
Homomorphic Encryption in Algebraic settings

Jack Aiston

Thesis submitted for the degree of

Doctor of Philosophy

School of Mathematics & Statistics

Newcastle University

Newcastle upon Tyne

United Kingdom

2019

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council, Cen-

tre for Doctoral Training in Cloud Computing for Big Data [grant number EP/L015358/1].

First and foremost I’d like to thank my family: Sharon, Malcolm and Olivia Aiston for

supporting me all the way through my time at University. I never would have been able

to achieve half of what I have without them. The other major factor in my research was

my excellent supervisor Andrew Duncan. I really appreciate the support he has provided

while at the same time allowing me to dictate my own direction for my research.

Outside of my studies I’d like to thank Naomi Hannaford, Tom Lowe and Kieran Peel for

helping me make the most of my PhD experience as a whole.

Finally thank you to Paul Watson and Darren Wilkinson for giving me this opportunity in

the CDT. Also, all the people who I have worked with including but not limited to: Matt

Forshaw, Oonagh McGee, Tom Cooper, Peter Michalak, Lauren Roberts, Hugo Firth,

David Robertson, Cameron Trotter and Tom Owen.

Abstract

Cryptography methods have been around for a long time to protect sensitive data. With

data sets becoming increasingly large we wish to not only store sensitive data in public

clouds but in fact, analyse and compute there too. The idea behind homomorphic en-

cryption is that encryption preserves the structure and allows us to perform the same

operations on ciphertext as we would on the plaintext. A lot of the work so far restricts

the operations that can be performed correctly on ciphertexts. The goal of this thesis is

to explore methods for encryption which should greatly increase the amount of analysis

and computation that can be performed on ciphertexts.

First of all, we will consider the implications of quantum computers on cryptography.

There has already been research conducted into quantum-resistant encryption methods.

The particular method we will be interested in is still classical. We are assuming these

schemes are going to be used in a post-quantum world anyway, we look at how we can use

the quantum properties to improve the cryptosystem. More specifically, we aim to remove

a restriction that naturally comes with the scheme restricting how many operations we

can perform on ciphertexts.

Secondly, we propose a key exchange protocol that works in a polynomial ideal setting.

We do this so that the key can be used for a homomorphic cryptography protocol. The

advantage of using key exchange over a public key system is that a large proportion of the

process needs to be carried out only once instead of needing a more complicated encryp-

tion function to use for each piece of data. Polynomial rings are an appropriate choice of

structure for this particular type of scheme as they allow us to do everything we need. We

will examine how we can perform computation correctly on ciphertexts and address some

of the potential weaknesses of such a process.

Finally after establishing a fully homomorphic encryption system we will take a more

in-depth look at complexity. Measuring the complexity of mathematical problems is, of

course, crucial in cryptography, but the choice of measure is something we need to consider

seriously. In the final chapter we will look at generic complexity as its gives us a good feel

for how difficult the typical instances of a problem are to solve.

Contents

1 Introduction 1

2 Background material 10

2.1 Algebraic structures . 10

2.2 Commutative and non-commutative polynomial rings 12

2.2.1 Monomials and orderings . 12

2.2.2 Ideals . 14

2.2.3 Leading terms . 14

2.2.4 Building Hecke algebras . 15

2.3 Symmetric and Asymmetric encryption techniques 17

2.4 Homomorphic encryption . 19

2.4.1 Fully homomorphic encryption . 20

2.5 Implementation considerations . 21

2.5.1 Classical computation . 21

2.5.2 Quantum computation . 24

3 Quantum cryptography and Post-quantum cryptography 26

3.1 Effects of quantum methods on cryptography 26

3.1.1 Classical methods are vulnerable to quantum attacks 26

3.1.2 A key exchange protocol . 27

3.1.3 A post-quantum somewhat homomorphic encryption system 30

3.2 Performing addition in an SHE while maintaining error size 34

3.2.1 Addition on a quantum circuit . 34

3.2.2 The problem with Somewhat homomorphic encryption 36

3.2.3 Setting up a quantum variant of GGH 37

3.2.4 Preventing an attacker from reversing the quantum gates used for

encryption . 39

3.2.5 Performing addition on the quantum ciphertexts and reducing the

error increase . 40

3.3 Refining the method of addition on the ciphertexts 46

i

Contents

3.3.1 Data at rest . 46

3.3.2 Data in use - A realistic look . 49

3.3.3 Alternative methods . 53

3.3.4 Updating the algorithm . 54

3.4 A multiplication method for the quantum ciphertext 56

3.4.1 Potential functions . 56

3.4.2 Component wise multiplication operation 56

4 Ideal membership protocol 60

4.1 Gröbner basis solution to the membership problem 60

4.2 Non-commutative Gröbner bases . 63

4.3 A key exchange protocol based on the ideal membership problem 66

4.3.1 Agreeing in secret on a key from a public list of polynomials 66

4.3.2 Encryption process . 69

4.3.3 Choosing an appropriate quotient space 72

4.3.4 Potential attack . 72

4.3.5 Practical concerns . 77

4.4 Improving the protocol in a Hecke algebra setting 78

4.4.1 Infinite Gröbner bases with Hecke Algebra relations 78

4.4.2 Invertible elements of Hecke algebras 80

4.4.3 Updating the key exchange protocol 83

5 Understanding the complexity of protocols 85

5.1 Measures of complexity . 85

5.1.1 Calculating bounds . 85

5.1.2 Worst case complexity . 86

5.1.3 Average case complexity . 87

5.1.4 Generic complexity . 90

5.2 Outline of the generic complexity proof . 91

5.3 Calculating the size of the balls in polynomial ideal 94

5.3.1 Monomial restriction on example ideal 94

5.4 How many hard instances are there in each ball? 99

5.4.1 Sorted Mora’s algorithm . 100

5.5 Will we lose too many terms? . 104

5.5.1 Haskell experiments . 104

5.5.2 Reording polynomials . 104

5.5.3 Polynomial distributions . 105

6 Conclusion 108

ii

Contents

A 114

A.1 Polynomial scheme example . 114

A.2 Full quantum circuit . 116

A.3 Using the Haskell code . 116

iii

List of Figures

1.1 Summary of data analysis . 3

1.2 Comparison of measures of complexity . 9

2.1 Tree reduction . 11

2.2 Key exchange process . 17

2.3 Multiple user public key encryption . 18

2.4 Mixing public and private key methods . 23

3.1 Example good and bad basis . 32

3.2 Quantum addition for two 3 qubit values . 36

3.3 Evolution of error . 37

3.4 Full offline process . 41

3.5 Iterative method to correct the error . 44

3.6 Data analysed via both public and private clouds 50

3.7 Addition graph . 51

4.1 Alice selects polynomials from her ideal and its cosets 67

4.2 Bob adds a polynomial to each of Alice’s so one lies in the public ideal . . . 68

4.3 Alice knows the difference between her polynomials so can get back SA,0 . . 69

5.1 Worst case scenario for quick sort . 88

5.2 Experiments with different infinite Gröbner bases 94

5.3 The top plot shows a time series of degrees of polynomial added at each

iteration. The bottom right plot shows how many of each degree are added

in the sorted variant of Mora’s algorithm. The remaining plots show the

distribution of polynomial degrees added after various iterations 100

5.4 Two inductively sets create each other . 105

6.1 One server failure safe storage example . 109

6.2 Pubsub style of data collection . 109

A.1 Quantum encryption and addition of ciphertexts 116

iv

List of Tables

1.1 Security-strength time frames . 2

3.1 Superposition form for each control value 42

3.2 Example list of superpositions . 45

5.1 Possible ways for degree 6 leading terms to cancel 95

v

Chapter 1

Introduction

Despite the cloud providing the incredible potential for the future of computation – ex-

tremely fast processing power and seemingly unlimited storage to name just a couple –

the move toward cloud computing faces challenges that must be addressed before it is

fully adopted. The problem that concerns a lot of potential users is that others may also

have access to the information that is sent to the cloud [Kulkarni et al. (2012)]. This is

especially concerning for those dealing with sensitive data. If security concerns are partic-

ularly high, for example when it comes to medical or financial data, encryption methods

must be used to put minds at ease that the data won’t fall into the wrong hands.

NIST (National Institute of Standards and Technology)-recommended cryptographic algo-

rithms have been approved after receiving intense security analysis [Barker et al. (2012)].

More so, this is an ongoing process where each algorithm is constantly being examined.

Three classes of approved algorithms are used: Hash functions; symmetric-key algorithms;

asymmetric-key algorithms.

In 2017 NIST began the process of trying to select new cryptographic algorithms to aug-

ment already widely accepted schemes [Alagic et al. (2019)]. At the end of that year, the

first round of candidates were announced and the public was encouraged to comment on

them. In January the first round ended and second round began with 26 of the candidates

being invited to add any updates to the schemes. The 3rd round is set to begin 2020/2021.

One of the main aims of introducing these new schemes is to deal with the challenges of

modern and near future-security.

A new generation of security issues has begun with the rapid adoption of the internet

of things (IOT). There are more connected devices than people on the planet. We are

currently playing catch up trying to secure these devices. The problem is only getting

worse as the rate at which IOT is being adopted increases. It is said that there is only

a short window of time to deal with the problem before it gets almost irreversibly out of

control.

In more standard computer network settings, security is a well studied and implemented

1

Chapter 1. Introduction

Security strength Through 2030 2031 and beyond

≤ 80 Applying Disallowed
processing Legacy-use

112 Applying Acceptable Disallowed
Processing Legacy use

128 Applying/Processing Acceptable Acceptable
192 Acceptable Acceptable
256 Acceptable Acceptable

Table 1.1: Security-strength time frames

topic. We need to use all that knowledge and experience to secure all of our new devices.

Just because most devices in the IOT landscape are weak and perform a limited number of

tasks, doesn’t mean that there can’t be large negative repercussions from malicious people

who can get access. One of the more famous examples of this is the Mirai botnet attack

in 2016 [Antonakakis et al. (2017)].

As tempting as it may be to use all the best settings to achieve maximum security, we have

standards on what is considered secure. Trying to use larger parameters will just cause a

strain on computation and bandwidth, something we want to avoid in general but a pre-

cious resource in particular for IOT. Table 1.1 gives an outline of the security strengths (in

bits) that will be acceptable to use over the next couple of decades. The number one goal

of cryptography has always been to ensure readable versions of sensitive or private data

do not get into the wrong hands, even if it is potentially accessible. It was suggested in the

70s however that it may be possible to do more than just safely store data; in fact, useful

operations could be performed on encrypted data [Rivest et al. (1978)]. This concept

is known as homomorphic cryptography. Figure 1.1 provides a visual summary of what

the ultimate goal of this area of research is. The vertical arrows represent cryptographic

methods as they have always been, a method to secure information that may be stored in

an insecure place. The horizontal arrows represent the methods of data analysis we cur-

rently use. The bottom arrow is the version we have been using longer, data analysis on

some local device. The top arrow represents the move to cloud where the same work can

potentially be carried out much faster. Should a practical solution for homomorphic cryp-

tography be found, the need for the lower arrow could be removed. In many IOT settings

this offline analysis is not even possible as the devices holding the data are too weak to

carry out the required functions. Since the idea was presented, homomorphic encryption

has been through a few evolutions [Acar et al. (2018)]. The first colleciton of homomorphic

encryption methods are known as partial homomorphic encryption. These protocols are

homomorphic with respect to a single operation. Examples of this are RSA (after Rivest,

Shamir and Adleman) where E(m1) ∗ E(m2) = E(m1 ∗ m2), Goldwasser-Micali where

E(m1) ∗E(m2) = E(m1⊕m2) and Paillier where E(m1) ∗E(m2) = E(m1 +m2) [Yi et al.

2

Chapter 1. Introduction

Plus & Mult

Figure 1.1: Summary of data analysis

(2014)]. While an interesting step in the right direction, no meaningful computation can

be performed using these properties alone.

Somewhat homomorphic cryptosystems are a class of cryptosystems that have encryption

functions that are only approximately homomorphic. The problem here is that the errors

in the approximations accumulate so that only finitely many operations are possible with-

out the data becoming irretrievably corrupted. One of the advantages of these systems

is that some allow both addition and multiplication to be performed on ciphertexts. In

[Naehrig et al. (2011)] a somewhat homomorphic cryptosystem that takes advantage of

the Ring Learning with Errors problem is presented.

The next important advance was the development of fully homomorphic encryption sys-

tems. An encryption scheme is called fully homomorphic if we can perform as many

operations of our choice on ciphertexts as we need. In the last 10 years, a few of these

methods have been proposed [Acar et al. (2018)]. The first of these methods is Gentry’s

lattice-based scheme. To begin with, Gentry started with a somewhat homomorphic en-

cryption scheme and developed a method to deal with the noise that comes with such

schemes. This method came in two steps, first was known as squashing that reduces the

degree of the ciphertexts to a point that the second step can handle. The second step

is known as bootstrapping which safely re-encrypts the data, resetting the error to the

desired amount. Moving forward with the idea of a bootstrapping method, a new fully ho-

momorphic encryption method was suggested, but this time set in the integers [Van Dijk

et al. (2010)]. The beauty of this method is that simply being integers is much more

conceptually simple. The third method is based on the ring learning with errors prob-

lem. The setting for this scheme is in Rq ≡ Zq[x]/(f(x)), the ring of polynomials modulo

3

Chapter 1. Introduction

some polynomial f with coefficients in Zq. This scheme, discussed in [Lyubashevsky et al.

(2010)], has drawn a lot of attention due to two major factors. First, the learning with

errors problem is thought to be very difficult to solve even in a post-quantum world. Sec-

ondly, ciphertexts are relatively small - a very important aspect of considering how quickly

ciphertexts can grow when multiplication is performed.

A new threat to the world of security is quantum computing; which is quickly being ac-

cepted as a reality, not only in most of our lives but potentially in the next decade [Easttom

(2017)]. In conventional computing, information is stored as a sequence of bits, each of

which is a 0 or 1. Quantum computing in a similar sense deals with information that is

stored as a sequence of qubits, each of which is 0, 1, or a quantum superposition of the

two. When it comes to physically observe a qubit, a measurement is performed, and if

in a superposition, the qubit will collapse down to either a 0 or 1. Although there is an

infinite number of combinations of superposition for a qubit, an important restriction of

quantum computing is that it is physically impossible to store a qubit in a superposition.

This means that there is no increase in efficient storage compared to classical computing.

One of the key areas where quantum computing does outperform classical is its speedup

of various algorithms. One of the earliest examples of this is the Deutsch-Jozsa algorithm

[Deutsch & Jozsa (1992)]. The algorithm solves the problem of determining if a function

that outputs a single bit is constant or balanced (outputs a 0 for half its inputs and a 1

for the other half). In the classical version, a number, exponential in the size of the input,

total queries to the function are required to solve the problem. However, the quantum

Deutsch-Jozsa algorithm only requires a single query. This example of an exponential

speedup is the motivation for quantum attacks in cryptography.

While considered secure from all known conventional attacks, integer factorization, discrete

log, and elliptic curve methods each have been subject to efficient quantum attacks, for

example the well known Shor’s algorithm [Shor (1994)] for solving the discrete logarithm

problem. It is uncertain when access to a quantum computer will be available but, as al-

ready stated, many believe it to be in our lifetime. As such alternative “quantum-resistant”

methods need to be kept in mind and ready to go as soon as possible. Fortunately, while

old methods may become obsolete, this emerging area of computing has already proven to

bring with it new possibilities. Random numbers are required in many security methods.

Unfortunately in classical computing, we aren’t able to generate genuine random numbers.

We, therefore, have to rely on pseudorandom numbers which are generated from some al-

gorithm. On the other hand, a qubit can be set up in a superposition of 0 or 1 where, after

performing a measurement, there is an even chance of observing the 0 or the 1. Assuming

no one has tampered with this qubit, this measurement will be truly random. Security

initiatives in quantum computing therefore no longer need to worry about an attacker

having malicious access to the pseudorandom number generator. There is still cause for

concern with issues such that the qubits may still be tampered with, however, research

4

Chapter 1. Introduction

has gone into testing for such malicious activity [Colbeck & Kent (2011)].

One of the most high profile cryptographic methods to emerge from quantum computing

so far is the BB84 protocol [Shor & Preskill (2000)]. The symmetric key algorithms men-

tioned earlier, require two or more parties to have knowledge of a shared key that should

be unknown to anyone else. Key exchange methods already exist in classical computing

that makes this possible, however, many of the more well-used versions rely on the discrete

log and other problems that we have already mentioned will become insecure in quantum

settings. Alternatively, the BB84 protocol performs the key exchange and bases its secu-

rity on the fundamental principles of quantum mechanics. The reason the scheme works is

due to the fact that taking a measurement of a qubit requires a choice of basis in which to

measure in. This is the secret that the parties looking to exchange keys don’t tell anyone.

An eavesdropper can’t know what the choice of basis was used so an attempt to read the

key has a non zero probability of altering the key in a noticeable way.

In chapter 3 we will have a look at an example of an advantageous change that can be

made to an encryption scheme in a quantum setting. Lattice-based methods are based on

a different difficult problem and are one of the front-runner candidates for cryptosystems

in a quantum world. In particular, the NTRUEncrypt public key cryptosystem has accu-

mulated a lot of interest since its initial development towards the end of the 90’s [Pecen

et al. (2014)], in particular two NTRU schemes have made it to the second round of NIST

post-quantum competition earlier [Alagic et al. (2019)].

Another example of a lattice-based protocol is the GGH (Goldreich-Goldwasser-Halevi)

encryption scheme [Goldreich et al. (1997)]. This is an example of the somewhat homo-

morphic encryption methods where the number of operations (in this case addition) that

can be performed correctly is restricted by an error component. Although many schemes

have these error terms, this one, in particular, has an error that can be easily represented

by a random walk [Spitzer (2013)]. Because of this, after a given number of additions have

been performed on a ciphertext, we can create a distribution of the potential accumulative

error. Most importantly, there is a finite number of options each of which we know the

probability of.

There are many variations of the addition circuit on a quantum computer. We will con-

sider the circuit in [Takahashi et al. (2009)], which is very similar to that of the classical

version, in section 3.2.1 for adding together ciphertexts. The major difference is that

the quantum version will preserve superpositions. For example, suppose we have qubits

represent a superposition of values 2 and 4 and this is added to a superposition of values

8 and 11. The circuit will output a superposition of (2+8), (2+11), (4+8), and (4+11).

Updating the GGH system in such a way that a ciphertext is in a superposition of all

potential classical ciphertexts means that we know the exact form of a sum even without

performing a measurement. The rest of section 3.2 contains original content which works

towards the main aim of this chapter, to look at quantum methods to correct this error

5

Chapter 1. Introduction

back to a standard amount for a fresh ciphertext.

The updates for the error correction in this chapter also bring with them new issues that

put the security of the protocol at risk. In section 3.3 we will look at methods to deal with

these issues. Fortunately, the problem isn’t a full break of the cryptosystem, nevertheless,

it is still, of course, important to be aware of different attacker goals [Stinson (2005)]. Two

approaches will be used for protection. The first comes from classical computing and is

based on work in [Watson (2012)], where we temporarily use private clouds at the start

to obscure information that would otherwise put individual data at risk when processing.

The second method is quantum and takes inspiration from the quantum key exchange

discussed earlier. We aim to use the fact that if an eavesdropper tries to look at particular

information, a fundamental change will occur to the qubits involved. This may not stop

the eavesdropper but will give us a tool to see if there has been malicious activity.

In section 3.4 we will take a look at how some basic statistical functions were implemented

in a ring learning with errors setting [Naehrig et al. (2011)] and study how plausible it

would be to do the same in this scheme.

In chapter 4 we aim to build a fully homomorphic encryption scheme. Rings are an

appropriate choice of structure for this particular type of scheme due to the plus and mul-

tiplication operations available [Kahrobaei et al. (2019)]. They can be built up into more

meaningful functions that would enable data analysis. In particular we will be interested

in polynomial rings, much like in [Rai (2004)].

The work in [Kahrobaei et al. (2019)] uses rings to build a fully homomorphic encryption

scheme using rings and ideals. Much like a lot of the lattice-based methods, encryption

is performed by multiplying a plaintext by a secret key followed by adding a random

element. In this scheme in particular a message, m, is encrypted by multiplying by a

random private idempotent, r, of a private idea followed by adding a random element, i,

of that private ideal i.e. of the form mr + i. Any issue we discuss later is how to form a

correct homomorphism. This scheme achieves an additive homomorphism by firstly using

the distributive property of multiplying the plaintext by the same random idempotent

m1r +m2r = (m1 +m2)r. Secondly the only requirement for the random element added

during the encryption is that is an element of the private ideal, a property that will be

maintained by adding two ideal elements together. The multiplicative homomorphism is

achieved by taking advantage of those two points alongside the fact that r was an idem-

potent, namely m1r ·m2r = m1m2r
2 = m1m2r.

Testing for ideal membership has been used as a difficult problem forming the basis of

cryptosystems proposed in rings [Albrecht et al. (2016)]. These protocols are at risk of

being broken due to the existence of Gröbner bases. While it is thought to be difficult to

establish whether a ring element belongs to an ideal, based on the basis elements of the

ideal, a Gröbner basis is constructed in such a way that the problem is easy. Therefore,

the security of these categories of schemes is reliant on not being able to find a Gröbner

6

Chapter 1. Introduction

basis. In commutative polynomial rings, covered in section 4.1, it is known that any ideal

basis has a corresponding Gröbner basis and can be found using Buchberger’s algorithm

[Buchberger & Winkler (1998)]. Commutative schemes base their security on the fact that

some Gröbner bases take an infeasible length of time to find. We will, however, be looking

at a non-commutative scheme in section 4.2, the advantage being some bases for ideals

have provably no Gröbner basis. This will be done by looking at examples of where Mora’s

algorithm [Mora (1985)] does not terminate. These initial examples will come from [Rai

(2004)]. A lot of work in these Polly Cracker systems is based on Gröbner bases that are

infeasible to calculate but theoretically finite. Work with infinite Gröbner bases isn’t as

prevalent with Rai’s work typically being what is referred to when talking about infinite

Gröbner bases, for example in [Bulygin (2005)] and [Cortés et al. (2007)].

In section 4.3 we will use an ideal whose basis can’t be converted into a Gröbner basis.

From this we will build a key exchange protocol based on the Polly Cracker scheme that

is covered in [Rai (2004)]. We wish to keep any encryption method as computationally

inexpensive as possible so the majority of the work will be done by the key exchange (if

data is being streamed for example we can’t afford time-consuming encryption methods).

The accompanying encryption function that will depend on the generated secret key is

conceptually very simple. Although the simplicity of it is an excellent feature, two more

advantages come with this specific choice of function; the first of which is the homomorphic

property. Addition is preserved under the encryption function regardless of which poly-

nomial space we work in. As for multiplication, we discuss how that can also be preserved

provided we are a little more careful in our choice of polynomial space. The remainder of

this section will focus on our efforts to strengthen the scheme against a potential attack.

Braid groups are another structure that have been studied for their cryptographic poten-

tial [Flores & Kahrobaei (2017)] and are the justification of the second advantage of our

choice of encryption function which we will look at in more detail in section 4.4. Hecke

algebras are connected to braid groups and having both addition and multiplication op-

erations make it a good candidate for the choice of polynomial space to work in. This

section will show how we can upgrade our scheme. With this particular setup, the en-

cryption function will output a polynomial that has similar properties to instances of the

conjugacy problem from braid groups. This will hopefully give our method an extra level

of security from other potential attacks.

Testing of the work in this chapter was done using the functional programming language

Haskell. Using a language like this is helpful as programs are built up as a series of

functions, a more natural way to express the methods we use than an object-oriented

language like Java. This approach is of great importance as working with polynomials is

much slower than working with integers like a lot of current protocols. In particular, the

famous MapReduce method [Dean & Ghemawat (2008)] can be utilised to help speed up

operations over large amounts of ciphertexts. In this work, polynomials are represented as

7

Chapter 1. Introduction

lists and the two MapReduce functions each perform fundamental changes to those lists.

• map - (k1, v1)→ list(k2, v2)

• reduce - (k2,list(v2))→ list(v2)

(k and v represent a key-value pair).

Finally, in chapter 5, we will look at the complexity of finding partial Gröbner bases.

Although we will see that there are certain ideal bases that have an infinite number of

polynomials in their Gröbner basis, it is only important to find the correct finite subset.

We, therefore, will look at the complexity of finding this subset as opposed to finding a

complete Gröbner basis.

When it comes to measuring complexity we need to be careful which measure we use. In

section 5.1 we will use the quicksort algorithm [Hoare (1961)] as an example to understand

the various measures. While something like worst-case complexity will tell us if a particular

hard problem does have hard instances, it isn’t much use if there is only one or a very

small number of examples. It is therefore tempting to use something like average-case

complexity which, as the name suggests, will give an indication of on average how hard a

type of problem is. The issue here is the fact that in statistics it is well known that the

mean value is rather sensitive to outliers. Just one example of an extremely hard instance

of a problem may cause the average to come across as still hard, as demonstrated in figure

1.2. As such we will look at generic complexity as our measure. This will discount outlying

difficult problems and give us a better idea of the complexity of the majority of instances.

In order to gain confidence in the security of the protocol from the previous chapter, we

want to show the complexity of the ideal membership problem is at least exponential. The

algorithm for finding Gröbner basis, known as Mora’s algorithm, is an iterative method

made up of two main steps during each iteration. The first step is finding new candidates

for the basis and adding them to a queue. The second step involves testing the polynomial

next in the queue to see if it would be redundant to add to what will become the Gröbner

basis.

Section 5.2 onwards will cover our approach to finding the generic complexity of the

problem we based the protocol in chapter 4 on. In particular in section 5.2 we will outline

the theorem for Gröbner bases in general. In sections 5.3 and 5.4 we will apply the theorem

we established in 5.2 to the Gröbner basis we will be using throughout chapter 4.

It is very difficult to model the polynomials needed for the basis, we therefore will begin

by focusing on one observation that can be made about the first step of Mora’s algorithm.

Following this, we will make an assumption about the second step however, we will discuss

three different approaches that provide evidence that our assumption may well hold. The

observation we make will put a lower bound on the number of polynomials that is still

exponential. While we will be covering a particular example for this observation, we will

make it clear how the proof can be applied to other examples and, in particular, which

8

Chapter 1. Introduction

Figure 1.2: Comparison of measures of complexity

properties need to be there for the proof to hold. As for the assumption in step 2, we

claim that a certain proportion of polynomials in the queue will be added to the basis.

We try to back this claim up with the 3 following approaches:

• Simulations in Haskell,

• Re-ordering the queue of polynomials each time to better understand the structure,

• Classify the polynomials into one of 3 types and consider how the distribution of

these 3 classes changes over time.

9

Chapter 2

Background material

2.1 Algebraic structures

Definition. A binary operation on a set S is a function ∗ : S × S → S that sends the

ordered pair (a, b) to (a ∗ b) ∈ S.

By imposing axioms on a set equipped with a binary operation we get the following

definitions.

Definition. A monoid is a set M , with a binary operation ∗ such that the following

conditions hold.

• Associativity: m1 ∗ (m2 ∗m3) = (m1 ∗m2) ∗m3 for all m1,m2,m3 ∈M .

• Identity: There exists an element e ∈ M such that for all m ∈ M , we have m ∗ e =

e ∗m = m. The element e is called the identity of M .

Associativity is an important and useful property to have when it comes to evaluating

expressions on parallel machines. Figure 2.1 shows how the parse tree for an expression can

be reduced by taking advantage of associativity [Kuck (1977)]. In the diagram, originally

the first step adds together a and b, the second step adds c and the third step adds d.

However, because c and d don’t depend on a and b, two additions can be performed at

the same time. Then, by the associative property, the result of these sums can be added

together to get the same result as before one step earlier.

The free monoid on a set is the monoid whose elements are words made up of zero or more

elements from that set. The binary operation on this particular monoid is a concatenation

of words, with the empty word made up of zero elements, denoted e, as the identity.

Definition. A group is a monoid G, with identity e and with the following further prop-

erty.

• Inverse: For each element g ∈ G, there exists an element g−1 ∈ G such that g−1∗g =

e = g ∗ g−1. The element g−1 is called the inverse of g.

10

Chapter 2. Background material

Figure 2.1: Tree reduction

Furthermore, we say that a group is abelian if for all g1, g2 ∈ G we have that g1∗g2 = g2∗g1.

Definition. A ring is a set R with 2 binary operations + and ×, which we call addition

and multiplication, with an identity element 0 for addition alongside the following axioms.

• R is an abelian group with respect to addition.

• (r1 × r2)× r3 = r1 × (r2 × r3) for all r1, r2, r3 ∈ R.

• Distributivity: r1×(r2+r3) = (r1×r2)+(r1×r3) and (r1+r2)×r3 = (r1×r3)+(r2×r3).

• Unit: There is a unique element 1 such that 1 6= 0 and 1 × r = r = r × 1 for all

r ∈ R.

Furthermore we say a commutative ring has all the above properties alongside

• r1 × r2 = r2 × r1.

The group structure brings with it one of the most important problems in modern

cryptography.

Definition. Discrete logarithm problem. Given a group G, let 〈g〉 be the cyclic subgroup

generated by g ∈ G and a ∈ 〈g〉, find an integer x such that

gx = a (2.1)

11

Chapter 2. Background material

2.2 Commutative and non-commutative polynomial rings

2.2.1 Monomials and orderings

Definition. The set of monomials in the variables {x1, x2, . . . , xn} is defined in the 2

following ways:

• Commutative: {xβ11 x
β2
2 · · ·x

βn
n |βi ∈ N ∪ {0}},

• Non-Commutative: {xi1xi2 · · ·xik |i1, i2, . . . , ik ∈ {1, 2, . . . , n}, k ∈ N ∪ {0}}, namely

elements of the free monoid on the set {x1, x2, . . . , xn},

where the standard conventions of x1
i = xi, x

a
i x

b
i = xa+b

i apply.

For testing purposes, implementation of polynomial rings were created in Haskell. The

differences between the commutative and non-commutative versions become very clear

here. The commutative monomials are described with just a list of integers representing

the exponents, whereas the non-commutative monomials require lists of tuples made up

of the variable and a list of its positions in the monomial.

Example The following are examples of how the monomial x1x
2
3x2x1 ∈ {x1, x2, x3, x4} in

the 2 implementations of monomials in Haskell:

• Commutative: [2, 1, 2, 0],

• Non-commutative: [(x1, [1, 5]), (x2, [4]), (x3, [2, 3])].

Note here that in the commutative case we have collected all the variables with the same

index together by moving the x1 at the end of the monomial to the front. Also in the

non-commutative version, we have not included an x4 in the definition at all as it doesn’t

appear in the monomial, something we can’t do with the commutative case.

The problem we will be dealing with in a later chapter requires us to have an ordering

on our collection of monomials. While there are many orderings to choose from. The

following definitions will be a common theme.

Definition. A set X is totally ordered under ≤ if the following properties hold for any

xi, xj , xk ∈ X:

• Antisymmetry: xi ≤ xj and xj ≤ xi ⇒ xi = xj ,

• Transitivity: xi ≤ xj and xj ≤ xk ⇒ xi ≤ xk,

• Totality: xi ≤ xj or xj ≤ xi.

Definition. An admissible order is a total order on the set of monomials satisfying the

following property:

xi ≤ xj ⇒ xixk ≤ xjxk, for all monomials xi, xj , xk. (2.2)

12

Chapter 2. Background material

Often these orders are required to be well-orders as well. If we have finite variables, then

the conditions are:

• The order is a total order

• For any monomial xi, we have 1 ≤ xi.

For the following definitions assume that the 2 monomials, m1,m2 ∈ {x1, x2, . . . , xn},
being compared are represented in the form

m1 = xα1
1 xα2

2 · · ·x
αn
n ,m2 = xβ11 x

β2
2 · · ·x

βn
n , (2.3)

for the commutative case. The non-commutative case will be of the form

m1 = xi1xi2 · · ·xik ,m2 = xj1xj2 · · ·xjk′ . (2.4)

For each definition we will assume the order on the variables is x1 > x2 > · · · > xn.

Definition. Under the lexicographical ordering, m1 < m2 if

• (Commutative) ∃i ≤ n with αi < βi, and then αj = βj for 1 ≤ j < i,

• (Non-commutative) Either ∃l′ ≤ min{k, k′} with αi′l < βj′l and then αil = βjl for

1 ≤ l < l′, or k < k′, and then αil = βjl for 1 ≤ l ≤ k.

The commutative definition is admissible whereas the non-commutative definition is not

admissible (e.g. let x1 > x2, then x1 < x1x2 but x2
1 > x1x2x1).

Definition. Under the degree lexicographical ordering, m1 < m2 if

• (Commutative) deg(m1) =
∑n

i=1 αi < deg(m2) =
∑n

i=1 βi or deg(m1) = deg(m2)

and m1 < m2 under the lexicographical ordering,

• (Non-commutative) deg(m1) = k < deg(m2) = k′ or deg(m1) = deg(m2) and m1 <

m2 under the lexicographical ordering.

Both of these definitions are admissible.

Definition. Under the degree reverse lexicographical ordering, m1 < m2 if

• (Commutative) deg(m1) < deg(m2) or deg(m1) = deg(m2) and αi > βi with all

following exponents are equal (αj = βj , i < j ≤ n),

• (Non-commutative) deg(m1) < deg(m2) or deg(m1) = deg(m2) and working from

right to left of both words, the first letter where m1 and m2 differ, say i1and i2

respectively, is such that i1 > i2.

Neither of these definitions are admissible.

13

Chapter 2. Background material

2.2.2 Ideals

Definition. If I is a subset of a commutative ring (R,+, ·), it is called an ideal of R if:

• (I,+) is a subgroup of (R,+)

• ∀x ∈ I, ∀r ∈ R : rx ∈ I

Definition. If I is a subset of a non-commutative ring (R,+, ·), it is called a left (right)

ideal of R if:

• (I,+) is a subgroup of (R,+)

• ∀x ∈ I, ∀r ∈ R : rx ∈ I(xr ∈ I)

Definition. If I is a subset of a non-commutative ring (R,+, ·), it is called a two sided

ideal of R if:

• (I,+) is a subgroup of (R,+)

• ∀x ∈ I, ∀r1, r2 ∈ R : r1xr2 ∈ I

Definition. Given a two sided ideal I of a ring R, an equivalence relation ∼ on R, for

a, b ∈ R, is defined as

a ∼ b if and only if a− b ∈ I. (2.5)

Definition. Given a ring R, an ideal I in R and a ∈ R, the equivalence class of a in R is

[a] = a+ I = {a+ r|r ∈ I}. (2.6)

Definition. Given an ideal I in R, the set of all equivalence classes called the quotient

ring denoted R/I. It in itself is a ring with addition and multiplication defined as

(a+ I) + (b+ I) = (a+ b) + I,

(a+ I)(b+ I) = (ab) + I,
(2.7)

where a, b ∈ R.

2.2.3 Leading terms

Polynomials will be a key structure used in our encryption methods and thus it is important

to understand some of the key properties of them. Let K be a field, let M be a monoid.

The monoid ring of M over K is the set K〈M〉 of all elements of the form
∑

w∈M cww

with cw ∈ K and cw 6= 0 for only finitely many w ∈ M , together with the addition +

defined by ∑
w∈M

cww +
∑
w∈M

c′ww =
∑
w∈M

(cw + c′w)w (2.8)

14

Chapter 2. Background material

and the multiplication · defined by∑
u∈M

cuu ·
∑
v∈M

cvv =
∑
w∈M

(
∑
uv=w

cucv)w. (2.9)

Given a set X, the monoid ring of 〈X〉 over K is called the non-commutative polynomial

ring [Xiu (2012)]. Furthermore, we define the commutative polynomial ring as the quotient

ring of the non-commutative polynomial ring K〈X〉/I where I = 〈uv = vu ∀u, v ∈ X〉.
A lot of the algorithms described later are interested with the various leading parts of

polynomial. The key components are given here [Adams et al. (1994)].

Definition. Suppose 2 polynomials, the first commutative, the second non-commutative,

of the form
f = a1x

β1,1
1 x

β1,2
2 · · ·xβ1,nn + · · ·+ amx

βm,1

1 x
βm,2

2 . . . x
βm,n
n ,

g = a1xi1,1xi2,1 · · ·xik1,1 + · · ·+ amxi1,mxi2,m · · ·xikm,m
,

(2.10)

under some order, have there terms expressed in descending order. We define

• LM(f) = x
β1,1
1 x

β1,2
2 · · ·xβ1,nn , the leading monomial of f ,

LM(g) = xi1,1xi2,1 · · ·xik1,1 , the leading monomial of g,

• LC(f) =LC(g) = a1, the leading coefficient of f and g,

• LT(f) = a1x
β1,1
1 x

β1,2
2 . . . x

β1,n
n , the leading term of f ,

LM(g) = a1xi1,1xi2,1 · · ·xik1,1 , the leading term of g.

2.2.4 Building Hecke algebras

In chapter 4, we will be interested in a particular algebraic structure, namely the Hecke

algebra. We will give the details of the algebra here and use this to improve on an

encryption scheme later.

Definition. A Coxeter system is a pair (W,S), where S = {s1, s2, . . . , sr} are generators

of a Coxeter group W defined by the presentation

〈s1, s2, . . . , sr|(sisj)mi,j = 1〉, (2.11)

where mi,i = 1, ∀i ∈ {1, . . . , r}, mi,j ≥ 2 for i 6= j, and can equal ∞.

The Bruhat ordering is a partial order on the elements of a Coxeter group.

Definition. If (W,S) is a Coxeter with generators S, then the (strong) Bruhat order is

the partial order on the group W , defined by u ≤ v if some substring of some reduced

word for v is a reduced word for u. A reduced word for an element of W is a minimal

length expression of the element as a product of elements of S.

15

Chapter 2. Background material

Another important group for this section is the Braid group which has a standard

presentation defined as follows.

Definition. The braid group Bn, for any n ≥ 2 is defined by the following presentation

[Artin (1947)]

〈
σ1, ..., σn−1

∣∣∣∣ σiσj = σjσi, for |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n− 1

〉
(2.12)

Several problems arising from presentations of groups have been suggested as the

premise for cryptosystems. One in particular of interest is the conjugacy search problem.

Definition. (Conjugacy search problem) Given conjugate elements u,w ∈ Bn, find v ∈ Bn
such that

w = v−1uv. (2.13)

There have been protocols already suggested based on conjugacy search problems

in braid groups. For example, a scheme based on the Diffie Hellman conjugacy prob-

lem has been presented, where the hardness of the brute force attack is proportional to

exp{1
2pnlog(n)}, where the size of a plaintext is pnlog(n) bits [Ko et al. (2000)]. For this

particular scheme though, polynomial time attacks exist such as in [Cheon & Jun (2003)].

Although schemes based around these conjugacy problems have been broken, it is still

thought to be an open problem if the conjugacy search problem can be solved in general

for braid groups.

This problem leads to another similar problem which will help to justify the choice of

encryption function in chapter 4.

Definition. (Multiple conjugacy search problem) Given m pairs of conjugate elements

(u1, w1), . . . , (um, wm) ∈ Bn which are all conjugated by the same element. Find v ∈ Bn
such that

wi = v−1uiv,∀i ∈ {1, . . . ,m}. (2.14)

From a Coxeter group W we can form a Hecke algebra [Bump (2010)]. This is an

algebra over the ring of Laurent polynomials Z[q, q−1]. This algebra is denoted Hq(W).

Much like the Coxeter group, given the Coxeter system (W,S), where |S| = r then the

Hecke algebra has generators T1, T2, . . . , Tr. For a generator Ti, the i represents the Coxeter

generator si from the Coxeter group W . If w = si1si2 · · · sin , where sij ∈ S±1, is a reduced

word in W then, we define Tw = Ti1Ti2 · · ·Tin . The generators are subject to the relation

(TiTj)
mi,j = TiTjTi · · · = TjTiTj · · · = (TjTi)

mi,j , (2.15)

where there are mi,j copies of both Ti and Tj on each side. The relation s2
i = 1 in the

16

Chapter 2. Background material

Coxeter group is replaced with the quadratic relation

T 2
i = (q − 1)Ti + q. (2.16)

If w = w1w2 in W and length(w) = length(w1) + length(w2) then Tw = Tw1Tw2 .

2.3 Symmetric and Asymmetric encryption techniques

It is common practice to make public the encryption method used on data. If Alice and Bob

wish to encrypt messages in such a way that the other can decrypt, they can agree on the

scheme used in an open channel. The key that is used in the encryption function, however,

must be kept secret otherwise any ciphertext produced will be immediately insecure. A

key exchange protocol is used to allow Alice and Bob to communicate a shared secret key

despite using an open channel.

Figure 2.2 gives an overview of how key exchanges are performed. Alice and Bob each

begin by choosing a secret piece of information PA and PB respectively. They combine

their information with some publicly known information Pk and send each other the results

i.e. Bob receives Pk(PA) and Alice receives Pk(PB). Finally, they combine their secret key

with the information they have received, resulting in the shared key Pk(PA, PB). It should

be difficult for an eavesdropper to calculate Pk(PA, PB) based on Pk(PA) and Pk(PB),

which can be seen by the public.

Alice BobPublic

Pk

PA PB

PK(PB) PK(PA)

PK(PA,PB) PK(PA,PB)

Eve

Figure 2.2: Key exchange process

A well-known example is the Diffie-Hellman key exchange. It is performed with the

17

Chapter 2. Background material

following method:

1. Alice and Bob publicly agree on two prime numbers g and p, where g is a primitive

root of p (every value from 1 to p− 1 is congruent to a power of g mod p).

2. Alice chooses in secret a value a and from that calculates A = ga mod(p). She then

sends A over the public channel to Bob. Bob does the same with b and B = gb

mod(p).

3. Alice can now calculate Ba mod(p) = gba mod(p) which is equal to Ab mod(p) = gab

mod(p) that Bob can calculate.

It is thought to be difficult for an eavesdropper to find gab mod(p) given the public infor-

mation g, p, ga mod(p) and gb mod(p).

The term symmetric used to describe the previous method refers to the fact that Alice

and Bob have the same information at the end of the process. They are therefore able to

encrypt and decrypt messages under the same scheme. Asymmetric schemes differ in that

one party may be able to encrypt and decrypt but, one or more other parties are only

able to encrypt. Figure 2.3 gives an example of multiple users encrypting their data and

sending it to the service. The service is able to decrypt the information but if the users

see any of the ciphertexts, they should not be able to decrypt it.

Service

User 1

User 2

User n

Enc(data 1)

Enc(data 2)

Enc(data n)

Send
encrypted

data
Dec(data 1,2,...,n)

Figure 2.3: Multiple user public key encryption

The RSA encryption method (named after its creators Rivest, Shamir, Adleman), is

a well known and widely used example of an asymmetric encryption scheme. The public

key is a modulus n and an exponent e both positive integers. The modulus n = pq where

p and q are primes. The ciphertext c is generated from a plaintext m by the encryption

18

Chapter 2. Background material

function E defined as

c = E(m) = me(mod n). (2.17)

Here n is the product of two primes p and q, both of which are kept secret. We choose a

value of e that satisfies both 1 < e < λ(n) and gcd(e, λ(n)) = 1 where λ(n) is the smallest

positive integer m such that

am ≡ 1 (mod n), (2.18)

for every integer a from 1 to n that is co-prime to n. The function is implemented efficiently

using the method of repeated squaring.

The decryption function, D, on a ciphertext c is defined by

m = D(c) = cd(mod n), (2.19)

where ed ≡ 1(mod λ(pq)).

Without knowledge of the private key, an attacker needs to be able to factorise n to

break the cryptosystem. If an attacker can find p and q such that n = pq then they

can easily calculate λ(n) = (p − 1)(q − 1). With knowledge of λ(n), it is easy to find

d using the Euclidean algorithm. Currently, in classical computing, it is believed that

prime factorisation does not have an efficient algorithm to solve it, thus RSA is considered

secure.

2.4 Homomorphic encryption

Definition. Let (G, ∗) and (H, ◦) be groups. A function f : G 7→ H is a homomorphism

if ∀a, b ∈ G,

f(a ∗ b) = f(a) ◦ f(b). (2.20)

Furthermore, we say that we have an isomorphism if the homomorphism is bijective i.e.

it is injective (1 to 1) and surjective (onto). If we have an isomorphism f : G 7→ H, then

we write G ∼= H.

A lot of work has been carried out in group theoretic homomorphic encryption. For

example, the homomorphic property in RSA is satisfied by using the commutativity of

integer multiplication.

E(m1) · E(m2) = me
1 ·me

2(mod n)

= (m1 ·m2)e(mod n)

= E(m1 ·m2).

(2.21)

While the homomorphic property of RSA does appear to be a useful property of an already

well respected encryption system, it is worth thinking about real world restrictions of such

19

Chapter 2. Background material

a property would be. To see this consider the following function

Definition. Given c = me(mod n)

HALF (c) =

{
0, if 0 ≤ m < n/2

1, if n/2 ≤ m < n− 1.
(2.22)

The reason there is interest in a definition such as this is that it can be used to

show that the homomorphic property of RSA can be seen as a double edged sword. The

homomorphic property of the RSA means that if we have access to an oracle for HALF ()

then, given c = me and e we can compute the following:

HALF (me) = 0⇔ m ∈ [0,
n

2
)

HALF (2me) = 0⇔ m ∈ [0,
n

4
) ∪ [

n

2
,
3n

4
)

HALF (4me) = 0⇔ m ∈ [0,
n

8
) ∪ [

n

4
,
3n

8
) ∪ [

n

2
,
5n

8
) ∪ [

3n

4
,
7n

8
)

...

(2.23)

Using such a binary search approach means that it is possible to establish the value of m

in polynomial time, by computing values of HALF (2ime) for various i. Fortunately, there

is currently no well known polynomial time algorithm to implement HALF, but the point

here is that there are lots of potential ways for information about messages to be leaked

and it would only take one to be established in reality for there to be a major security

concern.

Alongside RSA, other encryption methods are homomorphic under a single operation. For

example, the Paillier encryption method is homomorphic under addition. A more desirable

property for an encryption method to have is a ring homomorphism.

Definition. Given two rings, R and S, a ring homomorphism is a function f : R → S

such that

• f(a+ b) = f(a) + f(b)∀a, b ∈ R.

• f(ab) = f(a)f(b)∀a, b,∈ R.

• f(1R) = 1s, the multiplicative identity in each ring.

2.4.1 Fully homomorphic encryption

The ultimate goal of homomorphic cryptography is to be able to perform any operation

on encrypted data homomorphically. This is known as Fully homomorphic encryption.

Ideally, these operations on ciphertext would be performed with as little extra effort as it

would have been to perform on the original ciphertext. In order to achieve this, we would

20

Chapter 2. Background material

like to have a collection of operations that can be built up into any given operation.

Gentry proposed in his paper [Gentry (2009)], an encryption method that would allow the

evaluation of arbitrary circuits. His protocol allowed evaluation of addition and multipli-

cation gates on encrypted data in a ring. The reason this is so important is that we are

able to construct Boolean algebra. The values in this algebra may be identified with inte-

ger arithmetic modulo 2. Here addition plays the Boolean role of XOR and multiplication

plays the Boolean role of AND. Computers perform all operations through a series of logic

gates, where each gate performs a Boolean operation. Therefore, any operation we wish

to perform on any data will be an application of the Boolean algebra. This is why finding

a ring theoretic encryption method is of such value.

2.5 Implementation considerations

2.5.1 Classical computation

Different types of attacks

Not every potential attacker will be looking for a full break of a cryptosystem. Even

without knowledge of the secret key, there may still be important information to be learned

from various aspects of the protocol.

A chosen-plaintext attack is a type of attack that tries to gain information about an

encryption scheme assuming a given arbitrary plaintext, they can find the corresponding

ciphertext.

A known-plaintext attack is a type of attack that tries to gain information using the fact

that the attacker knows the plaintext version of a particular ciphertext. This is a weaker

attack than the previous one as a chosen-plaintext attack doesn’t have to wait for a specific

ciphertext to appear naturally.

A chosen-ciphertext attack is a type of attack that tries to gain information by having the

attacker learn the decryption of a chosen ciphertext.

Optimal asymmetric encryption padding

Definition. A trapdoor function is a function that is easy to compute but the inverse is

believed to be difficult to compute.

RSA is thought to be a trapdoor function. Bellare and Rogaway put forward a scheme

in the 90’s which could convert any trapdoor function into an encryption scheme [Manger

(2001)]. RSA led the way with this method resulting in the RSA-OAEP scheme, this

provides more security advantages than just the standard RSA scheme. We will discuss

the scheme here and use f to represent the trapdoor function, so one could easily substitute

RSA in here.

21

Chapter 2. Background material

Setup

Here we will assume that the data is in binary format. Our trapdoor function f : {0, 1}k →
{0, 1}k, has an inverse g. We also require two other parameters k0 and k1 which are

sufficiently large but satisfy k0 + k1 < k. Now although our trapdoor function acts on k

bits, the scheme itself encrypts messages of the form m = {0, 1}n, where n = k − k0 − k1.

Two arbitrary functions are also incorporated

H : {0, 1}n+k1 → {0, 1}k0 and G : {0, 1}k0 → {0, 1}n+k1 (2.24)

Encryption

If we wish to encrypt a plaintext m, we begin by randomly generating r ∈ {0, 1}k0 . We

then proceed to calculate

s = G(r)⊕ (m||0k1) ∈ {0, 1}n+k1

t = H(s)⊕ r ∈ {0, 1}k0

w = s||t ∈ {0, 1}k

c = f(w) ∈ {0, 1}k is the ciphertext

(2.25)

where || represents concatenation of bits.

Decryption

w = g(c) ∈ {0, 1}k

s = w[0, . . . , n+ k1 − 1] ∈ {0, 1}n+k1

t = w[n+ k1, . . . , k] ∈ {0, 1}k0

r = H(s)⊕ t ∈ {0, 1}k0

z = G(r)⊕ s ∈ {0, 1}n+k1

m = z[0, . . . , n− 1] ∈ {0, 1}n is the plaintext

y = z[n, . . . , n+ k1 − 1] ∈ {0, 1}k1

(2.26)

where the values in [] represent the bit positions of the variable in front of the brackets.

These added steps provide us with an added level of security. Whilst the trapdoor function

should prevent outsiders from finding the plain text information, there may be a goal

of simply tampering the data. This could be done if the adversary just had access to

the ciphertext data by changing some of the 1’s to 0’s and vice versa. In classic RSA,

when decrypted this, in theory, would just output a different value where anyone without

knowledge of the plaintext would simply accept this as being the truth. However, in RSA-

OAEP alongside the plaintext that is returned, we also get back y. Now we expect this

to be a string of k1 0’s so if that is not what we observe then we know that the ciphertext

22

Chapter 2. Background material

has been changed in some way.

Computation limitations

In almost any scenario, but in particular, for IOT, we want to keep computational costs

and bandwidth use as low as we can. As such it is highly recommended that symmetric

key algorithms are used for encrypting data as asymmetric schemes have relatively heavy

computational costs. As the number of entities in a system grows, it becomes exceedingly

difficult to distribute shared secret keys manually. Therefore we need support from auto-

mated key-establishment schemes. This is where Asymmetric encryption schemes shine,

as demonstrated in figure 2.4. The public part of a key pair generated in this scheme can

be used by another party wishing to establish a secret key with the key pair owner. The

other party encrypts their choice of shared secret key using the public key and the key

pair owner is the only who can retrieve that information with their private key. One of

the NIST-approved asymmetric schemes is RSA. Any RSA key-pair generated will have a

modulus n, with a length of either 2048 or 3072 bits, where n is the product of two primes.

The public exponent, e, will be an odd integer lying in the range 65537 ≤ e < 2256.

User Service

Publsh
public key

PK

Encrypt and
send secret

key

PK(S) Decrypt secret
key

Encrypt and
send data

Decrypt
data

S(data)

Figure 2.4: Mixing public and private key methods

The following two algorithms are the NIST-approved choices for encryption.

The Advanced Encryption Standard (AES) algorithm is a symmetric block cipher that can

process blocks of 128 bits with use of cipher keys of length either 128, 192 or 256 bits.

Any implementation of AES must support at least one of those 3 key lengths.

Triple Data Encryption Algorithm (TDEA) encrypts and decrypts data in 64-bit blocks

using 56-bit keys. Although there are 2 variants of these methods, the use of two-key

TDEA is no longer approved (three-key TDEA being the approved alternative).

23

Chapter 2. Background material

2.5.2 Quantum computation

A qubit can be in one of two states |0〉 and |1〉 or it can be in a superposition of states

represented by the linear combination

|ψ〉 = α|0〉+ β|1〉 where α, β ∈ C. (2.27)

The values α and β represent probabilities of what we will observe when we measure the

qubit. We get a value of 0 with probability |α|2 and a value of 1 with probability |β|2,

thus giving us the condition |α|2 + |β|2 = 1. The states |0〉 and |1〉 are known as the

computational basis states.

A qubit in the state
1√
2
|0〉+

1√
2
|1〉 (2.28)

when measured, has a 50/50 change of being a 0 or a 1.

Suppose we have 2 qubits. A 2 qubit system has 4 computational basis states denoted

|00〉, |01〉, |10〉, |11〉 and a superposition of these states can be written as

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 (2.29)

where the coefficients are normalized in the same way as done with one qubit. An impor-

tant 2 qubit state is the Bell state or EPR pair

|00〉+ |11〉√
2

(2.30)

The interesting property about this state is that if we measure the first qubit, we get the

value of 0 with a probability of a half (same as 1) but from this point the complete state

has been decided, since the first qubit can only be followed by the same value.

There is a quantum version of the NOT gate in classical computing. In classical

computing, this sends 0 to 1 and vice versa. We treat this the same in the quantum world,

just the coefficients for 0 and 1 states are swapped. We define the matrix X to be the

quantum NOT gate

X ≡

[
0 1

1 0

]
(2.31)

which is multiplied to our quantum state α|0〉+ β|1〉 using the normal matrix and vector

multiplication by representing our state as[
α

β

]
(2.32)

24

Chapter 2. Background material

Surprisingly the only requirement on quantum gates is that the matrix representation must

be unitary. A matrix U is unitary if U †U = I (the dagger notation represents the adjoint

of the matrix, namely the complex conjugate of the transpose). Two other important

gates are

Z ≡

[
1 0

0 −1

]
(2.33)

known as the Z gate, alongside the Hadamard gate

H ≡ 1√
2

[
1 1

1 −1

]
. (2.34)

Finally, two gates that will be of particular importance in this work will be the CNOT

gate and the Toffoli gate. Firstly the CNOT gate is defined as

CNOT ≡


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.35)

The first qubit is fixed and acts as a control variable. If it is a 1 the second qubit swaps

its value (0 becomes 1 or 1 becomes 0).

The Toffoli gate is defined as

Toffoli ≡



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


. (2.36)

Similar to the CNOT gate, the first two qubits are fixed and act as control variables, the

third qubit is swapped if both the control qubits are equal to 1. As you can see here,

the matrix transformations used can get large quickly. In the quantum world, there are

various proofs that as few as 2 quantum gates is enough to perform any calculation up to

a particular desired accuracy [Nielsen & Chuang (2010)].

25

Chapter 3

Quantum cryptography and

Post-quantum cryptography

In this chapter, we will consider how quantum computing can be used to change what

cryptographic tools we have at our disposal. The first section will focus on existing work

that has looked at a post-quantum world. This is compiled of work by; Shor, on attacking

the widely used RSA, work by Bennett and Brassard on using quantum technology to

form a key exchange and work by Goldreich Goldwasser and Halevi on a cryptosystem

that is more resistant to quantum attacks than something like RSA.

Section 2 will begin with an important quantum circuit by Takahashi. This will enable

the remainder of the original work in the section which looks to improve the homomorphic

properties of the quantum-resistant method previously mentioned.

Sections 3 and 4 are built off the foundations set in section 2 and aim to improve the

method to be more practical.

3.1 Effects of quantum methods on cryptography

In this section, we will look at some of the ways we already know quantum computers will

change cryptography. Firstly, we will see how a widely used problem becomes insecure

with the aid of quantum algorithms. After which, we will see how other algorithms, both

quantum and classical, will have a major interest in them. This interest may stem from

the opportunity to use these new computers (in the case of quantum algorithms), or the

need to replace insecure algorithms (in the case of classical algorithms).

3.1.1 Classical methods are vulnerable to quantum attacks

The discrete logarithm problem has been utilised widely within modern public-key cryp-

tography as the basis of security [McCurley (1990)]. While it has become the standard for

many real-world security systems, there are limitations. Firstly, while encryption methods

26

Chapter 3. Quantum cryptography and Post-quantum cryptography

such as RSA, that exist in the ring of integers containing (Z, ·), are homomorphic with

respect to multiplication, the addition operation won’t perform correctly. We see that in

almost every choice of e and n that

E(m1 +m2) = (m1 +m2)e(mod n) 6= me
1 +me

2 (mod n) = E(m1) + E(m2). (3.1)

This is likely to be the case with similar cryptosystems that come from abelian groups

which leads our search to other algebraic structures. In this work we will consider vector

spaces and rings for fully homomorphic encryption, however, [Ostrovsky & Skeith (2008)]

proves that constructing an FHE over a ring with identity is equivalent to constructing a

group homomorphic encryption over a finite non-abelian simple group. The second issue,

however, is the major issue we need to address when considering quantum computers.

This issue is the assumption that decryption is hard. RSA belongs to a collection of

cryptosystems that base their security on the discrete logarithm problem, which we defined

in chapter 2.

While the discrete logarithm problem isn’t the only difficult problem forming a basis for

these systems, there exists polynomial time algorithms that convert to problems such as

factoring.

The development of Shor’s algorithm has put cryptosystems that utilize problems like

the discrete logarithm in jeopardy [Shor (1994)]. This is due to the efficiency of modular

exponentiation using repeated squaring and the quantum Fourier transform, the latter of

which, as the name suggests, may be performed using quantum algorithms.

This exploitable weakness and the possibility of quantum computers becoming available

in our life leads us to look for so-called quantum resistant cryptosystems.

While Shor’s algorithm may be one of the most prolific quantum attacks, there is evidence

of other weaknesses in classical methods from quantum attacks. In classical computing,

we consider an oracle that is able to obtain important details about a private key for

an attacker and try to understand how a scheme may deal with the attacker using that

information. However, In the quantum world an attacker may be able to use a quantum

oracle i.e. they can query the oracle with a superposition of classical queries [Boneh et al.

(2011)].

3.1.2 A key exchange protocol

Unlike traditional key exchange protocols that base their security on a problem thought

to be hard, fundamental properties of quantum mechanics are used to keep data safe in

quantum cryptography. In this section, we will look at a very early example from Bennett

and Brassard [BENNETT (1984)].

Although it is typical to use the standard basis for working with qubits, there is nothing

to stop Alice and Bob using another basis for communicating a secret key. In fact, the key

27

Chapter 3. Quantum cryptography and Post-quantum cryptography

exchange protocol described here requires the use of 2 bases. The main requirement of

these basis elements is that they are conjugate to one another. Although the terminology

differs from that here, [Bennett et al. (1992)] describes the important property of conjugate

bases as “any measurement of a single photon’s rectilinear (0 vs 90 degrees) polarization

randomizes its diagonal (45 vs 135 degrees) polarization, and vice versa”.

Recall that in our standard basis, any qubit is represented as

α|0〉+ β|1〉, (3.2)

where |α|2 + |β|2 = 1. Upon measurement of this qubit we have a probability of |α|2 or

|β|2 of outputting a 0 or 1 respectively. Now consider an alternative basis, which we will

call the diagonal basis, where any qubit can be represented as

α′(
|0〉+ |1〉√

2
) + β′(

|0〉 − |1〉√
2

). (3.3)

As with the standard basis, here we have a probability of |α′|2 or |β′|2 of a measurement

outputting the basis element |0〉+|1〉√
2

or |0〉−|1〉√
2

. Now suppose we have one of the diagonal

basis elements but try to measure it using the standard basis. Expressed as a sum of the

standard basis elements we have

|0〉+ |1〉√
2

=
1√
2
|0〉+

1√
2
|1〉 and

|0〉 − |1〉√
2

=
1√
2
|0〉+

−1√
2
|1〉. (3.4)

Notice that in both cases we have an equal probability of observing a 0 or a 1. We can do

the same with standard basis elements measured in the diagonal basis.

|0〉 =
1√
2

(
|0〉+ 1〉√

2
) +

1√
2

(
|0〉 − |1〉√

2
) and |1〉 =

1√
2

(
|0〉+ 1〉√

2
) +
−1√

2
(
|0〉 − |1〉√

2
). (3.5)

Once again, in both cases, we have an equal probability of observing a 0 or 1. We call

bases with this property conjugate. We will adopt the notation here that the standard

basis elements |0〉 and |1〉 are written as the vectors [1, 0]t and [0, 1]t respectively. Also,

the diagonal basis elements |0〉+|1〉√
2

and |0〉−|1〉√
2

are written as [1√
2
, 1√

2
]t and [1√

2
, −1√

2
]t re-

spectively. [1√
2
, 1√

2
]t can be thought of as the 0 for this basis and [1√

2
, −1√

2
]t the 1.

Alice and Bob publicly agree to use the same two conjugate bases. Alice then chooses a

sequence of 0’s and 1’s she wished to transmit. Qubits used to represent these values are

sent to Bob over a quantum channel. Each 0 is encoded as either [1, 0]t or [1√
2
, 1√

2
]t. Each

1 is encoded as either [0, 1]t or [1√
2
, −1√

2
]t.

For each qubit received, Bob chooses at random, one of the two conjugate bases and takes

a measurement. Alice does not publicly reveal anything about her choice of basis at this

point. If Bob’s choice of basis matches Alice’s, then when he measures he will observe the

value that Alice intended. If opposite bases are chosen, then as we saw above, Bob will

28

Chapter 3. Quantum cryptography and Post-quantum cryptography

observe the 0 or 1 element from his basis with equal probability (i.e. he has a 50% chance

of observing the value Alice intended).

Once all transmission has finished, Alice and Bob can publicly discuss which bases they

used for each qubit. For a qubit where they have a match, they can confirm that have

communicated successfully a 0 or 1. The qubits where they disagree are discarded. An

example of this process is given in the following table. In the table, a + is used to represent

the standard basis whereas a × is used to represent the diagonal basis.

Alice message 0 1 0 1 0 1 0 1

Alice basis choice + + × × + × + ×

Alice sends

[
1

0

] [
0

1

] [
1√
2

1√
2

] [
1√
2
−1√

2

] [
1

0

] [
1√
2
−1√

2

] [
0

1

] [
1√
2

1√
2

]
Bob basis choice + × + × + × × +

Bob measurement

[
1

0

] [
1√
2

1√
2

] [
1

0

] [
1√
2

1√
2

] [
1

0

] [
1√
2
−1√

2

] [
1√
2
−1√

2

] [
1

0

]
Shared key? 0 1 0 1

The question remains, what about outsiders trying to eavesdrop on this information

exchange? Suppose an attacker tries to interfere before the qubits reach Bob. Much like

Bob, the attacker must choose one of the two bases to measure in. Assume here that Bob

and Alice are using the same basis as anything else would be thrown away and therefore

useless to the attack anyway. If the attacker also happens to choose the same basis, then

the qubit will have been measured and sent to Bob, whose measurement will essentially

be a redundant step but it will be the intended value. If the non-matching basis is chosen,

a measurement has a 50/50 chance of still giving the correct value. This means that if an

attack takes place, the is only a 25% chance of each value in the shared secret sequence

being incorrect.

As an example, suppose Alice sends a 0 in the standard basis i.e. [1, 0]t. With 50%

probability, Eve also chooses to measure in the standard basis and so the exchange looks

like this
Alice sends [1, 0]t → Eve’s measurement [1, 0]t

Eve sends [1, 0]t → Bob’s measurement [1, 0]t.
(3.6)

The other scenario is that Eve chooses to measure Alice’s message using the diagonal basis.

Eve, therefore, has two possible measurements. After forwarding the message on to Bob,

who is using the standard basis, he has also has two potential measurements. The four

potential scenarios are:

1.

Alice sends [1, 0]t → Eve’s measurement [
1√
2
,

1√
2

]t

Eve sends [
1√
2
,

1√
2

]t → Bob’s measurement [1, 0]t.

(3.7)

29

Chapter 3. Quantum cryptography and Post-quantum cryptography

2.

Alice sends [1, 0]t → Eve’s measurement [
1√
2
,

1√
2

]t

Eve sends [
1√
2
,

1√
2

]t → Bob’s measurement [0, 1]t.

(3.8)

3.

Alice sends [1, 0]t → Eve’s measurement [
1√
2
,
−1√

2
]t

Eve sends [
1√
2
,
−1√

2
]t → Bob’s measurement [1, 0]t.

(3.9)

4.

Alice sends [1, 0]t → Eve’s measurement [
1√
2
,
−1√

2
]t

Eve sends [
1√
2
,
−1√

2
]t → Bob’s measurement [0, 1]t.

(3.10)

Of these four possible outcomes, only two of them would give Bob reason to believe that

the qubits have been tampered with.

For Bob and Alice to check if any eavesdropping has occurred, they will need to publicly

compare the values they have at certain positions to see if any don’t match, which will then

need to be discarded. If there are differences then there has been some kind of attack and

the process must be restarted. The problem here, however, comes to down the possibility

that the values they choose may have been seen by an attacker but just so happened

to remain correct. Choosing more and more values to compare will help decrease this

probability but it would always be impossible to say for certain there has been no attack.

3.1.3 A post-quantum somewhat homomorphic encryption system

In this section, we look at what is known as a somewhat homomorphic encryption sys-

tem (SHE). This class of cryptosystem allows encrypted data to be processed but each

operation introduces some error. The number of additions that can be performed on the

encrypted data, with correct decryption, is bounded as the error will grow too large to deal

with. The scheme is work in this particular section is a brief introduction to the scheme

presented in [Goldreich et al. (1997)]. Here we will study a problem that is thought to be

difficult to solve even with quantum computers, followed by an encryption scheme built off

that problem. Later in the chapter, we will look at an error correcting method to extend

the number of additions that can be performed, We will do this by creating a superposition

of all possible encryptions of a plaintext and manipulating this appropriately.

30

Chapter 3. Quantum cryptography and Post-quantum cryptography

Closest vector problem

To study this problem, we first we must establish some important definitions. A lattice is

a subset of Rd which we will denote as L, with basis x1, x2, . . . , xd, as the following

L = {
d∑
i=1

aixi|ai ∈ Z}. (3.11)

For a vector v ∈ Rd, ||v|| =
√
v2

1 + v2
2 + · · ·+ v2

d is the Euclidean norm. We will also need

the following dist function

dist(x, L) = min{||x− y|| : y ∈ L}. (3.12)

Our next step is to define an object that will allow us to further our understanding of

lattices. If we take a lattice Λ ∈ Rd which has a basis x1, x2, ..., xd. The set defined by:

Π = {
d∑
i=1

αixi | 0 ≤ αi < 1 | i = 1, ..., d}, (3.13)

is the fundamental parallelepiped of the lattice Λ [Barvinok (2002)]. Once again for us

to visualize this we will consider a lattice in R2 with a basis (0, 1) and (1, 0). The paral-

lelepiped will take the following form:

(0,1)

(1,0)

The intervals from (0, 0) to (1, 0) and (0, 0) to (0, 1) are both contained in the parallelepiped

whereas the intervals from (1, 0) to (1, 1) and (0, 1) to (1, 1) are not. Also, the point (0, 0)

is within the parallelepiped whereas the points (1, 0), (0, 1) and (1, 1) are not. Thus, we

can translate the parallelepiped one unit in the direction of one of our basis vectors and

still have an empty intersection. At the same time the union of all these translations of

the basis vectors, z1(0, 1) + z2(1, 0), where z1, z2 ∈ Z, will be equal to R2. This gives a

partition of R2.

An important concept in this section is the idea of what makes a good or bad basis for a

lattice. A good basis is typically used as the private key for a system and the bad basis

used for the public key. The difference between the two bases is the difficulty in solving

31

Chapter 3. Quantum cryptography and Post-quantum cryptography

Integer lattice with basis (0, 1), (1, 0) Integer lattice with basis (1, 1), (4, 3)

Figure 3.1: Example good and bad basis

the closest vector problem. One way to explain the difference is through the use of the

following two diagrams [Silverman (2006)], where the blue point we want to find the close

lattice point.

Definition. Closest vector problem: Given a basis B of a lattice L = L(B) ⊂ Rn and a

vector x ∈ Rn (i.e. not necessarily an element of L), find u ∈ L such that

||x− u|| = dist(x, L). (3.14)

Given a lattice with a fixed basis and a point in the space we are working in, perhaps

there exists a parallelpiped which contains that point.

Definition. Given a lattice L generated by an n dimensional basis B, the Hadamard ratio

[Hoffstein et al. (2008)] of the basis is defined as

H(B) = (
|det(B)|

||b1||2 · ||b2||2 · · · ||bn||2
)1/n. (3.15)

Here det(B) represents the determinant of the matrix formed from the basis vectors of B.

Also ||bi||2 represents the Euclidean norm of the basis vector bi. The range of values for

this ratio is 0 < H(B) ≤ 1.

A good basis is one whose Hadamard ratio is close to 1. Consequently a bad basis is one

who Hadamard ratio is close to 0.

In figure 3.1, the left diagram represents a good basis. Here we can see that the

closest lattice point to our given point will be one of the corner points on the closure of

the fundamental parallelepiped. This makes solving the closest vector problem possible

in a reasonable amount of time. The right diagram represents a bad basis, where the

closest point on the parallelepiped is not the closest point on the lattice. Clearly, in two

dimensions we can spot the closest vector point, however, in higher dimensions, algorithms

32

Chapter 3. Quantum cryptography and Post-quantum cryptography

that solve this problem are exponential in complexity [Becker et al. (2013)] given a bad

basis.

The following encryption, named GGH (after its inventors Goldreich, Goldwasser and

Halevi), system is based on the closest vector problem [Goldreich et al. (1997)].

Setup

The GGH encryption system takes advantage of the closest vector problem where the

private key is a good basis R of a lattice (the letter R chosen to represent the fact that

this basis is more reduced than the public basis). The basis vectors r1, . . . , rn of this basis

are represented as the matrix

R =


r1,1 r1,2 · · · r1,n

r2,1 r2,2 · · · r2,n

...
...

. . .
...

rn,1 rn,2 · · · rn,n

 , (3.16)

where ri,j is the jth element of ri.

The public key is a bad basis B for the same lattice, alongside the dimension n and a

security parameter σ ∈ Z. σ should be chosen to be small enough that the ciphertext

remains closer to the intended lattice point than any other lattice point. The basis vectors

b1, . . . ,bn of this basis are represented as the matrix

B =


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n

 , (3.17)

where bi,j is the jth element of bi.

It has been suggested that an appropriate method to create a bad basis is to use the

Hermite Normal Form of the good basis [Micciancio (2001)], which is a upper triangular

matrix with all entries greater than or equal to 0. The diagonal elements in particular are

strictly greater than all other values in the same row. Micciancio recommends [Micciancio

& Warinschi (2001)] as an efficient way to generate the Hermite Normal Form.

Encryption

Express a message as a vector m ∈ Zn, then the ciphertext is computed as

c = Bm + e, (3.18)

33

Chapter 3. Quantum cryptography and Post-quantum cryptography

where e ∈ {−σ, σ}n (i.e. the set of 2 elements σ and -σ) is generated randomly each time

a ciphertext is sent.

Decryption

The ciphertext c is decrypted with the following formula

m = B−1RbR−1ce, (3.19)

where b.e rounds each element of the vector inside to the nearest integer. To see why this

method works, lets consider how the private key is utilized and what is left before the

inverse of the public key is used.

RbR−1ce = RbR−1(Bm + e)e

= R(R−1Bm + bR−1ee)

= Bm +RbR−1ee.

(3.20)

From this final form, it is clear that if bR−1ee = 0, a correct decryption will occur. This

is why the choice of σ is so crucial; increasing its size increases the chances of bR−1ee 6= 0.

For the purposes of this chapter we will always assume we have an appropriate choice of σ,

but for a more in depth look as to what that entails, refer to [Goldreich et al. (1997),van de

Pol (2011)].

Here the main concern is choosing a candidate value of e that is both not so“small” that

it is possible for someone to crack the decryption but at the same time not so “large” that

when we try to decrypt the message we end up with the wrong plain text.

3.2 Performing addition in an SHE while maintaining error

size

In this section, we will begin by looking at how addition can be performed on a quantum

computer, which preserves superpositions, using an example circuit from [Takahashi et al.

(2009)]. The remainder of the section covers a new method we introduce to adapt the GGH

encryption system, allowing us to theoretically perform an infinite number of additions

without risk of incorrect decryption.

3.2.1 Addition on a quantum circuit

Before new content, we need to understand the following work done by Takahashi et al.

We wish to be able to add quantum ciphertexts and therefore need a method to perform

addition on qubits. To perform the addition we will use the circuit discussed in [Takahashi

et al. (2009)] described just below. The total number of qubits input to this circuit is 2n+1.

34

Chapter 3. Quantum cryptography and Post-quantum cryptography

n is the maximum number of qubits of the two values we wish to add (if the other value has

fewer qubits then we pad with zeroes). The qubits A0, . . . , An−1 are binary representation

the first value B0, . . . , Bn−1 are the binary representation of the second value. The final

qubit An is there to act as a carry bit. While this circuit will output the same number of

qubits, only n+ 1 of them will represent the desired output.

1. For i = 1, · · · , n− 1:

Apply a CNOT gate to each pair of memory locations Bi and Ai where Ai is the

control qubit.

2. For i = n− 1, · · · , 1:

Apply a CNOT gate to each pair of memory locations Ai and Ai+1 where Ai is the

control qubit.

3. For i = 0, · · · , n− 1:

Apply a Toffoli gate to each tuple of memory locations Bi, Ai and Ai+1, where Bi

and Ai are the control qubits.

4. For i = n− 1, · · · , 1:

Apply a CNOT gate to each pair of memory locations Bi and Ai where Ai is the

control qubit, followed by applying a Toffoli gate to each tuple of memory locations

Bi−1, Ai−1 and Ai, where Bi−1 and Ai−1 are the control qubits.

5. For i = 1, · · · , n− 2:

Apply a CNOT gate to each pair of memory locations Ai and Ai+1 where Ai is the

control qubit.

6. For i = 0, · · · , n− 1:

Apply a CNOT gate to each pair of memory locations Bi and Ai where Ai is the

control qubit.

We will use � to denote this qubit addition operation.

The two gates of interest in this algorithm are the CNOT gate and the Toffoli gate.

The CNOT gate maps

|10〉 7→ |11〉 (3.21)

and

|11〉 7→ |10〉. (3.22)

The other basis vectors are fixed.

The Toffoli gate maps

|110〉 7→ |111〉 (3.23)

and

|111〉 7→ |110〉. (3.24)

35

Chapter 3. Quantum cryptography and Post-quantum cryptography

b0

a0

b1

a1

b2

a2

a3

1 2 3 4 5 6

Figure 3.2: Quantum addition for two 3 qubit values

All other basis vectors are fixed.

3.2.2 The problem with Somewhat homomorphic encryption

We look at what is known as a somewhat homomorphic encryption system. This class of

cryptosystem allows encrypted data to be processed but each operation introduces some

error. Only a finite number of operations can be performed on the encrypted data cor-

rectly as the error will grow too large to deal with.

Figure 3.3 demonstrates this problem within the GGH cryptosystem. Due to the dis-

tributive nature of matrix multiplication, only the additional error part of the encryption

formula prevents an exact homomorphism. The figure shows the possible accumulative

error of a ciphertext formed from each number of additions. The red dashed line represents

a hypothetical bound for guaranteed correct decryption, while the black line represents no

error. A good ciphertext should remain between these bounds, however, it is clear to see

that as computation goes on, the probability of an acceptable amount of error decreases.

We are thinking of GGH as a post-quantum cryptopsystem, however, it in itself is not a

quantum cryptosystem. The current version has does not depend on quantum properties.

In section 3.2.3 and onward we will adapt GGH to become a quantum cryptosysyem by

creating a superposition of all possible encryptions of a plaintext. From there we will

implement an error-correcting method to extend the number of additions that can be

performed. To keep the structure of the ciphertexts as simple as possible, we will choose

σ to be of the form 2k, k ∈ N.

36

Chapter 3. Quantum cryptography and Post-quantum cryptography

Figure 3.3: Evolution of error

3.2.3 Setting up a quantum variant of GGH

The remainder of the content in this chapter is new work contributed by the author. Our

aim is to have a superposition of all potential ciphertexts. We start with 2 plaintext

messages m1 = [m1,1,m1,2, . . . ,m1,n]t and m2 = [m2,1,m2,2, . . . ,m2,n]t. To begin with

consider the classical values after having only calculated the matrix multiplied on the left,

i.e. Bm, where B is the bad basis defined in equation (3.15). We now need to add the

error term on. We will do this in two stages. Instead of immediately adding e with entries

in {−2k, 2k}, we will express the error as

e = −2k[1, . . . , 1]t + e1, (3.25)

where e1 has entries in {0, 2k+1}.
We subtract the vector of 2k’s to begin with for ease of calculation. Suppose we have

an integer c, the binary representation of this number is b0b1 · · · bk, where c =
∑k

i=0 bi2
i

and bi ∈ {0, 1}. The important observation here is that the difference in the binary

representations 0 and 2k only differ in the k + 1st bit. For example, 8 = 23 and its binary

representation contains a 1 in the 4th position. All other bits are 0. This is why we

subtracted 2k after performing the basis multiplication. Now, in the classical world, we

can choose a vector of length n, where each element of the vector comes from {0, 2k+1},
instead of {−2k, 2k}. Testing of this work was done with Microsoft’s liqui| > software

[Wecker & Svore (2014)], this step was taken to make the quantum operation a little

easier.

In the first stage of adding the error we subtract 2k from each value thus giving a valid

37

Chapter 3. Quantum cryptography and Post-quantum cryptography

encryption. This gives us 2 ciphertexts of the form

c−1 = Bm1 − 2k =


B1,1m2,1 +B1,2m2,2 + · · ·+B1,nm2,n − 2k

B2,1m2,1 +B2,2m2,2 + · · ·+B2,nm2,n − 2k

...

Bn,1m2,1 +Bn,2m2,2 + · · ·+Bn,nm2,n − 2k

 (3.26)

and

c−2 = Bm2 − 2k =


B1,1m2,1 +B1,2m2,2 + · · ·+B1,nm2,n − 2k

B2,1m2,1 +B2,2m2,2 + · · ·+B2,nm2,n − 2k

...

Bn,1m2,1 +Bn,2m2,2 + · · ·+Bn,nm2,n − 2k

 (3.27)

where 2k represents a vector of all 2k’s.

Our goal now is to have a ciphertext that is in a superposition of all possible variations of

the encryption. Now consider the binary representation of the numbers in our ciphertext

vector at this point, say the h-th element of c−1 and c−2 is bh,1,0bh,1,1 . . . bh,1,k, . . . and

bh,2,0bh,2,1 . . . bh,2,k, . . . respectively, where bh,i,j ∈ {0, 1}, h ∈ [1, n]. If we treat those bits

as qubits then performing the addition


|b1,i,0〉|b1,i,1〉 . . . |b1,i,k〉 . . .
|b2,i,0〉|b2,i,1〉 . . . |b2,i,k〉 . . .

...

|bn,i,0〉|bn,i,1〉 . . . |bn,i,k〉 . . .

+


|0〉|0〉 . . . |0〉+|1〉√

2

|0〉|0〉 . . . |0〉+|1〉√
2

...

|0〉|0〉 . . . |0〉+|1〉√
2



=


|b1,i,0b1,i,1 . . . b1,i,k . . . 〉 � |00 . . . 〉 |0〉+|1〉√

2
· · ·

|b2,i,0b2,i,1 . . . b2,i,k . . . 〉 � |00 . . . 〉 |0〉+|1〉√
2
· · ·

...

|bn,i,0bn,i,1 . . . bn,i,k . . . 〉 � |00 . . . 〉 |0〉+|1〉√
2
· · ·



(3.28)

results in a superposition of all possible ciphertexts in the classical version. Here the

superposition is appearing at the same qubit position as the bh,i,k bit.

Due to the component wise property of vector addition, we will treat our vectors as if

they are length 1. We can therefore tidy up the notation of our bits from bh,i,j to bi,j .

Furthermore, because we are now dealing with vectors of length 1, we will drop the use of

the vector entirely whilst looking at the addition method.

Instead of dealing with cumbersome binary notation we may use the following notation

for a ciphertext c

c =
|Bm � (−σ)〉√

2
+
|Bm � σ〉√

2
(3.29)

38

Chapter 3. Quantum cryptography and Post-quantum cryptography

3.2.4 Preventing an attacker from reversing the quantum gates used for

encryption

We stated in the previous section that any attempt to measure of a quantum ciphertext

would result in it collapsing down to the classical version. This approach therefore would

suggest that the quantum version is no easier to break than the classical version. Quantum

gates, however, are reversible and therefore provides reason to believe that if an encryption

method is public, an attacker could simply perform the gates in reverse order to undo the

encryption method. Let us consider an example using the quantum circuit from 3.2.

Example. Let a0a1a2 be the binary representation of a 3 bit plaintext, ready to add the

superposition error term say

b0b1b2 = |0〉 |0〉+ |1〉√
2
|0〉. (3.30)

The 7 qubits passed into the circuit therefore are of the form

|0a20a10a00〉√
2

+
|0a20a11a00〉√

2
. (3.31)

This is the input to step 1 of the process.

Step 1 transformation outputs:

|0a2a2a1a1a00〉√
2

+
|0a2a2a1(1− a1)a00〉√

2
. (3.32)

This is the input to step 2 of the process.

Step 2 transformation outputs:

|a2(a2 ⊕ a1)a2a1a1a00〉√
2

+
|a2(a2 ⊕ a1)a2a1(1− a1)a00〉√

2
. (3.33)

This is the input to step 3 of the process.

Step 3 transformation outputs:

|0a2a2a1a1a00〉√
2

+
|(a2 ∧ a1)(a2 ⊕ a1)a2a1(1− a1)a00〉√

2
. (3.34)

This is the input to step 4 of the process.

Note the effect of the Toffoli gate on |a2a1b1〉, with a2 being the target qubit. We have

the transformation (a2⊕a1)a1a1√
2

+ (a2⊕a1)a1(1−a1)√
2

→ a2a1a1√
2

+ (a2⊕a1)a1(1−a1)√
2

. The first term

in the superposition comes from the fact a2⊕ a1⊕ a1 = a2. The target in the second term

of the superposition will never change as a1 and 1 − a1 cannot both equal 0. Also when

a3 is the target, the control values a2 and a2 ⊕ a1 can’t be be both equal to 1 if a1 = 1.

39

Chapter 3. Quantum cryptography and Post-quantum cryptography

Step 4 transformation outputs:

|0(a2 ⊕ a1)0a10a00〉√
2

+
|(a2 ∧ a1)(a2 ⊕ a1)a1a11a00〉√

2
. (3.35)

This is the input to step 5 of the process.

Step 5 transformation outputs:

|0a20a10a00〉√
2

|(a2 ∧ a1)a2a1a11a00〉√
2

. (3.36)

This is the input to step 6 of the process.

Step 6 transformation outputs:

|0a2a2a1a1a0a0〉√
2

+
|(a2 ∧ a1)a2(a2 ⊕ a1)a1(1− a1)a0a0〉√

2
. (3.37)

The ciphertext is therefore

a3b2b1b0 =
|0a2a1a0〉√

2
+
|(a2 ∧ a1)(a2 ⊕ a1)(1− a1)a0〉√

2
. (3.38)

Although the qubits a2, a1 and a0 are not needed for further computation, the encryp-

tion circuit can only be reversed if the inputs are the values originally output. Therefore,

although we already have our ciphertext, there is one final step before moving data into a

public cloud. Recall that the X gate, defined in 2.5.2, swaps the probability of measuring

a 1 or 0 in a single qubit. Performing a random number of X gates on the a2, a1 and a0

qubits will produce a ciphertext that will output an incorrect plaintext if an eavesdropper

tries to reverse the encryption gates. Figure 3.4 shows the offline process where r0, r1

and r2 are positive integers chosen at random and kept secret. See appendix for a simple

example of a circuit encrypting 2 values then adding them together.

3.2.5 Performing addition on the quantum ciphertexts and reducing the

error increase

Let c1 = |Bm1�(−σ)〉√
2

+ |Bm1�σ〉√
2

and c2 = |Bm2�(−σ)〉√
2

+ |Bm2�σ〉√
2

. In the classical version of

the algorithm, the error will be either σ ∈ Z or −σ. As we add other ciphertexts the error

will increase by σ or decrease by σ with equal probability. Figure 3.3 shows the potential

error values for each number of ciphertext additions. In particular after performing one

addition the error will have either canceled out, or doubled in size i.e. will have the form

|Bm � (−2σ)〉
2

+
|Bm〉√

2
+
|Bm � 2σ〉

2
, (3.39)

40

Chapter 3. Quantum cryptography and Post-quantum cryptography

b0

a0

b1

a1

b2

a2

a3

Addition

X X

XX

X X

r0 times

r1 times

r2 times

Public cloudPrivate cloud

Figure 3.4: Full offline process

where m = m1 + m2.

If the goal is to correct the error back to a standard ciphertext, the easiest place to

start would be adding or subtracting σ to each superposition of ciphertexts. This new

superposition will be of the form

|Bm � (−σ)〉
2

+
|Bm � σ〉√

2
+
|Bm � 3σ〉

2
or
|Bm � (−3σ)〉

2
+
|Bm � (−σ)〉√

2
+
|Bm � σ〉

2
.

(3.40)

The problem that remains is to find the appropriate gate that forms the map

|Bm � (−3σ)〉
2

+
|Bm � σ〉

2
7→ |Bm � σ〉√

2
(3.41)

or
|Bm � 3σ〉

2
+
|Bm � (−σ)〉

2
7→ |Bm � (−σ)〉√

2
. (3.42)

If the error is of the form 2k, then the qubits we will look at to perform this transformation

in binary representation are positions k + 1 and k + 2. Because of the way these super-

positions are created, the qubits in the 2 positions of interest can be one of 4 forms. To

assist in working out which form we are looking at and correctly perform error correction,

upon encryption we introduce a new variable we call CTRL3. This variable is a vector of

length n where

Bm =


b1,0b1,1b1,2 . . .

b2,0b2,1b2,2 . . .
...

bn,0bn,1bn,2 . . .

⇒ CTRL3 =


b1,kb1,(k+1)b1,(k+2)

b2,kb2,(k+1)b2,(k+2)
...

bn,kbn,(k+1)bn,(k+2)

 , (3.43)

41

Chapter 3. Quantum cryptography and Post-quantum cryptography

i.e. the ith element of the CTRL3 vector is a substring of the binary representation of the

ith element of Bm. When we add two ciphertexts together, the CTRL3 vectors are added

together and each element is reduced modulo 8. Denote row i of CTRL3 by CTRL3(i).

Note that each row is independent of all of the other rows. Using this value, we can

establish some information about the form of the superposition, namely the properties in

table 3.1.

CTRL3(i) value 1st superposition term 2nd superposition term 3rd superposition term

2 or 3 |···00··· 〉
2

|···10··· 〉√
2

|···01··· 〉
2

4 or 5 |···10··· 〉
2

|···01··· 〉√
2

|···11··· 〉
2

6 or 7 |···01··· 〉
2

|···11··· 〉√
2

|···00··· 〉
2

0 or 1 |···11··· 〉
2

|···00··· 〉√
2

|···10··· 〉
2

Table 3.1: Superposition form for each control value

Here we have learned about the k + 1 and k + 2 positions. These qubits decide which

case we consider.

Table 3.2 gives us a few examples of ciphertext superpositions with an error value of 1.

We can see that upon measuring the k+ 1th (in this case 2nd) qubit we are left with either

a value in the final column or a superposition of the states in the first 2 columns. If we

know that we just have a value in the final column then we have an appropriate error and

all is left is to create the superposition of errors again.

We will consider here what the process is, for each case, to correct the error given that

measuring the k+1 qubit leaves us with values from the first two columns. The first thing

to note is that in every superposition, all the qubits before the 2 of interest will be the

same amongst all 3 terms so there is no need to correct anything there.

Case 1 - 00,10,01

The simplest case to deal with. We perform the following operation

X|0〉H(
|0〉+ |1〉√

2
) = |10〉. (3.44)

All following qubits in the terms are always equal in this case.

Case 2 - 10,01,11

The process here is similar to case 1 however for the Hadamard gate to collapse the terms

into 1 instead of 0, a negation is needed first. The process is the following

X|1〉HZ(
|0〉+ |1〉√

2
) = |01〉. (3.45)

42

Chapter 3. Quantum cryptography and Post-quantum cryptography

Once again all following qubits in the representation are equal.

Case 3 and 4 - 01,11,00 and 11,00,10

These 2 cases are more tricky to deal with. The issue here is the presence of the 00 at

the end and in the middle of the lists. This suggests that in this list, the next multiple

of 2k has been reached, completely changing the binary structure of the following values,

not just the k + 1 and k + 2 Positions. For example, suppose σ = 1, we may have a

superposition of the form
011011

2
+

000111√
2

+
010111

2
. (3.46)

Here the qubits in the k + 3 position aren’t all the same as would they would be in case

1 and 2. Correction here, therefore, becomes an issue, as working out how many of the

qubits have changed would most likely end up in performing measurements that would

destroy the structure.

An initial solution is to run the addition of the ciphertexts again. Upon the next run of

the addition, we can have 1 of 3 outcomes, when we measure the state completely. Firstly,

with a 50% probability, we will observe Bm1 − σ (Assuming WLOG that is our middle

value). If this is the case, we can just accept that value and ignore the previously obtained

value. Should we measure a different value despite being in the same superposition as the

last run, we can simply take the average of these 2 values giving us Bm1 − σ. The final

possibility is we observe the same value in the superposition again, thus learning nothing

new and we repeat the process once again. A flowchart of this process is given in figure

3.5.

Lemma 3.1. Suppose it was possible to clone qubits. Asymptotically, the addition algo-

rithm with error correction can be performed successfully.

Proof. We will first assume that we have a uniform probability of observing any value for

the error case. We have already shown that if the error case is 1 or 2, then correction is

possible. So far we have at least a 50% success rate. Suppose WLOG our ciphertext is of

the form |Bm1−3σ〉
2 + |Bm1−σ〉√

2
+ |Bm1+σ〉

2 . When the error case takes the values 3 and 4,

if we observe Bm− σ when taking a measurement, then once again we’re in a successful

position. Since this outcome has a 50% chance of happening upon measurement, our

overall success probability is 75%.

The other potential outcome results in an iteration of the algorithm. As previously stated,

the only ”bad” outcome from this iteration is measuring the exact same value, which results

in us iterating once again. We assume WLOG, that in the first round of our algorithm

we observe Bm1 − 3σ. In any of our following iterations, if we observe Bm1 − σ or

Bm1 + σ then we succeed. If we consider observing Bm1 − 3σ a failure and observing

Bm1−σ or Bm1 + 3σ a success, then our outcome after t iterations can be modeled with

43

Chapter 3. Quantum cryptography and Post-quantum cryptography

Input
Ciphertext needs

correcting

Measure k+1 qubit

Is value
now fixed?

Output correct
ciphertext

Is this
the first

time here?

Measure k+2 qubit

Take an average of
the 2 values

Has a
new value been

observed?

Yes

No

Yes

NoYes

No

Figure 3.5: Iterative method to correct the error

a Binomial(t− 1, 0.75) distribution (our first round isn’t counted as we need to establish

that Bm1 − 3σ is the failure). Our overall success rate is

0.75 + 0.25 ∗ Pr(at least 1 success) = 0.75 + 0.25 ∗ (1− Pr(all failures))

= 0.75 + 0.25 ∗ (1− 0.25t−1),
(3.47)

which clearly approaches 1 as we let our number of iterations tend to infinity.

Corollary 3.1. Consider any given row of a vector ciphertext from the GGH encryption

method. In order to perform addition using the iterative method, 4
3 is the expected number

of iterations needed by the addition algorithm.

Proof. As the lemma has shown the asymptotic nature of the method, the expected number

44

Chapter 3. Quantum cryptography and Post-quantum cryptography

of iterations required for each addition is

1 · 3

4
+ 2 · (1

4
· 3

4
) + 3(

1

42
· 3

4
) + 4(

1

43
· 3

4
) + · · · =

∞∑
n=1

n · 1

4n−1
· 3

4
. (3.48)

The expectation matching that of a geometric distribution has a resulting value of 4
3 .

Notice in the lemma the phrase ’suppose it was possible to clone qubits’. Work by

Wootters and Zurek proved that it is impossible to create an exact copy of a qubit, a

technique extremely common in classical computing.

Theorem 3.1. No cloning Theorem [Wootters & Zurek (1982)]. There is no unitary

operation

|ψ〉|0〉 7→ |ψ〉|ψ〉, (3.49)

for any state |ψ〉.

Although it isn’t possible to clone qubits, the same outcome can be achieved by initially

creating multiple copies of the same encryption. This iterative method may help to increase

the probability of success, however, multiple copies of the ciphertext in a superposition

state are cause for concern. This is providing more information for a potential attacker to

manipulate. On top of that more computation is required.

Bm1 − 3σ Bm1 + σ Bm1 − σ Error case

7 11 9 4
|1110〉 |1101〉 |1001〉

9 13 11 1
|1001〉 |1011〉 |1101〉

11 15 13 2
|1101〉 |1111〉 |1011〉

13 17 15 3
|10110〉 |10001〉 |11110〉

15 19 17 4
|11110〉 |11001〉 |10001〉

17 21 19 1
|10001〉 |10101〉 |11001〉

Table 3.2: Example list of superpositions

We have discussed in detail how the quantum encryption method and addition error

correction is performed. Below we outline the key steps of the process to go through

encryption, addition and correction before refining the method.

Encryption of 2 plaintexts

1. Input two plaintexts, m1,m2, that we wish to encrypt and perform addition on.

45

Chapter 3. Quantum cryptography and Post-quantum cryptography

2. Multiply our two vectors by our public basis, B.

3. For both vectors, create an associated vector CTRL3. The ith row of CTRL3 is a 3

bit value equal to the bits at positions k, k + 1 and k + 2 in the original vector.

4. Add the error superpositions |−σ〉+|σ〉√
2

= |−2k〉+|2k〉√
2

to each value.

Online addition

1. Perform the addition algorithm on the two updated ciphertexts. Subtract σ from

the result.

2. Measure the qubit at position k + 1 in the newly obtained value.

3. Add together the CTRL3 variables and subtract 1, modulo 8. Establish if we now

have a fixed value, if so go to step 7 if not carry on.

4. If CTRL3 has a value of 6,7,0 or 1 repeat process until 2 different ciphertexts are

observed. Take the average of these. Move to step 7.

5. If CTRL3 has a value of 4 or 5 perform a Z gate on the k + 2th qubit.

6. Perform the Hadamard gate on the k+2th qubit and an X gate on the k+1th qubit.

7. Add |0〉+|2
k+1〉√
2

to the value to create a new superposition.

8. Output new ciphertext.

3.3 Refining the method of addition on the ciphertexts

The addition algorithm described makes a promising start in dealing with the finite number

of operations typically allowed with a somewhat homomorphic encryption system. That

being said, this quantum variant brings new issues. This section will look to address those

problems and how they may be practically dealt with.

3.3.1 Data at rest

The CTRL3 variable is used to ensure the error can be corrected whilst performing addi-

tions. Unfortunately, that information also provides a potential attacker with key infor-

mation. This opens up the ability to perform a chosen-ciphertext attack.

Lemma 3.2. Knowledge of the CTRL3 variable encrypted with GGH allows for decryption

without knowledge of the secret key.

46

Chapter 3. Quantum cryptography and Post-quantum cryptography

Proof. When encrypted the superposition ciphertext is of the form

|Bm � (−2k)〉+ |Bm � 2k〉√
2

. (3.50)

Suppose WLOG that if an attacker took a measurement they observe |Bm � 2k〉. Much

like in the classical sense, we know that the superposition this value came from is either

the one above or
|Bm � 2k〉+ |Bm � 3 · 2k〉√

2
. (3.51)

The CTRL3 is therefore derived from either Bm or Bm � 2 · 2k.
Recall that the mapping from a row of Bm to a row of CTRL3 takes the binary repre-

sentation Bm is equal to b0b1 . . . bkbk+1bk+2 . . . to the binary representation bkbk+1bk+2.

Now consider the inverse of this map. The inverse of bkbk+1bk+2 is the set

[00 . . . 0bkbk+1bk+2000 . . . , 10 . . . 0bkbk+1bk+2000 . . . , . . . , 11 . . . 1bkbk+1bk+2000 . . .]∪

[00 . . . 0bkbk+1bk+2100 . . . , 10 . . . 0bkbk+1bk+2100 . . . , . . . , 11 . . . 1bkbk+1bk+2100 . . .]∪

[00 . . . 0bkbk+1bk+2010 . . . , 10 . . . 0bkbk+1bk+2010 . . . , . . . , 11 . . . 1bkbk+1bk+2010 . . .]∪

[00 . . . 0bkbk+1bk+2110 . . . , 10 . . . 0bkbk+1bk+2110 . . . , . . . , 11 . . . 1bkbk+1bk+2110 . . .]∪
...

(3.52)

Each of these sets have 2k elements and the distance between corresponding elements of

adjacent elements of each of these sets is 2k+3. Since the difference between Bm and

Bm � 2 · 2k is 2k+1, both values cannot be part of the same inverse sets. There is therefore

a one to one mapping between a measured ciphertext and the plaintext given the CTRL3

value.

Example. Let the error term σ = 1 and let n = 1. Suppose a value is encrypted using

the quantum method as a superposition of 11 and 13 i.e.

c =
|1101〉+ |1011〉√

2
. (3.53)

Since the mid point value is 12, CTRL3 = 4. Suppose WLOG, measuring the superposition

has output the value 13. An attacker, therefore, knows that Bm is equal to either 12 or

14. Now the inverse of our CTRL3 value is

[−4] ∪ [4] ∪ [12] ∪ [20] ∪ (3.54)

The only possible value for Bm is 12 therefore an attacker can decrypt by multiplying

this by the inverse of the encryption matrix.

47

Chapter 3. Quantum cryptography and Post-quantum cryptography

When it comes to ensuring an attacker isn’t able to use the CTRL3 variable, it is

important to consider when the ciphertext is in different states of usage. Firstly data at

rest refers to when data is being stored and is typically needed in the future. This is where

standard encryption methods are used. Data in use, as its name suggests, is when data is

going through some kind of processing.

In classical computing, parity is used to check for unexpected changes in a binary string.

The final bit in a string isn’t used to represent data, it is selected to ensure the bits in the

string sum to an even value (or odd depending on preference).

In order to detect an attempt at manipulating the CTRL3 variable, a combination of

parity and the quantum key exchange will be used. To begin with, each of the 3 qubits

will be represented in either the standard basis or the diagonal basis. The choice for each

qubit is independent of the others. If Alice is the one encrypting the data, then she doesn’t

tell anyone the choice of basis until an authorised user wants to analyse the data.

For each qubit in the CTRL3 variable, if a potential eavesdropper chooses one of the two

bases at random, they will choose the same as Alice with probability 0.5. Even if they do

not, measuring with the wrong basis will still give them the correct value with probability

0.5. Therefore the probability of correctly identifying each qubit is 0.75. Given we are we

have a vector of length n, with each element containing 3 qubits, an attacker would have

a probability of 0.753n to correctly identify each CTRL3 variable.

A fourth qubit may be added to incorporate parity. This will help in preventing an

attackers goal that may be to disrupt the data, not necessarily decrypt. Due to the more

fragile nature of qubits, a parity qubit will also provide a check to see if changes have

occurred from the natural environment.

Example. Here the control variable is equal to 1 (001 in binary). At random we choose

to represent the 3 bits using the standard basis, then diagonal basis, then the standard

basis once again. The variable is therefore stored as

|0〉, |0〉+ |1〉√
2

, |1〉. (3.55)

Assuming an even parity is needed, the parity bit will need to be a 1. It is therefore stored

as either |1〉 or |0〉−|1〉√
2

.

We have already established the probability of an attacker finding the correct CTRL3

vector but, now that we are interested in parity, we should check what the probability

is of permitted user observing an even parity even if changes have been made. In order

to observe the correct parity but wrong values, 2 or 4 of the measured qubits must swap

between a 0 and 1. Since we have established that the probability of an attacker observ-

ing an incorrect value is 0.25, we must consider a distribution X ∼ Binomial(4, 0.25).

Therefore, the probability of observing an incorrect value but believing it based on parity

is equal to Pr(X = 2) + Pr(X = 4) ≈ 0.2148.

48

Chapter 3. Quantum cryptography and Post-quantum cryptography

As an alternative method for detection, an entanglement of qubits with the parity

qubit could be used. Entangling the parity with any of the other qubits will result in the

parity collapsing if someone tries to measure one of the other entangled qubits. Therefore,

if at any point Alice suspects someone may have looked at the data, she can measure the

parity bit and there will be a non zero probability that she will observe a worrying value.

The data at rest situation may not arise as often in the quantum world due to the process

of decoherence [Shor (1995)]. This is the idea that over time, qubits that are being stored

will become entangled with their environment and therefore change. An attacker may not

be able to trust the value of the CTRL3 variable or corresponding ciphertext the longer

it has been stored. Unfortunately, this also prevents error correction.

3.3.2 Data in use - A realistic look

Protecting the CTRL3 variable from attackers while the data is being analysed is more

difficult. The authorised user needs to be able to read the variable. Therefore, the choice

of bases needs to be made public.

Without an obvious mathematical solution to protecting the data, the use of the technology

analysing the data should be more carefully looked at. For example in [Watson (2012)], a

cost versus security model for analysing data on a public cloud is discussed. In the paper,

it is acknowledged that while the public cloud may have the best potential, a balance

between private and public clouds is more realistic. Regardless of which type of cloud is

being used, there is a set of simple instructions that make these processes work well. In

this example, we shall use the following functions.

• Split : The data coming in to be processed is grouped into subsets. Because the data

is still in a private environment, the data need not be encrypted at this point e.g.

f(x1, x2, . . .) = ((x1, xi+1, x2i+1 . . .), (x2, xi+2, x2i+2), . . .), (3.56)

for some positive integer i.

• Map: Takes a list as input and applies a function to each element. For example here

the function applied to each plaintext is the encryption function i.e.

f(x1, x2, . . . , xn) = (E(x1), E(x2), . . . , E(xn)). (3.57)

• Reduce: Takes a list of data and aggregates it in some way to output a single value.

In this case the encrypted values are added together and the result passed on to go

into the public cloud e.g.

f(x1, x2, x3) = x1 + x2 + x3. (3.58)

49

Chapter 3. Quantum cryptography and Post-quantum cryptography

x1 x2 x3 x4 · · · xn−1 xnData stream

Secure Network

Secure
Network

Insecure
Network

Insecure
Network

Encryption:
E(xi)

Group:
E(x1), E(x2)

Sum:∑2
i=1CTRL

i

Group:
E(x3), E(x4)

Sum:∑4
i=3CTRL

i

· · ·
Group:

E(xn−1), E(xn)

Sum:∑n
i=n−1CTRL

i

Add:

E(x1) + E(x2)

Add:

E(x3) + E(x4)
· · ·

Add:

E(xn−1) + E(xn)

Perform addition in any order values come in

Figure 3.6: Data analysed via both public and private clouds

50

Chapter 3. Quantum cryptography and Post-quantum cryptography

The idea is to perform the first part of any kind of analysis in a private cloud, but then

send the majority of the work off to the public cloud. This would mean that any values

that were in the vulnerable public cloud are intermediate, as opposed to the original data.

If more is done in the private cloud-first, less can be learned about the original data.

Figure 3.6 gives an example requiring pairs of ciphertexts being added together offline.

While this may not come across as the most elegant solution, there are examples of tech-

nology available to achieve such goals. The company ADLink 1, for example, provides a

product that has been specifically designed to help aggregate data collected by various

sensors, reducing bandwidth costs of data transferred. The initial operations we desire

would be handled well by such technology.

When establishing the original algorithm, there was concern about the practicality of the

error correction method we established in section 3.2. Although the commutativity of the

addition operation is helpful for efficient data analysis, restricting the order in which data

is summed would ensure that only desired error cases appear. The vertices in the graph in

figure 3.7 reference the 8 different CTRL3 variables, {0, 1, 2, 3, 4, 5, 6, 7}. An edge exists

between 2 vertices only if the addition of the 2 values (mod 8) in these vertices produces

a “good” CTRL3 variable i.e. {2, 3, 4, 5}.

0

1

2

3

4

5

6

7

Figure 3.7: Addition graph

Let the vertices of the graph be labelled (x, tx). Here x is the value of the CTRL3

variable. The second value tx is the current number of ciphertexts with the corresponding

CTRL3 value that is going to be part of our sum. If the goal is to add together all the

ciphertexts, then given any ciphertext as a starting point, the following algorithm is an

example of a reasonable set of instructions that should be followed to determine which

order to add the ciphertexts in to avoid dealing with difficult cases.

1https://www.adlinktech.com/en/index.aspx

51

Chapter 3. Quantum cryptography and Post-quantum cryptography

Algorithm 1 Addition graph ordering

1: procedure Input(G = (V,E)), where G is the addition graph for a collection cipher-

texts to be added together.

2: While
∑7

i=0 ti > 1

3: if (0, t0) 6= (0, 0) and (x, tx) 6= (x, 0) for at least one x = 2, 3, 5

4: Add all ciphertexts in (0, t0) to a ciphertext in (x, tx).

5: if t2 > 1

6: Add a ciphertext in (2, t2) to a ciphertext that belongs to an adjecent

vertex.

7: else if t3 > t5 and ∃ti, tj 6= 0 s.t. i+ j = 5 (mod 8)

8: Add together a ciphertext from (i, ti) to a ciphertext from (j, tj).

9: else if t5 > t3 and ∃ti, tj 6= 0 s.t. i+ j = 3 (mod 8)

10: Add together a ciphertext from (i, ti) to a ciphertext from (j, tj).

11: else if ∃ adjacent vertices (i, ti) and (j, tj) s.t. ti, tj 6= 0

12: Add together a ciphertext from (i, ti) to a ciphertext from (j, tj).

13: else

14: Add together any 2 remaining ciphertexts.

15: return G with only one non empty vertex containing the sum of ciphertexts.

Of course, it is impossible to say how many ciphertexts will be associated with each of

the vertices, the algorithm aims to prioritise adding certain ciphertexts first. We list the

reasons for the priorities here:

• Add a ciphertext from (0, t0) to a ciphertext (x, tx) will produce another ciphertext

in (x, tx). So in each iteration of the algorithm, we add all the ciphertexts in that

vertex to ciphertexts in vertices where x = 2, 3 or 5 as we know these are some of

our good cases.

• We observe that adding a ciphertext with CTRL3 variable equal 2 to another with

CTRL3 variable equal to 3 gives a ciphertext with CTRL3 value 5. Also adding

two ciphertexts together with CTRL3 value 5 will ouput a ciphertext with CTRL3

value equal to 2. If we look at these two additions in terms of the CTRL3 values we

have
(2, 3) 7→ 5,

(5, 5) 7→ 2.
(3.59)

After one of each addition, the number of ciphertexts with CTRL3 value equal to 3

and 5 have reduced by 1. the number of ciphertexts with CTRL3 value equal to 2

remains the same.

• The main idea in this algorithm is to alternate between the two additions foremen-

tioned where possible since these are two of our good cases. To make as many of

52

Chapter 3. Quantum cryptography and Post-quantum cryptography

these additions happen as possible, the algorithm aims to equalise the number of

ciphertexts with CTRL3 value equal to 3, with ciphertexts with CTRL3 value equal

to 5. Also, since the number of ciphertexts with CTRL3 value equal to 2 doesn’t

decrease in the additions listed above, the algorithm also aims to reduce the number

of these ciphertexts to 1.

• Finally, if none of the above options remains, we try to add two ciphertexts whose

vertex share an edge (i.e. a good addition case). Failing that we just add any

remaining ciphertexts.

3.3.3 Alternative methods

Increasing the number of operations

Up till now, it has been assumed that error correction is performed immediately after

performing one addition. Appendix A.2 gives an example of a circuit where more than one

addition is performed. To perform more additions, we simply perform a permutation on

the qubits so they are in the correct order to be input into the addition circuit. Increasing

the number of additions performed before error correction will increase the number of

terms in the superposition. Adding 3 ciphertexts together gives a superposition of the

form
|Bm � (−3σ)〉+

√
3|Bm � (−σ)〉+

√
3|Bm � σ〉+ |Bm � (3σ)〉

2
√

2
. (3.60)

The advantage of this approach is the superposition already contains the 2 terms for

the desired final superposition. The only error correction that needs performing here is

reducing the 2 outer terms to 0.

Example. Suppose we have a superposition of the form

|1010 · · · 〉+
√

3|1110 · · · 〉+
√

3|1001 · · · 〉+ |1101 · · · 〉
2
√

2
. (3.61)

For ease of notation, assume the error σ = 1. The second, third and fourth digits are the

only ones that differ in each term. Now if we measure the fourth qubit, the second and

third qubits have the following form

Fourth qubit = 0:


a00

a10

a01

a11

 =


0

0
1
2√
3

2

 ,Fourth qubit = 1:


a00

a10

a01

a11

 =


√

3
2
1
2

0

0

 . (3.62)

We now wish to define the gates that will transform this superposition of 2 terms into the

correct ciphertext of the sum. Firstly we apply a gate to make the distribution of the non

53

Chapter 3. Quantum cryptography and Post-quantum cryptography

zero probability qubits uniform.
1 0 0 0

0 1 0 0

0 0
√

2+i
√

6
4

√
6−i
√

2
4

0 0
√

6−i
√

2
4

√
2+i
√

6
4




0

0
1
2√
3

2

 =


0

0
1√
2

1√
2

 . (3.63)


√

2+i
√

6
4

√
6−i
√

2
4 0 0

√
6−i
√

2
4

√
2+i
√

6
4 0 0

0 0 1 0

0 0 0 1



√

3
2
1
2

0

0

 =


1√
2

1√
2

0

0

 . (3.64)

Finally, we now apply a gate on the second, third and fourth qubits to leave us only with

the correct qubits, with no unwanted extra error terms.

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





0

0
1√
2

1√
2

0

0

0

0


=



0

0

0
1√
2

1√
2

0

0

0


=



a000

a100

a010

a110

a001

a101

a011

a111


. (3.65)



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





0

0

0

0
1√
2

1√
2

0

0


=



0

0

0
1√
2

1√
2

0

0

0


=



a000

a100

a010

a110

a001

a101

a011

a111


. (3.66)

3.3.4 Updating the algorithm

The whole point of the error-correcting method is that it is possible to tell which kind

of error is being dealt with. Instead of dealing with the difficult CTRL3 cases or being

selective about which ciphertexts can be added together, the best course of action may be

to alter the algorithm itself.

Step 4 in the online addition method is the step that deals with CTRL3 values of 6,7,0

and 1. The step is now replaced with the following substeps.

54

Chapter 3. Quantum cryptography and Post-quantum cryptography

(4.1) If CTRL3 = 0 or 1, add σ to the ciphertext. Now perform the hadamard gate on

the k + 2th qubit and an X gate on the k + 1th qubit. Move to step 7.

(4.2) If CTRL3 = 6 or 7, subtract σ from the ciphertext. Now perform a Z gate on the

k + 2th qubit.

(4.3) Now perform the hadamard gate on the k + 2th qubit and an X gate on the k + 1th

qubit.

(4.4) Add σ to the ciphertext.

The following is an example using the updated algorithm. Note here that to avoid a

conflict in notation, if an addition sign appears outside of brackets, that will be standard

addition. Addition used to represent superposition will always be within brackets.

Example. Suppose we have two ciphertexts c1 = |9〉+|11〉√
2

and c2 = |20〉+|22〉√
2

. With these

2 inputs, represented in binary, the addition algorithm proceeds as follows:

1 Addition of the ciphertexts, followed by the ε correction gives

(
|100100〉√

2
+
|110100〉√

2
)+(
|001010〉√

2
+
|011010〉√

2
)−|100000〉 = (

|001110〉
2

+
|011110〉√

2
+
|000001〉

2
).

(3.67)

2 Now upon measurement of the 2nd qubit, a 0 is observed. The superposition collapses

down to

(
|001110〉√

2
+
|000001〉√

2
). (3.68)

3 The sum of the CTRL3 variables minus 1 is 6 therefore the previous measurement

hasn’t collapsed down to a single value.

4.2 Subtracting 1 first gives (|110110〉√
2

+ |111110〉√
2

). Now applying the first stage of error

correction

|11〉Z(
0√
2

+
1√
2

)|110〉 = |11〉(0√
2
− 1√

2
)|110〉. (3.69)

4.3 The second error correction gates are applied giving

|1〉X|1〉H(
0√
2
− 1√

2
)|110〉 = |101110〉. (3.70)

4.4 Re-adding the error just taken off in (4.2) produces the ciphertext with no error

component |011110〉.

7 Finally applying the error outputs the correct summed ciphertext

|011110〉+ (
|000000〉+ |010000〉√

2
) =
|30〉√

2
+
|32〉√

2
. (3.71)

55

Chapter 3. Quantum cryptography and Post-quantum cryptography

3.4 A multiplication method for the quantum ciphertext

3.4.1 Potential functions

As discussed already in the previous chapter, for meaningful computation to be possible,

a multiplication method is needed. Although multiplication of qubits has been established

[Ekert et al. (2001)], a method of multiplication of ciphertexts in this vector space may

not be as natural as addition.

A somewhat homomorphic encryption scheme based on the ring learning with errors prob-

lem has been presented in [Naehrig et al. (2011)]. When the data is encrypted, a finite

number of addition and multiplication operations can be performed. After this limit has

been reached the data needs to be decrypted and encrypted again to reduce the error

growth. Despite this, the paper discusses statistical functions that can be performed on

the ciphertexts.

Firstly, the mean, m =
∑n

i=1 ci
n , is not a function that requires multiplication. Addition

of the ciphertexts, c1, . . . , cn, can be performed with the error correction method and the

total number of ciphertexts can easily be counted. The pair (
∑n

i=1 ci, n) is returned to the

offline device to perform the final division step.

The standard deviation is defined as s =

√∑n
i=1(ci−m)2

n . Its calculation begins with a se-

ries of additions, followed by squaring, followed again by addition. In the RLWE scheme,

the denominator and numerator are once again returned to be processed offline.

Logistic regression is the final function discussed. Here, the input for the prediction

function x =
∑n

i=1 αixi, where αi is a weighting constant. The prediction function,

f(x) = ex

1+ex , is simple enough that this phase can be calculated offline. Therefore the

operations performed online are a series of scalar multiplications followed by a sum of the

resulting values.

Due to the component-wise property of addition in vectors, it seems reasonable to look for

a component-wise multiplication method in this vector space. If both addition and multi-

plication have this property, the vectors being operated on will be able to be processed in

parallel.

3.4.2 Component wise multiplication operation

Although component wise multiplication of the form

V1�V2 = [α1, . . . , αn] � [β1, . . . , βn] = [α1β1, . . . , αnβn], (3.72)

56

Chapter 3. Quantum cryptography and Post-quantum cryptography

would be useful, the encryption method is not homomorphic with respect to this operation.

Let

B =


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n

 . (3.73)

be the public basis used for encryption. Given plaintexts, m1 = [α1, . . . , αn] and m2 =

[β1, . . . , βn], attempting to perform this operation on ciphertexts c1 = E(m1) and c2 =

E(m2) would give

c1 � c2 =


b1,1α1 + · · ·+ b1,nαn + ε

b2,1α1 + · · ·+ b2,nαn + ε
...

bn,1α1 + · · ·+ bn,nαn + ε

�


b1,1β1 + · · ·+ b1,nβn + ε

b2,1β1 + · · ·+ b2,nβn + ε
...

bn,1β1 + · · ·+ bn,nβn + ε



=


∑n

i=1

∑n
j=1 b1,ib1,jαiβj + ε

∑n
i=1 b1,iαi + ε

∑n
j=1 b1,jβj + ε2∑n

i=1

∑n
j=1 b2,ib2,jαiβj + ε

∑n
i=1 b2,iαi + ε

∑n
j=1 b2,jβj + ε2

...∑n
i=1

∑n
j=1 bn,ibn,jαiβj + ε

∑n
i=1 bn,iαi + ε

∑n
j=1 bn,jβj + ε2



6=


∑n

j=1 b1,jαjβj + ε∑n
j=1 b2,jαjβj + ε

...∑n
j=1 bn,jαjβj + ε

 = E(m1 + m2).

(3.74)

The ε
∑n

i=1 b·,iαi + ε
∑n

j=1 b·,jβj + ε2 = ε(
∑n

i=1 b·,iαi +
∑n

j=1 b·,jβj + ε) part of each sum

could be considered as the error term of a ciphertext. While the form of the error looks

like it would be complicated to deal with, the bigger issue is the remaining summation.

The product of α and β is multiplied by the public basis values twice.

Although it can’t be used for decryption, the inverse of the public matrix can be used

to make an operation that behaves more like the homomorphism required. The inverse

matrix can be written as

B−1 =


b′1,1 b′1,2 · · · b′1,n
b′2,1 b′2,2 · · · b′2,n

...
...

. . .
...

b′n,1 b′n,2 · · · b′n,n

 . (3.75)

(Note b′i,j is not the inverse of bi,j).

If the inverse matrix is used on each ciphertext then, after performing the component

multiplication, it will be necessary to multiply the result by the public basis matrix again.

57

Chapter 3. Quantum cryptography and Post-quantum cryptography

The operation therefore will be of the form

V1�BV2 = B(d1�d2), (3.76)

where di = B−1vi. Consider the form of the multiplication expressed in terms of the

plaintext

B[(B−1c1)�(B−1c2)] = B

(
α1 + ε(b′1,1 + b′1,2 + · · ·+ b′1,n)

α2 + ε(b′2,1 + b′2,2 + · · ·+ b′2,n)
...

αn + ε(b′n,1 + b′n,2 + · · ·+ b′n,n)

�


β1 + ε(b′1,1 + b′1,2 + · · ·+ b′1,n)

β2 + ε(b′2,1 + b′2,2 + · · ·+ b′2,n)
...

βn + ε(b′n,1 + b′n,2 + · · ·+ b′n,n)


)
.

(3.77)

Here the error is only being multiplied by elements of B−1. The error is therefore a scalar

multiple of the original error so we can work out a new error correction method. Denote

b′i = b′i,1 + b′i,2 + · · ·+ b′i,n. Then

B[(B−1c1)�(B−1c2)] = B

(
α1 + εb′1
α2 + εb′2

...

αn + εb′n

�


β1 + εb′1
β2 + εb′2

...

βn + εb′n


)

(3.78)

The result is

B[(B−1c1)�(B−1c2)] = B(c1 � c2) +


εb′1(α1 + β1)

εb′2(α2 + β2)
...

εb′n(αn + βn)

 . (3.79)

Assuming the product of the 2 error terms is still of an appropriate size, the result is

a correct encryption plus a product of error and data. As already stated, the b′ terms

are fixed. Therefore, assuming the data being analysed is bounded by sufficiently small

constants, this product can still be correctly decrypted with the appropriate choice of

parameters for the protocol.

We have shown that although component wise multiplication is not homomorphic under

our encryption function, we can adapt the multiplication method used on our ciphertexts

to give us an acceptably close product.

In this chapter, it has been established that as many additions as needed can be performed.

This was all that was required for calculating the mean and now it can be used on a data

set of any size. A multiplication can be performed assuming decryption allows an increase

in error size (error now a function of the data). For the standard deviation method, the

(ci−m)2 part of the calculation can certainly be performed. The final addition part poses

a problem as the error at this point is unknown. Scalar multiplication however, can be

58

Chapter 3. Quantum cryptography and Post-quantum cryptography

dealt with. Because the αi in the regression are already established, adapting the error

method from the original ε to αiε for 1 ≤ i ≤ n will make the calculation of the input for

the prediction function x possible.

59

Chapter 4

Ideal membership protocol

In this chapter, we consider cryptography schemes that use the ideal membership problem

as the foundation of their security. The membership problem has the following definition.

We will begin by defining the problem of interest in section 1, along with the algorithm by

Buchberger that makes the ideal membership an interesting problem for cryptography. We

will build on this in section 2 by looking at Gröbner bases in a non-commutative setting.

Here we will look at work by Mora to adapt Buchberger’s algorithm for non-commutative

ideals.

The remaining sections will contain original work with section 3 establishing a key ex-

change protocol and addressing some potential weaknesses. Finally, in section 4 we will

consider a Hecke algebra setting for the same protocol and examine the advantages gained

from moving into this setting.

4.1 Gröbner basis solution to the membership problem

Definition. Let R = k[x1, x2, . . . , xn] be a polynomial ring over k. Suppose the polyno-

mials f0, f1, . . . , fm ∈ R. Let I = 〈f1, f2, . . . , fm〉 ⊂ R. Is it true that f0 ∈ I?

The introduction of Gröbner bases has given us a representation of ideals that make

it a much less daunting test to check membership [April et al. (2012)]. To start with let’s

state the definition and an important theorem about Gröbner bases which cause a key

difference between the commutative and non-commutative case. We use the notation of

chapter 2, for leading monomials and leading terms, LM(f) and LT (f), of a polynomial

f .

Definition. Given f, g, h in k[x1, . . . , xn], g 6= 0. If LM(g) divides a non-zero term X of

f then the polynomial

h = f − X

LT (g)
· g (4.1)

60

Chapter 4. Ideal membership protocol

is called a one-step reduction of f modulo g, and we write

f
g−→ h. (4.2)

Furthermore, suppose we have a collection of polynomials F = {f1, . . . , fs}. We say f

reduces to h modulo F , which we express as

f
F−→+ h, (4.3)

if and only if there exists a sequence of indices i1, i2, . . . , it ∈ {1, . . . , s} and a sequence of

polynomials h1, . . . , ht−1 ∈ k[x1, . . . , xn] such that

f
fi1−−→ h1

fi2−−→ h2
fi3−−→ · · ·

fit−1−−−→ ht−1
fit−−→ h. (4.4)

Definition. A set of non-zero polynomials G = {g1, . . . , gt} contained in an ideal I, is

called a Gröbner basis for I if and only if for all f ∈ I, f 6= 0, there exists i ∈ {1, . . . , t}
such that LM(gi) divides LM(f).

We are going to show how to transform a given basis for an ideal into a Gröbner basis.

Any element of an ideal generated by f1, . . . , fs can be expressed as

f =
s∑
i=1

hifi, (4.5)

where hi ∈ k[x1, . . . , xn]. The largest of the LM(hifi) = LM(hi)LM(fi), i.e. the leading

monomial of f , is divisible by LM(fi), therefore we need to worry about instances where

this monomial cancels out in order to complete our Gröbner basis. This prompts the

following definition.

Definition. Let f, g ∈ k[x1, . . . , xn] be non-zero. Let L = lcm(LM(f), LM(g)). The

polynomial

S(f, g) =
L

lt(f)
f − L

lt(g)
g (4.6)

is called the S-polynomial of f and g.

Buchberger showed that these S-polynomials are key to creating a Gröbner basis with

the following theorem.

Theorem 4.1 (Buchberger (1965)). Let G = {g1, . . . , gt} be a set of non-zero polynomials

in k[x1, . . . , xn]. Then G is a Gröbner basis for the ideal I = 〈g1, . . . , gt〉 if and only if

∀i 6= j,

S(gi, gj)
G−→+ 0. (4.7)

Theorem 4.2 (Adams et al. (1994)). Let I be a non-zero ideal of k[x1, . . . , xn]. The

following statements are equivalent for a set of non-zero polynomials G = {g1, . . . , gt} ⊆ I.

61

Chapter 4. Ideal membership protocol

1. G is a Gröbner basis for I.

2. f ∈ I if and only if f
G−→+ 0.

3. f ∈ I if and only if f =
∑t

i=1 higi with LM(f) = max1≤i≤t(LM(hi)LM(gi)).

4. LT(I) = LT(G), where LT (S) = 〈LT (s)|s ∈ S〉.

Algorithm 2 Buchberger’s Algorithm

1: procedure Buchberger(F), F = {f1, . . . , fs} ⊆ k[x1, . . . , xn] with fi 6= 0 (1 ≤ i ≤
s)

2: G := F

3: G := {{fi, fj}|fi 6= fj ∈ G}
4: while G 6= ∅ do

5: Choose any {f, g} ∈ G
6: G := G − {{f, g}}
7: S(f, g)

G−→+ h, where h is reduced WRT G

8: if h 6= 0 then

9: G := G ∪ {{u, h}| for all u ∈ G}
10: G := G ∪ {h}

11: return G = {g1, . . . , gt} a Gröbner basis for 〈f1, . . . , fs〉

Hilbert’s basis theorem tells us an important property about the termination of Buch-

berger’s algorithm [Adams et al. (1994)].

Theorem 4.3 (Hilbert (1890)). The following two properties hold in the commutative

ring k[x1, . . . , xn]:

• If I is any ideal of k[x1, . . . , xn], then there exists polynomials f1, . . . , fs ∈ k[x1, . . . , xn]

such that I = 〈f1, . . . , fs〉.

• If I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ · · · is an ascending chain of ideals of k[x1, . . . , xn],

then there exists N such that IN = IN+1 = IN+2 =

Theorem 4.4 (Becker & Weispfenning (1993)). Given F = {f1, . . . , fs}, all non-zero,

Buchberger’s algorithm will produce a Gröbner basis for the ideal I = 〈f1, . . . , fs〉.

Proof. Let us assume the algorithm does not terminate. As the algorithm runs a new set

Gi will be constructed from Gi−1 creating a strictly infinite sequence

G1 (G2 (G3 (. . . . (4.8)

62

Chapter 4. Ideal membership protocol

Each iteration a polynomial, h, a non-zero reduction with respect to Gi−1 is added to form

Gi. Because it is reduced WRT Gi−1, it must be the case that LT (h) /∈ LT (Gi−1). This

means that there is a strictly ascending chain of ideals

LT (G1) (LT (G2) (LT (G3) (. . . , (4.9)

which contradicts Hilbert’s basis theorem.

Because only elements from the ideal generated by f are added at each iteration I =

〈f1, . . . , fs〉 ⊆ 〈g1, . . . , gt〉 ⊆ I, therefore G is a generating set for I.

4.2 Non-commutative Gröbner bases

In order to find Gröbner bases in non-commutative variables, we must first understand

the concept of overlaps and from that how to perform division [Evans (2006)].

Definition. Let p1 and p2 be elements of a polynomial ring with an admissible order

O. We say that p2 can be reduced by p1 if LM(p1) divides a monomial m in p2. This

means that m = ml ·LM(p1) ·mr, for some monomials ml and mr. The calculation of the

reduction is

p2 − (c · LC(p1)−1)mlp1mr, (4.10)

where c is the coefficient of m in p2.

S-polynomials, which we determine below, allow us to ensure that if we have a poly-

nomial p that is reducible by 2 other polynomials p1 and p2, we can achieve a unique

remainder when reducing p by a set of polynomials containing p1 and p2. In the com-

mutative case there is only one way to reduce one polynomial by another. When in the

non-commutative setting however there may be multiple ways for us to reduce one polyno-

mial by another and thus we need to understand what it means for polynomials to overlap

[Evans (2006)].

Definition. For a monomial m in a non-commutative polynomial ring define:

• prefix (m, i) to be the initial subword of length i of m,

• suffix (m, i) to be the terminal subword of length i of m,

• subword(m, i, j) to be the subword starting at position i and ending at position j in

m.

Definition. Two monomials m1 and m2 with degrees d1 ≥ d2 (respectively) overlap if

any of the following conditions are true

• prefix(m1, i) = suffix(m2, i) (1 ≤ i < d2),

63

Chapter 4. Ideal membership protocol

• subword(m1, i, i+ d2 − 1) = m2 (1 ≤ i ≤ d1 − d2 + 1),

• suffix(m1, i) = prefix(M2, i) (1 ≤ i < d2).

Definition. Assume we have polynomials p1 and p2 such that l1 ·LM(p1)·r1 = l2 ·LM(p2)·
r2, where we choose l1, l2, r1 and r2 in a way such that at least one of l1 and l2 and at

least one of r1 and r2 are equal to 1. The S-polynomial associated with this overlap is

S-pol(l1, p1, l2, p2) = c1l1p1r1 − c2l2p2r2, (4.11)

where c1 = LC(p2) and c2 = LC(p1).

With these definitions in mind, we can now state the non-commutative version of

Buchberger’s algorithm. Rem(s1, G) represents a reduction of s1 by all of the polynomials

in G.

Algorithm 3 Mora’s Algorithm [Mora (1985)]

1: procedure Mora(F), F = {f1, . . . , fs} is a basis for an ideal J over a non-

commutative polynomial ring

2: G := F

3: A := ∅
4: For each pair of polynomials (gi, gj) in G, add an S-Polynomial to A for each of

the overlaps of the lead monomials of gi and gj

5: while A 6= ∅ do

6: Remove first entry s1 from A;

7: s′1 = Rem(s1, G)

8: if s′1 6= 0 then

9: Add s′1 to G and then add all the S-polynomials of the form S-

pol(l1, gi, l2, s
′
1) to A ∀gi ∈ G

10: return G = {g1, . . . , gt} a Gröbner basis for J (Assuming termination)

While we now have an algorithm to calculate a Gröbner basis, there is a lot of redun-

dancy in the generators. We can take it one step further to remove some of the unneeded

elements from the basis found.

Definition. Let G = {g1, . . . , gp} be a Gröbner basis for an ideal in a polynomial ring.

Then G is a reduced Gröbner basis if the following 2 conditions are true.

• LC(gi) = 1 for all gi ∈ G.

• None of the terms in the polynomials gi ∈ G are divisible by any LT(gj), j 6= i.

Once we have a Gröbner basis, we can begin to test if a given polynomial is a member

of the ideal generated by that basis. Because we are now using a Gröbner basis, this

64

Chapter 4. Ideal membership protocol

algorithm has a much lower complexity than if we had tried to perform membership

testing with any basis for an ideal.

Algorithm 4 Membership testing

1: procedure Input(G = {g1, g2, . . . , gt}, f), where G is a Gröbner basis and f is a

polynomial to test if it is a member of the ideal generated by G.

2: p = f .

3: Reduction = TRUE.

4: While Reduction == TRUE

5: if ∃gi ∈ G s.t. LM(p) = l · LM(gi) · r for some non zero monomials l, r and

1 ≤ i ≤ t.
6: p = p− l · gi · r.
7: else

8: Reduction = FALSE.

9: if p = 0

10: return TRUE.

11: else

12: return FALSE, p.

The algorithm below takes as input the Gröbner basis calculated in Mora’s algorithm

and outputs the unique reduced Gröbner basis.

Algorithm 5 Noncommutative unique reduced Gröbner basis

1: procedure Reduce(G), G = {g1, . . . , gm} is a basis for an ideal j over a noncommu-

tative ring

2: G′ := ∅
3: for each gi ∈ G do

4: Multiply gi by LC(gi)
−1;

5: if (LM(gi) = lLM(gj)r for some monomials l, r and some gj ∈ G (gj 6= gi))

then

6: G = G\{gi};
7: end if

8: end for

9: for each gi ∈ G do

10: g′i = Rem(gi, (G\{gi}) ∪G′;
11: G = G\{gi};G′ = G′ ∪ {g′i};
12: end for

13: return G′ = {g′1, . . . , g′p} a unique reduced Gröbner basis for J

Because non-commutative polynomials do not satisfy a theorem similar to Hilbert’s

65

Chapter 4. Ideal membership protocol

basis theorem, we can not guarantee that Mora’s algorithm will terminate. Indeed we

have the following theorem.

Theorem 4.5 (Rai (2004)). Let K be a finite field and K〈x, y, z〉 the noncommutative

free algebra over K. Let g1 = xzy + yz ∈ K〈x, y, z〉, g2 = yzx + zy ∈ K〈x, y, z〉. Then,

I = 〈g1, g2〉 does not have a finite Gröbner basis under any admissible order.

Polly Cracker is a name used to encompass a variety of cryptosystems that make use

of Gröbner bases [Ackermann & Kreuzer (2006)]. The non-commutative Polly Cracker

cryptosystem takes advantage of the existence of ideals that do not have a finitely generated

Gröbner basis. In the next section, we present our version in the form of a key exchange

protocol.

4.3 A key exchange protocol based on the ideal membership

problem

In this section, we will attempt to adapt the non-commutative encryption process [Rai

(2004)] into a key exchange. From there we will use the key generated from such an

exchange to introduce a simple encryption function that has homomorphic properties.

The remainder of the section we will discuss a potential attack and discuss how we can

set up the scheme in such a way that is resistant to this kind of attack.

4.3.1 Agreeing in secret on a key from a public list of polynomials

Make public an ideal I ⊂ K〈x1, . . . , xn〉, for which Mora’s algorithm will not terminate.

Alice makes her choice of private Gröbner basis

GA = {gA,1, gA,2, . . . , gA,nA
} (4.12)

for a super ideal IA of the public key I.

Alice secretly generates a polynomial as a linear combination of generators of her private

ideal

SA,0 =

nA∑
i=1

ligA,iri ∈ IA, (4.13)

where li, ri ∈ K〈x1, . . . , xn〉. She also generates a collection of m elements that aren’t in

the public ideal, but instead are each in pairwise distinct cosets of IA. We do not need to

choose a polynomial from every coset and in fact, a suggested number of polynomials is the

average number of terms that each of those polynomials contains (e.g. if the polynomials

chosen each have 5 terms, then 5 cosets should be used). This choice isn’t extremely

important in this section but in the next section we will look at adapting the scheme and

66

Chapter 4. Ideal membership protocol

Public

Alice private
ideal

SA,0SA,0+e1 SA,0+e2

Figure 4.1: Alice selects polynomials from her ideal and its cosets

this choice will prove to be efficient. The m elements generated are denoted

SA,1 =

nA∑
i=1

ligA,iri + ε1 /∈ IA,

...

SA,m =

nA∑
i=1

ligA,iri + εm /∈ IA,

(4.14)

where εi − εj /∈ IA, ∀i 6= j.

Figure 4.1 gives an idea of how Alice generates her polynomials. Although the public ideal

(and by extension Alice’s private ideal) are infinite in size, the figure gives an impression

of how the polynomial ring has been split up and how Alice chooses one polynomial per

coset.

SA,0, SA,1, . . . , SA,m are sent over a public channel to Bob in a random order known to

Alice. A potential eavesdropper has access only to the public ideal and it should therefore

be difficult for them to work out which SA,i is a member of Alice’s ideal.

Bob now chooses an arbitrary element of the public ideal, denoted SB. He chooses at

random one of Alice’s messages, SA,j that he wants to be the shared key. He calculates

the difference between his own element and his choice from Alice. This gives him

Bdiff = SB − SA,j . (4.15)

67

Chapter 4. Ideal membership protocol

Public

Alice private
ideal

SA,0SA,0+e1 SA,0+e2

SB,2SB,0 SB,4

Figure 4.2: Bob adds a polynomial to each of Alice’s so one lies in the public ideal

Bob adds Bdiff to each of Alice’s messages giving the list

SB,0 = SA,0 +Bdiff

SB,1 = SA,1 +Bdiff

...

SB,j = SA,j +Bdiff ∈ I
...

SB,m = SA,m +Bdiff

(4.16)

Alice receives all these updated versions of her messages from Bob in the same order she

sent them. Bobs goal is to use an element of the public ideal as the secret key. In Figure

4.2 j = 2 so SB2 ∈ I but SBk
/∈ I, when k 6= 2.

Once again any eavesdropper only has the public ideal to work with, so they cannot

tell which element Bob chose to be in the ideal. Alice then reduces the element that

corresponded to her choice of SA,0. If this is 0 then Bob has chosen that element, if there

was another polynomial with that property, say SBk
, then

SBk
∈ IA ⇒ SAk

+Bdiff ∈ IA
SAj − SAk

∈ IA
εj − εk ∈ IA.

(4.17)

68

Chapter 4. Ideal membership protocol

Public

Alice private
ideal

SA,0SA,0+e1 SA,0+e2

SB,2SB,0 SB,4

e1

Figure 4.3: Alice knows the difference between her polynomials so can get back SA,0

This is a contradiction.

If when Alice reduces Bob’s polynomial and does not get a 0, then she can easily work out

which polynomial Bob wanted by checking which εj she has remaining using

SB,0 = SA,0 +Bdiff

= SA,0 + (SB − SA,0 − εj)

= SB − εj ,

(4.18)

where SB reduces to zero as the public ideal is contained in Alice’s ideal. Figure 4.3

illustrates why it was so important that Bob added the same polynomial to each polynomial

that he received from Alice. Even though Alice doesn’t know which polynomial she receives

from Bob is his public key choice, she can locate SB,0 as the order is maintained. She then

computes SB,0 − SA,0 = (SA,0 − SB) + εj and can find εj since SA,0 − SB ∈ I.

Alice and Bob use SBj as the secret key.

4.3.2 Encryption process

Building on the ideas presented in [Ko et al. (2000)] for an encryption scheme based on

conjugacy, we will present a cryptosystem that uses our generated private keys. To develop

a homomorphic encryption system we will need a pair (p, q) of private keys with particular

properties, and we shall find these in a Hecke algebra setting, as will be described in Section

4.4. In this section, we shall describe the encryption process that uses that pair of keys.

We will denote the private key p and a second private key q. The key q is not the inverse

69

Chapter 4. Ideal membership protocol

of p in the ring R, but in the factor ring R/J where

J = R〈pq − 1, qp− 1〉R, (4.19)

we have pq = qp = 1.

Encryption method:

Enc(m) = pmq + qmp. (4.20)

While the encryption method needs to be simple to make it possible for weak devices to

compute, the computational operations performed on the encrypted data and the decryp-

tion are performed on more powerful devices. The time consuming parts of the method,

therefore, are concentrated on the latter.

Homomorphisms:

Enc(m1) + Enc(m2) = pm1q + qm1p+ pm2q + qm2p

= p(m1 +m2)q + q(m1 +m2)p

= Enc(m1 +m2)

(4.21)

Enc(m1) · Enc(m2) = (pm1q + qm1p) · (pm2q + qm2p)

= pm1qpm2q + pm1q
2m2p+ qm1p

2m2q + qm1pqm2p

= pm1m2q + qm1m2p+ pm1q
2m2p+ qm1p

2m2q

= Enc(m1 ·m2) + pm1q
2m2p+ qm1p

2m2q

(4.22)

We assume that we are in some way able to kill off the extra terms that come as a result

of the multiplication. We wish to use the fact that there is a square of one of our private

keys in each of these terms. A quotient space that incorporates this property could be

used.

Decryption method:

Dec(c) = q · Enc(m) · p = qpmqp+ q2mp2 = m+ q2mp2. (4.23)

In our quotient space the second term will be killed off, leaving us with just our original

message.

Example. Key exchange

Alice and Bob agree to use the ideal I from Theorem 4.5 as their public information where

I = 〈xzy + yz, yzx+ zy〉. Alice creates her private ideal that has a finite Gröbner basis

IA = 〈xzy + yz, yzx+ zy, xz + x, z4y − z3y〉. (4.24)

70

Chapter 4. Ideal membership protocol

She also chooses her first polynomial

SA,0 = y(xzy + yz)x+ z(yzx+ zy)y + (xz + x)z + y(z4y − z3y)y

= yxzyx+ y2zx+ zyzxy + z2y2 + xz2 + xz + yz4y2 − yz3y2,
(4.25)

followed by selecting coset elements ε1 = y3 + yzy − xz2 + xz and ε2 = z5 − z2yz. She

sends to Bob the polynomials SA,1 = SA,0 + ε1, SA,0 and SA,2 = SA,0 + ε2 over a public

channel, recording the order of the polynomials in which she sends.

Bob now chooses an element of the public ideal

SB = xy(xzy + yz)x+ z(yzx+ zx)yz

= xyxzyx+ xy2zx+ zyxyz + z2xyz.
(4.26)

He then chooses at random one of Alice’s polynomials, say SA,1. The difference between

the two polynomials is

Bdiff =xyxzyx+ xy2zx+ zyxyz + z2xyz − yxzyx−

y2zx− zyzxy − z2y2 − y3 − yzy − yz4y2 + yz3y2.
(4.27)

He then sends back the list SB1 , SB0 , SB2 , where SB1 = SB,

SB,0 =yxzyx+ y2zx+ zyzxy + z2y2 + xz2 + xz + yz4y2 − yz3y2

+ xyxzyx+ xy2zx+ zyxyz + z2xyz − yxzyx− y2zx− zyzxy − z2y2

− y3 − yzy − yz4y2 + yz3y2

(4.28)

and

SB,2 =yxzyx+ y2zx+ zyzxy + z2y2 + xz2 + xz + yz4y2 − yz3y2

+ z5 − z2yz + xyxzyx+ xy2zx+ zyxyz + z2xyz − yxzyx− y2zx− zyzxy

− z2y2 − y3 − yzy − yz4y2 + yz3y2.

(4.29)

Having received the 3 polynomials, Alice now looks at SB,0.

SB,0 =[y(xzy + yz)x+ z(yzx+ zy)y + (xz + x)z + y(z4y − z3y)y + xy(xzy + yz)x

+ z(yzx+ zx)yz − y(xzy + yz)x− z(yzx+ zy)y − y(z4y − z3y)y]− y3 − yzy.
(4.30)

Alice can reduce everything within the square brackets to zero using her generators in

the membership testing algorithm leaving just −y3− yzy. This tells Alice that Bob chose

to use the polynomial associated with ε1 and she can subsequently determine the shared

private key SB.

Encryption, operations and decryption

71

Chapter 4. Ideal membership protocol

The details of encryption, decryption and the operations can be found in the appendix

A1.

4.3.3 Choosing an appropriate quotient space

We already discussed that an appropriate choice of quotient space is needed to the make

the calculations work. However, we have full control over what that quotient space is.

Alice and Bob repeat the key exchange process again to generate the second private key

q, independent of the first exchange and form the quotient R/J as in (4.19).

When looking at both the decryption function and the homomorphic property of our

system, there is a strong reliance on the choice of quotient space R/J to make sure the

calculations are performed correctly. The issue with this procedure is that we have made

public, the product of our 2 secret keys in R. Unlike in the integers, factoring 2 polynomials

is not a difficult problem. This means any eavesdropper that can observe the operations

being performed can find both keys.

The solution to this problem is to put off correcting the extra multiplication error in the

decryption. Since decryption is performed offline, we don’t need to be concerned with

our choice of quotient space revealing important information. The problem with this

approach is that since our ciphertexts won’t be corrected while being processed, their size

will increase at a faster rate. This means that computation and storage requirements will

increase quickly. Our choice of second key is independent of our first key. Therefore, we

can publicly quotient out by a function of the second key without revealing any information

about the first key. Although this still won’t give us a perfect homomorphism, but it will

reduce the rate at which the product of ciphertexts will grow.

4.3.4 Potential attack

Although Eve does not have access to the private ideal that Alice has generated, she could

create her own ideal with a finite Gröbner basis that contains the public ideal. This would

allow her to successfully perform the membership test on Bob’s choice of a secret key.

While this is a concern, Eve’s choice of ideal may also accept polynomials other than that

corresponding to Bob’s choice; making it unclear which is the actual choice.

We will denote the set of polynomials that Bob sends back to Alice that fall into Eve’s

ideal as the set {SBj1 , SBj2 , . . . , SBjm}.

72

Chapter 4. Ideal membership protocol

PUBLIC

SB

ALICE PRIVATE

SAi

EVE ATTACK

SBj1 , . . . , SBjm

SB0, . . . , SBn \ {SBj1 , . . . , SBjm}

Our goal to prevent an attack like this is to maximise the value of m.

To get an idea of the ideal that Eve may make, intersections of ideals should be understood.

To begin with, elimination ideals need to be understood followed by the introduction of a

new type of ordering.

Elimination theory studies the methods of eliminating variables from systems of polyno-

mial equations. The process of finding the intersection of ideals involves introducing new

variables in a specific way then eliminating all elements of the new ideal which include

that variable [Cox et al. (1992)].

Definition. Given I = 〈f1, . . . , fs〉 ⊆ K[x1, . . . , xn], the l-th elimination ideal Il is the

ideal of K[xl+1, . . . , xn] defined by

Il = I ∩K[xl+1, . . . , xn]. (4.31)

All of the orderings seen so far to assign are constructed by first assigning an order

on the individual variables, say here x1 < x2 < · · · < xn. However, for the following

definition, it is necessary to use 2 separate orderings, denoted < and <<.

Definition. Let OCC(M,V) be a function that takes a monomial M ∈ 〈x1, . . . , xn〉 and

V, a subset of {x1, . . . , xn} and outputs the number of times the variables in V occur in

M . For example OCC(M = x1x2x4x1 ∈ 〈x1, . . . , x4〉, V = {x1, x2}) = 3.

Suppose a = [α1, . . . , αn],b = [β1, . . . , βn] ∈ Zn+. We will say a < b if the first non zero

element working from the right of the vector b− a is positive.

Specify a subset {a1, a2, . . . , al} ⊆ {1, . . . , n−1}. If M and N are monomials in x1, . . . , xn

then M < N with respect to the multigraded lex order if one of the following two conditions

hold:

73

Chapter 4. Ideal membership protocol

• [OCC(M,V1), . . . , OCC(M,Vl)] < [OCC(N,V1), . . . , OCC(N,Vl)],

• [OCC(M,V1), . . . , OCC(M,Vl)] = [OCC(N,V1), . . . , OCC(N,Vl)] and M < N with

respect to the deglex order x1 < · · · < xn,

where

Vj = {xj |aj−1 < j ≤ aj} for 1 ≤ j ≤ l, we also set a0 = 0 and al+1 = n.

We denote the relation between the variables with the following sequence

x1R1x2R2 · · ·Rn−1xn (4.32)

where Ri is << if i is one of the aj ’s and < otherwise.

Example. Consider the multigraded lex order on the variables x1, x2, x3 denoted x1 <<

x2 < x3. The order on monomials in these variables up to degree 2 is

1 < x1 < x1x1 < x2 < x3 < x1x2 < x1x3 < x2x1 < x3x1 < x2x3 < x3x2 < x3x3. (4.33)

Definition. Let j and n be natural numbers where 1 ≤ j ≤ n. A monomial order is of

jth elimination type if any monic monomial involving any of x1, x2, . . . xj is greater than

any monomial in K[xj+1, . . . , xn].

Theorem 4.6 (Drakos (1996)). Let > be a monomial order on the monic monomials of

K[x1, . . . , xn], let I ⊂ K[x1 . . . , xn] and G a Gröbner basis of I with respect to >. If

1 ≤ j ≤ n and > is of j-th elimination type, then G ∩K[xj+1, . . . , xn] is a Gröbner basis

for I ∩K[xj+1 . . . , xn].

The theory up until now for commutative rings has been the same as the theory for

noncommutative rings, the following theorem about intersections of ideals is the where

the process begins to diverge [Buchberger & Winkler (1998)].

Theorem 4.7 (Cox et al. (1992)). For 2 ideals I = (f1, . . . , fk), J = (g1, . . . , gl) ∈
K〈x1, . . . , xn〉 then I ∩ J = H ∩K〈x1, . . . , xn〉 where

H = (tfi, (1− t)gj , txm − xmt|1 ≤ i ≤ k, 1 ≤ j ≤ l, 1 ≤ m ≤ n) ∈ K〈x1, . . . , xn, t〉. (4.34)

Proof. If F ∈ I ∩ J , then F =
∑k

i=1 piLfipiR =
∑l

j=1 qjLgjqjR for some polynomials

piL , piR , qjL , qjR ∈ K〈x1, . . . , xn〉. In K〈x1, . . . , xn, t〉 the polynomial can be expressed as

F = tF + (1− t)F =

k∑
i=1

piLtfipiR +
∑
j=1

qjL(1− t)gjqjR +

n∑
m=1

rmL(txm−xmt)rmR , (4.35)

where rmL , rmR ∈ K〈x1, . . . , xn, t〉. The final sum on the RHS is introduced as a conse-

quence of moving t (and 1− t) to the generators fi (gj). It must be the case therefore that

74

Chapter 4. Ideal membership protocol

F ∈ H ∩K〈x1, . . . , xn〉.
To see why that last term is important consider the two ideals I = {x2, xy2} and J =

{xyx}. Let F = x2(yxy + yx) + (0)xy2 = x2yxy + x2yx = (x)xyx(y + 1). Introducing

the t variable produces the 2 polynomials tFI = t · x2(yxy + yx) = tx2yxy + tx2yx and

(1− t)Fj = (x)(1− t)xyx(y+ 1) = x2yxy+ x2yx− xtxyxy− xtxyx, from which it is clear

to see that the terms with a t variable within do not cancel, thus the need for the extra

sum.

Conversely, assume F ∈ H ∩K〈x1, . . . , xn〉. F ∈ H means that it is of the form

F =
k∑
i=1

piLtfipiR +
∑
j=1

qjL(1− t)gjqjR +
n∑

m=1

rmL(txm − xmt)rmR , (4.36)

where piL , piR , qjL , qjR , rmL , rmR ∈ K〈x1, . . . , xn, t〉. Since F ∈ K〈x1, . . . , xn〉 also, F is

indenpendant of t. F =
∑
p′iLfip

′
iR
∈ I when substituting 1 for t and F ∈ J if t = 0 which

implies F ∈ I ∩ J as required.

Corollary 4.1. Let G be a Gröbner basis for H according to the elimination order in

K〈x1, . . . , xn, t〉 with t ≥ x1, . . . , xn. Then G∩K〈x1, . . . , xn〉 is a Gröbner basis for I ∩J .

These theorems lead to the algorithm for finding the intersection of ideals. Let I =

〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉 be ideals in K〈x1, . . . , xn〉. Take the ideal

〈tI, (1− t)J, tx1 − x1t, . . . , txn − xnt〉 ⊆ K〈x1, . . . , xn〉, (4.37)

then compute a Gröbner basis with respect to an appropriate ordering where t is greater

than all the xi. The elements of the basis that do not contain t will form a basis, notably

a Gröbner basis, of I ∩ J .

Example. Let F1 = {x, xy} ⊂ K〈x, y〉 and F2 = {y, xy} ⊂ K〈x, y〉, under the multi-

graded lex ordering with t >> x > y. To find the intersection of those 2 ideals and its

Gröbner basis, Mora’s algorithm will be run on the basis elements

H = {tx, txy, (1− t)y, (1− t)xy, tx− xt, ty − yt}. (4.38)

The s-polynomials from this initial basis are: (tx)y−(txy−xy) = xy, (tx)−(tx−xt) = xt,

(txy)− (txy− xy) = xy, (ty− y)− (ty− yt) = yt− y, (txy− xy)− (tx− xt)y = xty− xy.

The first polynomial in the list, xy, does not reduce with respect to H. The only new

s-polynomial added is t(xy) − (txy − xy) = xy, which clearly does not need to be added

as it will be reduced to 0 by the original xy. The remaining polynomials in the list do not

reduce either and add no new s-polynomials to the list. Thus the Gröbner basis is

GK〈t,x,y〉 = {tx, txy, ty − y, txy − xy, tx− xt, ty − yt, xy, xt, yt− y, xty − xy}. (4.39)

75

Chapter 4. Ideal membership protocol

The Gröber basis for the intersection of the two original ideals in K〈x, y〉 is, therefore,

{xy, yx}. This shouldn’t be too hard to justify even without the algorithm. The reduced

Gröbner bases of the original 2 ideals were {x} and {y}. i.e. any polynomial that contained

at least one x (y) in each term would have been an element of the first (second) ideal. The

intersection, therefore, would have to be all of the polynomials that included at least one

of each variable in every term.

Our assumption for a potential attacker is that they would try and create an ideal

similar to Alice’s. The attacker may not know Alice’s ideal but they can certainly create

an ideal which contains the public ideal. Recall that we chose 3 polynomials to transfer

to Bob. We will now show that these choices come from distinct cosets of Alice’s private

ideal. In fact, they were each a member of different ideals, namely

• 〈I, xz + x, z4y − z3y〉,

• 〈I, yz + y, xz4 − yzxz〉,

• 〈I, zx+ z, xz4 − z2yx, y3x+ yzy, z3y − zyz〉,

where I is the public ideal from the example. To make it easier to find polynomials that

lie in one ideal but not the others we will find the reduced Gröbner basis. The reduced

Gröbner bases of the 3 ideals are

• 〈xy, yz, xz + x〉,

• 〈xy + y2, zy + y, y2 + zy,−yx+ zy, yz + y, xz4 − yzxz〉,

• 〈−zy3 +(zy)2, zy2x+yzy, zyx+zy, z2y2−z2yz, z5−z2yz, yz−zy, xz2y−yz2x, xzy+

yz, zx+ z, xz4 − z2yx, y3x+ yzy, z3y − zyz〉.

To begin with, we will start with generating an element from the 3rd ideal, this should

be the simplest place to start as there are fewer leading monomials in the other two ideals

to be concerned about and therefore easier to membership test. From the first ideal, we can

see that the leading monomial cannot contain the substrings xy, yz, xz. From the second

ideal, we see that the leading monomial cannot contain the substrings zy, y2, yx, xz4. The

first thing we notice is that there is no possible combination of letters containing a y

allowed. Also, due to the xz monomial, the only polynomials left that we can form out of

the generators of the 3rd ideal have a leading monomial of the form zmxn, for m,n ≥ 1.

We could spend time working out all the possible lead monomials for the polynomial in

ideal 2, however for sake of example we note that this is the only ideal that contains a

lead monomial with only y′s.

As for ideal 1, once again, any monomial containing y will also be divisible by the lead

monomial of at least one polynomial in ideal 2. This eliminates all but one of our generators

from ideal 1. Our polynomial used here, therefore, will be of the form l(xz+x)r, ensuring

76

Chapter 4. Ideal membership protocol

that l and r are not chosen in such a way to contain a substring of the lead monomials

from the other ideals.

Now that we understand how Alice chose her ε’s, we would like to ensure that these choices

of ideals were suitable by examining their intersection. Our starting point for creating these

ideals was to use the public ideal I, so our goal is to check that each pairwise intersection

is a larger ideal than I.

Now that we understand how Alice chose her ε’s, we would like to ensure that these choices

of ideals were suitable by examining their intersection. Our starting point for creating these

ideals was to use the public ideal I, so our goal is to check that each pairwise intersection

is a larger ideal than I.

Even for seemingly small ideals finding a Gröbner basis for the intersections takes a long

time. We don’t need to find the full basis, however, just examples of elements that aren’t

in the public ideal. In the intersection of the first 2 ideals we have the polynomial

xzy + xy = (xz + x)y = x(zy + y). (4.40)

The middle representation shows it as a sum of ideal 1s basis, whereas the right represen-

tation shows it as a sum of ideal 2s basis. It cannot be a member of our public ideal as

the second term doesn’t contain a z. Every term in the public ideal does contain a z so it

would be impossible for it to be a member.

Now within the intersection of ideal 1 and ideal 3 we have the polynomial

z4y − z3y = z(z3y − zyz) + z2(yz − zy). (4.41)

The left side of the equation is a generator of ideal 1 and the right-hand side is expressed

as a sum of generators from ideal 3. [Rai (2004)] discusses how the public ideal could not

contain polynomials whose leading term of the form zmy, therefore our polynomial could

not be a member.

As you can see, the public ideal is included (not equal) to the intersection of Alice’s ideal

and each of her decoys. This means that there is a chance that an Eavesdropper may

mistakenly believe one of Alice’s coset polynomials is a member of the public ideal.

4.3.5 Practical concerns

Questions that may need to be addressed if there was to be a practical implementation of

the key exchange protocol are:

• There is an important requirement that the polynomials sent back and forth maintain

their order. What can be done to ensure that Alice and Bob are confident that they

have received the polynomials in the intended order?

• Depending on how the ordering is recorded, even if only a subset of polynomials fails

77

Chapter 4. Ideal membership protocol

to be transferred, all may have to be resent.

4.4 Improving the protocol in a Hecke algebra setting

In this section, we will look to be more specific about the setting we wish to use for our

scheme. We will look at how we can use Hecke algebras in cryptosystems that use Gröbner

bases. In particular, we will see how using a Hecke algebra can greatly improve the way

in which we generate our private keys.

4.4.1 Infinite Gröbner bases with Hecke Algebra relations

The work on algorithms in various algebraic settings was studied in depth by Shirshov

[Shirshov (1999)]. Due to his contribution, in the settings he worked in, we use the name

Gröbner-Shirshov basis. Work in Hecke algebras follows this convention. Here we form

the Gröbner-Shirshov basis for Hecke algebras where we adopt the notation

Ti,j = TiTi−1 · · ·Tj for i ≥ j. (4.42)

Just as we did with our standard polynomial space, we can create a Gröbner-Shirshov

basis from a public Hecke algebra to easily solve the membership problem privately.

Proposition 4.1 (Kang et al. (2002)).

The following relations form a Gröbner-Shirshov basis for Hq(W) with respect to the mono-

mial order DegLex:

Rq,DegLex =


TiTj − TjTi, for i > j + 1,

T 2
i − (q − 1)Ti − q, for 1 ≤ i ≤ n− 1,

Ti+1,jTi+1 − TiTi+1,j , for i ≥ j.

(4.43)

If we are interested in using Hecke algebras for the protocol, then we need to know

that ideals can be formed that have an infinite Gröbner basis. In the following proposition

we introduce a new ideal that also does not have a finite Gröbner basis. We do this by

adapting the ideal from Theorem 4.5 to create a new ideal by adding relations from a

Hecke algebra as generators.

Proposition 4.2. Let K be a finite field and K〈x, y, z〉 the noncommutative free algebra

over K. The ideal I does not have a finite Gröbner basis under the DegLex order where

I = 〈xzy + yz, yzx+ zy, xz − zx, yzy − zyz, xyzx− yxyz, xyx− yxy〉. (4.44)

Proof. Firstly, consider the poylnomials g0 = xzy+yz and g1 = xz−zx. NowO(g0, g1, r2 =

y) = yz+zxy. Since we using DegLex ordering here, zxy > yz so we denote g2 = zxy+yz.

78

Chapter 4. Ideal membership protocol

Next we consider the polynomial O(g2, g1, r2 = xy) = xyz + zx2y. Once again under

DegLex we have g3 = zx2y + xyz.

We now begin to see a pattern emerge when we calculate O(g3, g1, l1 = x, r2 = x2y) =

x2yz + zx3y, which under DegLex gives us g4 = zx3y + x2yz.

Continuing inductively, we get the infinite sequence:

gn = O(gn−1, g1, l1 = x, r2 = xn−1y) = zxn+1y + xnyz, for n ≥ 2. (4.45)

If I had a finite Gröbner basis then the tip of some element of the basis would have to

divide infinitely many zxn+1y. The tip of this element would therefore have to be one of

• xmy for some m ≥ 0 or

• zxm for some m ≥ 0.

Firstly, let’s assume for a fixed m, that xmy ∈ Tip(I). This means there must exist an

F = l1(xzy + yz)r1 + l2(yzx+ zy)r2 + · · ·+ l6(xyx− yxy)r6 ∈ I such that tip(F) = xmy.

This turns out to be impossible though as none of the terms in our basis are a subword of

xmy for any m ≥ 0.

We now assume for a fixed m, that zxm ∈ Tip(I). Now the only way zxm can appear in

a term in F is if F = · · · + (xz − zx)xm−1 + However, this means the term xzxm−1

also appears. Now xzxm−1 > zxm so it needs to be subtracted off.

To have xzxm−1 appear in some other way, the polynomial x(xz− zx)xm−2 must appear.

Now the term x2zxm−2 > xzxm−1 must be subtracted off.

We continue this process inductively until we reach xm−1(xz − zx), where the term xmz

needs to be subtracted off. There is no other way to form that term with the generators

in I, therefore, zxm /∈ Tip(I).

Since neither of the monomials can appear in Tip(I) there must be infinitely many terms

in our Gröbner basis under this ordering.

We have seen how the braid relations can be added to a basis with an infinite Gröbner

basis. So far we have only added these relations to the ideal 〈xzy+ yz, yzx+ zy〉 however,

using only one ideal for all encryption would give attackers plenty of time to try break

that particular example. Theorem 4.5 has a following corollary that provides an infinite

set of ideal options.

Corollary 4.2 (Rai (2004)). Let K be a finite field, and let K〈x1, x2, . . . , xn〉 be the

noncommutative free algebra in n variables with n ≥ 5. Let

A =

n∏
i=1

xi, B = x1(
n−1∏
i=2

ρ(xi))xn and C = x1(
n−1∏
i=2

σ(xi))xn, (4.46)

79

Chapter 4. Ideal membership protocol

where ρ and σ are nontrivial permutations of {x2, x3, . . . , xn−1}. Let g1 = ACB + BC,

g2 = BCA + CB. Then I = 〈g1, g2〉 does not have a finite Gröbner basis under and

admissible order.

4.4.2 Invertible elements of Hecke algebras

Recall the description of the key exchange that we needed to choose a specific quotient

space to work in. The reason for this was so that the 2 polynomial keys exchanged

were the inverses of one another. One of the main advantages of using Hecke algebras is

that individual monomials have an inverse defined that is not dependent on the choice of

ideal. This means that there is no need to worry about the tradeoff between security and

ciphertext growth. The inverse of the generator Ts is

T−1
s = q−1Ts − 1 + q−1. (4.47)

We can check this quickly by multiplying this on the left by Ts

Ts(q
−1Ts − 1 + q−1) = q−1T 2

s − Ts + q−1Ts

= q−1((q − 1)Ts + q)− Ts + q−1Ts

= q−1(qTs − Ts + q)− Ts + q−1Ts

= Ts − q−1Ts + 1− Ts + q−1Ts = 1.

(4.48)

Multiplying by Ts on the right looks very similar.

Theorem 4.8 (Kazhdan & Lusztig (1979)). Let u, v ∈ W . There is a family Ru,v(q) of

polynomials such that

(Tv−1)−1 = q−l(v)
∑
u≤v

(−1)l(v)−l(u)Ru,v(q)Tu, (4.49)

where l(w) is the length of the reduced word w.

This family is known as R-polynomials. Note that Ru,u(q) = 1. R-polynomials can be

computed inductively using the following theorem.

Theorem 4.9 (Kazhdan & Lusztig (1979)). Let s ∈ S be such that vs < v. Then

Ru,v(q) = Rus,vs(q) (4.50)

if us < u, and

Ru,v(q) = qRus,vs(q) + (q − 1)Ru,vs(q) (4.51)

otherwise.

80

Chapter 4. Ideal membership protocol

Example. Suppose we have a Coxeter system with presentation < s1, s2|s2
1 = 1, s2

2 =

1, (s1s2)m1,2 = 1 >. Find the inverse of Ts1s2 .

According to the formula for the inverse we have

(T(s2s1)−1)−1 = q−2
∑

u≤s2s1

(−1)2−l(u)Ru,s2s1(q)Tu

= q−2(R1,s2s1T1 −Rs1,s2s1Ts1 −Rs2,s2s1Ts2 +Rs2s1,s2s1Ts2s1).

(4.52)

Even for a seemingly simple choice of T , some work has to go into finding the R polyno-

mials.

R1,s2s1 = qRs1,s2 + (q − 1)R1,s2 = (q − 1)(qRs2,1 + (q − 1)R1,1) = q2 − 2q + 1. (4.53)

Rs1,s2s1 = R1,s2 = qRs2,1 + (q − 1)R1,1 = q − 1. (4.54)

Rs2,s2s1 = qRs2s1,s2 + (q − 1)Rs2,s2 = (q − 1)R1,1 = q − 1. (4.55)

Rs2s1,s2s1 = 1. (4.56)

Substituting these values back into our formula we have

q−2((q2 − 2q + 1)T1 − (q − 1)(Ts1 + Ts2) + Ts2s1)

= T1 − 2q−1T1 + q−2T1 − q−1Ts1 + q−2Ts1 − q−1Ts2 + q−2Ts2 + q−2Ts2s1 .
(4.57)

We check this is the correct inverse by multiplying on the right of Ts1s2 and state that the

same property holds if multiplied on the left.

Ts1s2(T1 − 2q−1T1 + q−2T1 − q−1Ts1 + q−2Ts1 − q−1Ts2 + q−2Ts2 + q−2Ts2s1) (4.58)

Applying the relations TiTj = Tij and T 2
s2 = (q − 1)Ts2 + q, the above expands to

Ts1s2 − 2q−1Ts1s2 + q−2Ts1s2 − q−1Ts1s2s1 + q−2Ts1s2s1 − Ts1s2 + q−1Ts1s2

− Ts1 + q−1Ts1s2 − q−2Ts1s2 + q−1Ts1 + q−1Ts1s2s1 − q−2Ts1s2s1 + Ts1 − q−1Ts1 + 1

= 1.

(4.59)

We have established that individual monomials in Hecke algebras have an inverse that

can be calculated. When performing our key exchange, however, Alice and Bob are sending

polynomials. Finding an inverse for those is a greater challenge. It would be advantageous

to use just a single monomial instead of a polynomial in terms of the cost of moving and

storing this information.

The beauty of using the Hecke algebra is that the braid relations involved should help to

fortify against other attacks. Recent papers on braid group problems still suggest that it is

81

Chapter 4. Ideal membership protocol

an open problem to solve the conjugacy problem for braid in polynomial time [Schleimer &

Wiest (2019)]. This suggests that this type of problem may have cryptographic use. Our

ciphertext is now equal to our plaintext multiplied on the left by a monomial and on the

right by a polynomial. We can think of this multiplying on the left, however, as multiple

ciphertexts, each of which has been multiplied on the right by an individual monomial.

This, in essence, is an example of the multiple conjugacy problem. That means it should

be hard to find p or q given knowledge of a plaintext and corresponding ciphertext. Such a

property means that this revised version of the scheme is resistant to known (and chosen)

plaintext attacks, assuming this instance of the multiple conjugacy problem is still hard.

Because of the way the secret key is chosen, we can’t just send monomials back and forth

in the key exchange. We must, therefore, construct a method for Alice and Bob to decide

on a monomial based on the polynomials being sent. We achieve this with the following

method.

Monomial selection process

1. Alice sends Bob her polynomials SA,0, SA,1, . . . SA,n−1, where SA,i is the polynomial

from her private ideal. Bob sends back to Alice the polynomials SB,0, SB,1, . . . SB,n−1

where SB,j is the polynomial they agree on.

2. Because Alice and Bob maintain the order the polynomials were sent, Alice knows

the positions of both her original choice and the choice Bob made, positions i and j

respectively.

3. Alice can then calculate the difference between the locations j− i mod(n) and sends

that value to Bob (Eve doesn’t know i or j so the difference means nothing).

4. Upon receiving the value from Alice, Bob can calculate the position of Alice’s original

polynomial j − (j − i) mod(n) = i. Alice and Bob both know that position and can

use that value to select the monomial at the ith position from the secret polynomial.

The first thing to note about this method is that, if the number of polynomials sent is

not equal to the number of terms in each polynomial, there will be some redundancy in

the method. For example, if 5 polynomials are sent and some have 6 or more terms. The

6th terms and onwards couldn’t possibly be chosen because we are assuming the position

value is in Z5. We could return to the idea of performing the exchange multiple times if

we wish to generate more combinations of position values.

The only new value being made public is the value Alice sends back to Bob. This repre-

sented the difference in location between Alice’s and Bob’s choice in polynomial. Because

we believe an eavesdropper has no idea the location of either polynomial, the new value

Alice sent will not provide information about the location of either polynomial.

82

Chapter 4. Ideal membership protocol

4.4.3 Updating the key exchange protocol

1. Alice and Bob agree on the number of polynomials they wish to communicate and

how many times they need to perform the exchange.

2. Alice and Bob agree publicly on generators, x1, . . . , xn for an ideal. This ideal in-

cludes braid relations and has the property that Mora’s algorithm will not terminate

if used with this basis.

3. Alice selects a subset of [1, n], say [a, b] and forms a Gröbner basis of the form in

proposition 4.1, along with powers of the variables x1, . . . , xa−1, xb+1, . . . , xn.

4. Bob as usual chooses which polynomial will be the secret key.

5. Alice calculates Bobs choice.

6. Alice and Bob perform the monomial selection process.

7. Alice and Bob both calculate the inverse of the chosen monomial.

Example. Alice and Bob agree to perform one key exchange that involves four polyno-

mials. They also publicly agree to use the generators x, y and z where x > y > z. Their

public, I, will be the one from proposition 4.2.

Alice chooses the variables y and z to use for the Hecke algebra relations and constructs

her private ideal

AI = 〈I, y2 − (q − 1)y − q, z2 − (q − 1)z − q, x3 + x2〉. (4.60)

She sends the polynomials SA0 , SA1 , SA2 , SA3 to Bob, where SA1 is the polynomial from

her ideal and

SA0 = xzy + yz − y(yx2 + zx2)z = −y2x2z − yzx2z + xzy + yz

SA1 = xyzx− yxyz + x3 + x2

SA2 = yzx+ zy + (xz − z2)x = xzx+ yzx− z2x+ zy

SA3 = yzy − zyz + (zyx+ x2)z = zyxz + x2z + yzy − zyz.

(4.61)

Bob chooses the secret polynomial SB = (yzy − zyz) + (yzx+ zy)xz + x(xz − zx) =. He

finds the difference between SB and SA3

SBdiff
= yzx2z − xzx. (4.62)

83

Chapter 4. Ideal membership protocol

He therefore sends back

SB0 = −y2x2z − yzx2z + xzy + yz + yzx2z − xzx = −y2x2z − xzx+ xzy + yz

SB1 = xyzx− yxyz + x3 + x2 + yzx2z − xzx = yzx2z + xyzx− yxyz + x3 − xzx+ x2

SB2 = xzx+ yzx− z2x+ zy + yzx2z − xzx = yzx2z + yzx− z2x+ zy

SB3 = (yzy − zyz) + (yzx+ zy)xz + x(xz − zx) = yzxxz + zyxz + x2z − xzx+ yzy − zyz.
(4.63)

Alice proceeds to work out that Bob has chosen SB3 . She now knows that her polyno-

mial was at position 1 and that Bob’s polynomial is at position 3. She sends the difference

mod 4 back to Bob. Now Alice and Bob both know to use the 2nd monomial in SB3 , zyxz,

as the private key. Now they have a monomial in a Hecke algebra they can calculate the

second secret key as the inverse of zyxz.

In step 3 Alice chooses a subset of the generators so that it is more difficult for an attacker

to guess her private basis. She needs to ensure that there is no gap in her choice of genera-

tors for the relations. Using the variables xa, xa+1, . . . , xc−1, xc+1, . . . , xb, where a < c < b,

would not be an acceptable choice. This would exclude some of the relations that are part

of the Hecke algebra Gröbner basis, meaning Alice could not form the relevant Gröbner-

Shirshov basis. When choosing her polynomials to send, Alice, therefore, needs to make

sure that her polynomials all look like they would come from a similar structure.

84

Chapter 5

Understanding the complexity of

protocols

In this chapter, we will study the complexity of the problem we based our cryptosystem

on in the previous chapter. Section 1 will introduce the different measures of complexity

in order to establish why we choose in particular to use generic complexity.

Section 2 and onwards contains original material with this section providing a general

theorem about finding the generic complexity of Mora’s algorithm on different ideals.

Section 3 and 4 will take the theorem given in the previous section and apply it in more

detail to our example.

5.1 Measures of complexity

In this section, we will study different measures of complexity, started with worst case

complexity and build up to what we believe to be the best representation of complexity

for cryptographic problems, generic complexity. We will use the quicksort algorithm [Hoare

(1961)] as an example throughout to help understand the measures better.

5.1.1 Calculating bounds

When understanding how efficient an algorithm is, knowing exactly how many basic op-

erations isn’t as important as knowing some kind of bound on the number of operations

required. This bound is a function of the length of the input to some algorithm [Arora &

Barak (2009)].

Definition. Given 2 functions, f, g, from Z to Z, define

• f = O(g) if there exists a constant c such that f(n) ≤ c · g(n) for large enough n,

• f = Ω(g), if g = O(f),

85

Chapter 5. Understanding the complexity of protocols

• f = Θ(g), if both f = O(g) and g = O(f),

• f = o(g) if for every ε > 0, f(n) ≤ ε · g(n) for large enough n,

• f = ω(g) if g = o(f).

Because we are dealing with algorithms that may not terminate, we adopt the following

definition.

Definition. An algorithm is referred to as partially correct if it is possible that it won’t

terminate but, if it does terminate, the output will be correct.

5.1.2 Worst case complexity

The worst case complexity of an algorithm refers to the longest running time (space)

needed for any input of size n. Knowing this bound guarantees that any possible input of

the same size will take less than or the same amount of time (space).

Later on in this chapter, a sorting algorithm will be used together with Mora’s algorithm.

Here we give a concrete example, the quicksort algorithm that would be used in this way.

The quicksort uses a recursive divide and conquers approach to sort an array.

Algorithm 6 Quicksort

1: procedure QUICKSORT(A, p, r), A is an array that needs sorting, p is the initial

index, r is the final index

2: if p < r then

3: q = PARTITION(A, p, r)

4: QUICKSORT(A, p, q − 1)

5: QUICKSORT(A, q + 1, r)

6: return A sorted in ascending order

The partition algorithm called during the quicksort algorithm has the job of splitting

the array into 2 sub-arrays. The algorithm uses the last element of the array as a pivot

and partially sorts the whole array so that all values less than the pivot value now appear

before all values greater than the pivot [Cormen et al. (2009)].

86

Chapter 5. Understanding the complexity of protocols

Algorithm 7 Partition

1: procedure PARTITION(A, p, r), A is an array that needs sorting, p is the initial

index, r is the final index

2: x = A[r]

3: i = p− 1

4: for j = p to r − 1

5: if A[j] ≤ x
6: i = i + 1

7: Swap A[i] with A[j]

8: end if

9: end for

10: Swap A[i+ 1] with A[r]

11: return i+ 1

Theorem 5.1. The worst case complexity of the quicksort is O(n2).

Proof. To prove this theorem, consider the case where the array is already sorted (a similar

argument also applies if the order is completely reversed). As the algorithm works through

the loops of an array of length n, at the ith iteration the array will be split into 2 sub arrays,

one of length 0 and the other of length n− i. If T (n) is the time it takes to complete the

entire quicksort and the partition algorithm is O(n) then this gives the recurrence relation

T (n) = T (n− 1) + T (0) +O(n)

= T (n− 1) +O(n),
(5.1)

where T (0) = O(1). Summing through this recursion gives an arithmetic series which

evaluates to O(n2).

As an example, figure 5.1 shows the iterations of running the quick sort array on an

already sorted array of length 5.

5.1.3 Average case complexity

Worst case complexity is a common way to measure the complexity of a computation

problem. The problem with measuring this way is that these worst cases can be few and

far between and therefore are not representative inputs. Average case complexity considers

the distribution of possible inputs where we calculate the expected number of operations

E(tn) =
∑
I∈Bn

tn(I)Pr(I), (5.2)

87

Chapter 5. Understanding the complexity of protocols

1 2 3 4 5

51 2 3 4

1 2 3 4

31 2

1 2

Left
parition

Pivot

Left
parition

Left
parition

Left
parition

Pivot

Pivot

Pivot

Right
partition

Right
partition

Right
partition

Right
partition

Figure 5.1: Worst case scenario for quick sort

where the probability Pr is typically uniform and Bn represents the collection of all inputs

of length n. tn(I) is the time taken to complete the algorithm on input I.

Theorem 5.2. The average case complexity of the quicksort is O(n log(n)).

Proof. To prove this theorem, the algorithm is updated slightly to randomly swap an

element of the array with the final element before assigning the pivot. The difference in

complexity arises from the number of times the comparison operation is performed. Define

the set

Zi,j = {zi, zi+1, . . . , zj}. (5.3)

The first important observation is that every pair of elements in this set are compared at

most once. To understand why consider elements zk and zk′ , where i ≤ k < j. For any

pair of elements in Zi,j , one of three things will happen

• zk will be compared with zj as it is the pivot.

• If zk < zj < zk′ then zk and zk′ will be separated into different partitions and

therefore never compared.

• If zk, zk′ < zj or zk, zk′ > zj then they will both placed in the same partition and

once again we will have to evaluate which of the 3 cases listed here they are in.

88

Chapter 5. Understanding the complexity of protocols

The pivot element isn’t ever included in the following recursive calls so there will be no

more opportunities to compare anything to zj .

Because each comparison occurs either once or not at all, it is natural to introduce the

variable Xi,j , the definition of which is

Xi,j =

1, if zi and zj were compared at some point throughout the quicksort,

0, otherwise.

With this in mind it is possible to calculate the total number of comparisons performed

by the algorithm.

X =
n−1∑
i=1

n∑
j=i+1

Xi,j ⇒

E[X] = E[

n−1∑
i=1

n∑
j=i+1

Xi,j]

=
n−1∑
i=1

n∑
j=i+1

E[Xi,j]

=

n−1∑
i=1

n∑
j=i+1

Pr(zi is compared with zj)

(5.4)

Suppose now that there is an array {zi, . . . , zk, . . . , zj} (put into a random order) where

zk is chosen to be the pivot value. zi and zj will never be compared since zi < zk and will,

therefore, be put in the lower list, while zj > zk and will subsequently be put in the upper

list. This means that the probability that zi is compared with zj in Zi,j is the probability

that one of them is chosen as the pivot.

Pr(zi is compared with zj) = Pr(zi or zj is the first chosen pivot from Zi,j)

= 2Pr(zi is the first pivot chosen from Zi,j)

=
2

j − i+ 1

(5.5)

This follows because the 2 events are mutually exclusive with the same probability. Sub-

89

Chapter 5. Understanding the complexity of protocols

stituting this value into the previous results gives the following result for time complexity.

E[X] =
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=
n−1∑
i=1

n−i∑
k=1

2

k + 1

<

n−1∑
i=1

n∑
k=1

2

k

=
n−1∑
i=1

O(lg n){Harmonic series}

= O(n lg n).

(5.6)

While the average-case complexity does a better job of considering how difficult a

problem is for any input the, potentially very limited, number of difficult instances do

influence the calculation. This is shown in the next example, where for each n there is

only a single hard instance of the problem, the other instances are linear yet our definition

of average-case tells us that the problem has exponential average-case complexity.

Example. (Taken from Wikipedia: Generic-case complexity) Let ω be a string of binary

digits. Let In = {0, 1}n be the set of all binary strings of length n and suppose one is

selected at random from a uniform distribution. Suppose we have an algorithm such that

the running time of the algorithm for a string of length n is

t(ω) =

{
22n , if the string is all 1’s

n, for all other strings in In.
(5.7)

The average complexity is calculated as follows

∑
ω∈In

tn(ω)Pr(ω) = (22n · 1

2n
) + (n · 2n − 1

2n
)

= 2n + n− n

2n

= O(2n).

(5.8)

5.1.4 Generic complexity

The average case complexity makes an effort to take into account all possible inputs. As

seen in the previous subsection, the issue with taking an average is that the calculation can

be heavily influenced by a small set of values that skew very high in complexity. Generic

90

Chapter 5. Understanding the complexity of protocols

complexity is used to capture the complexity of the problem when it comes to most of the

possible inputs, ignoring a small unrepresentative set of inputs [Kapovich et al. (2003)].

Definition. Let I be a countably infinite set. We also let |.| : I → Z≥0 represent a size

function. The ball of radius n is defined as Bn = {x ∈ I||x| ≤ n}.
For a subset S ⊆ I the lower asymptotic density ρ

I
(S) of S in I as

ρ
I
(S) = limsup

n→∞

#(BI(n) ∩ S)

#(BI(n))
. (5.9)

We can drop the supremum requirement of the definition if the actual limit exists, in which

case we denote the limit ρI(S) = lim
n→∞

#(BI(n)∩S)
#(BI(n)) . We call a subset S generic if ρI(S) = 1.

We will use tU (w) to represent the time it takes for an algorithm U to run on input w.

TU (w) ∈ N if the algorithm terminates with a desired output and ∞ otherwise.

Definition. Let U be a partial deterministic (Same input will always give the same output)

algorithm that takes an input from I and outputs an element from a countable set U .

An algorithm U has generic-case time complexity less than a monotone non decreasing

function, f(n) ≥ 0, if there exists a generic subset S ⊆ I, such that for every x ∈ I we

have tU (x) ≤ f(|x|).

Example. Returning to the example given in the average case complexity discussion,

define the set X = {Strings of 1′s and 0′s with at least one 0} ⊂ In. The running time

for this set of inputs was defined to be O(n). Inputting these sets into the asymptotic

density formula gives

limsup
n→∞

#(In ∩X)

#(In)
=

2n − 1

2n
= 1. (5.10)

Therefore, despite the average-case complexity of this problem is exponential, the generic

complexity is O(n).

5.2 Outline of the generic complexity proof

The remainder of the work in this chapter is the authors own. In this part, we will look

at our approach to finding the generic complexity of ideal membership testing in infinite

Gröbner bases. The following steps will cover the general idea for this type of problem.

Afterwards, we will look in more detail each step for the infinite Gröbner basis that has

been used in the previous section.

As part of the generic complexity calculation, we need to find the total number of instances

of the problem. First, the total number of degree n polynomials in the ideal needs to be

found. To do this its necessary to check each degree n polynomial to identify whether or

not it is in the ideal. We begin by looking at the general form for a polynomial in an ideal

91

Chapter 5. Understanding the complexity of protocols

I =< g1, . . . , gt >, namely

l1g1r1 + · · ·+ ltgtrt, (5.11)

where li, ri ∈ R.

In order to have a degree n polynomial it must be the case that

max1≤i≤t(deg(li) + deg(gi) + deg(ri)) = n. (5.12)

We can find the number of potential l’s and r’s, however, some degree n terms will cancel,

resulting in a polynomial of a lower degree. Therefore, it is necessary to see which leading

monomials of ideal elements can be formed in more than one way from multiple generators.

Now we are interested in which of these polynomials in the ideal (if any) require a long

time to be recognised as being whether they are in the ideal or not by an adversary’s

algorithm i.e. the hard instances. In order to look into this question, we start with a new

definition.

Definition. Let I = k〈x1, . . . , xt〉 be an ideal in a finite number of non-commuting vari-

ables x1, . . . , xt. We define pi,1 and pi,2 to be polynomials with the properties

LM(pi,1) = xiWi,1 (5.13)

and

LM(pi,2) = Wi,2xi (5.14)

for i ∈ {1, . . . , t}. Here Wi,j are monomials in {x1, . . . , xt}. The set {pi,j ∈ I, 1 ≤ i ≤
t, 1 ≤ j ≤ 2} is called a complete overlapping subset of the ideal I.

All pi,j need not be unique. For example p = x1x2 + x3 under degLex ordering could

satisfy the requirements for both p1,1 and p2,2. We will now discuss the theorem that is

the key property of our infinite Gröbner bases that suggests the membership problem is

difficult.

Theorem 5.3. Let R be a polynomial ring in a finite number of non-commuting variables

under deglex ordering, and let I be a finitely generated ideal of R. Suppose after a finite

number of iterations of Mora’s algorithm on I that every polynomial tested is added to the

Gröbner basis and we can construct a complete overlapping subset. Then the number of

S-polynomials generated grows exponentially in the degree of the polynomials.

Proof. The existence of a complete overlapping subset in the ideal means that every new

polynomial tested will overlap with at least 2 polynomials.

Consider all the possible degree n polynomials. If the lead monomial of a polynomial is

of degree n, then the largest possible degree of the second terms is also n. The same

reasoning tells us that the largest possible degree of the second terms in the complete

92

Chapter 5. Understanding the complexity of protocols

overlapping subset polynomials is

dpi,j = maxi,j{degree of pi,j}. (5.15)

The maximum degree of an S-polynomial formed from a degree n polynomial and the

complete overlapping subset is therefore

n+ dpi,j − 1. (5.16)

Let Pn = { Polynomials of degree at most n}. Then pn = |Pn| is the total number of

polynomials to be tested of degree n or less, then the linear increase of dpi,j − 1 in the

degree of results in

pn+dpi,j−1 ≥ 2pn. (5.17)

Continuing inductively we must have

pn+k(dpi,j−1) ≥ 2kpn. (5.18)

We would like to know how many terms are in each polynomial in the ever-growing

basis. This will allow us to have an understanding of how many polynomials are difficult

to classify. Let P finaln = T1 + · · · + Tm be the final degree n polynomial to be added by

Mora’s algorithm. Here T1, . . . , Tm are terms in R. A lower bound for the number of hard

instances can be given by

|{P finaln +Q|Q ∈ I \ {T1, . . . , Tm}, deg(Q) ≤ n}|. (5.19)

The idea here is that any polynomial in our ideal that contains Pn will be incorrectly seen

as not a member of I for a long time.

Although a single example will be covered in more detail in section 5.3, figure 5.2 gives

an impression of the distribution of degrees in some infinite Gröbner bases. Although not

identical, they all appear to increase similarly, with what appears to be some periodicity.

93

Chapter 5. Understanding the complexity of protocols

0 50 100 150 200

5
10

15
20

Degree of polynomial added at each stage of Mora's algorithm

Iteration

P
ol

yn
om

ia
l d

eg
re

e

0 50 100 150

5
10

15
20

Degree of polynomial added at each stage of Mora's algorithm

Iteration

P
ol

yn
om

ia
l d

eg
re

e
0 20 40 60 80 100 120 140

5
10

15
20

Degree of polynomial added at each stage of Mora's algorithm

Iteration

P
ol

yn
om

ia
l d

eg
re

e

0 50 100 150 200

5
10

15
20

Degree of polynomial added at each stage of Mora's algorithm

Iteration
P

ol
yn

om
ia

l d
eg

re
e

Figure 5.2: Experiments with different infinite Gröbner bases

5.3 Calculating the size of the balls in polynomial ideal

In this section, we will focus on finding the total number of polynomials of degree n in the

ideal we have been studying in the previous chapter. This will give us a way of calculating

the denominator of the fraction used to establish the generic complexity that was stated

in the definition in section 5.1.4.

5.3.1 Monomial restriction on example ideal

The process will begin by just considering members of the ideal 〈xzy+ yz, yzx+ zy〉 that

are of the form

ml1(xzy + yz)mr1 +ml2(yzx+ zy)mr2, (5.20)

where ml1,mr1,ml2,mr2 are monomials in k〈x, y, z〉.
A combinatorial argument will allow us to count how many monomials, in a finite number

of variables, can be multiplied by the basis elements to produce a polynomial of degree n.

Care needs to be taken however in checking if the leading terms cancel.

Taking into consideration degree 6 polynomials and higher, xzy and yzx can appear at

non-overlapping points of the lead monomial in the form

LM = · · ·xzy · · · yzx · · · or LM = · · · yzx · · ·xzy · · · . (5.21)

94

Chapter 5. Understanding the complexity of protocols

Position of xzy Position of yzx Leading monomial

[1, 2, 3] [4, 5, 6] xzy2zx

[4, 5, 6] [1, 2, 3] yzx2xzy

[1, 2, 3] [3, 4, 5] xzyzx?

[3, 4, 5] [1, 2, 3] yzxzy?

[2, 3, 4] [4, 5, 6] ?xzyzx

[4, 5, 6] [2, 3, 4] ?yzxzy

Table 5.1: Possible ways for degree 6 leading terms to cancel

There are 2 overlapping patterns, these are of the form

· · ·xz(y)zx · · · or · · · yz(x)zy · · · , (5.22)

where the variable in brackets is the overlap. Here the degree 6 monomials act as a

motivating example in table 5.1. The question mark represents a variable that could be

any one of the set {x, y, z}. This means in degree 6, there are 14 instances of leading terms

cancelling.

To consider higher degrees it is useful to split up the investigation into the 2 sets: those

where there is an overlap of the leading monomials and those where there isn’t.

Lemma 5.1. In the ideal generated by 〈xzy + yz, yzx + zy〉 ⊂ K〈x, y, z〉, the number of

monomials of length n ≥ 6 formed from monomials in K〈x, y, z〉 multiplied by the leading

monomials of the generators that cancel is equal to

2 ∗ 3n−6(3(n− 4) + Tn−5), (5.23)

where Tn is equal to the nth triangle number.

Proof. As mentioned above, we have 2 cases to deal with. First where the leading

monomials overlap when calculating the S-polynomial i.e. of the form l1(xzyzx)r1 or

l2(yzxzy)r2. The second case is where the 2 leading monomials appear at separate loca-

tions in the leading monomial of a sum of the generators i.e. of the form l1(xzy)m1(yzx)r1

or l2(yzx)m2(xzy)r2.

Case 1:

The length of xzyzx is 5, so length(l1) + length(r1) = n − 5. Suppose without loss of

generality we can choose the length of l1 to be any value from {0, 1, . . . , n − 5}. This

choice will decide the length of r1. We therefore have |{0, 1, . . . , n − 5}| = n − 4 ways to

distribute the number of variables to l1 and r1. Since each variable can be one of x, y or

z, there are 3n−5(n − 4) monomials of the form l1(xzyzx)r1 that meet our criteria. The

same reasoning applies to l2(yzxzy)r2 giving us a total of 2 ∗ 3n−5(n− 4) monomials.

95

Chapter 5. Understanding the complexity of protocols

Case 2:

Distributing the number of variables between l1,m1 and r1 is just an application of the

combinatorial result covering stars and bars, where we have length(l1) + length(m1) +

length(r1) = n − 6 stars and 2 bars (being the monomials xzy and yzx). This gives us(
(n−6)+2

2

)
=
(
n−4

2

)
= Tn−5 ways to distribute the variables. Once again taking into account

there are 3 possibilities for each variable and the same method applies to l2(yzx)m2(xzy)r2,

we have a total of 2 ∗ 3n−6Tn−5 possibilities.

Summing the two cases gives us the result stated in the lemma.

Now that it has been shown how many monomials will cancel in the leading terms

of the generators, we need to check how this trend will continue. To count the number

of polynomials formed in the ideal up to degree n, it is important to see if any linear

combination of generators could equal zero.

Lemma 5.2. In the ideal I =< xzy+ yz, yzx+ zy >, there do not exist non-zero polyno-

mials α, β, δ, γ ∈ K < x, y, z > such that α(xzy + yz)β + δ(yzx+ zy)γ = 0.

Proof. Firstly the general form of an element in the choice of ideal is

(α1 + α2 + · · ·+ αM)(xzy + yz)(β1 + β2 + · · ·+ βN)

+ (γ1 + γ2 + · · ·+ γP)(yzx+ zy)(δ1 + δ2 + · · ·+ δQ),
(5.24)

where all the α, β, γ, δ ∈ K < x, y, z >. Suppose all the γ’s and δ’s equal 0 i.e. an ideal

element that is a formed from a single generator. Let

maxDegree{α1, α2, . . . , αM}+maxDegree{β1, β2, . . . , βN} = n. (5.25)

Suppose without loss of generality LM((α1+· · ·+αM)(xzy+yz)(β1+· · ·+βN)) = α1xzyβ1.

Now for the whole polynomial to be equal to zero it must first be the case that the leading

monomial must cancel. There must exist therefore αi, βj , i and j not both equal to 1 such

that

α1xzyβ1 − αixzyβj = 0. (5.26)

It must be the case that xzy appears at a different location in second monomial therefore

deg{α1} 6= deg{αi} & deg{β1} 6= deg{βj},

⇒ deg{α1}+ deg{βj} > deg{α1}+ deg{β1},

or deg{αi}+ deg{β1} > deg{α1}+ deg{β1},

(5.27)

since deg{αi} + deg{βj} = n. This a contradiction to what we have claimed to be the

maximum degree earlier. Therefore, at least one of the γ’s or δ’s is not zero. If that is

true then there are 4 possible cases we need to look at. We will focus on how the lead

monomial will cancel.

96

Chapter 5. Understanding the complexity of protocols

1. Our leading monomial contains the overlap xzyzx.

(α1
1α

2
1 · · ·αR1 + · · ·+ αM)(xzy + yz)(zxβ1

1β
2
1 · · ·βS1 + · · ·+ βN)

− (α1
1α

2
1 · · ·αR1 xz + γ2 + · · ·+ γP)(yzx+ zy)(β1

1β
2
1 · · ·βS1 + δ2 + · · ·+ δQ)

= α1
1α

2
1 · · ·αR1 yzzxβ1

1β
2
1 · · ·βS1 − α1

1α
2
1 · · ·αR1 xzzyβ1

1β
2
1 · · ·βS1 + . . .

(5.28)

2. Our leading monomial contains the overlap yzxzy.

(α1
1α

2
1 · · ·αR1 yz + · · ·+ αM)(xzy + yz)(β1

1β
2
1 · · ·βS1 + · · ·+ βN)

− (α1
1α

2
1 · · ·αR1 + γ2 + · · ·+ γP)(yzx+ zy)(zyβ1

1β
2
1 · · ·βS1 + δ2 + · · ·+ δQ)

= α1
1α

2
1 · · ·αR1 yzyzβ1

1β
2
1 · · ·βS1 − α1

1α
2
1 · · ·αR1 zyzyβ1

1β
2
1 · · ·βS1 + . . .

(5.29)

3. Our leading monomial is of the form · · ·xzy · · · yzx · · · .

(α1
1α

2
1 · · ·αR1 + · · ·+ αM)(xzy + yz)(β1

1β
2
1 · · · yzx · · ·βS1 + · · ·+ βN)

− (α1
1α

2
1 · · ·αR1 xzyβ1

1β
2
1 · · ·βi1 + γ2 + · · ·+ γP)(yzx+ zy)(βi+4

1 · · ·βS1 + δ2 + · · ·+ δQ)

= α1
1α

2
1 · · ·αR1 yzβ1

1β
2
1 · · · yzx · · ·βS1 − α1

1α
2
1 · · ·αR1 xzyβ1

1β
2
1 · · ·βi1zyβi+4

1 · · ·βS1 + . . .

(5.30)

4. Our leading monomial is of the form · · · yzx · · ·xzy · · · .

(α1
1α

2
1 · · ·α

j
1yzxα

j+4
1 · · ·αR1 + · · ·+ αM)(xzy + yz)(β1

1β
2
1 · · ·βS1 + · · ·+ βN)

− (α1
1α

2
1 · · ·α

j
1 + α2 + · · ·+ αM)(yzx+ zy)(αj+4

1 · · ·αR1 xzyβ1
1β

2
1 · · ·βS1 + δ2 + · · ·+ δQ)

= α1
1α

2
1 · · · yzx · · ·αR1 yzβ1

1β
2
1 · · ·βS1 − α1

1α
2
1 · · ·α

j
1zyα

j+4
1 · · ·αR1 xzyβ1

1β
2
1 · · ·βS1 + . . .

(5.31)

Similar to before, for the whole polynomial to be equal to zero, something must cancel

the leading monomial of the remaining polynomial. Note here that if we are to cancel

this time then it must be from something of the form l1yzr1 or l2zyr2, i.e. product on

the left and right of the second terms in our generators. Note that if the new leading

monomial was a product of the first terms of our generators again we would simply repeat

the previous step.

Once again we will work through the 4 cases of the original leading monomial and show that

the new leading terms can’t cancel. When we considered only products of the generator

xzy + yz, p1 = l1(xzy + yz)r1 and p2 = l2(xzy + yz)r2 we made an argument about the

position of the xzy being different for the 2 polynomials being subtracted. This caused a

contradiction as at least one of l1, r1, l2, r2 had a higher degree than what we asserted was

the largest degree. We will now construct a similar argument to show we can’t cancel the

new leading monomial that contains either yz or zy.

1. The original lead monomial was α1
1α

2
1 · · ·αR1 (xzy)zxβ1

1β
2
1 · · ·βS1 .

97

Chapter 5. Understanding the complexity of protocols

We have Deg(α1
1α

2
1 · · ·αR1) = R and Deg(zxβ1

1β
2
1 · · ·βS1) = S + 2.

After that monomial has canceled we have LM = α1
1α

2
1 · · ·αR1 xzzyβ1

1β
2
1 · · ·βS1 .

The best choice is

(α1
1α

2
1 · · ·αR1 xzz)︸ ︷︷ ︸

degree too big

(xzy + yz)(β2
1 · · ·βS1). (5.32)

The degree of the left monomial is R+ 3 > R.

2. The original lead monomial was α1
1α

2
1 · · ·αR1 (yzx)zyβ1

1β
2
1 · · ·βS1 .

We have Deg(α1
1α

2
1 · · ·αR1) = R and Deg(zyβ1

1β
2
1 · · ·βS1) = S + 2

After that monomial has canceled we have LM = α1
1α

2
1 · · ·αR1 yzyzβ1

1β
2
1 · · ·βS1 .

The best choice is

(α1
1α

2
1 · · ·αR1 y)︸ ︷︷ ︸

degree too big

(yzx+ zy)(zβ1
1β

2
1 · · ·βS1). (5.33)

The degree of the left monomial is R+ 1 > R.

3. The original lead monomial was α1
1α

2
1 · · ·αR1 (xzy)β1

1β
2
1 · · · yzx · · ·βS1 .

We have Deg(α1
1α

2
1 · · ·αR1) = R and Deg(β1

1β
2
1 · · · yzx · · ·βS1) = S.

After that monomial has canceled we have LM = α1
1α

2
1 · · ·αR1 xzyβ1

1β
2
1 · · ·βi1zyβ

i+4
1 · · ·βS1 .

The best choice is

(α1
1α

2
1 · · ·αR1 xz)︸ ︷︷ ︸

degree too big

(xzy + yz)(β2
1 · · ·βi1zyβi+4

1 · · ·βS1). (5.34)

The degree of the left monomial is R+ 2 > R.

4. The original lead monomial was α1
1α

2
1 · · ·α

j
1(yzx)αj+4

1 · · ·αR1 xzyβ1
1β

2
1 · · ·βS1 .

We have Deg(α1
1α

2
1 · · ·α

j
1) = j and Deg(αj+4

1 · · ·αR1 xzyβ1
1β

2
1 · · ·βS1) = S +R− j.

After that monomial has canceled we have LM = α1
1α

2
1 · · ·α

j
1yzxα

j+4
1 · · ·αR1 yzβ1

1β
2
1 · · ·βS1 .

The best choice is

(α1
1α

2
1 · · ·α

j−1
1)(yzx+ zy) (zxαj+4

1 · · ·αR1 yzβ1
1β

2
1 · · ·βS1)︸ ︷︷ ︸

degree too big

. (5.35)

The degree of the left monomial is S +R− j + 1 > S +R− j.

In each case there has been a contradiction in degree size therefore these terms cannot

cancel. This means that the overall polynomial could not equal zero.

With the knowledge that there is no way to cause the two generators to fully cancel,

it is now possible to establish the size of the balls of polynomials, degree n and below.

98

Chapter 5. Understanding the complexity of protocols

Corollary 5.1. The total number of polynomials up to degree n in the ideal K < xzy +

yz, yzx+ zy > is double exponential in n.

Proof. Let k be the size of the coefficient K space for our polynomials in K < x, y, z >.

Up to degree n, in 3 variables, there will be
∑n

i=0 3i different monomials. Therefore the

total number of polynomials up to degree n will be

k
∑n

i=0 3i = k
3(1−3n)

1−3 = k
3n+1−3

2 , (5.36)

by geometric progression.

Every polynomial that is not a member of the ideal will be correctly identified as not a

member, regardless of how long Mora’s algorithm has run. Therefore if all hard instances

are contained within the ideal, it makes sense to compare the number of degree n poly-

nomials and smaller in the ideal. For each of the generators, we are multiplying on the

left and right by a polynomial. The formula above covers the total number of polynomials

up to a given degree but now there are 2 collections. The total degree of the left and

right-hand size must not exceed n−3 (since the degree of both generators is 3). Therefore

now, for each degree i, 0 ≤ i ≤ n − 3, of the left polynomial, the right polynomial can

have any degree, 0 ≤ j ≤ (n− 3)− i. The above formula can, therefore, be expanded on

to give

k
∑n

i=0(3i·
∑n−i

j=0 3j), (5.37)

once again the summation in brackets is a geometric progression.

Because there are 2 generators in this ideal, this calculation needs to be used twice. The

degree of one the generators linear combination has no impact on the other. Therefore, it

is just a case of squaring the formula for the total number of polynomials in the ideal up

to degree n i.e.

k
1
2

∑n−3
i=0 3n−2−3i+1 · k

1
2

∑n−3
i=0 3n−2−3i+1

= k
∑n−3

i=0 3n−2−3i+1
. (5.38)

Both the total number of polynomials inK < x, y, z > and the total number of polynomials

in K < xzy + yz, yzx+ zy > grow according to double exponential functions.

Since we know our hard instances are within our ideal, it is a good start to know this

space isn’t going to get small relative to the whole polynomial space.

5.4 How many hard instances are there in each ball?

In this section, we try to understand how many polynomials of a given degree are difficult

to classify as a member or not of the ideal from Theorem 4.5. We will attempt to make an

argument about what exactly is the proportion of these polynomials to the total number

of polynomials established in the previous section.

99

Chapter 5. Understanding the complexity of protocols

5.4.1 Sorted Mora’s algorithm

0 100 200 300

5
10

15
20

25
30

Degree of polynomial added at each stage of Mora's algorithm

Iteration

P
ol

yn
om

ia
l d

eg
re

e

400 iterations of Mora's algorithm

Degree of polynomial

F
re

qu
en

cy

0 5 10 15 20

0
5

10
15

1000 iterations of Mora's algorithm

Degree of polynomial

F
re

qu
en

cy

0 5 10 15 20 25 30

0
10

20
30

2500 iterations of Mora's algorithm

Degree of polynomial

F
re

qu
en

cy

0 10 20 30 40

0
20

40
60

50 iterations of sorted Mora

Degree of polynomial

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0
20

0
40

0

Figure 5.3: The top plot shows a time series of degrees of polynomial added at each iteration.
The bottom right plot shows how many of each degree are added in the sorted variant of Mora’s
algorithm. The remaining plots show the distribution of polynomial degrees added after various
iterations

To try and understand which polynomials are actual hard instances of the ideal member-

ship problem, it is worth examining the order in which polynomials are added to an ideal

during Mora’s algorithm. Figure 5.3 shows various plots that give more of an insight

into the distribution of polynomials being added. The top plot shows the degree of the

polynomial added to the Gröbner basis at each iteration of Mora’s algorithm for the ideal

I =< xzy + yz, yzx + zy >. The bottom right plot was generated by altering Mora’s

algorithm to sort the polynomials waiting to be added to the basis in ascending order by

degree. The Haskell implementation used here took drastically longer to run and therefore

only the first 50 iterations are included. The final three plots all show the distribution of

polynomial degrees added to I over various iterations of Mora’s algorithm.

From the top plot it appears there is an increasing trend in the degrees of polynomials

100

Chapter 5. Understanding the complexity of protocols

being added however, it is by no means monotone and would be difficult given an obser-

vation at the tth iteration, to predict the degree of the polynomial at the t+ 1st iteration.

For any given polynomial we wish to perform the membership test on, a finite Gröbner

basis will always suffice for testing. If the polynomial has degree n, then we do not need

to worry about adding all the polynomials of degree n+ 1 and higher. As for polynomials

of degree n and lower, all of the examples deal with polynomials in a finite number of

variables, therefore, there must be a finite number of them. To find a hard instance, it is

key to understand how hard it is to capture all polynomials of a given degree.

As the algorithm runs, a collection of S-polynomials are collected and are individually ex-

amined to see if they should be added to the Gröbner basis. Sorting this list by ascending

order has the potential to ensure that the smallest polynomial, currently missing from the

Gröbner basis, would almost always be added next (this is, of course, ignoring the fact that

a large polynomial that is not even in the list yet may reduce to the smallest polynomial).

The bottom right plot in figure 5.3 gives a sense that as the value of n increases, the num-

ber of degree n polynomials added during Mora’s algorithm increases rapidly. This section

shows that sorting the s-polynomials added to the basis in the algorithm is unfeasible for

large n.

Lemma 5.3. There are only 2 types of S-polynomials formed when running Mora’s algo-

rithm on the ideal 〈xzy + yz, yzx+ zy〉 ⊂ K〈x, y, z〉. The 2 forms are

1. m1,j ±m2,j,

2. m1,j ±m2,j−1,

where mi,j is a monomial of length j.

Proof. The initial ideal contains two type 2 polynomials. The s-polynomial formed from

2 polynomials, p1 = m1
1,j1 +m1

2,j1−1, p2 = m2
1,j2 +m2

2,j2−1, of this type is as follows

spol(p1, p2) = l1,j2−o(m1,j1 +m2,j1−1)− (m2
1,j2 +m2

2,j2−1)r1,j1−o,

= l1,j2−om2,j1−1 −m′2,j2−1r1,j1−o,
(5.39)

where l1,j2−o and r1,j1−o are monomials of length j2 − o and j1 − o respectively, chosen

such that l1,j2−oLM(p1) = LM(p2)r1,j1−o and o is the length of the leading monomial

overlap.

Here we can assume without loss of generality that the overlap is of this form. Suppose

instead we multiplied p1 on the right by some r and multiplied p2 on the left by some l.

The two monomials l and r would still have the same degree as each other so the resultant

S-polynomial would have the same form. We can’t express p1 as l · p2 · r or p2 as l · p1 · r
since the two leading monomials are the same length.

The two terms remaining in the s-polynomial each have length j1 + j2 − o− 1, i.e. are of

101

Chapter 5. Understanding the complexity of protocols

type 1.

Now calculating the s-polynomial formed from a type 2 polynomial p1 and a type 1 poly-

nomial p3 = m3
1,j3 +m3

2,j3 gives

spol(p1, p3) = l2,j3−o(m1,j1 +m2,j1−1)− (m3
1,j3 +m3

2,j3)r2,j1−o,

= l2,j3−om2,j1−1 −m3
2,j3r2,j1−o.

(5.40)

The two remaining terms in the s-polynomial have lengths j1 + j3 − o and j1 + j3 − o− 1

and are therefore of type 2.

The only other option left is the s-polynomial formed from two type 1 polynomials, p3 as

above and p4 = m4
1,j4 +m4

2,j4 namely

spol(p3, p4) = l3,j4−o(m
3
1,j3 +m3

2,j3)− (m4
1,j4 +m4

2,j4)r3,j3−o

= l3,j4−om
3
1,j3 −m

4
1,j4r3,j3−o.

(5.41)

The two remaining terms in the s-polynomial both have length j3 + j4 − o and therefore

are of type 1. Since no new types of polynomials have been formed and all possibilities

have been covered, only type 1 and type 2 polynomials may be formed during Mora’s

algorithm for this particular ideal.

Note that we have omitted the coefficients of the terms in the proof. Every term in

the polynomials generated by Mora’s algorithm for this particular input has a coefficient

of either 1 or -1. Therefore, we adopt the standard of dropping the 1.

Lemma 5.4. Suppose for now that during the reduction stage in Mora’s algorithm that

no polynomials are reduced to zero. The size of the Gröbner basis calculated for the ideal

I = 〈xzy + yz, yzx + zy〉 ⊂ K〈x, y, z〉 during a sorted run of Mora’s algorithm grows

exponentially in n, the maximum degree of basis polynomial that needs to be found.

Proof. After the first few iterations of Mora’s algorithm, the following four polynomials

are in the Gröbner basis and form a complete overlapping subset for I:

Pi,j = {xzy + yz, yzx+ zy, yzyz − zyzy, zyzyx+ yzzy}. (5.42)

This means that every time a new polynomial is added to the Gröbner basis, there is a

guarantee that there will be multiple overlaps with the polynomials already in the basis.

The reason for this being there must be an overlap with the start of the leading monomial

and one with the end of the leading monomial, meaning at least 2 new S-polynomials will

be added to the list.

We are now interested in examining the degrees off the polynomials in Pi,j . Starting with

the first two degree 3 polynomials, it follows from Lemma 5.3 that an S-polynomial formed

from one of those polynomials and a degree n polynomial with a single element overlap

102

Chapter 5. Understanding the complexity of protocols

will either have degree n + 2 or n + 1. Similar logic applies for the degree 4 polynomial,

resulting in a degree n+ 3 and n+ 2 polynomial. Finally, degree 5 polynomials, result in

degree n + 4 or n + 3 polynomials. Therefore after a linear increase in n, the number of

s-polynomials has at least doubled.

All that is left is to check how frequently polynomials are reduced to zero during Mora’s

algorithm, which is what we do in the next section.

Now for the hard instances within the ideal, all the important information about the ideal

can be brought together to understand the generic complexity.

Theorem 5.4. Let In be the number of polynomials in the ideal K < xzy+yz, yzx+zy >

of degree n or less. Suppose the total number of s-polynomials at least doubles each time

we increase the degree n by a fixed amount. Let En be the set of polynomials in In such

that the membership test on elements of En requires exponential time. Then

limn→∞
En
In

= 1, (5.43)

that is

E = ∪nEn (5.44)

is generic.

Proof. Remember about the structure of the polynomials Mora’s algorithm outputs. It

shows that they all have two terms. Denote these two terms T1 and T2. We define the sets

I+T1
n = {All polynomials in In that contain T1} (5.45)

and

I−T1n = {All polynomials in In that don’t contain T1} (5.46)

where In = I−T1n ∪ I+T1
n (with a similar argument for I−T2n and I+T2

n).

There is a clear bijective mapping between these two sets

I−T1n → I+T1
n

p 7→ p+ T1.
(5.47)

Furthermore if we define

(I+T1
n)+T2 = {All polynomials in I+T1

n that contain T2}

(I+T1
n)−T2 = {All polynomials in I+T1

n that don’t contain T2}
(5.48)

with a similar bijective mapping as before, then we must have

Pr(randomly selecting a polynomial containing T1 and T2) =
1

4
. (5.49)

103

Chapter 5. Understanding the complexity of protocols

The exponential growth discussed in Mora’s algorithm as the degree increases have been

established in Lemma 5.4. From this, it must be that the size of En increases by at least

1 for each degree increase. This increases the proportion of polynomials in In that have a

difficult subset of terms.

Let Xt be the proportion in In of polynomials that include at least one of the difficult

polynomials as a subset of its terms. As the number of polynomials grows by 1 at each

time step, the proportion evolves in the following way

Xt ≥ Xt−1 +
1

4
(1−Xt−1), X1 =

1

4
, 0 ≤ Xt ≤ 1. (5.50)

Under the restrictions on Xt,
1
4(1−Xt−1) is non-negative. Thus Xt → 1 as t → ∞. The

exponential time ideal membership is therefore generic.

5.5 Will we lose too many terms?

It has been shown so far that the number of polynomials added to the basis grows ex-

ponentially with the number of iterations. There is one step in Mora’s algorithm where

we perform the division algorithm on the current polynomial, with respect to the current

partial Gröbner basis. If we want to continue to assert that we have exponential growth

in polynomials, then we need to know if this step in the algorithm is drastically reducing

the number of polynomials added to the basis. The structure of the Gröbner basis is not

simple so working out how polynomials will be reduced is far from simple. Here we will

try to justify our claim.

5.5.1 Haskell experiments

Looking back at the plot from 5.3, we see the number of polynomials grow exponentially

as the degree increases. Diagrams show what happens as the number of iterations of the

Haskell program on the standard Mora’s algorithm increased. As identified in the middle

plots and bottom left plot, the distribution of degrees appears to be fairly similar in each.

This gives a reason to believe that as we increase the degree size of polynomials past the

initial sorted run, the same exponential looking growth will continue.

5.5.2 Reording polynomials

We know that we can generate an infinite Gröbner basis because we can prove there are

infinite sets that must be part of it. These inductively defined sets come in pairs. The

first polynomial P1 in the first set generates S-polynomials, one of which is Q1, the first

polynomial in the second set. One of the S-polynomials for Q1 is then P2, the second

polynomial from the first set. This back and forth between these two sets go on infinitely

as illustrated in figure 5.4. There will always be one of these polynomials in the collection

104

Chapter 5. Understanding the complexity of protocols

Figure 5.4: Two inductively sets create each other

waiting to be processed. Therefore, if we prioritize these polynomials in each iteration we

know nothing will be removed by the division step. Of course, this differs greatly from

the sorted variant of the algorithm, as much higher degree polynomials will be added to

the basis before all the low degree polynomials.

5.5.3 Polynomial distributions

While the previous argument does mean that we will never actually lose a polynomial in

Mora’s algorithm, the order in which we go over the polynomials is extremely particular.

As stated when looking at the sorted Mora’s algorithm variant, sorting in each iteration

is time-consuming. At least, in that case, we were benefiting by putting a priority on low

degree polynomials. The typical (not necessarily sorted) version of Mora’s algorithm deals

with the polynomials in a ”first on, first off” way. To study this, we must class every

polynomial as one of 3 types.

• s1 : The number of polynomials that will be removed in Mora’s algorithm.

• s2 : The number of polynomials that will not be removed in Mora’s algorithm, but

not part of an inductively defined set.

• s3 : The number of polynomials that are part of an inductively defined set.

As we work through the polynomials waiting to be added to the Gröbner basis, the re-

maining collection will evolve depending on what type of polynomial is currently being

processed. We will denote by the triple (s1, s2, s3) the number of each type of polynomial

waiting to be processed. Depending on what type is chosen for the current iteration of

105

Chapter 5. Understanding the complexity of protocols

the algorithm, the values in this triple will be updated in one of 3 ways. The following

denotes the evolution
si−→ as a type si polynomial is chosen, i = 1, 2, 3.

(s1, s2, s3)
s1−→ (s1 − 1, s2, s3),

(s1, s2, s3)
s2−→ (s1 + δ1, s2 − 1 + δ2, s3 + δ3),

(s1, s2, s3)
s3−→ (s1 + δ4, s2 + δ5, s3 + δ6),

(5.51)

where the δ’s are subject to

δ1 + δ2 + δ3 ≥ 2, δ4 + δ5 + δ6 ≥ 1, δi ∈ N ∪ {0}, i = 1, . . . , 6. (5.52)

The evolution of s1 is straightforward. It states that the total number of s1 polynomials

waiting to be processed decreases by one after we process the current one. When we

process an s2 polynomial, we know from Lemma 5.4 that at least 2 new polynomials will

be added to our collection, however, it is difficult to say what type they will be. Finally

when processing an s3 type polynomial, again at least 2 new polynomials will be added.

The difference here is that at least one of those polynomials will be another s3 type (which

is why there is no negative 1 in this case).

It is very difficult to say what our values for δ can be without a lot of information about

the polynomials. However, we can consider what sort of values would confirm our belief

that not too many polynomials are removed. Earlier we worked under the assumption that

no polynomials were being removed, so essentially we had s1 = δ1 = δ4 = 0. We could,

therefore, express the expected number of polynomials to be added during each iteration

of Mora’s algorithm to be

E[new polynomials] =
s2

s2 + s3
(δ2 + δ3 − 1) +

s3

s2 + s3
(δ5 + δ6) ≥ 2. (5.53)

We showed that this expectation will be greater than or equal to 2, however, as long as it

is greater than 1 for each iteration we will see exponential growth. Therefore if we allow

s1, δ1, δ4 to be non zero we need them to satisfy

−s1

s1 + s2 + s3
+

s2

s1 + s2 + s3
(δ1 + δ2 + δ3 − 1) +

s3

s1 + s2 + s3
(δ4 + δ5 + δ6) > 1. (5.54)

Subbing in the previous part, assuming our expectation is as low as possible at 2, we have

−s1

s1 + s2 + s3
+ (1− s1

s1 + s2 + s3
) · 2 > 1⇒ s1

s1 + s2 + s3
<

1

3
. (5.55)

Therefore, if on average s1 makes up a third or less of the triple (s1, s2, s3) then we still

have exponential growth in polynomials.

With this result, we can provide the final version of the complexity theorem.

106

Chapter 5. Understanding the complexity of protocols

Theorem 5.5. Let In be the number of polynomials in the ideal K < xzy+yz, yzx+zy >

of degree n or less. Suppose at each stage of Mora’s algorithm at most one third of the

polynomials waiting to be added have the property that they will be reduced to zero. Let En

be the set of polynomials in In such that the membership test on elements of En requires

exponential time. Then

limn→∞
En
In

= 1, (5.56)

that is

E = ∪nEn (5.57)

is generic.

Proof. After the first few iterations of Mora’s algorithm, the following four polynomials

are in the Gröbner basis and form a complete overlapping subset for I:

Pi,j = {xzy + yz, yzx+ zy, yzyz − zyzy, zyzyx+ yzzy}. (5.58)

This means that every time a new polynomial is added to the Gröbner basis, there is a

guarantee that there will be multiple overlaps with the polynomials already in the basis.

The reason for this being there must be an overlap with the start of the leading monomial

and one with the end of the leading monomial, meaning at least 2 new S-polynomials will

be added to the list.

We are now interested in examining the degrees off the polynomials in Pi,j . Starting with

the first two degree 3 polynomials, it follows from Lemma 5.3 that an S-polynomial formed

from one of those polynomials and a degree n polynomial with a single element overlap

will either have degree n + 2 or n + 1. Similar logic applies for the degree 4 polynomial,

resulting in a degree n+ 3 and n+ 2 polynomial. Finally, degree 5 polynomials, result in

degree n+ 4 or n+ 3 polynomials. From our assumption, we know that at most a third of

these polynomials will reduce to zero when we attempt to add them to our Gröbner basis.

We have established that with that property, on average, we will be adding at least 2 new

polynomials to our candidate list each time we test a candidate. Consequently, after a

linear increase in n, the number of s-polynomials has at least doubled.

By Theorem 5.4 it must be that the exponential time for the ideal membership is therefore

generic under the given conditions.

107

Chapter 6

Conclusion

This thesis aimed to expand on the various methods available within fully homomorphic

encryption. While partially homomorphic encryption methods were a good proof of con-

cept for the theory, there was very little practical use for these methods. In particular,

we wanted to keep in mind the real-world aspects of implementing such methods. For

example, both the high levels of parallelism for the vector approach and the concept of

pushing a lot of the computation to the initial setup in the polynomial approach were of

great interest.

One concern with using homomorphic encryption protocols was that they provide a weaker

privacy guarantee than randomized encryption [Curino et al. (2011)]. So, while in theory,

we may perform any operation we wish on encrypted data, it may not always be the best

approach to use these methods for any kind of data. For example, if our sole goal is to be

able to search for particular data, then any non-randomised method would suffice. In fact,

for a large proportion of sensitive data (addresses, bank details etc), there is no reason to

move away from the strongest forms of encryption already available.

The complex structure of polynomials in comparison to integers may not be as daunting

as initially expected. Servers do not last forever and when one breaks we lose access to

all the information on it. We require methods to back up our data so that we can retrieve

the information [Dimakis et al. (2010)]. Figure 6.1 gives a simple example of backing up

data from two different full servers onto only one extra server. The data on any of these

servers can be retrieved by taking a linear combination of the other two. More complex

and efficient methods may be possible if we consider how to store the schemes we’ve looked

at based on vector spaces or polynomials.

This current research in homomorphic encryption has the potential to make big differences

in the world of data analysis, however, there remain limitations to consider. One example

is the publisher-subscriber (often referred to as pub-sub) model. In this model, various

users/devices publish data to different categories. Users who are interested in any of these

categories can subscribe to them and collect that data (figure 6.2 gives an example of this

108

Chapter 6. Conclusion

A B A+B

Figure 6.1: One server failure safe storage example

Figure 6.2: Pubsub style of data collection

setup). The issue here lies in the fact that if someone wishes to analyse encrypted data

from a certain category, all publishers must encrypt using the same scheme and key. That

is why we have public key systems but then we must ask who is the one deciding which

method of encryption is being used? Also, if multiple subscribers want to analyse and

decrypt the results, how do we ensure they can each get the key without other malicious

users gaining access? Furthermore, the pub-sub model is something that is of interest

to the IOT industry where computing power is limited so we wish to keep the amount

of communication back and forth as low as possible. Publishing parties may also wish

to learn from the collective data sets but not enclose their data to the other publishers.

Fortunately, homomorphic encryption doesn’t have to be the direct answer to all these

problems as there are already promising results in areas such as multi-party private data

analysis [Gascón et al. (2017)].

In chapter 3, we explored the capability of quantum computers to create a need for new

109

Chapter 6. Conclusion

schemes and identify what positive effect quantum properties would entail. The scheme

we looked at was based on the closest vector problem. The idea is that, depending on a

choice of basis, it can be difficult to tell which lattice point a random non-lattice point is

closest to. The quantum adaption took a superposition of all these random points. Mean-

ing that we had a better understanding of the error but, if an attacker tried to observe a

ciphertext, it would collapse back down to the classic version.

The classical version was homomorphic under addition but would run the risk of incorrect

decryption if performed too many times. A combination of a quantum addition circuit,

measurements of particular qubits, and an extra control variable allowed us to perform

ciphertext additions without the hassle of re-encryption that SHE’s deal with.

The control variable that was introduced to help with error correction did present its own

potential for an attack. Protecting this variable from malicious use required us to consider

the variable in two different states. The first was when the data was at rest i.e. when we

aren’t operating on the data. We adapted the well known key exchange method and used

it as a method for detection to see if someone had tried to observe the variable. As for the

case of data in use, we used methods from classical computing. Although our goal is to

do the majority of the work in the cloud, we accepted that a small sacrifice of performing

the first few operations in a private cloud would ensure that individual data should be

protected.

The GGH scheme may not be suitable for real-world use, however, it was worth studying

as the encryption method is fairly simple, meaning the error correction concept should be

easier to grasp. The main feature that we manipulated was the fact the error involved

came from a finite distribution. Therefore, if this property can be ensured in more practi-

cal schemes, the same overall idea should theoretically work with them too. In particular,

we looked at a fairly unnatural multiplication method here, it would be better to use a

protocol where multiplication is more straightforward.

Although these lattice-based schemes certainly seem to be more protected from quantum

attacks than schemes that are vulnerable to the prolific Shor’s algorithm, recent work

in [Joseph et al. (2020)] suggests that there may quantum methods that could put the

security of these lattice-based schemes at risk.

In chapter 4, we shifted back to classical computing and looked at a homomorphic scheme

in a polynomial ring. Similarly, as was discussed in the introduction, we looked to keep the

encryption function conceptually and computationally simple, achieved by leaving most

of the work to the initial key exchange. The encryption method was homomorphic under

addition but a little more work was needed for the function to be homomorphic under mul-

tiplication. As suggested in [Vasco & Steinwandt (2015)], it is more important to think of

the decryption method as homomorphic. The multiplication of ciphertexts wasn’t exactly

of the form we wanted, this was because multiplication of ciphertexts introduced extra

terms that we didn’t want. The choice of the quotient in the decryption did ensure we

110

Chapter 6. Conclusion

output the polynomial we expected if we’d multiplied the plaintexts by reducing the un-

wanted terms to zero.

A concern with using polynomials as apposed to integers is that the structure is more

computationally expensive. The problem of long computation was made worse because

we could not cancel many terms until the very end. This was salvaged somewhat by being

able to quotient out terms that included a square of our second key. Further work needs

to be done to see if there is a subtler choice of quotient space that would still enable the

required terms to cancel.

Although in our key exchange Alice does not make her choice of ideal public, we were

able to identify a potential attack given that an eavesdropper could make an educated

guess. We showed an example where Alice was able to choose polynomials that are mem-

bers of ideals with two key properties. The first was that they include the public basis.

The second was that the ideal contained elements outside of the public ideal that were

not included in Alice’s secret choice. These 2 properties suggest that there is a non zero

probability that a random choice of ideal for an attack would not be able to distinguish

between the key from the list which was chosen and a decoy. Future work should look into

increasing this probability as much as possible.

Problems such as factoring integers have been around for a long time and no well-known

solution (outside of a quantum solution) is available. We can, therefore, be fairly trust-

worthy of protocols such as RSA. The ideal membership problem is a lot newer and has

yet to prove its resilience to the same extent from cryptanalysis. Despite our attempts to

cover the potential alternative attacks, it may be that the initial problem itself needs a

better understanding of which instances can be considered safe.

The theory of braid group cryptography has already been considered as a real-world secu-

rity protocol. While this consideration may seem promising, various attacks on systems

based on the multiple conjugacy search problem have been presented. One example of such

attack is a length based attack which aims to reduce the length of an element of interest by

repeatedly measuring its length after conjugating by choice words from a group of inter-

est [Myasnikov & Ushakov (2007)]. Another example of an attack suggests that schemes

based on the conjugacy search problem may be broken down to the easier decomposition

problem (i.e. instead of trying to find conjugate elements, find any elements that belong

to a given subset that we can multiply on the left and right to create an equal element)

[Shpilrain & Ushakov (2006)]. Unfortunately, further studies have suggested that methods

such as the algebraic eraser may be breakable [Blackburn & Robshaw (2016)]. Although

fundamentally there is a difference between an algebra and a group, the fact that the

Hecke algebra encryption method is based on conjugation does give rise to concern about

the security of the method.

The status of Polly Cracker and Gröbner bases for the basis of cryptographic protocols

appear to be unclear. Despite suggestions that these avenues may not be the best choice

111

Chapter 6. Conclusion

for cryptography due to inefficiency and weaknesses found [Barkee et al. (1994)] [AL-

Rummana & Shende (2018)], an effort is still made to try and find solutions surrounding

these problems [Rai (2004)] [Albrecht et al. (2016)].

In chapter 5, we considered the generic difficulty of finding a partial Gröbner basis that

would make ideal membership testing efficient. We claimed that this was exponentially

difficult, but the proof did include an assumption about which polynomials Mora’s algo-

rithm would add to the basis.

The overall idea of the proof was that, if we are working with a finite number of variables,

we wanted to add enough polynomials to the basis so that there would always be at least

two s-polynomials generated at each iteration. We did this by running the algorithm long

enough so that for each variable there was at least one polynomial whose lead monomial

began with that variable. The same also went for the end of the lead monomial. This was

enough to show that as the degrees increased, the number of iterations would at least dou-

ble. An assumption we made here was that not too many polynomials would be reduced

to zero.

The first justification of our assumption was from Haskell simulations. We saw that for

differing numbers of iterations, a similar-looking distribution of polynomial degrees was

output each time. We showed that for the first few degrees that there was exponential

growth and so we have reason to believe that this trend would continue. The second

justification used information that proves a basis has an infinite Gröbner basis in the first

place. We show inductively defined sets are generated during Mora’s algorithm and come

in pairs. We argued that if we prioritize finding these first then we would never get to the

polynomials that would be thrown away. The problem with this is that after reaching a

certain degree, no new polynomials added would be useful for membership testing. The

third approach looked to classify the polynomials that were generated. The classes were

based on their future effect on the number of polynomials added to the Gröbner basis. As

the algorithm iterated over these polynomials the proportions of each constantly changed.

We stated an upper bound for the proportion of the class we didn’t want to see at each

iteration if we wanted membership testing to remain difficult. Further research into this

area may consider using something like Lotka-Volterra [Freedman (1980)] to better model

the population changes.

In summary, there appear to be three important aspects of designing a fully homomorphic

cryptosystem. As expected, the fundamental aspect is that the cryptosystem is built on

what is presumed to be a difficult mathematical problem. Unfortunately, that means a

lot of these schemes are built on shaky foundations. Anyone wanting to use these schemes

will have to put a lot more faith that these problems won’t be solved due to the relatively

smaller research in finding solutions than much older problems. Thankfully however there

does appear to be multiple candidate problems.

The next aspect is finding an appropriate homomorphism that can be built around these

112

Chapter 6. Conclusion

problems. We’ve seen both in this work and many other publications that there are multi-

ple approaches to finding homomorphisms under both addition and multiplication. Unlike

methods such as RSA, where the homomorphism was a simple consequence of the func-

tion, we did need to put more effort into the choice of parameters and techniques for our

operations to ensure addition and multiplication worked how we wanted.

Performing simple operations becomes computationally more complex brings us to the

final aspect of what a practical system needs. All of this work to create a system where

private data can be safely analysed in a public cloud is useless if it takes an unreasonable

amount of time to get the results we are interested in. Therefore, we need to ensure that

once we have something that works, it needs to be as efficient as possible. Now, due to the

inherent more complicated structure, it seems unlikely that these systems will be as fast

as what exists for standard encryption. Hopefully, as technology inevitably gets better

this difference in speed will be compensated for.

113

Appendix A

A.1 Polynomial scheme example

Now either Alice or Bob can look at encrypting and operating on data. We already

discussed that an appropriate choice of quotient space is needed to make the calculations

work. Lets assume Alice and Bob repeat the process once again to get a second secret

key. For the sake of brevity, well say yxy + z. Now consider the ideal

〈SB(yxy + z)− 1, (yxy + z)SB − 1〉, (A.1)

recalling that SB = xyxzyx+ xy2zx+ zyxyz+ z2xyz. Our requirement that we have two

secret keys that satisfy the inverse property will hold if we quotient out our polynomials

in our ciphertext by this ideal i.e. anytime we see the product of our two keys appear in

a ciphertext, we can replace it with a 1.

To prevent tedious amounts of expanding brackets, we will keep a lot of the polynomials

factored and we will also make the substitutions

A = xyxzyx,B = xy2zx, C = zyxyz,D = z2xyz,W = yxy. (A.2)

This means that we have the public ideal 〈(W + z)2〉 that we can use to reduce terms

while in the cloud. We will also have the private ideal 〈(A+B+C+D)(W + z)−1, (W +

z)(A+B+C+D)− 1〉 to be used for further reduction once offline. Now lets do a simple

114

Appendix A.

calculation.

(Enc(x) + Enc(y)) ∗ Enc(z)

=((A+B + C +D)x(W + z) + (W + z)x(A+B + C +D)

+(A+B + C +D)y(W + z) + (W + z)y(A+B + C +D))

∗((A+B + C +D)z(W + z) + (W + z)z(A+B + C +D))

=((A+B + C +D)(x+ y)(W + z) + (W + z)(x+ y)(A+B + C +D))

∗((A+B + C +D)z(W + z) + (W + z)z(A+B + C +D))

=(A+B + C +D)(x+ y)(W + z)(A+B + C +D)z(W + z)

+(A+B + C +D)(x+ y)(W + z)2z(A+B + C +D)

+(W + z)(x+ y)(A+B + C +D)2z(W + z)

+(W + z)(x+ y)(A+B + C +D)(W + z)z(A+B + C +D).

(A.3)

Our public ideal space kills off multiples of (W + z)2, so that leaves us with

(A+B + C +D)(x+ y)(W + z)(A+B + C +D)z(W + z)

+(W + z)(x+ y)(A+B + C +D)2z(W + z)

+(W + z)(x+ y)(A+B + C +D)(W + z)z(A+B + C +D).

(A.4)

Performing the decryption method, we have

Dec((Enc(x) + Enc(y)) ∗ Enc(z))

=(W + z)((A+B + C +D)(x+ y)(W + z)(A+B + C +D)z(W + z)

+(W + z)(x+ y)(A+B + C +D)2z(W + z)

+(W + z)(x+ y)(A+B + C +D)(W + z)z(A+B + C +D))(A+B + C +D)

=(W + z)(A+B + C +D)(x+ y)(W + z)(A+B + C +D)z(W + z)(A+B + C +D)

+(W + z)2(x+ y)(A+B + C +D)2z(W + z)(A+B + C +D)

+(W + z)2(x+ y)(A+B + C +D)(W + z)z(A+B + C +D)2.

(A.5)

Once again reducing according to our public ideal we are left with

(W + z)(A+B+C+D)(x+ y)(W + z)(A+B+C+D)z(W + z)(A+B+C+D). (A.6)

Now that we are offline we can use the private ideal which gives us

1 ∗ (x+ y) ∗ 1 ∗ z ∗ 1 = (x+ y) ∗ z, (A.7)

as required.

115

Appendix A.

A.2 Full quantum circuit

b0a0b1a1b2a2a3

Addition

X
XX

XX
X

r0 tim
es

r1 tim
es

r2 tim
es

Public cloud
Private cloud

b0a0b1a1b2a2a3

Addition

X
XX

XX
X

r0 tim
es

r1 tim
es

r2 tim
es

Addition

Figure A.1: Quantum encryption and addition of ciphertexts

A.3 Using the Haskell code

For testing purposes, code was written in haskell to find Gröbner bases from a list of

polynomials (representing the original ideal). To run the code in the terminal first move to

the directory where NonCommutative.hs is saved. To compile the code run the command

ghc NonCommutative.hs

The program is then run using

116

Appendix A.

./NonCommutative

(\ instead of / if on windows). Upon running that command there will be a prompt

“Enter your list of polynomials“. The entire list of polynomials must be surrounded by

quotes. The polynomials are separated by commas (no spaces). Each term in a polynomial

must be expressed by a triple:

1. Sign, either + or -,

2. Coefficient,

3. Monomial, capital letters for variables.

The ordering used is degLex and would need to be changed in the code if another ordering

is desired. Letters M, T, P cannot be used as variables as they are reserved for defining

monomials, terms and polynomials respectively. Note that unlike in normal notation,

redundancy such as a coefficient of 1 or leading term having a plus in front can’t be

removed.

Example: If we wish to enter the ideal used in chapter 4, 〈xzy + yz, yzx+ zy〉, we would

type “+1XZY+1YZ,+1YZX+1ZY“ into the terminal. The number of iterations of the

algorithm is set to 100 currently but can be modified in the code on line 453.

117

Bibliography

Acar, A., Aksu, H., Uluagac, A. S. & Conti, M. 2018 A survey on homomorphic

encryption schemes: Theory and implementation. ACM Computing Surveys (CSUR)

51 (4), 1–35.

Ackermann, P. & Kreuzer, M. 2006 Gröbner basis cryptosystems. Applicable Algebra

in Engineering, Communication and Computing 17 (3-4), 173–194.

Adams, W. W., Adams, W. W., ADAMS, W. H., Loustaunau, P. & Adams,

W. W. 1994 An introduction to Grobner bases. American Mathematical Soc.

AL-Rummana, G. A. & Shende, G. 2018 Homomorphic encryption for big data security:

A survey .

Alagic, G., Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang,

Q., Liu, Y.-K., Miller, C., Moody, D., Peralta, R. et al. 2019 Status report

on the first round of the NIST post-quantum cryptography standardization process. US

Department of Commerce, National Institute of Standards and Technology.

Albrecht, M. R., Faugère, J.-C., Farshim, P., Herold, G. & Perret, L. 2016

Polly cracker, revisited. Designs, Codes and Cryptography 79 (2), 261–302.

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,

Cochran, J., Durumeric, Z., Halderman, J. A., Invernizzi, L., Kallitsis,

M. et al. 2017 Understanding the mirai botnet. In 26th {USENIX} Security Symposium

({USENIX} Security 17), pp. 1093–1110.

April, C., Forbes, M., Ideal, T., Problem, M. & Gr, T. 2012 Membership Testing

pp. 1–6.

Arora, S. & Barak, B. 2009 Computational complexity: a modern approach. Cambridge

University Press.

Artin, E. 1947 Theory of braids. Annals of Mathematics pp. 101–126.

118

Bibliography

Barkee, B., Can, D. C., Ecks, J., Moriarty, T. & Ree, R. 1994 Why you cannot

even hope to use gröbner bases in public key cryptography: an open letter to a scien-

tist who failed and a challenge to those who have not yet failed. Journal of Symbolic

Computation 18 (6), 497–501.

Barker, E., Barker, W., Burr, W., Polk, W. & Smid, M. 2012 Recommendation

for key management part 1: General (revision 3). NIST special publication 800 (57),

1–147.

Barvinok, A. 2002 A course in convexity , , vol. 54. American Mathematical Soc.

Becker, A., Gama, N. & Joux, A. 2013 Solving shortest and closest vector problems:

The decomposition approach. IACR Cryptology ePrint Archive 2013, 685.

Becker, T. & Weispfenning, V. 1993 Gröbner bases. In Gröbner Bases, pp. 187–242.

Springer.

BENNETT, C. 1984 Quantum crytography. In Proc. IEEE Int. Conf. Computers, Sys-

tems, and Signal Processing, Bangalore, India, 1984 , pp. 175–179.

Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. 1992

Experimental quantum cryptography. Journal of cryptology 5 (1), 3–28.

Blackburn, S. R. & Robshaw, M. J. 2016 On the security of the algebraic eraser

tag authentication protocol. In International Conference on Applied Cryptography and

Network Security , pp. 3–17. Springer.

Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C. &

Zhandry, M. 2011 Random oracles in a quantum world. In International Confer-

ence on the Theory and Application of Cryptology and Information Security , pp. 41–69.

Springer.

Buchberger, B. 1965 Ein algorithmus zum auffinden der basiselemente des restklassen-

ringes nach einem nulldimensionalen polynomideal. PhD thesis, Universitat Insbruck

.

Buchberger, B. & Winkler, F. 1998 Gröbner bases and applications, , vol. 17.

Bulygin, S. 2005 Chosen-ciphertext attack on noncommutative polly cracker. CoRR

abs/cs/0508015.

Bump, D. 2010 Hecke Algebras pp. 1–120.

Cheon, J. H. & Jun, B. 2003 A polynomial time algorithm for the braid diffie-

hellman conjugacy problem. In Annual International Cryptology Conference, pp. 212–

225. Springer.

119

Bibliography

Colbeck, R. & Kent, A. 2011 Private randomness expansion with untrusted devices.

Journal of Physics A: Mathematical and Theoretical 44 (9), 095305.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. 2009 Introduction to

algorithms.

Cortés, R., Hernández, J. & Morales, E. 2007 Noncommutative gröbner basis

public key cryptosystems and their cryptanalysis .

Cox, D., Little, J. & O’shea, D. 1992 Ideals, varieties, and algorithms, , vol. 3.

Springer.

Curino, C., Jones, E. P., Popa, R. A., Malviya, N., Wu, E., Madden, S., Bal-

akrishnan, H. & Zeldovich, N. 2011 Relational cloud: A database-as-a-service for

the cloud .

Dean, J. & Ghemawat, S. 2008 Mapreduce: simplified data processing on large clusters.

Communications of the ACM 51 (1), 107–113.

Deutsch, D. & Jozsa, R. 1992 Rapid solution of problems by quantum computation.

Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sci-

ences 439 (1907), 553–558.

Dimakis, A. G., Godfrey, P. B., Wu, Y., Wainwright, M. J. & Ramchandran,

K. 2010 Network coding for distributed storage systems. IEEE transactions on infor-

mation theory 56 (9), 4539–4551.

Drakos, N. 1996 A grobner basis theorem on elimination ideals .

Easttom, C. 2017 An overview of quantum cryptography with lattice based cryptogra-

phy. IOSR Journal of Mathematics 13 (6), 11–17.

Ekert, A., Hayden, P. & Inamori, H. 2001 Basic concepts in quantum computation.

In Coherent atomic matter waves, pp. 661–701. Springer.

Evans, G. A. 2006 Noncommutative involutive bases. arXiv preprint math/0602140 .

Flores, R. & Kahrobaei, D. 2017 Cryptography with right-angled artin groups. The-

oretical and Applied Informatics 28 (3), 8–16.

Freedman, H. I. 1980 Deterministic mathematical models in population ecology , , vol. 57.

Marcel Dekker Incorporated.

Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S.

& Evans, D. 2017 Privacy-preserving distributed linear regression on high-dimensional

data. Proceedings on Privacy Enhancing Technologies 2017 (4), 345–364.

120

Bibliography

Gentry, C. 2009 Fully homomorphic encryption using ideal lattices. In Proceedings of

the forty-first annual ACM symposium on Theory of computing , pp. 169–178.

Goldreich, O., Goldwasser, S. & Halevi, S. 1997 Public-key cryptosystems from

lattice reduction problems. In Annual International Cryptology Conference, pp. 112–

131. Springer.

Hilbert, D. 1890 Ueber die theorie der algebraischen formen. Mathematische annalen

36 (4), 473–534.

Hoare, C. A. R. 1961 Algorithm 64: quicksort. Communications of the ACM 4 (7), 321.

Hoffstein, J., Pipher, J., Silverman, J. H. & Silverman, J. H. 2008 An introduc-

tion to mathematical cryptography , , vol. 1. Springer.

Joseph, D., Ghionis, A., Ling, C. & Mintert, F. 2020 Not-so-adiabatic quantum

computation for the shortest vector problem. Physical Review Research 2 (1), 013361.

Kahrobaei, D., Lam, H. T. & Shpilrain, V. 2019 System and method for private-key

fully homomorphic encryption and private search between rings. US Patent 10,396,976.

Kang, S.-J., Lee, I.-S., Lee, K.-H. & Oh, H. 2002 Hecke algebras, specht modules

and gröbner–shirshov bases. Journal of Algebra 252 (2), 258–292.

Kapovich, I., Myasnikov, A., Schupp, P. & Shpilrain, V. 2003 Generic-case com-

plexity, decision problems in group theory, and random walks. Journal of Algebra

264 (2), 665–694.

Kazhdan, D. & Lusztig, G. 1979 Representations of coxeter groups and hecke algebras.

Inventiones mathematicae 53 (2), 165–184.

Ko, K. H., Lee, S. J., Cheon, J. H., Han, J. W., Kang, J.-s. & Park, C. 2000

New public-key cryptosystem using braid groups. In Annual International Cryptology

Conference, pp. 166–183. Springer.

Kuck, D. J. 1977 A survey of parallel machine organization and programming. ACM

Computing Surveys (CSUR) 9 (1), 29–59.

Kulkarni, G., Chavan, N., Chandorkar, R., Waghmare, R. & Palwe, R. 2012

Cloud security challenges. In 2012 7th International Conference on Telecommunication

Systems, Services, and Applications (TSSA), pp. 88–91. IEEE.

Lyubashevsky, V., Peikert, C. & Regev, O. 2010 On ideal lattices and learning with

errors over rings. In Annual International Conference on the Theory and Applications

of Cryptographic Techniques, pp. 1–23. Springer.

121

Bibliography

Manger, J. 2001 A chosen ciphertext attack on rsa optimal asymmetric encryption

padding (oaep) as standardized in pkcs# 1 v2. 0. In Advances in CryptologyCRYPTO

2001 , pp. 230–238. Springer.

McCurley, K. S. 1990 The discrete logarithm problem. In Proc. of Symp. in Applied

Math, , vol. 42, pp. 49–74.

Micciancio, D. 2001 Improving lattice based cryptosystems using the hermite normal

form. In Cryptography and lattices, pp. 126–145. Springer.

Micciancio, D. & Warinschi, B. 2001 A linear space algorithm for computing the

hermite normal form. In Proceedings of the 2001 international symposium on Symbolic

and algebraic computation, pp. 231–236.

Mora, F. 1985 Gröbner bases for non-commutative polynomial rings. In International

Conference on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, pp.

353–362. Springer.

Myasnikov, A. D. & Ushakov, A. 2007 Length based attack and braid groups: crypt-

analysis of anshel-anshel-goldfeld key exchange protocol. In International Workshop on

Public Key Cryptography , pp. 76–88. Springer.

Naehrig, M., Lauter, K. & Vaikuntanathan, V. 2011 Can homomorphic encryption

be practical? In Proceedings of the 3rd ACM workshop on Cloud computing security

workshop, pp. 113–124. ACM.

Nielsen, M. A. & Chuang, I. L. 2010 Quantum computation and quantum information.

Cambridge university press.

Ostrovsky, R. & Skeith, W. E. 2008 Communication complexity in algebraic two-

party protocols. In Annual International Cryptology Conference, pp. 379–396. Springer.

Pecen, M. et al. 2014 Quantum safe cryptography and security: An introduction, ben-

efits, enablers and challenges, white paper. European Telecommunications Standards

Institute .

van de Pol, J. 2011 Lattice-based cryptography .

Rai, T. S. 2004 Infinite gröbner bases and noncommutative polly cracker cryptosystems.

PhD thesis, Virginia Tech.

Rivest, R. L., Adleman, L., Dertouzos, M. L. et al. 1978 On data banks and privacy

homomorphisms .

Schleimer, S. & Wiest, B. 2019 Garside theory and subsurfaces: Some examples in

braid groups. Groups Complexity Cryptology 11 (2), 61–75.

122

Bibliography

Shirshov, A. 1999 Some algorithmic problem for lie algebras, sibirsk. mat. z. 3 (1962)

292–296. English translation in SIGSAM Bull 33 (2), 3–6.

Shor, P. W. 1994 Algorithms for quantum computation: Discrete logarithms and factor-

ing. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium

on, pp. 124–134. IEEE.

Shor, P. W. 1995 Scheme for reducing decoherence in quantum computer memory. Phys-

ical review A 52 (4), R2493.

Shor, P. W. & Preskill, J. 2000 Simple proof of security of the bb84 quantum key

distribution protocol. Physical review letters 85 (2), 441.

Shpilrain, V. & Ushakov, A. 2006 The conjugacy search problem in public key cryptog-

raphy: unnecessary and insufficient. Applicable Algebra in Engineering, Communication

and Computing 17 (3-4), 285–289.

Silverman, J. H. 2006 An introduction to the theory of lattices and applications to cryp-

tography. Computational Number Theory and Applications to Cryptography, University

of Wyoming, Jun .

Spitzer, F. 2013 Principles of random walk , , vol. 34. Springer Science & Business Media.

Stinson, D. R. 2005 Cryptography: theory and practice. CRC press.

Takahashi, Y., Tani, S. & Kunihiro, N. 2009 Quantum addition circuits and un-

bounded fan-out. arXiv preprint arXiv:0910.2530 .

Van Dijk, M., Gentry, C., Halevi, S. & Vaikuntanathan, V. 2010 Fully homomor-

phic encryption over the integers. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pp. 24–43. Springer.

Vasco, M. I. G. & Steinwandt, R. 2015 Group theoretic cryptography , , vol. 9. CRC

Press.

Watson, P. 2012 A multi-level security model for partitioning workflows over federated

clouds. Journal of Cloud Computing: Advances, Systems and Applications 1 (1), 15.

Wecker, D. & Svore, K. M. 2014 Liqui—¿: A software design architecture and domain-

specific language for quantum computing. arXiv preprint arXiv:1402.4467 .

Wootters, W. K. & Zurek, W. H. 1982 A single quantum cannot be cloned. Nature

299 (5886), 802–803.

Xiu, X. 2012 Non-commutative gröbner bases and applications. PhD thesis, Univer-

sitätsbibliothek der Universität Passau.

123

Bibliography

Yi, X., Paulet, R. & Bertino, E. 2014 Homomorphic Encryption and Applications.

Springer.

124

