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Abstract

Many multiple-input multiple-output (MIMO) downlink transmission schemes as-

sume channel state information (CSI) is available at the receiver/transmitter. In

practice, knowledge of CSI is often obtained by using pilot symbols transmitted

periodically. However, for some systems, due to high mobility and the cost of

channel training and estimation, CSI acquisition is not always feasible. The prob-

lem becomes even more difficult when many antennas are used in the system and

the channel is changing very rapidly before training is completed. Moreover, as

the number of transmit/receive antennas grows large, the number of pilot sym-

bols, system overheads, latency, and power consumption will grow proportionately

and thereby the system becomes increasingly complex. As an alternative, a non-

coherent system may be used wherein the transmitter/receiver does not need any

knowledge of the CSI to perform precoding or detection. This thesis focuses on

the design of a noncoherent downlink transmission system to jointly improve the

performance and achieve a simple low complexity transmission scheme in three

MIMO system scenarios: low rate differential spacetime block coding (STBC) in a

downlink multiuser (MU-MIMO) system; high rate differential algebraic STBC in

a downlink MU-MIMO system; and differential downlink transmission in a mas-

sive MU-MIMO system. Three novel design methods for each of these systems are

proposed and analysed thoroughly.

For the MIMO system with a low rate noncoherent scheme, a differential STBC

MU-MIMO system with a downlink transmission scheme is considered. Specif-

ically, downlink precoding combined with differential modulation (DM) is used

to shift the complexity from the receivers to the transmitter. The block diagonal-

ization (BD) precoding scheme is used to cancel co-channel interference (CCI) in

addition to exploiting its advantage of enhancing diversity. Since the BD scheme

requires channel knowledge at the transmitter, the downlink spreading technique

along with DM is also proposed, which does not require channel knowledge nei-

ther at the transmitter nor at the receivers. The orthogonal spreading (OS) scheme is



employed to have similar principle as code division multiple access (CDMA) mul-

tiplexing scheme in order to eliminate the interference between users. As a STBC

scheme, the Alamouti code is used that can be encoded/decoded using DM thereby

eliminating the need for channel knowledge at the receiver. The proposed schemes

yield low complexity transceivers while providing good performance.

For the MIMO system with a high rate noncoherent scheme, a differential STBC

MU-MIMO system that operates at a high data rate is considered. In particular,

a full-rate full-diversity downlink algebraic transmission scheme combined with a

differential STBC systems is proposed. To achieve this, perfect algebraic space

time codes and Cayley differential (CD) transforms are employed. Since CSI is

not needed at the differential receiver, differential schemes are ideal for multiuser

systems to shift the complexity from the receivers to the transmitter, thus simplify-

ing user equipment. Furthermore, OS matrices are employed at the transmitter to

separate the data streams of different users and enable simple single user decoding.

In the OS scheme, the transmitter does not require any knowledge of the CSI to

separate the data streams of multiple users; this results in a system which does not

need CSI at either end. With this system, to limit the number of possible code-

words, a sphere decoder (SD) is used to decode the signals at the receiving end.

The proposed scheme yields low complexity transceivers while providing full-rate

full-diversity system with good performance.

Lastly, a differential downlink transmission scheme is proposed for a massive MIMO

system without explicit channel estimation. In particular, a downlink precoding

technique combined with a differential encoding scheme is used to simplify the

overall system complexity. A novel precoder is designed which, with a large num-

ber of transmit antennas, can effectively precancel the multiple access interference

(MAI) for each user, thus enhancing the system performance. Maximising the worst

case signal-to-interference-plus-noise ratio (SINR) is adopted to optimise the pre-

coder for the users in which full power space profile (PSP) knowledge is available to

the base station (BS). Also, two suboptimal solutions based on the matched and the

orthogonality approach of PSP are provided to separate the data streams of multiple

users. The decision feedback differential detection (DFDD) technique is employed

to further improve the performance.

In summary, the proposed methods eliminate MAI, enhance system performance,



and achieve a simple low complexity system. Moreover, transmission overheads

are significantly reduced, the proposed methods avoid explicit channel estimation

at both ends.
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1.1 Overview

1.1 Overview

Wireless communication has undergone a remarkable and rapid evolution. In the past decade,

the wireless evolution has reached a level where researchers, designers and manufacturers in-

creasingly depart from the conventional concept of communicating on a single point-to-point

basis with a central controlling base station (BS). Indeed, it was shown in [1–4] that multiuser

multiple-input multiple-output (MU-MIMO) offers numerous benefits over conventional point-

to-point MIMO. Firstly, MU-MIMO works with cheap single-antenna terminals. Additionally,

MU-MIMO does not require a rich scattering environment. Furthermore, resource allocation in

MU-MIMO is simplified because all the active terminals use all the frequency and time bins.

However, MU-MIMO is constrained in terms of scalability.

Massive MIMO (also referred to as hyper MIMO or, large-scale MIMO) counters this con-

straint by using a large excess of service-antennas over time-domain duplex (TDD) operation

and active terminals [2]. These extra antennas focus the system energy into smaller regions of

space to improve the radiated energy efficiency and throughput. The other noted benefits of

large scale MIMO include reduced latency, inexpensive power components, robustness against

deliberate jamming and simplification of the media access control (MAC) layer [5]. On the

other hand, it has been demonstrated that cooperative communication can improve the capac-

ity and/or the coverage of wireless networks. Thus, massive MIMO and cooperative diversity

schemes, can be used together to mitigate fading and further improve the performance of wire-

less networks. While massive MIMO delivers numerous benefits, it comes with new challenges

that need to be addressed.

There exists a large and growing body of literature that supports MU-MIMO transmit pre-

coding techniques [6, 7]. In this kind of scheme, the availability of channel state information

(CSI) at the transmitter makes it possible for the precoder to precancel co-channel interference

(CCI) at each mobile user. There are two steps that allow the base station (transmitter) to obtain

CSI from the receiver in downlink precoding. First, the BS transmits training sequences in TDD

and then it uses feedback from the mobile nodes (receiver). However, the most critical factor

that affects the throughput gains provided by MU-MIMO and increases complexity at both the

transmitter and receiver, is the feedback mechanism, since all the information must be passed

by the BS before channel conditions change and the BS periodically receive CSI from mobile

nodes, thus incurring overhead. Furthermore, the cost of obtaining CSI at the transmitter re-

quires coordinating the process between the transmitters and receivers in order to decode the

transmitted signals effectively.
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1.2 Contributions

The impact of the receiver estimation process and/or overhead problem can be potentially

solved by using differential modulation (DM). The mobile node in this scheme would not re-

quire the capability for coherent detection in order to measure channel conditions using training

sequences, i.e. the mobile nodes could not be used either to decode unknown data transmission

or to estimate CSI to feed it back to the BS.

This PhD thesis will concentrate on designing, analysing and evaluating new advanced

downlink signal transmission techniques for noncoherent scheme. I will consider both con-

ventional and massive MU-MIMO wireless communication systems. The evaluation process

will be carried out using MATLAB.

1.2 Contributions

This thesis covers three topics (presented in Chapters 3 to 5) related to the design of noncoherent

downlink transmission systems: exploiting low rate differential spacetime block code (STBC)

in downlink MU-MIMO systems; exploiting high rate differential algebraic STBC in downlink

MU-MIMO systems; and differential downlink transmission in massive MU-MIMO systems.

The contributions in each of the three chapters are outlined as follows:

1. Exploiting low rate differential STBC in downlink MU-MIMO systems: Chapter 3

considers a STBC code MU-MIMO system with downlink transmission system. The

main contributions are as follows:

(a) The use of DM for downlink transmission in a MU-MIMO system is considered to

shift the complexity from the receivers to the transmitter. Specifically, I show how

to use DM combined with the block diagonalization (BD) and orthogonal spreading

(OS) schemes.

(b) DM is considered for both BD and OS schemes based on the Alamouti STBC in

order to eliminate the need for estimating the composite channels formed by the

precoders and the channels at the receivers.

(c) Since the BD scheme still requires CSI at the transmitter, a downlink OS scheme

combined with DM is proposed. In the OS scheme, unlike the BD scheme, the

transmitter does not require any knowledge of the CSI to separate the data streams

of multiple users. Therefore, implementing the OS scheme with the DM will result

in a system that does not need CSI at either ends. The transmission overhead is
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1.2 Contributions

significantly reduced using the proposed scheme, since neither feedback nor the

estimation of the composite channels are required.

2. Exploiting high rate differential algebraic STBC in downlink MU-MIMO systems:

Chapter 4 considers a STBC code MU-MIMO system that operates at a high data rate with

full diversity. In particular, I propose to use a full rate downlink algebraic transmission

scheme combined with a differential space-time scheme for MU-MIMO systems. The

main contributions presented in this chapter are as follows:

(a) In this work, the use of high rate Cayley differential (CD) STBC for downlink trans-

mission in a MU-MIMO system is considered. Specifically, I show how to use

differential STBC combined with full rate full diversity perfect algebraic STBC.

The use of differential STBC in a multiuser scenario simplifies the complexity of

the receivers, since neither feedback nor the estimation of the CSI is required at the

receiver.

(b) Differential STBC is considered based on the orthogonal spreading technique in

order to separate the data streams of multiple users. With the use of orthogonal

spreading, the transmitter needs no knowledge of the CSI to design the spreading

matrices.

(c) At the receiver of each user, a sphere decoder (SD) is implemented for high rate co-

herent and differential perfect algebraic STBC to limit the set of candidate symbols

to those within a sphere of some radius d.

(d) The proposed schemes facilitate multiple user data separation, enhancing full rate

full diversity, and achieving low complexity receivers and transmitters through the

use of differential STBC.

3. Differential downlink transmission in massive MU-MIMO systems: Chapter 4 con-

siders a differential downlink transmission scheme for a massive MU-MIMO system

without explicit channel estimation. The main contributions of this chapter are:

(a) I propose a differential MIMO downlink transmission framework, in which a BS is

equipped with a massive antenna array that precodes transmit signals to separate the

data streams of multiple users.

(b) A novel downlink precoding design is proposed by employing knowledge of the

power space profile (PSP) of users to achieve a low-complexity differential massive
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1.3 List of Publications

MIMO system.

(c) I provide an optimal solution for the precoder based on a max-min signal-to-interference-

plus-noise ratio (SINR) problem formulation. The optimised precoder can effec-

tively precancel the interference between users, thus enhancing overall system per-

formance.

(d) Further, I provide two suboptimal solutions suitable for the low interference system

based on the matched and the orthogonality approach of PSP of each user.

(e) The proposed schemes facilitate precancelling MAI, enhance system performance,

and provide simple transmitter and receiver schemes. Consequently, since the pro-

posed scheme avoids channel estimation, the system overheads and latency will be

reduced significantly.

1.3 List of Publications

This thesis has three contribution chapters. The list of publications is categorised based on these

chapters as follows.

1. Chapter 3: Exploiting low rate differential STBC in downlink MU-MIMO Systems

• F. Alsifiany, A. Ikhlef, and J. A. Chambers.: “Exploiting differential modulation

within a multiuser-MIMO system with downlink precoding”, presented at the 11th

International Conference on Mathematics in Signal Processing, Birmingham, UK,

December 2016.

• F. Alsifiany, A. Ikhlef, and J. Chambers, “On differential modulation in downlink

multiuser MIMO systems,” in 2017 25th European Signal Process. Conf. (EU-

SIPCO), Kos, Greece, Aug. 2017, pp. 558-562.

2. Chapter 4: Exploiting high rate differential algebraic STBC in downlink MU-MIMO

Systems

• F. Alsifiany, A. Ikhlef, and J. Chambers, “Exploiting high rate differential algebraic

space-time block code in downlink multiuser MIMO systems,” IET Commun., vol.

12, no. 17, pp. 2188-2197, Oct. 2018.
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3. Chapter 5: Differential downlink transmission in massive MU-MIMO Systems

• F. Alsifiany, A. Ikhlef, M. Alageli, and J. Chambers, “Differential downlink trans-

mission in massive MU-MIMO systems,” IEEE Access, vol. 7, pp. 86 906-86 919,

2019.

4. Other contributions/In preparation

• M. Alageli, A. Ikhlef, F. Alsifiany, M. A. M. Abdullah, G. Chen, and J. Chambers,

“Optimal downlink transmission for cell-free SWIPT massive MIMO systems with

active eavesdropping,” IEEE Transactions on Information Forensics and Security,

pp. 1-1, Nov. 2019.

• F. Alsifiany, A. Ikhlef, M. Alageli, and J. Chambers, “Secrecy design for cell-free

noncoherent massive MIMO systems with passive eavesdropper”. This is under

preparation.
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1.4 Thesis Outline

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2 presents general background and a focused literature review including, multiple-

antenna systems, massive MIMO and differential space-time modulation. In addition, a survey

on previous works related to the design of noncoherent multiuser MIMO systems is discussed.

Chapter 3 is the first contribution chapter that includes the use of low rate differential STBC.

The use of DM is combined with BD and OS techniques for a downlink transmission MU-

MIMO system to enhance and form the precoder at the transmitter. The DM technique is

considered based on the Alamouti STBC to eliminate the need for estimating the composite

channels. Since neither feedback nor the estimation of the composite channels are required, the

transmission overhead is reduced using the proposed scheme.

Chapter 4 focuses on exploiting high rate differential STBC. Full rate full diversity STBC is

accomplished by using algebraic STBC along with a differential MU-MIMO system whereby

the receiver does not need any knowledge of the CSI to perform data detection. Differential

STBC is considered based on the OS technique to separate the data streams of multiple users and

enhance the system performance. In addition, a sphere decoder is implemented in this chapter

to minimise the search set of candidate symbols and hence speed up the detection process.

Chapter 5 introduces a novel precoder design suitable for a noncoherent downlink massive

MU-MIMO system. An optimal solution for the differential precoder based on max-min SINR

is presented in this chapter. The optimised precoder can effectively eliminate the interference

between users and thus enhance the system performance. In addition, two suboptimal differen-

tial precoders suitable for the low interference system are provided in this chapter.

Finally, the conclusions are drawn in Chapter 6 and ideas for future work are suggested.
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Chapter 2

Background and Focused Literature

Review
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2.1 Multiple-Antenna Systems

2.1 Multiple-Antenna Systems

In multiple antenna systems, more than one antenna is used at the transmitter and/or at the re-

ceiver leading to multiple wireless channels between the transmitter and the receiver [3]. Given

fixed transmission power and bandwidth, building a digital wireless communication system

that offers high data rate and less error rate is the core part of the trade-off between spectral

efficiency and power efficiency. Utilizing multiple antennas at the transmitter and/or at the re-

ceiver can exploit the spatial domain and results in better trade-off between spectral efficiency

and power efficiency [3]. Many transmission and reception techniques have been developed

to effectively achieve better performance provided by multiple antenna systems. One of the

important techniques, is the space time block coding (STBC) technique.

2.1.1 Space-Time Block Coding

STBC is a transmission technique in which multiple data streams are transmitted over multiple

antennas. In particular, the information is coded in the spatial and time domains to improve the

spectral efficiency and/or reliability of data transmissions [1, 3, 4]. The transmitted signals are

distorted by channel fading and corrupted by noise at the receiver. The receiver processes the

coded signals and decodes the information [3]. STBC allows diversity gain to be achieved and

in some cases array (also known as coding) gain.

2.1.1.1 Diversity Gain

In a wireless channel the transmit signal fluctuates and fades on its way to the receiver. Diversity

techniques are used in communication systems to combat fading [4]. There are various forms

of diversity systems. In receive diversity, a single-input multiple-output (SIMO) system is used

and the received signals at the antennas are combined using different combining algorithms

such as selection combining (SC) and maximal ratio combining (MRC). In SIMO systems,

diversity is measured by the number of independent fading branches which is in this case equal

to the number of receive antennas. In transmit diversity, a multiple-input single-output (MISO)

system is used and appropriate design techniques are needed at the transmitting antennas to

extract diversity. One of the most popular techniques is STBC, which allows diversity to be

extracted in the absence of channel knowledge at the transmitter. To enhance the transmit and

the receive diversity at the same time, a MIMO system is used.
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2.1 Multiple-Antenna Systems

2.1.1.2 Array Gain

Array gain, also known as power gain, is an increase in the average power induced by using

multiple antenna at the receiver and/or at the transmitter [4]. For example, in SIMO channels,

the average increase in signal-to-noise ratio (SNR) at the receiver is proportional to the number

of receive antennas, which is due to the coherent combination of the received signals.

2.1.2 MIMO Systems

A conventional point-to-point MIMO communication system consists of a single transmitter and

a single receiver (user k) or multiple receivers (users K), each equipped with multiple antennas

[8]. Fig. 2.1 shows a simple MIMO communication system that consists of multiple antennas

at the transmitter (Tx) and multiple antennas at the receiver (Rx). The MIMO system can be

either for a single-user MIMO (SU-MIMO) where all data streams are directed to one user, or

for MU-MIMO where data streams are broadcast to multiple users.

Typically, communication between the transmitting antennas and the receiving antennas

is direct, without cooperation, relaying, and/or any form of interference from any third party.

However, in modern communication systems, communication might involve multiple nodes

such as relay networks and ad hoc wireless networks, where there is indirect communication

between multiple transmitting and receiving antennas [9]. Fig. 2.1 below is an illustration of

a space-time transmission scheme in a point-to-point MIMO communication system. In this

MIMO configuration, the transmitter has Nt transmit antennas and the receiver has Nk
r receive

antennas, where k is the user index. There is a wireless channel between each pair of transmit

and receive antennas.

    MIMO

Transmitter

  MIMO

Receiver

1 1

2 2

N t N r

Base Station (BS) Mobile Station (MS)

(a) SU-MIMO

    MIMO

Transmitter

  MIMO

Receiver

1

1

2

Base Station (BS) Mobile Station (MS)

(b) MU-MIMO

1

K

1

N t

  MIMO

Receiver

H H

N r
K

N r
1

Figure 2.1. MIMO configurations.
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2.1 Multiple-Antenna Systems

Assuming that the channels are constant over T transmission intervals, the system equation

of the multiple-antenna system can be represented as
y11 · · · y1T

... . . . ...

yNr1 · · · yNrT

 =
√
ρ


h11 · · · h1Nt

... . . . ...

hNr1 · · · hNrNt



s11 · · · s1T

... . . . ...

sNt1 · · · sNtT



+


z11 · · · z1T

... . . . ...

zNr1 · · · zNrT

 (2.1)

which can also be compactly expressed as

Y =
√
ρHS +Z (2.2)

where ρ is the average transmit power, Y is the Nr × T received signal matrix, S is the Nt× T

transmitted coded signal matrix, H is the Nr ×Nt frequency flat channel matrix, and Z is the

Nr × T additive noise matrix.

The horizontal axis in matrix S represents the spatial domain and its vertical axis repre-

sents the temporal domain. This coding method is called space-time coding [2]. Furthermore,

increasing the number of transmitting and receiving antennas in the system might increase the

data rate and minimise the probability of error. Point-to-point MIMO systems potentially pro-

vide much higher spectral efficiency and/or reliability than traditional SISO [10,11]. In the next

subsection one of the most popular STBC techniques is described, namely the Alamouti STBC

Scheme.

2.1.3 Alamouti Space Time Code Scheme

One of the elegant code examples associated with conventional MIMO is the Alamouti 2 × 2

space time coding scheme [12]. The Alamouti scheme is a transmit diversity scheme that is

suitable for systems that do not need knowledge of the CSI at the transmitter [1]. In other

words, the MIMO Alamouti code is a special case of the general case given in (2.1). The

received signal for an Alamouti 2× 2 MIMO system can be represented as

y11 y12

y21 y22

 =
√
P

h11 h12

h21 h22

 s1 s2

−s∗2 s∗1

+

z11 z12

z21 z22

 , (2.3)

.
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where (.)∗ denotes complex conjugate; and can be compactly expressed as

Y2 =
√
ρH2S2 +Z2 (2.4)

For decoding, the maximum likelihood (ML) decoder is applied:

Ŝ2 = arg min
S∈C
‖Y 2 −

√
ρT

Nt

H2S2‖ , (2.5)

where, ‖.‖ denotes the Frobenius norm, C is an available known finite codebook, S is the

possible transmitted symbol vector based on the available data. If the cardinality of C is M ,

then the transmission rate of this code is given by

R =
log2M

T
. (2.6)

Therefore, the most important factor in designing the STBC is to design the set C.

2.2 Massive MIMO

In the last ten years, the number of wirelessly connected devices has grown exponentially. More

devices continue to be connected in wireless networks and the growth is expected to skyrocket

with the concept of Internet of Things taking shape [13]. All these connected devices require

high bandwidth so as to support real-time videos, games and movies. As a result, there is a

demand for increase in the throughput of wireless networks. The growth gives rise to a concern

regarding efficient consumption of energy for wireless networks and devices. In order to keep

up with the exponential trend, industry needs systems that have a high throughput and serve

many users at the time while consuming less energy as compared to traditional systems [13]. A

solution that offers these requirements is massive MIMO technology. In this technology, several

antenna arrays are attached to a BS either in a collocated or distributed arrangement and use the

same frequency-time allocation to simultaneously serve multiple users [13]. The propagation

channels become favorable for most environments when massive antennas are used in a BS.

Linear processing is nearly optimum since the channel matrices are almost orthogonal between

the base stations and the users. Using massive MIMO, a high throughput and great energy

efficiency can be achieved because of the multiplexing and array gains [13]. Furthermore,

massive MIMO technology is able to offer a good service that is uniform to all users when a

proper power control scheme is used [13]. Given the capabilities of massive MIMO systems,
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2.2 Massive MIMO

the efficiency of wireless devices has increased several folds. This section discusses massive

MIMO technology, its working principles, and the challenges the technology faces.

2.2.1 Massive MU-MIMO

Advancement in technology has led to massive MU-MIMO. In multiple antennas technology,

a BS is equipped with several antennas to serve several single-antenna users by sharing mul-

tiplexing gain among the users [14]. Massive MIMO is a MU-MIMO technology in which

hundreds of BS antennas serve hundreds of users at the same time using a shared frequency

resource. When the BS is equipped with antennas past a hundred, it is referred to as "Hyper

MIMO" or "Full-Dimension MIMO". Massive MIMO is ten times more efficient in practical

applications than conventional point-to-point MIMO and its signal processing techniques are

far simpler [14]. Correspondingly, in multiple antennas systems, the channel estimation over-

head depends on the number of BS antennas and hence a simple linear processing technique

that operates at optimal capacity is required to handle the large dimensional vectors that result

from multiple users and multiple antennas. In such case, TDD operation is the preferred method

of operation as the increase in the number of antennas does not require additional resources for

channel estimation [13]. In other words, with TDD, the channel estimation overhead is inde-

pendent of the number of BS antennas so that the number of antennas can be increased to the

desired level without any effect on the estimation overhead [13]. Accordingly, there exist three

operations in a coherence interval of TDD, namely: uplink transmission, downlink transmission

and channel estimation as depicted in Fig. 2.2 [13].

pilots

pilots

pilots

data

data

data

pilots data

Uplink Pilots Downlink Pilots
Uplink Data

Transmission

Downlink Data

Transmission

Coherence Interval

Figure 2.2. TDD Massive MIMO protocol.
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2.2.2 Channel Estimation

The BS requires CSI for detection of user transmitted signals in the uplink and for precoding

of those signals in the downlink. The BS learns the CSI through uplink training where each

user sends a pre-assigned orthogonal pilot sequence to the corresponding BS. The BS uses the

received pilot sequences for channel estimation [15]. Every user requires partial knowledge of

CSI so as to be able to detect signals from the BS. To obtain this information, downlink training

to the users is performed; alternatively blind channel estimation can be implemented. The user

only requires the effective channel gain for signal detection since the signals are beamformed

to the user via linear precoding methods [15]. Thus the BS requires less time to convey the CSI

information to the users.

2.2.2.1 Channel Coherence Time

In wireless communications systems, a communication channel may change with time. Co-

herence time is the time duration over which the channel impulse response is considered to be

constant (invariant). Such channel variation is significant in wireless communications systems,

due to Doppler effects. In MU-MIMO system, some theoretic measurements studies about

channel coherence time appeared in [16–18]. These studies suggest that high capacity can be

achieved with no prior knowledge of the channel if the channel does not change too frequently.

How frequently the channel may change is not completely clear.

In this thesis, it is assumed that the channel coherence time is large enough and changes

slowly and extends over several matrix transmission periods that is at least twice the number of

transmit antennas.

2.2.2.2 Fading Channel Model

Fading is the time variation of received signal power due to changes in paths or transmission

medium. The types of fading in wireless communication system is depicted in Fig. 2.3 [4, 19].

In flat fading, the bandwidth of the channel is larger than the bandwidth of the signal. Hence,

all frequency components of the signal will experience the same magnitude of fading. In

frequency-selective fading, the coherence bandwidth of the channel is smaller than the band-

width of the signal.

In this thesis, it is assumed that the fading of the channel is flat. Also, it is assumed that

the implementation of fading model or fading distribution is Rayleigh flat fading. In Rayleigh
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2.2 Massive MIMO

model, only non line of sight (NLOS) components are simulated between transmitter and re-

ceiver. It is assumed that there is no LOS path exists between transmitter and receiver [4, 19].

Large scale

Fading
Small scale

Fading

Path Loss

Shadowing
Multipath Delay

 Spread

Doppler

Spread

Slow

Fading

Fast

Fading
Flat

Fading

Frequency

Slelctive Fading

Fading Types

Figure 2.3. Types of fading in wireless communication.

2.2.2.3 Channel Estimation for TDD Operation

For TDD systems, different time slots are used by the uplink and downlink operations whilst

the same frequency resource is used [14, 20]. In TDD uplink operation, all the users first syn-

chronously send uplink data signals. Next, the users send orthogonal pilot sequences where

these pilot signals are detected by the BS and used to estimate the CSI, detect the uplink data,

and generate precoding vectors for downlink data transmission. The channel usage in this case

is equivalent to the number of users sending the pilot sequences, i.e., K channel uses.

In TDD downlink operation, the BS can utilize the precoding by using the uplink channel

estimation since there is channel reciprocity. On the other hand, for the effective channel gain,

the users can use pilot signals beamformed by the BS; a process that needs again a minimum

of channel uses equivalent to the number of users. i.e., K channel uses. As a result the training

process needs in total, at least 2K channel uses, where K is the total number of users.

2.2.2.4 Channel Estimation for FDD Operation

In frequency-domain duplex (FDD) systems, the downlink and uplink operations require dif-

ferent frequency resources and therefore there is no channel reciprocity. In the downlink trans-

mission, the BS requires CSI for pre-coding of the signals to be transmitted to the users. Each

user receives pilot sequences from the BS that it uses them to estimate the channels [21]. The
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channel estimates are sent back to the BS during the uplink transmission. The uplink transmis-

sion involves BS decoding the received signals; a process that requires CSI. Orthogonal pilot

sequences are sent by the users to the BS whereupon they are used for channel estimation and

the process has K channel usage [21]. An increase in BS antenna number results in a higher

number of channel replies, leading to consumption of more resources in the uplink operation.

For this reason, TDD is preferred to FDD for massive MIMO systems [15].

2.2.3 Uplink Transmission

It is the part of the coherence interval used by the users to send data to the BS. The same

time-frequency resource is shared among the users. To detect the signal from the users, the BS

utilizes channel estimation and linear combination mechanisms [13].

2.2.4 Downlink Transmission

In the downlink coherence interval, the BS uses the same time-frequency allocation to commu-

nicate with the users. The symbols to be used by the users, coupled with the channel estimates

of the BS, are used by the BS to precode the signals that are then transmitted by the BS anten-

nas [13].

2.2.5 Favorable Propagation Conditions in Massive MIMO

The future belongs to the technology that will be able to simultaneously support multiple users

at a high throughput while consuming less power. Massive MIMO serves these needs and

therefore will continue being deployed in high capacity wireless networks. The most important

observations and results for very large random vectors as in massive MIMO are the so-called

favourable propagation conditions. Favourable propagation defined as mutual orthogonality

among the vector-valued channels to the terminals, where the column-vectors of the propagation

vectors are asymptotically orthogonal [22]. Let p ∆
= [p1 · · · pn]T and q ∆

= [q1 · · · qn]T be n × 1

vectors with independent and identically distributed (i.i.d.) zero mean random variables with

E {|pi|2} = σ2
p and E {|qi|2} = σ2

q , i = 1, · · · , n. Then from the law of large numbers, it

follows
1

n
pHp

a.s.→ σ2
p, and

1

n
pHq

a.s.→ 0, as n→∞ (2.7)
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where a.s.→ denotes almost sure convergence. Also, from the central limit theorem, we have

1√
n
pHq

d→ CN (0, σ2
pσ

2
q ), as n→∞ (2.8)

where d→ denotes convergence in distribution. The conditions in (2.7)-(2.8) are satisfied un-

der the most favourable propagation conditions, where the column-vectors of the propagation

vectors are asymptotically orthogonal.

2.2.6 The Capacity of Massive MIMO

This type of MIMO achives higher data rate through multiplexing and its diversity allows the en-

hancement of the reliability for the communication link [14]. Point-to-point MIMO’s through-

put increases linearly with the number of antennas at the receiver or transmitter. The received

signal y ∈ CNr×1, can be expressed as

y =
√
ρHs+ z, (2.9)

where s ∈ CNt×1 is the transmit signal, z ∈ CNr×1 is the additive noise vector modelled as

zero-mean complex circularly symmetric Gaussian random vector with an identity covariance

matrix, i.e., z ∼ CN (0, INr), E
{
‖s‖2} = 1 is the normalized total power of the transmit

signal. With these assumptions, the scalar ρ is the transmit power. The achievable rate for i.i.d.

Gaussian transmitted signal with CSI available at the receiver is expressed as

C = log2 det

(
I +

ρ

Nt

HHH

) bits
s

Hz
, (2.10)

with normalized propagation coefficients for the matrix H , as Tr(HHH) ≈ NrNt. The upper

and lower bounds for the capacity are expressed as [20]:

log2 (1+ρNr)≤C≤min(Nt, Nr) log2

(
1+

ρmax(Nt, Nr)

Nt

)
. (2.11)

The sum rate is dependent on the distribution of the singular values of HHH. With the ex-

ponential growth of transmit and receive antennas for the massive MIMO system, we have the

following two cases:

1- First case, if the number of receiver antennas is held constant while the transmit antenna

number tends to infinity, i.e., Nt → ∞, then, for coherent modulation (CM) system, the rate
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that can be achieved in this case is approximated as

C ≈ Nr log2(1 + ρ)
bits

s

Hz
. (2.12)

2- Second case, holding constant the number of antennas for transmission while that for re-

ceiver antenna is let to tend to infinity, i.e., Nr →∞, the resultant rate is approximated as:

C ≈ Nt log2

(
1 +

ρNr

Nt

) bits
s

Hz
. (2.13)

It can be seen from (2.12) and (2.13) that when MIMO systems use many antennas, as in the case

with massive MIMO systems, the highest rate is achieved, i.e., the upper bound in (2.11), [15].

This implies it is possible to serve more users at a better throughput at the same time shar-

ing the same frequency resource without any increase in the transmitted power per terminal.

Additionally, the quality of service is maintained and the transmit power is slashed by 3 dB if

the number of BSs is doubled [14]. Since the antenna array and multiplexing gains above are

arrived at using optimal processing and by favourable propagation model, there is a concern as

to whether similar gains are attainable using linear processing. There is a temptation to em-

ploy point-to-point MIMO that yields low dimensions and employs complex signal processing

instead of the massive MIMO which is simple to process. Linear processing is optimal in mas-

sive MIMO and leads to similar gains since an increase in BS antennas results in a favourable

channel. The favourable channel results from the law of large numbers [15]. Higher wireless

throughput is obtainable with an increase in user number and base station antenna arrays whilst

simple linear processing delivers the array and multiplexing gains [20]. If antenna arrays are

raised in base stations, the sum rate obtained via linear processing nears the sum rate deduced

from optimal receivers.

2.2.7 Challenges of Massive MIMO

Even though massive MIMO is aimed at achieving better capacity that allows many users to

be served simultaneously while maintaining a high throughput, the system is faced with sev-

eral challenges as discussed below. Energy efficiency and simpler linear signal processing are

some of the strong points of the massive MIMO system; however, the system faces challenges

related to these benefits that need to be tackled. These challenges include pilot contamina-

tion, unfavourable propagation, channel reciprocity, precoding techniques, signal detection and

channel estimation. Additionally the system is faced with low mutual coupling, compact and
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low profile, correlation coefficient and channel characterization problems [21]. Some of these

challenges are discussed below.

2.2.7.1 Pilot Contamination

Practical wireless network systems use multiple cells that share time-frequency allocation due

to the scarcity of these resources. Since the channel coherence interval is limited, it becomes

impractical to give all the cells orthogonal pilot sequences in a multicell system. As such the

pilot sequences are usually reused. Due to the reuse, contamination of the channel estimate

will occur as a result of the pilot sequences that have been released by other users [20]. When

contamination occurs, the systems performance is significantly reduced. The problem is persis-

tent even when the antenna arrays of the BS are significantly increased and therefore seriously

hampers the massive MIMO technology. Researchers have put considerable effort to eliminate

this problem through methods such as channel estimation using the eigenvalue decomposition

method where both contamination and decontamination methods are put forward. Through this

method, channel pilot contamination can be controlled by employing a pilot allocation scheme

that is covariance-aware [13]. However, there is much to do to mitigate this challenge and

research in this area is still ongoing.

2.2.7.2 Unfavorable Propagation

Massive MIMO is designed to work in favourable environments of propagation which is rarely

the case in practice. In a practical environment where the massive MIMO system is likely to

be deployed, the number of users may be higher as compared to the number of scatterers for

the signal or even the user channels directed to the BS may be sharing scatterers leading to

unfavourable propagation environments.

2.2.7.3 Physical Array Size and Antenna Spacing

Depending on carrier frequency, the area to be covered, and the nature of the use, there are

different shapes and sizes of the antenna arrays. In cellular communications, the most popular

array models are the linear, the planar, and the cylindrical arrays (see Fig 7.11 in [23]). Relative

to the wavelength, the important factors of an antenna array are the antenna spacing and its

total size [23]. Massive MIMO systems with a large number of antennas at the BS have been

shown to produce high spectral and energy efficiencies under the assumptions of increasing

the physical space between the antennas at the BS, i.e., there is no spatial correlation among
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antennas at the BS [24, 25]. However, in practical systems it is obvious that as you move to a

higher number of antennas at the BS, antennas would have to be placed much closer together

thereby increasing the spatial correlation and the array size.

In massive MIMO systems, favourable propagation makes fading channel behave as if it

was deterministic channel, and hence the assumptions of uncorrelated channel make the perfor-

mance analysis and optimisation of massive MIMO tractable. On the other hand, in spatially

correlated systems, the channels between different antennas are often correlated and therefore

the potential of multi antenna gains and favourable propagation may not always be obtainable.

Therefore, it is observed that antenna correlation does have great impact on the bit error rate

(BER) performance of a massive MIMO system. A possible solution to this problem is locat-

ing the BS antennas in a distributed manner over a wide area to minimise sharing of scatterers

among users [14]. In this thesis, it is assumed that there is no correlation between transmit

antennas at the BS as they are spaced at a minimum of 0.5λ, where λ is the wavelength.

2.2.7.4 Channel Reciprocity

Reciprocity in massive MIMO systems refers to the channel impulse from the BS to the mo-

bile terminal being the same as that of the user terminal towards the BS [14]. The technique is

founded on the TDD principle but most of the equipment used in the mobile terminal does not

have hardware that can support reciprocity for the downlink and uplink channels. There have

been propositions to solve this issue which includes calibration of the base station’s hardware

chains. One such method is multiuser beamforming where a base station with more than ten

antennas serves several terminal antennas at the same time. The technique employs internal

calibration of the hardware to allow for implicit beamforming that enables it to attain baseband

processing capabilities. In a massive MIMO system, terminal hardware does not need to be

calibrated for uplink and downlink reciprocity. Instead, the BS’s hardware is calibrated to give

beams that are coherent with the terminal equipment hardware channels [15]. To do this, one

antenna is taken as the reference for the others and then the antennas share information amongst

them and hence are able to compute compensation factors required for each antenna. An alter-

native method is to lower the gain slightly and then totally omit calibration and the two ends

operate well.
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2.2.7.5 Channel Estimation

For the downlink part of the channel estimation process of the coherence interval, a challenge

is to achieve maximum usage, orthogonal pilot signals are required due to the huge number of

antennas propagating in a mobile environment [20]. The resource requirements, and in particu-

lar frequency and time, rise as the quantity of antenna arrays are increased. Another problem is

the increase of responses to the base station when the BS antennas increase, leading to a strain

on the uplink resources.

2.2.7.6 Precoding Technique

The downlink channel requires the development of pre-coding techniques that act to improve the

performance of a massive MIMO system. A possible solution is the use of Hermitian methods

which are linear and more practical [14]. According to the review article [20], linear and non-

linear precoding technique can be used for massive MIMO in the BS. In comparison between

linear and non-linear precoding techniques, the linear precoding techniques such as matched

filter (MF) and zero-forcing (ZF) are near-optimal and thus are less complex than non-linear

precoding techniques. On the other hand, non-linear precoding techniques such as dirty-paper-

coding (DPC), vector perturbation (VP) and lattice-aided methods, have better performance but

with higher complexity.

When the CSI is perfectly known to the BS, i.e. H is known, the linear precoding techniques

are more practical. When MF is used, the transmit signal can be written as

AMF =
1√
α

(H) (2.14)

where A is an Nr × Nt precoded transmit signal of the data symbols s, and α normalizes the

average transmit power. When ZF is used, the transmit signal from the BS can be written as

ARZF =
1√
α
H(HHH)−1. (2.15)

The MF precoder has better performance than ZF in the low spectral efficiency region, while

the ZF is better in the high spectral efficiency [20]. When regularized ZF (RZF) is used, the

transmit signal from the BS can be written as

ARZF =
1√
α
H(HHH + δI)−1, (2.16)
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where δ is a parameter subject to optimisation. Setting δ = 0 results in the ZF precoder while

δ →∞ gives the MF precoder.

2.2.7.7 Signal Detection

It is desirable to have a simple linear processing technique that can handle data in large volumes

that normally results from multiple antenna arrays and such mechanisms are yet to be fully

developed [21]. Several methods have been put forward to tackle the issue, including minimum

mean-square error (MMSE) and MF precoding/detection. Another linear method that has been

proposed is ZF. MMSE is able to obtain a performance similar to those of MF and ZF, albeit

with a lesser number of antennas [20]. Non-linear alternatives such as lattice reduction, Tabu

search and likelihood ascent search give improved performance but have a disadvantage of

high complexity which is not desirable. When the BS knows the CSI, linear detection can be

considered. By using a linear detector, the received signal in (2.9) is separated into streams by

multiplying it withAH as follows

r = AHy.

=
√
ρAHHs+AHz.

(2.17)

Let rk and sk be the elements of the kth user of the Nt × 1 vectors r and s, respectively. Then

the downlink received signal for the kth user is given by

rk =
√
ρk a

H
k hksk +

K∑
q=1
q 6=i

√
ρqa

H
q hksq + aH

q zk, (2.18)

where ak and hk are the vectors of the kth user of the matrices A and H . While the uplink

received signal from the kth user is given by

rk =
√
ρk a

H
k hksk +

K∑
q=1
q 6=i

√
ρka

H
k hqsk + aH

k z. (2.19)

2.3 Differential Space-Time Modulation

The MU-MIMO systems that I have reviewed in the previous sections assume coherent de-

tection at the receiver, i.e., the receiver knows the channel H . In practical systems, the CSI

estimation is carried out by using pilots sequences transmitted with the data that are known
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to the receiver. The accuracy of the CSI estimation depends on the number of pilots symbols

used in the estimation process. The higher the number of pilots the higher the accuracy of CSI

estimation. However, for some systems, due to high mobility and the cost of channel training

and estimation, CSI acquisition is impossible [26]. Furthermore, the resource requirements,

and in particular frequency and time, rise as the quantity of antenna arrays are increased. An-

other problem is the increase of responses to the base station when the BS antennas increase,

leading to a strain on the uplink resources. One alternative method is to encode the trans-

mitted data differentially, and to decode differentially using differential space-time modulation

(DSTM) without any knowledge of the CSI at the receiver. The receiver in this case does not

need any knowledge of the CSI to perform detection. Consequently, differential detection does

not employ pilot symbol transmission so that it helps keep the receiver structure as simple as

possible. Figures 2.4 (a) and (b) show the system configurations of the coherent and noncoher-

ent schemes, respectively. It can be seen that the coherent setup involves a channel estimation

and feedback stage to acquire the CSI, while the noncoherent scheme does not require either the

transmitter or the receiver to do any channel estimation process to know the channel. In this sec-

tion, details of differential space-time modulation for SISO and MIMO systems are described,

including their encoding, decoding, code construction, and performance analysis.

Space-Time

modulation

Coherent

detection

Tx Rx

 Channel

estimation

bits

MIMO Channel

H

YB

(a)

Space-Time

modulation

Noncoherent

  detection

Tx Rx

bits

MIMO Channel

YB

(b)

Figure 2.4. MIMO system, (a) with coherent detection, (b) with noncoherent detection
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2.3.1 Differential Space-Time Modulation for SISO System

The vector s = [s1, s2, · · · , sτ · · · , sN ] ∈ C1×N , is the information vector with elements drawn

from an M -ary PSK constellation as:

M =
{
ej2πi/M | i = 0, 1, · · · ,M − 1

}
, (2.20)

where N denotes the block length of the coherence time intervals. The PSK modulator group

b bits s  b

delay
 b

2 - PSK

Modulator

b τ

τ-1

τ

Figure 2.5. DPSK modulator.

every b bits at its input and maps them onto one of the constellation information symbols. It

is assumed E{|sτ |2} = 1. As shown in Fig. 2.5, a sequence of symbols of the sτ at time τ ,

is then differentially encoded to generate the differential PSK (DPSK) modulated signal vector

b ∈ C1×(N+1) via the rule

bτ = bτ−1sτ = b0

τ∏
i=1

si. (2.21)

The transmit information signal vector b comprises the initial reference symbol b0 = 1 that

is known to the receiver and the following N differentially encoded symbols in the form of

b = [b0, b1, · · · , bN ]. In flat fading propagation, the received signal at time τ is given by

yτ =
√
ρhbτ + zτ , (2.22)

where h is the fading coefficient between the transmit and receive antennas which is modelled

as a complex Gaussian random variable with zero mean and unit variance. zτ is the noise

sample at time τ which is modelled as a complex Gaussian random variable with zero mean

and unit variance. It is assumed that the channel h changes slowly (channel coherence time

is large enough) and extends over several matrix transmission periods. In such a case, the BS

transmission starts with a reference symbol b0 = 1, followed by several information symbols.

When encoding using (2.21), the decoding process for sτ would be according to the last two

received signal of y, i.e., yτ and yτ−1. Thus, to recover sτ , the receiver computes yτ y∗τ−1 as
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follows

yτy
∗
τ−1 = (

√
ρhbτ + zτ )(

√
ρh∗b∗τ−1 + z∗τ−1) (2.23)

= |h|2(ρbτb
∗
τ−1) +

√
ρhbτz

∗
τ−1 +

√
ρh∗b∗τ−1zτ + zτz

∗
τ−1 (2.24)

= ρ|h|2|bτ−1|2sτ +
√
ρhbτz

∗
τ−1 +

√
ρh∗b∗τ−1zτ (2.25)

= ρ|h|2sτ +
√
ρhbτz

∗
τ−1 +

√
ρh∗b∗τ−1zτ (2.26)

In (2.23), the channel h is assumed to be constant over two consecutive symbol intervals. The

last two terms in (2.26) can be considered as a noise term with zero mean and variance 2|h|2ρ.

As the channel h is unknown to the receiver, the differential receivers recovers sτ according to

the decision rule [27]

ŝτ = arg min
sτ∈M

|yτy∗τ−1 − sτ |. (2.27)

On the other hand, as a comparison, the coherent detection when h is known to the receiver first

computes h∗yτ as follows

h∗yτ =
√
ρ|h|2bτ + h∗zτ . (2.28)

Note that the noise variance in (2.28) is |h|2. Therefore, the optimal receiver would be [27]

ŝτ = arg min
bτ∈M

|h∗yτ −
√
ρ|h|2bτ |2. (2.29)

The difference in performance between coherent detection and differential detection can be

evaluated using SNR in both cases. From (2.26) and (2.28), the received SNR for differential

detection is |h|2ρ/2, while the received SNR for coherent detection is |h|2ρ. By comparing the

two cases, it is clear that coherent detection outperforms the differential detection by approxi-

mately 3 dB [27].

2.3.2 Differential Space-Time Modulation for MIMO System

In this subsection, the DSTM system design is extended to the case of MIMO systems. I will

consider here the DSTM model designed by [28, 29]. The model designed by [28, 29] is of

interest because it can be used for any number of transmit and receive antennas and applied to

any constellation.
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2.3.2.1 System Model and Signal Structure

Consider a SU-MIMO downlink broadcast channel where the BS transmits multiple streams to

a single user with multiple receive antennas as shown in Fig. 2.1-(a). The BS has Nt transmit

antennas and the receiver has Nr receive antennas.

The channel matrix H ∈ CNr×Nt is assumed to be a Rayleigh flat fading MIMO channel,

where the element hi,j is the channel coefficient between the jth transmit antenna and the ith

receive antenna during coherence interval. The elements of H are samples of i.i.d. complex

Gaussian process with distribution CN (0, 1).

Let S ∈ CT×T be a transmitted signal, satisfying the following condition:

SHS = SSH = IT , ∀ S ∈ G (2.30)

where, G is any T × T unitary group matrices that can be selected from any constellation (C).

Let D be Nt × T matrix such that DS ∈ CNt×T for all S ∈ G . The collection of the group

matrices can be represented as

M def
= {DS : S ∈ G} , (2.31)

where M represents a multichannel group code of length T over the constellation C. To make

M unitary, D should be unitary as well, i.e, DHD = NtIT . Thus, to construct M, D can be

chosen to be in C and G to be any group of T × T permutation matrices. Let M denote the

cardinality of the set G. Therefore, the rate of the code R = log2M
T

bits
s

Hz
. For an M -ary PSK, G

group code can be constructed such that [28]

G =
{

1,ΦM ,Φ
2
M , · · · ,ΦM−1

M

}
, (2.32)

where ΦM = e2πj/M . The group codes are either cyclic or dicyclic. The group (M, i) is cyclic

if i is odd, thus the group can be generated as follows [28]

G =

〈ΦM 0

0 Φi
M

〉 , ∀ 0 < i < M, i is odd. (2.33)

On the other hand, the group (M, i) is dicyclic if i is even and M ≥ 8, then it can be generated

as follows [28]

G =

〈ΦM/2 0

0 Φ∗M/2

 ,
0 −1

1 0

〉 ∀M ≥ 8, i is even. (2.34)
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The information symbols are independent of each other which will permit the use of a wider

variety of unitary matrix groups. The following examples can illustrate the idea of the group

codes.

Example 1. Cyclic group. For Nt = T = 2, R = 1, M = 4, i = 3, the pair [28]

G =

±
1 0

0 1

 ,±
j 0

0 −j


D =

1 −1

1 1


is a group code over the QPSK constellation C = {1, j,−1,−j}.

Example 2. Dicyclic group. For Nt = T = 2, R = 1.5, M = 8, i = 4, the pair [28]

G =

±
1 0

0 1

 ,±
j 0

0 −j

 ,±
 0 1

−1 0

 ,±
0 −j

j 0


D =

1 −1

1 1


is a group code over the QPSK constellation C = {1, j,−1,−j}.

Example 3. Dicyclic group. For Nt = T = 2, R = 2, M = 16, i = 8, the pair [28]

G =

±
1 0

0 1

 ,±
1+j√

2
0

0 1−j√
2

 ,±
j 0

0 −j

 ,±
−1+j√

2
0

0 −1−j√
2

 ,

±

0 −1

1 0

 ,±
 0 −1+j√

2

1+j√
2

0

 ,±
0 j

0 j

 ,±
 0 1+j√

2

−1+j√
2

0


D =

1 −1

1 1


is a group code over the 8PSK constellation C =

{
1, 1+j√

2
, j, −1+j√

2
,−1, −1−j√

2
,−j, 1−j√

2

}
.

2.3.2.2 Differential Encoding for MIMO

Differential encoding can be performed in two ways: overlap and non-overlap. In the overlap

case, the channel coherence time changes slowly (e.g. the channel stays constant over several
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transmission blocks) [28]. Clearly, as a result, the transmission starts with a reference matrix

code, and is then followed by several information blocks.

In the non-overlap case, the channel coherence time is fixed over just two consecutive blocks

[28]. Consequently, the transmission starts by transmitting a known reference code matrix at

the beginning of each new coherence time, followed by just one information block.

i- Overlap Case

The transmitted signal matrix is encoded differentially as follows [28]:

Bτ = Bτ−1Sτ = B0

τ∏
i=1

Si, τ = 1, ..., N , (2.35)

where Bτ is a unitary differentially encoded data matrix, N denotes the block length of

the coherence time intervals. Note that B0 = D to initiate the transmission, where D is

an Nt × T matrix such that

D =

1 −1

1 1

 (2.36)

ii- Non-Overlap Case

According to [28], the transmitted symbols can also be encoded using the non-overlap

scheme as follows

Bτ = DSτ , τ = 1, ..., N. (2.37)

This type of encoding is simple, however, its spectral efficiency is almost half that of the

overlap case.

2.3.2.3 Differential Detection for MIMO

In DSTM, the transmissions are implemented in blocks, i.e., the transmitted space-time signal

is a T × T matrix. For simplicity, Nt = T is assumed as in [28]. Let Ȳ denote the matrix

having all N + 1 received signal blocks, i.e.,

Ȳ = [Y 0 Y 1 · · · ,Y τ , · · · Y N ] , (2.38)

and, Y τ can be expressed as

28
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Y τ =
√
ρHBτ +Zτ , τ = 0, 1, ..., N. (2.39)

The channel coefficientsH change slowly, so that the channel coherence time extends over

several matrix transmission. In such a scheme, the BS transmission starts with a reference

matrix, followed by several information matrices. Now, the encoding process will be according

to (2.35), however for simplicity, the decoding process for Sτ would not be based on the entire

received sequence of Ȳ , instead it would be based on every two consecutive/adjacent blocks of

Ȳ as in the following notation [28]

Ȳ =

[
Y 0Y 1︸ ︷︷ ︸ Y 1Y 2︸ ︷︷ ︸ · · ·Y τ−1Y τ︸ ︷︷ ︸ · · ·Y N−1Y N︸ ︷︷ ︸

]
. (2.40)

In other words, the last two blocks of Ȳ can be defined as

Ȳ τ
def
=
[
Y τ−1 Y τ

]
. (2.41)

The code matrices that affected Y τ are

C̄τ =
[
Bτ−1 Bτ−1Sτ

]
. (2.42)

The differential data words matrices C̄τC̄
H
τ can be expressed as

C̄
H
τ C̄τ =

NtINt NtS
H
τ

NtSτ NtINt

 , (2.43)

where Nt = T, SτS
H
τ = SHτ Sτ = IT , DτD

H
τ = DH

τ Dτ = TINt = NtIT , B0 = D, and

BτB
H
τ = BH

τ Bτ = NtINt . When Bτ−1 is known to the receiver, the optimal differential

decoder to decode Sτ would be as [28, 29]

Ŝτ = arg max
Sτ∈G

trace
{
Ȳ τC̄

H
τ C̄τ Ȳ

H
τ

}
(2.44)

= arg max
Sτ∈G

<
{

trace
{
Y τ−1Sτ Y

H
τ

}}
, (2.45)

= arg max
Sτ∈G

<
{

trace
{
Sτ Y

H
τ Y τ−1

}}
, (2.46)

and when H is available at the receiver, coherent detection can be exploited, in this scheme

decoder is given by
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2.3 Differential Space-Time Modulation

Ŝτ = arg max
Sτ∈G

<
{

trace
{
H Bτ−1 Sτ Y

H
τ

}}
. (2.47)

2.3.2.4 Capacity of Noncoherent MIMO Channels

In MIMO noncoherent downlink transmission in which the receiver has no prior knowledge of

the channel. The length of the channel coherence time, T , determines the upper bound on the

downlink capacity. Let yl denote the lth row of Y , defined in (2.39) , which can be expressed

as

yl =
√
ρhlB + zl, (2.48)

where hl and zl denote the lth row of H and lth row of Z, respectively. Therefore, the covari-

ance matrix is given as

Λ = E
{
hHl hl

}
(2.49)

= I + ρBHB. (2.50)

The probability density function of Y conditioned onB is given as [29, 30]

P (Y |B) =
exp

(
− trace

{
Λ−1Y HY

})
πTNr

(
det(Λ)

)Nr (2.51)

where det(·) denotes the determinant of a matrix. The mutual information of the channel en-

tropy is given as

I(Y ;B) = H(Y )−H(Y |B), (2.52)

where H(Y ) is the entropy of Y and H(Y |B). In order to obtain the capacity of noncoherent

channel, the general entropy form in (2.52) is maximised such that [17]

C =
1

T
sup
P (B)

I(Y ;B) (2.53)

where P (B) is the joint p.d.f of P (B). To solve this optimisation problem in (2.53), the authors

in [16] have found that the capacity of the differential MIMO system can be geometrically

interpreted as sphere packing in the Grassmann manifold. The Grassmann manifold is defined

as follows: given a Stiefel Manifold S(M1,M2) which represents the space of all M1-by-M2

complex unitary matrices, then, the Grassmann manifold G(M1,M2) is the space of the ratio of
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2.3 Differential Space-Time Modulation

the Stiefel Manifold S(M1,M2) to the Stiefel Manifold S(M2,M2)1 [16].

Define ς def
= min(Nt, Nr, bT/2c), where bxc denotes the integer part of x. For the coherence

time T , the capacity of the noncoherent channel at high average SNR regime, which I denoted

by Cnoncoh is [16]

Cnoncoh = ς
(

1− ς

T

)
log2 SNR + c,

bits
s

Hz
(2.54)

where
c =

1

T
log2 |G (T, ς)|+ ς

(
1− ς

T

)
log2

T

ςπe

+
(

1− ς

T

)
E
[
log2 det(HHH)

]
,

(2.55)

and |G(T,N)| is a natural measure on the Grassmann manifold defined as [16]

|G(T, ς)| =
∏T

i=T−ς+1
2πi

(i−1)!∏ς
i=1

2πi

(i−1)!

. (2.56)

Note that when T →∞ in (2.54), the capacity for the noncoherent MIMO channels approaches

that of coherent MIMO channels case. Fig. 2.6 serves as an example of the capacity achieved

when the channel H is known for coherent system and when it is unknown for noncoherent

system. The SNR is chosen to be high for an Nt = Nr = 8 MIMO system. Three values of T

are considered, T = 25, T = 50, and T = 100.
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Figure 2.6. Capacity comparisons of an Nt = Nr = 8 MIMO channel for the coherent and
noncoherent cases with T = 25, T = 50, and T = 100.

1For more details regarding the Stiefel and Grassmann manifolds, the reader is recommended to see [16].
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2.4 Focused Literature Review

This section reviews the previous literature work related to the design of noncoherent downlink

transmission systems. The review covers the design in three different categories of MIMO

systems (which specify the topics of the next three chapters): low rate differential STBC in a

downlink MU-MIMO system; high rate differential algebraic STBC in a downlink MU-MIMO

system; and differential downlink transmission in a massive MU-MIMO system.

2.4.1 Low Rate Differential STBC in a Downlink MU-MIMO System

For the MU-MIMO downlink, the availability of channel state information at the transmitter

makes it possible for the precoder to precancel the CCI at each user. The authors in [6] proposed

a framework that uses BD to cancel the CCI and assumed full CSI knowledge at the transmitter.

The CSI between the transmitter and the receivers is estimated at the receivers then fed back to

the transmitter. This leads to increased complexity of the receivers. In [7], the authors proposed

a method that combines the precoding technique in [6] and the Alamouti STBC. The proposed

method provides a substantial gain in terms of spatial diversity with a low decoding complexity.

However, for the decoding process, each receiver still needs to know the composite channel

formed by the precoder and the channel in order to coherently decode the Alamouti STBC. In

practice, each receiver acquires the composite channel by direct estimation. The prior focus of

STBC MU-MIMO downlink transmission techniques has been on cases where CSI is available

at the receivers and transmitter. However, for some systems, due to high mobility and the cost

of channel training and estimation, CSI acquisition is impossible [26].

Therefore, designing and implementing a framework that requires neither feedback nor the

estimation of the composite channels has been an unresolved topic.

2.4.2 High Rate Differential Algebraic STBC in a Downlink MU-MIMO

System

The transmission of an orthogonal STBC over a MIMO channel in [1, 31] was proposed to

achieve full diversity with a low complexity receiver. However, orthogonal STBC suffers from

an inability to work with a greater number of antennas at full transmission rates. When decoding

complexity is not an issue, non-orthogonal full-rate full-diversity algebraic STBC may be used

[32, 33]. For MIMO systems, there are many previous employed space-time codes that provide

a higher rate with full diversity in a trade-off with complexity, such as threaded algebraic space-
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time (TAST) block codes, the classic Bell Laboratories layered space-time (V-BLAST) and

linear dispersion block codes (LDC) [34, 35]. However, the minimum determinants of these

codes are generally non-zero, but vanish as the spectral efficiency of the signal constellation

is increased. The authors in [36] have constructed full rate and full diversity perfect algebraic

STBC with a non-vanishing determinant when the spectral efficiency increases.

In the MU-MIMO downlink, transmit diversity can be applied using downlink transmission

techniques, such as the orthogonal spreading multiplexing code. The authors in [7, 37] used

this technique to decompose the MU-MIMO channels into parallel single user non-interfering

channels, and hence CCI was eliminated. Implementing the orthogonal spreading technique at

the transmitter (e.g. a base station) helps maintain simplicity in the receiver, so that simple linear

decoding approaches are applicable at the receiving end (e.g. end users). In a coherent scenario,

this approach was later considered in [38] as a multiplexing scheme for a MU-MIMO system,

and was combined with full rate full diversity algebraic STBC. The proposed method cancels

the CCI and provides a substantial gain in terms of full rate and spatial diversity. However,

for the decoding process, each receiver still needs to know the CSI to coherently decode the

algebraic STBC. In practice, each receiver acquires the composite channel by direct estimation,

which leads to increased complexity of the receivers.

The prior focus of noncoherent MU-MIMO downlink transmission techniques assumed CSI

is available at the receivers and transmitter with low data rate. However, it is not always feasi-

ble or advantageous to adopt channel estimation based schemes, essentially for high mobility

system or when many antennas are used [26]. One way to get high rates noncoherent scheme is

to encode the transmitted data differentially using a CD transform, and to decode differentially

without any knowledge of the CSI at the receiver [18]. Our previous work in [39] has dealt with

implementing the MU-MIMO downlink transmission of an Alamouti STBC combined with

differential modulation, which does not require channel knowledge for decoding. The scheme

provides low complexity transceivers while providing good performance. However, our work

in [39] cannot provide a comprehensive high rate differential scheme in downlink scenario.

Hence, there is much interest in designing a high data rate noncoherent system that does not

need CSI at either the transmitter or receiver for downlink MU-MIMO system.
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2.4.3 Differential Downlink Transmission in a Massive MU-MIMO Sys-

tem

Much of the research on MIMO downlink transmission designs assumes perfect CSI at the

transmitter. The availability of CSI at both ends makes it possible for the system to eliminate

the multiple access interference (MAI) between users. However, due to various reasons, such as

pilot contamination from training sequence reuse in massive MIMO, perfect CSI estimation is

unattainable [26]. In [7], the authors proposed a framework that uses the block diagonalisation

method to cancel MAI between users. The proposed method provides a substantial gain in terms

of spatial diversity with a low decoding complexity. However, for the decoding process, each

user still needs to know the channel in order to decode the information signal coherently.

Our work in [39] proposed a downlink spreading scheme combined with DM detection

to eliminate the need of estimating the CSI at the BS and users. The scheme provides both

low complexity transceivers and good performance. However, for large number of users, the

proposed scheme in [39] does not provide a comprehensive high rate differential scheme in a

downlink scenario due to the long length of the spreading code. Our work in [40] proposed

a full rate downlink algebraic transmission scheme combined with a differential space-time

scheme. The proposed scheme provides a full-rate full-diversity system and does not require any

knowledge of the CSI to separate the data streams of multiple users. In this approach, however,

the BS typically employs only a few antennas, and thus the corresponding improvement in

spectral efficiency and system simplicity is still relatively modest.

In order to improve the spectral efficiency and to simplify the required signal processing, a

massive MIMO downlink system is employed [41, 42], where the BS is equipped with a very

large number of transmit antennas. In practice, the demodulation reference signals (DM-RS)

are used to support channel estimation and data demodulation. In DM-RS, the estimation of the

channel for coherent detection is often obtained by training and tracking, e.g. using reference

signals (RS), or pilots. However, it is not always feasible to use training-based schemes, with

systems that have a large number of antennas. As the number of transmit antennas grows large

such as in the case of massive MIMO, the channel estimation process, system overheads, and

latency will grow proportionately [43]. Discussion of DM-RS improvements are ongoing in

3GPP release 15 standardization [44], hence, it is natural to adopt differential modulation with

massive MIMO to reduce the overhead and latency of DM-RS.

A well-established method to enhance DM is multiple symbol differential detection (MSDD).

The authors in [45] point out a 3dB performance improvement simply by demodulating the
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received symbols jointly as a block, instead of one at a time using the MSDD detection tech-

nique. The authors of [46, 47] developed MSDD detection for the uplink MIMO system in

ultra-wideband (UWB) systems. Essentially, the authors in [47] adopted decision feedback

differential detection (DFDD) for a massive MIMO system, as this approach improves the per-

formance of MSDD. However, the multiuser transmission scheme in [47] suffers from severe

MAI without a proper precoding design scheme. Furthermore, prior research on MSDD and

MAI cancellation has mainly been focused on uplink transmission, where cancellation was im-

plemented at the BS receiver, and therefore complexity was not a significant concern [46, 47].

For downlink transmission, however, interference cancellation at end users increases receiver

complexity, and for this reason, it is better to account for interference cancellation at the BS

instead of receivers.

Therefore, it is of interest to design massive MIMO systems that precode the transmitted

signals at the BS, enhance system performance, provide simple transceiver schemes, and avoid

channel estimation at both ends.
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Exploiting Low Rate Differential STBC in

Downlink MU-MIMO Systems
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3.1 Introduction

Future wireless systems require effective transmission techniques to support high data rate and

reliable communications. As such, a potential technique to utilize as part of multiple antenna

systems to enhance system diversity is STBC [1]. In the multiuser multiple-input multiple-

output MU-MIMO downlink, transmit diversity gain can be maximised by using downlink

transmission techniques such as transmit precoding, e.g., the block diagonalization (BD), and

transmit spreading, such as the orthogonal spreading (OS) scheme. These techniques allow the

MU-MIMO channels to be decomposed into parallel single user non-interfering channels, and

hence eliminate CCI [6, 7].

Implementing a precoding technique at the transmitter (e.g., a base station) helps maintain

simplicity in the receiver, so that simple linear decoding approaches are applicable at the re-

ceivers (e.g., end users). For the MU-MIMO downlink, the knowledge of CSI at the transmitter

helps the precoder to cancel the CCI at each user. The authors in [6] assumed full CSI knowl-

edge at the transmitter and then they built up the BD precoder to cancel the CCI. In fact, the CSI

is estimated first at the receivers and then fed back to the transmitter. This signalling process

between the receivers and the transmitter will increase the complexity of the receivers, e.g., mo-

bile devices. In [7], the authors proposed a method that combines the precoding method in [6]

and the Alamouti STBC. The proposed method provides a fundamental gain in terms of low

complexity decoding and spatial diversity. However, in order to coherently decode the Alam-

outi STBC, each receiver still needs to know the composite channel formed by the precoder and

the channel. In practice, each receiver obtains the composite channel by direct estimation.

The prior focus of STBC MU-MIMO downlink transmission techniques has been on cases

where CSI is available at the receivers and transmitter. However, for some systems, due to high

mobility and the cost of channel training and estimation, CSI acquisition is impossible [26].

One alternative method for such systems is DM. In this work, the use of DM for downlink

transmission in a MU-MIMO system is considered. Specifically, the use of DM combined with

the BD and OS schemes is shown. Furthermore, DM is considered for both schemes based

on the Alamouti STBC in order to eliminate the need for estimating the composite channels

formed by the precoders and the channels at the receivers. In the BD scheme, the use of DM is

to simplify the complexity of the receivers by eliminating the need for CSI as well as to cancel

CCI. In particular, in order to have low complexity receivers, it is assumed that the channels are

estimated at the transmitter, since it can tolerate more complexity compared to the receivers.

Once the channels are estimated at the BS, the transmitter computes the precoder as in [6, 7].
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Figure 3.1. STBC MU-MIMO downlink transmission system.

However, since the BD scheme still requires CSI at the transmitter, a downlink OS scheme

combined with DM is proposed. In the OS scheme, unlike the BD scheme, the transmitter does

not require any knowledge of the CSI to separate the data streams of multiple users [35, 38].

Therefore, implementing the OS scheme with the DM will result in a system that does not need

CSI at either ends. The proposed schemes facilitate the pre-cancelling of CCI, enhance diversity,

as well as achieve a low complexity transmitter and receivers. Moreover, transmission overhead

is significantly reduced using the proposed scheme, since neither feedback nor the estimation

of the composite channels are required. Note that the BD scheme uses the spatial dimension to

cancel CCI, whereas the OS scheme uses the time dimension.

The rest of this chapter is organized as follows. Section 3.2 introduces the system model of

STBC MU-MIMO. Section 3.3 describes downlink transmission for interference cancellation.

Section 3.5 presents differential STBC for MU-MIMO system with downlink transmission. In

Section 3.6, the simulation results are shown. Finally, a chapter summary is given in Section

3.7.

3.2 System Model

Consider a MU-MIMO downlink broadcast channel where the BS transmits multiple streams

to K users (e.g., mobile stations), as shown in Fig. 3.1. The BS has Nt transmit antennas and

each user has N (k)
r , k = 1, · · · , K, receive antennas. The total number of receive antennas for

all users is Nr, i.e., Nr =
∑K

k=1 N
(k)
r .
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3.2.1 Channel Model

The channel matrixHk ∈ CN
(k)
r ×Nt for each user k is a Rayleigh flat fading matrix given by

Hk =


h1,1 · · · h1,Nt

... . . . ...

h
N

(k)
r ,1

· · · h
N

(k)
r ,Nt

 =


h1

...

h
N

(k)
r

 , (3.1)

where the element h(k)
i,j is the channel coefficient between the jth transmit antenna and the

ith receive antenna of user k, and C denotes the set of complex numbers. It is assumed that

the channel coefficients are quasi-static over T transmission slots. The elements of Hk are

independent and identically distributed (i.i.d.) complex Gaussian random variables with zero

mean and unit variance, i.e., CN (0, 1).

3.2.2 Space-Time Block Coding - Alamouti Code

The multiple data streams sk for each user are encoded by the Alamouti encoder to generate the

STBC codeword. Let Bk ∈ C2×2, k = 1, · · · , K, be the transmitted Alamouti STBC signal,

satisfying the following condition [7, 29]:

BH
k Bk = BkB

H
k = I2. (3.2)

The generator matrix for the Alamouti code is given as

Bk =
1√
2

s1,k −s∗2,k
s2,k s∗1,k

 =
1√
2

[
b1,k b2,k

]
(3.3)

where s1,k and s2,k ∈ C are the two input symbols to the Alamouti STBC encoder for user k. C

and (.)H denote the constellation set and the Hermitian operator, respectively.

3.3 Downlink Transmission for Interference Cancellation

In this section, two different methods are used to cancel CCI in downlink transmission. The

first scheme, referred to as the BD scheme, is suitable for the case where the CSI is available

at the transmitter and the second scheme, referred to as the OS scheme, is suitable for the case

where the CSI is not available at the transmitter.
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3.3.1 BD Scheme

The received signal Y (BD)
k ∈ CN

(k)
r ×2 at the kth user can be expressed as

Y
(BD)
k = HkF kBk +Hk

K∑
j=1,j 6=k

F jBj +Zk

= HkF kBk + P k +Zk , (3.4)

where F k ∈ CNt×2 is the precoding matrix, Zk ∈ CN
(k)
r ×2 is an additive white Gaussian noise

(AWGN) noise matrix. P k ∈ CN
(k)
r ×2 is the CCI component at the kth user. Note that, at the

BS, the precoding matrix F k for the kth user is multiplied by the symbol matrixBk and added

to the precoded signals from the other users to produce the composite transmitted matrix, i.e.,∑K
k=1 F kBk.

The BD method employs precoding matrices F k, k = 1, · · · , K, to completely suppress the

CCI at the receivers. To cancel the CCI, the following constraint should be satisfied [6, 7]

HjF k = 0 , j, k = 1, ..., K, j 6= k. (3.5)

Let H̄k ∈ CN̄
(k)
r ×Nt , where N̄ (k)

r = Nr − N
(k)
r , denote the channel matrix for all K users

excluding the kth user’s channel, which is defined as

H̄k =
[
HH

1 · · · HH
k−1 H

H
k+1 · · · HH

K

]H
. (3.6)

Therefore, the zero-interference constraint in (3.5) is re-expressed as

H̄kF k = 0 , k = 1, ..., K. (3.7)

According to [7], to satisfy (3.7), one solution is to construct F k as

F k = (I − H̄†kH̄k)Φk , (3.8)

where Φk ∈ CNt×2 is an eigenmode selection matrix, and (.)† denotes the pseudo-inverse. The

magnitude, i.e, the vector norm of the precoding matrix F k has to be unity to ensure a constant

transmission power for the kth user, i.e.,

FH
k F k = I2 , k = 1, · · · , K. (3.9)
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Therefore, to satisfy (3.9), the unitary F k matrix can be constructed as a linear combination

of the column space spanning vectors of (I − H̄†kH̄k), which can be obtained by the Gram-

Schmidt orthogonalization (GSO), or the standard QR decomposition. In this chapter, QR de-

composition is used for its simplicity.

To compute Φk, a singular value decomposition (SVD) of Hk(I − H̄
†
kH̄k) is performed.

This is done by selecting the two singular vectors corresponding to the two largest singular

values of Hk(I − H̄
†
kH̄k). The resulting received signal for the kth user after cancelling out

the CCI is given by

Y
(BD)
k = HkF kBk +Zk = H̆kBk +Zk, (3.10)

where H̆k ∈ CN
(k)
r ×2 is the effective channel for user k. Note that the CCI elimination applies

as long as the transmit precoding can be implemented, which requires that the number of trans-

mit antennas is sufficient to achieve full diversity with the given number of receive antennas.

According to [7] the minimum number of transmit antennas should satisfy

Nt,min = max
i

[
K∑

k=1,k 6=i

N (k)
r

]
+ 2. (3.11)

For the case where all users have the same number of antennas, i.e, N (1)
r = N

(2)
r = · · · =

N
(K)
r = N , (3.11) becomes

Nt,min = [(K − 1)N ] + 2. (3.12)

3.3.1.1 Channel Estimation Error Model

The high mobility and multipath propagation may result in MAI for the BD scheme, which

destroys the orthogonality of the precoder matrix [48]. The estimated channel error matrix can

be modelled as

Ḧk = Hk +Ek, (3.13)

where Hk is the perfect channel value and Ek is the error matrix. Entries of Ek are i.i.d.

Gaussian variables with distribution zero mean and covariance of σ2. Section 3.6 shows the

impact of the error on channel estimation.
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3.3.2 OS Scheme

In the OS case, the received signal matrix Y (OS)
k ∈ CN

(k)
r ×KNt for the kth user is given by [38]

Y
(OS)
k = HkBkV k +Hk

K∑
j=1,j 6=k

BjV j +Zk, (3.14)

where V k ∈ CNt×KNt is the orthogonal spreading matrix for user k, Zk ∈ CN
(k)
r ×KNt is an

AWGN noise matrix. The composite transmitted matrix is
∑K

k=1BkV k. Note that, in order

to apply Alamouti STBC along with the orthogonal spreading code, the number of transmit

antennas at the BS has to be limited to two, i.e., Nt = T = 2.

In the OS scheme, each user is assigned a unique orthogonal spreading code to separate the

data of the users at the receivers. The STBC codeword for each user is multiplexed by its own

specific spreading code and then transmitted. As in the BD method case, to eliminate CCI, the

spreading code matrix has to obey the following conditions

V kV
H
k = INt , k = 1, ..., K. (3.15)

V jV
H
k = 0 , k, j = 1, ..., K, and j 6= k. (3.16)

The OS code for each user can be constructed as a submatrix of the Hadamard matrix, or

from a discrete Fourier transform (DFT) matrix. Hadamard matrices are of interest because

of their simplicity where it can be constructed easily. Hadamard transform is an example of a

generalized form of Fourier transforms and it can be built out of size-2 DFTs, and is equivalent

to a multidimensional DFT. Hadamard codes are a set of orthogonal codes which are built

repeatedly from the basic building block

A2 =
1√
2

+1 +1

+1 −1

 (3.17)

according to

A2n+1 =
1√
2n+1

A2n A2n

A2n −A2n

 , (3.18)

where the dimension of the Hadamard matrix in (3.18) is 2n+1 × 2n+1. Note that in this work

2n+1 = KNt.

Due to the orthogonality of the spreading matrices used at the transmitter, at each receiver,
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3.3 Downlink Transmission for Interference Cancellation

the original information signal is retrieved by despreading the received signal with the synchro-

nized duplicate of the spreading code. Therefore, the received signal matrix Y (OS)
k in (3.14) for

the kth user is despread by multiplying it with V H
k , which yields

Ŷ
(OS)

k = Y
(OS)
k V H

k = HkBk + Ẑk, (3.19)

where Ŷ
(OS)

k ∈ CN
(k)
r ×Nt is the despread received signal, and Ẑk ∈ CN

(k)
r ×Nt is the despread

AWGN noise.

3.3.2.1 Spreading Code Error Model

It is not always feasible to have perfect orthogonality for the OS precoder, especially when the

user is moving so fast that the OS code is changing very rapidly. For the OS scheme, the error

spreading matrix can be expressed as

V̄ k = V k + αV j, j 6= k. (3.20)

where α is the error coefficient. For example, the conditions for the orthogonality of spreading

code matrix for User 1 against User 2 are as follows

V̄ 1V̄
H
1 = INt + α2INt , (3.21)

V 2V̄
H
1 = αINt . (3.22)

Section 3.6 illustrates the impact of error on the spreading code.

3.3.3 Complexity Analysis for the Precoders

In this section, the computational complexity with the notion of flops is introduced here, where

flops denotes the floating point operations. At the transmitter, the BD scheme uses the spatial

dimension to cancel CCI, whereas the OS scheme uses the time dimension. In the BD scheme,

in order to cancel CCI completely, the system must satisfy [6, 7]

Nt ≥

(
K∑

j=1,j 6=k

N (j)
r + 2

)
. (3.23)
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3.4 Coherent STBC for MU-MIMO with Downlink Transmission

The complexity of the BD scheme is mainly based on the pseudo-inverse H̄†k = H̄
H
k

(
H̄kH̄

H
k

)−1

,

and the QR decomposition of (I − H̄†kH̄k). The complexity of both the pseudo-inverse opera-

tion and the QR decomposition follows [49, 50]

O

KNt

(
K∑

j=1,j 6=k

N (j)
r

)2
 . (3.24)

In the OS scheme, the precoder is independent from the number of receive antennas. Thus, the

complexity of the OS scheme is only based on Hadamard matrix construction which is already

given. Hence, it does not incur any computational complexity. Obviously, the OS scheme

has lower computational complexity than the BD scheme, but in terms of throughput, the OS

scheme throughput isK times smaller than that of the BD scheme. Note that, the computational

complexity at the receiver side for both schemes is the same, and the following section gives

more details about the DM decoder.

3.4 Coherent STBC for MU-MIMO with Downlink Trans-

mission

3.4.1 Coherent Detection

When the channel state information is available at the receiver, the received Alamouti STBC

signal can be detected coherently. The decoder processes for both precoding schemes are pro-

vided as follows:

3.4.1.1 Coherent Detection for BD

To decode the Alamouti space-time code coherently for precoding scheme BD, the mobile nodes

(the receivers) need the effective channel matrix H̆k and the received signal Y (BD)
k . The com-

bining signals are computed based on the standard Alamouti decoder, it follows the following

general caseŝk,1
ŝk,2

 =

h̆∗k,1,1 h̆k,1,2

h̆∗k,1,2 −h̆k,1,1

yk,1,1
y∗k,1,2

+

h̆∗k,2,1 h̆k,2,2

h̆∗k,2,2 −h̆k,2,1

yk,2,1
y∗k,2,2

+ · · ·

+ · · ·

h̆∗k,N(k)
r ,1

h̆
k,N

(k)
r ,2

h̆∗
k,N

(k)
r ,2

−h̆
k,N

(k)
r ,1

yk,N(k)
r ,1

y∗
k,N

(k)
r ,2

 , (3.25)
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3.5 Differential STBC for MU-MIMO with Downlink Transmission

where ŝk,j is the jth estimated transmitted symbol of user k, h̆k,i,j is the effective channel

coefficient intended for the jth transmit symbol (always j is either 1 or 2) and the ith receive

antenna of user k during coherence interval time, yk,j,i is the received signal for the kth user at

the receiver i intended for the jth transmit symbol.

Then, after computing the combined signals, the ML decoder which is the optimum receiver,

can be used. The transmitted symbols according to the ML detection are computed as follows

b̂k = arg min
b∈C

∥∥∥yk − H̆kbk

∥∥∥ (3.26)

3.4.1.2 Coherent Detection for OS

For the OS schemes, to decode the Alamouti space-time code coherently, the mobile nodes need

only the channel matrix Hk and the despread received signal Ŷ
(OS)

k . Hence, the combining

signals are computed based on the Alamouti decoder as follows

ŝk,1
ŝk,2

 =

h∗k,1,1 hk,1,2

h∗k,1,2 −hk,1,1

ŷk,1,1
ŷ∗k,1,2

+

h∗k,2,1 hk,2,2

h∗k,2,2 −hk,2,1

ŷk,2,1
ŷ∗k,2,2

+ · · ·

+ · · ·

h∗k,N(k)
r ,1

h
k,N

(k)
r ,2

h∗
k,N

(k)
r ,2

−h
k,N

(k)
r ,1

ŷk,N(k)
r ,1

ŷ∗
k,N

(k)
r ,2

 , (3.27)

where hk,i,j is the channel coefficient intended for the jth transmit symbol the ith receive an-

tenna of user k during coherence interval time and ŷk,j,i is the despread received signal for the

kth user at the receiver i intended for the jth transmit symbol. Then, the transmitted symbols

can be recovered using the ML decoder as follows

b̂k = arg min
b∈C
‖ŷk −Hkbk‖ (3.28)

3.5 Differential STBC for MU-MIMO with Downlink Trans-

mission

In this section, the differential encoding and decoding process for downlink transmission in a

MU-MIMO system is discussed. In particular, this section demonstrates how to use the BD and

OS schemes in differential STBC MU-MIMO systems.
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3.5.1 Differential Encoding

The particular encoding algorithm utilized for DM builds upon the works in [28, 29]. The

algorithm requires that unitary STBCs such as the Alamouti code are used. In the encoding

process, the B0 matrix is used as a reference code, in which the transmitted matrix for the

initial block of each user k is set to be identity as

B0,k = IT , k = 1, · · · , K. (3.29)

Then, for the BD scheme, the unitary Alamouti STBC matrices are encoded differentially for

the subsequent blocks as follows

B(BD)
n =

K∑
k=1

F k

(
n∏
i=0

Bi,k

)
, n = 0, ..., N. (3.30)

For the OS scheme, the encoding process is as follows

B(OS)
n =

K∑
k=1

(
n∏
i=0

Bi,k

)
V k , n = 0, ..., N, (3.31)

where B(q)
n , q ∈ {BD,OS}, is the nth encoded block, N + 1 is the total number of encoded

signal blocks, and F k and V k represent the precoding matrix and spreading matrix for user k,

respectively.

The performance of the differential modulation system depends on the length of time over

which the channel coefficients remain constant. Ordinarily, the reference (known) symbolB0,k

must be sent periodically, based on the channel coherence time. Accordingly, generating the

downlink precoding matrix F k or the downlink spreading matrix V k for the new channel coef-

ficient matrix only needs to be done when there are new channel coefficients.

3.5.2 Differential Decoding

For the MU-MIMO downlink system, the differential transmissions are implemented in blocks,

in which each user k receives the sum of all the transmit waveforms of other users; then the

received signal blocks for each user must be detected independently. Thus, if Gk denotes the

matrix having all N + 1 received signal blocks for the kth user, i.e.,

Gk = [Y 0,k Y 1,k · · · Y N,k] , (3.32)
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3.5 Differential STBC for MU-MIMO with Downlink Transmission

then the received signal block at the kth user during the nth iteration block, i.e., Y n,k can be

expressed as

Y n,k = HkB
(q)
n +Zn,k, n = 0, ..., N, (3.33)

where q ∈ {BD,OS}, and Zn,k is the kth user AWGN noise during the nth block. For DM

encoding, it is assumed that the channel matrix Hk changes slowly (channel coherence time

is large enough) and extends over several matrix transmission periods. In such a case, the BS

transmission starts with a reference matrix, followed by several information matrices. When

encoding using (3.30) or (3.31), the decoding process for Bn,k would be according to the last

two blocks ofGk as in the following notation [28, 29]

Gk =

[
Y 0,kY 1,k︸ ︷︷ ︸ · · ·Y n−1,kY n,k︸ ︷︷ ︸ · · ·Y N−1,kY N,k︸ ︷︷ ︸

]
. (3.34)

For the BD method, to make this more explicit, define

Y n,k
∆
=

Y n−1,k

Y n,k

 ∆
=

HkB
(q)
n−1 +Zn−1,k

HkB
(q)
n +Zn,k

 , (3.35)

and recall from (3.5) that the interference of other users is suppressed, thus the two blocks in

(3.35) become a single user block matrix as

Y n,k
∆
=

 HkF kBn−1,k +Zn−1,k

HkF kBn−1,kBn,k +Zn,k

 . (3.36)

The code matrices that affect Y n,k are

DBn,k =

 Bn−1,k

Bn−1,kBn,k

 . (3.37)

Assuming that Nt = T , and using these results, as well as (3.2) and (3.9), the matrices in (3.37)

can be expressed as

DH
Bn,k

DBn,k = 2INt , (3.38)

therefore, these matrices represent unitary block codes. When Bn−1,k is known to the receiver,

the optimal decoder for this block is the quadratic receiver as [28]

B̂n,k = arg max
Bn,k

trace
{
Y n,kDBn,kD

H
Bn,k

Y H
n,k

}
. (3.39)
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Since it follows

DBn,kD
H
Bn,k

=

 IT BH
n,k

Bn,k IT

 , (3.40)

the decoder in (3.39) can be re-written as follows [28], [29]

B̂n,k = arg max
Bn,k

trace


Y n−1,k

Y n,k

 IT BH
n,k

Bn,k IT

Y n−1,k

Y n,k

H


= arg max
Bn,k

<
{

trace
{
Bn,k Y

H
n,kY (n−1),k

}}
, (3.41)

where <(.) denotes the real part, and trace(.) denotes the trace of a matrix. Similarly, the

equivalent differential decoder for the OS scheme can be constructed. Note that when the CSI is

available at the receiver, the standard Alamouti decoder is used before the maximum likelihood

(ML) detection is implemented upon the combined signals.
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Figure 3.3. SER performance of MU-MIMO STBC downlink precoding with coherent and
differential detection using BD and OS schemes for N (k)

r = 1.

3.6 Simulations Results and Discussion

In this section, the performances of the differential and coherent Alamouti STBC for MU-

MIMO downlink transmission are examined. Alamouti codes with QPSK are used throughout

the simulation.

Fig. 3.2 and Fig. 3.3 plot the bit error rate (BER) and the symbol error rate (SER) for

coherent modulation (CM) and DM with one receive antenna per user. For the BD scheme,

the performance curve is plotted for a single user system with 2 transmit antennas at the BS

and a four-user system with 5 transmit antennas at the BS. For the OS scheme, the number

of transmission antenna has been set to be always two against 1 and 4 users. It is observed

that CM and DM for both BD and OS schemes achieve the same performance as a single-user

STBC-MISO link; that is, CCI is completely eliminated and full diversity is achieved with the

Alamouti code. Ordinarily, the differential detection underperforms the coherent detection by

about 3 dB.

Fig. 3.4 and Fig. 3.5 illustrate the results of repeating the experiment with two receive an-
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Figure 3.4. BER performance of MU-MIMO STBC downlink precoding with coherent and
differential detection using BD and OS schemes for N (k)

r = 2.

tennas per user. Similarly, the MU-MIMO system of CM and DM for both schemes behave as

a single user STBC-MIMO link, but with better performance than the one receive antenna per

user system. For the BD scheme, CCI elimination requires that the number of transmit antennas

is sufficient to achieve full diversity with the given number of receive antennas, so Nt = 8 is

chosen. For the OS scheme, the same performance has been observed with fixed number of

transmit antennas, e.g., Nt = 2. Consequently, unlike the BD scheme, the number of receive

antenna per user is independent of the number of transmission antenna.

Fig. 3.6 shows the performance of exploiting DM combined with BD and OS schemes with

three receive antennas per user. The high mobility and multipath propagation may result in

multiple access interference (MAI) in the OS scheme and imperfect channel estimation in the

BD scheme, which destroy the orthogonality of the precoders. Hence, Fig. 3.6 also shows the

impact of possible errors for both schemes, namely BD and OS, with two users in the system.

For the OS scheme, the error spreading matrix is designed according to (3.13) where the values

of α are chosen to be 0.1 and 0.2. For the BD scheme, an imperfect channel matrix is designed

according (3.20). Entries ofEk are i.i.d. Gaussian variables with distribution having zero mean
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and covariance of σ2. The values of σ are chosen to be 0.1 and 0.2. From Fig. 3.6, it is clear

that the OS is more robust against errors compared to the BD scheme.

3.7 Summary

In this chapter, a low complexity differential STBC scheme for MU-MIMO with downlink

transmission has been proposed. In particular, DM combined with either the BD scheme or

the OS scheme overcame the need for CSI at the receivers as well as cancelled CCI. On the

other hand the use of STBC can achieve full diversity without needing CSI at the transmitter.

It has been demonstrated that implementing the BD scheme with DM will establish a system

that does not need CSI at the receivers to decode the signals, while combining the OS scheme

with DM will establish a system that requires CSI at neither the transmitter nor at the receivers.

The differential modulation for both systems loses typically 3dB in performance relative to the

coherent detection method, but this is offset by the reduction in complexity of the receivers and

the transmitter. The BD scheme is more complex than the OS scheme; however, the BD scheme
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has a higher throughput. Moreover, it was shown that the OS is more robust against precoding

errors compared to the BD scheme.

52



Chapter 4

Exploiting High Rate Differential

Algebraic STBC in Downlink MU-MIMO

Systems
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4.1 Introduction

4.1 Introduction

MIMO technology is one of the most important milestones in the development of wireless com-

munications and can be used to increase the spectral efficiency through spatial multiplexing and

improve the link reliability through transmit diversity [51]. The MIMO design tradeoffs such

as multiplexing, diversity, performance, and complexity in both uncoded and coded MIMO

systems play a fundamental role in efficient system planning and deployment [52]. Further,

wireless systems require effective transmission techniques to support high data rate and reli-

able communications. As such, a space-time block code (STBC) is a potential transmission

technique which can be utilized, as part of multiple antenna systems, to enhance the spatial di-

versity of the system [53], and it is already used in standard systems such as the UMTS standard

for mobile wireless, the IEEE 802.16 standard for fixed and nomadic wireless, and the IEEE

802.11 standard for wireless LANs [4].

The transmission of an orthogonal STBC over a MIMO channel is shown to have full di-

versity with a low complexity receiver [1, 31]. However, due to the limitation in the number of

antennas, this scheme can not be used to have a very high transmission rate. In other words,

the number of receive antennas is limited by the number of transmit antennas, thus this scheme

does not operate for very high rate. When decoding complexity is not an issue, one may use

non-orthogonal full rate full diversity algebraic STBC [32, 33]. The prior focus of the high rate

MU-MIMO downlink transmission techniques has been on cases where CSI is available at the

receivers and transmitter. However, for some systems, due to high mobility and the cost of

channel training and estimation, CSI acquisition is impossible [26]. One alternative method is

to encode the transmitted data differentially using a CD transform, and to decode differentially

without any knowledge of the CSI at the receiver [18]. Our previous work in [39] has dealt with

implementing the MU-MIMO downlink transmission of an Alamouti STBC combined with

differential modulation, which does not require channel knowledge for decoding. The scheme

provides low complexity transceivers while providing good performance. However, this work

in [39] cannot provide a comprehensive high rate differential scheme in the downlink scenario.

In this chapter, the use of high rate Cayley differential STBC for downlink transmission in

a MU-MIMO system is considered. Specifically, the use of differential STBC combined with

full rate full diversity perfect algebraic STBC is resolved. The use of differential STBC in a

multiuser scenario simplifies the complexity of the receivers, since neither feedback nor the

estimation of the CSI are required at the receiver. Furthermore, differential STBC is considered

based on the orthogonal spreading technique in order to separate the data streams of multiple
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users. With the use of orthogonal spreading, the transmitter needs no knowledge of the CSI to

design the spreading matrices. Therefore, implementing the orthogonal spreading scheme with

the differential STBC will result in a system in which neither the transmitter nor the receiver

needs knowledge of the CSI. At the receiver of each user, a sphere decoder (SD) is implemented

for high rate coherent and differential perfect algebraic STBC to limit the set of candidate

symbols to those within a sphere of some radius d. The proposed schemes facilitate the multiple

user data separation, enhancing full rate full diversity, and achieving low complexity receivers

and transmitters through the use of differential STBC. However, the system in this chapter has

higher computational complexity thanks to its higher rate.

The rest of the chapter is organized as follows. Section 4.2 introduces the system model of

STBC MU-MIMO. Section 4.3 reviews the coherent perfect algebraic STBC for MU-MIMO.

Section 4.4 presents the differential perfect algebraic STBC for MU-MIMO. In Section 4.5,

the computational complexity and rate analysis of the system are derived. In Section 4.6, the

simulation results are shown and, finally, conclusions are drawn in Section 4.7.
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Figure 4.1. An STBC MU-MIMO downlink transmission system.

4.2 System Model

Consider a MU-MIMO downlink broadcast channel where the BS transmits multiple streams

to K users (e.g., mobile stations), as shown in Fig. 4.1. The BS has Nt transmit antennas and

each user k has Nk
r receive antennas. It is assumed that all users have the same number of

receive antennas unless otherwise stated. Further, the superscript k is omitted for simplicity.
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The channel matrix H ∈ CNr×Nt for each user k is a Rayleigh flat fading matrix given by

H =


h1,1 · · · h1,Nt

... . . . ...

hNr,1 · · · hNr,Nt

 =


h1

...

hNr

 , (4.1)

where the element hi,j is the channel coefficient between the jth transmit antenna and the ith

receive antenna of user k, and CM×N denotes the set ofM ×N complex matrices. The elements

of H are independent and identically distributed (i.i.d.) complex Gaussian random variables

with zero mean and unit variance, i.e., CN (0, 1).

For any kth user, the Nt ×Nr information symbol matrix can be defined as

S =
[
s1 s2 · · · sNr

]
=


s1,1 · · · s1,Nr

... . . . ...

sNt,1 · · · sNt,Nr

 , (4.2)

where si,j , i = 1, · · · , Nt, j = 1, · · · , Nr, are the information symbols taken from the constel-

lation set C ∈ {QAM, PAM}. In this chapter, a class of linear non-orthogonal STBCs that have

full rate and full diversity is considered, such as perfect algebraic STBC [32, 36]. A perfect al-

gebraic STBC codeword is an Nt ×Nt matrix X whose entries are a linear combination of the

input information signals. The spatial and temporal diversity of the codeword X is integrated

into the space-time code design, as will be shown in the next sections.

The received signal matrix Y ∈ CNr×KNt for the kth user is given by

Y = HXV + H
K∑

j=1,j 6=k

XjVj + Z, (4.3)

where V ∈ CNt×KNt is the orthogonal spreading matrix for user k, Z ∈ CNr×KNt is an AWGN

noise matrix. Note that the composite transmitted matrix is
∑K

k=1 XkVk.

In the orthogonal spreading code matrix, each user is assigned a unique orthogonal spread-

ing code to separate the data of the users at the receivers. To eliminate CCI, the spreading code

matrix has to obey the following conditions

VkV
H
k = INt , k = 1, ..., K, (4.4)

VjV
H
k = 0 , k, j = 1, ..., K, and j 6= k, (4.5)
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where (·)H denotes the Hermitian operator. The orthogonal spreading code for each user can be

constructed as a submatrix of the Hadamard matrix, or from a discrete Fourier transform (DFT)

matrix. Hadamard matrices are of interest because of their simplicity [39]. The received signal

matrix Y in (4.3) for the kth user is despread by multiplying it with VH , which yields

Ŷ = YVH = HX + Ẑ, (4.6)

where

Ŷ =


ŷ1,1 · · · ŷ1,Nt

... . . . ...

ŷNr,1 · · · ŷNr,Nt

 , (4.7)

and

Ẑ = ZVH =


ẑ1,1 · · · ẑ1,Nt

... . . . ...

ẑNr,1 · · · ẑNr,Nt

 . (4.8)

A brief review of the MU-MIMO high rate perfect algebraic STBC system is now presented,

where the CSI is available only at the receiver.

4.3 Review of the Coherent Perfect STBC for MU-MIMO

with Downlink Transmission

In this section, a coherent scheme is considered where the receiver knows the CSI. The scheme

transmits data in linear combination over space and time. The design criterion of perfect STBC

is to minimise the maximum pairwise error probability (PEP), where the ML detection might

receive the distorted version X̂ of the original transmitted signal X, and the PEP is given as

[36, 53]

P (X→ X̂) ≤ 4rNr

(
∏r

i=1 λi)
Nr ρrNr

, (4.9)

where r is the rank of the codeword difference matrix (X − X̂), ρ is the signal-to-noise ratio

(SNR) per receive antenna, λi, i = 1, · · · , r, are the eigenvalues of (X − X̂)(X − X̂)H , the

minimum value of rNr is the diversity gain, and the minimum value of
(∏r

i=1 λi

)1/r

is the

coding gain.
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4.3.1 Encoding of Coherent Perfect Algebraic STBC for MU-MIMO with

Downlink Transmission

For coherent perfect STBC, the input symbol vectors, s1, · · · , sNr , are first rotated by the real

or complex rotation matrix M ∈ CNt×Nt and then threaded into different layers l, where l =

1, · · · , Nt. In other words, let x1l, x2l, · · · , xNtl be the symbols transmitted in the lth layer,

i.e., [36]

xl = Msl. (4.10)

Thus, a layer can be viewed as an array of size Nt × Nt. Any element of this array can be

specified by two indices, (a, t), where a denotes the spatial domain and t denotes the temporal

domain. Let li, 1 ≤ i ≤ Nt denote the ith layer. Hence, a layer can be formed such that

li =
{((

t+ i− 1
)
Nt
, t
)

: 0 ≤ t < Nt

}
, (4.11)

where (x)Nt denotes x modulo Nt operation. Accordingly, consecutive symbols from the same

codeword are transmitted from different transmit antennas in different time slots. This method

of transmission maximises the spatial and temporal diversity of the system.

The rotation matrix M (real or complex) is designed to maximise the distance between the

symbol vectors to minimise the error rate and is constructed from an algebraic number field

Q(θ) of degree Nt generated by an algebraic number θ as in [54, 55].

The perfect algebraic STBC, as proposed in [36], is constructed based on cyclic division

algebra theory for the special cases of Nt = 2, 3, 4, 6. To thread the symbols into the perfect

algebraic STBC, the rotated symbol vectors are applied to the code block by

X =
Nt∑
l=1

diag(Msl) · el−1, (4.12)

where diag(·) denotes the diagonal of a matrix, the threading matrix e is given as follows

e =



0 0 0 · · · γ

1 0 0 · · · 0
... . . . . . . . . . ...

0 · · · 1 0 0

0 · · · 0 1 0


, (4.13)
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and γ =
√
−1 is chosen by using Class Field Theory that ensures the transmitted code block

has a non-vanishing determinant [36]. For multiple users equipped with different numbers

of receive antennas, one important design parameter to consider is the number of threads l.

Therefore, in this chapter, it is assumed the total number of layers is limited by the number of

receive antennas Nr per user, i.e. l = Nr. Hence, the perfect STBC codeword can be rewritten

as

X =
Nr∑
l=1

diag(Msl) · el−1. (4.14)

Example 4. For Nt = 4, number of users K = 2, User 1 equipped with Nr = 3 and User 2

equipped withNr = 1. Then, the perfect algebraic STBC codeword for User 1 with l = 3 layers

is in the form of

X4×4 =


x11 0 γx13 γx12

x22 x21 0 γx23

x33 x32 x31 0

0 x43 x42 x41

 ,

of course, a higher rate code can be implemented by increasing the number of threads per

user.

4.3.2 Decoding Coherent Perfect Algebraic STBC for MU-MIMO with

Downlink Transmission

The sphere decoding approach is one of the most important decoding schemes for high data rate

transmission systems over MIMO channels. The sphere decoder is basically a distance-based

decoder that limits the number of possible codewords by considering only those codewords

within a sphere centered at the received signal vector [56]. The kth user received spread signal

can be expressed in terms of its vectorization as [35, 38]

vec
(
ŶT
)

= vec
(

(HX)T
)

+ vec
(
ẐT
)

= Bc vec(S) + vec
(
ẐT
)
, (4.15)

where

vec
(
ŶT
)

= [ŷ1,1, · · · , ŷ1,Nt , · · · , ŷNr,1, · · · , ŷNr,Nt ]T ,

vec
(
ẐT
)

= [ẑ1,1, · · · , ẑ1,Nt , · · · , ẑNr,1, · · · , ẑNr,Nt ]T ,
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vec(S) = [s1,1, · · · , sNt,1, · · · , s1,Nr , · · · , sNt,Nr ]T ,

and Bc is the new NtNr × NtNr effective channel matrix of the coherent perfect STBC which

is given by

Bc = H̃ ·
(
INr ⊗M

)
, (4.16)

where the NtNr ×NtNr matrix H̃ is given by

H̃ =


diag(h1) · · ·

(
diag(h1)eNr−1

)T
...

. . .
...

diag(hNr) · · ·
(
diag(hNr)e

Nr−1
)T
 , (4.17)

and ⊗ denotes the Kronecker matrix product. The underlying complex system in (4.15) can

be converted into an equivalent real system by separating the real and imaginary parts of the

received vector to define the following 2NtNr × 1 signal

Y = HcS + Z, (4.18)

where

Y =
[
<
(
vec
(
ŶT
))
=
(
vec
(
ŶT
))]T

,

S =
[
<
(
vec
(
S
))
=
(
vec
(
S
))]T

,

Z =
[
<
(
vec
(
ẐT
))
=
(
vec
(
ẐT
))]T

,

and

Hc =

<(Bc) −=(Bc)
=
(
Bc
)
<
(
Bc
)
 .

In (4.18), a simple linear system of equation is constructed and can be decoded using the sphere

decoder technique, which can be implemented to decode the kth user symbols Ŝ such that

Ŝ = arg min
S∈Cn

‖Y −HcS‖2 , (4.19)

where n = 2 × Nt × Nr. The differential STBC is now presented and then it is shown how

to combine it with full-rate full-diversity perfect algebraic STBC through the use of the Cayley

transform.
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4.4 Differential Perfect STBC for MU-MIMO with Downlink

Transmission

In this section, the differential encoding and decoding process for downlink transmission in a

MU-MIMO system is discussed. In particular, this section demonstrates how to use a high rate

space-time coding such as the perfect STBC with differential STBC for MU-MIMO systems.

Here, it is assumed neither the transmitter nor the receiver has prior knowledge of the CSI.

One method of implementing differential STBC with multiple antennas and a high data rate

is to encode the transmitted data differentially using a CD transform, and to decode differen-

tially without any knowledge of the CSI. The proposed work combines the perfect algebraic

STBC with the CD transform that constructs full rate and full diversity differential STBC. In

the following, a review of the differential STBC and the CD transform is presented and then

the utilization of the CD transform with perfect algebraic STBC in a MU-MIMO framework is

derived.

4.4.1 Differential STBC for MU-MIMO System

In differential STBC, the communications are done in blocks ofNt transmissions, which implies

that the transmitted signal for any user k is an Nt × Nt matrix. The received despread signal

block in (4.6) for the kth user at the τ -th block, τ = 0, ..., N , can be re-expressed as

Ŷτ = HXτ + Ẑτ , (4.20)

where Ŷτ , Xτ , and Ẑτ are the despread received signal matrix, the transmitted perfect algebraic

STBC matrix, and the despread noise matrix for the kth user at the τ -th block, respectively.

The transmitted perfect algebraic STBC codeword matrix is encoded differentially as follows

[28, 29]

Xτ = Xτ−1Uzτ , (4.21)

where Uzτ is a unitary data matrix utilized by the Cayley transform (it is specified Uzτ in the

next subsection), zτ ∈ {0, · · · , L− 1} is the transmitted data, and Xτ−1 is the transmitted

matrix of the previous block. The transmitted matrix for the initial block of each user k is set to

be identity, i.e. X0 = INt .

If it is assumed that the channels stay constant for two consecutive blocks, i.e. Hτ =
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Hτ−1 = H, then (4.20) can be written as

Ŷτ = HXτ−1Uzτ + Ẑτ

= Ŷτ−1Uzτ + Ẑτ − Ẑτ−1Uzτ .

Therefore, the fundamental differential system equation for the kth user is given as

Ŷτ = Ŷτ−1Uzτ + Ẑ′τ , (4.22)

where

Ẑ′τ = Ẑτ − Ẑτ−1Uzτ . (4.23)

Since Uzτ is a unitary matrix, the entries of the additive noise term Ẑ′τ are i.i.d. CN (0, 2). Thus,

Ẑ′τ is statically independent of Uzτ and has twice the power. Therefore, for the kth user, the

maximum-likelihood (ML) decoder of the differential STBC is

ẑτ = arg max
n=0,··· ,L−1

∥∥∥Ŷτ − Ŷτ−1Un

∥∥∥2

F
, (4.24)

thus, the receiver does not need CSI to perform the decoding process. The PEP of transmitting

Un and mistakenly decoding Un′ has the following upper bound [28, 29]

Pe(Un → Un′) ≤
1

2

r∏
i=1

[
1 +

ρ2

4
(
1 + 2ρ

)σ2
i (Un −Un′)

]−Nr
, (4.25)

where σi(·) denotes the ith singular value of the codeword difference matrix. Hence, good

constellations U1 · · ·UN have singular values

σi(Un −Un′), i = 1, · · · , r, (4.26)

that are as large as possible for n 6= n′. For large SNR, the probability of error depends domi-

nantly on the product [17]

r∏
i=1

σi(Un −Un′) = |det (Un −Un′)| (4.27)

Therefore, at high SNRs, the one inside brackets in (4.25) is neglected which implies the fol-
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lowing upper bound based on the nonzero singular values, see eq.(9) in [18]

Pe(Un → Un′) . 8rNr · ρ−rNr

|det (Un −Un′)|2Nr
. (4.28)

The diversity gain is defined to be Gd and the coding gain to be Gc. The diversity gain is given

by

Gd = rNr. (4.29)

The differential STBC also achieves full diversity order of NtNr if the unitary matrix is fully

diverse. Using (4.29) and the right-hand side of (4.28), it follows

Pe(Un → Un′)

. 8Gd |det (Un −Un′)|−2Nrρ−Gd

.

[(
8Gd |det (Un −Un′)|−2Nr

)−G−1
d

]−Gd
· ρ−Gd

.
(
Gc · ρ

)−Gd , (4.30)

where

Gc =

(
8Gd |det (Un −Un′)|−2Nr

)−G−1
d

. (4.31)

By using (4.29) in (4.31), it follows

Gc ≈ |det (Un −Un′)|
2
r . (4.32)

The PEP will be lower in the case that it receives multiple replicas of the signal using diversity.

In other words, diversity is the slope of the error probability curve in terms of the received SNR

in a log-log scale. In this case, taking the log for both sides of (4.30) implies that

log(Pe) = −Gd

[
log(Gc) + log(ρ)

]
, (4.33)

or more explicitly

log(Gc) =
log(Pe)

−Gd

− log(ρ). (4.34)

This coding gain ratio is a measure of the worst case separation between encoded symbols. It

therefore determines the worst case for PEP, and hence the block error rate. The differential

STBC also achieves full diversity order of NtNr if the unitary matrix is fully diverse, i.e.,
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r = Nt. Therefore, to minimise the PEP, the following conditions should be satisfied [36, 53]:

• In order to maximise the diversity gain, the rank criterion r of (Un −Un′) should be

maximised.

• In order to maximise the coding gainGc, the minimum determinant of (Un −Un′) should

be maximised.

• Non-vanishing minimum determinant on the coding gain.

4.4.2 Differential Perfect Algebraic STBC for a MU-MIMO System

For MU-MIMO differential transmission schemes, the information must first be encoded in a

unitary matrix to ensure the same transmit power for different blocks. This can be achieved by

applying the Cayley transform as [18]

Uzτ = (INt − jAτ )(INt + jAτ )
−1, (4.35)

where j =
√
−1, and Aτ is an Nt × Nt Hermitian matrix at block time τ , (the subscript on

A from now on is dropped for simplicity). As proposed in [18], the output of the Caylay

transform is unitary if, and only if, A is a Hermitian matrix. Therefore, the Hermitian property

must be ensured for the transmitted perfect STBC signals. Furthermore, according to [18, 35],

the Hermitian constraints require real constellations and real rotation matrices to maintain the

Hermitian property for matrix A.

For differential perfect algebraic STBC, the input symbol vectors, s1, · · · , sNr , are first ro-

tated by the real rotation matrix M ∈ RNt×Nt and then threaded differentially into different

layers l, where l = 1, · · · , Nt. Let li, 1 ≤ i ≤ Nt denote the ith layer. Hence, a layer can be

formed such that [35]

li =
{(

(Nt − i− t)Nt , t
)

: 0 ≤ t < Nt

}
. (4.36)

Therefore, the placement of the real rotated symbols into the code block in differential threading

is very similar to the case for coherent encoding, but reversed. Then, the differential perfect

algebraic STBC codeword can be expressed as

X =
Nr∑
l=1

diag(Msl) · a ·
(
el−1

)T
, (4.37)
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where e is defined in (4.13) but with differential case, here γ = 1 is used,

a =



0 0 · · · 0 1

0 0 0 1 0
... . . . . . . . . . ...

0 1 0 0 0

1 · · · 0 0 0


, (4.38)

and M ∈ RNt×Nt is a real rotation matrix as in [35, 54, 55]. The code block generated in the

differential perfect algebraic STBC case must be Hermitian. Then the Hermitian conversion for

the matrix A in differential perfect STBC can be written as [35]

A
∆
=

1√
2

((
j · triu(X) + (tril(X))H

)
+
(

(−j · triu(X))H + (tril(X))
))

+ diag
(
diag(X)

)
, (4.39)

where triu(·) denotes the Nt × Nt matrix that contains only the above diagonal elements of

X, and tril(·) denotes the Nt × Nt matrix that contains only the below diagonal elements of

X. Therefore, if the input matrix A is Hermitian, the Cayley transformed matrix in (4.35) will

be unitary. Furthermore, since the differential perfect algebraic STBC requires multiplying the

new code block by the previous block, the resulting new transmitted output in (4.21) remains

unitary.

Example 5. For Nt = 4, Nr = 4, and K = 1, thus l = 4 layers. Then, the Hermitian matrix A

is in the form of

A =


x14

x23+jx13√
2

x32+jx12√
2

x41+jx11√
2

x23−jx13√
2

x22
x31+jx21√

2

x44+jx24√
2

x32−jx12√
2

x31−jx21√
2

x34
x43+jx33√

2

x41−jx11√
2

x44−jx24√
2

x43−jx33√
2

x42

 .

Therefore, with this formulation, given the invertible equivalent channel matrix and the

transmitted codeword block X, it is easy to determine the input symbols, by using the Hermitian

matrix A as a roadmap. The matrix A points out the elements of the X matrix that include each

symbol, and they can be scaled and summed to form the best estimate of the input symbol. For
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example, from position (4,1) and (1,4) in matrix A, thus

a41 =
x41 − jx11√

2
, a14 =

x41 + jx11√
2

,

and these are the only symbols involved in these positions from matrix X. Accordingly, the

original input symbols from the transmitted codeword block X are as follows

x41 =
1√
2
{a41 + a14} , x11 =

1√
2
={a14 − a41} .

4.4.3 Decoding the Differential Perfect Algebraic STBC for a MU-MIMO

System

For the MU-MIMO downlink system, the differential transmissions are implemented in blocks,

in which each user k receives the sum of all the transmit waveforms of other users; then the

received signal blocks for each user must be detected independently. Thus, if G denotes the

matrix having all N + 1 received signal blocks for the kth user, i.e.,

G =
[
Ŷ0 Ŷτ−1 Ŷτ · · · ŶN

]
. (4.40)

When encoding using (4.21), the decoding process for Xτ for the kth user would be according

to the last two blocks of G as in the following notation

G =

[
Ŷ0Ŷ1︸ ︷︷ ︸ · · · Ŷτ−1Ŷτ︸ ︷︷ ︸ · · · ŶN−1ŶN︸ ︷︷ ︸

]
. (4.41)

Then the combined information between the unitary matrix Uzτ and the received signal blocks

(Ŷτ−1, Ŷτ ) in the differential scheme at the kth user can be expressed as

Ŷτ−1

Ŷτ

 = H

 Xτ−1

Xτ−1Uzτ

+

Ẑτ−1

Ẑτ

 . (4.42)

For differential perfect algebraic STBC encoding, it is assumed that for any user k the channel

matrix H changes slowly (channel coherence time is large enough) and extends over several

matrix transmission periods. In such a case, the base station transmission starts with a reference

matrix X0, followed by several information matrices. The Hermitian matrix A is used to form

an equivalent channel model for differential decoding. An easier way to represent this model is
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to rewrite the differential receiver equation using the Cayley transform [18]

Ŷτ = Ŷτ−1Uzτ + Ẑτ − Ẑτ−1Uzτ

= Ŷτ−1(INt − jA)(INt + jA)−1 + Ẑτ

− Ẑτ−1(INt + jA)−1(INt − jA).

By multiplying both sides by (INt + jA), I have

Ŷτ (INt + jA) = Ŷτ−1(INt − jA) + Ẑτ (INt + jA)

− Ẑτ−1(INt − jA),

which can be simplified as

Ŷτ − Ŷτ−1 = −j (Ŷτ + Ŷτ−1)A + Ẑτ (INt + jA)

− Ẑτ−1(INt − jA). (4.43)

Note that due the differential detection with matrix A as a unitary Cayley transform, the additive

noise in (4.43) has the covariance

2(INt + jA)(INt − jA) = 2(INt + A2), (4.44)

which results in some performance degradation. Then, the ML decoder can be given as [18]

ŝ = arg min
s1···sNr

∥∥∥∥(Ŷτ − Ŷτ−1

)
−
(1

j
(Ŷτ + Ŷτ−1)A

)∥∥∥∥2

. (4.45)

To find the ML solution vectors without an exhaustive search, the sphere decoding method is

used, as it considers only a small set of vectors rather than all possible transmitted signal vectors.

The sphere decoder representation is obtained by constructing an equivalent channel model for

the differential system equation in (4.43). Let C = Ŷτ − Ŷτ−1, and B = −j (Ŷτ + Ŷτ−1),

then the differential equivalent channel is

C = BA + Ẑd, (4.46)
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where Ẑd = Ẑτ (INt + jA) − Ẑτ−1(INt − jA) is the additive Gausssian noise with zero mean

and covariance 2(INt + A2). Now, the received spread signal for the kth user is vectorized as

vec
(
CT
)

= vec
(

(BA)T
)

+ vec
(
ẐT
d

)
= Bd vec(S) + vec

(
ẐT
d

)
, (4.47)

where Bd is the new NtNr × NtNr effective channel matrix of the differential perfect STBC

which is given by

Bd = B̃Ã ·
(
INr ⊗M

)
, (4.48)

where the NtNr ×NtNr matrix B̃ is given by

B̃ =



(
diag(b1)a

)T · · ·
(
diag(b1)a · eNr−1

)T
...

. . .
...

(
diag(bNr)a

)T · · ·
(
diag(bNr)a · eNr−1

)T

 . (4.49)

The NtNr ×NtNr block diagonal matrix Ã is in the form of

Ã =
1√
2


A1 0 · · · 0

0 A2 · · · 0
...

... . . . ...

0 0 · · · ANr

 , (4.50)

where A1,A2, · · · ,ANr are the scaled submatrices of the original Hermitian matrix A, and

each is of size Nt×Nt. To define the block diagonal matrix Ã completely, an example is given

here.

Example 6. By using the same entities as in Example 5. Then, the submatrices of the 16 × 16

block diagonal matrix Ã are in the form

A1 =


j 0 0 1

0 j 1 0

0 −j 1 0

−j 0 0 1

 , A2 =


j 0 1 0

0 1 0 0

−j 0 1 0

0 0 0 1

 ,
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A3 =


j 1 0 0

−j 1 0 0

0 0 j 1

0 0 −j 1

 , A4 =


1 0 0 0

0 j 0 1

0 0 1 0

0 −j 0 1

 .

Now, the complex received vector in (4.47) is converted to its equivalent real and imaginary

parts, i.e,

R = HdS + Zd, (4.51)

where

R =
[
<
(
vec
(
CT
))
=
(
vec
(
CT
))]T

,

S =
[
<
(
vec
(
S
))
=
(
vec
(
S
))]T

,

Zd =
[
<
(
vec
(
ẐT
d

))
=
(
vec
(
ẐT
d

))]T
,

and

Hd =

<(Bd) −=(Bd)
=
(
Bd
)
<
(
Bd
)
 .

The sphere decoder can be implemented to decode the kth user symbols Ŝ such that

Ŝ = arg min
S∈Cn

‖R −HdS‖2 . (4.52)

4.5 Computational Complexity and Rate Analysis

The matrix Hd in (4.51) has the size of 2NtNr × 2NtNr, thus the system has 2NtNr equations

and 2NtNr unknowns. The sphere decoder usually benefits from having more equations and

less unknowns because the computational complexity is polynomial, yet goes exponential when

the difference between the number of equations and unknowns grows large. To allow for a low-

complexity decoder and to have at least as many equations as unknowns when Nt ≥ Nr, the

number of threads l per block per user is constrained by [34]

l ≤ min
(
Nt, Nr

)
, (4.53)
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and since the number of symbols per block per user is q = Ntl. Hence, in this chapter, the

following constraint is imposed

q ≤ min
(
N2
t , NtNr

)
. (4.54)

In this case, the maximum rate of the code essentially depends on the number of threads l

per block per user, the total number of q symbols per block per user sent in that thread, the

cardinality of constellation L, and the orthogonal spreading code period per user. Since the

channel is used Nt times, the system transmission rate per channel per user is

R =
q

K ·Nt

· log2(L) bits/sec/Hz.. (4.55)

There are K users in the system, each transmitting q symbols per block. Therefore, the total bit

rate per system is

R =
q

Nt

· log2(L) bits/sec/Hz. (4.56)

Note that the rate is independent of the number of users. Through a wise choice of the number

of threads per block l ≤ min
(
Nt, Nr

)
, systems that achieve this transmission rate will have full

rate and full diversity [32].

4.5.1 Rate Analysis

As discussed earlier, the differential perfect algebraic scheme achieves full diversity full rate

over a MU-MIMO channel where at different time slots and different antennas, different sym-

bols are transmitted. Table 4.1 briefly summarises and compares the rate parameters of dif-

ferential perfect algebraic STBC with other practical STBC schemes that offer reasonable data

rates and diversity such as differential Alamouti code (G2-STBC) [39], and differential quasi-

orthogonal code (QO-STBC) [4]. In terms of the MIMO’s diversity feature shown in Table 4.1,

the three MIMO schemes of Algebraic, Alamouti, and quasi-orthogonal STBCs are capable of

attaining the full diversity order of NtNr, which minimises the PEP of (4.25) according to its

rank criterion. With regards to the transmission rate as seen in Table 4.1, differential perfect

algebraic STBC introduced in this chapter is capable of achieving the full MIMO transmission

rate, provided that the parameters satisfy q = NtNr, which results in a maximised rate gain

of R = q
Nt
· log2(L). In the other STBCs shown in Table 4.1, every element of a codeword

matrix is a linear combination of the input symbols and limited by a fixed number of transmit
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4.5 Computational Complexity and Rate Analysis

Table 4.1. The rate and diversity parameters of classic STBCs representatives.

STBC Scheme Parameters

Algebraic perfect Nt > 1 Nr ≥ 1 Gd = NtNr q = NtNr R = q
Nt
· log2(L)

G2-STBC [39] Nt = 2 Nr ≥ 1 Gd = NtNr q = 2 R = log2(L)

QO-STBC [4] Nt = 4 Nr ≥ 1 Gd = NtNr q = 4 R = log2(L)

antennas, i.e., Nt = 2 or Nt = 4. The number of symbols is selected such that an orthogonal

STBC is feasible. Such a limit on the number of symbols is not necessary if the orthogonality

condition of the STBC is relaxed as in differential perfect algebraic STBC. For example, with

Nt = 2, Nr = 2, and 8-PAM; rates for differential perfect algebraic STBC and G2-STBC, are

6, 3, respectively. Similarly, with Nt = 4, Nr = 4, and 8-PAM; rates for differential perfect

algebraic STBC and QO-STBC, are 12, 3, respectively. That shows the difference in the rate.

4.5.2 Complexity Analysis

To bring more insight on the computational complexity, the notion of flops is introduced in this

section, where flops denote the floating point operations (FLOPs). The total number of FLOPs

is used to measure the computational complexity of different schemes. The total FLOPs needed

for the matrix operations is summarised below [49, 57]:

• Multiplication of m× n and n× p complex matrices: 8mnp− 2mp;

• QR decomposition of an m× n (m ≤ n) complex matrix: 16(n2m− nm2 + 1
3
m3);

• SVD of an m×n (m ≤ n) complex matrix where only Σ and V are obtained: 32(nm2 +

2m3);

• SVD of an m× n (m ≤ n) complex matrix where U, Σ and V are obtained: 8(4n2m+

8nm2 + 9m3);

• Inversion of an m×m real matrix using Gauss-Jordan elimination: 4m3/3.
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4.5 Computational Complexity and Rate Analysis

Table 4.2. Computational complexity of coherent perfect algebraic STBC

Steps Operation Flops
Case
(2, 2, 2)× 6

1
∑Nr

l=1 diag(Msl) · el−1 O
(
KNr(16N3

t − 2N2
t )
)

20304

2 HXV
O
(
K(16KN2

t Nr −
2KNtNr)

) 10152

3 YVH O
(
K(8KN2

t Nr − 2NtNr)
)

5112

4 INr ⊗M O
(
K(N2

t N
2
r )
)

432

5 H̃ ·
(
INr ⊗M

)
OK(8N3

t N
3
r − 2N2

t N
2
r ) 40608

Total=76608
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Table 4.3. Computational complexity of the proposed differential perfect STBC

Steps Operation Flops
Case
(2, 2, 2)× 6

1
∑Nr

l=1 diag(Msl) · a ·
(
el−1

)T O
(
2KNr(24N3

t − 2N2
t )
)

61344

2 HXUV O
(
K(24KN3

t − 2KN2
t )
)

46008

3 YVH O
(
K(8KN2

t Nr − 2NtNr)
)

5112

4 INr ⊗M O
(
K(N2

t N
2
r )
)

432

5 B̃Ã ·
(
INr ⊗M

)
OK(16N3

t N
3
r − 2N2

t N
2
r ) 82080

Total=194976

Table 4.4. Computational complexity of differential Alamouti STBC.

Steps Operation Flops
Case
(2, 2, 2)× 6

1 H̄†
O
(
K(4

3
n̄3
r + 16n̄2

rnt −
2Ntn̄r)

) 4720

2 (I−H†H̄)Φ O
(
K(8N2

t n̄r+14N2
t −4Nt)

)
4896

3 QR
(
(I− H̄†H̄)

)
O
(
K(16

3
N3
t )
)

3456

4 SVD
(
H(I− H̄†H̄)

) O
(
K(64N3

r + 8N2
t Nr +

32NtN
2
r − 2NtNr)

) 5496

5 HFX O
(
K(16NtNr + 24Nr)

)
720

Total=19288
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4.6 Simulation Results and Discussion

Table 4.2, Table 4.3, and Table 4.4 show the operations and the required FLOPs for the al-

gorithms of the coherent perfect algebraic STBC, the differential perfect algebraic STBC, and

the differential G2-STBC in [39], respectively. For illustration, it is assumed that the system has

K = 3 users, each user with Nr = 2 receive antennas, and Nt = 6 transmit antennas; this sce-

nario is denoted as (2, 2, 2)× 6. For simplicity, and without loss of generality, it is also assume

that all users have the same number of receive antennas. Note that n̄r =
∑K

j=1,j 6=kN
j
r . Clearly,

the proposed differential perfect algebraic STBC scheme requires the highest complexity.

Furthermore, the cases of the computational complexity of the system dimensions are shown

in Fig. 4.2 and Fig. 4.3. First, in Fig. 4.2, the number of receive antennas for each user is set at

Nr = 2 and the number of users K is increased. Similarly, in Fig. 4.3, the number of users

is fixed to be K = 4 while the number of receive antennas for each user is increased gradu-

ally. From both figures, the computational complexity of the proposed system is higher and

increases exponentially. The reason is that, the differential perfect algebraic STBC scheme re-

quires higher rate and as a result the number of antennas increases exponentially and thus the

size of unknown variables for the equivalent channel matrix equation also increases exponen-

tially. It is also observed that varying the number of receive antennas has much higher impact

on the complexity than varying the number of users. Therefore, for a high rate system that

supports different type of terminals, it is better to keep the number of receive antennas for each

terminal as low as possible.

As shown above, it is worth noting that the perfect STBC combined with differential STBC

scheme proposed in this chapter relaxes the orthogonality conditions of the standards orthogonal

STBC codes such as G2-STBC and QO-STBC code. Therefore, in this chapter, the number of

transmit symbols per block in the downlink is much higher and that will result in an increase

of the overall rate of the system. Thus the system can transmit and receive in high rate without

needing the CSI.

4.6 Simulation Results and Discussion

In this section, the performance of the differential perfect algebraic space-time modulation

scheme for the MU-MIMO downlink transmission is examined. In this section, the channel

is modeled as quasi-static, where the fading block matrix between the transmitter and receiver

is constant (but unknown) between two successive channel uses. The SNR per user is defined

as SNR=Nrρ. The Monte Carlo simulation is used to evaluate the performance in terms of the

block error rate (BLER) and BER.
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Figure 4.2. Comparison of the computational complexity for differential perfect algebraic, co-
herent perfect algebraic, and differential Alamouti with Nr = 2, and Nt = K ×Nr.

The Differential Perfect Algebraic STBC with Multipe Users: In Fig. 4.4 the BLER perfor-

mance curve is first simulated and plotted for one, two, four, and eight users system. Each

user has two receive antennas and 4-PAM symbols are used. The base station has four trans-

mit antennas. In this case, each STBC block has q = 8 symbols per user with R = 4. The

transmitted codeword X for each user consists of two layers 4× 4 perfect algebraic STBC , i.e,

l = Nr = 2. The 4 × 4 rotation matrix M is given in [54, 55]. Hadamard matrices are used

as the orthogonal spreading matrices to cancel the CCI. It is shown that the MU-MIMO system

for all cases (e.g., in the case of one, two, four, and eight users) achieves the same performance

as a single-user MIMO system; that is, on multiple users, the orthogonal spreading codes are

allowed to eliminate CCI. This results in every user being processed as if it was a single-user

case, so that the results for every user are identical and the CCI is completely eliminated and

full rate full diversity is achieved with the differential perfect algebraic STBC.

Diversity Gain, Coding Gain, and Rates : In Fig. 4.4, the slope of the BLER curves for
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Figure 4.3. Comparison of the computational complexity for differential perfect algebraic, co-
herent perfect algebraic, and differential Alamouti with K = 4, and Nt = K ×Nr.

high SNR converges to the slope determined by the diversity. As shown in (4.29), this slope is

−rNr (in a log-log scale) where r is the rank of the codeword difference matrix. For differential

algebraic STBC codes, the number of threads l determines the rank r, and this is limited by the

number of receive antennas, Nr, if Nr ≤ Nt. Hence the diversity slope is −N2
r . Further, −rNr

is also related to the number of symbols encoded in each codeword block over symbol time

periods. Thus the number of symbols per block is NtNr. For the case of Fig. 4.4, the system

has l = 2 threads and 4 symbol time periods in the 4 × 4 algebraic codeword. Each thread

has 4 symbols and only 2 symbols are encoded and transmitted in any one symbol time period.

Clearly, when 2 threads are populated, 8 entries of the 4 × 4 code block are populated and the

other 8 are filled with zeros. Therefore, the rank of the codeword difference matrix r = 2 for

this approach of coding. Thus Gd = rNr = 4. In Fig. 4.4, the diversity line based on the actual

BLER curves is plotted using the estimated lower bounds formula in (4.34) of the coding gain

Gc. The BLER curves appear to approach a slope of −4 asymptotically and the diversity gain
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Figure 4.4. BLER performance of the proposed MU-MIMO STBC downlink transmission with
differential algebraic STBC with a one, two, four, and eight users system model,R = 4,Nt = 4,
Nr = 2, l = 2, and 4-PAM.

is Gd = 4.0257, i.e., the full diversity for this case is achieved with the rate of R = 4. Using the

method above, the estimated value for a lower bound for coding gain is Gc = 0.154 (as a linear

ratio).

Differential Algebraic Versus Orthogonal Differential Alamouti: In Fig. 4.5, the BLER per-

formance is plotted and compared between the differential algebraic STBC and the differential

Alamouti code in [39]. The differential Alamouti code is used as a benchmark scheme. First, the

performance for both schemes is examined at the same rate R = 2 with Nt = 2 and Nr = 2. To

get R = 2 for both schemes, 4-PAM constellation size for the differential Alamouti and 2-PAM

for differential algebraic are used by using (4.56). The figure shows that the performance of the

proposed scheme outperforms the differential Alamouti for the same rate. Second, the rate of

the proposed scheme is increased from R = 2 to R = 4 and to R = 8, then it is compared to

the differential Alamouti. The differential Alamouti with R = 2 is initially better at low SNR.
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However, the differential algebraic curves converge and outperform at high SNR, even if their

rates are two or four times the rate of the differential Alamouti scheme thanks to their steeper

diversity slope, i.e., Gd = 4 and Gd = 16.

SNR (dB)
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Differential perfect algebraic:K = 4, nt = 4, nr = 4, 4-PAM, R=8

Differential perfect algebraic:K = 4, nt = 4, nr = 2, 4-PAM, R=4

Differential perfect algebraic:K = 4, nt = 2, nr = 2, 2-PAM, R=2

Differential Alamouti [17]: K = 4, nt = 2, nr = 2, 4-PAM, R=2

Figure 4.5. BLER performance of the proposed MU-MIMO STBC downlink transmission for
differential algebraic and the orthogonal Alamouti Code for different rates.

The Impact of Multiple Receive Antenna Diversity: In Fig. 4.6, a two-user system is as-

sumed; User 1 is equipped with one receive antenna, and User 2 has three receive antennas, and

a 4-PAM constellation is used. The base station has four transmit antennas. The rate for User 1

is 2 bits/sec/Hz with one layer and for User 2 is 6 bits/sec/Hz with three layers. The BER per-

formance of the system is shown in Fig. 4.6. The performance of User 2 is seen to outperform

that of User 1 at high SNR, even though its rate is three times the rate of User 1, because of its

receive antenna diversity.

Coherent Algebraic Versus Differential Algebraic STBC: In Fig. 4.7, the BLER performance

is plotted and compared between the coherent algebraic and the differential algebraic STBC. For
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Figure 4.6. BER performance of the proposed MU-MIMO STBC downlink transmission with
differential algebraic STBC with a two-user system model with two different rates and layers,
Nt = 4, and 4-PAM.

a fair comparison of the two schemes, identical setup is assumed, namely 4 users, Nt = 4, each

user hasNr = 2, l = 2 threads,R = 4, 4-PAM, sphere decoder, and with unitary Cayley matrix.

Further, to quantify this performance loss in both schemes, the receiver’s SNR is calculated

for the same unit transmit power. For the differential algebraic detection scheme, the power

of noise at the receiver is approximately two times the power of the noise for the coherent

detection as shown in (4.44). Therefore, the received SNR of the differential detection scheme

is approximately half of that of the coherent detection scheme for the same transmission power.

This results in about a 4 dB difference in the performance at high SNRs as expected. The coding

gain for both schemes is calculated, and it is Gc = 0.421 for coherent scheme and Gc = 0.154

for differential. The diversity for both schemes is Gc ≈ −4.

The Impact of Multiple Access Interference (MAI): Fig. 4.8 illustrates the results of repeating

the same experiment for a two user system where each user has two receive antennas but with
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Figure 4.7. BLER performance of the proposed MU-MIMO STBC downlink transmission for
differential algebraic and coherent algebraic STBC with four users system, R = 4, Nt = 4,
Nr = 2, l = 2, and 4-PAM.

higher rate R = 6 and 8-PAM. The performance of the system in Fig. 4.8 underperforms that

of the system in Fig. 4.4 because of its higher rate. Further, in this figure, the effect of error in

the spreading matrices V is examined. Increasing the number of users in the system, the high

mobility, and multipath propagation may result in MAI in orthogonal spreading matrices, which

destroy the orthogonality of the transmitted signals for multiple users. For the two user system,

let the error spreading matrix for User 1 be V̄1 = V1 + αV2, where α is the error coefficient.

Therefore, the conditions for the orthogonality of the spreading matrix for User 1 and User 2

are as follows

V̄1V̄
H
1 = INt + α2INt . (4.57)

V2V̄
H
1 = αINt . (4.58)
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The values of α are chosen to be 0.03, 0.05, and 0.08. It is shown that the error in the orthogo-

nality of the spreading matrix V occurs among users when α > 0.
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Differential perfect algebraic: α = 0.05

Differential perfect algebraic: α = 0.08

Figure 4.8. BLER performance of the proposed MU-MIMO STBC downlink transmission with
differential algebraic STBC using a two user system model, R = 6, Nt = 4, Nr = 2, and
8-PAM.

4.7 Summary

In this chapter, a differential perfect algebraic STBC scheme for MU-MIMO with downlink

transmission has been proposed. The Cayley differential STBC that has been introduced does

not require channel knowledge, either at the transmitter or receiver. To simplify the receivers’

equipment in the MU-MIMO system, the impact of the receiver channel estimation process

and/or overhead problem can potentially be solved and avoided by using the Caylay differential

STBC. Furthermore, to achieve a full-rate full-diversity noncoherent system the differential

STBC combined with perfect algebraic STBC is derived. Due to the multiple users, there is a

81



4.7 Summary

need for the separation of the data streams and this is achieved by use of orthogonal spreading

matrices. For this system, to limit the number of possible codewords, a near-optimal sphere

decoder is performed to decode the signals at the receiver. The proposed schemes yield low

complexity transceivers while also providing high rate with good performance. However, the

system in this chapter has higher computational complexity because of its higher rate. Monte

Carlo simulation results demonstrate the effectiveness of the proposed schemes.
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Chapter 5

Differential Downlink Transmission in

Massive MU-MIMO Systems
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5.1 Introduction

5.1 Introduction

MIMO technology helps in improving wireless multiple access and can be used to increase

the spectral efficiency and improve the link reliability at low power operation [52, 58]. With

multiple transmit antennas at the BS, the system can spatially multiplex multiple data streams

for multiple users at the same frequency and time. The spatial multiplexing property becomes

more effective as the number of antennas becomes large where the system is referred to as

massive MIMO [59]. Such properties allow massive MIMO architecture to be an important part

of many wireless communications standards, such as LTE and 5G networks.

In massive MIMO, precoding design requires channel knowledge at the transmitter to can-

cel the interference between users. However, due to the large number of transmit antennas, the

estimation of all channel coefficients becomes impossible. Instead, in this chapter, differential

transmit precoding schemes is considered which avoid the channel estimation. Therefore, a

differential MIMO downlink transmission framework is proposed, in which a BS is equipped

with a massive antenna array that precodes transmit signals to separate the data streams of

multiple users. In particular, to achieve a low-complexity differential massive MIMO system,

a novel downlink precoding design is proposed by employing knowledge of the power space

profile (PSP) of users. It is assumed that the PSP for each user is estimated at the BS, since it

can tolerate more complexity compared to receivers. Once the PSPs are estimated at the BS,

the transmitter computes the precoder. More precisely, an optimal solution for the precoder

based on a max-min signal-to-interference-plus-noise ratio (SINR) problem formulation is pro-

vided. The optimised precoder can effectively precancel the interference between users, thus

enhancing overall system performance. In addition, two suboptimal solutions suitable for the

low interference system based on the matched and the orthogonality approach of PSP of each

user are also provided. The proposed schemes facilitate precancelling MAI, enhance system

performance, and provide simple transmitter and receiver schemes. Consequently, since the

proposed schemes avoid channel estimation, the system overheads and latency will be reduced

significantly.

The remainder of this chapter is organised as follows. Section 5.2 introduces the system

model of the differential massive MIMO system. Section 5.3 describes the downlink transmit

precoding approach. Section 5.4 presents differential detection for a massive MIMO system. In

Section 5.5, simulation results are shown. Finally, conclusions are drawn in Section 5.6.
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Figure 5.1. Differential massive MIMO downlink system model.

5.2 System Model

Consider a single-cell massive MIMO downlink broadcast channel. The BS has nt transmit

antennas, which simultaneously transmit multiple streams to K single-antenna users, as shown

in Fig.1. The number of transmit antennas is assumed to be very large1 (nt � 1). It is assumed

that all users are equipped with a single-antenna for the decoding process which is a realistic

assumption for the massive MIMO system, where the large number of transmit antennas at the

BS provides a mutual orthogonality among the vector-valued channels to the users (so-called

favourable propagation) [61]. For downlink massive MIMO transmission, multiple-antennas at

each user increases receiver complexity and overhead. Instead, it is more practical to have a

simple, inexpensive, and power efficient single-antenna receiver. Further, equivalent capacity

can be achieved by serving K single-antenna users instead of one user having K-multiple-

antennas users, thereby serving more users in the cell [61].

1The assumption of nt → ∞ is valid and commonly used in the massive MIMO literature. However, the
system’s performance can be tested for the practical case of large but limited number of antennas [60].
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5.2.1 Differential Massive MIMO System Model

For any kth user, sk = [sk,1, sk,2, · · · , sk,N ] ∈ C1×N , 1 ≤ k ≤ K, is the information vector

with elements drawn from an M -ary PSK constellation as:

M =
{
ej2πi/M | i = 0, 1, · · · ,M − 1

}
, (5.1)

where N denotes the block length of the coherence time intervals. In the context of differential

massive MIMO system, a sequence of symbols of the kth user sk,τ , 1 ≤ τ ≤ N , is differentially

encoded into the transmit symbol vector bk ∈ C1×(N+1) via the rule

bk,τ = sk,τbk,τ−1 = bk,0

τ∏
i=1

sk,i. (5.2)

The transmit information signal vector bk comprises the initial reference symbol bk,0 = 1 and

the following N differentially encoded symbols in the form of bk = [bk,0, bk,1, · · · , bk,N ].

No prior information about the channel is considered to be available at the BS. The channel

vector between the BS and user k, hk = [hk,1, hk,2, · · · , hk,nt ]T ∈ Cnt×1, models independent

fast fading and slow fading PSP attenuation, where the PSP is denoted as gk,m, 1 ≤ m ≤ nt, PSP

is specified later in Section 5.2.2. It is assumed that the channel coefficients remain constant

over the block length and vary independently from one block to another. The coefficient hk,m

can be written as

hk,m =
√
gk,m h̃k,m, m = 1, 2, · · · , nt, (5.3)

where h̃k,m is the fast-fading coefficient from the kth user to the mth transmit antenna of the

BS, which is modelled as an independent over m and identically distributed (i.i.d.) complex

Gaussian random variable with zero-mean and unit-variance, i.e., h̃k,m ∼ CN (0, 1). gk,m mod-

els the PSP attenuation between the mth antenna at the BS and user k, which is assumed to

be independent over m and to be constant over many coherence time intervals N and known a

priori to the BS. It is considered that the value of h̃k,m remains stationary for a sufficiently long

transmission time. Then, it follows that

hk = G
1/2
k h̃k, k = 1, · · · , K, (5.4)

where h̃k = [h̃k,1, h̃k,2, · · · , h̃k,nt ]T ∈ Cnt×1, andGk = diag(gk) = diag(gk,1, gk,2, · · · , gk,nt) ∈

Rnt×nt . Therefore, the variance of {hk} is determined by the user PSP, where the channel vari-

86



5.2 System Model

ance is equal to the power profile, i.e., hk,m ∼ CN (0, gk,m).

It is assumed that the multiuser system adopts a linear transmission and reception strategy.

The BS performs transmit beamforming and communicates simultaneously with all users. The

instantaneous transmitted signal matrix B ∈ Cnt×(N+1) for the kth user can then be expressed

as

B =
K∑
k=1

√
pkukbk, (5.5)

where uk =
[
uk,1, uk,2, · · · , uk,nt

]T ∈ Rnt×1 is the normalised differential transmit precoder

(beamformer) of the kth user, where ‖uk‖2 = 1. pk is the downlink average transmit power of

the kth user. A total power constraint at the BS is considered, namely

E
{

trace(BHB)
}

= P̄ . (5.6)

The received signal vector yk ∈ C1×(N+1) for the kth user is given by

yk =
√
pkh

H
k ukbk + hHk

K∑
q=1
q 6=k

√
pquqbq + zk (5.7)

=
√
pkh

H
k ukbk +wk + zk︸ ︷︷ ︸

def
=z̄k

, (5.8)

where the term
√
pkh

H
k ukbk represents the desired signal at the kth user,wk = hHk

∑K
q=1
q 6=k

√
pquqbq ∈

C1×(N+1) is the MAI component against the kth user, and zk ∈ C1×(N+1) is the noise vector

modelled as zero-mean complex circularly symmetric Gaussian random variables, i.e., zk ∼

CN (0, σ2
zk
Int), and z̄k = wk + zk denotes the sum of the noise and MAI component from all

other interference users.

Assuming that the information transmitted symbols bk are uncorrelated, the average SINRk

at the kth user can be expressed as follows

SINRk = E

 pk
∣∣hHk uk∣∣2∑K

q=1
q 6=k

pq
∣∣hHk uq∣∣2 + σ2

zk

 . (5.9)

5.2.2 Colocated Antenna System with a Uniform Linear Array Model

Now, the PSP model is derived by following the approach in [47]. As shown in Fig. 5.2, the

users are randomly distributed in front of a large uniform antenna array at the BS. It is assumed
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that the BS has full knowledge of any user’s location information. The location of the users is

determined by the following parameters: rk,m is the distance between the antenna index m and

the kth user; lk is the direct orthogonal distance between the kth user and the array; and, la is

the antenna spacing1. Let mk denote the antenna element closest to the kth user according to

the Euclidean distance. From algebraic geometry, it follows

rk,m =
√
l2k + l2a|m−mk|2 (5.10)

=lk

√
1 + |m−mk|2/l2k,r, m = 1, · · · , nt, (5.11)

where lk,r
def
= lk/la denotes the normalised relative distance of the kth user to the array. It is

assumed that the average transmit power obeys the path loss model with path loss exponent γ.

Hence, the path loss for the kth user at antenna m is given by

gk,m = r−γk,m. (5.12)

Using exponential and logarithmic properties, yields

gk,m = exp

{
− γ loge

(
lk

√
1 + |m−mk|2/l2k,r

)}
= exp

{
− γ loge(lk) +

−γ loge
(
1 + |m−mk|2/l2k,r

)
2

}
.

Since loge(1 + x) ≈ x for small x, yields

gk,m = exp
{
− γ loge(lk)

}
· exp

{
−γ|m−mk|2

2l2k,r

}
= l−γk · exp

{
−|m−mk|2

2ζ2
k

}
(5.13)

= βk · exp

{
−|m−mk|2

2ζ2
k

}
, (5.14)

where βk = l−γk and ζ2
k

def
= l2k,r/γ. Therefore, the PSP is well approximated by a Gaussian

function with mean mk and channel variance ζ2
k .

Remark 1. In practical systems, the power space profile (PSP), gk,m, of each user (which

includes the path loss exponent) varies very slowly with time compared to the fast fading co-

efficients h̃k,m. In this context, for massive MIMO systems, it is reasonable to assume that the

1it is assumed that there is no correlation between transmit antennas at the BS as they are spaced at a minimum
of 0.5λ.
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Figure 5.2. Geometric system model of user’s location.

PSPs of the users of the system are known at the BS [62–64]. In the uplink, it is assumed that

each user transmits N (i.i.d.) symbols as sk = [sk,1, sk,2, · · · , sk,τ , · · · , sk,N ]. For each symbol

the BS can calculate the PSP for each user accurately by averaging the received uplink signal

over different data slots indexed by τ as [62]

Ĝk = diag(ĝk) = E
[
rk,τr

H
k,τ

]
, (5.15)

where rk,τ is the uplink received signal vector for the kth user at the antennas of the BS during

the τ th time slot, which is given as

rk,τ = hksk,τ + zk,τ . (5.16)

Hence, with the assumption of channel reciprocity, the PSP is calculated for each user during

the uplink as in (5.15), which is assumed to be equivalent to the PSP in the downlink.

Note that PSP profile estimation is less challenging than estimating the actual channel state

information, in which the PSP can remain constant over many coherence time intervals. How-

ever, the actual estimation process of gk,m is beyond the scope of this work, thus it is assumed

that the PSP profiles is (perfectly) known in our system.

5.3 Downlink Transmit Precoding

In massive MIMO, transmit precoding is used to cancel inter-user interference. Conventional

transmit precoding design requires channel knowledge at the transmitter. However, in massive

MIMO, the number of transmit antennas is very large, i.e., nt � 1. Hence, the estimation of all

channel coefficients hk,m quickly becomes unfeasible. Instead, differential transmit precoding

schemes could be considered which avoid the need for explicit channel estimation. After esti-

mating the PSP profile gk,m at the BS, it is used for designing the transmit precoder for each user
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k to separate different users. Now, an asymptotic analysis of SINR and the proposed precoder

design strategies for the differential massive MIMO framework is presented.

5.3.1 Asymptotic Analysis of SINR

As a consequence of employing a large number of antennas at the BS nt → ∞ (as in this case

of massive MIMO), the downlink channel vectors of independent users have a large degree of

orthogonality, i.e.,

1

nt
hHk hk

N→∞→ gTk gk
nt

,
1

nt
hHk hq 6=k

N→∞→
gTk gq 6=k
nt

.

The orthogonality between different user’s channels is determined by the orthogonality between

the small fading vectors {h̃k}, and the orthogonality between the PSPs {gk}.

Theorem 1. From the law of large random numbers and under the most favourable propagation

conditions, where the column-vectors of the propagation vectors are asymptotically orthogonal,

the expected value of SINRk can be calculated when nt →∞. Since {hHk } has Gaussian distri-

bution with zero-mean and covariance of Gk = diag
(
gk
)
, hence the desired signal

√
pkh

H
k uk

is also Gaussian distributed with zero mean and variance pk
∑nt

m=1 gk,mu
2
k,m, where the sum of

multiple Gaussian variables is also a Gaussian variable. Similarly, the interference component

of SINRk is also a Gaussian signal with variance
∑K

q=1,q 6=k pq
∑nt

m=1 gk,mu
2
q,m. The variance

for the AWGN noise is σ2
zk

. Therefore, the expected value of SINRk as nt →∞ is

SINRk
N→∞→

E
[
pk
∣∣hHk uk∣∣2]

E
[∑K

q=1
q 6=k

pq
∣∣hHk uq∣∣2 + σ2

zk

] (5.17)

=
pk
∑nt

m=1 gk,mu
2
k,m∑K

q=1
q 6=k

pq
∑nt

m=1 gk,mu
2
q,m + σ2

zk

. (5.18)

Proof. See Appendix A
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5.3.2 Suboptimal Precoders

5.3.2.1 Matched PSP Precoder

The first precoder design strategy is to match the beamformer vector to the PSP profile of the

transmit antennas to separate different users, i.e., u2
k,m ∼ gk,m, which can be written as

uk,m =

√
βk · exp

{
−|m−mk|2

2ζ2
k

}
, (5.19)

where it is assumed here the BS has full knowledge of the channel parameter ζk, and the antenna

index mk which is the closest to the user k with maximum average power. For the power

allocation in matched PSP scheme, the downlink transmit power is allocated equally between

users, i.e., pk = P̄ /K.

5.3.2.2 Orthogonal PSP Precoder

In the orthogonal PSP precoder, the beamformer for each user has to be distinguished and

identified from other users. In the orthogonal precoder scheme, each user is assigned a unique

orthogonal PSP to enhance data separation between users. The orthogonal PSP for each user is

then multiplexed by its own power profile.

The orthogonal precoder for each user can be constructed using the Gram-Schmidt process

(GSP). Let the vector vk =
[
vk,1, vk,2, · · · , vk,nt

]T ∈ Rnt×1 represent the user’s PSP vector.

The elements of vector vk are computed by matching their value to the power profile of the

transmit antennas, i.e., v2
k,m ∼ gk,m. The Gram-Schmidt process takes a finite, linearly in-

dependent set S = {v1,v2, · · · ,vk, · · · ,vK} for K ≤ nt and generates an orthogonal set

S̄ = {v̄1, v̄2, · · · , v̄k, · · · , v̄K} which spans the same K-dimensional subspace of Rnt×1 as S.

The projection operator is defined as [19]

projv̄(v) =
〈v̄,v〉
〈v̄, v̄〉

v̄, (5.20)

where 〈v̄,v〉 denotes the inner product of the vectors v̄ and v, i.e., 〈v̄,v〉 = v̄Tv for vectors in

Rnt×1. The Gram-Schmidt process then works as follows:

v̄1 = v1,

v̄2 = v2 − projv̄1
(v2),

v̄3 = v3 − projv̄1
(v3)− projv̄2

(v3),
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...

v̄k = vk −
k−1∑
i=1

projv̄i(vk). (5.21)

Note that, the Gram-Schmidt precoder for the first user is equal to the original PSP for the

first user, i.e., v̄1 = v1, hence the user’s separation works only for the received signal of the

first user. To enhance the separation for the received signal of other users, each element of the

orthonormal vector v̄k is multiplied by its own specific original power profile elements of vk

and then normalise them, which yields

uk =
vk ◦ v̄k
‖vk ◦ v̄k‖

, (5.22)

where ◦ denotes the Hadamard product. For power allocation in orthogonal PSP precoder, the

downlink transmit power is allocated equally between users, i.e., pk = P̄ /K.

5.3.3 Optimal PSP Precoders

In this precoder, the joint optimisation of power and downlink precoder is considered for the

PSP among all users simultaneously using the max-min formulation problem. A max-min for-

mulation guarantees a fair quality of service among all users.

5.3.3.1 SINR Optimal PSP Precoder

In optimal PSP precoder, I maximise the worst case SINR jointly among all user. Starting from

(5.18), the corresponding optimisation problem can be written as

maximise
pk,uk,m

k∈[1,K],m∈[1,nt]

min
k∈[1,K]

(
pk
∑nt

m=1 gk,mu
2
k,m∑K

q=1
q 6=k

pq
∑nt

m=1 gk,mu
2
q,m + σ2

zk

)
, (5.23a)

subject to
K∑
k=1

nt∑
m=1

pku
2
k,m ≤ P̄ , (5.23b)

pku
2
k,m ≥ 0, ∀k,m. (5.23c)

Problem (5.23) can be recast as

maximise
pk,ck
k∈[1,K]

min
k∈[1,K]

(
pkf

T
k ck

fTk
∑K

q=1
q 6=k

pqcq + 1

)
, (5.24a)
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subject to
K∑
k=1

pk1
T
ntck ≤ P̄ , (5.24b)

pkck ≥ 0, ∀k, (5.24c)

where fk and ck are defined as

fk =
1

σ2
zk

[
gk,1, gk,2, · · · , gk,m, · · · , gk,nt

]T
, (5.25)

and

ck =

[
u2
k,1, u

2
k,2, · · · , u2

k,m · · · , u2
k,nt

]T
. (5.26)

It can be seen that the cost-function in (5.24a) is non-linear and non-convex over the opti-

misation variables pk, and ck for k ∈ [1, K]. In the following, an optimal solutions for the

design problems is provided. The feasibility of problem (5.24) can be examined by solving it

with the objective function replaced by constant values, i.e., finding a common domain which

satisfies all problem constraints. Without loss of generality, it is assumed that the problem is

feasible. Next, the optimisation problem is solved optimally through recasting the non-convex

constraints. Now, define a Knt × 1 vector v as

v =
[
p1(c1)T , p2(c2)T , · · · , pK(cK)T

]T
. (5.27)

In addition, define other variables wk and w̄k of size Knt × 1 as

wk =
[
0T(k−1)nt×1,f

T
k ,0

T
(K−k)nt×1

]T
, (5.28)

and

w̄k =
[
fT1 , · · · ,fTk−1,0

T
nt×1,f

T
k+1, · · · ,fTK

]T
, (5.29)

where 0m×1 denotes an m × 1 vector whose elements are zero. Next, the SINRk optimisation

problem in (5.24) may be written in a more convenient form by using (5.27), (5.28), and (5.29),

which yields

maximise
v

min
k∈[1,K]

(
wT
k v

w̄T
k v + 1

)
, (5.30a)

subject to 1Tnt v ≤ P̄ , (5.30b)

v ≥ 0. (5.30c)
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To convexify the cost-function (5.30a), which comprises a product of fractional terms, the

numerators and denominators of the fractions are substituted by exponential variables as fol-

lows [65]

eαk = wT
k v, ∀k, (5.31a)

eα̃k = w̄T
k v + 1, ∀k. (5.32a)

Then, by using the properties of the exponential and according to (5.31a) and (5.32a), the prob-

lem in (5.30) can be formalised as

maximise
v,αk,α̃k
k∈[1,K]

min
k∈[1,K]

(
e(αk−α̃k)

)
, (5.33a)

subject to 1Tnt v ≤ P̄ , (5.33b)

v ≥ 0, (5.33c)

eαk ≤ wT
k v, ∀k, (5.33d)

eα̃k ≥ w̄T
k v + 1, ∀k. (5.33e)

It can be seen that the exponential parameters eαk and eα̃k in (5.33d) and (5.33e) are constrained

by the expressions on the right hand sides of (5.31a) and (5.32a), respectively. The objective

function in (5.33a) consists of an exponential function which is non-convex, and thus it can be

linearised by using the monotonicity property of the exponential function. Hence, the objective

function in (5.33a) can be defined as follows

e(αk−α̃k) def
= αk − α̃k, ∀k. (5.34)

Next, to deal with the non-convex constraint (5.33e), the exponential term eα̃k is linearised by

using the first order Taylor approximation as follows [66]

eα̃k = eα̈k
(
1 + α̃k − α̈k

)
, ∀k, (5.35)
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where α̈k is the point where the linear approximation is made. Therefore, from (5.34) and

(5.35), problem (5.33) can be reformulated as

maximise
v,αk,α̃k
k∈[1,K]

min
k∈[1,K]

αk − α̃k, (5.36a)

subject to 1Tnt v ≤ P̄ , (5.36b)

v ≥ 0, (5.36c)

eαk ≤ wT
k v, ∀k, (5.36d)

eα̈k
(
1 + α̃k − α̈k

)
≥ w̄T

k v + 1, ∀k. (5.36e)

Now the above problem (5.36) is convex and can be solved iteratively using CVX optimisation

software [67]. The initial value of α̈k is updated by the optimised value of α̃k, ∀k, obtained

in the previous iteration. The iterations continue until the error,
∑K

k=1 |α̈k − α̃k|, converges

to a certain threshold. Algorithm 1 is provided to solve the above optimisation function. Here

α = [α1 · · ·αK ]T , α̃ = [α̃1 · · · α̃K ]T , and α̈ = [α̈1 · · · α̈K ]T .

Algorithm 1 Algorithm for solving problem (5.36)
1: Set threshold = ε

2: Initialize α̈[i], α̃[i], i = 0

3: while 1Tnt
(
|α̈− α̃|

)
> ε or i = 0 do

4: increment i = i+ 1.

5: update the initial values α̈[i] = α̃[i−1].

6: solve problem (5.36) using CVX and calculate v[i],α[i], α̃[i].

7: until Convergence.

8: end while

9: Find uk and pk of each user from v as in (5.26) and (5.27).

Remark 2. There is an alternative approach for designing the transmit precoder based on

maximising the worst case of signal-to-leakage-noise ratio (SLNR). The SLNR is defined as the

ratio of received signal power at the desired user to received signal power at the other users

(the leakage) [68]. The average SLNRk at the kth user can be expressed as

SLNRk
N→∞→

E
[
pk
∣∣hHk uk∣∣2]

E
[
pk
∑K

q=1
q 6=k

∣∣hHq uk∣∣2 + σ2
zk

] (5.37)
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=
pk
∑nt

m=1 gk,mu
2
k,m

pk
∑K

q=1
q 6=k

∑nt
m=1 gq,mu

2
k,m + σ2

zk

. (5.38)

The proof of (5.38) is similar to the proof of (5.18) in Theorem 1. The optimisation solution for

maximising the worst case SLNR of (5.38), (max-min SLNR), jointly among all users provides

the same performance as in the proposed optimal PSP SINR precoder, (max-min SINR).

5.3.4 Computational Complexity Analysis for the PSP Precoders

In this section, the computational complexity is quantified for the proposed PSP precoders for

the optimal and the suboptimal solutions. The computational process is done based on the size

of input data, the floating point operations (FLOPs), the type of the optimisation problems, the

number of the required iterations, and the methods used in finding the solution.

5.3.4.1 Complexity of Suboptimal Solutions

The notion of FLOPs is introduced. The total number of FLOPs is used to measure the compu-

tational complexity of matrix operations. The total FLOPs needed for some matrix operations

is listed below [49]:

• Multiplication of m× n and n× p complex matrices: O(8mnp− 2mp);

• Inversion of an m×m real matrix using Gauss-Jordan elimination: O(4m3/3).

• GSP to an m× n (m ≥ n) complex matrix: O(8n2(m− n/3)).

• Hadamard product for two m×m matrices: O(m).

• L2-norm of an m× 1 real vector: O(3m). According to the aforementioned summary of

FLOPs operations, the computational complexity of the suboptimal PSP precoder is

O
(
K
(

13nt −
8

3

))
. (5.39)

5.3.4.2 Complexity of Optimal Solution

Now, the complexity of optimising the downlink PSP precoder is calculated in which it is for-

mulated as a linear programming (LP) problem in (5.36). The computational complexity of

such LP problems has been studied in Chapter 6 in [69] where the complexity is calculated

in terms of the number of optimisation variables n, number of constraints m and the size of
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input data dim(p), where p is the vector of input data. To apply the complexity evaluation

steps given in chapter 6 in [69], problem (5.36) is recast into its standard LP form. This can be

achieved by replacing the min operator in the objective function by new slack variable π and

K scalar constraints (see (5.40d)). Therefore, (5.40) is an equivalent and standard LP recast of

the original problem (5.36). Note that the constraint (5.36d) is linearised in a similar way as

used for (5.36e) since the used CVX’s solvers such as SDPT3 and SeDuMi do not support the

exponential function.

maximise
v, αk, α̃k, π

k∈[1,K]

π (5.40a)

subject to 1Tntv ≤ P̄ , (5.40b)

v ≥ 0, (5.40c)

αk − α̃k ≥ π, ∀k, (5.40d)

eα̂k
(
1 + αk − α̂k

)
≤ wT

k v, ∀k, (5.40e)

eα̈k
(
1 + α̃k − α̈k

)
≥ w̄T

k v + 1, ∀k. (5.40f)

Problem (5.40) contains n = (nt + 2)K + 1 scalar variables, m = (nt + 3)K scalar constraints,

and require the input data vector p = [n, m, wT
1 , . . . , w

T
K , w̄

T
1 , . . . , w̄

T
K , α̂1, . . . , α̂K ,

α̈1, . . . , α̈K ]. According to these problem parameters, the complexity of achieving a per-

iteration solution within the an accuracy ε is [69]

O(1)
√
m+ n ln

(
dim(p) + ‖p‖1 + ε2

ε

)
, (5.41)

where O(1) is the complexity of a real operation. According to (5.41) and the aforementioned

problem parameters, the per-iteration complexity asymptotically (as nt, K →∞ and nt � K)

converges to

O
(
Knt

[
ln(2K2nt) + ln

(1

ε

)])
. (5.42)

Obviously, from (5.39) and (5.42), the optimal PSP precoder has lower computational complex-

ity than the suboptimal PSP precoders, where the main parameters are the total number of users

K and the total number of transmit antennas nt. More on the comparison between (5.39) and

(5.42) will be explored in Section 5.5.
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5.4 Differential Detection for Massive MIMO with Downlink

Transmission

In this section, the differential encoding and decoding process for the downlink transmission in

a massive MIMO system is discussed. Here, it is assumed that neither the transmitter nor the

receiver has prior knowledge of the CSI.

5.4.1 Multiple Symbols Differential Detection

The simpler suboptimal method of implementing DM detection with massive MIMO is to en-

code the transmitted data differentially and to decode only the last two consecutive received

symbols, e.g. N = 2, without any knowledge of the CSI. In contrast, the optimal method is

to decode a block of N consecutive information symbols jointly without any knowledge of the

CSI by performing MSDD, e.g. N � 2, which results in a 3dB performance improvement

compared to DM detection 1 [45,46]. In MSDD for the downlink system, the differential trans-

missions are implemented in blocks, in which each user k receives the sum of all the transmit

waveforms of other users; then, the received signal blocks for each user must be detected inde-

pendently. The measurements at the receiver are collected by spatial autocorrelation, thus the

generalised likelihood ratio test (GLRT) optimisation criterion is adopted whereby the maximi-

sation of the likelihood function is performed not only over the unknown symbols but also over

unknown channels [70].

Now, the differential decoder for the downlink transmission is constructed. From the re-

ceived signal yk in (5.8) and using the differential encoding rule in (5.2), it follows

yk =
√
pkh

H
k uk

[
bk,0 bk,1 bk,2 · · · bk,N

]
+ z̄k (5.43)

=
√
pkh

H
k ukbk,0

[
1 sk,1 sk,1sk,2 · · ·

N∏
i=1

sk,i

]
+ z̄k (5.44)

= φkαk + z̄k (5.45)

where αk =
[
1 sk,1 sk,1sk,2 · · ·

∏N
i=1 sk,i

]
denotes the unknown information symbols, and φk =

√
pkh

H
k ukbk,0 contains the unknown channel coefficients hk scaled by predefined initial symbol

bk,0, the transmit power pk, and the transmit precoder uk. Since φk is unknown in the absence

1In MSDD, there is a 3dB gain when using large values of N , yet the cardinality of the search set grows
exponentially with N , i.e., |M| =MN+1. However, to achieve low complexity design, one can resort to using an
edge computing platform or the conventional DM detection.
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of channel knowledge hk, a possible alternative to the ML decoder to detect the information

symbols sk is the GLRT approach. When the z̄k is AWGN noise, the conditional probability

density function (PDF) for the multivariate Gaussian distribution (yk − φkαk) is [46]

1√
2πσ2

z̄k

exp

(
−
(
yk − φkαk

)H(
yk − φkαk

)
2σ2

z̄k

)
. (5.46)

The maximisation of the log-likelihood metric is performed not only over the candidate infor-

mation symbols s̃k of sk, but also over the candidate value φ̃k of φk, and then it follows that [46]

Λ
[
yk|s̃k, φ̃k

]
= ykφ̃

∗
kα̃

H
k + φ̃kα̃ky

H
k − φ̃kα̃kφ̃∗kα̃Hk , (5.47)

where α̃k =
[
1 s̃k,1 s̃k,1s̃k,2 · · ·

∏N
i=1 s̃k,i

]
is the candidate value for αk. The log-likelihood

metric in (5.47) can be reformulated to yield the equivalent metric

Λ
[
yk|s̃k, φ̃k

]
= ykφ̃

∗
kα̃

H
k + φ̃kα̃ky

H
k

−
(

1 +
N∑
τ=1

τ∏
i=1

|s̃k,i|2
)
|φ̃k|2. (5.48)

Therefore, the GLRT-based decision metric for MSDD is given by

ŝk = arg max
s̃k

{
max
φ̃k

{
Λ
[
yk|s̃k, φ̃k

]}}
. (5.49)

Then, solving (5.49) by first keeping s̃k fixed and compute

Λ [yk|s̃k] = max
φ̃k

{
Λ
[
yk|s̃k, φ̃k

]}
. (5.50)

To calculate (5.50), Taylor’s theorem can be used for variational techniques by imposing

φ̃k = φ?k + λkεk, (5.51)

where φ?k ∈ C denotes the optimal solution to φk, εk ∈ C measures the error of φ̃k from the

optimal solution, and λk ∈ R is the error real coefficient. Substituting (5.51) into (5.48) and

then taking the first-order derivative of Λ
[
yk|s̃k, φ̃k

]
with respect to λk at zero, which yields

∂

∂λk
Λ
[
yk|s̃k, φ̃k

] ∣∣∣∣∣
λk=0

= ε∗kykα̃
H
k + εkα̃ky

H
k
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−
(

1 +
N∑
τ=1

τ∏
i=1

|s̃k,i|2
)(
ε∗kφ

?
k + εk(φ

?
k)
∗). (5.52)

By setting the derivative in (5.52) equal to zero, the optimal value of φk is obtained as

φ?k =
ykα̃

H
k

1 +
∑N

τ

∏τ
i=1|s̃k,i|2

(5.53)

Then, substituting the optimal value φ?k in (5.53) by φ̃k in (5.48) yields

Λ [yk|s̃k] =
ykα̃

H
k α̃ky

H
k

1 +
∑N

τ=1

∏τ
i=1|s̃k,i|2

=
α̃ky

H
k ykα̃

H
k

1 +N
(5.54)

Note that the channel estimate is not explicitly used during the stages of MSDD. When using

the M -ary PSK constellation, the MSDD detection problem in (5.54) can be simplified as [46]

b̂k = arg max
b̃k∈MN+1,b̃o=1

b̃kY kb̃
H

k (5.55)

= arg max
b̃k∈MN+1,b̃o=1

<

{
N∑
τ=1

b̃∗k,τ

τ−1∑
l=0

b̃k,l · yk,l,τ

}
, (5.56)

where Y k = yHk yk ∈ C(N+1)×(N+1) is the autocorrelation matrix of the received signal com-

prised of the correlation coefficients yk,l,τ , τ = 1, . . . , N , l = 0, . . . , τ − 1, between the lth and

the τ th received differential signals. To get the information symbols sk, it can be seen that sk is

directly obtained as

sk,τ = bk,τ · b∗k,τ−1. (5.57)

In (5.55), the differential decoder uses one side of the complex-conjugate symmetry of the cor-

relation coefficients, thus yk,l,τ = y∗k,τ,l. Further, the diagonal elements of Y k can be neglected

as they do not influence the decision metrics, i.e., yk,l,l = yk,τ,τ = 0.

Example 7. For N = 3, it follows

Y k =


0 yk,0,1 yk,0,2 yk,0,3

yk,0,1 0 yk,1,2 yk,1,3

yk,0,2 yk,1,2 0 yk,2,3

yk,03,l yk,1,3 yk,2,3 0

 . (5.58)
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Now assuming that at time instant l and τ , the BS transmits the differential signals bk,l and

bk,τ . Therefore, from (5.8) and (5.56), the correlation coefficients (yk,l,τ = yk,τ,l) constructed

from the autocorrelation received signal matrix can be represented as

yk,l,τ = y∗k,lyk,τ

=
(√

pkh
T
ku
∗
kb
∗
k,l + z̄∗k,l

)(√
pkh

H
k ukbk,τ + z̄k,τ

)
= pk|hHk uk|2 · b∗k,lbk,τ + ηk,l,τ , (5.59)

where pk|hHk uk|2 represents the captured energy of the signal of the kth user and

ηk,l,τ =
√
pkh

T
ku
∗
kb
∗
k,lz̄k,τ

+
√
pkz̄

∗
k,lh

H
k ukbk,τ + z̄∗k,lz̄k,τ , (5.60)

are composed of all terms corrupted by noise and MAI.

5.4.2 Decision Feedback Differential Detection

In order to improve the performance further, DFDD is adopted in this chapter. This approach

leads to better performance compared to MSDD. Different from [47], the DFDD is derived for

the downlink transmission instead of the uplink. In DFDD, the decisions are made successively,

adding all previous decisions in the decision of the current symbol. In this decoding algorithm,

the decoder detects symbols one by one. After finding the best candidate for the first symbol,

the effects of this symbol in all of the receiver equations are added and considered. Then, the

second symbol is detected from the new sets of equations. The effects of the first and second

detected symbols are added and then considered to derive a new set of equations. The process

continues until all symbols are detected. Of course, the order in which the symbols are detected

will impact the end solution. The algorithm includes three steps, i.e. decision, process, and

ordering.

5.4.2.1 Decision Process

From the description given above and starting with bk,0 = 1, the decision process means that

the information symbols in (5.56) are detected one by one as

b̂k,τ = arg max
b̃k,τ∈MN+1

<
{
b̃∗k,τ

τ−1∑
l=0

b̃k,l · yk,l,τ
}

(5.61)
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= exp

(
j · θPSK

{ τ−1∑
l=0

b̃k,l · yk,l,τ
})

, (5.62)

where

θPSK{x}
def
=

2π

M
·
⌊
M

2π
· arg(x)

⌉
, (5.63)

and

∆θPSK{x}
def
=

∣∣∣∣ arg
{

exp
(
j ·
(

arg(x)− θPSK(x)
))}∣∣∣∣ (5.64)

quantises the phase of a complex number x ∈ C to the M phase values of M -ary PSK, and

computes the quantisation error, respectively. The operation bxe in (5.63) takes as input a real

number x and gives as output a reduction into the interval [π, 2π]. The purpose of this step is to

decide which transmitted symbol to detect at each stage of the decoding.

5.4.2.2 Optimum Decision Ordering

It is well known from decision feedback equalisation in MIMO systems, also known as BLAST

[71], that sorting the decisions in an optimised order improves performance. The symbol with

lowest quantisation error in (5.64) is the best in this step. The decision order can be achieved by

reordering the columns and rows of the Y k matrix. That is, the best transmitted symbols in the

Y k matrix are denoted by (τ̂0, τ̂1, · · · , τ̂N ), where τ̂i, τ̂l ∈ {0, · · · , N}, τ̂i 6= τ̂l for i 6= l. Then,

the symbols transmitted in the τ̂ith index are defined by (bk,τ̂0 , bk,τ̂1 , · · · , bk,τ̂i , · · · , bk,τ̂N ).

Now, the initial transmitted symbol is setted to identity, i.e., bk,τ̂0 = 1. Then, the first decided

symbol should be the τ̂1th symbol, where

[τ̂0, τ̂1] = arg min
l∈{0,··· ,N},τ∈{1,··· ,N}

l≤τ

∣∣∣∣∆θPSK{yk,l,τ}
∣∣∣∣, (5.65)

and the estimate for the bk,τ̂1 symbol is obtained from

bk,τ̂1 = exp

(
j · θPSK

{
yk,τ̂0,τ̂1

})
. (5.66)

Taking the previous decision into account, the symbol that is decided next can be obtained

successively from

τ̂i = arg min
τ∈{1,··· ,N}
/{τ̂0,··· ,τ̂i−1}

∣∣∣∣∆θPSK

{ i−1∑
l=0

bk,τ̂l · yk,τ̂l,τ
}∣∣∣∣, (5.67)
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and its value can be obtained from

bk,τ̂i = exp

(
j · θPSK

{ i−1∑
l=0

bk,τ̂l · yk,τ̂l,τ̂i
})

. (5.68)

This ordering scheme has attempted to provide reliable decisions for the first decided symbols,

which will impact the decision for subsequent symbols, and thus improve performance. Further,

it must be noted that the actual realisations of the channel vectors {hk} are not needed to decode

the information signals.

5.5 Simulation Results and Discussion

In this section, the performance of the differential massive MIMO downlink transmission is ex-

amined. The channel is assumed to be modeled as quasi-static, where the block fading channel

between the transmitter and receiver is constant (but unknown) during N successive channel

uses, i.e., the block length of the coherence time intervals. The fast fading coefficients for each

user h̃k = [h̃k,1, · · · , h̃k,nt ]T are mutually independent and modeled as independent and identi-

cally distributed (i.i.d.) complex Gaussian random variable with zero-mean and unit-variance,

i.e., h̃k,m ∼ CN (0, 1).

Throughout this section, it is assumed the following; urban area cellular radio model for γ,

one receive antenna per user, the noise power σ2
zk

= 0 dB, the constellation size is 4-PSK, the

length of the transmission block is set to N = 200, and the DFDD detection technique is used

for differential detection. Table 5.1 shows the values of PSP parameters to be used in (5.14)

whenever needed throughout the simulation section. Note that using ζ without the superscript

k means that the values of ζ are equal for all users, i.e., ζ1 = · · · = ζK = ζ . The array geometry

of BS antennas is co-located uniform linear array as in Fig. 5.2. The Monte Carlo simulation is

used to evaluate the performance in terms of BER.

5.5.1 Single-User Scenario

The BER performance curve is first simulated and plotted for only one user. It is assumed that

the user’s location is in front of the centre of the antenna array, i.e., m1 = 50. The BS has

nt = 100 transmit antennas. This case is examined using the three proposed precoders, e.g.,

matched PSP precoder, orthogonal PSP precoder, and optimal PSP precoder. In addition, these

precoders are compared against the unity precoder (equal power allocation), where the precoder

vector elements are all set to one, i.e., {uk} = 1nt and then normalised. The channel parameter
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Table 5.1. The values of PSP parameters to be used in (5.14).

PSP Parameters List

Path loss
exponent

Antenna spacing Orthogonal
distance

Relative distance Peak amplitude Channel variance

γ la lk lk,r βk ζk

3.6 0.3m 3m 10m 0.01 5

3.6 0.3m 5m 16m 0.003 8

3.6 0.3m 10m 33m 0.0002 16

3.6 0.3m 15m 50m 0.00005 26

is set to ζ = 8. When there is no interference, Fig. 5.3 shows that the performance of the

proposed precoders schemes, e.g., matched, orthogonal, and optimal precoders, outperforms

the one that does not perform any kind of optimisation for the precoding vector, e.g., the unity

precoder. Clearly, in the interference-free system, the performance of the optimal PSP precoder

is slightly better than the other two precoders but the difference is very small. It should be noted

that in a coherent system, it is well known that the matched (to the channel) filter maximises the

SNR for the single user case. This is valid for both conventional and massive MIMO systems.

However, in a noncoherent system, the matched PSP precoder is matched only to the PSP and

not to the channel itself. Therefore, the matched PSP precoder does not necessarily maximise

the SNR. In the optimal PSP precoder design, the optimiser tends to allocate the power to

the channels that have significant gains. In other words, as the PSP coefficients are positive, the

optimised precoder (that maximises the SNR and improves the BER) will have only coefficients

corresponding to the largest coefficients of the PSP greater than zero and the rest are equal to

zero.

5.5.2 Multiple-User Scenario

Fig. 5.4 shows the coefficients of the proposed precoders, i.e., matched, orthogonal, and optimal

PSP in the case of K = 3 users and nt = 100. The users are placed in front of the uniform

array at equal distance lk from the BS but with different positions (angles) m1 = 20, m2 = 50,

and m3 = 80. Since it is assumed lk is equal for all users, then ζ1 = ζ2 = ζ3 = ζ = 16. In
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1 User, ζ = 8: Matched PSP precoder

1 User, ζ = 8: Orthogonal PSP precoder

1 User, ζ = 8: Optimal PSP precoder

Figure 5.3. BER performance of the proposed differential MIMO downlink transmission with
single user. nt = 100, ζ = 8.

Fig 4-(a), the BS first uses (5.14) to generate the PSP, {gk}, for each user, in which the BS

uses them as an input to the three designed precoders. Fig 4-(a) shows the generated PSP for

the three users (blue: user 1; red: user 2; black: user 3). It is evident that in the matched PSP

precoder in Fig 4-(b), the precoder coefficients for the three users overlap significantly. For the

orthogonal precoder in Fig 4-(c), the overlap between the precoder coefficients is reduced by

using the Gram-Schmidt process. In the optimal PSP precoder in Fig 4-(d), the overlap between

the precoder coefficients is minimised and the user is mostly separated. It is worth mentioning

that if the following three conditions are satisfied, namely nt is very large, ζk is small, and lk is

small, then gTkuq ≈ 0 for k 6= q. The value of ζk is affected by the user’s distance lk from the

BS, the shorter the user’s distance to the BS the smaller the value of ζk, which minimises the

interference between users.

In Fig. 5.5, the performance of the proposed PSP precoders is compared in terms of BER.

It is assumed that K = 3, m1 = 20, m2 = 50, m3 = 80, nt = 100. In Fig. 5.5, for any

value of ζ , the performance of the optimal PSP precoder outperforms the other precoders. The
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Figure 5.4. The proposed coefficients for the precoders of different users for K = 3, nt = 100,
and ζ = 16. (a) Normalized PSP of different users, (b) Normalized matched PSP precoder’s
coefficients, (c) Normalized orthogonal PSP precoder’s coefficients, (d) Normalized optimal
PSP precoder’s coefficients.

matched PSP precoder is not robust against interference at high BS power and thus has the worst

performance. In the case of ζ = 5 for all users, the performance of the precoders is almost the

same and this is because of using small value of ζ in which the users do not overlap and hence

are separated very well. In Fig. 5.5 also, in the presence of interference between users, the value

of the power profile parameters such as ζ can impact the precoders’ performance. Fig. 5.5 shows

the effect of adjusting ζ on the performance of the matched, orthogonal, and optimal precoders.

Note that when the value of the channel variance is increased for all users from ζ = 5 to

ζ = 8 and then ζ = 16, the power profile significantly overlaps between users hence causing a

degradation in the system performance. Hence, for large orthogonality between users’ channels

(small value of channel parameter ζ), the performance of matched precoder design is close to

the optimal design performance. The larger the orthogonality the closer the performance.

Fig. 5.6 investigates the impact of increasing the number of users on the system performance

in terms of BER using the three proposed precoders. It is assumed that: nt = 100, ζ = 5, and

K = 2, K = 4, and K = 6. For K = 2, the positions are set to [25 75], for K = 4, the

positions are set to [20 40 60 80], and for K = 6, the positions are set to [15 30 45 60 75 90].

It is shown that differential massive MIMO systems with fewer users outperform those with

a large number of users. However, using an optimal PSP precoder with the most appropriate
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ζ = 16, 3 Users: Matched PSP precoder

ζ = 16, 3 Users: Orthogonal PSP precoder

ζ = 16, 3 Users: Optimal PSP precoder

ζ = 8, 3 Users: Matched PSP precoder

ζ = 8, 3 Users: Orthogonal PSP precoder

ζ = 8, 3 Users: Optimal PSP precoder

ζ = 5, 3 Users: Matched PSP precoder

ζ = 5, 3 Users: Orthogonal PSP precoder

ζ = 5, 3 Users: Optimal PSP precoder

Figure 5.5. BER performance of the proposed differential MIMO downlink transmission with
K = 3, nt = 100. The values of PSP parameter are ζ = 5, ζ = 8 and ζ = 16.

number of nt and/or value of ζ can minimise the overlap between users and thereby reduce loss

of performance.

Fig. 5.7 examines the influence of increasing the number of transmit antennas, e.g., nt = 100

to nt = 200, on the system performance using the optimal PSP precoder. Three users, K = 3,

are placed in front of the uniform array at different positions [30 60 90] and different distance

lk from the BS, which yields ζ1 = 5, ζ2 = 8, and ζ3 = 16. From Fig. 5.7, it can be seen

that differential massive MIMO systems with higher number of transmit antennas outperform

those with lower number of antennas. Therefore, as nt → ∞ the degree of orthogonality

between users becomes large which can minimise the interference between users and improve

the overall performance of the system. The larger the number of transmit antennas the better

the performance.

Fig. 5.8 and Fig. 5.9 show the computational complexity of the system. In Fig. 5.8, first

the number of users is set to K = 6 and then the number of transmit antenna nt is increased.

Similarly, in Fig. 5.9, the number of transmit antennas is fixed to be nt = 100 while the number
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6 Users, ζ = 5: Matched PSP precoder
6 Users, ζ = 5: Orthogonal PSP precoder
6 Users, ζ = 5: Optimal PSP precoder
4 Users, ζ = 5: Matched PSP precoder
4 Users, ζ = 5: Orthogonal PSP precoder
4 Users, ζ = 5: Optimal PSP precoder
2 Users, ζ = 5: Matched PSP precoder
2 Users, ζ = 5: Orthogonal PSP precoder
2 Users, ζ = 5: Optimal PSP precoder

Figure 5.6. BER performance of the proposed differential MIMO downlink transmission with
nt = 100, ζ = 5. Users cases are K = 2, K = 4, and K = 6.

of users in the system increases gradually. From both figures, the computational complexity

of the suboptimal PSP precoders are higher than the optimal PSP precoder. It is also evident

that varying the number of transmit antennas at the BS has higher impact on the complexity

than varying the number of users. Therefore, the optimal PSP precoder yields a low complexity

scheme while providing good performance.

5.6 Summary

This chapter proposed three precoding schemes, namely the matched, orthogonal and optimal

PSP precoders, for downlink transmission in massive MIMO systems with differential encoding

and detection. With a large number of transmit antennas at the BS and full knowledge of the

PSP, the proposed low-complexity downlink precoding techniques allow MAI between users

to be eliminated. In a multiuser scenario, the optimal PSP precoder can effectively separate

the data streams of different users, thus enhancing the system performance. In the detection

scenario, the DFDD technique is used to detect the differential information signals. Simulations
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Nt = 200, 3 Users, ζ1 = 5, ζ2 = 8, ζ3 = 16

Figure 5.7. BER performance of the proposed differential MIMO downlink transmission with
K = 3, nt = 100, and nt = 200, using different values of channel variance between users;
ζ1 = 5, ζ2 = 8, and ζ3 = 16.

show that the proposed schemes are effective precoding techniques for a massive MIMO system

in a scenario where the channel is unknown at both the transmitter and receiver.
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Figure 5.8. Comparison of the computational complexity for suboptimal PSP precoders and
optimal PSP precoder with K = 6 and ε = 0.5.
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Figure 5.9. Comparison of the computational complexity for suboptimal PSP precoders and
optimal PSP precoder with nt = 100 and ε = 0.5.
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6.1 Conclusions

6.1 Conclusions

This thesis focused on noncoherent design in downlink transmission MU-MIMO systems and

aimed to achieve three objectives: improve the overall system performance, obtain a simple low

complexity transceiver at the users’ devices, and accomplish downlink transmission schemes

that do not require either the transmitter or receiver to know the channel. To this end, three

noncoherent MU-MIMO systems have been considered: low rate differential STBC, high rate

differential algebraic STBC, and differential downlink transmission for massive MIMO system.

In the following, a summary and the main results of each chapter are given:

In Chapter 1, a general introduction to the thesis along with the contributions of the study

has been presented.

In Chapter 2, a general background to MIMO systems has been presented. In addition,

the noncoherent MIMO systems have been introduced along with the best practice model for

a differential modulation system. At the end of Chapter 2, previous focused related work has

been discussed.

In Chapter 3, a simple low complexity differential STBC scheme for MU-MIMO with

downlink transmission has been proposed. Essentially, the impact of the receiver channel es-

timation process, overhead problem, and achieving a full diversity system can be potentially

solved by using differential STBC. The precoding technique of the transmit signal such as BD

and OS, designed to eliminate interference between users, provides in effect a single-user link

to the receiver. This technique extends to the DM case in which the receiver does not need

any knowledge of the CSI to perform information detection when using the BD scheme with

DM. Furthermore, combining the OS scheme with DM will result in a system that does not

require any CSI knowledge at either the transmitter or the receivers. The improvement in BER

performance from the MIMO technique utilized here occurs when there are sufficient transmit

antennas in the system to achieve full diversity with the set of receive antennas. The impact

of differential modulation on link performance is 3 dB lower in SNR relative to the coherent

modulation case. The reduced complexity of the receivers’ equipment achieved by avoiding co-

herent signal processing can in many cases be more important than compensating for this SNR

impact. The BD scheme is more complex than the OS scheme; however, the BD scheme has a

higher throughput. Moreover, it was shown that the OS is more robust against precoding errors

compared to the BD scheme.

Chapter 4 considers the design of a high data rate differential perfect algebraic STBC

scheme for MU-MIMO with downlink transmission. The Caylay differential STBC that has
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been used in this chapter does not require either the transmitter or receiver to know the channel.

The Caylay differential STBC simplifies the receivers’ equipment, provides an effective high

rate data transmission scheme, and works with any number of transmit and receive antennas.

Moreover, it has been shown that to achieve a full-rate full-diversity differential MIMO system,

a perfect algebraic STBC must be combined with the Caylay differential STBC. At the BS,

the OS matrices are used to separate the data streams of multiple users and thus enable simple

user detection. Using OS matrices along with the Caylay differential STBC will form a system

model that does not require any knowledge of the CSI at both ends, i.e., BS and receivers. For

this system, after despreading the received signal, near-optimal sphere decoding is performed

to decode the signals at the receiver of each user. Since the system model with high data rate

involves a high complexity decoding process, the SD technique has been proposed to solve this

problem but with less complexity. The proposed schemes yield low complexity transceivers

while also providing high rate with good performance. However, the system in this chapter has

higher computational complexity because of its higher rate.

Chapter 5 proposes a noncoherent downlink transmission model for massive MIMO sys-

tem. Noncoherent signalling mitigates one of the key problems that arises in massive MIMO

systems. When training-based schemes are used in the uplink of these systems, multiple ad-

jacent cells will reuse the same training pilots symbols, resulting in pilot contamination. Us-

ing massive MIMO with a precoding technique creates sharp beams toward end users which

will greatly increase the network capacity and improve the BER. Accordingly, three precoding

schemes, namely the matched, orthogonal, and optimal PSP precoders have been implemented

in this chapter for downlink transmission with differential encoding and detection. Conven-

tional transmit precoding design requires channel knowledge at the transmitter. Instead in this

work, differential transmit precoding design is considered which avoids the need for explicit

channel estimation at the BS. For this, PSP knowledge is used to design the transmit precoder

for each user. With a large number of transmit antennas at the BS and full knowledge of the PSP,

the proposed low-complexity downlink precoding techniques allow MAI between users to be

eliminated. In a multiuser scenario, the optimal PSP precoder can effectively separate the data

streams of different users, thus enhancing the system performance. In the detection scenario,

the DFDD technique is used to detect the differential information signals. Simulations show

that the proposed schemes are effective precoding techniques for a massive MIMO system in a

scenario where the channel is unknown at both the transmitter and receiver.

Appendix B presents the design of secure noncoherent downlink transmission for cell-free

differential massive MIMO systems with passive eavesdropper (EV) to jointly improve the

113



6.2 Future Work

power and data transfer. This system consists of a large number of randomly located access

points (APs) that cooperate via a central processing unit and serve multiple users and a single

information-untrusted multiple-antenna passive energy-harvester (EH). The EH is interested in

energy harvesting, however, it could act as an information eavesdropper by overhearing the sig-

nal intended for a certain user. The secrecy rate per AP for a noncoherent system is non-linear in

terms of the transmit power elements and that imposes new challenges in formulating a convex

power control problem. To overcome with this problem, a new method of balancing the transmit

power for APs by reformulating the non-convex problem into a convex problem is derived. To

this end, optimal and suboptimal solutions for the constrained noncoherent secrecy problem is

also provided.

6.2 Future Work

This thesis focused on the design of a noncoherent downlink transmission system in three dif-

ferent MIMO systems scenarios. However, there are still open gaps regarding the design of

efficient and effective noncoherent massive MU-MIMO systems. It is of interest to investigate

the following research points:

• MIMO block fading channels arise in many communication scenarios [30]. However,

finding transmission techniques that enable the highest rate to be noncoherently commu-

nicated over these MIMO channels remains an open gap for research. For example, the

authors in [16] showed that the optimal capacity of a noncoherent MIMO system can be

geometrically interpreted as sphere packing in the Grassmann manifold at high SNRs.

However, the characteristic behaviour of the optimal noncoherent MIMO capacity is still

unknown at low and medium SNRs.

• In coherent MIMO systems, information symbols are generated and constructed as a lin-

ear combination from QAM and PSK constellations. In contrast, in a noncoherent MIMO

system, information symbols are constructed independently from an isotropic distribution

and mapped onto one of the complex unitary code matrices [17, 29], which implies that

the information symbols are generated in a different way than far a coherent system, so

the results of linearity do not apply directly. This transition task of linearity results in

implementation challenges such as coding design, labeling, and receiver detection.

• The proposed system in Chapter 4 provides a high data rate noncoherent downlink trans-

mission MU-MIMO system. However, the system in this chapter has higher computa-
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tional complexity because of its higher rate. Hence, considering the low computational

complexity model for noncoherent downlink transmission MU-MIMO case is a promis-

ing avenue of research.

• One of the challenges for a noncoherent downlink transmission MIMO system is the

peak-to-average power ratio (PAPR). In differential encoding, the input transmit signals

are transformed to unitary code matrices which directly affects the dynamic range and the

power amplifier used at the BS. The impact of this problem has yet to be explored.

• In linear uniform collocated massive MIMO antenna geometrical model, all users in each

cell are served by an array of colocated antennas mounted at the BS. This design may

experience antenna correlations, low coverage, and long dimensions array problems es-

sentially for massive MIMO. Distributed array design such as random cell free array

design, planar array design, and cylindrical array design can offer a scalable implemen-

tation with much higher probability of coverage than the conventional linear colocated

array design [23]. Hence, designing a scalable array model for noncoherent massive

MIMO system is a very interesting topic for future work.

• Recently, cell-free massive MIMO systems, where the service antennas are distributed

over a large area, have attracted interest from many researchers due to their ability to offer

much higher probability of coverage than the collocated massive MIMO [72]. In addition,

they have the ability to alleviate the problems of antenna correlations and deep shadowing

fading [73]. Therefore, considering and exploring noncoherent MIMO systems in a cell-

free context could motivate researchers. Furthermore, the capacity of noncoherent cell-

free massive MIMO systems and comparing it with that of coherent cell-free massive

MIMO systems needs to be explored.

The array dimensions and user positions chosen are strange. A 100 element array with

0.5m spacing is 50m long but the user ranges are much smaller than this

• Lately, physical layer security has proven to be a promising security technique to enhance

the secrecy of the system and prevent any traffic interception attack from eavesdroppers.

Hence, designing a secrecy noncoherent massive MIMO system has yet to be explored.

• The PSP profile estimation for noncoherent massive MIMO, in Chapter 5, is less chal-

lenging than estimating the actual channel state information, in which the PSP can remain

constant over many coherence time intervals. However, the actual estimation process of

PSP in real wireless communication systems has yet to be explored.
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• Finally, a Rician fading channel is more common and suitable for small cell architectures.

The model of a noncoherent massive MIMO system for Ricean fading is not always the

same as how it is designed for a Rayleigh fading channel. Hence, it is of interest to test

and investigate a Rician fading channel with a noncoherent massive MIMO system.
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Appendix A

Proof of Theorem 1

The expected value of SINRk at the kth user can be expressed as follows

SINRk = E

{
pk|hHk uk|2∑K

q=1
q 6=k

pq|hHk uq|2 + σ2
zk

}
(A.1)

=

(
pk E

{
|hHk uk|2

})
E
{

1∑K
q=1
q 6=k

pq|hHk uq|2 + σ2
zk

}
. (A.2)

To calculate the expected value of the norm |hHk uk|2, we first expand it as follows

|hHk uk|2 =

nt∑
m=1

|h̃k,m|2gk,mu2
k,m +

∑
I

h̃∗k,ih̃k,j
√
gk,igk,juk,iuk,j, (A.3)

where I =
{
{k, i}i × {k, j}j | {k, i} 6= {k, j}

}
. Since E{|h̃k,m|2} = 1 and E{h̃∗k,ih̃k,j} = 0 are

always true1, then we have

E
{
|hHk uk|2

}
=

nt∑
m=1

gk,mu
2
k,m. (A.4)

By using the result of (A.4) in (A.2), we have

SINRk =(
pk

nt∑
m=1

gk,mu
2
k,m

)
E
{

1∑K
q=1
q 6=k

pq|hHk uq|2 + σ2
zk

}
. (A.5)

1Please note that the expectation is over the fast-fading randomness.
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Now, we consider the expectation E
{

1∑K
q=1
q 6=k

pq |hHk uq |2+σ2
zk

}
. By using the Taylor series expan-

sion, we can write this expectation as [74]

E
{

1∑K
q=1
q 6=k

pq|hHk uq|2 + σ2
zk

}
= E

{
Xk

Yk

}
=

E{Xk}
E{Yk}

− cov (Xk, Yk)

(E{Yk})2 +
var (Yk)E{Xk}
(E{Yk})2 E{Yk}

,

(A.6)

where Xk = 1 and Yk =
∑K

q=1
q 6=k

pq|hHk uq|2 + σ2
zk

. Now, we calculate the values of E{Yk} and

var(Yk). Following similar calculation used to obtain (A.3) and (A.4), we have E{|hHk uq|2} =∑nt
m=1 gk,mu

2
q,m. Therefore

E{Yk} =
K∑
q=1
q 6=k

pq

nt∑
m=1

gk,mu
2
q,m + σ2

zk
. (A.7)

On the other hand, we have

var{Yk} = E
{∣∣∣Yk − E{Yk}

∣∣∣2}
=

K∑
q=1
q 6=k

p2
q E
{∣∣∣∑

I

h̃∗k,ih̃k,j
√
gk,igk,juq,iuq,j

∣∣∣2}

=
K∑
q=1
q 6=k

p2
q

∑
I

gk,igk,ju
2
q,iu

2
q,j. (A.8)

Based on (A.7), (A.8) and the orthogonality between gk and uq as nt → ∞ for k 6= q, the

following inequality (E{Yk})2 � var(Yk) is true. Further, cov(Xk, Yk) = 0. Applying these

results to the series expansion in (A.6) we get

E
{

1∑K
q=1
q 6=k

pq|hHk uq|2 + σ2
zk

}
≈ E{Xk}

E{Yk}
=

1∑K
q=1
q 6=k

pq
∑nt

m=1 gk,mu
2
q,m + σ2

zk

. (A.9)

Substituting (A.9) into (A.5), we obtain

SINRk =
pk
∑nt

m=1 gk,mu
2
k,m∑K

q=1
q 6=k

pq
∑nt

m=1 gk,mu
2
q,m + σ2

zk

. (A.10)
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This concludes the proof.
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Appendix B

Secrecy Design for Noncoherent Cell-Free

Massive MIMO Systems with Passive

Eavesdropper

B.1 Introduction

Massive MIMO technology, where a base station (BS) equipped with a large number of an-

tennas that serves many information users (IUs) simultaneously, helps in improving wireless

communications link and can be used to increase the capacity of the system and improve the

link reliability at low power operation [72, 73]. As a consequence of employing large num-

ber of antennas in massive MIMO, the downlink channel vectors of independent users have a

large degree of orthogonality which simplifies the system design and performance analysis [75].

Massive antenna arrays at the BS can be formed either in colocated or distributed manner. In

collocated massive MIMO, all users in each cell are served by an array of colocated antennas

mounted at the BS. In contrast, in cell-free massive MIMO, users over a large area are served

by a large number of distributed antennas, namely, access points (APs).

Recently, cell-free massive MIMO system has attracted interest from many researchers due

to its ability of coping with the problems of antenna correlations and deep shadowing fading

[73]. In addition, cell-free massive MIMO offers a scalable implementation with much higher

probability of coverage than the conventional colocated massive MIMO, however, with the cost

of increased backhaul requirements [72,76–78]. The most important feature of cell-free massive

MIMO is that many single-antenna APs serve a much smaller number of users simultaneously

along with the use of the asymptotic orthogonality between independent users’ channels, i.e.,
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enabling channel hardening phenomena [79]. In contrast, in coherent cell-free massive MIMO

system, the estimation of the CSI is often obtained by training and tracking between the single-

antenna APs and the end users, then the so-obtained CSI and related signalling are shared

between the central processing unit (CPU) and the APs. However, it is not always practical

to use training-based schemes, especially with systems that have a large number of distributed

APs. As the number of distributed single-antenna APs grows large such as in the case of cell-

free massive MIMO, the channel estimation process, payload data, backhaul requirements, and

the information exchange between the APs and the CPU will grow proportionately [80]. Hence,

there is much interest to adopt a low backhaul requirements noncoherent scheme with cell-free

massive MIMO that do not require either the transmitter or receiver to know the CSI.

In most practical scenarios, due to the open nature of the wireless communication medium,

legitimate transmission information can be easily intercepted and altered by malicious eaves-

dropper, i.e., eavesdropping attacks. In contrast, physical layer designs of cell-free massive

MIMO need to cope with many security challenges such as simultaneous wireless information

and power transfer (SWIPT) systems that contain untrusted information from passive energy

harvester (EH). The secrecy issues in SWIPT massive MIMO systems, in particular for nonco-

herent cell-free system, have not been previously studied in the literature. Recently, a large num-

ber of existing studies in the broader literature have examined the secrecy problems in SWIPT

systems for the coherent colocated massive MIMO architecture, where the BS and information

users have full knowledge of the channel [74, 81–85]. However, the proposed schemes suffer

from backhaul requirements such as CSIs signalling, consequent noncoherent cell-free massive

MIMO system is needed to address these issues.

Contributions: This chapter proposes a secure system design and the performance evalua-

tion of noncoherent cell-free massive MIMO with SWIPT when the CSI is not known at the

APs. In particular, the transmitted information intended for the legitimate IU is to be kept se-

cure and confidential from the eavesdropper, where the wireless communication links between

the APs and the IUs are vulnerable to be overheard by an information untrusted passive EH.

Hence, the system consists of legitimate multiple antennas IUs and passive multiple antennas

eavesdropper which pretends to be an EH receiver in order to overhear the information signals

intended to one or more of the legitimate IU. Since the availability of the CSI is not relevant

for the noncoherent downlink transmission system, then both the APs and EH have only the

statistical value of the CSI available. Further, in downlink noncoherent transmission stage, the

artificial noise (AN) can be used to degrade the quality of the information signals directed to

EH.
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The contributions are summarised as follows

• An achievable noncoherent rate at high average SINR is provided by following the ap-

proach of Grassmannian manifold model in [16].

• Deterministic closed-form expressions is derived for ergodic secrecy rate (SR) and aver-

age harvested energy rate for cell-free massive MIMO which can be optimised jointly to

overcome eavesdropping attacks and improve the system performance.

• An optimised downlink transmission is proposed based on the statistical CSI. The opti-

misation is done for the information, noise, and energy signals beamformed towards the

legitimate IUs and illegitimate EH, respectively. To this end, the downlink power alloca-

tion is optimised for information and AN signals at all APs and for all users to maximise

the worst-case secrecy rate.

• The optimisation problem is nonlinear and not convex over the optimisation constraints.

Thus, by using large vector asymptotic analysis, Taylor series expansion, and the mono-

tonicity property of the exponential function a convex approximation for the ergodic se-

crecy rate is obtained.

• Finally, the suboptimal optimisation solution is provided with lower complexity.

B.2 System Model

As illustrated in Fig. B.1, the downlink of a cell-free massive MIMO system comprising a very

large number of randomly located APs, {AP1, . . . , APN}; M information users (IUs) each

equipped with K antennas, {IU1, . . . , IUM}, interested in information decoding; and a Ke-

antenna passive information-untrusted energy harvester (EH) interested in energy harvesting,

however, it could act as an information eavesdropper by overhearing the signal intended for a

certain IU, certain IU, is considered.. The APs are randomly located on a circular area A based

on a homogeneous Poisson point process Φ with a density λ, while the users (IUs and the EV)

are independently and randomly located on A. All APs are linked to a CPU via an infinite

capacity backhaul. The CPU controls a differential downlink transmission via all APs.

Let {AP1, . . . ,APN} be the set of the adopted realisation of APs. H i ∈ CK×N = [hi,1, . . . ,hi,K ]H

= [h̄i,1, . . . , h̄i,K ]HB
1
2
i denotes the downlink channel matrix between IUi and the set of APs,

where hi,j ∼ CN (0,Bi) is the channel vector between the jth antenna of IUi and the APs.

h̄i,j ∼ CN (0, IN) is the small-scale fading vector and Bi = diag(bi) = diag(bi,1, . . . , bi,N)
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EH

Figure B.1. An illustration of the proposed differential cell-free massive MIMO system.

is a diagonal matrix representing the large-scale fading which is called in this chapter as power

space profile (PSP)1

Similarly,G ∈ CKe×N = [g1, . . . , gKe ]
H = [ḡ1, . . . , ḡKe ]

HBe

1
2 denotes the downlink chan-

nel matrix between EH and the set of APs, where gj ∼ CN (0,Be) is the channel vector be-

tween the jth antenna of EH and the APs. ḡj ∼ CN (0, IN) is the small-scale fading vector and

Be = diag(be) = diag(be,1, . . . , be,N) is a diagonal matrix containing the large-scale fading

coefficients.

The large-scale fading coefficients in the {Bi} andBe change very slowly compared to the

small-scale fading coefficients, therefore, it is assumed that {Bi} and Be are perfectly known

at the APs [86].

B.2.1 Signal Model

To improve the information security, the APs employ the transmission of the information signal

towards the IUs, and the jamming signal (artificial noise (AN)) towards the EV. The base band

model of the received signal, Y i ∈ CK×T , at the IUi over T coherence time slots can be

represented as

1It is assumed that the spacing between the IU’s antennas is larger than the half of the signal wave length.
Therefore, there is no correlation between the receive antennas.
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Y i =
M∑
j=1

H iXj +H iX̄ +W i, (B.1)

where Xj ∈ CN×T = [xj,1, . . . , xj,T ], xj,t = P
1
2
j x̄j,t is the signal intended for IUj during

the tth time slot. x̄j,t ∼ CN (0, IN) is the vector bearing information, and P j = diag(pj) =

diag(pj,1, . . . , pj,N) is a matrix containing the average transmit powers for the signal vector

xj,t
1. W i ∼ CN (0, σ2IN) is the matrix of additive Gaussian noise at IUi. X̄ ∈ CN×T =

[x̄1, . . . , x̄T ], x̄t = P̄
1
2 ¯̄xt is the AN signal intended to jam the EV during the tth time slot. ¯̄xt ∼

CN (0, IN) is a vector containing the AN symbols, and P̄ = diag(p̄) = diag(p̄1, . . . , p̄N) is a

matrix containing the average transmit powers for the AN signal vector x̄t.

Similarly, the received signal at the EV is given as

Y e ∈ CKe×T =
M∑
j=1

GXj +GX̄ +W e, (B.2)

whereW e ∼ CN (0, σ2IN) is the matrix of additive Gaussian noise at the EV.

The average signal-to-interference-plus-noise ratio SINR (per time slot) at each receive an-

tenna of IUi, SINRi, is2

SINRi = E

[ ∣∣hHi,jxi,t∣∣2∑
l 6=i

∣∣hHi,jxl,t∣∣2 +
∣∣hHi,jx̄t∣∣2 + σ2

]
. (B.3)

Given that IUk is the IU being attacked by the EV, the average SINR (per time slot) at each

receive antenna of the EV, SINRek , is

SINRek = E

[ ∣∣gHj xk,t∣∣2∑
l 6=k

∣∣gHj xl,t∣∣2 +
∣∣gHj x̄t∣∣2 + σ2

]
. (B.4)

B.2.2 Secrecy Performance of Noncoherent System

In massive MIMO noncoherent downlink transmission in which the receiver has no prior knowl-

edge of the channel. The length of the channel coherence time, T , determines the upper bound

on the downlink capacity.

It has been found that the capacity of the differential MIMO system can be geometrically

1Since the large-scale fading stays constant over all time slots, t = 1, . . . , T , then the optimised average
transmit power P j for a certain time slot t is also optimal for any other time slot m 6= n.

2The average SINR per antenna per time slot is calculated instead of the total SINR, since such an SINR is
required to calculate the downlink rate of the differential MIMO system as will be discussed in Subsection B.2.3.
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interpreted as sphere packing in the Grassmann manifold [16]. The Grassmann manifold is

defined as follows: given a Stiefel Manifold S(M1,M2) which represents the space of all M1-

by-M2 complex unitary matrices, then, the Grassmann manifold G(M1,M2) is the space of the

ratio of the Stiefel Manifold S(M1,M2) to the Stiefel Manifold S(M2,M2)1 [16].

For N > K and the coherence time T ≥ 2K, the achievable rate at high average SINR

regime by a single IUi, Ci; and by the EV when attacking the kth IU, IUk, is CEk , are [16]

Ck = K

(
1− K

T

)
log2 SINRk + ck, (B.5)

CEk = Ke

(
1− Ke

T

)
log2 SINRek + ce (B.6)

where

ck =
1

T
log2 |G (T,K)|+K

(
1− K

T

)
log2

T

Kπe

+

(
1− K

T

)
E
[
log2 detHkH

H
k

]
,

(B.7)

ce =
1

T
log2 |G (T,Ke)|+Ke

(
1− Ke

T

)
log2

T

Keπe

+

(
1− Ke

T

)
E
[
log2 detGGH

]
,

(B.8)

and |G(T,N)| is a natural measure on the Grassmann manifold defined as [16]

|G(T,K)| =
∏T

i=T−K+1
2πi

(i−1)!∏K
i=1

2πi

(i−1)!

(B.9)

Theorem 2. For N → ∞, the values of E[log2 det HkH
H
k ] in (B.7) and E[log2 det GGH ] in

(B.8) converge to deterministic values as follows [87]

E
[
log2 detHkH

H
k

] N→∞→ log2 trace (Bk) (B.10)

E
[
log2 detGGH

] N→∞→ log2 trace (Be) . (B.11)

Proof. The proof is provided in Appendix B.6.1.

The high SINR regime assumption in (B.5) and (B.6) indicate that both {SINRk} and

{SINRek} are large, but not necessarily equal. In the following, a theorem is provided in which

the values of {SINRk} and {SINRek} are calculated for N →∞.

1For more details regarding the Stiefel and Grassmann manifolds, the reader is recommended to see [16].
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Theorem 3. As N →∞, SINRk and SINRek (given in (B.3) and (B.4)) are accurately approxi-

mated as

SINRk
N→∞→

E
[∣∣hHk,jxk,t∣∣2]

E
[∑

k 6=l

∣∣hHk,jxl,t∣∣2 +
∣∣hHk,jx̄t∣∣2 + σ2

]
=

bTk pk∑
k 6=l b

T
k pl + bTk p̄+ σ2

(B.12)

SINRek
N→∞→

E
[∣∣gHj xk,t∣∣2]

E
[∑

k 6=l

∣∣gHj xl,t∣∣2 +
∣∣gHj x̄t∣∣2 + σ2

]
=

bTe pk∑
k 6=l b

T
e pl + bTe p̄+ σ2

(B.13)

Proof. See Appendix B.6.2.

Assuming that IUk is the user being attacked, then the secrecy rate of IUk is defined as

Rk
N→∞→ [Ck − CEk ]

+ . (B.14)

B.2.3 Average Harvested Energy

Assuming that the EH devotes the whole received signal for energy harvesting during a unit

time slot duration, and the energy harvesting efficiency of the EH is 0 ≤ ζ ≤ 1. Given IUk,

k ∈ {1, . . . , M} is the user being attacked, the total energy harvested by the EH is expressed

as

Ek = ζE

[∣∣gHj xk,t∣∣2 +
∑
l 6=k

∣∣gHj xl,t∣∣2 +
∣∣gHj x̄t∣∣2

]

= ζ

(
M∑
k=1

bTe pk + ζbTe p̄

)
.

(B.15)

For an optimised downlink transmission, the power allocation will be optimised based on

the attacked IU. Therefore, the value of the harvested energy is subjected to the attacked IU.

B.3 Secrecy Problem Formulation

In this section, the focus is on optimising the downlink power allocation for information and

AN signals at all APs and for all users, {pj,1, . . . , pj,N} and {p1, . . . , pN}, to maximise the
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worst-case secrecy rate. Let us define

∆ = K

(
1− K

T

)
−Ke

(
1− Ke

T

)
. (B.16)

Given that IUk is the IU under attack, then the worst-case secrecy rate, mink Rk, is

min
k
Rk

N→∞→ min

{
∆1 log2

(
SINRk

SINRek

)
+ |∆| log2

(
SINRd

)
+ ck − ce

}
,

(B.17)

where SINRd = SINRk and ∆1 = Ke

(
1− Ke

T

)
if sign(∆) = +; SINRd = SINRek and ∆1 =

K
(
1− K

T

)
if sign(∆) = −. With the result in (B.17), a worst-case secrecy rate maximisation

problem is formulated under constraints on total transmit power at each AP as follows

maximise
{pj},p̄

min
k
Rk (B.18a)

subject to
M∑
j=1

pj,i + p̄i ≤ Pt, ∀i, (B.18b)

Ek ≥ Ē,∀k (B.18c)

where Pt is the available power budget at each AP, pj,i is the information signal power between

the jth IU and the ith AP, and p̄i is the AN signal power between the ith AP and the EV, and

Ē is a lower bound constraint on the average harvested energy by the EH. The constraint in

(B.18b) ensures the average power used at each AP is within the limit of Pt. It is clear that

the objective function (B.18a) is non-convex since Rk comprises a logarithm of a multiplicative

fractional function. In the following two subsections, an optimal and suboptimal solutions are

provided for the constrained secrecy problem (B.18).

B.3.1 Optimal Solution

The per user per AP power allocation can be optimally balanced by reformulating the non-

convex problem (B.18) into a convex problem by using the following exponential variable sub-

stitution method. Let us consider the case in which sign(∆) = −, the expression in (B.17) can
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be recast as

min
k
Rk

N→∞→ min

{
K

loge(2)

(
1− K

T

)
loge

(
eukevk

esketk

)
+

∆

loge(2)
loge

(
etk

evk

)
+ ck − ce

}
,

(B.19)

where

euk = bTk pk, (B.20)

esk =
∑
i 6=l

bTk pl + bTk p̄+ σ2, (B.21)

evk =
∑
l 6=k

bTe pl + bTe p̄+ σ2, (B.22)

etk = bTe pk. (B.23)

Furthermore, by using the properties of logarithmic and exponential functions, it follows

min
k
Rk

N→∞→ min

{
K

loge(2)

(
1− K

T

)
loge

(
euk+vk−sk−tk

)
+

∆

loge(2)
loge

(
etk−vk

)
+ ck − ce

}
,

(B.24)

which implies

min
k
Rk

N→∞→ min

{
K

loge(2)

(
1− K

T

) (
uk + vk − sk − tk

)
+

∆

loge(2)

(
tk − vk

)
+ ck − ce

}
,

(B.25)

where loge(e
x) = x. We assume that our problem is feasible. Next, the optimisation problem is

solved optimally through recasting the non-convex constraints. Using (B.25), the corresponding

optimisation problem in (B.18) can be written as

maximise
{pj},p̄

{uk,ve,sk,te}

min
k

{
K

loge(2)

(
1− K

T

) (
uk + vk − sk − tk

)

+
∆

loge(2)

(
tk − vk

)
+ ck − ce

}
(B.26a)

subject to

euk ≤ bTk pk, ∀k, (B.26b)

es̄k(sk − s̄k + 1) ≥
∑
k 6=l

bTk pl + bTk p̄+ σ2, ∀k, (B.26c)
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evk ≤
∑
l 6=k

bTe pl + bTe p̄+ σ2, ∀k (B.26d)

et̄k(tk − t̄k + 1) ≥ bTe pk, ∀k. (B.26e)

B.18b, B.18c (B.26f)

It can be seen that the exponential parameters uk, ve, sk, and te are constrained by the expres-

sions on the right hand sides of (B.26b)-(B.26e), respectively. The objective function in B.26a

is now convex, thus it is linearised by using the monotonicity property of the exponential func-

tion. The constraints in (B.26b) and (B.26d) are convex. Next, to deal with the non-convex

constraints in (B.26c) and (B.26e), we linearise them by using the first order Taylor approxi-

mation where s̄k, t̄e are the points where the linear approximation is made. Therefore, problem

(B.26) is now convex and can be solved iteratively using the CVX optimisation software.

Let us consider the case in which sign(∆) = +, the corresponding optimisation problem in

(B.18) can be written as

maximise
{pj},p̄

{uk,ve,sk,te}

min
k

{
Ke

loge(2)

(
1− Ke

T

) (
uk + vk − sk − tk

)

+
∆

loge(2)

(
uk − sk

)
+ ck − ce

}
(B.27a)

subject to

euk ≤ bTk pk, ∀k, (B.27b)

es̄k(sk − s̄k + 1) ≥
∑
k 6=l

bTk pl + bTk p̄+ σ2, ∀k, (B.27c)

evk ≤
∑
l 6=k

bTe pl + bTe p̄+ σ2, ∀k (B.27d)

et̄k(tk − t̄k + 1) ≥ bTe pk, ∀k. (B.27e)

B.18b, B.18c (B.27f)

Remark 3. In the transmit power constraints in (B.18b), it can be understood that the optimised

values of the vectors of power control factors {pj} and p̄ are done on each elements separately.

For example, Fig. B.2 shows the transmit powers per AP for the case Ē = 0 obtained by solving

problem (B.26). It can be seen that the majority of the subgroup of the APs utilise large portion

of their available transmit power budgets.
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Figure B.2. An illustration of the transmit power utilization per AP.

B.3.2 Suboptimal Solution

In the optimal solution discussed in the previous subsection, the power control optimisation

is per user per AP. Therefore, the solver needs to optimise (M + 1)N variables. This leads

to large complexity when N → ∞. Therefore, in this subsection, a suboptimal solution is

introduced with lower complexity. The suboptimal is based on matching the vectors that contain

the average transmit power to the PSP which can be explained as follows.

Let the power control vector of the IUi’s information signal be

pi = pip̃i (B.28)

where

p̃i =
bi
‖bi‖

. (B.29)

pi is the power control factor the IUi. The power control for the AN is designed in the same

manner as

p̄ = p̄p̆ (B.30)
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where

p̆ =
be
‖be‖

. (B.31)

p̄ is the power control factor the AN. By this design, we matched the relative information

power for a given IU at different APs to the relative entries of the PSP of that IU. Then, it is

of interest to control the total information powers {p1, p2, . . . , pM} and the total AN power

p̄. The power control in the suboptimal solution is only per user, thus the solver needs only to

optimise (M + 1) variables. Since the computational complexity is directly proportional to the

number of optimisation variables, then the suboptimal solution scheme has lower computational

complexity than the optimal solution. Based on this power control design and a similar problem

reformulation procedure to that used for (B.26) and (B.27), the problem is formulated as follows

maximise
{pj},p̄

{uk,ve,sk,te}

min
k

{
K

loge(2)

(
1− K

T

) (
uk + vk − sk − tk

)

+
∆

loge(2)

(
tk − vk

)
+ ck − ce

}
(B.32a)

subject to

euk ≤ pkb
T
k p̃k,∀k, (B.32b)

es̄k(sk − s̄k + 1) ≥
∑
k 6=l

plb
T
k p̃l + p̄bTk p̆+ σ2,∀k, (B.32c)

evk ≤
∑
l 6=k

plb
T
e p̃l + p̄bTe p̆+ σ2, ∀k (B.32d)

et̄k(tk − t̄k + 1) ≥ pkb
T
e p̃k, ∀k. (B.32e)

M∑
i=1

pi [p̃i]j + p̄ [p̆]j ≤ Pt, ∀j (B.32f)

Ek ≥ Ē, ∀k (B.32g)

where Ek is given as

Ek = ζ

(
M∑
k=1

pkb
T
e p̃k + p̄bTe p̆

)
. (B.33)

Problem (B.32) is now convex and can be solved iteratively by CVX.

Remark 4. In the transmit power constraints in (B.32f), it can be understood that the optimised

values of the scalars power control factors pi and p̄ are determined by the largest entries of

p̃i and p̆, i.e., m = arg max [p̃i]j and n = arg max [p̆]j . Therefore, the rest of access points
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{APj}j /∈{m,n} have a minor contribution to the optimised solution. This is one of the weaknesses

of the suboptimal formulation in (B.32) which can not be avoided since for cell-free MIMO

system the power constraint is per AP. This case does not exist in the collocated MIMO systems

where the power constraint can be per total transmit power at all antennas.

For example, Fig. B.3 shows the transmit powers per AP for the case Ē = 0 obtained by

solving problem (B.32). It can be seen that a minor subgroup of the APs utilise large portion of

their transmit power budgets while the rest of the APs do not use their available transmit power

budgets. This is because of the aforementioned weakness. In addition, this impacts the amount

of the harvested energy at the EH since the APs do not transmit with their full power.
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Figure B.3. An illustration of the transmit power utilisation per AP.

B.4 Simulation Results and Discussion

In this section, the asymptotic performance of cell-free noncoherent massive MIMO system

with passive eavesdropper is evaluated. The APs are randomly deployed on area Aa using a

homogeneous PPP Φa with an intensity λa. On the other hand, the IUs and the EH are randomly

deployed in area Au where the origins is the same for both Aa and Au, yet Aa > Au. The PSP

large-scale fading coefficient {bi,j, be,j} are modeled according to the standard-based model.
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Table B.1. The values of PSP parameters to be used in (5.14).

Parameter Value

Aa, λu 1× 1Km2, 1.6× 10−4m−1

Aa, M , N 300× 300m2, 2, 100

α, σ 2.6, 5dB

pj,i, p̄i 1 W, 1W

ζ 0.5

bi,j = d−αi,j 10
νi,j
10 , and be,j = d−αe,j 10

νe,j
10 . (B.34)

where di,j denotes the distance from the IUi to the APj , di,j denotes the distance form EH to the

APj , α is the pathloss exponent, and {νi,j, νe,j} ∼ CN (0, σ2) are the shadow fading coefficients

with standard division σ2. The system parameters are chosen such that in Table B.1.

Fig. B.4 shows geometry deployment of AP, IU, and EH, where the number of APs is N =

100, number of IU is M = 2, and number of energy harvester EH=1.

Fig. B.5 shows the secrecy performance for the achievable worst-case SR. In this scenario,

The APs is 100, the IU is 2 with K=5 antennas, the EH is 1 with Ke=4 antennas. It can be

seen that as the HE increases, more downlink transmission resources are optimised, thus SR

decreases.

In Fig. B.6, the experiment is repeated to test the secrecy performance for the achievable

worst-case SR, but with The APs is 100, the IU is 2 with K=4 antennas, the EH is 1 with Ke=4

antennas. Now as the the HE increases, less downlink transmission resources are optimised,

thus SR is less decreasing and thanks to the equality in the number of receive antennas for IU

and EH.

More cases will be study and investigated.

B.5 Summary

This chapter proposed a secure system design and the performance evaluation of noncoherent

cell-free massive MIMO with SWIPT when the CSI is not known at the APs. In particular,
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Figure B.4. An illustration of the transmit power utilization per AP in Cell-Free. N = 100,
M = 2, EH = 1

the transmitted information intended to the legitimate IU is to be kept secure and confiden-

tial from the eavesdropper, where the wireless communication links between the APs and the

IUs are vulnerable to be overheard by an information untrusted passive EH. To achieve this,

an achievable noncoherent rate at high average SINR is provided then a statistical closed form

expression is derived for the ergodic SR and average HR in cell-free massive MIMO which

can be optimised jointly to overcome eavesdropping attacks and improve the overall system

performance. In contrast, based on the statistical CSI, an optimal solution is proposed by opti-

mising the downlink power allocation dedicated for information and AN signals at all APs and

for all users to maximise the worst-case secrecy rate. Further, for low complexity systems, the

suboptimal optimisation solution is provided.

B.6 Appendix

B.6.1 Proof of Theorem 2

To calculate the expected value in B.10, it is first expanded as follows

H iH
H
i =

[
hHi,1hi,1, · · · , hHi,1hi,K

]
, (B.35)
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Figure B.5. An illustration of E-R regions of cell-free differential MIMO. N = 100, M = 2,
EH = 1, K = 5, Ke = 4

where

hHi,jhi,k = h̄
H
i,jB

1
2
i B

1
2
i h̄i,k

N→∞→

 trace (Bi) , j = k

0, j 6= k

. (B.36)

Therefore from (B.36), it follows

H iH
H
i = trace (Bi) IN . (B.37)

From (B.36) and (B.37), the expected value in (B.10) can be calculated as

E
[
log2 detH iH

H
i

] N→∞→ E [log2 det (trace (Bi) IN)] (B.38)
N→∞→ E [log2 (trace (Bi) det(IN))] (B.39)
N→∞→ log2 trace (Bi) . (B.40)

The proof for the value of E
[
log2 detGGH

]
in (B.11) is omitted since it can be obtained by

following the same previous steps used to obtain (B.10). This concludes the proof.
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Figure B.6. An illustration of E-R regions of cell-free differential MIMO. N = 100, M = 2,
EH = 1, K = 4, Ke = 4.

B.6.2 Proof of Theorem 3

The average SINR value in (B.5) is an expectation of a fractional value. By using the Taylor

series expansion, the SINRi can be expanded as

SINRi = E
[
Xi

Yi

]
=

E [Xi]

E [Yi]
− cov (Xi, Yi)

(E [Yi])
2 +

var (Yi)E [Xi]

(E [Yi])
2 E [Yi]

+R

(B.41)

where Xi and Yi are the numerator and denominator of the fraction in B.5, respectively. R is

the remainder of the series expansion. Now, let us compute E[Xi] as1

E [Xi] =

E
[∣∣hHi,jxi,t∣∣2] = E

[
h̄
H
i,jB

1
2
i P

1
2
i x̄i,tx̄

H
i,tP

1
2
i B

1
2
i h̄i,j

]
= E

[
h̄
H
i,jB

1
2
i P

1
2
i E
[
x̄i,tx̄

H
i,t

]
P

1
2
i B

1
2
i h̄i,j

]
= trace (BiP i) .

(B.42)

1Please note that the expectation E[·] is over the small-scale fading randomness. This average value is equal
for any antenna or time slot.
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In the third equality, the expectation is moved to the x̄i,tx̄Hi,t based on the statistical indepen-

dence between the vectors h̄i,j and x̄i,t. The forth equality follows from E[x̄i,tx̄
H
i,t] = IN and

E[h̄i,jh̄
H
i,j] = IN . By following the same steps, it is easy to prove that

E
[∣∣hHi,jxl 6=i,t∣∣2] = trace (BiP l) , E

[∣∣hHi,jx̄t∣∣2] = trace
(
BiP̄

)
.

Therefore
E [Yi] =

∑
i 6=l

trace (BiP l) + trace
(
BiP̄

)
+ σ2. (B.43)

To calculate the values of var(Yi), let us first expand
∣∣hHi,jxl,t∣∣2 as follows

∣∣hHi,jxl,t∣∣2 = h̄
H
i,jB

1
2
i P

1
2
i x̄l,tx̄

H
l,tP

1
2
i B

1
2
i h̄i,j

= h̄
H
i,jB

1
2
i P

1
2
i

(
Al,t + Āl,t

)
P

1
2
i B

1
2
i h̄i,j

N→∞→ trace (BiP l) + h̄
H
i,jB

1
2
i P

1
2
i Āl,tP

1
2
i B

1
2
i h̄i,j

(B.44)

where Al,t + Āl,t = x̄l,tx̄
H
l,t, Al,t is a diagonal matrix whose entries are exponential random

variable (RV) with parameter 1, and Āl,t is the equal to x̄l,tx̄Hl,t but with zeros along the main

diagonal. h̄Hi,jB
1
2
i P

1
2
i Al,tP

1
2
i B

1
2
i h̄i,j = trace (BiP l) follows from applying Corollary 1 in [88].

In the same way, it follows

∣∣hHi,jx̄t∣∣2 N→∞→ trace
(
BiP̄

)
+ h̄

H
i,jB

1
2
i P̄

1
2 ĀtP̄

1
2B

1
2
i h̄i,j. (B.45)

Based on (B.44) and (B.45), yields

Yi
N→∞→ E [Yi] +

∑
l 6=i

h̄
H
i,jB

1
2
i P

1
2
i Āl,tP

1
2
i B

1
2
i h̄i,j+

h̄
H
i,jB

1
2
i P̄

1
2 ĀtP̄

1
2B

1
2
i h̄i,j,

(B.46)

then
var (Yi) = E

[
|Yi − E [Yi]|2

]
N→∞→

E
[∣∣∣∣∑

l 6=i
h̄
H
i,jB

1

2

i P
1

2

i Āl,tP
1

2

i B
1

2

i h̄i,j

+ h̄
H
i,jB

1

2

i P̄
1

2 ĀtP̄
1

2B
1

2

i h̄i,j

∣∣∣2] N→∞→ 0

(B.47)

The result in (B.47) can be justified as follows. Since the diagonal entries of Āl,t and Āt are

zeros, then the quantity inside the second expectation in (B.47) is a summation of zero mean

RVs, therefore, their expectation tends to zero.
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The independence between Xi and Yi implies cov(Xi, Yi) = 0. By substituting this result

and the results from (B.42), (B.43), and (B.47) in (B.41), we get the same result in (B.12). The

proof for the value of SINRek in (B.15) is omitted since it can be obtained by following the

same previous steps used to obtain SINRi. This concludes the proof.
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