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Abstract

The modelling of turbulent fluids has been an active area of research for over a century,
with applications in diverse areas such as aeronautics and meteorology. The discovery and
realisation of quantum fluids, such as low temperature helium and Bose-Einstein conden-
sates (BECs), offers an experimental and theoretical route toward insights into the dynam-
ics of classical fluids in an ostensibly simpler, due their inviscid properties, context. How-
ever, to utilise this we need to appreciate where they are comparable and where they differ
significantly, in terms of their material properties, their flows, and any phenomena arising
from the underlying quantum mechanics. The work in this thesis aims to further this un-
derstanding by considering the problem of vorticity transport, and extending previous work
concerning dissipation in quantum fluids.

Turbulence in classical fluids consists of vortices of many length scales, from the size of
the system down to the Kolmogorov length scale at which viscosity acts to dissipate en-
ergy; the direct numerical simulation of classical flows with even moderate Reynolds num-
bers is extremely computationally intensive due to the need to resolve at many scales. In
contrast, vortices in quantum fluids have quantised circulation, and only those quantum
vortices with the lowest circulation are stable. Two distinct regimes of turbulence have
been identified in quantum fluids, the quasiclassical regime in which organised bundles of
vortex filaments are believed to emulate the range of scales and energy distribution ob-
served in classical turbulence, and the ultraquantum regime, composed of an essentially
random tangle of vortices with no large-scale structure.

Despite these fundamental differences many parallels have been observed between clas-
sical turbulence and quantum turbulence, including various hydrodynamic instabilities,
the development of Kármán vortex streets in the wake of barriers in a flow, and the Kol-
mogorov velocity statistics and energy spectrum.

The numerical investigations in this thesis can be split into those pertaining to homoge-
neous turbulence, and those pertaining to inhomogeneous turbulence. Many experiments
probe the properties of quantum turbulence in superfluid helium through channel flow ex-
periments, with versatile theory due to Vinen (Proc. Royal Soc. Lond. A 240, 1220:114-
127 (1957)) describing the evolution of the statistical vortex line density in terms of op-
posing vortex generation and dissipation. We simulate homogeneous turbulence generated
by thermal counterflow using the vortex filament method (VFM) in order to quantify the
balance of the generation and dissipation of vorticity with an established technique. We
then use a new numerical technique to probe the dissipation of homogeneous ultraquantum
turbulence, by artifically injecting random vortices to reach statistically steady states.

Other experiments generate quantum turbulence locally, producing systems that are ini-
tially inhomogeneous. The behaviour of inhomogeneous quantum turbulence is less well
understood than in the homogeneous case, and we address how vorticity spreads in such
systems. We first consider the problem in systems of reduced dimensionality, relevant to
BECs in which strong confinement in one direction results in quasi-2-D condensates. In
these systems vortices are essentially topological point defects, since excitations along vor-
tex lines are suppressed in the tightly confined direction. We model the evolution of an
initially confined region of point vortices in such a geometry using the point vortex model
and the Gross-Pitaevskii equation, and identify a value for the effective viscosity as an



emergent property of the spreading of the vortices.
A related investigation is performed for turbulence in superfluid 4He at zero temperature

in a fully three-dimensional geometry. The dynamics of quantum vortices are modelled
with the VFM, and a value for the effective viscosity is found. We compare our method
to a previous study, and review the values found for the effective viscosity at zero tempera-
ture and finite temperatures below the lamdba-point.
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Chapter 1

Introduction

1.1 Helium & Superfluidity

It may, in hindsight, appear serendipitous that in the early years of the twentieth cen-
tury, when the theory of quantum mechanics was first emerging as a dominant and wide-
ranging explanation for the behaviour of matter and energy, a series of experiments on the
liquefaction of the “permanent gases” (hydrogen, oxygen, nitrogen, carbon monoxide) and
helium led to some of the most striking examples of the frequently counterintuitive conse-
quences of quantum physics. In 1908 decades of progress in cryogenic cooling culminated
in the liquefaction of helium below 4.2 K by Onnes [1], using the Hampson-Linde cycle [2],
which utilises the Joules-Thompson effect: adiabatic expansion of a gas, i.e. a drop in pres-
sure, results in a drop in temperature. In 1911 Onnes made the first observation of super-
conductivity, the sudden decrease of the electrical resistance of a material and simultaneous
ejection of magnetic flux lines, in mercury cooled to 4.2 K, noting that “The temperature
measurement was successful. [The resistivity of] Mercury practically zero.” [3]. This is a
macroscopically observable property that is a direct consequence of quantum mechanics.

The superfluidity of helium below the lambda transition point Tλ ' 2.1768 K (so-called
because of the shape of the phase diagram of 4He - see Fig. 1.1), referred to as He II, was
first noted by Kapitza in 1938 [5], and independently by Allen and Misener [6], based on
the observation of the flow rate of helium through extremely thin capillaries. The fluid ex-
hibited negligible internal frictional forces, or viscosity, giving rise to a number of impres-
sive phenomena. These include persistent current in which a flow induced, e.g., by stirring,
in a smooth-walled cylindrical vessel will, theoretically, continue indefinitely [7], superfluid
creep, in which helium will climb the sides of a container, due to the lack of internal fric-
tion to counteract surface tension [8], the aforementioned flow through fine capillaries that
are inaccessible to ordinary fluids (superleak), and the fountain effect, in which the appli-
cation of thermal energy results in a mechanical flow [9]. The almost instantaneous cessa-
tion of boiling below Tλ, due to the extremely efficient heat conduction of He II, is also of
interest. The superfluidity of He II was proposed by London as a possible example of Bose-
Einstein condensation [10], discussed in the next section, although this was not widely ac-
cepted at the time [11].

The behaviour of He II can be understood through the two-fluid model, due to Tisza [12]
and refined by Landau [13]: the onset of Bose-Einstein condensation occurs at the λ-point,

1
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Figure 1.1: Schematic phase diagram of helium adapted from [4], with a typical phase di-
agram for conventional substances inset, showing the triple point where solid, liquid, and
gaseous phases coexist, absent in helium.

and a proportion of the 4He atoms accumulate in the lowest-energy single-particle state.
Helium II is then comprised of two interpenetrating fluids, a superfluid component and a
normal fluid component. It should be noted that this interpretation of He II as two fluids
is made for conceptual ease; strictly speaking what is thought of as the normal fluid con-
sists of thermal excitations, with the superfluid being the remainder. It is tempting to view
this superfluid as a condensate, and indeed if the helium atoms are considered as an ideal
gas the onset of condensation is expected to occur at ∼ 3 K, consistent with Tλ - however,
helium does not behave as an ideal gas, and due to the strong interparticle interactions
only around 10% of the particles are in a condensed state even at zero temperature [14].

Excitations take the form of two types of quasiparticles, first proposed by Landau [13]: at
low momenta excitations take the form of phonons, quantised packets of sound, while at
higher momenta excitations known as rotons occur, the exact properties of which are still
not fully understood - see, e.g., [15–17]. A sketch of a typical dispersion curve of the exci-
tations is shown in Fig. 1.2. Landau also explained the superfluidity as a consequence of a
linear dispersion relation at low momenta, corresponding to the phonons, with a quadratic
dispersion relation at higher momenta, corresponding to the rotons, with neutron-scattering
experiments confirming this [18].

The superfluid component is effectively at absolutely zero, and has zero viscosity and
no entropy, while the normal fluid component has finite viscosity and carries all of the en-
tropy. Both components are described by their density and local velocities, ρn and vn, and
ρs and vs respectively for the normal fluid and superfluid components, with ρn + ρs = ρ, the
total density. Note that as T → Tλ, ρs → 0 and ρn → ρ, while as T → 0 K, ρn → 0 and
ρs → ρ, although from a modelling point of view the normal fluid component is negligible

2
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Figure 1.2: Sketch of the dispersion curve for excitations in helium II, showing the low mo-
nentum phonons with E ∝ k, and the high momentum rotons with E ∝ k2.

below around 1 K. The precise relation of ρn and ρs to T is shown in Appx. B, alongside
some other relevant physical properties of helium II.

The two fluids are coupled by a mutual friction force, the strength of which is temper-
ature dependent [19, 20]. Since the normal fluid carries all of the entropy and has finite
viscosity, while the superfluid has zero viscosity and carries zero entropy, the application
of a heat source will induce a flow of normal fluid away from the source, and a correspond-
ing flow of superfluid towards the heat source due to mass conservation, highlighting the
separation of the flows in the two components.

An immediate consequence of the two-fluid model is the emergence of two wave equa-
tions, the first pertaining to density fluctuations and our everyday conception of sound,
and the second pertaining to entropy fluctuations, referred to as second sound. Experimen-
tal measurements of the second sound velocity as a function of temperature helped to con-
firm the two-fluid model [21]. Measurement of the attenuation of second sound also helped
to confirm the presence of quantised vorticity (discussed below) in helium II [22], and has
been used to measure vortex line density over many orders of magnitude [23]

We also note that recent visualisation techniques [24] have enabled the direct observation
of the two fluids’ differing flows at the same location, in particular in the case of thermal
counterflow (discussed in Sec. 5.3) where the fluid velocities are in opposite directions [25].

Although the lack of viscosity results in intriguing behaviour, and simplifies hydrody-
namic descriptions of superfluids, perhaps the most drastic difference from conventional
fluids, particularly from the perspective of turbulence, is the quantisation of circulation,
predicted by the wavefunction description of He II of Onsager and Feynmann [26, 27]. The
evolution of the wavefunction describing the fluid is governed by a nonlinear Schrödinger
equation, which can be recast in a hydrodynamic form by splitting the complex-valued
wavefunction into a real amplitude and phase: ψ = f exp (iφ), with the velocity given by
v = ~/m∇φ, where ~ = h/(2π) ' 1.055 × 10−34 kg·m2·s−1 is the reduced Planck constant.

3



1.2 Bose-Einstein Condensation

If the fluid is on a multiply connected region the wavefunction must remain single valued,
and thus integrating ∇φ around any closed contour is restricted to integer multiples of 2π:∮

C

∇φ · dl = 2nπ, (n ∈ Z),

and so the circulation is restricted to:

Γ =

∮
C

v · dl = n
h

m
, (n ∈ Z);

i.e., the circulation is quantised [28]. For nonzero values of the circulation this then implies
the existence of singularities in the wavefunction. These are the vortices, which present as
topological defects.

Such vortices in He II are typically nucleated by mechanical means, including oscillating
wires [29], grids [30], tuning-forks [31], and spheres [32], or by spin-down of containers [33],
although they can also be introduced by thermal counterflow [19, 34, 35]. The visualisation
of the motion of He II is achieved by the use of micron sized hydrogen tracer particles [36],
or by the injection of fluorescent He∗2 molecules [24, 37, 38], with sufficient detail to track a
single reconnection event [25].

1.2 Bose-Einstein Condensation

The prediction of Bose-Einstein condensation originated in the work of Bose, in a novel
derivation of Planck’s law of black-body radiation. Whilst lecturing on the failure of the
classical theory of light, Bose inadvertently managed to derive Planck’s law from first prin-
ciples based on two assumptions: the indistinguishability of particles, and the discretisation
of their phase space into cells of volume h3, where h is Planck’s constant. Realising the im-
portance of this result, and struggling to get it published, Bose reached out to Einstein,
leading to the 1924 publication of “Planck’s law and the light quantum hypothesis” [39].
Einstein then extended the idea to massive particles in his 1925 paper “Quantum theory of
the monoatomic ideal gas” [40], which predicted the phenomena of Bose-Einstein condensa-
tion: the macroscopic occupation of the lowest energy quantum state by bosonic particles
(particles with integer spin, named for Bose) under certain conditions. In this section we
shall review the basic theory of Bose-Einstein condensation, its experimental realisation,
and some properties of the condensates.

First consider the Boltzmann distribution for the probable occupation of states for an
ideal gas:

Ni = fB(Ei) =
1

e(Ei−µ)/kBT
,

where Ni is the occupancy of state i, Ei is the energy corresponding to state i, µ is the
chemical potential, kB ' 1.381 × 10−23 m2·kg·s−2·K−1 is the Boltzmann constant, and T is
the temperature in Kelvin, predicted by maximising the number of microstates (exact dis-
tribution of distinguishable particles across states) with respect to the possible macrostates

4
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(occupation number of all states) [41]. By including the degeneracy of states, i.e. the num-
ber of states in particular energy levels, this can be recast to describe the occupation of the
jth energy level:

Nj = gjfB(Ej),

where gj is the degeneracy of the jth energy level.
For bosons the discretisation of phase space is no longer a mathematical ‘trick’, but real-

ity. However, the indistinguishability of particles leads to a different distribution of parti-
cles across states in an ideal gas, given by the Bose-Einstein distribution:

Ni = fBE(Ei) =
1

e(Ei−µ)/kBT − 1
.

At this point it is convenient to treat the discrete energy levels as a continuum, which
is valid when there are many accessible energy levels. The number of particles at a given
energy E is then:

N(E) = g(E)fBE(E) =
g(E)

e(Ei−µ)/kBT − 1
, (1.1)

where g(E) is the density of states, which for an ideal gas in a box of volume V has the
form:

g(E) =
2π(2m)3/2V

h3
E1/2, (1.2)

where m is the mass of the boson under consideration. Integrating eq. (1.1) over energy,
and using eq. (1.2) for the density of states, yields an expression for the total number of
particles:

N =
(2πmkBT )3/2V

h3
g3/2(z), (1.3)

where g3/2(z) =
∑∞

p=1 z
p/p3/2, with z = eµ/kBT , which reduces to the Riemann zeta function

for z = 1 [4]. Note also that z > 0, and z ≤ 1 to prevent unphysical negative populations.
Now consider increasing the number of particles in the box. This is accommodated by

an increase in g3/2(z), mediated by an increase in µ. However, g3/2(z) has a maximum, for
physical values of z, of g3/2(1) ' 2.612, implying a saturation of the number of particles. It
transpires that in the change from discrete to continuous energy levels the ground state is
neglected, and the maximum value of eq. (1.3) actually describes the maximum occupation
of the excited states, with critical number:

Nc =
(2πmkBT )3/2V

h3
g3/2(1), (1.4)

beyond which additional particles enter the ground state. Equivalently, for a fixed system
size and particle number, there exists a critical temperature Tc given by setting z = 1 in
eq. (1.3) and solving for T :

5



1.2 Bose-Einstein Condensation

Tc =
h2

2πmkB

(
N

g3/2(1)V

)2/3

.

Below Tc the excited states are no longer able to contain all of the particles, with the
excess again accumulating in the ground state. This is Bose-Einstein condensation: the
macroscopic occupation of the lowest energy state, or condensation of particles in the low-
est momentum state. Note that at T = 0 all particles must be in the ground state.

We can also view this transition through the lens of wave-particle duality. Dividing eq.
(1.4) by V to get the particle density, then taking the inverse cube root, we find the typical
interparticle spacing d to be:

d <
1

3
√
g3/2(1)

h√
2πmkBT

. (1.5)

For a thermally-excited gas the de Broglie wavelength, pertaining to the wave-like behaviour
of the particles, is given by [42]:

λdB =
h√

2πmkBT
.

Combined with eq. (1.5), it is clear that:

1
3
√
g3/2(1)

λdB > d, or

λdB & d,

after noting that (g3/2(1))−1/3 = (2.612...)−1/3 ' 1; the onset of Bose-Einstein condensa-
tion occurs as the particle waves begin to overlap each other, eventually forming one giant
matter-wave when the critical condition is well exceeded. This is illustrated in Fig. 1.3.

So far we have only considered bosonic particles. Fermionic particles, which obey the
Pauli exclusion principle forbidding the simultaneous occupation of the same state within
a system, follow the Fermi-Dirac distribution and do not condense in the same manner as
bosons. Nevertheless, as spin is additive, at sufficiently low temperatures fermions undergo
the Bardeen-Cooper-Schrieffer transition, combining to produce bosons in a process known
as Cooper pairing [43]. These can then undergo Bose-Einstein condensation, typically at
far lower temperatures than for ordinary bosonic condensates [44, 45]; it is due to this pro-
cess that the fermionic 3He has superfluid phases below ∼ 3 mK [46, 47], three orders of
magnitude lower than 4He.

Some seventy years passed between the prediction of Bose-Einstein condensation and the
experimental realisation of such systems. In 1995 the Wieman and Cornell group succeeded
in condensing a dilute (number density ∼ 2.5× 1012 cm−3; cf. air at Standard Temperature
and Pressure with number density ∼ 2.5 × 1019 cm−3) vapour of rubidium atoms at ∼ 170
nK [48], with evidence including the emergence of a narrow peak in the thermal velocity
distribution, centred at zero velocity, shown in Fig. 1.4. The process of cooling a sample
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Chapter 1. Introduction

(a) (b) (c)

Figure 1.3: Schematic adapted from [4] showing the transition from classical point-like par-
ticle behaviour for T � Tc (a), as the de Broglie wavelength becomes more prominent
while still in the T > Tc regime (b), to the onset of Bose-Einstein condensation as the
particle-waves start to overlap at T ∼ Tc (c).

to this ultracold regime involved initial laser cooling (see [49] for details of the concept),
loading the cooled atoms in a magnetic trap [50], then a final cooling stage by selective
evaporation of the most energetic atoms [51].

Since then atomic Bose-Einstein condensates (BECs) have been produced in many in-
dependent laboratories from an extensive and expanding array of other particles, includ-
ing other alkali metals [52–55], spin-polarised hydrogen [56], metastable hydrogen [57], cal-
cium [58], chromium [59], strontium [60, 61], dysprosium [62], erbium [63], ytterbium [64],
as well as more exotic magnon [65] and exciton-polariton [66] quasiparticle condensates,
spinor condensates [67], and two species condensates [68–70].

Bogoliubov demonstrated that a weakly interacting Bose gas has a linear dispersion
curve [71], accounting for the observed superfluidity of BECs [72]. Atomic BECs have some
highly desirable properties for experimentalists: the strength, and even the sign, of their
interactions can be tuned through Feshbach resonance [73, 74], allowing either repulsive or
attractive interactions between particles. Although the physical size of condensates is lim-
ited, the control over them is constantly improving, with tight confinement in one or two
directions allowing the production of quasi-lower-dimensional systems [75, 76], and other
trapping potentials producing systems with homogeneous density [77–80], which can be
readily modified by the use of a masked laser to produce traps of arbitrary shape, such as
rings [81], double wells [82], and square boxes [80]. The imaging of BECs has also devel-
oped, from destructive expansion imaging [83, 84], to imaging that only removes a small
fraction of the condensed atoms, allowing multiple images to be taken over the lifetime of
an experiment [85], both with sufficient resolution to resolve single vortex cores. Further-
more, Bragg scattering can be used to infer the polarity of vortices, which is not clear from
the condensate density alone [86,87].

BECs are known to support various nonlinear excitations. As highly compressible flu-
ids BECs exhibit density, or sound, waves, and can support wave turbulence [88, 89]. In
systems of reduced dimensionality bright or dark, depending on whether interactions are
attractive or repulsive, solitons exist: localised non-dispersive waves associated with a jump
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1.2 Bose-Einstein Condensation

in the phase of the condensate wavefunction [90, 91]. In higher dimensions they are un-
stable, typically decaying into various configurations of vortices [92]. Vortices in quantum
fluids, the main focus of this thesis, are characterised by a localised depletion of the con-
densate density, which acts to mask a singularity in the phase of the condensate wavefunc-
tion, with the circulation around the vortex core quantised as a direct consequence of the
single-valuedness of the phase. The vorticity of the fluid resides entirely within the vortex
lines. Vortices can be nucleated by a variety of methods, with different controllability. By
quenching through the BEC transition vortices are created by the Kibble-Zurek mecha-
nism, as disparate coherent regions of the phase grow and merge, leading to defects in the
phase at their boundaries which manifest as vortices [93, 94]. The density of vortices gen-
erated is predicted by the quench rate; the slower the quench, the more the phase is able
to heal, resulting in fewer topological defects and hence fewer vortices [95]. Then, above
a critical angular speed, rotation of a condensate will introduce vortices as they become
energetically favourable [96], with vortices self-organising into regular lattices [97], with
the same phenomenon also observed in superfluid helium [98]. Vortices can also be nucle-
ated, with some degree of control over their number and location, by phase imprinting with
lasers [99, 100], bubble collapse [101], and stirring with a laser [83, 102], or equivalently flow
past an object [103,104].

Figure 1.4: Thermal velocity distribution of rubidium atoms at three successive times
(left to right) showing the formation of a narrow peak corresponding to the macroscopic
occupation of the lowest energy state, i.e., Bose-Einstein condensation [reproduced from
NIST/JILA].
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Chapter 1. Introduction

1.3 Classical & Quantum Turbulence

Turbulence in classical, viscous fluids is a flow behaviour far from equilibrium, exhibit-
ing chaotic, irregular, and unsteady velocity fields, with many vortices present on a wide
range of length scales. Ubiquitous in fluids at all scales, from cardiovascular flows [105], to
flows around cars, planes, wind turbines, and other everyday objects [106–109], to oceanic
and atmospheric currents [110, 111] (illustrated in Fig. 1.5), to flows on astrophysical scales
[112, 113], covering length scales on the order of 10−2–109 m and beyond. Modern comput-
ing enables large-scale direct numerical simulations solving the Navier-Stokes equations, as
well as numerous sophisticated approximations to the full Navier-Stokes dynamics [114].
However, such studies are still unable to resolve flows on the range of scales required to
model the most turbulent flows, with state of the art simulations accessing Reynolds num-
bers (characterising how developed the turbulence is, defined subsequently) of around 104

[115–117], while real flows can attain Reynolds numbers in excess of 107 [118].

Figure 1.5: Visualisation of turbulent surface currents in the Gulf of Mexico based on a
combination of numerical and observational data. Vortices on length scales from approxi-
mately 104–106 m are evident. Reproduced from [119].

Early theorists such as Kelvin and Helmholtz realised the significance of vortices in the
description of turbulence [120], with the picture of Richardson, and Kolmogorov’s dimen-
sional analysis, forming the basis of our current understanding. Energy is injected, typi-
cally by bulk motion, at the largest scale of the system referred to as the integral length
scale L, producing vortices at this scale. An oversimplified picture is that these vortices are
unsteady and break down, producing smaller vortices, which in turn break down into suc-
cessively smaller vortices, producing a cascade of energy down length scales, known as the
Richardson cascade [121]. This cascade terminates when the vortices reach a length scale
at which energy can be efficiently dissipated by the conversion of kinetic energy to thermal
energy by viscosity, with this scale referred to as the Kolmogorov microscale, denoted η,
and scales � η and � L referred to as the inertial range.
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1.3 Classical & Quantum Turbulence

The mean kinetic energy density of the flow, as a function of the wavenumber k, is given
by [122]: ∫ ∞

0

E(k)dk =
1

2
〈ū · ū〉,

where u is the flow velocity, giving the dimensions of E(k) as [E(k)] = L3/T 2, with L
length and T time. Considering the relevant quantities for describing the flow in the in-
ertial range, we can neglect L, as well as the characteristic velocity at this scale, and the
kinematic viscosity ν as we are far from the scales at which they affect the flow. Kolmogorov
proposed that the flow is self-similar at all scales within the inertial range, with the flow
statistics depending entirely on the rate of energy dissipation [123]. The rate of energy dis-
sipation per unit mass, ε, has dimensions [ε] = L2T−3. If E(k) can only depend on the
wavenumber k and the energy dissipation rate ε, then the only possible combination of ε
and k which is dimensionally consistent is:

E(k) = Cε2/3k−5/3,

where C is a dimensionless constant of order unity. This is the famous Kolmogorov −5/3
scaling law, illustrated in Fig. 1.6. This universal scaling has been confirmed by a huge
body of experimental and observational evidence [124–127].

The structure of turbulence can be described by the structure functions:

Sp(r) = 〈(u(x + r)− u(x))p〉,

where x and r are points in a turbulent flow field, u is the component of the velocity field
in the direction of r, p is the order of the structure function, and the angle brackets denote
an ensemble average. Kolmogorov found the second- and third-order structure functions
obeyed the power laws S2(r) ∼ (εr)2/3, S3(r) ∼ (εr) [128, 129], which was subsequently gen-
eralised to Sp(r) ∼ (εr)p/3 [130]. However, this was challenged by Landau and Lifshitz [131]
as the derivation is based on treating ε as a constant, when it is in fact spatially inhomo-
geneous, and indeed experiments and simulations show that the exponent falls increasingly
short of this prediction for higher-order structure functions [132, 133]. This feature of tur-
bulence is termed intermittency, which manifests as ‘clumpiness’ in the turbulence, or more
abrupt changes in the velocity than would be expected without intermittency [134]. Inter-
mittency corrections to models of turbulence have been described which agree well with
the data [135].

Classical fluid motion is well described by the Navier-Stokes equation:

∂u

∂t
+ (u · ∇)u =

−∇P
ρ

+ ν∇2u, (1.6)

where u is the fluid velocity, P is the pressure, ρ is the fluid density, and ν is the kinematic
viscosity. By considering the ratio of inertial forces (u·∇)u to dissipative forces ν∇2u, with
characteristic scales of U2/L and νU/L2 respectively, where U is the characteristic velocity
scale and L is the characteristic lengthscale, we can construct the dimensionless Reynolds
number:
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2π/L 2π/η

k

E
(k
)

Injection
Range

Dissipation
Range

Inertial
Range E ∼ k−5/3

Figure 1.6: Sketch showing the distribution of energy over wavenumbers for a turbulent
flow, on a logarithmic scale to highlight the Kolmogorov scaling. Energy cascades from the
largest vortices, at the left of the figure, to the smallest vortices at the Kolmogorov mi-
croscale, at the right of the figure.

Re =
UL

ν
, (1.7)

which characterises the resulting flow. At low Reynolds numbers flows tend to be laminar,
while at high Reynolds numbers flows will tend to be turbulent, with the particular tran-
sition point depending on the geometry of the system. The Kolmogorov microscale can be
estimated by η ≈ LRe−3/4 [136], which decreases as Re increases, leading to a larger iner-
tial range; the Reynolds number can be interpreted as a measure of how developed turbu-
lence is in a system.

The discussion so far relates to turbulence in three dimensions, yet turbulent flows also
exist in two-dimensional systems. Systems which are apparently 3-D may in effect be 2-D;
the surface currents shown in Fig. 1.5 are effectively 2-D as vertical density stratification
suppresses 3-D effects [137, 138], as does strong rotation [139], or simple confinement in one
direction. Turbulence in two dimensions is also dominated by vortices, but the reduced di-
mensionality has important implications for its character. The most surprising difference
from 3-D is the inversion of the energy cascade: rather than energy flowing, on average,
from large scales to small scales, it cascades from small scales to large scales. This phe-
nomenon can be understood by considering the enstrophy, defined as ω2, which measures
the strength of the local rotation. The enstrophy can change by dissipation or by vortex

11



1.3 Classical & Quantum Turbulence

stretching, in which vorticity, and thus enstrophy, increases as a vortex is elongated [140].
The rate of kinetic energy dissipation in classical fluids is ε = ν〈ω2〉, which experiments
show is independent of the viscosity for flows with very high Reynolds numbers, or as the
viscosity goes to zero; the decrease in viscosity is balanced by an increase in vortex stretch-
ing [141]. However, in 2-D vortices are unable to stretch as they are confined to the plane,
and so ε → 0 as ν → 0, or in high Re flows. Hence, energy is not efficiently dissipated
by viscosity in strong 2-D turbulence, but energy at small scales must still be dissipated
by viscous heating. The resolution is that energy cascades to larger scales than the injec-
tion scale; the Fjørtoft argument gives a detailed reasoning for the direction of the cas-
cade [142]. Similar dimensional arguments as for the energy cascade in 3-D find a cascade
of enstrophy in 2-D, with a k−3 energy spectrum. Experiments and simulations confirm
this dual-cascade, obtaining an E(k) ∼ k−5/3 power law at scales above the injection scale,
driven by the inverse energy cascade, and an E(k) ∼ k−3 power law at scales below the in-
jection scale due to the enstrophy cascade [143–145]. As with 3-D turbulence the flow can
be described by velocity structure functions, with a predicted linear relation between the
order of the structure function and the exponent that emerges; it has been suggested that
these should not suffer from intermittency as 3-D turbulence does [146], although experi-
ments on soap films do find evidence of intermittency [147,148].

In contrast to classical fluids, in quantum fluids vorticity is quantised, with only the vor-
tices with a single quantum of circulation stable, and there in no viscosity. Turbulence in
this setting is primarily an irregular set of quantised vortex lines, accompanied by noisy
density waves. This form of turbulence was first investigated by Feynman [27], and soon
after realised in experiments by Vinen [19, 20, 149, 150]. On one hand, this simplified ana-
logue to classical turbulence is an ideal setting to study vortex behaviour, often described
as the skeleton of turbulence, with a great deal of experimental and theoretical work com-
paring them [151–159]. On the other, the description of classical turbulence, based on vis-
cous fluids and a continuum of vortex scales, is clearly no longer valid.

Two distinct regimes of turbulence have been observed in quantum fluids: quasiclassical
turbulence, and ultraquantum turbulence, often referred to as Kolmogorov turbulence and
Vinen turbulence respectively [160].

As the name suggests, quasiclassical turbulence shares many of the features of classical
turbulence, particularly the cascade of energy through length scales, energy again being
distributed over scales as E(k) ∼ k−5/3. Simulations suggest that bundles of aligned vor-
tices play the role of large vortices [161, 162], with the circulation around such a bundle
being the sum of the vortices is contains. As there is no viscosity to act as a source of dis-
sipation, some other process must take this role. Various mechanisms have been proposed
for the decay of vortex tangles. Feynmann suggested a cascade-like breakdown of vortex
loops, in which reconnections of vortex lines produce smaller and smaller vortex loops until
they reach the scale of intervortex distances, at which point the vortex motion is dissipated
into thermal excitations [27]. Energy can also be removed from the vortices by the emis-
sion of sound, either during reconnection events, or by the motion and oscillation of vor-
tices [157]. This latter source of phonon emission is only efficient at large velocities [163],
critically at higher harmonics of Kelvin waves [164], following a cascade from lower fre-
quency Kelvin waves, typically initiated by reconnection events [165, 166]. These are all
mechanisms which act at the smallest scales, whereas at larger scales energy can be dissi-
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pated by the emission of vortex rings which subsequently annihilate at boundaries [157]. It
is generally believed that the Kelvin wave cascade is the dominant dissipation mechanism
in the quasiclassical regime, while the emission of vortex rings may also have an important
role in the ultraquantum regime [167–172].

Ultraquantum turbulence is distinguished from quasiclassical turbulence by the lack of
an energy cascade, with no large-scale structure present in what is essentially a random
tangle of vortices [173]. No scaling law is evident for the distribution of energy, and the
rate of decay in the absence of forcing further separates this regime from the quasiclassical
regime, with the vortex line density decaying like t−3/2 for Kolmogorov turbulence, and like
t−1 for Vinen turbulence [174].

A wide variety of studies of quantum turbulence in statistically steady, homogeneous
and isotropic systems have identified similarities and differences with classical turbulence,
in their velocity statistics [175–177], energy spectra [156, 173, 178], decay [160, 174], and
intermittency [179–181]. Specific flow patterns and instabilities, familiar in the context of
classical fluids, have also been predicted in quantum fluids [104,182–184].

In order to facilitate comparisons with classical turbulence it is convenient to introduce
an effective kinematic viscosity, and in turn a superfluid Reynolds number; one would näıvely
assume the Reynolds number to be infinite for an inviscid fluid, but this is not borne out
by observations of superfluid helium at the lowest temperatures, and gives no insight into
the nature of the fluid [185]. One typical approach is to introduce, on dimensional grounds,
a quantum analogue to the classical kinetic energy dissipation rate ε = ν〈ω2〉, where ω is
vorticity, of the form: ε = νeff(κL)2, where κ is the quantum of circulation and L is the vor-
tex line density, estimating νeff by measuring the decay of a turbulent tangle, with a range
of measurements for different systems and alternative methodology [19, 20, 33, 149, 150, 160,
186–192].

While quantum turbulence is often referred to as the ‘skeleton’ of classical turbulence,
alluding to the quantised nature of vorticity in quantum fluids, for analogies between quan-
tum and classical turbulence to be meaningful the distinctions between them must be put
on more rigorous ground. The main contribution of this thesis in this regard is the investi-
gation of vorticity transport in turbulent regions. The dynamics of the vortices themselves
are well understood, and there has been much focus on the generation and dissipation of
quantum turbulence, e.g. [19, 20, 33, 193]. However, the bulk transport of vorticity is less
well studied; in classical turbulence vorticity undergoes a nonlinear diffusion process, with
the viscosity playing the role of the diffusion coefficient. As we shall see, in spite of the in-
viscid nature of quantum fluids, we also observe a diffusion process, with the diffusion coef-
ficient proportional to the quantum of circulation, supporting the use of this as an effective
viscosity as is done by considering the dissipation rate in other work such as [186–188,191].

Pioneering work by Tsubota et al. [194] examined vortices diffusing in one geometry; we
go further and show that a diffusion process exists based on particle statistics, as well as
exploring the effects of vortex density (analogous to turbulence intensity) and boundaries.
Additionally, a mechanism at the level of the individual vortices for the observed diffusion
is proposed, with supporting evidence. We note that the problem of vorticity transport is
also significant for the Grenoble-Lancaster experiment [195] which uses analogies between
symmetry-breaking at the superfluid phase transition of 3He to symmetry-breaking in the
early universe to try and gain insight into galaxy formation processes.
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We also revisit dissipation at zero temperature, and find evidence that the dissipation
rate depends on the vortex line density in such a way that the effective viscosity also de-
pends on the vortex line density; this is in contrast to the effective viscosity identified from
vorticity transport, for which we observe no such dependence.

Although both atomic BECs and He II are quantum fluids supporting quantum turbu-
lence, there are important distinctions between them. The length scales involved are very
different, with vortices typically having a core radius on the order of a micron in atomic
condensates, while vortices in He II have a core radius on the order of an ångström [196].
Helium experiments can be performed in systems on the order of a meter [197] (although
they are typically much smaller, yet still many orders of magnitude away from the vortex
core size), while the size of condensates is limited by the number of atoms that can exper-
imentalists are able to condense - typically on the order of 105-106 atoms [52, 55, 59, 60],
producing condensates on the order of 100 vortex core sizes. Despite the relatively poor
separation of scales in atomic condensates, there is still compelling evidence for the exis-
tence of Kolmogorov turbulence in them [151,171,198,199].

We note also that atomic condensates and He II are highly compressible fluids, and as
such density waves are readily excited in these systems; this can be seen in Fig. 4.5 later
in this thesis, which shows the evolution of a region of vorticity in a 2-D BEC modelled us-
ing the GPE, with a great deal of acoustic waves generated by the motion of the vortices.
We restrict our attention to the turbulent motion of vortices, without including turbulent
wave motion in our analysis. We stress also that, of the models used, only the GPE in-
cludes density waves, while the other models which we use include only the dynamics of
the vortices themselves, and not the motion of the fluid.

1.4 Measurement & Current Experiments

There are a number of active experimental groups investigating quantum turbulence and
vortices in the context of low temperature helium. In this section we review some exper-
iments relevant to the work in this thesis, and discuss some of the instruments and tech-
niques used to probe these systems.

In the Manchester group experiments on the dissipation and spectra of quantum tur-
bulence are performed in 4He at temperatures ranging from 0.08 K (effectively zero tem-
perature from a modelling perspective) up to 1.6 K [33]. Turbulence is induced both glob-
ally and locally, using ion injection [159], towed grids, and spin-down of rotating systems
[200](with Lancaster). The dissipation mechanisms of quantum turbulence are probed with
experiments in rotating systems below 0.2 K [201], and on the reconnection of vortex rings
generated with charged particles [202].

In the Lancaster group instruments for generating turbulence and probing systems are
developed. Turbulence is generated and measured in 4He using piezoelectric tuning forks at
temperatures down to 1.2 K [203–205], dissipation mechanisms are probed using nanome-
chanical resonators from the transition temperature down to the millikelvin range [193],
and in the related context of 3He-B turbulence is generated by vibrating grids and vibrat-
ing wires, and measurement of the critical velocity for vortex shedding made [206, 207].
Less recently, an experiment was done in collaboration with the CNRS group in which a
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localised region of vorticity was generated by neutron capture and the subsequent heating
and quench in 3He, with possible analogies to the creation of topological defects in the very
early universe [195].

In the Aalto group experiments are conducted on rotating systems of 3He-B, examining
vortex generation mechanisms [208], mutual friction [209], and wave turbulence on vortex
lines [210].

In the Florida group fluid motion in both components of 4He above 1 K is visualised
with the use of fluorescent He∗2 molecules, allowing direct velocimetry to be performed
[24, 25, 211–213]. Experiments probing the intermittency [181, 214] and dissipation [215]
of quantum turbulence, and the effective viscosity [192] are performed using this technique,
with quantum turbulence generated by thermal counterflow [25, 192, 211–215] and towed
grids [181].

In the Prague group, in 4He at temperatures from 1.17 K to the transition temperature,
turbulence is generated in channels, by thermal counterflow [216–218], bellows driven su-
perflow [219] and co-flow [190], as well as by localised structures including vibrating grids
[220] and vibrating forks [31, 221], with studies examining the decay of quantum turbu-
lence [216], the effective viscosity [190], and the transition to turbulence [218].

In the CNRS group instruments for velocimetry are developed, including hot-wire anemome-
ters [222, 223] and microscale cantilevers [224, 225]. These are deployed in studies of the
energy spectra and intermittency of quantum turbulence in steady wake flows in 4He from
1.28 K up to the transition temperature [180], and the effective viscosity of 4He from 1.17
K up to the transition temperature in bellows driven co-flows [190].

We now discuss the probing of these systems, particularly the vortex line density and
local velocity. The vortex line density in 4He is measured by the attenuation of second
sound: density waves in the normal and superfluid components in anti-phase, that man-
ifest as temperature or entropy waves (as opposed to the density/pressure waves of first
sound), which are damped by the presence of vortex filaments; the particular intensity of
the damping can be used to infer the vortex line density [226, 227]. A recent study [217]
suggests that this technique may also be extended to reconstruct the spatial profile of a
vortex tangle by the use of higher harmonics. In 3He-B the vortex line density can be in-
ferred using Andreev-reflection. Thermal excitations (in the form of quasiparticles and
quasiholes) have a mean free path for collisions far in excess of experimental dimensions,
and thus move ballistically, only scattering on boundaries. However, excitations can also
be Andreev-reflected by vortices; the proportion of excitations Andreev-reflected then gives
an estimate of the vortex line density. As excitations can also be Andreev-reflected by the
background superfluid flow, knowledge of the complete velocity field is necessary for a more
accurate estimate [228,229].

Velocimetry in superfluid helium is typically performed using micro-scale cantilevers,
which measure the strain due to the flow, from which the velocity can be inferred [224].
Other approaches include pitot tubes, which infer the velocity from the difference between
the pressure in the flow and the stagnant pressure [156], and hot-wire anemometers [222],
where the measured excess cooling of a wire held at a constant temperature due to the flow
past is used to infer the local fluid velocity. The oscillation of vibrating structures, with
most focus on tuning forks, are damped by acoustic emission, scattering of excitations, and
hydrodynamic losses [193], and make versatile probes which have be used to measure tem-
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perature, pressure, density, and viscosity [230–232].
In many of these experiments turbulence is generated locally, typically by a vibrating

structure [31, 206, 207, 220, 221], but also by ion injection [159] and a localised quench [195].
However, most numerical studies focus on homogeneous turbulence, particularly in peri-
odic or hard wall systems. We seek to answer the question, first in 2-D systems then in 3-D
systems, ‘How does quantum turbulence spread into turbulence-free regions?’. In classical
(incompressible) fluids described by the Navier-Stokes equation:

Du

Dt
= −∇P

ρ
+ ν∇2u, (1.8)

where Du/Dt = ∂u/∂t+(u·∇)u is the material derivative, P is the pressure, ρ the density,
and ν the kinematic viscosity, a vorticity transport equation can be found by taking the
curl of eq. (1.8), yielding:

Dω

Dt
= (ω · ∇)u + ν∇2ω.

This is a (nonlinear) diffusion equation for the vorticity, with the kinematic viscosity acting
as the diffusion coefficient. It is not clear from this how vorticity will be transported in a
superfluid, as the viscosity vanishes.

We will also explore this as a means to estimate the effective viscosity of quantum fluids
based on the spreading of vorticity, in contrast to approaches which are typically based on
the dissipation of energy [160,187,188,190–192].

1.5 Thesis Overview

The structure of this thesis is briefly reviewed in this section. After this introduction,
we discuss theory and numerical methods pertaining to 2-D systems in Chapters 2 & 3,
and numerical studies in 2-D in Chapter 4. We then discuss theory and numerical methods
pertaining to 3-D systems in Chapters 5 & 6, and 3-D numerical studies in Chapter 7. We
also include a set of appendices.

The results presented in Chapters 4 & 7 are given in part in the following publications,
with collaborations indicated:

• Diffusion of Quantum Vortices [233]
E. Rickinson, N. G. Parker, A. W. Baggaley, & C. F. Barenghi, Phys. Rev. A. 98 023608 (2018)

• Inviscid Diffusion of Vorticity in Low-Temperature Superfluid Helium [234]
E. Rickinson, N. G. Parker, A. W. Baggaley, & C. F. Barenghi, Phys. Rev. B. 99 224501 (2019)

• Superfluid Turbulence Driven by Cylindrically Symmetric Counterflow
E. Rickinson, C. F. Barenghi, Y. A. Sergeev, & A. W. Baggaley, Phys. Rev. B. (Accepted April 2020)

• Dissipation of Quantum Turbulence in 4He at 0K
E. Rickinson, N. G. Parker, A. W. Baggaley, & C. F. Barenghi, (In preparation)
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Simulations of the 2-D Gross-Pitaevskii equation used George Stagg’s implementation [235,
236] as a basis.

Simulations of the vortex filament method used Andrew Baggaley’s Qvort [237] as a ba-
sis.

Chapter 1 - Introduction

We introduce concepts and theory of superfluidity in helium, Bose-Einstein condensa-
tion, turbulence in classical and quantum fluids, and discuss some relevant experiments.

Chapter 2 - 2D Models

We describe the point vortex model (PVM), a simple Lagrangian model for 2-D vor-
tex dynamics, and some relevant boundaries and solutions. We then describe the Gross-
Pitaevskii equation (GPE), a nonlinear Schrödinger equation derived from mean-field method-
ology, which accurately describes the physics of a dilute, weakly interacting Bose gas at
temperatures far below the critical temperature. We introduce a non-dimensional version
of the GPE, some relevant physical quantities and solutions, and discuss the quantisation
of circulation.

Chapter 3 - Numerical Methods I

We describe methods for approximating derivatives and the numerical integration of dif-
ferential equations. We test the accuracy of our implementation of the PVM. The initial-
isation of the GPE, with methods for finding the ground state and imprinting vortices, is
discussed, and we describe post-processing techniques for identifying and tracking vortices.
We test the accuracy of our GPE simulations in terms of the conservation of energy.

Chapter 4 - 2D Numerical Experiments & Results

A numerical study of the spread of quantum vortices in 2-D is carried out using the
PVM and the GPE. We quantify the diffusion process that emerges, and identify the dif-
fusion coefficient as an estimate of the effective viscosity. We explore the effects of bound-
aries and vortex number density on the observed diffusion process. We also present some
preliminary work in which we examine the potential use of the velocity statistics and other
quantities of tracer particles to infer the vortex number density in experiments.

Chapter 5 - 3D Models

We describe the vortex filament method (VFM), relevant to quantum vortex filaments in
helium, and the effect of finite temperature effects on the vortex dynamics.

Chapter 6 - Numerical Methods II
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1.5 Thesis Overview

The implementation of the VFM is discussed, including the reconnection procedure and
some relevant boundaries. A criterion to set the numerical time-step is given, and we test
the accuracy of the implementation by comparing simulations with theoretical vortex evo-
lution in several scenarios. An algorithm for reconstructing the trajectories of vortex fila-
ments is described.

Chapter 7 - 3D Numerical Experiments & Results

The results of three numerical studies are presented. In the first we reproduce results
concerning the vortex line density generated by thermal counterflow. In the second we re-
port a new technique for inferring the dissipation rate of ultraquantum turbulence in He
II, and relate this to the effective viscosity. Finally, we examine the spread of a region of
quantum turbulence into free space, quantifying the diffusion process that emerges, and
relating this to the effective viscosity.

Chapter 8 - 2D Conclusions

We summarise the results of our numerical investigations, and consider the potential di-
rection of future work and experimental feasibility.

Appendices

We give detailed derivations of the PVM, GPE, and VFM. The numerical methods used
are derived, including finite difference methods, Runge-Kutta time-stepping schemes, and
Adams-Bashforth time-stepping schemes. Finally, some relevant physical properties of 4He
are summarised.
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Chapter 2

2-D Models

We describe the models used in investigations in 2-D and some relevant features and so-
lutions of them. We use the point vortex model, an idealised Lagrangian model that cap-
tures the essential features of vortex dynamics, and the Gross-Pitaevskii equation, which
includes the key physics of Bose-Einstein condensates that are absent in the point vortex
model. We note that the Gross-Pitaevskii equation is a 3-D model, but valid in 2-D for
tightly confined condensates, with minor modifications to some of the physical parameters
that enter into the equation.

2.1 The Point Vortex Model

We use the point vortex model (PVM) introduced by Helmholtz in 1858 [238]. The model
describes the motion of irrotational point (having infinitessimal core size) vortices embed-
ded in a two-dimensional, inviscid, incompressible fluid plane as a system of coupled ordi-
nary differential equations.

For an unbounded system of N point vortices the equations of motion for the ith vortex
are:

dxi
dt

= − 1

2π

∑
j 6=i

Γj(yi − yj)
r2
ij

dyi
dt

=
1

2π

∑
j 6=i

Γj(xi − xj)
r2
ij

(2.1)

where (xi, yi) is the position of the ith vortex, rij is the separation between the ith and jth

vortices, and Γj is the circulation around the jth vortex [239]. Note the omission of the sin-
gular term i = j; point vortices have zero self-induced velocity. The velocity field may be
evaluated at an arbitrary point (x, y) by susbtituting for (xi, yi) in eq. (2.1), with the sum-
mation then over all vortices. A derivation is given in Appx. A.1.

If we transform from our cartesian coordinate system to a polar coordinate system, we
can express the equations of motion for the fluid around a single vortex at the origin as:

dr

dt
=
∂r

∂x

dx

dt
+
∂r

∂y

dy

dt

=
2x

r

dx

dt
+

2y

r

dy

dt
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2.1 The Point Vortex Model

=
2x

r

(
−Γy

2πr2

)
+

2y

r

(
Γx

2πr2

)
= 0,

dθ

dt
=
∂θ

∂x

dx

dt
+
∂θ

∂y

dy

dt

=
−y
r2

dx

dt
+
x

r2

dy

dt

=
−y
r2

(
−Γy

2πr2

)
+
x

r2

(
Γx

2πr2

)
=

Γ

2πr2
,

so the motion around a point vortex is entirely azimuthal. Recalling |v| =
√
v2
r + (rvθ)2,

it is clear that the speed of the flow around the vortex is proportional to 1/r. This is illus-
trated in Fig. 2.1
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0

Γ/2π
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Figure 2.1: [Dimensionless units] Flow around a single point vortex. Panel (a) shows the
velocity field (black arrows) and streamlines (green lines) around a positive vor-
tex at the origin (red), (b) shows the magnitude of the flow velocity as a func-
tion of the distance r from the vortex.

The dynamics of a system of point vortices can be equivalently described by the Hamil-
tonian equations:
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Chapter 2. 2-D Models

Γi
dxi
dt

=
∂H

∂yi
, Γi

dyi
dt

= −∂H
∂xi

, (2.2)

where

H = − 1

4π

∑
i 6=j

ΓiΓj ln (rij) (2.3)

is the vortex Hamiltonian. The Hamiltonian H is conserved during the evolution of the
vortices, and corresponds to the kinetic energy of the flow around them [239]. Although
we do not offer a rigorous statement here, the dependence of the autonomous Hamiltonian
on the separation of vortices offers a tantalising glimpse of some of the emergent vortex
dynamics discussed in Sec. 4.1. If the system spread homogeneously the energy of the sys-
tem would change; one way in which the system can then conserve energy is by bringing
individual pairs of vortices of opposite sign circulation closer together, or pairs of the same
sign circulation further apart. The value of H for pairs of vortices with |Γ| = 1 is shown
in Fig. 2.2. We note that a pair of opposite circulation closer than r = 1 lowers the total
energy of the system, while the total energy of the system is lowered by a pair of the same
circulation further apart than r = 1, although the actual effect on the total energy also
depends on their position in relation to the rest of the configuration.

0 1 2 3 4 5 6 7 8 9 10

r

-3

-2

-1

0

1

2

3

H

Figure 2.2: [Dimensionless units] Values of the autonomous hamiltonian H for an isolated
pair of vortices with opposite circulation Γ = ±1 (blue) and identical circula-
tion Γ=1 (red) as a function of the separation r between the two vortices.

Furthermore, H is invariant under rotation and translation; it follows from Noether’s
Theorem [240] that there are three first integrals of motion:
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2.1 The Point Vortex Model

Lz =
N∑
i=1

Γi(x
2
i + y2

i ), Px =
N∑
i=1

Γixi, Py =
N∑
i=1

Γiyi, (2.4)

corresponding to conservation of angular momentum and linear momenta.

2.1.1 Boundaries

As well as the unbounded PVM we consider two standard boundary conditions: periodic
boundaries and hard wall boundaries. As the PVM is a Lagrangian model, as opposed to
an Eulerian model, the methods used to impose these boundary conditions may be unfa-
miliar to some.

Consider the velocity contribution felt by a vortex in a singly periodic domain, say in x,
with x ∈ [0, L). As well as the usual summation eq. (2.1), it will feel contributions from
the other vortices and itself at (x + L,y) and (x− L,y), where (x,y) is the position of the
vortices. In full it will feel contributions from (x + nL,y), for ∀n ∈ Z 6= 0. These additional
vortices, used as a numerical ‘trick’ to impose periodicity, are referred to as ghost vortices.
The equations of motion then become:

dxi
dt

= − 1

2π

[∑
j 6=i

Γj(yi − yj)
r2
ij

+
∑
n∈Z6=0

N∑
j=1

ΓJ(yi − yj)
(xi − (xj + nL))2 + (yi − yj)2

]

dyi
dt

=
1

2π

[∑
j 6=i

Γj(xi − xj)
r2
ij

+
∑
n∈Z6=0

N∑
j=1

ΓJ(xi − (xj + nL))

(xi − (xj + nL))2 + (yi − yj)2

]
(2.5)

Similarly, for a doubly periodic domain with x ∈ [0, Lx), y ∈ [0, Ly), we have velocity
contributions from ghost vortices at (x + nLx,y + mLy), for ∀(n,m) ∈ Z2 6= 0, to give
equations of motion:

dxi
dt

= − 1

2π

∑
j 6=i

Γj(yi − yj)
r2
ij

+
∑

(n,m)∈Z2 6=0

N∑
j=1

ΓJ(yi − (yj +mLy))

(xi − (xj + nLx))2 + (yi − (yj +mLy))2


dyi
dt

=
1

2π

∑
j 6=i

Γj(xi − xj)
r2
ij

+
∑

(n,m)∈Z2 6=0

N∑
j=1

ΓJ(xi − (xj + nLx))

(xi − (xj + nLx))2 + (yi − (yj +mLy))2

 (2.6)

We illustrate the use of ghost vortices in this manner in Fig. 2.3.
The infinite and double infinite summations make the direct use of these equations of

motion awkward; in practice we either truncate the series, or use an Ewald summation
[241], discussed in more detail in Sec. 3.2.2.

Hard wall boundaries are imposed using the method of images [242], which constructs
boundaries by using image vortices to enforce streamlines coinciding with the desired bound-
ary. Since streamlines cannot intersect (as the velocity field is single-valued) no other stream-
line can cross that of the boundary, preventing any flow through the boundary.
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Chapter 2. 2-D Models

−Lx 0 Lx 2Lx
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−Ly

0
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2Ly

y

Figure 2.3: Schematic showing the use of ghost vortices to enforce periodic boundaries.
The real vortices are shown in dark red and blue, and the ghost vortices in
light red and blue.

We principally use hard wall boundaries in a disc geometry. For each point vortex of cir-
culation Γ at position (x, y) inside a disc of radius a centred at the origin, we create an im-
age vortex of circulation −Γ at (a2x/(x2 + y2), a2y/(x2 + y2)), to give equations of motion:

dxi
dt

= − 1

2π

∑
j 6=i

Γj(yi − yj)
r2
ij

+
N∑
j=1

−Γj(yi − a2yj
x2j+y

2
j
)

(xi − a2xj
x2j+y

2
j
)2 + (yi − a2yj

x2j+y
2
j
)2


dyi
dt

=
1

2π

∑
j 6=i

Γj(xi − xj)
r2
ij

+
N∑
j=1

−Γj(xi − a2xj
x2j+y

2
j
)

(xi − a2xj
x2j+y

2
j
)2 + (yi − a2yj

x2j+y
2
j
)2

 (2.7)

Consider the radial velocity component at an arbitrary position:
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2.1 The Point Vortex Model

dr

dt
=
∂r

∂x

dx

dt
+
∂r

∂y

dy

dt

=
2x

r

dx

dt
+

2y

r

dy

dt

= − 1

π

N∑
i=1

 Γi(y − yi)x
((x− xi)2 + (y − yi)2)r

+
−Γi

(
y − a2yi

x2i+y
2
i

)
x((

x− a2xi
x2i+y

2
i

)2

+
(
y − a2yi

x2i+y
2
i

)2
)
r



+
1

π

N∑
i=1

 Γi(x− xi)y
((x− xi)2 + (y − yi)2)r

+
−Γi

(
x− a2xi

x2i+y
2
i

)
y((

x− a2xi
x2i+y

2
i

)2

+
(
y − a2yi

x2i+y
2
i

)2
)
r



=
1

π

N∑
i=1

Γi

 xyi − yxi
((x− xi)2 + (y − yi)2)r

+
y a2xi
x2i+y

2
i
− x a2

x2i+y
2
i((

x− a2xi
x2i+y

2
i

)2

+
(
y − a2yi

x2i+y
2
i

)2
)
r


Putting over a common denominator:

=
1

2π

N∑
i=1

[(
xyi(x−

a2xi
x2
i + y2

i

)2 + xyi(y −
a2yi

x2
i + y2

i

)2 − yxi(x−
a2xi

x2
i + y2

i

)2 − yxi(y −
a2yi

x2
i + y2

i

)2

+y
a2xi

x2
i + y2

i

(x− xi)2 + y
a2xi

x2
i + y2

i

(y − yi)2 − x a2yi
x2
i + y2

i

(x− xi)2 − x a2yi
x2
i + y2

i

(y − yi)2
)

/
(

((x− xi)2 + (y − yi)2)((x− a2xi
x2i+y

2
i
)2 + (y − a2yi

x2i+y
2
i
)2)r

) ]
Focusing on the numerator and expanding terms we have:

x3yi − 2x2yi
a2xi

x2
i + y2

i

+ xyi

(
a2xi

x2
i + y2

i

)2

+ xy2yi − 2xyyi
a2yi

x2
i + y2

i

+ xyi

(
a2yi

x2
i + y2

i

)2

− x2yxi +

2xyxi
a2xi

x2
i + y2

i

− yxi
(

a2xi
x2
i + y2

i

)2

− y3xi + 2y2xi
a2yi

x2
i + y2

i

− yxi
(

a2yi
x2
i + y2

i

)2

+ x2y
a2xi

x2
i + y2

i

−

2xyxi
a2xi

x2
i + y2

i

+ yx2
i

a2xi
x2
i + y2

i

+ y3 a2xi
x2
i + y2

i

− 2y2yi
a2xi

x2
i + y2

i

+ yy2
i

a2xi
x2
i + y2

i

− x3 a2yi
x2
i + y2

i

+

2x2xi
a2yi

x2
i + y2

i

− xx2
i

a2yi
x2
i + y2

i

− xy2 a2yi
x2
i + y2

i

+ 2xyyi
a2yi

x2
i + y2

i

− xy2
i

a2yi
x2
i + y2

i

Gathering terms and substituting x2 + y2 = a2 the numerator reduces to:

a2xyi −
2a4xiyi
x2
i + y2

i

+
a4xyi
x2
i + y2

i

− a2yxi −
a4yxi
x2
i + y2

i

+
a4yxi
x2
i + y2

i

+ a2yxi −
a4xyi
x2
i + y2

i

+
2a4xiyi
x2
i + y2

i

− a2xyi,

which all cancel, giving us:
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Chapter 2. 2-D Models

dr

dt

∣∣∣∣
x2+y2=a2

= 0,

provided there are no singularities coming from vortices lying exactly on the boundary.
Thus for any configuration of vortices, with no vortices lying on the boundary, the method
of images ensures that the velocity is entirely azimuthal on the circle x2 + y2 = a2. As the
velocity is tangential to the streamlines, the boundary is a streamline as desired.

Figure 2.4 shows four vortex configurations of increasing complexity confined within a
disc, with the resulting instantaneous streamlines superimposed.

2.1.2 Solutions

We now consider some analytic solutions to our equations of motion for the unbounded
PVM, before discussing the transition to chaos. As we are considering quantum vortices
which are only stable for Γ = ±h/m, we limit this discussion to configurations of vortices
where Γ can take only two possible values. of ±A for some constant A.

First, we examine the behaviour of pairs of point vortices. Consider a pair of vortices
at (x, y), (−x,−y) with identical circulation Γ. Note that any pair of vortices at (x1, y1),
(x2, y2) can be mapped to this by selecting a coordinate system with the origin at
((x1 + x2)/2, (y1 + y2)/2), and recalling that a translation of an entire system of point vor-
tices does not modify the dynamics.

The velocities of the vortices are then:

v1 =

(
−Γy

4π(x2 + y2)
,

Γx

4π(x2 + y2)

)
, v2 =

(
Γy

4π(x2 + y2)
,

−Γx

4π(x2 + y2)

)
.

Transforming to polar coordinates we have:

v1 =

(
2x

r

(
−Γy

4π(x2 + y2)

)
+

2y

r

(
Γx

4π(x2 + y2)

)
,
−y
r2

(
−Γy

4π(x2 + y2)

)
+
x

r2

(
Γx

4π(x2 + y2)

))
=

(
0,

Γ

4πr2

)
,

v2 =

(
−2x

r

(
Γy

4π(x2 + y2)

)
+
−2y

r

(
−Γx

4π(x2 + y2)

)
,
y

r2

(
Γy

4π(x2 + y2)

)
+
−x
r2

(
−Γx

4π(x2 + y2)

))
=

(
0,

Γ

4πr2

)
,

so both rotate at the same constant speed Γ/4πr about their joint centre, or Γ/2πδ where
δ is the separation between them. The positions of a pair of vortices of equal circulation at
time t are thus:

x1(t) =

(
x1 + x2

2
+ r cos

(
θ1 +

Γ

8π2r2
t

)
,
y1 + y2

2
+ r sin

(
θ1 +

Γ

8π2r2
t

))
,

x2(t) =

(
x1 + x2

2
+ r cos

(
θ2 +

Γ

8π2r2
t

)
,
y1 + y2

2
+ r sin

(
θ2 +

Γ

8π2r2
t

))
,
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2.1 The Point Vortex Model

where θ1 = arctan (y1 − y2)/(x1 − x2), θ2 = arctan (y2 − y1)/(x2 − x1), and (x1, y1), (x2, y2)
are the initial positions of the vortices.

Next, consider a pair of vortices at (x1, y1), (x2, y2) with opposite circulation: Γ2 = −Γ1.
We then have:

v1 =

(
−Γ2(y1 − y2)

2πr2
12

,
Γ2(x1 − x2)

2πr2
12

)
,

v2 =

(
−Γ1(y2 − y1)

2πr2
12

,
Γ1(x2 − x1)

2πr2
12

)
=

(
−Γ2(y1 − y2)

2πr2
12

,
Γ2(x1 − x2)

2πr2
12

)
= v1.

The vortices have identical velocity, so move parallel to each other at a constant speed
v = |Γ1|/2πr12. Furthermore, if we consider the vector from the first to the second vortex
(x2 − x1, y2 − y1), then we have (x2 − x1, y2 − y1) · v1 = 0; the vortices move perpendicular
to the line between them.

The positions of a pair of vortices with opposite circulation are then:

x1(t) =

(
x1 −

Γ2(y1 − y2)

2πr2
12

t, y1 +
Γ2(x1 − x2)

2πr2
12

)
,

x2(t) =

(
x2 −

Γ2(y1 − y2)

2πr2
12

t, y2 +
Γ2(x1 − x2)

2πr2
12

)
.

We illustrate the trajectories of both of these combinations in Fig. 2.5.
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Figure 2.5: [Dimensionless units] Velocity fields and trajectories of pairs for vortices under
the point vortex model. Two positive vortices with circulation Γ = 1 are shown
in (a). Two vortices with opposite circulation are shown in (b), with |Γ| = 1 for
both.
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Chapter 2. 2-D Models

Although slightly more complicated analytic solutions exist, these two behaviours, the
co-rotation of a like-signed pair, and the co-translation of an opposite-signed pair, form the
kernel of the dynamics seen for the larger systems of vortices discussed in this work.

A detailed discussion of solutions, with the looser restriction that Γi ∈ R, to the N -
vortex problem can be found in [242]. Perhaps the most salient point with respect to this
work is the emergence of chaos: systems of 3 or fewer vortices are integrable [243], while
systems of 4 vortices are non-integrable except for cases where the total vorticity is zero
[244, 245], with all systems of 5 or more vortices non-integrable and thus exhibiting chaotic
dynamics [246].

We note that families of (unstable) stationary and translating solutions exist [247], a
selection of which are illustrated in Fig. 2.6 for interest.
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2.1 The Point Vortex Model

(a) (b)

(c) (d)

Figure 2.4: Four realisations of the point vortex model in a disc. Positive vortices are
marked with red discs, negative vortices with blue discs. The hard wall bound-
ary imposed is shown as a dashed black line, with the streamlines of the flow
calculated numerically shown in green.
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Figure 2.6: [Dimensionless units] Selected stationary solutions of the point vortex model.
Vortices with circulation Γ = 1 are marked with red discs, those with circula-
tion Γ = −1 with blue discs, with streamlines shown in green.
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2.2 The Gross-Pitaevskii Equation

2.2 The Gross-Pitaevskii Equation

We wish to model the dynamics of a weakly interacting, dilute Bose gas, at very low or
zero temperature. In principle one could do this by constructing an n-body wavefunction,
which would obey the Schrödinger equation; in practice this is unwieldy for BECs typically
containing upwards of 103, or as many as 109, particles [48, 248]. Mean-field theory allows
for a more manageable approach. The assumption is made that particle interactions are
binary, which can be justified by the dilute nature of the system, and that every particle is
described by a single macroscopic wavefunction ψ(r, t), with r position and t time.

The dynamics of such a wavefunction ψ(r, t) associated with a Bose-Einstein condensate
can be described by the Gross-Pitaevskii equation (GPE) [42]:

i~
∂

∂t
ψ(r, t) =

(
− ~

2m
∇2 + g|ψ(r, t)|2 + V (r, t)− µ

)
ψ(r, t), (2.8)

where ~ is the reduced planck constant, m is the mass of the boson comprising the system,
g governs the strength of particle-particle interactions, V is an external potential field, and
µ is the chemical potential. The number density of atoms is n(r, t) = |ψ(r, t)|2, with the
wavefunction then normalised such that the integrated number density gives the total num-
ber of atoms N : ∫

|ψ(r, t)|2d3r = N.

Also known as the nonlinear Schrödinger equation (NLSE), it is an enduringly popular
model for describing the dynamics of BECs at zero temperature, as it captures many phys-
ical aspects of such systems, and exists as part of a larger theoretical framework capable
of a more comprehensive description, including finite temperature effects and multispecies
systems. Perhaps surprisingly, it has been successful in modelling the dynamics of Bose-
Einstein condensates for a range of scenarios with temperatures as high as roughly half
the critical temperature [249]. The GPE is also used as a phenomenological model for su-
perfluid helium, although it should be stressed that it does not capture the features of the
excitation spectrum of helium.

The first and third terms on the RHS describe the energy of a particle in a potential
field V , while the second term describes interactions between particles in the condensed
state, with the strength of interactions generally taken to be 4π~2as/m, where as is the s-
wave scattering length of the boson. A detailed derivation of the GPE is given in Appx.
A.2

2.2.1 Time-Independent GPE

We find a time-independent version of the GPE by writing the wavefunction as ψ(r, t) =
ψ0(r), with ψ0(r) a stationary solution, and taking the external potential to be constant in
time. Inserting this into eq. (2.8) gives:

0 =

(
− ~

2m
∇2 + g|ψ0(r)|2 + V (r)− µ

)
ψ0(r), (2.9)
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Chapter 2. 2-D Models

the time-independent GPE. We can use this to find stationary solutions of the GPE, which
will be useful as trial solutions to the full time-dependent GPE. We note that, in the ab-
sence of interactions, this reduces to the standard time-independent Schrödinger equation,
with the chemical potential µ then mapping to the energy per particle.

2.2.2 Hydrodynamic Formulation

The GPE can be reinterpreted as a set of hydrodynamic equations via the Madelung
transform. This viewpoint can be helpful when trying to conceptualise the dynamics of
condensates. The complex-valued wavefunction is rewritten in terms of magnitude and an-
gle:

ψ(r, t) = R(r, t) exp (iφ(r, t)), (2.10)

and we relate the magnitude of the wavefunction to the fluid mass density as ρm = mR2,
and the phase to the fluid velocity as v = ~∇φ/m. Inserting eq. (2.10) into the GPE and
separating out the real and imaginary terms yields two equations which, after some manip-
ulation [250] can be stated as a continuity equation:

∂ρm

∂t
+∇ · (ρmv) = 0, (2.11)

and an equation akin to Euler’s equation for an inviscid fluid:

Dv

Dt
= −∇p

ρm

− ∇P

ρm

−∇
(
V

m

)
, (2.12)

where D/Dt is the material derivative, p = (g/2) (ρm/m)2 is the pressure, and
Pij = (−~2/4m2)ρm(∂2/∂xi∂xj) ln ρm is the so-called quantum pressure.

2.2.3 Healing Length

The healing length ξ describes the minimum distance over which a large perturbation
can recover to the equilibrium value, and provides a characteristic length scale of conden-
sates. Considering only the kinetic and interaction terms in the time-independent GPE, eq.
(2.9), we have:

~2

2m
∇2ψ(r, t) = g|ψ(r, t)|2ψ(r, t). (2.13)

We replace ∇2ψ(r, t) with the dimensionally consistent ψ(r, t)/ξ2 to give:

~2

mξ2
ψ(r, t) = g|ψ(r, t)|2ψ(r, t). (2.14)

Cancelling ψ(r, t) and using |ψ(r, t)|2 = n(r, t) we have:

~2

mξ2
= gn(r, t)
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2.2 The Gross-Pitaevskii Equation

=⇒ ξ =
~

√
mgn

. (2.15)

Note that the healing length will generally depend on the local condensate density. How-
ever, for the homogeneous GPE, as the condensate density is uniform the healing length is
also uniform, allowing us to write:

ξ =
~

√
mgρ,

(2.16)

where ρ = n(r, t) is the uniform number density of particles.

2.2.4 Speed of Sound

The dispersion relation of a weakly-interacting Bose gas is:

E(pe) =

√
ngp2

e

m
+

p4
e

4m2
, (2.17)

where pe is the momentum of elementary excitations, and E(pe) their corresponding ener-
gies [251]. If we consider excitations with small momentum, this relation becomes approxi-
mately:

E(pe) ≈
√
ng

m
pe, (2.18)

a linear, sound-like dispersion relation with a local speed of sound c =
√
ng/m. As with

the healing length, this quantity depends on the local condensate density n(r, t); for homo-
geneous condensates we can write:

c =

√
ρg

m
, (2.19)

where ρ = n(r, t) is the uniform number density of particles.

2.2.5 The Homogeneous Dimensionless GPE

Bose-Einstein condensation is understood to occur in a number of different regimes, from
ultracold atomic BECs with length scales on the order of 10−5–10−4 m [4], to the extremely
hot, extremely dense, cores of neutron stars [252], with length scales on the order of 103–
104 m. Additionally, the particular scales of atomic condensates are modified by the species
involved, by the strength and geometry of the trapping potential, and by the tuning of
particle-particle interaction strength through Feshbach resonance [253].

Rather than adjusting numerical parameters to accommodate this, it is conventional to
make the GPE dimensionless. Beyond allowing us to model the dynamics of a wide range
of systems in a generic fashion, this has the advantage of rescaling all values involved to
the scale of unity, avoiding scales at which floating point errors are liable to rapidly intro-
duce serious numerical inaccuracy into our calculations. We discuss the procedure for mak-
ing the GPE dimensionless for a homogeneous system; note that for other geometries, in
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particular harmonically trapped condensates, a similar procedure can be followed to find
dimensionless equations, but different characteristic scales may be needed.

We consider an infinite, homogeneous system, with no trapping potential (V (r, t) = 0),
and repulsive interactions, described by:

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∇2 + g|ψ(r, t)|2 − µ

)
ψ(r, t). (2.20)

In the ground state the wavefunction has no dependence on r or t, so the derivatives van-
ish, leading to:

0 =
(
g|ψ(r, t)|2 − µ

)
ψ(r, t), (2.21)

which immediately gives the homogeneous density of the system to be ρ = |ψ(r, t)|2 = µ/g.
Using the healing length ξ = ~/√mgρ as the characteristic length scale (See Sec. 2.2.3),

and the speed of sound c =
√
ρg/m as the characteristic velocity scale (See Sec. 2.2.4), we

can find a characteristic time scale through dimensional arguments of τ = ξ/c = ~/ρg,
with this set of units generally referred to as the natural units. Taking m, the mass of the
boson under consideration, as the obvious choice of mass scale, we can find a characteristic
energy scale, again using dimensional arguments: ε = mc2 = ρg.

Using this to rescale our variables yields:

t = τ t̄ =
~
ρg
t̄, r = ξr̄ =

~
√
mgρ

r̄, ψ =
√
ρψ̄, µ = ρgµ̄. (2.22)

Substituting these into eq. (2.20):

i~
√
ρ
ρg

~
∂

∂t̄
ψ̄(r̄, t̄) =

(
− ~2

2m

mgρ

~2
∇̄2 + gρ|ψ̄(r̄, t̄)|2 − ρgµ̄

)
√
ρψ̄(r̄, t̄), (2.23)

which, after cancellation, gives:

i
∂

∂t̄
ψ̄(r̄, t̄) =

(
−∇̄

2

2
+ |ψ̄(r̄, t̄)|2 − µ̄

)
ψ̄(r̄, t̄), (2.24)

which, since µ̄ is a constant now rescaled to unity, gives (dropping bars):

i
∂

∂t
ψ(r, t) =

(
−∇

2

2
+ |ψ(r, t)|2 − 1

)
ψ(r, t) (2.25)

as our final expression for the homogeneous dimensionless GPE, with the normalisation
condition: ∫

|ψ(r, t)|2d3r = 1. (2.26)
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2.2 The Gross-Pitaevskii Equation

2.2.6 Quantised Circulation

An important feature of the GPE is the emergence of quantisation of circulation. Con-
sider the circulation, defined as:

Γ =

∮
C

v · dl, (2.27)

where dl is the line element along the closed path C. We have v = ~
m
∇φ, which we substi-

tute in:

Γ =
~
m

∮
C

∇φ · dl. (2.28)

We require that the wavefunction be single-valued, leading to:

exp(iφ0) = exp(iφ0) exp(i∆φ), (2.29)

where φ0 is the phase at the start of the integration path, and ∆φ is the change in phase
along the integration path. For this to hold, we require that ∆φ = 2πn, for n ∈ Z. Return-
ing to eq. (2.28), this immediately restricts values of the circulation to:

Γ = n
h

m
, (2.30)

that is, the circulation can only take values of integer multiples of h/m, referred to as the
quantum of circulation. Compare this to classical fluids, where the circulation must be real
but is otherwise unconstrained.

For n 6= 0, note that a singularity necessarily occurs in the phase and velocity; thus in
order to avoid infinite energy density at the centre of such vortices the density of the con-
densate must vanish at these points. Such vortices can be viewed as topological defects in
the phase. We note that so-called multicharged vortices, i.e. vortices where |n| > 1, are
unstable, unless under rapid rotation, and decay into n singly-charged vortices [254,255].

2.2.7 Basic Solutions

Because of the nonlinearity of the GPE few analytic solutions are known, and we must
rely on numerical methods to understand the more complex behaviour of the equation.
Nevertheless, we consider a few simple known solutions which illuminate some features of
these systems.

First, consider the time-independent 1-D GPE without an external potential:

− ~
2m

∂2

∂x2
ψ(x) + g1-D|ψ(x)|2ψ(x)− µ1-Dψ(x) = 0, (2.31)

where g1-D and µ1-D are the interaction strength and chemical potential for a 1-D system,
with the boundary condition ψ(0) = 0, corresponding to a hard wall boundary at x = 0,
and ψ(x) =

√
ρ as x→∞. This has solution:

ψ(x) =
√
ρ tanh

(
x

ξ

)
, (2.32)

34



Chapter 2. 2-D Models

shown in Fig. 2.7. The form of this solution gives an insight into how the density of a con-
densate governed by the GPE heals from large perturbations; it is apparent that there is
a minimum distance related to the healing length ξ as defined in Sec. 2.2.3 over which the
condensate density can recover the bulk value from a depletion to zero.

0 1 2 3 4 5

x/ξ

0

0.2

0.4

0.6

0.8

1

|ψ̄
|2

Figure 2.7: Density profile of a condensate described by the GPE in the presence of a hard
wall boundary at the origin.

The GPE can support solitary wave solutions, in particular solitons: localised non-dispersive
wave packets sustained by the nonlinearity of the system. The GPE can support bright
and dark solitons, named for their appearance in nonlinear optics [256], depending on the
sign of the interaction parameter g. As we only consider repulsive interactions in this work
we shall only discuss dark solitons, which consist of a dip in the density, coinciding with a
phase slip of up to π. The 1-D dark soliton solutions [257,258] are given by:

ψ(x, t) =
√
ρ exp

(
−iµ1-D

~
t

)[√
1− v2

c2
tanh

(√
1− v2

c2

x− vt
ξ

)
+
iv

c

]
(2.33)

where c is the speed of sound and v is the speed of the soliton, with several examples shown
in Fig. 2.8. The deepest possible soliton, with the density dropping to zero at its center,
has v = 0, and a sharp phase slip of π; shallower solitons have correspondingly greater
speeds and smaller, softer phase slips.

Solitary wave solutions also exist in higher dimensions, but are not true solitons as they
are unstable and decay via the snake instability into other topological defects [92]. How-
ever, recent work has had some success in finding stable solitons in higher dimensions through
time-modulated traps, see e.g. [259].

In Sec. 2.2.6 we discussed the quantisation of circulation in quantum fluids, and that the
condensate density must vanish at the corresponding singularity in the phase. Such topo-
logical defects are supported in the 2-D and 3-D GPE, respectively as point-like vortices
(with a finite core) and as vortex lines.
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Figure 2.8: Density (a) and phase (b) profiles of 1-D dark soliton solutions to the GPE
with a range of speeds: v = 0 (solid line), v = 0.5 (dashed line), v = 0.75
(dotted line), and v = 0.9 (dot-dashed line).

Vortices in 2-D are azimuthally symmetric, and in 3-D are symmetric about the axis of
the vortex line (disregarding distortions due to sound waves, interactions with other vor-
tices, and interactions with boundaries), and the solution for a single vortex can be written
as:

ψ(r, θ) = f(r)
√
ρ exp (niθ), (2.34)

where n ∈ Z is the winding number or charge of the vortex, and f(r) describes the density
profile of the vortex. No analytical form exists for f(r); we will discuss approximations to
f(r) and finding the true vortex solution numerically in Sec. 3.3.4. We show the density
profile and phase near a singly-charged vortex in Fig. 2.9, noting the coincidence of the
singularity in the phase with the condensate density vanishing. In the related context of
4He, many-body simulations show that the density in the vortex cores, while still depleted,
does not vanish [260].

Recall that the gradient of the phase can be related to the local fluid velocity by v =
~
m
∇φ (Sec. 2.2.2). Combining this with eq. (2.34) gives an expression for the velocity around

a vortex:

v(r, θ) =
n~
mr

θ̂, (2.35)

where θ̂ is the azimuthal unit vector. Note that the velocity is entirely azimuthal, and the
speed is proportional to 1/r, as for the point vortices previously discussed in Sec. 2.1.
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Figure 2.9: [Dimensionless units] Density (a) and phase (b) of a 2-D condensate with a
singly-charged vortex at the origin.

2.2.8 Vortex-Antivortex Annihilation

The reconnection of vortex filaments [261] in superfluids has long been known to play a
critical role in the dynamics of quantum turbulence [262]. In 2-D condensates such recon-
nection events take the form of vortex-antivortex annihilations. When vortices of opposite
signs approach within a distance comparable to the healing length they are mutually de-
stroyed, releasing a burst of sound. One such annihilation event is shown in Fig. 2.10.

It has been noted that, in the absence of finite temperature effects, the annihilation pro-
cess is a four-body process [263, 264]: an interaction with a third body, typically another
vortex, is necessary to push the vortices within the dipole together and start the annihi-
lation. The vortices within the dipole then form a Jones-Roberts soliton [265], a crescent
shaped dip in the density which propagates at close to the speed of sound. These solitons
are liable to reform as a vortex dipole, unless disrupted by some obstacle, typically a fourth
vortex. This process is neatly summarised by the Feynmann diagram shown in Fig. 2.11,
adapted from [264]: a vortex and an antivortex are forced together by a vortex of either
arbitrary sign, emitting sound and producing a Jones-Roberts soliton, while the catalytic
vortex remains. The Jones-Roberts soliton propagates through the condensate, until it col-
lides with another vortex, again of arbitrary sign, destroying the soliton and emitting a
second burst of sound, again with the incident vortex unaffected. The initial annihilation
event and the subsequent dissipation of the Jones-Robert soliton are driven by interaction
with other, catalytic, vortices in this illustration, but can also be triggered by interactions
with boundaries, other physical objects such as lasers, and sound.

It should be stressed that the route to annihilation described here and illustrated by Fig.
2.11 is far from the only way in which annihilation can occur, nor necessarily the most fre-
quent, but rather the prototypical interaction. The driving together of two vortices with
opposite circulation can also be due to interactions with obstacles or boundaries in the
condensate, the action of sound waves or bulk flows, two vortex-antivortex dipoles collid-
ing, or more generally the flow induced by all other vortices present. The Jones-Robert
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Figure 2.10: [Dimensionless units] GPE simulation of an isolated annihilation event. We
show the condensate density in the top row (a-c), and the condensate phase in
the bottom row (d-f). In panels (a,d) we show the initial wavefunction of two
vortices of opposite circulation, marked with hollow red and blue discs, with
a separation of 1.4ξ, which annihilate, healing the 2π phase slip and emitting
sound, to form a Jones-Roberts soliton visible in panels (b,e), spreading into
the condensate in (c,f). Note the different scale for the top and bottom rows,
and that these snapshots are cropped from a larger condensate, with the spe-
cific event shown here occuring far from boundaries.

soliton is likewise not necessarily disrupted by another vortex, but could instead involve
interactions with obstacles, boundaries, or intense sound waves. Furthermore, the pres-
ence of thermalised atoms at finite temperatures acts to damp the motion of vortices [266,
267], driving dipoles towards annihilation and disrupting the resulting Jones-Robert soliton
without the presence of any of the mechanisms discussed above.

2.2.9 Trapping Potentials and Reduced Dimensionality

There are a number of justifications for studying the dynamics of condensates in 2-D
and 1-D systems. Quantum fluids inform our understanding of classical fluids through
strong analogies between them, and many regimes occur where classical fluids are effec-
tively 2-D, for example atmospheric systems, where the scale of one dimension can be or-
ders of magnitude smaller than the others, and strongly rotating systems, where the flow
is uniform in the direction parallel to the axis of rotation, following the Taylor-Proudman
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Figure 2.11: Feynmann diagram for the four-body annihilation process described, with
time advancing from left to right. The straight solid lines represent vortices,
with v+, v−, v± corresponding to vortices, antivortices, and incident vor-
tices of arbitrary sign, respectively. The dashed black line represents a Jones-
Roberts soliton, and the wavy lines indicate sound emitted at each vertex.

Theorem (see, e.g. [139]). From a more philosophical point of view, one could argue that
the existence of such quantum systems is alone enough to merit investigation of the novel
physics that emerge. Moreover, there are many practical reasons for considering systems of
reduced dimensionality.

Firstly, the dynamics of vortices are inherently simpler in 2 dimensions, and depending
on the focus of a numerical experiment could be modelled using the extremely fast and
simple PVM as we do. Solitonic solutions, although possible in higher dimensions, are best
understood and most stable in 1-D [268]; there is considerable crossover here with the field
of nonlinear optics, see, e.g. [269], where 1-D systems are particularly relevant for the ge-
ometry of optical fibres. From an experimental viewpoint, quasi-2-D and quasi-1-D conden-
sates can be realised through appropriate trapping potentials [270]. Additionally, the imag-
ing of lower dimensional systems [85], see Fig. 2.12, is considerably less involved than the
imaging of 3-D systems, as imaging techniques yield column integrated densities, requiring
several simultaneous orthogonal projections to reconstruct a 3-D field.

From a numerical viewpoint it is typically far less computationally intensive to simulate
a 2-D system than it is to simulate a 3-D system; the 2-D GPE simulations in this thesis
were performed on either a desktop computer or on a single node of a High-Performance
Computing (HPC) cluster, while 3-D simulations of any useful resolution can require vast
amounts of CPU-hours over multiple nodes.

Due to long-wave fluctuations in the phase [41], a true condensate can only exist in 2-D
in the zero temperature limit [272]. However, below a critical temperature
TBKT = (π~2/2m)ρs, where ρs is the superfluid density just below TBKT, a superfluid phase
transition occurs. This transition, the Berezinksii-Kosterlitz-Thouless (BKT) transition
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Figure 2.12: Absorption image of an irregular vortex lattice in a rotating quasi-2-D con-
densate, reproduced from [271]. The intensity corresponds to the column den-
sity of the condensate post expansion, with vortices appearing as dark holes.

[273], is associated with the generation of bound vortex-antivortex dipoles, and charac-
terised by the existence of a condensate with fluctuating phase [274], known as a quasi-
condensate. In trapped systems the momentum of excitations is bounded, and the phase
fluctuations reduced, by the finite size of the condensate; in particular, in the geometries
we consider the phase fluctuations well below the critical temperature are small, and the
system is a true condensate in the equilibrium state [272].

We will now discuss specific trapping potentials and the resulting condensate geometries.
Due to the relative ease with which such traps can be generated experimentally [50], BECs
are typically confined using a harmonic potential of the form:

V (x, y, z) = mω2
x

x2

2
+mω2

y

y2

2
+mω2

z

z2

2
, (2.36)

where ωx, ωy, ωz are the trapping frequencies controlling the strength of trapping in a par-
ticular direction. When ωx = ωy = ωz a spherical condensate results, shown in Fig. 2.13
(a). By varying the trapping frequencies it is possible to produce quasi-lower-dimensional
condensates. Consider the trapping potential:

V (x, y, z) = mω2
⊥

(x2 + y2)

2
+mω2

z

z2

2
, (2.37)

where ω⊥ controls the strength of trapping perpendicular to the z-axis. In the situation
where ωz � ω⊥, provided ~ωz � µ, the condensate is very tightly confined in the z di-
rection in comparison with the x and y directions, resulting in a highly oblate condensate,
often referred to as a ‘pancake-shaped’ condensate, shown in Fig. 2.13 (b).

This tight confinement causes the wavefunction along z to become frozen in the time-
independent ground state of the harmonic oscillator, allowing us to write:
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ψ(r, t) = ψ⊥(x, y, t)ψz(z), (2.38)

with
∫
|ψ⊥|2d2r = N conventionally. With significant trapping in the z-direction, atom-

atom interactions are dominated by kinetic and potential energy, such that the solution
along z approaches the solution in the absence of interactions, giving the Gaussian ground
state:

ψz(z) = π−1/4l−1/2
z exp (−z2/2l2z), (2.39)

with lz =
√

~/mωz the harmonic oscillator length, and ψz normalised by
∫
|ψz|2dz = 1.

Substituting this into the GPE, eq. (2.8), leads to a 2-D GPE suitable for modelling such
systems, with the main difference being the modified interaction term g2-D = g/(lz

√
2π),

and the modified chemical potential µ2-D = µ− ~ωz/2.

Figure 2.13: Illustrative isosurfaces of condensates confined by harmonic trapping poten-
tials with (a) ωx = ωy = ωz, (b) ωz � ω⊥; a ‘pancake-shaped’ condensate, and
(c) ωz � ω⊥; a ‘cigar-shaped’ condensate.

Similarly, in the situation where ωz � ω⊥, the condensate is very tightly confined per-
pendicular to the z-axis, in comparison with the z-direction, resulting in a highly prolate
condensate, frequently called a ‘cigar-shaped’ condensate, shown in Fig. 2.13 (c). In a sim-
ilar way to quasi-2-D condensates, such condensates can be modelled by a 1-D GPE, with
modified interaction term and chemical potential. Our focus is on quasi-2-D condensates;
more details on quasi-1-D condensates can be found in, e.g., [275].

As discussed in Sec. 2.2.3 and Sec. 2.2.4, the healing length and speed of sound depend
on the local density of the condensate. As the density is non-uniform in many trapped sys-
tems, including harmonic traps, this becomes a complicating factor which can limit exper-
imental studies, for example when considering correlation lengths [79], as well as making it
more difficult to make comparisons with homogeneous classical systems.

Experimentalists have realised systems with a homogeneous region using a variety of
schemes [77, 79, 276], with the most successful to date able to produce a system uniform
to the edges of the trap, with an area of up to 900 µm2 , in a variety of shapes [80]. This
is achieved by confinement with two orthogonal lasers, one propagating in the x-direction
and prepared in a Hermite-Gauss mode [277] with a node in the z = 0 plane providing
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strong confinement in the z-direction, and the other a hollow beam propagating in the z-
direction providing confinement in the xy-plane. An intensity mask on the latter modifies
the shape of the confinement to produce disc, box, double-rectangle, or arbitrarily shaped
condensates as required.

We model disc traps using a potential of the form:

V (r) =
1

2
V0r

2

(
r

r0

)α
, (2.40)

where V0 controls the strength of the trap, r0 controls the extent of the trap and α controls
the steepness of the trap wall - we typically use V0 = 1, r0 = 180 (in dimensionless units)
and α = 100, resulting in the condensate shown in Fig. 2.14 (a).
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Figure 2.14: [Dimensionless units] Density |ψ|2 for typical condensate ground states in (a)
box-like traps with a potential of the form given in eq. (2.40) with r0 = 180
(in dimensionless units) and α = 100, (b) harmonic traps with a comparible
Thomas-Fermi radius (Sec. 2.2.11) (with colour scales scaled to the maximum
density of each condensate). Note the uniform density for almost the full ex-
tent of the condensate in (a), in comparison with the strongly radially depen-
dent density in (b).

2.2.10 Physical Quantities

In order to characterise our condensates we will make use of their energy and momenta.
Firstly, the energy functional of the GPE is:

ε(ψ) =
~2

2m
|∇ψ|2 +

g

2
|ψ|4 + V |ψ|2, (2.41)

with the first term corresponding to kinetic energy Ekin, the second to atom-atom interac-
tions Eint, and the third to potential energy Epot associated with the external potential V .
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The total energy of the condensate is then:

E =

∫
ε(r)dr. (2.42)

This can be straightforwardly decomposed into the contributions from the different types
of energy as:

E = Ekin + Eint + Epot, (2.43)

with

Ekin =

∫
~2

2m
|∇ψ|2dr, Eint =

∫
g

2
|ψ|4dr, Epot =

∫
V |ψ|2dr. (2.44)

The linear momentum operator for a quantum mechanical system is:

p̂i = −i~ ∂

∂xi
, (2.45)

giving the total linear momenta as:

Pxi = −i~
∫
ψ∗

∂

∂xi
ψdr. (2.46)

Then, the angular momentum operator about the z-axis is

l̂z = −i~
(
x
∂

∂y
− y ∂

∂x

)
, (2.47)

with the total angular momentum:

Lz = −i~
∫
ψ∗
(
x
∂

∂y
− y ∂

∂x

)
ψdr. (2.48)

Rewriting in terms of the homogeneous dimensionless units given in Sec. 2.2.5 yields:

Ekin =

√
µ

m

~
4πas

Ēkin, Eint =

√
µ

m

~
4πas

Ēint, Epot =

√
µ

m

~
4πas

Ēpot (2.49)

where

Ēkin =

∫
|∇̄ψ̄|2

2
dr̄, Ēint =

∫
|ψ̄|4

2
dr̄, Ēpot =

∫
V̄ |ψ̄|2dr̄, (2.50)

are the dimensionless kinetic energy, interaction energy, and potential energy respectively.
Likewise, we have:

Pxi =
~

4πas
P̄xi , Lz =

~ξ
4πas

L̄z, (2.51)

where

P̄xi = −i
∫
ψ̄∗

∂

∂x̄i
ψ̄dr̄, L̄z = −i

∫
ψ̄∗
(
x̄
∂

∂ȳ
− ȳ ∂

∂x̄

)
ψ̄dr̄ (2.52)
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2.2 The Gross-Pitaevskii Equation

are the dimensionless linear and angular momenta of our system. The kinetic energy can
be further split into compressible and incompressible components,

Ekin = Ec
kin + Ei

kin, (2.53)

using
√
ρvj = (

√
ρvj)

c + (
√
ρvj)

i, with ∇ · (
√
ρvi) = 0, and v = (~/m)∇φ the fluid

velocity [198].

2.2.11 Thomas-Fermi Profile

Consider a stationary solution to the dimensionless, homogeneous GPE with repulsive
interactions. Such a solution must satisfy the time-independent GPE:

(
−∇

2

2
+ |ψ(r)|2 + V (r)− 1

)
ψ(r) = 0. (2.54)

Furthermore, suppose the external potential V (r) is nonzero, leading to spatial variation
in the wavefunction. We assume that V (r) varies slowly with r, and thus ψ varies slowly
and ∇2ψ is small compared to the atom-atom interactions, allowing us to neglect the ki-
netic term in eq. (2.54) to give:

(
|ψ(r)|2 + V (r)− 1

)
ψ(r) = 0, (2.55)

which leads to |ψ(r)|2 = 1− V (r), from which we can construct the approximate solution:

ψ(r) =

{√
1− V (r), V ≤ 1

0, otherwise.
(2.56)

This is the Thomas-Fermi profile. It is an extremely useful starting point for finding true
ground state solutions to the time-dependent GPE by methods discussed in Sec. 3.3.2 and
3.3.3. In Fig. 2.15 we compare the Thomas-Fermi profile with the actual ground state for
two geometries.

44



Chapter 2. 2-D Models

-10 -5 0 5 10

x

0

0.02

0.04

0.06

0.08

0.1

0.12

|ψ
|2

(a)

-10 -5 0 5 10

x

0

0.2

0.4

0.6

0.8

1

1.2

|ψ
|2

(b)

Figure 2.15: [Dimensionless units] Comparison of Thomas-Fermi profile (red dashed line)
with ground state solution (solid blue line) in two trapped geometries: a har-
monic trap potential (a) and a box trap type potential (b).

This approximate solution gives a useful estimate of the size of a condensate. The con-
densate density drops to zero when V (r) = 1, so for our disc traps (Sec. 2.2.9) we have:

rTF = α+2

√
2

V0

rα0 (2.57)

=⇒ rTF → r0 as α→∞.

For harmonic trapping potentials, a similar approach finds the approximate Thomas-
Fermi radius to be:

rTF =

√
2µ

mω2
r

. (2.58)

In this chapter we have discussed the models we will use to simulate two-dimensional
quantum turbulence. In the next chapter we shall detail the numerical methods use to re-
alise these simulations.
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Chapter 3

Numerical Methods I

We introduce methods of numerical integration, which are applied in both the 2-D and
3-D numerical experiments, and describe the implementation of our 2-D models. We also
describe some numerical procedures that are particular to our analysis.

3.1 Numerical Differentiation & Integration

3.1.1 Finite Difference Schemes

We numerically approximate spatial derivatives using finite difference methods [278]. For
a quantity F (x) with known values F0, F1, F2, ..., Fn−2, Fn−1, Fn at corresponding regularly
spaced points x0, x1, x2, ..., xn−2, xn−1, xn, with a constant separation of ∆x between neigh-
bouring points, we make use of the following central difference approximations:

dF

dx

∣∣∣∣
x=xi

=
−Fi−1 + Fi+1

2∆x
+O((∆x)2), (3.1)

dF

dx

∣∣∣∣
x=xi

=
1
12
Fi−2 − 2

3
Fi−1 + 2

3
Fi+1 − 1

12
Fi+2

∆x
+O((∆x)4), (3.2)

d2F

dx2

∣∣∣∣
x=xi

=
Fi−1 − 2Fi + Fi+1

(∆x)2
+O((∆x)2), (3.3)

d2F

dx2

∣∣∣∣
x=xi

=
− 1

12
Fi−2 + 4

3
Fi−1 − 5

2
Fi + 4

3
Fi+1 − 1

12
Fi+2

(∆x)2
+O((∆x)4). (3.4)

Detailed derivations of these schemes are given in Appx. A.5.1.
Note that these methods require a number of points either side of the point Fi in order

to evaluate the approximation at Fi. We use ‘ghost’ points as a numerical ‘trick’ to allow
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3.1 Numerical Differentiation & Integration

the evaluation of derivatives close to the boundary, and additionally to enforce particular
boundary conditions.

In some situations we require that the quantity F be 0 at the boundaries (Dirichlet bound-
ary conditions). This is enforced by setting F0 = Fn = 0 at each numerical step. Further
points beyond the region we are simulating are created and held to be 0; F−1 = Fn+1 = 0
for 2nd-order methods, and also F−2 = Fn+2 = 0 for 4th-order methods; higher-order meth-
ods will require yet further ghost points.

In other situations we require that the first derivative of F be 0 at the boundaries (Neu-
mann boundary conditions). This is achieved by setting F−1 = F1, Fn+1 = Fn−1 for the
2nd-order method, and additionally F−2 = F2, Fn+2 = Fn−2 for the 4th-order method. Sub-
stituting these values into eq. (3.1) or (3.2) appropriately at x = x0 or x = xn immediately
gives the approximation to the derivative at the boundary as zero by our choice of F at the
ghost points.

In some contexts the spacing of the discretisation points will be irregular, and we will
need to approximate derivatives using a more general form of these finite difference meth-
ods.

Suppose we have a function F , with known values F0, F1, F2, ..., Fn−2, Fn−1, Fn at posi-
tions x0, x1, x2, ..., xn−2, xn−1, xn, where xi − xi−1 is not necessarily constant, and introduce
the notation ∆+i = xi+1 − xi, ∆−i = xi − xi−1. We then use the following 2nd-order approx-
imations to the first and second derivatives:

dF

dx

∣∣∣∣
x=xi

=
−∆+iFi−1 + (∆−i −∆+i)Fi + ∆−iFi+1

2∆+i∆−i
+O(∆2

i ) (3.5)

d2F

dx2

∣∣∣∣
x=xi

= 2

[
∆+iFi−1 − (∆+i + ∆−i)Fi + ∆−iFi+1

∆+i∆−i(∆+i + ∆−i)

]
+O(∆2

i ) (3.6)

where ∆i is the larger of ∆+i and ∆−i; note that when we use these schemes the numerical
grid is set up in such a way that there is at most a factor of two difference between any
intervals. We discuss the derivation of these methods in Appx. A.5.2.

3.1.2 Runge-Kutta Methods

We evolve our numerical solutions to the point vortex model (PVM) and the Gross-
Pitaevskii equation (GPE) in time using explicit Runge-Kutta time-stepping methods [279].
Higher-order methods can be viewed as extensions of the 1st-order Euler method, with trial
steps forward in time made, and the system evolved forward in time by a linear combina-
tion of these trial steps with coefficients selected to match the Taylor expansion of the sys-
tem’s velocity up to the specified order. A detailed derivation in given in Appx. A.6.

We make use of a 4th-order method, frequently referred to as ‘the Classical Runge-Kutta
method’ or ‘RK4’, which, following the description of [280], consists of an initial value
problem:
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dy

dt
= f(t, y), y(t0) = y0

A time-step, ∆t > 0, is selected as a parameter governing the temporal resolution of the
solution. The solution yn+1 = y(tn+1) at tn+1 = (n + 1)∆t is then approximated by the
scheme:

k1 = f(tn−1, yn−1),

k2 = f

(
tn−1 +

∆t

2
, yn−1 +

∆t

2
k1

)
,

k3 = f

(
tn−1 +

∆t

2
, yn−1 +

∆t

2
k2

)
,

k4 = f (tn−1 + ∆t, yn−1 + ∆tk3) ,

yn = yn−1 + ∆t

(
k1 + 2k2 + 2k3 + k4

6

)
+O((∆t)4).

We also make use of a 6th-order scheme, detailed in Appx. A.6.

In all of our GPE simulations the right hand side of the dimensionless inhomogeneous
GPE takes the place of f . In our PVM simulations the right hand side of the equations
of motion takes the place of f ; note that for a coupled system each step is calculated for
each ODE concurrently, that is, we calculate k1 for the x and y velocity components of all
vortices first, then k2 for the x and y velocity components of all vortices, and so forth.

We note that time-adaptive extensions of Runge-Kutta schemes exist [281], which consist
of nth-order methods used to estimate the error in the current time-step, and an embedded
(n − 1)th-order method used to perform the time-step itself. By selecting upper and lower
thresholds for the error, and adjusting the time-step appropriately when these thresholds
are breached, the scheme adapts to handle rapid or slow change in the solution accurately
and efficiently. We have elected not to use such schemes for a number of reasons:

• Adaptive time-steps create additional work to approximate solutions at regularly spaced
intervals.

• Extra function evaluations necessary for adaptive schemes can be less efficient than
choosing an appropriate time-step initially.

• Convergence criteria can be found for the GPE (see [236]), allowing us to choose an
appropriate time-step.

• The PVM is a system of coupled ODEs; single pairs of vortices interacting tend to
force the time-step down for the entire system unnecessarily, and it is not practical to
use different time-steps for different individual ODEs in the system.

• The time scale of motion does not typically fluctuate dramatically in our simulations.
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3.2 The Point Vortex Model

3.1.3 Simpson’s Rule

Numerical integration in space is performed using Simpson’s rule, a Newton-Cotes scheme
which approximates integrals by quadratic polynomials [282]. For a function f(x) with
known values f(x0), f(x1), ..., f(xn) for some regularly spaced x0, x1, ..., xn, with ∆x =
xi − xi−1, the integral of f over this region is approximated by:

∫ xn

x0

f(x)dx =
∆x

3
(f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+ ...+4f(xn−1)+f(xn)). (3.7)

Note that this requires an odd number of known function values; the integral can be
evaluated for functions known at an even number of points by padding with zeros. This
rule can be easily extended to higher dimensions by repeating over each dimension as re-
quired.

3.2 The Point Vortex Model

Having introduced the numerical schemes used to evolve our PVM simulations, we dis-
cuss the accuracy of our implementation, and introduce a further method for the efficient
enforcement of periodic boundary conditions.

3.2.1 Accuracy

We test the qualitative and quantitative accuracy of our implementation of the point
vortex model, using known exact solutions and conserved quantities.

Pairs of vortices with identical or opposite circulation follow stable linear or circular tra-
jectories, as discussed in Sec. 2.1.2, and the separation between the constituent vortices
should remain constant. In Fig. 3.1 we show the change in separation |δ − δ0|, where δ is
the separation of vortices and δ0 is the initial separation, for a pair of like-sign vortices,
and for a pair of opposite-sign vortices, with an initial separation δ = 1 and circulation
|Γ| = 1. Their motion is simulated using a 6th-order Runge Kutta scheme and a time-step
of ∆t = 10−3 as per our full simulations in Sec. 4.1.1.

The separation within opposite-sign pairs is well conserved (to within 10−10 after 106

time-steps), while the separation within like-sign pairs, while still conserved to within 10−2

after 106 time-steps, is noticeably less well conserved. We explore this further in Fig. 3.2,
which shows the derivative of the separation with respect to time as a function of the sep-
aration. It is clear that like-sign vortices approaching extremely close will lead to unex-
pected behaviour, however we expect these to be vanishingly rare events. Note also that
these deviations are particular to the numerical scheme used.

Knowing that numerical inaccuracy can be introduced in this manner, we make use of
the autonomous Hamiltonian associated with the point vortex model (see Sec. 2.1) as a
measure of the total energy of the system, and the first integrals of the Hamiltonian corre-
sponding to the linear and angular momenta [239] to quantify the accuracy of the full sim-
ulations of 500 vortices described in Sec. 4.1.1. As these four quantities are theoretically
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conserved, the deviation in them gives a measure of how accurate our numerical methods
are in evolving the system.

Figure 3.3 shows the absolute percentage change1 in the autonomous Hamiltonian over
the lifetime of the simulations. The energies of all realisations are conserved within 5%,
with the mean absolute percentage change being slightly over 1% and the median slightly
below 1%.
In Fig. 3.4 we explore the effect of changing the step-size on the conservation of the au-
tonomous Hamiltonian. We generate 20 initial vortex configurations, again with 500 vor-
tices and with the same distribution as for our full simulations. We then evolve them through
1000 time units using step-sizes between 10−3 and 10−1, so that for each step-size we use
each of the 20 configurations. We observe that the change in H scales like

√
∆t; in order

to improve the conservation of H by an order of magnitude we would need to reduce the
step-size by two orders of magnitude. Furthermore, Fig. 3.5 shows the values of ν ′/κ (the
value we are principally interested in estimating from these simulations, discussed in detail
in Sec. 4.1) extracted from these simulations as a function of the step-size used. No trend
in the value is evident, and so combined with the severe cost of improving the conservation
of H we conclude that our chosen step-size and numerical integration scheme are sufficient.

The absolute percentage change in the momenta are shown in Fig. 3.6, 3.7, and 3.8. The
angular momentum is conserved within 0.1% for all simulations, with the mean conserva-
tion better than 0.01%, while the linear momenta (with the exception of a single realisa-
tion) are conserved within 10−5%, and the mean and median conservation again orders of
magnitude better.

1The Hamiltonian is strictly speaking only defined up to a constant, with the relative change in the
Hamiltonian then (H(t)−H(0))/(H(0) + C); by making the conventional choice of C = 0 we maximise the
relative change, so as to consider the maximum error. We note also that, while the Hamiltonian of these
systems is not sign-definite, we have H � 0 for all of our systems at all times.
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Figure 3.1: [Dimensionless units] Absolute change in separation between a pair of point
vortices of opposite circulation (red) and identical circulation (blue), with an
initial separation of 1.
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Figure 3.2: [Dimensionless units] Rate of change in separation vs. initial separation for a
pair of point vortices with identical circulation.
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Figure 3.3: [Dimensionless units] Absolute percentage change in the autonomous Hamil-
tonian associated with the point vortex model in free space for 40 realisations,
discussed in detail in Sec. 4.1.1, vs. time t. Individual realisations are shown as
pale blue lines, with the mean indicated as a thick solid line, and the median as
a thick dashed line.

Figure 3.4: [Dimensionless units] Relative percentage change in the autonomous Hamilto-
nian after evolving through 1000 time units for a range of step-sizes ∆t, aver-
aged over 20 realisations for each step-size, with 95% confidence intervals indi-
cated. The blue line indicates scaling ∼

√
∆t.
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Figure 3.5: [Dimensionless units] Values of ν ′/κ (see Sec. 4.1) averaged over 20 simulations,
with 95% confidence intervals, for a range of step-sizes.
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Figure 3.6: [Dimensionless units] Absolute percentage change in the angular momentum Lz
for 40 realisations of the point vortex model, discussed in detail in Sec. 4.1.1,
vs. time t . Individual realisations are shown as pale blue lines, with the mean
indicated as a thick solid line, and the median as a thick dashed line.
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Figure 3.7: [Dimensionless units] Absolute percentage change in Px, the x-component of
the linear momentum, for 40 realisations of the point vortex model, discussed
in detail in Sec. 4.1.1, vs. time t. Individual realisations are shown as pale blue
lines, with the mean indicated as a thick solid line, and the median as a thick
dashed line.
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Figure 3.8: [Dimensionless units] Absolute percentage change in Px, the y-component of
the linear momentum, for 40 realisations of the point vortex model, discussed
in detail in Sec. 4.1.1, vs. time t. Individual realisations are shown as pale blue
lines, with the mean indicated as a thick solid line, and the median as a thick
dashed line.
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3.2.2 Ewald Summation

In Sec. 2.1.1 we introduced a crude method for imposing double periodic boundaries in
the PVM, involving a double infinite summation which in practice must be truncated at
some point. We now discuss an Ewald summation, derived by Weiss [283], which reduces
this to a single infinite summation by finding an analytical form for one of the summations.

Consider a configuration of N point vortices described by positions x and circulations
Γ within a periodic domain x, y,∈ [0, L). By introducing scaled quantities x′ = (2π/L)x,
Γ′ = (2π/L)Γ, we can calculate the velocities of the original vortices as:

dx

dt
=

1

4π

∑
j 6=i

Γ′j

∞∑
n=−∞

− sin(y′ij)

cosh(x′ij − 2πn)− cos(y′ij)
,

dx

dt
=

1

4π

∑
j 6=i

Γ′j

∞∑
n=−∞

sin(x′ij)

cosh(y′ij − 2πn)− cos(x′ij)
, (3.8)

which involve only a single summation (besides the summation over the vortices them-
selves). We still have to choose when to truncate the remaining summation; in order to
verify the accuracy of this method and get a feel for a suitable point at which to truncate
we compare the velocity at the boundaries as we increase the number of terms retained.
For perfectly periodic boundaries the velocities at (x, 0) and (x, L), and likewise at (0, y)
and (L, y), should be equal; in practice they differ, which we explore for 100 vortices in a
10 × 10 periodic domain in Fig. 3.9. The error rapidly decreases, reaching the level of nu-
merical noise by the time we include terms from n = −6 to n = 6, suggesting that this is a
natural point at which to truncate.

This method, and the method using ghost vortices described in Sec. 2.1.1, are suitable
for modelling vortices in an ideal fluid with periodic boundaries. However, they do not
match the dynamics of the GPE, even leaving aside such effects as sound and vortex-antivortex
annihilations, due to the periodicity of the phase, which must also wind around vortices in
a precise fashion. For the systems that we consider, consisting of even number of positive
and negative vortices, the correction to eq. (3.8) found by Griffin et al. [284] amounts to
imposing a background velocity given by:

ub =
N∑
i=1

Γi
(2π)2

êz × xi, (3.9)

where xi is the position of the ith vortex.
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Figure 3.9: Mean proportional error ε̄ in the velocity calculated at boundaries (x, 0) and
(x, L) (a), and (0, y) and (L, y) (b) when retaining terms from −n to n in the
calculation of velocity using the given Ewald summation, with standard devia-
tions σε inset.

3.3 The Gross-Pitaevskii Equation

In addition to the numerical methods for integrating solutions to the GPE, supplemen-
tary routines are needed to initialise simulations. Here we discuss finding ground state so-
lutions and imprinting vortices, as well as post-processing identification of vortices and re-
constructing their trajectories. We then quantify the accuracy of our simulations.

3.3.1 Ground State Solutions

The dynamic behaviour of quantum systems can be greatly affected by the initial con-
ditions [285], so it is natural to begin simulations from a ground state. Analytic solutions
often exist, but as we need to find the ground state solution for random configurations of
vortices it is convenient to use a reliable numerical method. A number of sophisticated
methods exist, see e.g. [286–288], but for ease of implementation two simple methods are
used: the imaginary time propagation method [285], and the dissipative Gross-Pitaevskii
Equation (DGPE) [289].

To reduce the computation time needed to find the ground state solution by these meth-
ods, the initial ‘guess’ wavefunction is taken to be the Thomas-Fermi profile, discussed in
Sec. 2.2.11, in both cases.
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3.3 The Gross-Pitaevskii Equation

3.3.2 Imaginary Time Propagation

The core idea of the imaginary time propagation method [285] is to perform a Wick ro-
tation:

t→ τ = −it, (3.10)

which leads to a diffusion-like equation with nonlinear forcing:

∂ψ

∂τ
=

(
∇2

2
− V − |ψ|2 + 1

)
ψ, (3.11)

here corresponding to the dimensionless, homogeneous GPE. Consider a wavefunction:

ψ(r, t) =
∑
n

ψn(r) exp{−iEnt/~}, (3.12)

with ψn and En respectively eigenfunctions and their corresponding eigenvalues. Under eq.
(3.11) the wavefunction decays as:

ψ(r, τ) = ψn(r) exp{−Enτ/~}. (3.13)

Note that the decay rate is linked to the eigenvalue; in particular the eigenfunctions with
the greatest eigenvalues, and hence the greatest energy, will decay fastest. In theory the
ground state can be found by evolving the system in imaginary time by the same numer-
ical scheme to be used for real time propagation, until all excited states have decayed. In
practice, the wavefunction is renormalised at every time-step to preserve optimal signal to
noise ratio, until the ground state energy has converged to within some desired threshold.

3.3.3 Dissipative Gross-Pitaevskii Equation

First introduced by Pitaevskii [290] to describe dissipation near the λ point, and later
honed by others [289, 291, 292], the dissipative Gross-Pitaevskii equation (DGPE) seeks to
model finite temperature effects on condensate dynamics by introducing dissipation in a
phenomenological manner. We will employ this model to approximate localised finite tem-
perature effects in Sec. 4.1.1, but it is also a convenient tool for identifying equilibrium
states. We make use of this to find ground states in geometries where the imaginary time
propagation method fails.

Following the derivation of Choi [291], we first consider the equation of motion for our
wavefunction ψ(r, t) under the (dimensionless, homogeneous) GPE:

i
∂

∂t
ψ(r, t) = Ĥψ(r, t), (3.14)

where

Ĥ =

(
−∇

2

2
+ |ψ(r, t)|2 + V (r, t)− 1

)
, (3.15)

which implies
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Ĥψ0 = 0 (3.16)

for a non-trivial equilibrium state ψ0. We seek a modified equation of motion that ap-
proaches an equilibrium state in time through a damping process. In order to describe a
relaxation process, the Hermitian operator Ĥ must be replaced by a non-Hermitian opera-
tor, say L̂:

i
∂

∂t
ψ(r, t) = L̂, ψ(r, t) (3.17)

with the anti-Hermitian part of L̂ associated with the mechanism driving toward equi-
librium. We can find a suitable form for L̂ by enforcing two requirements: that the anti-
Hermitian part must vanish when equilibrium is reached, and that we must recover the
usual T = 0 behaviour of the GPE when the anti-Hermitian part vanishes.

One can satisfy the former by taking the anti-Hermitian part to be −iγĤ, giving −iγĤψ0 =
0 from eq. (3.16), with γ a dimensionless, real parameter governing the strength of the
damping, and the minus sign by convention. It is apparent that taking Ĥ as the Hermi-
tian part of L̂ will yield the desired behaviour for γ = 0, giving us L̂ = (1 − iγ)Ĥ, and
allowing us to state the DGPE as:

i
∂

∂t
ψ(r, t) = (1− iγ)

(
−∇

2

2
+ |ψ(r, t)|2 + V (r, t)− 1

)
ψ(r, t), (3.18)

or for numerical convenience as:

(i− γ)
∂

∂t
ψ(r, t) = Ĥψ(r, t) (3.19)

We use the DGPE to initialise equilibrium states for the simulations detailed in Sec.
4.1.1. The evolution of the total energy of the condensate during this procedure is dis-
played in Fig. 3.10, showing the convergence to the desired equilibrium state.

3.3.4 Vortex Imprinting

Vortices can be introduced in our systems through a number of techniques, including
trap rotation [289, 293], laser stirring [84, 294], bubble collapse [101], and quench dynamics
nucleating vortices through the Kibble-Zurek mechanism [95]. However, for precise con-
trol over the configuration of vortices it is preferable to directly imprint vortices before the
start of the simulation, which can be likened to experimental phase imprinting [295].

Having prepared a ground state solution for the potential used, vortices are imprinted
by multiplying the condensate wavefunction by exp(iθ) to introduce a 2π phase-winding,
and multiplying by a suitable initial density profile. No analytic form is known for the den-
sity profile, and it is typical to use an approximation to the solution for a singly charged
straight-line vortex Ψ = R(r) exp (iθ) satisfying the steady GP equation:

R′′(r) +
1

r
R′(r)− 1

r2
R(r) + [1−R2(r)]R(r) = 0, (3.20)
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Figure 3.10: [Dimensionless units] Total energy of a condensate converging to an equilib-
rium solution through the DGPE, from an initial Thomas-Fermi profile.

with boundary conditions R(0) = 0, R(∞) = 1. Power series approximations to the solu-
tion about zero and about infinity can be found, with forms:

R(r) '
∞∑
i=1

pir
2i−1 and R(r) '

∞∑
i=0

qir
−2i

respectively, for some pi and qi. However, the former have a very limited radius of con-
vergence, while the latter diverge, and they are thus of limited practical use. This was re-
solved by Berloff [296] introducing a Padé approximation of the form:

R(r) '

√√√√r2n
∑N

i=1 air
2i∑N+n

j=0 bjr2j
, (3.21)

with aN = q2
0bN+n and q0 = R(∞), which recovers the asymptotic behaviour of both power

series. The particular approximation they find, which we use as our initial vortex density
profile, is:

R(r) =

√
r2(0.3437 + 0.0286r2)

1 + 0.3333r2 + 0.0286r4
. (3.22)

We then evolve the wavefunction through 1000 time-steps under the DGPE with heavy
damping (γ = 1) to find the true vortex profile. We compare the true vortex profile found
after this process to the initial Padé approximation in Fig. 3.11. We show the energy con-
vergence of this procedure in Fig. 3.12. We note that the approximation deviates consider-
ably from the true vortex density profile. The crucial part of the approximation is that it
captures the broad features of the vortex; to initialise simulations it would be sufficient to
use a crude linear profile and evolve in imaginary time or under the dGPE until converged,
however the use of an appropriate Padé approximation speeds this process up.
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Figure 3.11: [Dimensionless units] Comparison of the true vortex profile (blue) with the
initial Padé approximation used (dashed black) in the y = 0 plane for a 2-D
condensate with a vortex at the origin.

3.3.5 Vortex Identification

In order to analyse the dynamics of vortices we need to access their trajectories, which
requires knowledge of their position at discrete points in time, and a method to link vor-
tices from one frame to the next. A number of methods for identifying vortices have been
discussed, see e.g. [297–300], and most involve taking integrals of ∇φ around closed paths,
with nonzero values implying a singularity in the phase and thus a vortex within the area
enclosed by the path. We make use of one such algorithm given in [236]. Such algorithms
will usually identify so-called ‘ghost’ vortices in regions where the condensate density is
close to zero; spurious topological defects which carry negligible energy and momentum
and are thus of no interest. As we are using very steep trapping potentials we have a clear
condensate boundary, and simply discard any vortices identified outside this region. An
example of vortices identified through this procedure is given in Fig. 3.13.

There are scenarios in which the removal of ‘ghost’ vortices is less clear-cut, in particular
if the boundaries are less sharp or if other regions of near zero density are produced by ob-
stacles. One simple approach in this situation is to create a mask using the Thomas-Fermi
profile, just as we do for our sharp boundaries. However, this method can fail if ‘breath-
ing’ or ‘sloshing’ bulk modes are excited. A more sophisticated approach that handles such
behaviour is to multiply the circulation calculated at each point by the condensate density
at that point, relative to the maximum condensate density. Applying a Gaussian filter to
eliminate residual noise, then proceeding to identify vortices as before, efficiently removes
‘ghost’ vortices in these cases.

Having identified the positions of vortices at discrete points in time we need to recon-
struct trajectories using particle tracking. Here, vortices are tracked between two adjacent
frames using the Hungarian algorithm [301] which links points by minimising the sum of
distances within pairs. We impose two additional rules to prevent unphysical trajectories
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Figure 3.12: Total energy of a condensate converging to an equilibrium solution through
the DGPE after the imprinting of 100 vortices. This is an extension of Fig.
3.10, with vortex imprinting occuring at t = 20.

being constructed: positive and negative vortices are treated separately, so a vortex can-
not flip sign, and a maximum linking distance is imposed, so vortices cannot travel further
than is physically possible. Some reconstructed trajectories are shown in Fig. 3.14.

3.3.6 Accuracy

We use a spatial resolution of ∆x = 0.2 and a temporal resolution of ∆t = 0.01, in
dimensionless units, recommended by convergence analysis in [236]. We track the total en-
ergy and normalisation of a condensate from a GPE simulation with these parameters, and
an otherwise identical set-up to the simulations detailed in Sec. 4.1.1, with the exception of
the phenomenological damping. We note that these quantities, shown in Fig. 3.15, should
be conserved - the damping is omitted precisely because it violates these conservation laws.
As evident in Fig. 3.15, these quantities are indeed well conserved, to within 0.05% for the
energy and 4 × 10−5% for the norm, from which we conclude that our choice of numerical
parameters is appropriate. For comparison we show the conservation of energy for simula-
tions with localised damping in Fig. 3.16
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Figure 3.13: [Dimensionless units] Condensate density cropped from a larger condensate in
a disc-shaped trapping potential (a), with lots of sound and vortices present,
and the same snapshot with the vortices identified superimposed as red and
blue discs corresponding to positive and negative circulation respectively (b).
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Figure 3.14: [Dimensionless units] Reconstructed vortex trajectories, superimposed over the
condensate density at the final time of the simulation.
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Figure 3.15: [Dimensionless units] Absolute percentage change in total energy (a) and nor-
malisation (b) over one GPE simulation.
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Figure 3.16: [Dimensionless units] GPE simulations. Absolute percentage change in total
energy for individual (damped) simulations vs. time, with ensemble average
shown as a thicker line (blue), and for a single undamped simulation (red)
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3.4 Dipole and Cluster Identification

3.4 Dipole and Cluster Identification

Numerical simulations of localised regions of vorticity, in three dimensions in the con-
text of superfluid helium, predict the generation of small vortex loops which ballistically
‘evaporate’ from the initial region [302]. Visualising analogous two-dimensional simulations
performed using either the point vortex model of the Gross-Pitaevskii equation, in which
an initial region contains numerous vortices of a mixture of positive and negative circula-
tion, are allowed to evolve into free space, shown in Fig. 3.17, it is apparent that a similar
process occurs in 2-D. Vortices are observed to form vortex-antivortex dipoles, analogous to
the small vortex loops in 3-D (see Fig. 3.18), which also ballistically ‘evaporate’ from the
initial region. The remaining vortices are observed to spread slowly; in order to facilitate
analysis of this slower process we algorithmically identify dipoles. We use the first stage of
the recursive cluster algorithm (RCA) [303] with an additional condition for this purpose.
The recursive clustering algorithm is:

1. Mutually nearest vortices of opposite circulation are identified as dipoles, and removed
from the algorithm’s consideration.

2. Vortices of the same circulation which are closer to each other than either is to a vortex
of the opposite circulation are placed in the same cluster.

Each rule is applied recursively until no further vortices can be identified as belonging
to either a dipole or a cluster. The remaining vortices are considered ‘free’ vortices. Some
examples of how vortices are classified by this algorithm are shown in Fig. 3.19.

We only want to separate dipoles which have escaped from the initial cluster. To reduce
the number of vortices classified as dipoles within the initial cluster we require, in addition
to step one of the RCA, that the separation of the vortices within the dipole be less than
half the distance from either vortex to the nearest vortex of the same circulation. We find
that relaxing or restricting this additional criteria by a factor of two has negligible effect on
the identification of dipoles. The results of applying this algorithm to our PVM and GPE
simulations are shown in Fig. 3.20

In this chapter we have discussed the numerical implementation of the PVM and GPE
models, and some relevant post-processing techniques. We now move on to the particular
numerical investigations we have performed with these models.
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Figure 3.17: Three-dimensional vortex filament method simulation (a) and (b), 2-D point
vortex model simulation (c) and (d), and 2-D Gross-Pitaevskii equation sim-
ulation (e) and (f). The initial configurations, in all cases a localised region
of vorticity, are shown in (a), (c), and (e). The systems are shown at a later
time in (b), (d), and (f), with several evaporating vortex loops visible in (b),
and several evaporating vortex dipoles visible in (d) and (f). Panels (a,b)
show the region −3 cm ≤ x, y, z ≤ 3 cm, panels (c,d) show the region
−100 ≤ x, y ≤ 100 (in dimensionless units), and panels (e,f) show the region
−60 ≤ x, y ≤ 60 (in dimensionless units).
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Figure 3.18: Vortex ring in a vortex filament method simulation (a), with direction of
flow indicated. Intersection with the xy-plane is shown in (b), cf. Fig. 2.5 (b). The region
shown is −0.5 cm ≤ x, y, z ≤ 0.5 cm.
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Figure 3.19: Classification of vortices using the recursive clustering algorithm for (a) all
vortex positions sampled from the same distribution and (b) positive and neg-
ative vortex positions sampled from distributions with different means. Vor-
tices comprising dipoles are shown as hollow discs with a green line indicating
their partner. Vortices belonging to clusters are marked with solid discs, with
connecting lines indicating direct clustering. Vortices in dipoles or clusters are
marked as red for positive circulation and blue for negative circulation. ‘Free’
vortices are marked with solid green discs.
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Figure 3.20: Point vortex model simulation showing the identification of dipoles using the
first step of the RCA (a), (c), and using the additional requirement of sepa-
ration from vortices with identical circulation (b), (d). Vortices in dipoles are
shown as hollow discs, with all other vortices as solid discs. All panels show
the same configuration; panels (a) and (b) highlight the dense central region,
while (c) and (d) show the entire configuration. It can be seen in (c) and (d)
that both versions correctly identify dipoles far from the central region; how-
ever comparing (a) and (b) it is observed that far fewer vortices are classified
as dipoles within the central region in the latter.
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Chapter 4

2-D Numerical Experiments &
Results

We discuss two numerical investigations in this chapter: a study of the spread of quan-
tum vortices in two-dimensional systems, using the point vortex model (PVM) and the
Gross-Pitaevskii equation (GPE), and a preliminary investigation into the effect of vor-
tex number density on the statistics of tracer particles, relevant to the use of inert tracer
particles suspended in superfluid helium.

4.1 2-D Diffusion

We begin our numerical investigation of the spreading of quantum turbulence into vorticity-
free regions by considering systems of reduced dimensionality. The problem is simplified
in this context, as 3-D effects including vortex reconnections and Kelvin waves are not
present. Moreover, such systems are experimentally relevant to atomic Bose-Einstein con-
densates, which can be tightly confined in one or more directions to produce quasi-2-D sys-
tems (Sec. 2.2.9). The standard model for such systems at zero temperature is the GPE
(Sec. 2.2), but we shall also use the PVM (Sec. 2.1) to probe how the presence or absence
of boundaries affects the spreading of vortices. As well as enabling infinite domains, this
simple model captures the ‘skeleton’ of quantum vortex dynamics, without much of the as-
sociated physics, including vortex-antivortex annihilation and phonon emission, which may
help to determine how crucial such physics is to the dynamics we observe.

In 2-D the vorticity transport equation:

Dω

Dt
= (ω · ∇)u + ν∇2ω

reduces to

Dωz
Dt

= ν∇2ωz,

analogous to a diffusion equation with diffusion coefficient ν, the kinematic viscosity. It is
unclear from this how vorticity is transported in a superfluid with no viscosity. We find
that a portion of the vortices spread through a diffusion process, which suggests a possible
candidate for the effective viscosity ν ′ in such systems.
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4.1.1 Set-up

We perform two primary sets of simulations, using the PVM in an infinite domain for
one, and the GPE in a disc trap for the other. We use an equal number of positive and
negative vortices in all simulations, so that the net vorticity is zero.

For the PVM simulations the initial positions of 500 point vortices are sampled from a
bivariate normal distribution centred at the origin, with standard deviations σ0 = σx =
σy = 20. This distribution is selected to reflect the Green’s function solution of the dif-
fusion equation in 2-D; other initial distributions are observed to tend to normal distribu-
tions as the system evolves in time. We impose circulation Γ = 1 on 250 of the vortices and
circulation Γ = −1 on the remaining 250.

The system is evolved in time by solving the equations of motion for the individual vor-
tices, given in Sec. 2.1, as a system of coupled ODEs, using a 6th-order Runge-Kutta scheme,
detailed in Appx. A.6, with a time-step of ∆t = 10−3. We evolve our system through
106 time-steps until a final time t = 103. The energy of a typical simulation, measured
through the autonomous Hamiltonian, eq. (2.3), is conserved with relative percent error
100 × |(H(t) − H(0))/H(0)|% ≈ 3% over the entire simulation, shown in Fig. 3.3. The
evolution of an illustrative PVM simulation with a reduced number of vortices is shown in
Fig. 4.1.

We use the homogeneous dimensionless formulation of the GPE, eq. (2.25) for the sec-
ond set of simulations. The condensate wavefunction is discretised on a 2049 × 2049 grid,
with grid spacing ∆x = 0.2. We model a disc-shaped trapping potential as:

V =
1

2
r2
( r

180

)100

, (4.1)

giving an effective trap radius of ∼ 180. Starting with the Thomas-Fermi profile (Sec.
2.2.11) we find the ground state of the condensate by evolving the wavefunction under the
dissipative GPE (DGPE) (Sec. 3.3.3) with strong damping (γ = 0.5).

We imprint the condensate with 100 vortices, half with circulation 2π and half with cir-
culation −2π, with positions sampled from a bivariate normal distribution, centred about
the origin, with σ0 = σx = σy = 20 - see Sec. 3.3.4 for details of vortex imprinting. We take
the resulting wavefunction as our initial condition at t = 0. The system is then evolved in
time according to eq. (2.25), with spatial derivatives approximated by a 4th-order finite dif-
ference scheme detailed in Sec. 3.1.1, marching forward in time by a 4th-order Runge-Kutta
scheme detailed in Sec. 3.1.2, with a time-step ∆t = 10−2. We evolve the system through
105 time-steps until a final time t = 103.

In preliminary simulations we observe that vortex dipoles which reach the edge of the
condensate split into their constituent vortex and antivortex, which then travel along the
edge of the condensate in opposite directions as shown in Fig. 4.2. As the simulation pro-
gresses they inevitably encounter a vortex of the opposite circulation travelling in the other
direction, and form a new dipole which then travels towards the centre of the condensate.
We believe that this reinjection occurs at only the lowest temperatures described
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Figure 4.1: [Dimensionless units] Point-vortex simulation (with a low number of vortices
for clarity). Snapshots of vortex configurations at t = 0 (a) and t = 20 (b).
The range of the display is for visualisation only; the computational domain is
the infinite plane. Vortices and antivortices are marked with solid red discs and
solid blue discs respectively. Vortices comprising dipoles are marked with hol-
low discs. The fading comet tails show vortex trajectories, helping to visually
identify vortex dipoles which ‘evaporate’ from the cluster.

by the GPE, as friction occurs between vortices and the cloud of thermal atoms at finite
temperatures. This friction leads to isolated vortices spiralling out of the condensate [266],
and vortex dipoles shrinking and mutually annihilating, generating Jones-Roberts solitons
in the process [265, 304]. Moreover, it is known that the thermal atoms are concentrated
at the boundary of the trap, where the condensate density vanishes [249, 266], and thus we
anticipate a region with non-negligible friction close to the boundary.

We model this effect by replacing i∂/∂t in eq. (2.25) by (i − γ)∂/∂t, as for the DGPE,
but with a radially dependent γ of the form:

γ(r) =


0, if 0 ≤ r < 150.
γc
2

[1 + tanh {π(r′ − 1)}] , if 150 ≤ r < 160,

γc, otherwise,

(4.2)

where r′ = (r − 150)/β, with β = 5 here, controls the width of the transition from γ = 0
to γ = γc, and γc = 0.03 (as inferred from experiments and typically used in numerical
simulations [289, 291]), with the tanh function chosen to provide a smooth transition be-
tween regimes, as a discontinuous function may reflect vortices and phonons. We note that
this alteration recovers the standard GPE for r < 150, so does not inherently modify the
dynamics in the main region of the simulations. We illustrate the localised damping pro-
file with the condensate density profile in Fig. 4.3. With this finite temperature modifica-
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Figure 4.2: [Dimensionless units] GPE simulation in a disc trap without damping. A
vortex-antivortex dipole is seen approaching the boundary in (a), meeting the
boundary in (b), and the two component vortices travelling in opposite direc-
tions along the boundary having separated in (c). Note the nonlinear colour
scale used to highlight small density perturbations.

tion we observe that vortex dipoles which reach the edge of the trap annihilate, producing
sound waves that propagate back into the condensate bulk, as shown in Fig. 4.4, with min-
imal effect on the vortex dynamics in the central region.
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Figure 4.3: [Dimensionless units] GPE simulation in a disc trap with localised damping.
Density |ψ|2 (dashed blue line) and phenomenological damping γ (solid red line) are plot-
ted against radius. Note the separate y-axis scales for each line.

The total energy (defined in Sec. 2.2.10) of our systems is typically conserved within 1%
over the entire simulation, shown in Fig. 3.16. For comparison we also show the conserva-
tion of energy for a single simulation performed with the exact same set-up, but without
localised damping. The energy is conserved within 0.05% over this simulation, and we at-
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Figure 4.4: [Dimensionless units] GPE simulation in a disc trap with localised phenomeno-
logical damping at the edges of the trap as described in the main text. A
vortex-antivortex dipole is seen approaching the boundary in (a), meeting the
boundary in (b), and having annihilated and emitted a coherent density wave
in (c). Note the same nonlinear colour scale as in Fig. 4.2

tribute the majority of the change in energy in our damped simulations to the localised
damping, rather than numerical inaccuracy. The evolution of a typical GPE simulation is
shown in Fig. 4.5.
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Figure 4.5: [Dimensionless units] GPE simulation (disc trap). Plots of the condensate den-
sity |ψ|2 at t = 0 (a), t = 25 (b), t = 50 (c), t = 75 (d), t = 500 (e) and
t = 1000 (f). Positive and negative vortices are marked by solid red discs and
solid blue discs respectively. Note the sound waves generated by vortices, par-
ticularly in panels (b), (c) and (d).
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4.1.2 Analysis

We now focus on the dynamics of the vortices in both sets of simulations. Vortices are
observed to spread through two processes: the formation and ballistic flight of vortex-
antivortex dipoles, and the gradual spread of the remaining vortices. We seek to charac-
terise this second gradual spreading of vortices, so identify dipoles algorithmically (See Sec.
3.4) and remove them from our analysis, having identified the positions and signs of vor-
tices in the GPE simulations using the algorithm discussed in Sec. 3.3.5. The proportion
of vortices which form dipoles and which remain unpaired is shown in Fig. 4.6, as well as
the proportion of vortices which have annihilated in the GPE simulations. The proportion
annihilated is based on losses to the total number of vortices identified, corroborated by vi-
sual inspection of the wavefunction’s evolution, with some noise due to numerical error in
the vortex identification algorithm. We note that a significant proportion remain unpaired
until the end of the simulations.
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Figure 4.6: [Dimensionless units] PVM (dashed lines) and GPE (solid lines) simulations.
Proportion of (initial) vortices which have formed vortex-antivortex dipoles
(blue), remained unpaired (red), and annihilated (black) as a function of time,
ensemble averaged over 40 PVM simulations and 20 GPE simulations.

We perform 40 PVM simulations and 20 GPE simulations with the set-ups discussed,
and analyse the behaviour of the vortices which remain in the main cluster. We calculate
the root-mean-square deviation drms(t) of vortices from their initial positions:

drms(t) =

√√√√ 1

N0(t)

N0(t)∑
i=1

(xi(t)− xi(0))2 + (yi(t)− yi(0))2, (4.3)

where N0(t) is the number of vortices in the main cluster at time t. We show the ensem-
ble averaged drms vs. t in Fig. 4.7. The vortices initially spread with drms ∼ t, followed
by drms ∼ t1/2 for large t, typical of diffusion processes [305]. Like with Brownian motion,
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where particles follow straight trajectories before colliding with other particles, vortices ini-
tially move at approximately constant speed from their starting positions, producing linear
(ballistic) spread, until they approach another vortex close enough for its contribution to
the velocity field to become dominant, with a large number of such events appearing to
mimic a random walk. The observation that the transition from drms ∼ t to drms ∼ t1/2

occurs when drms is comparable to the typical intervortex spacing supports this interpreta-
tion.
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Figure 4.7: [Dimensionless units] PVM simulations (a) and GPE simulations (b). Root
mean square deviation of vortices from their initial position, drms, vs. time,
t. Only the vortices which are identified as part of the cluster are used in the
calculation of drms. The dashed and dot-dashed lines correspond to t and t1/2

scalings respectively.

For a scalar field f(x, y, t) satisfying the 2-D diffusion equation:
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∂f

∂t
= D∇2f, (4.4)

where D is a constant diffusion coefficient, we can relate the root-mean-square deviation
drms of vortices to D by [305]:

D =
d2

rms

4t
. (4.5)

As noted previously, by analogy to the classical vorticity transport equation we can then
equate this diffusion coefficient to an effective viscosity ν ′. In order to compare results ob-
tained from the PVM simulations with those obtained from GPE simulations, and with
results in the literature, it is convenient to express ν ′ in units of the relevant quantum of
circulation: under the PVM κ = |Γ| = 1, while κ = 2π under the GPE. We show the values
of ν ′ for both sets of simulations in Fig. 4.8.
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Figure 4.8: [Dimensionless units] Estimated values of ν ′/κ from PVM simulations (blue)
and GPE simulations (red). Solid lines show the ensemble average, with shaded
regions indicating a 95% confidence interval.

We note that, for large t, ν ′/κ settles towards a constant value. For the PVM in an in-
finite domain we find ν ′/κ ≈ 1, a surprising emergent property given that the fluids mod-
elled are inviscid. We find a slightly lower value of ν ′/κ ≈ 0.3 for the GPE simulations in a
disc trap, which we shall attempt to reconcile with the PVM result in the next section.

We now examine the initial energy and momenta of our systems, to test whether our
initial conditions are representative of similar random configurations.

We generate a large number of initial configurations of vortices drawn from the same
bivariate normal distributions as our simulations, 104 for the PVM and 103 for the GPE
(fewer due to the computation time required to prepare the system for the GPE). We then
calculate the energy and momenta of our PVM configurations using the associated Hamil-
tonian and its first integrals (Sec. 2.1), and the energy and momenta of the condensates

79
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as discussed in Sec. 2.2.10. The energy of our GPE systems can be decomposed into in-
teraction energy Eint associated with atom-atom interactions, potential energy Epot asso-
ciated with the external trapping potential, and kinetic energy Ekin. The kinetic energy
can then be further decomposed into compressible and incompressible components, Ec

kin

and Ei
kin respectively. The probability density functions for these quantities are shown in

Fig. 4.9 and Fig. 4.10, with histograms of these quantities for the initial conditions of the
full simulations for comparison. From visual inspection, the distribution of initial energy
and momenta appear to be reasonably representative of the energy and momenta distribu-
tions from which they are sampled. The Quantile-Quantile plots in Fig. 4.11 and Fig. 4.12
confirm this: by plotting the quantiles of the two data sets against each other we can de-
termine whether their distributions are comparable. If the samples are identical the data
points will fall on the identity line, with systematic deviations from this helping us to iden-
tify differences in the samples; for example, in Fig. 4.11(b) the data drops below the iden-
tity line at the highest values of Lz, indicating that we undersample initial distributions
with the highest angular momentum to an extent. As our data lies close to the identity
line, with some noise, and some limited evidence of under/oversampling at the most ex-
treme values for some measured quantities, we are satisfied that the initial configurations
used are representative of available configurations.
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Figure 4.9: [Dimensionless units] PVM simulations. Probability density functions of energy
(a,e), linear x-momentum (b,f), linear y-momentum (c,g), and angular momen-
tum (d,h), for a large number of vortex configurations sampled from our chosen
bivariate normal distribution (a-d), and for the initial configurations of our full
simulations (e-h).)
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Figure 4.10: [Dimensionless units] GPE simulations. Probability density functions of in-
teraction energy (a,d), kinetic energy (b,e), potential energy (c,f), angular
momentum (g,j), linear x-momentum (h,k), and linear y-momentum (i,l), for
a large number of condensates with the initial vortex configuration sampled
from our chosen bivariate normal distribution (a-c,g-i), and for the initial con-
figurations of our full simulations (d-f,j-l).
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Figure 4.11: [Dimensionless units] PVM simulations. Quantile-Quantile plots comparing
the quantiles of energy (a), angular momentum (b), linear x-momentum (c)
and linear y-momentum (d) for a large sample of initial distributions (un-
primed quantities) with those for the initial configurations of the full simu-
lations (primed quantities).
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Figure 4.12: [Dimensionless units] GPE simulations. Quantile-Quantile plots comparing
the quantiles of interaction energy (a), kinetic energy (b), potential energy (c),
angular momentum (d), linear x-momentum (e) and linear y-momentum (f)
for a large sample of initial distributions (unprimed quantities) with those for
the initial configurations of the full simulations (primed quantities).

We also note that there are extremely improbable (in terms of random sampling), but
possible, configurations with extremely low and extremely high energies, where vortices
are all in tight dipoles in the low energy case, and separated by sign into two large vortex
clusters in the high energy case [26, 306]. Although our simulations are initialised far from
these regimes, such clusters, known as Onsager vortices [307] are known to develop in steep
trapping potentials [264]. We do not expect this to affect our analysis, as we start with a
localised region of vorticity which must explore a large proportion of the system in order to
form such clusters; the drms would saturate in such a scenario as there is a clear maximum
posible deviation set by the effective trap radius, and we observe no such saturation by the
end of our simulations (Fig. 4.7 (b)). Nevertheless, we track the dipole moment:

d =
N∑
i=1

qiri, (4.6)

where N is the number of vortices, qi = siκ the charge of the ith vortex, with si = 1 for
vortices and si = −1 for antivortices, κ = 2π is the quantum of circulation, and ri the po-
sition of the ith vortex. This is then normalised by the radius of the trap, the quantum of
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4.1 2-D Diffusion

circulation, and the number of vortices. The evolution of d is shown in Fig. 4.13 (a). The
value of d is smaller than that observed in simulations of the formation of Onsager vor-
tices [307], where values approaching 1 are found. However, d grows in every realisation,
hinting that such a state may eventually be reached if these simulations were continued.
We also show, in Fig. 4.13 (b), the final vortex configuration for the simulation which at-
tains the largest value of d, noting that the configuration appears to have drifted in the
direction expected from the large-scale clusters, in contrast with the isotropic spread typi-
cally seen (cf. Fig. 4.5 (f)).
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Figure 4.13: [Dimensionless units] GPE simulations. Evolution of the dipole moment, nor-
malised by the number of vortices N , the effective trap radius r0, and the
quantum of circulation κ (a), for individual simulations (light blue lines) and
ensemble average (thick blue line). The condensate density for the final time
of the simulation with the highest dipole moment is shown in (b), with vor-
tices and antivortices marked in red and blue respectively, and the dipole mo-
ment indicated by a black line, with the centroids of vortices and antivortices
marked by hollow red and blue discs.

4.1.3 Reconciling Models

In the related 3-D context of diffusing vortex filaments in He II, Tsubota et al. give an
argument for the scale of the diffusion coefficient on dimensional grounds [194], which is
also applicable to these simulations. The only relevant length scale for the vortex motion
is the average intervortex distance L = `, and the only relevant velocity scale is then
V = κ/`, with time scales then set by these. The dimensions of the diffusion coefficient
are [D] = L2T−1, which can only be constructed from L× V = κ, suggesting that ν ′ should
be on the scale of the quantum of circulation κ. Our estimated value of ν ′ from PVM sim-
ulations is in good agreement with this, while our estimated value from GPE simulations

84



Chapter 4. 2-D Numerical Experiments & Results

is somewhat lower. There are several differences between the models which may contribute
to this difference: the GPE is a confined system, while the PVM is unbounded, the circula-
tion is different between the two models, the initial density of vortices differs, and the GPE
contains physics beyond that of the PVM, most prominently vortex-antivortex annihilation
and sound.

We first address the effect of the circulation on the dynamics. Scaling Γ → cΓ in eq.
(2.1), the equations of motion for the PVM, results in v → cv, which can be interpreted as
scaling time t → t/c, resulting in ν ′ → cν ′; in other words we expect ν ′/κ to be indepen-
dent of the quantum of circulation. We verify this with three sets of PVM simulations for
different values of Γ, with the collapse of ν ′ onto a single curve under this scaling shown in
Fig. 4.14.
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Figure 4.14: [Dimensionless units] Effective viscosity estimates from PVM simulations with
|Γ| = 1/2 (red), |Γ| = 1/4 (green), and |Γ| = 1/8 (blue). Panel (a) shows the
raw estimates, while panel (b) shows the collapse of curves given by rescaling
ν ′ → ν ′/κ, t→ κt.

We now consider boundary effects. We incorporate a circular boundary into the PVM
using the method of images (Sec. 2.1.1), and vary the radius of the boundary wall. To
facilitate comparison with the GPE, we now use 100 point vortices with circulation ±2π,
drawn from the same initial distribution as the GPE simulations. We also remove vortices
which approach the boundary to mimic the localised damping in the GPE simulations. In
Fig. 4.15 (a) we show the value of ν ′/κ found as we vary the trap radius; it is clear that
tight confinement suppresses the diffusion of the vortices. We also consider the initial num-
ber density of vortices in an infinite domain, calculated as N/A0, where A0 = πσ2

0, with
the value of ν ′/κ found as we vary N/A0 shown in Fig. 4.15 (b). We observe that ν ′/κ in-
creases with N/A0, until N/A0 ≈ 1, at which point it saturates at ν ′/κ ≈ 1. We interpret
this as a low density resulting in too few ‘collisions’ between vortices for the full diffusive
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behaviour to emerge. The confinement and reduced vortex number in the GPE simulations
seems to account for the majority of the suppressed value of ν ′/κ found.
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Figure 4.15: [Dimensionless units] PVM simulations. In panel (a) we show the value of
ν ′/κ found from simulations within a disc of radius a, as a function of a. In
panel (b) we show the value of ν ′/κ found as a function of the initial vortex
density, as defined in the main text, in an infinite plane. The first point in
panel (b) corresponds to the initial vortex density in panel (a).

4.1.4 Discussion

We simulate the evolution of a localised region of vortices in a system relevant to 2-D
atomic condensates. The vortices are observed to spread through two processes: the forma-
tion and ballistic flight of vortex-antivortex dipoles, and the gradual spread of the remain-
ing vortices. Vortices that reach the boundary under the GPE travel along the boundary
until they meet a vortex of the opposite sign travelling in the opposite direction, where-
upon they re-enter the central region of the disc as a dipole. A small amount of damping,
expected from residual thermalised atoms at the edge condensate, mitigates this effects,
with vortices instead annihilating at the boundary and producing a density wave. Calculat-
ing drms of the vortices in the remaining central cluster, we find that, after an initial ballis-
tic period interpreted as the time taken for vortices to ‘collide’, drms ∼ t1/2, consistent with
a diffusion process. We calculate the diffusion coefficient of this process, finding D ≈ κ for
the PVM, and a slightly lower value for the GPE. Recalling the vorticity transport equa-
tion in classical fluids we interpret this as an effective viscosity, with ν ′/κ ≈ 1.
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Figure 4.16: [Dimensionless units] Effective viscosity in units of the quantum of circula-
tion ν ′/κ for PVM simulations in an infinite domain (purple), PVM in a disc
(green), GPE simulations in a disc trap with damping near boundaries (blue),
and GPE in a square box trap (red). The 95% confidence intervals are indi-
cated by the shaded regions.

We find that, separately, reducing the initial vortex density, and imposing circular bound-
aries, both suppress the values of ν ′/κ found under the PVM, suggesting that the addi-
tional physics included in the GPE is not the origin of the lower values found under it. In
Fig. 4.16 we compare values of ν ′/κ for various sets of simulations. We note that similar
suppression is also observed in square well potentials. The evaporation of dipoles and the
spread of the remaining cluster should be observable in experiments at sufficiently low tem-
peratures. The values that we find for ν ′/κ are higher than, but not incompatible with,
those found in other estimates of the effective viscosity based on the related problem of the
decay of quantum turbulence in helium [160]. We extend this investigation into 3-D in this
related context of superfluid helium in Sec. 7.3.

4.2 Particle Trajectories & Vortex Configuration

Recent advances in the use of tracer particles in helium [24, 308] have introduced the
possibility of directly visualising the motion of the normal fluid and superfluid components
[25, 211, 212]. As well as offering an insight into the microscopic vortex dynamics, these
techniques could provide new means of accessing the collective properties of flows. In this
section we present some preliminary work investigating the potential to infer the vortex
line density (VLD), which is usually measured by the attenuation of second sound [309],
from the motion of inert tracer particles.

We perform 10 simulations under the PVM in a 20 × 20 periodic domain, with between
10 and 100 vortices, half with positive and half with negative circulation. We also simulate
500 inert tracer particles, which simply move with the local velocity field generated by the
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Figure 4.17: [Dimensionless units] Trajectories of three tracer particles from one simulation
with 50 point vortices. The initial and final positions of the tracer particles
are respectively indicated by crosses and discs.

vortices. The velocity is calculated using the Ewald summation introduced in Sec. 3.2.2,
and the system is evolved in time using a 4th-order Runge-Kutta scheme with a time-step
∆t = 10−3. A selection of typical particle trajectories are shown in Fig. 4.17. We then
summarise the motion of the tracer particles by their speed c, magnitude of acceleration a,
and curvature R, calculated as:

R =
√

(∇2x) · (∇2x). (4.7)

The distribution of these quantities for some vortex densities is shown in Fig. 4.18. We
then summarise these distributions by their estimated mode, mean, and maximum proba-
bility, which we plot in relation to the number of vortices N in Fig. 4.19. The distribution
of c and a appear to be clearly related to the number of vortices, while the relation with
the distribution of curvature is somewhat less clear. As the velocity is the simplest of these
quantities to calculate, this would seem to be the natural place to commence any experi-
mental investigation.
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As preliminary work there are caveats, as well as clear possible future extensions to this
work. This investigation was only performed in 2-D, and the extension to 3-D to match
realistic systems, which could be achieved with the vortex filament method discussed in
Sec. 5.1, is of primary importance. Different forms of turbulence have been observed in su-
perfluids [173], how does the distinction between quasiclassical and ultraquantum regimes
modify the relation observed? How sensitive are the predictions to noise?

This concludes the two-dimensional studies in this work, with the study of spreading
vorticity to be extended to three dimensions in a later chapter. In order to do this and
perform other numerical investigations of three-dimensional quantum turbulence we now
introduce the model of vortices in helium that we shall use.
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Figure 4.18: [Dimensionless units] Probability density function, for all tracer particles over
all times, of speed (a-c), magnitude of acceleration (d-f), and curvature (g-i),
for PVM simulations with 20 (a,d,g), 50 (b,e,h), and 100 (c,f,i) point vortices.
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Figure 4.19: [Dimensionless units] Mean (a,d,g), mode (b,e,h), and maximum (c,f,i) of the
distributions of speed (a-c), magnitude of acceleration (d-f), and curvature (g-
i) of tracer particles vs. number of vortices, with linear regression to identify
power laws, and coeffient of determination R2.
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Chapter 5

3-D Models

We describe the 3-D models which we use in the context of superfluid helium. There are
a number of popular models of helium II in various contexts. In the zero temperature limit
the superfluid component can be modelled phenomenologically by the GPE, as described
in Sec. 2.2. At finite temperatures both fluids can be modelled using a hydrodynamic ap-
proach: the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) equations [22, 310, 311] describe
the evolution of the normal fluid by a Navier-Stokes-like equation, and the evolution of the
superfluid by an Euler-like equation with the components coupled through a mutual fric-
tion term, thus:

Dvn

Dt
= −∇Pn

ρn

+
ρs

ρ
Fns + ν∇2vn + Fext

n ,

Dvs

Dt
= −∇Ps

ρs

− ρn

ρ
Fns + Fext

s , (5.1)

where Pn and Ps are the partial pressures of the normal and superfluid components, Fns is
a mutual friction force, and Fext

n and Fext
s are external body forces. Then, the vortex fil-

ament method (VFM) describes the evolution of the quantised vortex lines embedded in
the superfluid. This is a classical model, analogous to the point vortex approximation in
2-D, with the approximation of vortex filaments by infinitesimal lines justified by the small
vortex core radius (∼ 10−8 cm in 4He at 0 K [312]) in comparison to the length scales typ-
ically relevant in simulations; the smallest length scales we resolve in our simulations are
∼ 10−4 cm. Additional physics relating to the normal fluid and finite temperature can be
incorporated in the VFM by introducing a mutual friction correction.

In this work we use the VFM: we are interested in the emergent statistical properties of
quantum turbulence in helium II, and so need to model the individual vortex lines, which
the macroscopic HVBK-equations are not suitable for. Although the GPE captures the
microscopic physics of the vortex filaments, we do not need to access the internal structure
of them and would need huge computational power to simulate unneccessary details.
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5.1 The Vortex Filament Method

The VFM treats vortex filaments embedded in the superfluid component of helium II
as line defects, with a phase change of 2π around the core. All such vortices must either
form closed loops or terminate at boundaries. The filaments are modelled as infinitesimal
lines, although the core size does play a role in the dynamics. The velocity induced by the
vortices, vi, is then determined by the configuration of vortex filaments, defined by a set of
parametric curves s = s(ξ, t), and calculated using the Biot-Savart law [313]:

vi(r, t) =
κ

4π

∮
L

(s− r)× ds
|s− r|3

, (5.2)

where the integration is performed over all vortex lines, L, and κ = h/m is the quantum of
circulation, with κ = 9.97 × 10−4 cm2·s−1 for 4He. A derivation is given in Appx. A.3. The
mass of the core is negligible due to the small core size, and so the vortices move with the
local superfluid velocity, so for the vortex filaments themselves we have:

vi(s, t) =
κ

4π

∮
L

(s1 − s)× ds1

|s1 − s|3
, (5.3)

where s1 is a dummy variable. We discuss the handling of the singularity as s → s1 in Sec.
6.1.1. In Fig. 5.1 we show some flow patterns induced by simple vortex filament configura-
tions.

Reconnections of vortex lines have been observed, both experimentally [25, 166] and in
simulations of quantised vortex lines under the GPE [261, 314]. Moreover, reconnections
are required for a system to reach a statistically steady state away from equilibrium un-
der the VFM [315], as well as to enable the transfer of energy from 3-D hydrodynamic mo-
tion in the fluid to 1-D wave motion along the vortices [316], and to allow the topology
of the vortex tangle to evolve [317]. However, the VFM does not naturally include vortex
reconnections, so they are implemented algorithmically, with vortices being reconnected
when they have a close approach. Several methods have been proposed to model reconnec-
tions [155, 186, 315, 318], although, for counterflow turbulence, all have been shown to pro-
duce very similar results [318]. A recent investigation [319] of reconnecting vortex filaments
identified two scaling laws for their minimum separation before and after the reconnection
event, and found evidence supporting this in both GPE and VFM simulations.
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(a)

ω

(b)

(c)

ω

(d)

Figure 5.1: Vortex filament method. Flow induced around a straight line vortex (a) and
velocity field in the plane perpendicular to the vortex (b), and flow around a
vortex ring (c) and velocity field in a plane bisecting the ring (d).
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5.2 Mutual Friction

The two fluid equations for the normal fluid and superfluid velocities, eq. (5.1), are cou-
pled by a temperature-dependent mutual friction force, arising from ths scattering of quasi-
particles which comprise the normal fluid by the vortex lines in the superfluid component
[20, 320]. A frictional force f (per unit length) is exerted on the superfluid in the region of
the vortex core when there is a net relative velocity between the normal fluid and the vor-
tex line, which, through momentum-conservation arguments, leads to a velocity correction:

v = vi + vmf,

vmf =
s′ × f

ρsκ
,

where v is the velocity of the vortex lines, vi is the self-induced velocity of the vortex lines,
and the prime indicates the derivative with respect to arclength [313]. The form of the mu-
tual friction has been measured [196,321] as:

f

ρsκ
= α(vn − vs − vi)− α′s′ × (vn − vs − vi),

where α and α′ are temperature-dependent mutual friction coefficients (See Appx. B), and
vs and vn are respectively the background superfluid and normal fluid velocities. This im-
mediately gives the Schwarz equation:

vmf = αs′ × (vn − vs − vi)− α′s′ × [s′ × (vn − vs − vi)] . (5.4)

The most apparent effects of this mutual friction correction are the damping of small-
scale perturbations, shown in Fig. 5.2, and the growth and contraction of vortex lines,
depending on the strength and direction of the relative flow vn − vs − vi in relation to
the velocity of the vortex lines. A regular vortex ring at zero temperature moves with self-
induced velocity in the direction binormal to the vortex ring, with speed:

vi =
κ

4πR

[
ln

(
8R

a0

)
− 1

2

]
, (5.5)

where R is the radius of the ring and a0 is the radius of the core [322]. At finite tempera-
tures, possibly also with some normal fluid and superfluid motion entirely aligned with the
direction of the vortex ring’s self-induced velocity, the speed becomes:

v =
1− γ2

0/ [γ2
0 + (ρsκ− γ′0)2]

1− γ′20 /ρsκ
(vi + vs) +

γ2
0/ [γ2

0 + (ρsκ− γ′0)2]− γ′20 /ρsκ

1− γ′20 /ρsκ
vn, (5.6)

where

γ0 = ρsκ
α

(1− α′)2 + α2
,

γ′0 = ρsκ
α2 − α′(1− α′)
(1− α′)2 + α2

,
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and vs and vn are the magnitudes of the superfluid and normal fluid component velocities.
The radius of the vortex ring then evolves according to:

dR

dt
=

γ2
0ρs

γ2
0 + (ρsκ− γ′)2

(vn − vs − vi), (5.7)

which reduces to 0 as T → 0 [320]. These analytic expressions are straightforward to eval-
uate, and provide a simple check for our numerics (Sec. 6.1.5). This effect is illustrated in
Fig. 5.3.

This effect is directly analogous to the observed damping of vortex dynamics in 2-D su-
perfluids at finite temperatures, originating from the scattering of quasiparticles by the
vortex cores [323, 324]. In particular, vortices in 2-D comprising vortex-antivortex dipoles
are driven together by this frictional force as they move through the superfluid, ultimately
resulting in their mutual annihilation; cf. panel (b) of Fig. 5.3, in which a vortex ring in
3-D shrinks due to its own motion.

(a) (b) (c) (d) (e)

Figure 5.2: Evolution of a vortex loop of radius 0.1 cm with smaller oscillations and ran-
dom noise under the VFM with mutual friction parameters α = 0.206,
α′ = 8.34 × 10−3 corresponding to 1.9 K. Panels show t = 0 s (a), t = 0.05
s (b), t = 0.2 s (c), t = 0.5 s (d), and t = 2 s (e).
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(a)

vn

(b)

(c)

vn

Figure 5.3: Illustration of the effect of normal fluid flow on a vortex ring of radius, from
VFM simulation with parameters corresponding to 1.9 K. An initial vortex
ring with radius 0.01 cm is shown in blue, with intermediate states shown in
grey as it evolves toward a later state shown in red. The vortex ring is oriented
such that it travels from left to right under its self-induced velocity. Panel (a)
shows the evolution of the ring with the normal fluid flowing in opposition to
the vortex ring, with |vn| = 0.1 cm/s, panel (b) with no normal fluid velocity,
and (c) with the normal flow aligned with the ring’s direction of motion, again
with |vn| = 0.1 cm/s. Note that, in order to make the effect apparent, the time
scales vary from panel to panel, with (a) covering a period of 0.1 s, (b) a period
of 0.18 s, and (c) a period of 1.5 s.
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5.3 Counterflow Turbulence & Vinen’s Equation

Experiments with thermally driven counterflow in He II, flows in which the large-scale
normal fluid motion is in opposition to the superfluid motion, have informed theory for
seven decades, from investigation of the mutual friction force [19, 20, 325] to the comparison
of classical and quantum turbulence [216, 326–328]. In the typical set-up, illustrated in Fig.
5.4, an insulated channel is immersed in a bath of He II, with one end open to the bath,
and the other closed and containing a heat source. The heat source produces excess excited
particles, leading to a flow of the normal fluid, as the sole carrier of entropy, away from the
heater with velocity vn proportional to the heat flux. Conservation of mass then implies
ρnvn + ρsvs = 0, and so vs = −(ρn/ρs)vn; the superfluid component travels counter to the
normal fluid component [329], with relative velocity vns = vn − vs.

vn

vs

Heater

Bath

Probes

Figure 5.4: Schematic showing the typical set-up for a thermal counterflow experiment.

Above a critical counterflow velocity a turbulent tangle of quantised vortices develops
in the superfluid component, seeded by the stretching of remanent vortices through the
Donnelly-Glaberson instability [330]. Far from the heater and the boundaries, the tangle is
homogeneous (though not necessarily isotropic), and the evolution of the vortex line den-
sity L can be described by Vinen’s equation:

dL

dt
= χ1

B

2

ρn

ρ
|vns|L3/2 − χ2

κ

2π
L2, (5.8)

where B is a mutual friction coefficient related to α by B = (2ρ/ρn)α, and χ1 and χ2

are phenomenological constants of order unity [20, 331]. The first term on the RHS relates
to the injection of energy through the interaction of the vortex lines with the normal fluid
through the mutual friction, while the second corresponds to the dissipation of energy fol-
lowing reconnection events. For a statistically steady state with (dL/dt) = 0 this predicts
that L = γ2|vns|2, where γ is a temperature-dependent parameter; the intensity of the
vortex tangle is proportional to the square of the counterflow velocity, which has been ex-
perimentally verified [34,332].

Having introduced the vortex filament method, we now move on to its numerical imple-
mentation.
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Chapter 6

Numerical Methods II

We describe the numerical implementation of the vortex filament method, and test the
accuracy of our implementation by comparing simulations to theoretical vortex dynamics.
We also discuss some numerical procedures which are particular to our analysis.

6.1 The Vortex Filament Method

Vortex filament method (VFM) simulations are performed using Qvort [318, 333, 334].
We discuss the principle numerical routines involved in this section.

6.1.1 Discretisation & Evolution

Vortex filaments are smooth, continuous structures, described by spacecurves s(ξ, t)
where ξ is arclength. In order to simulate them under the VFM we must approximate their
structure by a set of discrete points, with each point connected to two neighbours, one in
front and one behind on the filament, with the direction determining the sense of the vor-
ticity along the filament. Each point then has an associated position and velocity in R3.

Discretising the filaments introduces a spatial resolution δ of the average distance be-
tween points, which will also determine the scales which we can access, as well as the ap-
propriate temporal resolution. However, as vortices can stretch and contract this resolu-
tion is not automatically maintained, and so we remesh the discretisation at each time-step
algorithmically: if the distance from a point to the point in front is greater than δ, then
a new point is inserted between them, with position and velocity taken as their average,
while if the distance between a point and the point two in front is less than δ, then the in-
termediate point is removed.

The configuration is evolved forward in time by a 3rd-order Adams-Bashforth scheme,
after a single Euler step, and a single 2nd-order Adams-Bashforth step, as described in Sec.
6.1.2. All spatial derivatives are calculated using the methods discussed in Sec. 3.1.1. We
calculate the velocities of points using two methods, depending on the context.

The local induction approximation (LIA), proposed by Schwarz [313], estimates the ve-
locity of a point on a filament by a 1st-order approximation (See Appx. A.4 for derivation)
to the full Biot-Savart law:
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vi(s) =
κ

4π
ln

(
R

a0

)
s′ × s′′, (6.1)

where R = 1/
√

s′′ · s′′ is the local radius of curvature, primes denote derivatives w.r.t. the
arclength, and κ and a0 are the quantum of circulation and vortex core radius respectively.

As the evaluation of eq. (6.1) only requires the local derivative, this method’s compu-
tation times scales as O(n), where n is the number of discretisation points. The speed of
this method makes it ideal for exploratory simulations, or for initialising simulations be-
fore switching to a more accurate method. However, it is not a reliable method in many
situations: it cannot include nonlocal interactions which also precludes the correct imple-
mentation of any boundaries implemented through ‘ghost’ vortices, it produces integrable
systems which are not suitable for the study of weak Kelvin wave turbulence [335], and
it has been observed [328] that counterflow simulations performed using the LIA produce
vortex tangles that are denser and more anisotropic than those performed using the full
Biot-Savart law.

The Biot-Savart law (derived in Appx. A.3) calculates the velocity as:

vi(s) =
κ

4π

∮
L

(s1 − s)× ds1

|s1 − s|3
, (6.2)

with s some position on the curves describing the vortex filaments. When evaluating the
velocity of the lines themselves a singularity emerges as s1 → s. This is handled by decom-
posing the velocity into local and nonlocal contributions (See Appx. A.3):

vi(s) =
κ

4π
s′ × s′′ ln

(
2
√
`+`−

e1/2a0

)
+

κ

4π

∫
L′

(s1 − s)× ds1

|s1 − s|3
, (6.3)

where `+ and `− in the first, local, term are the distances from s to the points in front and
behind, and the integral in the second, nonlocal, term now omits the line segments from s
to the points in front and behind. Following [315], the contribution to the integral from the
line segment between a point sj and the point in front sj+1 is given by:

∆jvi(s) =
κ

2π(4AC −B2)

[
2C +B√
A+B + C

− B√
A

]
p× q, (6.4)

where p = sj − s, q = sj+1 − sj, A = |p|2, B = 2p · q, and C = |q|2. The evaluation of
the velocity for each point then requires integration over all other points, and so the com-
putation time for this method scales as O(n2). Simulations can typically contain 104 − 105

points, making this a very costly procedure.

Drawing inspiration from N -body simulations in astrophysics and cosmology [336–338],
the use of tree algorithms to improve the performance of VFM implementations has been
gaining popularity in recent years [339, 340]. The basic idea of tree algorithms is to approx-
imate the contribution to the velocity of a point from a region by some average over that
region, with the size of the region which can be averaged over effectively determined by its
distance from the point.
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The first step is the construction of the tree describing the vortex configuration. The
computational domain is divided into eight equal cubes, for each of which the total circula-
tion sΣ and the centre of circulation s̄ are calculated as:

sΣ =
nc∑
j=1

sj+1 − sj, s̄ =
1

nc

nc∑
j=1

sj, (6.5)

where nc is the number of points within the cube. Each region is then recursively subdi-
vided into eight further cubes, with the total circulation and centre of circulation again
calculated, until a cube contains either no discretisation points or a single point, with the
computation time for the construction of this tree scaling as O(n log (n)).

To calculate the velocity for some s we must then track through the tree, deciding which
points are sufficiently far to use an averaged contribution. This decision is made using the
opening angle θ, defined as θ = w/d, where w is the width of the cube being queried, and
d is the distance from s̄ to s. If θ < θc, where θc is some critical opening angle, or the cube
contains at most one point, then we accept the cube and calculate its contribution to the
nonlocal part of the velocity in eq. (6.3), using eq. (6.4), where p and q are now defined as
p = s̄ − s and q = sΣ. Otherwise, we go to the next level and repeat the test for each of
the children cubes within the cube, with this process repeated recursively until the contri-
butions from all cubes have been included.

The success of this method depends upon using a sensible choice for θc: if θc is too large
the discrepancy between the tree algorithm and the full Biot-Savart integral is untenable,
whereas if θc is too small the tree algorithm will recover the full Biot-Savart integral, mak-
ing no improvement in computation time; indeed, it will be slower due to the additional
overhead in creating and traversing the tree. Testing suggests that θc = 0.2 is a suitable
choice for significant speed-up without great loss of accuracy [333].

Having calculated the velocity induced by the vortices themselves, if the simulation is
performed at a finite temperature the mutual friction correction is then added:

v(s) = vi(s) + vmf(s), (6.6)

where

vmf(s) = αs′ × (vn − vs − vi)− α′s′ × [s′ × (vn − vs − vi)] , (6.7)

where vn is some imposed normal flow, and vs, taken to be −ρn/ρsvn in counterflows for
mass conservation, is an imposed superflow - note that both may be zero, a situation which
does not imply that vmf is zero. Finally, the vortices move with the superfluid, to give:

v(s) = vi(s) + vmf(s) + vs(s) (6.8)

6.1.2 Adams-Bashforth Methods

We evolve our VFM solutions using a 3rd-order Adams-Basthforth method [341]. For a
solution with positions x(t) and velocities v(t), we march forward in time using:
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x(t+ ∆t) = x(t) + ∆t

[
23

12
v(t)− 16

12
v(t−∆t) +

5

12
v(t− 2∆t)

]
+O((∆t)4). (6.9)

A detailed derivation is given in Appx. A.7. Note that this scheme requires knowledge of
the velocities at the current time and at two previous points in time. When we initialise
our simulations we only have knowledge of the velocity at the current time, so the first
step is performed using Euler’s method, and the second step is performed using a 2nd-order
Adams-Bashforth scheme:

x(t+ ∆t) = x(t) + ∆t

[
3

2
v(t)− 1

2
v(t−∆t)

]
+O((∆t)3), (6.10)

with the third and all subsequent steps performed using the 3rd-order scheme described.

6.1.3 Reconnections & Dissipation

Multiple algorithms for deciding when reconnection events should occur have been pro-
posed [315, 318, 342], although no significant difference in the statistical properties of coun-
terflow turbulence was observed between simulations using several methods [318]. We use
the type II algorithm described in [318], which performs a reconnection only if doing so
will decrease the total vortex line length; reconnections are dissipative and lead to phonon
emission [343], and vortex line length acts as a proxy for their kinetic energy [28], so recon-
nections should not increase the total vortex line length.

In determining which points should reconnect, we first determine which points are close
enough to reconnect, which we take to be those with a separation of less than ∆ = δ/2, the
smallest spatial resolution of the particular simulation. Rather than a brute force distance
test, which scales as O(n2), we use a simple tree algorithm: points are binned according
to their x and y coordinates, with bins having a width of at least ∆, an O(n) process.
The only points they can reconnect with are those in the same bin, or in the bins imme-
diately surrounding it, and so we directly check the separations within each such subset, an
O(n log (n)) process.

Then, having identified the points that are close enough to reconnect, we check that
they satisfy several criteria. We exclude reconnections between points and their immediate
neighbours as unphysical. We then check that the two reconnecting points are the near-
est to each other (as opposed to another third point being nearer to either of them) which
would lead to a decrease in the total line length, and which are not parallel, in order to
preserve the orientation of vorticity, requiring that ŝ′i · ŝ′j < 0.965, with ŝ′i the unit tangent
to the vortex filament at the point si, which imposes a minimum angle of ∼ 15◦ between
reconnecting filaments. Note that this algorithm does not prohibit the self-reconnection of
filaments which have become twisted enough to do so.

Having identified points to reconnect, the reconnection itself is performed by appropriate
changes to the pointers which describe which points are in front and behind the reconnect-
ing points and their neighbours along the filaments, as illustrated in Fig. 6.1.

Loops containing fewer than five discretisation points are removed from simulations.
This mimics the dissipation of energy through friction and phonon emission at the small-
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(a)

s1
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(b)
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Figure 6.1: Schematic showing the change in connections along vortex filaments during a
reconnection. Two filaments {s1, s2, s3, s4, s5} and {s6, s7, s8} reconnect at s3

and s7, resulting in two filaments {s1, s2, s3, s7, s8} and {s6, s4, s5}.

est length scales, which occurs even at the lowest temperatures [167, 344]. From a numeri-
cal perspective, this treatment is also necessary to avoid unpredictable behaviour of small
loops - when the discretisation is too coarse to capture the shape of a loop the calculation
of s′ × s′′ in the first term of eq. (6.3) suffers from noise, which can produce erratic trajec-
tories.

6.1.4 Boundaries

As with the PVM, the VFM is a Lagrangian system which naturally resides in an infi-
nite domain; in a similar manner we can impose a selection of boundaries.

Periodic boundaries can be imposed in one direction by repeating the vortex configu-
ration, shifted by the desired period in the chosen direction, both ahead and behind. Re-
peating this in the other directions, as illustrated in Fig. 6.2, will result in a periodic box.
Strictly speaking the configuration should be infinitely repeated, although this is neither
feasible nor necessary, and we use a single layer to impose periodicity. When a discretisa-
tion point crosses a boundary it is removed and reinserted at the other side of the domain.
Finally, note that care should be taken in the calculation of eq. (6.4): the vectors between
points must be calculated as though they were physically next to each other, in particular
when a filament passes through a boundary between one point and the next.

Some hard wall boundaries can be imposed by the use of image vortices. For planes, the
real vortex configuration is reflected in the plane, with the reflected configuration having
the opposite circulation (or, equivalently, being integrated over in the opposite direction),
illustrated in Fig. 6.3.
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(a) (b) (c)

Figure 6.2: Illustration of the ‘ghost’ vortices used to enforce periodic boundary conditions.
Panels (a) and (b) show a top-down projection of the real vortices in black,
with ‘ghost’ vortices in red, producing periodic boundaries in x in (a), and pe-
riodic boundaries in x and y in (b), while (c) shows the layer of 26 repetitions
of the real configuration used to produce a fully periodic box.

Cylindrical boundaries, illustrated in Fig. 6.4, can be imposed by generating an image
vortex configuration according to:

simage =

(
a2sx

s2
x + s2

y

,
a2sy

s2
x + s2

y

, sz

)
,

where sx, sy, and sz are the x-, y-, and z-components of point s of the original vortex fila-
ment, a is the radius of the cylinder, which is here aligned with the z-axis; arbitrarily ori-
ented cylinders can be imposed by simple coordinate transformations.

Vortex filaments also reconnect with hard wall boundaries, when a point is within δ/2 of
the boundary, with the neighbouring point that is closest to the boundary also reconnect-
ing, provided that performing the reconnection will reduce the total line length. A recon-
nected point is created on the boundary, with its position the projection of the reconnect-
ing point onto the boundary, as shown in Fig. 6.5. We can treat boundaries as either per-
fectly rough, in which case the reconnection site is fixed, or as perfectly smooth, in which
case the reconnection site tracks over the surface as the projection from the first discretisa-
tion point of the connected filament.

Finally, we note that many of these boundaries can be used in conjunction with each
other, for instance, we could simulate a cylinder in a periodic domain by imposing a cylin-
drical hard wall boundary aligned with the z-axis, and then enforcing periodicity in the
z-direction as discussed, with the image enforcing the cylinder also to be repeated.

6.1.5 Accuracy

In this section we will test the reliability of the VFM code, by comparing various known
analytic results with numerical simulations.
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ω

ω

(a) (b)

Figure 6.3: Illustration of a vortex ring interacting with a hard wall boundary imposed by
an image vortex (red). Panel (a) gives a top-down projection, panel (b) shows
some resulting streamlines (green); note that none pass through the boundary.

(a)

ω

ω

(b)

Figure 6.4: Top-down view of a vortex ring (black) and corresponding image vortex (red)
imposing a cylindrical boundary, with some instantaneous streamlines (green)
shown in (b).

A simple criterion for the maximum permissible time-step can be derived by considering
Kelvin waves on the vortex filaments [333]. The angular frequency of Kelvin waves along
straight vortex lines is given by:
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(a) (b)

Figure 6.5: Schematic showing the topology of a vortex filament before (a) and after (b)
reconnection with the surface of a cylinder. The circled point approaches
within δ/2 of the boundary, the neighbour of that point which is closest to the
boundary is identified, and, having checked that performing the reconnection
will reduce the total line length, a reconnection point is created beneath both
points on the surface.

ω ≈ −κk
2

4π

[
ln

(
2

ka0

)
− γ
]
,

where γ ' 0.5772 is Euler’s constant, provided ka0 � 1 [345] (the long-wavelength approx-
imation). The fastest motions, set by the maximum wavenumber kmax = 4π/δ, which is in
turn set by our chosen spatial resoluion, are on a time scale of:

ω−1
max ≈

δ2

4πκ
[
ln
(

δ
2πa0

)
− γ
] ,

which suggests that a sensible time-step is:

∆t <
δ2

4πκ ln ( δ
2πa0

)
. (6.11)

We now consider the motion of regular vortex rings. At zero temperature a vortex ring
in the xy-plane moves with self-induced velocity:

vi =

 0
0

κ
4πR

[
ln
(

8R
a0

)
− 1

2

]
,
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where R is the radius of the vortex ring [322]. We compare the velocity of rings of a range
of radii for three different spatial resolutions in Fig. 6.6. Note that the velocity reported is
the instantaneous velocity, and so the choice of time-step does not affect this. The discrep-
ancy between the theoretical and numerical values are minimal (∼ 2%) for larger loops,
while loops containing fewer than around 10 discretisation points suffer from increasing in-
accuracy.
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Figure 6.6: Comparison of theoretical and simulated velocities of regular vortex rings of
radius R. Panels (a-c) show the theoretical (dashed blue) and simulated, un-
der the tree algorithm, velocity of vortex rings, with (d-f) showing the relative
error calculated as ∆|vi| = |(vtheory − vsimulation)/vtheory|. Panels (a) and (d) cor-
respond to δ = 10−2 cm, (b) and (e) to δ = 10−3 cm, (c) and (f) to δ = 10−4

cm.

At finite temperatures the velocity of a regular vortex ring is modified by mutual friction
with the normal fluid according to eq. (5.6), while the evolution of the radius of a vortex
ring is given by eq. (5.7). In Fig. 6.7 and Fig. 6.8 we compare theoretical and simulated
values for selected temperatures, with the relative accuracy explored in Fig. 6.9. The sim-
ulated velocities are generally closest to theoretical values in an intermediate temperature
range, with the values closest to the transition temperature the least reliable.

As a final test of the code, we now compare an analytic prediction for the growth due to
the Donnelly-Glaberson instability [330] of a helical perturbation along a straight vortex
line aligned with some normal flow, illustrated in Fig. 6.10, with the growth of the pertur-
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Figure 6.7: Comparison of theoretical (lighter dashed lines) and simulated (darker solid
lines) velocities of regular vortex rings at (a) 1.3 K, (b) 1.5 K, (c) 1.7 K, (d)
1.9 K, (e) 2.0 K, (f) 2.1 K, with a spatial resolution of δ = 10−3 cm. Green
lines correspond to no background fluid velocity, red lines correspond to a nor-
mal fluid velocity of 0.5 cm/s in the same direction as the motion of the vortex
ring, and blue lines correspond to a normal fluid velocity of 0.5 cm/s in the op-
posite direction to the motion of the vortex ring.

bation in simulations. First, consider a straight vortex line, aligned with the x-direction
and with a small helical perturbation of amplitude ε, with ε� 1:

s =

 x
ε cos (kx− ωt)
ε sin (kx− ωt)

 , (6.12)

where k and ω are the wavenumber and angular frequency of the perturbation. The veloc-
ity of the filament according to the LIA, eq. (6.1), and the Schwarz equation, eq. (5.4), is
given by:

ds

dt
= βs′ × s′′ + αs′ × [vn − βs′ × s′′ − vs] , (6.13)

where β = (κ/4π) ln (R/a0), α is a mutual friction coefficient, vn = (vn, 0, 0) is our normal
fluid velocity, vs = (vs, 0, 0) is our superfluid velocity, and we have neglected the second
term in the Schwarz equation for simplicity.
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Figure 6.8: Comparison of theoretical (lighter dashed lines) and simulated (darker solid
lines) rate of change of radius of regular vortex rings at (a) 1.3 K, (b) 1.5 K,
(c) 1.7 K, (d) 1.9 K, (e) 2.0 K, (f) 2.1 K, with a spatial resolution of δ = 10−3

cm. Green lines correspond to no background fluid velocity, blue lines corre-
spond to a normal fluid velocity of 0.5 cm/s in the same direction as the mo-
tion of the vortex ring, and red lines correspond to a normal fluid velocity of
0.5 cm/s in the opposite direction to the motion of the vortex ring.

We approximate s′ and s′′ by derivatives of eq. (6.12) w.r.t. x (valid for small perturba-
tions, as x ' ξ):

s′ '

 1
−εk sin (kx− ωt)
εk cos (kx− ωt)

 , s′′ '

 0
−εk2 cos (kx− ωt)
−εk2 sin (kx− ωt)

 ,

which then gives:

s′ × s′′ =

 ε2k3

εk2 sin (kx− ωt)
−εk2 cos (kx− ωt)

 '
 0

εk2 sin (kx− ωt)
−εk2 cos (kx− ωt)

 , (6.14)

s′ × (vn − βs′ × s′′) =

 1
−εk sin (kx− ωt)
εk cos (kx− ωt)

×
 vn − βε2k3 − vs

βεk2 sin (kx− ωt)
−βεk2 cos (kx− ωt)
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Figure 6.9: Relative error ∆f = |(ftheory − fsimulation)/ftheory| in the velocity and rate of
change of radius of regular vortex rings between 1.3 K and Tλ ' 2.1768 K, with
a spatial resolution of δ = 10−3 cm. Red, green, and blue lines correspond to
vortex rings of radius 0.01 cm, 0.1 cm, and 1 cm respectively. Panels (a) and
(d) correspond to a relative fluid velocity vns = 0.5 cm/s in the same direction
as the motion of the vortex ring, (b) and (e) to no normal fluid motion, and (c)
and (f) to a relative fluid velocity vns = 0.5 cm/s in the opposite direction to
the motion of the vortex ring.

=

 0
(vn − βε2k3 − vs − βεk2) cos (kx− ωt)
(vn − βε2k3 − vs − βεk2) sin (kx− ωt)


'

 0
(vn − vs − βεk2) cos (kx− ωt)
(vn − vs − βεk2) sin (kx− ωt)

 , (6.15)

where we have linearised in terms of ε, as ε � 1. Substituting eq. (6.14) and (6.15) into
eq. (6.13) then gives:

ds

dt
=

 0
βεk2 sin (kx− ωt) + α(vn − βk − vs)ε cos (kx− ωt)
βεk2 cos (kx− ωt) + α(vn − βk − vs)ε sin (kx− ωt)

 . (6.16)
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(a) (b) (c)

Figure 6.10: Growth of a helical perturbation in a linear flow, aligned with the initial vor-
tex filament, due to the Donnelly-Glaberson instability, with time advancing
from (a) to (b) to (c).
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Figure 6.11: Theoretical (dashed red line) and simulated (solid blue line) growth of a heli-
cal perturbation with ε(0) = 10−4, k = 80π, vns = 1 cm/s at (a) 1.3 K, (b)
1.6 K, (c) 1.9 K. The simulation is performed in a 0.1× 0.1× 0.1 cm3 periodic
box, with δ = 10−3 cm, ∆t = 10−5 s. Note the different time scales.

We can find a second expression for (ds/dt) by directly differentiating eq. (6.12) w.r.t. t,
yielding:

ds

dt
=

 0
εω sin (kx− ωt) + dε

dt
cos (kx− ωt)

−εω cos (kx− ωt) + dε
dt

sin (kx− ωt)

 .

Comparing the y-component of this expression with eq. (6.16):

βεk2 sin (kx− ωt) + α(vn − βk − vs)εk cos (kx− ωt) = εω sin (kx− ωt) +
dε

dt
cos (ks− ωt).
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6.1 The Vortex Filament Method

Then comparing coefficients of cos (kx− ωt) we find:

dε

dt
= α(vn − βk − vs)εk

=⇒ ε(t) = ε(0) exp [α(vn − βk − vs)kt],

where ε(0) is the amplitude of our initial perturbation. We can then compare this analytic
expression for the growth of a helical perturbation in a linear flow with simulations, shown
in Fig. 6.11. It is apparent that the simulation is in good agreement with the theoretical
prediction for almost two orders of magnitude of growth in the perturbation.

6.1.6 Reconstructing Trajectories

The calculation of the root-mean-square deviation, drms in Sec. 7.3 requires knowledge
of the initial and current positions of discretisation points in our VFM simulations. This is
complicated by the continual remeshing of the filaments necessary to maintain the selected
spatial resolution: if we only include discretisation points that can be tracked through di-
rect ancestors (see subsequent description of algorithm) since the first time-step we rapidly
reach a situation where we have very little data to work with (Fig. 6.12(a)). If we are to
include points that have been created during remeshing we need to determine where they
originated. In this work we do this through an algorithmic procedure.

The configuration at the first time-step is stored as the origin of the points. We then
compare the configuration at the next time-step to this. If a point has a clear ancestor
at the previous time-step we assign the origin of that ancestor as the point’s origin. We
consider a point to have a clear ancestor if it has the same index in the array storing the
points, and if either or both of the indices describing its immediate neighbours match the
previous time-step. This leaves points where neither neighbour matches the neighbours of
the point at the previous time-step, which can be the case when either both neighbours
have newly been inserted, or both previous neighbours have been removed, or some combi-
nation of these, or when the point itself has been newly inserted (in which case its neigh-
bours will most likely be null at the previous time-step; however the indices of removed
points are reused for efficient memory usage, so we cannot rely on this).

In this case, we concatenate and store the origins of both neighbours as its origin, and
take the average of the concatenated array as the value of the origin in calculations. If
both neighbours are newly created points, this will be unable to assign an origin, but as
this is a rare event, and is fixed at the next time-step (provided the same thing doesn’t
happen again by some fluke), we do not worry about this. This process is repeated for each
subsequent time-step in turn, until the end of the simulation. To ensure that we are not
taking an average of distant points as the origin of a point, we only accept the mean value
of an origin array as the origin of the point if the standard deviation of the origin array
is less than 2δ. This algorithm allows us to use ∼ 70% of the discretisation points after
2 × 105 time-steps (Fig. 6.12(b)). We illustrate the origins inferred by this algorithm in
Fig. 6.13. We note that, referring to Fig. 6.1, points can be tracked through reconnections
as they still retain one of their neighbours.
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Having described our implementation of the vortex filament method and some relevant
post-processing procedures, we now move on to the particular investigations of three-dimensional
quantum turbulence which we have carried out.
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Figure 6.12: Proportion of points for which we infer an origin based on (a) direct ancestors
and (b) the method described in this section. Red lines show the total propor-
tion tracked, while blue lines show the proportion that are tracked, and which
belong to vortex loops containing more than 200 discretisation points - loops
containing fewer points are excluded from analysis, discussed in Sec. 7.3.1.
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Figure 6.13: Schematic views of various point tracking possibilities, with time increasing
from the bottom of the panels, and arrows indicating inheritance of origins. In
(a-c) s1 has a clear ancestor, having at least one neighbour in common with
the previous time-step, in (d), a new point has been created by remeshing,
which then inherits ancestors from its neighbours, in (e), an existing point has
both neighbours removed by remeshing, and its origin is inherited from its
new neighbours, and in (f) new points are created by remeshing on either side
of an existing point, and the point inherits no origin (for at least one time-
step). Note that subscripts here refer to the position of the point in the nu-
merical array, not the physical order along the filament.
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Chapter 7

3-D Numerical Experiments &
Results

In this chapter we shall probe some important properties of ultraquantum turbulence in
4He through numerical simulations. In particular, we examine the parameter χ2 in Vinen’s
equation, which relates the rate of dissipation of ultraquantum turbulence to the vortex
line density, the parameter γ arising from Vinen’s equation which relates the intensity of
turbulence to the relative motion of the two fluid components, and the effective viscosity
in quantum turbulence. We also address how localised quantum turbulence spreads into a
surrounding vorticity free region, which is relevant to experiments that generate turbulence
locally.

7.1 Steady-State Counterflow

In Sec. 5.3 we introduced Vinen’s equation:

dL

dt
= χ1

B

2

ρn

ρ
|vns|L3/2 − κ

2π
χ2L

2,

which describes the evolution of the vortex line density (VLD) L in superfluid helium in
the presence of a counterflow, where B = (2ρ/ρn)α is a mutual friction parameter, χ1 and
χ2 are dimensionless parameters, and vns = vn − vs is the counterflow velocity. Setting
(dL/dt) = 0 produces a steady solution L = γ2|vns|2, where γ is a temperature-dependent
parameter. This scaling has been confirmed in multiple experiments [34, 346, 347], but only
relatively recently have simulations at the individual vortex level been performed which
well capture this [328] - pioneering simulations by Schwarz [262, 313, 315, 329] were reliant
on the LIA due to computational limitations. In the presence of a counterflow, vortex fil-
aments simulated using the LIA become increasingly aligned perpendicular to the flow,
and aligned with other vortex filaments (see Fig. 7.1), resulting in an anomalously dense
and anisotropic tangle [328]. Schwarz circumvented this behaviour by rotating randomly
selected vortex lines through 90◦ to introduce some mixing and drive the system back to-
wards an isotropic state, but this is clearly an extremely artificial procedure without physi-
cal justification. In [328], simulations performed using the full Biot-Savart law found values
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7.1 Steady-State Counterflow

of γ in good agreement with experimental values, without any phenomenological mixing
procedure, with the anisotropy of vortices far less pronounced than under the LIA.

(a)

vn

(b) (c)

Figure 7.1: Snapshots of a counterflow simulation using the VFM and the LIA in a 0.05 ×
0.05 × 0.05 cm3 periodic box, with the counterflow direction indicated. Panel
(a) shows the simulation at 1 s, (b) at 2 s, (c) at 4 s. The vortex configuration
becomes increasingly anisotropic as the simulation progresses, quantified by the
anistropy parameter parallel to the flow (defined in main text) as I|| = 0.795
(a), I|| = 0.905 (b), and I|| = 0.984 (c).
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Figure 7.2: Growth of the vortex line density during initial evolution using the LIA. This
particular example, typical of all temperatures and values of |vns|, is for 1.7 K
and |vns| = 1.4 cm/s.

In this section we perform a large number of counterflow simulations with the aim of in-
creasing the amount of available data on γ, as values have only been estimated for a hand-
ful of temperatures. Comparison with previous studies also acts as a final verification for
the implementation of the VFM.
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Chapter 7. 3-D Numerical Experiments & Results

We use the VFM in a periodic box, which is enforced by a periodic wrapping as dis-
cussed in Sec. 6.1.4. A normal flow with speed vn is imposed, and an opposing superflow
with speed vs = −ρn/ρsvn We initialise simulations with a small number of seed vortex
rings, and evolve the system using the LIA until the VLD appears to saturate (Fig. 7.2).
The initial rings grow or shrink depending on their orientation with respect to the coun-
terflow, until they begin to reconnect with each other, redistributing the vortex lines into
structures with smaller radius of curvature, which is turn grow and shrink, eventually fill-
ing the system - shown in Fig. 7.3. We then switch to the tree algorithm, and evolve the
system until a statistically steady state is reached.

(a)

vn

(b) (c)

Figure 7.3: Snapshots of the development of a vortex tangle, in a 0.05 × 0.05 × 0.05 cm3

periodic box, from initial seed vortex rings, taken from the same simulation as
Fig. 7.2, at the initial time (a), 0.25 s (b), and 1 s (c).

In order to expedite the simulations we select D, the length of a side of the periodic box,
based on the expected intensity of the simulations. We can estimate L for a particular sim-
ulation based on the value of |vns| and γ (using either values of γ from experiments if avail-
able or interpolating if not), which then gives an estimate of the typical intervortex dis-
tance as ` = 1/

√
L. We then choose D = 10`, and δ = `/10, to give a reasonable separation

of length scales, with the time-step then set by eq. (6.11). Calculating the longitudinal ve-
locity structure function:

fx(r) =
〈vx(r)vx(r + rêx)〉

〈vx(r)2〉
,

which measures the correlation at a separation of r, at late times (with one example shown
in Fig. 7.4), we find a typical values fx(`/2) ' 0.13, fy(`/2) ' 0.19, fz(`/2) ' 0.19 (with
the difference between fx(`/2) and the others due to the anisotropy). This is indicative of
a lack of large-scale structure, as expected for ultraquantum turbulence, justifying the use
of a small periodic box. Simulations are performed for 1.3 K, 1.4 K, 1.5 K, 1.6 K, 1.7 K,
1.8 K, and 1.9 K, at six different normal fluid velocities for each.
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Figure 7.4: Velocity structure functions in the x (a), y (b), and z (c) directions, calculated
for one snapshot of the developed vortex tangle for the simulation at T = 1.9 K
with |vns| = 1.4 cm/s.

0 0.2 0.4 0.6

t[s]

0

2

4

6

8

10

L
[c
m

−
2
]

×104

(a)

0 0.2 0.4 0.6

t[s]

0.5

0.55

0.6

0.65

0.7

I
⊥

(b)

0 0.2 0.4 0.6

t[s]

0.76

0.78

0.8

0.82

0.84

0.86

0.88

I
||

(c)

Figure 7.5: Evolution of the vortex line density (a) and anisotropy parameters (b,c) for one
simulation at 1.9 K, |vns| = 1.4 cm/s after the switch from the LIA to the tree
algorithm. In (a) we illustrate the removal of the transient initial period, as de-
scribed in the main text, with only data to the right of the red cross considered
in the final analysis. The mean values after this transient period are indicated
by black dashed lines.

We will quantify the anisotropy of the vortex tangles using the following quantities [315]:

I‖ =
1

LD3

∫
L

[
1− (s′ · r̂‖)2

]
dξ,

I⊥ =
1

LD3

∫
L

[
1− (s′ · r̂⊥)2

]
dξ,

with r̂‖ and r̂⊥ respectively units vectors parallel and perpendicular to the counterflow,
and L signifying integration over all vortex lines. For isotropic configurations 〈I‖〉 = 〈I⊥〉 =
2/3, while if the vortices lie entirely in the plane perpendicular to the counterflow 〈I‖〉 = 1,
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Chapter 7. 3-D Numerical Experiments & Results

〈I⊥〉 = 1/2. We show the evolution of L and the anisotropy parameters for one typical
simulation, after the switch to the tree algorithm, in Fig. 7.5. We observe that in all simu-
lations the vortex line density decreases; this is expected from the anomalously high VLD
generated by the LIA. In Fig. 7.6 we compare the VLD of two simulations at the same
temperature and counterflow velocity. One is initialised using the procedure described, and
the other is initialised with a few seed vortices and evolved using the tree algorithm for the
entire simulation. The two simulations tend to the same saturated VLD, and we are satis-
fied that the eventual saturated value is not influenced by our initialisation; this also pro-
vides some evidence for the independence of the long-term structure of the vortex tangle
from the initial configuration.
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Figure 7.6: Evolution of the vortex line density for two simulations using the tree algo-
rithm at 1.3 K, |vns| = 1 cm/s, initialised with a few seed vortex rings (blue)
and with the tangle found using the LIA (red).

When calculating the mean value of L for statistically steady states we need to ensure
that we do not include the initial transient period. We do this by calculating the mean of
L for the portion of the simulation after switching to the tree algorithm, and identifying
the first time at which L is below the mean. The data before this time is then disregarded
in the analysis, as illustrated in Fig. 7.5.

We then estimate γ by linear regression to
√
L vs. |vns|, shown in Fig. 7.7. The linear

relation between
√
L and |vns| is evident, in agreement with theoretical predictions and

previous experiments and simulations. The values of γ estimated from these fits, shown in
Fig. 7.8, are in reasonable agreement with previous studies, although slightly higher, which
we discuss in the next section.

We also examine the dependence of the anisotropy on the counterflow velocity (Fig. 7.9),
and on the temperature (Fig. 7.10). In agreement with previous studies, we find the coun-
terflow velocity does not significantly influence the anisotropy in the range of values under
consideration, while the anisotropy is affected by the temperature, increasing as the tem-
perature increases. The specific values of the anisotropy parameters we find are in good
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7.1 Steady-State Counterflow

agreement with previous studies.
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Figure 7.7: Values of
√
L vs. the counterflow velocity at different temperatures: (a) 1.3

K, (b) 1.4 K, (c) 1.5 K, (d) 1.6 K, (e) 1.7 K, (f) 1.8 K, (g) 1.9 K, with linear
regression shown.

7.1.1 Discussion

In this section we have probed values of the parameter γ which describes the balance
between the generation and decay of vortex line density in counterflows. We use an estab-
lished method, pioneered by Schwarz [262, 313, 315, 329], in which a few seed vortices in a
periodic box with a constant counterflow are simulated (although we use the LIA initially
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Figure 7.8: Values of the parameter γ estimated from these simulations (black) with 95%
margin of error indicated. Values from previous simulations [328] are shown in
red, and experimental values [34,332] in blue.
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Figure 7.9: Mean value of anisotropy parameters for statistically steady states as a func-
tion of the counterflow velocity, for (a) 1.3 K, (b) 1.6 K, and (c) 1.9 K.
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Figure 7.10: Mean value of anisotropy parameters L⊥ (red) and L|| (blue) for statistically
steady states as a function of temperature, with values from previous numeri-
cal studies [328] (green).
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Figure 7.11: Comparison of γ with the spatial resolution δ, for T = 1.3 K (blue), T = 1.6
K (red), and T = 1.9 K (green). Hollow discs correspond to the simulations
of Adachi et al. [328], and solid discs correspond to the simulations described
in this work, with the dashed lines indicating the values of γ found by linear
regression.

before switching to a tree algorithm for the full Biot-Savart law), resulting in a statistically
steady state, from which γ can be inferred. However, whilst previous studies have used a
fixed box size and numerical resolution, we choose these parameters based on the temper-
ature and counterflow velocity of the particular simulation, with the aim of ensuring a rea-
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sonable separation of scales, and avoiding the simulation of very large tangles - as the tur-
bulence generated is in the ultraquantum regime there is no large-scale structure, so it is
not necessary to simulate scales far above the intervortex spacing - indeed, even our target
of D = 10` may be excessive, as Fig. 7.4 shows the correlation is negligible at a separation
of D/2. This approach also has potential for probing a wider range of values of |vns|, and
for probing the structure of vortex tangles at temperatures close to Tλ.

In agreement with theoretical predictions and previous studies, the VLD clearly scales
with |vns|2. The specific values of γ found are comparable to previous studies, although
somewhat higher. In Fig. 7.11 we consider values of γ found from selected individual sim-
ulations (calculated as γ =

√
L̄/|vns|). Although they are all higher than those found by

Adachi et al., we note that the values increase as the numerical resolution improves; this
may be related to the fractal nature [348, 349] of vortex tangles, and the improved capacity
to capture such smaller features; further simulations at higher |vns| and with correspond-
ingly smaller δ could usefully explore this trend.

It should be emphasised that these simulations do not make any attempt to account for
the back-reaction of the vortices on the normal fluid, and so truly relate to the TI regime,
where the normal fluid flow is laminar. Experiments have been performed in this context
[34, 35], as well as the related contexts of the TII regime, where both normal and superfluid
components are believed to be turbulent [34], and pure superflow in channels with super-
leaks at both ends, with flow generated both mechanically [219] and thermally [347, 350].
We put the results of this study in this context in Fig. 7.12.
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Figure 7.12: Comparison of γ calculated from experiments and simulations, adapted from
[219]: (1) this work, (2) bellows-driven superflow in a 7 mm channel; (3) in a
7 mm channel without downstream superleak; (4) in a 10 mm channel [219],
(5) thermally induced superflow in a 0.13 mm channel [347], (6) thermally
induced superflow in a 7 mm channel [350], (7) counterflow in a 1 mm chan-
nel, TI regime; (8) TII regime [35], (9) counterflow in a 0.13 mm channel, TI
regime [34], (10) numerical simulation [328].

7.2 Dissipation

A major source of the dissipation of kinetic energy in ultraquantum turbulence in helium
at zero temperature is believed to be the emission of phonons by high-frequency Kelvin
waves [163, 169], excited by reconnection events [166]. Although the scales at which this
mechanism occurs are inaccessible to the vortex filament method with current computers,
this dissipation is emulated by numerical dissipation due to the discretisation of vortex fil-
aments. In Vinen’s equation, eq. (5.8), the dissipation is modelled by the −χ2(κ/2π)L2

term, with the square arising from the two-body nature of reconnections, and the dimen-
sionless parameter χ2 characterising the strength of dissipation.

In this section we shall probe values of χ2 in the zero temperature limit, spurred on by
several points. Firstly, in the subsequent section, “3-D Diffusion”, one method for estimat-
ing the effective viscosity at 0 K requires knowledge of χ2, prompting a revisition of this
topic. A previous estimate found χ2 ≈ 0.3 from the decay of a homogeneous tangle simu-
lated with the LIA [186]; it is now feasible to repeat this investigation using a more accu-
rate model, either the full Biot-Savart law or a tree algorithm. Furthermore, this method
assumes that χ2 does not depend on L, which may not be the case.

Secondly, in a recent paper [215] Gao et al. find values of χ2 for temperatures between
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1.4 K and 1.7 K by performing thermal counterflow simulations. By considering the en-
ergy per unit mass associated with a random tangle of vortices, and relating this through
the quantum kinetic energy dissipation equation (dE/dt) = −ν ′κ2L2, to Vinen’s equation
(without generation), they find an expression:

χ2 =
αc2

2

2
ln

[
`

ξ0

]
, (7.1)

where α is a mutual friction parameter, ` is the characteristic intervortex spacing ` =
1/
√
L, ξ0 is the vortex core parameter, and c2 is a dimensionless parameter relating the

mean-square curvature of the vortices to their density as:〈[
1

R2

]〉
= c2

2L,

where R is the local radius of curvature. Although this method is not applicable at zero
temperature, as this condition precludes counterflow, this approach inspired us to seek a
steady state approach to the zero temperature limit.

7.2.1 Decay Method

In the absence of a relative motion between the two fluids, or at 0 K, Vinen’s equation
reduces to:

dL

dt
= −χ2

κ

2π
L2,

which, assuming χ2 is constant, is separable, immediately giving:

L−1(t) = L−1
0 + χ2

κ

2π
t,

where L0 is the vortex line density at t = 0 s. We can then estimate χ2 by tracking the
inverse line density of a decaying homogeneous tangle.

We generate an initial state by injecting randomly oriented and randomly translated vor-
tex loops into a 1 × 1 × 1 cm3 periodic box at a constant rate until the vortex line density
saturates. We then evolve the system with the tree algorithm for the Biot-Savart law and
a 3rd-order Adams-Bashforth scheme, with a spatial resolution of 0.02 cm and a time-step
of 5× 10−3 s. We confirm the homogeneity of the system by examining the vortex line den-
sity as a function of each cartesian direction, shown in Fig. 7.13. We test the isotropy of
the configuration by comparing the projected line length onto the yz-, xz-, and xy-planes,
respectively referred to as Λx, Λy, and Λz. For an isotropic tangle 〈Λx〉 = 〈Λy〉 = 〈Λz〉; we
find Λx ≈ 49.8 cm, Λy ≈ 50.0 cm, Λz ≈ 50.9 cm, and so are satisfied that our initial config-
uration is isotropic. Finally, we calculate the longitudinal velocity structure function in the
x-direction (as the choice of direction is arbitrary if we accept that the system is isotropic),
shown in Fig. 7.14, finding fx(`/2) ≈ 0.1; the lack of long-range correlation or structure is
a clear indication that the tangle is random, consistent with ultraquantum turbulence.
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Figure 7.13: Local vortex line density of the initial configuration vs. x, y, and z, calculated
over a region of 0.1 cm either side of the coordinate value under consideration
to avoid noise from small-scale fluctuations.
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Figure 7.14: Longitudinal velocity structure function in the x-direction for the developed
tangle formed by random injection of vortex loops, with half the characteristic
intervortex spacing ` indicated.

Having satisfied ourselves that our initial condition is suitable we allow the configura-
tion to evolve without forcing, with the configuration at three times shown in Fig. 7.15.
We show the inverse line density as a function of time in Fig. 7.16, with a fitted line. For
comparison we also show the inverse line density found by evolving the same initial con-
figuration with the LIA. The slope of the fitted line estimates (κ/2π)χ2, and we estimate
χ2 ≈ 0.596 from the tree algorithm simulation, and χ2 ≈ 0.475 from the LIA simulation.
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(a) (b) (c)

Figure 7.15: Visualisation of a decaying vortex tangle in a periodic box simulated with the
tree algorithm for the VFM. The configuration in the full 1×1×1 cm3 periodic
box is shown at the initial time (a), at 250 s (b), and at 500 s (c).

0 100 200 300 400 500 600 700 800 900 1000

t[s]

0

0.02

0.04

0.06

0.08

0.1

0.12

L
−
1
[c
m

2
]

Figure 7.16: Inverse line density of a decaying homogeneous vortex tangle vs. t, for simula-
tions using the LIA (red) and using the tree algorithm for the Biot-Savart law
(blue), with linear regression (black dashed) to each.

7.2.2 Steady State Method

In steady state thermal counterflow, the vortex line length is increased by the stretching
of vortices depending on their orientation with respect to the flow, balanced by the dissi-
pation of vortex line length by reconnections. This dissipation still occurs at zero tempera-
ture, but the only steady state is the trivial zero density state as no counterflow can exist.
We explore an alternative method for finding a non-trivial steady state, and use it to esti-
mate values of χ2 as a function of L.

Starting from an empty 1 × 1 × 1 cm3 periodic box, we inject randomly translated and
randomly oriented vortex loops of radius 0.0334 cm at a constant rate while evolving the
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system in time. The system is evolved using the tree algorithm, with the same spatial reso-
lution and time-step as the decay simulations. As the loops begin to fill the box, they start
to reconnect, forming a complicated vortex tangle which eventually reaches a statistically
steady state, shown in Fig. 7.17, with the evolution of the vortex line density shown in Fig.
7.18.

(a) (b) (c)

Figure 7.17: Development of a vortex tangle in a 1 × 1 × 1 cm3 periodic box by injection
of vortex rings with radius 0.0334 cm every 0.1 s. Panel (a) shows the initial
configuration, a single ring. Panel (b) shows the configuration at t = 25 s,
by which time vortex rings have begun to collide and reconnect, forming more
complicated structures. Panel (c) shows the configuration at t = 1000 s, by
which time the vortex tangle has filled the periodic box and reached a statisti-
cally steady state.
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Figure 7.18: Evolution of the vortex line density for the simulation shown in Fig. 7.17
where vortex rings of radius 0.0334 cm are injected every 0.1 s.

As we are injecting vortices of the same size at a constant rate we can easily determine the
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rate at which we are injecting vortex line density, denoted Linj, which emulates the growth
term in Vinen’s equation, giving a modified version:

dL

dt
= Linj − χ2

κ

2π
L2.

For a statistically steady state the terms on the RHS must balance, and we find:

χ2 =
2π

κ
LinjL

−2, (7.2)

where L is the vortex line density of the statistically steady state.

The advantage of this approach over a decay approach is the ability to probe the de-
pendence of χ2 on L by varying the injection rate, through which we can achieve different
steady state values for L. In Fig. 7.19 we show the steady state value of L as a function of
Linj, and in Fig. 7.20 we show the values of χ2, calculated using eq. (7.2), as a function of
L. The quantities are clearly related by power laws, which we find to be L ≈ 47.0(Linj)

0.562,
and χ2 ≈ 6.73L−0.223.
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Figure 7.19: Mean vortex line density L of statistically steady states obtained by injecting
vortex rings of radius 0.0334 cm, vs. the rate of injection of vortex line den-
sity Linj, with fit L ≈ 47.0(Linj)

0.562.

So far we have injected vortex loops of one fixed radius, and identified a relation be-
tween the rate of injection and the resulting vortex line density, and between the vortex
line density and χ2. However, the values of Linj are not unique; we can reach the same
value, by increasing the radius of the injected loops, while reducing the rate at which we
inject them proportionally. Naturally, this prompts us to ask whether the resulting line
density depends on the size of the injected rings, and moreover whether χ2(L) is indepen-
dent of their size - we note that a change in density alone may not be significant, if the
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Figure 7.20: Values of χ2 estimated from the values of L produced by particular injection
rates, shown in Fig. 7.19, with fit χ2 ≈ 6.73L−0.223.

value of χ2 matches the value found at this particular density by the original set of simu-
lations. With this in mind, we repeat the injection simulations, doubling the radius of in-
jected rings and halving the frequency of injection, with the new values of L and χ2 found
shown in Fig. 7.21 and Fig. 7.22.
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Figure 7.21: Mean vortex line density L of statistically steady states obtained by injecting
vortex rings of radius 0.0334 cm (blue) and of radius 0.0668 cm (red), vs. the
rate of injection of vortex line density Linj, with fit L ≈ 79.3(Linj)

0.468 to the
larger vortex rings.

Clearly, the change in injection size has drastically affected our estimates of χ2. We find
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lower values from the second set of simulations, and note that for our first set of simula-
tions χ2 appears to diverge as L→ 0, while χ2 appears to tend to 0 in this limit in the
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Figure 7.22: Values of χ2 estimated from the values of L produced by particular injec-
tion rates of vortices with radius 0.0334 cm (blue), and with radius 0.0668 cm
(red), with fit χ2 ≈ 0.553L0.134 to the larger vortex rings.
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Figure 7.23: Values of χ2 estimated from five sets of injection with increasing radius of the
injected rings, while maintaining the same injection rates between the sets.
Colours correspond to the radius of the injected rings, with radius 0.0334 cm
(blue), 0.0668 cm (red), 0.134 cm (green), 0.267 cm (orange), and 0.534 cm
(purple).

new set of simulations. To determine whether there is some general trend we perform three
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further sets of simulations, each time doubling the radius of injected loops while holding
Linj the same, with estimates of χ2 shown in Fig. 7.23. As we increase the size of the in-
jected loops the estimated values of χ2 converge, as shown by the fitted power laws, and we
estimate χ2(L) ≈ 0.07L0.4.

7.2.3 Effective Viscosity

We can also use our estimates of χ2 to estimate the effective viscosity. In classical fluids
the rate of dissipation per unit mass is described by:

dE

dt
= −νω2,

which has quantum analogue:

dE

dt
= −ν ′(κL)2. (7.3)

The energy per unit mass can be written as E = cL, where c is a constant which we shall
treat momentarily. Substituting this into eq. (7.3):

c
dL

dt
= −ν ′(κL)2 =⇒ dL

dt
= −ν

′

c
(κL)2.

From Vinen’s equation, with no relative fluid motion, we have:

dL

dt
= −χ2

κ

2π
L2,

and hence we identify:

− ν ′

c
(κL)2 = −χ2

κ

2π
L2 =⇒ ν ′

κ
= χ2

c

2πκ2
. (7.4)

We now consider the constant c. One can estimate the kinetic energy of a vortex per
unit length, E ′, by considering a straight line vortex in the centre of a cylinder of radius b
and unit height. The kinetic energy of the fluid is then:

E ′ =

∫ 1

0

dz

∫ 2π

0

dθ

∫ b

a0

ρ

2
v2rdr, where v =

κ

2πr

= ρ
κ2

4π

∫ b

a0

dr

r

= ρ
κ2

4π
ln

(
b

a0

)
,

where a0 is the vortex core radius. Then:

E =
kinetic energy

mass
=

kinetic energy

ρ× volume
=

kinetic energy

length
× length

volume
× 1

ρ
= E ′ × L× 1

ρ

=
κ2

4π
ln

(
`

a0

)
L,

where we have substituted b = ` = 1/
√
L, the characteristic intervortex spacing, to give:
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c =
κ2

4π
ln

(
`

a0

)
.

Substituting this into eq. (7.4) we find:

ν ′

κ
=

χ2

8π2
ln

(
`

a0

)
. (7.5)

In Fig. 7.24 we plot this estimate of ν ′/κ based on our estimate of χ2 = 0.596 from the free
decay of a vortex tangle, and based on our estimate χ2 = 0.07L0.4 from the steady states
found through injection.
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Figure 7.24: Estimates of ν ′/κ as a function of L for χ2 = 0.596 (blue) and χ2 = 0.07L0.4

(red).

7.2.4 Discussion

The most pressing point to address is the disparity between the form of χ2 found when
we inject vortices on different scales. For these simulations the relevant length scales are
the box width D, the intervortex spacing `, and the dissipation scale, which we take to be
the radius R0 of rings containing 5 or fewer discretisation points, which are removed algo-
rithmically, with R0 ≈ δ/2 based on our numerical resolution. In Fig. 7.25 we plot the
steady state values of L found for selected values of Linj as a function of the radius Rinj of
the injected vortices, in units of R0. We note that the radius of the smallest vortex rings is
only three times the dissipation scale. Our understanding is that vortices injected at this
scale are more readily dissipated than those further from the dissipation scale; this is re-
flected in the enhanced values of χ2 found for this set of simulations.

The largest vortex rings injected, for which the estimates of χ2 converge, are on a scale
comparable to the box width. This is compatible with the mechanical generation of turbu-
lence, where energy is injected at the largest length scales. However, it also invites further
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Figure 7.25: Steady state values of the vortex line density as a function of the radius of
injected vortex rings, in units of the characteristic dissipation scale. Individual
lines correspond to a particular rate of injection.

numerical investigation with parameters chosen to give a greater separation of scales be-
tween the dissipation scale and the injection scale, as it is not clear whether being far from
the dissipation scale is sufficient for convergence, or whether it is also necessary for injec-
tion to occur close to the system size. With regard to the intervortex spacing, we observe
that injecting vortex filaments of a particular size does not directly translate to injecting
energy at that scale, as this depends on the configuration of the entire tangle; for a random
tangle with the intervortex spacing less than the size of the injected vortices, the injected
vortices almost immediately reconnect in multiple locations, and in effect injection intro-
duces vortices at the intervortex length scale. In Fig. 7.26 we plot the intervortex spacing
vs. the radius of injected loops for selected values of Linj. It may be that the onset of con-
vergence occurs when the injection radius is comparable to the intervortex spacing; again,
simulations with a greater separation of scales would be necessary to confirm this.

The scales used for this investigation were chosen to match those of the diffusion inves-
tigation in the next section, but vortex line densities are typically much higher in exper-
iments. Using the same approach as in the previous section, where we chose our length
scales to make more extreme regimes accessible, would allow us to expand this work to
more experimentally relevant densities.

The values of χ2 found by the injection method are in reasonable agreement with the
value found from decay simulations, yet there is a contradiction between the two results:
the decay method relies on χ2 being constant, while we have strong evidence from the in-
jection method that it depends on L. However, the vortex line density is observed to de-
cay like t−1, which does not appear to be compatible with χ2 = χ2(L). This issue may be
masked by the slow variation in χ2 over the range of L in the decay simulation, but this
contradiction is not yet resolved.

We also produce two estimates of the effective viscosity from our estimates of χ2. Both

136



Chapter 7. 3-D Numerical Experiments & Results

0 0.1 0.2 0.3 0.4 0.5 0.6

Rinj[cm]

0

0.05

0.1

0.15

0.2

0.25

ℓ
[c
m
]

Figure 7.26: Steady state values of the characteristic intervortex spacing as a function of
the radius of injected vortex rings, with the line ` = Rinj superimposed (black
dashed). Individual lines correspond to a particular rate of injection.

depend on L: the estimate from χ2 = 0.596 has logarithmic dependence, while the esti-
mate from χ2 = 0.07L0.4 is dominated by the power law dependence of χ2 on L. The first
estimate is consistent with previous estimates, which are most focussed around ν ′/κ ≈ 0.1
[160], while the second is higher than previous estimates for larger values of L. However,
we note that in the range of L probed by these simulations (∼ 101–102 cm−2) the second
estimate is consistent with previous estimates of ν ′/κ, again motivating further simulations
to probe higher vortex line densities.

As mentioned above, Gao et al. find values of χ2 at finite temperatures using a differ-
ent methodology. The method we propose here would be applicable at finite tempera-
tures, and a direct comparison with their results could be made. Finally, we remark that
this method could be used to probe the phenomena of anomalous dissipation. Even in the
absence of viscosity, kinematic energy in classical turbulent flows is dissipated at a finite
rate [351, 352]. Using an analogue to the Reynolds number appropriate to superfluid he-
lium [353], (1 − α′)/α, which encapsulates the balance between dissipative and inertial
forces, one can find the injection rate needed to sustain a tangle at a given density for a
given value of this analogue. As the vortex line length acts as a proxy for the energy for a
random tangle, this then gives the dissipation as a function of the Reynolds number ana-
logue; is the same behaviour observed as for classical turbulence, shown in Fig. 7.27?
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Figure 7.27: Normalised dissipation rate vs. Rλ for various direct numerical simulations of
turbulence, reproduced from [351]

7.3 3-D Diffusion

In Sec. 4.1 we found that an initially localised region of quantum vorticity in 2-D, free to
expand into empty space, did so through two processes: the formation and ballistic flight
of vortex dipoles, and the gradual spread of the remaining vortices, with the spread gov-
erned by a diffusion process with the diffusion coefficient D ∼ κ, the quantum of circula-
tion. The obvious extension of this problem is to move from two dimensions to three di-
mensions, which introduces new effects, including vortex reconnections and Kelvin waves,
as well as more complicated possible vortex configurations.

In a pioneering numerical study Tsubota et al. [194] reported a value of the effective vis-
cosity of ν ′ ≈ 0.1κ, based on the diffusion of an initial configuration generated by thermal
counterflow next to a wall, and analysed using a modified Vinen’s equation, which requires
knowledge of the dissipation parameter χ2. We create an initial region of vorticity, in a sys-
tem relevant to helium in the zero temperature limit, by inserting randomly oriented vor-
tex loops, randomly translated according to a normal distribution about the origin. The
evolution of this tangle, determined by the vortex filament method, is then analysed in
terms of the root-mean-square deviation, drms, of the vortex filaments from their origin,
and in terms of a modified Vinen’s equation to facilitate comparison with [194].

Studies of quantum turbulence typically focus on statistically steady, homogeneous, isotropic
turbulence. However, many experiments generate turbulence locally, using ultrasound [354]
and various vibrating structures [203, 355–357] in superfluid helium at rest. This localised
turbulence may then spread to fill the experimental system, and an understanding of the
processes governing this would be relevant to such experiments. Further, numerous exper-
imental and numerical studies [33, 174, 186, 202, 208, 358] estimate the effective viscosity of
superfluid helium, and this approach offers a new technique to do so, which could be exper-
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imentally realised using current particle tracking techniques [24].

7.3.1 Set-Up and Methods

We generate our initial configuration by inserting randomly oriented vortex loops of ra-
dius 0.24 cm, randomly and independently translated in the x, y, and z directions accord-
ing to a normal distribution with a standard deviation of 1 cm. To examine the effect of
changing the initial vortex line density we produce two sets of initial configurations, one
with 50 vortex rings, with L ≈ 70 cm−2 at the origin, and one with 100 vortex rings, with
L ≈ 140 cm−2 at the origin, with 10 realisations of each. The vortex filaments are discre-
tised with resolution δ = 0.02 cm, their velocity is calculated by the tree algorithm for
the full Biot-Savart law [333], and the system is integrated in time by a 3rd-order Adams-
Bashforth scheme with a time-step ∆t = 5× 10−3 s. We illustrate one typical lower density
and one typical higher density initial configuration and their evolution in Fig. 7.28; we ob-
serve the formation and evaporation of small vortex rings, previously observed in [302], and
the 3-D equivalent of the evaporating dipoles we observe in 2-D PVM and GPE simula-
tions [233].

(a) (b) (c)

(d) (e) (f)

Figure 7.28: Vortex filament method simulations. The top row shows the initial configu-
ration (a), configuration at t = 100 s (b), and configuration at t = 200 s
(c) for a typical lower density simulation, while the bottom row shows a typ-
ical higher density simulation at the same times. All panels show the region
−3 cm ≤ x, y ≤ 3 cm projected onto the z = 0 plane.
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(a) (b) (c)

(d) (e) (f)

Figure 7.29: As for Fig. 7.28, but with vortex filaments containing fewer than 200 discreti-
sation points highlighted in red.

The algorithm described in Sec. 3.4 for identifying vortex dipoles does not readily ex-
tend to vortex filaments embedded in 3-D systems, and we require another technique to
distinguish the evaporating vortex rings from the main vortex tangle. We assume that all
vortex filaments containing fewer than some number Nc of discretisation points are evapo-
rating rings, while all vortex filaments containing at least Nc discretisation points are part
of the main tangle. In Fig. 7.29 we apply this criterion with Nc = 200 to the configurations
shown in Fig. 7.28, and visually it appears to be adept at distinguishing between the rings
and the main tangle. The value of Nc is not chosen arbitrarily; it is chosen for the conver-
gence of ν ′ as we shall discuss in the next section. In Fig. 7.30 we show the distribution of
the radial position, speed, and local radius of curvature of the main tangle and of the rings
at t = 200 s. The rings account for all of the vorticity furthest from the origin, with the
peak beyond the edge of the tangle, in agreement with visual inspection of Fig. 7.29. It is
interesting to note that the distribution of velocity and curvature is almost indistinguish-
able between the tangle and the rings, which we shall comment on in the discussion. In
Fig. 7.31 we show the vortex line length of filaments in the tangle and filaments identified
as evaporating loops as a proportion of the total vortex line length. After an initial period
during which the proportion of line length belonging to the tangle increases as the small
initial vortices reconnect to produce the tangle, the proportion of line length belonging to
the tangle decreases until the end of the simulations. We note that more than 50% of the
line length resides within the tangle even at the end of the simulation, so we have a large
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number of data points for calculating statistics.
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Figure 7.30: Probability density function of radial coordinate (a,d), speed (b,e), and radius
of curvature (c,f), all at t = 200 s (corresponding to panels (c,f) in Fig. 7.29),
for the lower density simulations (a-c) and higher density simulations (d-f).
The black curves correspond to the vortex filaments containing 200 or more
discretisation points, and the red curves to those containing fewer.

We analyse the simulations with two methods. Firstly, we use the same tools as for 2-D.
We calculate the root-mean-square deviation, drms of vortex filaments comprising the main
tangle from their origins, using their discretisation points as tracers:

drms(t) =

√√√√ 1

N(t)

N(t)∑
i=1

(xi(t)− xi(0))2 + (yi(t)− yi(0))2 + (zi(t)− zi(0))2,

where N(t) is the number of points tracked at time t which belong to the main tangle, and
(xi(t), yi(t), zi(t)) is the position of the ith discretisation point at time t. As discretisation
points are inserted and removed to maintain the spatial resolution we must infer the origin
of newly inserted points, which we discuss in detail in Sec. 6.1.6. In Fig. 7.32 we compare
the probability density functions of the radial position, speed, and local radius of curvature
for tracked particles in the main tangle, and for all particles comprising tangles, concluding
that the particles which we successfully track are representative of the tangle as a whole.
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Figure 7.31: Proportion of the total vortex line length contained in the main tangle (red)
and in the evaporating loops (blue) for the lower density simulations (a) and
higher density simulations (b)

The diffusion coefficient for the diffusion process governing the spread of the tangle is
then calculated as:

D(t) =
drms

4t
.

The second method we use is that of Tsubota et al.. They generalise Vinen’s equation
(with no generating term) to include a diffusive term:

dL

dt
= −χ2

κ

2π
L2 +D∇2L, (7.6)

which we solve in spherical coordinates, assuming spherical symmetry, using a 4th-order
finite difference scheme to estimate spatial derivatives, and a 3rd-order Adams-Bashforth
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Figure 7.32: Probability density functions of the radial coordinate (a), speed (b), and lo-
cal radius of curvature (c) for all points within the tangle (blue), and for all
points which are successfully tracked within the tangle (red), at t = 500 s for
the higher density simulations.

scheme to integrate forward in time, with spatial resolution ∆r = 0.02 cm and a time-
step ∆t = 0.01 s. We take χ2 = 0.07L0.4 as estimated in Sec. 7.2.2; we also use the con-
stant value χ2 = 0.3 used in [194], and the constant value χ2 = 0.596 we estimate in Sec.
7.2.1 for comparison. Again assuming spherical symmetry, we estimate L(r, t) by integrat-
ing over the vortex lines within spherical shells, using L(r, 0) as the initial condition for
the modified Vinen’s equation. We then estimate D by minimising the sum of square er-
rors between L(r, t) found from our VFM simulations, and our solution found through the
integration of eq. (7.6).

7.3.2 Analysis

Before we calculate ν ′ we address the nature of the turbulence. Focusing on one of the
higher density simulations, we calculate the transverse velocity correlation function f⊥(r, t) =
〈v⊥(r, t)v⊥(r + rê⊥, t)〉/〈v⊥(r, t)2〉, and find that it quickly decreases as r increases, indicat-
ing that the turbulent velocity field is essentially random. At t = 0 s we find f⊥(`/2, 0) ≈
0.27, where ` is the characteristic intervortex spacing. This lack of long-range structure is
consistent with Vinen (ultraquantum) turbulence [160].

We first analyse the data using the drms method. The ensemble averaged drms of tracked
discretisation points in the main vortex tangle for both sets of simulations are shown in
Fig. 7.33. At early times drms ∼ t, consistent with ballistic motion. After this transient
initial period we find drms ∼ t1/2, consistent with diffusion. We stress again that the early
ballistic behaviour is not connected to the ballistic motion of the evaporating loops, which
are excluded from this analysis. A possible interpretation of this behaviour is that the vor-
tex filaments locally move in an almost linear way until they come close enough to other
filaments for their motion to be dominated by them, deflecting them, with many interac-
tions like this building up to a Brownian motion-like diffusion process; this is supported by
the observation that the transition from a ballistic regime to a diffusive regime occurs at
roughly the point at which drms becomes comparable with the initial intervortex spacing
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(∼ 0.12 cm, and ∼ 0.08 cm at the centre of the lower density and higher density simula-
tions, respectively).
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Figure 7.33: Ensemble average drms for lower density simulations (a) and higher density
simulations (b), with drms ∼ t scaling indicated by black dashed lines, and
drms ∼ t1/2 scaling indicated by black dot-dashed lines.

In Fig. 7.34 we show the ensemble average of the calculated value of ν ′, in units of the
quantum of circulation, for a range of values for Nc, the criterion for identifying individual
filaments as either part of the main tangle or evaporating loops. We see that for small val-
ues of Nc the value of ν ′ does not settle in time, whereas for large Nc the value of ν ′ does
settle, and converges to a values of ν ′ ≈ 0.5 as Nc reaches 200, for both sets of simulations.
We take this, in combination with the visual confirmation and radial position distribution
in the previous section, to demonstrate that this method for distinguishing the tangle from
the evaporating loops is effective.
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Figure 7.34: Ensemble average ν ′, in units of the quantum of circulation κ, for the lower
density simulations (a) and the higher density simulations (b). Blue lines
show the value found when Nc = 200, while the grey lines show values found
as Nc is increased from 0 (grey line which reaches maximum value earliest) to
200.

We now use the modified Vinen’s equation to estimate ν ′ independently. We fit solutions
to the equation with three candidates for χ2, and both including and excluding the ballistic
loops that are disregarded in the drms analysis. In Fig. 7.35 we show the ensemble averaged
vortex line density from the full VFM simulations, with solutions to the modified Vinen’s
equation superimposed, where we have taken the ensemble average initial density as our
initial condition, and the mean estimate of ν ′ over the ten realisations. We summarise the
values of ν ′/κ found for both methods in Table 7.1.
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Figure 7.35: Vortex line density, as a function of radius, from VFM simulations (black) and
modified Vinen’s equation with χ2 = 0.3 (blue), χ2 = 0.596 (green), χ2 =
0.07L0.4 (red), for lower density simulations with (1st row) and without (2nd)
ballistic loops, higher density with (3rd) and without (4th), at times t = 50 s
(1st column), t = 200 s (2nd), and t = 500 s (3rd).
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Method ν ′/κ
drms, lower density 0.526± 0.064
drms, higher density 0.530± 0.065

Modified Vinen’s eq., lower density, χ2 = 0.3 0.315± 0.196
Modified Vinen’s eq., lower density, small loops excluded, χ2 = 0.3 0.053± 0.095

Modified Vinen’s eq., lower density, χ2 = 0.596 0.237± 0.193
Modified Vinen’s eq., lower density, small loops excluded, χ2 = 0.596 0.028± 0.090

Modified Vinen’s eq., lower density, χ2 = 0.07L0.4 0.341± 0.195
Modified Vinen’s eq., lower density, small loops excluded, χ2 = 0.07L0.4 0.068± 0.095

Modified Vinen’s eq., higher density, χ2 = 0.3 0.307± 0.105
Modified Vinen’s eq., higher density, small loops excluded, χ2 = 0.3 0.198± 0.083

Modified Vinen’s eq., higher density, χ2 = 0.596 0.162± 0.112
Modified Vinen’s eq., higher density, small loops excluded, χ2 = 0.596 0.112± 0.093

Modified Vinen’s eq., higher density, χ2 = 0.07L0.4 0.304± 0.107
Modified Vinen’s eq., higher density, small loops excluded, χ2 = 0.07L0.4 0.201± 0.084

Table 7.1: Values of ν ′/κ estimated from the two methods described in this section, for the
lower and higher density sets of simulations, and in the case of the modified Vi-
nen’s equation, either retaining or excluding the small evaporating loops, and
for various proposed values of χ2. Values are quoted as mean ±1 standard devi-
ation.

7.3.3 Discussion

We find that an initially localised region of vortex filaments, with structure consistent
with the ultraquantum regime, spreads out in space through two processes: the formation
and ballistic flight of small vortex rings, and the slower spread of the remaining tangle.
The latter can be modelled as a diffusion process, and by a standard approach analysing
the root-mean-square deviation of vortices within the main tangle we find ν ′/κ ≈ 0.5, con-
sistent with the values in the range 0.3 < ν ′/κ < 0.5 we obtained for a 2-D trapped Bose-
Einstein condensate using the Gross-Pitaevskii equation and the point vortex model, bear-
ing in mind that the value of ν ′/κ in these trapped systems appears to be suppressed by
boundary effects. We also obtain values of ν ′/κ by fitting solutions to a modified Vinen’s
equation, with a dissipative term and a diffusive term, pioneered by Tsubota et al. [194].
Comparing the results of the two methods, with reference to Table 7.1, we make the fol-
lowing observations: the drms method does not require knowledge of χ2, but the modified
Vinen’s equation does, and the result obtained is strongly dependent on the value (or func-
tional dependence) of χ2 used. Excluding ballistic loops lowers the values obtained - this
in itself is not surprising, as the ballistic loops are the fastest spreading components of
the configuration, but it does increase the difference between the estimate of ν ′ with this
method and with drms, and it seems hard to justify including them when they are evidently
ballistic, not diffusive. As well as depending on χ2, the value found has some dependence
on the vortex line density, although only significant when the ballistic loops are excluded
from the analysis. Finally, we note that the variance, particularly in proportion to the
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mean value, is far smaller for the drms method.
In their original paper Tsubota et al. find ν ′/κ ≈ 0.1, a value somewhat lower than those

we find , but not in total disagreement. There are a number of factors which could con-
tribute to the difference observed. We work in an infinite open domain, while they used a
domain with a hard wall boundary, and periodic boundary conditions in directions perpen-
dicular to the wall. Then, they used an initial condition generated by thermal counterflow
with dynamics given by the local induction approximation, which is known to generate
anomalously anisotropic vortex tangles with large-scale structures [328]. The values we find
when ballistic loops are excluded are closer to 0.1κ, it may be the case that the proportion
of vortices in the main tangle was greater in their simulation, with the ballistic loops ex-
erting less influence on the value of ν ′ obtained. We note also that Nemirovskii developed
theory drawing on the simulations of Tsubota et al. [359], which yields a value four times
greater than ours, ν ′/κ ≈ 2.2. Both this theory and the modified Vinen’s equation assume
the existence of a diffusion process, while the scaling of drms ∼ t1/2 in our analysis shows
that such a process occurs.

We observe that the local curvature and velocity statistics of the vortices comprising the
main tangle are almost indistinguishable from those of the evaporating loops: in effect, the
tangle behaves like a collection of small vortex rings, although we stress that the tangle is
a far more complicated and knotted structure than isolated vortex rings. It is clear that
the behaviour of the tangle is not ballistic, as shown by the drms ∼ t1/2 scaling, and by
comparison of drms at later times with the deviation that would arise if the vortices were
travelling ballistically. With an average speed of ∼ 0.03 cm/s, we would expect drms ≈ 30
cm at t = 1000 s; the observed value of drms at this time is an order of magnitude lower.
However, the diffusion process may originate in this local structure, with local sections of
the tangle moving ballistically until deflected by other vortices in the tangle, as supported
by the transition from the ballistic drms ∼ t regime to the diffusive drms ∼ t1/2 regime when
drms ∼ `.

The effective viscosity of a superfluid is also inferred in the related problem of the decay
of superfluid turbulence. Experimental and numerical values are found in the approximate
range 0.01 < ν ′/κ < 1, but most concentrated around 0.1 [33, 190, 200, 202, 215]. Finally, we
reiterate that the drms method used to estimate ν ′/κ here is Lagrangian, and could thus be
used in future experimental studies using visualisation techniques based on tracking excited
helium molecules [24, 37,38].
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Conclusions

In this thesis we set out to describe how quantum turbulence spreads into vorticity free
regions through numerical experiments, motivated by experiments in which quantum tur-
bulence is generated locally within a larger experimental cell [31, 159,195,206,207,220,221].

We first consider 2-D systems, which are relevant to Bose-Einstein condensates (BECs)
in geometries with tight confinement in one direction. We use two models, the point vor-
tex model (PVM) in an infinite domain which captures only the core of vortex dynam-
ics, and the Gross-Pitaevskii equation (GPE), in a disc trap, which captures the physics
of BECs at zero temperature. Under both models we observed the formation of vortex-
antivortex dipoles, which move ballistically out from the region of vorticity. We also ob-
serve the spread of the remaining vortices, which we analyse in terms of the root-mean-
square deviation, drms, of these vortices from their initial positions. After a transient period
when drms ∼ t, consistent with ballistic dynamics, we find drms ∼ t1/2, consistent with a
diffusion process. We postulate that this diffusion emerges from vortex trajectories being
deflected as they approach other vortices close enough for a single vortex to dominate their
velocity, with many such events building up to act similarly to a random walk. This is sup-
ported by the observation that the transition from a ballistic regime to a diffusion regime
occurs when drms is comparable to the initial characteristic intervortex spacing. In our ini-
tial simulations we find the diffusion coefficient to be D ≈ κ, where κ is the quantum of
circulation, under the PVM, and D ≈ 0.3κ under the GPE. Implementing a similar hard
wall disc boundary in the PVM, and varying the initial vortex density, we find that the dif-
fusion coeficient is suppressed by the presence of boundaries and low vortex density, and
attribute the observed difference in D between the two models to this rather than to the
physics modelled by the GPE but not the PVM.

We then consider 3-D systems, which we model using the vortex filament method (VFM)
which is relevant to quantum turbulence in helium II. We observe the formation of small
vortex rings, analogous to the dipoles observed in 2-D, which move ballistically out from
the central region of vorticity. We analyse the spread of the remaining vorticity in terms
of the drms, using the discretisation points of the vortex filaments as tracer particles. The
results closely mirror those in 2-D: after a transient period during which drms ∼ t, we find
drms ∼ t1/2, with the transition occurring when drms ∼ `, the characteristic intervortex
spacing. This is indicative of a diffusion process, and we find D ≈ 0.5κ for each of two
sets of simulations with different initial densities. This value is somewhat higher than, but
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not incomparable with, the value of D ≈ 0.1κ found by Tsubota et al. [194] analysing the
spread of a region of vorticity next to a wall, in terms of a modified Vinen’s equation which
introduced a diffusion term to the usual Vinen’s equation. Analysing our data using this
method we find D ≈ 0.3κ. However, there is a lot more variability in this method, and
it requires independent knowledge of the dissipation parameter χ2 which the drms method
does not.

In classical fluids the vorticity transport equation describes the spread of vortices as a
nonlinear diffusion process, with the kinematic viscosity acting as the diffusion coefficient.
It is noteworthy that in quantum turbulence, vorticity still spreads through a diffusion pro-
cess despite the lack of viscosity, suggesting that the diffusion coefficient found in our sim-
ulations of spreading quantum vortices may be a suitable candidate for the effective viscos-
ity in quantum fluids. The effective viscosity of He II is the subject of a wealth of numeri-
cal and physical experiments, the results of which are summarised in Fig. 8.1. We discuss
this shortly, after introducing a second estimate of the effective viscosity.
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Figure 8.1: Estimates of the effective viscosity of He II: (1) this work, steady state injec-
tion simulations, Sec. 7.2, (2) this work, diffusion simulations, Sec. 7.3,(3)
charged vortex rings measured vertically and (4) measured horizontally [160]
(5) counterflow experiments [19, 20, 149, 150] (6) counterflow simulations [186]
(7) ion jet [160] (8) spin down sampled by charged vortex rings and (9) sam-
pled by free ions [33] (10) towed grid [187] (11) & (12) counterflow decay [192]
(13) grid turbulence [188] (14) steady state grid turbulence [191] (15) steady
state grid turbulence and (16) steady state turbulence [190].

In order to estimate the diffusion coefficient using the method of Tsubota et al. we need
to estimate the dissipation parameter χ2 in Vinen’s equation. We do this using two meth-

150



Chapter 8. Conclusions

ods: we first revisit estimation based on the decay of the vortex line density in homoge-
neous, isotropic, ultraquantum turbulence. This has previously been performed using the
local induction approximation (LIA) in studies which find χ2 ≈ 0.3 [186]; using the tree
algorithm for the full Biot-Savart law, which includes long-range interactions absent in the
LIA we find χ2 ≈ 0.596. We also estimate χ2 by using the injection of randomly oriented
and randomly translated vortex rings at constant rates in a period box to achieve statisti-
cally steady states, finding χ2 ≈ 0.07L0.4. By analogy to the classical energy dissipation
equation we estimate the effective viscosity as:

ν ′

κ
=

χ2

8π2
ln

(
`

a0

)
.

Using the constant value of χ2 = 0.596 we find ν ′ ≈ 0.1κ, with weak logarithmic depen-
dence on the vortex line density. We include this data point in Fig. 8.1, which summarises
estimates of the effective viscosity.

Below about 1 K two branches are evident in Fig. 8.1, with the lower branch correspond-
ing to systems in the quasiclassical regime of turbulence, and the higher branch to systems
in the ultraquantum regime of turbulence. Our estimate from the steady state injection
simulations is in good agreement with previous estimates of the effective viscosity for ul-
traquantum turbulence in 4He, which are focussed around ν ′ = 0.1κ at 0 K. Our estimate
from the diffusion of quantum vorticity is somewhat higher, though still in order of mag-
nitude agreement. We note that the estimate from steady state injection is based, as are
previous studies, on the dissipation of energy, while the estimate from the diffusion of vor-
ticity is made by analogy to the classical vorticity transport equation.

This is perhaps similar in spirit to the concept of eddy viscosity for classical fluids, which
pertains to the momentum transport. Viscosity can be interpreted as the material property
which determines momentum transport in a fluid, with Newton’s law of viscosity:

τ = µ
∂u

∂y

relating the shear stress τ to the velocity gradient through the dynamic viscosity µ. This
is exact for laminar flow, however, this does not account for addition momentum transport
done by vortices in turbulent flows. The eddy viscosity then attempts to describe this ad-
ditional momentum transport as:

τ = µ
∂u

∂y
+ η

∂u

∂y
,

where η is the eddy viscosity. This is then an effective viscosity, as it does not arise solely
from the microscopic behaviour of the fluid, but rather from the flow. Values of η are typ-
ically identified by comparison to known flows, and so the eddy viscosity is a phenomeno-
logical attempt to include additional momentum transport in models, analogous to ν ′ in
our diffusion simulations characterising the transport of vortices.

As both ν ′ estimated from dissipation and estimated from vorticity transport are based
on the dynamics of vortices in the fluid, they clearly also arise from the particular form
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of the flow, and not just the fluid’s material properties. This can be seen for the dissipa-
tion ν ′ in Fig. 8.1, as different values emerge for the two turbulent regimes, corresponding
to the two branches seen below 1 K; for the diffusion transport ν ′ this can be seen in the
change in value induced by boundaries in 2-D. However, in contrast to the eddy viscosity,
which stems from vortex motion on all scales, in the ultraquantum regime the dissipation
ν ′ arises from the motion at the smallest scales, while the vorticity transport ν ′ arises prin-
cipally from motions at the intervortex scale. The suppression of the dissipation ν ′ in the
Kolmogorov regime is due to the increased alignment of vortices in bundles suppressing the
reconnections which drive the various dissipation mechanisms. This suggests that future
work could usefully explore what difference, if any, is seen in the vorticity diffusion ν ′ be-
tween the Vinen and Kolmogorov regimes. We note that the vortex line density, and hence
intervortex scale, does not affect ν ′ in our 3-D diffusion simulations. Future work should
establish the dependence on other properties, including the temperature and external flow,
and whether it is the intrinsic or extrinsic properties which influence ν ′ most.

The diffusion simulation could certainly be undertaken in an experimental setting, in
both 2-D BECs and 3-D 4He. Vortices can be generated locally in both systems [29, 31, 32,
83, 99, 100, 102], and then tracked, by the use of non-destructive imaging in BECs [85] and
tracer particles in 4He [24,25,37,38]. Although the systems currently experimentally achiev-
able in BECs are not large enough to avoid the suppression of ν ′ by boundary effects, the
formation of dipoles and spread of the remaining vortices should still be observable.

The investigations undertaken in this thesis primarily relate to ultraquantum turbulence
at zero temperatures. However, the methods described are often also applicable at finite
temperatures, and in the quasiclassical regime of turbulence. In particular, the effective
viscosity of He II could be estimated from the diffusion of vortices in simulations and ex-
periments at finite temperatures, and in the quasiclassical regime, provided that a diffusion
process again emerges from the interaction of vortices. The estimation of χ2, and the re-
sulting estimate of ν ′/κ, by the injection of vortex rings could be performed in finite tem-
perature simulations of ultraquantum turbulence, moreover, if the rate at which vorticity
is injected, by mechanical or other means, could be controlled with sufficient precision, this
technique could also be used to experimentally determine the dissipation parameter.
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Appendix A

Derivations

A.1 Point Vortex Model

We follow the derivation given in [360]. Consider an inviscid, incompressible fluid with
an associated velocity field u described by the Euler equation:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ f , (A.1)

and incompressibility condition:

∇ · u = 0, (A.2)

where p is the pressure and f = −∇A for some conservative body force A. The vorticity is
defined as:

ω = ∇× u, (A.3)

and taking the curl of eq. (A.1) we obtain a vorticity transport equation:

∂ω

∂t
+ (u · ∇)ω = 0, (A.4)

which can be interpreted physically as vorticity being preserved along the flow lines.

We seek to describe the velocity field u that generates a chosen ω. Restricting ourselves
to two dimensions, we consider point vortex fields ω(r) where the vorticity is confined to
points; i.e. point vortices are singularities in ω, and the velocity field associated with a
configuration of N point vortices is
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A.1 Point Vortex Model

ω(r) =
N∑
i=1

Γiδ(r− ri), (A.5)

where Γi is the circulation about the ith vortex, ri is the position of the ith vortex, and δ is
the Dirac delta function. We can see that Γi corresponds to the circulation of the ith vor-
tex by considering the definition of circulation around a region R containing only the ith

vortex:

ΓC =

∮
C

u · dl. (A.6)

Using Stoke’s theorem:

ΓC =

∫∫
S

(∇× u) · ndS =

∫∫
S

ω · dS (A.7)

Using eq. (A.3) and substituting our particular velocity field eq. (A.5) we have:

ΓC =

∫∫
S

[
N∑
i=1

Γiδ(r− ri)

]
· dS = Γi, (A.8)

as stated. Let us now introduce the auxiliary stream function Ψ satisfying:

dx

dt
=
∂Ψ

∂y
,

dy

dt
= −∂Ψ

∂x
, (A.9)

and note that that this is guaranteed to satisfy eq. (A.2). Substituting eq. (A.9) into eq.
(A.3) yields:

∇2Ψ(r) = −ω(r); (A.10)

Poisson’s equation with ω as a source. We can solve for Ψ by inverting this:

Ψ(r) =

∫
G(r, r′)ω(r′)dr′, (A.11)

where G is the Green’s function solution to ∇2G(x, y) = −δ(x, y). For the 2-D plane this
is:
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G(r, r′) = − 1

4π
ln(|r− r′|2), (A.12)

from [361]. Combining eq. (A.5), (A.11), and (A.12) we have:

Ψ(r) = − 1

4π

∫
ln(|r− r′|2)

[
N∑
i=1

Γiδ(r
′ − ri)

]
dr′

= − 1

4π

N∑
i=1

Γi ln(|r− ri|2), (A.13)

which gives, through eq. (A.9):

dx

dt
= − 1

2π

N∑
i=1

Γi(y − yi)
|r− ri|2

,
dy

dt
=

1

2π

N∑
i=1

Γi(x− xi)
|r− ri|2

(A.14)

These are the components of the velocity field generated by the specified configuration of
point vortices. As vortices move with the fluid [362], the equations of motion for the vor-
tices themselves are recovered by substituting their (x, y) coordinates into eq. (A.14), and
omitting the singular term.

A.2 Gross-Pitaevskii Equation

We give a derivation of the GPE, following the more detailed derivation given in [249].
We first examine the quantum field theory description of a many-body quantum system
[363]. An N -body wavefunction Ψ̃(r1...rN , t) describes such a system, with Ψ̃ obeying the
Schrödinger equation:

i~
∂

∂t
Ψ̃(r1...rN , t) = ĤΨ̃(r1...rN , t), (A.15)

where ri describes the location of the ith body. We can describe a dilute, weakly interact-
ing Bose gas of N atoms under this formalism with such a wavefunction, and a Hamilto-
nian:

Ĥ =
N∑
i=1

ĥ0(ri, t) +
1

2

N∑
i,j=1

V̂ (ri, rj), (A.16)

where ĥ0 = − ~
2m
∇2 + Vext(r, t) arises from the effects of a single atom in an external po-

tential field, and V̂ (ri, rj) describes collisions between two particles. As the gas is dilute
we assume that all collisions are binary. The factor of 1

2
is included to account for double

counting of two-body interactions.
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A.2 Gross-Pitaevskii Equation

We proceed by reformulating the problem in a different representation, the occupation
number representation. The indistinguishability of particles is exploited to reduce the rep-
resentation of the system to the number of particles ni in each energetically accessible state
i. The usual complete orthonormal basis of single-particle wavefunctions used to expand
the many-body wavefunction is then replaced by a new complete orthonormal basis set
|n1...n∞〉. Although this basis set is infinite, there can be at most N populated states.

The N -body wavefunction is then mapped into this new occupation number basis via:

Ψ̃(r1...r∞, t)→ |Ψ̃(t)〉 =
∑

n1...n∞

c(n1...n∞)|n1...n∞〉, (A.17)

where c(n1...n∞) are appropriate (complex-valued) expansion coefficients, that must be
normalised such that the probability of finding the particular system in configuration space
is 1, and must obey the relevant particle statistics; for bosons this means being symmetric
with respect to the interchange of quantum numbers. For our system this leads to:∫

|Ψ̃|2dr = 1→
∑

n1...n∞

|c(n1...n∞)|2 N !

n1!...n∞!
= 1. (A.18)

The factor N !/(n1!...n∞!) accounts for the correspondence of some sets of occupation num-
bers to multiple N-particle states due to the indistinguishability of particles. The expres-
sions for the expansion coefficients c(n1...n∞) describe the probability of a particle chang-
ing its energy by moving from one level, say i, to another, say j. This can be described
mathematically as the simultaneous destruction of a particle in level i and creation of a
particle in level j. We encode this using the single-particle annihilation (â) and creation
(â†) operators [364] :

âi|n1...nj...ni...n∞〉 =
√
ni|n1...nj...(ni − 1)...n∞〉, (A.19)

â†j|n1...nj...ni...n∞〉 =
√
nj + 1|n1...(nj + 1)...ni...n∞〉, (A.20)

which obey the bosonic commutation relations:[
âi, â

†
j

]
= δij,

[
âi, âj

]
=
[
â†i , â

†
j

]
= 0. (A.21)

We can now describe any particle changing state through these operators; in particular
a particle moving from state i to state j can be described by a product of a single-particle
annihilation operator and a single-particle creation operator: â†j âi. Likewise, we can de-
scribe two-particle interactions where one moves from state i to state j, and the other from
state k to state l with the product â†j â

†
l âiâk. The formulation in eq. (A.15) and (A.16) can

now be expressed as:

i~
∂

∂t
|Ψ̃〉 = Ĥ|Ψ̃〉, (A.22)

with the Hamiltonian:

Ĥ =
∑
ij

〈j|ĥ0|i〉â†j âi +
1

2

∑
ijkl

〈jl|V̂ |ik〉â†j â
†
l âiâk (A.23)
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where

〈j|ĥ0|i〉 =

∫
φ∗j(r)ĥ0φi(r)dr, (A.24)

〈jl|V̂ |ik〉 =
1

2

[
(jl|V̂ |ik) + (jl|V̂ |ki)

]
(A.25)

(jl|V̂ |ik) =

∫∫
φ∗j(r)φ∗l (r

′)V̂ (r− r′)φi(r
′)φk(r)dr′dr, (A.26)

and φi(r) are solutions of the usual Schrödinger equation, with no interaction term.
For the sake of brevity it is now convenient to introduce the Bose field operators:

Ψ̂(r, t) =
∑
i

âi(t)φi(r, t), (A.27)

Ψ̂†(r, t) =
∑
i

â†i (t)φ
∗
i (r, t), (A.28)

with Ψ̂(r, t) representing the removal of a particle at position r and time t, and Ψ̂†(r, t) the
addition of a particle at position r and time t. These operators, known respectively as the
annihilation and creation operators, satisfy the commutation relations

[
Ψ̂(r, t), Ψ̂†(r′, t)

]
= δ(r− r′),

[
Ψ̂(r, t), Ψ̂(r′, t)

]
=
[
Ψ̂†(r, t), Ψ̂†(r′, t)

]
= 0 (A.29)

for bosonic particles. Using these operators we can rewrite eq. (A.23) as:

Ĥ =

∫
Ψ̂†(r, t)ĥ0Ψ̂(r, t)dr +

1

2

∫∫
Ψ̂†(r, t)Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)Ψ̂(r, t)dr′dr, (A.30)

where V (r− r′) is the two-body interaction potential.
At this point in the derivation the Hamiltonian includes thermal effects and quantum

fluctuations, beyond the theory contained in the GPE we will arrive at; the point at which
this derivation deviates from approaches containing these effects will be made apparent.
For now, we focus on the two-particle interactions. The typical approach is to approximate
the two-body interaction potential as a contact interaction:

V (r− r′) = gδ(r− r′), (A.31)

that is, we assume that the collisions are local and perfectly elastic, with a strength g =
4π~2as/m as a leading order approximation [365], where as is the s-wave scattering length,
which can be determined in the laboratory for a particular atomic species.

Inserting this into eq. (A.30) gives the Hamiltonian:

Ĥ =

∫
Ψ̂†(r, t)ĥ0Ψ̂(r, t)dr +

g

2

∫
Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)dr. (A.32)

The Heisenberg equation of motion:
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A.3 Vortex Filament Method

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
(A.33)

describes the evolution of the Bose field operator Ψ̂(r, t). Expanding out the commutator
and simplifying by using eq. (A.29) and standard commutator identities, then integrating
out delta functions, yields:

i~
∂Ψ̂(r, t)

∂t
=

∫ [
Ψ̂, Ψ̂†ĥ0Ψ̂

]
dr +

g

2

∫ [
Ψ̂, Ψ̂†Ψ̂†Ψ̂Ψ̂

]
dr

=

∫ [
Ψ̂, Ψ̂†

]
ĥ0Ψ̂ + Ψ̂†

[
Ψ̂, ĥ0Ψ̂

]
dr+

g

2

∫ [
Ψ̂, Ψ̂†

]
Ψ̂†Ψ̂Ψ̂ + Ψ̂†

[
Ψ̂, Ψ̂†

]
Ψ̂Ψ̂ + Ψ̂†Ψ̂†

[
Ψ̂, Ψ̂Ψ̂

]
dr

= ĥ0Ψ̂(r, t) + gΨ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t) (A.34)

For a Bose-Einstein condensate, with one particular state of the system macroscopically
occupied, it is natural to consider a mean field approach [366], splitting the Bose field oper-
ator as:

Ψ̂(r, t) = ψ̂(r, t) + δ̂(r, t), (A.35)

where ψ̂(r, t) is a field operator for the condensed atoms, in the macroscopically occupied
state, and δ̂(r, t) is a field operator for the non-condensed atoms, that is, atoms in ther-
mally excited states, those promoted from the condensate state by interactions between
atoms, and quantum mechanical fluctuations.

We now make the Bogoliubov approximation [71], resulting in the replacement of the
operator ψ̂(r, t) in eq. (A.35) by a complex number, usually referred to as the condensate
wavefunction, ψ(r, t) =

√
N0ϕ(r, t), where N0 is the number of particles in the condensate.

Note that in this definition, ϕ(r, t) is a classical field.
This is a fairly substantial approximation, which immediately results in the breaking of

the U(1) global phase symmetry, and the loss of conservation of total particle number. It is
assumed that the addition or removal of a particle does not change the state of the system,
that is, N0 ± 1 ≈ N0 for large N0. Equivalently, the ensemble average of the Bose field
operator is well defined and nonzero; 〈Ψ̂(r, t)〉 = ψ(r, t) 6= 0. In this context we identify
ψ(r, t) with the condensate, but in principle excitations can be included, provided quantum
fluctuations are negligible and the excited states have occupation ni � 1.

Finally, in the T = 0 limit all of the particles are in the condensed state, and the non-
condensate operator δ̂(r, t) can be neglected, so Ψ̂(r, t)→ ψ(r, t). Thus, Ψ̂†(r, t)→ ψ∗(r, t),
and eq. (A.34) reduces to the Gross-Pitaevskii equation [367,368]:

i~
∂ψ(r, t)

∂t
=
[
ĥ0(r, t) + g|ψ(r, t)|2

]
ψ(r, t)

=

[
− ~2

2m
∇2 + Vext(r, t) + g|ψ(r, t)|2

]
ψ(r, t). (A.36)

A.3 Vortex Filament Method

As with the derivation of the point vortex model, the aim here is to find an expression
for the velocity field from the vorticity. Given the vorticity ω = ∇ × v, we consider an
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incompressible flow ∇ · v = 0. We can satisfy this by choosing v = ∇×A, where A is the
vector potential. Furthermore, we can choose A such that ∇ ·A = 0. Then:

ω = ∇× v

= ∇× (∇×A)

= ∇(���
�:0∇ ·A)−∇2A

=⇒ ω = −∇2A

The Green’s Function solution to this Poisson equation is then:

A = − 1

4π

∫
V

ω(s)

|s− r|
dV, (A.37)

where r is a position vector and s is a point on the infinitesimally thin spacecurve describ-
ing the vorticity. Since ω is confined to these lines we can rewrite eq. (A.37) as:

A = − κ

4π

∮
ds

|s− r|
,

with ω(s)dV = κds and κ the circulation about a vortex. Then:

dA

ds
= − κ

4π

ds

|s− r|
.

Taking the curl gives:

∇× dA

ds
= − κ

4π
∇×

(
ds

|s− r|

)

=⇒ d

ds
∇×A =

dv

ds
= − κ

4π
∇×

(
ds

|s− r|

)
= − κ

4π

[
1

|s− r|
∇ × ds +

(
∇ 1

|s− r|

)
× ds

]
,

using ∇× (ψA) = ψ∇×A + (∇ψ)×A, to give:

v(r) = − κ

4π

∮ (
∇ 1

|s− r|

)
× ds.

Then, noting that:

∇|s− r|−1 = −|s− r|−2∇|s− r|
= −|s− r|−2(s− r)|s− r|−1

= −(s− r)|s− r|−3

yields the Biot-Savart law:
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A.3 Vortex Filament Method

v(r) =
κ

4π

∮
L

(s− r)× ds
|s− r|3

,

with the integration over all vortex lines L.

ω

R

s

ℓ+

ℓ
−

θ+

θ
−

Figure A.1: Schematic of the decomposition of the Biot-Savart integral for a vortex ring
into local (blue) and nonlocal (red) parts.

We now derive the desingularisation of the Biot-Savart law. The velocity of a superfluid
vortex ring of radius R is experimentally observed [369,370] to be described by:

vring(s) =
κ

4πR

[
ln

(
8R

a0

)
− 1

2

]
e⊥, (A.38)

where e⊥ is a unit vector normal to the plane of the vortex ring, equivalent to the motion
of a classical vortex ring with a hollow core of radius a0. This can then be decomposed into
a local and nonlocal contribution:

vring(s) = vlocal
ring (s) + vnon

ring(s),

where

vnon
ring(s) =

κ

4π

∮
L′

(s1 − s)× ds1

|s1 − s|3
(A.39)

is the standard Biot-Savart integral over the ring, with the prime indicating the omission of
a small arclength either side of s, as depicted in Fig. A.1, and with the local component to
be determined. Equation (A.39) evaluates to [371]:
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vnon
ring(s) = − κ

8πR
ln

[
tan

(
θ+

4

)
tan

(
θ−
4

)]
e⊥,

where θ± are angles subtended by the local section as illustrated in Fig. A.1. As |θ±| � 1
we can approximate tan (θ±/4) by θ±/4 = `±/4R, where `± are the arclengths from s to
the nonlocal section. Then, absorbing a factor of 1/2 into the logarithm, we have:

vnon
ring(s) = − κ

4πR
ln

(√
`+`−
4R

)
e⊥.

Subtracting this from eq. (A.38) yields an expression for the local contribution:

vlocal
ring (s) =

κ

4πR
ln

(
2
√
`+`−

e1/2a0

)
e⊥.

As this contribution only depends on the local structure, this expression is appropriate
for the desingularisation of the Biot-Savart integral for general vortex structures; the final
remaining component is the generalisation of the e⊥ vector.

We first note that s′ × s′′ is normal to the plane containing s′ and s′′, and so s′ × s′′ ‖ e⊥
as illustrated in Fig. A.2. Since s′ is a unit vector with |s′| = 1, and |s′′| = R−1, as R =
1/
√

s′′ · s′′, we have |s′ × s′′| = R−1. It is now apparent that e⊥ = Rs′ × s′′, and so:

vlocal(s) =
κ

4π
ln

(
2
√
`+`−

e1/2a0

)
s′ × s′′,

to give:

v(s) =
κ

4π
ln

(
2
√
`+`−

e1/2a0

)
s′ × s′′ +

κ

4π

∮
L′

(s1 − s)× ds1

|s1 − s|3
.

ω

s
′

s
′′

s
′
× s

′′

Figure A.2: Schematic of the orthogonal set of vectors s′, s′′, and s′ × s′′.
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A.4 Local Induction Approximation

We follow the derivation of [372]. Starting with the Biot-Savart law for the self-induced
velocity v(s) of a vortex filament:

v(s) =
κ

4π

∮
(s1 − s)× ds1

|s1 − s|3
, (A.40)

where s = s(ξ) is a spacecurve (or set of spacecurves) describing the vortex filaments, with
s a point on the curve, ξ the arclength from s1 to s, and κ the circulation, we consider a
Taylor series expansion about s:

s1 ' s + ξs′ +
1

2
ξ2s′′ + ..., or

s1 − s ' ξs′ +
1

2
ξ2s′′ + ... (A.41)

Differentiation w.r.t. ξ gives:

ds1

dξ
' s′ + ξs′′ + ...

=⇒ ds1 ' (s′ + ξs′′ + ...)dξ (A.42)

Substituting eq. (A.41) and (A.42) into eq. (A.40):

v(s) ' κ

4π

∮
(ξs′ + 1

2
ξ2s′′ + ...)× (s′ + ξs′′ + ...)dξ

|ξs′ + 1
2
ξ2s′′ + ...|3

. (A.43)

Consider the denominator:

|ξs′ + 1

2
ξ2s′′ + ...|3 = (|ξ||s′ + 1

2
ξs′′ + ...|)3

= |ξ|3|s′ + 1

2
s′′ + ...|3

= |ξ|3
[
(s′ +

1

2
ξs′′ + ...) · (s′ + 1

2
ξs′′ + ...)

] 3
2

(using |a|2 = a · a)

= |ξ|3[s′ · s′ + ξs′ · s′′ + 1

4
ξ2s′′ · s′′ + ...]

3
2

= |ξ|3[|s′|2 +
1

4
ξ2|s′′|2 + ...]

3
2 , since s′ ⊥ s′′

= |ξ|3
[
1 +

ξ

4R2

]
, (A.44)

as |s′| = 1 and |s′′| = R−1 where R is the local radius of curvature. Now the numerator:
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(ξs′ +
1

2
ξ2s′′ + ...)× (s′ + ξs′′ + ...) = ξs′ × s′ + ξ2s′ × s′′ +

1

2
ξ2s′′ × s′ +

1

2
ξ3s′′ × s′

= ξ2s′ × s′′ − 1

2
ξ2s′ × s′′

=
1

2
ξ2s′ × s′′ (A.45)

(using a× b = −b× a, a× a = 0).

Substituting this and eq. (A.44) into eq. (A.43) gives:

v(s) ' κ

8π
s′ × s′′

∮
|ξ|−1

(
1 +

ξ

4R2
+ ...

)− 3
2

=
κ

8π
s′ × s′′

∮
|ξ|−1

(
1− 3ξ

8R2
+

15ξ4

128R4
− ...

)
.

using a binomial expansion. Neglecting O(ξ2) and higher-order terms we have:

v(s) ' κ

8π
s′ × s′′

∮
|ξ|−1[1 +O(ξ2)]dξ

=
κ

8π
s′ × s′′

∮
|ξ|−1dξ

=
κ

8π
s′ × s′′

∫ ∞
∞
|ξ|−1dξ

=
κ

4π
s′ × s′′

∫ ∞
0

ξ−1dξ, as |ξ|−1 is even.

Since ln (ξ) diverges as ξ → 0 and as ξ →∞ we impose new limits on this integral, using
the relevant length scales a0 (the core radius) and R:

v(s) ' κ

4π
s′ × s′′

∫ R

a0

ξ−1dξ.

which gives the local induction approximation:

v(s) =
κ

4π
s′ × s′′ ln

(
R

a0

)
.
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A.5 Finite Difference Methods

A.5.1 Regular Grids

We seek numerical approximations of spatial derivatives of scalar fields defined on regu-
lar grids. Consider a scalar field F defined on such a grid, with known values of F : F0, F1,
F2, ..., Fn−2, Fn−1, Fn at points x0, x1, x2, ..., xn−2, xn−1, xn, with ∆x = xi − xi−1. We will
make repeated use of the following Taylor expansions about Fi in these derivations:

Fi+1 = Fi+∆x
dF

dx

∣∣∣∣
x=xi

+
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

+O((∆x)3)) (A.46)

Fi+1 = Fi+∆x
dF

dx

∣∣∣∣
x=xi

+
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

+
(∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

+
(∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5))

(A.47)

Fi−1 = Fi−∆x
dF

dx

∣∣∣∣
x=xi

+
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

+O((∆x)3)) (A.48)

Fi−1 = Fi−∆x
dF

dx

∣∣∣∣
x=xi

+
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

− (∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

+
(∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5))

(A.49)

Fi+2 = Fi+2∆x
dF

dx

∣∣∣∣
x=xi

+
(2∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

+
(2∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

+
(2∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5))

(A.50)

Fi−2 = Fi−2∆x
dF

dx

∣∣∣∣
x=xi

+
(2∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

−(2∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

+
(2∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5))

(A.51)
For 2nd-order approximations of first derivatives we rearrange eq. (A.46) and (A.48) to

isolate terms containing (dF/dx)|x=xi
on the LHS:

∆x
dF

dx

∣∣∣∣
x=xi

= Fi+1 − Fi −
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

+O((∆x)3), (A.52)

∆x
dF

dx

∣∣∣∣
x=xi

= −Fi−1 + Fi +
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

+O((∆x)3). (A.53)

Summing eq. (A.52) & (A.53):

2∆x
dF

dx

∣∣∣∣
x=xi

= Fi+1 − Fi−1 +O((∆x)3)

=⇒ dF

dx

∣∣∣∣
x=xi

=
−Fi−1 + Fi+1

2∆x
+O((∆x)2). (A.54)

For 4th-order approximations of first derivatives we rearrange eq. (A.47), (A.49), (A.50),
and (A.51) to isolate terms containing (dF/dx)|x=xi

on the LHS:
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∆x
dF

dx

∣∣∣∣
x=xi

= −Fi+Fi+1−
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

−(∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

−(∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5),

(A.55)

∆x
dF

dx

∣∣∣∣
x=xi

= Fi−Fi−1 +
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

− (∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

+
(∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5),

(A.56)

2∆x
dF

dx

∣∣∣∣
x=xi

= −Fi+Fi+2−
(2∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

−(2∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

−(2∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5),

(A.57)

2∆x
dF

dx

∣∣∣∣
x=xi

= Fi−Fi−2+
(2∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

−(2∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

+
(2∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5),

(A.58)
We seek a linear combination of eq. (A.55), (A.56), (A.57), and (A.58), such that all

terms of order (∆x)2 and above cancel:

c1(A.55) + c2(A.56) + c3(A.57) + c4(A.58) s.t. (A.59)

− c1 + c2 − 4c3 + 4c4 = 0, (A.60)

− c1 − c2 − 8c3 − 8c4 = 0, (A.61)

− c1 + c2 − 16c3 + 16c4 = 0, (A.62)

We also require that the LHS be nonzero, which we encode as the final linear equation:

c1 + c2 + 2c3 + 2c4 = 1. (A.63)

Subtracting eq. (A.60) from eq. (A.62) yields:

− 12c3 + 12c4 = 0 =⇒ c3 = c4. (A.64)

Substituting eq. (A.64) into eq. (A.60) then gives:

− c1 + c2 = 0 =⇒ c1 = c2. (A.65)

We then substitute eq. (A.64) and (A.65) into eq. (A.61):

− c1 − c1 − 8c3 − 8c3 = 0 =⇒ c3 = −c1

8
, (A.66)

which we substitute into eq. (A.63):

c1 + c1 −
2c1

8
− 2c1

8
= 1 =⇒ c1 =

2

3
,

which immediately leads to c2 = 2/3, c3 = −1/12, c4 = −1/12. Substituting this all into
eq. (A.59) gives:

∆x
dF

dx

∣∣∣∣
x=xi

=
2

3
Fi+1 −

2

3
Fi−1 −

1

12
Fi+2 +

1

12
Fi−2 +O((∆x)5)
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=⇒ dF

dx

∣∣∣∣
x=xi

=
1
12
Fi−2 − 2

3
Fi−1 + 2

3
Fi+1 − 1

12
Fi+2

∆x
+O((∆x)4). (A.67)

For 2nd-order approximations of second derivatives we first rearrange eq. (A.46) and
(A.48) to isolate terms containing (d2F/dx2)|x=xi

on the LHS:

(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

= −Fi + Fi+1 −∆x
dF

dx

∣∣∣∣
x=xi

+O((∆x)3), (A.68)

(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

= −Fi + Fi−1 + ∆x
dF

dx

∣∣∣∣
x=xi

+O((∆x)3), (A.69)

Summing eq. (A.68) and (A.69) yields:

(∆x)2 d
2F

dx2

∣∣∣∣
x=xi

= −2Fi + Fi+1 + Fi−1 +O((∆x)3)

=⇒ d2F

dx2

∣∣∣∣
x=xi

=
Fi−1 − 2Fi + Fi+1

(∆x)2
+O(∆x). (A.70)

However, if we consider the next term in the Taylor series expansions eq. (A.46) and
(A.48):

(∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

, −(∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

, (A.71)

respectively, substituting into the numerator of the RHS of eq. (A.70) we have:

− (∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

+
(∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

= 0, (A.72)

and so the truncation error is in fact O((∆x)2):

d2F

dx2

∣∣∣∣
x=xi

=
Fi−1 − 2Fi + Fi+1

(∆x)2
+O((∆x)2). (A.73)

For 4th-order approximations of second derivatives we rearrange eq. (A.47), (A.49), (A.50),
and (A.51) to isolate terms containing (d2F/dx2)|x=xi

on the LHS:

(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

= −Fi+Fi+1−∆x
dF

dx

∣∣∣∣
x=xi

−(∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

−(∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5),

(A.74)
(∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

= −Fi+Fi−1+∆x
dF

dx

∣∣∣∣
x=xi

+
(∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

−(∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5),

(A.75)
(2∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

= −Fi+Fi+2−2∆x
dF

dx

∣∣∣∣
x=xi

−(2∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

−(2∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5),

(A.76)
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(2∆x)2

2

d2F

dx2

∣∣∣∣
x=xi

= −Fi+Fi−2+2∆x
dF

dx

∣∣∣∣
x=xi

+
(2∆x)3

3!

d3F

dx3

∣∣∣∣
x=xi

−(2∆x)4

4!

d4F

dx4

∣∣∣∣
x=xi

+O((∆x)5).

(A.77)
We again seek a linear combination:

c1(A.74) + c2(A.75) + c3(A.76) + c4(A.77) (A.78)

such that the LHS is nonzero, and terms containing ∆x, (∆x)3, and (∆x)4 cancel, giving
us the system of linear equations:

c1 + c2 + 4c3 + 4c4 = 1, (A.79)

− c1 + c2 − 2c3 + 2c4 = 0, (A.80)

− c1 + c2 − 8c3 + 8c4 = 0, (A.81)

− c1 − c2 − 16c3 − 16c4 = 0. (A.82)

Subtracting eq. (A.80) from eq. (A.81):

− 6c3 + 6c4 = 0 =⇒ c3 = c4. (A.83)

Substituting eq. (A.83) into eq. (A.81):

− c1 + c2 = 0 =⇒ c1 = c2. (A.84)

Now substituting eq. (A.83) and (A.84) into eq. (A.82):

− c1 − 16c3 = 0 =⇒ c3 = − c1

16
. (A.85)

Finally, substituting eq. (A.83), (A.84), and (A.85) into eq. (A.79):

c1 −
c1

4
= 1 =⇒ c1 =

4

3
,

which immediately gives c2 = 4/3, c3 = −1/12, c4 = −1/12. Substituting this all into eq.
(A.78) yields:

(∆x)2 d
2F

dx2

∣∣∣∣
x=xi

= −5

2
Fi +

4

3
Fi+1 +

4

3
Fi−1 −

1

12
Fi+2 −

1

12
Fi−1 +O((∆x)5)

=⇒ d2F

dx2

∣∣∣∣
x=xi

=
− 1

12
Fi−2 + 4

3
Fi−1 − 5

2
Fi + 4

3
Fi+1 − 1

12
Fi+2

(∆x)2
+O((∆x)3). (A.86)

Again, we consider the next terms in the Taylor series expansions, eq. (A.47), (A.49),
(A.50), and (A.51):

(∆x)5

5!

d5F

dx5

∣∣∣∣
x=xi

, −(∆x)5

5!

d5F

dx5

∣∣∣∣
x=xi

,
(2∆x)5

5!

d5F

dx5

∣∣∣∣
x=xi

, −(2∆x)5

5!

d5F

dx5

∣∣∣∣
x=xi

,

(A.87)
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respectively, and substituting into the numerator of the RHS of eq. (A.86) we have:

− 1

12

(∆x)5

5!

d5F

dx5

∣∣∣∣
x=xi

− 4

3

(2∆x)5

5!

d5F

dx5

∣∣∣∣
x=xi

+
4

3

(∆x)5

5!

d5F

dx5

∣∣∣∣
x=xi

+
1

12

(2∆x)5

5!

d5F

dx5

∣∣∣∣
x=xi

= 0;

(A.88)
the truncation error is in fact O((∆x)4):

d2F

dx2

∣∣∣∣
x=xi

=
− 1

12
Fi−2 + 4

3
Fi−1 − 5

2
Fi + 4

3
Fi+1 − 1

12
Fi+2

(∆x)2
+O((∆x)4). (A.89)

A.5.2 Irregular Grids

We derive here 3rd-order derivatives using finite difference methods on irregular grids,
following the method of [373] - details for other orders can be found in their paper, with
the derivation much the same as is given here.

Suppose we have a function F with known values F0, F1, F2, ..., Fn−2, Fn−1, Fn, at posi-
tions x0, x1, x2,...,xn−2, xn−1, xn, where the interval between xi and xi+1 is not necessarily
constant. We define ∆+i = xi+1 − xi, ∆−i = xi − xi−1, with ∆i whichever of the two is
greater.

We first seek a 3rd-order approximation for the first derivative of the form:

dF

dx

∣∣∣∣
x=xi

= AiFi−1 +BiFi + CiFi+1 +O(∆3
i ), (A.90)

where Ai, Bi, Ci are coefficients to be determined. Consider the Taylor series expansions:

Fi−1 = Fi −∆−i
dF

dx

∣∣∣∣
x=xi

+
∆2
−i

2!

d2F

dx2

∣∣∣∣
x=xi

+O(∆3
−i), (A.91)

Fi+1 = Fi + ∆+i
dF

dx

∣∣∣∣
x=xi

+
∆2

+i

2!

d2F

dx2

∣∣∣∣
x=xi

+O(∆3
+i), (A.92)

In order to match coefficients in eq. (A.90) we require that:

Ai +Bi + Ci = 0, (A.93)

−∆−iAi + ∆+iCi = 1, (A.94)

∆2
−i

2!
Ai +

∆2
+i

2!
Ci = 0. (A.95)

Rearranging eq. (A.95):

Ai = −
∆2

+i

∆2
−i
Ci. (A.96)

Substituting this into eq. (A.94) and rearranging yields:

Ci =
∆−i

∆+i(∆+i + ∆−i)
. (A.97)
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Substituting this back into eq. (A.96) we have:

Ai = − ∆+i

∆−i(∆+i + ∆−i)
, (A.98)

and substituting these into eq. (A.93):

Bi = −
(∆2

+i + ∆2
−i)

∆+i∆−i(∆+i + ∆−i)
. (A.99)

Then by construction our 3rd-order scheme is:

dF

dx

∣∣∣∣
x=xi

=
−∆2

+iFi−1 − (∆2
+i + ∆2

−i)Fi + ∆2
−iFi+1

∆+i∆−i(∆+i + ∆−i)
+O(∆3

i ). (A.100)

Similarly, we seek a 3rd-order approximation for the second derivative of the form:

d2F

dx2

∣∣∣∣
x=xi

= AiFi−1 +BiFi + CiFi+1 +O(∆3
i ), (A.101)

where Ai, Bi, Ci are coefficients to be determined. To match coefficients of the Taylor se-
ries expansions we now require:

Ai +Bi + Ci = 0, (A.102)

−∆−iAi + ∆+iCi = 0, (A.103)

∆2
−i

2!
Ai +

∆2
+i

2!
Ci = 1. (A.104)

Rearranging eq. (A.103):

Ai =
∆+i

∆−i
Ci. (A.105)

Substituting this into eq. (A.104) and rearranging:

Ci =
1

∆−i(∆+i + ∆−i)
, (A.106)

and substituting this back into eq. (A.103):

Ai =
1

∆+i(∆+i + ∆−i)
. (A.107)

Substituting these into eq. (A.102):

Bi = − 1

∆+i∆−i
, (A.108)

and so by construction our 3rd-order scheme is:

d2F

dx2

∣∣∣∣
x=xi

=
∆−iFi−1 − (∆+i + ∆−i)Fi + ∆+iFi+1

∆+i∆−i(∆+i + ∆−i)
+O(∆3

i ). (A.109)
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A.6 Runge-Kutta Method

We give a derivation of the family of (globally) 2nd-order Runge-Kutta methods of quadra-
ture, with the extensions required for proof of higher-order methods indicated.

Let an initial value problem be specified as:

dy

dt
= f(y(t), t), y(t0) = y0, (A.110)

where tn = n∆t, ∆t is the chosen time-step, and f(y(t), t) is known. We seek an approx-
imation of the solution y(tn) from the initial condition y(t0) = y0 through progressive ap-
proximation of the solution at intermediate times. A single step from a known y(tn) to an
unknown y(tn+1) can be written as:

y(tn+1) = y(tn) + [y(tn+1)− y(tn)]

= y(tn) +

∫ tn+1

tn

f(y(t′), t′)dt′. (A.111)

We now choose to substitute a numerical approximation for the exact integral∫ tn+1

tn
f(y(t′), t′)dt′, assuming we are in a situation where the exact evaluation of this is im-

possible or extremely difficult, of the form:

y(tn+1) ≈ y(tn) + ∆t
N∑
i=1

[bif (y (tn + ci∆t) , tn + ci∆t)] , (A.112)

where N is the number of stages to be used in the scheme, and bi and ci are weights to be
determined. The number of stages required is related to the desired order of accuracy in a
way which is not yet fully understand; for the sake of this proof it is sufficient to note that
the minimum number of stages required is equal to the order desired for schemes of up to
4th-order.

We aim to derive a 2nd-order scheme, so choose N = 2. We take our first substep at c1 =
0, so the first term in eq. (A.112), excluding the weight bi, which we label k1, becomes:

k1 = f(y(tn), tn), (A.113)

which is straightforward to calculate. We then approximate k2 as:

k2 = f(y(tn + c2∆t), tn + c2∆t) ≈ f(y(tn) + a21k1∆t, tn + c2∆t), (A.114)

with a21 another weight to be determined, and with the further substeps necessary for
higher-order schemes approximated by:

ki ≈ f

(
y(tn) + ∆t

i−1∑
j=1

aijkj, tn + ci∆t

)
(A.115)

To 2nd-order the quadrature equation eq. (A.112) becomes:
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y(tn+1) ≈ y(tn) + ∆t(b1k1 + b2k2). (A.116)

Now consider the Taylor expansion:

y(tn+1) = y(tn) + ∆t
dy

dt

∣∣∣∣
t=tn

+
(∆t)2

2

d2y

dt2

∣∣∣∣
t=tn

+O((∆t)3), (A.117)

where for higher-order derivations additional terms would be retained. Substituting this
into the LHS of eq. (A.116) and cancelling f(tn) gives:

∆t
dy

dt

∣∣∣∣
t=tn

+
(∆t)2

2

d2y

dt2

∣∣∣∣
t=tn

+O((∆t)3) = ∆t(b1k1 + b2k2). (A.118)

Furthermore:

dy

dt
= f, (A.119)

d2y

dt2
=
∂f

∂t
+ f

∂f

∂y
. (A.120)

Combining eq. (A.114), (A.118), (A.119), and (A.120) yields:

hf +
(∆t)2

2

(
∂f

∂t
+ f

∂f

∂y

)
+O((∆t)3) = ∆t(b1f + b2f(y(tn) + a21k1∆t, tn + c2∆t)), (A.121)

where we have suppressed the arguments of f for notational convenience whenever the ar-
guments are to be y(tn), tn. We take the Taylor expansion of the final term of the RHS,
again retaining further terms for higher-order derivations, to give:

∆tf+
(∆t)2

2

(
∂f

∂t
+ f

∂f

∂y

)
+O((∆t)3) = ∆t(b1f+b2

(
f + c2∆t

∂f

∂t
+ a21∆tf

∂f

∂y

)
)+O((∆t)3)

(A.122)
By matching terms of the same order in ∆t we find that the following must be satisfied

for the scheme to be consistent:

b1 + b2 = 1 (A.123)

b2c2 =
1

2
(A.124)

b2a21 =
1

2
(A.125)

The canonical choice is b1 = b2 = 1
2
, c2 = a21 = 1, and the full scheme is then

y(tn+1) = y(tn) + ∆t

(
k1

2
+
k2

2

)
+O((∆t)3), (A.126)

with
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A.6 Runge-Kutta Method

k1 = f(y(tn), tn), (A.127)

k2 = f(y(tn) + k1∆t, tn + ∆t). (A.128)

Higher-order derivations will lead to a larger system of equations to satisfy. A 4th-order
scheme [281] is given by:

y(tn+1) = y(tn) + ∆t

(
k1

6
+
k2

3
+
k3

3
+
k4

6

)
+O((∆t)5), (A.129)

k1 = f(y(tn), tn), (A.130)

k2 = f

(
y(tn) +

∆t

2
k1, tn +

∆t

2

)
, (A.131)

k3 = f

(
y(tn) +

∆t

2
k2, tn +

∆t

2

)
, (A.132)

k4 = f(y(tn) + k3∆t, tn + ∆t). (A.133)

A 6th-order scheme [374] is given by:

y(tn+1) = y(tn)+∆t

(
61

864
k1 +

98415

321776
k3 +

16807

146016
k4 +

1375

7344
k5 +

1375

5408
k6 −

37

1120
k7 −

1

10
k8

)
+O((∆t)7),

(A.134)
with

k1 = f(y(tn), tn), (A.135)

k2 = f

(
y(tn) + ∆t

1

10
k1, tn + ∆t

1

10

)
, (A.136)

k3 = f

(
y(tn) + ∆t

(
− 2

81
k1 +

20

81
k2

)
, tn +

2

9
∆t

)
, (A.137)

k4 = f

(
y(tn) + ∆t

(
615

1372
k1 −

270

343
k2 +

1053

1372
k3

)
, tn +

3

7
∆t

)
, (A.138)

k5 = f

(
y(tn) + ∆t

(
3243

5500
k1 −

54

55
k2 +

50949

71500
k3 +

4998

17875
k4

)
, tn +

3

5
∆t

)
, (A.139)

k6 = f

(
y(tn) + ∆t

(
−26492

37125
k1 +

72

55
k2 +

2808

23375
k3 −

24206

37125
k4 +

338

459
k5

)
, tn +

4

5
∆t

)
,

(A.140)

k7 = f

(
y(tn) + ∆t

(
5561

2376
k1 −

35

11
k2 −

24117

31603
k3 +

899983

200772
k4 −

5225

1836
k5 +

3925

4056
k6

)
, tn + ∆t

)
,

(A.141)

k8 = f
(
y(tn) + ∆t

(465467

266112
k1 −

2945

1232
k2 −

5610201

14158144
k3 +

10513573

3212352
k4 −

424325

205632
k5

+
376225

454272
k6

)
, tn + ∆t

)
. (A.142)
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Chapter A. Derivations

A.7 Adams-Bashforth Method

Given an initial value problem of the form:

dy

dt
= f(t, y), y(0) = y0,

we seek the solution yn+1 at some time tn+1 = (n+ 1)∆t for some n ∈ Z and with ∆t > 0 a
(constant) time-step. If we have knowledge of yn then the equation:

yn+1 = yn +

∫ tn+1

tn

f(t′, y(t′))dt′ (A.143)

is exact. We aim to approximate the given integral by polynomial interpolation of f at
the times tn+1−s, tn+2−s, ..., tn, where s is the (global) order of the method, and the poly-
nomial interpolation is of degree s−1. Note that this assumes knowledge of f at s previous
time-steps; if s > 1 another method must first be used to generate these values, typically
a lower-order Adams-Bashforth scheme. We consider the case s = 3 - the extension of this
derivation to higher-order schemes is straightforward.

The interpolating polynomial (in the Lagrange form) for f(t′, y(t′)) which passes through
the points (tn−2, fn−2), (tn−1, fn−1), (tn, fn) is:

F3(t′) = fn−2`n−2(t′) + fn−1`n−1(t′) + fn`n(t′), (A.144)

with the Lagrange polynomials:

`n−2(t′) =
(t′ − tn−1)(t′ − tn)

(tn−2 − tn−1)(tn−2 − tn)
=

1

2(∆t)2
(t′ − tn−1)(t′ − tn),

`n−1(t′) =
(t′ − tn−2)(t′ − tn)

(tn−1 − tn−2)(tn−1 − tn)
= − 1

(∆t)2
(t′ − tn−2)(τ − tn),

`n(t′) =
(t′ − tn−2)(t′tn−1)

(tn − tn−2)(tn − tn−1)
=

1

2(∆t)2
(t′ − tn−2)(t′ − tn−1).

If we substitute eq. (A.144) into eq. (A.143) we find:

yn+1 ≈ yn +

∫ tn+1

tn

L3(t′)dt′

≈ yn + fn−2

∫ tn+1

tn

`n−2(t′)dt′ + fn−1

∫ tn+1

tn

`n−1(t′)dt′ + fn

∫ tn+1

tn

`n(t′)dt′. (A.145)

Introducing u =
t′ − tn

∆t
, 0 ≤ u ≤ 1, we then have:

t′ = tn + u∆t, dt′ = du∆t,

t′ − tn = u∆t, t′ − tn−1 = u∆t+ ∆t, t′ − tn−2 = u∆t+ 2∆t.
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A.7 Adams-Bashforth Method

Substituting these into the Lagrange polynomials yields:

`n−2(u) =
1

2
u(u+ 1),

`n−1(u) = −u(u+ 2),

`n(u) =
1

2
(u+ 1)(u+ 2).

We can now integrate eq. (A.145):∫ tn+1

tn

`n−2(t′) = ∆t

∫ 1

0

`n−2(u)du =
∆t

2

∫ 1

0

u(u+ 1)du =
5

12
∆t,

∫ tn+1

tn

`n−1(t′) = ∆t

∫ 1

0

`n−1(u)du = −∆t

∫ 1

0

u(u+ 2)du = −4

3
∆t,∫ tn+1

tn

`n(t′) = ∆t

∫ 1

0

`n(u)du =
∆t

2

∫ 1

0

(u+ 1)(u+ 2)du =
23

12
∆t,

to give:

yn+1 ≈ yn +
∆t

12
(5fn−2 − 16fn−1 + 23fn)

with the truncation error given by the error in the interpolation, in this case O((∆t)4).
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Appendix B

Selected Properties Of He II

We summarise the physical properties of 4He at saturated vapour pressure relevant to
our vortex filament method simulations, as informed by [196].
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Figure B.1: Density of the normal fluid component of 4He below the lambda transition.
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Figure B.2: Density of the superfluid component of 4He below the lambda transition.
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Figure B.3: Vortex core parameter a0 for quantised vortices in 4He below the lambda tran-
sition.
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Chapter B. Selected Properties Of He II
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Figure B.4: Recommended values of the dimensionless mutual friction coefficient α - see
Sec. 5.2
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Figure B.5: Recommended values of the dimensionless mutual friction coefficient α′ - see
Sec. 5.2
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[31] M. Blažková, M. Človečko, E. Gažo, L. Skrbek, and P. Skyba. Quantum Turbulence
Generated and Detected by a Vibrating Quartz Fork. Journal of Low Temperature
Physics, 148(3-4), 2007.

182



BIBLIOGRAPHY
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Roche. Turbulent Velocity Spectra in Superfluid Flows. Physics of Fluids, 22(12),
2010.

[157] L. Kondaurova and S. K. Nemirovskii. Numerical Study of Decay of Vortex Tangles
in Superfluid Helium at Zero Temperature. Physical Review B, 86(13), 2012.

[158] C. F. Barenghi, L. Skrbek, and K. R. Sreenivasan. Introduction to Quantum Turbu-
lence. Proceedings of the National Academy of Sciences, 111(Supplement 1), 2014.

[159] P. M. Walmsley and A. I. Golov. Coexistence of Quantum and Classical Flows in
Quantum Turbulence in the T = 0 limit. Physical Review Letters, 118(13), 2017.

[160] P. M. Walmsley and A. I. Golov. Quantum and Quasiclassical Types of Superfluid
Turbulence. Physical Review Letters, 100(24), 2008.

[161] A. W. Baggaley, C. F. Barenghi, A. Shukurov, and Y. A. Sergeev. Coherent Vortex
Structures in Quantum Turbulence. Europhysics Letters, 98(2), 2012.

[162] A. W. Baggaley, J. Laurie, and C. F. Barenghi. Vortex-Density Fluctuations, Energy
Spectra, and Vortical Regions in Superfluid Turbulence. Physical Review Letters,
109(20), 2012.

[163] W. F. Vinen. Decay of Superfluid Turbulence at a Very Low Temperature: The Ra-
diation of Sound from a Kelvin Wave on a Quantized Vortex. Physical Review B,
64(13), 2001.

[164] E. Kozik and B. Svistunov. Vortex-Phonon Interaction. Physical Review B, 72(17),
2005.

191



BIBLIOGRAPHY

[165] R. Hänninen. Dissipation Enhancement from a Single Vortex Reconnection in Super-
fluid Helium. Physical Review B, 88(5), 2013.

[166] E. Fonda, D. P. Meichle, N. T. Ouellette, S. Hormoz, and D. P. Lathrop. Direct Ob-
servation of Kelvin Waves Excited by Quantized Vortex Reconnection. Proceedings of
the National Academy of Sciences, 111(Supplement 1), 2014.

[167] D. Kivotides, J. C. Vassilicos, D. C. Samuels, and C. F. Barenghi. Kelvin Waves
Cascade in Superfluid Turbulence. Physical Review Letters, 86(14), 2001.

[168] W. F. Vinen, M. Tsubota, and A. Mitani. Kelvin-Wave Cascade on a Vortex in Su-
perfluid 4He at a Very Low Temperature. Physical Review Letters, 91(13), 2003.

[169] E. Kozik and B. Svistunov. Kelvin-Wave Cascade and Decay of Superfluid Turbu-
lence. Physical Review Letters, 92(3), 2004.

[170] E. Kozik and B. Svistunov. Kolmogorov and Kelvin-Wave Cascades of Superfluid
Turbulence at T = 0: What Lies Between. Physical Review B, 77(6):060502, 2008.

[171] J. Yepez, G. Vahala, L. Vahala, and M. Soe. Superfluid Turbulence from Quantum
Kelvin Wave to Classical Kolmogorov Cascades. Physical Review Letters, 103(8),
2009.

[172] J. Laurie and A. W. Baggaley. A Note on the Propagation of Quantized Vortex
Rings Through a Quantum Turbulence Tangle: Energy Transport or Energy Dissi-
pation? Journal of Low Temperature Physics, 180(1-2), 2015.

[173] C. F. Barenghi, Y. A. Sergeev, and A. W. Baggaley. Regimes of Turbulence Without
an Energy Cascade. Scientific Reports, 6:35701, 2016.

[174] A. W. Baggaley, C. F. Barenghi, and Y. A. Sergeev. Quasiclassical and Ultraquan-
tum Decay of Superfluid Turbulence. Physical Review B, 85(6), 2012.

[175] M. S. Paoletti, M. E. Fisher, K. R. Sreenivasan, and D. P. Lathrop. Velocity Statis-
tics Distinguish Quantum Turbulence from Classical Turbulence. Physical Review
Letters, 101(15), 2008.

[176] A. W. Baggaley and C. F. Barenghi. Quantum Turbulent Velocity Statistics and
Quasiclassical Limit. Physical Review E, 84(6), 2011.

[177] M. la Mantia and L. Skrbek. Quantum, or Classical Turbulence? Europhysics Let-
ters, 105(4), 2014.

[178] C. F. Barenghi, V. S. L’vov, and P.-E. Roche. Experimental, Numerical, and Ana-
lytical Velocity Spectra in Turbulent Quantum Fluid. Proceedings of the National
Academy of Sciences, 111(Supplement 1), 2014.
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