanoparticles were already seen between the images of 350 and 400 °C, 

but it is also possible that the agglomeration started at a lower temperature. Therefore, 

the Au nanoparticles that were loosely dispersed on the support did not have enough 

thermal stability to survive the high-temperature processes. When turning to the 

production rate of CO2 as shown in Figure 5-6(a), no reaction rate was observed at low 

temperatures (below around 300 °C) as nanoparticles were covered by the impurities 

and the metal surface could not be accessed by reactants. When temperature went 

higher, as the impurities were removed gradually, the reaction rate increased despite 

some loss of metal surface as nanoparticles agglomerated to get larger particle size 

but smaller particle number as shown in Figure 5-7. However, if particle agglomeration 

keeps occurring, it can be expected that the activity will decrease at some point.  
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The particle tracking experiments indicate that, even though the spatially controlled 

particle pairs could be prepared, their mobility on the support would lead to 

agglomeration at high temperatures and hence they could not act as the model system 

to study the surface diffusion process. Therefore, this study was not carried out further. 

 

Figure 5- 6 (a) CO2 production rates achieved by Au/silicon sample as a function of 

temperature under stoichiometric CO oxidation conditions (𝑃𝐶𝑂=1.0 kPa, 𝑃𝑂2=0.5 kPa 

and 𝐹𝑡 =150 mL min-1). (b) and (c) show the HIM images of two groups of Au 
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nanoparticles, respectively, after being tested at different temperatures and the 

corresponding temperatures are labelled in (a). 

 

Figure 5- 7 Changes of the size and number of Au nanoparticles in the selected group 

with the increasing temperature, indicating the agglomeration of Au nanoparticles. 

 

5.4 Conclusions 

In this chapter, it was proposed to prepare a novel catalyst system of spatially 

controlled metal nanoparticle pairs. Indeed, some progress has been made for the 

preparation of nanoparticle pairs:  

 Metal nanoparticles were successfully adsorbed onto the PEG crystals of COOH-

PEG-SH and BOC-NH-PEG-SH, in order to attach different linking polymers.  

 Metal nanoparticles with different functional polymers could be linked together, 

which resulted in nanoparticle pairs as exemplified by Au-Au pairs. 

However, preliminary thermal stability tests showed that discrete metal nanoparticles 

on silicon support could agglomerate under CO oxidation conditions from 350 °C or 

even lower temperatures. This could indicate that the metal nanoparticles that are only 

loosely dispersed on the support surface can move easily at high temperatures, which 

would cause agglomeration and hence destroy the purposefully designed system. 

Therefore, the stability of metal nanoparticles should always be highlighted when 

designing novel catalyst systems. The results in this chapter also indicate that, in order 
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to stabilize metal nanoparticles, the particle-support interactions should be enhanced 

to suppress the particle migration. Therefore, two different approaches for metal 

nanoparticle stabilization are investigated in the later studies, and firstly encapsulation 

of metal nanoparticles is attempted as demonstrated in the next chapter. 
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Chapter 6: Stabilizing noble metal 

nanoparticles via encapsulation in porous 

organic cages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has been demonstrated in the last chapter that metal nanoparticles loosely dispersed 

on the support would suffer from sintering, so stronger particle-support interactions 

might be required to enhance the thermal stability. In this chapter, attempts are made 

to stabilize noble metal nanoparticles by enclosing them into a type of hollow and cage-

like molecules (porous organic cages). The porous organic cages can control the size 

of metal nanoparticles by limiting their growth, and the stability and activity of the 

resulted catalyst are evaluated under CO oxidation conditions.  
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6.1 Introduction to porous organic cages 

6.1.1 Porous organic cages and their applications in catalysis 

It has been introduced in Chapter 2 that encapsulation of metal nanoparticles in some 

porous materials such as mesoporous silica, carbon, alumina as well as metal organic 

frameworks (MOFs) [175] is an effective strategy for nanoparticle stabilization. Porous 

materials exhibit appealing features to act as catalyst supports, such as high surface 

areas and tunable porosity which can enhance the catalytic performance, as well as 

the ease of recycling as compared with the homogenous counterparts. Therefore, 

porous materials like silica and alumina have been employed as important catalyst 

supports for metal nanoparticles. Moreover, encapsulation of metal nanoparticles by 

using new classes of porous materials like MOFs has attracted considerable research 

attention in the past two decades [176-178]. The well-defined pore structure can 

confine the growth of metal nanoparticles, which can provide good control over the 

particle size and hence brings some potential benefits such as the improved surface 

area and selectivity and also the enhanced stability of metal nanoparticles. 

Nevertheless, despite the rapid progress achieved in this field, the effective controls 

over the particle size, composition, spatial distribution, confinement and accessibility 

of metal nanoparticles within the pores and the resulting effects on catalytic properties 

still remain big challenges [7, 179]. 

Conventional organic porous solids such as MOFs and covalent organic frameworks 

(COFs) are all extended frameworks or networks in which individual molecules are 

linked by covalent or coordinative bonds [180]. On the contrary, it is difficult to find 

discrete covalent organic molecules that can maintain permanent porosity, because 

most molecules have the tendency to pack together with minimal spacing in the solid 

state in order to obtain maximum attractive intermolecular interactions [181, 182]. 

Therefore, molecular crystals with open channels or voids are usually unstable when 

guests, such as solvents, are removed from the pores [183]. However, there are some 

exceptions that a diversity of “porous organic molecules” were reported in recent years, 

which show some unique properties as compared to the extended porous framework 

analogues. 

Porous molecule is the term used to describe those molecules that can be packed in 

solid state with extrinsic or intrinsic porosity. Extrinsic porosity locates between 

adjacent molecules, which is caused by the loose packing of molecules because of 

rigid molecule structures, or the directional intermolecular interactions such as 
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hydrogen bonds [182]. In contrast, intrinsic porosity locates inside the molecule itself. 

For instance, porous organic cages (POCs), unlike the extended networks like MOFs, 

comprise individual molecular building blocks (the cages) that pack together with 

noncovalent intermolecular interactions to form the porous structure. POCs have 

permanent cavity inside the molecules (cages) due to their rigid structure, and their 

cavity is open to the outside atmosphere through cage windows [182]. Although the 

study of porous molecules started decades ago, the POC is a relatively new class of 

material and the first POC with intrinsic permanent porosity was reported by Cooper et 

al. in 2009 [181]. According to their study, a series of tetrahedral organic cages can be 

generated through cycloimination reactions of trialdehydes with diamines [181, 184, 

185]. The porosity of these cage materials is a result of both intrinsic molecular voids 

inside the cages and the extrinsic voids resulted from the inefficient molecule packing. 

POCs show some potential advantages over the extended networks like MOFs in the 

following aspects: POCs can be dissolved to form discrete molecules in solvents and 

then they can be re-assembled  into solids, and even to cast membranes or thin films 

[186]. The “mix and match” strategies can also be applied to mix cage molecules of 

different types to generate porous organic alloys [187], which provides a potential 

method to fabricate well controlled bimetallic or multicomponent systems in the context 

of nanoparticle and catalyst syntheses. POCs have been widely studied for 

applications in molecular separation [188-190], gas storage [191, 192], and recently 

the potential of POCs for metal nanoparticle stabilization and confinement has been 

considered.  

Initially, soluble POC molecules were studied as stabilizers for metal nanoparticles (like 

Rh or Pd), which allowed for the homogenization of heterogeneous metal nanoparticles 

in solutions to achieve not only enhanced catalytic activity but also easier recovery and 

recycling. For instance, Sun et al. reported that POC stabilized Rh nanoparticles (~1.1 

nm) showed the highest TOF value (215.3 mol of H2 per mol of Rh per min) among all 

other studies reported in literature for the reaction of methanolysis of ammonia borane 

[179]. Similarly, POC stabilized Pd nanoparticles prepared by Zhang et al. (as shown 

in Figure 6-1) exhibited higher activity  as compared to the commercial catalyst Pd/C 

in carbonylation of aryl halides under mild conditions [193]. 
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Figure 6- 1 Schematic demonstration of Pd nanoparticle stabilized by CC3-R cages. 

[193] 

On the other hand, efforts have also been made to enclose metal nanoparticles inside 

the cavity of the POC molecules (as shown in Figure 6-2) [194-197]. According to the 

study from Mukherjee’s group, Pd nanoparticles with narrow size distribution (1.8±0.2 

nm) could be embedded into POCs which had internal cavity size of ~2.0 nm and the 

cage-embedded Pd nanoparticles showed higher catalytic activity for cyanation of aryl 

halides as compared to some commercial Pd catalysts [194]. In addition, Zhang’s 

group also reported that they embedded ~1.9 nm Au nanoparticles [195] and ~1.8 nm 

Pd nanoparticles [196] into organic cages, respectively, and the resulted catalysts 

showed good activity and stability in the Suzuki-Miyaura reaction. Moreover, Xu’s 

group also reported recently that ultrafine Pd nanoparticles (~0.72 nm) were 

encapsulated in POCs and were examined in different liquid-phase reactions such as 

methanolysis of ammonia borane, hydrogenation of nitroarenes, and reduction of 

organic dyes, which showed that the Pd nanoparticles in POCs have promising 

catalytic activity and stability [197]. 

 

Figure 6- 2 Schematic demonstration of the encapsulated Au nanoparticle in cage 

molecule. [195] 



88 
 

Enclosing metal nanoparticles in POCs is appealing, as it can provide many 

advantages for catalytic applications in aspects of controlling the growth hence the size 

of metal nanoparticles, suppressing particle aggregation, and creating synergistic 

effects between metal nanoparticles and porous supports [197]. Nevertheless, this is 

still an emerging research area. The issues such as maintaining the pore structure and 

crystallinity of POCs as well as the accessibility of active metals in POCs still need to 

be further studied.  

 

6.1.2 Controlling the porous properties of POCs 

As mentioned above, Cooper’s group reported a series of POCs with permanent 

porosity for the first time in 2009 [181]. Imine-linked tetrahedral organic cages were 

synthesized via [4+6] cycloimination of 1,3,5-triformylbenzene with vicinal diamine 

linkers. They reported three types of cages (CC1-CC3) which were prepared by using 

different diamine linkers: 1,2-ethylenediamine, 1,2-propylenediamine and (R,R)-1,2-

diaminocyclohexane for CC1, CC2 and CC3, respectively (as shown in Figure 6-3). All 

the three cages show tetrahedral symmetry and they have four approximately 

triangular windows through which the intrinsic pores in cages can be accessed [181]. 

It can be noticed that CC1-CC3 have different steric groups on their vertices, 

depending on the types of diamines used. CC1 has unfunctionalized groups on the 

vertices, while methyl groups and cyclohexyl groups can be found on the vertices of 

CC2 and CC3 molecules, respectively. These vertex steric groups were found to have 

pronounced effects on the packing motif of cages and hence the porous properties of 

the resulting materials [181, 182]. For instance, two adjacent cages of CC1 would pack 

in a window-to-arene motif, which results in the isolated voids in individual cages 

without inter-cage window connectivity (as shown in Figure 6-4(a)). Cages of CC2 

would pack in a similar way as CC1 but, thanks to the methyl groups on vertices, the 

packing of stacks is slightly frustrated, which gives rise to an 1D pore channel running 

between the CC2 cages as shown in Figure 6-4(b). However, as the windows of CC2 

cages do not face towards the channel, the voids in these cages do not connect with 

the channel and they are still isolated. On the contrary, CC3 shows a window-to-

window packing motif resulted from the interlocking of three vertex cyclohexyl groups 

on two adjacent CC3 cages. The alignment of windows allows for the connection 

between the voids in adjacent cages and, combined with the tetrahedral symmetry of 

cages, a 3D diamondoid pore network is established as shown in Figure 6-4(c) [181]. 
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Figure 6- 3 Structures of (a) CC1, (b) CC2 and (c) CC3 molecules. Blue balls represent 

nitrogen atoms and grey balls represent carbon atoms, while hydrogen is omitted for 

clarity. Methyl groups on CC2 and cyclohexyl groups on CC3 are displayed in green 

and red, respectively. [181] 

 

Figure 6- 4 Packing methods of adjacent cage molecules. (a) Window-to-arene 

packing for CC1, which gives rise to isolated void volume in individual molecules 

(orange areas). (b) Similar window-to-arene packing hence isolated void for CC2, while 

1D pore channel (shown in yellow) exists in the interstice between molecules because 

of the interactions between methyl groups (green). (c) Window-to-window packing for 

CC3 interlocked by cyclohexyl groups (red), which results in 3D diamondoid channels 

(yellow) getting through individual cages. [181] 

All the cages discussed above can be used to accommodate metal nanoparticles to 

control particle size and prevent particle agglomeration. However, gas diffusion 

through the cages should also be taken into consideration, as the reactant molecules 

must access the metal surface in heterogeneous catalysis. As shown above, CC3 has 

good interconnected pore channels and this would allow for better diffusion of gases 
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through the cages, hence it was selected as the support material in this study. Pd 

nanoparticles would be incorporated into CC3 and the activity of the resulted catalyst 

was tested in CO oxidation reaction. 

 

6.2 Preparation of Pd nanoparticles in CC3 

In this study, 0.5 wt% Pd nanoparticles in CC3 (referred to as Pd@CC3 henceforth) 

was prepared and then tested in CO oxidation reaction. The preparation of the 

Pd@CC3 sample was conducted by our collaborators Harrison Cox, Dr. Shan Jiang 

and Dr. Simon Beaumont from Chemistry Department at Durham University, and the 

principles of their preparation processes are briefly described here. 

The synthesis of CC3 cages was conducted through the [4+6] cycloimination reaction 

between 1, 3, 5-triformylbenzene and (1R, 2R)-(-)-1, 2-diaminocyclohexane (Figure 6-

5(a)), as described by Cooper et al. [181]. 1, 3, 5-triformylbenzene (100 mg, 0.62 mmol) 

was dissolved in dichloromethane (8 mL), and (1R, 2R)-(-)-1, 2-diaminocyclohexane 

(106 mg, 0.93 mmol) was also dissolved in dichloromethane (8 mL), and then the 

former solution was added to the latter in an oven-dried round bottomed flask. The 

flask was sealed and left at room temperature for 7 days without stirring. After 7 days, 

the solvent was removed in vacuum, and the obtained crude product was filtered and 

then washed with methanol, which resulted in the final product of CC3 that appeared 

as a white powder (112 mg, 0.11 mmol, 71%). The resulted product consisted of CC3 

molecules in tetrahedral symmetry with intrinsic voids and four windows that allow 

gases to diffuse through (Figure 6-5(b)). It is worth mentioning that most CC3 cages 

would pack in the window-to-window arrangement (known as CC3α) [184] which has 

3D diamondoid pore channels (as shown in the left of Figure 6-5(c)). CC3α is the 

thermodynamically favored form for CC3, which has been confirmed in previous 

studies. However, another frustrated packing motif (CC3β) might also exist at a small 

amount, and it has 2D layered pore structure with formally disconnected voids (as 

shown in the right of Figure 6-5(c)) [198]. As the quantity of CC3β is very low, it will not 

be discussed further here. 

The incorporation of Pd into CC3 was conducted through cocrystallization of Pd 

precursor (Pd(NO3)2 here) and CC3, and the subsequent reduction step transformed 

Pd precursor into Pd nanoparticles, which is briefly illustrated in Figure 6-5(d). The 

CC3 product (10 mg, 8.95x10-3 mmol) was dissolved in dichloromethane (2 mL), and 
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a solution of Pd(NO3)2 in acetone (3 mg mL-1) was prepared. The CC3 solution was 

then mixed with the Pd(NO3)2 solution, and hence the Pd(NO3)2@CC3 cocrystals could 

be formed. The mixed solution was stirred for 1 hour, and then the solvent was 

evaporated slowly. The sample vial of the solution was covered by a lid, but not fully 

sealed, hence the solvent could escape. The solution was left under ambient 

conditions to let the solvent evaporate. After all the solvent disappeared, the sample 

was moved into an oven operating at 70 °C to get further de-solvated under vacuum 

overnight. Once the product of Pd(NO3)2@CC3 was obtained, the reduction was 

carried out in the environment of H2 (10% H2/N2, 30 mL min-1) to reduce Pd(NO3)2 into 

Pd nanoparticles. To find the appropriate reduction temperature for Pd(NO3)2@CC3 

without decomposing the cage structure itself, TGA was used to investigate the 

changes of both CC3 and Pd(NO3)2@CC3 samples upon heating in both the inert 

atmosphere (N2) and the reducing atmosphere (10% H2/N2), which was conducted at 

Durham University, as shown in Figure 6-6. It can be observed that, for CC3 cage only, 

there was no significant mass decrease until the temperature reached ~400 °C under 

10% H2/N2 atmosphere (initial mass loss of solvent and/or physisorbed water was 

excluded), and the mass loss above 400 °C can be attributed to the thermal 

decomposition of cages. For Pd(NO3)2@CC3 under N2 atmosphere, its weight did not 

decrease significantly until 300 °C at which the decomposition started. On the other 

hand, for Pd(NO3)2@CC3 under 10% H2/N2 atmosphere, slow mass loss was seen to 

initiate at ~150 °C, and the material decomposed eventually at ~400 °C. This implied 

that the reduction of Pd(NO3)2 might start from 150 °C. Therefore, our collaborators at 

Durham University attempted to run the reduction of Pd(NO3)2@CC3 at several 

different temperatures above 150 °C, and they found that when the sample was 

reduced in 10% H2/N2 flow at 200 °C for 1 hour (5 °C min-1 during heating and cooling), 

Pd(NO3)2 could be effectively reduced to metallic nanoparticles. The resulted Pd 

nanoparticles can be potentially located both inside and between the CC3 cages as 

shown in Figure 6-5(e). 
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Figure 6- 5 Preparation of Pd@CC3. (a) Synthesis of CC3 through [4+6] 

cycloimination between 1, 3, 5-triformylbenzene and (1R, 2R)-1, 2-

diaminocyclohexane. (b) Structure of the CC3 molecule. (c) Packing motifs of CC3 

molecules and the pore connectivity. The yellow surfaces show the interconnected 3D 

pore structure for CC3α (left), and 2D layered pore structure for CC3β (right), 

respectively. (d) Steps to incorporate Pd into CC3 hence to form Pd@CC3. (e) Pd 

nanoparticles are potentially located either inside or between the cages. 

 

Figure 6- 6 TGA results for both CC3 and Pd(NO3)2@CC3 samples. Pd(NO3)2@CC3 

was tested in both inert (N2) and reducing (10% H2/N2) atmospheres, while CC3 was 

only tested in 10% H2/N2 atmosphere as a reference. 

 

6.3 Characterization of Pd@CC3 

Prior to the catalytic experiments for Pd@CC3, the as-prepared sample was 

characterized to investigate the morphology of cage crystals and the distribution of 

metal nanoparticles (the characterization experiments were done by our collaborators 

at Durham University).  
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The SEM image in Figure 6-7 shows the morphology of the crystals formed by 

Pd@CC3 cages. It was found that discrete crystals (~15 μm diameter) were formed 

with an octahedral crystal morphology. It has been confirmed computationally and 

experimentally that the octahedron is the ideal crystal morphology for metal-free CC3 

crystals [186, 199-201]. Here the octahedral crystal morphology was preserved, which 

indicated that the incorporation of 0.5 wt% Pd into the cage crystals did not affect their 

packing motif.  

 

Figure 6- 7 SEM image of crystals of as-prepared Pd@CC3, showing the octahedral 

crystal morphology. 

Also, both CC3 and Pd@CC3 samples were tested in gas sorption experiments. The 

N2 sorption isotherms for both samples (Figure 6-8) indicate that the gas adsorption 

capacity of CC3 is slightly higher than that of Pd@CC3. The BET surface area for CC3 

was found to be ~400 m2 g-1, and it was consistent with the BET surface area reported 

for CC3 sample (409 m2 g-1) in literature [198]. On the other hand, the BET surface 

area for Pd@CC3 was found to be ~350 m2 g-1, and the slightly lower BET surface 

area of Pd@CC3 as compared to CC3 might imply that some pores were blocked by 

Pd nanoparticles. 

20 µm
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Figure 6- 8 N2 sorption isotherms for CC3 and Pd@CC3 samples. Black plots and red 

plots represent CC3 and Pd@CC3, respectively. Solid circles and empty circles 

represent adsorption and desorption, respectively. 

The Pd@CC3 sample after reduction at 200 °C was also scanned in STEM (shown in 

Figure 6-9) in order to visualise the Pd nanoparticles. It can be observed that small and 

near monodispersed Pd nanoparticles were embedded in the crystals of CC3. The 

corresponding size histogram showed a narrow particle size distribution of Pd 

nanoparticles and most particles are in the range between 1.0 and 2.0 nm with the 

average particle size being 1.6 ± 0.3 nm in diameter. 

 

Figure 6- 9 (a) STEM image of Pd@CC3 sample showing the distribution of Pd 

nanoparticles and (b) its corresponding size histogram for Pd nanoparticles. 

The results above indicate that discrete cage crystals were formed and Pd 

nanoparticles with controlled particle size and distribution were observed to disperse 
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in the cage crystals. Therefore, the preparation of Pd@CC3 was successful and this 

sample would be tested in CO oxidation reaction to evaluate its catalytic activity. 

 

6.4 Investigation of catalytic activity of Pd@CC3 

6.4.1 Pd@CC3 vs Pd/Al2O3 

The Pd@CC3 sample was tested to evaluate its catalytic activity. Prior to the catalytic 

experiments, the temperature operating window for the sample should be determined, 

hence the TGA experiment of Pd@CC3 in air was conducted (by our collaborators at 

Durham University). From the TGA experiment in air (Figure 6-10), sharp weight 

decrease can be seen above the temperature of ~300 °C, which indicates that the 

cages were stable only up to ~300 °C in air and thermal decomposition of the cage 

material would happen when the temperature went above this limit. Therefore, the 

reaction temperature in the catalytic experiments must be monitored by the 

thermocouple and carefully controlled to prevent destroying the sample by overheating 

to above 300 °C (assuming that the sample and the gas phase are always thermally 

equilibrated). 
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Figure 6- 10 TGA result of Pd@CC3 in air. 

The 0.5 wt% Pd@CC3 sample (23 mg) was firstly tested in the light-off experiment of 

CO oxidation by using the stoichiometric conditions (𝑃𝐶𝑂=1.0 kPa, 𝑃𝑂2=0.5 kPa and 

𝐹𝑡=450 mL min-1) as mentioned in Chapter 3. The commercial catalyst 1 wt% Pd/Al2O3 
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(26 mg) was also tested by using the same experimental conditions for comparison. 

Both samples were in the powder form but they had different nominal loadings of Pd, 

hence the CO2 production rates (𝑟𝐶𝑂2) were normalised with respect to the amount of 

Pd metal involved in the tests. The results of light-off experiments for both 0.5 wt% 

Pd@CC3 and 1 wt% Pd/Al2O3 samples in terms of 𝑟𝐶𝑂2  and CO conversion are 

presented in Figure 6-11. It was found that the Pd/Al2O3 sample started to produce 

minimum measurable CO2 (1 ppm, which corresponds to CO2 production rate of 3 x 

10-10 mol s-1) at 151 °C, and it achieved 5% and 50% CO conversion at around 205 °C 

and 210 °C, respectively. However, the catalytic activity shown by the Pd@CC3 

sample was much lower as compared with Pd/Al2O3, where minimum CO2 production 

was measured at 200 °C and the highest CO conversion achieved was still below 1% 

within the given temperature range (<240 °C).  

 

Figure 6- 11 Light-off experiments over 0.5 wt% Pd@CC3 and commercial 1 wt% 

Pd/Al2O3 catalyst in CO oxidation reaction under conditions of 𝑃𝐶𝑂=1.0 kPa, 𝑃𝑂2=0.5 

kPa and 𝐹𝑡=450 mL min-1. The CO2 production rates are normalised with respect to 

the amount of Pd metal. Two Y axes on the right of the graph show CO conversion for 

the two samples, which are labelled in the same colours as the corresponding samples. 

To investigate the difference in the catalytic activity between the Pd@CC3 and the 

Pd/Al2O3 samples, Arrhenius plots (in low temperature regime under differential 

conditions) for both samples (Figure 6-12) were generated. It was calculated that the 

activation energy of CO oxidation over 0.5 wt% Pd@CC3 was 139 kJ mol-1 and it was 
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almost the same as the one obtained for 1 wt% Pd/Al2O3 sample (135 kJ mol-1). The 

similar activation energy could indicate the same active sites in these two catalysts, 

but the much lower activity exhibited by Pd@CC3 might imply that many active sites 

are inaccessible in its system. The Pd particle size in Pd@CC3 (~1.6 nm) was even 

smaller than that in commercial Pd/Al2O3 (~2.5 nm, as mentioned in Chapter 4), but 

the particles in Pd@CC3 are enclosed by rigid frameworks of cages, so the access to 

some sites on these particles might be hindered by cage structures, which could 

probably result in the low activity. 

 

Figure 6- 12 Arrhenius plots for CO oxidation over 0.5 wt% Pd@CC3 and commercial 

1 wt% Pd/Al2O3 catalyst, respectively, under the reaction conditions of 𝑃𝐶𝑂=1.0 kPa, 

𝑃𝑂2=0.5 kPa and 𝐹𝑡=450 mL min-1. 

Moreover, to investigate if there were any mass transfer effects along the reactor, the 

same Pd@CC3 sample was tested in another light-off experiment by using the same 

𝑃𝐶𝑂 and 𝑃𝑂2 (1.0 and 0.5 kPa, respectively) but a different total flow rate (150 mL min-

1). By comparing two light-off experiments of Pd@CC3 sample using different total flow 

rates (Figure 6-13), it was found that the CO2 production rates obtained in the two 

experiments were very close and the ratio between the CO conversion values in the 

two experiments was close to 3:1 whilst the ratio between the total flow rates was 1:3. 

This implies that there was no significant mass transfer effect along the reactor.  
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Figure 6- 13 Light-off experiments over 0.5 wt% Pd@CC3 sample in CO oxidation 

reaction by using 𝑃𝐶𝑂=1.0 kPa, 𝑃𝑂2=0.5 kPa and two different total flow rates of 450 mL 

min-1 and 150 mL min-1, respectively. The CO2 production rates are normalised with 

respect to the mass of sample. Two Y axes on the right of the graph show CO 

conversion in these two experiments, which are labelled in the same colours as the 

corresponding flow rates. 

Therefore, the catalytic results shown above indicate that the activity of Pd@CC3 was 

much lower as compared with the conventional Pd/Al2O3, which might be ascribed to 

the limited accessibility of active sites on Pd nanoparticles when they were enclosed 

in POC crystals. 

 

6.4.2 Catalytic activity of Pd@CC3 

The effect of O2 partial pressure on the CO2 production rate over the Pd@CC3 sample 

was investigated, and this experiment will be referred to as O2 kinetics (as explained 

in Chapter 3). In O2 kinetics experiment the CO partial pressure and reaction 

temperature were kept constant while the partial pressure of O2 was varied. Therefore, 

the O2 kinetics experiment was conducted by using the conditions of 𝑃𝐶𝑂=1.0 kPa, 

𝐹𝑡=80 mL min-1 and reaction temperature of 200 °C, with 𝑃𝑂2varying from 0.5 to 7.5 

kPa (increase by 0.5 kPa intervals). The reaction temperature of 200 °C was selected, 

because this is the temperature at which the reaction was seen to initiate from the light-

off experiment shown above and it was away from the decomposition temperature of 

the sample (~300 °C). More importantly, this low temperature could allow the reaction 

to occur under differential conditions (low conversion, <20%) hence making the kinetic 
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data more reliable. The CO2 production rate as a function of O2 partial pressure over 

the Pd@CC3 sample can be found in Figure 6-14(a), and it indicates that the 𝑟𝐶𝑂2 

hence the CO conversion initially increased with the O2 partial pressure, but when O2 

partial pressure increased above ~6 kPa the 𝑟𝐶𝑂2  didn’t rise further and showed a 

plateau. In order to determine the effect of O2 partial pressure (reaction order), the 

kinetic relation between the CO2 production rate and the partial pressures of reactants 

can be expressed as shown below by assuming that the power rate law applies: 

𝑟𝐶𝑂2 = 𝑘 𝑃𝐶𝑂
𝑚 𝑃𝑂2

𝑛                               Equation 6-1 

where 𝑘 is the rate constant; 𝑚 and 𝑛 are the apparent reaction orders for CO and O2, 

respectively. By simply transforming the equation, the reaction order of O2 can be 

determined by finding the slope of the plot of ln 𝑟𝐶𝑂2 against ln 𝑃𝑂2, as shown in Figure 

6-14(b). As it was discussed in Chapter 4 that according to L-H reaction mechanism, 

CO and O2 need to competitively adsorb onto the catalyst surface and higher O2 partial 

pressure can promote the formation of the active oxygen covered surfaces, therefore 

the reaction orders for O2 shown in Figure 6-14(b) were generally positive. When  𝑃𝑂2 

increased to ~6 kPa, a saturation condition was reached where CO2 production rate 

did not increase any further with  𝑃𝑂2, so the reaction order for O2 became almost zero. 

 

Figure 6- 14 (a) O2 kinetics experiment over the 0.5 wt% Pd@CC3 sample in CO 

oxidation reaction by using 𝑃𝐶𝑂=1.0 kPa, 𝐹𝑡=80 mL min-1 and reaction temperature of 

200 °C with 𝑃𝑂2 varying from 0.5 to 7.5 kPa. (b) Determination of the reaction order for 

O2 based on the kinetic results from (a). 

From the O2 kinetics experiment, it was found that the 𝑟𝐶𝑂2 is highly dependent on the 

O2 partial pressure. Therefore, new reaction conditions of 𝑃𝐶𝑂=3.0 kPa, 𝑃𝑂2=15.0 kPa 
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and 𝐹𝑡=60 mL min-1 were selected for the light-off experiment, which could make the 

Pd@CC3 sample to show better performance in the CO oxidation reaction. Despite 

changing the reaction conditions, they were still of interest as similar CO/O2 ratios are 

frequently reported in other studies of Pd-based catalysts in literature and could allow 

for better comparison. The light-off experiment of the Pd@CC3 sample by using the 

new reaction conditions can be found in Figure 6-15. The reaction catalysed by 

Pd@CC3 achieved the CO2 production rate of 23.8 mmol s-1 (mol Pd)-1 (equivalent 

6.3% CO conversion) at 200 °C, which was much higher as compared to the results of 

the previous light-off experiments under stoichiometric gas conditions (<1% CO 

conversion). Moreover, the 𝑟𝐶𝑂2  reported for other similar Pd-based catalysts in 

literature are also shown in Figure 6-15 for comparison (in low temperature regime and 

with CO conversion lower than 20%), and the details of these catalysts (including the 

experimental conditions under which the data were collected) can be found in Table 6-

1. It is clear that the catalytic activity of Pd@CC3 is broadly comparable to other Pd-

based catalysts reported in literature (normalised to the amount of Pd), and Pd@CC3 

even exhibited higher activity than those catalysts employing other organic supports. 

Also, to demonstrate the thermal stability of the Pd@CC3 system, the light-off 

experiment was repeated for several cycles over the same Pd@CC3 sample (Figure 

6-16). No significant change of catalytic activity was observed, which indicates that 

Pd@CC3 catalyst was thermally stable in the temperature regime <200 °C, and it was 

also consistent with the results of TGA in air (Figure 6-10) which showed that the 

sample was stable up to ~300 °C. 
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Figure 6- 15 Light-off experiment over the 0.5 wt% Pd@CC3 sample in CO oxidation 

reaction under conditions of 𝑃𝐶𝑂=3.0 kPa, 𝑃𝑂2=15.0 kPa and 𝐹𝑡=60 mL min-1. The CO2 

production rates are normalised with respect to the amount of Pd metal. CO2 

production rates obtained from other Pd-based catalysts reported in literature were 

also marked in the graph for comparison, and all these values were obtained under 

conditions where CO conversion was lower than 20%. Samples from the literature are: 

(1) 2 wt% Pd/ZnO [202]; (2) 3 wt% Pd/Ce-based MOF [203]; (3) 0.9 wt% Pd/triptycene-

based microporous polymer [204]; (4) 3.6 wt% Pd/Ni-based MOF [205]; (5) 1 wt% 

Pd/Cu-based MOF [206]. 

Table 6- 1 Comparison of activity of 0.5 wt% Pd@CC3 with other Pd-based catalysts 

in the literature for CO oxidation reaction. 

Sample % Pda mcat
b 

(mg) 

Ft (ml 

min-1) 

 𝑷𝑪𝑶 

(kPa) 

 𝑷𝑶𝟐 

(kPa) 

Tref
c 

(°C) 

𝑿𝑪𝑶
d 

(%) 

𝒓𝑪𝑶𝟐  (mmol s-1 

(mol Pd)-1) 

Pd/ZnO [202] 2 20 100 4 20 177 3 23.8 

Pd/Ce-based MOF [203] 3 25 100 4 20 178 5 21.1 

Pd/triptycene polymer 

[204] 

0.9 50 50 1 21 195 20 17.6 

Pd/Ni-based MOF [205] 3.6 60 52 3 8.5 205 20 11.4 

Pd/Cu-based MOF [206] 1 50 20 1 20 190 20 6.3 

Pd@CC3 (this work) 0.5 71.5 60 3 15 200 6.1 23.8 

a Pd loading on the catalyst. b Mass of catalyst used in experiment. c Temperature of 

reference, at which the CO conversion and CO2 production rate in the table were 

obtained. d CO conversion. 
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Figure 6- 16 Repeating the light-off experiments over the 0.5 wt% Pd@CC3 sample 

in CO oxidation reaction (4 cycles in total), under conditions of 𝑃𝐶𝑂=3.0 kPa, 𝑃𝑂2=15.0 

kPa and 𝐹𝑡=60 mL min-1. 

 

6.5 Conclusions 

In this chapter, noble metal nanoparticles were stabilized through encapsulation in 

POCs crystals, and the results indicated: 

 Uniform and small (~1.6 nm) Pd nanoparticles could be dispersed in the CC3 

crystals. 

 The resulted catalyst could stay stable (with no activity change) under the given 

reaction conditions below ~250 °C. 

 The POCs stabilized Pd catalyst was much less active than the state-of-the-art 

Pd catalyst, despite that its activity was comparable with some other Pd-based 

catalysts reported in literature. 

 The low catalytic activity might be due to the limited accessibility of active sites 

in POCs crystals. 

The results above indicate that, although the noble metal nanoparticles could be 

stabilized via encapsulation in POCs, their activity was heavily compromised. This 

highlights the balance between the confinement for metal nanoparticles and the 

accessibility of these nanoparticles, which can lead to good stability and activity at the 
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same time. Additionally, the POCs support would decompose at temperatures above 

300 °C, which limits the resulted catalysts in high temperature applications such as 

automotive exhaust control, hence the stability of the support itself is very important as 

well. Therefore, in the next chapter, a more stable ceramic support (perovskite) is used 

and metal nanoparticles are partially embedded in the support via redox exsolution, 

which can result in both enhanced stability and activity. 
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Chapter 7: Towards stabilization and high 

activity of noble metal nanoparticles via 

exsolution 

 

 

 

The previous chapter demonstrated that full encapsulation of metal nanoparticles 

would compromise the catalytic activity. Therefore, an alternative system will be 

introduced in this chapter, in which the metal nanoparticles are grown (exsolved) 

directly from the perovskite host and are partially embedded (socketed) in the 

perovskite. Due to the strained nature of exsolved metal nanoparticles, they 

demonstrate excellent stability and activity. 

The in-situ experiments on the Ni-based perovskites in environmental TEM provided 

insight into the exsolution process, revealing the mechanisms of the socket formation, 

metal particle nucleation and growth. The socket was observed to form because of the 

rise of perovskite lattice around metal particles during the particle growth period. 

Moreover, the growth of metal particles was likely to be limited by the availability of 

exsolvable ions near perovskite surface, which indicated the importance to reduce the 

grain size of perovskites for later studies when noble metal was attempted to be 

exsolved from dilute compositions. 

The mechanistic insight obtained was used to design the material that allowed for the 

exsolution of a noble metal (Rh) from a dilute substituted system. Particle 

characteristics of exsolved Rh could be controlled by different parameters, and the 

correlations between particle characteristics and catalytic activity were also 

investigated. Despite the limited extent of exsolution, exsolved Rh catalyst still showed 

promising activity in CO oxidation as compared with the state-of-the-art Rh catalyst, 

indicating enhanced activity probably due to the strained nature of exsolved particles.  
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7.1 Introduction to the metal exsolution from A-site deficient perovskites 

7.1.1 Stoichiometric perovskite 

The perovskite-type materials were originated from a mineral with the formula of 

CaTiO3 which was firstly discovered by Gustav Rose, and it was named after the 

Russian mineralogist Lev Perovski [207]. Having been extensively studied for decades, 

perovskite-type materials have developed into a big range of compositions sharing a 

common formula of ABO3, where the A-sites can be occupied by alkali (e.g., Na, K), 

alkaline earth (e.g., Ca, Sr) or lanthanide (e.g., La, Ce) cations, and the B-sites are 

occupied by smaller cations such as transition metal cations. The ideal structure of a 

stoichiometric perovskite is shown in Figure 7-1 (exhibited by SrTiO3) [208]. It can be 

visualized as a cubic structure in Figure 7-1(a), where the twelve-fold A-site cation and 

the six-fold B-site cations occupy the center and the corners of the cubic cell, 

respectively, while oxygen anions lie at the midpoint of the edges of the cube. 

Alternatively, the perovskite structure can also be visualized in another way as shown 

in Figure 7-1(b), where the B-site cations are located in the corner-sharing oxygen 

octahedra (TiO6), while the A-site cation is situated at the center of the cuboctahedral 

cavity formed by eight BO6 octahedra. The geometric relationship between the radii of 

different ions in the unit cell of an ideal perovskite can be found from Figure 7-1(a) as: 

𝑟𝐴  +  𝑟𝑂 = √2(𝑟𝐵  +  𝑟𝑂)                            Equation 7-1 

where 𝑟𝐴, 𝑟𝐵 and 𝑟𝑂 are the ionic radii of A-site, B-site and oxygen ions, respectively. 

However, perovskites can still be formed if the equation above is not strictly satisfied. 

The tolerance factor ( 𝑡𝑓 ) was introduced by Goldschmidt [209] to describe the 

geometric relationship of ionic radii for a common perovskite: 

𝑡𝑓 =  
𝑟𝐴 + 𝑟𝑂

√2(𝑟𝐵 + 𝑟𝑂)
                                     Equation 7-2 

The ideal perovskite structure is generally formed when 𝑡𝑓 ≈ 1, while the perovskite 

structure can still remain stable when 0.8 ≤ 𝑡𝑓 ≤ 1 in spite of some lattice distortion 

resulted by the tilting of BO6 octahedra and lowering of symmetry [207, 210]. 

Nevertheless, 𝑡𝑓 > 1 means that the A-site cations are too big and hence the formation 

of the perovskite structure might be hindered, whereas when 𝑡𝑓 < 0.8, alternative 

structures might be formed because the A-site cations are too small to fit the perovskite 

structure [210]. Therefore, the structure of perovskite has some level of flexibility 

according to the Goldschmidt tolerance factor, which allows for the accommodation of 

almost 90% of the metal species from the periodic table of elements in the perovskite 
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lattice [211]. Moreover, the original A-site and/or B-site cations in perovskite lattice can 

be partially substituted with a small amount of other metallic elements, to generate new 

perovskites with the formula of A1−xA
′
xB1−yB

′
yO3 [212-216]. The partial substitution 

can lead to the changes of the oxidation state of metallic cations and even the 

vacancies (non-stoichiometry) on A-, B- or oxygen sites according to the 

electroneutrality principle [217, 218]. Therefore, the design of perovskite-type materials 

is convenient and a wide diversity of perovskites have been investigated in areas such 

as heterogeneous catalysis and material science. 

 

Figure 7- 1 Ideal structure of perovskites (exhibited by SrTiO3), viewed by: (a) focusing 

on the unit cell and the coordination number of cations; (b) emphasizing the corner-

sharing BO6 octahedra. [208] 

 

7.1.2 Nonstoichiometry in perovskites 

As mentioned above, a perovskite is able to accommodate some defects in its structure, 

and the type and concentration of the defects can be controlled by doping/substituting 

the original cations in the perovskite with other cations exhibiting similar size but 

different oxidation states. Because of the electroneutrality principle, the increase or 

decrease of the charge in the perovskite structure induced by cation substitution must 

be compensated and there are several possible mechanisms of charge compensation 

as summarized in Figure 7-2. In Figure 7-2, nonstoichiometric perovskites deviated 

from the ideal perovskite ABO3 are presented, as well as the specific examples 

originated from the archetype perovskite SrTiO3 through the cation substitutions. 

Theoretically, the nonstoichiometry can exist individually or simultaneously on all the 

A-, B- and oxygen sites. Nevertheless, because of the strong interactions between the 

B- and oxygen ions in the corner-sharing BO6 octahedra as shown in Figure 7-1(b), 
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the nonstoichiometry on B-sites is energetically more difficult to happen as compared 

with the other two sites [219]. Therefore, the cations on the B-sites are usually 

stoichiometric, despite some exceptions of B-site deficient compositions such as a 

series of hexagonal AnBn-1O3n perovskites [220, 221]. On the other hand, there is a 

variety of perovskites with different combinations of nonstoichiometry on the A- and/or 

oxygen sites. Depending on the nature of the nonstoichiometry, the perovskites can 

be generally classified into two types which are super-stoichiometric (or excess) and 

sub-stoichiometric (or deficient) perovskites, as shown in Figure 7-2. 

Different nonstoichiometric perovskites can be exemplified based on deviations from 

SrTiO3. In stoichiometric SrTiO3, the oxidation states of Sr and Ti cations are +2 and 

+4, respectively. If some Sr2+ cations are substituted by trivalent cations like La3+, the 

resulted excess charge can be compensated in different ways [208]. Firstly, extra 

oxygen ions can be incorporated into the structure, hence the perovskite formula 

becomes LaxSr1-xTiO3+x/2 (namely oxygen excess stoichiometry). Secondly, the 

formation of vacancies on the A-sites is also possible, which changes the perovskite 

formula into LaxSr1-3x/2TiO3 (A-site deficient stoichiometry). Alternatively, the oxidation 

state of the B-site cations can be partially decreased if the lowered oxidation state can 

be stabilized, and for instance, perovskites with formula of LaxSr1-xTix3+Ti1-x
4+O3 can be 

prepared under reducing conditions. If the cation substitution takes place on the B-

sites and, for instance, if some Ti4+ are substituted by foreign cations Mm+ (m≠4), the 

perovskite with nonstoichiometric oxygen sites (SrMxTi1-xO3-(4-m)(x/2)) can be generated: 

oxygen vacancies will be formed if m<4; inversely oxygen interstitials will be formed if 

m>4. Moreover, if the cation substitution takes place on both A- and B-sites, 

perovskites with vacancies on both A- and oxygen sites (LaxSr1-3x/2MyTi1-yO3-(4-m)(y/2)) 

may be generated, which is dependent on the nature of M and the concentration of 

overall vacancies. On the other hand, the charge compensation could also be achieved 

between A- and B-sites, which gives rise to the perovskites with deficient A-sites but 

stoichiometric oxygen sites (La0.4+(4-m)xSr0.4-(4-m)xMxTi1-xO3). Besides, when perovskites 

are treated in reducing atmospheres (such as in H2) to a high temperature (normally 

above 900 °C), the oxygen ions in perovskites are allowed to migrate and might be 

stripped out of the structure, which leaves oxygen vacancies and some electrons as 

shown [208]: 

2𝑇𝑖𝑇𝑖
𝑥 + 𝑂𝑂

𝑥  ↔  2𝑇𝑖𝑇𝑖
′  +  𝑉𝑂

•• + 
1

2
𝑂2                 Equation 7-3 
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Figure 7- 2 Different types of perovskite nonstoichiometry and some corresponding 

examples derived from SrTiO3. This figure was modified from Neagu et al. [208]. 

Perovskites accommodating different types of nonstoichiometry will show distinct 

behaviors for the metal exsolution that is the topic studied in this chapter. The concept 

of metal exsolution and the effects of perovskite nonstoichiometry will be introduced 

below. 

 

7.1.3 Self-regeneration of metals from perovskites 

The potential of perovskites in catalysis has been extensively investigated for various 

applications such as water-gas shift, fuel cells and automotive exhaust purification 

[222-225], due to the high thermal stability and good activity for oxidation reactions of 

perovskites. More importantly, the flexible composition, partial substitution of A- and B-

site cations, and even the nonstoichiometry of lattice as discussed above, provide 

multiple possibilities to tailor the properties of perovskites and hence to change their 

catalytic activity [207, 226]. It is generally agreed that catalytic activity of perovskite is 

mainly dependent on the transition metals on the B-sites [207, 227], as shown in Figure 

7-3. On the other hand, the A-site cations might influence the perovskite activity more 

indirectly. Hence, the focus of the research of perovskite catalysts stayed on the 

selection of B-site cations [207, 228-230]. For instance, since Libby reported the 
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potential of the perovskite LaCoO3 for automotive exhaust purification in 1971 [231], 

perovskites substituted with other transition metals such as Mn, Fe and Ru have also 

been investigated and they showed appealing performance in reactions like CO 

oxidation and NOx reduction [232-235]. 

 

Figure 7- 3 Effects of B-site cations on the catalytic activity of perovskites in the 

reaction of propane oxidation at 227 °C. ●-oxides of B-site metals; △-LaBO3; □-SmBO3; 

▽-GdBO3. [207] 

However, the “self-regeneration” phenomenon of metals from perovskites reported by 

Nishihate et al. in 2002 led the research of perovskite-based catalysts to a new 

direction [236]. It was reported that, for perovskite LaFe0.57Co0.38Pd0.05O3, Pd 

substituted on the B-sites was able to reversibly dissolve into and segregate from the 

perovskite structure as the response to the reactant composition that fluctuates 

between oxidizing and reducing conditions, respectively. They called this kind of 

perovskites that allow for the metal self-regeneration as “intelligent” catalysts, and it 

was found that they had higher thermal stability as compared to traditional Al2O3 

supported catalysts, which was attributed to the suppressed agglomeration tendency 

of metal particles due to the reversible movements of metal into and out of the 

perovskite [236]. Apart from the higher thermal stability, Tanaka et al. also reported 

that intelligent perovskites containing Pd had higher catalytic activity as compared with 

Pd/Al2O3 containing the same amount of Pd as that in perovskites, hence the intelligent 

perovskites can reduce the use of noble metals in catalysts [237]. They also found that 

the self-regenerative property could be extended from Pd to other noble metals such 

as Pt and Rh, and the resulted catalysts were regarded as promising candidates for 
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the application of automotive exhaust purification [238, 239]. Nevertheless, the 

observations from Katz et al. towards the metal diffusion into and out of perovskite 

were different from the conclusions of Nishihata et al. [240, 241]. They found that the 

formation of Pd particles on the perovskite surface upon reduction was quite limited 

that only a very small fraction of Pd which initially sits a few nanometers within the 

perovskite can segregate out of the surface and form particles [240], while most of the 

noble metals remain within the bulk phase of parent perovskites [241]. Besides, instead 

of dissolving back into the perovskite lattice upon oxidation, the metal particles formed 

on the perovskite surface were found to react with the oxide support and only sink 

slightly into the support [240]. 

Not only that, in the earlier stage of this research, only the perovskites with the 

stoichiometric compositions were studied, and only a few metal cations (such as Ni2+, 

Pd4+, Rh4+ and Ru2+) were found to be able to diffuse out of the perovskite to form 

metal particles [239, 242, 243], because this process was thought to be mainly 

determined by the reducibility of the metals. Moreover, the formation of the active metal 

clusters was found to occur mainly in the bulk phase of the perovskite [240, 241], which 

is a big disadvantage for heterogeneous catalysis as the most of metal clusters cannot 

be accessed by reactants. Because of the limited formation of metal particles on the 

material surface as discussed above, the self-regeneration technique in catalysis had 

not made big breakthroughs for long time. 

 

7.1.4 Metal exsolution from A-site deficient perovskites 

In the past few years, the in-situ growth of metal nanoparticles from perovskite supports 

has become a hot topic again, thanks to the works from John Irvine’s group at St 

Andrews University. They proposed the concept of exsolution, in which the catalytically 

active metals are substituted on the B-sites in perovskite lattice under oxidizing 

conditions during synthesis and then these metals can be partly segregated from the 

perovskite to form metal nanoparticles upon reduction [244, 245]. Unlike the self-

regeneration phenomenon mentioned before, the exsolution is irreversible and the 

exsolved metal nanoparticles will not re-dissolve into the perovskite host under 

oxidizing conditions. More importantly, Neagu et al. have done comprehensive 

investigations of the B-site exsolution from perovskite and the parameters controlling 

the exsolution process, and they reported that nonstoichiometry of the perovskite has 

significant effects on exsolution [26, 245]. They found that abundant Ni nanoparticles 
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could be exsolved on the surface of the A-site-deficient perovskite (Figure 7-4(b)) while 

no particle was observed on the oxygen-excess perovskite (Figure 7-4(a)), in spite of 

the same amount of Ni in both perovskites and the same reduction conditions. Besides, 

Neagu et al. also reported that some metals which are normally thought to be 

insufficiently reducible could also be exsolved from perovskites by controlling the A-

site deficiency [245]. Therefore, the A-site deficiency in the perovskite seems to be a 

very important driving force to promote the exsolution of B-site species.  

 

Figure 7- 4 Effects of perovskite nonstoichiometry and surface properties on 

exsolution. (a) A-site-stoichiometric, oxygen-excess perovskite 

(La0.3Sr0.7Ni0.06Ti0.94O3.09) shows no metal exsolved after being reduced in 5% H2/Ar at 

930 ˚C for 20 h. (b) A-site-deficient, oxygen-stoichiometric perovskite 

(La0.52Sr0.28Ni0.06Ti0.94O3) is decorated with a lot of exsolved nanoparticles on the 

surface after being reduced under the same conditions as in (a). (c) The native surface 

of perovskite (La0.4Sr0.4NixTi1-xO3-y) shows a terraced morphology with nanoparticles 

preferentially exsolved on the edge of terraces. (d) Abundant and uniformly distributed 

metal nanoparticles are exsolved on the bulk surface of A-site-deficient perovskite 

(La0.52Sr0.28Ni0.06Ti0.94O3). [245] 
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For an A-site-deficient perovskite A1-αBO3, oxygen vacancies can also be generated 

upon reduction and hence the perovskite lattice becomes unstable to hold vacancies 

on two of its three primitive sites. Eventually the spontaneous B-site exsolution would 

happen when the concentration of oxygen vacancies is built up to a sufficiently high 

level (δlim), and hence the stoichiometry of perovskite can be re-established locally 

[245]:  

𝐴1−𝛼𝐵𝑂3−𝛿𝑙𝑖𝑚
𝐸𝑥𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
→       (1 − 𝛼)𝐴𝐵𝑂3−𝛿 + 𝛼𝐵            Equation 7-4 

From another point of view, the perovskite with high deficiency on both A- and oxygen 

sites can be treated as the B-site-excess composition, so the B-site species would be 

highly prone to exsolve. The process of B-site exsolution from A-site-deficient lattice 

can also be presented as Figure 7-5 [245]: oxygen can be easily stripped from the unit 

cell which accommodates the A-site vacancy, hence locally segregating the BOn part 

(the purple group) out of the main perovskite structure, and by further reducing the 

perovskite, the segregated B-site cation would lose all the oxygen initially coordinated 

to it and hence shows great tendency towards exsolution. 

 

Figure 7- 5 Schematic demonstration of B-site exsolution process from A-site-deficient 

perovskite. (a) Some oxygen atoms are stripped out of the unit cell which contains A-

site vacancy, making the BOn part be locally segregated from the perovskite lattice as 

shown in the purple dashed area in (b). (c) Further reduction removes all the oxygen 

coordinated with B in BOn to generate metallic B-site exsolution. Modified from Neagu 

et al. [245] 



113 
 

The exsolution is also controlled by the stoichiometry and morphology on the surface 

of perovskite. By annealing the material under oxidizing conditions during the synthesis 

of perovskite, the surface of the as-prepared perovskite (“native surface”) usually 

evolves to a different stoichiometry from the nominal bulk. The phenomenon of A-site 

enrichment is often seen on the surface of perovskite where the native surface of 

perovskite possesses a stoichiometry with higher A/B ratio as compared to the nominal 

bulk stoichiometry [246, 247], and this might even happen for the perovskite with an 

A-site-deficient nominal stoichiometry [245]. The excess stoichiometry on the surface 

is detrimental for the B-site exsolution as the deficiency on A- and oxygen sites is 

important to destabilize the perovskite lattice to trigger the exsolution as explained 

above. Besides, it is also known that some perovskites will develop terraced native 

surfaces as shown in Figure 7-4(c), and the B-site exsolution would happen 

preferentially on edges of the terraces, indicating the spatial inhomogeneity on the 

native surface of perovskite [26, 245]. On the contrary, the “bulk surface”, revealed by 

cleaving through the grains, shows the nominal stoichiometry of the perovskite and is 

much smoother than the native surface, hence more abundant and uniformly 

distributed metal nanoparticles would be formed on the bulk surface through exsolution 

as shown in Figure 7-4(d) [26, 245]. The migration of B-site cations in the bulk of the 

perovskite was found to possibly follow a curved path between the adjacent B-sites, 

where the trajectory of the B-site cations is in the (110) planes (as shown in Figure 7-

6(a)). This process can be significantly promoted by the vacancies on the neighboring 

A-sites because of the reduced electrostatic repulsion for cation migration [26, 248], 

which again explains the promoting effect of the A-site deficiency on exsolution. 

Moreover, it was found that under reducing conditions, the B-site cations can diffuse 

from a depth of ~100 nm in the bulk of perovskite to get exsolved on the surface, and 

the diffusion of B-site cations is likely to be coupled with the diffusion of A-site cations 

(Figure 7-6(b)). Therefore, the A-site cations in the bulk diffuse in parallel with the B-

site cations to the surface where the A-site vacancies are filled by the migrating A-site 

cations, which gradually lowers the driving force for the cation diffusion and hence 

limits the exsolution [26]. This can explain why the bulk surface with nominal 

stoichiometry is favored for exsolution as compared with the native surface that is 

enriched with A-site cations. 
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Figure 7- 6 (a) Migration of B-site cations between the adjacent B-sites follows the 

curved trajectory (shown as the red arrow) in the (110) plane [26, 248]. (b) Schematic 

of cation diffusion in bulk perovskite in which A- and B-site cations diffuse in parallel 

towards the surface where B-site cations get exsolved to form nanoparticles while A-

site cations fill the A-site vacancies near the surface gradually [26]. 

Therefore, by controlling the stoichiometry of the perovskite and its surface properties, 

numerous and evenly distributed metal nanoparticles can be produced via exsolution. 

The strong anchorage of particles on the parent perovskite is one of the most important 

and appealing features for the exsolved materials, as it was reported by Neagu et al. 

that the exsolved particles are partially socketed in the surface of the parent perovskite 

(with ~30% diameter of the particle immerged in perovskite) as shown in Figure 7-7(a) 

[26]. They also discovered that the lattices of the perovskite and the exsolved metal 

particles were well aligned at their interface (Figure 7-7(b)), which implies that the 

particles could be epitaxially exsolved from perovskite. Not only that, the inter-diffusion 

between the two phases is possible as the exsolved particles are actually formed by 

the B-site cations diffusing from the perovskite lattice, which could also enhance the 

anchorage of particles to the support due to the stronger interaction between these two 

phases [26, 249]. However, the catalysts prepared via the traditional deposition 

techniques do not possess this socketed interface between the metal particle and the 

support (as shown in Figure 7-7(d)), which implies much weaker particle-support 

interactions as compared with the exsolved counterparts.  
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Figure 7- 7 (a) TEM image shows that the exsolved Ni particle is partially socketed in 

the parent perovskite. (b) Detail of metal-perovskite interface as shown in (a), shows 

the alignment between the lattices of Ni and perovskite. (c) 3D AFM of perovskite 

surface after the exsolved metal nanoparticles were etched in nitric acid, confirming 

the deep anchorage of exsolved particles in perovskite. (d) Schematic of different 

interface structures of exsolved and deposited Ni particles with the support. [26] 

The strong particle-support interaction is a very important advantage for the exsolved 

materials, which brings the enhanced stability (resistance to sintering, coking and 

poisoning) to the exsolved nanoparticles. As Neagu et al. reported that, by thermally 

aging the exsolved and deposited Ni nanoparticles of the similar initial particle size, the 

exsolved nanoparticles did not sinter at 900 ˚C while severe agglomeration was 

observed for the deposited counterparts [26]. Besides, the exsolved nanoparticles are 

less likely to suffer from coking. As presented in Figure 7-8(a and c), the deposited Ni 

nanoparticles produced a large amount of carbon fibres covering the sample surface 

after being treated in the 20% methane atmosphere, while only few carbon fibres were 

observed on the exsolved nanoparticles [26]. The resistance of the exsolved 

nanoparticles to coking can be attributed to the strong particle-support interaction as it 

suppresses the lifting of nanoparticles from the support and hence the growth of carbon 

at the metal-support interface in the “tip-growth” mechanism for carbon growth as 

shown in Figure 7-8(b) [250]. Only very small amount of short carbon fibres can form 

on the exsolved nanoparticles, which probably follows another growth mechanism 

(“base-growth”) as shown in Figure 7-8(d) [251], and this mechanism would happen 

only when a strong interaction exists between the metal particles and the support. What 

is more, many metal catalysts (especially Ni based) can be poisoned by sulphur 
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compounds. However, Papaioannou et al. reported that the exsolved metal 

nanoparticles have higher tolerance to sulphur poisoning as compared to their 

deposited analogues and the reduced activity of the exsolved nanoparticles caused by 

sulphur poisoning could get largely recovered after the sulpher compound was 

removed from the environment [252]. 

 

Figure 7- 8 Growth of carbon fibres under the coking conditions (20% CH4/H2, 800 ˚C, 

4 h): (a) deposited nickel particles (~20 nm) produce a big amount of carbon fibres; (c) 

exsolved nickel particles (~25 nm) show very limited growth of carbon fibres. The “tip-

growth” mechanism (b) and “base-growth” mechanism (d) can explain the carbon fibre 

growth in (a) and (c), respectively. [26] 

To sum up, by controlling the nonstoichiometry (especially the A-site deficiency) of 

perovskites, the B-site metal exsolution can be significantly promoted, which can 

produce abundant, well distributed and compositionally diverse nanoparticles on the 

perovskite support. The unique interactions between the metal nanoparticles and the 

oxide substrate would cause strong anchorage of the exsolved nanoparticles, which 

results in the enhanced thermal stability, resistance to coking and poisoning. Due to 

the emerging functionalities introduced above, the exsolved materials have been 

widely studied in applications such as catalysis of CO and NO oxidation [253], fuel cells 

[254-256], hydrogen production via chemical looping [257], hydrocarbon reforming 

[258] and CO2 reduction [259], etc. However, the mechanisms of exsolution (such as 

the formation of the socketed interface and the particle nucleation and growth) have 

not been understood yet, mainly due to the difficulties of observing the exsolution 
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process at atomic scale. Mechanistic insights can not only help us understand the 

functionalities (like stability and activity) which arise from exsolution, but also allow for 

the more advanced design of the exsolved materials to control the exsolved particle 

characteristics, increase the exsolution extent or even generate new exsolved 

nanostructures. Therefore, in this study, the mechanisms of exsolution have been 

investigated by using the latest generation ETEM, and the mechanistic insights 

obtained are used to design the noble metal (Rh) based exsolved materials. 

 

7.2 Controlling the perovskite stoichiometry and microstructure by modifying 

the solid-state method 

7.2.1 Design principles of perovskite stoichiometries 

Generally, there are two basic principles to design the composition of the perovskite. 

Firstly, the relationship between the radii of different ions in the perovskite must meet 

the requirement restricted by the Goldschmidt tolerance factor (0.8 ≤ 𝑡𝑓 ≤ 1, shown in 

Equation 7-2 above), otherwise the perovskite structure would be unstable. If the 

original cations (mainly at the B-sites) in the host perovskite need to be partially 

substituted with some other cations of interest, the radius of the substituting cations 

should be similar as the original cations, so the substituting cations can be inserted in 

the perovskite lattice without distorting the structure too much. Secondly, the charges 

on the three primitive sites of the perovskite must be balanced to fulfill the 

electroneutrality principle. For instance, if the B-sites are partially substituted with some 

cations of different oxidation states, the change of the overall charges on the B-sites 

must be compensated via nonstoichiometry on the A- and/or oxygen sites or changes 

of the oxidation states. 

First of all, two compositions of perovskites containing different substitution levels of 

exsolvable ions (Ni) were selected to be used for the mechanistic investigation of the 

exsolution process in ETEM, because exsolution of Ni has been widely studied 

previously [26, 245]. The perovskite with relatively low Ni content was derived from Ca-

based titanate LaxCa1-3x/2TiO3, where the oxidation states of La, Ca and Ti are +3, +2 

and +4, respectively, hence the charge was balanced. The value of x was designed to 

be 0.4 and the perovskite became La0.4Ca0.4TiO3, so there would be a high degree of 

A-site vacancies (20%). By substituting 6% Ti4+ with Ni2+, the decrease of charges can 

be compensated by the change of A-site oxidation state (the ratio between La3+ and 
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Ca2+) and oxygen vacancies simultaneously. Therefore, the Ni-doped composition was 

La0.43Ca0.37Ni0.06Ti0.94O3-γ (γ=0.045, the low degree of oxygen vacancies will not be 

shown in formulas henceforth for simplicity) [260], where both the retained A-site 

vacancies (20%) and the small amount of oxygen vacancies can promote the ion 

diffusion and subsequently exsolution. Moreover, the Ca-based titanate is also 

important for the design of noble metal (Rh) doped perovskites, which will be 

introduced in the next paragraph.  On the other hand, for the perovskite with high Ni 

content (40% on the B-sites), the substantial decrease of charges should be 

compensated by the increase of A-site oxidation state, hence La0.8Ce0.1Ni0.4Ti0.6O3 

from previous studies [245] was chosen. These two compositions with vastly different 

substitution levels of Ni can cover the currently reported range of exsolved materials, 

and they can allow for the investigation of metal exsolution behaviors from different 

concentrations of exsolvable ions. 

Perovskites with dilute amounts of Rh were also designed for catalytic measurements 

in CO oxidation reaction and, as mentioned above, the Ca-based titanate was also 

used where Ni in La0.43Ca0.37Ni0.06Ti0.94O3 was replaced by different levels of Rh, which 

resulted in a series of Rh-doped perovskites La0.43Ca0.37RhxTi1-xO3 (x=0.01, 0.03 and 

0.06). The design of La0.43Ca0.37RhxTi1-xO3 was based on several reasons as listed 

below. Firstly, the solid-state method used for perovskite synthesis normally requires 

high reaction temperatures (>1200 °C), but the Rh precursor (Rh2O3) would 

decompose at a relatively lower temperature, which poses a challenge to incorporate 

Rh2O3 in the perovskite. Secondly, high reaction temperatures would also result in 

large grains of perovskite, which might limit the ion diffusion to the perovskite surface 

and hence exsolution. Ca is known to promote the perovskite formation at lower 

temperatures and ion diffusion [261], so the challenges above would be solved by 

employing the Ca-based compositions. Moreover, in order to use Rh more efficiently, 

it is desired to exsolve from perovskites with dilute concentrations of Rh although this 

might be challenging. The presence of the high concentration of A-site vacancies as 

well as a small amount of oxygen vacancies in La0.43Ca0.37RhxTi1-xO3 might allow for 

the dilute exsolution of Rh, due to the ease of ion diffusion as mentioned above. Also, 

La0.43Ca0.37RhxTi1-xO3 is similar as La0.43Ca0.37Ni0.06Ti0.94O3, so the exsolution of Ni and 

Rh from these perovskites might be governed by the similar mechanisms and the 

knowledge obtained from the mechanistic study of Ni exsolution might be useful to 

control the exsolution of Rh. As the perovskites La0.43Ca0.37RhxTi1-xO3 have not been 
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reported before, the tolerance factor of these perovskites was checked. Rh can be 

incorporated as Rh3+ (0.665 Å) and/or Rh4+ (0.6 Å) in La0.43Ca0.37RhxTi1-xO3 (details 

about Rh oxidation states will be discussed later), hence the tolerance factor is about 

0.96 and 0.98, respectively, indicating that the perovskite structure can be stable. More 

details about perovskite design will be discussed in the result parts later. 

Phase purity of the prepared perovskites is very important. If secondary phases exist 

in the final product, the stoichiometry of the perovskite will deviate from the desired 

ones as designed, which will cause uncertain effects on the subsequent metal 

exsolution. The solid-state preparation method was used and the conventional 

procedures were modified to produce the single-phase perovskites. The steps to 

modify the solid-state method will be presented in this subchapter, and the 

determination of the phase purity and the structure of the prepared perovskites will also 

be discussed. 

 

7.2.2 Determination of the phase purity and crystal structure of perovskites 

The determination of the phase purity and structures of the prepared perovskites is 

conducted in the method based on indexing the XRD pattern of the perovskite on a 

double cubic cell and checking the splitting (or broadening) of the peaks in XRD [245, 

262-264]. The structure of an ideal perovskite such as SrTiO3 is cubic, but by 

accommodating ions of different sizes or charges, the structure can be distorted to 

show a lower symmetry. The perovskite structure can be distorted in different ways 

including octahedral tilting, B-site cation displacement and the distortion of octahedra 

[262], and the octahedral tilting is most commonly seen [265]. Glazer proposed to treat 

the octahedral tilting as different component tilts around the pseudocubic axes (𝑥, 𝑦 

and 𝑧), and the successive octahedra may tilt in the same or opposite direction around 

one of axes, which is referred to as in-phase or out-of-phase tilting, respectively [265, 

266]. Hence, the octahedral tilting can be described by using the symbols of 𝑎#𝑏#c#, 

where 𝑎 , 𝑏 , 𝑐  represent the magnitudes of the tilts around the 𝑥 , 𝑦  and 𝑧  axes, 

respectively, and the superscript # can be +, - and 0 to show in-phase tilting, out-of-

phase tilting and no tilting around that axis, respectively. Letters can be identical when 

the magnitudes of the tilts around two axes are the same. For instance, 𝑎0𝑏+𝑏+ means 

in-phase tilts with equal magnitude around the 𝑦 and 𝑧 axes and no tilt around the 𝑥 

axis.  
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The octahedral tilting may cause the doubling of the unit cell parameter along certain 

axes [262]. As shown in Figure 7-9, the tilting of octahedra occurs around the axis that 

is perpendicular to the plane of the paper, and it can be found that two neighboring 

octahedra tilt in opposite directions, which results in the doubled unit cell parameter 

perpendicular to this axis. This can happen for all the three axes of tilting. 

 

Figure 7- 9 Schematic demonstration of octahedral tilting around the axis 

perpendicular to the plane of paper, with the black points representing B-site cations. 

[262] 

Therefore, for perovskites with different types of tilting, the analysis of the structure is 

conducted by defining the double pseudocubic cell parameters (2𝑎𝑝 × 2𝑎𝑝 × 2𝑎𝑝 ), 

where 𝑎𝑝 is a pseudocubic cell parameter of a hypothetical cubic cell that contains a 

single ABO3 unit: 

𝑎𝑝 = √
𝑉𝑢𝑐

𝑛𝑢𝑐

3
                                          Equation 7-5 

where 𝑉𝑢𝑐 is the volume of the real distorted unit cell, and 𝑛𝑢𝑐 is the number of ABO3 

units involved in it. Typically, the cell parameter can be estimated according to its 

relationship with the d-spacing value: 

𝑑(ℎ𝑘𝑙)
2 =

𝑎2

ℎ2+𝑘2+𝑙2
                                   Equation 7-6 

where 𝑑ℎ𝑘𝑙 is the d-spacing at a certain reflection in the XRD pattern with the Miller 

indices to be (ℎ𝑘𝑙). The reflection (220) usually has the strongest intensity among all 

the reflections in the XRD pattern of a perovskite, and hence it is always used to 

calculate the value of estimated pseudocubic cell parameter (𝑎𝑝
∗ ): 

𝑑(220)
2 =

(2𝑎𝑝
∗ )
2

22+22+02
                                    Equation 7-7 

so 

𝑎𝑝
∗ = √2𝑑(220)                                       Equation 7-8 
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Therefore, the value of 𝑎𝑝
∗  is obtained, which enables indexing the diffraction pattern 

of the double pseudocubic cell ( 2𝑎𝑝
∗ × 2𝑎𝑝

∗ × 2𝑎𝑝
∗ ) as mentioned before and by 

assuming the cubic 𝑃𝑚3̅𝑚 structure, in the software STOE Win XPOW, and hence the 

Miller indices can be assigned to the corresponding peaks in the diffraction pattern. 

The octahedral tilting will result in the splitting (or broadening) of the X-ray diffraction 

lines at the primitive perovskite peaks and the presence of extra (superlattice) 

reflections, and they can be used to determine the structure of the perovskite [245, 262, 

264], which has been comprehensively summarized in the work from Dragos Neagu 

[267]. For instance, primitive perovskite peaks possess Miller indices consisting of all 

even numbers (eee), and the splitting (or broadening) of these peaks can be used to 

determine the overall structure of the perovskite as shown in the red box in Figure 7-

10, where the perovskite structure can be selected from rhombohedral, monoclinic, 

orthorhombic or tetragonal symmetry, respectively, depending on the appearance of 

splitting (or broadening) on different primitive peaks. For example, if (hhh) such as (222) 

shows splitting (or broadening), while (h00) like (200) is a single peak, the perovskite 

is most likely to have a rhombohedral structure. On the other hand, the presence of 

the superlattice reflections, which have Miller indices containing odd numbers, can be 

checked to determine whether the in-phase or/and out-of-phase tilting exists, as shown 

in the blue box in Figure 7-10. The intensities of superlattice reflections are usually 

very low, hence they need to be examined carefully. 
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Figure 7- 10 Diagram showing the algorithm to determine the crystal structure of a 

perovskite based on the corresponding XRD pattern. Modified from Neagu [267]. 

Once the overall structure and the tilting types of the perovskite crystal are estimated 

from the diffraction pattern, the corresponding space group can be selected from 

Figure 7-11 as summarized by previous researchers [263]. Also, the XRD pattern of 

the perovskite will be analyzed via Rietveld refinement which can further confirm the 

space group as selected. 

Moreover, if extra reflections other than the primitive or superlattice reflections of the 

perovskite exist, it probably indicates the presence of impurities (secondary phases) in 

the sample and these secondary phases must be avoided by modifying the preparation 

procedures. Therefore, based on the methodology introduced here, the phase purity 

and the structure of the perovskites prepared in this study can be determined.  
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Figure 7- 11 Diagram showing the symbols for tilting proposed by Glazer and the 

corresponding space group symmetries. [263] 

 

7.2.3 Preparation of La0.8Ce0.1Ni0.4Ti0.6O3 by modifying solid-state method 

The perovskite La0.8Ce0.1Ni0.4Ti0.6O3 was prepared first to serve as an example that 

helped to modify the preparation method to produce single-phase perovskites without 

impurities.  

The 1st batch of La0.8Ce0.1Ni0.4Ti0.6O3 sample was prepared by using the conventional 

solid-state method as described in subchapter 3.2.1, and the as-prepared sample was 

scanned in XRD (shown as black line in Figure 7-12) to determine its phase purity. By 

indexing the diffraction pattern of the 1st batch sample using the methodology as 

described in subchapter 7.2.2, it can be found that most of the peaks came from the 

perovskite phases, however, some extra reflections (for example, at the positions of 

29.2 °, 31.3 °, 37.3 ° and 62.9 °) were also observed. According to the position and 

shape of the reflections appearing at 29.2 ° and 31.3 °, they were likely to be the 

remaining Kβ signal and the terraced-like intensity change near the adsorption edge 

of β-filter (as previously introduced in Figure 3-6), respectively, as a Ni filter was used 

in the XRD instrument at Newcastle to monochromatize the Cu radiation. However, the 

appearance of the other two extra reflections (at 37.3 ° and 62.9 °) could not be 

attributed to the Ni filter, but instead they could imply the presence of some impurities 

(secondary phases). This was confirmed by searching the database in the software 
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HighScore Plus (v 4.8), which indicated that these extra reflections belong to some 

mixed oxides of La and Ni (e.g., La8Ni4O16) that were formed separately from the main 

perovskite phase during the preparation. 

 

Figure 7- 12 Powder XRD patterns of La0.8Ce0.1Ni0.4Ti0.6O3 prepared from different 

batches. The 1st batch sample was prepared via conventional solid-state method, and 

the 2nd batch sample was obtained by re-sintering the sample from 1st batch. The 3rd 

and 4th batch samples were prepared via modified solid-state method which employed 

ultrasonic probe for precursor mixing, and different dispersants (ATLOX LP-1 and 

Hypermer KD1) were used, respectively. Two different XRD instruments that employed 

Ni filter and monochromator were used to scan the 4th batch sample, respectively. 

Theoretical positions for reflections are also labelled. 

The formation of secondary phases means that some metal cations preferentially 

segregated from the main phase of perovskite and formed separated phases, which 

led to the deviation of the perovskite composition from the nominal stoichiometry as 

originally designed. As mentioned before, the B-site cation exsolution is heavily 

dependent on the stoichiometry of the perovskite, hence it must be precisely controlled 

and secondary phases need to be avoided. Therefore, the previously prepared sample 

(1st batch) was ball milled and pressed into pellet again to be re-sintered (1400 °C, 6 

h) as described in subchapter 3.2.1, attempting to mix the powder more thoroughly and 

facilitate more solid-state reactions to form homogeneous perovskite phase and 
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remove secondary phases. However, according to the XRD result of the re-sintered 

La0.8Ce0.1Ni0.4Ti0.6O3 (2nd batch) shown in Figure 7-12 (red line), the extra reflections 

of secondary phases still appeared at the same positions where they were observed 

for the 1st batch sample, which indicates that secondary phases cannot be transformed 

into the perovskite phase solely by re-sintering the sample.  

The formation of secondary phases could also be confirmed in SEM, as shown in 

Figure 7-13. No obvious secondary phases could be seen in the image obtained under 

secondary electron (SE) mode (Figure 7-13(a)). However, by switching to the back-

scattered electron (BSE) mode (Figure 7-13(b and c)), obvious brightness contrast can 

be observed on the surface of the sample, indicating that the sample was 

compositionally inhomogeneous, as the intensity of BSE signals is dependent on the 

weight of the elements in the material as previously introduced in subchapter 3.1.2. 

Some small grains were found to be darker than the surrounding areas as labelled with 

boxes in Figure 7-13(b), implying that these grains were rich in some lighter elements 

such as Ni and Ti. Also, small spherical particles were found in the pits on the surface 

of the sample, and clearly these small particles were isolated from the main phase of 

perovskite and hence were secondary phases as well. The inhomogeneous 

composition of the sample became more obvious after it was treated in 5% H2/Ar 

(1100 °C, 5 h) as Ni was reduced as shown in Figure 7-13(d and e). Instead of 

dispersing uniformly on the sample surface, the Ni particles were preferentially located 

on some small areas and grain boundaries, which implies that these positions 

contained abundant Ni cations that could be reduced to form Ni particles. As a result, 

the concentration of Ni in the main grains of perovskite was lowered and hence almost 

no Ni particle could be exsolved on these grains.  
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Figure 7- 13 SEM images of the 2nd batch of the La0.8Ce0.1Ni0.4Ti0.6O3 sample: (a) as-

prepared (SE); (b and c) as-prepared (BSE); (d and e) after being reduced in 5% H2/Ar 

at 1100 °C for 5 hours (SE). 

Therefore, the preparation method must be further improved. Inadequate mixing of the 

metal precursors was thought to be the cause of the inhomogeneous phase 

compositions. In the conventional solid-state method, the mixing of precursors is 

conducted by applying ball milling. However, it was found that the solid suspension 

resulted from the ball milling was not stable and the solids would precipitate to the 

bottom of the cup during the evaporation of acetone, which could possibly result in the 

layered settling of precursors due to their different densities. It was also found that 

some solids were strongly adhered to both the wall of the ball mill cup and the zirconia 
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balls that were difficult to recover, which might change the overall composition of the 

perovskite if some precursors were preferentially lost in this step. Therefore, to solve 

this, a modified solid-state method was employed as described in subchapter 3.2.2, in 

which the precursors were mixed under sonication by using ultrasonic probe. Under 

sonication, solids of precursors could be broken down into fine powders to be uniformly 

dispersed in acetone. Also, the subsequent step of acetone evaporation was 

conducted under continuous stirring to avoid powder precipitation. Hence, more 

homogeneous mixing of precursors could be achieved. Another advantage of using 

sonication is that the mixing process took place in the same beaker in which the 

precursors were initially weighed and the recovery of powders from the beaker was 

simple, so the loss of precursors during the mixing process could be minimized. By 

using this modified solid-state method, the 3rd batch of La0.8Ce0.1Ni0.4Ti0.6O3 sample 

was prepared, and its XRD result can also be found in Figure 7-12 (blue line). However, 

the result shows that the 3rd batch sample had even more extra reflections as 

compared to the previous ones, and the extra reflections appearing at 29.5 °, 37.3 °, 

49.1 °, 58.3 °, 62.9 ° and 79.7 ° were identified by HighScore Plus to be some cerium 

oxides and mixed oxides of La and Ni. Moreover, at the reflection positions of 

perovskite, two or three peaks could be seen to overlap, indicating multiple perovskite 

phases with different compositions might form. All these results show that the modified 

solid-state method did not work well at the first time. By applying sonication, the metal 

precursors should be mixed more uniformly and hence the final product should be more 

homogeneous, but the fact was that multiple impurities were seen in the product. This 

might be ascribed to the improper dispersant, as the dispersion of precursors was 

affected not only by the ultrasonic waves but also by the action of dispersant. However, 

the dispersant used previously (ATLOX LP-1) might not be capable to disperse 

precursors uniformly in solution, because it has poor solubility in the solvent (acetone). 

Therefore, it was replaced by another dispersant (Hypermer KD1) that is highly soluble 

in acetone and hence should improve the mixing performance for the precursors.  

The modified solid-state method was repeated (for the 4th batch sample) by using the 

new dispersant Hypermer KD1. The final step of sintering was also modified by 

prolonging the sintering duration to 20 hours to enable more solid-state reactions to 

form perovskite phase, while the sintering temperature was reduced slightly to 1390 °C 

to avoid undesired reactions between the sample pellets and the alumina boat during 

the longer sintering process. The XRD results of the 4th batch of La0.8Ce0.1Ni0.4Ti0.6O3 



128 
 

can be found in Figure 7-12. The diffraction pattern of the 4th batch sample was much 

cleaner as compared with the previous ones, and most of the extra reflections which 

were observed for the previous batches did not appear this time, indicating that the 

formation of secondary phases was effectively suppressed by using the modified solid-

state method. Only some small extra reflections (at 29.1 ° and 31.2 °) were seen, which 

could be ascribed to the use of Ni filter as discussed before. This was confirmed by re-

scanning the sample in a more advanced XRD instrument at University of Liverpool 

which could monochromatize X-rays better by using the single crystal monochromator 

as introduced in subchapter 3.1.1. The diffraction pattern of the 4th batch sample 

obtained from Liverpool (the purple line in Figure 7-12) shows that the extra reflections 

(at 29.1 ° and 31.2 °) which were previously observed were absent this time, confirming 

that these reflections are not secondary phases but some remaining signal of Kβ and 

the changes of the diffraction background due to the use of the Ni filter in our XRD 

instrument. Moreover, the signals of Kα2 were also eliminated in the instrument at 

Liverpool by using their monochromater, which allowed for the better analysis of the 

XRD result, and it was found that all the reflections in the diffraction pattern belong to 

the perovskite phase, indicating the high purity of the product. The improved phase 

purity was also confirmed by BSE images (Figure 7-14), as no obvious contrast was 

observed on the sample surface at all the magnifications, indicating the homogeneous 

compositional distribution in the material. Combining the results of XRD and BSE, it 

can be concluded that the single-phase perovskite (La0.8Ce0.1Ni0.4Ti0.6O3) could be 

prepared by using the modified solid-state method, and this method could also be used 

for other perovskite compositions in this study henceforth. 
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Figure 7- 14 SEM images (BSE) of the 4th batch of La0.8Ce0.1Ni0.4Ti0.6O3 (prepared via 

the modified solid-state method) at different magnifications. 

By using the method described in subchapter 7.2.2, the structure of the as-prepared 

perovskite La0.8Ce0.1Ni0.4Ti0.6O3 was determined. Regarding the primitive peaks of the 

perovskite, it was found that peaks of (400) and (222) were broadened while no 

obvious splitting (or broadening) was observed for (hh0) peaks ((220) and (440)), and 

hence the overall symmetry of La0.8Ce0.1Ni0.4Ti0.6O3 could be determined to be 

orthorhombic. Besides, superlattice reflections of (ooo), (oeo) and (eeo), i.e. (311), 

(321) and (221) respectively, were all found to be present, which suggested a highly 

distorted structure with both in-phase and out-of-phase tilting. Combining the 

information obtained above, the most likely space group for the perovskite 

La0.8Ce0.1Ni0.4Ti0.6O3 could be determined as Pnma.  

Rietveld refinement was conducted to validate the selected Pnma space group (here 

the setting of Pbnm, the same space group as Pnma, was used). As shown in Figure 

7-15, the data points from XRD were well fitted in the Rietveld refinement, which 

confirmed the space group Pnma for La0.8Ce0.1Ni0.4Ti0.6O3. The perovskite structure 

was created via CrystalMaker (Figure 7-16), which shows a highly distorted structure 

as anticipated before. It can be found that significant out-of-phase tilting happened 

around both 𝑥 and 𝑦 axes, and in-phase tilting was seen around the 𝑧 axis.  
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Figure 7- 15 Rietveld refinement of La0.8Ce0.1Ni0.4Ti0.6O3. 

 

Figure 7- 16 Crystal structure of La0.8Ce0.1Ni0.4Ti0.6O3 showing the perspective view (a) 

and the projection along x axis (b), y axis (c) and z axis (d), respectively. The A-sites 

are occupied by Ce and La, representing the partial substitution on A-sites. For 

simplicity, Ni cations are not shown in the structure. 
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7.2.4 La0.43Ca0.37Ni0.06Ti0.94O3 

The perovskite La0.43Ca0.37Ni0.06Ti0.94O3 was also prepared for the experiment of in situ 

observation of exsolution process in ETEM as mentioned before. The preparation was 

also carried out by using the same modified solid-state method as used for 

La0.8Ce0.1Ni0.4Ti0.6O3 above. All the metal precursors used for the preparation of 

La0.43Ca0.37Ni0.06Ti0.94O3 were the same as before, except CeO2 that was replaced by 

CaCO3 for Ca. By following the same preparation method as above, the as-prepared 

sample after being sintered at 1390 °C for 20 hours was scanned in XRD (Figure 7-

17). It shows that the phase of La0.43Ca0.37Ni0.06Ti0.94O3 prepared via the modified solid-

state method was highly pure, as all the peaks appearing in the diffraction pattern 

belonged to the perovskite phase and no obvious reflections for secondary phases 

were observed. 

 

Figure 7- 17 Powder XRD pattern of the La0.43Ca0.37Ni0.06Ti0.94O3 sample (sintered at 

1390 °C for 20 h). Theoretical positions for reflections are also labelled. 

The crystal structure of the La0.43Ca0.37Ni0.06Ti0.94O3 sample was then determined. For 

the primitive peaks of the perovskite phase, it was found that the peaks of (400) and 

(444) were obviously broadened, while the (hh0) peaks ((220) and (440)) appeared to 

be single peaks with no obvious splitting or broadening, therefore the overall symmetry 

of La0.43Ca0.37Ni0.06Ti0.94O3 should be selected as orthorhombic. When superlattice 

reflections were checked, only (ooo) peaks (such as (311) and (331)) were clearly 

observed while no obvious reflections of (ooe) and (eeo) as well as all their other 

permutations were found, so the structure should only have some out-of-phase tilting. 

Therefore, the most likely space group was determined to be orthorhombic Imma for 

La0.43Ca0.37Ni0.06Ti0.94O3. The selected space group was confirmed in the Rietveld 

refinement (here Ibmm, another setting of Imma, was used), as the data points were 
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well fitted with the calculated model as shown in Figure 7-18. The structure of the 

perovskite La0.43Ca0.37Ni0.06Ti0.94O3 is presented in Figure 7-19. It can be found that 

out-of-phase tilting happened around 𝑥 and 𝑦 axes while there was no obvious tilting 

observed around the 𝑧 axis.  

 
Figure 7- 18 Rietveld refinement of La0.43Ca0.37Ni0.06Ti0.94O3. 

 
Figure 7- 19 Crystal structure of La0.43Ca0.37Ni0.06Ti0.94O3 showing the perspective view 

(a) and the projection along x axis (b), y axis (c) and z axis (d), respectively. The A-

sites are occupied by Ca and La, representing the partial substitution on A-sites. For 

simplicity, Ni cations are not shown in the structure. 
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7.2.5 La0.43Ca0.37RhxTi1-xO3 with modified microstructure 

Once La0.43Ca0.37Ni0.06Ti0.94O3 was successfully prepared, it was tried to substitute Ni 

in this composition with different levels of Rh and subsequently exsolve Rh from 

perovskites. The Rh-substituted perovskites were also prepared in the modified solid-

state method, but the conditions used in some preparation procedures (especially the 

sintering step) were changed mainly due to the two reasons as described below.  

Firstly, the microstructure of the perovskite needs to be modified to promote the 

exsolution of Rh. Actually, exsolving noble metals from dilute substitution systems can 

be difficult both thermodynamically and kinetically, because the noble metal ions are 

expected to have strong interaction with the perovskite lattice and this will increase the 

thermodynamic requirements for exsolution [268]. Additionally, the dilute concentration 

also means that exsolvable ions need to travel a long distance from the bulk to the 

surface, so this diffusional process will have larger influence on the extent of exsolution. 

To solve this problem, the microstructure of the perovskite needs to be modified to 

reduce the grain size, so it is easier for noble metal ions in the bulk to reach the surface 

and consequently be exsolved. The grain size of the perovskite can be reduced directly 

by lowering the phase formation temperature (sintering temperature) during synthesis, 

as normally larger grains are prone to form at higher temperatures. 

Secondly, using the lower sintering temperature is also an inevitable choice to 

substitute noble metals into perovskite lattice. The oxides of certain noble metals are 

known to spontaneously convert to the corresponding metals at temperatures of 

~1150 °C [269]. For instance, Rh2O3 was used as the Rh precursor in the preparation, 

and the changes of Gibbs free energy of Rh2O3 converting to metallic Rh can be found 

from thermodynamic database, as shown in Figure 7-20. It can be anticipated that the 

change of Gibbs free energy will become negative at the temperatures above ~1126 °C, 

and then Rh2O3 will convert to Rh spontaneously. If this happens during the phase 

formation step of perovskite, instead of being accommodated into the perovskite lattice, 

the newly formed metallic Rh will become secondary phases isolated from the 

perovskite structure. 
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Figure 7- 20 Changes of Gibbs free energy of the reaction of Rh2O3 converting into 

Rh and O2 as a function of temperature.  

Therefore, the modified solid-state method must be further improved by changing the 

sintering conditions for the Rh-substituted perovskites. Different sintering conditions 

were investigated, including high temperature with short duration and low temperature 

with long duration, and the undoped perovskite composition La0.4Ca0.4TiO3 (referred to 

as Rh0 henceforth) was used to show if pure perovskite phase could be formed by 

using these sintering conditions. Additionally, the perovskite Rh0 would also be tested 

in the later catalytic experiments to show the activity of the perovskite support only. 

The XRD results of Rh0 samples prepared by using different sintering conditions are 

shown in Figure 7-21, and it can be found that all three samples showed good purity 

of the perovskite phase and there is no obvious difference between these samples. 

This indicates that the perovskite phase can be well formed when sintered at 1100 °C 

for 24 hours. Combining the results above, 1100 °C and 24 h dwell time are likely to 

be the optimum conditions for the sintering step in the synthesis, as the relatively low 

temperature could reduce the grain size of the produced perovskite as well as 

preventing Rh2O3 converting to Rh metal. 
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Figure 7- 21 Powder XRD patterns of the La0.4Ca0.4TiO3 samples which were sintered 

at 1390 °C, 1200 °C and 1100 °C, respectively. Theoretical positions for reflections are 

also labelled.  

By using the new sintering conditions (1100 °C and 24 h), a series of perovskite 

compositions (La0.43Ca0.37RhxTi1-xO3) which contain only dilute concentrations of Rh 

were prepared. The values of x were taken as 0.01, 0.03 and 0.06 (hence the 

corresponding samples will be called Rh1, Rh3 and Rh6), respectively, which means 

that Rh occupies 1 at%, 3 at% and 6 at% on the B-sites of perovskite (or equivalently 

0.6 wt%, 1.8 wt% and 3.6 wt% in the total material). The XRD results of the as-prepared 

Rh1, Rh3 and Rh6 are shown in Figure 7-22 in which the undoped Rh0 is also included 

as the reference. It was found that the XRD patterns of these samples were similar, 

except for some slight peak shifts that varied with the substitution level of Rh, indicating 

the changes of the cell parameter with the insertion of different amounts of Rh in the 

perovskite lattice. Moreover, there was no significant reflection of secondary phases 

that could be identified, indicating the preparation method worked successfully for all 

these compositions. 
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Figure 7- 22 Powder XRD patterns of the La0.43Ca0.37RhxTi1-xO3 samples (x=0.01, 0.03 

and 0.06) which were sintered at 1100 °C for 24 hours, and comparison with the 

La0.4Ca0.4TiO3 sample sintered under the same conditions. Theoretical positions for 

reflections are also labelled. 

By checking the splitting (or broadening) of the primitive peaks and the appearance of 

the superlattice reflections (as summarized in Table 7-1), it was found that all the 

perovskites prepared in this section (Rh0, Rh1, Rh3 and Rh6) showed almost the same 

crystal structures: splitting (or broadening) of (h00) and (hhh) peaks (such as (400) and 

(222)) was observed for all the samples, while none of the (hh0) peak was found split 

or broadened; for superlattice reflections, only (ooo) peaks were present while all the 

(ooe) and (eeo) reflections were absent. Therefore, the most likely space group was 

anticipated to be orthorhombic Imma for all the perovskites prepared in this section, 

and this space group was confirmed in the Rietveld refinement (here the setting of 

Ibmm was used) for each sample as shown in Figure 7-23. Besides, it was discussed 

in subchapter 7.2.4 that La0.43Ca0.37Ni0.06Ti0.94O3 also has the same structure. This 

means that accommodating small amounts of Rh or Ni on the B-sites in the original 

perovskite (La0.4Ca0.4TiO3) did not have significant effects on the lattice and hence the 

structure was almost retained. Because the structure of the perovskites prepared here 

is very similar as that of La0.43Ca0.37Ni0.06Ti0.94O3 that has been demonstrated before in 

Figure 7-19, it will not be repeated here. 
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Table 7- 1 Determining the crystal structures of La0.4Ca0.4TiO3 and La0.43Ca0.37RhxTi1-

xO3 by checking the primitive and superlattice peaks in their XRD patterns. 

Composition La0.4Ca0.4TiO3 La0.43Ca0.37RhxTi1-xO3 

 - X=0.06 X=0.03 X=0.01 

(h00) 
split/broaden 

√ √ √ √ 

(hhh) 
split/broaden 

√ √ √ √ 

(hh0) 
split/broaden 

- - - - 

Symmetry Orthorhombic 

(ooo) √ √ √ √ 

(ooe) - - - - 

(eeo) - - - - 

Tilting Out-of-phase 

Anticipated 
space group 

Imma 
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Figure 7- 23 Rietveld refinements of La0.4Ca0.4TiO3 and La0.43Ca0.37RhxTi1-xO3. 

In spite of the similar crystal structure, the perovskites Rh1, Rh3 and Rh6 contain 

different concentrations of Rh ions in their lattice as illustrated in Figure 7-24. It can be 

found that in the lattice of perovskite Rh1, the amount of Rh ions is indeed very dilute 

and they could interact quite strongly with the lattice, which would consequently make 

the exsolution of Rh difficult to happen.  



139 
 

 

Figure 7- 24 Illustration of different substitution levels of Rh in perovskites of 

La0.43Ca0.37RhxTi1-xO3 (x=0.01, 0.03 and 0.06) in (a), (b) and (c), respectively. Grey, 

green and red balls represent Ti, O and Rh ions, respectively. For simplicity, A-site 

cations are not shown in the structure. 

Based on the results of Rietveld refinement, the pseudocubic cell parameters for these 

perovskites (𝑎𝑝) can be calculated as: 

𝑎𝑝 = √
𝑉

4

3
                                       Equation 7-9 

where 𝑉 is the volume of the perovskite unit cell obtained from Rietveld refinement. 

The cell parameter can be plotted as a function of the substitution concentration of Rh 

on the B-sites (Figure 7-25(a)), with very small errors, indicating the high quality of data 

refinement. It was found that the cell parameters of perovskite Rh0, Rh3 and Rh6 

followed a linear relationship, while the sample Rh1 was out of this relationship and its 

cell parameter was smaller as compared with the other samples, which might imply 

different oxidation states of Rh in these perovskites. It seems that Rh was substituted 

at similar oxidation state (probably +3/+4) in perovskite Rh3 and Rh6, and hence their 

cell parameter would increase linearly with the Rh substitution level. However, the drop 

of the cell parameter for Rh1 implies that Rh ions were substituted with a higher 

oxidation state (probably +4) and hence smaller size in the lattice. In order to support 

the conclusions drawn above, these perovskites were also analysed by X-ray 

photoelectron spectroscopy (XPS) which revealed the oxidation states at the 

perovskite surface. Firstly, the core level spectra of La, Ca, Ti and O are shown in 

Figure 7-25(b), and there was no obvious difference that can be found in these spectra, 

implying the unaltered oxidation state and coordination environment of these elements 

in the materials analysed. Regarding the core level spectra of Rh (Figure 7-25(c)), the 

intense peak appearing at the binding energy of ~309.5 eV could be caused by both 
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Rh3+ and Rh4+ depending on their coordination environment according to previous 

report [270], so it cannot tell the exact oxidation state of Rh. However, a small peak 

appearing at ~307.7 eV are found for both Rh3 and Rh6, which can be an indication of 

Rh3+ in the Rh2O3 environment according to the literature [271], but this peak seems 

to be absent for Rh1. To get more evidence of the oxidation state of Rh, the valence 

band spectra were checked, as Greiner et al. reported that the valence band spectra 

of transition-metal oxides are affected by d-band occupancies [272]. Based on the 

valence band spectra shown in Figure 7-25(d), a significant fraction of Rh shows the 

oxidation state of +3 in both Rh3 and Rh6, while all the Rh in Rh1 seems to be in the 

+4 state. Therefore, all the evidence provided above shows the higher Rh oxidation 

state (+4) in Rh1, and this might indicate the stronger interaction between Rh ions and 

the perovskite lattice in the highly dilute system, which forced the oxidation state of Rh 

to be closer to that of the host cation Ti which is stable at +4 in the lattice.  

 

Figure 7- 25 Changes of cell parameter and oxidation states with the substitution level 

of Rh. (a) Pseudocubic unit cell parameter as a function of Rh substitution on the B-

sites. (b) Core level spectra of La, Ca, Ti and O in different perovskites. (c) Core level 

and (d) valance band spectra of Rh. 

The microstructure of the prepared perovskites was obtained by SEM (exemplified by 

Rh6 in Figure 7-26). It can be found that by reducing the sintering temperature during 

synthesis, highly porous perovskites were produced, and the grain size of these 

perovskites was ~500 nm which was much smaller as compared to the perovskites 
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prepared via the conventional solid-state method where the grain size can be ~50 μm. 

As mentioned before, the smaller grain size and higher porosity can not only promote 

more Rh ions to diffuse to the surface and get exsolved, but also benefit the 

performance in heterogeneous catalysis. 

 

Figure 7- 26 Microstructure (SEM) of the perovskites sintered at 1100 °C (exemplified 

by La0.43Ca0.37Rh0.06Ti0.94O3) to show their porosity and grain size. 

To conclude, by modifying the conventional solid-state method and some key 

conditions in the procedures, single-phase perovskites with various compositions 

(including the Rh-substituted ones) can be successfully prepared. More importantly, 

this modified solid-state method allows for the precise control over the stoichiometry to 

change the concentration of Rh in the perovskite, and the high porosity and small grain 

size can be achieved as well. Within the perovskites prepared, the Ni-based 

perovskites were mainly used in the mechanistic study of the exsolution process in situ 

in ETEM. For the Rh-based perovskites, efforts were made to promote more exsolution 

of Rh and control the particle characteristics by controlling different parameters, aiming 

to improve their catalytic activity for the model reaction of CO oxidation. These 

investigations will be discussed in the following subchapters. 

 

7.3 Mechanistic study of nanoparticle exsolution via in situ observation in 

ETEM 

In order to further tune the properties of the exsolved materials to improve their catalytic 

activity and stability, the better understanding of the mechanism of the exsolution 

process is desired. To obtain the insight into the changes happening on the perovskite 

surface during exsolution, the state-of-the-art environmental transmission electron 
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microscope (ETEM) was used, which allowed for the in situ observation of the 

formation process of individual nanoparticles with ultra-high spatial and temporal 

resolution. The in situ observation did not only reveal the atomic-scale process of the 

particle nucleation and growth, but also demonstrated the formation process of the 

unique socketed interface between the exsolved particles and the perovskite support. 

The high-resolution data not only showed these phenomena qualitatively, and more 

importantly, it allowed for the quantitative analysis to obtain deeper understanding of 

the processes by fitting the data with some theoretical models in literature [268, 273]. 

Moreover, it was also demonstrated that the shape of the exsolved particles as well as 

the nanointerfaces between the exsolved particles and their underlying oxide can be 

modified by controlling the atmosphere during the exsolution process. 

 

7.3.1 Designs of in situ observation of exsolution 

As mentioned before, two types of Ni-based perovskites with different concentrations 

of exsolvable ions were prepared for the in situ observation experiments of exsolution. 

One is the low Ni substituted composition La0.43Ca0.37Ni0.06Ti0.94O3 in which Ni only 

occupies 6 at% of the B-sites in the perovskite lattice. The other one is the high Ni 

substituted La0.8Ce0.1Ni0.4Ti0.6O3 that contains 40 at% Ni on the B-sites. These two 

compositions are representative for a wide range of the exsolved structures and the 

respective applications reported in literature. 

The exsolved materials have been investigated in different applications, and normally 

the required particle sizes can vary between 5 and 50 nm [274]. In order to observe 

the formation of metal nanoparticles in this size range, TEM would be the appropriate 

technique, not only because it can provide atomic-scale images of the material, but 

also due to its “see-through” (perspective) ability as it employs an electron beam to 

pass through a small area of the specimen for imaging as introduced in Chapter 3, 

which allows for the simultaneous observation of the particle, the perovskite support 

and their interface. During the observation in TEM, the edges of the grains (Figure 7-

27(a)) should be focused because the observing region must be thin enough to allow 

the electron beam to pass through. More importantly, the sample needs to be oriented 

along a major crystallographic axis, hence the atoms can align well in the images and 

the data obtained will be more meaningful. Moreover, the conventional TEM is 

operated under vacuum and at normal temperatures, while here the images need to 

be acquired under gas environments and at elevated temperatures, which poses 



143 
 

obstacles for maintaining the high resolution and avoiding drift and misalignment of the 

sample during the heating steps [275]. The latest generation ETEM (TITAN G2 80-300 

kV from FEI) equipped with an objective Cs aberration corrector and a double tilt holder 

was used, and the system can be operated under the gas pressure up to 20 mbar and 

at temperatures up to 1300 °C [105]. The high-performance nano-chips (from 

DENSolutions) were used to stabilize the sample to reduce the effect of thermal drift 

during heating. 4K videos of the exsolution process were recorded at a spatial 

resolution of 0.09 nm in TEM mode and a time resolution of ~50 ms (20-30 frames per 

second). 

 

7.3.2 Formation of the socketed interface 

Firstly, the formation of the unique socketed interface between the exsolved particles 

and the perovskite support was studied. The reduction of the powdered sample 

(La0.43Ca0.37Ni0.06Ti0.94O3) was conducted in situ in ETEM, by using the conditions (20 

mbar H2 and at 900 °C) which are representative for many applications. As the 

observing region must be thin enough, a target region at the sample edge as labelled 

in Figure 7-27(b) was selected and several small areas in it were monitored during 

exsolution. The structural changes observed in a representative area are shown in 

Figure 7-27(c) as a function of time, and Figure 7-28 shows some key dimensions of 

the exsolved particle and the perovskite at their socketed interface which changed with 

time. The nucleation stage of the particle was not recorded in this reduction as it 

occurred very fast, and hence at the time labelled as t = 0 s, the exsolved particle has 

already formed with a considerable size (~1 nm and ~3 nm in apparent height and 

width, respectively). The particle grew larger gradually with time and ended up with the 

height and width of ~1.7 and ~4.5 nm, respectively at the time t = 250 s. From the 

snapshots at different times, it can be found that the particle seems to exsolve 

isotropically, as the height and the width of the exsolved particle increased almost 

proportionally as indicated in Figure 7-28(c), which means that the basic structure of 

the particle was maintained during its growth. Moreover, the particle remained in close 

crystallographic orientation with respect to the perovskite lattice over time, which might 

imply some interactions between each other. 

It is also noticeable from the snapshots in Figure 7-27(c) that apart from the growth of 

the particle, the perovskite lattice also changed locally around the particle. The surface 

of the perovskite around the particle was flat initially at t = 0 s, while the elevation of 
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the perovskite surface at the point of junction with the particle was observed to occur 

with the exsolution process. Figure 7-28(b) shows that the perovskite surface rose until 

t = 99 s when it nearly plateaued to be ~1 nm. The elevation of the perovskite lattice 

could account for the formation of the socketed interface, mainly due to the two 

observations as discussed below. Firstly, it has been reported that an exsolved particle 

is around 30% submerged in the perovskite surface [26], and here the final ratio of the 

elevation of the perovskite lattice and the particle diameter (width) was very close to 

that value (27%). Secondly, the growth of the particle (height and width) was tried to 

be fitted by different theoretical models as previously reported by Gao et al [268]: 

Strain-limited:         𝑑𝑠(𝑡) = 𝑑𝑠0 (ln (1 +
𝑡

𝜏𝑠
))

1

3

              Equation 7-10 

Reactant-limited:   𝑑𝑟(𝑡) = 𝑑𝑟0 (1 − 𝑒𝑥𝑝 (−
𝑡

𝜏𝑟
))

1

3

         Equation 7-11 

Diffusion-limited:        𝑑𝑑(𝑡) = 𝑑𝑑0 (
𝑡

𝜏𝑑
)

1

6
                        Equation 7-12 

where 𝑑, 𝑡 and 𝜏 denote particle dimension (at a given time and at equilibrium), time 

and time constant, respectively. These models were established based on three 

potential factors which may limit the rate of particle growth during the exsolution 

process [268], including: the strain which is related to the formation of the particle and 

the interaction between the particle and the perovskite support; the supply of the 

reactant (the exsolvable ions, Ni in this case) which is dependent on the substitution 

concentration of metals in perovskite; and the diffusion of these exsolvable ions from 

the bulk in perovskite to the surface. As shown in Figure 7-28(d), the kinetic data of the 

particle growth can be well fitted by the reactant- and strain-limited models, which might 

imply that the particle growth was limited by the supply of exsolvable ions and the strain. 

Considering the observed elevation of the perovskite lattice, it could generate 

significant strain effect that might confine the growth of the particle during exsolution. 

Therefore, the results above indicate that the socket was formed in parallel with the 

growth of the particle, which could be caused by the local structural change of the 

perovskite lattice. 

From Figure 7-27(c), it was also found that neither the socket nor the particle pinned 

to it seemed to move or drift throughout the exsolution process, even that two more 

particles were exsolved in nanoscale proximity of the initially exsolved one, which can 
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be observed after t = 66 s. This indicates the high stability of the socket structure as 

well as the strong interactions between the particle and the perovskite support, and 

they together could explain the strong anchorage of the exsolved particles to the 

support, even at the temperature of 900 °C. 

 

Figure 7- 27 Particle growth and the formation of the socketed interface on 

La0.43Ca0.37Ni0.06Ti0.94O3 under H2. (a) Schematic demonstration of a sample particle in 

a suitable orientation and its edge is selected for TEM imaging. (b) TEM image showing 

the target region on the edge of a perovskite grain for observation of the particle 

exsolution. (c) Snapshots of a selected area at different times, showing the structural 

changes during the exsolution under H2 at 900 °C. 
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Figure 7- 28 Analysis of the changes of the particle and perovskite based on the 

snapshots in Figure 7-27. (a) Schematic demonstration of the socketed interface 

between the exsolved particle and the perovskite, annotated with key dimensions 

which change with time. (b) Evolution of the elevation of the perovskite lattice in the 

region adjacent to the exsolved particle with time. (c) Plot of the particle height vs width 

at different dimensions when particle grows. (d) Evolution of the particle height and 

width with time, fitted by different models to identify the rate-limiting factor for the 

particle growth. 

The results discussed above were obtained from the low substituted system 

(La0.43Ca0.37Ni0.06Ti0.94O3), hence the growth of the particle finished at a very early 

stage due to the limited exsolvable ions. Here the higher substituted system 

(La0.8Ce0.1Ni0.4Ti0.6O3) was tested as well, to investigate if the particle can still be firmly 

anchored to the socket at the later stage of particle growth and when there are more 

particles or reactants exsolved from the perovskite. A lamella (Figure 7-29(a)) was 

obtained from the La0.8Ce0.1Ni0.4Ti0.6O3 sample by using the FIB extraction and it was 

quickly heated to cause some fractures in the lamella (Figure 7-29(b)), which allowed 

us to monitor several grains to simultaneously track multiple particles within the 

relatively narrow field of view. The sample was heated in situ in H2 atmosphere at 

650 °C and the overviews of a big selected area before and after the reduction can be 

found in Figure 7-29(c) which indicates that abundant particles were exsolved in 
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nanoscale proximity of each other. Two smaller areas (A1 and A2) were selected in 

which multiple particles were tracked at different times during the later stages of the 

particle growth. The selected area A1 (Figure 7-29(d)) shows that the 7 tracked 

particles were all pinned to their original positions but just grew ~40% larger in size 

(Figure 7-29(f)) before and after 10 and 30 min of elapsed time. Evolution of the tracked 

particles in the other area A2 was recorded at a higher magnification (Figure 7-29(e)), 

which also shows no movement or drift of the particles, although the particle growth in 

this area seems to stabilize faster as compared to A1. These observations indicate that 

the exsolved particles are still immobile on the perovskite surface during the later 

stages of the particle growth, which is consistent with the findings from the early stages 

as shown above, even though stronger particle-particle interactions may exist because 

of the higher concentration of particles. 

 
 

 

  
Figure 7- 29 Tracking particle anchorage on La0.8Ce0.1Ni0.4Ti0.6O3 under H2. (a) 

Schematic demonstration of a lamella of the perovskite sample obtained by using FIB 

extraction, in a suitable orientation for TEM imaging. (b) TEM image showing the 

perovskite lamella which has fractures. (c) Selected area of the lamella before and 
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after the exsolution under H2 at 650 °C. (d) Selected area (A1) of the lamella, showing 

the particle growth at different times, with the tracked particles labelled. (e) Selected 

area (A2) of the lamella, showing perovskite surface before exsolution and the particle 

growth at different times during exsolution, with the tracked particles labelled. (f) Sizes 

of the tracked particles at early (light blue) and later (blue) growth stages, respectively. 

Different mechanisms of the particle formation process during the exsolution have 

been proposed to explain the formation of the unique socketed particle-perovskite 

interface. In a widely accepted mechanism, the exsolvable ions would form a metal 

nucleus within the oxide matrix, and it would grow into a nanoparticle of a critical size 

which would then move towards the surface and be expelled from the perovskite lattice 

(Figure 7-30(a)) [276]. The movement of the particle pre-formed in the bulk to the 

surface could explain the formation of the socket and the partly immersion of the 

particle in the oxide, but contradictorily we did not observe any particle moving within 

the perovskite lattice towards the surface throughout the particle growth process. 

Moreover, it has been shown that the particle nucleation would be more difficult to 

occur in the bulk of the oxide as compared to on its surface, because of the high energy 

barrier arising from the strain and the oxide lattice reconstruction around the particle 

within the oxide [268, 276]. All the observations of the particle growth process shown 

above indicate that the particles nucleate near the surface of the perovskite, and then 

they grow larger epitaxially and isotropically at the initial points where they nucleated 

without moving or drifting. In parallel to the particle growth, the perovskite lattice rises 

synchronously around the particles, probably because the particles grow partly in the 

oxide and hence gradually pushing the perovskite lattice to rise laterally, which could 

explain the formation of the socketed interface between the exsolved particle and the 

perovskite support. 

 

Figure 7- 30 Possible mechanisms for metal exsolution. (a) exsolvable ions nucleate 

just under the free surface to grow particle to a critical size and then it is expelled out 

of the perovskite lattice remaining partly immerged in the perovskite; (b) exsolvable 

ions diffuse to the perovskite surface where they get reduced and form a nucleus which 

is then grown larger by the following ions. 
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7.3.3 Determining exsolution dynamics via direct visualization of particle 

nucleation and growth 

As shown in the last section, when the perovskites (both the high substituted and the 

low substituted compositions) were reduced in H2 atmosphere in situ in ETEM, the very 

first stage of the exsolution when the particle started to nucleate and grow occurred 

too fast to be recorded in videos. It is well known that the reducing atmosphere can 

facilitate the exsolution process. Therefore, here attempts were made to replace the 

commonly used reducing atmosphere with the vacuum environment in order to slow 

down the exsolution process so that the nucleation and the initial growth stages of the 

exsolved particle could be visualized in situ in ETEM. The low substituted composition 

La0.43Ca0.37Ni0.06Ti0.94O3 was used, as the low concentration of Ni2+ ions could also 

make the exsolution process slower. The sample was reduced in vacuum at 900 °C in 

ETEM, and the results indicate that such conditions were capable to trigger the metal 

exsolution from the perovskite, which will be shown below. 

Figure 7-31(a) shows one of the Ni nanoparticles obtained from the reduction in 

vacuum as mentioned above. It can be found that, unlike the approximately spherical 

particles exsolved under the H2 atmosphere, this particle exsolved under the vacuum 

environment had a highly faceted shape. The high resolution of the TEM result allowed 

for clear visualization of the crystal structures of both the Ni nanoparticle and the 

perovskite as well as the details of their interface (Figure 7-31(b)). Firstly, according to 

the structure and the lattice spacing of the Ni crystal (Figure 7-31(a and b)), this particle 

exsolved under vacuum still seems to be metallic Ni, and the exposed facets of this 

particle were (111), (11-1) and (100) as labelled in Figure 7-31(a). Also, this particle 

was still partially immerged in the perovskite lattice and there seems to be epitaxial 

relationship between them, as Figure 7-31(a) shows that some part of the Ni metal 

lattice was interwoven with the perovskite lattice under the surface. The epitaxial 

relationship between the exsolved particle and the host oxide has been reported before 

for the exsolution under H2 atmosphere [26], and here the highly clear alignment 

between the lattices of these two phases confirmed the similar particle-oxide 

interactions when the exsolution was carried out under vacuum (Figure 7-31(b)). 

Similar to the Ni crystal as mentioned above, the orientation of the perovskite crystal 

can also be identified based on its lattice spacing, and hence the 3D models can be 

built (Figure 7-31(c and d)) to show the lattice information revealed by Figure 7-31(a 

and b), respectively. The orientation relationship shown here is consistent with some 
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previous reports in which they found that ions prefer to diffuse along the [110] 

orientation within the perovskite [26, 248]. 

 

Figure 7- 31 Particle-perovskite interface alignment. (a) TEM image of Ni nanoparticle 

exsolved from La0.43Ca0.37Ni0.06Ti0.94O3 in ETEM, under vacuum at 900 °C. (b) Details 

of the interface between Ni nanoparticle and perovskite, with an overlay showing the 

Ni metal and perovskite lattices in their respective orientations. (c) 3D model built 

based on the crystallographic relationships highlighted in (a) and (b). (d) Details of the 

3D model which highlights the diffusion pathway of Ni2+ in the perovskite lattice towards 

Ni nanoparticle. 

As expected, the exsolution process was slowed down by reducing the low substituted 

composition in the vacuum atmosphere, so the nucleation and the early stage of 

particle growth were recorded in the selected area. Selected snapshots (Figure 7-32(a)) 

of the chosen area show the evolution of the particle at different times during the 

exsolution process. The dimensional data (width and height) of the particle were 

extracted from these TEM snapshots and are shown in Figure 7-32(b) as a function of 

time (logarithmic scale). No nanoparticle or nucleus was observed initially (t = 0 s), but 

the nucleation process took place extremely fast, within 0.2 s. Moreover, the 

subsequent growth was also fast and the particle grew to around 1 nm within 0.4 s, 

after which a plateau was observed where the particle growth stagnated for around 10 

s. Then the particle growth restarted and its rate seemed to accelerate between 10 and 

100 s until reaching another plateau. The plots in Figure 7-32(b) indicate that the 

growth of the particle was not a continuous process during the exsolution, but it kept 

switching alternately between the periods of hiatus and the period of sudden and fast 

growth. Despite this, it was found that the particle still grew isotropically as its overall 

shape was almost retained (nearly constant ratio between the particle height and width 
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as shown in Figure 7-32(c)) throughout the exsolution process, which is consistent with 

the observation under H2 atmosphere as discussed above.  

 

 
Figure 7- 32 Visualization of particle nucleation and growth during exsolution. (a) TEM 

snapshots showing the exsolution of Ni nanoparticle from La0.43Ca0.37Ni0.06Ti0.94O3, at 

different times, during the in situ reduction in ETEM under vacuum at 900 °C. The 

contours were added to highlight the growth of the nanoparticle. (b) Evolution of the 

particle dimensions (width and height) with time, based on the TEM images selectively 

shown in (a). (c) Plot of the particle height vs width at different dimensions, based on 

the data shown in (b). 

Knowing the orientation of the Ni particle from Figure 7-31 and the isotropic nature of 

the particle growth, 3D models of the particle at different times can be built based on 

the dimensional data from Figure 7-32, following the steps as introduced here. A model 

of cubic crystal of Ni metal was imported into CrystalMaker to serve as the starting 

material for reconstruction, and it was rotated to the same orientation as that was 

observed for the Ni particle in Figure 7-31 (orientation can be determined by crystal 
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structure and lattice spacing). As a starting material, the cubic model must be larger 

than the actual particle in Figure 7-32, hence the number of cells involved in the cubic 

model was adjusted to ensure that its dimension exceeded the size (width) of the actual 

particle. The three exposed facets of Ni particle have been shown in Figure 7-31(a), 

hence two sets of these planes were inserted at both the top and the bottom of the 

cubic model symmetrically. These planes formed the contour of the particle, and by 

moving their positions, the height and width of the particle inside the contour can be 

adjusted to the dimensions given in Figure 7-32(b). Finally, the atoms outside the 

contour were removed, leaving the 3D model of the particle. 

The 3D models at some key stages are shown in Figure 7-33(a), and from which the 

number of the exsolved Ni atoms in the particle at the respective stages can be 

estimated (Figure 7-33(b)). The evolution of the number of the exsolved Ni atoms in 

that particle was fitted with theoretical models derived from Equation 7-10, 7-11 and 7-

12 as shown before, aiming to identify the limiting factors for the particle growth during 

the exsolution. Figure 7-33(b) shows that the particle growth data was best fitted by 

the reactant-limited model, followed by the strain-limited model, and hence the particle 

growth was likely to be limited by the locally available concentration of exsolvable ions 

and the strain from the perovskite lattice due to the confined nature of exsolved 

particles. However, it is surprising to find that ion diffusion, which was expected to be 

the rate limiting step due to the relatively low diffusion of ions, did not appear to be the 

major factor which limited the growth of the exsolved particle at this temperature. The 

depth within the perovskite from which exsolvable ions were drawn to form the particle 

of ~3 nm is shown as a function of time in Figure 7-33(c) and it is of the order of 10 nm. 

The particle and the relative volume of the perovskite needed to contribute ions to form 

that particle are shown in Figure 7-33(d). Comparatively speaking, the depth from 

which the ions were exsolved is considerable, as Figure 7-33(d) shows that ions do 

need to diffuse across a few tens of layers of perovskite unit cells to be exsolved. The 

relation between the exsolved particle size and the exsolution depth is consistent with 

the results in literature that reported that for ~30 nm particles exsolution does not use 

ions from the depth further than around 100 nm within perovskite [26, 253]. These 

results suggest that it is important to reduce the grain size of exsolved materials to 

maximise the exsolution process. For instance, to exsolve particles of ~30 nm, it would 

be good to use perovskite with the grain size no larger than 200 nm, hence all volume 

in perovskite can contribute to exsolution. 
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Figure 7- 33 Mechanistic insight into exsolution at the atomic scale. (a) 2D and 3D 

models of the exsolved Ni nanoparticle at different times during the reduction, built 

based on the TEM data shown in Figure 7-32. (b) Plot of the number of Ni atoms 

involved in the exsolved nanoparticle at different times, calculated based on the 

models selectively shown in (a), and the plot is fitted by different models to identify the 

rate-limiting factor for the particle growth. (c) Plot of the size (width) of the exsolved 

nanoparticle and the corresponding depth within the perovskite which has been 

depleted of Ni2+ ions. (d) 3D model showing the final stage of the exsolved nanoparticle 

and the corresponding volume of perovskite which is required to contribute to the 

growth of this nanoparticle. 

 

7.3.4 New exsolved nanostructures 

It was found from the results above that the particles exsolved in situ in ETEM under 

the H2 atmosphere showed the approximately spherical or ellipsoidal shape (as shown 

in Figure 7-27 and 7-29), which was consistent with most observations of the exsolved 

particles reported in the literature. Nevertheless, Figure 7-31 showed that the particle 

exsolved under vacuum in ETEM had a highly faceted shape, which was distinctive 

from the ones exsolved under the H2 atmosphere. Interestingly, the particles exsolved 

under vacuum still seem to disperse homogeneously at different locations on the 

perovskite (e.g. an atomically flat surface, or near the edges of terraces), similar as the 

analogues exsolved under H2 atmospheres. Moreover, particles exsolved under 

vacuum at different positions on the perovskite surface are shown in Figure 7-34(a) 

and it was found that all these particles had the same shape and the same orientation 
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with respect to the perovskite surface. It indicates that by changing the atmosphere 

under which the exsolution is conducted, homogeneous metal nanoparticles can be 

grown from the perovskite and the shape of the particles can be controlled by the 

atmosphere. Figure 7-34(b) shows another example for this premise, where 

La0.8Ce0.1Ni0.4Ti0.6O3 was reduced in the 5% CO atmosphere at 900 °C for 10 h. It was 

found that the particles exsolved under the CO atmosphere were approximately cubic-

shaped and they dispersed quite homogeneously as well. 

 

Figure 7- 34 Shape of the exsolved particles controlled by reduction atmosphere. (a) 

Particles exsolved from different areas of La0.43Ca0.37Ni0.06Ti0.94O3 under vacuum at 

900 °C in ETEM, showing the faceted shape. (b) Particles exsolved from La-

0.8Ce0.1Ni0.4Ti0.6O3 under 5% CO atmosphere at 900 °C for 10 h, showing the 

approximately cubic shape. 

Additionally, some atmospheres may also lead to novel heterostructures. For instance, 

Figure 7-35(a) shows the perovskite La0.8Ce0.1Ni0.4Ti0.6O3 reduced in the atmosphere 

of slightly humidified H2 at 1000 °C for 10 h. It was found that there was an oxide 

appendage (probably La2TiO5 according to the XRD in Figure 7-35(b)) forming 

adjacent to each exsolved particle, hence forming the new heterostructures, which 

might also alter the interfacial relationship between the particles and the perovskite 

support. 
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Figure 7- 35 Formation of heterostructures via exsolution. (a) Ellipsoid-shaped 

particles on the ad-grown oxide (La2TiO5), exsolved from La0.8Ce0.1Ni0.4Ti0.6O3 under 

2.5% H2O/5% H2 atmosphere at 1000 °C for 10 h. (b) XRD result of the sample shown 

in (a).  

These results show the great potential to further tailor the exsolved materials. As 

mentioned previously, some reactions are structure-sensitive, and hence the exsolved 

materials can show their advantage in tuning the particle shape by controlling the 

reduction atmosphere. Moreover, the formation of the metal-metal oxide 

heterointerfaces also provides more possibilities for catalysis. Although the catalytic 

activity brought by these new exsolved nanostructures was not further investigated in 

this thesis, it is worth being focused in the future studies. 

 

7.3.5 Key findings for the mechanistic study of exsolution in ETEM 

In this subchapter, it was demonstrated that by using the state-of-the-art environmental 

TEM, the particle nucleation and growth process as well as the formation of the 

socketed interface can be observed in situ at an atomic scale, under gas atmosphere 

and at temperature. Moreover, the high resolution also allows for the quantitative 

analysis of the TEM data, which provides more insights into the exsolution process.  

Firstly, it was found that the exsolved particles would grow epitaxially and isotropically 

at the initial position near the perovskite surface where they nucleated, and in parallel 
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the surrounding perovskite lattice would also rise around the particles and gradually 

form the socket which strains the particle to limit its growth. Secondly, by conducting 

the exsolution under vacuum environment, the nucleation and the early stages of 

particle growth can be monitored. According to the quantitative analysis, during the 

early stages of particle growth, the exsolution seems to happen in a stepwise manner 

rather than continuously, which uses the ions diffusing from the adjacent region of a 

few nanometers within the perovskite. It was also found that during these stages, the 

exsolution process seems to be mainly limited by the availability of exsolvable ions 

rather than the diffusion of ions. Hence, in order to trigger more ions to get exsolved, 

the grain size of the material should be reduced. 

It was also demonstrated that the atmosphere for the exsolution process has significant 

effects on the exsolved nanostructures. It can not only control the shape of the 

exsolved metal particles, but may also lead to the novel metal-metal oxide 

heterointerfaces. These diverse but controllable nanostructures could endow the 

exsolved materials with more possibilities to tune their catalytic properties. 

 

7.4 Efficient use of Rh via exsolution 

The subchapter above has demonstrated the mechanisms of the formation of socketed 

particles during exsolution process, and the particle growth seems to be limited by the 

availability of exsolvable ions near the perovskite surface. These insights provided 

important guidance for the material design to exsolve noble metals. For example, as 

demonstrated before, the preparation method was modified to reduce the grain size of 

perovskites, aiming to facilitate more ions in the bulk to exsolve on the surface. Actually 

exsolving noble metals has been reported before by other groups, but the perovskite 

compositions they used contain relatively high concentrations of noble metals [236, 

238, 277], which makes these catalysts neither economical nor practical to be used at 

large scales. That is why perovskite compositions with dilute substitution levels of 

noble metal (Rh) were designed for exsolution in this study. However, the metal 

exsolution from the highly dilute composition might be challenging, due to the stronger 

interactions between the metal ions and the perovskite lattice, as mentioned before. 

Hence, in this subchapter, attempts were made to control different parameters, such 

as the substitution level, the reduction time and temperature, in order to promote more 

Rh to exsolve from the perovskite and also to control the particle characteristics, which 

could lead to improved catalytic activity of noble metal catalysts. 
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7.4.1 Effect of substitution level of Rh on exsolution 

As mentioned in subchapter 7.2.5, a series of perovskites with different substitution 

levels of Rh (Rh1, Rh3 and Rh6 for La0.43Ca0.37RhxTi1-xO3 (x=0.01, 0.03 and 0.06)) 

were successfully prepared. Here, the effects of the substitution level on the exsolution 

of Rh were investigated. The as-prepared perovskites were crushed and sieved to get 

powders with the size of 80-160 μm. This size range of powders was used for all the 

tests in this study, and it will not be repeated henceforth. Then the sieved samples of 

Rh1, Rh3 and Rh6 were reduced in 5% H2/Ar at 900 °C for 10 hours (with the heating 

and cooling rates of 5 °C min-1) by using the reduction setup introduced in Chapter 3, 

and the microstructures of the samples after the reduction are shown in Figure 7-36.  

 

Figure 7- 36 SEM images of perovskites La0.43Ca0.37RhxTi1-xO3 after the reduction in 

5% H2/Ar at 900 °C for 10 hours: (a) x=0.01, (b) x=0.03, and (c) x=0.06. 

It is easy to notice the changes of the size and population of the exsolved Rh particles 

with the substitution level of Rh in Figure 7-36. The size and population of the particles 

contained in Figure 7-36 were calculated based on pixel contrast from the SEM images 

in the software Mathematica, following the procedure which was previously reported 

[253]. The analysis results of the particles in the SEM images above can be found in 

Figure 7-37. It was found that with the higher Rh concentration in the perovskite, the 

average size of exsolved particles decreased while the particle population increased. 
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Figure 7- 37 Analysis of Rh particles exsolved from perovskites Rh1, Rh3 and Rh6 

after the reduction in 5% H2/Ar at 900 °C for 10 hours: (a) particle size, (b) particle 

population, and (c) particle size distribution. 

The opposite changes of the particle size and population with the substitution level of 

Rh can be understood based on the theory of particle nucleation and growth and it is 

also related to the availability of exsolvable Rh ions in each perovskite composition. To 

form a Rh cluster of 1 nm (Figure 7-38(a)), about 1400, 467 and 233 unit cells from the 

perovskites Rh1, Rh3 and Rh6 are required, respectively, to contribute Rh ions for the 

growth of that Rh cluster (Figure 7-38(b)). In other words, the radius of the region within 

the perovskite lattice from which Rh ions need to be exsolved to form the 1 nm cluster 

is about 3.4, 2.4 and 1.9 nm for Rh1, Rh3 and Rh6, respectively (Figure 7-38(c)). In 

the lattice with high Rh substitution levels, exsolvable ions disperse close to each other 

and hence these ions would show more tendency to accumulate to form nuclei, which 

would lead to higher particle populations instead of large particles. On the contrary, in 

lower substitution systems, exsolvable ions need to migrate for much longer distances 

to form even one nucleation point, which increases the nucleation barrier. Hence, these 

ions would be more prone to grow the existing nuclei, and that is why the formation of 

larger particles but lower population is favored in lower substitution systems.  
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Figure 7- 38 (a) Crystal model showing a 1 nm metal cluster. (b) Numbers of perovskite 

unit cells required in different substitution systems to form a 1 nm metal cluster. (c) 

Depths of exsolution required in different substitution systems to form a 1 nm metal 

cluster. 

Moreover, the size distributions of the exsolved particles are shown in Figure 7-37(c), 

and all these size distributions were found to follow a near-gaussian shape. However, 

the size distribution was narrower for the particles exsolved from the higher substitution 

system, and on the contrary the lower substitution systems generated less uniform 

particles. This might be ascribed to the different concentrations of Rh ions in these 

systems as well. As discussed above, Rh ions disperse in close proximity in the high 

substitution system and hence they are more likely to nucleate homogeneously, which 

would lead to more uniform particle size at the end. While for the lower substitution 

system, Rh ions would prefer to grow the existing nuclei, which would increase the 

chances for the size differentiation of the individual particles during the growth process. 

Exsolution of Rh would be further studied by using the most dilute perovskite (Rh1), as 

this could potentially lead to more efficient use of Rh, although it might also be more 

challenging.  
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7.4.2 Effect of reduction time on exsolution 

As mentioned above, the most dilute composition Rh1 was selected to be further 

studied, and firstly the effect of the reduction duration on the Rh exsolution was 

investigated. The sample was reduced in 5% H2/Ar at 900 °C for different durations (0, 

10 and 30 hours, respectively), where the 0-hour reduction means to cool down the 

system immediately when the desired temperature is reached. The microstructures of 

the as-reduced samples are shown in Figure 7-39. 

 

Figure 7- 39 SEM images of perovskite La0.43Ca0.37Rh0.01Ti0.99O3 after the reduction in 

5% H2/Ar at 900 °C for different durations: (a) 0 hour, (b) 10 hours, and (c) 30 hours. 

It was found that during the isothermal period after the temperature reached 900 °C, 

there was no significant change of the particle size with the prolonged reduction time, 

while the particle population increased a lot during this period, and these observations 

were confirmed by the particle analysis results as shown in Figure 7-40. Particle 

analysis shows that the average size of the exsolved particles only changed from ~4.5 

nm to ~3.5 nm when the dwell time at 900 °C was increased from 0 to 30 hours. 

However, the particle population increased by nearly five times from ~250 μm-2 to 

~1300 μm-2. Moreover, Figure 7-40(c) shows that the particle size distribution became 

more homogeneous with the increasing reduction duration, and the peak of the particle 

size distribution also shifted to lower values indicating that the longer reduction 

duration would preferentially generate additional smaller particles as compared to the 

initially formed ones, which could explain the reduced average particle size with the 

longer reduction duration. All the results above could provide some insight into the 

particle formation process during the exsolution: in the first stage during the 

temperature rising and the early isothermal periods, some nuclei form and they would 

grow into relatively large particles; while in the later stage under isothermal conditions, 
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more Rh ions from the deeper layers within the perovskite diffuse to near the surface 

for exsolution, and they would preferentially form additional particles with smaller sizes. 

Unlike the samples prepared via deposition techniques where metal particles would 

agglomerate at high temperatures over time, here more particles are formed via 

exsolution. 

 

Figure 7- 40 Analysis of Rh particles exsolved from perovskite 

La0.43Ca0.37Rh0.01Ti0.99O3 after the reduction in 5% H2/Ar at 900 °C for different 

durations. (a) Particle size, (b) particle population, and (c) particle size distribution. 

 

7.4.3 Effect of reduction temperature on exsolution 

It is expected that the metal exsolution can be significantly influenced by the reduction 

temperature as it determines the driving force for the bulk diffusion of the exsolvable 

species and the reduction, and hence the effects of the reduction temperature were 

investigated. The perovskite Rh1 was reduced in 5% H2/Ar for 10 hours but at different 

temperatures varying between 500 and 1000 °C, and the microstructures of the as-

reduced samples are shown in Figure 7-41. 
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Figure 7- 41 (a-c) lower-magnification SEM images of perovskite 

La0.43Ca0.37Rh0.01Ti0.99O3 after the reduction in 5% H2/Ar at 500, 600 and 900 °C, 

respectively. (d-f) Details of perovskite La0.43Ca0.37Rh0.01Ti0.99O3 after the reduction in 

5% H2/Ar at 500, 600 and 900 °C, respectively. 

The analysis of particles (Figure 7-42) allows us to look inside the effects of reduction 

temperature on the exsolved particles. It can be noticed that the plots of both the 

average particle size and the population show a plateau at 700 °C in Figure 7-42(a and 

b), and hence the plots can be divided into two temperature regions, namely the low 

temperature region (500-700 °C) and the high temperature region (700-1000 °C), 

respectively. Firstly, in the low temperature region (500-700 °C), there was no obvious 

change of the particle size (~2 nm), while the particle population increased gradually 

from ~1500 μm-2 at 500 °C to ~2500 μm-2 at 700 °C, which might be ascribed to the 

limited reducibility of Rh ions at the low temperature. In the exsolution process, there 

are two important steps, which are the diffusion of exsolvable ions and the reduction. 

For the normal rhodium oxide, it can be reduced readily at relatively low temperatures 

(~300 °C), but if Rh is incorporated into the titanate, its reducibility would drop and 

hence a relatively higher temperature would be required to trigger the reduction [278]. 

Here the reducibility of Rh might be lowered as it was substituted in the highly dilute 

perovskite lattice, which means that a higher reduction temperature would be required.  

Therefore, the exsolution might be limited by the reduction at 500 °C, and when the 

reduction rate became faster with the increasing temperature, additional nucleation 
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could occur, which led to the higher particle population. However, in the high 

temperature region (700-1000 °C), the particle size increased from ~2 nm at 700 °C to 

~5 nm at 1000 °C, while the particle population dropped from ~2500 μm-2 to ~500 μm-

2 at the same time. Therefore, these results indicate that nucleation is favored at low 

temperatures while the particles are more prone to grow larger at high temperatures, 

which is consistent with the nucleation/growth theory [268]. Moreover, it was found that 

the size distribution of the particles exsolved at higher temperatures was less 

homogeneous as compared with the ones exsolved at lower temperatures (as shown 

in Figure 7-42(c)). It was observed that a considerable amount of particles seems to 

nucleate during the temperature rising period according to Figure 7-39 and 7-40. For 

the low-temperature reduction, fewer particles would nucleate during the temperature 

rising period due to the relatively short duration for this period. On the contrary, for the 

high-temperature reduction, the longer time required for heating up means that more 

particles would nucleate in this stage, while the newly exsolved ions in the later 

isothermal stage would not only grow the existing particles but also nucleate to form 

more particles, which would result in the big deviation of the sizes of the final particles. 

This could account for the broader particle size distributions by using the higher 

reduction temperatures. 

 

Figure 7- 42 Analysis of Rh particles exsolved from perovskite 

La0.43Ca0.37Rh0.01Ti0.99O3 after the reduction in 5% H2/Ar for 10 hours at different 

temperatures: (a) particle size, (b) particle population, and (c) particle size distribution. 
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7.4.4 Extent of exsolution as a function of substitution level, reduction time and 

temperature 

As shown above, the effects of different parameters including the Rh substitution level 

in perovskite, the reduction time and temperature on the exsolution of Rh nanoparticles 

have been investigated, but the exact extent of the Rh exsolution obtained under each 

condition has not been revealed. Here, the amount of Rh metal exsolved from a unit 

surface area of the perovskite (𝑁𝑅ℎ, Rh atom per surface area (µm-2)) was calculated 

(Figure 7-43(a-c)), based on the particle size and population obtained under each 

condition: 

𝑁𝑅ℎ =
4𝜋∙𝜌𝑅ℎ∙𝑁𝑎

3∙𝐴𝑅ℎ
∑ 𝑓𝑖 ∙ (

𝑑𝑖

2
)
3

𝑖                     Equation 7-13 

where 𝜌𝑅ℎ and 𝐴𝑅ℎ are the density and atomic weight of Rh metal, respectively, 𝑁𝑎 is 

the Avogadro’s constant, and 𝑓𝑖 is the fraction of the particles (per area of perovskite, 

µm-2) with the diameter of 𝑑𝑖 (nm). For instance, the amounts of Rh metal exsolved 

from perovskites with different substitution levels are shown in Figure 7-43(a). 

Seemingly, Rh6 exsolved the highest amount of Rh (~ 5 × 106 µm-2) as it had the 

highest substitution level of Rh among the three samples here, but it is surprising to 

find that the amounts of Rh exsolved from Rh1 and Rh3 were similar (~ 2 × 106 µm-2), 

indicating that Rh1 can use the noble metal more efficiently than Rh3. Moreover, Rh6 

contained 6 times as many Rh atoms in the lattice as Rh1, but the amount of Rh finally 

exsolved from Rh6 was only around 2-fold higher as compared with Rh1, which 

indicates that the amount of the exsolved metal does not increase proportionally with 

the substitution level. Therefore, the results above indicate that employing Rh1 could 

allow for more efficient use of Rh. 

Regarding Rh1, the amount of the exsolved metal also varied with the reduction 

conditions. Figure 7-43(b) shows that a considerable amount of Rh atoms 𝑁𝑅ℎ (~106 

µm-2) has already exsolved from the perovskite during the temperature rising period in 

the reduction, and by prolonging the dwell time at 900 °C from 0 to 10 h, the amount 

of the exsolved Rh increased about two-fold to ~2.1 × 106 µm-2. However, no significant 

increase of the amount of the exsolved Rh was obtained by further increasing the dwell 

time from 10 to 30 h, which indicates that the major percentage of the exsolution of Rh 

takes place in the early stages of the reduction process and then an equilibrium may 

be reached gradually where no more Rh can be exsolved. Also, Figure 7-43(c) reveals 

the monotonic increase of the amount of the exsolved Rh within the reduction 
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temperature range between 500 and 1000 °C, where the value of 𝑁𝑅ℎ increased from 

only ~0.5 × 106 µm-2 at 500 °C to ~ 3 × 106 µm-2 at 1000 °C. Combining the effects of 

the reduction time and temperature, it seems that reducing the sample Rh1 at the high 

temperature (1000 °C) for 10 h can facilitate the highest extent of Rh exsolution, which 

means the most efficient use of the noble metal through exsolution from the view of 

atomic utilization. However, the amount of the exsolved Rh metal may not be the only 

factor that affects the catalytic activity, but other catalyst properties such as particle 

characteristics may also have some influences, hence different samples will be tested 

in the model reaction of CO oxidation in the following sections to investigate the 

affecting factors for the catalytic activity. 

 

Figure 7- 43 Amount of Rh atoms which exsolved in 5% H2/Ar per surface area of the 

perovskite support (𝑁𝑅ℎ) varying with (a) substitution level in perovskite, (b) reduction 

time at 900 °C and (c) reduction temperature. (d) 2D plot of 𝑁𝑅ℎ as a function of the 

exsolution depth within perovskite and the extent of exsolution from the corresponding 

region (𝜁). 

In addition, given the amount of the exsolved Rh atoms, the average depth (𝐷𝑅ℎ) of the 

region within the perovskite where the exsolution has occurred as well as the degree 
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of the exsolution from the corresponding region (𝜁, mol Rh per mol of perovskite, 

La0.43Ca0.37Rhx-ζTi1-xO3) can be calculated as:  

𝐷𝑅ℎ =
𝑁𝑅ℎ∙𝑎𝑝

3

𝜁
                               Equation 7-14 

where 𝑎𝑝 is the pseudocubic perovskite cell parameter. Hence the correlation between 

the exsolution depth (𝐷𝑅ℎ) and exsolution degree (𝜁) can be shown in Figure 7-43(d). 

The values of the 𝐷𝑅ℎ and 𝜁 can reflect the efficiency of the noble metal through the 

exsolution. For the perovskite Rh1, the highest amount of Rh (~3 × 106 µm-2) can be 

exsolved when it is reduced at 1000 °C (Figure 7-43(c)). There are two possible 

extreme cases. First, in the exsolution region, all the Rh ions have been depleted for 

exsolution, hence 𝜁 = 𝑥 = 0.01. In this case, the required depth of the exsolution region 

would be smaller than 20 nm, and considering that the grain size of the perovskite is 

around 500 nm, the extent of the exsolution seems to be quite limited. On the other 

hand, if the whole volume within the perovskite grain takes part in the exsolution, the 

depth of exsolution would be ~250 nm (half the grain size), and the corresponding 

degree of exsolution (𝜁) in this case would be less than 0.001. Both cases suggest that 

there is still a lot of room for the improvement of the efficiency of noble metals, by 

increasing the extent of metal exsolution from perovskite. Towards these two extreme 

cases, two potential methods can be suggested to trigger more metal to exsolve from 

the perovskite. The first method is to further reduce the grain size of the perovskite to 

<50 nm, which could allow for the exsolution from a larger fraction of the bulk within 

the perovskite and also provide more surface area for exsolution. The second method 

is to improve the degree of exsolution from the perovskite, which could be achieved by 

modifying the perovskite stoichiometry to increase the mobility of metal ions in the 

lattice. 

 

7.4.5 Catalytic activity of exsolved Rh system in CO oxidation 

It has been shown above that Rh nanoparticles can be exsolved from the highly dilute 

composition, and their characteristics (size and population) can be controlled via the 

reduction time and temperature. Here the samples of Rh1 that were reduced at 

different temperatures (for 10 h) hence possessing different Rh particle characteristics, 

were tested in the CO oxidation reaction, aiming to investigate the effects of these 

particle characteristics on the catalytic activity. The catalytic tests of these samples 
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were carried out using the slightly oxidizing conditions (𝑃𝐶𝑂=0.6 kPa, 𝑃𝑂2=1.0 kPa and 

𝐹𝑡=450 mL min-1), as a function of temperature (light-off experiments), and the results 

are summarized in Figure 7-44. The activities of these samples can be compared in 

terms of the temperatures at which they achieve 5% and 50% conversion of CO (T5 

and T50, respectively) and also based on the kinetic behaviors they show below T5 

(Figure 7-44). 

Catalytic tests were also conducted on the other two samples in order to show the 

activity of the perovskite support only, with the first one being the undoped perovskite 

(Rh0) as introduced previously and the second one being the Rh substituted perovskite 

but without being exsolved (hence unexsolved Rh1). Figure 7-44(a) indicates that the 

undoped perovskite (Rh0) was nearly inert as no measurable reaction rate (minimum 

measurable limit to be 3 x 10-4 μmol CO2 s-1) was detected by 400 °C and only less 

than 0.1% of CO was converted at the highest temperature in the test (~500 °C). The 

unexsolved Rh1 showed some activity as it converted ~5% CO at ~500 °C, but it is still 

very low. Therefore, these results show that the perovskite mainly serves as a support 

in the exsolved catalyst and the activity is primarily due to the Rh particles. 

 

Figure 7- 44 (a) Light-off experiments over La0.43Ca0.37Rh0.01Ti0.99O3 reduced at 

different temperatures for 10 h, in CO oxidation reaction under conditions of 𝑃𝐶𝑂=0.6 

kPa, 𝑃𝑂2=1.0 kPa and 𝐹𝑡=450 mL min-1. (b) The corresponding Arrhenius plots showing 
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the activation energies. (c) Rh coverage calculated for the samples reduced at different 

temperatures. (d) CO2 production rate divided by Rh metal coverage for the samples 

shown in (a), as a function of temperature. 

Regarding the exsolved samples of Rh1, Figure 7-44(a) shows a rising trend of the 

catalytic activity with the increasing reduction temperature, and depending on their 

activities, these samples can be classified into three groups. Firstly, the sample 

reduced at 500 °C showed the lowest activity. It started to produce the minimum 

detectable CO2 at ~270 °C while this temperature for all the other samples was ~200 °C, 

and it also had a T50 value of ~375 °C. Then the second group contains the samples 

reduced at medium temperatures (600 and 700 °C) that were more active as compared 

with the previous one, as they showed T50 values about 100 °C lower than that of the 

sample reduced at 500 °C. The last group contains the samples reduced at high 

temperatures (800-1000 °C) which were more active than the samples discussed 

above, with the T50 values of ~250 °C. The T5 values of these samples also changed 

in the similar way as T50, but within a narrower temperature window (220-275 °C). 

Additionally, the maximum CO conversion achieved by these samples also fell into 

these three groups as it increased gradually with the reduction temperature. 

It should be noticed that the CO conversion shown in Figure 7-44(a) increased 

gradually between T5 and T50, with the corresponding temperature window to be 

around 100, 50 and 30 °C for the samples reduced at low, medium and high 

temperatures, respectively. This is different from the behavior of conventional noble 

metal catalysts as shown in Chapter 4, where the temperature window between T5 and 

T50 was narrower. This difference probably indicates that the interaction between the 

exsolved Rh particles and the perovskite support might affect the catalytic behaviors 

of these samples. The activation energies of these samples (calculated by using the 

kinetic data in the low temperature region) might provide some evidence to the metal-

support interactions (Figure 7-44(b)). It was found that the activation energies for these 

samples varied between 99 and 157 kJ mol-1, and the sample exsolved at the high 

temperature showed the highest activation energy (157 kJ mol-1) which was consistent 

with the characteristic values reported for noble metal catalysts on non-reducible 

supports [279]. This observation makes sense as the reducibility of the perovskite 

support is expected to be very low because it has already been reduced for a long 

period during the sample preparation stage to promote the metal exsolution. The 

higher reduction temperature would cause more reducibility loss for the perovskite, 

which would result in the higher activation energy as observed here. As mentioned 
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before, the unexsolved sample Rh1 also showed slight activity even though there 

should not be any Rh particles dispersing on the surface. Perovskites substituted by 

some active metals on the B-sites (Rh in this case) have been reported to possess 

some catalytic activity for reactions including CO oxidation, and the low activation 

energy obtained for the unexsolved sample here was similar as those reported for other 

perovskite oxides containing active species [280-282]. 

By observing the particle characteristics (Figure 7-42) and the corresponding catalytic 

activity (Figure 7-44(a)), no direct correlation between them could be found. Figure 7-

42 shows that between the reduction temperature of 500 and 700 °C, the particle size 

remained small (~2 nm) and the particle population increased gradually, while at higher 

temperatures (between 700 and 1000 °C), the particle size kept increasing while the 

particle population kept decreasing. The small particle size and high particle population 

demonstrated by the low temperature reduced samples are typically thought to be 

advantageous for catalysis. However, the catalytic activity observed here actually 

increased monotonically with the reduction temperature, hence it seems that the 

activity is not directly affected by the particle characteristics. On the other hand, the 

samples (Rh0 and unexsolved Rh1) have indicated previously that the activity is mainly 

contributed by the Rh particles. Hence, the Rh metal coverage, as the particle size and 

population are factored together, might have a significant influence on the activity. The 

Rh metal coverage (𝜂𝑅ℎ, surface area of Rh particles per surface area of support, µm2 

µm-2) was calculated as: 

𝜂𝑅ℎ = 2𝜋 ∙ ∑ 𝑓𝑖 ∙ (
𝑑𝑖

2
)
2

𝑖                               Equation 7-15   

where 𝑓𝑖 is the fraction of the particles (per area of perovskite, µm-2) with the diameter 

of 𝑑𝑖 (nm). A clear correlation between the catalytic activity and the Rh metal coverage 

can be found by combining the results in Figure 7-44(a and c), as the samples 

possessing higher Rh metal coverage on the surface showed higher activity for CO 

oxidation. However, this correlation was not directly proportional, which indicates that 

some other factors apart from Rh metal coverage might also affect the activity. This is 

more obvious as shown in Figure 7-44(d) in which the reaction rates are normalized 

with respect to 𝜂𝑅ℎ. It was found that when the activity is normalized in this way, most 

samples showed the similar reactivity within the selected temperature window, while 

the samples reduced at 500 and 1000 °C showed different reactivity, probably implying 

different states of Rh particles for these samples. The oxidation state of Rh particles, 
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for instance, might be one of those factors, which is also related to the particle size to 

some extent. It was reported that the Rh particles smaller than ~2 nm are more likely 

to be oxidized and stay stable at the oxidized state, while the Rh particles bigger than 

~4 nm can stay at the reduced state [279]. The detailed relation between the oxidation 

state of Rh and the corresponding activity for CO oxidation is still under debate: some 

studies showed that metallic particles are active while the oxidized Rh only serves as 

spectator species as CO is strongly adsorbed on the oxidized sites [283]; some claimed 

that both the metallic Rh and its support containing Rh3+ are active [284]; while some 

also reported that the thin O-Rh-O trilayer forming on the surface of Rh particles is 

active while surface further oxidation will cause deactivation [285]. All these 

hypotheses indicate that the catalyst would be deactivated if Rh is intensively oxidized. 

The results above indicate that the activity of Rh catalyst for CO oxidation seems to be 

largely determined by Rh metal coverage, while other factors such as Rh oxidation 

state might also have some minor influences. 

 

7.4.6 Exsolution vs infiltration 

To evaluate the actual applicability of the dilute exsolved Rh catalyst for CO oxidation, 

the sample Rh1 reduced at 900 °C for 10 h (referred to as Rh-eABO3 henceforth) was 

compared to the Rh impregnated γ-alumina (referred to as Rh-iAl2O3) that is widely 

used in conventional TWCs. The Rh-iAl2O3 sample contained the same nominal 

amount of Rh as that was substituted in the perovskite Rh1 (0.6 wt%). The impregnated 

sample was prepared with the wet impregnation method as introduced in subchapter 

3.2.3.  

The microstructures of these two samples are shown in Figure 7-45(a and b), which 

indicate that the γ-alumina-based sample had much higher surface area as compared 

to the perovskite-based sample (around 100 vs 1 m2 g-1). Then these samples were 

tested in the catalytic experiments of CO oxidation using the same conditions as 

mentioned before, and they showed similar catalytic activity (Figure 7-45(d)) and also 

similar activation energies (Figure 7-45(e)). It has been shown that only a fraction of 

the nominally substituted Rh in the perovskite can be exsolved on the surface (Figure 

7-43), which would normally result in the lower catalytic activity (as demonstrated in 

Figure 4-12). However, the fact that the exsolved sample showed similar activity to the 

impregnated sample indicates that the activity of the exsolved Rh particles was 
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enhanced. This activity enhancement might be originated from the strained nature of 

the exsolved Rh particles as previously shown for other exsolved particles [259].  

Moreover, the commercial 1 wt% Rh/Al2O3 catalyst was also included in Figure 7-45 

(d) and (e). It achieved 5% and 50% CO conversions at lower temperatures and its 

activation energy was also lower, which indicated that its activity was still slightly 

superior to the exsolved sample. This was not surprising considering that the exsolved 

sample contained only about half the amount of Rh as the commercial catalyst and the 

extent of exsolution was quite limited. However, as mentioned before, the exsolved 

material possesses great potential to be further improved by promoting more Rh to 

exsolve on the surface. Therefore, the exsolved material is very promising to beat the 

commercial catalyst and achieve more efficient use of noble metals in the future.  

 

Figure 7- 45 (a) Low-magnification overview (SEM), detail of the sample surface (SEM) 

showing Rh particles, and schematic demonstration of the Rh exsolved perovskite 

reduced at 900 °C for 10 h (Rh-eABO3). (b) Low-magnification overview (SEM), detail 

of the sample surface (TEM) showing Rh particles, and schematic demonstration of 

the Rh impregnated alumina (Rh-iAl2O3). (c) Size distributions of Rh particles for these 

samples. (d) Catalytic activity in CO oxidation tested under conditions of 𝑃𝐶𝑂=0.6 kPa, 
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𝑃𝑂2=1.0 kPa and 𝐹𝑡=450 mL min-1. (e) The corresponding Arrhenius plots showing the 

activation energies for the samples. The commercial 1 wt% Rh/Al2O3 sample is also 

included in (d) and (e) for comparison. 

 

7.4.7 Key findings for exsolved noble metal catalysts 

Here the exsolution of the noble metal (Rh) from the dilute perovskite system is briefly 

summarized. In this study, the Ca-based titanate was designed knowing that Ca can 

promote lower temperature phase formation and ion diffusion that enabled the 

preparation of the perovskite with relatively small grain size (~500 nm), which could 

benefit the metal exsolution by reducing the diffusion distance of exsolvable ions to the 

surface. 

The modified perovskite microstructure allowed for the exsolution of Rh nanoparticles 

from the highly dilute substituted perovskite, and the factors that can affect the 

characteristics of the exsolved particles were also demonstrated. Regarding the 

substitution level, particle nucleation is favored at high substitution levels, while particle 

growth is more prone to occur when the substitution level becomes lower. Also, by 

prolonging the reduction duration, more Rh ions from the deeper layers within 

perovskite lattice are able to diffuse to the surface and exsolve to either grow the 

existing particles or form more particles, which is opposite to the deposited particles 

that will sinter over time. However, a considerable amount of metal ions seems to 

exsolve in the early stage of the reduction process and then a plateau would be 

gradually reached where no more metal can be exsolved. Finally, by increasing the 

reduction temperature, the population of the exsolved particles increases up to 700 °C 

and it starts decreasing afterwards, while the particle size increases with the 

temperature. Moreover, by testing the exsolved materials with different particle 

characteristics, it was found that the catalytic activity for CO oxidation is mainly 

determined by a combination of particle size and population factored together through 

the Rh metal coverage. 

It is encouraging to find that the exsolved Rh catalyst exhibits the comparable activity 

as the state-of-the-art Rh/Al2O3 catalyst with the same nominal Rh loading, even 

though only about one tenth of the Rh in the perovskite lattice could exsolve at the 

surface. This implies the enhancement of the activity for the exsolved catalysts 

probably due to the particle-perovskite interactions, and hence the exsolved catalysts 
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show the potential to surpass the conventional catalysts if the exsolution process can 

be further promoted.  

 

7.5 Conclusions 

This chapter has demonstrated the comprehensive study of the exsolved materials, 

from the preparation of the perovskite, to the mechanistic insight into the exsolution 

process, and finally the exsolution of noble metals for more efficient use in catalysis. 

The in situ reduction in ETEM provided important mechanistic insights into the 

exsolution process. The direct visualization and the quantitative analysis of the TEM 

results revealed the mechanism of the key steps during the exsolution process 

including the socket formation and the particle nucleation and growth. It was found that 

particles would nucleate and grow near the perovskite surface, and the perovskite 

lattice around the particles would rise in parallel hence forming the socket gradually. 

Therefore, the particles are strained during the growth process and they are strongly 

anchored to the socket, which results in the enhanced stability. The particle growth 

during the exsolution was found to be mainly limited by the availability of the exsolvable 

ions as it only drained the ions from a few nanometers within the perovskite lattice. 

This indicated the importance to reduce the grain size of the perovskite when designing 

the exsolved materials, which was achieved by modifying the preparation method for 

perovskite. Additionally, new nanostructures can be created by controlling the 

reduction atmospheres for the exsolution process, which could be the powerful tool to 

tune the catalytic properties of the exsolved materials. 

The mechanistic insight obtained above was employed for designing the exsolved 

system of noble metals. Perovskites with small grain size allowed for the exsolution of 

Rh from dilute compositions. The exsolved particle characteristics and the extent of 

exsolution could be controlled by the parameters such as the substitution level, the 

reduction time and temperature, and the activity of the exsolved Rh catalysts seemed 

to be mainly affected by the Rh metal coverage. In spite of the limited extent of 

exsolution, the exsolved Rh catalyst still showed the similar activity as the 

conventionally impregnated Rh/Al2O3 with the same nominal Rh loading, indicating the 

great potential of the exsolved catalysts if the extent of exsolution can be increased 

and also considering their high stability. 
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Chapter 8: Summary and future work 

The primary aim of this study is to design catalyst systems that can provide both the 

stabilizing effect and the improved activity for noble metal nanoparticles, which could 

potentially result in lower consumption hence higher efficiency of noble metals in 

catalysts. Hence, noble metal catalysts with different structures were prepared by 

using different techniques, and their stability and activity were investigated in CO 

oxidation reaction. 

Firstly, it was clearly demonstrated in the study of spatially controlled nanoparticle pairs, 

that the particle sintering could happen easily under reaction conditions if metal 

nanoparticles were only loosely dispersed on the support, which would destroy the 

designed catalyst system. This highlighted the importance of the stronger interactions 

between the metal particles and the support to suppress the particle migration and 

sintering. 

Therefore, in order to enhance the particle-support interactions, the metal 

nanoparticles were attempted to be enclosed into POCs. The POCs were 

demonstrated to be an effective template to control the particle growth, and hence 

noble metal nanoparticles (Pd) with uniform particle sizes (~1.6 nm) could be formed. 

Moreover, the Pd nanoparticles confined by POCs seemed to be stable under the given 

conditions below ~250 °C, as their catalytic activity was maintained. Despite all these, 

the catalytic activity exhibited by the POCs confined Pd nanoparticles in CO oxidation 

was much lower as compared with the state-of-the-art Pd/Al2O3 catalyst, which was 

probably due to the limited accessibility of active sites. Additionally, thermal 

decomposition (~300 °C) was also an intrinsic disadvantage of POCs-based materials, 

which limited their applications in high temperature processes.  

As full encapsulation could compromise the activity of noble metal nanoparticles, an 

alternative approach was investigated where noble metal nanoparticles were only 

partially socketed in the support via redox exsolution from perovskite oxides. The 

socketed particles of transition metals formed via exsolution have been previously 

demonstrated to be highly stable, but their formation mechanism has not been 

revealed yet. Hence, in this study, experiments were carried out in the latest generation 

ETEM to observe the in situ formation process of the socketed particles for the first 

time. The high-resolution images from ETEM allowed for both qualitative and 
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quantitative analysis of the data, which provided mechanistic insights into the socket 

formation, and the metal particle nucleation and growth. Exsolvable ions seemed to 

nucleate near the perovskite surface and grow larger at the same position where they 

initially nucleated. The growth of the particle would force the perovskite lattice around 

it to rise and form the socket gradually. Hence, the particle is strained throughout its 

growth process and it is strongly anchored to the socket without any movement, which 

could explain the excellent stability of the exsolved particles. The particle growth during 

exsolution seemed to be mainly limited by the availability of exsolvable ions, as it only 

used the ions from a depth of a few nanometers within the perovskite. This highlighted 

the importance to reduce the grain size of perovskites especially when exsolving from 

dilute compositions, and the reduced perovskite grain size was achieved by modifying 

the preparation method. The mechanistic insights were useful to design more efficient 

exsolved materials for noble metals. Rh nanoparticles were successfully exsolved from 

dilute compositions, and the particle characteristics could be controlled by parameters 

like substitution levels, reduction time and temperature. The correlations between the 

activity and particle characteristics were also investigated, which indicated that the 

activity for CO oxidation was mainly dependent on the Rh metal coverage (combined 

effects of particle size and population). In spite of the limited exsolution extent, the 

exsolved Rh catalyst still exhibited similar activity as that of the state-of-the-art 

Rh/Al2O3 catalyst, indicating that the activity of the exsolved particles was improved 

probably due to their strained nature. 

Generally, this thesis provides valuable principles for designing noble metal catalysts 

with improved stability and activity. Firstly, noble metal nanoparticles loosely dispersed 

on the support are unlikely to be stable enough under reaction conditions, hence 

enhanced particle-support interactions are desired. However, full encapsulation does 

stabilize nanoparticles, but it might also lead to lowered activity. Partially socketing 

noble metal nanoparticles in perovskite via exsolution seems to be a promising method 

to use noble metals more efficiently, as the strained nanoparticles exhibit both 

enhanced stability and activity. 

Moreover, there is still a lot of room for the exsolved materials to improve. Currently 

only a small part of noble metals substituted in the perovskite lattice can be exsolved 

at the surface, and the efficiency of noble metals can be further improved if the extent 

of exsolution could be increased. Two suggestions towards this have been given in the 

previous chapter, including further reducing the grain size of perovskites and modifying 
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the perovskite stoichiometry to increase the ion mobility in the lattice. Furthermore, it 

has been demonstrated that new exsolved nanostructures can be produced by 

controlling the atmosphere during exsolution, but the activity of these nanostructures 

has not been investigated in this study. Hence the correlations between the activity 

and these nanostructures can be studied. Additionally, in this study, the exsolved 

materials were only tested in CO oxidation, but for the application of automotive 

exhaust control, their ability to transform HCs and NOx should also be evaluated. 
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