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Abstract

Bayesian survival analysis has benefitted from the introduction of Markov Chain Monte

Carlo (MCMC) since the 1990s. However, MCMC has high computational cost and

requires tuning and convergence checking. These hamper its usefulness. Integrated Nested

Laplace Approximation (INLA) is a convenient alternative to MCMC due to its efficiency

and straightforward execution to obtain the posterior distributions of relevant survival

parameters such as the regression coefficients and Weibull shape parameter. This has

been demonstrated in parametric and semi-parametric proportional hazard and piecewise

constant hazard models. Nevertheless, it has not been possible until now to use INLA

when covariate data are missing since it neither can integrate out missing covariate data

nor is it satisfactory to use other subsidiary methods such as multiple imputation to

overcome this difficulty.

We therefore investigate the application of INLA to piecewise exponential constant

hazard models when covariate information is missing. We extend and modify the INLA

within MCMC method to circumvent the missing covariate data problem in survival

cases, assuming that the data are missing at random. We use both hierarchical and

autoregressive priors for the baseline log-hazard and covariate effects and compare the

results with those obtained by MCMC.

The methods are applied to three different data sets; Catheter-related kidney infection,

Scotland-Newcastle Lymphoma Group Non Hodgkin Lymphoma, and Malaysian Hospital

Universiti Sains Malaysia Advanced Lung Cancer data sets. The priors are constructed

based on the information obtained from the meta-analysis of results from previous studies.

The results obtained demonstrate that the developed methods are suitable for various sur-

vival data sets with reasonable numbers of missing covariate values, making this proposed

method a convenient alternative to standard MCMC algorithms for survival analysis.
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Chapter 1

Introduction and Thesis Outline

1.1 Motivation

This research is concerned with the Bayesian analysis of survival data. The focus is on the

development of novel techniques to circumvent the problems with missing covariate data

in survival models when posterior inference is obtained using Integrated Nested Laplace

Approximation (INLA).

Classical analyses (such as Cox proportional hazard model with unspecified baseline

hazard function) are the usual choice among applied researchers when modelling continu-

ous time to event data. The reliance of these techniques on partial likelihood for parameter

inference has several limitations since they restrict the utilization of information from the

full likelihood and the complete estimation of unknown elements in the model. Survival

analysis using Bayesian methodology offers a better alternative and provides a complete

and accurate posterior inference for the parameters of the models.

Various techniques have been proposed in the Bayesian literature for the modelling of

time-to-event data to accommodate variations in dataset characteristics such as within-

group correlation, the effects of non-linear covariates and spatiotemporal differences. A

general overview of Bayesian survival analysis is given by Ibrahim et al. (2001). Some

research into Bayesian survival analysis has investigated the use of nonparametric and

semiparametric forms for the baseline hazard function. For example, Kalbfleisch (1978)

introduced piecewise constant hazard models which assume that the baseline log hazard

is constant over certain time intervals. Another active area has involved relating survival

to spatial location. Banerjee et al. (2003) used a parametric Weibull baseline hazard

with spatial component in their geostatistical model. Guo and Carlin (2004) investigated
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joint analyses of survival and longitudinal data. They demonstrated that longitudinal

and survival data are conditionally independent and postulated that a latent bivariate

Gaussian process was present in the model.

Markov chain Monte Carlo (MCMC) methods have been the backbone of Bayesian

modelling for the past three decades (Ashby, 2006). The two most widely used MCMC al-

gorithms, Metropolis-Hastings (Hastings, 1970) and Gibbs sampling (Geman and Geman,

1984; Gelfand and Smith, 1990), have provided approximations to previously intractable

posterior distributions in high dimensionality problems (“curse of dimensionality”). De-

spite the popularity of MCMC and a large number computational modalities such as

WinBUGS (Lunn et al., 2000) and R (R Core Team, 2018) that support MCMC execution

for broad classes of models, there are two main drawbacks:

1. high computational time (hours or even days for the computation of posterior

marginal distributions),

2. manual “tuning” by the users for convergence diagnosis and judgment on the accu-

racy of the approximation, especially when modelling spatial components or semi-

parametric (smooth) effects.

In order to address these difficulties, the INLA method has been proposed (Rue et al.,

2009). In recent years, Martins et al. (2013) introduced new features with INLA which

includes additional distributions for survival analysis that can be fitted by INLA. Jiang

et al. (2014) gave examples of INLA utility for geostatistical survival models for environ-

mental risk assessment using retrospective cohort data collected from Pickering Nuclear

Generating Station, Canada. Martins and Rue (2014) further extended INLA flexibility

to accommodate a class of near-Gaussian latent models such as those whose latent field

has a near-Gaussian distribution particularly those with a unique and unimodal mode,

finite first two moments and distributions with density that has full support on the real

line. In Muff et al. (2015), INLA was also extended and shown to be an efficient Bayesian

analytical approach for measurement error (ME) models.

In survival analysis, many of the Cox-type models in the literature may be viewed

as latent Gaussian models which are a large class of models with jointly-Gaussian latent

variables. Therefore, complex constituents of the models (spatiotemporal effects, an as-

sortment of frailty effects) can be included without difficulties since they can be regarded

as trivial changes to the Gaussian components of such a model. For Bayesian inferential

purposes, a quicker and more exact approximation to the posterior marginal distributions

can be made possible using INLA. The method uses a brilliant application of Laplace

2
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approximations and advanced numerical methods. These result in a significant reduction

in computational time (compared to standard MCMC methods). Besides, no significant

manual tuning or interaction is required from the users. This enables INLA to be used

like a“black box”. An R package is available (R-INLA) from http://www.r-inla.org to

aid the execution of INLA computation.

In medicine and public health, INLA methodology has been used for the modelling

of spatial and spatio-temporal models (Blangiardo et al., 2013), for a multi-state model

for pancreatic cancer progression (Alvaro-Meca et al., 2013), stomach cancer incidence in

Southern Portugal (Papoila et al., 2014) and others. In the field of ecological modelling,

Carson and Flemming (2014) further highlighted the usefulness of INLA. The authors

demonstrated that a more efficient technique of hierarchical spatio-temporal modelling

was developed when INLA was combined with a stochastic partial differential equations

(SPDE) approach for acoustic telemetry data, specifically for detecting or tagging of Sable

Island grey seals (Halichoerus grypus) at sea.

The nascent idea about INLA being a fast approximation method for posterior in-

ference in Bayesian statistics was expounded in a much earlier article, Rue (2001). The

author demonstrated that posterior marginal distributions for models that exhibit the

properties of Gaussian Markov Random Fields (GMRF), which is also known as condi-

tional autoregression (Besag and Kooperberg, 1995), may be efficiently computed since

they are straightforwardly amenable to numerical integration for sparse matrices. This

finding was further followed by an attempt to extend it to models that possess hidden

Gaussian Markov random field properties (Rue et al., 2004). The ideas contained in these

papers were taken one step forward by Rue and Martino (2007). The contributors devel-

oped a deterministic substitute to MCMC, which can be regarded as an INLA prototype,

utilizing the sparsity of the precision matrix Q in GMRF. This eliminates the need for

inversion of the precision matrix Q for computing marginal variances. This eventually

culminates in the seminal paper by Rue et al. (2009) which cemented the birth of INLA

as a fast deterministic approach for computing posterior distributions.

In their original contribution, Rue et al. (2009) had demonstrated that INLA is an

efficient technique for Bayesian inference for a subclass of structured additive regression

models called latent Gaussian models (LGM). In comparison to MCMC, INLA is superior

in terms of accuracy and speed in the computation of posterior marginals in LGM. This

is due to the additive errors of MCMC which implies that longer computational time is

required just to increase the precision of the estimate by a single digit. Apart from that,

the probabilities in the tail region are much harder to compute due to the additive errors

3
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of Monte Carlo estimates in MCMC. INLA is able to avoid these limitations since it has

only a relative error nature which permits the accurate approximation of tail probabilities.

Nevertheless, the robustness of the INLA scheme suffers from some limitations. Firstly,

the dependence on a Gaussian distribution for the latent field impairs its application to

other models that are not within the LGM class. For instance, a survival model with

gamma frailty (Ibrahim et al., 2001) whose random effects follow a log gamma distribu-

tion is not amenable to using INLA methodology. Martins and Rue (2014) attempted to

provide an alternative strategy to this problem by embedding the initial standard model

within a LGM framework to create a more flexible model. They then corrected the inde-

pendent non-Gaussian components of the latent field for asymmetry and kurtosis using

near-Gaussian distributions. However, this strategy is hampered by the unavailability of

clear diagnostics to identify which non-Gaussian distributions really have near-Gaussian

properties. Therefore, further strategies are required to extend the work of Martins and

Rue (2014) to permit a wider class of non-Gaussian models which can be computed using

the INLA scheme.

Secondly, the modest number of hyperparameters (m < 6) that can be accommodated

by INLA severely limits the application of this scheme. According to Rue et al. (2009),

even a moderate number of hyperparameters (6 ≤ m ≤ 12) may prove to be quite

taxing for INLA, resulting in an exponential rise in computing time. The low dimen-

sional hyperparameters and Markov random field are both underlying requirements for

the latent Gaussian field and INLA computation. Perhaps these are quite unrealistic in

many biological and medical applications (Wikle and Holan, 2009). More works are thus

required to expand the utility of INLA in models with high-dimensional hyperparameters

(m > 12).

Thirdly, the impact of missing covariates on the accuracy and flexibility of INLA

computation has not been investigated in the context of survival analysis. In particular,

work is required for dealing with non-Gaussian, especially categorical covariates, possibly

using further latent Gaussian variables.

1.2 Research objectives

The primary objectives of this research are:

1. Compare the performance of different computational approaches (MCMC vs INLA)

in Bayesian inference for survival analysis models.

4
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2. Investigate the construction of appropriate forms for the prior distributions of the

log hazard.

3. Assess the performance of INLA in missing covariates values and develop approaches

to improve the flexibility of INLA in this setting.

4. Apply the formulated approaches to practical problems using real medical datasets

and evaluate the strengths and limitations of each approach

Therefore, this research is concerned with answering these specific research questions:

� How can we fit piecewise constant hazard models using INLA and what is its effi-

ciency in obtaining posterior quantities of interest relative to MCMC approach?

� How can we resolve INLA’s deficiency in dealing with missing covariate information

in the most appropriate and efficient way?

� How can prior distributions for the log hazard be meaningfully constructed based

on the information from previous research?

� What are the advantages of INLA in the construction of prognostic indices for

different real medical datasets compared to MCMC?

1.3 Thesis outline

Chapter 2 introduces the fundamental ideas of survival analysis and Bayesian inference.

We give a brief introduction to survival analyses which is then followed by discussion of the

types of censoring and truncation. We then explain two commonly-used survival models:

the proportional hazard (PH) and accelerated failure time (AFT) models. Parametric

survival models are then introduced, with special attention given to deriving probability

density and hazard functions, survival time distributions and likelihood functions for

survival times that follow Weibull distributions. Frailty is subsequently introduced and the

derivations of the marginal survival time distributions and hazard function are illustrated.

In section 2.7, the piecewise constant hazard model is introduced and the methods used

for selecting the cut points for time intervals and the inclusion of time-varying covariate

effects are discussed in detail. In 2.8, the fundamental aspects of Bayesian inference in

a survival analysis context are succintly expounded and this is then followed by a brief

dicussion of Markov Chain Monte Carlo (MCMC) which includes illustrations of different

5
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variants of the Metropolis Hastings and Gibbs sampling algorithms. We then discuss

the data augmentation approach as a means to handle missing covariate values. The

computation of posterior quantities of interest is then illustrated using a catheter-related

urinary tract infection data set and this is performed using RJAGS.

In Chapter 3, we introduce latent Gaussian models (LGMs) and Gaussian Markov

random fields (GMRF). Firstly, the relationship between generalised linear models and

LGMs is discussed in detail. This is then followed by elaborations on GMRF characteris-

tics and proofs for the sparsity of the precision matrix, Q, are presented. Subsequently, we

demonstrate the derivations of the recursive formula for computing marginal variances for

each parameter of interest and conditional GMRF distributions in the presence of some

linear constraints. We then explicitly describe how a Bayesian hierarchical model can

be viewed as a GMRF. The GMRF approximation for non-Gaussian likelihood is then

illustrated.

In Chapter 4, the main ideas of the integrated nested Laplace approximation (INLA)

will be propounded in detail. The ideas behind the use of a Laplace approximation for

computing a posterior distribution are first described. We then present an outline of INLA

methodology which includes the use of the central composite design (CCD) approach to

tackle the problems with high numbers of hyperparameters. Next, we demonstrate INLA

implementation using two simple examples in 4.4. In 4.5, we show how piecewise constant

hazard models can be fitted using INLA. We then show how the missing covariate data

problem can be addressed with a new computational approach which is the INLA within

MCMC (INLA-MCMC) method. This is a novel approach which is introduced in this

thesis.

In Chapter 5, we introduce the three data sets used for application purposes: the kid-

ney infection data set, Scotland and Newcastle Lymphoma Group (SNLG) Non Hodgkin

Lymphoma (NHL) data set and a Malaysian lung cancer data set. For each data set, we

give the operational definitions and the characteristics of each covariate and explain how

the data were gathered.

In Chapter 6, we will give background information on how prior distributions can

be constructed for shape parameters in Weibull survival models, baseline log hazard,

coefficients of linear predictors and frailty variances. The constructions of two types of

prior for piecewise constant hazard models (hierarchical priors and autoregressive priors)

is then illustrated for the SNLG-NHL example.

In Chapter 7, the performance of the INLA-MCMC approach for dealing with missing

covariate information will be assesed and compared with standard MCMC by applying

6



Chapter 1. Introduction and Thesis Outline

the methods to the example data sets. In Chapter 8, we shall give conclusions and some

ideas for future works.
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Chapter 2

Bayesian Survival Analysis

2.1 Introduction

In this chapter, two main ideas shall be discussed: the fundamental approaches and results

in survival analysis and Bayesian Inference. In the first part, which consists of subsections

2.2 to 2.7, we will introduce the main ideas in survival analysis, truncation and censoring,

the two main models used in survival analysis: Proportional Hazard (PH) and Accelerated

Failure Time (AFT) models, parametric survival models, the effects of frailty on survival

time distributions and piecewise constant hazard models.

In the second part, the primary ideas and standard results in Bayesian inference will

be elucidated. This will include a brief introduction to Bayesian ideas where basic theory

and notation will be introduced. We will subsequently discuss survival analysis within

the Bayesian context, the use of the Markov Chain Monte Carlo (MCMC) approach for

computing posterior distributions and the strategies for dealing with missing data using

the data augmentation approach (Tanner and Wong, 1987). We will finally demonstrate

the application of Bayesian survival analysis via the RJags (Plummer, 2016) package using

a catheter-associated urinary tract infection dataset.

2.2 Introduction to survival analysis

Survival analysis is a statistical technique for the analysis of time-to-event data. This

data has the form of times from a specific origin until a certain event of interest occurs

(Collett, 2015). As an example, in a clinical trial, the time origin is usually at the time

when the patients were initially enrolled into the study and the events of interest are

9



Chapter 2. Bayesian Survival Analysis

usually death, cancer progression or remission and other clinical events of interest.

For the analysis of survival data, the hazard function is usually employed to specify the

survival models. To aid discussion later on, the following notations are introduced; F (t)

is the cumulative distribution function (cdf) of the survival time, f(t) is the probability

density function (pdf) of the survival time and the survival function, S(t) is defined as

S(t) = Pr(T > t). The pdf and cdf of survival times are given as

f(t) =
dF (t)

dt
and F (t) = Pr(T ≤ t).

Hence, the survival function can be rewritten as

S(t) = 1− F (t).

The corresponding hazard function, h(t), is given by the following limit of a conditional

probability

h(t) = lim
δt→0

1

δt
Pr(t < T < t+ δt|T > t).

Hence, the hazard function h(t) can be rewritten as

h(t) = lim
δt→0

S(t)− S(t+ δt)

S(t)δt
=
f(t)

S(t)
.

There are two additional features that should be considered in survival analysis: censoring

and truncation. These will be discussed in the next section.

2.3 Censoring and truncation

2.3.1 Types of censoring and truncation

The primary outcome in survival analysis is the time until the event of interest occurs.

Unfortunately, this is often incompletely observed and, as a result, censored observations

(observations with incomplete information on the event times) ensue. Several types of

censoring have been established and they are

Right censoring (the most common) - The censoring time for the subjects (Cr) is

less than the true survival time (T). Hence, it can be deduced that T is larger than

Cr.
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Left censoring - The true survival time, T, is known to be less than the left censoring

time (Cl). For instance, the event occurs before the commencement of the study

(T < Cl).

Interval censoring - The true survival time is not precisely known but is known to lie

between two censoring limits (Cl ≤ T ≤ Cr).

Truncation differs from censoring. Truncation is about the entry of subjects that have the

event times within the observational period or window of the studies. Truncated obser-

vations occur when only subjects whose event times are within the observation window

(Tl, Tr) are observed. Two types of truncated observations have been described:

Left truncation (also known as delayed entry) - occurs when Tr is limitless (Tr →∞).

Therefore, only those with observation times more than Tl are observed.

Right truncation - Tl = 0. The observation window is hence (0, Tr). Hence, only

individuals with event time less than a prespecified threshold of Tr are going to be

included in the study.

2.3.2 Independent and non-informative censoring

Independent censoring is one of the most critical assumptions in survival analysis. In some

cases it could be that the event that a patient is censored at time c is not independent of

the patient’s remaining lifetime. For example, patients who are ill and who have shorter

expected remaining lifetime may be more likely to drop out of a study and be censored.

When the independent censoring assumption is met, the actual survival time of a study

participant (patient) is independent of the censoring mechanism that causes his or her

observed survival time to be censored at time c (in this case, c < T ). In other words,

subjects who are censored at time c are still representative of other subjects who are still

at risk at that time point. As a result, the censoring and survival times can be treated

independently.

Suppose that each patient has a survival time T and a censoring time C. In some

cases C →∞. If C > T , then the patient is not censored and the event indicator δ = 1.

If C ≤ T then the patient is censored and δ = 0.

Let the parameters of the lifetime distribution be θT and those of the censoring process

be θC . The independence condition is:

Pr(T < t | C < s, θT , θC) = Pr(T < t | C ≥ s, θT , θC) for all t, s > 0.

11



Chapter 2. Bayesian Survival Analysis

If this holds then the joint density of T and C given θT and θC is

fT (t | θT ) fC(c | θC).

Hence, if we make an uncensored observation at time t then the likelihood contribution is

L1 = fT (t | θT )

∞∫
t

fC(c | θC)dc

since we observe that C > t.

Similarly, the likelihood contribution of a censored observation, censored at time c is

L0 = fC(c | θC)

∞∫
c

fT (t | θT )dt.

If, in addition, θT and θC contain no elements in common, then in terms of the likelihood

function of θT ,

L1 ∝ fT (t | θT ), L0 ∝
∞∫
c

fT (t | θC)dt = ST (c | θt) = 1− FT (c | θC) = Pr(T > c | θT )

(2.1)

and the censoring is said to be non-informative.

There are many scenarios where the assumption of independent censoring is not ten-

able. In the context of clinical trials, the violation of this assumption occurs when han-

dling drop-out cases. The reason for drop-outs occurring in clinical trials can be two-fold:

firstly, drop-out cases may reflect the study participants whose health is deteriorating

more quickly, resulting in failing to come for follow-up visits or discontinuation of the

drugs under investigation secondary to worsening physical condition. In a more extreme

scenario, the study participants might even have passed away undocumented and hence

are considered to be lost to follow-up and finally recorded as censored cases. As a result,

the study participants who are censored at time t are no longer representative of the

study participants who are still at risk at time t. This serious violation of independent

censoring will distort the findings obtained from survival analysis (e.g. inflated hazard

rate, obtaining survival time that is shorter than actual etc). However, for the purpose of

our future analysis, we shall assume that independent censoring holds. When censoring

occurs as a result of the end of the study, this is often a reasonable assumption.
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2.4 Linking the effects of explanatory vari-

ables and lifetime distributions

There are two major approaches for modelling the effects of explanatory variables on the

survival distribution: proportional hazard models and accelerated failure time models.

2.4.1 Proportional hazards (PH) model

Following the seminal paper by Cox (1972), the Cox proportional hazard model has been

at the forefront of survival data analysis based on the semi-parametric approach. Since

Cox’s proportional hazards model has been the most popular regression approach for

time-to-event problems used in many applications, only a brief account will be given

on this topic. For detailed discussion, the original paper by Cox (1972) is an excellent

exposition on this modelling approach.

According to Cox (1972), h(t) is a function of a baseline hazard function, h0(t), covari-

ates z1, z2, z3, . . . , zp and regression coefficients β1, β2, β3, . . . , βp. In a proportional hazard

model, this can be written as follows:

h(t|z1, z2, z3, . . . , zp) = h0(t) exp(z1β1 + z2β2 + z3β3 + . . .+ zpβp).

Thus, in a proportional hazard model, it is assumed that changing the value of a covariate

has a scaling effect on a hazard function of fixed form. Various types of proportional

hazard models can be produced with different kinds of distributional assumptions for

h0(t). For instance, if h0(t) is assumed to be constant over time, then an exponential

regression model will be obtained.

Suppose that there are P covariates (p= 1,. . . ,P ) and n subjects (i = 1, . . . , n).

The vector of the explanatory variables (covariates) for subject i is thus given by X i =

(xi,1, xi,2, . . . , xi,p)
T . Each explanatory variable can be one of these: discrete, continuous,

categorical or even mixed distribution covariates. For two subjects, which are denoted

as subject i and subject j, that have different values for the explanatory variables, their

respective hazards can be linked by the following equation:

hi(t) = λi,jhj(t).

We can regard subject j as the one having the baseline hazard h0 function. As a result,
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the hazard function for individual i can be said to be a multiple of the hazard of individual

j. Hence we can further express the equation above in the following relationship:

hi(t) = λih0(t).

Hence, λi is the hazard multiplier. Since the hazard cannot be negative, λi should thus be

constrained to be greater than zero. To ensure this condition is satisfied, the covariates

can be linked to the hazard multiplier through a logarithmic link function:

log λi = β1x1,i + β2x2,i + . . .+ βpxp,i.

If we set log λi = ηi, then ηi represents the model’s linear component. This quantity

specifies whether an individual has a higher (if ηi is unusually large) or lower (if ηi is

small) than average hazard of experiencing the event of interest. Hence, ηi is also known

as the prognostic index, or risk score (Collett, 2015), for the ith subject.

2.4.2 Accelerated failure time (AFT) models

The Accelerated Failure Time (AFT) approach uses a slightly different methodology com-

pared to the PH models. In the AFT modelling paradigm, the covariates act multiplica-

tively on the time scale. The effects of the covariates can thus be interpreted as an

acceleration factor: a rate at which an individual’s survival progresses on the time axis.

This approach has a highly instinctive appeal since AFT models can be regarded as a

way of measuring the speed of the progression of the event of interest (such as disease

progression based on some measured covariate values), making it attractive for application

in many scientific fields especially in medical research.

As a motivating example, let us consider a group of patients enrolled in a randomised

controlled trial. These patients were randomly allocated to either the standard or novel

treatment (denoted by S and N). The event of interest is death due to some fatal illness,

such as cancer. Within the context of an AFT model, the effect of the novel treatment is

assumed to either “accelerate” or “decelerate” the passing of time relative to the standard

treatment. To make things simple, we only consider a single covariate, which is the treat-

ment group, in this example. Based on this assumption, it can be said that the probability

of a patient who is allotted to the new treatment surviving beyond t is equivalent to the

probability of a patient who is randomised to the standard treatment surviving beyond

time t/φ. This φ is known as the acceleration factor and it is a positive constant.
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To illustrate further, let Ss(t) and Sn(t) be the survival functions for patients who

are on the standard and novel treatments, respectively. Under the AFT approach, the

relationship between Ss(t) and Sn(t) can be written in the following fashion:

Sn(t) = Ss(t/φ).

If φ lies between 0 and 1 (i.e. 0 < φ < 1), then the survival proportion of patients

who received the standard treatment is greater than the survival proportion of patients

who were on the novel treatment at time t (i.e. the novel treatment accelerates the

progression of the fatal disease). However, if φ is greater than 1, it means that the

survival proportion of patients receiving the standard treatment is less than the survival

proportion of patients who are on the novel treatment at time t (ie the novel treatment

“decelerates” the progression of the fatal disease). Hence, the novel treatment is better

than the standard treatment in prolonging a patient’s life if the acceleration factor φ > 0.

However, the interpretation should be reversed if the event of interest is, for instance,

cancer remission. If φ lies between 0 and 1, it means that the proportion of subjects

receiving the novel treatment who have achieved disease remission at time t is greater than

the proportion of recipients of the standard treatment (i.e. the proportion of recipients of

the novel treatment who still have active disease is less than the proportion of recipients

of the novel treatment with active disease at time t). On the other hand, the opposite

can be concluded if φ is more than 1.

Based on the following relationship between survival, hazard and probability density

functions:

h(t) =
f(t)

S(t)
,

the hazard and survival functions for patients in the standard and novel treatment groups

can be written as

fn(t) = φ−1fs(t/φ) and hn(t) = φ−1hs(t/φ).

If we define a new variable X as an indicator whether a patient is on the standard or

novel treatment (0 = standard, 1 = novel), the hazard function can thus be written as

follows:

hi(t) = φxih0(t/φ
xi).

If we set xi = 0 in the equation above for patients on the standard treatment, we will
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obtain the baseline hazard function, h0(t). Therefore, we can regard patients who receive

the standard treatment as having a baseline hazard function. It is hence obvious that the

hazard function of a patient who is on the novel treatment will be:

hN = φ−1h0(t/φ).

Since φ should always be positive, we can reparametrise φ by writing: φ = eα. Hence, the

hazard function of the AFT model will have the following final form:

hi(t) = e−αyih0(t/e
αyi).

The AFT model can also be further generalised into models that include p covariates. We

can generalise the final form of the AFT hazard function for a single covariate case into

the following:

Si(t) = S0(t exp{−ηi})

hi(t) = exp{−ηi}h0(t exp{−ηi})

ηi = α1x1i + α2x2i + . . .+ αpxp.

Thus, S0(t) can be considered as a survival function for subjects with zero values for all

p covariates.

2.5 Parametric survival models

In an accelerated failure time model, we might specify the baseline survivor function as

S0(t) = S(t; θ0) = 1 − F (t; θ0) where F(t;θ) is the distribution function for a particular

family of survival distribution indexed by a parameter θ. Similarly, in a proportional

hazard model, we might specify the baseline hazard function as

h0(t) =
f(t; θ0)

1− F (t; θ0)

where f(t;θ) and F(t;θ) are respectively the pdf and distribution function for a particular

family of survival distributions indexed by a parameter θ. A survival model specified in

this way is known as a parametric survival model.

However we might prefer to allow more flexibility in the form taken by the baseline

survival or hazard function. A model where the form is not specified is known as a
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semi-parametric survival model. It is called semi-parametric rather than nonparametric

because the dependence on covariates is still specified parametrically.

2.5.1 Weibull distribution

2.5.1.1 Probability density, hazard and survival distributions

In this section, we shall borrow the notation used by Collett (2015). The Weibull dis-

tribution was named after a Swedish mathematician Waloddi Weibull, who thoroughly

elucidated it (Weibull, 1951). It was originally developed and used for reliability testing

in the industrial setting. However, it has now occupied a critical role in parametric

survival analysis due to its versatility and flexibility in adopting the characteristics of

other distributions by changing its shape parameter, α. The probability density function

of a 3-parameter Weibull distribution is given by

f(t) =

(
α

η

)(
t− ζ
η

)α−1

exp

{
−

(
t− ζ
η

)α}

where α is the shape parameter, η is the scale parameter and ζ is the location (α > 0, η >

0,−∞ < ζ < ∞ and 0 ≤ t < ∞). If we fix ζ = 0, the Weibull pdf will reduce to the

2-parameter Weibull pdf:

f(t) =

(
α

η

)(
t

η

)α−1

exp

{
−

(
t

η

)α}
.

In medical statistics, the Weibull distribution is often parametrised differently. The shape

parameter α is retained in the usual form, and the scale parameter η is parametrised as

λ =
1

ηα

which results in

f(t) = αη−αtα−1exp

{
−

(
1

ηα

)
tα

}
.

Substituting η−α = λ gives

f(t) = αλtα−1exp

{
− λtα

}
, λ > 0, α > 0.
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Hence, the cumulative distribution function of a Weibull distribution is

F (t) = 1− exp

{
− λtα

}
.

From these equations, we can easily deduce that, if we fix the shape parameter α = 1

(i.e. the failure rate is constant across time), the Weibull distribution reduces to the

exponential distribution

f(t) = λ exp

{
− λt

}
.

The hazard function is

hi(t) =
fi(t)

si(t)
= λiαt

α−1.

If α > 1, the hazard rate will be monotonically increasing and, when α < 1, the hazard

is monotonically decreasing.

The survival function for Weibull-distributed survival times is

S(t) = exp
{
−
∫ t

0

λαuα−1du
}

= exp(− λtα).

Through the scale parameter, λ, we may include the covariate effects as

ηi = g(λi)

where g should be a monotonic function that can be differentiated. Usually g(λ)= log(λ).

Commonly, we use the following form to incorporate the linear predictor of a patient:

ηi = XT
i β

where XT
i represents the covariate values of patient i and β is a vector of regression

coefficients, βT = (β0, β1, β2, . . . , βp). We can relate λi with ηi as follows:

exp (XT β) = exp (ηi) = g−1(ηi) = λi

For a subject with baseline covariate values (i.e. subjects with typical covariate pattern

of baseline risk), hi(t) is reduced to the baseline hazard function

h0(t) = λ0αt
α−1.
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Therefore, hi(t) can be written as

hi(t) = λ∗iλ0αt
α−1,

where λi = λ∗iλ0,

2.5.1.2 Likelihood function for Weibull survival times

In deriving the likelihood function for Weibull survival times, independent censoring is

assumed (for further details, refer to Section 2.2). Firstly, we shall define Ti and Ci

corresponding to survival time and censoring time, respectively. Then, the follow-up time

ti experienced by the patient will take the minimum of either Ti or Ci (i.e it is a realisation

of a random variable ψi = min (Ti, Ci)). We thus observe the paired quantity (ψi, δi),

where δi is an event indicator with value δi = 1 if the event is observed and δi = 0 if the

observation is censored. From (2.1), the likelihood contribution is fT (ti; θ)
δiSt(ti; θ)

1−δi so

L(θ) =
∏
i=1

{fTi(ti;θ)}δi{STi(ti;θ)}1−δi

where θ contains α and the coefficients in the linear predictor.

Since the hazard function is given by

hi(t) =
fi(t)

Si(t)

the likelihood can be simplified to

L(θ) =
n∏
i=1

{hi(t)}δi Si(t).

For a Weibull distribution, there are two parameters that govern its scale and shape (λ

and α, respectively). Thus, θ = (λ, α)T . The likelihood function is given by

L(λ, α | R) =
n∏
i=1

{
λiαt

α−1
i

}δi
exp
{
− λi tαi

}
,

=
∏
i∈E

{
λiαt

α−1
i }δi

∏
i∈E∪C

exp
{
− λi tαi

}
,
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=

[∏
i∈E

λi

]
αnD

[∏
i∈E

tα−1i

]
exp
{
−
∑
i∈E∪C

λi t
α
i

}
,

where R is a collection of X, n, S, T and δ (R = {X, n, S, T, δ}), E is the set of subjects

experiencing the event and C is the set of subjects with censored survival times and nD

is the number of subjects with the event of interest. For the collection of quantities in R:

� X is the n × (p+1) design matrix with the ith row representing the covariate values

for the ith individual. In other words, the ith row of X is (1, xi,1, xi,2, xi,3, . . . , xi,p)

� n is the total number of subjects;

� P is the number of covariates in the model;

� T = (t1, t2, . . . , tn)T , where ti is the censoring or event time for individual i;

� δ = (δ1, δ2, . . . , δn)T is the event indicator.

For easy algebraic manipulation, we take logs on both sides of the equation resulting in

`(λ, α) = log(L(λ, α | R)) =
∑
i∈E

{log{λi}+ (α− 1) log{ti}}+ nD log{α} −
n∑
i=1

λi t
α
i .

However, we have previously shown that the linear predictors and the scale parameter λi

can be linked by

λi = exp(XTβ).

The log likelihood function can hence be rewritten as

`(β, α) = log(L(β, α | R)) =
∑
i∈E

[
β0 +

P∑
p=1

βpxi,p + (α− 1) log(ti)

]
+

nD log(α)−

[
n∑
i=1

exp
{
β0 +

P∑
p=1

βpxi,p
}
tαi

]
.

20



Chapter 2. Bayesian Survival Analysis

2.6 Random Effects in survival analysis (Frail-

ties)

2.6.1 Frailty: a succinct introduction

The concept of frailty originated in the innovative work of Greenwood and Yule (1920) who

conceptualised the idea that a negative binomial distribution of counts could be seen as a

mixture of Poisson random variables for “accident proness” and data on recurrent bouts

of disease attacks (Hougaard, 2013). The term frailty was firstly coined by Vaupel et al.

(1979) to denote the random effects of unknown or unmeasured covariates in univariate

survival data. However, frailty was applied to multivariate survival data a little earlier,

based on work by Clayton (1978) who assigned a gamma distribution to the frailty term.

When we investigate the risk factors for certain conditions, we always assume that the

individuals of interest have homogenous levels of risk factors (except for the ones that are

measured and included in the model) for a certain event such as death. However, this is far

from the truth since it is overwhelmingly implausible to consider, measure and include all

of the covariates associated with the survival time of subjects. This is particularly true

due to our limited knowledge with respect to the factors that are mechanistically and

prognostically relevant in influencing the time to the event of our interest. In fact, despite

taking into account all of the prognostic factors that are determinants of the differences in

survival times, there may still be heterogeneity in survival times among those who possess

similar covariate values. As a result, the non-observable variations in an individual’s risk

factors cannot be appropriately neglected. As a remedy, we require a random effect term,

known as frailty in the survival analysis context, to account for this survival heterogeneity

during the modelling process.

According to Aalen (1994), there are three possible sources of this unobserved hetero-

geneity. The first one is attributed to the differences in biological “fitness” from the start

of the period of observation. This can be explained by the fact that certain subjects or

patients may have weaker organ functions compared to other cohort members or have a

genetic predisposition that renders them more susceptible to the disease of interest. Sec-

ondly, the unobserved heterogeneity may also be caused by the stresses (both biological

and psychological stressors) experienced by those subjects in their lifetime. This therefore

portrays frailty as a dynamic process which changes as time progresses. The final cause

is due to whether the event of interest occurs at an early or late phase. For example, a
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protracted diagnosis of cancer may cause the cancer cells to be ubiquitously metastasised

all over the bodily systems. Consequently, such a person will be in an advanced stage of

cancer and this may cause him or her to have a higher frailty of death compared to his

or her cohort.

Before we proceed further, it is imperative to distinguish between the frailty term

used in a medical context and the frailty term used in biostatistics and demography. In

the former, frailty means the susceptibility of an individual to mortality or morbidity

associated with the disease of interest (Wienke, 2011). On the other hand, the statistical

frailty means random effects accounting for the unobserved heterogeneity between subjects

(Wienke, 2011). It is thus paramount not to confuse between these two types of frailty.

Another aspect that should be emphasised is that the frailty term only accounts for

unobserved heterogeneity between subjects, which is indeed a simplified concept in ad-

dressing the differences in survival times among individuals. For example, the concepts

of adaptation and debilitation are not captured by the frailty term (Wienke, 2011). In

the former, individuals are considered to be successfully adapting themselves to the stress

(i.e. the event of interest) after a period of exposure to the stress. Debilitation, on the

other hand, refers to the worsening of individuals’ stress response or physical health after

being exposed to the stress for a period of time. Hence, this is a fertile ground for future

research.

In the next section, we shall illustrate the utility of the frailty term in, firstly, uni-

variate survival data, followed by multivariate survival data. These are then followed by

the formal derivations of conditional and marginal cumulative hazard, hazard, survival,

probability density functions in the presence of a frailty term in the survival model.

2.6.2 The motivation behind the inclusion of a frailty

term

The frailty term in the univariate survival model is useful for making the model more

flexible. For instance, we can incorporate a frailty term with a proportional hazard model.

Contingent upon the type of distribution assigned to the frailty term, the assumption of

hazard proportionality can be relaxed and thus the model can now accommodate the

non-proportionality of hazard. Apart from that, the inclusion of a frailty term may also

rectify a survival model with an overdispersed error. We can also assign each subject his

or her own frailty and since frailty modifies the baseline hazard function multiplicatively,

each individual will thus have their own hazard. To obtain the population-level hazard,
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we can simply integrate out the frailty term and thus averaging the frailty over individuals

in the population (Wienke, 2011).

Neglecting the frailty term may have undesirable consequences. According to Hen-

derson and Oman (1999), forsaking the frailty term from the model may cause misspeci-

fication of a proportional hazard model to the correct marginal distribution. Henderson

and Oman (1999) also found that estimates of regression coefficients obtained might be

biased towards 0, depending upon the type of the frailty distribution and the level of

the unobserved heterogeneity operating on the individual subjects. For more examples

of frailty in univariate survival models, Hougaard (1995) provides extensive examples of

this.

On the other hand, frailty is more frequently used in multivariate survival models for

the purpose of modelling dependencies between observations (Hougaard, 2013). There are

four common scenarios where frailty is useful. The first one is when there is strong corre-

lation between two or more individuals, for instance twins, siblings or matched pairs. The

second is when modelling the effects of an intervention on related organs in an individual

or components in a machine. Thirdly, frailty is useful in modelling the dependencies of

recurrent or multiple events, for example when investigating the time to cerebrovascular

accident (i.e. stroke), heart attack or seizure associated with epilepsy in the same indi-

vidual. The final one is when an individual experiences multiple treatments in a designed

experiment and the time to an event of interest for each treatment regime is recorded.

For further information, refer to Hougaard (2013).

2.6.3 The derivations of conditional and marginal quan-

tities of interest

Before we proceed, we shall assume that the frailty term acts on the baseline hazard

function multiplicatively. Borrowing the notation used in Collett (2015) and Fung (2017),

we denote a frailty term as zi. In a proportional hazard model, the frailty term can be

incorporated as

hi(t | Zi = zi) = zi exp(βT xi) ho(t).
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The equation above gives the hazard function at t given the value of the frailty term zi

for individual i. We can take log on both sides of the equation to obtain

log hi(t | Zi) = log (zi) + βT xi + log h0(t).

There is one particular assumption that we made here. In contrast to the effects of other

covariates on survival time (i.e that they may change over time, hence possibly requiring

time-varying covariate effects), the effect of the frailty term is considered constant over the

time period. It means that the random risk experienced by the individuals will remain

constant as time progresses. This may or may not be true and hence there is room

for future research to develop a survival model that is not strictly dependent on this

assumption.

From here, we will proceed to deriving other quantities. To obtain the conditional

cumulative hazard, Hi(t | Zi), we integrate the hazard with respect to t, giving

Hi(t | Zi) =

∫ ∞
0

h0(t) exp(βTxi) Zidt = H0(t) exp(βTxi) Zi.

Next, based on the relation

S(t) = exp
{
− H(t)

}
,

we derive the conditional survival function as

Si(t | zi) = exp
{
− Hi(t | Zi)

}
= exp

{
− H0(t)λiZi

}
where λi = exp(βTxi). Then, by simple algebra, the conditional survival function is

obtained as

Si(t) | Zi = exp
{
−H0(t)

}λiZi
= {S0(t)}λiZi

where S0(t) represents the baseline survival function. We can obtain the marginal survival

function by multiplying the baseline survival function with fZ(zi) and integrating out the

zi term to obtain the marginal survival function:

Si(t) =

∫ ∞
0

S0(t)
λizifZ(zi)dzi = EZ [S0(t)

λiZi ]
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where fz(zi) is the pdf of Z.

Since fi(t) = − d
dt
S(t), we can now derive the marginal survival time pdf:

fi(t) =

∫ ∞
0

λiziS0(t)
λizi−1S

′

0(t)fZ(zi)dzi

= f0(t)× EZ

{
λiZiS0(t)

λiZi−1
}

and hazard function

hi(t) =
fi(t)

Si(t)

= h0(t)S0(t)
EZ

{
λiZiS0(t)

λizi−1
}

EZ

{
S0(t)λiZi

}
= h0(t)

EZ

{
λiZiS0(t)

λizi
}

EZ

{
S0(t)λiZi

} . (2.2)

As a simple example, we shall now elucidate gamma-distributed frailties with a con-

stant baseline hazard. In this example, we assume that each subject possesses a separate

value for the frailty term, zi, and these values are iid with Zi ∼ Ga (g,h∗). We also

assume S0(t) = exp{−t}, so the conditional lifetimes have an exponential distribution.

Using (2.2), we obtain the hazard function as

hi(t) = h0(t)
EZ{λiZiexp(−λiZit)}
EZ{exp(−λiZit)}

.

Since

EZ{exp (− λiZit)} =

∞∫
0

fZ(zi)[S0(ti)]
λiZidZi

we obtain

EZ{exp (− λiZit)} =
hg∗

(λit+ h∗)g

and

EZ{λiZiexp (− λiZit)} =
λigh

g
∗

(h∗ + λit)g+1
.

Hence, the marginal hazard function is given by

hi(t) = h0
gλi

λit+ h∗
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and the hazard ratio of an individual i to individual j is

hi(t)

hj(t)
=
λi(λjt+ h∗)

λj(λit+ h∗)

which is not constant with respect to t unless λi = λj. The mean and variance of the

gamma distribution of zi are given by

m =
g

h∗
and υ =

g

h2∗
=
m

h∗
.

With m = 1, we have

h∗ =
1

υ
.

Thus, we can rewrite the hazard ratio as

hi(t)

hj(t)
=
λi(υλjt+ 1)

λj(υλit+ 1)
. (2.3)

As we can see, (2.3) indicates the non-proportionality of hazards since the hazard ratio

changes with t.

2.7 Piecewise constant hazard model

2.7.1 Theory and basic notation

A flexible approach to relax the parametric assumption about the form of the baseline haz-

ard is a piecewise constant hazard model (Prairie and Ostle, 1961; Colvert and Boardman,

1976; Shaked, 1979; West, 1982; West et al., 1985; Gamerman and West, 1987; Gamerman,

1991; Ibrahim et al., 2001; Kim et al., 2007; Wilson and Farrow, 2017). We shall describe

the piecewise-constant proportional hazard (PCPH) models first before elaborating on the

alternative modelling approach which is needed when the proportional hazard assumption

is violated. In PCPH models, we assume that the hazard is variable over different time

intervals, albeit it is still proportional. In this case, the time axis is divided into disjoint

intervals by specifying several cut-off points.

We choose some fixed time points τ0,. . . ,τj, with τ0 = 0, τj > τj−1 and, typically,

τj → ∞. Then the jth time interval is Ij = [τj−1, τj). Next, we assume that the hazard

is constant within each time-interval, but variable between time-intervals. The hazard
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function can thus be represented as follows:

hi(t) = λij, for τj−1 ≤ t < τj

where τ0 = 0 and τj →∞
The covariates for individual i can be linked to λij by the relationship

λij = λ0jexp(xTi β) = exp(β0j + xTi β).

The integrated hazard is thus given by

Hi(t) =

∫ t

0

hi(u) du

=

j−1∑
k=1

∫ τk

τk−1

hik(t) dt+

∫ t

τj−1

hij(t) dt

=

j−1∑
k=1

∫ τk

τk−1

λik dt+

∫ t

τj−1

λij dt

=

j−1∑
k=1

λik(τk − τk−1) + λij(t− τj−1), t ∈ Ij.

Since Si(t) = exp{−H(t)}, the survivor function for the piecewise constant hazard model

is given

Si(t) = exp

{
−

[
j−1∑
k=1

λik(τk − τk−1) + λij(t− τj−1)

]}
, t ∈ Ij.

Hence, the probability density function of survival times is given by

fi(t) = hi(t) Si(t) =

{ ∏
k:τk<t

[
exp{−λik (τk − τk−1)}

]}
λij

[
exp{−λij (t− τj−1)}

]

for t ∈ Ij. Therefore, the conditional density and survivor function given that T ≥ τj−1

are

fi(t | T ≥ τj−1) = λij exp{−λij (t− τj−1)}
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and

Si(t | T ≥ τj−1) = exp{−λij (t− τj−1)}, for τj−1 ≤ t < τj.

If we consider the likelihood for the event time, t, we shall realise that the likelihood

can be factorised temporally. Based on Gamerman (1991), the likelihood for the event

time can be written as

L(t | D0,λ) =
n∏
i=1

r∏
j=1

Lj(tij | λj, Dj−1)

where D0 is an information set containing the event status for all subjects across all j

intervals, Dj−1 is the event status for subjects who survive into the previous interval Ij−1

and tij represents one of these three occurrences for each subject i in interval j:

� the ith subject experienced the event in the interval j. Hence, τj−1 ≤ ti < τj. So,

tij = ti and δij = 1

� the ith subject was censored in the interval j. Therefore, τj−1 ≤ ti < τj. So, tij = ti

and δij = 0

� the ith subject was still alive at the end of the interval j. Therefore, τj ≤ ti. So,

tij = τj and δij = 0

� the ith subject died or was censored before the beginning of interval j. Then tij =

τj−1 and δij = 0

where δij indicates whether the subject experienced the event of interest in Ij. Each

Lj(tij | D0, λ) is thus given by:

Lj(tij | λj, Dj−1) =
{
λij

}δij
exp{−λij(tij − τj−1)} (2.4)

where δij = 1 if the subject dies in Ij and δij = 0 otherwise.

2.7.2 Methods of selecting the cut points for the time-

intervals in a piecewise constant hazard model

One of the requirements for the piecewise constant hazard model is that the time axis

should be partitioned. Several authors have recommended that the time intervals are

28



Chapter 2. Bayesian Survival Analysis

between the start and end of the event times. However, Kalbfleisch and Prentice (1973)

proposed that the time intervals should be independently chosen without looking at or

being guided by the observed data. West and Berliner (1992) recommended that the time

intervals should be shorter in the beginning of the follow-up time for cancer datasets since

there is a higher number of deaths in the beginning than in the later time period. To

simplify things, we can attempt to choose the cut points so that a similar number of events

occur in every time interval. Nevertheless, caution is recommended since this approach

will not be suitable for all cases because events may occur in unequal proportions in each

time interval.

As an example, suppose we choose to have ten time intervals to model a cancer dataset.

Hence, we can aim to have about 10% of events occurring in each time interval. As an

approximation, we may assume that the event times are distributed exponentially. If

τ1 < τ2 < . . . < τJ−1 are the cut points and the exponential survival function with

parameter λ is given by S(t) = exp{−λt}, the probability that a subject survives until

time τj is given by

exp{−λτj} = 1− 0.1j.

This can be rearranged giving

−λτj = log(1− 0.1) and τj = −1

λ
log(1− 0.1).

The mean of the exponential distribution is ν = 1
λ
. Let ξ = 1

J
. Then the final form of the

equation will be

τj = −νlog(1− jξ).

This requires a prior evaluation of the mean lifetime. For instance, by applying the

equation above and based upon the evaluation of our prior beliefs for the mean survival

time for a typical patient with Non-Hodgkin Lymphoma (which is approximately about

3 years), we chose the cut points in Table 2.1 to obtain 10 survival time intervals.

Table 2.1: Nine cut points for constructing 10 survival time intervals for piecewise constant
hazard model for Scotland Newcastle Lymphoma Group (SNLG) data set

j 1 2 3 4 5 6 7 8 9
τj 0.316 0.669 1.070 1.532 2.079 2.749 3.612 4.828 6.908
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On the other hand, for a typical advanced non-small cell lung cancer (NSCLC) patient,

we assume the mean survival time is 13 months based on our prior belief. In this case, we

chose smaller number of time intervals since ten survival time intervals will result in a time

interval without event (i.e the time interval will only contain all censored observations).

The cut points are given in Table 2.2.

Table 2.2: Six cut points for constructing seven survival time intervals for piecewise
constant hazard model for advanced non-small cell lung cancer data set

j 1 2 3 4 5 6
τj 2.004 4.374 7.275 11.015 16.286 25.297

Each time interval is now assumed to have a separate baseline hazard. Those who

survive in one interval will enter the subsequent interval with a different baseline hazard.

2.7.3 Time-varying covariate effects

Despite the proportional hazard model being the most popular approach used for fitting

time-to-event data, it has several pitfalls. The most conspicuous drawback is its overde-

pendence on the proportional hazard assumption since this means that the hazard ratio

does not change over time. This assumption is sometimes unrealistic since we can imagine

real-life scenarios where this assumption is not tenable. For instance, let us consider a clin-

ical trial comparing the efficacy of bone marrow transplant (BMT) against the standard

chemotherapy regimen for acute myeloid leukaemia (AML) patients. In the earlier part of

the trial, AML patients who have undergone the curative BMT will have a higher hazard

of dying immediately after the BMT than the recipients of the standard chemotherapy

regimen. This observation can be attributed to the susceptibility of AML patients for

bacterial or viral infections secondary to immunosuppressive drugs that they received to

prevent BMT rejection. However, if they survived these early and serious complications

of BMT, their hazard of dying will start to decline at the later period of follow up before

it settles at a lower level than in those who received the standard chemotherapy regimen

due to the curative nature of BMT.

Another example to illustrate the non-proportionality of hazard is the hazard of dying

for non-Hodgkin lymphoma (NHL) patients who received the Rituximab, Cyclophos-

phamide, Hydroxydaunorubicin, Vincristine and Prednisone (R-CHOP) regimen which

is higher than that for NHL patients who received best supportive care (BSC) at the

beginning of the follow-up period in a clinical trial due to the side effects of the intensive
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chemotherapy regimes that they received to induce Non-Hodgkin Lymphoma remission.

However, as the time progresses, the R-CHOP NHL recipients will have lower hazard of

dying than those NHL patients who are treated with BSC since the R-CHOP recipients

are no longer on chemotherapy and the disease activity in this group of NHL patients

is now in complete remission. Consequently, the proportional hazard assumption is too

idealistic to be indiscriminately applied to the modelling of all survival data.

To relax the proportional hazard assumption, we can make the coefficients of covariates

vary over time and this can be represented as follows:

λi(t) = exp(xTi β(t))

where β(t) = (β1j, . . . , βpj)
T , for t ∈ Ij.

Besides, other alternatives have been proposed to remedy this. The most straightfor-

ward solution is to incorporate interaction terms between follow-up time and covariates in

the regression equation. One of the approaches that uses this methodology is the flexible

parametric models. These employ restricted cubic splines for the modelling of transformed

survival functions (Royston and Parmar, 2002). However, the simple inclusion of inter-

action terms between the spline function and time-dependent covariates is a rather crude

and less flexible technique since the pattern of changes in the function of the regression

coefficients is restrictively specified. Hence other more versatile and complicated functions

such as quadratic function cannot be fully implemented via the flexible parametric mod-

elling approach. Alternatively, the nonparametric smoothing spline approach (He et al.,

2010) and the piecewise constant hazard model (Kalbfleisch, 1978; Gamerman, 1991)

could also be used. Nevertheless, they also have their own disadvantages, for instance the

arbitrary selections of change points for the piecewise constant hazard model and the lack

of convergence of the MCMC sampler when greater degrees of the spline basis function

are used (He et al., 2010).

2.8 Bayesian inference: theory and notation

The goal of Bayesian inference is to quantify uncertainty about parameters θ = (θ1, θ2, . . . , θp)
T

using observed data y. Suppose y is modelled by some probability density function
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fy(y | θ). Then the likelihood is defined as

L(θ | y) =
n∏
i=1

fi(yi | θ).

if y1, . . . , yn are conditionally independent given θ. The likelihood represents the prob-

ability or probability density of the data y as a function of the parameters θ. Prior

beliefs about θ are represented by the density π(θ) and Bayes’ Theorem provides a way

of updating these beliefs based upon observed data. The posterior density is therefore

π(θ | y) =
π(θ)L(θ | y)∫

θ

π(θ)L(θ | y)dθ
(2.5)

which represents the updated beliefs about θ after observing the data y. Since the denom-

inator of (2.5) is not a function of θ, it can be regarded as a constant of proportionality

and hence

π(θ | y) ∝ π(θ)× L(θ | y)

Posterior ∝ Prior× Likelihood.

2.9 A brief introduction to MCMC and RJAGS

2.9.1 Fundamental elements of Markov Chain Monte

Carlo (MCMC) in Bayesian settings

Sometimes, it can be difficult to evaluate the integral in the denominator in (2.4) or other

integrals such as posterior expectations. Hence, numerical methods, such as Markov

Chain Monte Carlo (MCMC), are required. MCMC is an approach used to draw samples

from a target distribution by simulating from a specially constructed Markov chain with

stationary distribution equal to the target distribution π(.), Thus, providing that the

chain has converged, any value sampled will be from the density of interest π(.), here

the joint posterior density. Additionally, for a multidimensional chain, samples of each

component will be drawn from the marginal distribution of the respective component.

Let us assume that the distribution of interest is the posterior distribution, with density

π(θ | D) (known as the target distribution), where D = (y1, y2, . . . , yn). Here, we discuss

two algorithms to construct these chains, specifically the Metropolis-Hastings algorithm
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and the Gibbs sampler.

2.9.2 The Metropolis-Hastings (MH) algorithm

Metropolis et al. (1953) introduced the algorithm which was generalised by Hastings

(1970), leading to the name Metropolis-Hastings. Central to Metropolis-Hastings is the

idea of a proposal density, denoted q(.|.), which is some (arbitrary) transition kernel.

It can be advantageous to have a proposal density which is easy to sample from. The

Metropolis-Hastings algorithm is shown as Algorithm 1.

Step 2 generates a new value of the chain from the proposal density q(θ∗ | θ), which

in step 4 is either accepted (the chain moves) or rejected (the chain remains where it

was). Note that π(θ | D) enters the acceptance probability as a ratio, and hence it is

only necessary to know π(θ | D) up to a constant of proportionality. Therefore, by Bayes

theorem, A (in the acceptance probability of step 3) can be expressed as

A =
π(θ∗) L(θ∗ | D) q(θ | θ∗)
π(θ) L(θ | D) q(θ∗ | θ)

.

Given that we have complete freedom in the choice of the proposal density q(.|.), the nat-

ural question is, ‘What choices of q(.|.) might be good, or indeed useful?’ In particular,

a good choice of q(.|.) will lead to a chain which converges rapidly and mixes well; that

is, it moves often and well around the support of π(θ |D). We present the first algorithm

for the Metropolis-Hastings (MH) procedure as follows:

Algorithm 1: The Metropolis-Hastings Algorithm

1. Initialise the iteration counter i =1 and initialise the chain with θ(0) =
(
θ
(0)
1 , θ

(0)
2 ,

. . . , θ
(0)
p

)T
where θ(0) is chosen from somewhere in the support of π(θ | D).

2. Propose a new value θ∗ using the transition kernel q(θ∗ | θ(i−1))

3. Evaluate the acceptance probability min(1,A), where,

A =
π(θ∗ | D) q(θ | θ∗)
π(θ | D) q(θ∗ | θ)

4. Set θ(i) = θ∗ with probability min(1,A), otherwise set θ(i) = θ(i−1).
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5. Set counter to i+1 and return to step 2.

2.9.2.1 Symmetric proposal

Suppose that we use a proposal distribution which is symmetric. That is

q(θ∗ | θ) = q(θ | θ∗), ∀θ, θ∗

and the proposal distribution can be, for example a Gaussian distribution

θ∗ | θ ∼ N(θ, σ2).

In this instance, A simplifies to

A =
π(θ∗ | D)

π(θ | D)
.

That is, the acceptance probability does not depend on the proposal density.

2.9.2.2 Random walk Metropolis

It is possible to use a random walk as the proposal distribution q(.|.) in step 2 of Algorithm

1. In this instance, q(.|.) takes the form

θ∗ = θ(t−1) + ωi

where ω1, . . . , ωp are independent and in many cases identically distributed. Typically

ω has a Gaussian distribution with zero mean vector. In this instance the Metropolis-

Hastings algorithm is known as a random walk sampler ( or random walk Metropolis).

The variance of the random variates ω will determine the mixing of the chain. Too low

a variance and the chain will explore the space slowly, but many proposed values will be

accepted. Too large a variance and few proposed values will be accepted. Reflecting the

correlation within θ in the covariance structure of ω is an important aspect in ensuring

the chain efficiently explores the space.

If the target distribution is Gaussian, Roberts and Rosenthal (2001) suggest that the

optimal acceptance probability is 0.234. Sherlock and Roberts (2009) extend this result

to ellipitically symmetric targets and subsequently Sherlock (2013) proposes a general set

of sufficient conditions for which the optimal acceptance probability is 0.234. Roberts
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et al. (1997) and Roberts and Rosenthal (2001) recommend that the variance of ω should

be given by
2.382Var(θ | D)

p
.

where p is the number of dimension and Var (θ | D) is the variance matrix of the target

distribution π(θ | D). Typically though, Var(θ | D) will not be available and hence an

estimate from one or more pilot runs should be used.

We note that, for large p, sampling θ∗ from a multivariate Gaussian distribution may

be expensive. In these instances, an alternative approach is to take the components

of ω = (ω1, . . . , ωp)
T as independent and identically distributed (univariate) Gaussian

random variates. For example, ωi ∼ N(0, σ2
i ), where

σ2
i =

2.382 Var(θi | D)

p
.

2.9.2.3 Independence sampler

An independence sampler is a special case of a Markov chain. As the name suggests,

an independence sampler (or independent chain) proposes a new value θ∗ independently

of the current value θ. Hence, q(θ∗ | θ) = g(θ∗) for some density g(.). Whilst the form

of such a proposal may appear to disagree with the Markovian structure of the chain,

both θ and θ∗ feature in the acceptance probability, which means that a proposal still

depends upon the current state, and thus, the Markov property is preserved. Using such

a proposal distribution leads to an acceptance probability min(1, A), where

A =
π(θ∗ | D)

π(θ | D)

/
g(θ∗)

g(θ)
.

Clearly, we can increase the acceptance probability by making g(.) and π(. | D) as

similar as possible. It is worth noting that, in the context of an independent sampler

(and in contradiction to the above on random walk Metropolis), the higher the acceptance

probability, the better the sampling is. Tierney (1994) suggests the avoidance of densities

g(.) with thin tails.
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2.9.3 Gibbs sampling

2.9.3.1 General Algorithm

The Gibbs sampler (or generically Gibbs sampling) originated in statistical physics before

it came into Bayesian statistics via image processing (Geman and Geman, 1984). It was

introduced by Geman and Geman (1984) before being generalised and brought to the

interest of the wider statistical community by Gelfand and Smith (1990). In essence, the

Gibbs sampler is an MCMC scheme in which the full conditional distributions (FCDs)

are used to form the transitional kernel.

Before we proceed further, we shall firstly define the FCD. Let θc be a component of a

parameter space θ. Hence, the FCD of θc is the distribution of θc given other components

of θ and data x. Mathematically, this is written as

π(θc | {θq : q 6= c},x).

For a Gibbs sampler, we assume that the FCDs for all components of θ are available and

can be sampled from. The Gibbs sampler is then given by Algorithm 2:

Algorithm 2: The Gibbs sampler

1. Initialise the iteration counter i =1 and initialise the chain with θ(0) =(
θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
p

)T
2. Gain a new value θ(i)=

(
θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
p

)T
from θ(i−1) using successive generation

from the full conditional distributions:

θ
(i)
1 ∼ π

(
θ1 | θ(i−1)2 , θ

(i−1)
3 , . . . , θ(i−1)p , D

)
θ
(i)
2 ∼ π

(
θ2 | θ(i)1 , θ

(i−1)
3 , . . . , θ(i−1)p , D

)
.

.

.

θ(i)p ∼ π
(
θp | θ(i)2 , θ

(i)
3 , . . . , θ

(i)
p−1, D

)
3. Set iteration counter to i+1 and return to step 2.
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The chain approaches its equilibrium state as the number of iterations increases, and

once the chain has converged, a value of θi is a sample from π(θ | D). Thus the Gibbs

sampler is a way to sample from π(θ | D) when direct sampling is costly, complicated or

indeed impossible, but sampling from π(θi | θ−i, D) is possible. Algorithm 2 is known as

a fixed sweep Gibbs sampler. Whilst other versions of the Gibbs sampler are available,

such as the random scan Gibbs sampler, the fixed sweep is simple to implement, and thus

appealing. For details of other versions of the Gibbs sampler see, for example, Chapter 5

of Gamerman and Lopes (2006).

2.9.3.2 Blocking

Given that the components of θ can take the form of scalars, vectors or matrices, it can be

useful to block certain components that are strongly correlated in the posterior together in

multidimensional problems. Such a strategy is known as a block update and makes use of

multivariate sampling techniques. Blocking is a strategy used to improve the convergence

(and indeed mixing) of the chain, although it can come at a higher computational cost.

As discussed in Gamerman and Lopes (2006) it is not the case that the larger the block

update, the faster the convergence. Indeed for highly multidimensional problems a large

block update is likely to be highly detrimental. Instead, components of θ should be

blocked together such that the correlations between the blocks is low. Any conditionally

independent components should be updated on their own (a single-block update).

2.9.3.3 Component-wise transitions (Metropolis within Gibbs

Algorithm)

In practice, the construction of a suitable proposal density in a Metropolis-Hastings

scheme could be difficult. However, for many problems of interest, it may be possible

to sample from the full conditional distributions for a subset of θ. Let the full conditional

distribution for the ith component of θ be denoted by

π(θi | θ1, θ2, . . . , θi−1, θi+1, . . . , θp, D) = π(θi | θ−i, D), i = 1, . . . , p.

The algorithm for component-wise transitions is given by Algorithm 3 below. Note that

Algorithm 3 is actually just a special case of Algorithm 1 (Dellaportas and Roberts, 2003).

Besides, Algorithm 2 is a special case of Algorithm 3.
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Algorithm 3: The Metropolis-Hastings Algorithm: Component-wise Transitions

1. Initialise the iteration counter i =1 and initialise the chain with θ(0) =
(
θ
(0)
1 , θ

(0)
2 ,

. . . , θ
(0)
p

)T
.

2. Obtain a new value θ(i) = θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
p from θ(i−1) using successive generation

from distributions:

θ
(i)
1 ∼ π

(
θ1 | θ(i−1)2 , θ

(i−1)
3 , . . . , θ

(i−1)
p , D

)
using a Metropolis-Hastings step with pro-

posal q1

(
θ∗1 | θ

(i−1)
1

)
θ
(i)
2 ∼ π

(
θ2 | θ(i)1 , θ

(i−1)
3 , . . . , θ

(i−1)
p , D

)
using a Metropolis-Hastings step with pro-

posal q2

(
θ∗2 | θ

(i−1)
2

)
.

.

.

θ
(i)
p ∼ π

(
θp | θ(i)1 , θ

(i)
2 , . . . , θ

(i−1)
p−1 , D

)
using a Metropolis-Hastings step with proposal

qp

(
θ∗p | θ

(i−1)
p

)

3. Set i+1 and return to step 2

If the full conditional distribution for the ith component of θ is available to sample

from directly, the resulting acceptance probability is 1. This method is also referred to as

Metropolis-within-Gibbs. If the full conditional distributions are completely known and

can be sampled from for all components of θ, we obtain the Gibbs sampler.

2.9.3.4 Analysing MCMC output

As mentioned above, a Markov chain Monte Carlo scheme will only give samples from

the target distribution provided convergence has been reached. It is therefore important

to monitor convergence carefully and ensure convergence truly has been reached. As the

number of iterations increases the distribution of the chain, θ(i) | D, tends to the posterior

distribution θ | D, and convergence is reached. Samples obtained before convergence,

when the distribution of the chain is not the posterior are discarded. This number of

38



Chapter 2. Bayesian Survival Analysis

iterations is known as the burn-in period. Viewing the trajectory of the chain via a trace

plot can be used to check convergence informally. In this instance we are looking for the

chain to display the same qualitative behaviour after some initial burn-in period. Gelfand

and Smith (1990) (amongst others) suggest a number of informal checks for convergence.

More formal checks for ensuring convergence has been reached have been proposed by, for

example, Heidelberger and Welch (1983) and Raftery and Lewis (1992).

Samples of the MCMC scheme will be dependent, meaning successive draws are auto-

correlated. Autocorrelation at different lag times can be observed via an autocorrelation

(ACF) plot (Geyer, 2011). If samples are highly correlated then the chains may be thinned.

This involves retaining the sampled values from iterations m, 2m, 3m,. . . , where m is an

integer and m > 1. Thinning retains only n/m sampled values, resulting in an increase in

Monte Carlo variance. Nevertheless, the increase in Monte Carlo variance might be small

if there is a positive autocorrelation. Thinning is useful for evaluating convergence, as a

remedy to storage space problems and to reduce overall computational cost if expensive

computations are to be done on the sampled values (Geyer, 1992).

Once a chain has converged, the (suitably thinned) output can be analysed. It is

effortless to compute estimates of summary statistics (or standard statistical measures)

such as marginal means and variances. Joint and marginal distributions can be viewed

through the use of density plots (or histograms).

2.10 Missing Data and Data Augmentation

Approach

2.10.1 Missing Covariate Values

The analysis of survival data with missing covariate values will have serious consequences.

The posterior distributions may possess dissimilar properties if the analyses based on

complete cases only (i.e cases without missing covariate values) are compared with those

performed on all cases (i.e cases with missing covariate values are also included in the

analyses).

The general framework of missing data mechanisms is given by Little and Rubin (2002)

and they are as follows:

Missing completely at random (MCAR): Missingness is independent of the observed

and unobserved data. For example, we can divide the full data in a matrix x into
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two components: the observed component which is denoted by xobserved and xmissing

which represents the missing component. Using this missing data framework, the

conditional distribution of the missing data indicator can be written as:

f(mi | xobserved,xmissing, φ) = f(mi | φ)

where mi is the missing data indicator, mi = (mi,1, . . . ,mi,J)T where mij = 0 if

xij is observed and mij = 1 if x is missing, φ is the parameter for the missing data

mechanism and xij is the value of the jth covariate for the ith individual.

Missing at random (MAR): Missingness is conditionally independent of the unob-

served component given the observed data. The conditional distribution of the

missingness indicator can be written as:

f(mi | xobserved,xmissing, φ) = f(mi | xobserved, φ)

Since our inference about parameters of interest is only conditional upon xobserved,

MAR has an ignorable missing data mechanism provided that φ and θ are indepen-

dent in the prior, where θ is the collection of parameters of the data model.

Missing not at random (MNAR): Missingness is not conditionally independent of

xmissing given xobserved. This is a non-ignorable missing data mechanism that occurs

when the failure of observing the data values is dependent upon the missing data.

In survival analysis, the missing covariate data can be represented using the missing

data framework as follows. Let X∗ represent the covariate matrix and xi,j is the value

of covariate j for the ith subject. The survival time is represented by vector T , where T

= (t1, t2, . . . , tn)T . Either X∗ or T is observed entirely (i.e. all subjects experienced the

event of interest (e.g death) by the end of the study, no missing values for all covariates)

or incompletely observed (i.e. several subjects did not experience the event of interest

(e.g death) and hence were censored by the end of a clinical trial, missing values for some

of the covariates). The missing indicator matrix is represented by M whose elements

mi,j denote the missing data indicator for covariate j for the ith patient, where mi,j =

0 if the value for covariate j is fully observed or mi,j = 1 if the value is missing. The

model parameters are represented by θ and φ designates the parameter for missing data

mechanism. Hence, the joint distribution of a collection of X∗, M ,T conditional upon
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the θ and φ can be written as:

f(X∗,M ,T | θ, φ) = f(X∗,T | θ)f(M |X∗,T , φ).

If the covariate values are considered to be MCAR or MAR, the missing data models

are thus ignorable. In this research work, the missing data will be treated as MAR and

we shall assume θ and φ are independent a priori, and hence π(θ, φ) = π(θ)π(φ)). Our

approach for missing covariate data will hence be a fully Bayesian one and this involves

specifying the prior distributions for all parameters as well as specifying the distributions

for the missing data. There are several examples for this approach and one of them is

that demonstrated by Ibrahim et al. (2001) for forward conditioning and another is reverse

conditioning (Zhao, 2010).

2.10.2 Data augmentation

Certain models possess rather complicated likelihood functions which, if handled in a

direct fashion, would not be amenable to tractable algebraic manipulation. It is thus

occasionally feasible to make the likelihood more straightforward when extra variables,

known as auxiliary variables, are introduced. These variables could be considered as latent

observations, which, if they were actual observations, would result in the likelihood being

more manageable. These auxiliary variables could therefore be regarded as missing data.

This is known as the data augmentation approach (Tanner and Wong, 1987). MCMC

methods such as the Gibbs sampler are appropriate for this technique in handling missing

data in general.

We illustrate the use of the data augmentation approach for handling missing survival

data in censored observations. This approach makes the likelihood simpler since we as-

sume that all quantities are observed. In this approach, an auxiliary variable (denoted by

Tmissing) was introduced to represent the parameter by which the survival times for the

censored observations is generated (i.e. missing survival times). If we decompose T (all

survival times) into T observed and Tmissing, we can then compute the posterior distribution

of model parameters (denoted by θ) given the observed survival time T by integrating

out Tmissing as follows:

Pr (θ | T ) =

∫
Pr (θ,Tmissing | T )dTmissing
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According to Bayes theorem, Pr (θ,Tmissing | T observed) is given by:

Pr(θ,Tmissing | T observed) ∝ L(θ,Tmissing) Pr(θ,Tmissing).

The likelihood can then be written as

fT,I(T observed, I | θ,ϑ) =

∫
fT (T observed,Tmissing | θ)f(I | T observed,Tmissing,ϑ)dTmissing

This is the likelihood of the data conditioned upon the augmented parameters and I is

the inclusion indicator where Ii = 1 if Tobserved and Ii = 0 if Tmissing in individuals with

censored survival times. Besides, f(I | T observed,Tmissing,ϑ) is known as the missing data

mechanism. If we assume that the priors for θ and ϑ are independent, then Pr(θ,ϑ) =

Pr(ϑ) Pr(θ). Hence, in this case the missing data mechanism is ignorable.

We can also use data augmentation approach to solve the problem with missing co-

variate data. This is implemented by iteratively sampling the conditional distributions of

the missing covariate information, Xunobserved given the parameters θ and observed data

Xobserved and subsequently the conditional distributions of θ given the augmented data,

Xaugmented = (Xobserved, Xunobserved). In this case, Xaugmented can be considered as an

augmented data set containing both the observed values and the sampled values for the

missing covariate information, Xunobserved. For each iteration k, the sampling scheme is

as follows:

X
(k)
unobserved ∼ π(Xunobserved |Xobserved,θ

(k−1))

θ(k) ∼ π(θ |Xobserved,X
(k)
unobserved)

This approach is highly beneficial in the sense that it enables the sampling of θ when they

could not be sampled by conditioning them on Xobserved only. Besides, we may regard

that this algorithm is a special case of Gibbs sampling procedure whereby we sample

the joint posterior π (θ,Xunobserved | Xobserved) from their FCDs. We can then use the

sampled values of θ as if they are drawn from the marginal posterior, π (θ | Xobserved)

and these can be used to compute the posterior mean and variance of θ.
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2.11 Bayesian survival analysis computation

using RJAGS

In this short section, the fitting of an exponential survival model using a package called

Just Another Gibbs Sampler (JAGS) (Plummer, 2016) which is implemented in an R

environment as RJAGS (R Core Team, 2018) is used as an example. The kidney infection

dataset (Nahman et al., 1992) will be used as an example and this dataset consists of

survival time (time to kidney infection) and types of catheter insertion (either inserted

through surgery or under the patient’s skin). Let the model specification be given as

follows. We have

Ti ∼ exp(λi),

where for patient i (i = 1, . . . , 119), Ti is the time to the first catheter exit-site infection

(in days). The pdf of the survival time and the corresponding survival function are thus

given by

f(ti | λi) = λ exp(−λiti)

and

S(ti | λi) = exp(−λiti)

There is only one covariate, catheter placement status for each patient i (denoted by

x1i, and coded as -1 for surgically-inserted catheters and 1 for catheters inserted under the

patient’s skin), in this example. Hence, β = (β0, β1)
T , where β0 is the intercept and β1

is the coefficient for catheter placement (covariate trt). Therefore, λi = exp(β0 + x1iβ1).

The likelihood can then be written as

L(β | D) =
119∏
i=1

λδii exp

{
−

119∑
i=1

λiti

}
where λi = exp {β0 + β1x1i}.

For this case, we assume normal priors for β with mean µ0 and covariance matrix Σ0.

For illustration, let

β0 ∼ N(0, 20)

β1 ∼ N(0, 20)
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Hence, the posterior distribution for β can be written as

π(β | D) ∝ L(β | D)π(β | µ0, Σ0)

The RJAGS code for this model is as follows:

model

{

for(i in 1:119)

{is.censored[i]~dinterval(t[i],t.cen[i])

t[i]~dexp(lambda[i])

lambda[i]=exp(beta0 + beta.trt * x[i])

}

beta0~dnorm(0.0,0.05)

beta.trt~dnorm(0.0,0.05)

}

In rjags, dnorm (m, p) denotes a normal distribution with mean m and precision p. The

data is stored in a data frame named data. The data frame contains the following

� data$status: the censoring or event status (1 if the event occurs and 0 if censoring

occurs)

� data$time: the censoring or event time

� x: the covariate. in this case is the type of catheter placement received by the

patients (1:surgically, 2:percutaneously)

In this analysis, the dataset used by rjags contains the following vectors

� t: For this vector, the element i represents the time to event if the event was

observed for case i. If case i, on the other hand, is censored, then the element i of

t is NA. We can construct it as follows:

t=data$t

is.na(t)=data$status==0

� is.censored: This is a difference in terms of rjags code for survival analysis when

compared to other standard R survival and R-INLA packages. The survival indicator

should be coded as follows: 1 if the time is censored and 0 if the event time is

observed. This can be easily performed using the following
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is.censored=1-data$status

� t.cen: Element i is the censoring time for case i if this case was censored. If the

event was observed in case i, this censoring time should be set at a time greater

than the observed event time. This can be done as follows:

t.cen=data$t+data$status

� trt: A covariate.

x=data$trt

As we can see from the model specification, a special distribution was allocated to

is.censored.

is.censored[i]~dinterval[t[i],t.cen[i])

The missing values of t should be initialised. The reason for this is that the specifica-

tion of is.censored means that these cases are the censored ones. Hence, the unobserved

event time must be greater than the observed censoring time. If rjags is permitted to

select the initial values randomly, this may result in some of the chosen initial values for

the unobserved event times being smaller than the censoring time and this is inconsistent,

causing errors in rjags command execution. Therefore, we have to initialise the missing

values of t at greater values than the corresponding values of t.cen. For instance, the

two sets of initial values for two parallel chains can be constructed as follows:

tinits=data$t+5

is.na(tinits1)=data$status==1

tinits2=tinits1+5

We can now form the data and initial values list and run the MCMC algorithm in the

following fashion:

#1 kidneydata=list(t=t,tcen=t.cen,x=x,is.censored=is.censored)

#2 kidneyinits=list(list(t=tinits1),list(t=tinits2))

#3 kidneyjags=jags.model("exsurv.txt",data=kidneydata,inits=kidneyinits,

n.chains=2)

#4 update(kidneyjags,5000)

#5 kidneysamples=coda.samples(kidneyjags,c("beta0,"beta.trt"),100000)
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The command in the 4th line is for burn in and the last line command is for collecting the

samples from the posterior distributions for each model parameter. Using this code, rjags

will treat the censored event times as auxiliary variables and sample them. However, for

this exponential case, the likelihood could, of course, be easily and exactly written and

posterior sampling could be done without resorting to data augmentation.

This example is discussed in Section 7.2.1.2, where results are given.

2.12 Summary

In this chapter, we discussed the fundamentals of survival analysis in 2.1 - 2.3. In 2.4,

the methods of relating the explanatory covariates with the the lifetime distribution were

elucidated. In 2.5.1, the parametric Weibull survival models were introduced and further

elaborated. The motivations behind including the frailty effects in survival analysis were

explained in 2.6, together with the derivations of conditional and marginal survival and

hazard functions. The piecewise constant hazard model was introduced in 2.7 and the

theory of Bayesian inference was explored in 2.8. A brief introduction to MCMC was

elaborated in detail in 2.9, followed by a discussion on missing data and data augmentation

in the context of Bayesian survival analysis in 2.10. Finally, the implementation of an

MCMC scheme in RJAGS was demonstrated in 2.11.
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Chapter 3

Latent Gaussian Models & Gaussian

Markov Random Fields

3.1 Introduction

The purpose of this chapter is to present the basic ideas and known results for latent

Gaussian models and Gaussian Markov random field (GMRF). We shall firstly discuss

the fundamentals of generalised linear models (GLM) and their extension, the latent

Gaussian models. We shall then elaborate on the standard results of Gaussian Markov

Random Fields (GMRF) and their relationship with Bayesian hierarchical models. The

paramount ideas discussed in this chapter will be implemented in later chapters and hence

this chapter is indispensable when elucidating the contents in subsequent chapters.

3.2 Generalised Linear Models and Latent

Gaussian Models (LGMs)

Latent Gaussian models (LGMs) are popular in statistical modelling due to their sim-

plicity and flexibility. LGMs treat observations, denoted here as y = (y1, y2, . . . , yn)T ,

as depending on covariates (patient’s clinical characteristics, spatial locations etc). In

LGMs, observations are considered to be conditionally independent given a set of latent

variables and these observations have distributions based on the data types (e.g. Bernoulli

for binary data or Poisson for count data). These latent variables are then assigned a

Gaussian process (GP) prior, which can be defined as an ensemble of a finite number
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of random variables which follows a multivariate normal distribution (Rasmussen, 2004).

This implies marginal normality due to the properties of marginal distributions of multi-

variate Gaussian distributions. Then, the covariance structure of the latent variables is

parameterised by a set of hyperparameters which specifies the covariance function. Hence,

LGMs can be visualised to be hierarchical in nature, with hyperparameters conditioning

the latent variables, which in turn condition the observations.

LGMs can also be regarded as a type of Bayesian structured additive models with a

structured additive predictor, ηi. Before we proceed further, the much simpler generalised

linear models (GLM) shall be first described. There are two constituents in a GLM: the

conditional distribution of the outcome variable (Y) should be one of the members of the

exponential family and a link function should be specified to relate the mean of Y with

the linear combination of predictors, X1, X2, . . . , Xn(Dobson and Barnett, 2008; Faraway,

2016). For the distribution of Y to be considered as belonging to the exponential family

of distribution, its density should be expressible in the following form:

f(y | θ, φ) = exp
[yθ − b(θ)

a(φ)
+ c(y, θ)

]
where φ is the dispersion parameter and θ constitutes the canonical parameter. As an

example, let Y be a Gaussian-distributed random variable. Hence the pdf of Y is

f(y | θ, φ) =
1√

2πσ2
exp
[
− (y − µ)2

2σ2

]
.

The pdf can then be rewritten in the following form:

f(y | θφ) = exp
[yµ− µ2/2

σ2
− 1

2

{y2
σ2

+ log(2πσ2)
}]
.

We can then relate the mean of this distribution, E[Y]=µ to the linear predictors, X1, X2, . . . , Xn

using the link function g(.):

g(.) = η = β0 + β1X1 + β2X2 + . . .+ βpXp (3.1)

Some other types of link function are presented in Table 3.1. In the modelling approach

used in this thesis, however, we shall not restrict the distribution of Y to belong to the

exponential family.

We can relax the assumption of a known form of linear function in the linear predictor.

The framework for this model can be conceptualised as follows. The mean µi of this
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Table 3.1: The link functions for selected members of the exponential family of distribu-
tions used in the GLM (adapted from Faraway (2016))

Distributional Family Link Function Variance Function

Normal η = µ 1

Poisson η = log(µ) µ

Binomial η = log(µ/(1− µ)) µ/(1− µ)

Gamma η = µ−1 µ2

Inverse Gaussian η = µ−2 µ3

observation variable is connected to the structured additive predictor variables, ηi through

a link function, g(.), so that g(µi) = ηi. This can be represented as

g(µi) = ηi = β0 +

nf∑
j=1

f (j)(uij) +

nβ∑
k=1

βkzki + εi. (3.2)

In (3.2), β1, . . . , βnβ constitute the linear effects of covariates z, f (.), . . . , fnf are the un-

known functions of covariates u which can be: i) non-linear effects of continuous covariates,

ii) time trends and seasonal effects, iii) frailty effects, iv) spatial random effects, v) i.i.d

random intercepts and slopes (Martino et al., 2011). The structured or unstructured

random errors are ε1, . . . , εn. Then, a Gaussian prior is allotted to each β0, . . . , βnβ and

f (j) with precision matrix Q(θ1) where θ1 is a vector of hyperparameters of the precision

matrix for the latent field x. In other word

x | θ1 ∼ N (0, Q−1(θ1)).

Let x be the vector of all the Gaussian-distributed quantities such as β0, β1,. . . ,βnp,

ε1,. . . ,εn, and f (0),. . . ,f (nf ) whilst θ1 represents the vector of hyperparameters which are

not necessarily Gaussian.

The multivariate distribution of the observed y (i.e. y = {yi : i ∈ I}) is also dependent

on another set of hyperparameters θ2 (i.e. conditional on another set of hyperparameters
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that should not be confused with θ1). Hence, the likelihood is given by

π(y | x, θ2) =
n∏
i=1

π(yi | xi, θ2).

Therefore, the joint posterior density of the latent field x and hyperparameter θ = (θ1,θ2)

given the observed data y is

π(x,θ | y) ∝ π(θ) π(x | θ)
n∏
i=1

π(yi | xi,θ).

Exact inference for the parameters of a LGM is usually intractable analytically since

the likelihood of the observations,
n∏
i=1

π(yi | xi,θ) , is usually not the conjugate of GP priors

for the latent variables and neither can the hyperparameters be easily integrated out.

Attempts using deterministic approaches such as Laplace Approximation (LA) (Tierney

and Kadane, 1986) or refined Expectation Propagation (EP) (Cseke, 2011) have been

suggested to address such a problem. Rue et al. (2009) proposed the Integrated Nested

Laplace Approximation (INLA) as an approximate inference method for LGM. Basically,

INLA uses numerical quadrature based on a gridding scheme that can be applied to

problems with a relatively small set of hyperparameters and this method can be used to

find the posterior marginal distributions of the latent Gaussian field, π(xi | y), and the

hyperparameters, π(θk | y).

In the following subsections, further discussions will be made on Gaussian Markov

Random Fields (GMRF) which are a special case of Gaussian Random Fields. The

Markov assumption enables INLA to work efficiently but it is not strictly necessary since

a departure from this assumption is not an absolute hindrance for INLA to function sat-

isfactorily (Eidsvik et al., 2009). We will present a brief overview of INLA methodologies

as described in Rue et al. (2009) in Chapter 4.

3.3 Gaussian Markov Random Field (GMRF)

3.3.1 Introduction

The efficiency of INLA is dependent on the sparsity of the precision matrix. Therefore, the

sparse property of Gaussian Markov random fields (GMRFs) is essential to ensure INLA

efficiency since GMRFs allow fast and efficient computation of posterior summaries using
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numerical methods specific for sparse matrices (e.g. Cholesky factorisation). Therefore,

in this section, we give a discussion of GMRFs which will facilitate the understanding of

INLA methodology in subsequent chapters.

A Gaussian Random Field (GRF) is simply a finite-dimensional random vector, X=

(x1,x2,. . . ,xn)T , that follows a multivariate normal distribution. A Gaussian Markov

Random Field (GMRF), on the other hand, is a special case of GRF in which we have an

adjacency relationship between elements of the vector X, such that two elements xi, xj

may or may not be neighbours, and an assumption of conditional independence between

non-adjacent elements given the elements in between.

The simple but powerful concept of conditional independence can be seen from the

following example. Let X = (X1, X2, X3)
T be a random vector. If X1 and X2 are condi-

tionally independent given X3, then once we know the value of X3, knowing X2 gives us

no further information about X1. To get a clearer picture, let the joint density of x be

π(x) = π(x1 | x2, x3)π(x1 | x3)π(x3).

If X1 and X2 are conditionally independent given X3,then

π(x) = π(x1 | x3)π(x2 | x3)π(x3).

To illustrate further, let us consider a first-order autoregressive (AR(1)) process with

standard Gaussian errors which can be expressed as follows:

Xt = φXt−1 + εt, εt ∼ N(0, 1).

The conditional independence assumption is not explicitly shown here. However, by

expressing the equation as:

Xt | X1, . . . , Xt−1 ∼ N(φXt−1, 1)

with t = 2,. . . , n, we see that Xt and Xs (with 1 ≤ s< t ≤ n) are conditionally independent

given {xs+1,. . . , xt−1} provided t - s >1. If | φ |< 1 and the marginal distribution of X1

is Gaussian with mean 0 and variance σ2 = 1 / (1 − φ2), then the process is stationary

and this marginal distribution is the stationary distribution for the process. Hence the

joint pdf of X can be expressed as follows:

π(x) = π(x1)π(x2 | x1) . . . π(xn | xn−1)
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=
1

(2π)n/2
| Q |1/2exp

(
− 1

2
xTQx

)
where, in this case, the precision matrix Q is tridiagonal:

Q =



1 −φ
−φ 1 + φ2 −φ

. . .

. . .

. . .

. . .

−φ 1 + φ2 −φ
−φ 1


From the matrix Q above, we can clearly see that the zero entries occur outside the

diagonal and first off-diagonal elements. This tridiagonal feature of this matrix is due

to the conditional independence assumption: Xi and Xj are conditionally independent if

| i− j | > 1 given the rest of X (i.e. X−ij).

3.3.2 Fundamental characteristics of GMRFs

Consider a random vector X which has a multivariate Gaussian distribution with mean

µ and variance-covariance matrix Σ. An undirected graph G can be defined as a tuple

of ν and ξ; where ν represents the set of nodes from 1 to n in the undirected graph and

ξ are the edges. We define that there is an absence of an edge between node i and j if

and only if Xi ⊥ Xj | X−ij (⊥ denotes conditional independence, X−ij represents other

nodes than node i or node j). Hence, X has a GMRF property with respect to G. Let Q

= Σ−1 and i 6= j, then

Xi ⊥ Xj | X−ij ⇐⇒ Qij = 0

where Qij is the i, j element of Q.

The following results are also true if X is a GMRF with regard to G and has mean µ

= (µ1,. . . ,µr)
T and precision matrix, Q. The conditional expectation of Xi given X−i is
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E(Xi |X−i) = µi −
1

Qii

∑
j:j∼i

Qij(xj − µi).

The conditional precision of Xi given X−i is

P (Xi |X−i) = Qii.

The conditional correlation of Xi and Xj given X−ij

Corr (Xi, Xj |X−ij) =
Qij√
QiiQjj

, i 6= j

where j ∼ i indicates that node i and node j are neighbours. The proofs are given in section

3.3.3. Hence, the diagonal elements of precision matrix, Q are the conditional precisions

of Xi given X−i and the elements which are located off-diagonally are the conditional

covariance between Xi and Xj given X−ij (Rue and Held, 2005). The following Markov

properties of GMRF also hold:

The pairwise Markov Property:

xi ⊥ xj | x−ij, if {i, j} /∈ ξ and i 6= j

The local Markov Property:

xi ⊥ x−(i,ne(i)) | xne(i), i ∈ V

The global Markov Property:

xA ⊥ xB | xC

where xne(i) are the elements in the neighbourhood of i, A,B and C are disjoint non-empty

sets in which C separates A and B, V is the set of nodes in the graph and ξ is the set of

edges {i, j}.
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3.3.3 The proof for the properties of the precision

matrix Q

Let X = (X1, X2, . . . , Xn)T be distributed as a Gaussian Markov random field. Let δij =

δji = 1 if Xi is a neighbour of Xj and δij = δji = 0 otherwise. The joint pdf is proportional

to

e−
1
2
S (3.3)

where S = (X − µ)T Q (X − µ) and µ = (µ1, µ2, . . . , µn)T . We can also write the joint

pdf in the form

f1(x1)
n∏
i=2

fi(xi | x1, . . . , xi−1)

Because this is a linear Gaussian process, we can write

S =
n∑
i=1

e2i
νi

where f1(x1) ∝ e
− e21

2ν1

and

fi(xi | x1, . . . , xi−1) ∝ e
− e2i

2νi

where ν1 is the marginal variance of X1 and νi (i > 1) is the conditional variance of

Xi | x1, . . . , xi−1. The last element, xn, only appears in fn(xn | x1, . . . , xn−1) and therefore

in en. Using the Markov property that Xn is conditionally independent of Nn given Nn,

where Nn =
{
xi : i < n and δin = 1

}
and Nn

{
xi : i < n and δin = 0

}
, we can write

en = xn − µn −
n−1∑
i=1

δinφin(xi − µi) (3.4)

for some coefficients φin.

Sparsity

Let the i, j element of Q be qij. From (3.3) and (3.4), we see that qni = qin = δin φin/
√
νn,

for i = 1,. . . ,n-1 and qnm = νn, and so the last row and column of Q only contain nonzero

elements corresponding to the neighbours of Xn. Of course, by rearranging the order of
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X1,. . . ,Xn, we can choose any to be the last.

Conditional Expectation

Now,

E(Xn |X−n) = µn +
n−1∑
i=1

δinφin(xi − µi)

= µn − Vn
n−1∑
i=1

qin(xi − µi)

= µn −
1

qnn

n−1∑
i=1

qin(xi − µi).

Conditional Precision

We have

Var(Xn |X−n) = vn = q−1nn .

Hence, the conditional precision is

P (Xn |X−n) = qnn.

Conditional Correlation

The last two elements Xn−1 and Xn, only appear in fn,n−1(Xn, Xn−1 | X1, . . . , Xn−2)

and fn−1(Xn−1 | X1, . . . , Xn−2) and hence in the joint density

fn,n−1(Xn, Xn−1 | X1, . . . , Xn−2) ∝ exp
{
− 1

2
s̃
}
.

Now

S̃ =
1

1− p2
[ ẽ2n
ṽn

+
e2n−1
vn−1

− 2ρ
ẽ2nen−1√
ṽnvn−1

]
where ṽn is the conditional variance of Xn given X1, . . . , Xn−2, p is the conditional corre-

lation of Xn and Xn−1 given X1, . . . , Xn−2

en−1 = xn−1 − µn−1 −
n−2∑
i=1

δi,n−1φi,n−1(xi − µi),
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and

ẽn−1 = xn−1 − µn−1 −
n−2∑
i=1

δi,n−2φ̃i,n(xi − µi),

for some coefficients φ̃1,n, . . . , φ̃n−2,n. We can also write S̃ as

s̃ = (xn − µn)2qnn + 2(xn − µn)(xn−1 − µn−1)qn,n−1 + (xn−1 − µn−1)2qn−1,n−1 +R

where R contains terms not involving xn or xn−1. Thus

q−1nn = (1− p2)ṽn, q−1n−1,n−1 = (1− p2)vn−1

and

q−1n,n−1 = −p−1(1− p2)
√
ṽnvn−1.

Combining these, we obtain

p = − qn,n−1√
qn,n qn−1,n−1

.

3.3.4 Deriving the recursive formula for marginal vari-

ance computation

We can rearrange the order of the elements of X and reorder the rows and columns of Q

accordingly to make Q sparse. By considering what happens if we choose any element to

be the last element, we see that, for all i =1,. . . ,n and j = 1,. . . ,n, qij = 0 if δij = 0. In

other words, Q for any GMRF will have the following property: Qij = 0 for i 6= j if xi

and xj are conditionally independent given the other elements {xk: k6= i and k 6= j}. This

results in the sparsity of the structure of Q, making it convenient for fast computation

via Cholesky factorisation of Q

Q = LLT

where L is a lower triangular matrix. The beauty of this approach is that L also in-

herits the sparsity of Q since it also has global Markov characteristics. Consequently,

the computing time becomes more efficient since we do not have to compute and store

the zero terms. Hence, only the non-zero terms in L are computed and stored during

the procedures for posterior computation. This is thus the rationale behind the fast

computation of posterior summaries in the case of a GMRF.

To illustrate this further, let us consider a GMRF with a considerable size of 10000

56



Chapter 3. Latent Gaussian Models & Gaussian Markov Random Fields

to 100000 nodes. By constructing a band matrix Q via permuting the indices of obser-

vation xi, the L matrix will be acquired. In this case, we classically use a band-Cholesky

factorisation method on Q to obtain L, which is a lower band matrix that possesses

similar bandwidth to Q (Rue and Held, 2005). As an example, let us consider an MCMC

procedure for obtaining posterior samples from a complicated hierarchical model that

possesses a GMRF structure with mean value of zero and precision matrix, Q. We can

do this by working out the Cholesky factor L for Q and thus subsequently obtaining z

which is a vector of independent standard Gaussian variables. The relationship between

L, x and z is given by

LTx = z. (3.5)

Specifically, (3.5) can be written (element-wise) as

Liixi = zi −
n∑

r=i+1

Lrixr. (3.6)

To obtain the marginal variance
∑

ij, we multiply both sides of (3.6) by xj (j≥ i) and

divide by Lii which results in

xixj = zixj/Lii − 1/Lii

n∑
r=i+1

Lrixrxj. (3.7)

Since Liixj = zj and taking expectation, (3.7) can be written as

Σij = δij/L
2
ii − 1/Lii

n∑
r=i+1

LriΣrj, j ≥ i, i = n, . . . , 1 (3.8)

with δij = zizj. In this case, δij = 1 if i = j, and 0 if i 6= j. In the case where we are only

concerned with obtaining the marginal variance, only Σij whose Lij is not 0 should be

determined using the recursive formula (3.8). As a result, the computing costs to perform

this algorithm are efficiently reduced to O(n), O(n3/2) and O(n2) for temporal, spatial

and spatiotemporal GMRFs, respectively (Rue and Held, 2005).
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3.3.5 The derivation of GMRF distribution condi-

tional on a linear constraint

To derive the distribution of a GMRF with an additional linear constraint such as Ax

= e (i.e from π(x | Ax=e) and x∼ N(µ, Q−1), we can start with the joint Gaussian

distribution of x and Ax=e. In this case, A is a k × n matrix and of rank k, and e is a

k × 1 matrix. The mean and covariance of this distribution are

E

(
x

Ax

)
=

(
µ

Aµ

)
and Cov

(
x

Ax

)
=

(
Q−1 Q−1AT

AQ−1 AQ−1AT .

)

Using the formula for computing conditional expectation (µ∗ = µ1 + Σ12Σ
−1
22 (x2 − µ2))

and conditional covariance (Σ∗ = Σ11 −Σ12Σ
−1
22 Σ21), µ̃ = E(x | Ax) can be derived as

µ̃ = µx +Q−1AT (AQ−1AT )−1(e−Aµ)

= µx −Q−1AT (AQ−1AT )−1(Aµ− e) (3.9)

and Σ̃ = Cov(x | Ax) as

Σ̃ = Q−1 −Q−1AT (AQ−1AT )−1AQ−1. (3.10)

To take full advantage of the sparsity of Q matrix, we can then use a geostatistical

method called conditioning by Kriging (Ren et al., 2005). Using this method, samples

from the unconstrained GMRF, x ∼ N(µ̂, Q−1), are initially obtained. We can then

obtain samples from π(x | Ax = e) (denoted by x̃) by

x̃ = x−Q−1AT (AQ−1AT )−1(Ax− e). (3.11)

It is evident that x̃ has the correct conditional distribution if we compare its mean and

covariance with (3.9) and (3.10). Using algorithm 2.6 as elaborated in Rue and Held

(2005), samples from π(x | Ax = e) can thus be efficiently acquired.

3.3.6 GMRF and Bayesian hierarchical models

GMRFs are commonly used for Bayesian hierarchical models since they allow convenient

specification of stochastic dependence between unknown parameters. A common GMRF
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framework for this model type has a three-stage layout: hyperparameters θ specifying a

GMRF X, the field X is linked to data Y which are usually assumed to be conditionally

independent with one another given the field X, and finally the priors for the hyperpa-

rameters θ (in this case, θ represents a collection of θ1 and θ2). Using the most trivial

example, each Yi is only dependent on the corresponding ith element in x, such that both

y and x possess the same number of dimensions. These three stages can be written as

θ ∼ π(θ) hyperparameter stage

X | θ1 ∼ N(0, Q−1(θ1)) latent field stage

Y | x, θ2 ∼ Ga(y | x,θ2) data stage

with data-stage density

π(y | x,θ2) =
n∏
i=1

π(yi | xi,θ2).

The posterior distribution can thus be written as

π(x, θ1, θ2 | y) ∝ π(θ1)π(θ2)π(x | θ1)
n∏
i=1

π(yi | x, θ2)

or more succintly

π(x, θ | y) ∝ π(θ)π(x | θ)
n∏
i=1

π(yi | x, θ).

As an example, Yi is a Poisson random variable with mean µi. Suppose that we

assume that there is also information on covariate zi available for each yi. Hence, we can

assume that Yi now has a mean exp (β0 +zTi β) where β is a vector of unknown regression

parameters that has a multivariate Gaussian distribution with some mean and precision

matrix as its prior. We can also add independent normal random effects, νi with zero

mean to accommodate the random effects from unmeasured extra-Poisson variation and

hence Yi will have a mean of exp (β0 + νi + zTi β). This will also result in a GMRF that

still has a sparse structure which simplifies the computations of the posterior distribution

for the quantities of interest in the model. The exploitation of this feature will be crucial

when Bayesian posterior computation is performed using INLA methodology.
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3.3.7 GMRF approximation for non-normal likelihood

In certain models such as binomial models with logit or probit link functions, we can

employ a data augmentation strategy to obtain full conditional distributions (FCD) that

are still GMRF despite the non-Gaussian likelihood. However, there are cases where a

data augmentation strategy is not feasible to obtain FCDs that still possess a GMRF

characteristics. Fortunately, there is still a method to circumvent this difficulty.

In this scenario, the likelihood can be approximated using a Taylor series expansion

up to the second order. To illustrate this method, we firstly define the GMRF based on

canonical paramters b and Q as

π(x) ∝ exp
(
− 1

2
xTQx+ bTx

)
(3.12)

where x ∼ Np(b, Q), with p as the number of dimensions, mean µ = Q−1b and precision

Q. Suppose that x represents the posterior density of GMRF latent field and it has the

following form

π(x | y) ∝ exp
{
− 1

2
(x− µ)TQ(x− µ) +

n∑
i=1

gi(xi)
}
. (3.13)

In this case, gi(xi) = log{π(yi | xi,θ)}, where θ is the hyperparameter. As an example,

log{π(yi | xi,θ)} might be the Poisson log likelihood. By expanding gixi using a Taylor

series up to the second order around an initial value, µ(0), we can derive its approximation

as follows:

gi(xi) ≈ gi(µ
(0)
i ) + g

′

i(µ
(0)
i )(xi − µ(0)

i ) +
1

2
g
′′

i (µ
(0)
i )(xi − µ(0)

i )2.

By expanding the quadratic term and simple rearrangement, we obtain

gi(xi) ≈ gi(µ
(0)
i )− g′(µ(0)

i )(µ
(0)
i ) +

1

2
g
′′

i (µ
(0)
i )(µ

(0)
i )2 +

{
g
′

i(µ
(0)
i )− g′′i (µ

(0)
i )µ

(0)
i

}
xi +

{1

2
g
′′

i (µ
(0)
i )
}
x2i .

If we set gi(µ
(0)
i ) − g′(µ(0)

i )(µ
(0)
i ) + 1

2
g
′′
i (µ

(0)
i )(µ

(0)
i )2 = ai, g

′
i(µ

(0)
i ) − g′′i (µ

(0)
i )µ

(0)
i = bi and

−g′′i (µ
(0)
i ) = ci, the equation above can be rewritten as

gi(xi) = ai + bixi −
1

2
cix

2
i . (3.14)
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Then, we substitute (3.14) into (3.13) and this results in

π(x | y) ∝ exp
{
− 1

2
(x− µ)TQ(x− µ) +

n∑
i=1

ai + bixi −
1

2
cix

2
i )
}
.

Since ai is a constant, this can be brought into the proportionality sign. By expanding

the quadratic form, removing any constant term (i.e µTQµ) and simple rearrangement,

we shall obtain

π(x | y) ∝ exp
{
− 1

2

(
xTQx+ xTdiag(c)x

)
+ bTx+ µTQx

}
,

∝ exp
{
− 1

2
xT
(
Q+ diag(c)

)
x+

(
Qµ+ b

)T
x
}
.

This has the same form as (3.12), with x ∼ NW (Qµ+ b,Q + diag(c)). The mean, say

µ(1), is obtained by

µ(1) =
(
Q+ diag(c)

)−1(
Qµ+ b

)
.

We can improve the approximation now by expanding about µ(1) and repeat the whole

process for s iterations, where µs is now the mean of π(x | y) with precision Qm =

Q+ diag(cm).
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Chapter 4

Integrated Nested Laplace

Approximation (INLA)

4.1 Introduction

In this chapter, we will introduce the Integrated Nested Laplace Approximation (INLA)

approach as an alternative to MCMC. In 4.2, we will explain the fundamental concepts of

the Laplace approximation in solving integrals. In 4.3, an overview of INLA methodology

will be given with emphases on the INLA steps for fast computation and exploration of the

posterior distribution and the use of the central composite design (CCD) approach when

the number of hyperparameters is moderately large. In 4.4, we will illustrate how INLA

works using a simple linear regression example. In 4.5, we will show how INLA can be

implemented in the survival analysis context, with particular attention given to dynamic

Bayesian survival models based on piecewise constant hazard models. Finally, in 4.6, we

propose a novel extension to the use of INLA which allows us to incorporate missing data

within the INLA framework. This extension greatly extends the applicability of INLA in

areas such as the analysis of survival data.

4.2 Laplace approximation

The Laplace approximation of an integral is the main building block for INLA methodology.

To illustrate this, consider that we want to solve this integral:
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∞∫
−∞

f(x)dx =

∞∫
−∞

exp [log{f(x)}] dx

where f(x), for instance, is proportional the probability density function (pdf) of a random

variable X. We can obtain an approximation to the function log f(x) using a Taylor’s series

expansion up to a second degree Taylor polynomial, assessed at x = x0. We write

log f(x) ≈ log f(x0) + (x− x0)
dlog f(x)

dx

∣∣∣
x=x0

+
(x− x0)2

2

d2log f(x)

dx2

∣∣∣
x=x0

.

If we let x0 be the mode of X (written here as x∗), provided that log [f(x)] is differentiable

at the mode, the term d log f(x)
dx

∣∣∣∣∣
x=x∗

will be zero and the approximation will reduce to

log f(x) ≈ log f(x∗) +
(x− x∗)2

2

d2 log f(x)

dx2

∣∣∣∣∣
x=x∗

.

Hence, the original integrand can thus be approximated by

∫
f(x) dx ≈

∫
exp

(
log f(x∗) +

(x− x∗)2

2

d2log f(x)

dx2

∣∣∣∣∣
x=x∗

)
dx.

The term exp[log{f(x∗}] can be factorised out, resulting in the final form

∫
f(x) dx ≈ exp

(
log f(x∗)

)∫
exp

(
(x− x∗)2

2

d2log f(x)

dx2

∣∣∣∣∣
x=x∗

)
dx.

In this case, we can associate the integral term with a Gaussian density by substituting
d2 log f(x)

dx2

∣∣∣
x=x∗

= − 1
σ2

and which results in

∫
f(x) dx ≈ exp

(
log f(x∗)

)∫
exp

(
− (x− x∗)2

2σ∗2

)
dx.

We can hence clearly see here that the integrand has the form of Gaussian density’s

kernel with mean x∗ and variance σ∗
2
. Therefore, an integrand whose limits are γ and κ

can be approximated by∫ κ

γ

f(x) dx ≈ f(x∗)
√

2πσ2∗
[
Φ
(κ− x∗

σ∗

)
− Φ

(γ − x∗
σ∗

)]
,

where Φ(.) represents the standard Gaussian cdf.
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4.3 Overview of INLA methodology

4.3.1 INLA steps in a nutshell

For this subsection, we use x to represent n variables in the latent Gaussian random field

that include structured additive predictors ηi, the intercept β0, {βk} and the unknown

functions {f (j)}. The hyperparameters are represented by θ and y is the vector of random

observations (refer Eq 3.2). We want to compute the posterior marginal densities π(xi | y)

and π(θj | y) as

π(xi | y) =

∫
π(xi | θ, y)π(θ | y)dθ,

π(θj | y) =

∫
π(θ | y)dθ−j.

The INLA approach is dependent on constructing nested approximations π̃(xi | y) and

π̃(θj | y) using

π̃(xi | y) =

∫
π̃(xi | θ, y)π̃(θ | y)dθ

where

π̃(θj | y) =

∫
π̃(θ | y)dθ−j.

According to Rue et al. (2009), the posterior marginal for the latent field π(xi | y)

can be computed using the following three steps:

� Step 1: Approximate π(θ | y) using a Laplace approximation. The approximation

is represented by this notation: π̃(θ | y). It is derived as

π̃(θ | y) =
π(θ, x | y)

π(x | θ, y)

=
π(θ, x, y)/π(y)

π(x | θ, y)

∝ π(θ, x, y)

π(x | θ, y)

∝ π(θ, x, y)

π̃G(x | θ, y)

∣∣∣∣∣
x=x∗(θ)

.

The denominator represents the Gaussian approximation to the FCD of x and x∗(θ)

represents the mode of the FCD of x given θ.
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This is performed by locating the mode θ∗ for π̃(θ | y) via the optimization of log

π̃(θ | y). A quasi-Newtonian method is employed to produce an approximation

to the second derivative of log π̃(θ | y) by using the difference between successive

gradient vectors. Next, the negative Hessian matrix, H, is computed at modal θ∗

using finite differencing. Then we take the inverse of the Hessian matrix to obtain

our covariance matrix Σ for θ. Subsequently, log π̃(θ | y) is explored by firstly

parameterising θ into a standardised variable z using a z-parametrisation. These

standardised variables, z are computed by firstly obtaining the spectral decomposi-

tion of our covariance matrix, Σ:

Σ = V ΛV T .

Then θ is parametrised as

θ(z) = θ∗ + V Λ1/2z

where θ∗ is the modal configuration. As a simple example, if π̃(θ | y) is a normal

density, z will then be a standard multivariate Gaussian variable, z ∼ N(0, I). This

z-parametrisation is required since the most efficient grid of evaluation points would

not be parallel to the untransformed axes. The z-parameterisation will thus rectify

the scale and rotation of a density which will make numerical integration easier

and more efficient (Smith et al., 1987). Subsequently, log π̃(θ | y) is explored in a

regular grid to locate the bulk of the probability mass.

To illustrate this, let us consider the case where the number of dimensions is 2. In

Figure 4.1, the subfigure on the left shows the new z-axes for z-values obtained via

the previous z-parametrisation and the modal position for a 2-dimensional case. To

locate the probability mass of log [π̃(θ | y)], we initially move along the positive

direction of z1 using a prespecified length of step of, for instance, 1 (denoted by δz

=1), provided

log[π̃(θ(0) | y)]− log[π̃(θ(z) | y)] < δπ

where δπ can be prespecified and take any value deemed appropriate. However, we

can use different values for step length, δz, such as 0.5 or 0.25 if more stringent

accuracy is needed for x. For δπ, Rue et al. (2009) chose δπ = 2.5 in his example.

We then change direction and move along the negative direction of z1 and the same

process is repeated for z2.
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Figure 4.1: Log [π̃(θ | y] exploration (Figure from Rue et al., 2009)

This results in the black dots seen in the subfigure on the right 4.1. To obtain the

intermediate values, we can take combinations of z1 and z2 values and these are

represented by the grey dots in the same subfigure and these values are retained as

long as the condition for πδ above holds. Since the points are placed in regular grids,

all area weights, ∆k, are equal. The posterior marginal of θj, π̃(θj | y), can then be

straightforwardly acquired from π̃(θ | y) by creating an interpolant with respect to

log π̃(θ | y) using the point obtained previously. We can then use this interpolant

to compute the posterior marginals, π̃(θj | y), via numerical integration. Besides,

these integration points (area weights) can also be used as area weights in step 3 of

the INLA for approximating π̃(θ | y).

� Step 2: π̃(xi|θ, y) is approximated by any one of these three methods: Gaussian

approximation, Laplace and simplified Laplace approximation. According to Rue

et al. (2009), the Gaussian approximation is the easiest to compute but the least

accurate due to errors in the location and skewness. The Laplace approximation

gives accurate results and this is computed using the relationship

π̃LA(xi | θ, y) ∝ π(x, θ, y)

π̃GG(x−i | xi,θ, y)

∣∣∣∣∣
x−i=x∗−i(xi,θ)

where x−i = x∗−i(xi,θ) is the modal configuration for the full conditional distri-

bution of x−i given xi and θ, and π̃GG(x−i | xi,θ, y) is the Gaussian approxi-

mation for the full conditional distribution π̃(x−i | xi,θ, y). However, note that
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π̃GG(x−i | xi, θ, y) is not the same as the Gaussian approximation for π(x | θ, y) [

i.e. π̃G(x | θ, y)]. Unfortunately this approach is quite expensive since π̃GG has to

be reevaluated for each xi and θ since its precision matrix, Q , is dependent upon

both xi and θ. There are several modifications that had been proposed by Rue et al.

(2009), which are beyond the scope of our discussion, to improve the computational

efficiency of this approximation strategy but the Laplace approximation is still con-

sidered to have the highest computational cost among those three approximation

strategies (Rue et al., 2009).

The simplified Laplace approximation is the best approximation in terms of optimal

computing efficiency due to the much reduced computational cost of the simplified

Laplace approximation. This is because the simplified Laplace approach approxi-

mates π(xi | θ, y) via a Taylor’s series expansion around the mode up to the third

order which will produce the linear and cubic correction terms for the standardized

Gaussian approximation (Rue et al., 2009). The multivariate skew-normal distribu-

tion is subsequently matched to the linear and cubic correction terms in the Taylor’s

series expansion of π(xi | θ, y) to rectify the errors in location and skewness of the

Gaussian approximation (Azzalini and Capitano, 1999; Rue et al., 2017). This is

considered to be the optimal choice despite a small reduction in computing efficiency.

� Step 3: π̃(xi | y) is obtained by combining the previous two approximations and

integrating out θ using a numerical integration technique called weighted finite sum.

This is represented as follows:

π̃(xi | y) =

∫
π̃(xi | θ,y)π̃(θ | y)dθ

≈
K∑
k=1

π̃(xi | θk,y)π̃(θk | y)∆k.

Here, θ1, . . . ,θk are the points selected in step 1 within the θ space and ∆i, . . . , ∆k

are the weights of integration. Using similar steps, the posterior marginal densities of

π̃(θj | y), j = 1,. . . , M can be computed. These two posterior marginal distributions can

be summarised using means, quantiles and variances. The deviance information criterion

(DIC) (Spiegelhalter et al., 2002, 2014) can also be produced for model comparisons and

assessing the model complexity.

To ensure the efficiency of INLA, additional conditions are required for the latent

Gaussian model. Firstly, the latent Gaussian field x is required to have a conditional
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independence property, making it a latent Gaussian Markov random field that posesses a

sparse precision matrix Q. Besides, the number, m, of hyperparameters (i.e. the unknown

parameters that are not included in the latent field x, for instance the shape parameter,

α, for the Weibull survival time distribution, the variance σ2 for normal observations y,

the overdispersion parameter for a negative binomial distribution etc.) should not be

excessively large (ideally m ≤ 6). However, Rue et al. (2009) demonstrated that using

an integral scheme called Central Composite Design (CCD), this limitation can be easily

circumvented and a larger number of hyperparameters can thus be easily accommodated

(m ≤ 20). In this approach, the integration problem is considered as a design problem and

CCD is used to choose the optimal selection of points to be laid out when approximating

the bulk of probability mass in the higher-dimensional posterior distribution.

4.3.2 INLA and the central composite design approach

(CCD)

As mentioned above, INLA is an efficient algorithm if the number of hyperparameters

is small (m ≤ 6). The efficiency of the algorithm starts to drop when m increases to

a moderate number (6 < m ≤ 12), signified by rising computing time. If we employ

the integration strategy shown in Figure 4.1, we need evaluation points of O(5m). If we

restrict our evaluation points to a lesser magnitude per dimension, the computational cost

is still unacceptably high. Hence, we require a new approach to overcome this impasse.

One way to do this is to consider this integration problem as an experimental design

problem where our task is to find the optimal number of points that should be placed in a

space of m dimensions. One particular approach is based on response surface methodology,

using a conventional design such as a central composite design (CCD) (Box and Wilson,

1951). A CCD is a factorial or fractional factorial design with some clever modifications:

the centre points (central black dot in Figure 4.2) are supplemented by additional design

points (black dots on the squares and corners of the cubes) and star points (the black

dots on the axes, away from the central points (eg. the points with (α, 0),(−α,0), (0,α),

(0,−α) coordinates for m = 2)). Using this approach, we can optimise the number of

evaluation points for numerical integration.
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Figure 4.2: Central composite design (CCD) for m = 2 (left) and m = 3 (right) (Figure
from Montgomery (2017))

As an example, for m = 5, the usual grid-search method requires 3125 evaluation

points if 5 evaluation points per dimension are used (55 = 3125), or at least 243 evalua-

tion points if only 3 evaluation points are placed in each dimension (35 = 243). However,

if the CCD approach is used, we only require 27 evaluation points for numerical integra-

tion. Hence, this approach will be definitely invaluable in preserving the computational

efficiency of INLA.

4.4 A Simple Example

4.4.1 Simple linear regression

In this example, we shall carefully describe how the algorithm works. This example is

adapted from Blangiardo and Cameletti (2015). In this example, we will use a simple

linear regression model with only an intercept. For further information on INLA code

used in this example, please refer to appendix A.10.

Firstly, we shall assume a vector Y to be a realisation of Gaussian random variables

that are identically and independently distributed with mean µ and variance σ2. For

simplicity, we assign independent priors for both µ and σ2 (or τ = 1
σ2 )
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µ ∼ N (µ0, τ)

τ ∼ Ga (a, b).

In the original INLA notation (Rue et al., 2009), the observations can be represented by

the following

Yi | θ, τ ∼ N (ηi, τ) i = 1, . . . , n

where ηi = θ = µ and τ is the precision.

The initial stage of the INLA algorithm is to integrate out θ from the joint distribution

of θ and τ so that the marginal posterior distribution of the hyperparameter τ can be

obtained

p(τ | y) =

∫
p (θ, τ | y) dθ.

Since p(θ, τ | y) ∝ p(y | θ, τ) p(θ) p(τ), we can bypass the integration using the

following relationship

p(τ | y) =
p(θ, τ | y)

p(θ | τ,y)

∝ p(y | θ, τ)p(θ)p(τ)

p(θ | τ,y)

and the distributions for each quantity are

y | θ, τ ∼
n∏
i=1

N (θ, τ−1)

θ ∼ N (µ0, σ
2
0)

τ ∼ Ga(a, b)

θ | τ,y ∼ N (θn, σ
2
n)

where

θn =

τ
n∑
i=1

yi + µ0
σ2
0

nτ + 1
σ2

, σ2
n =

1

nτ + 1
σ2
0

.

One particular point should be stressed here. Since the observations in this example

follow a Gaussian distribution, the quantity p(θ | τ,y) does not require Laplace approx-

imation. Besides, we do not need to perform Laplace approximation even though the
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posterior distribution, p(τ | y), does not have conjugate structure since the terms in the

numerator and denominator that are dependent on θ will cancel out. As a result, we may

opt for any θ values and the most sensible option is to equate this with the conditional

posterior mode, θ = θn. Hence, this results in

p(τ | y) ∝ p(y | θ, τ)p(θ)p(τ)

p(θ | τ,y)

∣∣∣∣∣
θ=θn

=
p(y | θ, τ)p(θ)p(τ)

1√
2πσ2

n

∣∣∣∣∣
θ=θn

. (4.1)

It should be noted that 4.1 is an unnormalised posterior distribution for τ . Hence, the

most possible values for τ were selected ({τ (z)})in order to appraise the the unnormalised

τ pdf. The value of the density function of each τ is computed using

p(τ (z) | y) ∝ 2πσ2
n p(y | θ = θn, σ

2 =
1

τ (z)
)︸ ︷︷ ︸∏n

i=1N (θn,
1
τ
)

p(θ = θn)︸ ︷︷ ︸
N (µ0,σ2

0)

p(τ (z))︸ ︷︷ ︸
Ga(a,b)

(4.2)

which in this case

θn =
τ (z) +

∑n
i=1 yi + µ0

σ2
0

nτ (z)+ + 1
σ2
0

and

σ2
n =

1

nτ (z) + 1
σ2
0

.

The quantities for 4.2 can be computed using the R code given in appendix A.10, starting

from line #1 until the last line in compute quantities section. The unnormalised τ pdf can

be normalised using the codes presented in normalise the tau density (precision) section.

In the next step, we have to analyse p(θ | y) for every τ value within the τ set, {τ (j)},
and for every θ within {θ(j)}. We can do this by assessing p(θ = θ(`) | y) based upon the

Gaussian distribution with mean θn and variance σ2
n. Next, using a finite weighted sum,

we integrate out τ from the joint distribution p(θ, τ | y):

p(θ = θ(`) | y) ∝
∑
j

p(θ(`) | τ (j),y)p(τ (j) | y)∆j

with ∆j = ∆ = 1∑
j p(τ

(j)|y) . The R codes for this second step can be obtained in appendix

A.10 (starting from Select J Grid Points until normalising the density for marginal pos-

terior theta).
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4.4.2 Analysis of Piston-ring failures data

4.4.2.1 The data set characteristics and setup

This data was analysed as a simple INLA example. The data, which was originally

published in Davies and Goldsmith (1972), was obtained from Hand et al. (1994) which is

available for public access via “http://www.stat.ncsu.edu/research/sas/sicl/data/

piston.dat”. The data are on the number of piston-ring failures in three separate legs for

four different types of steam-driven compressors within a building. All compressors have

the same design and were positioned in similar fashion. The purpose of analysing this

data was originally to assess whether the probability of piston-rings failures was associated

with the different types of legs and compressors. Davies and Goldsmith (1972) initially

analysed this data using a simple chi-square test, but a Poisson regression model is also

a suitable alternative for answering this research question.

Table 4.1: Piston-ring failures data adapted from Hand et al. (1994)

Compressor no Leg

North Centre South Total

1 17 17 12 46

2 11 9 13 33

3 11 8 19 38

4 14 7 28 49

Total 53 41 72 166

4.4.3 The relationship between Poisson and multino-

mial likelihoods

The Poisson-multinomial relationship was shown by McCullagh and Nelder (1989) who

demonstrated that the conditional distribution of multiple Poisson random variates given

the total is equivalent to a multinomial distribution. To be more specific, consider counts

from individual groups or species as independent Poisson random variables, each with

mean µi. We can subsequently obtain the joint distribution of these independent Poisson

random variables which can be conditioned on the sum of the total observed count. Hence,

the sum of these independent Poisson random variables is also a Poisson random variable
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with a mean obtained by summing up their respective Poisson means (i.e. µ1 + µ2 +

. . . + µk). Hence, the total observations, N, will also be a random variable (since N =

Y1 + Y2 + . . .+ Yk).

Nevertheless, if we restrict or fix the total of the observations, N = n, then individual

Yi will no longer be independent Poisson random variables since the maximum count of

Y in group i cannot exceed the total observed count. Besides, the assumption of indepen-

dence will also be violated since the larger count of Yi in group i will make the observed

counts in other groups smaller. Hence, the distribution of Y1, . . . , Yk given
k∑
i=1

Yi = n is

no longer Poisson.

To derive it, we first write

Pr(Y1 = n1, . . . , Yk = nk) =
µn1
1 e−µ1

n1!
× . . .× µnkk e−µk

nk!

=
k∏
i=1

µnii e−µi

ni!

= e
−

k∑
i=1

µi
k∏
i=1

µnii
ni!

Since Yi, . . . , Yk are independent,
k∑
i=1

Yi has a Poisson distribution with mean M =
k∑
i=1

µi

(Grimmett and Stirzaker, 2001). Hence, Pr(
k∑
i=1

Yi = n) = e−M Mn

n!

So the conditional distribution of Y1, . . . , Yk given
k∑
i=1

Yi is given by

Pr(Y1 = n1, . . . , Yk = nk |
k∑
i=1

Yi = n) =

Pr(Y1 = n1, . . . , Yk = nk ∩
k∑
i=1

Yi = n)

Pr(
k∑
i=i

Yi = n)

=
Pr(Y1 = n1, . . . , Yk = nk)

Pr(
k∑
i=1

Yi = n)
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=

e
−

k∑
i=1

µi k∏
i=1

µnii / ni!

e
−

k∑
i=1

µi
(

k∑
i=1

µi

)n
/ n!

=

 n!
k∏
i=1

ni


k∏
i=1

( µi
M

)ni

=

 n!
k∏
i=1

ni!


k∏
i=1

(pi)
ni

with pi = µi
M

. Hence, the probability function obtained above is a multinomial probability

function. As a summary, the conditional distribution (i.e. conditioned on the overall

sample size) is a multinomial distribution. For two independent Poisson random variables,

X1 and X2, the distribution of X1 conditional upon their sum is a binomial distribution,

X1 ∼ Bin(n, µ1
[µ1+µ2]

).

4.4.3.1 Modelling strategies

For this scenario, the numbers of piston-ring failures are assumed to follow Poisson distri-

butions. Since the mean of Poisson distribution should be positive, the log-link function

is used to connect the mean number of piston-ring failures with the covariates. The mean

for the number of failures in case i is λi. We write

ηi = ln(λi)

and

ηi =

p∑
j=1

xijβj

where xij is the number of failures according to the types of leg and compressor.

This is hence regarded as a generalised linear model with Poisson errors and log link.

Besides, a zero-sum constraint was also employed using orthogonal contrast. To achieve

this, the dataset was modified so that it will have the data structure as presented in Table

4.2.
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Table 4.2: The modified piston-ring failures data structure based on orthogonal contrasts

No. Leg Failures X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

One North 17 2 0 -1 -1 -1 -2 -2 -2 0 0 0

One Centre 17 -1 1 -1 -1 -1 1 1 1 -1 -1 -1

One South 12 -1 -1 -1 -1 -1 1 1 1 1 1 1

Two North 11 2 0 -1 1 1 -2 2 2 0 0 0

Two Centre 9 -1 1 -1 1 1 1 -1 -1 -1 1 1

Two South 13 -1 -1 -1 1 1 1 -1 -1 1 -1 -1

Three North 11 2 0 1 -1 1 2 -2 2 0 0 0

Three Centre 8 -1 1 1 -1 1 -1 1 -1 1 -1 1

Three South 19 -1 -1 1 -1 1 -1 1 -1 -1 1 -1

Four North 14 2 0 1 1 -1 2 2 -2 0 0 0

Four Centre 7 -1 1 1 1 -1 -1 -1 1 1 1 -1

Four South 28 -1 -1 1 1 -1 -1 -1 1 -1 -1 1

In this data structure, X1 and X2 represent the main effects for legs and X3, X4 and X5

are the main effects for compressors. The rest of the Xs represent the two-way interaction

effects between legs and compressors. Finally, the parameters are given independent

normal distributions and the values are given in Table 4.3.

Table 4.3: The prior means and variances for the intercept (α) and regression coefficients
of the piston-failure model

Parameter Mean Variance

α 2.3 2.2
β1 0 0.5
β2 0 1.5
β3 0 1.5
β4 0 1.5
β5 0 1.5
β6 0 0.25
β7 0 0.25
β8 0 0.25
β9 0 0.75
β10 0 0.75
β11 0 0.75

The R codes for MCMC (using rjags) and INLA (R-INLA) are given in appendix
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A.3. The number of iterations for MCMC was fixed at 100,000 with a burn in of 1,000.

The posterior means and standard deviations are given in Table 4.4. The results are

presented as posterior means and standard deviations (in brackets). Figure 4.3 show

marginal posterior densities of the parameters computed using both methods.

Table 4.4: The comparisons of results for regression coefficients obtained via MCMC and
INLA

Parameter MCMC (Posterior mean (SD)) INLA (Posterior mean (SD))

α 2.5131 (0.0851) 2.5158 (0.0832)

β1 0.0067 (0.0589) 0.0092 (0.0580)

β2 -0.2934 (0.1054) -0.2927 (0.1036)

β3 0.0016 (0.0848) 0.0012 (0.0833)

β4 -0.0432 (0.0843) -0.0433 (0.0833)

β5 -0.1280 (0.0848) -0.1275 (0.0833)

β6 -0.0257 (0.0585) -0.0254 (0.0580)

β7 -0.0035 (0.0585) -0.0031 (0.0580)

β8 -0.0231 (0.0588) -0.0232 (0.0580)

β9 -0.2863 (0.1050) -0.2871 (0.1036)

β10 -0.1583 (0.1050) -0.1591 (0.1036)

β11 -0.0258 (0.1044) -0.0255 (0.1036)

As we can see from the results presented in both Table 4.4 and Figure 4.3, the poste-

rior means, standard deviations and densities are closely similar. However, the computing

time for INLA is much shorter than MCMC (0.87 seconds vs 16.83 seconds). This indi-

cates R-INLA is more than 19 times more efficient than RJAGS in obtaining posterior

distributions.
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Figure 4.3: Comparisons of posterior densities of α till β11 obtained via MCMC (red) and
INLA (blue)
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4.5 INLA and survival analysis

4.5.1 Weibull lifetimes

In survival analysis, the model under consideration can easily be visualised as a latent

Gaussian model (LGM). An example using a Weibull proportional hazard model will

be used to elaborate on the methodological aspects of INLA in the context of survival

analysis. Let us assume that we have survival times t1, t2, . . . , tn which are iid observations

from a Weibull distribution. Hence, the probability density function (pdf) for these

survival times, given the two Weibull parameters α > 0 and λ, can be alternatively

written as

f(ti | α, λ+) = αtα−1i exp{λ+ − exp{λ+}tαi }.

where exp{λ+} = λ (the scale parameter of a Weibull pdf).

For Weibull-distributed survival times, the survival function S(t) = Pr(T > t) is

S(ti | α, λ+) = exp{− exp{λ+tαi }}.

Hence, the likelihood for α and λ+ is

L(α, λ+ | D) =
n∏
i=1

f(ti|α, λ+)δi S(ti|α, λ+)1−δi

=
n∏
i=1

[αtα−1i exp{λ+ − exp{λ+}tαi }]δi [exp{− exp{λ+}tαi }]1−δi

=
n∏
i=1

[αtα−1i exp{λ+}]δi [exp{− exp{λ+}tαi }]

= α
∑
δi exp{λ+

n∑
i=1

δi +
n∑
i=1

([(δi)(α− 1)log(ti)]− exp(λ+)tαi )}.

In the equation above, δi represents the survival status of the subject and hence will

be recorded as 1 if the event occurs (hence there is a survival time, Ti; the first term on

the right hand side exists, the second term is 1) or 0 if the observation is right censored

(Censoring time (Ci); second term on the right hand side of the equation exists, first

term is 1). Since λ+i = ηi, the covariates can be brought in to establish a regression

model. Hence log λi = zTi β; zi is the p × 1 vector of the covariates and β is the vector

of regression coefficients. From here, we can allow the predictor to have a structured
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additive form (equation 4.1). Then, Gaussian priors are allotted to each of the elements

on the right side of the equation:

λ+i = ηi = β0 +

nf∑
j=1

wijf
(j)(uij) +

nβ∑
k=1

βkzki + εi (4.3)

so that x will have a Gaussian field property and a precision matrix of Q(θ1). This is a

latent Gaussian model with a latent field, x, hyperparameters θ = {θ1, θ2}; θ2 = α. The

observed data, D, are the survival status and survival time of each subject (ti, δi) with i

= 1,2,3,. . .,n. It can hence be seen that the likelihood of the observed data is dependent

on the latent field x only via the predictor ηi. As a result, INLA can easily be applied in

this setting.

An INLA scheme could also be implemented for a piecewise constant hazard model.

Within the piecewise constant hazard model set-up, the log likelihood contribution of the

ith individual with survival time ti (where ti ∈ [τj−1, τj) is given by

log[fi(t)] = log[hi(t)
δiSi(t)] = δij log λij −

{
j−1∑
k=1

λik(τk − τk−1) + (t− τj−1)λij

}
(4.4)

where δij is either 0 if the ith individual experiences the event or 0 if censoring occurs.

Equation 4.4 can be further rewritten as

log[fi(t)] = δijηij − (t− τj−1) exp{ηij} −
j−1∑
k=1

exp{ηik}(τk − τk−1) (4.5)

where λij = λ0j exp{XT
i β} and λ0j is the baseline hazard function in the jth interval.

Since the log likelihood is only dependent on Gaussian Latent field via the predictors

η1, . . . , ηj(where ηj = log(λij) = log(λ0j +XT
i β)), the INLA scheme cannot be directly

implemented for such model. Fortunately,the piecewise constant hazard model can still

be rewritten into a Poisson regression framework, through which the INLA scheme can

be directly executed.

Holford (1976), Holford (1980) and Laird and Olivier (1981) have demonstrated the

equivalence of piecewise constant hazard model and Poisson regression model and this

framework has been utilised by the previous researchers to fit a variety of survival models

using traditional statistical software such as GLIM(Aitkin and Clayton, 1980). To proof
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this, let δij ∼ Po(µij) where µij = λijtij. The pdf of δij is therefore

f(δij) =
µ
δij
ij exp{−µij}

δij!
.

Since δij can only be 0 or 1, δij! can be safely disregarded and the log likelihood contri-

bution of the ith observation is therefore given by

`i(λ) =

j(i)∑
j=1

δij log(µij)− µij

=

j(i)∑
j=1

δij log(λijtij)− λijtij

=

j(i)∑
j=1

δij log(λij) + δij log(tij)− λijtij. (4.6)

Since δij log(tij) term does not involve any λij, it can be disregarded and therefore 4.6 is

proportional to 4.4 since the summation of over j intervals equals to the summation of

j(i).

Hence, from (4.5), we can clearly observe that the first two terms on the right hand

side of the equation, δijηij − (t− τij) exp{ηij} has the form of Poisson log likelihood with

mean (t − τij) exp{ηij} which is observed either 0 or 1, depending on the value of δij.

The third term,
j−1∑
k=1

exp{ηik}(τk − τk−1), has a k − 1 Poisson log likelihood with mean

exp{ηik}(τk − τk−1) since individual i survives at the end of each previous j − 1 interval

and therefore δij is always 0. Therefore, we can fit the piecewise constant hazard model

within the framework of INLA by treating each ti as “augmented data points” originated

from a Poisson distribution.

4.6 INLA and missing data: INLA within

MCMC (INLA-MCMC) approach

In this section, we propose to extend the INLA within MCMC (INLA-MCMC) method

proposed by Gomez-Rubio and Rue (2018) to survival analysis with missing covariate

values. In their paper, Gomez-Rubio and Rue (2018) used a multiple imputation scheme
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to fill in the missing covariate values for linear regression models before obtaining the

posterior estimates for model parameters. Our approach is different since we directly

sample the missing values and then apply this to various survival models. The overview

of this proposed method will be given in this section.

Let θ be a collection of unknown parameters and hyperparameters in a Bayesian

hierarchical model. In this case, θ represents all of the parameters of the latent effects, x,

and all the hyperparameters which include hyperparameter of the latent field x, where x

| θ1 ∼ (0, Q−1(θ1)] and the hyperparameter in the likelihood of the observations or data

[i.e. y | x, θ2 ∼
n∏
i=1

π (yi | x, θ2)]. To ensure that INLA can be used to fit the model,

we fix some of the model parameters. Hence, we split θ into θξ and θ−ξ, where θξ is

the collection of parameters we fixed and θ−ξ is the parameters we do not fix. Thus, by

conditioning on θξ, INLA can be used to obtain the posterior marginals of all parameters

in θ−ξ, π (θ−ξ | y,θξ), and the conditional marginal likelihood, π(y | θξ). In R-INLA, π(y

| θξ) is automatically stored and therefore can be easily called for and combined with the

prior distributions for θξ to obtain the posterior marginal distributions for each element

in θξ.

The Metropolis-Hastings algorithm (Gamerman and Lopes, 2006) can subsequently

be used to draw values for θξ so that its joint posterior distribution can be obtained. At

step i + 1 of the Metropolis Hastings algorithm, new values θ
(i+1)
ξ for θξ are proposed

and the new values are accepted with an acceptance probability

α = min

{
1,
π(y | θ(i+1)

ξ ) π(θ
(i+1)
ξ ) q(θ

(i)
ξ | θ

(i+1)
ξ )

π(y | θ(i)ξ ) π(θ
(i)
ξ ) q(θ

(i+1)
ξ | θ(i)ξ )

}
.

If the proposed value is not accepted, then θ
(i+1)
ξ is set to θ

(i)
ξ . Here π(y | θ(i)ξ ) and

π(y | θ(i+1)
ξ ) are the marginal likelihoods of the model conditioned upon θ

(i)
ξ and θ

(i+1)
ξ ,

which may be acquired by fitting the model using INLA with values θξ fixed to θ
(i)
ξ and

θ
(i+1)
ξ . The prior density of θξ, evaluated at θ

(i)
ξ and θ

(i+1)
ξ , are π(θ

(i)
ξ ) and π(θ

(i+1)
ξ )

respectively. Hence, at each step of the Metropolis-Hastings algorithm, only a model

conditional upon the proposal needs to be fitted. Besides, the INLA calculation will also

provide the posterior marginals π(θ−ξ | y,θ(i+1)
ξ ) for all the parameters in θ−ξ.

After a suitable number of iterations, the Metropolis-Hastings algorithm will produce

samples from π(θξ | y), from which the posterior marginals of the parameters in θξ can

be derived. Apart from that, we will obtain a family of conditional marginal distributions

for all the parameters in θ−ξ. Their posterior marginals can be obtained by combining
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all these conditional marginals and integrating out over θξ using

π(θ−ξ,i | y) =

∫
π(θ−ξ,i | y,θξ)π(θξ | y)dθξ '

1

N

N∑
j=1

π(θ−ξ,i | y,θ(j)ξ ).

Values { θ(j)ξ }Nj=1 represent N samples from π(θξ | y) obtained with the Metropolis-

Hastings algorithm. Thus, the posterior marginal of θ−ξ,i can be obtained by averaging

the conditional marginals obtained at each iteration of the Metropolis-Hastings algorithm.

4.7 Summary

In this chapter, we described the fundamentals of INLA and application of INLA to

survival data. We then showed how, by nesting INLA, with an MCMC scheme we can

efficiently calculate posterior marginal distribution of parameters in models even when

there are missing covariate values. In Chapter 7, we will evaluate the usefulness of this

method using some practical examples of survival data.
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Chapter 5

Applied Datasets

5.1 Introduction

In Chapter 4, we discussed the application of INLA to survival data. In particular, in

Section 4.6, we introduced a new method, INLA within MCMC, which allows the use of

INLA with survival datasets when there are missing covariate values. In Chapter 7, we

will illustrate the use of this method by applying it to a number of data sets. This will

also allow us to evaluate the method’s usefulness.

In this chapter, we present details of the data sets used for application purposes. In

sections 5.2 and 5.3, the characteristic details of the kidney infection and non Hodgkin

Lymphoma datasets will be respectively elucidated. In 5.4, the Malaysian lung cancer

dataset will be described.

5.2 Kidney infection dataset

The kidney infection data set arose from a study which was performed to evaluate the

time to the first exit-site infection in patients who required catheters for renal insufficiency

(Nahman et al., 1992). Forty three (36.1%) patients used catheters which were placed

surgically (Group 1) whilst for the other 76 (63.9%) patients, the catheters were placed

percutaneously (Group 2). The total number of patients is thus 119. This data set

contains no missing covariate information. There are three variables in the dataset:

� Infection indicator - 0: no, 1: yes

� Cathether placement - 1: surgical placement, 2: percutaneous placement
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� Time - Times to first exit-site infections (in months).

This dataset is used as a motivational example.

5.3 Non-Hodgkin Lymphoma

5.3.1 Introduction and classification

Non Hodgkin lymphoma (NHL) is a type of blood cancer. Its origin is from lymphocytes

(a subtype of white blood cells), primarily B lymphocytes (85-90% of cases) whilst the

rest are derived from T-lymphocytes. According to the recent statistics, 12,294 new cases

of NHL were reported in 2009 in the UK, with 4452 deaths in 2010 (Shankland et al.,

2012). The age-standardised incidence of NHL was reported to have risen by 35% in the

period 1988-2007. Fortunately, the survival of NHL patients in England and Wales has

considerably improved: 50.8% of NHL cases are expected to survive longer than 10 years,

a marked improvement compared to 21.8% 10-year survival rate for those diagnosed in

the 1970s (Shankland et al., 2012).

There are diverse classifications for non Hodgkin lymphoma but the 2008 WHO clas-

sification for NHL has been adopted based on the universal consensus of experts in this

field. See Table 5.1.

5.3.2 Development of NHL

The mechanisms by which lymphoma develops are complex. For B cell lymphoma, the

mutations that drive the development of B cell lymphomas occur primarily during the

recombination of genes responsible for the production of heavy and light chain antibodies,

made possible by enzymes that enable double strand DNA breaks (Shankland et al., 2012).

In normal B cell development, these breaks in the DNA strands are easily repaired by

DNA repair mechanisms. Nevertheless, these strand breaks may also trigger chromosomal

translocations which in turn result in proto-oncogene activation. This culminates in the

development of B cell lymphoma.

On the other hand, the pathogenesis of T cell lymphoma is less well understood. Most

subtypes are not associated with any well-characterised genetic or biological alterations

to the T cell normal development. Recurring chromosomal translocations are rarely seen

in the development of T-cell NHL (Shankland et al., 2012). Exposure to human T-cell
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Table 5.1: 2008 WHO classification of Non Hodgkin Lymphoma (Shankland et al., 2012)

Diseases

B-cell lymphoma

Precursor B cell Precursor B-cell lymphoblastic leukaemia or lymphoma

Mature B cell Chronic lymphocytic leukaemia/small lymphocytic lym-
phoma; lymphoplasmacytic lymphoma; splenic marginal-
zone lymphoma; extranodal marginal-zone B-cell lymphoma
of mucosa associated lymphoid tissue; nodal marginal-zone
B-cell lymphoma; follicular lymphoma; mantle-cell lym-
phoma; diffuse large B-cell lymphoma; Burkitt’s lymphoma

B-cell proliferations
of uncertain malig-
nant potential

Lymphomatoid granulomatosis; post-transplantation lym-
phoproliferative disorders (polymorphic)

T-cell and Natural Killer (NK)-cell lymphoma

Precursor T cell Precursor T-cell lymphoblastic leukaemia or lymphoma

Extranodal mature
T cell and NK cell

Mycosis fungoides; cutaneous anaplastic large-cell
lymphoma; extranodal NK-cell or T-cell lymphoma;
enteropathy-type lymphoma; hepatosplenic lymphoma; sub-
cutaneous panniculitis-like lymphoma; primary cutaneous
CD8-positive lymphoma; primary cutaneous γ/δ T-cell
lymphoma; primary cutaneous CD4-positive lymphoma

Nodal mature T
cell and NK cell

Peripheral T-cell lymphoma, not otherwise specified; an-
gioimmunoblastic lymphoma; anaplastic large-cell ALK-
positive lymphoma; anaplastic large-cell ALK-negative lym-
phoma; adult T-cell leukaemia/lymphoma

leukemia virus 1 (HTLV-1) and Epstein Barr Virus (EBV) have been identified to be

one of the causes (aetiology) of T-cell lymphoma development (Rizvi et al., 2006). The

infections by these viruses are believed to result in the clonal rearrangement of T-cell

receptors, with evidence pointing towards clonal integration of HTLV-1 (Ohshima et al.,

1997). The prognostic outlook for T-cell lymphoma is poor with a median survival of 8

months following diagnosis (Rizvi et al., 2006).

The pathogenesis of NHL development for both subtypes and potential therapeutic

targets are summarised in Figure 5.1.
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Figure 5.1: Pathogenesis of NHL and therapeutic targets (Shankland et al., 2012)
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5.3.3 Method of data collection for SNLG dataset

The Scotland and Newcastle Lymphoma Group (SNLG) has maintained a database of

Non Hodgkin Lymphoma patients from Northern England and Scotland since 1979. So

far, data on 18000 NHL patients have been included in the database. The data collection

process was performed using Population Adjusted Clinical Epidemiology (PACE) method-

ology employed by the Northern Regional Haematology Group (NRHG). In brief, the core

methodology of PACE lies in the establishment and maintenance of a regional registry

for all NHL subjects that includes relevant clinical profiles on each subject (demographic

and clinical profiles; prognostic outcomes etc.) in a geographical area that pertains to the

census population of incidence cases (Proctor and Taylor, 2000). Figure 5.2 shows the

areas covered in the data collection process.

Figure 5.2: Areas of data collection
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5.3.4 Covariates and outcomes

The original SNLG dataset includes all types of haematological malignancy. For the

purpose of modelling, only subjects with Diffuse Large B Cell Lymphoma (DLBCL), a

subtype of B cell lymphoma, were selected and used. In total, data from 2025 DLBCL

patients were included in the dataset, with more than 150 prospective prognosticators and

2 outcome measures (overall survival (OS) and time to first relapse (TFR)) recorded for

each NHL subject (Zhao, 2010). The whole data collection process was conducted between

January 1990 and January 2004 (14 years). The data set was made available for use by

Professor Stephen J. Proctor (lead investigator), Dr Michal Sieniawski (co-investigator)

and Ms Jo White (data manager) who were several of the original investigators from the

SNLG research group.

Out of the 2025 DLBCL patients, 1391 patients received the standard Cyclophos-

phamide, Hydroxydaunorubicin (also known as doxorubicin hydrochloride), Oncovin®

(vincristine sulfate) and Prednisone (CHOP) chemotherapy regime. To remove the effect

of treatment heterogeneity on patient survival, only this subset of patients were included

in the analysis.

Fourteen covariates and one measured outcome were selected for the final dataset.

Based on the preliminary analysis of the dataset, only 636 (45.7%) of DLBCL patients were

found to have complete information on all 14 covariates. The numbers of DLBCL patients

experiencing the event of interest (death) and censored observations are 738 and 653

respectively. Only three covariates (age, gender and Ann-Arbor stage) were completely

observed. The operational definitions and descriptive summaries of each covariate are

given as follows:

� Age - Age of patient (in years) at diagnosis.

� Gender - Gender for each subject, recorded either 1 or 2 for male and female,

respectively.

� Stage - Refers to Ann Arbor Stage (Carbone et al., 1971; Shankland et al., 2012).

There are 4 categories for this covariate, each corresponds to an Ann-Arbor Stage

(See Table 5.2). The number of patients diagnosed with DLBCL stage I, II, III and

IV is 255 (18.3%), 386 (27.7%), 354 (25.4%) and 396 (28.5%) respectively.

� LDH - This was originally recorded as a continuous covariate representing the

patient’s serum lactate dehydrogenase level. This is recorded in U/L (units per
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Table 5.2: Ann Arbor staging system for Non Hodgkin Lymphoma

Stages Descriptions
I The lymphoma is only present in a single lymph node or

lymph node region
II The lymphoma is found in two or more than two nodal regions

on the same side of diaphragm
III The lymphoma is present in the lymph node regions on the

both side of diaphragm
IV Disseminated lymphoma that can be found beyond lymph

node regions affecting extranodal sites (e.g. pleura, bone mar-
row, liver etc)

litre). The LDH ratio was obtained by dividing the raw value of serum lactate

dehydrogenase with the upper limit of the reference range for LDH used by each

centre of data collection. For analytical purposes, we categorised this covariate into

three levels based on the recommendation by Zhao et al. (2014): 1 if LDH ratio ≤
1; 2 if 1 < LDH ratio ≤ 3; and 3 if LDH ratio > 3. The values within the normal

range of LDH were interval-censored.

� Haemoglobin - This represents the amount of haemoglobin (an oxygen carrying

compound in the red blood cells). It is a continuous covariate and measured in g/L.

� WBC - This represents white blood cell (WBC) count in human blood. The unit of

measurement is ×109/ L and it was recorded as a continuous covariate. The normal

range of WBC in a healthy human is between 4 to 10 × 109/ L.

� ECOG - This represents the Eastern Cooperative Oncology Group performance

status (Oken et al., 1982). The ECOG scale has 5 ordinal categories. It is utilised

for evaluating the fitness of cancer patients which, in turn, can be used for deciding

the most suitable therapies for the patients. The descriptions for each ECOG grade

are given in Table 5.3.

� Albumin - This is a continuous covariate representing the concentration of albu-

min (a type of protein produced by the human liver) in the serum. The normal

reference range for serum albumin in a healthy human is between 35 g/L and 50

g/L (Longmore et al., 2014). Since albumin is rarely above the normal range,

albumin is classified into two categories: -1 (normal values) and 1 (low values or

hypoalbuminaemia).
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Table 5.3: ECOG performance status grading system (Oken et al., 1982)

Grades Descriptions
0 Fully active,able to carry on all pre-disease performance with-

out functional limitations. Equivalent to Karnofsky perfor-
mance score of 90 and 100

I Restricted in physically strenuous activity but ambulatory
and able to carry out work of a light or sedentary nature,
e.g., light house work, office work. Equivalent to Karnofsky
performance score of 70 and 80

II Ambulatory and capable of all selfcare but unable to carry out
any work activities; up and about more than 50% of waking
hours. Equivalent to Karnofsky perfomance score of 50 and
60.

III Capable of only limited selfcare; confined to bed or chair more
than 50% of waking hours. Equivalent to Karnofsy perfor-
mance score of 30 and 40.

IV Completely disabled; cannot carry on any selfcare; totally
confined to bed or chair. Equivalent to Karnofsky perfor-
mance score of 10 and 20.

V Dead. Karnofsky performance score of 0.

� AP - This covariate represents the concentration of serum alkaline phosphatase

(AP). It is an enzyme that is present in the human body, predominantly in the

liver, bile duct, kidney and bone. The normal range is between 30 and 150 IU/L

(Longmore et al., 2014). Supranormal level of AP indicates increased disease ac-

tivities in the liver and bone of patients with NHL. For analytical purposes, AP is

categorised into normal (-1) or high (1).

� Urea - This represents the concentration of urea in a patient’s serum. The normal

range is between 2.5 and 6.7 mmol/L (Longmore et al., 2014). High serum urea

concentration indicates failing kidneys. In this dataset, serum urea concentration is

categorised into normal (-1) or high (1).

� Extranodal- This is a categorical covariate that indicates the presence of extran-

odal diseases. This means that lymphoma cells have already disseminated beyond

the lymph nodes. This is coded as -1 (absent) or 1 (present).

� Bulk - This represents the presence of bulky disease which is based on the size of

lymph node mass of 10 cm or more (in any axis) (Pfreundschuh et al., 2008). In

this dataset, it is coded either 1 (present) or -1 (absent).
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Table 5.4: The descriptive summaries of numerical covariates and percentage of missing
data for the SNLG data set (n = 1391)

Variable Min Max Mean (SD) nmiss (%)

Age 18 92 62 (14.21) 0 (0)

Haemoglobin 74 178 126.4 (18.86) 52 (3.7)

WBC 1.1 27.2 8.0 (3.5) 46 (3.3)

� Bone marrow - This is a categorical covariate recorded either as 1 (present) or

-1 (absent). It indicates DLBCL involving bone marrow which is confirmed by the

presence of lymphoma cells in the bone marrow under histopathological examination

of bone marrow aspirate or biopsy.

� Bsy - This indicates the presence of B symptoms which are: fever, night sweats

and weight loss, suggesting a poorer course of disease. This is coded as 1 (present)

or -1 (absent).

For outcome measures, the only variable used is OS. It is defined as follows.

� OS - Overall survival of the patients since diagnosis until death in months (also

known as time to death). The event status is recorded as either 1 (died) or 0

(censored). The time is calculated from the date of first diagnosis until the date of

death ascertained from the death certificates (event) or to the last date of follow up

if no death was noted (censored).

The descriptive summaries and percentages of missing data for the numerical, binary

and ordinal covariates are given in Tables 5.4 - 5.5. The pattern of missing covariates and

the number of DLBCL patients associated with them are presented in Table 5.6.

Table 5.5: The descriptive summaries of binary and ordinal covariates and percentage of
missing data for the SNLG data set (n = 1391)

Variable Value n (%) nmiss (%)

Gender Male 704 (50.6) 0 (0)

Female 687 (49.4)

Stages I 255 (18.3) 0 (0)

II 386 (27.7)

Continued on next page
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Table 5.5 – Continued from previous page

Variable Value n (%) nmiss (%)

III 354 (25.4)

IV 396 (28.5)

LDH ≤1 365 (26.2) 522 (37.5)

>1 - 3 339 (24.4)

>3 153 (11.9)

ECOG 0 0 (0) 146 (10.5)

I 452 (32.5)

II 527 (37.9)

III 184 (13.2)

IV 71 (5.1)

V 11 (0.8)

Albumin Normal / High 986 (70.8) 97 (7.0)

Low 308 (22.1)

AP Normal 983 (70.7) 78 (5.6)

High 330 (23.7)

Urea Normal 999 (71.8) 51 (3.7)

High 341 (24.5)

Extranodal Present 465 (33.4) 1 (0.1)

Absent 926 (66.5)

Bulk Present 678 (48.7) 109 (7.8)

Absent 604 (43.4)

Bone marrow Present 191 (13.7) 196 (14.1)

Absent 1004 (72.2)

Bsy Present 794 (57.1) 13 (0.9)

Absent 584 (42.0)
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Table 5.6: The number of missing covariates with the corresponding frequency of DLBCL
patients in the SNLG data set

Number of missing covariates Frequency Percentage (%)

0 636 45.72

1 449 32.28

2 188 13.52

3 57 4.10

4 22 1.58

5 18 1.29

6 12 0.86

7 8 0.58

9 1 0.07

Total 1391 100.00

5.4 Lung cancer

5.4.1 Lung cancer- a global and Malaysian perspec-

tives

The worldwide incidence of lung cancer has rapidly risen since the turn of the 20th century.

For instance, 228,190 new lung cancer cases and 159,480 lung cancer-associated mortality

were estimated for the USA population in 2013. These account for 28% and 26% of

cancer-associated mortality for American males and females, respectively (Siegel et al.,

2013). In Malaysia, lung cancer was considered rare in the 1950s. The earliest study

conducted to estimate lung cancer prevalence in Malaysia was by Marsden (1958) that

demonstrated lung cancer was the 8th commonest malignancy in male and not even in

the top ten among females. In contrast, according to the Malaysian National Cancer

Registry 2006, it had become the 3rd commonest cancer among the Malaysian population

after breast and colorectal cancers. The peak incidence of lung cancer is in the 7th decade

of life with younger age at diagnosis for non smokers (mean age 54.7) than smokers (mean

age 61.7).

There are several putative epidemiological risk factors that have been identified for lung

cancer. Smoking remains the predominant risk factor, followed by exposure to environ-
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mental pollutants such as nickel, arsenic, asbestos and others. A few genetic susceptibility

loci have been identified to contribute towards increased risk of lung cancer among first de-

gree relatives of a proband with lung cancer. Individuals with inflammatory comorbidites

such as Chronic Obstructive Pulmonary Disease (COPD), asthma and emphysema are

found to have an elevated risk of developing lung cancer whilst hay fever was associated

with lower risk of lung cancer.

The lung cancer types can be divided into two large classes; small cell lung cancer

(SCLC) which is the more aggressive type, and non-small cell lung cancer (NSCLC). The

NSCLC type is further divided into three common subtytpes which are adenocarcinoma,

squamous cell carcinoma, and large cell carcinoma. Of these, squamous cell carcinoma is

deemed the more aggressive NSCLC subtype which results in poorer overall survival and

progression free survival.

5.4.2 Malaysian advanced non-small cell lung can-

cer dataset - Hospital Universiti Sains Malaysia

(HUSM)

Hospital Universiti Sains Malaysia (HUSM) is a major teaching hospital located in Kota

Bharu, the state capital of Kelatan (a Malaysian state that is located near the Thailand

and Malaysian border) (Figure 5.3). It is a tertiary medical centre receiving referrals

mostly from the Malaysian east coast region. The oncology service is provided by the

Department of Nuclear Medicine, Radiotherapy and Oncology which is a spin off from

the Department of Medicine since 1995. On the average, it receives 15-25 newly diagnosed

primary lung cancer cases per annum.

Based on an initial survey of the hospital records performed in August 2014, there are

approximately 600 lung cancer cases which were reported from 1996 until 2014. So far,

the data collection process is still ongoing and the data set now has 397 advanced lung

cancer cases. All of them received a platinum-based regimen as the first-line palliative

chemotherapy regime. Nevertheless, the data gathered so far should be independently

verified to ascertain the accuracy of the data.

Based on initial analyses, there are 241 (60.7%) patients that had experienced the

event of interest (death) and 156 (49.3%) censored observations. There are 157 (39.55%)

patients with complete covariate information. The covariates and measured outcomes of

interest are basically similar to the SNLG dataset except that there are several additional
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Figure 5.3: Malaysian map showing the location of HUSM (green arrow)

covariates and Ann Arbor stage, extranodal disease, bulky mass, bone marrow

involvement, B symptoms and urea were excluded since these only pertain to the

NHL prognostic index. Furthermore, stage was categorised into either IIIB (locally ad-

vanced unresectable lung cancer, coded as -1) or IV (metastasised to other organs, coded

as +1) since all lung cancer patients were at terminal stages. Besides, only advanced

lung cancer patients with ECOG score of 0-2 were included in the data set since higher

ECOG scores excluded the patients from receiving palliative chemotherapy and this would

definitely impact patient survival. The operational definitions for the eight additional

covariates and two other covariates (stage and histology) that have classification system

different from those used for the SNLG data set are given as follows.

� Race - The ethnicity of patients, recorded either 1 or 2 as Malays and non-Malays

respectively.

� Smoking - This is a categorical covariate representing the smoking status of the

advanced lung cancer patients at the time of diagnosis. It is recorded as 1, 2, 3 for

never smokers, ex-smokers and active smokers respectively. This classification was

based on the recommendations by Simonato et al. (2001).

� Stage - It is recorded as 1 and 2 which respectively correspond to Tumour, Node,

Metastasis (TNM) stage IIIB and IV (Rami-Portas et al., 2017).

� Weight loss - It is defined as more than 5% weight loss in comparison to the

patient’s baseline weight 6 months before the diagnosis of lung cancer (Scott et al.,

2002). It is recorded as 1 and 2 which correspond to the absence and presence of

pre-treatment weight loss.
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� Brain metastasis - The presence of lung cancer cells / mass in the brain indicates a

widespread disease, indicating poor prognosis (metastasis is defined as the spread of

cancer beyond the original / primary site of cancer). This is a categorical covariate

coded as : 1 (metastasis absent), 2 (metastasis present).

� Sodium - A continuous covariate representing the serum sodium concentration in

lung cancer subjects. The usual range is between 135 mmol/L and 145 mmol/L

(Longmore et al., 2014). A low serum sodium concentration indicates the presence

of Syndrome of Inappropriate ADH (SIADH) secretion, signifying poor prognosis.

� Neutrophil count - A continuous covariate that is measured in ×109 unit. The

normal range is between 2.5 and 7.5 × 109 cells/L (Longmore et al., 2014). A high

neutrophil count indicates the presence of intense inflammation inside the tumour

environment, indicating poor prognosis.

� Platelet count - A continuous covariate. Platelets are a type of blood cell that

is responsible for the formation of blood clot. The normal range is between 150

and 450 ×109 cells/L (Longmore et al., 2014). It has been documented that the

presence of cancer cells induces a hypercoagulable state resulting in an increase in

the platelet count. Both neutrophil and platelet counts are modelled as continuous

covariates.

� Histology - This is a categorical covariate representing the types of lung cancer.

There are four categories within this covariate which are coded as follows: 1 -

Adenocarcinoma , 2 - Squamous cell carcinoma, 3 - Large cell carcinoma,

4 - Small cell carcinoma.

� Epidermal Growth Factor Receptor (EGFR) mutational status - The pres-

ence of the EGFR mutation in lung cancer cells results in a higher response rate to

molecular targeted therapy such as gefitinib or erlotinib. Consequently, the survival

in those with these genetic features is superior to those without this mutation. It

was estimated by Pao et al. (2004) that approximately 35% of lung cancer subjects

of East Asian origin harbour this genetic mutation. Hence, this categorical covariate

should ideally be included in the development of the prognostic index for advanced

lung cancer patients. The data are recorded as 1 for positive EGFR mutation and

-1 for absent EGFR mutation.
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On further analysis, EGFR mutational status was excluded due to unreliable reporting

by the HUSM pathology department. As a result, EGFR was no longer considered in the

analysis.

The descriptive summaries of numerical, binary and ordinal covariates of the Malaysian

advanced lung cancer data set are given in Tables 5.7 - 5.8. The missing covariate patterns

and the corresponding frequency of advanced lung cancer patients are presented in Table

5.9.

Table 5.7: The descriptive summaries of numerical covariates and percentage of missing
data for the Malaysian advanced lung cancer data set (n = 397)

Variable Min Max Mean (SD) nmiss (%)

Age 41 88 58.9 (10.92) 83 (20.9)

Haemoglobin 72 180 122.9 (21.77) 93 (23.4)

WBC 1.3 11.4 6.2 (2.01) 95 (23.9)

Sodium 125 142 136.0 (3.6) 76 (19.4)

Neutrophil count 0.60 7.60 4.2 (1.40) 95 (23.9)

Platelet count 33.0 882.0 369.8 (139.53) 77 (19.4)

Table 5.8: The descriptive summaries of binary and ordinal covariates and percentage of
missing data for the Malaysian advanced lung cancer data set (n = 397)

Variable Value n (%) nmiss (%)

Gender Male 207 (52.1) 0 (0)

Female 190 (47.9)

Race Malay 276 (69.5) 96 (24.2)

Non-Malay 25 (6.3)

Smoking Never smokers 36 (9.1) 83 (20.9)

Ex-smokers 121 (30.5)

Active smokers 157 (39.5)

Stage IIIB 127 (32.0) 85 (21.4)

Continued on next page
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Table 5.8 – Continued from previous page

Variable Value n (%) nmiss (%)

IV 185 (46.6)

ECOG 0 44 (11.3) 71 (17.9)

I 196 (49.4)

II 86 (21.7)

LDH ≤1 88 (22.2) 95 (23.9)

>1 - 3 214 (53.9)

Albumin Normal 117 (29.5) 107 (27.0)

Low 173 (43.6)

AP Normal 159 (40.1) 91 (22.9)

High 147 (37.0)

Weight loss Present 208 (52.4) 83 (20.9)

Absent 106 (26.7)

Brain metastasis Present 104 (26.2) 95 (23.9)

Absent 198 (49.9)

Histology Adenocarcinoma 175 (44.1) 87 (21.9)

Squamous 89 (22.4)

Large cell 22 (5.5)

Small cell 24 (6.0)
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Table 5.9: The missing covariate patterns for the Malaysian advanced lung cancer data
set

Number of missing covariates Frequency Percentage (%)

0 157 39.55

1 2 0.50

2 5 1.26

3 7 1.76

4 22 5.54

5 38 9.57

6 43 10.83

7 37 9.32

8 34 8.56

9 26 6.55

10 15 3.78

11 10 2.52

12 1 0.25

Total 397 100.00

5.5 Summary

In this section, the detailed characteristics of each applied dataset have been described.

We shall elaborate on the prior information used in Chapter 6.
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Chapter 6

Prior Information and Prior

Distribution Construction

6.1 Introduction

In this chapter, the construction of prior distribution will be described for modelling

purposes. In 6.2, a short introduction on the conceptual underpinnings of prior elicitation

is given. In 6.3 we shall describe and summarise the relevant information obtained from the

previous literature for prior constructions for the SNLG data and present the meta analysis

results. In 6.4, the information relevant to prior construction for the Malaysian HUSM

advanced lung cancer survival model will be presented along with meta analysis results. In

6.5 and 6.6, prior elicitation and construction for Weibull and piecewise constant hazard

survival models will be presented, including both hierarchical and autoregressive priors in

the piecewise case. In section 6.7, we shall conclude our findings for this chapter.

6.2 A short introduction to prior elicitation

6.2.1 Preliminaries

The purpose of prior elicitation is to obtain and quantify information about uncertain

quantities in a probabilistic construction based upon the knowledge acquired from the

experts in the respective areas. In other words, the main objective of prior elicitation

is to appropriately capture the experts’ knowledge and represent it in proper probability

distributions. To make things clearer, we shall define experts as individuals whose know-
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how and knowledge are worth having for constructing coherent priors (O’Hagan et al.,

2006).

In statistics, there are two circumstances where eliciting prior information is important.

They are design of experiments (DOE) and Bayesian statistics (O’Hagan et al., 2006).

In the former, prior elicitation is important to identify variables whose uncertainty is of

considerable magnitude. This is to ensure that the experts’ prior knowledge will assist

in designing efficient experiments. In the latter, however, prior information is used to

augment or supplement the information contained in the data. It is the case, nevertheless,

that in Bayesian statistics the prior information may not be very influential since the

information contained in the data far outweighs the information represented by the prior.

Hence, methodical or systematic prior elicitation will usually be performed if the experts’

prior is noticeably very informative or when the amount of information conveyed by the

data is limited.

6.2.2 Types of uncertainty

According to O’Hagan et al. (2006), uncertainties can be classified into two groups:

aleatory and epistemic uncertainties. The term aleatory is derived from the Latin

alea, die, or aleator, dice player. Hence, we can straightforwardly deduce that aleatory

uncertainty is attributed to uncertainties that arise from randomness in a process. On

the other hand, epistemic uncertainty originates from experts’ incomplete mechanistic

knowledge of a process (the word epistemic is derived from a Greek word, episteme,

which means knowledge). To better distinguish the differences between these two, we

shall consider the following example.

Let us consider an example where we model survival times for some homogeneous group

of patients using an exponential (λ) distribution. Beliefs about the survival time, T, for a

future patient will involve aleatory uncertainty because, even if we know the value of λ, T

is still a random variable, and epistemic uncertainty because we do not know the value of

λ. Hence, for example, Var(T) = Eλ[Var (T| λ)]+Varλ[E(T | λ)]. In this case, the problem

which elicitation methods need to overcome is how to separate the epistemic uncertainty,

masured by Var(λ), from the aleatory uncertainty, measured by Var(T| λ) (and Varλ[E(T |
λ)]), which both contribute to Var(T). For Bayesian statisticians, both epistemic and

aleatory components of uncertainty can be represented by probability distributions.
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6.3 Prior information for the Non-Hodgkin

Lymphoma data set (SNLG)

6.3.1 Information from previous literature

To search for relevant literature that provides information for prior construction for SNLG

model parameters, we used the Patient (or Population), Intervention (or Prognostic Fac-

tor), Comparison and Outcome (PICO) search strategy (Schardt et al., 2007). Search

engines and databases such as Google Scholar, PubMed and Scopus were utilised to

obtain the relevant literature using the following keywords: Non Hodgkin Lymphoma,

survival, prognostic factor, prognosticators, survival determinants. Any article that was

not available online was manually searched and obtained from the university library (the

Walton Medical Library). Overall, 35 studies were reviewed to obtain the necessary

information for constructing the prior distributions of the survival parameters and 12 of

them had to be discarded due to the following reasons: 1) inadequate information on pre-

cision; 2) questionable research methodology and authenticity of data collection process;

3) unsatisfactory sample heterogeneity in unmeasured but important prognostic factors.

Only 23 studies whose results are deemed acceptable were used for prior construction for

the model parameters. Their hazard ratios and 95% confidence intervals (CIs) are given

as follows:

� Troppan et al. (2014): A retrospective analysis of 290 Austrian patients diagnosed

with DLBCL between June 2004 and April 2013 at the Division of Hematology,

Medical University of Graz, Austria. Cox proportional hazard model was utilised

to obtain the hazard ratios and their respective 95% confidence intervals for the

relevant survival parameters:

– Age > 60 years old: 3.52 (95% CI: 1.48, 3.58) [Multiple Cox model]

– Ann Arbor stage III and IV vs Ann Arbor Stage I and II: 2.38 (95% CI: 1.21,

4.68) [Multiple Cox model]

– LDH >200 IU: 1.62 (95% CI: 0.83, 3.16) [Simple Cox model]

� Zhao et al. (2014): Analyses of 1650 DLBCL patients diagnosed between June

2000 and December 2010 diagnosed at 7 National Comprehensive Cancer Network
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(NCCN) research centres, USA. The patients were followed up until the end of De-

cember 2011. The hazard ratios of the following survival parameters were obtained

using multiple Cox PH model:

– LDH ratio (LDH-R): ≤1: 1.0, >1-3: 2.1 (95% 1.9, 2.7), > 3: 3.3 (95% CI: 2.3,

4.8)

– ECOG performance status: 1-2 = 0, ≥2: 1.9 (95% CI: 1.5, 2.4)

– Ann Arbor stage: Stage III and IV = 1.5 (95% 1.1, 2.0)

– Extranodal disease: 1.5 (95% CI: 1.2 , 1.9)

� Slymen et al. (1990): A total of 105 DLBCL patients diagnosed at the Arizona

Cancer Center, USA between 1978 and 1987 were included in the analyses which is

based on Cox PH model

– Ann Arbor Stage III and IV: 2.63 (95% CI: 1.11, 6.25)

– B Symptoms: 1.98 (95% CI: 0.99, 3.95)

� Li et al. (2012): A total of 437 Chinese patients who were diagnosed with DLBCL

between January 2001 and May 2010 at 6 Shanghai hospitals, China were included

in the analysis.Analyses were based on Cox PH model. Separate regression coeffi-

cients were obtained for rituximab (R-CHOP) and non-rituximab-treated (CHOP)

patients:

R-CHOP group:

– Age >60 years: 1.011 (95 % CI: 0.987, 1.037)

– Extranodal sites >1: 1.572 (95% CI: 1.059, 2.334)

CHOP group:

– Age >60 years: 1.017 (95 % CI: 0.999, 1.034)

– Extranodal sites >1: 1.172 (95% CI: 0.915, 1.502)

� Flowers et al. (2013): In total, 701 DLBCL patients (533 Caucasians, 144 African

Americans) who were recipients of medical care at 2 research centers (Emory Uni-

versity and University of Alabama at Birmingham, USA) between 1981 and 2010

were included in this retrospective analysis. Cox PH method were utilised to obtain

the hazard ratios and 95% CIs for each relevant prognostic factor for DLBCL
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– Age> 60 years: 1.53 (95% CI: 1.17, 2.00)

– Gender (male) : 1.23 (95% CI: 0.97, 1.57)

– ECOG Performance status (≥ 2): 2.62 (95% CI: 1.97, 3.49)

– Elevated LDH level: 1.59 (95 % CI: 1.15, 2.21)

– No of extranodal sites involvement (≥ 2): 0.92 (95% CI: 0.66, 1.28)

– B symptoms: 1.20 (95% CI: 0.92, 1.58)

� Chen et al. (2012): DLBCL exclusive samples (n = 100). Period of recruitment:

Jan 2000-Dec 2009. Single institution (Taiwan). All patients were treated with

rituximab-containing regime. Three variables are significant on Multiple Cox PH

model and an additional four are found to be important prognosticators for overall

survival on Simple Cox PH model:

Multiple Cox PH:

– ECOG performance ≥ 2 : 4.936 (95% CI: 1.818, 13.403)

– LDH (defined as ≥ 206 IU\L): 3.400 (95%CI: 1.155, 10.007)

Simple Cox PH:

– Haemoglobin (defined as ≥120g/dL: 0.518 (95% CI: 0.239, 1.120)

– Albumin (<37 g / dL): 2.451 (95% CI: 0.471, 12.821)

– B symptoms: 2.952 (95% CI: 1.296, 6.726)

– Bone marrow involvement: 4.100 (95% CI: 1.526, 11.015)

� Song et al. (2010): A total of 96 Korean patients who were diagnosed with primary

extranodal DLBCL in 3 hospitals between April 2003 and October 2008. They

received 6 to 8 cycle of R-CHOP as their therapeutic regime. The only reported

hazard ratio reported is

– Tumor bulk (≥ 7.5 cm, in non GC only): 1.420 (95% CI: 0.542, 2.297)

� Carella et al. (2013): This study involves DLBCL patients who received rituximab-

containing therapeutic regime and recruited from 43 Brazillian and Italian Institu-

tions (n = 1793). Cox PH model was used with bootstrapping to accommodate for

confidence level error (nbootstrap = 1000).
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– Male: 1.60 (95% CI: 1.30, 1.96)

� Takahashi et al. (2012): A retrospective analysis of data on DLBCL patients who

were recruited from 47 Japanese institutions and treated with R-CHOP from 2003

until 2006 (n = 1221). Multivariate Cox PH model was used to obtain thehazard

ratios and their respective %95 confidence intervals for the following prognostic

factors

– Age > 60: 2.9 (95% CI: 1.5, 5.6)

– Stage III and IV: 1.70 (95% CI: 1.0, 2.9)

– Elevated LDH: 1.9 (95% CI: 1.1, 3.2)

– ECOG performance status ≥ 2: 1.7 (95% CI: 0.9, 3.1)

� Chung et al. (2007): A total of 489 DLBCL subjects who were diagnosed at Cross

Cancer Institute, Edmonton, Canada between 1986 and 1997 were included in this

study. The mean age at diagnosis is 68 years (range: 20-100). Fifty five subjects

(n = 55) have concordant bone marrow involvement out of a total of 489 subjects.

Male subjects predominates the sample (>97%).

– Concordant bone marrow involvement: 1.87 (95% CI: 1.25, 2.81)

� Carson et al. (2012): US army veterans diagnosed with DLBCL between 1st Oc-

tober 1998 and 31st December 2008 (n = 2534). Analyses were performed using Cox

PH model in these predominantly rituximab-treated subjects (80.8%). B symptoms

is a time varying covariate

– Age (continuous scale): 1.04 (95% CI: 1.03, 1.04)

– Stage: II: 0.97 (95 % CI: 0.62, 1.05); III: 1.18 (95% CI: 0.78, 1.76); IV: 2.42

(95% CI: 1.74, 3.36) (0-2 months post DLBCL diagnosis)

– Stage: II: 1.20 (95 % CI: 0.97, 1.48); III: 1.51 (95% CI: 1.23, 1.84); IV: 1.97

(95% CI: 1.65, 2.35) (> 2 months post DLBCL diagnosis)

– B symptoms: 0.621 (95% CI: 0.385, 0.859) (0 - 2 months post DLBCL diagno-

sis)

– B symptoms: 0.239 (95% CI: 0.104, 0.372) (> 2 months post DLBCL diagnosis)
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� Peyrade et al. (2011): A multicentre, single arm, phase II study involving 150

DLBCL patients from France and Belgium. The median age at diagnosis is 83

(range 80-95), with slightly more than a third are man (34%). All were treated with

a combination of rituximab with low dose CHOP (R-miniCHOP).

– Bulky disease (tumour mass ≥ 10 cm): 1.4 (95% CI: 0.6, 2.9)

– Serum albumin (≤35 g / L): 3.2 (95% CI: 1.4, 7.1)

– Number of extranodal sites > 1: 1.2 (95% CI: 0.6, 2.4)

� Dalia et al. (2014): This study involves a cohort of 124 American patients with

DLBCL, recruited between 2007 and 2010 from a single institution (Moffitt Cancer

Center, Tampa, Florida). The median age of the subjects is 58 years (range 20-84),

with 62% of them are males.

– Serum albumin (≤ 37 g / dL): 3.846 (95% CI: 6.250, 1.587)

– Elevated LDH (hazard ratio obtained from Simple Cox PH Model): 2.11 (95%

CI: 0.98, 4.52)

– Extrandodal Disease (hazard ratio obtained from Simple Cox PH Model): 1.28

(95% CI: 0.69.2.35)

� Frederiksen et al. (2012): A retrospective analysis of Danish Non Hodgkin Lym-

phoma patients whose data were obtained from The Danish National Lymphoma

Registry (LYFO) database (similar to our SNLG database). The sample size of this

study is 6234.

– WHO performance status (another name for ECOG performance status): Class

I: 1.80 (95% CI: 1.65, 1.95); Class II: 3.31 (95% CI: 2.91,3.76); Class III: 4.23

(95% CI: 3.53, 5.07); Class IV: 7.37 (95% 5.79, 9.39)

– Ann Arbor Stage: Stage II: 1.10 (95% CI: 0.81, 1.50); Stage III: 1.18 (95% CI:

0.93, 1.49); Stage IV: 1.35 (95% CI: 1.18, 1.53)

– Elevated LDH: 1.71 (95% CI: 1.55, 1.90)

– Extranodal lesion: 1.09 (95% CI: 0.98, 1.21)

� Ngo et al. (2008): The only study from South East Asia that provides the hazard

ratio estimates for the relevant prognostic factors in DLBCL. In total 279 Singa-

porean subjects with DLBCL were included in the analysis and most of them were
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treated with either R-CHOP or CHOP regimes. Therefore, two different estimates

per factor were obtained after subjects were stratified by the types of chemotherapy

regimes received.

CHOP group (n = 183):

– Age > 60 years: 2.882 (95% CI: 1.793, 4.631)

– LDH ( > 380 µ / L): 2.333 (95%CI: 1.181, 4.609)

– Albumin (<37 g / L): 2.294 (95%CI: 1.284, 4.099)

– Ann Arbor stage III and IV: 2.599 (95%CI: 1.526, 4.428)

R-CHOP group (n = 96):

– Male: 8.386 (95% CI: 1.848, 38.058)

– Ann Arbor stage III and IV: 6.364 (95% CI: 1.847, 21.929)

� Ziepert et al. (2010): Data from 1062 DLBCL patients treated with chemother-

apeutic regime containing rituximab were obtained from three databases of RCTs

(MinT, MegaCHOEP and RICOVER-60) and retrospectively analysed.

– Age(> 60 years): 2.4 (95% CI: 1.7, 3.4)

– Elevated LDH (based on upper limit of normality used by different trial pro-

tocols): 2.2 (95% CI: 1.6, 3.0)

– ECOG Performance status > 1: 1.8 (95% CI: 1.3, 2.6)

– Ann Arbor stage III / IV: 1.5 (95% CI: 1.1, 2.2)

– Extranodal disease >1: 1.3 (95% CI: 0.9, 1.8)

� Aaldriks et al. (2015): Data from a sample of 44 geriatric NHL patients (aged

70 years and above) who were recruited from 1 university and 3 general hospitals

in Netherlands. The period of recruitment is between May 2004 and February 2010

were included in the analyses. Tehy were all recipients of R-CHOP based treatment

regime. The hazard ratio estimates are

– Elevated LDH (≥ 250 U / L): 0.92 (95% CI: 0.27, 3.11)

– Albumin (< 35 g / L): 1.83 (95% CI: 0.81, 4.16)
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– Creatinine (A surrogate measure of renal function that is more specific than

urea. Hazard ratio estimate for this parameter is used as a substitute for urea):

1.84 (95% CI: 0.70, 4.86)

� Yan et al. (1995): DLBCL (n = 60). Not included since no estimates on hazard

ratio for prognostic covariates for DLBCL patients were reported.

� Oki et al. (2008): DLBCL (n = 221). One hundred and nineteen (n = 119) of

NHL patients were treated with CHOP regime whilst the rest (n = 102) received

R-CHOP. It is a single institution study conducted at Aichi Cancer Centre, Nagoya,

Japan).

– B symptoms: 2.37 (95% CI: 1.16, 4.83)

� Møller et al. (2003): Two hundred and twenty one (n = 221) low risk Danish

DLBCL patients from Western Denmark covering Jutland and Funen (obtained from

the population-based LYFO registry) with IPI score of 0 and who were recipients

of a mixture of treatments (anthracycline-based chemotherapy, locoregional radio-

therapy or surgery with curative intent) were included in the analyses. The median

age at diagnosis is 50 years. The data included in the analysis were restricted to

patients who were diagnosed with DLBCL from 1983 until 31st December 1998.

The subjects were then followed-up for three years (the last date of observation: 7th

January 2002 - 134 alive subjects at the end of the observation period).

– Ann-Arbor stage II vs stage I: 2.7 (95% CI: 1.5, 4.8)

– Age > 50 years: 1.8 (95% CI: 1.0, 3.3)

� Cox et al. (2008): One hundred and one (n = 101) Italian CD20+ aggressive large

B cell lymphoma (DLBCL: 89 patients; Primary mediastinal large B cell lymphoma:

12 patients; Developed from or associated with low grade lymphoma: 15 patients)

patients receving immunochemotherapy between January 2003 and March 2007 were

included in the analysis.

– ECOG Peformance Status ≥2: 5.004 (95% CI: 1.635, 11.754)

� Maartense et al. (2000): A cohort of 1028 Danish patients with NHL of different

histologies were included in the final analyses. Old REAL classification system for
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NHL was used to identify and group patients with different NHL histologies. The

subjects were included prospectively in the registry (NHL registry of the Compre-

hensive Cancer Center West (CCCW), Netherlands) from June 1981 until December

1989. Hazard ratio estimates were computed using Esteve’s relative survival prob-

ability model (Esteve et al., 1990).

– Elevated LDH: 2.39 (95% CI: 1.93, 2.96)

– Male: 1.235 (95% CI: 1.010, 1.515)

� Advani et al. (2010): Two hundred and sixty seven (n = 267) DLBCL subjects

aged 60 years and older (median age: 69 years (range: 60-92)) and randomised to

R-CHOP arm in the US E4494 intergroup trials (ECOG4494, CALGB9793) were

included in the analyses. Cox PH model was used and model fit was assessed using

AIC. Concordance index (area under ROC) was used as a measure of discrimination.

– Elevated LDH: 2.1 (95% CI: 1.4, 3.1)

– Extranodal sites >1: 2.3 (95% CI: 1.6, 3.2)

� Hirakawa et al. (2010): A retrospective analysis of 152 Japanese DLBCL patients

treated with R-CHOP like primary and maintenance therapies. The problem with

this study is the results reported as odds ratio (not hazard ratio) despite Cox PH

model was used for analysis of overall survival (OS) of this cohort. Only one prog-

nostic factor that is relevant to our study is included in here since no data on other

prognostic factors deemed important by the findings of this study such as relative

dose intensity of less than 70%, febrile neutropenia and prophylatic use of G-CSF

were recorded in our dataset.

– Albumin (< 35 g / L): 2.397 (95% CI: 0.793, 7.246)

� Hayward et al. (1991): This study is a retrospective analysis of 972 subjects

(n = 972) with NHL (the early SNLG cohort). The main problem with this study

is the heterogeneous subsets of patients were included in the analysis. Besides, the

hazard ratios for prognostic factors influencing the overall survival of NHL patients

were given but no 95% CI were reported.

– B symptoms: 0.42

– Leukocytes: 0.42

112



Chapter 6. Prior Information and Prior Distribution Construction

– Ann Arbor stage III and IV: 0.29

– Age - continuous: 0.02

� Christina et al. (2013): This study was conducted among transformed lymphoma

patients (from other types of lymphoma such as follicular lymphoma, marginal zone

and MALT lymphoma to DLBCL) (n = 81) who were identified from the Moffitt

Cancer Center Total Cancer Care Database, Tampa, Florida between January 2001

and December 2011. The median age at diagnosis is 60 years, with male to female

ratio of 0.72 (58 females). The median time to DLBCL transformation is 3.4 years.

– B symptoms: 3.1 (95% CI: 1.5, 6.4)

– Elevated LDH: 2.6 (95% CI:1.0, 6.6)

6.3.2 Meta analysis results for Non-Hodgkin Lym-

phoma prognostic factors

Ideally, standard Bayesian meta analysis technique should be used to synthesise the re-

sults. However, our purpose of performing this meta analysis was solely for obtaining

guidance for the choice of prior distributions for the regression coefficient for each Non

Hodgkin Lymphoma prognostic factor. Therefore a random effect meta analysis model

and an empirical Bayesian estimator were used to account for the heterogeneity of study

results. For more information, refer to Viechtbauer (2005, 2010). Meta analysis was

performed using the metafor package version 2.0.0 (Viechtbauer, 2017) which was im-

plemented in R. The forest plots for each NHL prognostic factors are given in Figure

6.1. The mean and variances for each parameter based on the meta analysis results are

presented in Table 6.1.

6.4 Prior information for the Malaysian-HUSM

Lung Cancer data set

6.4.1 Information from previous literature

In total, 19 prior studies have been identified as having adequate information on the

estimates of the regression coefficients for each prognostic factor for lung cancer. The

113



Chapter 6. Prior Information and Prior Distribution Construction

Figure 6.1: Forest plots of NHL prognostic factors
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Table 6.1: The synthesised mean and variances for each regression coefficients for survival
predictors of Non-Hodgkin Lymphoma obtained from meta analyses

Parameters Mean Variances

βGender 0.52 0.1258

βMarrow 0.88 0.1359

βAlbumin 0.97 0.0280

βLDH 0.64 0.0026

βB−symptoms 0.26 0.1266

βExtranodal 0.25 0.0101

βBulky 0.34 0.0738

medical literature was searched using the PICO method (Schardt et al., 2007) for relevant

literature using the following keywords: advanced lung cancer, prognostic factors, prog-

nosticators, survival determinants. The search engines and databases used were Google

Scholar, PubMed, and Scopus databases. Older articles that were not available online

were manually searched at the university library (Walton Medical Library, Newcastle

University).

We initially found 30 studies that were relevant for extracting information on prognos-

tic factors. However 11 studies had to be excluded for the following reasons: 1) inadequate

reporting of measure of precision; 2) poor research methodology; 3) article retraction due

to unethical misconduct such as plagiarism and data falsification. The studies that are

finally included are as follows:

� Hespanhol et al. (1995): This study involves 411 patients with advanced non-

small cell lung cancer (NSCLC) in Portugal, recruited between 1984 and 1990.

Twenty one clinical, anatomical, haematological and biochemical parameters were

assessed and the following were found to be statistically important prognostic factors

for lung cancer survival based on multivariate Cox model.

– Albumin (normal vs low): 0.588 (95% CI: 0.463,0.747)

– Weight loss: 1.624 (95% CI: 1.283, 2.056)

– Stage (IV vs IIIB): 1.576 (95% CI:1.445, 2.310)

– LDH (high vs low): 1.268 (95% CI:1.010, 1.592)
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– Gender (male vs female): 1.410 (95% CI: 1.048, 1.896)

� Simmons et al. (2015): This study involves 319 patients with advanced NSCLC at

2 university hospitals in Greece (University Hospitals of Heraklion and Larissa). The

patients were recruited between September 2006 and February 2010. The hazard

ratios for the following prognostic factors were found to be statistically important

for lung cancer survival based on Cox model:

– Gender (male vs female): 1.67 (95% CI: 1.14, 2.34)

– Weight loss: 1.49 (95% CI: 1.18, 1.88)

� Leung et al. (2012): This study involves 261 patients with surgically inoperable

NSCLC at Wishaw General Hospital, Lanarkshire, UK. The patients were recruited

and prospectively followed-up from May 2001 to November 2004. The hazard ratios

for the following prognostic factors were found to be important for lung cancer

survival based on Cox model:

– Gender (male vs female): 1.09 (95% CI: 0.85, 1.41)

– Weight loss (yes vs no): 0.86 (95% CI: 0.58, 1.28)

– WBC:1.23 (95% CI: 0.93, 1.61)

– Stage (IV vs III): 1.56 (95% CI: 1.21, 2.01)

� Maeda et al. (2000): Data on two hundred and sixty one (n = 261) Japanese

patients with advanced NSCLC , collected by Okayama Lung Cancer Study Group,

Japan between 1978 and 1992, were retrospectively analysed in this study. The

hazard ratios for the following prognostic factors were considered important for

advanced lung cancer survival based on Cox model:

– Albumin (normal vs low): 1.69 (95% CI: 1.19, 2.41

– Stage (IV vs IIIB): 1.71 (95% CI: 1.27, 2.30)

� Hsu et al. (2012): One hundred forty four (n = 144) Taiwanese patients with

advanced NSCLC were recruited from National Taiwan University Hospital between

January 2000 and February 2009. The median survival time of this study cohort was

14.7 months. The hazard ratios for the following prognostic factors were considered

important for advanced lung cancer survival based on Cox model:
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– Gender (male vs female): 1.70 (95% CI: 1.08, 2.68)

– Smoking status (ever smoker vs non smoker): 0.96 (95% CI: 0.65, 1.41)

– Weight loss: 2.72 (95% CI: 1.39, 5.30)

– Haemoglobin (low vs normal): 2.08 (95% CI: 1.15, 3.77)

– WBC: 1.62 (95% CI: 0.94–2.78)

– Platelet (high vs normal): 1.70 (95% CI: 1.00, 2.90)

– Albumin (low vs normal): 3.26 (95% CI: 1.69, 6.30)

– Stage (IV vs IIIB): 2.62 (95% CI: 1.50, 4.57)

� Ye et al. (2014): Data were collected from 300 Chinese patients with advanced

NSCLC attending 40 clinical sites in Mainland China as part of the B9E-AA-B004

clinical trial. The median overall survival time was 15.6 months (95% CI: 12.5, 17.4).

The hazard ratios for the following prognostic factors were considered important for

advanced lung cancer survival based on Cox model:

– Gender (male vs female): 1.211 (95% CI: 0.847, 1.733)

– Smoking status (Never smoker vs ever smoker): 1.08 (95% CI: 0.779, 1.50)

� Svaton et al. (2014): Five hundred and forty four (n = 544) Czech patients

with advanced stage NSCLC who were treated with Erlotinib at the Department of

Pneumology and Phthisiology, Pilsen University Hospital, Czech Republic between

2006 and 2013 were included in this study. The following factors were found to be

important determinants of advanced lung cancer survival in this study cohort and

their hazard ratios are:

– Gender (male vs female): 1.25 (95% CI: 0.98, 1.58)

– Smoking status (Ever smoker vs never smoker): 0.96 (95% CI: 0.70, 1.32)

– Stage (IV vs IIIB): 1.49 (95% CI: 1.12, 1.97)

– Sodium (low vs normal): 1.87 (95% CI: 1.47, 2.39)

� O’Mahony et al. (2016): Sixty two (n = 62) patients with advanced stage NSCLC

who received treatments at Rush University Medical Centre (RUMC), Chicago, USA

were recruited into this study. Patient’s age, which was recorded as a continuous

variable, was found an important determinant for overall survival and the hazard

ratio is:
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– Age (continuous): 0.94 (95% CI: 0.99, 1.09)

� Mandrekar et al. (2006): A data set containing the relavant determinants of

lung cancer survival were obtained from 1056 patients with advanced stage NSCLC

pooled from 9 North Central Cancer Treatment Group (NCCTG) trials in the USA.

The patients were recruited between 1985 and 2001. The hazard ratios for the

important determinants of overall survival in this study cohort are as follows:

– Gender (male vs female): 0.99 (95% CI: 0.84, 1.17)

– Stage (IV vs IIIB): 2.61 (95% CI: 2.04, 3.34)

– Weight loss (yes vs no): 1.82 (95% CI: 1.29, 2.60)

– WBC (high vs normal): 1.43 (95% CI: 1.22, 1.67)

– Haemoglobin (low vs high): 1.51 (95% CI: 1.28–1.78)

� Park et al. (2009): In total, 316 patients with recurrent NSCLC receiving sal-

vage gefitinib treatment at Samsung Medical Centre (SMS), Seoul, Korea between

January 2002 and December 2005 were included in this study. Their clinical and

laboratory test results were obtained from the SMS database. The median over-

all survival of this study cohort is 6.4 months and the researchers determined the

following prognostic factors were relevant for predicting lung cancer overall survival:

– Gender (male vs female): 1.51 (95% CI: 1.18, 1.94)

– Smoking status (current smoker vs never smoker): 1.34 (95% CI: 1.02, 1.75)

– Stage (IV vs IIIB): 1.07 (95% CI: 0.80, 1.43)

– Brain metastasis (yes vs no): 1.13 (95% CI: 0.85, 1.50)

– ALP (high vs low): 1.50 (95% CI: 1.13, 2.00)

– Albumin (low vs normal): 1.45 (95% CI: 1.10, 1.93)

– WBC (high vs normal): 1.38 (95% CI: 1.03, 1.86)

� Du et al. (2013): Overall, 258 advanced NSCLC patients who were diagnosed at

Kaifeng second people’s hospital, Henan, China between March 2001 and September

2011 were included in this study cohort. The median overall time is 20 months and

only high platelet count is a significant prognosticator for overall survival

– Platelet (high vs low): 4.15 (95% CI: 3.09, 5.59)
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� Kim et al. (2014): Data on 854 patients with inoperable advanced NSCLC di-

agnosed at the Seoul University College of Medicine between January 2007 and

September 2009 were retrospectively analysed in this study. The median overall

time is 340.5 days (i.e approximately a year) in those with high platelet counts and

569.5 days in those with normal platelet levels. The important prognostic factors

identified in this study and their hazard ratios are:

– Gender (male vs female): 1.55 (95% CI:1.30, 1.84)

– Stage (IV vs IIIB - estimated): 1.98 (95% CI: 1.45, 2.69)

– Platelet (high vs low): 1.51 (95% CI: 1.14, 2.00)

� Ulas et al. (2014): This study involves data which were retrospectively collected

from 462 advanced NSCLC patients who were treated at the Department of Medical

Oncology, Oncology Teaching and Research Hospital, Ankara, Turkey between 2000

and 2010. In this study cohort, the median overall survival time is 11 months with a

median follow-up time of 44 months. The important determinants of overall survival

for this study cohort are:

– Gender (male vs female): 1.18 (95% CI: 0.86, 1.63)

– Smoking status (Ever smoker vs non smoker): 1.16 (95% CI: 0.87, 1.55)

– Brain metastasis (yes vs no): 1.56 (95% CI: 1.26, 1.98)

– Haemoglobin (low vs normal): 1.13 (95% CI: 0.92, 1.39)

– WBC (high vs normal): 1.55 (95% CI: 1.27, 1.89)

– Platelets (high vs normal): 1.11 (95% CI: 0.88, 1.39)

– ALP (high vs normal): 1.51 (95% CI: 1.16, 1.97)

– LDH (high vs normal): 1.31 (95% CI: 1.00, 1.70)

– Albumin (low vs normal): 1.28 (95% CI: 0.98, 1.67)

� Zhang and Ran (2015): In total, 773 NSCLC patients at advanced stages who

were diagnosed and treated at Kimmel Cancer Centre, Thomas Jefferson Hospital,

Greater Philadelphia area, USA between 1998 and 2011 were included as this study

cohort. The median overall survival time is 7.0 months in the training cohort. The

important prognostic factors determined from this study and their hazard ratios

are:
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– Age (continuous): 1.005 (95% CI: 0.997, 1.013)

– Stage (IV vs IIIB): 1.53 (95% CI: 1.24, 1.89)

� Lim et al. (2018): In total, 217 terminal stage NSCLC patients with malignant

pleural effusion who were diagnosed and treated at 6 hospitals in Korea between

January 2012 and July 2016 were included in this study. The median overall sur-

vival time is 16.2 months and nearly two thirds of the patients (62.6%) received

conventional chemotherapy regimens as the first line of treatment whilst the rest

were recipients of targeted therapies directed against either Epithelial Growth Factor

Receptor (EGFR) or Anaplastic Lymphoma Kinase (ALK) translocational muta-

tions. The hazard ratios for the major determinants of overall survival in this study

cohort are:

– Gender (male vs female): 1.620 (95% CI: 1.057, 2.481)

– Smoking status (ever smoker vs never smoker): 1.166 (95% CI: 0.971, 1.399)

– Platelet (high vs normal): 1.523 (95% CI: 1.059, 2.191)

– Haemoglobin (low vs normal): 1.245 (95% CI: 0.810, 1.914)

– Albumin (low vs normal): 1.724 (95% CI: 1.039, 2.861)

� Matsunuma et al. (2014): In total, 69 terminal stage NSCLC patients who

received palliative care at the Palliative Care Unit of Komatsu Municipal Hospital,

Ichikawa, Japan in 2012 were included in this retrospective study. The median

overall survival time is 30 days, a very short survival time due to the terninal stage

of illness. The important prognostic factors determined from this study and their

hazard ratios are:

– Sodium (low vs normal): 2.17 (95% CI: 1.01, 4.68)

– Albumin (low vs normal): 2.37 (95% CI: 1.05, 5.36)

� Fiala et al. (2016): On the whole, clinical and laboratory data on 457 ad-

vanced stage NSCLC patients treated with erlotinib (a type of targeted therapy

directed against EGFR mutation) who were diagnosed and treated at Faculty Hos-

pital, Pilsen, Czech Republic between between 2005 and 2014 were retrospectively

analysed. The median overall survival time is 10.0 months. The hazard ratios of

important determinants of lung cancer survival in this study cohort are:
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– Gender(male vs female): 1.08 (95% CI: 0.87, 1.33)

– Smoking status (ever smoker vs never smoker): 1.16 (95% CI: 0.86, 1.56)

– Stage (IV vs IIIB): 1.29 (95% CI: 1.01, 1.64)

– Albumin (low vs normal): 1.66 (95% 1.16, 2.38)

� Teramukai et al. (2009): In total, 338 advanced stage NSCLC patients who

hadn’t received any chemotherapy and received usual care between March 2001 and

April 2005 from 45 institutions which were under the Japan Multinational Trial

Organisation LC00-03 were were included in this study. They then received two

separate regimens of chemotherapy. The hazard ratios of relevant overall survival

determinants are:

– Gender (male vs female): 1.35 (95% CI: 0.98, 1.85)

– Smoking status (current smoker vs never smoker): 1.56 (95% CI: 1.18, 2.06)

– Weight loss (yes vs no): 1.30 (95% CI: 0.96, 1.76)

– Stage (IV vs IIIB): 1.24 (95% CI: 0.88, 1.75)

– LDH (high vs normal): 1.57 (95% CI: 1.20, 2.05)

� Schad et al. (2018): This is a non-controlled cohort study involving 158 stage IV

NSCLC patients receiving mistletoe as an adjunct to conventional chemotherapy

regimes. The study participants were recruited from multiple centres in Germany

between February 2010 and June 2016 based on the data available from the German

Network Oncology registry. The median overall survival times were respectively

17.0 and 8.0 months in those receiving conventional chemotherapy and mistletoe

and conventional chemotherapy alone. The hazard ratios of the determinants of

lung cancer survival are as follows:

– Age (continuous): 1.00 (95% CI: 0.98, 1.03)

– Gender (male vs female): 1.65 (95% CI: 1.04, 2.62)

– Smoking status (current smoker vs never smoker): 1.41 (95% CI: 0.62, 3.22)

� Li et al. (2015): This is a retrospective analysis of a data set containing clinical

and pathological information on 64 stage IV NSCLC patients treated in Beijing

hospitals from August 2010 to July 2015. No detailed information was given on the

types of treatments received by the patients. The hazard ratios of the determinants

of lung cancer survival for this study cohort are as follows:
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– Gender (male vs female): 0.71 (95% CI: 0.345, 1.424)

– Brain metastasis (yes vs no): 1.754 (95% CI: 0.844, 3.647)

– ALP: 1.957 (95% CI: 1.082, 3.542)

6.4.2 Meta analysis results for Malaysian advanced

lung cancer prognostic factors

Ideally, standard Bayesian meta analysis techniques should be used to synthesise the

results. However, our purpose in performing this meta analysis was solely for obtaining

guidance for the choice of prior distribution for the regression coefficient for each advanced

lung cancer prognostic factor. Therefore a random effect meta analysis model was used

and an empirical Bayesian estimator was utilised to account for the heterogeneity of

study results. For more information, refer to Viechtbauer (2005, 2010). Meta analysis

was performed using the metafor package version 2.0.0 (Viechtbauer, 2017) which was

implemented in R. The forest plots for the NHL prognostic factors are given in Figures

6.2 and 6.3. The mean and variance for each parameter based on the meta analysis results

are presented in Table 6.2.
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Table 6.2: The mean and variances for each advanced lung cancer parameters obtained
from meta analyses

Parameters Mean Variances

βAge 0.64 0.0140

βGender 0.26 0.0027

βAlbumin 0.40 0.0307

βLDH 0.27 0.0003

βPlatelet 0.58 0.0517

βStage 0.47 0.0066

βWeight loss 0.28 0.0135

βWBC 0.32 5.274 ×10−5

βSmoking 0.16 0.0033

βHaemoglobin 0.31 0.0120

βALP 0.43 0.0089

βbrain metastasis 0.38 0.0165
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Figure 6.2: Forest plots of meta analysis results for advanced lung cancer prognostic
factors
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Figure 6.3: Forest plots of meta analysis results for advanced lung cancer prognostic
factors
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6.5 Prior construction for Weibull models

To obtain the prior distribution for each parameter in a Weibull survival model, we can

use the information such as that presented in Sections 6.3 and 6.4. Three types of priors

are required: prior for Weibull shape parameters α, prior for baseline log hazard (β0) and

prior for the coefficients of linear predictors in the Weibull survival model. A suitable

elicitation method can be based on the method proposed by Consul (2016).

In the remainder of Section 6.5, we will construct the prior distributions for the SNLG

non-Hodgkin’s lymphoma data as an example. This prior specification will be based on

information from published studies. In Chapter 7, we will use this prior to assess the

performance of our INLA method in these circumstances.

6.5.1 Prior construction for the shape parameter for

a Weibull survival model

In constructing the prior for a Weibull shape parameter, α, we will not be able utilise any

information from the previous literature since all of them utilised the semi-parametric

Cox Proportional Hazard approach. Nevertheless, we can construct the prior distribution

for α by considering the median survival time, tm, upper quartile, tq(3) and lower quartile,

tq(1) of survival times of a large imagined future sample. The probability of death before

the median survival time is given by

Pr(T < tm) = 0.5.

The individuals’ survival function at the median time of survival is

S(tm) = exp(−λtαm) = 0.5,

since S(tm) = 1 - F(tm). Then, with simple algebraic manipulation, we can conveniently

express tm as

tm =
( log 2

λ

)1/α
.

Similarly, we can use the same mathematical procedures to express the survival function

for both lower and upper quartiles. This will lead to
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tq(1) = −
( log 0.25

λ

)1/α
and

tq(3) = −
( log 0.75

λ

)1/α
.

The ratio of upper quartile to lower quartile and hence the α shape parameter can be

computed as follows:

tq(1)/tq(3) =
( log 0.25

log 0.75

)1/α
=
(

4.818842
)1/α

.

Then, we can take logarithms on both sides of the equation and rearrange to obtain

α =
log (0.4818842)

log(tq(1))− log(tq(3))
. (6.1)

To complete our prior specification for α, we have to elicit further information on tq(1) and

tq(3) from the experts (presumably from a group of oncologists with long experience in

managing non Hodgkin lymphoma patients) or introspectively based on information from

past studies. Since α is always positive, we might give this quantity a gamma distribution

(α ∼ Ga(gα, hα)). To construct a prior distribution for α, we have first to elicit a range of

values for tq(1) and tq(3) which can be performed by using the hypothetical future sample

(HFS) as expounded by O’Hagan et al. (2006).

We can start by firstly asking our expert to identify an average SNLG patient that is

usually seen at a clinical setting. This patient should be the one that has the minimum

uncertainty about his survival times, based on the expert’s opinion. Then, we can enquire

further by asking the expert to assess the median survival time, tm, by asking the expert

the time when there is an equal probability that the patient will die before and after it.

To elicit tq(1), we can ask the expert to further consider the case where an average

SNLG patient who died before tm. Then, we ask the expert to assess the time when such

a patient would die prior to and after this time with an equal probability, provided the

patient died before tm. This will be our point estimate for tq(1). We may also elicit the

point estimate for tq(3) by asking the expert to identify the time when an average patient

is equally likely to die before and after this time, provided that the patient is still alive

after tm. This should be our assessment for tq(3). We can then obtain an assessment for

ϕ = tq(3)/tq(1). Nevertheless, we still have to quantify the uncertainty about ϕ.
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To achieve this, we need to elicit ϕ1, ϕ2 and ϕ3 which corresponds to the first, second

and third quartiles of ϕ, the multiplier of tq(1). This can be converted to Q1(α), Q2(α)

and Q3(α) using (6.1). The parameters gα and hα are then chosen to suit Q1(α) and

Q3(α). Due to the fact that hα is the scale parameter for the gamma distribution, only

gα needs to be specified and this can be achieved using numerical iteration. Then, we can

find hα using the following relationship: hα = qgα(0.75)/Q3(α) and qgα(0.75) represents

the upper quartile of Ga(g, 1) distribution. For further details, see Consul (2016).

6.5.2 Prior construction for the baseline log hazard

The baseline hazard is a hazard experienced by a baseline patient. It is convenient to

choose as the baseline a patient with a typical, or roughly average, covariate pattern.

For instance, consider the SNLG data. In this case, we choose the baseline patient to

be an individual whose age is 60, who is female, and has normal values or categories for

each predictor. Let us consider that survival time approximately follows an exponential

distribution. That is γ ' 1. Based on the current literature and experience managing such

a cohort of non-Hodgkin Lymphoma patients, we can rationally deduce the survival time of

a baseline non-Hodgkin lymphoma patient (i.e low risk patients) to be more than 5 years

if they receive the current standard chemotherapy regime for non-Hodgkin lymphoma

patients (rituximab-based chemotherapy). Hence, we postulate that the plausible range

of median survival time for baseline non-Hodgkin lymphoma patients to be between 5

years and 10 years (i.e 60 months to 120 months). We can represent this by the inequality

60 < tm < 120.

That is exp(−120λ) < exp(−λtm) < exp(−60λ).

So, − 120λ < -log(2) < −60λ,

log(2)

120
< λ <

log(2)

60
,

log
( log(2)

120

)
< log(λ) < log

( log(2)

60

)
,

and − 5.154005 < log(λ) < −4.460857.
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We might then give log(λ) a Gaussian distribution. We can obtain the mean value and

standard deviation for log(λ) by solving the two linear equations

E[log (λ)]− 2σ = −5.154005,

E[log (λ)] + 2σ = −4.460857.

The solution for these equations will be the prior mean and standard deviation for log

(λ). Hence

σ = 0.173287 and E[log(λ)] = −4.807431.

Since log(λ) = β0, this culminates in

β0 ∼ N (−4.807, 0.03003)

or, in precision form

β0 ∼ N (−4.807, 33.30−1).

6.5.3 Prior construction for the coefficients of linear

predictors

To obtain the prior means and standard deviations for coefficients of linear predictors,

we shall use the method proposed by Ren and Oakley (2014) and elucidated further by

Wilson and Farrow (2017). The derivations of prior means and standard deviations for

continuous and 2-level categorical covariates shall be demonstrated as examples on how to

elicit prior distribution parameters based on the information from the literature. We shall

also assume that the prior distributions of coefficients in linear predictors are Gaussian.

For continuous covariates, the age of the patient will be chosen as an example. For baseline

patient i , the hazard hi(t) = exp
(
β0
)
. Then, let us consider another patient k who is

10 years older than the baseline patient, with the same covariate pattern as the baseline

patient for other covariates. Hence, the hazard for patient k can be expressed as hk(t) =

exp
(
β0 + 10βage

)
. Hence, the hazard multiplier for patient k can be derived as

λk =
hk(t)

hi(t)
=

exp
(
β0 + 10βage

)
exp
(
β0

) = exp
(

10βage

)
.
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In the non-Hodgkin Lynphoma case, we identified two previous studies that gave

estimates of βage: Carson et al. (2012) and Hayward et al. (1991). The estimates for βage,

according to these two studies, are 0.02 and 0.039. However, only Carson et al. (2012)

gave a 95% CI of the estimate, which is between 0.0247 and 0.0430, and therefore the

results could not be combined using meta analysis. The mean of βage, based upon these

estimates, is hence 0.0295. We can also obtain the standard deviation of this estimate

based on the upper and lower limits of the 95% CI

(0.0430− 0.0247)/4 = 0.004575.

Therefore, the prior distribution for βage is

βage ∼ N (2.950× 10−2, 2.093× 10−4).

For a 2-level categorical covariate, the prior distribution for βB−symptoms shall be shown.

Again, we compare the baseline patient i with patient j who has the same covariate pattern

as the baseline patient i , except for B-symptoms. The hazard multiplier is therefore

λj =
hj(t)

hi(t)
=

exp
(
β0 + βB−symptoms

)
exp
(
β0

) = exp
(
βB−symptoms

)
.

From the previous literature, we identified 6 studies that gave estimates of βB−symptoms:

Christina et al. (2013), Slymen et al. (1990), Flowers et al. (2013), Oki et al. (2008),

Carson et al. (2012) (2 estimates) and Song et al. (2010). The estimates for βB−symptoms,

according the synthesis of results from these 7 studies is given in Table 6.1. We choose

that the mean of βB−symptoms, based upon this meta analysis result, is thus 0.26. Since

the variance of βB−symptoms is 0.1266 (Table 6.1), the standard deviation of βB−symptoms

is hence 0.3558. However, we may make the prior variance for βB−symptoms bigger to

account for the heterogeneous nature of our study population and therefore we choose a

prior variance double the one we obtained from meta analysis. Hence the prior variance

is 0.2532 (or a prior SD of 0.5032). Therefore, the prior distribution for βB−symptoms is

βB−symptoms ∼ N (0.26, 0.2532).

The prior construction for anm unordered categorical factor is as follows. Suppose that

we want to construct a prior for m unordered categorical covariates. For a model where
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an intercept term is included, the degrees of freedom would be m− 1. To ensure that the

parameters are identifiable, we can constrain them using a sum to zero constraint or assign

a zero value to one of the parameters which is usually the baseline or reference category.

If we choose to use a corner point constraint, this may indicate that our prior knowledge

is greater for this baseline category. As an example, let us say that we endeavour to build

a prior for a four-level categorical covariate. In this case, based on our prior knowledge

we may regard the first level of that categorical covariate as our reference level. The

structure of that categorical covariate with level 1 as the reference level is shown in Table

6.3.

Table 6.3: Corner constraint structure with level 1 as the reference category

Level Contrast

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

The consequence of using this prior structure is that a different prior variance is

assigned to the reference level in contrast with other levels. In practice, however, our

knowledge about the reference category may not be more substantial than our knowledge

about the other levels. Fortunately, other methods can be used to deal with this issue.

One of them is that we could use orthogonal contrasts to ensure that the parameters could

have the sum-to-zero property. Besides, an orthogonal contrast may also ensure that the

parameters are exchangeable. As a result, all the parameters might possess identical

means, variances and covariances between two parameters.

To demonstrate this, suppose we have a four-level factor and we aim to construct an

orthogonal contrasts with sum-to-zero constraint for the parameters. We can achieve this

by using this scheme of orthogonal contrast which is presented in Table 6.4.

However, it is more cumbersome to create a contrast scheme if the number of levels is not

a power of two. To address this problem, we could use the scheme presented in Table 6.5

for an m-level category.

As an example, an appropriate orthogonal constrast scheme for a 5-level factor is

depicted in Table 6.6.
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Table 6.4: Scheme of orthogonal contrasts with sum-to-zero constrain

Level Contrast

1 1 1 1
2 1 -1 -1
3 -1 1 -1
4 -1 -1 1

Table 6.5: An orthogonal contrast scheme for a category whose levels are not multiple of
two

Level Contrast

1 -1 -1 -1 .... -1
2 1 -1 -1 .... -1
3 0 2 -1 .... -1
4 0 0 3 .... -1
...

...
... ....

...
m 0 0 0 .... m - 1

Table 6.6: Example of a scheme where the number of levels is 5

Level Contrast

1 -1 -1 -1 -1

2 1 -1 -1 -1

3 0 2 -1 -1

4 0 0 3 -1

5 0 0 0 4

To exemplify further, we might wish to build a prior structure for a categorical co-

variate where all levels of that covariate should be exchangeable based on the orthogonal

contrast with sum-to-zero constraint as shown in Table 6.5. To achieve this, we may

convert m − 1 uncorrelated random variables into m random variables that have the

zero-sum constraint. These random variables may serve as parameters for an m-level cat-

egorical covariate. For instance, let us say that we have m − 1 independent zero - mean

132



Chapter 6. Prior Information and Prior Distribution Construction

random variables δ1, δ2, . . . , δm−1 with δ = (δ1, δ2, . . . , δm−1)
T and β = (β1, . . . , βm)T . Let

Var(δj) = wj, β = Mδ where M represents a m × (m − 1) matrix (Table 6.5). In this

case, every column is a contrast such that the total is ensured to be zero.

If we make (m− 1)2wm−1 = υ, hence, Var(βm) = υ. Therefore,

wm−1 =
υ

(m− 1)2
. (6.2)

For 1 ≤ i ≤ m, we need

Var(βi) = υ = (i− 1)2wi−1 +
m−1∑
k=i

wk

and

Var(βi+1) = υ = i2wi +
m−1∑
k=i+1

wk

. Thus

(i− 1)2wi−1 − i2wi +
m−1∑
k=i

wk −
m−1∑
k=i+1

wk = 0

(i− 1)2wi−1 − i2wi + wi = 0

and

wi−1 =
(i2 − 1)wi
(i− 1)2

=
(i+ 1)

(i− 1)
wi. (6.3)

We are also required to demonstrate the equality of covariances by showing what the

values are. So

covar(βm, βm−1) = −(m− 1)wm−1 = −(m− 1)
υ

(m− 1)2
=
−υ
m− 1

.

If i = 2, . . . ,m− 1

covar(βi, βi−1) = −(i− 1)wi−1 +
m−1∑
k=i

wk

and

covar(βi+1, βi) = −iwi +
m−1∑
k=i+1

wk.
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Hence

covar(βi, βi−1)− covar(βi+1, βi) = iwi − (i− 1)wi−1 + wi

= (i+ 1)wi − (i− 1)wi−1

= (i+ 1)wi − (i− 1)
(i+ 1)

(i− 1)
wi

= 0

and

covar(β1, β2) = covar(β2, β3) = covar(βm−1, βm) = − υ

m− 1
.

Clearly, for i = 3, . . . ,m and j = 1, . . . , i− 2

covar(βi, βj) = covar(βi, βi−1).

Therefore, for all i 6= j,

covar(βi, βj) = − υ

m− 1
. (6.4)

Besides, we may wish to weaken the exchangeability assumption and this can be

achieved by permitting the prior mean for each parameter to be dissimilar and this can be

achieved by making the differences between the parameters and prior means exchangeable.

A set of exchangeable parameters might be constructed if βj − E(βj) for j = 1, . . . ,m.

Besides, the variances might also be different whilst preserving m− 1 degrees of freedom.

Suppose that β∗1 , . . . , β
∗
m forms a set of exchangeable quantities that also has the sum-to-

zero constraint. We may then let βj = mj+sjβ
∗
j for some selection of mj, sj which permits

the prior mean to be non-identical. For a further exposition on the general structure of

prior construction for categorical covariates, refer to Farrow (2003).

6.5.4 Prior for the frailty variance

The specification of an appropriate prior distribution for the frailty variance poses a

difficult but fascinating question. This lies in the fact that it is cumbersome to visualise the

actual effects of frailties on the survival time, especially in the univariate case. One such

problem is that it makes the unconditional lifetime distribution for a given covariate profile

not be a Weibull distribution even though the conditional distribution of the lifetimes

given the frailty term is Weibull. However this fact itself offers the possibility of a way to

consider prior beliefs about the frailty variance.
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Suppose that we consider individual frailties Zi to have a gamma distribution. So

Zi ∼ Ga(g, g). Now the marginal survival probability at time t is

S(t) = EZ [exp(−Zλitα)] =

∫ ∞
0

[Γ (g)]−1ggzg−1egze−zλit
α

dz =

(
g

g + λitα

)g
.

If we write vz = g−1 for the frailty variance, then

S(t) = (1 + vzλit
α)−1/vz .

Solving this for t, we obtain

t =

[
S(t)−vz − 1

vzλi

]1/α
.

Let us write Q1, Q2 and Q3 for the values of t corresponding to the three quartiles of

the lifetime distribution where S(Qi) = Si = 1− i/4 for i = 1, 2, 3. Then

Qi

Qj

=

[
S−vzi − 1

S−vzj − 1

]1/α
.

So, by eliciting values for two such ratios, we can obtain two simultaneous equations

which can be solved numerically to obtain values for α and g = v−1z . By eliciting distri-

butions, or at least quantiles, for the ratios, we can obtain a joint distribution for α and

g. Suitable ratios could be Q2/Q3 and Q1/Q2.

In practical terms, we might give both g and α gamma prior distributions, compute

the corresponding distributions of the ratios to see whether they seem reasonable and

then adjust the hyperparameters of the prior distributions accordingly. If it is preferred

to use a lognormal distribution for the frailties then the method above might still be used

as a reasonable approximation.

A possible alternative approach might be based on the fact that the presence of frailties

causes non-proportionality of hazard effects. Consul (2016) discussed elicitation of prior

distributions for covariate effects. This method could be adapted so that, as well as

considering patients from time t = 0, we compare the conditional survival distributions

of patients who are still alive at some later time. The presence of frailties will cause the

hazard ratios to be different at the later time.
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6.6 Prior construction for a piecewise con-

stant hazard model

The prior distribution for this model is the Gaussian process which specifies the joint

distribution of β1,. . . ,βp, where βj = β0j, . . . , βpj. Two types of priors will be discussed

here: hierarchical and autoregressive priors. These priors are based on the work by Fung

(2017). We shall describe the hierarchical priors first for the piecewise constant hazard

model.

6.6.1 Hierarchical priors

Here, we shall consider building hierarchical priors for the baseline log hazard, β0, in the

piecewise constant hazard model for the SNLG dataset.

Suppose that β0,j is the baseline log hazard at interval j and β0 is the mean baseline

log hazard. We can build the hierarchical prior for the baseline log hazard by conditioning

β0,j on β0. Then we can specify the hyperprior distribution for β0 with hyperparameters

m and ν2. This can be represented by

β0,j | β0 ∼ N (β0, ν1),

β0 ∼ N (m, ν2).

In this case, we can clearly observe that the marginal variance of β0,j is divided into two

separate components: ν1 is the variance of the conditional distribution, β0,j | β0, and ν2

is the variance of β0. The marginal variance for β0,j is hence ν = ν1 + ν2. In section

6.5.2, we assessed the variance of β0 to be 0.03002838. In this case, we therefore let the

marginal variance of β0j for every single time interval be 0.03002838. The inter-interval

covariance is given by

Cov (β0,j, β0,k) = ν2, j 6= k

and the correlation between time intervals is given by:

Cor (β0,j, β0,k) =
ν2

ν1 + ν2
, j 6= k

Since we judge that the correlation between the log hazards in different time intervals is
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high (0.95), we shall obtain

ν2 = 0.95 (ν1 + ν2). (6.5)

However, we know that ν1 + ν2 = ν. In the NHL example, we have ν = 0.03002838. We

can thus substitute this value into 6.5 and obtain

ν2 = 0.028526961

and

ν1 = 0.03002838− 0.028526961 = 0.001501419.

Hence, the hierarchical prior structure has the final form:

β0,j | β0 ∼ N (β0, 0.001501),

β0 ∼ N (− 4.807, 0.02853).

Assessment of Corr(β0,j, β0,k) can be done using a hypothetical future sample method.

Suppose that we have assessed prior means and variances for β0,j and β0,k where k>j.

Suppose that we are now told to imagine observing that, out of nj patients alive at time

τj−1, Xj die in interval Ij. We should then reassess our median for the number Xk of

nk patients alive at the beginning of interval Ik who would die in this interval. This

allows us to calculate E(β0,k | Xj) and, using Bayes linear kinematics, we can deduce the

correlation. For further details, refer to Wilson and Farrow (2010, 2017).

6.6.2 Autoregressive priors

Another approach to specifying a prior distribution for the piecewise constant hazard

model is by using an autoregressive process prior. This approach is more rationally

plausible since we can now specify the log hazards in time intervals that are closer together

to be more correlated than the time intervals that are further apart. We shall firstly

explain the fundamental aspects of autoregressive processes before demonstrating how we

can use this stochastic process for the construction of autoregressive priors.

Borrowing the notation used by Fung (2017), we shall denote {Yt} as a first order

autoregressive (i.e. AR(1)) process. This can be written as

Yt = µ+ φ(Yt−1 − µ) + εt
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with constants µ and φ, and white noise process, εt ∼ N (0, σ2), provided that | φ | < 1.

The term φ(Yt−1 − µ) + εt can be viewed as an infinite moving average (MA), since an

AR process can be written in MA form and vice versa. Hence, this AR(1) process can be

written as

Yt = µ+
∞∑
i=0

φiεt−i.

The expectation and variance of Yt are

E[Yt] = µ and Var[Yt] =
σ2

1− φ2
,

if | φ |< 1 (based on the limit of the sum of a geometric progression). The lag-k autoco-

variance and autocorrelation functions are given by

γ(k) =
σ2φk

1− φ2
and ρ(k) =

γ(k)

γ(0)
= φk.

We can then use these results to construct autoregressive priors for the baseline log hazard

for the SNLG and Malaysian advanced lung cancer data sets. For the SNLG data sets,

the baseline hazards are denoted by β0,1, β0,2, . . . , β0,10. For j = 2, 3,. . .,10, the AR(1)

equation for the baseline log hazard is given by

β0,j = β0 + φ(β0,j−1 − β0) + εj, εj ∼ N(0, p−1).

Hence, the expectation and variance of the conditional distribution of β0,j | β0, β0,j−1 are

given by

E(β0,j | β0, β0,j−1) = β0 + φ(β0,j−1 − β0)

and

Var(β0,j | β0, β0,j−1) =
1

p
.

Hence, the conditional distribution of β0,j | β0, β0,j−1 is

β0,j | β0, β0,j−1 ∼ N(β0 + φ(β0,j−1 − β0), p−1). (6.6)

We can then specify a hierarchical prior for each parameter in (6.6). Firstly, we give
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Gaussian priors for β0 and β0,1 | β0

β0 ∼ N (m, ν) and β0,1 | β0 ∼ N
(
β0,

1

p1

)
.

If we equate the variance obtained for β0,1 | β0 with the prior variance obtained previously,

( σ2

1−φ2 ), since we assume the process is stationary, we obtain

p1 = p(1− φ2).

Hence, the marginal variance is

γ(0) = ν +
1

p(1− φ2)
.

In the SNLG case, we obtain γ(0) = 0.03002838. The covariance between β0,j and β0,j+k

and the lag-k autocorrelation are given by

γ(k) = v +
φ|k|

p(1− φ2)

and

ρ(k) =
γ(k)

γ(0)

=

ν +

(
φ|k|

p(1− φ2)

)
ν +

(
1

p(1− φ2)

)
=
νp(1− φ2) + φ|k|

νp(1− φ2) + 1
. (6.7)

If we write % =νp(1− φ2), the final form of (6.7) is therefore

ρ(k) =
%+ φ|k|

%+ 1
.

Then we have to specify the value for φ. We can make the neighbouring time-intervals

more strongly correlated than those that are further apart, provided that φ > 0. In the

SNLG case, we specify φ to be 0.95 and ν = γ(0)
2

= 0.03002838
2

= 0.01501419. Then we can

calculate p1 and p as follows. We have
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γ(0) = ν +
1

p1
= 0.01501419 +

1

p1

since γ(0) is the marginal variance of 0.03002838, so we obtain

0.01501419 +
1

p1
= 0.03002838.

Hence,

p1 = 66.6036596

and

p =
66.6036596

1− 0.952
= 683.1144575.

The lag-k autocorrelation function can be utilised to prove that the adjacent time intervals

are more highly correlated than the ones that are further apart. Based on the values of

p, ν and φ that we selected, % = 1. The lag 1 and 9 autocorrelations are therefore

ρ(1) =
1 + 0.951

1 + 1
= 0.9750

and

ρ(9) =
1 + 0.959

1 + 1
= 0.8151.

From the result, it is thus proven that the time intervals that are next to each other are

more highly correlated than the time periods that are more distant apart. This occurs

since our selected value for φ(0.95) is very near to unity.

Hence, the final prior structure for the SNLG model has the form:

β0 ∼ N

(
− 4.807,

0.03003

2

)
,

β0,1 | β0 ∼ N

(
β0,

0.03003

2

)
,

and

β0,j | β0, β0,j−1 ∼ N

(
β0 + φ(β0,j−1 − β0), 0.001464

)
, j = 2, 3, . . . , 10

where 1
p

= 1
683.1144575

= 0.001464. For further details, refer to Fung (2017) and Chatfield
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Table 6.7: The prior mean and variances for each SNLG parameters

Parameters Mean Variances

βAge 0.0295 0.00002093

βGender 0.52 0.2516

βMarrow 0.88 0.2718

βAlbumin 0.97 0.056

βB−symptoms 0.26 0.2532

βExtrannodal 0.25 0.0202

βBulky 0.34 0.1476

(2003).

The prior distributions for all coefficients of linear predictors for SNLG data set are

given in Table 6.7.

6.7 Prior construction for Malaysian advanced

lung cancer data set

To construct prior distributions for the Malaysian-HUSM advanced lung cancer data set,

we follow the same methodology. For the Weibull shape parameter, there is a paucity of

information with respect to tq1 and tq3 that is available from prior studies. To construct

the baseline log hazard for the piecewise constant hazard model for this data set, we

assume that the median survival time, tm for typical lung cancer patients is between 10

months and 36 months. Therefore

β0 ∼ (−3.301, 0.1025).

For coefficients of linear predictors and 2-level categorical variables, the prior mean and

variances are given in Table 6.2. However, we make the prior variances double the ones

that we obtained from meta-analysis to accommodate heterogeneity of patients’ charac-

teristics due to differences in population characteristics. Therefore, the parameters for

the prior distributions are given in Table 6.8.
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Table 6.8: The prior mean and variances for each advanced lung cancer parameters

Parameters Mean Variances

βAge 0.64 0.0280

βGender 0.26 0.0054

βAlbumin 0.40 0.0614

βLDH 0.27 0.0006

βPlatelet 0.58 0.1034

βStage 0.47 0.0132

βWeight loss 0.28 0.0270

βWBC 0.32 1.0548 ×10−4

βSmoking 0.16 0.0066

βHaemoglobin 0.31 0.0240

βALP 0.43 0.0178

βbrain metastasis 0.38 0.0330

To construct a hierarchical prior for the piecewise constant hazard model, we know that

ν = 0.1025495 and we fix the correlation between the time intervals at 0.95. Therefore,

using equation (6.5), we obtain ν0 = 0.09742202 and ν1 = 0.00512748. Hence

β0,j | β0 ∼ N (β0, 0.005127),

β0 ∼ N (− 3.310, 0.1025).

For the autoregressive prior, using the same methodology as in section 6.6.2, we obtain

the following prior structure for the baseline log hazard:

β0 ∼ N

(
− 3.310,

0.1025

2

)
,
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β0,1 | β0 ∼ N

(
β0,

0.1025

2

)
,

and

β0,j | β0, β0,j−1 ∼ N

(
β0 + φ(β0,j−1 − β0), 0.004999

)
, j = 2, 3, . . . , 7

where 1
p

= 1
200.0285

= 0.004999. For further details, refer to Fung (2017) and Chatfield

(2003).

6.8 Summary

In this chapter, we discuss the prior construction for both our survival models, primarily

for the SNLG data set. In chapter 7, we will use these prior distributions in illustrative

analyses of the data sets. We will use these analyses to assess the performance of our

proposed INLA-within-MCMC method.
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Chapter 7

Practical application

7.1 Introduction

In this chapter, we shall demonstrate the applications of the INLA method expounded in

chapter 4 to the analysis of several data sets. In 7.2, we shall show the applications of

INLA to survival models for the kidney infection (7.2.1) and the SNLG (7.2.2) data sets,

both without missing covariate information. In 7.3, we show INLA-MCMC performance

with respect to a Weibull survival model (7.3.1) and a piecewise constant hazard model

(7.3.2) in the presence of missing covariate information using the SNLG data set. In 7.4

we will apply our INLA-MCMC algorithm to the Malaysian advanced lung cancer data

set using both a Weibull model and a piecewise constant hazard model.

7.2 Analysis without missing covariate in-

formation

7.2.1 Analysis of kidney infection data

7.2.1.1 Data setup

In this section, the differences in the data setup between those used for rjags and R-INLA

are demonstrated.

From the data setup, shown in Table 7.1, we can clearly see that the data setup for

R-INLA is similar to the usual data setup for survival analysis and GLM modelling. On
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Table 7.1: Partial display of the data setup for rjags and R-INLA when fitting survival
model for kidney infection data set

RJAGS R-INLA

Event Placement Survival time Censoring time Time Event Placement

0 1 0.05 1.05 0.05 1 1

0 1 0.05 1.05 0.05 1 1

0 1 0.05 1.05 0.05 1 1

0 1 0.15 1.15 0.15 1 1

0 1 0.35 1.35 0.35 1 1

0 1 0.45 1.45 0.45 1 1

0 1 0.45 1.45 0.45 1 1

0 1 0.55 1.55 0.55 1 1

0 1 0.85 1.85 0.85 1 1

0 1 0.85 1.85 0.85 1 1

0 1 0.95 1.95 0.95 1 1

0 1 1.05 2.05 1.05 1 1

0 1 1.15 2.15 1.15 1 1

0 1 1.55 2.55 1.55 1 1

0 1 1.65 2.65 1.65 1 1

0 1 1.85 2.85 1.85 1 1

0 1 2.35 3.35 2.35 1 1

0 1 2.65 3.65 2.65 1 1

1 1 NA 0.25 0.25 0 1

1 1 NA 0.25 0.25 0 1

1 1 NA 0.65 0.65 0 1

1 1 NA 0.65 0.65 0 1

1 1 NA 0.75 0.75 0 1

1 1 NA 0.75 0.75 0 1

1 1 NA 0.75 0.75 0 1

1 1 NA 0.75 0.75 0 1

1 1 NA 0.85 0.85 0 1

1 1 NA 0.95 0.95 0 1

1 1 NA 1.05 1.05 0 1

1 1 NA 1.15 1.15 0 1
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the other hand, the data setup for rjags requires that the event and censoring times are

split into two separate vectors. Besides, the censoring indicators used for rjags are also

different since the event is coded as 0 whilst in R-INLA, event is coded as 1. For censored

observations, they are coded as 1 in the rjags setup and 0 in the R-INLA setup. This can

be trivially achieved with a couple of lines R code to convert rjags data structure to the

other and vice versa.

7.2.1.2 Exponential proportional hazard model

The model specification for the exponential proportional hazard model for this data has

been shown in Section 2.11. We first fitted the exponential survival model using an MCMC

procedure (Section 2.11) as in Martino et al. (2011), implemented using the rjags package

(Plummer, 2016) in R environment (R Development Core Team, 2008) on a 3.20GHz Ergo

Desktop with Intel(R) Core (TM) i7-4790S CPU and 8.00 GB of random access memory

(RAM). Two parallel chains were used. The number of iterations was set at 105 per chain

with a burn-in of 103. In the case of INLA, three versions of the method were used,

using the Gaussian, Laplace and simplified Laplace approximations (Section 4.3.1, INLA

step 2). We also provided the posterior summaries of regression coefficients obtained by

numerical integration using a trapezoidal rule (Burden et al., 2015). The results of the

analyses are given in Table 7.2 and Figure 7.1.

From Figure 7.1, the MCMC trace plots indicate good mixing. The densities calculated

using MCMC and INLA are clearly very similar in the cases of both the treatment and

intercept terms, indicating both MCMC and INLA give similar mean and standard devi-

ations. This is supported by the results presented in Table 7.2 which show the posterior

means and standard deviations obtained via MCMC and INLA are close to each other.

However, the time taken to obtain results is much shorter for INLA than MCMC. We

also provide the results and time taken for simple numerical quadrature and it is clear

that INLA is almost as fast as numerical quadrature in obtaining the posterior means and

standard deviations of the model parameters.

7.2.1.3 Weibull proportional hazard model

The model specification for the Weibull proportional hazard model used for the kidney

infection data is given follows. The lifetime is

Ti ∼Weibull(α, λi)
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Figure 7.1: MCMC trace plots and comparisons of posterior distributions of regression
coefficients obtained via INLA and MCMC

Table 7.2: The comparison of results for β0 and βtrt obtained via different methods

Method β0 mean (SD) βtrt mean (SD) Time(seconds)

Prior 0 (4.4721) 0 (4.4721) -

MCMC (RJAGS) -0.6604 (0.5992) -0.5451 (0.3971) 2180.50

INLA(Gaussian)
INLA(Laplace)

INLA(SL)

-0.6357 (0.5902)
-0.6552 (0.5876)
-0.6193 (0.5902)

-0.5364 (0.3922)
-0.5485 (0.3891)
-0.5366 (0.3922)

0.64
0.83
0.71

Numerical quadrature -0.6647 (0.5936) -0.5415 (0.3936) 0.50
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with density

fi(t | α, λi) = αλit
α−1 exp(−λitα)

and survival function

Si(t | α, λi) = exp(− λitα),

where

β = (β0, β1)
T and λi = exp(ηi) = exp(β0 + xiβ1).

Hence,

L(α,β | D) = α
∑
δi exp

{ n∑
i=1

δiz
T
i β +

n∑
i=1

[
δi(α− 1) log(ti)− exp(zTi β)tαi

]}
.

We give β a bivariate normal prior

β ∼ N2(µ0,Σ0)

and

α ∼ Ga(α0, κ0),

independently of β0 and β1. The joint posterior distribution for α and β is thus given by

π(α,β | D) ∝ L(α,β | D) π(α | α0, κ0) π(β0 | m0, v0)π(β1 | m1, v1).

We assigned values

µ0 = (0, 0)T ,

Σ0 =

[
20 0

0 20

]
,

α0 = 1.1

and

κ0 = 1.1.

For the building of the Weibull regression model, the covariates are introduced via λ

through λi = exp(zTi β). Hence, the corresponding hazard function can be written as
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Figure 7.2: Comparisons of posterior distributions of regression coefficients obtained via
INLA and MCMC

hi(t | α, λi) = αtα−1λi. Therefore, the joint posterior density is

π(α,β | D) ∝ αα0+
∑
δi−1 exp

{
n∑
i=1

[δiz
T
i β + δi(α− 1)log(ti))− tαi exp(zTi β)]− κ0α

−1

2
(β − µ0)

TΣ−10 (β − µ0)

}
.

In this case we compare MCMC (Section 2.11) and the three INLA methods (Section

4.3.1, INLA Step 2).

The number of iterations of MCMC (in RJAGS code) was set at 105 per chain with a

burn-in set at 103. Two parallel chains were used. The trace plots and posterior means

and standard deviations are presented as Figure 7.2 and Table 7.3.

From Figure 7.2, the trace plots indicate good mixing. The densities calculated using

MCMC and INLA are clearly very similar, indicating both MCMC and INLA give similar

mean and standard deviations. This is supported by the results presented in table 7.3

which show the posterior means and standard deviations obtained via MCMC and INLA
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Table 7.3: The comparison of posterior summaries of β0, βtrt and α for obtained via
different methods

Method β0 mean (SDs) βtrt mean (SDs) α Mean (SDs) Time(sec)

Prior 0 (4.4721) 0 (4.4721) 1 (0.9535) -

MCMC (RJAGS) -0.5698 (0.3933) -0.5988 (0.5939) 0.8787 (0.1453) 4238.45

INLA(Gaussian)
INLA(Laplace)

INLA(SL)

-0.5872 (0.5931)
-0.6067 (0.5905)
-0.5708 (0.5931)

-0.5526 (0.3926)
-0.5647 (0.3895)
-0.5528 (0.3926)

0.8797 (0.1415)
0.8797 (0.1415)
0.8797 (0.1415)

1.96
3.65
2.72

are close to each other. However, the time taken to obtain results is much shorter for

INLA than MCMC.

7.2.2 Analysis of Non-Hodgkin Lymphoma (SNLG)

data set

7.2.2.1 Basic notations

In this section, the basic notations used for covariates in the SNLG data will be expounded

and this is given in Table 7.4.

After labelling each covariate with the appropriate notation, we can then construct

a design matrix, V, with S columns. The total number of columns, S, is determined

by the total number of covariates and the total number of levels within the categorical

covariates. There are now two choices of constraints to use for the categorical variables:

1) corner point constraint, 2) zero-sum constraint. However, the corner point constraint

has one shortcoming. We assign a different prior variance to the baseline category (level

1) compared to the rest of the levels, as if we have better prior information about level

1 than the rest of the levels of that factor. Consequently, the alternative method, the

zero-sum constraint, is more rationally appealing since it allows all the parameters to

have similar means, variances and covariances.

For this model, we calculate the number of regression parameters (S) is 24, allowing

m-1 for a factor with m levels. The overall number of parameters is thus 25 after taking

into consideration an additional parameter, α, which is the shape parameter for Weibull

distribution.
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Table 7.4: The notations used for each covariate that may influence the survival time of
SNLG cohort

Covariates Notation Types of covariates

Age x1 Continuous (quantitative)

Haemoglobin x2 Continuous (quantitative)

White blood cell count (WBC) x3 Continuous (quantitative)

Sex (Gender) x4 2-level categorical covariate

Albumin x5 2-level categorical covariate

AP x6 2-level categorical covariate

Urea x7 2-level categorical covariate

Extranodal disease x8 2-level categorical covariate

Bone marrow involvement x9 2-level categorical covariate

B symptoms x10 2-level categorical covariate

Bulky disease x11 2-level categorical covariate

Stage x12 4-level ordinal covariate

ECOG x13 5-level ordinal covariate

LDH x14 3-level ordinal covariate

7.2.2.2 Modelling strategies

For the SNLG dataset, we assume that the survival times follow a Weibull distribution

with a shape parameter α and a scale parameter λ. We also centre the quantitative covari-

ates (haemoglobin, wbc and age) and used orthogonal contrast for categorical covariates.

7.2.2.3 Covariate centering

There are three continuous covariates in this dataset: age, haemoglobin level and white

blood cell count. To obtain proper prior specification, these quantitative variables can be

standardised. For example, we can centre age as follows, x1 = xA - 60 where xA is the

subject’s age.
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Table 7.5: An outline of zero-sum constraint for a 4-level factor

Level Contrast

1 1 1 1

2 1 -1 -1

3 -1 1 -1

4 -1 -1 1

7.2.2.4 Orthogonal contrasts with zero-sum constraint

As stated previously, we can use orthogonal contrasts with a zero-sum constraint to avoid

the shortcomings of a corner-point constraint scheme. When we use this strategy, we

are now able to make the parameters exchangeable, thus making them have the same

means, variances and covariances. As an example, the orthogonal contrast with zero-sum

constrain for a 4-level factor is given by Table 7.5. This zero-sum-constraint was employed

for Ann-Arbor stage, a 4-level categorical covariate in the SNLG dataset.

In this case, the effects of the four levels will sum to zero. Nevertheless, this is a trivial

example since this scheme is only effective for a factor where the number of levels is a

power of 2. The scheme will break down if this is violated. To generalise such a scheme

to factors whose total number of levels is not a power of 2, we present the form of the

generalised orthogonal contrast with zero-sum constraint in Table 7.6.

Table 7.6: The general outline for a factor whose levels are not a power of 2

Level Contrast

1 -1 -1 -1 .... -1

2 1 -1 -1 .... -1

3 0 2 -1 .... -1

4 0 0 3 .... -1
...

...
... ....

...

m 0 0 0 .... m - 1

As another example, we present the outline of the zero-sum constraint for a factor
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Table 7.8: The orthogonal contrast with zero-sum constraint for a 3-level factor (LDH)

Level Contrast

1 -1 -1

2 1 -1

3 0 2

with 5 levels in Table 7.7. This zero-sum constraint was then used for ECOG performance

status which is a 5-level factor.

Table 7.7: The orthogonal contrast with zero-sum constraint for a 5-level factor (ECOG)

Level Contrast

1 -1 -1 -1 -1

2 1 -1 -1 -1

3 0 2 -1 -1

4 0 0 3 -1

5 0 0 0 4

Finally, we provide the zero-sum-constraint scheme for LDH, a 3-level factor in SNLG

dataset. This is given in Table 7.8.

For further information on calculating the variances of factors that have been orthog-

onally constrained, refer to section 6.5.3 and equations (6.2)-(6.4).

7.2.3 Analysis of SNLG Data with full covariate in-

formation

Recall from subsection 2.5.1.2, the log likelihood for survival data that follows a Weibull

distribution is given by

` = log(β, α | R) =
∑
i∈E

[log{λi}+ (α− 1) log{ti}] + nD log{α} −
n∑
i=1

λit
α
i
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where E is the set of subjects who died and nD is the number of subjects who died. The

regression coefficients are represented by

β = (β0, β1, β2, β3, . . . , βK)T

where the intercept term is represented by β0 and βk represents the coefficient of covariate

k. From Section 2.5.1.1, we see that the linear predictors are related to λi by

λi = exp(ηi), ηi = β0 +
K∑
k=1

βkxi,k.

We can then assign multivariate normal prior distribution to β

β ∼ NK+1 (µ,W ).

In this case, µ represents the vector of prior means for the regression coefficients and W is

the (K+1 × K+1) variance-covariance matrix. The multivariate normal prior distribution

for β has pdf

f0(β) = (2π)−K/2 | W |−
1
2 exp

{
− 1

2
[(β − µ)TW−1(β − µ)]

}
.

If we take logarithms of the multivariate normal prior distribution and assume that

β0, . . . , βk are independent and the shape parameter α is also independent of β as well,

the logarithm of the density becomes

f1(β) = −K
2

log{2π} − 1

2

K∑
k=0

log | Wk | −
1

2

K∑
k=0

{βk − µk}2

Wk

where W−1 is a diagonal matrix with diagonal elements, W0,W1,W2, . . . ,WK . In this

case, W0 represents the variance of the intercept term and Wk is the variance of the kth

regression coefficient. Since the shape parameter α must be positive, we assign a gamma

prior for α with shape parameter a and rate parameter b

α ∼ Ga(a, b).
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Hence, the density of the prior distribution for α has the form

π(α | a, b) =
ba

Γ (a)
αa−1exp{−bα}.

Then, the joint prior density of β and α is given by π(β, α). Therefore, using Bayes’

theorem, the joint posterior distribution of β and α is obtained by

π(β, α | D) ∝ Prior× Likelihood,

= Q π(β, α) L(β, α | D).

Using simple algebra and taking logs on both side, the log posterior density of β and α

has the following form

log
(
π[β, α | D]

)
= log

[
Q
]

+ log
[
π(β, α)

]
+ log

[
L(β, α | D)

]
= log

(
Q
)

+
(
α− 1

)
log
(
α
)
− bα− K

2
log
(
2π)−

1

2

K∑
k=0

log
(
Wk

)
− 1

2

K∑
k=0

(
βk − µk

)2
Wk

+
∑
i∈E

[
log(λi)+

(
α− 1

)
log(ti)

]
+ nD log(α)−

n∑
i=1

λit
α
i .

Since the joint posterior density is analytically intractable, we have to use numerical

methods. We can use an MCMC algorithm to obtain the sampled values from the posterior

distribution. We apply a zero-sum constraint for categorical covariates in this SNLG

Weibull survival model. Hence, the linear predictor has the following form

ηi = β0 + βi,1x1 + β2xi,2 + β3xi,3 + . . .+ β11xi,11 +
3∑

k=1

β12,kδi,12,k+

4∑
k=1

β13,kδi,13,k +
5∑

k=1

β14,kδi,14,k.

with δ represents the variable for an orthogonal contrast. A Metropolis within Gibbs

sampling algorithm was used which was implemented using RJAGS. Two parallel MCMC

chains were employed with different starting values to ensure that the convergence had
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been satisfactorily achieved. After a burn-in period of 2000 iterations, 150,000 iterations

for each chain were obtained as posterior samples. The trace and autocorrelation plots

were examined for convergence and adequate mixing. INLA was also used to obtain the

posterior means and standard deviations of the parameters, using the simplified Laplace

option. The posterior summaries are given in Table 7.9.

As we can see from the results in Table 7.9, the posterior means and standard devia-

tions (and hence precisions) obtained using MCMC and INLA are closely similar to each

other. In this case, INLA is by far more efficient than MCMC (computation time: 3.58

seconds vs 17 minutes 26 seconds, Intel i7® single core 8 GB RAM). Apart from that, we

can also clearly observe that the posterior standard deviations of all parameters acquired

through MCMC or INLA are much smaller compared to prior standard deviations. This

signifies increases in precision due to the combination of our prior knowledge with infor-

mation contained in the data through likelihood. As a result, this causes decreases in our

uncertainty over all parameters.

The plots of posterior distributions obtained for each parameter (24 regression param-

eters and the shape parameter, α, for the Weibull distribution) with both MCMC and

INLA are given in Figures 7.3 - 7.5. As we can see, the posterior distributions obtained

via INLA (blue curves) nearly perfectly match the posterior distributions obtained using

MCMC (red curves).

7.3 Analysis of SNLG data with missing co-

variate information

7.3.1 Weibull lifetime distribution

We also fitted the Weibull survival model on the whole data set which includes those

cases with missing covariate information. The results are presented in Table 7.10. We

can clearly see that the posterior means and standard deviations obtained using MCMC

are very similar to those obtained via the INLA-MCMC algorithm. Figure 7.6 depicts

the prior (black) and posterior densities of selected regression coefficients obtained via

MCMC (red) and INLA-MCMC (blue) and it can be clearly seen that both match each

other. The times taken for MCMC and INLA-MCMC to obtain the posterior means and

standard deviations are 4200 seconds and 209 seconds, respectively.
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Table 7.9: The posterior means and standard deviations (SDs) for the unknown parame-
ters (n = 636)

Parameter Posterior mean
(MCMC)

Posterior SD
(MCMC)

Posterior mean
(INLA)

Posterior SD
(INLA)

β0(intercept) -0.4843 0.1384 -0.4842 0.1401

β1(Age) 0.0275 0.0046 0.0275 0.0046

β2(HB) -0.0069 0.0032 -0.0069 0.0032

β3(WBC) 0.0287 0.0182 0.0288 0.0182

β4(Sex) 0.0576 0.0569 0.0579 0.0570

β5(Albumin) -0.0820 0.0699 -0.0820 0.0697

β6(Ap) 0.0568 0.0686 0.0561 0.0683

β7(Urea) -0.0154 0.0642 -0.0157 0.0639

β8(Extranod) 0.0289 0.0641 0.0289 0.0641

β9(Bulk) 0.1702 0.0570 0.1701 0.0570

β10(Marrow) 0.2308 0.0865 0.2308 0.0868

β11(Bsy) -0.0439 0.0616 -0.0438 0.0616

δ12,1(Stage) 0.0377 0.0481 0.0379 0.0481

δ12,2(Stage) 0.0964 0.0428 0.0966 0.0426

δ12,3(Stage) 0.0636 0.0405 0.0636 0.0406

δ13,1(ECOG) 0.0197 0.0379 0.0198 0.0378

δ13,2(ECOG) 0.0524 0.0390 0.0525 0.0389

δ13,3(ECOG) 0.0894 0.0458 0.0893 0.0457

δ13,4(ECOG ) -0.1236 0.0921 -0.1234 0.0910

δ14,1(LDH) 0.0567 0.0377 0.0569 0.0377

δ14,2(LDH) 0.1366 0.0408 0.1365 0.0407

α (Shape) 0.8454 0.0389 0.8452 0.0382
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Figure 7.3: Comparisons of posterior means (SDs) of β0 until βbulk using MCMC and
INLA
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Figure 7.4: Comparisons of posterior means (SDs) βbsy until δ2,LDH using MCMC and
INLA
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Figure 7.5: Comparisons of posterior means (SDs) of regression coefficients δ1,stage until
δ4,ECOG using MCMC and INLA

161



Chapter 7. Practical application

Figure 7.6: Comparisons of posterior distributions of regression coefficients obtained via
INLA-MCMC (red) and MCMC (blue)
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Table 7.10: The posterior means and standard deviations (SDs) for the unknown param-
eters (n = 1391)

Parameter Post.mean
(MCMC)

Post.SD
(MCMC)

Post.mean
(INLA-MCMC)

Post. SD
(INLA-MCMC)

β0(intercept) -2.6998 0.1348 -2.7032 0.1350

β1(Age) 0.0390 0.0054 0.0390 0.0054

β2(HB) -0.0140 0.0036 -0.0140 0.0036

β3(WBC) 0.0557 0.0212 0.0559 0.0212

β4(Sex) 0.1076 0.0671 0.1086 0.0671

β5(Albumin) -0.3724 0.0858 -0.3738 0.0853

β6(Ap) 0.1825 0.0779 0.1817 0.0779

β7(Urea) -0.1295 0.0729 -0.1298 0.0727

β8(Extranod) 0.0059 0.06251 0.0048 0.0624

β9(Bulk) 0.2614 0.0667 0.2621 0.0669

β10(Marrow) -0.1859 0.1043 0.1881 0.1042

β11(Bsy) -0.1464 0.0697 -0.1469 0.0694

δ12,1(Stage) 0.0718 0.0495 0.0721 0.0496

δ12,2(Stage) 0.0948 0.0467 0.0949 0.0465

δ12,3(Stage) 0.2077 0.0414 0.2085 0.0411

δ13,1(ECOG) 0.0210 0.0386 0.0210 0.0386

δ13,2(ECOG) 0.0216 0.0418 0.0218 0.0417

δ13,3(ECOG) -0.0194 0.0530 -0.0200 0.0532

δ13,4(ECOG ) -1.1050 0.1194 -1.1040 0.1210

δ14,1(LDH) 0.0634 0.0388 0.0633 0.0387

δ14,2(LDH) 0.1076 0.0446 0.1075 0.0447

α (Shape) 0.8397 0.0406 0.8392 0.0397
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7.3.2 Analysis of SNLG Data with missing covari-

ate information using piecewise constant haz-

ard model

In this section, we fit a piecewise constant hazard model to the SNLG dataset. For this

task, all subjects including those with missing information were included (n = 1391). The

likelihood, L, is given by

L =
n∏
i=1

r∏
j=1

{
λij

}δij
exp

{
− λij {tij − τj−1}

}
where λij represents the hazard experienced by patient i at time interval j, δij is an

indicator whether patient i died in interval j. In each interval, there are three things that

may occur to patient i: surviving through that single interval, event (death) occurs in

that single interval or censoring occurs. For further information, refer to 2.7.1.

Besides, a frailty term was also included in the model to weaken the dependent effects

of covariates. In this case, we assumed the frailty term was log-normally-distributed, with

the prior for its variance having a gamma distribution. Full distributional specification of

the frailty term (denoted as Z) is given by

log(Z) ∼ N (0, σ2
z) and σ2

z ∼ Ga(1.1, 0.53).

The next step is to choose a sensible value for the autoregressive parameter that we

consider in 6.6.2. To do this, we have to judge how much variance of the parameters in

the next time interval is explained by the values in the preceding time interval. In this

case, it is assumed that 90% of the parameters’ variances in the subsequent time period are

explained by the value in the preceding period. Hence, our coefficient of determination,

R2 , 0.90. Consequently, our correlation, r, is 0.95. With respect to prior means and

variances, we used the same values that we used in Section 6.3.2 (Table 6.1).

From the results shown in Table 7.11, the age effect decreases temporarily before it

increases as the time progresses. Besides, we can clearly see, the mean and standard

deviations obtained via the INLA-MCMC algorithm are really close to the mean and

standard deviations obtained using MCMC only. This is more evident if we look at

Figures 7.7 - 7.8 which show clear matching densities of each parameter obtained using

MCMC and INLA-MCMC algorithms. The time taken for MCMC and INLA-MCMC
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Table 7.11: Posterior means and standard deviations (in brackets) in each interval of time
for some chosen covariates (n = 1391)

j τj β0 (MCMC) βage (MCMC) β0 (INLA-MCMC) βage(INLA-MCMC)

1 0.316 -0.8515(0.2177) 0.06324(0.0137) -0.8313 (0.2169) 0.0624 (0.0137)

2 0.669 -0.1731(0.1603) 0.0459 (0.0072) -0.1609(0.1360) 0.0458(0.0720)

3 1.070 0.0847(0.1537) 0.0292(0.0072) 0.0932(0.1517) 0.0291(0.0072)

4 1.532 -0.0045(0.1761) 0.0321(0.0720) 0.0075(0.1734) 0.0321(0.0072)

5 2.079 -0.7924(0.2024) 0.0220(0.0078) -0.7761(0.2007) 0.0220(0.0079)

6 2.749 -1.8137(0.2096) 0.1723(0.0083) -1.8076(0.2102) 0.1723(0.0083)

7 3.612 -1.9534(0.2501) 0.1477(0.0088) -1.9443(0.2503) 0.1477(0.0088)

8 4.828 -1.8861(0.2601) 0.1316(0.0089) -1.8785(0.2636) 0.1316(0.0532)

9 6.908 -1.8405(0.2820) 0.1177(0.0087) -1.8327(0.2842) 0.1177(0.0312)

10 ∞ -1.4652(0.2969) 0.1065(0.0091) -1.4581(0.2968) 0.1064(0.0091)
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to compute posterior means and SDs are 4650.33 and 191.11 seconds, respectively. This

shows that INLA-MCMC is the more efficient algorithm.

7.4 Malaysian advanced lung cancer data set

7.4.1 Weibull lifetime model with missing covariate

information

Now we turn our attention to the Malaysian advanced lung cancer data and fit a Weibull

model. From Table 7.12 and Figure 7.9, we can clearly see that posterior means and

standard deviations obtained via MCMC and INLA-MCMC are very close to each other.

The density plots clearly match each other and the posterior summaries of all covariates

for the MCMC and the INLA-MCMC are very close to each other. The computational

time for the MCMC algorithm is 5142 seconds whilst for the INLA-MCMC algorithm,

the computational time is 314.57 seconds. Therefore, the INLA-MCMC algorithm is more

efficient than MCMC algorithm for computing the posterior summaries of this data set.

7.4.2 Analysis of the Malaysian advanced lung can-

cer data set with missing covariate information

using piecewise constant hazard model

We also fitted a piecewise constant hazard model for the Malaysian advanced lung cancer

data set with the presence of missing covariate information. From the results presented

in Table 7.13, we can clearly see that the posterior summaries for β0 and βneutrophil for

each time interval are very close to each other. Besides, Figure 7.10 demonstrates that

the density plots for each parameter obtained using MCMC and INLA-MCMC algorithms

again clearly match each other. The computing time is 412 seconds for the INLA-MCMC

algorithm and 3972.19 seconds for the MCMC algorithm. Again, this indicates that the

INLA-MCMC is a much more efficient algorithm than MCMC.
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Figure 7.7: Plots of the effects of intercept and age across time intervals (J=1 to J=6)
obtained via MCMC(red) and INLA-MCMC(blue)
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Figure 7.8: Plots of the effects of intercept and age across time intervals (J=7 to J=10)
obtained via MCMC(red) and INLA-MCMC(blue)
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Table 7.12: The posterior means and standard deviations (SDs) for the unknown param-
eters (n = 397)

Parameter Post.mean
(MCMC)

Post.SD
(MCMC)

Post.mean
(INLA-MCMC)

Post.SD
(INLA-MCMC)

β0 -1.8699 0.3950 -1.8573 0.3919

βAge -0.0044 0.0053 -0.0044 0.0053

βAlbumin 1.0813 0.0894 1.0794 0.0844

βBrainmets 0.0314 0.0635 0.0311 0.0631

βHb 0.0038 0.0129 0.0040 0.0128

βNeutrophil -0.0479 0.0255 -0.0487 0.0255

βPlatelet 0.0005 0.0059 0.0005 0.0005

βRace -0.0717 0.0904 -0.0719 0.0896

βSodium -0.0490 0.0041 0.0049 0.0032

βWBC -0.0036 0.0294 -0.0311 0.0292

αlung 2.8240 0.1265 2.8220 0.1278

Table 7.13: Posterior means and standard deviations (in brackets) in each interval of time
for some chosen covariates (n = 397)

j τj β0 (MCMC) βneut (MCMC) β0 (INLA-MCMC) βneut(INLA-MCMC)

1 2.003 -3.259 (0.1718) 0.0453 (0.0093) -3.2610 (0.1727) 0.0454 (0.0093)

2 4.374 -3.662 (0.1364) 0.0451 (0.0093) -3.6633 (0.1368) 0.0452 (0.0093)

3 7.275 -3.273 (0.1090) 0.0461 (0.0093) -3.2869 (0.1088) 0.0461 (0.0093)

4 11.015 -3.181 (0.0927) 0.046 (0.0092) -3.1994 (0.0933) 0.0466 (0.0093)

5 16.286 -2.732 (0.0814) 0.0486 (0.0092) -2.7332 (0.0816) 0.0486 (0.0093)

6 11.912 -2.539 (0.0774) 0.0485 (0.0092) -2.5400 (0.0774) 0.0486 (0.0092)

7 25.297 -2.546 (0.0762) 0.0488 (0.0092) -2.5463 (0.0763) 0.0488 (0.0092)
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Figure 7.9: Selected plots of posterior distributions for regression coefficients obtained via
MCMC (red) and INLA-MCMC(blue)
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Figure 7.10: Plots of the effects of neutrophil accross time intervals (J=1 to J=7)
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7.5 Summary

In this chapter, we have shown that INLA-MCMC performs as well as MCMC in ob-

taining posterior means and standard deviations of the parameters of our models based

on its performance in subsections 7.3 - 7.4. However, INLA-MCMC has a much shorter

computing time than MCMC and thus is the more efficient algorithm. We have thus been

able to demonstrate the usefulness of INLA in fitting models to survival data, even when

there are many cases with missing covariate values. This significantly increases the range

of problems where INLA may be used efficiently since large reductions in computing time

can be achieved using the new INLA-MCMC algorithm.
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Conclusion and Future work

8.1 Thesis summary

The main contribution of this thesis is an extension of the applicability of INLA by

developing the capability to deal with missing covariate information in survival analysis.

We successfully extended the INLA-MCMC algorithm (Gomez-Rubio and Rue, 2018)

to deal with the situation and applied it to parametric Weibull survival models and

the semiparametric piecewise constant hazard models, with and without frailties. In

the piecewise constant hazard case, we used both hierarchical and autoregressive prior

structures.

In Chapter 2, we introduced the fundamentals of survival analysis and Bayesian ap-

proaches. In Chapter 3, we demonstrated the fundamental properties of Gaussian Markov

random fields (GMRF). We also proved the sparsity of the precision matrix, Q, and de-

rived the recursive formula for computing the marginal variances and GMRF distribution

conditioned on linear constraints. We then demonstrated how the GMRF can be seen as a

Bayesian hierarchical model and how to modify the GMRF to accommodate non-normal

likelihood functions

In Chapter 4, we introduced the basic concepts of INLA. We gave two examples, a

simple regression model with intercept term and a Poisson regression model for the piston

failures data set, to show how INLA can be used as a fast approximation for computing

posterior distributions. The basic concepts of the INLA within MCMC approach were

introduced in Section 4.6. We gave an overview of the INLA within MCMC algorithm

and how this algorithm can be modified to circumvent the missing covariate problem in

survival analysis.
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In Chapter 5, we gave an overview of the three data sets used for modelling purposes.

In Chapter 6, we showed how prior information can be obtained from previous studies

and combined using meta analysis. In Section 6.5, we showed how prior distributions

were constructed for Weibull shape parameters, baseline log hazards, coefficients of linear

parameters and a frailty variance. In Section 6.6, we demonstrated how hierarchical and

autoregressive priors could be constructed for piecewise constant hazard models.

In Chapter 7, we showed how INLA-MCMC performs for three different kinds of data

sets, the kidney infection, SNLG and Malaysian advanced lung cancer data sets. We

also demonstrated that INLA-within MCMC is superior to MCMC in handling missing

covariate information for models with reasonable numbers of parameters and hyperparam-

eters. In our case, the performance of INLA was more efficient when fitting the piecewise

constant hazard models compared to Weibull survival models. Nevertheless, INLA is

still faster than MCMC, especially when computing the marginal likelihood which when

combined with the conditional posterior distributions of model parameters would yield

the marginal posterior distributions of our parameters.

8.2 Discussion and Limitations

8.2.1 Introduction

In this section we identify points where there are limitations in the findings so far and

where further work would strengthen the findings of the thesis, throw more light on the

questions addressed or provide extra information useful to potential users of the methods.

8.2.2 Simulation study

In the context of Bayesian inference, given the combination of a particular model, prior

specification and data set, there is a posterior distribution for the model parameters

which is obtained by applying Bayes’ rule. In this thesis, we have been concerned with

how to calculate summaries of the posterior distribution in the case of survival models,

particularly when some values of covariates are missing.

We have compared the performance of INLA and our proposed INLA-within-MCMC

method with more conventional MCMC in terms of computational speed and in terms

of the ability of the INLA methods to reproduce the results obtained using MCMC.

The comparisons have been done using real data sets and, in the examples where some
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covariate values were missing, the missingness was the actual missingness in the real data

sets. It is possible that the ability of the INLA methods to reproduce the results obtained

using MCMC, and the relative computational speed might be affected by changes in the

proportion of missing covariate values. This was not investigated in the thesis. To inves-

tigate this question, we might analyse data sets with different missingness proportions,

increasing in steps from no missingness up to a high proportion of covariate values missing.

It may be that, rather than just the proportion of missing values, the configuration

of missingness, that is which values are missing, or other features of the data might

have an effect. Therefore we might randomly generate data sets with randomly allocated

missingness and use a number of such data sets at each level of missingness. This whole

simulation experiment would be likely to be computationally time-consuming so it might

be best to use a relatively simple problem. In the case of a simple problem with few

unknowns, we could also compute the posterior using numerical quadrature to provide a

deterministic comparison rather than assuming that MCMC accurately gives the correct

values of posterior summaries. However, this would be impractical with missing covariate

values.

Another area for further investigation is sensitivity to the choice of prior distribution.

It may be that, with models of the type which we investigate here, the posterior, or aspects

of it, may be sensitive to the choice of prior. It may also be that there are particular types

of prior distribution, for example very imprecise priors, which cause difficulties for either

the INLA methods or MCMC and may lead to discrepancies between the results obtained.

This will be discussed further in Section 8.2.3.2.

8.2.3 Bayesian meta analysis and sensitivity analysis

8.2.3.1 Meta analysis and prior distribution construction

In Chapter 6, detailed information from previous studies on Non-Hodgkin Lymphoma

and advanced lung cancer has been presented, including the estimated values of coefficients

of prognostic factors for Non Hodgkin Lymphoma. However, we only used an empirical

Bayesian technique to synthesise the results which is an unsatisfactory method since we

did not use a full Bayesian meta analysis. This information could be used in a more

meaningful way by considering the following approaches.

Firstly, we could implement a standard Bayesian meta analysis of information obtained

from previous literature combined with full prior elicitation from the experts. In this way,
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better prior distributions for our parameters of interest could be obtained. For more infor-

mation, refer to O’Hagan et al. (2006). Besides, we could also improve the construction of

our prior distribution by extracting the individual patient data (IPD) from the published

Kaplan-Meier curves using the Guyot algorithm (Guyot et al., 2012). These recreated

data sets could then be used to generate prior distributions for the Weibull distribution

parameters, for instance, by fitting Weibull models to these recreated data sets. However,

the poor quality of the image for the available Kaplan-Meier curves published in older

journals might hamper the process of IPD extraction since it is dependent upon the

ability of the digital software such as DigitizeIt (Bormann, 2012) to establish accurately

the coordinates of published survival curves (Guyot et al., 2012).

To account for differences in the studies over time, we could use a meta-regression

technique to obtain, for instance, the prior means of our covariates of interest (Thompson

and Higgins, 2002). It has been demonstrated in a number of studies that the mean

covariate effect may vary across the time when the study was conducted as represented

by the year of the publication of the study (Berkey et al., 1998; Bollen et al., 2007; Fiocco

et al., 2012). This temporal heterogeneity of effect may be attributed to improvements

in treatment modalities, changes in the characteristics of the patient cohort and other

changes (Berkey et al., 1998; Bollen et al., 2007; Fiocco et al., 2012). This is particu-

larly true in our case since there had been several published works which demonstrated

pronounced temporal heterogeneity of covariate effects for the non-Hodgkin lymphoma

and advanced lung cancer cases (Gao et al., 2002; Matakidou et al., 2005). Besides,

meta-regression technique can also be used to adjust the other sources of heterogeneity

such as study sample size, types of studies (e.g. case control vs cohort studies), different

cut-off values used to classify the covariate of interests that may affect the accuracy of our

prior summary and the construction of prior distributions in general (Castillo et al., 2014;

Zhang and Ran, 2015). Hence, the results obtained from meta-regression analysis can

clearly facilitate the construction of more accurate prior distributions for our covariates

of interest.

We could also use multivariate meta-analysis methods to take into account the corre-

lations induced by the same (within-study correlation) and different (between-study cor-

relation) studies contributing to potentially a number of different covariate meta-analyses

(Bujkiewicz et al., 2013). The within-study correlation could be assessed using the IPD

obtained from other observational cohort studies or clinical trials whilst the between-

study correlation could be evaluated using the summary statistics from individual studies.

However, caution should be exercised since the use of multivariate meta analysis methods
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might inflate the degree of uncertainty around the studied outcomes instead (Cooper

et al., 2011). Possible causes include the heterogeneity in treatment effects, baseline

characteristics of study participants and study designs (Song et al., 2001).

We could also perform random effect meta-analysis using the combination of IPD and

the summary statistics from previous studies to generate posterior predictive distributions.

Ades et al. (2005) and Dias et al. (2013) reasoned that, in the presence of heterogeneity

of effects between studies, the predictive distribution of a future study is a more cogent

description of the degree of uncertainty around the effect of interest than the distribution

of mean effect. As a result, the predictive distributions obtained from prior studies can

subsequently be used to derive the prior distributions for the analyses that had been

undertaken in our study.

Alternatively, we could also use the power prior distributions for regression models

as proposed by Ibrahim and Chen (2000) to construct informative prior distributions.

Briefly, suppose that historical data from previous studies is given by D0 = (n0, y0, X0),

where n0 represents the sample size of the previous study, y0 is the n× 1 response vector,

X0 is the n×p matrix for covariates and θ represents the indexing parameters. The power

prior distribution of θ for the present study is then given by

π(θ | α0, D0) ∝ L(θ | D0)
α0 π0(θ | c0)

where c0 is the hyperparameter for the initial prior (before knowing the existence of the

historical data), α0 is the scalar parameter representing the weights of the historical data

relative to the likelihood of the current study, L(θ | D0) is the likelihood of θ in the

current study given the historical data, D0. This hierarchical power specification can be

made complete by assigning a prior distribution for α0, resulting in the joint power prior

distribution for θ and α0 that is represented by

π(θ, α0 | D0, α0) ∝ L(θ | D0)
α0 π0(θ | c0) π(α0 | γ0)

where γ0 is the hyperparameter vector. One of the candidates for π(α0 | γ0) is a beta

prior. Nevertheless, priors that have either truncated gamma or truncated normal form

may also serve as alternatives since all of them possess the same computational and

theoretical consistency (Ibrahim and Chen, 2000).
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8.2.3.2 Sensitivity to prior distribution

The results obtained using the informative priors should be evaluated with respect to

their sensitivity to changes in prior specification (sensitivity analyses). We could repeat

the analyses, starting with very imprecise priors and increasing the prior precision in steps

to assess the effects. However, the effects on the results might depend on the combination

of particular features of the data with the degree of precision in the prior. Therefore,

as in Section 8.2.2, multiple simulated data sets should be generated and by these, the

sensitivity of results obtained to the different prior specifications could be adequately

investigated.

8.2.4 Predicted survival curves

Using the analyses of Chapter 7, we could compute predicted survival curves for patient

groups with a specific covariate profile. In fact, since we have a missing data model, we

could obtain the predicted survival curves without specifying the full covariate profile. For

instance, if we would like to obtain a predicted survival curve for a male Non-Hodgkin

Lymphoma (NHL) patient aged 60, we could do this by integrating over the conditional

distributions of the unspecified covariates. This can be done easily in MCMC and INLA-

MCMC since we can use MCMC sampling for the missing covariate values. In both

cases, a “dummy patient” could be included in the analysis and a survival function could

then be computed at a range of time points for this patient. We could then sample the

survival function values and since the survival function is a probability, and therefore an

expectation, we could subsequently find the posterior mean of the survival function at

each of the time points. These could then be plotted against time to obtain the predicted

survival curve for that particular patient.
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8.3 Future work: Multi-state survival mod-

els

8.3.1 General overview of multi-state survival mod-

els

The inspiration to use a multi-state model for lung cancer patients comes from the

seminal work of Armero et al. (2016) on a disability model for lung cancer. Multistate

models are a class of stochastic models that involve the probability of occupying a number

of discrete states in continuous time. These natural stochastic models are practical for

the modelling of discrete systems’ evolution. There are two main types of multi-state

models: K-progressive model and illness disability model (also known as disability model)

(Meira-Machado et al., 2009). For the former, the simplest case will be a model with two

states such as dead and alive state with merely one transition probability. Nevertheless,

this can be generalised to k-states as shown in Figure 8.1.

Figure 8.1: K-progressive model (Meira-Machado et al., 2009)

As an example, let us consider a three-state model for a hypothetical scenario of

survival of breast cancer patients which is illustrated in Figure 8.2.

Figure 8.2: Breast-cancer three-state model (adapted from (Meira-Machado et al., 2009))

One possible approach is to decouple the whole multi-state model into a variety of

survival models. This is achieved by fitting distinct hazard functions for all possible

transitions using proportional hazard regression models whilst at the same time making

suitable adjustment to the risk set. The effects of covariates can be assumed to act linearly

on the log hazards. However, this is a very simplified version of modelling multi-state

survival models and this makes it less useful if the covariate effects do not have constant

linear effects on the log hazards.
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Another alternative is dependent on whether the Markov assumption is completely

fulfilled. This will result in two different models: Cox-Markov model or Cox semi-Markov

model. In the former, the Markovian assumption is completely fulfilled, by which the

future states that an individual will occupy will only depend on the current state. Within

this fully Markovian framework, we may assume that the hazard function, hvj (t;(Z)) =

hvj0(t) exp (βTvjZ), where hvj (t;(Z)) is the hazard function for transitions from state v to

state j with covariate vector Z, hvj0(t) is a non-negative baseline hazard function and βvj

is a vector of regression parameters. The number of covariates, which may be, continuous

or categorical, is p.

Nevertheless, the complete Markov assumption is not truly tenable in the real-life

setting. Under a full Markovian framework, we assume that the future health of patients

who were recently afflicted with breast cancer is similar to that of breast cancer patients

who have been sick for a long time. Besides, for patients who experience recurrent breast

cancer (exemplified by state 2 in Figure 8.2), we may be interested in the sojourn time

of patients in state 1 (alive and healthy). Hence, the Cox semi-Markov model may be

used for the modelling purposes. The difference with this approach from the previous

full-Markovian approach is really subtle: the future of the states is not dependent on the

absolute time at the current state (i.e. the time lapsed since the entry of a subject into

the initial state), but rather on the time duration spent in the current state (Foucher

et al., 2007). Hence, the difference lies in the way we model the transition from state 2

to state 3. The hazard functions are given by

h12(t;Z) = h120(t) exp(βT12Z)

and

h23(t− T12;Z) = h230(t− T12) exp(βT23Z)

where T12 is the time when a patient enters into state 2 and t− T12 is the time duration

spent in state 2. This is similar to resetting the clock since, when a patient enters a new

state, the clock time is reset to zero again.

To address the possible non-linearity effects of covariates on the hazard function, we

may employ additive multi-state models, by which the transition of individuals from one
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state to another state can be modelled by the hazard function

hvj0(t)exp
( q∑
i=1

fi,vj(Zi)
)

where fi,hj(.), i=1,2,3,. . .,q represent smooth functions of the covariates for breast cancer

survival. This approach is more useful than the previous one since we relax the assumption

of a linear effect of covariates on breast cancer survival. Hence, we assume such covariate

effects may affect the breast cancer survival via unspecified smooth functions.

For the second type of model (illness-disability model, also known as illness-death

model), the individuals or patients were disease-free initially. Subsequently, they con-

tracted the disease (state 2) and died (state 3) later. For non-lethal diseases, the patients

may return to state 1 again after receiving successful treatments. If this is a possibility,

the model can be styled as a bi-directional model. Apart from that, patients may also

experience death instantaneously, thus bypassing state 2. Figure 8.3 illustrates an example

of an illness-disability model with three states.

Figure 8.3: Illness-disability model (Meira-Machado et al., 2009)

As a further example, let us consider an illness-disability model for surgically-operable

cancer patients who later experience recurrence, distant spread (metastases) and death.

For clarity, Figure 8.4 gives a further example of such a model.

8.3.2 Multi-state models for lung cancer survival

Borrowing the methodological framework used by Armero et al. (2016) a stage IV lung

cancer patient will occupy the following three states at a specific time t during the course

of their diseases:
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Figure 8.4: Multi-state model for surgically-operable cancer patients (Putter et al., 2007)

� State I: Stable disease (defined according to Response Evaluation Criteria in Solid

Tumor version 1.1 (RECIST) criteria (Eisenhauer et al., 2009)).

� State II: Progressive disease (increase in diameters of the tumors based on RECIST

criteria).

� State III: Death.

Hence, we can consider state 1 and state 2 to be transitory states and state 3 as an

absorbing state. The illness-disability model for this simplified version of a lung cancer

multi-state model can be further elucidated by Figure 8.5.

Figure 8.5: Multi-state model used by Armero et al. (2016)
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For this scenario, we can assume that transitions between states are determined by a

parameter vector, θ and covariates x. For individuals in state 2, the transition probability

from state 2 (progressive stage IV lung cancer) to state 3 (death) is also contingent upon

residence time in state 1 (symbolised by T12). These can be represented by the equations

p1j = (s, t | x,θ) = P(Z(t) = j | Z(s) = 1,x,θ), s ≤ t, j = 2, 3

and

p23 = (s, t | x,θ, t12) = P(Z(t) = 3 | Z(s) = 2,x,θ, T12 = t12), t12 ≤ s ≤ t.

To determine these two probabilities, the hazard function for times between transition,

Tij, may be employed since it is congruent with inter-state transition intensities. These

can be represented by the two equations

h1j(t | x1j,θ1j) = lim
δt→0

{
P(T ≤ T1j < t+∆t | T1j ≥ t,x1jθ1j)

∆t

}
, j = 2, 3

and

h23(t− t12 | x23,θ23, t12) = lim
δt→0

{
P(A | B,x23,θ23, T12 = t12)

∆t

}
where A is the event t − t12 ≤ T23 < t − t12 + ∆t and B is the event T23 ≥ t − t12. For

a homogenous illness-disability model that posesses a semi-Markovian property (v to j

transition intensity at a time point is also dependent upon sojourn time at state v), the

relationships between the hazard functions and the transition probabilities can be linked

via the equations

p11(s, t | x,θ) = exp
{
−
∫ t

s

[h12(u | x12,θ12) + h13(u | x13,θ13)]du
}
,

p22(s, t | x,θ, t12) = exp
{
−
∫ t

s

h23(u− t12 | x23, t12)du
}
,

p12(s, t | x,θ, t12) =

∫ t

s

p11(s, u | x,θ)h12(u | x,θ12)p22(u, t | x,θ, u)du,

p13(s, t | x,θ) = 1− p11(s, t | x,θ)− p12(s, t | x,θ),

p23(s, t | x,θ, t12) = 1− p22(s, t | x,θ, t12),
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and

p33(s, t | x,θ) = 1.

Nevertheless, a fourth state can be added to the original ideas of Armero et al. (2016).

The fourth state is called a responsive disease state (can be either Partial Response (PR)

[defined as 30 percent reduction in the sum of diameters of target lesions, using the baseline

diameters as reference] OR Complete Response (CR) [defined as total disappearance of

the target lesion](Eisenhauer et al., 2009; Schwartz et al., 2016). The fourth state can

be anticipated to occur quite frequently in Malaysian advanced lung cancer cases since

the use of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs),

which is a form of molecularly-targeted therapy for lung cancer that specifically targets

the highly expressed cellular growth-promoting signalling cascades, resulting in a total

disappearance of target lesions (primary tumor mass in the lungs) in those harbouring

EGFR mutations, may cause a dramatic improvement in the survival of the subjects.

Therefore, for the Malaysian advanced lung cancer dataset, the following rearrangement

of the state space is proposed.

� State I: Responsive disease:A minimum reduction of 30% in the total diameters of

target lesions compared to their baseline measurements (Eisenhauer et al., 2009)

� State II: Stable disease: An inadequate reduction or increase in diameters of the

tumors to qualify for responsive disease or progressive disease (Schwartz et al., 2016)

� State III: Progressive disease (RECIST 1.1 criteria)

� State IV: Death (absorbing state)

Therefore, states I, II and III are considered as transient states and state IV as an ab-

sorbing state. The movements between states are governed by the patient’s health status.

The jump from state I or II to state III occurs when cancer progresses, from state III

to IV when cancer patients die because of disease progression, from state I or II directly

to state IV if the patient dies because of other reasons (not due to disease progression).

There can also be reverse jumps from state III to either state II or I since cancer may stop

progressing if new therapeutic regimens are given to the patients who have failed the first

line regime (which they might also have previously responded to), resulting in a second

complete or partial response period. There will be no jump from state I to state II since

they are mutually exclusive. Figure 8.6 summarises the four-state space.
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Figure 8.6: State space for the advanced model

8.3.3 Renewal process and non-homogenous Poisson

process in survival analysis

Much of the time-to-event modelling for cancer data assumes a non-repairable system.

This type of system can only experience a single failure and a parametric time-to-event

model using a Weibull distribution will aptly summarise the distribution of the time

when the system fails. In contrast, a repairable system presumes that failed items can be

restored back into service. For instance, a damaged car can be repaired and refitted back

into service, whilst severely damaged cardiac tissues are no longer repairable, requiring a

new organ transplantation for such patients. Hence, models for repairable systems have to

give allowances to a full sequence of repeated failures and it must also have the capability

to reflect the alterations in the system’s reliability as time progresses. A counting process

approach is thus suitable for modelling a repairable system in survival analysis.

Let N(t) represent the number of failures of a repairable system in one interval [0,

t]. Since N(t) is non-negative integer valued, the difference between N(t) and N(s) is

the number of failures occurring in the time interval between s and t (provided s < t)
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(Engelhardt and Bain, 1992). An alternative specification can also be made with re-

spect to sequential failure times: T1,T2,. . .,Tn (Lindqvist et al., 2003). If a system is

fully repairable into a new condition, this system can thus be modelled using a para-

metric assumption with independent and identically distributed survival times (renewal

process). However, the modelling of time-to-event data for cancer cases is far more com-

plicated. For instance, the time to chemotherapeutic failure between successive regimes

of chemotherapy becomes shorter due to the mutation in cancer cells that confers further

selective resistance towards different combinations of chemotherapy. Besides, for curable

cancer types, the times between relapses become progressively shorter as evident from the

shorter time to relapse for non-Hodgkin lymphoma patients who are cured by the second

chemotherapeutic regime, compared to their survival time when they were treated with

the first chemotherapeutic regime. Therefore, the repairable system in cancer cases can

be assumed to have a profound decrease in its reliability as time progresses (ie. as the

system ages).

To illustrate further, we may view the general condition where the renewal process of

a series of events is observed for every patient such that the the inter-event times Xj, j

= 1,2,. . . for a patient are iid. Hence, we may imagine a number of individual renewal

processes which are censored at possibly different times. Thus, the following scenarios for

censoring times may occur (Aalen and Husebeye, 1991):

� The censoring times can be considered to be fixed in advance. The example is at

the cessation of a fixed observation period.

� The censoring time itself can be considered as a random variable which is not de-

pendent upon the renewal process. Hence, every patient can be considered to have

distinct censoring times or one censoring time that is shared by several patients.

� Censoring time occurs after each patient has completed a predetermined number of

renewal periods.

� Censoring time happens when the individuals have completed a certain number of

periods or the observation times have exceeded certain limits.

� Censoring time occurs at the first event occuring after a predetermined time-interval.

The other alternative to a renewal process, which can be considered as a generalised

homogeneous Poisson process, is to use a non-homogeneous Poisson process (NHPP) to
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model cancer survival data. Engelhardt and Bain (1992) showed that this process has a

non-constant intensity function as given by

ν(t) = (β/θ)(t/θ)β−1.

An intensity function should not be confused with a hazard function since the former is

the absolute rate of failure for a repairable system whilst the latter is the relative rate

of failure for non-repairable systems (Deshpande et al., 1999). A Weibull process has a

mean value function, M(t), given by

M(t) = (t/θ)β; θ > 0, β > 0

where θ is the scale parameter whilst β is the shape parameter (Engelhardt and Bain,

1992). Besides, Engelhardt and Bain (1992) also demonstrated that M(t) can be alter-

natively reparameterised as

M(t) = λtβ.

If the second parametrisation of M(t) is substituted into the intensity function, ν(t), this

leads to parameterisation of ν(t) as

v(t) = λβtβ−1

To model cancer survival data that have the properties of a non-homogenous Poisson

process (NHPP), we could use a semiparametric model as proposed by Sinha (1993) based

on the conditional intensity function,

h(t|zi, wi) = I(t)h0(t) exp(βT zi)wi

where wi is a frailty effect that is patient-specific, zi is a vector of covariates for the ith

individual, βT is the vector of unknown parameters, h0 is the baseline intensity function

and I(t) is the indicator of the censoring process. Therefore, wi can be considered as a

multiplicative random effect on the hazard function for a specific patient or individual.

The baseline hazard function can be modelled using a piecewise constant hazard function.

However, there are a few difficulties in computing the posterior distributions for this model

under the INLA framework. Firstly, frailty is usually regarded to be an iid gamma random

variable of mean 1 and unknown variance κ
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Wi ∼ Ga(κ−1, κ−1),

for each individual i = 1,. . .,N. As a result, this creates a cumbersome situation if INLA

is used for obtaining the posterior distributions. To circumvent this, several alternatives

such as using the log normal distribution for frailty could be explored so that the Weibull

process can be rewritten into a latent Gaussian model, a prerequisite for Bayesian inference

using INLA methodology.

8.4 Conclusions

The main goals of this research were as follows:

1. Compare the performance of different computational approaches (MCMC vs INLA)

in Bayesian inference for survival analysis models.

2. Investigate the construction of appropriate forms for the prior distributions of the

log hazard, Weibull shape parameters and frailty.

3. Assess the performance of INLA in missing covariates values and develop approaches

to improve the flexibility of INLA in this setting.

4. Apply the formulated approaches to practical problems using real medical data sets

and evaluate the strengths and limitations of each approach

In Chapter 7, we compared the performance of MCMC and INLA and we showed that

INLA was superior to MCMC when obtaining the posterior means and standard deviations

of our parameters of interest. In Chapter 6, we showed that the appropriate forms of prior

distributions for the log hazard could be computed for both the SNLG and Malaysian

advanced lung cancer data sets. We also showed in 6.6, the methods used to construct the

prior distributions for the log hazard, Weibull shape parameters and frailty variance. We

fulfilled objectives 3 and 4 in Chapter 7 by showing that INLA-MCMC can appropriately

handle missing covariate data problems in different kinds of real medical data sets and the

strengths and limitations of each approach were described in Chapter 7 and summarised

in Chapter 8.
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Appendix

A.1 Standard Distributions Used in Survival

Analysis

To facilitate better understanding of the model structures developed in this research

project, standard distributions used in survival analysis will be elaborated.

A.1.1 Weibull and Exponential Distributions

The Weibull and exponential distributions are the two most commonly distributions used

in analysing the lifetimes of subjects. The two-parameter Weibull distribution has the

following form:

f(x | a, b) =
b

a

(x
a

)b−1
exp

{
−
(x
a

)b}
with b > 0 is the shape parameter and a> is the scale parameter. If k < 1, this means

that the failure rate declines as time progresses. If k> 1, the failure rate increases over

time. A special case occurs when the failure rate is a constant over time (k =1), where

the Weibull distribution is reduced to exponential distribution:

f(x | a, b) =
1

a
exp
{
− 1

a
x
}

Then we substitute 1
a

= λ, resulting in;

f(x | λ) = λ exp
{
− λ x

}
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with λ > 0 as the rate parameter.

A.1.2 Lognormal distribution

Let X is a random variable whose logarithm has a Gaussian distribution. Hence, Z = log

X is distributed normal. The pdf of this continuous distribution is given by:

f(z | µ, σ2) =
1

exp(z)
√

2σ2π
exp
{
− (log x− µ)2

2σ2

}
where σ2 > 0, −∞ ≤ µ ≤ +∞. This distribution is useful for an alternative to gamma

distrbution if X ∈ (0, ∞).

A.1.3 Gamma distribution

Let Y is a random variable that has a positive support and follows a gamma distribution,

with a scale parameter,h, and shape parameter g. Hence, the pdf of Y is given as follows:

f(y | g, h) =
hg yg−1exp

{
− hy

}
Γ (g)

where g and h > 0. Γ (g) is a gamma function. This distribution is usually employed for

a parameter that has a strictly positive support. One of the examples is the variance of

a normal or log-normal distribution.

A.1.4 Log-logistic distribution

Let R is a random variable that has only positive support. Hence the pdf is given by:

f(r | α, β) =
(
β

α
)(
r

α
)β−1

(1 + (
r

α
)β)2

where both α and β are strictly positive. This distribution is usually used in survival

analysis for modelling events whose rate escalates initially and diminishes eventually. As

an example, mortality rate may follow this kind of distribution.
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A.1.5 Multivariate normal distribution

This distribution is a Gaussian distribution that has been generalised from one-dimensional

univariate Gaussian to multi-dimensional Gaussian distribution. Let say X is a p-dimensional

random vector. The pdf of this distribution is thus given by:

f(x | µ,Σ) =
1

(2π)
p
2 | Σ | 12

exp
{
− 1

2
(x− µ)TΣ−1(x− µ)

}
where E[X] = µ and Var[X] = Σ, which denotes the positive-definite covariance matrix.

A.1.6 Beta distribution

Let V is a continuous random variable whose support is between 0 and 1. Hence, V follows

a beta distribution that has a pdf as follows:

f(v | α, β) =
vα−1(1− v)β−1

B(α, β)

where α and β are shape parameters that are strictly positive. B represents the beta

function that has the following form:

B(α, β) =
Γ (α) Γ (β)

Γ (α + β)

Beta distribution is popular with respect to Bayesian inference because it is a conjugate

prior distribution for binomial and geometric distributions.

A.1.7 Multinomial distribution

It is a generalised version of binomial distribution. In n number of multinomial trials

that are independent, there are k possible outcomes having fixed success probability.

Hence, multinomial distribution is hence the distribution of the outcomes determined

by multinomial trials. Let Q1, Q2, . . . , Qk with N =
∑k

i=1Qi = 1.The probability mass

function (pmf) of multinomial distribution is given by:

Pr(Q1 = q1, Q2 = q2 Q3 = q3, . . . , Qk = qk) =
n!

q1!, q2!, q3!, . . . , qk!
pq11 pq22 pq33 . . . p

qk
k
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where
∑k

i=1 qi = n. Two special cases of this distribution should be noted; a) in a single

trial (n = 1) with k = 2 outcomes, this distribution is reduced to Bernoulli distribution,

b) in n independent trial with k = 2 outcomes, this multinomial distribution is reduced

to binomial distribution.

A.1.8 Dirichlet distribution

This distribution plays a very special role in Bayesian inference, it is a conjugate prior

distribution for the multinomial distribution. The pdf is given by:

f(x) =
Γ
(∑

i=1 ai

)
∏d

i Γ
(
ai

) d∏
i=1

xi
ai−1

where X ∈ Sd and a ∈ Rd
+. The expectation and covariance are given as follows:

E[xj] =
aj
A

Cov(xi, xj) = − ai aj
A2(A+ 1)

A =
d∑
i=1

ai

It can clearly be seen that if d=2, this distribution will be reduced to the beta distribution.

A.2 The Structure of SNLG dataset

The SNLG dataset has the following format (structure):

Table 1A: The structure of partial SNLG data

"t" "t.cen" "is.cen" "age" "hb" "wbc""gender""albumin"

0.0164 1.0164 0 12 -4.706 -6.069 1 2

0.2502 1.2502 0 3 -17.706 -5.970 1 1

0.1689 1.1689 0 -2 -25.706 -5.770 2 1

0.1945 1.1945 0 -8 -42.706 -4.970 2 2
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The negative signs for age, haemoglobin level (hb) and white blood cell (wbc) count are

attributed to the centering of the continuous quantitative covariates.

A.3 RJAGS and INLA codes for piston-ring

failures poisson regression model

---------------------------------------------------------------

R-JAGS CODES FOR PISTON-RING FAILURES POISSON REGRESSION MODEL

--------------------------------------------------------------

modelstring="

model{

for (i in 1:n){

y[i]~dpois(mu[i])

log(mu[i])<-alpha+beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+beta4*

x4[i]+beta5*x5[i]+beta6*x6[i]+beta7*x7[i]+beta8*x8[i]+beta9*

x9[i]+beta10*x10[i]+beta11*x11[i]

}

alpha~dnorm(2.3,0.4545)

beta1~dnorm(0,2)

beta2~dnorm(0,0.6667)

beta3~dnorm(0,0.6667)

beta4~dnorm(0,0.6667)

beta5~dnorm(0,0.6667)

beta6~dnorm(0,4)

beta7~dnorm(0,4)

beta8~dnorm(0,4)

beta9~dnorm(0,1.3333)

beta10~dnorm(0,1.3333)

beta11~dnorm(0,1.3333)

}

"

--------------------------------------------------------------

R-INLA CODES FOR PISTON-RING FAILURES POISSON REGRESSION MODEL

--------------------------------------------------------------
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formula3=PistonINLA$Failures~PistonINLA$Beta1+PistonINLA$Beta2+

PistonINLA$Beta3+PistonINLA$Beta4+PistonINLA$Beta5+PistonINLA$

Beta6+PistonINLA$Beta7+PistonINLA$Beta8+PistonINLA$Beta9+

PistonINLA$Beta10+PistonINLA$Beta11

model1=inla(formula3,family="poisson",data=PistonINLA

,control.fixed=list(mean=list(Beta1=0,Beta2=0,Beta3=0,

Beta4=0,Beta5=0,Beta6=0,Beta7=0,Beta8=0,Beta9=0,

Beta10=0,Beta11=0),mean.intercept=2.3,prec=list(Beta1=2,

Beta2=0.6667,Beta3=0.6667,Beta4=0.6667,Beta5=0.6667,Beta6=4,

Beta7=4,Beta8=4,Beta9=1.3333,Beta10=1.3333,Beta11=1.3333),

prec.intercept=10.4545),verbose=TRUE,control.compute=list(dic=TRUE,

cpo=TRUE),control.inla=list(strategy="simplified.laplace))

A.4 R function for the numerical quadra-

ture method used for the analysis of

kidney infection data set using expo-

nential proportional hazard model

kidney2<-function(eta1,eta2,t,status,placement,prior,alpha=1)

# Evaluates posterior density etc for Weibull model for kidney dialysis data.

# Exponential model is obtained when alpha is set to 1

# prior is mean0, mean1, var0, var1, covar for beta

# placement is 1 for surgical and 2 for percutaneous

# status is 1 for event, 0 for censored

n1<-length(eta1)

n2<-length(eta2)

step1<-eta1[2]-eta1[1]

step2<-eta2[2]-eta2[1]

eta1<-matrix(eta1,nrow=n1,ncol=n2)

eta2<-matrix(eta2,nrow=n1,ncol=n2,byrow=T)

m1<-prior[1]+prior[2]
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m2<-prior[1]+2*prior[2]

v1<-prior[3]+prior[4]+2*prior[5]

v2<-prior[3]+4*prior[4]+4*prior[5]

c<-prior[3]+2*prior[3]+3*prior[5]

sd1<-sqrt(v1)

sd2<-sqrt(v2)

r<-c/(sd1*sd2)

delta1<-(eta1-m1)/sd1

delta2<-(eta2-m2)/sd2

d<-1-r^2

logprior<- -(delta1^2 + delta2^2 - 2*r*delta1*delta2)/(2*d)

nd<-sum(status)

t1<-t[placement==1]

t2<-t[placement==2]

status1<-status[placement==1]

status2<-status[placement==2]

t1d<-t1[status1==1]

t2d<-t2[status2==1]

lt1d<-log(t1d)

lt2d<-log(t2d)

t1a<-t1^alpha

t2a<-t2^alpha

nd1<-length(t1d)

nd2<-length(t2d)

beta0<-2*eta1-eta2

beta1<-eta2-eta1

lambda1<-exp(eta1)

lambda2<-exp(eta2)

loglik<-nd*log(alpha)+nd1*eta1+nd2*eta2+(alpha-1)*(sum(lt1d)+sum(lt2d))-

lambda1*sum(t1a)-lambda2*sum(t2a)

logpos<-logprior+loglik

logpos<-logpos-max(logpos)

posterior<-exp(logpos)

int<-sum(posterior)*step1*step2

posterior<-posterior/int
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postmean0<-sum(posterior*beta0)*step1*step2

postmean1<-sum(posterior*beta1)*step1*step2

postvar0<-sum(posterior*((beta0-postmean0)^2))*step1*step2

postvar1<-sum(posterior*((beta1-postmean1)^2))*step1*step2

postmean<-c(postmean0,postmean1)

postsd<-sqrt(c(postvar0,postvar1))

ans<-list(density=posterior,postmean=postmean,postsd=postsd)

ans

}

----------------------------

#RUNNING THE MODEL

----------------------------

data<-read.table("Kidney-infec.txt",header=T)

t<-data$time

status<-data$event

placement<-data$placement

source("kidney2R.txt")

prior2<-c(0,0,1000,1000,0)

eta1<-seq(-2,-0.5,0.002)

eta2<-seq(-2.6,-0.8,0.005)

test<-kidney2(eta1,eta2,t,status,placement,prior2)

A.5 Bayesian Weibull Survival Model for SNLG

data set with completely observed co-

variate values

-----------------------------

RJAGS CODE (MCMC)

-----------------------------

model

{

for (i in 1:636)

{
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is.cen[i] ~ dinterval (t[i], t.cen[i])

t[i] ~dweib(alpha,lambda[i])

eta[i]<-beta0 +beta.age*age[i]+beta.hb*hb[i]+beta.wbc*wbc[i]

+beta.sex[sex[i]]+beta.albumin[albumin[i]]+beta.ap[ap[i]]+

beta.urea[urea[i]]+beta.extranod[extranod[i]]

+beta.bulk[bulk[i]]+beta.marrow[marrow[i]]+beta.bsy[bsy[i]]

+ beta.stage[stage[i]]+beta.ecog[ecog[i]]+beta.ldh[ldh[i]]

lambda[i]<-exp(eta[i])

}

delta.ecog[1]~dnorm(0,500)

delta.ecog[2]~dnorm(0,333.3)

delta.ecog[3]~dnorm(0,166.6)

delta.ecog[4]~dnorm(0,50)

beta.ecog[1]<- -delta.ecog[1] -delta.ecog[2] -delta.ecog[3]

-delta.ecog[4]

beta.ecog[2]<- delta.ecog[1] -delta.ecog[2] -delta.ecog[3]

-delta.ecog[4]

beta.ecog[3]<- 2*delta.ecog[2] -delta.ecog[3]

-delta.ecog[4]

beta.ecog[4]<- 3*delta.ecog[3] -delta.ecog[4]

beta.ecog[5]<- 4*delta.ecog[4]

delta.stage[1]~dnorm(0,333.3)

delta.stage[2]~dnorm(0,166.6)

delta.stage[3]~dnorm(0,50)

beta.stage[1]<- -delta.stage[1]-delta.stage[2] -delta.stage[3]

beta.stage[2]<- delta.stage[1]-delta.stage[2] -delta.stage[3]

beta.stage[3]<- 2* delta.stage[2]-delta.stage[3]

beta.stage[4]<- 3*delta.stage[3]

delta.ldh[1]~dnorm(0,500)

delta.ldh[2]~dnorm(0,166.6)
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beta.ldh[1]<- -delta.ldh[1] -delta.ldh[2]

beta.ldh[2]<- delta.ldh[1] -delta.ldh[2]

beta.ldh[3]<- 2*delta.ldh[2]

delta.sex~dnorm(0.52,3.97)

delta.albumin~dnorm(0.97,17.86)

delta.ap~dnorm(0,33.41)

delta.urea~dnorm(0,33.41)

delta.extranod~dnorm(0.25,49.50)

delta.bulk~dnorm(0.34,6.78)

delta.marrow~dnorm(0.88,3.58)

delta.bsy~dnorm(0.26,3.95)

beta.sex[1]<-delta.sex

beta.sex[2]<- -delta.sex

beta.albumin[1]<-delta.albumin

beta.albumin[2]<- -delta.albumin

beta.ap[1]<-delta.ap

beta.ap[2]<- -delta.ap

beta.urea[1]<-delta.urea

beta.urea[2]<- -delta.urea

beta.extranod[1]<-delta.extranod

beta.extranod[2]<- -delta.extranod

beta.bulk[1]<-delta.bulk

beta.bulk[2]<- -delta.bulk

beta.marrow[1]<-delta.marrow

beta.marrow[2]<- -delta.marrow

beta.bsy[1]<-delta.bsy

beta.bsy[2]<- -delta.bsy

beta.age~dnorm(0.0295,47778.31)

beta.hb~dnorm(0.02,5102.04)

beta.wbc~dnorm(0.08,277.7)

alpha~dgamma(4,4)

beta0~dnorm(-1.5,6.25)

}
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-----------------------------------------------------------

INLA WEIBULL WITH ORTHOGONAL CONSTRAINT (FOR ALL COVARIATES)

-----------------------------------------------------------

INLAorthogonal<-read.csv("INLAdatacomplete.csv",header=TRUE)

View(INLAorthogonal)

write.csv(INLAorthogonal,"INLAorthogonalwithldh.csv")

SNLGwei1=inla.surv(INLAorthogonal$time,INLAorthogonal$Event)

~age+hb1+wbc1+albumin+ap+bsy+bulk+extranod+gender+

marrow+urea+ldh1+ldh2+stage1+stage2+stage3+ecog1+ecog2

+ecog3+ecog4

SNLGmodelwei1=inla(SNLGwei1,family="weibullsurv",data=

INLAorthogonal,control.inla=list(strategy="laplace",

int.strategy="grid",dz=0.1),control.family=list(list(prior=

"loggamma",param=c(1,0.001))),control.fixed=list(mean=

list(age=0.0295,hb1=0.02,wbc1=0.08,gender=0.52,albumin

=0.97,ap=0,urea=0,extranod=0.25,bsy=0.26,bulk=0.34,marrow=0.88,

ldh1=0,ldh2=0,ecog1=0,ecog2=0,ecog3=0,ecog4=0,

stage1=0,stage2=0,stage3=0),mean.intercept=-1.5,

prec=list(age=47778.31,hb1=5102.04,wbc1=277.7,gender=

3.97,albumin=17.86,urea=33.41,extranod=49.50,bsy=3.95,

bulk=6.78,marrow=3.68,ap=33.41,ldh1=500,ldh2=166.6,

stage1=333.3,stage2=166.6,stage3=50,ecog1=500,ecog2=

333.3,ecog3=166.6,ecog4=50),prec.intercept=6.25),

control.compute=list(dic=TRUE,waic=TRUE,cpo=TRUE,mlik=TRUE),

control.predictor=list(link=1,compute=TRUE),verbose=TRUE)

summary(SNLGmodelwei1)

-------------------------------

INLA HPD INTERVALS WEIBULL

-------------------------------
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Beta_intercept<-SNLGmodelwei1$marginals.fixed$‘(Intercept)‘

inla.hpdmarginal(0.95,Beta_intercept)

Beta_age<-SNLGmodelwei1$marginals.fixed$age

inla.hpdmarginal(0.95,Beta_age)

Beta_hb<-SNLGmodelwei1$marginals.fixed$hb1

inla.hpdmarginal(0.95,Beta_hb)

Beta_wbc1<-SNLGmodelwei1$marginals.fixed$wbc1

inla.hpdmarginal(0.95,Beta_wbc1)

Beta_albumin<-SNLGmodelwei1$marginals.fixed$albumin

inla.hpdmarginal(0.95,Beta_albumin)

Beta_ap<-SNLGmodelwei1$marginals.fixed$ap

inla.hpdmarginal(0.95,Beta_ap)

Beta_bsy<-SNLGmodelwei1$marginals.fixed$bsy

inla.hpdmarginal(0.95,Beta_bsy)

Beta_bulk<-SNLGmodelwei1$marginals.fixed$bulk

inla.hpdmarginal(0.95,Beta_bulk)

Beta_extranod<-SNLGmodelwei1$marginals.fixed$extranod

inla.hpdmarginal(0.95,Beta_extranod)

Beta_gender<-SNLGmodelwei1$marginals.fixed$gender

inla.hpdmarginal(0.95,Beta_gender)

Beta_marrow<-SNLGmodelwei1$marginals.fixed$marrow

inla.hpdmarginal(0.95,Beta_marrow)

Beta_urea<-SNLGmodelwei1$marginals.fixed$urea

inla.hpdmarginal(0.95,Beta_urea)

Beta_hyperpar<-SNLGmodelwei1$marginals.hyperpar$

‘alpha parameter for weibullsurv‘

inla.hpdmarginal(0.95,Beta_hyperpar)

Beta_ldh1<-SNLGmodelwei1$marginals.fixed$ldh1

inla.hpdmarginal(0.95,Beta_ldh1)

Beta_ldh2<-SNLGmodelwei1$marginals.fixed$ldh2

inla.hpdmarginal(0.95,Beta_ldh2)

Beta_ecog1<-SNLGmodelwei1$marginals.fixed$ecog1

inla.hpdmarginal(0.95,Beta_ecog1)

Beta_ecog2<-SNLGmodelwei1$marginals.fixed$ecog2

inla.hpdmarginal(0.95,Beta_ecog2)
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Beta_ecog3<-SNLGmodelwei1$marginals.fixed$ecog3

inla.hpdmarginal(0.95,Beta_ecog3)

Beta_ecog4<-SNLGmodelwei1$marginals.fixed$ecog4

inla.hpdmarginal(0.95,Beta_ecog4)

Beta_stage1<-SNLGmodelwei1$marginals.fixed$stage1

inla.hpdmarginal(0.95,Beta_stage1)

Beta_stage2<-SNLGmodelwei1$marginals.fixed$stage2

inla.hpdmarginal(0.95,Beta_stage2)

Beta_stage3<-SNLGmodelwei1$marginals.fixed$stage3

inla.hpdmarginal(0.95,Beta_stage3)

A.6 R functions for splitting the survival

time of SNLG subjects into 10 time in-

tervals

#-------------------------------------------------------------

#TIME INTERVAL CUT-POINTS (9 CUT-POINTS FOR 10 TIME-INTERVALS)

#-------------------------------------------------------------

cuts=c(0.316,0.669,1.070,1.532,2.079,2.749,3.612,4.828,6.908)

dat<-read.table("snlgar.txt",header=TRUE)

#---------------------------------------------------------------

#R FUNCTIONS FOR CONSTRUCTING CUT-POINTS FOR PIECEWISE CONSTANT

HAZARD MODELS

#---------------------------------------------------------------

piecewiseirfan<-function(data.in,cuts)

{n.cuts<-length(cuts)

n.patients<-length(data.in[,1])

patients<-1:n.patients

age<-data.in$age

albumin<-data.in$albumin

ap<-data.in$ap
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bsy<-data.in$bsy

bulk<-data.in$bulk

ecog<-data.in$ecog

extranod<-data.in$extranod

hb<-data.in$hb

ldh<-data.in$ldh

marrow<-data.in$marrow

sex<-data.in$sex

stage<-data.in$stage

urea<-data.in$urea

wbc<-data.in$wbc

is.cen<-data.in[,1]

is.cen<-ifelse(is.na(is.cen),1,0)

t.cen<-data.in$t.cen

t<-data.in[,1]

t<-ifelse(is.na(t),t.cen,t)

data<-cbind(t,is.cen,patients)

out<-data[t<=cuts[1],]

alive<-data[t>cuts[1],]

n.alive<-length(alive[,1])

alive[,1]<-rep(cuts[1],n.alive)

alive[,2]<-rep(1,n.alive)

out<-rbind(out,alive)

perj<-rep(1,length(out[,1]))

out<-cbind(out,perj)

for (j in 2:n.cuts)

{data<-data[data[,1]>cuts[j-1],]

outj<-data[data[,1]<=cuts[j],]

outj[,1]<-outj[,1]-cuts[j-1]

alive<-data[data[,1]>cuts[j],]

n.alive<-length(alive[,1])

alive[,1]<-rep((cuts[j]-cuts[j-1]),n.alive)

alive[,2]<-rep(1,n.alive)

outj<-rbind(outj,alive)

perj<-rep(j,length(outj[,1]))
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outj<-cbind(outj,perj)

out<-rbind(out,outj)

}

data<-data[data[,1]>cuts[n.cuts],]

data[,1]<-data[,1]-cuts[n.cuts]

perj<-rep((n.cuts+1),length(data[,1]))

data<-cbind(data,perj)

out<-rbind(out,data)

t<-out[,1]

is.cen<-out[,2]

is.na(t)<-is.cen==1

t.cen<-out[,1]

patients<-out[,3]

perj<-out[,4]

t.cen<-ifelse(is.cen==0,t.cen+1,t.cen)

out<-list(t=t,is.cen=is.cen,t.cen=t.cen,patients=patients,

perj=perj,age=age,albumin=albumin,ap=ap,bsy=bsy,bulk

=bulk,ecog=ecog,extranod=extranod,hb=hb,ldh=ldh,

marrow=marrow,sex=sex,stage=stage,urea=urea,wbc=wbc)

}

#------------------

#APPLYING THE CUTS

#------------------

dat2<-piecewiseirfan(dat,cuts)
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A.7 Bayesian piecewise constant hazard model

using hierarchical priors for baseline haz-

ard for the SNLG data set (including

missing covariate information)

#Bayesian piecewise constant hazard for the SNLG data set (complete

covariate information) using age, sex, albumin, extranod, bulk, marrow

and bsy covariates. Frailty term is also included.

modelstringfullhierarchical="

model

{

for (i in 1:7672)

{

is.cen[i]~dinterval(t[i], t.cen[i])

t[i]~dexp(lambda.whole[i])

lambda.whole[i]<-exp(beta0[perj[i]]+beta.age[perj[i]]*(age[patients[i]])+

beta.sex[perj[i],sex[patients[i]]]+beta.albumin[perj[i],albumin

[patients[i]]+beta.extranod[perj[i],extranod[patients[i]]]+beta.bulk

[perj[i],bulk[patienbts[i]]]+beta.marrow[perj[i],marrow[patients[i]]]+

beta.bsy[perj[i],bsy[patients[i]]]+frail[patients[i]])

}

for(c in 1:1396)

{

frail[c]~dnorm(0,tau.frail)

tau.frail~dgamma(1.1,0.53)

#---------------------------

#Sampling missing data

#----------------------------
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for(i in 1:1391)

{

bsy[i]~dcat(phi.bsy[])

marrow[i]~dcat(phi.marrow[])

bulk[i]~dcat(phi.bulk[])

extranod[i]~dcat(phi.extranod[])

albumin[i]~dcat(phi.albumin[])

}

phi.bsy0~dbeta(1,1)

phi.bsy[1]<-phi.bsy0

phi.bsy[2]<-1-phi.bsy0

phi.marrow0~dbeta(1,1)

phi.marrow[1]<-phi.marrow0

phi.marrow[2]<-1-phi.marrow0

phi.bulk0~dbeta(1,1)

phi.bulk[1]<-phi.bulk0

phi.bulk[2]<-1-phi.bulk0

phi.extranod0~dbeta(1,1)

phi.extranod[1]<-phi.extranod0

phi.extranod[2]<-1-phi.extranod0

phi.albumin0~dbeta(1,1)

phi.albumin[1]<-phi.albumin0

phi.albumin[2]<-1-phi.albumin0

#----------------------------------

#Priors for all beta coefficients

#----------------------------------

for (j in 1:10)

{
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beta0m[j]~dnorm(-4.807,35.05)

beta0[j]~dnorm(beta0m[j],666.04)

beta.age[j]~dnorm(0.64,71.42857143)

delta.sex[j]~dnorm(0.52, 3.97)

delta.sex[j,1]<-delta.sex[j]

delta.sex[j,2]<- -delta.sex[j]

delta.bsy[j]~dnorm(0.26, 3.95)

beta.bsy[j,1]<-delta.bsy[j]

beta.bsy[j,2]<- -delta.bsy[j]

delta.marrow[j]~dnorm(0.88,3.68)

beta.marrow[j,1]<-delta.marrow[j]

beta.marrow[j,2]<- -delta.marrow[j]

delta.bulk[j]~dnorm(0.34,6.78)

beta.bulk[j,1]<-delta.bulk[j]

beta.bulk[j,2]<- -delta.bulk[j]

delta.extranod[j]~dnorm(0.25,49.50)

beta.extranod[j,1]<-delta.extranod[j]

beta.extranod[j,2]<- -delta.extranod[j]

delta.albumin[j]~dnorm(0.97,17.86)

beta.albumin[j,1]<-delta.albumin[j]

beta.albumin[j,2]<- -delta.albumin[j]

}

}

"
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A.8 Bayesian piecewise constant hazard model

with frailties using autoregressive pri-

ors for the SNLG data set with missing

covariate information

#Bayesian piecewise constant hazard model for the SNLG

data set using all 14 covariates

#---------------------------------------------------------

#Initial values for piecewise constant hazard model

#---------------------------------------------------------

tinits1<-dat$t.cen+5

is.na(tinits1)<-dat2$is.cen==0

tinits2<-tinits1+2

inits1<-list(beta0=c(-6,-6,-6,-6,-6,-6,-6,-6,-6,-6),

delta.sex=rep(0.01,10),

beta.age=rep(0,10),

delta.stage=matrix(0.01,nrow=10,ncol=3),

delta.albumin=rep(0.01,10),

delta.ap=rep(0.01,10),

delta.urea=rep(0.01,10),

delta.bulk=rep(0.01,10),

delta.bsy=rep(0.01,10),

delta.extranod=rep(0.01,10),

delta.marrow=rep(0.01,10),

delta.ecog=matrix(0.01,nrow=10,ncol=4),

beta.hb=rep(0,10),

beta.wbc=rep(0,10),

delta.ldh=matrix(0.01,nrow=10,ncol=2),

phi.bsy0=0.5,phi.ap0=0.5,phi.albumin0=0.5,

phi.extranod0=0.5,phi.bulk0=0.5,

phi.marrow0=0.5,phi.urea0=0.5,phi.ecog
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=c(0.2,0.2,0.2,0.2,0.2),phi.ldh=c(0.3,0.4,

0.3),t=tinits1,alpha.weibull=1.1)

inits2<-list(beta0=c(-7,-7,-7,-7,-7,-7,-7,-7,-7,-7),

delta.sex=rep(0.01,10),

beta.age=rep(0,10),

delta.stage=matrix(0.01,nrow=10,ncol=3),

delta.albumin=rep(0.01,10),

delta.ap=rep(0.01,10),

delta.urea=rep(0.01,10),

delta.bulk=rep(0.01,10),

delta.bsy=rep(0.01,10),

delta.extranod=rep(0.01,10),

delta.marrow=rep(0.01,10),

delta.ecog=matrix(0.01,nrow=10,ncol=4),

beta.hb=rep(0,10),

beta.wbc=rep(0,10),

delta.ldh=matrix(0.01,nrow=10,ncol=2),

phi.bsy0=0.5,phi.ap0=0.5,phi.albumin0=0.5,

phi.extranod0=0.5,phi.bulk0=0.5,

phi.marrow0=0.5,phi.urea0=0.5,

phi.ecog=c(0.2,0.2,0.2,0.2,0.2),

phi.ldh=c(0.3,0.4,0.3),t=tinits2,

alpha.weibull=0.9999)

pinits<-list(inits1,inits2)

#---------------------------------------------------------

#RJAGS codes for piecewise constant hazard model

#---------------------------------------------------------

modelstring="

model

{

for (i in 1:7672)
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{

is.cen[i]~dinterval(t[i], t.cen[i])

t[i]~dexp(lambda.whole[i])

lambda.whole[i]<-exp(beta0[perj[i]]+beta.sex[perj[i],sex

[patients[i]]]+beta.age[perj[i]]*(age[patients[i]]-62.02157)

+beta.stage[perj[i],stage[patients[i]]]+beta.ecog[perj[i],

ecog[patients[i]]]+beta.albumin[perj[i],albumin[patients[i]]]

+beta.ap[perj[i],ap[patients[i]]]+beta.urea[perj[i],urea

[patients[i]]]+beta.hb[perj[i]]*(hb[patients[i]]-126.363)+

beta.wbc[perj[i]]*(wbc[patients[i]]-8.035688)+beta.extranod

[perj[i],extranod[patients[i]]]+beta.ldh[perj[i],ldh[patients[i]]]

+beta.bulk[perj[i],bulk[patients[i]]]+beta.marrow[perj[i],

marrow[patients[i]]]+beta.bsy[perj[i],bsy[patients[i]]]+

frail[patients[i]])

}

for(c in 1:1391)

{

frail[c]~dnorm(0,tau.frail)

}

tau.frail~dgamma(1.1,0.53)

#-----------------------

#Sampling missing data

#-----------------------

for(i in 1:1391)

{

bsy[i]~dcat(phi.bsy[])

ecog[i]~dcat(phi.ecog[])

ldh[i]~dcat(phi.ldh[])

ap[i]~dcat(phi.ap[])

urea[i]~dcat(phi.urea[])
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hb[i]~dnorm(0,1)

marrow[i]~dcat(phi.marrow[])

albumin[i]~dcat(phi.albumin[])

wbc[i]~dnorm(0,1)

bulk[i]~dcat(phi.bulk[])

extranod[i]~dcat(phi.extranod[])

}

for (j in 1:5)

{

alpha.ecog[j]<-2

}

for(k in 1:3)

{

alpha.ldh[k]<-3

}

phi.ldh~ddirch(alpha.ldh)

phi.ecog~ddirch(alpha.ecog)

phi.bsy0~dbeta(1,1)

phi.bsy[1]<-phi.bsy0

phi.bsy[2]<-1-phi.bsy0

phi.ap0~dbeta(1,1)

phi.ap[1]<-phi.ap0

phi.ap[2]<-1-phi.ap0

phi.urea0~dbeta(1,1)

phi.urea[1]<-phi.urea0

phi.urea[2]<-1-phi.urea0

phi.marrow0~dbeta(1,1)

phi.marrow[1]<-phi.marrow0
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phi.marrow[2]<-1-phi.marrow0

phi.extranod0~dbeta(1,1)

phi.extranod[1]<-phi.extranod0

phi.extranod[2]<-1-phi.extranod0

phi.bulk0~dbeta(1,1)

phi.bulk[1]<-phi.bulk0

phi.bulk[2]<-1-phi.bulk0

phi.albumin0~dbeta(1,1)

phi.albumin[1]<-phi.albumin0

phi.albumin[2]<-1-phi.albumin0

#----------------------------------

#Priors for all beta coefficients

#----------------------------------

delta.albumin[1]~dnorm(0.97,17.86)

delta.ap[1]~dnorm(0,33.41)

delta.sex[1]~dnorm(0.52,3.97)

delta.bsy[1]~dnorm(0.26,3.95)

delta.bulk[1]~dnorm(0.34,6.78)

delta.extranod[1]~dnorm(0.25,49.50)

delta.urea[1]~dnorm(0,33.41)

delta.marrow[1]~dnorm(0.88,3.68)

beta.sex[1,1]<- -delta.sex[1]

beta.sex[1,2]<- delta.sex[1]

beta.albumin[1,1]<- -delta.albumin[1]

beta.albumin[1,2]<- delta.albumin[1]

beta.ap[1,1]<- -delta.ap[1]

beta.ap[1,2]<- delta.ap[1]
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beta.bsy[1,1]<- -delta.bsy[1]

beta.bsy[1,2]<- delta.bsy[1]

beta.bulk[1,1]<- -delta.bulk[1]

beta.bulk[1,2]<- delta.bulk[1]

beta.extranod[1,1]<- -delta.extranod[1]

beta.extranod[1,2]<- delta.extranod[1]

beta.marrow[1,1]<- -delta.marrow[1]

beta.marrow[1,2]<- delta.marrow[1]

beta.urea[1,1]<- -delta.urea[1]

beta.urea[1,2]<- delta.urea[1]

#---------------------------------------------

#Priors for continuous variables and intercept

#---------------------------------------------

beta0r~dnorm(-4.807, 66.60)

beta0[1]~dnorm(beta0r,66.60)

beta.age[1]~dnorm(0.0295,47778.31)

beta.hb[1]~dnorm(0.02,5102.4)

beta.wbc[1]~dnorm(0.08,277.7)

#--------------------------------------------------------------

#Categorical covariates for more than 2 levels (ecog,stage,ldh)

#--------------------------------------------------------------

delta.ecog[1,1]~dnorm(0,50)

delta.ecog[1,2]~dnorm(0,166.6)
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delta.ecog[1,3]~dnorm(0,333.3)

delta.ecog[1,4]~dnorm(0,500)

beta.ecog[1,1]<--delta.ecog[1,1]-delta.ecog[1,2]-delta.ecog[1,3]

-delta.ecog[1,4]

beta.ecog[1,2]<-delta.ecog[1,1]-delta.ecog[1,2]-delta.ecog[1,3]

-delta.ecog[1,4]

beta.ecog[1,3]<-2*delta.ecog[1,2]-delta.ecog[1,3]

-delta.ecog[1,4]

beta.ecog[1,4]<-3*delta.ecog[1,3]-delta.ecog[1,4]

beta.ecog[1,5]<-4*delta.ecog[1,4]

delta.stage[1,1]~dnorm(0,50)

delta.stage[1,2]~dnorm(0,166.6)

delta.stage[1,3]~dnorm(0,333.3)

beta.stage[1,1]<- -delta.stage[1,1]-delta.stage[1,2]

-delta.stage[1,3]

beta.stage[1,2]<-delta.stage[1,1]-delta.stage[1,2]

-delta.stage[1,3]

beta.stage[1,3]<-2*delta.stage[1,2]-delta.stage[1,3]

beta.stage[1,4]<-3*delta.stage[1,3]

delta.ldh[1,1]~dnorm(0,166.6)

delta.ldh[1,2]~dnorm(0,500)

beta.ldh[1,1]<- -delta.ldh[1,1] -delta.ldh[1,2]

beta.ldh[1,2]<- delta.ldh[1,1] -delta.ldh[1,2]
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beta.ldh[1,3]<- 2*delta.ldh[1,2]

#--------------------------------------------------

#DYNAMIC PART

#--------------------------------------------------

rho<-0.95

rf<-1-rho*rho

#---------------------------------------------------

#DYNAMIC PART A: INTERCEPT AND CONTINUOUS COVARIATES

#----------------------------------------------------

p0.e<-66.60/rf

p.hb.e<-5102.4/rf

p.wbc.e<-277.7/rf

p.age.e<-47778.31/rf

#-----------------------------------------------

# DYNAMIC PART B: 2-LEVEL CATEGORICAL COVARIATES

#-----------------------------------------------

p.sex.e<-3.97/rf

p.albumin.e<-17.86/rf

p.ap.e<-33.41/rf

p.urea.e<-33.41/rf

p.extranod.e<-49.50/rf

p.bulk.e<-6.78/rf

p.marrow.e<-3.68/rf

p.bsy.e<-3.95/rf

#-----------------------------------------------

#DYNAMIC PART C: 3-LEVEL CATEGORICAL COVARIATES

#-----------------------------------------------
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p.ecog.e[1]<-50/rf

p.ecog.e[2]<-166.6/rf

p.ecog.e[3]<-333.3/rf

p.ecog.e[4]<-500/rf

p.stage.e[1]<-50/rf

p.stage.e[2]<-166.6/rf

p.stage.e[3]<-333.3/rf

p.ldh.e[1]<-166.6/rf

p.ldh.e[2]<-500/rf

#---------------------------------------------

# DYNAMIC PART D: ITERATIVE STEPS

#---------------------------------------------

for (j in 2:10)

{

beta0m[j]<- -1.5 + rho*(beta0[j-1]+1.5)

beta0[j]~dnorm(beta0m[j],p0.e)

beta.agem[j]<-0.04+rho*(beta.age[j-1]-0.04)

beta.age[j]~dnorm(beta.agem[j],p.age.e)

beta.hbm[j]<-0.02+rho*(beta.hb[j-1]-0.02)

beta.hb[j]~dnorm(beta.hbm[j],p.hb.e)

beta.wbcm[j]<-0.08 + rho*(beta.wbc[j-1]-0.08)

beta.wbc[j]~dnorm(beta.wbcm[j],p.wbc.e)

delta.sexm[j]<-rho*(delta.sex[j-1])

delta.sex[j]~dnorm(delta.sexm[j],p.sex.e)

beta.sex[j,1]<- -delta.sex[j]

beta.sex[j,2]<- delta.sex[j]
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delta.albuminm[j]<- rho*(delta.albumin[j-1])

delta.albumin[j]~dnorm(delta.albuminm[j],p.albumin.e)

beta.albumin[j,1]<- -delta.albumin[j]

beta.albumin[j,2]<- delta.albumin[j]

delta.apm[j]<- rho*(delta.ap[j-1])

delta.ap[j]~dnorm(delta.apm[j],p.ap.e)

beta.ap[j,1]<- -delta.ap[j]

beta.ap[j,2]<- delta.ap[j]

delta.bsym[j]<- rho*(delta.bsy[j-1])

delta.bsy[j]~dnorm(delta.bsym[j],p.bsy.e)

beta.bsy[j,1]<- -delta.bsy[j]

beta.bsy[j,2]<- delta.bsy[j]

delta.bulkm[j]<- rho*(delta.bulk[j-1])

delta.bulk[j]~dnorm(delta.bulkm[j],p.bulk.e)

beta.bulk[j,1]<- -delta.bulk[j]

beta.bulk[j,2]<- delta.bulk[j]

delta.extranodm[j]<- rho*(delta.extranod[j-1])

delta.extranod[j]~dnorm(delta.extranodm[j],p.extranod.e)

beta.extranod[j,1]<- -delta.extranod[j]

beta.extranod[j,2]<- delta.extranod[j]

delta.uream[j]<- rho*(delta.urea[j-1])

delta.urea[j]~dnorm(delta.uream[j],p.urea.e)

beta.urea[j,1]<- -delta.urea[j]

beta.urea[j,2]<- delta.urea[j]

delta.marrowm[j]<- rho*(delta.marrow[j-1])

delta.marrow[j]~dnorm(delta.marrowm[j],p.marrow.e)

beta.marrow[j,1]<- -delta.marrow[j]

beta.marrow[j,2]<- delta.marrow[j]
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delta.ecogm[j,1]<-rho*(delta.ecog[j-1,1])

delta.ecog[j,1]~dnorm(delta.ecogm[j,1],p.ecog.e[1])

delta.ecogm[j,2]<-rho*(delta.ecog[j-1,2])

delta.ecog[j,2]~dnorm(delta.ecogm[j,2],p.ecog.e[2])

delta.ecogm[j,3]<-rho*(delta.ecog[j-1,3])

delta.ecog[j,3]~dnorm(delta.ecogm[j,3],p.ecog.e[3])

delta.ecogm[j,4]<-rho*(delta.ecog[j-1,4])

delta.ecog[j,4]~dnorm(delta.ecogm[j,4],p.ecog.e[4])

beta.ecog[j,1]<--delta.ecog[j,1]-delta.ecog[j,2]-delta.ecog

[j,3]-delta.ecog[j,4]

beta.ecog[j,2]<-delta.ecog[j,1]-delta.ecog[j,2]-delta.ecog

[j,3]-delta.ecog[j,4]

beta.ecog[j,3]<-2*delta.ecog[j,2]-delta.ecog[j,3]-delta.ecog

[j,4]

beta.ecog[j,4]<-3*delta.ecog[j,3]-delta.ecog[j,4]

beta.ecog[j,5]<-4*delta.ecog[j,4]

delta.stagem[j,1]<-rho*(delta.stage[j-1,1])

delta.stage[j,1]~dnorm(delta.stagem[j,1],p.stage.e[1])

delta.stagem[j,2]<-rho*(delta.stage[j-1,2])

delta.stage[j,2]~dnorm(delta.stagem[j,2],p.stage.e[2])

delta.stagem[j,3]<-rho*(delta.stage[j-1,3])

delta.stage[j,3]~dnorm(delta.stagem[j,3],p.stage.e[3])

beta.stage[j,1]<--delta.stage[j,1]-delta.stage[j,2]-delta.

stage[j,3]
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beta.stage[j,2]<-delta.stage[j,1]-delta.stage[j,2]-delta.

stage[j,3]

beta.stage[j,3]<-2* delta.stage[j,2]-delta.stage[j,3]

beta.stage[j,4]<-3*delta.stage[j,3]

delta.ldhm[j,1]<-rho*(delta.ldh[j-1,1])

delta.ldh[j,1]~dnorm(delta.ldhm[j,1],p.ldh.e[1])

delta.ldhm[j,2]<-rho*(delta.ldh[j-1,2])

delta.ldh[j,2]~dnorm(delta.ldhm[j,2],p.ldh.e[2])

beta.ldh[j,1]<- -delta.ldh[j,1] -delta.ldh[j,2]

beta.ldh[j,2]<- delta.ldh[j,1] -delta.ldh[j,2]

beta.ldh[j,3]<- 2*delta.ldh[j,2]

}

}

"

#--------------------------------------

#Running JAGS model (100000 iterations)

#--------------------------------------

snlgjag<-jags.model(textConnection(modelstring),data=list

(t=dat2$t,t.cen=dat2$t.cen,is.cen=dat2$is.cen,perj=dat2$

perj,patients=dat2$patients,age=dat2$age,sex=dat2$sex,

albumin=dat2$albumin,ap=dat2$ap,bsy=dat2$bsy,bulk=dat2

$bulk,ecog=dat2$ecog,extranod=dat2$extranod,hb=dat2$hb,

ldh=dat2$ldh,marrow=dat2$marrow,stage=dat2$stage,urea=

dat2$urea,wbc=dat2$wbc),n.chains=2,inits=pinits)

update(snlgjag,n.iter=1000)

output<-coda.samples(model=snlgjag,variable.names=c("beta0",

"beta.sex","beta.age","beta.ldh","beta.stage","beta.ecog",

"beta.albumin","beta.ap","beta.urea","beta.hb","beta.wbc",

"beta.extranod","beta.marrow","beta.bulk","beta.bsy","alpha.
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weibull"),n.iter=100000,thin=1)

summary(output)

autocorr.plot(output)

traceplot(output)

plot(output)

crosscorr(output)

A.9 An example of user-written Metropolis-

Hastings sampler code for Weibull Sur-

vival Model

-----------------------------------------

METROPOLIS HASTINGS CODE FOR WEIBULL MCMC

-----------------------------------------

setwd("D:/Piston/Non Hodgkin Lymphoma/MH code")

mydata1<-read.csv("mydata4.csv",header=TRUE)

data=list(t=mydata1$t,died=mydata1$died,age=mydata1$age,

sex=mydata1$sex,albumin=mydata1$albumin,extranod=mydata1

$extranod,bulk=mydata1$bulk,marrow=mydata1$marrow,bsy=

mydata1$bsy,stage=mydata1$stage,ecog=mydata1$ecog,hb

=mydata1$hb1,wbc=mydata1$wbc1,urea=mydata1$urea,ldh=

mydata1$ldh,ap=mydata1$ap)

var<-list(var.betaprop=c(0.000009,0.000036,0.000625,0.0009,

0.0009,0.000625,0.000625,0.0009,0.000625,0.002025,

0.0000000225,0.0009,0.000625,0.000625,0.000625,0.0009,

0.0009,0.0009,0.0009,0.000625),alphaprop=1,a=10)

prior<-list(priormean=c(0.024,0.034,0.05,-0.112,0.203,0.091,

-0.064,0.036,0.039,-0.112,-0.005,0.091,0.091,-0.112,-0.112,

-0.112,-0.112,-0.112,-0.112,-0.112),

priorvar=c(0.00014,0.0003,0.006,0.003,0.004,0.002,0.006,

0.005,0.005,0.003,0.000007,0.002,0.002,0.003,0.003,0.003,

0.003,0.003,0.003,0.003),aalpha=9,balpha=9)
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start<-list(beta=c(0.03,0.04,0.0,-0.05,0.1,0.07,-0.12,0.1,-0.03,

-0.2,-0.005,0.15,0.15,0.03,0.05,-0.05,-0.1,0.0,0.05,-0.05),

alpha=0.8)

weibullmcmc<-function(data,prior,start,niter,var,show=TRUE)

{

t=data$t

died=data$died

sex=data$sex

age=data$age

albumin=data$albumin

ap=data$ap

urea=data$urea

bulk=data$bulk

bsy=data$bsy

extranod=data$extranod

marrow=data$marrow

hb=data$hb

wbc=data$wbc

ldh=data$ldh

ecog=data$ecog

stage=data$stage

n<-length(t)

var.beta<-prior$priorvar

mean.beta<-prior$priormean

var.betaprop<-var$var.betaprop

alphaprop=var$alphaprop

a=var$a

sdvar.betaprop=sqrt(var.betaprop)

sd.alphaprop=sqrt(alphaprop)
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beta<-start$beta

beta<-as.matrix(beta)

write(dim(beta),file="")

alpha=start$alpha

write(alpha,file="")

nD=sum(died)

k<-20

X<- matrix(nrow=n,ncol=k)

{

X[,1]<-rep(1,n)

X[,2]<-age

X[,3]<-wbc

X[,4]<-ifelse(sex==1,-1,1)

X[,5]<-ifelse(albumin==1,-1,1)

X[,6]<-ifelse(ap==1,-1,1)

X[,7]<-ifelse(urea==1,-1,1)

X[,8]<-ifelse(bulk==1,-1,1)

X[,9]<-ifelse(bsy==1,-1,1)

X[,10]<-ifelse(extranod==1,-1,1)

X[,11]<-ifelse(marrow==1,-1,1)

X[,12]<-hb

X[,13]<-ifelse(ldh==1,-1,1)

for (j in 1:4)

{

X[,13+j]<-ifelse(ecog>j,1,-1)

}

for (j in 1:3)

{

X[,17+j]<-ifelse(stage>j,1,-1)
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}

}

result<-matrix(nrow=niter,ncol=21)

naccept<-0

for(i in 1:niter)

{

eta<-X%*%beta

eta<-eta[,1]

lambda<-exp(eta)

loglike<-sum(log(lambda[died==1]))+(alpha - 1)*sum(log(t

[died==1]))+(nD*log(alpha)) - sum(lambda*(t^alpha))

logprior<--1/2*sum(((beta-mean.beta)^2)/var.beta)

betaprop<-rnorm(20,beta,sdvar.betaprop)

alphaprop<-rgamma(1,a,a/alpha)

eta.prop<-X%*%betaprop

lambda.prop<-exp(eta.prop)

logprior.prop<--1/2*sum(((betaprop-mean.beta)^2)/var.beta)

loglike.prop<-sum(log(lambda.prop[died==1]))+(alphaprop - 1)*

sum(log(t[died==1]))+(nD*log(alphaprop))- sum(lambda.prop*t

^alphaprop)

logpost<-loglike+logprior

logpost.prop<-loglike.prop+logprior.prop

A<-exp(logpost.prop-logpost)

alphaden<- (alpha/alphaprop)^(2*a-1)*exp(-a*(alpha/alphaprop

-alphaprop/alpha))

aprob<-min(1,A*alphaden)

u=runif(1)

if(u<aprob)

{

beta<-betaprop

alpha<-alphaprop

naccept<-naccept+1

}
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result[i,]<-c(beta,alpha)

}

if(show==TRUE)

message(paste("Acceptance=",naccept/niter))

return(result)

}

output=weibullmcmc(data,prior,start,100000,var,show=TRUE)

summary(output)

par(mfrow=c(2,2))

plot(acf(output[5000:100000,2]),main="beta.age")

plot(ts(output[5000:100000,2]),main="beta.age")

plot(density(output[5000:100000,2]),main="beta.age")

plot(acf(output[5000:100000,3]),main="beta.wbc")

plot(ts(output[5000:100000,3]),main="beta.wbc")

plot(density(output[5000:100000,3]),main="beta.wbc")

plot(acf(output[5000:100000,4]),main="beta.sex1")

plot(ts(output[5000:100000,4]),main="beta.sex1")

plot(density(output[5000:100000,4]),main="beta.sex1")

plot(acf(output[5000:100000,5]),main="beta.albumin")

plot(ts(output[5000:100000,5]),main="beta.albumin")

plot(density(output[5000:100000,5]),main="beta.albumin")

plot(acf(output[5000:100000,6]),main="beta.ap")

plot(ts(output[5000:100000,6]),main="beta.ap")

plot(density(output[5000:100000,6]),main="beta.ap")

plot(acf(output[5000:100000,7]),main="beta.urea")

plot(ts(output[5000:100000,7]),main="beta.urea")

plot(density(output[5000:100000,7]),main="beta.urea")

plot(acf(output[5000:100000,8]),main="beta.bulk")

plot(ts(output[5000:100000,8]),main="beta.bulk")

plot(density(output[5000:100000,8]),main="beta.bulk")

plot(acf(output[5000:100000,9]),main="beta.bsy")

plot(ts(output[5000:100000,9]),main="beta.bsy")

plot(density(output[5000:100000,9]),main="beta.bsy")

plot(acf(output[5000:100000,10]),main="beta.extranod")

plot(ts(output[5000:100000,10]),main="beta.extranod")
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plot(density(output[5000:100000,10]),main="beta.extranod")

plot(acf(output[5000:100000,11]),main="beta.marrow")

plot(ts(output[5000:100000,11]),main="beta.marrow")

plot(density(output[5000:100000,11]),main="beta.marrow")

plot(acf(output[5000:100000,12]),main="beta.hb")

plot(ts(output[5000:100000,12]),main="beta.hb")

plot(density(output[5000:100000,12]),main="beta.hb")

plot(acf(output[5000:100000,13]),main="beta.ldh")

plot(ts(output[5000:100000,13]),main="beta.ldh")

plot(density(output[5000:100000,13]),main="beta.ld

A.10 User-written INLA code for intercept-

only simple linear regression example

#-----------------------------------------------

#Create the data (iid normally distributed y_i)

#----------------------------------------------

y <- c(1.2697,7.7637,2.2532,3.4557,4.1776,6.4320,-3.6623,

7.7567,5.9032,7.2671,-2.3447,8.0160,3.5013,2.8495,0.6467,

3.2371,5.8573,-3.3749,4.1507,4.3092,11.7327,2.6174,9.4942,

-2.7639,-1.5859,3.6986,2.4544,-0.3294,0.2329,5.2846)

n<-length(y)

ybar <- mean(y)

#-------------------------------------------------

#Define the parameters of the prior distributions

#-------------------------------------------------

mu0 <- -3

sigma2_0 <- 4

a<- 1.6

b <- 0.4

224



Appendix A. Appendix

#------

#R-INLA

#------

library(INLA)

formula <- y ~ 1

inla.output <-inla(formula, data = data.frame(y = y),

control.family = list(hyper = list(prec =list(prior =

"loggamma", param = c(a, b)))),control.fixed = list(

mean.intercept = mu0,prec.intercept = 1/sigma2_0),

control.inla=list(strategy="gaussian",int.strategy=

"grid"))

summary(inla.output)

summary(inla.output$marginals.hyperpar[[1]])

inla.output.precision<-inla.output$marginals.

hyperpar[[1]]

inla.output.precision.matrix<-as.matrix(inla.

output.precision)

psi.grid.new<-inla.output.precision.matrix[,1]

theta.grid.new<-inla.output$marginals.fixed$

‘(Intercept)‘[,1]

lines(inla.output$marginals.fixed$"(Intercept)")

#------------------------------------------------------------

#Select H grid points for the hyperparameter psi (precision)

#------------------------------------------------------------

H <- 75

tau.grid <-psi.grid.new

hprior <- dgamma(tau.grid,shape=a,rate=b)

#(#prior for hyperparameter #tau (Precision))

#----------------------------------

#Compute quantities

#----------------------------------
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theta.n<- sigma2.n <- lik <- num <- den <- prior <- c()

for (h in 1:H) {

theta.n[h] <-(tau.grid[h]*n*ybar+mu0/sigma2_0)/(tau.grid

[h]*n + 1/sigma2_0)

sigma2.n[h] <- 1 / (n*tau.grid[h] + 1/sigma2_0)

prior[h] <- dnorm(theta.n[h], mu0, sd=sqrt(sigma2_0))

lik[h] <- prod(dnorm(y, theta.n[h], sd=1/sqrt(tau.grid[h])))

num[h] <- hprior[h] * prior[h] * lik[h]

den[h] <- dnorm(theta.n[h], theta.n[h], sd=sqrt(sigma2.n[h]))

}

#---------------------------------------

#Unnormalised marginal posterior for tau

#---------------------------------------

post.tau <- num/den

#-------------------------

#Normalise the tau density (precision)

#-------------------------

f.tau <- approxfun(tau.grid, post.tau,yleft=min(tau.grid), yright=max(tau.grid))

const <- integrate(f.tau, min(tau.grid), max(tau.grid))

post.tau<- post.tau/const$value

post.tau

tau.plot.new<-cbind(tau.grid,post.tau)

plot(tau.plot.new)

#---------------------------------------------

#Select J grid points for the parameter theta (intercept)

#---------------------------------------------

J <- 75

theta.grid<-theta.grid.new

#-----------------------------------------------

#Full conditional distributions theta | psi,y
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#-----------------------------------------------

full.cond.theta <- matrix(NA,J,H)

for (j in 1:J) {

for (h in 1:H) {

full.cond.theta[j,h] <- dnorm(theta.grid[j], theta.n[h],

sd=sqrt(sigma2.n[h]))

}

}

#-------------------------------------------

#Weighted joint posterior for theta and psi

#-------------------------------------------

Delta <- 1/sum(post.tau)

joint.post.theta.tau <- matrix(NA,J,H)

for (h in 1:H)

{joint.post.theta.tau[,h] <-full.cond.theta[,h]*post.tau[h]*

Delta

}

#------------------------------------------------------------

#Integrate out psi to obtain the marginal posterior of theta

#------------------------------------------------------------

marg.post.theta <- rowSums(joint.post.theta.tau)

#----------------------------------

#Normalizing the density for theta

#----------------------------------

f.theta <- approxfun(theta.grid,marg.post.theta,yleft=

min(theta.grid),yright=max(theta.grid))

const <- integrate(f.theta,min(theta.grid),max(theta.grid))

marg.post.theta <- marg.post.theta/const$value

marg.post.theta.plot<-as.matrix(marg.post.theta)

marg.post.theta.plot

marg.post.theta.plot.final<-cbind(theta.grid,
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marg.post.theta.plot)

marg.post.theta.plot.final

plot(marg.post.theta.plot.final,pch=17,col="red",type="o")

library(Hmisc)

#-----------

#PLOT RESULTS

#-----------

#INTERCEPT

plot(inla.output$marginals.fixed$‘(Intercept)‘,pch=1,

col="blue",cex=2,type="o",lwd=2,main=expression

(paste("Posterior of",phantom(x),theta,phantom(x),

"obtained from user-written code vs R-INLA")),xlab=

expression(paste(phantom(x),mu,phantom(x))))

par(new=TRUE)

plot(marg.post.theta.plot.final,pch=17,col="red",

type="o",lty=3,lwd=4,axes=FALSE,ylab="",xlab="")

legend("topright",c("R-INLA","Own code"),col=

c("blue","red"),lty=c(1,3),lwd=c(2,4),bty="n")

#PRECISION

plot(inla.output$marginals.hyperpar[[1]],pch=1,col=

"green",cex=2,type="o",lwd=2,main=expression

(paste("Posterior of",phantom(x),tau,phantom(x),

"obtained from user-written code vs R-INLA")),

xlab=expression(paste(phantom(x),tau,phantom(x))))

par(new=TRUE)

plot(tau.plot.new,pch=17,col="purple",type="o",lty=3,

lwd=4,ylab="",xlab="",axes=FALSE)

legend("topright",c("R-INLA","Own code"),col=c("green",

"purple"),lty=c(1,3),lwd=c(2,4),bty="n")
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#---------------------

#SUMMARY R-INLA OUTPUT

#---------------------

summary(inla.output$marginals.fixed$‘(Intercept)‘)

summary(inla.output$marginals.hyperpar$‘Precision

for the Gaussian observations‘)

#-----------------------

#SUMMARY INLA (OWN-CODE)

#-----------------------

#POSTERIOR SAMPLES FOR INTERCEPT

summary(marg.post.theta.plot.final)

#POSTERIOR SAMPLES FOR PRECISION

summary(tau.plot.new)
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Multi-state models for the analysis of time-to-event data. Statistical Methods in Medical

Research, 18(2), pp. 195–222.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller (1953). Equation

of state calculations by fast computing machines. The Journal of Chemical Physics ,

21(6), pp. 1087–1092.

Møller, M. B., N. T. Pedersen, and B. E. Christensen (2003). Factors predicting long-term

survival in low-risk diffuse large B-cell lymphoma. American Journal of Hematology ,

74(2), pp. 94–98.

Montgomery, D. C. (2017). Design and Analysis of Experiments (9th ed.). Hoboken, NJ,

USA: Wiley.

Muff, S., A. Riebler, L. Held, H. Rue, and P. Saner (2015). Bayesian analysis of mea-

surement error models using integrated nested Laplace approximations. Journal of the

Royal Statistical Society Series C (Applied Statistics), 64(2), pp. 231–252.

241



References

Nahman, N. S., F. Middendorf, D. Bay, W. H. McElligott, S. Powell, and J. Anderson

(1992). Modification of the percutaneous approach to peritoneal dialysis catheter place-

ment under peritoneoscopic visualization: clinical results in 78 patients. Journal of the

American Society of Nephrology , 3(1), pp. 103–107.

Ngo, L., S. W. Hee, L. C. Lim, M. Tao, R. Quek, S. P. Yap, E. L. Loong, et al. (2008).

Prognostic factors in patients with diffuse large B-cell lymphoma: before and after the

introduction of rituximab. Leukemia & Lymphoma, 49(3), pp. 462–469.

O’Hagan, A., C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite, D. J. Jenk-

inson, J. E. Oakley, and T. Rakow (2006). Uncertain Judgements: Elicitng Expert’s

Probabilities (1st ed.). Hoboken, New Jersey, USA: Wiley-Sons Limited.

Ohshima, K., Y. Mukai, H. Shiraki, T. Suzumiya, K. Tashiro, and M. Kikuchi (1997).

Clonal integration and expression of human T-cell lymphotropic virus type I in car-

riers detected by polymerase chain reaction and inverse PCR. American Journal of

Hematology , 54(4), pp. 306–312.

Oken, M. M., R. H. Creech, D. C. Tormey, J. Horton, T. E. McFadden, and P. P. Carbone

(1982). Toxicity and response criteria of the Eastern Cooperative Oncology Group.

American Journal of Clinical Oncology , 5(6), pp. 649–655.

Oki, Y., K. Yamamoto, H. Kato, Y. Kuwatsuka, H. Taji, Y. Kagami, and Y. Morishima

(2008). Low absolute lymphocyte count is a poor prognostic marker in patients with

diffuse large B-cell lymphoma and suggests patients’ survival benefit from rituximab.

European Journal of Haematology , 81(6), pp. 448–453.

O’Mahony, S., S. Nathan, R. Mohajer, P. Bonomi, M. Batus, M. J. Fidler, K. Wells,

N. Kern, S. Sims, and D. Amin (2016). Survival prediction in ambulatory patients with

stage III/IV non-small cell lung cancer using the palliative performance scale, ECOG,

and lung cancer symptom scale. The American Journal of Hospice and Palliative Care,

33(4), pp. 374–380.

Pao, W., V. Miller, M. Zakowski, J. Doherty, K. Politi, I. Sarkaria, B. Singh, et al. (2004).

EGF receptor gene mutations are common in lung cancers from never smokers and are

associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S

A., 101(36), pp. 13306–11.

242



References

Papoila, A. L., A. Riebler, A. Amaral-Turkman, R. Sao-Jao, C. Ribeiro, C. Geraldes, and

A. Miranda (2014). Stomach cancer incidence in southern Portugal: A spatio-temporal

analysis. Biometrics Journal , 56(3), pp. 403–415.

Park, M. J., J. Lee, J. Y. Hong, M. K. Choi, J. H. Yi, S. J. Lee, S. J. Oh, J. S. Ahn,

K. Park, and M. J. Ahn (2009). Prognostic model to predict outcomes in nonsmall cell

lung cancer patients treated with gefitinib as a salvage treatment. Cancer , 115(7), pp.

1518–1530.

Peyrade, F., F. Jordin, C. Thieblemont, A. Thyss, J. F. Emile, S. Castaigne, B. Coiffier,

et al. (2011). Attenuated immunochemotherapy regimen (R-miniCHOP) in elderly

patients older than 80 years with diffuse large B-cell lymphoma: a multicentre, single-

arm phase 2 trial. Lancet Oncology , 12(5), pp. 460–468.

Pfreundschuh, M., A. D. Ho, E. Cavallin-Stahl, M. Wolf, R. Pettengell, I. Vasovia,

A. Belch, et al. (2008). Prognostic significance of maximum tumour (bulk) diameter in

young patients with good-prognosis diffuse large B-cell lymphoma treated with CHOP-

like chemotherapy with or without rituximab: an exploratory analysis of the MabThera

International Trial Group (MInT) study. Lancet Oncology , 9(5), pp. 435–444.

Plummer, M. (2016). rjags: Bayesian Graphical Models using MCMC. R package version

4-6, https://CRAN.R-project.org/package=rjags.

Prairie, R. R. and B. Ostle (1961). An analysis of some relay failure data from a composite

exponential population. Technometrics , 3(3), pp. 423–428.

Proctor, S. J. and P. R. A. Taylor (2000). A practical guide to continuous population-

based data collection (PACE): a process facilitating uniformity of care and research

into practice. QJM , 93(2), pp. 67–73.

Putter, H., M. Fiocco, and R. B. Geskus (2007). Tutorial in biostatistics: Competing

risks and multi-state models. Statistics in Medicine, 26(11), pp. 2389–2430.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R

package version 2.0.0, http://www.R-project.org/.

Raftery, A. E. and S. Lewis (1992). How many iterations in the Gibbs sampler? In J. M.

Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics

4, pp. 763–773. Oxford University Press.

243



References

Rami-Portas, R., H. Asamura, W. D. Travis, and V. W. Rusch (2017). Lung. In M. B.

Amin (Ed.), AJCC Cancer Staging Manual (8 ed.)., Chapter 36, pp. 431–456. Switzer-

land: Springer.

Rasmussen, C. E. (2004). Gaussian processes in machine learning. In O. Bousquet, U. von

Luxburg, and G. Ratsch (Eds.), Advanced Lectures on Machine Learning, Chapter 4,

pp. 64. Berlin: Springer.

Ren, S. and J. E. Oakley (2014). Assurance calculations for planning clinical trials with

time-to-event outcomes. Statistics in Medicine, 33(1), pp. 31–45.

Ren, W., L. Cunha, and C. V. Deutsch (2005). Preservation of multiple point structure

when conditioning by kriging. In O. Leuangthong and C. Deutsch (Eds.), Geostatistics

Banff 2004, pp. 643–645. Boca Raton, Florida: Springer.

Rizvi, M. A., A. M. Evens, M. S. Tallman, and S. T. Rosen (2006). T-cell non-Hodgkin

lymphoma. Blood , 107(4), pp. 1255–1264.

Roberts, G. O., A. Gelman, and W. R. Gilks (1997). Weak convergence and optimal

scaling of random walk Metropolis algorithms. Annals of Applied Probability , 7(1), pp.

110–120.

Roberts, G. O. and J. S. Rosenthal (2001). Optimal scaling for various Metropolis-

Hastings algorithms. Statistical Science, 16(4), pp. 351–367.

Royston, P. and M. K. B. Parmar (2002). Flexible parametric proportional-hazards and

proportional-odds models for censored survival data, with application to prognostic

modelling and estimation of treatment effects. Statistics In Medicine, 21(15), pp. 2175–

2179.

Rue, H. (2001). Fast sampling of Gaussian Markov random field. Journal of Royal

Statistical Society Series B (Statistical Methodology), 63(part 2), pp. 325–338.

Rue, H. and L. Held (2005). Gaussian Markov Random Field: Theory and Applications

(1st ed.). Boca-Raton, Florida, USA: Chapman & Hall (CRC).

Rue, H. and S. Martino (2007). Approximate Bayesian inference for hierarchical Gaussian

Markov random field models. Journal of Statistical Planning and Inference, 137(10),

pp. 3177–3192.

244



References

Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent

Gaussian models using integrated nested Laplace approximations. Journal of the Royal

Statistical Society Series B (Statistical Methodology), 71(2), pp. 319–392.

Rue, H., A. Riebler, S. H. Sørbye, J. B. Illian, D. P. Simpson, and F. K. Lindgren (2017).

Bayesian computing with INLA: A review. Annual Review of Statistics and Its Appli-

cation, 4, pp. 395–421.

Rue, H., I. Steinsland, and S. Erland (2004). Approximating hidden Gaussian Markov

random fields. Journal of Royal Statistical Society Series B (Statistical Methodology),

66(part 4), pp. 877–892.

Schad, F., A. Thronicke, M. L. Steele, A. Merkle, B. Matthes, C. Grah, and H. Matthes

(2018). Overall survival of stage IV non-small cell lung cancer patients treated with

Viscum album L. in addition to chemotherapy, a real-world observational multicenter

analysis. PLoS One, 13(8), pp. e0203058.

Schardt, C., M. B. Adams, T. Owens, S. Keitz, and P. Fontelo (2007). Utilization of the

PICO framework to improve searching PubMed for clinical questions. BMC Medical

Informatics and Decision Making , 7(16), pp. 1–6.
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