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Abstract 

 

DNA methylation is an epigenetic mechanism that enables heritable changes in gene 

expression without changes in DNA sequence. Methyl groups are transferred from the methyl 

donor S-adenosyl methionine (SAM) to the 5-carbon of cytosine by DNA methyltransferases 

(DNMTs).  

The DNMT family comprises a set of DNA-modifying enzymes and uses a similar 

catalytic mechanism to form a covalent reaction intermediate between the substrate base and 

the enzyme. Food-derived bioactive compounds are among the exogenous factors that can 

modulate the DNA methylation patterns, either via generating SAM through one-carbon 

metabolism or by inhibiting the activity of DNMTs.  

In this study, cell lines with stable over-expression of each of 13 DNMTs isoform 

(DNMT3A1, DNMT3A2, DNMT3B1, DNMT3B2, DNMT3B3, DNMT3B4, DNMT3B5, 

DNMTΔ3B1, DNMTΔ3B2, DNMTΔ3B3, DNMTΔ3B4, DNMT3L, and DNMT1) were 

generated by lentiviral transduction of human embryonic kidney cells (HEK293T). DNA 

methylation patterns in these 13 cell lines were analysed by Illumina Infinium Methylation 

EPIC BeadChip, which interrogates more than 850,000 CpG sites across the genome. The 

sensitivity and specificity of each DNMT isoform to selected food constituents (caffeic acid 

(CA), (-)-Epigallocatechin-3-gallate (EGCG), curcumin, vitamin C, and theaflavin) were 

investigated by quantification of DNA methylation at specific CpG sites targeted by the 

DNMTs, using pyrosequencing. DNA methylation patterns for each DNMT isoform were 

obtained and the potential underlying biological mechanisms for DNMT-target CpGs were 

explored.  

At the selected CpG sites, DNA methylation was decreased with CA and vitamin C in 

DNMT∆3B4 and DNMT3A2 cells, respectively. In addition, the enzymatic activity of 

DNMT∆3B4 decreased after CA treatment. In summary, despite similarity of their protein 

structures, DNMT isoforms show regional specificity in the maintenance of DNA methylation 

patterns. This study also revealed that the activity of DNMT∆3B4 and DNMT3A2 can be 

specifically modulated by CA and vitamin C, respectively, in a dose-response manner.  

These observations further understanding of nutrition-epigenetic mechanisms, especially 

interactions with enzymatic activity, could be applied to modulate DNA methylation profiles 

using food-derived bioactive compounds in personalised nutrition. 
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1. Chapter 1: General Introduction 
 

1.1 Overview of epigenetics 

Epigenetics is a mechanism of modifications in gene expression without changing DNA 

sequences (1). Examples of epigenetic mechanisms are DNA methylations, RNA 

modifications, and histone modifications (Figure 1.1) (2). DNA methylations, particularly on 

cytosine residue that lie next to a guanine base, are commonly related to repressing gene 

expression. Histone modifications, however, can lead to either the activation or deactivation 

of gene expression. For example, di-methylation of histone3 (H3) at lysine 4 (H3K4) and 

acetylation of H3K9 play an active role in transcription, however tri-methylation of H3K9 

(H3K9me3) and H3K27me3 are inactive markers. Each of these epigenetic markers may 

induce independent modifications, but commonly interplay reciprocally in controlling gene 

expression during stem cell differentiation, embryonic development (3), and carcinogenesis 

(4). Those epigenetic markers are inherited between generations, but also the level of 

epigenetic markers at each successive generation is modifiable by internal and external 

stimuli, such as pro-inflammatory foods or antioxidant-rich diets. Later in this chapter, DNA 

methylations, which are amongst the well-studied epigenetic mechanisms, will be discussed 

with differential expression of DNA methyltransferases (DNMTs) and modulating its activity 

with dietary factors.  
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Figure 1.1 Epigenetic machinery. DNA methylations, histone tail modifications, and non-
coding RNAs (ncRNAs). Transcriptional factor, TF; Methylation, Me. (taken from Sayyed 
K.Z. et al.) (2). 

 

Histone modification  

Lysine (K) and arginine (R) residues are the main amino acids in histone tails that are subject 

to post-translational modifications such as acetylation and methylation. Histone octamers are 

wrapped by DNA and each contains two copies of the histone variants: H2A, H2B, H3, and 

H4. There are numerous histone methyltransferases and demethylases, including histone 

acetyltransferases (HAT) and histone deacetylases (HDACs) (5). Which particular lysine 

residues on each of the histones are methylated under particular circumstances is determined 

by the actions of epigenetic writers (methyltransferases) and erasers (demethylases) (5). 

Histone H3 methylation at lysine 9 and lysine 27 (H3K9 and H3K27), as well as Histone H4 

methylation at lysine 20 (H4K20) are well known markers of inactivation, since, these are 

associated with heterochromatin formation; in contrast, H3K36 and H3K4 methylation are 

known activation markers (6). Concomitant tri-methylations of H3K4 and H3K27 (bivalent 

domains) modulate lineage-specific gene expression from a poised state in embryonic stem 

cells (7). Also, a genome-wide study of histone methylation patterns showed that gene 
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expression was positively correlated with levels of H3K4 methylation and negatively 

correlated with H3K27 methylation (8). 

 

RNA modifications 

Non-coding RNAs are not translated into protein and they can be separated into regulatory 

non-coding RNAs and housekeeping non-coding RNAs. The regulatory role of RNA is 

mainly based on size; short chain non-coding RNAs (miRNAs, siRNAs, and piRNAs) and 

long non-coding RNAs (IncRNAs) (9-11). Non-coding RNAs play an important role in 

regulating gene expression (12, 13). Among non-coding RNAs, miRNAs act as post-

transcriptional regulators via base-pairing with complementary sequences within messenger 

RNA (mRNA) targets resulting in mRNA degradation or translational repression (14) 

resulting in regulated gene expression. These noncoding RNAs generally work with 

components of DNA methylations and chromatin (DNMT, H3K27 methylation, histone 

deacetylase 4) (6), to sustain or establish silencing that contribute to transformation, tumour 

development, and tumour progression (15).  

 

DNA methylation 

DNA methylation may also inhibit the binding of transcription factors and, therefore, repress 

gene expression to modify cellular phenotype (16, 17). All the known DNMTs use S-adenosyl 

methionine (SAM), derived from methionine, as the methyl donor. Although epigenetic 

maintenance requires the interplay of many epigenetic components (e.g. chromatin and 

histone modifications) as well as proteins to control gene expression and cellular function, the 

availability of methyl donors for DNMTs and the activity of DNMT enzymes are critical to 

maintain normal DNA methylation patterns (18). Further detail of the key players in DNA 

methylations is discussed in the DNA methylations and DNMT sections (see section 1.2 and 

1.4). 

 Patterns of histone modifications, DNA methylations, and expression of noncoding 

RNA act together to establish the epigenetic signatures that convey regulatory information 

and so control the phenotype by activating or suppressing of gene expression. Information 

given by epigenetic signatures may be considered to be as important as sequence information 

because these signatures are proven useful biomarkers to predict the pathological conditions 

and biological outcome (19). In contrast with genetic information, epigenetic information 

shows a certain degree of plasticity and it is inherently reversible (20). 
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1.2 Mechanisms of DNA methylation and demethylation 

 

1.2.1 DNA methylation 

DNA methylation is an epigenetic modification in which a DNMT catalyses the transfer of a 

methyl group from SAM to the 5-carbon of cytosine to form 5-methylcytosine (5-mC), and in 

which SAM is converted to S-adenosylhomocysteine (SAH) (Figure 1.2) (21). 

 

 
Figure 1.2 DNMTs catalyse the covalent addition of -CH3 to 5-carbon of cytosine (22). 

 

In mammals, the majority of DNA methylation occurs on cytosines preceding 

guanines (CpG dinucleotides) (23). Approximately 3x107 residues of 5-methylcytosine (5-

mC) are located within CpG dinucleotides 5’-m5CG-3’ in mammalian genomes (24, 25). Over 

60% of human genes at promoters have CpG islands (CGIs) (26) which are short interspersed 

sequences. CGI is defined as a location with at least 200 bp, which have CG content greater 

than 50% and CpG ratio greater than 0.6 (27). Most CpGs in CGI regions are in a non-

methylated state and permit transcription initiation, leading to stable activation of the 

associated promoter (28). The cytosines in CpG dinucleotides within CpG islands tend to be 

hypomethylated compared with those in non-island CpGs. The regions surrounding CGIs are 

known as “Shores” (North and South), followed by “Shelves” (North and South) and “Open 

sea” (Figure 1.3) (29). Transcription factors containing a CXXC zinc finger domain bind to 

unmethylated CpGs via a CXXC binding domain motif, contributing to generation of a 

transcriptionally competent chromatin configuration that prevents DNA methylation (30). 

Closer investigation of DNA methylation has revealed that exons show markedly higher 

methylation than introns (31). 
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Figure 1.3 The distribution of DNA methylation levels by CpG density (adapted from Edgar 
R et al. (29)). 

 

DNA methylation also functions to repress retrotransposons, long interspersed nuclear 

element (LINE-1) and Alu elements, which are highly methylated to keep them quiet in the 

human genome (32, 33). DNA methylation is also involved in genomic imprinting, silencing 

of repetitive elements and X chromosome inactivation (34).  

DNA methylation has dual roles, both permissive and inhibitory, depending on the 

genomic location. DNA methylation of intragenic or distal regulatory elements with different 

degrees of CpG density are involved in the gene regulation (35). Gene body methylation have 

been found in Arabidopsis and this methylation was associated with active genes. In mammal, 

gene body methylation has been found in the active human X chromosome compared to the 

inactive X chromosome (36). The hypomethylated sites in the gene body have been correlated 

with low expression genes in cancer cell lines, also methylated of CpG-rich regions in gene 

bodies have been correlated with higher gene expression in human B cells (37). DNA 

methylation in a promoter is also an important epigenetic mechanism for the suppression of 

gene expression especially of tumour suppressor genes at early stage of carcinogenesis and 

occurs with various frequencies (38).  

Enhancers are important roles in gene regulation as the enhancer-promoter interaction 

can increase the gene expression of downstream (39). The alteration of enhancer methylation 

plays an important role in cancer progression (40). Additionally, enhancer methylation 

accounts for a significant portion of intertumour expression heterogeneity (41). Moreover, 

enhancer methylation can be used to distinct breast cancer lineages (42). 

 

Gene regulation by methylation  

All housekeeping genes contain CpG islands in the proximal transcription start sites. These 

genes are frequently correlated with CpG islands in intronic regions downstream of the first 

exon, which tends to be smaller than the promoter-related CpG islands (43) and are often 

methylated (44). In mammals, the methylation of region 2 at CpG island in the second intron 
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of insulin like growth factor 2 receptor gene is the imprinting signal, which maintains 

expression of the maternal allele (45). In cancer, aberrant methylation at the transcription start 

sites leads to the silencing of tumour suppressor genes, namely p16, VHL, and Rb (46-48). It 

has been postulated that tumour suppressor genes might be overexpressed during tumour 

development and triggered hypermethylation of downstream CpG islands. Next, the 

methylation would spread from these sites to the CpG islands at the transcription start sites, 

therefore silencing the tumour suppressor genes (49). Moreover, methylation is used to 

silence one X chromosome in female by showing low DNA methylation on inactive X-

chromosome than active X at intragenic and intergenic regions for genes subject to X-

chromosome inactivation, but not at genes, which escape from inactivation (50). 

 

1.2.2 DNA demethylation 

DNA demethylation can be accomplished passively (in the new copy of DNA after 

replication) or actively (in a replication-independent enzymatic process) (22). Active DNA 

demethylation refers to an enzymatic mechanism for removal of the methyl group from 5mC. 

However, passive DNA demethylation refers to the lack of DNA methylation maintenance, 

which could be due to the absence of DNMT1 or the presence of DNMT inhibitors during 

DNA replication (23). Ten-eleven translocation (TET) methylcytosine dioxygenases are a 

family of enzymes that catalyses the conversion of 5-mC to 5-hydroxymethylcytosine (5-

hmC) through oxidation (Figure 1.4) (51, 52). 5-formylcytosine (5-fC) and 5-

carboxylcytosine (5-caC) are produced subsequently from 5-mC during further consecutive 

oxidation steps (53). 5-caC is present at extremely low levels in DNA and can be excised by 

either a base excision repair enzyme or by thymine DNA glycosylase (TDG) to regenerate 

unmodified cytosine (54). 5-fC and 5-caC are much less abundant in the mammalian genome 

than 5-hmC is because TDG is more efficient at selection and excision of 5-fc and 5-caC, 

while the conversion of 5-hmC to 5-fC and 5-caC is less efficient (55).   
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Figure 1.4 The cycle of active DNA demethylation and chemical structure of 5-
methylcytosine (5-mC) and its oxidation products 5-hydroxymethylcytosine (5-hmC), 5-
formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). DNA methyltransferases (DNMTs) 
covert unmodified cytosine to 5-mC. 5-mC can be converted back to cytosine by ten-eleven 
translocations (TETs) to 5-hmC, 5-fC, and 5-caC followed by excision of 5-fC or 5-caC 
mediated by thymine DNA glycosylase (TDG) coupled with base excision repair (BER) (the 
process of active modification-active removal (AM-AR) or replication-dependent dilution of 
5-hmC, 5-fC or 5-caC (the process of active modification-passive dilution (AM-PD) (taken 
from Xioaoji W. and Yi Z.) (55). 

 

Demethylation occurs during early gametogenesis especially during development of 

primordial germ cells and also occurs postnatal (56). Aberrant demethylation has been 

observed in cancer. The active DNA demethylation is required for differentiation through 

modulation the enhancer’s activities and promoters (55). Also, active DNA demethylation 

regulates cell reprogramming (57, 58) and cell fate transitions (59, 60). 

 

1.3 DNA methylation in human diseases 

When epigenetic information is not properly maintained or established, epigenetic 

abnormalities may arise. This section provides an insight into the pathological consequences 

of abnormalities due to DNA methylation.  
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Cancer 

There are two types of epigenetic abnormalities: hypomethylation or hypermethylation. 

Hypermethylation in cancer has been found most often at CGIs (61), while very often 

hypomethylation has been observed in both highly and moderately repeated DNA sequences 

in cancers (62). Aberrant patterns of DNA methylation have been discovered in various 

cancer types, e.g. colon, liver, breast, prostate, ovarian, bone, bladder, and oesophageal 

cancers. Typically, cancer cells show hypomethylation of intergenic regions where there is 

normally high methyl-cytosine content (63). This may activate transposable elements 

contributing to the genome instability observed in cancer cells (64). Hypermethylation was 

observed within the promoter regions of CGI-associated tumour suppresser genes in cancer 

cells (65). 

 

Autoimmune diseases 

Autoimmune diseases are caused by over activity of the immune system leading to damage of 

own tissues. Genome-wide DNA methylation analysis of peripheral blood mononuclear cells 

(PBMCs) revealed that aberrant patterns of DNA methylation of human leukocyte antigen 

class II lead to high risk of developing rheumatoid arthritis (66). Hypermethylation of patched 

1 gene (PTCH1), accompanied by low expression of patched 1 protein, activated the 

Hedgehog signalling pathway, resulting in increased secretion of tumour necrosis factor alpha 

and interleukin 6 (IL6) in the arthritic rat (67). Expression of IL6 mRNA was significantly 

higher in systemic lupus erythematosus (SLE) patients than in healthy controls and this was 

associated with decreased DNA methylation of the IL6 promoter in SLE patients (68). 

Moreover, DNA hypomethylation of LINE-1 was found in neutrophils from SLE patients 

(69).  

 

Obesity 

Epigenome-wide association studies showed the disturbances in DNA methylation of genes 

involved in lipid and lipoprotein metabolism, and inflammatory pathways are predictors of 

future development of type 2 diabetes, cardiovascular disease (CVD), and other adverse 

clinical consequences of obesity (70, 71). Genome-wide analysis has identified loci at which 

DNA methylation is altered in obesity (72). For example, DNA hypermethylation on 

adiponectin (ADIPOQ)-associated promoter suppressed adiponectin expression in adipocytes 

of obese patients (73). Moreover, CpG sites within ATF-motifs on hepatic glycolysis and 

insulin resistance genes were hypomethylated in both, non-diabetic and type 2 diabetic obese 

patients (74). DNA methylation profiling, which is a high throughput technology, has been 
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performed to discover novel genes and markers for obesity. The DNA methylation profiles 

from the blood of obese and normal individuals analysed using the Illumina 

HumanMethylation27 BeadChip kit showed the different pattern of DNA methylation on the 

promoters of Tripartite Motif Containing3 (lower methylation levels in the obese cases) and 

Ubiquitin Associated and SH3 Domain Containing A (higher methylation levels in obese 

cases) (75). Additionally, the obesity-related cg07814318 methylation encoding Kruppel-like 

Factor-13 (KLF13) gene was found in the blood of childhood obesity (76). Aberrant DNA 

methylation patterns have been identified in the young obese generation compared to control 

individuals (77) and specific epigenetic marks have been identified in severely cases of child 

obesity (78). Recently, the study of DNA methylation between subcutaneous and omental 

adipose from obese individuals before and after gastric bypass showed 3,239 loci in 

subcutaneous and 7,722 in omental adipose that were significantly differentially methylated 

(79). DNA methylation on SLC19A1 in obesity could be an epigenetic biomarker for obesity-

related insulin resistance (80).  

 

1.4 DNA methyltransferases  

DNMT is responsible for the transfer of the methyl group to 5C-position of cytosine residues 

in DNA. DNMTs can either introduce new methylation marks or maintain them during 

genome replication (81). There are five mammalian DNMT families, which are DNMT1, 

DNMT2, DNMT3A, DNMT3B, and DNMT3L. DNMT3A, DNMT3B and DNMT1 are 

canonical cytosine-5 DNMTs, while DNMT2 and DNMT3L are non-canonical members as 

they are inactive forms. DNMT1 is responsible for the maintenance of DNA methylation 

patterns during DNA replication (Figure 1.5A), whereas DNMT3A and DNMT3B are known 

to be de novo methyltransferase which transfer the methyl groups onto unmethylated DNA 

elements (Figure 1.5B). Nevertheless, most DNMTs share similar domains with two 

functional parts: the N-terminal regulatory domain and the C-terminal catalytic domain (82). 

The N-terminal regulatory domain guides the nuclear translocation of the enzymes and 

mediates their interaction with the DNA and chromosome. The C-terminal catalytic part is 

conserved between eukaryotes and prokaryotes (83). Due to splicing and/or promotor usage, 

there are different isoforms of DNMT3A and DNMT3B (84, 85) (Figure 1.6). 
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Figure 1.5 DNA methylation pathways. A) DNMT3A and DNMT3B are the de novo DNMTs 
which transfers -CH3 onto naked DNA B) DNMT1 is the maintenance DNMT which 
maintains DNA methylation levels during DNA replication (Modified from Moore L.D. et 
al.) (86). 

 

 

 

 
Figure 1.6 Structure of DNMT isoforms. Their proline-tryptophan-tryptophan-proline 
(PWWP), plant homology domain (PHD)-like and catalytic motifs (I, IV, VI, IX and X) and 
alternative splicing sites were shown in all DNMT isoforms (Taken from Choi SH. et al.) 
(87).  
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1.4.1 DNMT family members  

DNMT1 and DNMT2 

DNMT1 is a multimodular protein comprising 1,620 amino acids and it contains both the N-

terminal regulatory domain and C-terminal catalytic domain. At C-terminal domain, there are 

two sub-domains: the target recognition domain (TRD) and the methyltransferase domain 

(88). The N-terminal regulatory domain contains a DNA methyltransferase 1-associated 

protein 1 (DMAP1) binding domain, a CXXC zing finger domain, a replication foci targeting 

sequence (RFTS) domain, and a tandem bromo-adjacent homology (BAH1/2) domain (89).  

Human and mouse DNMT1 share approximately 80% of their sequence identity (89). Loss of 

DNMT1 function leads to neurological abnormality and genome-wide demethylation (23, 90). 

Disruption of DNMT1 in the human colorectal carcinoma cell line (HCT116) causes loss of 

cell proliferation and led to cell death (91). Consistent with this, knockout of DNMT1 leads to 

cell death and global hypomethylation (92). DNMT1 depletion in mice contributed to 

chromosome instability and tumour development (90, 93). Paradoxically, inhibition of 

DNMT1 by genetic knockdown or treatment with 5-aza 2’ deoxycytidine has reduced tumour 

formation of colon cancer in a mouse model (94, 95). Loss of DNMT1 disrupts imprinted X 

chromosome inactivation and associated phenotypic abnormalities (96). Also, loss of 

methylation by depletion of DNMT1 leads to demethylation of probes located in gene 

involved in neuroepithelial differentiation, fat homoeostasis/body mass, and olfactory receptor 

genes (97). 

The human DNMT2 located on chromosome 10p13 encodes a protein of 384 amino 

acids and it is homologous to yeast pmt1 (98). DNMT2 consists only in a catalytic domain 

and it lacks the DNA methyltransferase activity. However, DNMT2 was found to methylate 

cytosine 38 of transfer RNA at anticodon loop (99). DNMT2-family enzymes affect the 

metazoan development and are involved in RNA methylation in the cytoplasm. Knockdown 

of Dnmt2 resulted in defecting in differentiation of the retina, brain, and liver (100). 

 

DNMT 3A and 3B 

DNMT3A and DNMT3B are highly expressed in embryonic stem cells, early embryos, and 

developing germ cells, whereas low expression is observed in differentiated somatic cells (84, 

101). DNMT3A encodes at least two known isoforms, which are DNMT3A1 (about 130 kDa) 

and DNMT3A2 (100 kDa) (Figure 1.6). DNMT3A2 lacks the N-terminal region and is the 

major isoform in embryonic stem cells (84). In humans, DNMT3A2 is transcribed from an 

alternative promoter in intron 6 of DNMT3A. Unlike DNMT3A that was concentrated on 
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heterochromatin, DNMT3A2 showed a pattern suggestive of euchromatin association (84). 

Moreover, the specific de novo DNA methylation target sites of DNMT3A1 are correlated 

with H3K4me3 modification (transcriptionally active) (87). DNMT3A2 was detectable in 

breast/ovarian cancer cell lines and it also was expressed in testis, ovary, thymus and spleen 

(84). There are two subfamilies for DNMT3B; DNMT3B and DNMTΔ3B. DNMT3B has 

more than 30 isoforms as a result of alternative pre-mRNA splicing leading to various 

transcriptional variants (102-105). Only DNMT3B1 and DNMT3B2 are catalytically active, 

while DNMT3B3, DNMT3B4, and DNMT3B5 are not (Figure 1.6) (106). ΔDNMT3B lacks 

200 amino acids from the N-terminal area of DNMT3B and there are seven isoforms; 

ΔDNMT3B1-ΔDNMT4 are catalytically active, while ΔDNMT3B5-ΔDNMT7 lack the 

catalytic domain (107).  

Additionally, DNMT3B shows high homology with DNMT3A by conservation 

proline-tryptophan-tryptophan-proline (PWWP) domain, C-terminal catalytic domain, and 

cysteine-rich PHD zinc finger domain. DNMT3B is required by DNMT3A for restoration of 

methylation in somatic cells and DNMT3A and DNMT3B are essential for establishment of 

global DNA methylation patterns (108). Dnmt3a knockout significantly delayed the loss of 

gene expression driven by the CMV promoter which was highly methylated (109). 

 

DNMT3L 

The human DNMT3L located on chromosome 21q22.3 encodes a 387 amino acid containing a 

cystine-rich region with a novel-type zinc finger domain (110). DNMT3L is expressed only in 

embryonic stem cells and germ cells, and it regulates the expression of repetitive elements and 

imprinting genes in germ cells (111, 112). DNMT3L interacts with histone H3 tails and 

recruits or activates DNMT3A2 leading to de novo DNA methylation (113). Dnmt3L is a 

regulator of methylation in the gene body of housekeeping genes (114). Dnmt3L was also 

reported to cooperate with Dnmt3a and Dnmt3b to methylate the DNA (115, 116). Knockout 

DNMT3L in human embryonal carcinoma cells caused cell apoptosis and inhibited cell 

growth (117). Co-expression of DNMT3L and DNMT3A led to a stimulation of DNA 

methylation of imprinted genes by DNMT3A (118).  

 

The identity matrix of the previously mentioned 13 DNMT isoforms plus DNMT2 

was analysed by Fernanda I. et al. (Figure 1.7) (119). The amino acid sequences were 

identical at the catalytic site of DNMT3A1 and DNMT3A2 isoforms, and at that of 

DNMT3B1, DNMT3B2, DNMTΔ3B1, DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4. 
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Although the majority of DNMTs was identical within subfamilies, the amino acid sequences 

at the catalytic site of DNMT1, DNMT2, and DNMT3L showed a significant difference with 

the rest of the isoforms. The DNMTs also differ by size, which is governed by alternative 

splicing events and chromosome location. These factors contribute to changes in preferential 

DNA binding sites of DNMTs leading to different biological function expressed from target 

genes. 

The roles of DNMTs in DNA methylation has been increased and partners of each 

DNMT have been reported. Numerous studies showed that DNMT1 and proliferative cell 

nuclear antigen (PCNA) interaction was important for DNMT1 activity (120). Also, the 

DNMT1/PCNA interaction could modify the structure of the replication focus targeting 

sequence domain and by a ricochet increase in both its activity and the DNMT1 affinity for 

DNA (121). Interaction of DNMT1 and CysxxCys finger protein1 presents a high affinity for 

unmethylated DNA. The inhibition of this interaction strongly decreased tumour growth of 

glioma cells in nude mice (122). Methyl-CpG-binding domain protein (MBD) interacts with 

DNMT1 and this interaction presents at methylated DNA and also involves in the recruitment 

of DNMT1 (123). Interaction of DNMT1 and DNMT-associated protein1 was involved in 

both early and late S phase of DNA replication and in the recruitment of PCNA (124). 

Recruitment of DNA methylation machineries by polycomb proteins has been found in highly 

methylated area to silence specific loci such as HOX genes (125). The recruitment of MBD 

and DNMT3A from the orphan nuclear receptor germ cell nuclear factor leads to Oct4 

repression (126). Moreover, double knockout of DNMT1 and DNMT3B resulted in 

hypomethylation of photocadherin10 (127). 
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Figure 1.7 Identity matrix of the catalytic site of 14 DNMT isoforms (taken from Fernanda I. 
et al.) (119). The degree of identity, from 0% to 100%, is represented by a colour gradient 
with dark red corresponding to 0% and dark blue to 100%. 

 

1.4.2 The role of DNMTs in cancers and other diseases 

Links between alterations in DNMT gene expression and protein activities are widely 

reported in multiple cancers (Table 1.1) (128). An increased DNMT activity is one 

mechanism that can lead to disease development through DNA hypermethylation. 

Hypermethylation can be found not only in the promoter region but also at the actively 

transcribed gene bodies and enhancer regions (129-131). Various studies show that aberrant 

DNA methylation contributes to cancer (62). Hypomethylation is a common characteristic of 

the cancer epigenome. Generally, hypomethylation of retrotransposon elements is found in 

tumour cells contributing to aberrant integrity of the genome (132). In a rat model, methyl 

donor deficiency promoted liver tumours and was associated with hypomethylation of 

oncogenes (133). Mice carrying a hypomorphic Dnmt1 allele developed aggressive T cell 

lymphomas at 4-8 months of age (90). 
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Table 1.1 Studies linked between DNMT alterations and various cancer types (adapted from 
Zhang and Xu) (128). 

Tumour type DNMT subtype Model studied Alteration 

AML 

DNMT3A Human Mutation 
DNMT3A Mouse tumour Mutation 
DNMT3A Mouse tumour Deletion 
DNMT3B Mouse tumour  Deletion 
DNMTs Human Overexpression 

MDS DNMT3A Human Mutation 
CMML DNMT3A Mouse Mutation 
CML DNMTs Human Overexpression 
ALL DNMT3A Human Mutation 

Lymphoma 
DNMT1 Mouse tumour  Deletion 
DNMT3A Mouse  Deletion 
DNMT3B Cell line Overexpression 

Breast 
DNMT1 Mouse tumour  Deletion 
DNMT1 Human Overexpression 
DNMT3B Human Overexpression 

Lung DNMT3A Mouse tumour  Deletion 
DNMT1 Cell line Overexpression 

Colon 
DNMT1 Human Mutation 
DNMT3B Human Overexpression 
DNMT3B Mouse tumour  Overexpression 

Liver 
DNMT1 Human Overexpression 
DNMT3A Human  Overexpression 

Melanoma DNMT3A Mouse tumour  Overexpression 
Pancreas DNMT1 Human Overexpression  
Prostate DNMT3B Human Overexpression 
Oesophagus DNMT1 Human Overexpression 

Acute myeloid leukaemia (AML), Myelodysplastic syndrome (MDS), Chronic 
myelomonocytic leukaemia (CMML), Chronic myeloid leukaemia (CML), Acute 
lymphoblastic leukaemia (ALL). 
 
 
 

Hypermethylation of the oncogenes caused by the overexpression of DNMTs 

(DNMT3A, DNMT3B, and DNMT1) is displayed in a variety of tumours (134). The over-

expression of DNMT1 has been linked to the development of lung cancer (135). High activity 

of DNMT1 promotes tumour cell proliferation (136). DNMT1 deletion showed DNA 

demethylation and delayed lymphomagenesis and impairing tumour cell proliferation (137). 

DNMT1 and DNMT3B are over-expressed in T-cell acute lymphoblastic leukaemia and 

Burkitt’s lymphoma (138). Around 15% of acute myeloid leukaemia (AML) cases display a 

heterozygous somatic missense mutation in DNMT3A (139). This missense mutation affects 
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amino acid R882 and is highly recurrent in these AML patients (139). DNMT3A is also 

involved in hepatocellular carcinogenesis and the depletion of DNMT3A in hepatocellular 

carcinoma inhibits cell proliferation and colony formation (140). Transient transfection of 

DNMT3B1 and DNMT3B2 in primary prostate cells increased methylation of tumour specific 

CpG sites such as CpG island hypermethylation of Zinc Finger Protein 296 (141). Moreover, 

somatic mutations in DNMTs are one of the factors contributing to malignant transformation 

(142). The variation of DNMT3A is frequently mutated in myelodysplastic syndrome, AML 

and this has also been correlated with therapeutic resistance and increased disease 

aggressiveness (139, 143, 144). Dnmt3a-knockout mice led to increased proliferation of 

hematopoietic stem cells (145).  

Aberrant DNA methylation or aberrant DNMT expression have also been associated 

with autoimmune disease (146), type 1 diabetes (147), SLE (148), vitiligo (149), and 

rheumatoid arthritis (RA) (150). Global methylation was significantly decreased in RA 

patients compared with control subjects, despite higher DNMT1 expression in RA (150). Loss 

of Dnmt3a in the nervous system led to degeneration in adulthood and lethality (151). In 

another study, a tissue-specific Dnmt triple mutant (Dnmt1, Dnmt3a, aDnmt3b) mouse model 

demonstrated global genomic hypomethylation with reorganisation of the photoreceptor and 

synaptic layers within the retina (152). Mutations in the human DNMT3B gene have been 

shown to demethylate of classic satellite sequences and responsible for subsequent 

abnormalities such as multi-radiate chromosomes observed in immunodeficiency, 

chromosome abnormalities and facial anomalies (ICF) syndrome (153). Mutations in 

DNMT3A gene cause microcephalic dwarfism, a hypocellular disorder of extreme global 

growth failure (154). Additionally, multiple dominant germ line mutations clustered in a 

single small domain of DNMT1 result in a heterogeneous group of adults-onset neurological 

disorders including sensorineural deafness, ataxia, narcolepsy, dementia, and psychosis (155). 

 

1.5 DNMT inhibitors (DNMTi) and their function 

Several approaches have been investigated for inhibiting DNMT enzyme activity, with the 

goal of controlling aberrant DNA methylation. These can predominantly be divided into two 

categories: nucleoside and non-nucleoside compounds. 

 

1.5.1 Nucleoside hypomethylating agents 

Azacytidine and decitabine are cytidine analogues modified in position 5 of the pyrimidine 

ring in which a nitrogen replaces the carbon (Figure 1.8) (156). Azacytidine, a ribonucleoside, 
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is incorporated into both RNA and DNA, while decitabine, a deoxyribose analogue, is 

incorporated into only into DNA. DNMTs are incapable of performing methyl group transfer 

on incorporated cytidine analogues, so covalent enzyme-DNA adducts (DNMT-analogue 

complexes) remain blocked and are later destroyed by the proteasome complex, which 

recognises these complexes as sites of DNA damage (157, 158). Azanucleosides (azacytidine 

and decitabine) are the first hypomethylating agents approved by the US Food and Drug 

Administration. These medicines have functioned as the archetypal DNMT inhibitors and 

have been used for the treatment of patients with AML and myelodysplastic syndrome. Also, 

azacytidine has been approved by the European Medicines Agency for the treatment of 

patients with chronic myelomonocytic leukaemia (159). The therapeutic potential of DNMT 

inhibitors is not only limited to haematological malignancies, but have shown effectiveness in 

other cancers (160). Zebularine is the third novel nucleoside DNMT inhibitor family and it 

has been investigated in in vitro studies (161). Zebularine is metabolised in the same way as 

azacytidine and is activated after incorporation into a DNA stand (156). The demethylating 

effect of azacytidine and decitabine is stronger than zebularine but their mechanisms of action 

partially overlap. Collectively, these current nucleoside DNMT inhibitors are cytotoxic, 

mutagenic and show lack of specificity, which might limit the clinical application.  

  

 
Figure 1.8 Nucleoside analogues inhibitors of DNMT (taken from Gnyszka A. et al.) (156). 

 

1.5.2 Non-nucleoside inhibitor of DNMTs from nutritional compounds 

Due to the toxicity of nucleoside DNMTi, researchers have discovered non-nucleoside 

DNMTi with improved specificity and toxicity. Another benefit of non-nucleoside DNMTi is 

that they are not incorporated into the DNA. This characteristic welcomes the possibility of 

http://ar.iiarjournals.org/content/33/8/2989/F2.large.jpg
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selective inhibition of different DNMTs with minimal consequences of side effects. Naturally 

occurring substances and dietary compounds have been investigated for their ability to inhibit 

DNMT enzymes. Several studies show the effect of polyphenols as epigenetic modulators 

through binding to the catalytic site of DNMTs in cancer chemoprevention (162). 

Polyphenolic compounds gained intensive interest due to their anti-carcinogenic, anti-

oxidative, and anti-inflammatory activities (163, 164).  

 In this section, the inhibitory effects of five dietary constituents: (-)-epigallocatechin-

3-gallate (EGCG), caffeic acid (CA), curcumin, theaflavin, and vitamin C, will be introduced. 

Their respective DNMT inhibitory effects are summarised in Table 1.2. 

 

Table 1.2 Studies outline the interaction between bioactive dietary components and DNMT 
activity (adapted from Fatma Z.K. et al. (165)). 

Studies Dietary 
components 

Concentration 
of dietary 
components 

Enzymes 
inhibited 

Epigenetic outcomes 

Lee, W.J., et 
al. (166) 

EGCG 7 µM (in vitro), 
20 µM (in 
vivo)  

DNMT1 EGCG inhibited human DNMT1 
activity by binding to the catalytic 
core region 

Fang et al. 
(167) 

EGC–
EGCG 

50 µM (in 
vivo) 

DNMT1 EGC and EGCG showed 
competitive inhibition of DNMT1 
in treatment of the KYSE 510 cell 
line. EGCG showed a dose and 
time-dependent reversal of 
hypermethylation and re-
expression of mRNA of 
p16INK4a, RARβ, MGMT, and 
hMLH1 genes 

Nandakumar, 
V., et al. 
(168) 

EGC–
EGCG 

25 µM (in 
vivo) 

DNMTs EGCG reduced the activity of 
DNMTs by decreasing the mRNA 
levels and protein expression of 
DNMTs 

Zhang, B. K., 
et al. (169) 

EGCG 20 µM (in 
vivo) 

DNMT1 EGCG inhibited the mRNA and 
protein expression activity of 
DNMT1 and downregulated 
binding to the promoter of 
DDAH2. 

Shukla, S., et 
al. (170) 

EGCG 20 µM (in 
vivo) 

DNMT1 EGCG decreased the mRNA and 
protein expression activity of 
DNMT1 and increased the 
expression of unmethylation-
specific GSTP1 promoter. 

Morris J. et 
al. (171) 

EGCG 100 µM (in 
vitro), 150 µM 
(in vivo)  

DNMTs 
(DNMT1, 
DNMT3a, 
and 
DNMT3b) 

EGCG treatment decreased 
promoter methylation of RXRα 
and decreased DNMT activity of 
DNMTs. 
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Pandey, M., 
et al. (172) 

Green tea 
polyphenols, 
EGCG 

20 µM (in 
vivo) 

DNMT1 A dose and time-dependent 
inhibition of DNMT activity and 
protein expression was observed. 

Lee and Zhu 
(173) 

Caffeic acid, 
Chlorogenic 
acid 

20 µM (in 
vivo) 

DNMT1, 
M.Sssl 
DNMT 

The caffeic acid and chlorogenic 
acid inhibited the DNA 
methylation that was catalysed by 
prokaryotic M.Sssl DNMT and 
human DNMT1, and increased 
levels of SAH. 

Liu, Z., et al. 
(174) 

Curcumin 100 µM (in 
vivo) 

DNMT1 Curcumin blocked covalently the 
catalytic thiolate of DNMT1 to 
exert its inhibitory effect on DNA 
methylation. 

Arumugam 
R., et al. 
(175) 

Theaflavin 100 µM (in 
vivo) 

DNMT3a 
C-terminal 
domain 

Theaflavin showed inhibitory 
effect on DNMT3a-C with a 
physiologically and nutritionally 
relevant IC50 value. 

Venturelli S., 
et al. (176) 

Ascorbate 
(Vitamin C) 

8 mM (in vivo) DNMTs, 
 

Ascorbate inhibited DNMTs 
activity. 

 

 

The most abundant catechin in green tea is the EGCG, which is a competitive inhibitor 

of DNMTs through binding within the DNMT active site, leading to decreased global DNA 

methylation (167). EGCG has been found to promote vascular health through epigenetic 

reprogramming of endothelial-immune cell signalling and conversing systemic low-grade 

inflammation (177).   

CA (3, 4-dihydroxy-cinnamic acid) is an organic compound and a type of polyphenol. 

The consumption of CA-rich foods is protective against carcinogenesis through preventing 

the formation of nitrosamines and nitrosamides, which are the main inducers (178, 179). 

Curcumin is a bioactive compound and it is present in turmeric. Curcumin is also 

widely used in Asian countries as a yellow colour food additive. Curcumin has shown broad-

spectrum epigenetic modulation through manipulating the activity of DNMTs, HATs, and 

HDACs (180). Curcumin has antioxidant activity through its influence on acetylation and 

deacetylation (181).  

Theaflavin is another group of polyphenols and it is enriched in both black and oolong 

tea (182). Theaflavin have recently gained significant attention due to its biological and health 

promoting benefits. Research has shown that this compound might contribute to the positive 

benefits on diseases (183).  

Apart from polyphenols, vitamin C (L-ascorbate) is a water-soluble vitamin and 

antioxidant. Vitamin C has recently been implicated in epigenetic regulation through its 

contribution in the demethylation cycle as a cofactor of TET (184). Oral vitamin C 
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supplementation to patients with myeloid cancer resulted in an increase in the 5-hmC/5-mC 

ratio compared to placebos (185).  

The chemical structures of EGCG, curcumin, CA, theaflavin, and vitamin C are shown 

in the Figure 1.9. Several molecular modelling studies have demonstrated the interaction 

between some of these dietary compounds with DNMTs. For example, EGCG exerted its 

inhibitory effect on DNMT1 activity via blocking the entry of the key nucleotide cytosine into 

its active site (167). Curcumin has the potential to inhibit the DNMT1 activity by either 

blocking the catalytic domain, C1226 (174). 

 

 
Figure 1.9 Chemical structures of EGCG, curcumin, CA, theaflavin, and vitamin C. 

 

1.6 Nutrition and epigenetics 

It is now widely known that bioactive food compounds alter molecular and cellular processes 

with individual genetic variations, lifestyle, physiological conditions, or environment. The 

recognition of individual variations in response to nutrients is the result of advances in 

genome-wide analysis, which allows the whole genome to be queried. Also, epigenetics can 

be modulated by bioactive dietary compounds and metabolites without changes in DNA 

sequences (186). Additionally, most epigenetic modifications are dynamic and plastic, 

indicating that epigenetic modifications are sensitive to environmental factors. Here, the effect 

of nutrition on DNA methylation and human diseases will be discussed. 
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1.6.1 Epigenetics and lifestyle 

Lifestyle is used to explain the way of life or the manner of living, which comprises 

behavioural habits (e.g. diet, physical activity, smoking, and alcohol consumption) and other 

factors affecting well-being such as working environment and stress. Numerous studies have 

provided supporting evidence of the influence of lifestyle in epigenetic regulation. Table 1.3 

presents examples of lifestyle factors that are recognised influencers of epigenetics. 

 

Table 1.3 Lifestyle factors implicated in epigenetic modulation (taken from Jorge A. et al.) 
(187). 

Factors Example 
Nutrition  Folate, phytoestrogen, polyphenols, selenium 
Physical activity Exercise 
Tobacco smoke Cigarette smoke, cigarette smoke condensate 
Alcohol High alcohol intake 
Pollutants Arsenic, PM10, black carbon, benzene, PAHs, POPs 
Emotional Stressful experiences 
Shift work Working at night 

 

 

This section will focus on the impact of nutrition factors on epigenetics. Several 

dietary components are known to modify epigenetic marks. Folic acid and vitamin B12 play a 

vital role in DNA metabolism, and are found in a wide range of foods such as dairy products, 

meat, liver, and fruits. These vitamins are required for SAM production, which is a methyl 

donor for DNA methylation in the one-carbon metabolism (Figure 1.10) (188). Also, the 

SAM and S-adenosylhomocysteine (SAH) is generated from SAM by methionine 

adonosyltransferase, and this reaction is influenced by methylation events, making the Sam 

and SAH ratio a determinant of methylation efficiency. Folate and vitamin B12 are important 

cofactors in the regeneration of methionine by methylation of homocysteine (189). 5-Methyl 

tetrahydrofolate, the circulating form of folate, is depleted under the condition of folate 

deficiency, in which DNA methylation activity is reduced through lower availability of SAM. 

Folate depletion significantly increased plasma homocysteine and lymphocyte DNA 

hypomethylation in healthy postmenopausal women (190). High dose of oral choline (500 

mg/day) for 12 weeks have compensated for the folate depletion (191). 
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Figure 1.10 One-carbon metabolism. DHF, dihydrofolate; DMG, dimethyl glycine; SAH, S-
adenosylhomocysteine; SAM, S-adenosylmethionine; THF, tetrahydrofolate (taken from 
James A.C. et al.) (192). 

 

Selenium reactivates the pi-class glutathione-S-transferase through partial promoter 

DNA demethylation in prostate cancer cells (193). Selenium also decreases the activity of 

histone deacetylase and levels of DNMT1, while the levels of acetylated lysine 9 on histone 

H3 increase (193). However, methylation of the promoter of p53, a tumour oncogene, was 

decreased in a human colon cancer cell line treated with selenite (194). In addition to 

demethylating activity, polyphenols have also been shown to modify the activity of histone 

acetylases and histone deacetylases (195-197). 

 

1.6.2. Methyl donors and DNMTi diet 

Dietary factors can influence DNA methylation patterns through either, 1) donating a methyl 

group, known as a methyl donor or 2) inhibiting the activity of DNMT, known as a DNMTi 

(198). For example, folate, choline, betaine, vitamin B12, and methionine are the methyl 

donors involved in the one-carbon metabolism and DNA methylation (Figure 1. 10) (199). In 

contrast, polyphenols can interfere with DNA methylation levels through inhibition DNMT 

activity. 

 

Dietary factors as methyl donors - effects on phenotype  

As for most methylation reactions within mammalian cells, the key methyl donor for the 

epigenome is SAM, which is generated during the methionine cycle via the one-carbon 
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metabolism (Figure 1.10) (200). Folate, vitamin B12, choline, betaine and methionine act as 

methyl donors in this pathway while vitamin B2 and vitamin B6 are cofactors for one- carbon 

transfers (199). Folate is an essential vitamin for SAM generation. Folate can intervenes with 

global DNA methylation by impacting DNMT expression, or by providing more SAM (201). 

The ability of methyl donors to modify both the phenotype and/or the epigenetic status of the 

successive generations in animal models has led to a surge in increasing the knowledge 

surrounding methyl donors in human diets (202-205). A compelling example of folate on 

phenotype is its role in the study of the Avy mouse model, whereby maternal folate dietary 

deficiency correlated with reduced DNA methylation and yellow coat colour in offspring 

(206). The Agouti gene in the yellow Avy offspring is constitutively expressed due to 

hypomethylation of its upstream repetitive elements, giving rise to elevated yellow colour 

production, as well as increased obesity when compared with genetically identical brown 

mice (206). In another study, higher rates of brown wild type mice were observed in the 

offspring of pregnant mice fed with methyl donor rich diets compared with a control group 

fed with a standard diet (207). The impact of maternal dietary methyl donors on foetal growth 

was highlighted in a separate study whereby a methylating micronutrients-rich maternal diet 

containing methionine, folate choline, vitamin B6, and vitamin B12 increased foetal weight 

(208).  

Not only site-specific CpG but also global DNA methylation is modulated by methyl 

donor diets. The global DNA methylation level was increased by two year folic acid and 

vitamin B12 supplementation in elderly (209). Similarly, in randomised clinical trial, global 

DNA methylation was increased in post-polypectomy patients supplemented with 600 µg/day 

(210). Further studies regarding folate status have reinforced the necessity of folate inclusive 

diets. For instance, insufficient folate intake has been correlated with a reduction in the global 

DNA methylation in postmenopausal women (190). Similar findings of lower global DNA 

methylation were also observed in the offspring of female C57B16/J mice fed with low folate 

diets (211).  

Folate supplementation was associated with increased DNA methylation of Zinc finger 

protein 57 in maternal blood samples (212). Moreover, folate interferes with DNMTs in both 

RNA and protein expressions. For example, in the HCT116 cell line, DNMT3A expression 

was significantly reduced in high folate states (4 mg/L or 16 mg/L) compared with 0 mg/L 

folate, while DNMT1 expression significantly increased in 16 mg/L of folate treated cells 

(213). Pseudo-pregnant mice fed a folate depleted diet (0 mg/L) showed a significant 

upregulation of RNA expression and protein expression of both Dnmt3a and Dnmt1, but no 

effects were observed for Dnmt3b (214). In addition to folate, choline and betaine are 
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precursors for SAM and supplementation of these also modulate DNA methylation (215). In 

animal studies, global DNA hypomethylation or hypomethylation of site-specific CpGs of 

cyclin-dependent kinase 3, vascular endothelial growth factor-C, angiopoietin 2, and 

calbindin 1 genes were observed in the offspring to maternal choline deficient rodents (216-

218). Rats fed by a low choline and methionine diet were deficient in 5-methyldeoxycytidine 

content of hepatic DNA (219). Methionine serves as a precursor for SAM in the one-carbon 

metabolism (220). The effect of the short-term feeding of methionine-supplementation in 

mice demonstrated increased methylation patterning of LINE-1 transposable elements (221).  

 

Dietary factors that act as DNMT inhibitors (DNMTi) 

This section was discussed in 1.5.2 about the inhibitors of DNMTs from nutritional 

compounds. Briefly, several phenolic acids, stilbenes, and flavonoids can inhibit the activity 

of DNMT, either directly by interaction with active site of DNMTs or through indirect 

mechanisms such as inhibition of DNA methylation by increasing SAH (196, 222-224). 

EGCG is the major metabolite (59%) of catechin (225) and has been shown to inhibit DNMT 

activity and to downregulate hTERT expression (226). In vitro studies have shown that 

catechin inhibits the enzyme activity of DNMT3A and DNMT3B (167, 226); however the 

biological consequences of this effect have not yet been examined. Genistein showed a dose-

dependent inhibition of DNMT activity (227). Other phenolic compounds such as luteolin, 

apigenin, naringin, and hesperetin indirectly regulate DNMT activity via modulating the ratio 

of SAM and SAH (166, 228, 229). Although some nutrients are known to target a specific 

DNMT isoform (Table 1.2), there are no studies on the effects of potential DNMT inhibitors 

or methyl donors on specific DNMT sub-isoforms. 

 

1.6.3 Effect of nutrition on human diseases 

Nutrition is an important factor in health and diseases. Insufficient or excessive dietary intake 

results in a reduced state of health conditions. In a systemic analysis from the Global Burden 

of Disease Study in 2017, the proportion of disease-specific burden induced by dietary risk 

factors was estimated, detailing 11 million deaths and 255 million disability-adjusted life-

years attributed to dietary risk factors such as high sodium intake and low intake of whole 

grains and fruits (230). Undernutrition, or nutrition deficiency, and overnutrition were the 

prevailing diet induced disease states. It is important to consume a balanced diet to prevent 

disease or reduce disease risk. For example, concentrated sugars and refined flour products 

impair glucose metabolism leading to obesity or diabetes (231). Low fibre intake, imbalance 
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of omega 3 and omega 6 fatty acids, and consumption of red meat contribute to increased 

cancer risk (232-235). Vitamin deficiency is well known to increase disease likelihood: 

vitamin D deficiency contributes to osteopenia and osteoporosis (236); xerophthalmia is an 

ocular manifestation of vitamin A deficiency (237); low vitamin B12 has been known as a 

potential risk factor of neural tube defects (238), scurvy is a condition caused by vitamin C 

deficiency. Some evidence shows the protective effect of vitamins on cancer risk. Vitamin 

B12, for instance, is essential for DNA synthesis and cellular energy production (239). 

Methylcobalamin, a form of vitamin B12, inhibited tumour growth of oestrogen-sensitive 

malignant cells in mice (240).  

 Nutrition influences health through multiple molecular mechanisms including changes 

in DNA methylation patterns (241), which modulate biological functions that impact health 

and ageing. As mentioned in the section 1.6.2, higher intake or status of several 

micronutrients participate in the one-carbon metabolism, including folate, choline, betaine, 

methionine, vitamin B6, and vitamin B12; all of which contribute to SAM production and are 

associated with increased DNA methylation (242, 243). For example, dietary methyl donor 

restriction and polymorphisms in genes encoding key components of the one-carbon 

metabolism pathway have been associated with aberrant DNMT expression, decreased global 

DNA methylation, and increased cancer risk (244). In addition, mice fed a folate deficient diet 

showed chromosomal damage in nucleated erythrocyte precursors (245). Hypomethylated 

DNA and double DNA strand breaks were observed in the liver of rats that were fed a 

methionine, choline, and folic acid deficient diet (246). Protein restriction in pregnant 

C57BL/6J mice caused hypermethylation of the liver X-receptor alpha promoter in liver tissue 

of their offspring, which is a nuclear receptor controlling cholesterol and fatty acid 

metabolism (247). In a human study, the incorporation of [3H] methyl groups was found to be 

increased in postmenopausal women who consumed a moderately folate-depleted diet (118 

µg folate per day) for seven weeks, suggesting low methylation of DNA (248). Reduced DNA 

methylation contributes to carcinogenesis by altering the gene expression of tumour 

suppressor genes or proto-oncogenes (249). Folate depletion also leads to an increase in 

homocysteine, which is a risk factor of CVD (250). Concomitantly, increasing plasma 

homocysteine correlated with elevated plasma SAH as well as DNA hypomethylation in 

lymphocytes (251). Maternal folate deficiency caused global and LINE-1 hypomethylation 

resulting in increased retrotransposition in foetuses, which in turn increased the risk of 

intrauterine growth retardation (252). Mice fed a high methionine and low B vitamin diet 

showed hypermethylation of netrin-1 gene promoter leading to low gene expression of netrin-

1 and association with memory loss (253).  
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 Methionine adenosyltransferase converts methionine to adenosylmethionine (AdoMet) 

and adenosylhomocysteine (AdoHcy) is generated following methyl donation before forming 

homocysteine. The elevated AdoHcy concentration results in a lower AdoMet/AdoHcy ratio, 

thus inhibiting DNA methyltransferase in liver (254) and human fibroblasts cell lines (255). 

In a mice study, a folate/choline-deficient diet significantly decreased AdoMet concentration 

but there was a significant increase in AdoHcy, and this consequently decreased the 

AdoMet/AdoHcy ratio (256). The effect of homocysteine on AdoMet and AdoHcy 

concentrations has been found to be tissue type dependent leading to within-tissue gene-

specific hypermethylation, but low global DNA methylation, all of which might promote 

CVD risk through an altered gene expression profile (257, 258). 

 

1.7 Personalised nutrition 

Data on relationships between dietary intake and health outcomes are used to build public 

health dietary recommendations. However, individuals respond differently to the same dietary 

intake and/ or nutrients because of inter-individual variations in their genetic makeup and 

other phenotypic factors. This has led to the idea that it may be possible to use individual 

characteristics to personalise nutritional advice. 

The concept of personalised nutrition (PN) (259, 260) is based on the idea that the 

generic “one size fits all” notion may not be appropriate for everyone in the population and 

that tailoring advice for each individual may be more effective on health and disease 

outcomes. PN can be based on biological characteristics, on current eating behaviour and/or 

on psychosocial parameters of the individual (261). The potential benefits of PN in promoting 

health include improved efficacy and reduced costs of healthcare. Also, PN can be applied 

either in management of patients with specific diseases or in improving public health. The 

differential response of individuals to the same nutritional components provides the 

motivation and strategy development for PN.  

  A better understanding of how nutrients or diet plays an important role in health by 

using technology, e.g. Next-generation sequencing methods and mass-spectrophotometry 

enables biological differences between individuals to be observed for tailoring PN regimens, 

through genetic and epigenetic assessment. The concept of PN was proved by the Food4Me 

study to providing personalised dietary advice based on individual dietary intake, phenotypic 

and genotypic data (262, 263). In the Food4Me study after six months, those randomised to 

PN had bigger improvements in their diet than those randomised to the control (generic 

dietary advice) (262, 263). However, there was no evidence of added benefit of using 
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genotypic and/or phenotypic information in generating the PN advice (262). However, in a 

smaller Canadian intervention study, genotype-based dietary advice was more effective than 

general dietary advice in reducing salt intake in healthy young adults (264). Advances in data 

science, analytical technologies, molecular science and nutritional knowledge will allow 

researchers to refine PN. However, to be useful in improving public health, PN will also need 

to address the psychological, social, economic and cultural factors that influence eating 

patterns in order to ensure that advice is converted into action and that improved dietary 

habits are sustained in perpetuity (261). 

 

1.8 Research gap 

Since the discovery of epigenetic factors as drivers of diseases, tools and strategies have been 

developed to investigate the epigenome. This implementation of epigenetic tools has proven 

useful in designating treatment. Numerous DNMT isoforms were previously discovered (see 

section 1.4). High similarity of the catalytic domain among DNMT isoforms was found 

through the assembly of structures (119). To date, it remains a controversy over which DNMT 

isoform would be the best maker for diseases. Although preferential target sites for DNMTs 

have been identified, these target sites were limited only the cancer-related genes, due to the 

availability of an outdate version of the Illumina DNA methylation assay (87). Moreover, a 

cell model to assist with the unveiling of novel disease associated CpGs in DNMT genes is 

unavailable. Therefore, cell model systems that each overexpress one of 13 different DNMTs 

can be investigated to reveal preferential DNMT target CpG sites that are isoform-specific 

using Illumina Infinium Methylation EPIC BeadChip (EPIC arrays).  

 The role of DNMTs in human disease is important for therapeutic purposes. It is 

necessary to develop selective DNMTi toward a specific DNMT isoform, which could 

identify an appropriate DNMT isoform to target in specific diseases. However, this remains a 

grey area due to lack of materials and techniques. It will be valuable data for all potential 

DNMTi to be screened for their efficacy across a selection of conditions. Also, there remains 

controversy over which DNMTi can be inhibited through the action of a DNMTi. Although 

the catalytic pockets of DNMTs are conserved, amino acid residues are dissimilar. For 

example, Cys662 in DNMT3a is replaced by Trp1173 in DNMT1, Arg887 by Asn1580, and 

Trp889 by Val582. Additionally, the SAM cofactor can receive a different conformation in its 

binding pocket based on the type of methyltransferase (265).  

 Based on the studies discussed in this chapter, there is growing evidence that diet and 

bioactive food compounds play an important role in the epigenome through modulating DNA 
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methylation, DNMT activity, and DNMT expression. Assessment of these epigenetic 

determinants provides valuable information on how individuals respond to dietary factors. 

Therefore, nutrition and epigenetics collectively bring forward the prospect of dietary 

intervention for the health-promotion, disease prevention, and as a combatant therapy in diet-

related disorders. Epigenetic biomarkers to help govern PN remain largely unknown or very 

limited. Thus, the concept of a balanced diet between methyl donor and DNMTi diet can 

bring us closer to the goal of effective PN. 

 

1.9 Hypotheses, aims and objectives 

 

1.9.1 Hypotheses 

1. Overexpression of DNMTs leads to aberrant DNA methylation patterns. 

2. Each DNMT isoform characteristically targets different CpG sites. 

3. Certain micronutrients and other food constituents can alter global DNA 

methylation or methylation at specific CpG sites. 

4. Polyphenols and vitamin C inhibit specific DNMTs and, as a consequence, 

modulate patterns of DNA methylation. 

 

1.9.2 Aim 

• To test these hypotheses using short-term cultures of cells models. 

 

1.9.3 Objectives 

1. To generate 13 cell lines that each over-express a different DNMT isoforms. 

2. To identify the CpG sites that are methylated differentially by each DNMT 

isoform, I will undertake genome-wide DNA methylation analysis using the 

Illumina Infinium Methylation EPIC BeadChip.  

3. To assess CpG specific DNMTs in relation to biological mechanism by pathway 

analysis according to enrichment statistics of the difference of gene. 

4. To investigate interactions between selected food constituents, i.e. theaflavin, 

EGCG, CA, curcumin, and vitamin C, and specific DNMT isoforms in 

modulating DNA methylation patterns. 
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2. Chapter 2: Materials and methods 
 

 

2.1 Generation of cell lines with stable over-expression of specific DNMT isoforms 

 

2.1.1 Cell culture conditions 

MEG-01 cell line 

The megakaryoblast cell line (MEG-01) was purchased from Merck, UK. This cell was 

cultured in Roswell Park Memorial Institute (RPMI) medium (Sigma, UK) supplemented with 

10% foetal bovine serum (FBS) (Sigma, UK), and 2 µM glutamine, at 37 °C in a 5% CO2 

humidified atmosphere. 

 

HEK293T cell line 

The human embryonic kidney 293T cell line (HEK293T) (gifted from Dr Viktor Korolchuk, 

Newcastle University) was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) - high 

glucose (Sigma, UK) supplemented with 10% FBS (Sigma, UK), and 2 mM glutamine, at 37 

°C in a 5% CO2 humidified atmosphere. 

 

HEK293FT cell line 

The human embryonic kidney 293FT cell line (HEK293FT), a fast growing HEK293T strain, 

(gifted from Dr Viktor Korolchuk, Newcastle University) was cultured in DMEM (Sigma, 

UK) supplemented with 10% FBS (Sigma, UK), 1% sodium pyruvate, 1% non-essential 

amino acid, and 1% G418, at 37 °C in a 5% CO2 humidified atmosphere. 

 

2.1.2 Retransformation of 13 DNMT-pIRES puro3 plasmids to E.coli DH5 

E.coli DH5α cell (Bioline, UK) (25 μL) was thawed on ice, then 2.5 μL of pIRES puro3 

plasmids (gifted from Dr Si Ho Choi) were added, followed by gentle swirling of the tube for 

a few seconds to mix and then kept on ice for 30 minutes. The tube containing the mixture 

was then placed in a 42 °C water bath for 45 seconds without shaking, then replaced on ice 

for 2 minutes. The mixture was diluted by addition 1 mL of pre-warmed LB medium and 

incubated at 37 °C for 1 hour with shaking. 100 μL of the transformed cells were plated out 

on lysogeny broth (LB) agar containing 100 µg/mL ampicillin and incubated at 37 °C 

overnight. 
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2.1.3 Plasmid construction for viral system 

Plasmid preparation 

The pLenti7.3/V5 DEST gateway vector (gifted from Dr Viktor Korolchuk, Newcastle 

University) (Figure 2.1A) was modified to add more restriction cloning sites using oligo 

nucleotide sequences (containing XbaI, NheI, ClaI, EcoRI, SwaI, PspOMI, and MluI sites) 

(IDT DNA, UK) (Figure 2.1B).  

The pLenti7.3/V5 DEST gateway vector was cut by XbaI and MluI restriction 

enzymes (Thermo Fisher Scientific, UK) to open the plasmid using the mixture shown in 

Table 2.1. 

 

 

 
Figure 2.1 Cloning sites within pLenti7.3/V5-DEST. A) Plasmid map of pLenti7.3/V5-DEST. 
B) Diagrammatic representation of new multiple cloning sites: NheI, ClaI, EcoRI, SwaI, and 
PspOMI with cutting by XbaI and MluI. 
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Table 2.1 Volume of reagents for restriction enzyme reaction. 

Reagent Volume per reaction 

10x Fast digest green buffer (Thermo Fisher Scientific, UK) 2 µL 

XbaI (Thermo Fisher Scientific, UK)  1 µL 

MluI (Thermo Fisher Scientific, UK)  1 µL 

Nuclease-free water (QIAGEN, USA) Up to the total volume 

pLenti7.3/V5 DEST gateway vector  1 µg 

Total  20 µL 
 

Mixture of vectors and restriction enzymes was incubated at 37 °C for 3 hours. These 

mixture solutions underwent gel electrophoresis on a 1% agarose gel at 90 volts for 1 hour. 

Then, all target vectors’ bands were cut out of the gel by hand under UV light and then 

purified using QIAquick gel extraction kit (QIAGEN, USA). Firstly, gel slices were weighed 

in a 1.5 mL microcentrifuge tube and 3 volumes of buffer QG were added per volume of gel. 

Then, this tube was incubated at 50 °C for 10 minutes until the gel slice had dissolved 

completely. After that, 1 gel volume of isopropanol was added and mixed by vortexing. The 

mixture was applied to the QIAquick column and this column was centrifuged at 12,000g for 

1 minute. The filtrate was discarded from the collection tube. 0.5 mL of buffer QG was added 

into the column and this column was centrifuged at 12,000g for 1 minute. For the washing 

step, 0.75 mL of PE buffer was added into the column and this column was centrifuged at 

12,000g for 1 minute. The filtrate was discarded from the collection tube and then the empty 

QIAquick column was centrifuged at 12,000g for 2 minutes. For the elution step, 50 µL of 

buffer EB (10 mM Tris-Cl, pH 8.5) were added into the column which was centrifuged at 

12,000g for 1 minute. 

 

Annealing oligonucleotide 

Two oligonucleotides for new multiple cloning sites: NheI, ClaI, EcoRI, SwaI, and PspOMI 

were annealed together using protocol and condition outlined in Table 2.2 and 2.3. 
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Table 2.2 Volume of each oligonucleotide. 

Reagent Volume per reaction 

Oligonucleotide forward sequence (10 µM) 
5’CTAGAGCTAGCATCGATGAATTCATTTAAATGGGCCCA3’ 10 µL 

Oligonucleotide Reverse sequence (10 µM) 
5’TCGATCGTAGCTACTTAAGTAAATTTACCCGGGTGCGC3’ 10 µL 

Total  20 µL 

  

Table 2.3 Temperatures and times for annealing condition. 

Temperature Time 

95 °C 30 seconds 

72 °C 2 minutes 

37 °C 2 minutes 

25 °C 2 minutes 

4 °C Hold 

  

 After incubation, annealing products were diluted by 1 µL of annealing product and 99 

µL of Nuclease-free water. 

 

Ligation between target DNA or oligomers and target plasmid 

The annealing product or target DNA was ligated into the pLenti7.3/V5 DEST gateway vector 

using the protocol outlined below (Table 2.4). 

 

Table 2.4 Volume of reagents for ligation reaction. 

Reagent Volume per reaction 

5x ligase reaction buffer (Thermofisher Scientific, UK)  2 µL 

Insert (diluted annealing product) Up to the total volume 

T4 ligase (5U/µL) 0.3 µL 

pLenti7.3/V5 DEST gateway vector  1 µg 

Total  20 µL 
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  The components detailed in Table 2.4 were added to the mixture which was incubated 

at 22 °C for 3 hours and them transformed into E.coli DH5α using the heat shock protocol 

described in 2.1.2. 

 

Plasmid DNA extraction 

A single colony was cultured in 7 mL and 100 mL of LB containing 100 µg/mL of ampicillin 

at 37 °C overnight with vigorous shaking (220 rpm). After incubation, positive bacteria were 

extracted using E.Z.N.A.® Endo-free Plasmid DNA Mini KitII (VWR, USA) and PureYieldTM 

Plasmid Midiprep System (Promega, UK). 

Use of the E.Z.N.A.® Endo-free Plasmid DNA Mini KitII 

Plasmid was extracted from bacteria using E.Z.N.A.® Endo-free Plasmid DNA Mini KitII, 

(VWR, USA) according to manufacturers’ instruction. Briefly, 7 mL of suspension containing 

bacteria were centrifuged at 5,000g for 10 minutes at room temperature and the medium was 

discarded. 500 µL of solution I/RNase A were added to the cell pellet which was resuspended 

by vortexing and then this mixture was transferred into a new 2 mL microcentrifuge tube. 500 

µL of solution II were added to the mixture in this microcentrifuge tube and mixed by 

inverting and gentle rotation of the tube 6 times. Next, for protein precipitation, 250 µL of N3 

buffer were added and the mixture was mixed gently by inverting until a flocculent white 

precipitate formed. This mixture was centrifuged at 12,000g for 10 minutes. A compact white 

pellet was formed and the clear lysate (supernatant) was transferred to a new 1.5 mL 

microcentrifuge tube. Then, one volume ETR binding buffer was added and this tube was 

inverted 10 times to mix thoroughly. A HiBind DNA mini column II was prepared by adding 

100 µL of 3M NaOH into this column and the column was centrifuged at 12,000g for 60 

seconds. The filtrate was discarded from the collection tube. The clear supernatant (described 

above) was transferred into the HiBind DNA mini column II carefully (not to disturb the 

pellet). This column was centrifuged at 12,000g for 1 minute and the filtrate was discarded. 

This step was repeated until all of the clear lysate (supernatant) had been transferred. Next, 

500 µL of ETR wash buffer were added into the column and the column was centrifuged at 

12,000g for 1 minute. Then, the filtrate was discarded, 500 µL of HBC buffer were added, the 

column was centrifuged at 12,000g for 1 minute and the filtrate was discarded. In the washing 

step, 700 µL DNA wash buffer were added into the column, which was centrifuged at 

12,000g for 1 minute. Then, the filtrate was discarded, and this step was repeated. After 

washing, the column was dried by centrifugation of the empty HiBind DNA Mini Column II 
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matrix at 12,000g for 2 minutes. For the elution step, 50 µL of elution buffer were added into 

the column and incubated at room temperature for 10 minutes. Then, this column was 

centrifuged at 12,000g for 1 minute. The plasmid DNA was stored at -20 °C. 

 

Use of the PureYieldTM Plasmid Midiprep System 

Plasmid was extracted from bacteria using PureYieldTM Plasmid Midiprep System (Promega, 

UK) according to manufacturers’ instruction. Briefly, 100 mL of suspension containing 

bacteria were transferred to 50 mL centrifuged tube and centrifuged at 5,000g for 10 minutes 

at room temperature and the medium was discarded. 3 mL of resuspension solution were 

added to the cell pellet which was resuspended by vortexing and then added 3 mL of lysis 

solution and mixed by inverting and gentle rotation of the tube five times. Next, for protein 

precipitation, 5 mL of neutralization solution were added, and the mixture was mixed gently 

by inverting and gentle rotation of the tube ten times. This mixture tube was centrifuged at 

10,000g for 30 minutes. Next, Column stack was prepared by placing a blue PureYieldTM 

clearing column on top of a white PureYieldTM binding column and placed onto a vacuum 

manifold. The clear lysate (supernatant) was transferred carefully into column stack and then 

all liquid was passed through both the clearing and binding columns after applying vacuum. 

The blue clearing column was removed while the binding column was left on the manifold. 

Next, 5 mL of endotoxin removal wash buffer were added into the binding column and 

allowed to pass through the binding column after applying vacuum. Then, 20 mL of column 

wash solution were added into the binding column and allowed to pass through the binding 

column after applying vacuum. After this, binding column was dried by applying a vacuum 

for 1 minute and removed from manifold. For the elution step, 450 µL nuclease-free water 

were added into the binding column which was placed into a new 50 mL centrifuged tube. 

This tube was centrifuged at 2,000g for 5 minutes. The plasmid DNA was stored at -20 °C. 

 

Colony screening by PCR and cutting by restriction fragment length polymorphism (RFLP) 

E. coli colony containing a positive vector was screened by PCR and RFLP using the mixture 

of reagents and condition described in Tables 2.5-2.7. 
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The mixture tube was incubated at 37 °C for 1 hour and run gel electrophoresis on a 

1% agarose gel at 90 volts for 1 hour. To confirm the positive colony by PCR, each colony 

was picked up separately and diluted in 20 µL of water. PCR master mix was prepared as 

shown below (Table 2.6). 

 

Table 2.5 Volume of the reagents for RFLP. 

Reagent Volume per reaction 

10x Fast digest green buffer (Thermofisher Scientific, UK)  2 µL 

EcoRI (Thermofisher Scientific, UK)  1 µL 

KpnI (Thermofisher Scientific, UK)  1 µL 

Nuclease-free water (QIAGEN, USA) Up to the total volume 

pLenti7.3/V5 DEST gateway vector  1 µg 

Total  20 µL 
 

 

Table 2.6 Volumes of the reagents for colony PCR. 

Reagent Volume per reaction 

2x GoTaq® Green Master Mix (Promega, UK)   12 µL 

CMV forward primer (10 μM) 
: 5’ CGCAAATGGGCGGTAGGCGTG 3’ 

1 µL 

Myc reverse primer (10 μM) 
: 5’ CTGAGATCAGCTTCTGCTC 3’ 

1 µL 

Nuclease-free water (QIAGEN, USA) 9 µL 

Diluted colony 1 µL 

Total  24 µL 

 

Table 2.7 Condition of colony PCR using thermocycler PCR. 

Procedure Temperature Time Number of cycles 

Pre-denaturation 95 °C 10 minutes 1 

Denaturation  95 °C 40 seconds 
35 

Annealing  58 °C 40 seconds 
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Extension 72 °C 30 seconds 

Final extension 72 °C 5 minutes 1 

 4 °C Hold  

 

Confirmation the insert’s sequences by Sanger sequencing 

All positive colonies were cultured and extracted using PureYieldTM Plasmid Midiprep 

System (see page 33). These plasmids were cut by PvuI to confirm the target vectors. These 

plasmids were sent to MRC PPU DNA Sequencing and Services at Dundee University for 

sequence analysis. 

  

2.1.4 Virus production 

HEK293FT cells were seeded into 6-well plate by one million cells per well and incubated at 

37 °C in a 5% CO2 humidified atmosphere for 24 hours. After 24 hours, the confluence of 

HEK293FT cells were around 60-70%. All plasmids were prepared as the following protocol. 

REV PLP2, GAG PLP1, and VSV PLP1 plasmids were prepared with 600 ng of final 

concentration and mixed with 600 ng of plenti7.3/V5-DEST gateway-DNMTs or 

plenti7.3/V5-DEST gateway-Myc. The mixed solution volume was then adjusted to be 250 

μL using Opti-MEM® Medium (Sigma, UK). Diluted Lipofectamine® 2000 (Thermo Fisher 

Scientific, UK) was prepared using 7.2 μL Lipofectamine® 2000, and 242.8 μL Opti-MEM® 

Medium and mixed by vortexing and incubated at room temperature for 5 minutes. Diluted 

plasmids and diluted Lipofectamine® 2000 were combined and incubated at room temperature 

for 20 minutes. 500 μL DNA-lipid complex were added into MEG-01 or HEK293T cells 

without changing media and incubated at 37 °C in a 5% CO2 humidified atmosphere for 16-

18 hours. After incubation, all media were removed and replaced with fresh media. 

MEG-01 or HEK293T cells were seeded by 300,000 cells per well in 12-well plate for 

MEG-01 cells and 400,000 cells per well in 6-well plate for HEK293T cells, then all cells 

were incubated at 37 °C in a 5% CO2 humidified atmosphere for 16-18 hours. After 48 hours 

of virus production in HEK293FT cells, 1.5 mL of cultured media were harvested and filtered 

through a 0.45 μm filter. 500 μL of filtered media containing virus were mixed with 500 μL of 

fresh media and polybrene (final concentration: 5 μg/mL) and transferred into the target cells. 

After that, the target cells were incubated at 37 °C in a 5% CO2 humidified atmosphere for 

16-18 hours. Target cells were changed media, replaced with fresh media, and kept growing. 
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2.1.5 Confirmation of positive cells using fluorescent microscopy 

Positive cells were observed under fluorescent microscopy, Leica DMi8 (Leica microsystems, 

UK), as the positive cells can express green fluorescent protein (GFP) due to a GFP sequence 

in the pLenti7.3/V5 DEST gateway vector.  

 

2.1.6 Single cell selection by Fluorescence-activated cell sorting (FACS) 

All transfected cells were harvested and centrifuged at 800g for 5 minutes and filtered through 

a 30 μm filter into FACS tubes. Each cell was sorted and dispensed in a single drop into each 

well of a 96-well plate using a FACS Fusion Sorter.  

 

2.1.7 Confirmation the positive cells by qPCR and western blot assays 

Identification of housekeeping (HK) genes  

Eleven HK genes (Table 2.8) (266, 267) were used to identify the most stable HK genes for 

from cell lines overexpressing individual DNMT isoforms in MEG-01 or HEK293T cells. A 

set of tested candidate HK genes was performed, and a gene expression normalization factor 

was calculated using geNorm (268). Two most stable HK genes of each experimental were set 

for normalisation of gene expression based on geNorm analysis. Briefly, the cycle threshold 

(Ct) values were transformed to quantities by the comparative Ct method. The highest relative 

quantities for each gene were set to 1. These raw HK gene quantities were the required data 

input for geNorm to generate normalised factor (NF). In example (Figure 2.2), geNorm 

analysis would indicate that HK1 and HK2 were the most stable gene. Thus, after calculation 

of NF, the normalised gene of interest (GOI) expression levels can be calculated by dividing 

the raw GOI quantities for each sample by the appropriate NF. 
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Figure 2.2 Normalisation flow chart. Cycle threshold: Ct, Gene of interest: GOI, 
Housekeeping gene: HK, Normalisation factor: NF. 

 

Table 2.8 Primer lists of housekeeping genes. 

Genes Primer sequence 

Ribosomal Protein S13 

(RPS13) 

Forward: 5’ GCTTTACCCTATCGACGCA 3’ 

Reverse: 5’ TTGTGCAACACCATGTGAATC 3’ 

Transferrin Receptor (TFRC) Forward: 5’ AACTGGACAGCACAGACTTC 3’ 

Reverse: 5’ ACGCCAGACTTTGCTGAGTT 3’ 

Hypoxanthine 

Phosphoribosyltransferase 1 

(HPRT1) 

Forward: 5’ GGACTAATTATGGACAGGA 3’ 

Reverse: 5’ TTTGATGTAATCCAGCAGG 3’ 

Ribosomal Protein Lateral Stalk 

Subunit P0 (RPLP0). 

Forward: 5’ CATGTTGCTGGCCAATAAGG 3’ 

Reverse: 5’ TAGTGGTGATACCTAAAGCCT 3’ 

Ribosomal Protein L13A 

(RPL13A), 

Forward: 5’ GTACGCTGTGAAGGCATCAA 3’ 

Reverse: 5’ ACGGTCCGCCAGAAGATG 3’ 

Peptidylprolyl Isomerase A 

(PPIA) 

Forward: 5’ ATGGACAAGATGCCAGGAC 3’ 

Reverse: 5’ TCCAGGGTTTATGTGTCAGG 3’ 

Beta-2-Microglobulin (B2M) Forward: 5’ TACTCTCTCTTTCTGGCCTG 3’ 

Reverse: 5’ GGATGGATGAAACCCAGACA 3’ 
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Actin Beta (ACTB) Forward: 5’ GAGGCACTCTTCCAGCCTT 3’ 

Reverse: 5’ CGCCAGACAGCACTGTGTT 3’ 

Glyceraldehyde-3-Phosphate 

Dehydrogenase (GAPDH) 

Forward: 5’ CATGTTCGTCATGGGTGTGA 3’ 

Reverse: 5’ GAGTCCTTCCACGATACCAA 3’ 

Glucuronidase Beta (GUSB) Forward: 5’ CCATTCCTATGCCATCGTGT 3’ 

Reverse: 5’ GATGGCGATAGTGATTCGGA 3’ 

18sRNA Forward: 5’ CCATTCCTATGCCATCGTGT 3’ 

Reverse: 5’ TAGTAGCGACGGGCGGTGTG 3’ 

 

RNA extraction 

All DNMT cell types were cultured by 1,000,000 cells per well in a 6-well plate for MEG-01 

and 400,000 cells per well in a 6-well plate for HEK293T cells, at 37 °C in a 5% CO2 

humidified atmosphere for 16-18 hours. Total RNA was extracted by E.Z.N.A.® Total RNA 

kit I. 

 

Use of the E.Z.N.A.® Total RNA kit I:  

Cell culture media were aspirated and discarded. Cells were then washed with 1% PBS and 

0.1-0.25% trypsin were added to allow cells to detach. After detachment, DMEM was added 

as the same volume as trypsin to inactivate the trypsin. All mixture solution was transferred to 

15 mL tubes and centrifuged at 800g for 5 minutes. The number of cells per sample was 

estimated (5 x 106 – 1 x 107 cells) and the appropriate volume of TRK lysis buffer (700 μL) 

was added to each pellet followed by vortexing for 20 seconds. 700 μL of 70% ethanol were 

added and followed by vortexing. The sample was loaded onto a Hibind RNA mini column 

inserted into a collection tube and centrifuged at 10,000g for 1 minute. The eluate was 

discarded and this step was repeated until all samples had been transferred to the column. 500 

μL of RNA wash buffer I were added to the Hibind RNA mini column and centrifuged at 

10,000g for 30 seconds. The eluate was discarded and 500 μL of RNA wash buffer II were 

added to the Hibind RNA mini column and centrifuged at 10,000g for 1 minute. The washing 

step was repeated and the empty column centrifuged at 13,000g for 2 minutes to completely 

dry the Hibind RNA mini column. The columns were transferred to new microcentrifuge 

tubes and the total RNA was eluted by centrifuging at 13,000g for 2 minutes with 50 μL of 

diethyl pyrocarbonate (DEPC) water. Total RNA quantity and purity were assessed by 

Nanodrop1000 (Thermo Fisher Scientific, UK). Total RNA was kept at -80 °C. 
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cDNA synthesis 

Reverse transcription (RT) was carried out using the Omniscript RT kit (QIAGEN, USA) 

according to manufacturers’ instruction. The reaction volume was 20 μL, adjusted with 

molecular grade water. The remaining components were 2 μL 10x buffer RT, 2 μL dNTP mix 

(5 mM each dNTP), 2 μL random hexamer primer, 1 μL Omniscript reverse transcriptase, and 

2 μL (1.5 μg) sample total RNA. The reaction was incubated at 37 °C for 1 hour.  

  

Quantitative polymerase chain reaction (qPCR) 

PCR was used to amplify the target genes (DNMT isoforms), GFP gene, and HK genes using 

primer oligonucleotide (0.01 μmol) (Tables 2.8 and 2.9). Only primer sets of hDNMT1, 

hDNMT3A1, hDNMT3A2, hDNMT1, and hDNMT3L were specific to their respective genes, 

while hDNMT3B1-3B5, hDNMTΔ3B1- Δ3B2, and hDNMTΔ3B3- Δ3B4 were able to 

amplify the multiple DNMT isoforms of their respective genes. For primer sets of exogenous 

DNMTs, they were able to bind to Myc sequence introduced as marker of exogenous 

sequence. 10 µL 2x QuantiTect SYBR green PCR master mix (QIAGEN, USA), 0.4 µL 

forward and reverse primers (final concentration 10 µM), 8.2 µL nuclease-free water 

(QIAGEN, USA), and 1 µL cDNA was prepared and PCR condition was carried out as 

following (Table 2.10).  

 

Table 2.9 Primer lists of the total and exogenous DNMT isoforms. 

Genes Primer sequence 

Total DNMTs 

hDNMT1 Forward: 5’ AGGCGGCTCAAAGATTTGGA 3’ 

Reverse: 5’ GGGATTTGACTTTAGCCAGG 3’ 

hDNMT3A1 Forward: 5’ AGCGGTGACACGCCAAAGGA 3’ 

Reverse: 5’ CTTCAGGCAGGGTCTCAGCTG 3’ 

hDNMT3A2 Forward: 5’ AATGCTGTGGAAGAAAACCAG 3’ 

Reverse: 5’ ATCGCCTGCTTTGGTGGCAT 3’ 

hDNMT3B1-3B5 Forward: 5’ AAGACTCGATCCTCGTCAAC 3’ 

Reverse: 5’ ATGACTGGGGTGTCAGAGCC 3’ 

hDNMTΔ3B1- Δ3B2 Forward: 5’ TATCAGGATGGGAAGGAGTTT 3’ 

Reverse: 5’ CACCAGTTTGTCTGCAGAGA 3’ 

hDNMTΔ3B3- Δ3B4 Forward: 5’ TCTCTGCAGACAAACTGGTG 3’ 

Reverse: 5’ GCTGGTCCTCCAATGAGTC 3’ 



41 
 

hDNMT3L Forward: 5’ TGAGCTCTCAAGCTCCGTTT 3’ 

Reverse: 5’ GTAGGATTGGTACCCGTCAT 3’ 

Target genes (Exogenous DNMTs) 

Myc Forward: 5’ AGAAGCTGATCTCAGAGGAG 3’ 

Myc-DNMT1 Reverse: 5’ ATCGTCGGGCAGCGAGAT 3’ 

Myc-DNMT3A1 Reverse: 5’ CGCTCCGCAGCAGAGCT 3’ 

Myc-DNMT3A2 Reverse: 5’ ATCGTCGGGCAGCGAGAT 3’ 

Myc-DNMT3B1-3B5 Reverse: 5’ GTTGACGAGGATCGAGTCTT 3’ 

Myc-DNMTΔ3B1- Δ3B2 Reverse: 5’ CTTCCCATCCTGATACTCTG 3’ 

Myc-DNMTΔ3B3- Δ3B4 Reverse: 5’ TGCAGAGACCTGATACTCTG 3’ 

Myc-DNMT3L Reverse: 5’ CACTGGATCCCACCAAAATC 3’ 

 

 

Table 2.10 qPCR condition. 

Procedure Temperature Time Number of cycles 

PCR initial activation step 95 °C 15 minutes 1 

Denaturation  95 °C 15 seconds 

40 Annealing  
(acquisition of fluorescence) 60 °C 30 seconds 

Extension 72 °C 30 seconds 

Melting curve step 72 - 95 °C 15 seconds 1 
 

Protein extraction 

The cell pellets were re-suspended in ice-cold Radioimmunoprecipitation assay (RIPA) buffer 

(1 mL per 100 mm dish) (Thermo Fisher Scientific, UK) and centrifuged at 13,000g for 20 

minutes in a 4 °C precooled centrifuge. A clear supernatant was transferred into a fresh 

centrifuge tube and kept on ice. 

 

Western blot using c-Myc antibody 

Protein concentration was established using a Biorad protein assay kit (BIORAD, USA). 

Standards were prepared from bovine serum albumin (BSA) prepared as 1 mg/mL stock 

solution in deionised water (DW). 5 μL of standards or samples were pipetted into microplate. 

Reagent A was mixed with reagent S and pipetted 25 μL per well into microplate. Reagent B, 



42 
 

then, was added into microplate by 195 μL per well and incubated at room temperature for 15 

minutes. Microplate was read for absorbance at 750 nm. Standard protein was plotted, and the 

unknown protein concentration of the samples was determined from the standard curve. 

To cast 8% SDS-polyacrylamide gel electrophoresis (SDS-PAGE), 2.4 mL 30% 

acrylamide, 2.4 mL 1.5M Tris, pH 8.8, 90 μL 10% SDS, 90 μL 10% ammonium persulfate, 

3.6 μL TEMED, and 4.6 mL DW were prepared, poured and left for 45 minutes at room 

temperature under DW until polymerisation was completed. The water was discarded, and the 

top of the gel washed with DW. A 5% PAGE (0.43 mL 30% acrylamide, 0.33 mL 1m Tris, 

pH 6.8, 26.5 μL 10% SDS, 26.5 μL 10% ammonium persulfate, 2.65 μL TEMED, and 1.4 mL 

DW) was prepared and poured into the resolving gel and a comb inserted and left for 30 

minutes at room temperature until polymerisation was completed. 25-70 μg of protein was 

mixed with 4x LaemmLi sample buffer to make 48 μL final volume. Each sample was boiled 

at 95 °C for 5 minutes and loaded into the gel. The gel was run at 150 volts for 1 hour. 

 Gel was placed in 1x transfer buffer for 10 minutes and blotting pads were soaked in 

1x transfer buffer. The membrane was soaked in methanol until no more bubbles were visible 

and washed in 1x transfer buffer. The transfer sandwich was assembled by gel and membrane 

in the middle of the sandwich without any bubbles and placed on the Trans-Blot SD semi-dry 

transfer cell and run at 17 volts for 1 hour. 

 Membrane was washed by DW and stained with Ponceau S solution for 5 minutes and 

washed by DW to check the transfer quality. Proteins were observed on the membrane. 

Membrane was washed by 1x PBS for 10 minutes, PBS-Tween (1x PBS mixed with 0.05% 

Tween 20) for 10 minutes, and the last with 1x PBS for 10 minutes. After that, the membrane 

blot was placed in 100 mL of blocking solution (5% non-fat dry milk) and incubated at room 

temperature for 1 hour with gentle shaking. Blocking solution was removed and added 

primary antibody, which was c-Myc antibody diluted (1:10000) in 5% milk and incubated at 4 

°C overnight with gentle shaking. The blot was washed in 1x PBS for 10 minutes, PBS-

Tween (1x PBS mixed with 0.05% Tween 20) for 10 minutes, and the last with 1x PBS for 10 

minutes. The second antibody, then, was added and incubated at room temperature for 1 hour 

with gentle shaking followed by washing. The chemiluminescent substrate (Bio-rad, USA) 

was applied to the blot and captured the chemiluminescent signals using a Fujifilm LAS4000 

luminescence imager (Fujifilm Life Science, USA). 
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2.2 DNA methylation microarray with DNMT overexpressing cells 

 

2.2.1 DNA extraction and the Illumina Methylation EPIC array 

Total and exogenous expression levels of DNMT isoforms were determined for all single cells 

from step 2.1.6. Each duplicated DNMT overexpressing cell was selected from the exogenous 

DNMT expression, which showed the similar levels of exogenous DNMT and DNA 

methylation levels were measured using Infinium Methylation EPIC arrays (Illumina, USA). 

Firstly, DNA was isolated from DNMT overexpressing cells using QIAamp® DNA 

mini and blood mini kit (QIAGEN, USA). Cells were harvested and the number of cells per 

sample was estimated (5 x 106 – 1 x 107 cells). 20 μL QIAGEN protease were added into a 

tube containing the cells. 200 μL AL were added to sample tube and mixed, then it was 

incubated at 56 °C for 10 minutes. 200 μL ethanol (100%) were added and mixed, then 

transferred to a QiAamp Mini Spin column with collection tube. The column was centrifuged 

at 6,000g for 1 minute and the eluate was discarded. 500 μL buffer AW1 were added into the 

column and centrifuged at 6,000g for 1 minute. Then, 500 μL buffer AW2 were added into 

the column and centrifuged at 13,000g for 3 minutes. The columns were transferred to new 

centrifuge tubes and the DNA was eluted by centrifuging at 13,000g for 1 minute with 50 μL 

of AE. DNA quantity and purity were assessed by Nanodrop1000. DNA was kept at -20 °C. 

Bisulphite converted DNA was hybridised to Infinium Methylation EPIC arrays 

(Illumina, USA) to measure DNA methylation in more than 850,000 CpG sites across the 

genome. All DNA methylation array processing was conducted at the Eurofins Genomics.  

 

2.2.2 Data analysis for Infinium Methylation EPIC data 

Unlike the Illumina Infinium Human Methylation27 BeadChip, in which only one probe type 

is measured, the Illumina Infinium Methylation EPIC BeadChip includes two probe types, 

Infinium I (n = 142,262) and Infinium II (n = 721,642) (269). EPIC microarray still contains 

93.3% of loci contained on the Illumina Infinium Human Methylation450 BeadChip (269). 

The direct output from Illumina iScan system is an IDAT file which contained BeadArray 

data. The diagram of the framework is shown in Figure 2.3 and the detail of each step will be 

introduced below. 
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Figure 2.3 A framework of Illumina Methylation EPIC array data analysis. 

 

All IDAT files were imported and analysed in R studio using the Bioconductor 

package. The quality of data was evaluated by filtering out a high-detected p-value (p-value > 

0.01). Normalisation concern the removal of experimental artefact, technical and systematic 

variation, and random noise caused by microarray technology. PreprocessNoob was utilised 

for normalisation and 866,091 probes was left after this process. This step assesses and 

accounts for variation that is not caused by biological differences but by external variation. 

EPIC BeadChips use two fluorescent dyes that are linked to the nucleotides used in the single-

base extension step. A and T nucleotides are linked with a red dye (the red color channel), G 

and C nucleotides are linked with a green dye (green color channel). Uncorrected data usually 

feature higher intensities in the red color channel was called dye bias. For probes of Infinium 

type II design, which use separate color channels to measure the methylated and unmethylated 

signal, this results in a shifted distribution of β-values but probes of Infinium design type I are 

not affected, as they measure both signals in the same color channel. Dye-bias correction 

normalizes the red and green color channel. The 866,091 probes were adjusted for probe-type 

bias Infinium I (type I) and Infinium II (type II) (270). The cross-reactive probes (43,254 loci) 

were also removed from this data (271). Moreover, EPIC microarray contained 59 explicit 

SNP probes (“rs” probes) (272) and these probes were removed from the dataset. Finally, 

814,341 probes remained after quality control and filtering.  
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Bland Altman plot (install.Packages (“BlandAltmanLeh”)) was used to identify the 

mean difference between biologically duplicate samples. The 95% limits of agreement were 

calculated (mean ± 1.96 standard deviation) to select only those CpG sites showing high 

correlation of DNA methylation between biological duplicate samples. The ∆β was calculated 

by subtracting the DNA methylation levels at each CpG site in the cell over-expressing each 

DNMT isoform from the corresponding DNA methylation of the control cell (Myc cell). 

Hypo/hypermethylated probes were identified in each DNMT overexpressing cell. 

Differentially Methylated Positions (DMPs) were explored across DNMT isoform dataset. 

The cut-offs of ∆β were set at ∆β ≥ 0.4, or ≥ 0.3 or ≥ 0.2 and ∆β ≤ -0.4, or ≤ -0.3, or ≤ -0.2 

with FDR-adjusted p-value ≤ 0.05. FDR can be calculated by generating the empirical null 

distribution of test statistics, it is most commonly applied using the approach introduced by 

Benjamini and Hochberg. However, ∆β ≥ 0.4 and ≤ -0.4, and FDR-adjusted p-value ≤ 0.05 

were used to select the target CpG sites of each DNMT as these cut-offs were higher than 

usual cut-offs in coronary heart disease (273) and cancer study (274). DNA methylation 

patterns by genomic location and CpG density were examined in DNMT overexpressing 

dataset. All hypo/hypermethylation of DMPs were analysed using pathway analysis known as 

functional enrichment analysis by Ingenuity Pathway Analysis (IPA) (QIAGEN, USA) and 

the Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.8 

(275). Canonical pathway analysis identified from IPA Knowledge Base that were most 

significant to the data set gene that met the FDR ≤ 0.001 and post hoc p-value < 0.001 cut-off 

and were correlated to a canonical pathway in IPA, was considered for the analysis. KEGG 

pathway was analysed using DAVID. 

 

2.3 Assessing specificity and sensitivity between dietary factors and DNMT isoform 

using in vitro model with measuring DNA methylation changes by pyrosequencing 

 

2.3.1 Cell viability and dietary compound dose selection 

Cells overexpressing each DNMT separately were seeded on opaque-walled multi-well plates, 

6 well plates, in culture medium (DMEM- high glucose (Sigma, UK) supplemented with 10% 

FBS (Sigma, UK), and 2 mM glutamine, at 37 °C in a 5% CO2 humidified atmosphere). 

Aqueous solution of vitamin C and dietary polyphenols (curcumin, theaflavin, CA, and 

EGCG) were prepared in several concentrations, i.e. 10, 25, 50, 100, and 200 µM. 

Cytotoxicity was measured using CellTiter- Glo® 2.0 assay (Promega, USA), according to 

manufacturers’ instruction. Briefly, 70,000 cells were subjected to selected concentration of 
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vitamin C, curcumin, theaflavin, CA, or EGCG and cells were incubated at 37 °C in a 5% 

CO2 humidified atmosphere for several incubation times, i.e. 12, 24, 48, and 72 hours. This 

reaction between cells and each concentration of compounds was equilibrated at room 

temperature for 30 minutes, then; a volume of CellTiter-Glo® Reagent was added equal to the 

volume of cell culture medium in each well. The plate was shaken to induce cell lysis and 

incubated at room temperature for 10 minutes to stabilise the luminescent signal. The plate 

was read, and luminescence was recorded. The half-maximal inhibitory concentration (IC50) 

was calculated for each compound. 

 

2.3.2 Treatment of cells, overexpressing specific DNMTs, with vitamin C and 

dietary polyphenols 

The optimum concentrations of each dietary compound were selected based on percentage of 

cell viability, which was higher than IC50: vitamin C (100 and 200 µM), curcumin (10 and 25 

µM), CA (100 and 200 µM), EGCG (50 and 100 µM), and theaflavin (80.5 and 161 µM). 

Cells overexpressing DNMTs were cultured with the specific concentration of each dietary 

compound for 48 hours at 37 °C in a 5% CO2 humidified atmosphere. 

 

2.3.3 Quantification of DNA methylation specific CpG sites by pyrosequencing     

                                    

2.3.3.1 DNA extraction and bisulphite conversion 

DNA was isolated using QIAamp® DNA mini and blood mini kit (QIAGEN, USA) described 

in 2.1.2. DNA samples were treated with bisulphite under alkaline conditions using the EZ 

DNA methylation-GoldTM kit (Zymo research, USA) which coverts unmethylated cytosine 

residues in DNA into uracil. 500 ng of DNA were prepared and the volume was adjusted to 

20 μL with nuclease-free water. 130 μL of CT conversion reagent solution were added into 

the DNA samples in PCR tube. The mixture was mixed and centrifuged briefly to ensure no 

droplets were in the cap or on the sides of the tube. The PCR tube was incubated in a 

thermocycler at 98 °C for 10 minutes, 64 °C for 2.5 hours, and 4 °C for storage up to 20 

hours. 600 μL of M-Binding buffer were added into a Zymo-spin IC column fitted with a 

collection tube. The bisulphite-treated samples were loaded into the Zymo-spin IC column 

containing M-Binding buffer, which was mixed by inverting the column several times 

following by centrifugation at 13,500g for 30 seconds. The flow-through was discarded. 100 

μL of M-Wash buffer were added into the column and the column was centrifuged at 13,500g 

for 30 seconds. 200 μL of M-Desulphonation buffer were added into the column and let stand 
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at room temperature for 15-20 minutes. After incubation, the column was centrifuged at 

13,500g for 30 seconds. 200 μL of M-Wash buffer were added into the column and the 

column was centrifuged at full speed for 30 seconds and this step was repeated once more. 

The column was placed into a 1.5 mL microcentrifuge tube and 20 μL of M-Elution buffer 

were added directly to the column matrix. The column was centrifuged at full speed for 30 

seconds to elute the DNA. 

 

2.3.3.2 Pyrosequencing 

PCR master mix was prepared as the following protocol (Table 2.11 and 2.12). All primers 

used in this experiment, were designed using MethPrimer and the original design was showed 

in Appendix C. 

 

Table 2.11 Volumes of the reagents for PCR. 

Reagent Volume per reaction 

2x GoTaq® Green Master Mix (Promega, UK)   12 µL 

Forward primer (10 μM) (Table 2.13) 1 µL 

Biotinylated reverse primer (10 μM) (Table 2.13) 
(This primer will be captured by streptavidin-sepharose beads) 

1 µL 

Nuclease-free water (QIAGEN, USA) 9 µL 

Bisulphite-treated DNA 1 µL 

Total  24 µL 

 

Table 2.12 PCR condition. 

Procedure Temperature Time Number of cycles 

Pre-denaturation 95 °C 10 minutes 1 

Denaturation  95 °C 40 seconds 

40 Annealing  56 °C 40 seconds 

Extension 72 °C 30 seconds 

Final extension 72 °C 5 minutes 1 

 4 °C Hold  
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DNA methylation levels were quantified for all PCR products by pyrosequencing, 

which detects and calculates the percentage of methylation at individual CpG as a ratio of 

cytosine:thymine. 10 µL of PCR were mixed with 2 µL of streptavidin-sepharose beads, 40 

µL of 1x binding buffer, and 28 µL of water, in a PCR plate. The PCR plate was sealed with 

polyester PCR sealing (Starlab, UK) and shaken at room temperature at 1,400 rpm for 10 

minutes. 11.64 µL of annealing buffer was mixed with 10 μM sequencing primer into a white 

PSQ-HS plate (QIAGEN, USA). This plate was transferred to the vacuum prep station and the 

beads with PCR products were captured by slowly lowering the vacuum prep tool into the 

wells allowing the solution to flush through the probe tips for 10 seconds. The vacuum prep 

tool was transferred into 70% ethanol, denaturing solution, and wash buffer, then, the vacuum 

prep tool was disconnected from the station. The vacuum prep tool was placed into the PSQ-

HS plate to release the PCR products from the probe tips by gentle shaking the vacuum prep 

tool for 30 seconds. The PSQ-HS plate was sealed and placed on the 80 °C heat block for 2 

minutes and allowed it to cool at room temperature for 10 minutes. Pyrosequencing was 

performed by PyroMark Q96 MD (QIAGEN, USA). 

 
 
Table 2.13 Primer lists of potential CpG targets of DNMT3A2, DNMT3B4, DNMTΔ3B2, 
DNMTΔ3B3, DNMT1, and DNMT3L. 

Illumina 
probe ID 

Target of 
DNMT 

Primer sequence 

cg02732111 DNMT3A2 Forward:  
5’ TTGTTTAGGTTTATTATAGTTTG 3’ 
Reverse:  
biotin-5’ TCAATAACACATTTCAACAAATAC 3’ 
Sequencing:  
5’ TTGTTTAGGTTTATTATAGTTTG 3’ 

cg16204524 DNMT3A2 Forward:  
5’ ATTTTGTTATTAAGTGATGTATGATTGTAT 3’ 
Reverse:  
biotin-5’ ACCTCCTAAAATAAAATTTAAAAAC 3’ 
Sequencing:  
5’ ATTTTGTGAATTTTAAATT 3’ 

cg02788195 DNMT3B4 Forward:  
5’ GGTTATTGTAAAAATAGATTTAGTTAGATT 3’ 
Reverse: 
biotin-5’ AATCTCCTTCCCATTACCTTTTATTAA 3’ 
Sequencing:  
5’ AAGTTTTATTTAGTAGATA 3’ 

cg26286826 DNMT3B4 Forward:  
5’ TTTTTTAAAGTGTTGGGATTATAGG 3’ 
Reverse:  
biotin-5’ CTAAACCAACTAAAAAAATCCTCTC 3’ 
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Sequencing:  
5’ GGTTAGAGTATGAATTA 3’ 

cg25533247 DNMTΔ3B2 Forward:  
5’ AGAGATTTTGTAATAGTGTAGT 3’ 
Reverse:  
biotin-5’ ATACAACTCTATCATCTCTAAA 3’ 
Sequencing:  
5’ AGAGATTTTGTAATAGTGTAGT 3’ 

cg21808287 DNMTΔ3B2 Forward:  
5’ TTTTATGTTATGATTTTTTAATTTG 3’ 
Reverse:  
biotin-5’ CTAAAAACAACCCTTAAACTACA 3’ 
Sequencing:  
5’ TATATTTGTGAAATAAGGTGG 3’ 

cg20364776 DNMTΔ3B3 Forward: 
5’ TGAAAATTATTTTTATTTATAAGTTAGAA 3’ 
Reverse: 
biotin-5’ ACTTAAAAAAACACTTTCCCATCTC 3’ 
Sequencing:  
5’ TGAAAATTATTTTTATTTATAAGTTAGAA 3’ 

cg08927738 DNMTΔ3B3 Forward:  
5’ AGGTGGTGTTTTGAAGTTAGTAGATAGA 3’ 
Reverse:  
biotin-5’ CTTCCTAATATAAAACTACCCTCCCA 3’ 
Sequencing:  
5’ ATTATAAAATTTTATAGAA 3’ 

cg01065960 DNMT1 Forward:  
5’ AGGTTAGGTTTTTGGAAGGAG 3’ 
Reverse:  
biotin-5’ CCTCCTTTACAAACCCTCTAA 3’ 
Sequencing:  
5’ AGGTTAGGTTTTTGGAAGGAG 3’ 

cg20540357 DNMT3L Forward:  
5’ ATTGATTATTAGGATTATGTTTGG 3’ 
Reverse:  
biotin-5’ AAACCACCACCCACACTCAT 3’ 
Sequencing:  
5’ ATTGATTATTAGGATTATGTTTGG 3’ 

cg12150401 DNMT3L Forward:  
5’ TGGGTAGAGAATGGTTGTAAG 3’ 
Reverse: 
biotin-5’ CCCAAATAATTATTAAATTACAAAAT 3’ 
Sequencing:  
5’ TTATTAGTTTGGGTATTT 3’ 

cg25843713 DNMT3A2, 
DNMT3B4, 
DNMTΔ3B2, 
DNMTΔ3B3, 
and DNMT1 

Forward:  
5’ TTTGTTTAGTGTTTTTAAGGGTTTT 3’ 
Reverse: 
biotin-5’ ACTATCTTATATCACCATTTCCCTC 3’ 
Sequencing:  
5’ GGTTTTGTTGTTATTTTTAT 3’ 

cg04458645 Forward:  
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DNMT3A2, 
DNMT3B4, 
DNMTΔ3B2, 
DNMTΔ3B3, 
and DNMT1 

5’ TTTTTGAGTGATAATTTAAGAGAAGTAAGA 3’ 
Reverse:  
biotin-5’ ATAAACCAAAATCACACCACTACAC 3’ 
Sequencing:  
5’ TTTTTGAGTGATAATTTAAGAGAAGTAAGA 3’ 

 

 

2.4 DNMT activity/inhibitor assay 

 

2.4.1 Protein extraction 

Cells overexpressing DNMTΔ3B4 were cultured in 100 mm dish for 20 dishes until reaching 

80% confluence. Cells were lysed using Mammalian protein extraction reagent (M-PER) 

(Thermo Fisher Scientific, UK). Lysate was collected and transferred into a microcentrifuge 

tube. The lysate was then centrifuged at 14,000g for 10 minutes. The clear supernatant was 

transferred to a new tube and kept at -80 °C. 

 

2.4.2 Immunoprecipitation/Co-immunoprecipitation (IP/Co-IP) 

The exogenous DNMT protein tagged with c-Myc was isolated using Pierce c-Myc-Tag 

IP/Co-IP kit (Thermo Fisher Scientific, UK) according to manufacturers’ instruction. The 

bottom plug was placed on the Pierce Spin Column and 200 µL of protein lysate were added 

to the spin column. The anti-c-Myc agarose was thoroughly resuspended by inverting the vial 

several times immediately before dispensing. 10 µL of anti-c-Myc agarose slurry (5 µg anti-c-

Myc antibody) were dispensed into each labelled spin column using a wide-bore pipette tip. 

The vial mixture was incubated with gentle end-over-end mixing for overnight at 4 oC. A 

wash solution of Tris Buffered Saline plus 0.05% Tween 20 (TBS-T) was prepared. The top 

cap on the column was loosened and then the bottom plug was removed. A collection tube 

was put under the column and centrifuged for 10 seconds. The flow-through was discarded. 

0.5 mL of TBS-T was added to column and the cap was screwed following by gently 

inverting the column with collection tube 2-3 times. The column was centrifuged for 10 

seconds. The flow-through was discarded and this step was repeated 2 times. 500 µL of 1x 

conditioning buffer were added into column to wash the resin. The spin column was placed in 

the new collection tube and 10 µL of Elution buffer were added into the anti-c-Myc agarose 

with loose screwing on the cap and mixing. The column was centrifuged for 10 seconds and 

this step was repeated 2 times.   
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2.4.3 DNMT inhibition assay 

Inhibition of DNMTΔ3B4 was quantified using DNMT activity assay (Abcam, UK) 

according to manufacturers’ instruction. Briefly, the blank wells were prepared by adding 50 

µL of AdoMet working buffer per well. The positive control wells were prepared by adding 

50 µL of AdoMet working buffer and 1 µL of DNMT Enzyme Control per well. The sample 

wells without inhibitor were prepared by adding 45 µL of AdoMet working buffer and 5 µL 

of purified DNMT enzymes per well. The sample wells with CA were prepared by adding 40 

µL of AdoMet working buffer, 5 µL of purified DNMT enzyme, and 5 µL of inhibitor 

solution per well. The strip-well microplate was tightly covered with the adhesive covering 

film to avoid evaporation and incubated at 37 oC for 90 minutes. After incubation, the reaction 

solution was removed from each well and washed with 150 µL of 1x wash buffer each time; 

this process was repeated 3 times. 50 µL of the diluted capture antibody were added into each 

well, then the plate was covered with Parafilm M and incubated at room temperature for 1 

hour. The diluted capture antibody solution was removed from each well and 150 µL of the 

1x wash buffer solution were added to wash each well for 3 times. 50 µL of the diluted 

detection antibody were added to each well and the plate was covered with Parafilm M and 

incubated at room temperature for 30 minutes. The diluted detection antibody solution was 

removed from each well and 150 µL of the 1x wash buffer solution were added to wash each 

well 4 times. 50 µL of the diluted enhancer solution were added to each well and the plate 

was covered with Parafilm M and incubated for 30 minutes. The diluted enhancer solution 

was removed from each well. 150 µL of 1x wash buffer solution were added to wash each 

well for 5 times. 100 µL of developer solution were added to each well and incubated at room 

temperature for 10 minutes away from direct light. The developer solution then turned to blue 

colour in the presence of enough methylated DNA. 100 µL of stop solution were added to 

each well to stop enzyme reaction. The colour changed to yellow after adding the stop 

solution and the absorbance was read on a Thermo Scientific Muliskan GO microplate 

spectrophotometer (Thermo Fisher Scientific, UK) within 2 to 10 minutes at 450 nm with an 

optimal reference wavelength of 655 nm. 

 

2.5 Statistical analysis 

All statistical analyses were performed in IBM® SPSS statistical software programme 

(version 24) and R studio (version 1.1.442). Data were presented as mean ± standard 

deviation (SD) from three independent experiments for RT-PCR, cell viability, 

pyrosequencing, and DNMT inhibitory assay, and two biological duplicates for DMPs. A p-
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value ≤ 0.05 was considered statistically significant. Also, the p-values were adjusted for 

multiple hypothesis testing by the Benjamini-Hochberg method, with PFDR ≤ 0.05 considered 

significant. Paired-sample t-tests were used to identify DMPs. Two-sample Kolmogorov-

Smirnov test was used to identify significant changes of DNA methylation, global 

methylation and DNMT inhibition of selected cells overexpressing DNMTs after treatment 

with dietary constituents. Additionally, ANOVA test was applied to test the difference β 

values before and after treatment with different concentration of dietary constituents. 
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3. Chapter 3: Generation of stable overexpressing DNMT cell lines 
 

3.1 Introduction 

DNMT1, DNMT3A, and DNMT3B are enzymatically active DNA methyltransferases, while 

DNMT3L is an enzymatically inactive regulatory factor (87). Additionally, DNMT1, 

DNMT3A, and DNMT3B are essential for survival, for example, knockout alleles of Dnmt1 

and Dnmt3b in mice leads to embryonic lethality (101, 276). Alternative splicing and/or 

promoter usage are the main factors for different isoforms of DNMT3A (84) and DNMT3B 

(85). More than 30 isoforms of DNMT3B were discovered in human and mouse cells (105-

107, 277) and some isoforms (DNMT3B3, DNMT3B4, and DNMT3B5) were found in cancer 

cells rather than normal cells (85, 106, 278). The structures of the most common DNMT 

isoforms are shown in Figure 1.6 (see Introduction section). DNMT1 is a multi-domain 

enzyme composed of a C-terminal catalytic domain and a N-terminal regulatory domain that 

consists of DNMT1-associated protein (DMAP) binding, replication foci, zing binding, and 

bromo-adjacent homology (BAH) (279, 280). DNMT3A consists of PWWP domain, ATRX-

DNMT3-DNMT3L (ADD) domain, and C-terminal catalytic domain but the DNMT3A2 

lacks of 200 amino acids at the N-terminal regulatory domain of DNMT3A1 (279, 280). 

DNMT3B also contains C-terminal catalytic domain and the N-terminal regulatory domain 

with alternative splicing in both domains (279). 

 In mouse cells, overexpression of Dnmt1 resulted in increased methylation of the 

imprinted regions of Insulin-like growth factor 2 and H19 and, more generally, genomic 

hypermethylation (281). DNMT1 overexpression occurs frequently in older cancer (breast and 

lung) patients with advanced clinical stages as well as unfavourable prognosis (282). 

DNMT3B overexpression also contributes to hypermethylation in breast cancer (283). 

Overexpression of DNMT3A and DNMT3B increased DNA methylation levels at CpG island 

and non-CpG islands, while overexpression of DNMT3B3, DNMT3B4, and DNMT3B5 did not 

change DNA methylation in those regions (87). In ApcMin/+ mice, overexpression of Dnmt3b1 

enhanced the number of colon tumours and increased the size of colonic microadenomas with 

loss of imprinting (284). Overexpression of the DNMT3B4 isoform is correlated with DNA 

hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis 

(285). DNA methylation of Long Interspersed Nuclear Element 1 (LINE-1) is increased by 

the overexpression of DNMT3B1, DNMT3B2, and DNMT∆3B isoforms, but not by 

overexpression of DNMT3A isoforms (87).  

Choi SH. et al. unveiled that the 13 most common DNMT isoforms have both 

specificity and overlap in their DNA methylation target profiles (87). They found that each 
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DNMT isoform changed methylation of a different number of CpG sites, and that DNMT3A1 

and DNMT3B1 showed the most distinct DNA methylation patterns. In contrast, DNMT3B3, 

DNMT3B4, and DNMT3B5 induced no methylation changes and these isoforms seemed to 

be inactive DNMTs. Furthermore, Choi SH. et al. (2011) found the specific target genes of 

DNMT3A1 were correlated with H3K4me3 modification, while the specific target genes of 

DNMT3B1 were correlated with H3K27me3 modification. However, their study investigated 

DNA methylation patterns in cells that over-expressed each DNMT isoform using the 

Illumina GoldenGate Methylation Cancer Panel I, which detects the DNA methylation of 

1,505 CpG sites only. Therefore, given that there are 28 million CpG sites in the human 

genome (286), the information available on target CpG sites of each DNMT isoform by using 

this technique is limited. High-throughput sequencing is a cutting-edge method that offers 

more extensive interrogation of methylation across the human genome. The Illumina Infinium 

Methylation EPIC BeadChip is the latest version of this array-based approach and measures 

methylation at more than 850,000 CpG sites. Use of such EPIC arrays allows investigation of 

more potential CpG sites that are targets of specific DNMT isoforms.  

The locus-specific methylation by individual DNMT isoforms is important 

information that might be applied to manipulate patterns of DNA methylation. This data can 

be applied to reveal the interaction of nutrients and individual DNMTs by measuring the 

DNA methylation changes on the locus-specific CpGs of each individual DNMT. Moreover, 

the locus-specific loci of DNMTs suggests a possibility of a mechanism of cancer or other 

diseases by which DNA methylation patterns are measured. From Choi’s study (87), EYA 

Transcriptional Coactivator And Phosphatase 4 (EYA4) and Homeobox A11 (HOXA11) were 

reported as the target genes of the DNMT3A1, and IGF2 Antisense RNA (IGF2AS) and 

Cadherin 11 (CDH11) were reported as the target genes of the DNMT3B1. Although, the 

aberration of DNA methylation patterns in each DNMT was revealed, the target sites of 

individual DNMT sub-isoforms are poorly understood.  

In the present study, I investigated the locus-specific target CpGs of each DNMT 

isoform by using molecular cloning to generate cell lines that over-expressed each of 

individual DNMT isoform. The efficacy of the overexpression was investigated by 

quantification of the expressed genes at the mRNA and protein levels by qPCR and western 

blot, respectively. 
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3.2 Hypotheses 

The hypotheses for this study were: 

1. The mRNA of DNMT isoform can be integrated into MEG-01 and HEK293T 

genomes using transient transfection or viral system. 

2. DNMT-transduced cells express the specific exogenous DNMTs in both RNA and 

protein levels. 

 

3.3 Aim 

• To generate the stable transduced single-cell derived clonal lines in order to identify 

de novo DNA methylation target sites of specific DNMT isoforms. 

 

3.4 Objectives 

The objectives of this study were: 

1. To transport the mRNA of each of the DNMT isoforms into MEG-01 and 

HEK293T cells using transfection reagents and viral system. 

2. To select the cells that over-expressed each DNMT using a GFP marker. 

3. To generate single cell clones that over-expressed each DNMT isoform and to 

quantify expression of each specific DNMT in the selected clone at the mRNA and 

protein levels. 

 

3.5 Overview of the methods 

A detail description of the experimental procedures and methods for molecular cloning (2.1.3 

Plasmid construction for viral system, page 30), generating stable cell lines overexpressing 

individual DNMT isoforms (2.1.4 Viral production, page 36), quantifying exogenous mRNA 

and protein of each DNMT (2.1.7 Confirmation the positive cells by qPCR and western blot 

assays, page 37) can be found in the Method chapters.  

 In brief, DNMT-pIRES puro3 plasmids were retransformed and extracted from E.coli 

DH5α cells (see section 2.1.2 in Methods section, page 29). All plasmids were sub-cloned into 

the pLenti7.3/V5 DEST gateway vector with modifying at multiple cloning sites (see section 

2.1.3 in Methods section, page 30). DNMT-pIRES puro3 plasmids were transported into 

MEG-01 cells using transfection reagents. Lentivirus was produced using the modified 

pLenti7.3/V5 DEST gateway vector (see section 2.1.4 in Methods section, page 36). This 

virus incorporated the specific DNMT into MEG-01 and HEK293T genomes. GFP and Myc-

tag were identified as a marker for the successful transfection or transduction. Positive cell 
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lines, which overexpress each of the DNMTs individually, were detected using fluorescent 

microscopy and sorted using FACS (see section 2.1.5 (page 37) and 2.1.6 (page 37) in 

Methods section). Single clone of each DNMT was generated by a single cell after cell 

sorting. Expression of the DNMT isoform was quantified at the mRNA level using qPCR and 

at the protein level using western blotting in all GFP positive cells (see section 2.1.7 in 

Methods section, page 37). 

 

3.6 Results 

 

3.6.1 Molecular cloning of DNMT isoforms 

3.6.1.1 Retransformation and confirmation of DNMT sequences  

All 14 DNMT-pIRES puro3 plasmids containing DNMT3A1, DNMT3A2, DNMT3B1, 

DNMT3B2, DNMT3B3, DNMT3B4, DNMT3B5, DNMTΔ3B1, DNMTΔ3B2, DNMTΔ3B3, 

DNMTΔ3B4, DNMT3L, DNMT1, or Myc sequence only (control), were re-transformed into 

E.coli DH5α. These plasmids were extracted from the bacteria clones grown on an ampicillin 

selective agar. To confirm the sequence of each isoform, these plasmids were sent to MRC 

PPU DNA Sequencing and Services at Dundee University. All sequences were aligned with 

the relevant DNA sequence templates from the commercial vectors for each DNMT isoform 

using the DNASTAR Lasergene bioinformatics software. Example results are shown in 

Figure 3.1 and in Appendix A. 
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Figure 3.1 Sequence analysis and alignment analysis. A) The sequence of DNMT3A1 from 
Sanger sequencing and B) the alignment among DNMT3B1, DNMT3B2, and Myc; majority 
is a method to sum the weights of a base in DNA sequences, yellow highlights represent 
100% similar sequences with majority, number indicates the number of base pair. 
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3.6.1.2 Sub-clone DNMT isoform into virus system 

pLenti7.3V5-DEST was modified to add the restriction sites for NheI, ClaI, EcoRI, SwaI, and 

PspOMI. pLenti7.3V5-DEST was cut by XbaI and MluI, and the digest was run on gel 

electrophoresis. Three bands from original plasmid (sizes: 61bp, 1,781bp, and 7,788 bp) were 

separated on the gel and the largest band was extracted from the gel to be used as new 

backbone (Figure 3.2). 

 

Figure 3.2 pLenti7.3/V5-DEST backbone after being cut by XbaI and MluI. Three bands (61, 
1781, and 7,788 bp) were separated on the gel electrophoresis (four replicate samples). 

 

The pLenti7.3V5-DEST backbone was ligated with oligonucleotides containing the 

new restriction sites (NheI, ClaI, EcoRI, SwaI, and PspOMI). Plasmids were extracted from 

bacteria grown on an ampicillin selective agar. For screening for positive clones, these 

plasmids were cut by EcoRI and KpnI, which resulted in three bands on the gel 

electrophoresis (sizes: 647, 1,093, and 6,086 bp), whereas the negative plasmid was cut into 

four bands (sizes: 481, 1,093, 1,977, and 6,097 bp) (Figure 3.3).   
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Figure 3.3 Screening new backbone of pLenti7.3/V5-DEST with new restriction sites by 
restriction enzymes; EcoRI and KpnI. Lane 1 and 2 showed positive clones (there were three 
bands: 674, 1,093, and 6,086 bp). Lane 3 and 4 showed negative clones. 

 

The modified pLenti7.3/V5-DEST (positive clone) bacteria were grown and plasmids 

were extracted using the E.Z.N.A.® Endo-free Plasmid DNA Mini KitII. These plasmids were 

cut by NheI and PspOMI, which produce compatible cohesive ends with NotI, to make a new 

backbone. After running on the gel electrophoresis, there was only one band on the gel 

(Figure 3.4A). All pIRESpuro3-DNMTs were also cut by NheI and NotI to generate the sticky 

ends of DNMT sequences. Each of the different inserts gave a different size on the gel 

electrophoresis and these were separated completely from the starting plasmid (pIRESpuro3) 

(Figure 3.4B) apart from DNMT1 which could not be separated from the backbone. DNMT1 

was repeated and run on a low percentage (0.7%) gel electrophoresis. Although, there were 

non-specific bands, this showed that the DNMT1 product was separated into three bands 

(Figure 3.4C). Both backbone and target inserts were cut from the gel and DNA were purified 

using QIAquick gel extraction kit. 
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Figure 3.4 Gel electrophoresis for backbone plasmid and target inserts. A) the single band of 
the modified pLenti7.3/V5-DEST was linearised by NheI and PspOMI (5 replicate samples), 
B) the insert targets of each DNMT isoform were cut by NheI and NotI (3 replicate samples); 
1-14 represent DNMT∆3B4, DNMT3B3, DNMT∆3B3, DNMT3A1, DNMT1, Myc, 
DNMT3L, DNMT3B5, DNMT3A2, DNMT3B2, DNMT3B4, DNMT∆3B2, DNMT3B1, and 
DNMT∆3B1, respectively and, C) DNMT1 band was run on a low percentage (0.7%) gel 
electrophoresis (four replicate samples). 

 

After ligation and incubation, the bacteria were screened by colony PCR to select the 

positive clones containing each target DNMT and Myc sequence. The PCR product was 

amplified using CMV forward primer and Myc reverse primer; the sizes of PCR product were 

191 bp for the negative clone and 159 bp for the positive clone (Figure 3.5). 
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Figure 3.5 Gel electrophoresis of PCR products from colony PCR. Lanes 1, 4, 7 showed the 
negative clone, while lanes 2, 3, 5, 6, 8 showed the positive clone. 

 

All positive plasmids were then sent to MRC PPU DNA Sequencing and Services at 

Dundee University to confirm the sequences. All sequences had been analysed and aligned 

with DNA sequence templates for each DNMT isoform using the DNASTAR Lasergene 

bioinformatics software (Figure 3.6 and in Appendix B). 

https://www.dnaseq.co.uk/
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Figure 3.6 Sequence alignment. A) The sequence of DNMT3A1 from Sanger sequencing and 
B) the alignment between DNMT3A2 and commercial pcDNA-DNMT3A2; majority is a 
method to sum the weights of a base in DNA sequences, yellow highlights represent 100% 
similar sequences with majority, number indicates the number of base pair. 

 

3.6.1.3. Optimising transfection conditions between transient transfection 
and a virus system 

Firstly, MEG-01 cells were transfected with GFP plasmids using a range of transfection 

reagents; Hiperfect, GeneCellin, Lipofectamine2000, and Lipofectamine3000. After 48 hours, 

the GFP fluorescence was observed and recorded by photography (Figure 3.7). This showed 
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that both doses Lipofectamin2000 were effective in transferring the plasmids into the MEG-

01 cells, while Dharmafect, Hiperfect, GeneCellin, and Lipofectamine3000 were not effective 

when used for this transfection due to toxicity. 

 

 
Figure 3.7 Green fluorescent protein signal of transfected MEG-01 cells. MEG-01 cells were 
transfected with different transfection reagents: Dharmafect, Hiperfect, GeneCellin, 
Lipofectamine2000, and Lipofectamine3000 with different volumes. 
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 For the viral system, lentivirus with target DNMTs and GFP were applied to MEG-01 

cells for 24 hours with or without 5 µg/mL Hexadimethrine bromide (polybrene), which can 

enhance the efficiency of infection. The GFP signal was determined using inverted Leica 

Dmi8 wide field fluorescent microscopy. The MEG-01 cells’ morphology was normal, 

showing a round shape with a clearly defined (healthy) cell membrane (Figure 3.8A). This 

cell was incubated for 10 and 17 days with/without polybrene, and which the GFP signal was 

captured and compared with the non-transduced MEG-01 cells (Figure 3.8B). 

 

 
Figure 3.8 Cell morphology and green fluorescent protein (GFP) signal after MEG-01 cell 
transduction with a lentivirus system for 48 hours, 7 days, and 10 days. A) MEG-01 cell 
morphology after transduction with/without 5 µg/mL polybrene for 48 hours and B) the bright 
field (BF) and GFP channel images of transduced MEG-01 cells after 48 hours, 7 days, and 
10 days with/without 5 µg/mL polybrene compared with non-transduced MEG-01 cell. 

 

3.6.2 Using transient transfection to generate cell lines that over-expressed each 

DNMT isoform separately 

MEG-01 cells were transiently transfected with pIRESpuro3 contained individually DNMT 

sequences and c-Myc: DNMT3A1, DNMT3A2, DNMT∆3B1, and DNMT∆3B2. 

Lipofectamine2000 was used to transfer these plasmids into the MEG-01 cells. After 

transfection, cells were selected using puromycin treatment. However, there were a large 
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proportion of dead cells after puromycin treatment so the plan for generating cell lines that 

overexpress each of the DNMTs individually was changed to that using the virus system. 

 

3.6.3 Using lentiviral system to generate cell lines that over-expressed each 

DNMT isoform separately 

MEG-01 and HEK239T cells were transduced using lentivirus for 48 hours and images of 

GFP expression in the cells were captured using fluorescent microscopy. There was a few 

positive GFP cells in transduced MEG-01 cells (Figure 3.9) compared with HEK293T cells 

(Figure 3.10).  

 

 

Figure 3.9 Bright field (BF) and green fluorescent protein (GFP) signals from cells 
overexpressing DNMTs in MEG-01 cells after 48 hours transduction. 
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Figure 3.10 Bright field (BF) and green fluorescent protein (GFP) signals from cells 
overexpressing DNMTs in HEK293T cells after 48 hours transduction. 
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Transduced MEG-01 and HEK293T cells were grown for 17 days and then sorted 

using FACS, which selected for the positive GFP cells (Figure 3.11). Cells with a high GFP 

signal were sorted into a 96-well plate adding a single cell per well for HEK293T cells and 

into a flask adding a mix population for MEG-01 cells.     

 

 

Figure 3.11 Scatter plots of green fluorescent protein (GFP) signal from transduced cells. A) 
non-transduced cells (negative cells) and B) positive-GFP cells; blue colour represents non-
GFP cells or low GFP signal, pink colour represents high GFP signal. 

 

 Each single cell of DNMT-overexpressing HEK293T cells was cultured for 14 days, 

then the morphology of the cells and the number of live cells was observed. In 96-well plate 

of each DNMT cell, there were 7 clones for DNMT3A1, 8 clones for DNMT3A2, 14 clones 

for DNMT3B1, 14 clones for DNMT3B2, 29 clones for DNMT3B3, 31 clones for 

DNMT3B4, 22 clones for DNMT3B5, 10 clones for DNMT∆3B1, 11 clones for 

DNMT∆3B2, 15 clones for DNMT∆3B3, 40 clones for DNMT∆3B4, 31 clones for 

DNMT3L, 21 clones for DNMT1, and 30 clones for Myc. The example of morphology of 

stably transduced single cell-derived clonal lines was showed in Figure 3.12. 
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Figure 3.12 Morphology of single cell colonies from overexpression of DNMT∆3B4 in 
HEK293T cells in four different wells of 96-well plate. 

 

 After expansion of single cell clones, overexpression of the DNMTs in MEG-01 and 

HEK293T cells was confirmed by GFP signal. Mixed cell population of the DNMT-

overexpressing MEG-01 cells showed GFP signal (Figure 3.13). In addition, the stably 

transduced single cell-derived clonal lines of DNMT-overexpressing HEK293 cells showed 

GFP signal (Figure 3.14). 
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Figure 3.13 Bright field (BF) and green fluorescent protein (GFP) signals from DNMT-
overexpressing MEG-01 cells derived from sorted cells. 
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Figure 3.14 Bright field (BF) and green fluorescent protein (GFP) signals from DNMT-
overexpressing HEK293 cells derived from the sorted cells. 
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Use of the InvitrogenTM TaliTM Image-based Cytometer showed that all DNMT-

overexpressing HEK293T cells were 100% GFP positive (Table 3.1).  

 

Table 3.1 Numbers of green fluorescent protein (GFP) and non-GFP cells in the clones 
expressing each of the DNMT isoforms assessed using the InvitrogenTM TaliTM Image-based 
Cytometer. 

DNMT-
overexpressing 

Cells 
GFP cells 

Non 
GFP 
cells 

Live cells Dead cells 

DNMT3A1 1.15x10
7
 ± 6.12x10

3 0 1.15x10
7
 ± 6.12x10

3 0.62x10
4
±  

209 
DNMT3A2 7.75x10

6 
± 7.23x10

2 0 7.75x10
6 
± 7.23x10

2 0 
DNMT3B1 1.16x10

7 
± 5.34x10

3
 0 1.16x10

7 
± 5.34x10

3 0 
DNMT3B2 9.34x10

6  
± 7.84x10

2
 0 9.34x10

6  
± 7.84x10

2 0.05x10
4
±  

603 
DNMT3B3 7.53x10

6 
± 9.23x10

2
 0 7.53x10

6 
± 9.23x10

2 0.71x10
4
±  

487 
DNMT3B4 1.13x10

7 
± 4.76x10

3
 0 1.13x10

7 
± 4.76x10

3 0 
DNMT3B5 8.49x10

6 
± 5.67x10

2
 0 8.49x10

6 
± 5.67x10

2 0 
DNMT∆3B1 8.65x10

6 
± 5.34x10

2
 0 8.65x10

6 
± 5.34x10

2 0.81x10
4
±  

564 
DNMT∆3B2 1.5x10

7 
± 7.23x10

3
 0 1.5x10

7 
± 7.23x10

3 0 
DNMT∆3B3 1.03x10

7 
± 8.23x10

3
 0 1.03x10

7 
± 8.23x10

3 0.64x10
4
±  

785 
DNMT∆3B4 1.35x10

7 
± 7.21x10

3
 0 1.35x10

7 
± 7.21x10

3 0 
DNMT1 1.01x10

7 
± 7.42x10

3
 0 1.01x10

7 
± 7.42x10

3 0 
DNMT3L 1.32x10

7 
± 2.34x10

3
 0 1.32x10

7 
± 2.34x10

3 0 
Myc 8.11x10

6 
± 8.21x10

3
 0 8.11x10

6 
± 8.21x10

3 0 

HEK293T 0 
7.52x10

6 

±  
0.23x10

2 
7.52x10

6
± 0.23x10

2
 0 
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3.6.4 Confirmation of total and exogenous DNMTs expression at the RNA levels 

in the overexpressing cells 

To confirm the expression of exogenous DNMTs and understand the endogenous levels of 

DNMTs in overexpressing cells, RNA was extracted from all cell lines that overexpress each 

of the DNMTs individually for measurement of total and exogenous DNMTs. Firstly, 

expression of eleven housekeeping (HK) genes (ACTB, GUBS, RPL13A, RPS13, TFRC, 

HPRT1, 18sRNA, B2M, GAPDH, PPIA, and RPLP10) was determined to find the most stable 

HK genes for each experimental setting to be used for normalisation of gene expression based 

on geNorm analysis (see Methods section 2.1.7). The PCR products of HK genes for MEG-01 

cells were run on the 1% gel electrophoresis (Figure 3.15). The HK genes 18sRNA and 

RPL13A for MEG-01 cells, and PPIA and GAPDH for HEK293T cells were used in further 

quantification of DNMT expression at the RNA level. 
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Figure 3.15 PCR products of housekeeping genes and green fluorescent protein (GFP). Actin 

Beta (ACTB), Glucuronidase Beta (GUSB), Ribosomal Protein L13A (RPL13A), Ribosomal 

Protein S13 (RPS13), Transferrin Receptor (TFRC), Hypoxanthine Phosphoribosyltransferase 

1 (HPRT1), 18sRNA, Beta-2-Microglobulin (B2M), Glyceraldehyde-3-Phosphate 

Dehydrogenase (GAPDH), Peptidylprolyl Isomerase A (PPIA), Ribosomal Protein Lateral 

Stalk Subunit P0 (RPLP0). 
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Total DNMT (endo + exogenous) and exogenous DNMT expression were measured in 

all cell lines that over-expressed each of the DNMTs individual ly including the Myc-

expressing control cell. The total expression of DNMT was analysed using the specific primer 

pairs to DNMT3A1, DNMT3A2, DNMT3B (captured DNMT3B1, DNMT3B2, DNMT3B3, 

DNMT3B4, and DNMT3B5), DNMT∆3B1-2 (captured DNMT∆3B1 and DNMT∆3B2), 

DNMT∆3B3-4 (captured DNMT∆3B3 and DNMT∆3B4), DNMT1, and DNMT3L. Each set of 

primers was designed to amplify unique mRNA transcripts avoiding non-specific target from 

other DNMT isoforms. Exogenous expression of DNMTs was analysed using the Myc primer 

as the forward primer and the DNMT isoform specific primers as the reverse primer. There 

was a signal of exogenous DNMTs in each DNMT cell but not in the Myc control cell. The 

total expression (endo + exogenous) of DNMT∆3B1, DNMT∆3B2, and DNMT1 was lower 

than the endogenous expression in the MEG-01 cells (Figure 3.16), whereas, total expression 

of DNMT3A2 in HEK293T cells showed low amount compared with a basal expression in 

Myc control cell (Figure 3.17). However, other total expressions of DNMTs expressed higher 

than endogenous DNMTs of Myc control cell (Figure 3.17). As expected, DNMT3L was 

expressed in both transgenic MEG-01 and HEK293T cells as this isoform did not express in 

MEG-01 cells as same as HEK293T cells at the basal expression.  
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Figure 3.16 Total DNMT expression in the mixed cell population of overexpressing-DNMT 
MEG-01 cells. The relative expression of each DNMT isoform was compared between 
overexpressing-DNMT MEG-01 cells and Myc control cell. Error bars represent standard 
deviation from triplicates and * represents p-value ≤ 0.05 compared with Myc cell. 
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Figure 3.17 Total DNMT expression in the mixed cell population of overexpressing-DNMT 
HEK293T cells. The relative expression of each DNMT isoform was compared between 
overexpressing-DNMT HEK293T cells and Myc control cell. Error bars represent standard 
deviation from triplicates and * represents p-value ≤ 0.05 compared with Myc cell. 
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3.6.5 Confirmation of the expression of DNMT isoforms at the protein levels in 

the DNMT-overexpressing MEG-01 and HEK293T cells 

In order to confirm the protein expression of DNMT isoform in overexpressing cells, the 

exogenous protein expression of each DNMT were measured in both MEG-01 and HEK293T 

cells using the c-Myc antibody. It was difficult to detect the expression of any DNMT 

proteins in MEG-01 cells even if the input of protein concentration was increased (data not 

availablen). However, except for DNMT∆3B3 (where the protein was not detected), 

expression of the other DNMT proteins was detected in DNMT-overexpressing HEK293T 

cells. HEK293T cells transfected stably with DNMT3L expressed relatively large amounts of 

DNMT3L (Figure 3.18A). DNMT3B2 and DNMT1, DNMT3A1, DNMT3B4, DNMT3B5, 

DNMT∆3B2, DNMT∆3B4 proteins were expressed at relatively low levels, while 

DNMT∆3B3 protein expressed very low levels (Figure 3.18B-D). 

 

 
Figure 3.18 Expression of DNMT isoforms at the protein levels in DNMT-overexpressing 
HEK293T cells. A) DNMT3L protein (25 µg of total protein) in DNMT3L cells compared 
with Myc control cell; B) DNMT3B1 (50 µg of total protein), DNMT3B2 (70 µg of total 
protein), DNMT3B3 (50 µg of total protein), and DNMT1 proteins (50 µg of total protein); C) 
DNMT3A1 (50 µg of total protein), DNMT3A2 (50 µg of total protein), DNMT3B4 (50 µg 
of total protein), and DNMT3B5 proteins (50 µg of total protein); and D) DNMT∆3B1 (70 µg 
of total protein), DNMT∆3B2 (70 µg of total protein), DNMT∆3B3 (70 µg of total protein), 
and DNMT∆3B4 proteins (70 µg of total protein). 
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3.7 Discussion 

 

3.7.1 Main findings 

The chosen viral system was an effective approach for creating cell lines that over-expressed 

each of the DNMT isoforms in MEG-01 and HEK293T cells. However, single clones of cells 

that over-expressed each of the DNMT isoforms were generated successfully only for the 

HEK293T cells. Each of these clones expressed the specific exogenous DNMT isoform at 

both RNA and protein levels. 

 

3.7.2 Overexpression of DNMT isoforms in MEG-01 cells 

MEG-01 cells, which can be differentiated to platelets that play a critical role in diseases such 

as cardiovascular disease (287), were over-expressed individually DNMT isoforms using both 

transient transfection and viral system. Using transient transfection of pIRESpuro3 contained 

individually DNMT sequences was unsuccessful to generate the stable transgenic cells 

overexpressing DNMTs in MEG-01 cells because transfected MEG-01 cells no longer 

expressed the puromycin resistance gene leading to the large number of dead cells mixing 

with a few live cells. Also, it was difficult to harvest the positive cells containing target 

DNMTs from this mixed population, as MEG-01 cells being suspension cells, dead and live 

cells were not separated. However, the transduction of DNMTs into MEG-01 cells was 

successful using lentivirus. Lentivirus depends on an active transport of the viral pre-

integration complex into the cell nucleus through the nucleopore (288). This ability allows 

lentiviruses to infect both non-dividing and diving cells.  

The exogenous DNMTs expression was lower than endogenous in the transduced 

MEG-01 cells, especially DNMTΔ3B1, DNMTΔ3B2, and DNMT1 possibly due to polyclones. 

Polyclones would include the major cell population of transgenic cells expressed those 

DNMTs at low levels. Furthermore, the number of GFP-positive cells was lower than that of 

HEK293T cells. This shows the low efficiency of transduction system in MEG-01 cells. 

Burstein’s study (289) revealed that approximately 62% of megakaryocytes were positive 

after retroviral transduction. The reason of the low percentage of cell transduction may be 

caused from the doubling time which is 36-48 hours in MEG-01 cells. This long doubling 

time might affect the virus transduction leading to low expression of DNMTs. Although the 

exogenous expression of each DNMT in MEG-01 cells was detected, the protein expressions 

of each DNMT were very low or could not be detected even if the input of amount of total 

protein was increased. Therefore, for further work, I focussed on the DNMT-overexpressing 
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HEK293T cells and used these cell lines for investigation of 1) DNA methylation patterns and 

2) interactions between selected food constituents and DNMTs, on DNA methylation at target 

CpG sites and on activity of the DNMT enzyme. 

 

3.7.3 Overexpression of DNMT isoforms in HEK293T cells 

This study is the first to generate the stable single clones of 13 DNMT isoforms in HEK293T 

cells using an easily handled system with high transduction efficiency. This approach 

diminishes cell line heterogeneity and improves product yield of gene expression (290). The 

expression of GFP was detected in all single clone cells and this confirmed that the 

transferring of exogenous genes was successful in HEK293T cells using lentiviral system. All 

target cells grown and GFP signal was re-measured after cell expanding by fluorescent 

microscopy and image-based cytometer. Also, the expression of the exogenous DNMTs in 

HEK293T cells was detected using Myc primer to capture the exogenous sequences. 

However, it is important to note that the basal endogenous expression of each DNMT isoform 

had different levels in Myc control cell (Figure 3.19). For DNMT3A2, exogenous DNMT3A2 

was detected in cells overexpressing DNMT3A2 but the basal expression of endogenous 

DNMT3A2 was higher. As shown in the Figure 3.19, the expression of DNMT3A2, also highly 

expressed in Myc control cell compared to other DNMT isoforms.  

 

 
Figure 3.19 The basal endogenous expression of DNMTs. The gene expression of DNMT3A1, 
DNMT3A2, DNMT3B1-DNMT3B5, DNMT∆3B1-DNMT∆3B2, DNMT∆3B3-DNMT∆3B4, 
DNMT3L, and DNMT1 was quantified in Myc control cell. 
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Due to random integration within the HEK293T genome following the use of the 

lentivirus system, the protein products of exogenous DNMTs were expressed at different 

levels. This finding was in concordance with results from Torres R. et al. (291) indicating that 

random and site-specific integration showed a difference GFP copy number. It was noted that 

the mRNA expression of DNMT3A2 was lower than endogenous level in HEK293T cells, but 

the protein of this isoform was highly expressed. Also, the mRNA expression of DNMT∆3B3 

was higher than endogenous level but the protein expression could not be detected. It is likely 

that the correlation of these proteins and mRNA was poor, possibly reflecting differential 

stabilities of protein. Also, posttranslational modification delayed protein synthesis leading to 

reduction of the correlation between RNA and protein expressions (292). The concordance 

between RNA and protein levels was found to have a correlation coefficient of approximately 

0.3 (293). This correlation was in the line with Edfors F. et al. (294) showing correlation 

coefficient of 0.39 in HEK293 cells.  

Furthermore, a false positive GFP clone cell was found after sorting by FACS as GFP 

expression could not be detected in this cell by qPCR. Accurate sorting of mixed cell 

populations is challenging due to noise from the overlapping target and background signals. 

This problem can be overcome by re-sorting. However, this study sorted single clones of 

positive GFP cells in 96 well plates and selected five clones to check the GFP in both mRNA 

and protein expression. By doing this, only positive GFP cells were selected and further 

expanded for DNA methylation measurement. 

 

3.8 Conclusion 

Cell lines that over-expressed each of 13 DNMT isoforms were successfully generated from 

both MEG-01 (generated mix cell population) and HEK293T cells (generated single cell 

clone) using lentiviral system. These cell models can be expanded and grown normally with 

stable DNMT expression. However, DNMT-overexpressing HEK293T cells were further 

investigated instead of MEG-01 cells due to low exogenous expression of both mRNA and 

protein levels in MEG-01 cells. 
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4. Chapter 4: Identification of specific target CpG sites of each DNMT 
isoform 

 

4.1 Introduction 

Epigenome-wide association studies (EWAS) assess DNA methylation and such studies have 

become a powerful approach to elucidate association between epigenetic variations and 

biological traits. With the rapid development of high-throughput microarray, the Illumina 

HumanMethylation450 BeadChip (450K) is the high-throughput method for characterisation 

of DNA methylation and this chip measures DNA methylation of more than 450,000 CpG 

sites throughout the human genome. However, it was replaced with the Illumina 

HumanMethylationEPIC BeadChip (EPIC), which measures DNA methylation at more than 

850,000 CpG sites and covers 90% of the CpG sites of the 450K chip (295). This new chip is 

non-bias whole epigenome-wide approach and this chip contains new probes targeting gene, 

intergenetic and non-CpG island regions, covering distal regulatory elements (271). 

Therefore, this EPIC array can be used to screen the DNA methylation on CpG target sites of 

DNMTs. Additionally, this new chip requires a low quantity of DNA and it is cost effective. 

Mammals express five different families of DNMTs with a number of subfamilies 

with each protein sharing similar structural features (see introductory section 1.4). Although 

the catalytic sites of each DNMT are similar, the amino acid residues in these areas are 

different and this may determine the preferential target CpG sites of each DNMT. Also, the 

way of entering the DNA major groove for CpG recognition of DNMT1 and DNMT3A was 

different, despite the conformation similarity in their catalytic loop (296). Moreover, the 

catalytic activity of DNMT3B was not required for the induced methylation in DNMT3B-

deficient cell lines (277). 

Choi SH. et.al (87) showed the preferential CpG target of each DNMT subfamily. The 

de novo DNA methylation target sites of DNMTs were identified using the Illumina 

GoldenGate Methylation Cancer Panel I, which contains 1,505 CpG sites from 808 cancer-

related genes (87). The clustering analysis of 514 CpGs induced by any DNMT isoforms 

showed that the DNA methylation patterns induced by DNMTs were clustered according to 

the structural similarity of the DNMT variants, for example, DNMT3A1 and DNMT3A2, 

DNMT3B1 and DNMT3B2, DNMTΔ3B1 and DNMTΔ3B2, and DNMTΔ3B3 and 

DNMTΔ3B4 (87). In another study from Duymich C.E. et al., the target sites of DNMT3B 

isoforms on a genome-wide level and their function in DNMT3B-deficient cells (3BKO and 

DKO8 derivatives of the HCT116 colon cancer cell line), were identified using the 450K chip 

(277). They found DNMT3L restored DNA methylation patterns in DNMT3B-deficient cells 
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and DNMT3L showed the strongest overall induction of DNA methylation compared with the 

DNMT3Bs (277). However, none of these studies mentioned the specific DMPs of each 

DNMT isoform. Moreover, the partners of DNMTs were studied to reveal the factor of 

DNMT recruitment on DNA, but no study describing the underlying mechanism for any 

specific isoforms has yet been published. For example, SP1 complex recruits DNMT1 to 

target on the promoter of Slit Guidance Ligand 2 to maintain DNA methylation inheritance 

(297). DNMT3A and DNMT3B cooperate with oncoprotein EV1 to methylate the miRNA-

124-3 promoter leading to the repression of this gene (298). Preferable sequences for 

DNMT1, DNMT3A, and DNMT3B were predicted respectively (A/G/T)(T/G/A)(T/A/C) 

CG(T/G/A)(C/A/T)(A/T/C), (T/A/C)(A/T)(T/G/A)CG(T/G/C)G(G/C/A), and 

(A/C)(C/G/A)(A/G)CGT(C/G)(A/G) (123). 

Therefore, this study focused on the DNA methylation patterns and de novo target 

DMPs of the DNMTs individually by EPIC array to allow the interrogation of methylation 

patterns at genome-wide and site-specific methylation from the stable transduced single-cell 

derived clonal lines. 

  

4.2 Hypotheses 

The hypotheses for this study were; 

1. The pattern of DNA methylation in cells that overexpress individual DNMT isoforms 

is altered by the structure of each DNMT isoform. 

2. Despite the conformational similarity in the catalytic site of DNMTs, each DNMT 

isoform targets different CpG sites across the human genome. 

3. The DNA methylation changes in cells that overexpress each DNMT are involved in 

biological pathway associated with diseases. 

 

4.3 Aims 

The aims of this study were: 

• To test the above hypotheses by quantifying 1) the DNA methylation patterns of each 

DNMT, 2) the DMPs of the preferential target sites of each DNMT using EPIC array 

and 3) the implication of target DMPs of each DNMT isoform to determine a possible 

mechanism pathway involved in diseases by pathway analysis. 

 

4.4 Objectives 

The objectives of this study were: 
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1. Using EPIC arrays, to determine the DNA methylation patterns of cell lines that 

overexpress each of the DNMTs individually. 

2. To quantify the methylation levels of each DMP and to select the DMPs that are 

specific for each DNMT isoform. 

3. To analyse the implication of differential methylation of the target DMPs of each 

individual DNMT isoform using pathway analysis to investigate potential associations 

with disease. 

 

4.5 Overview of the methods 

A detailed description of the experimental procedures and methods for quantifying DNA 

methylation levels of cell lines that overexpress each of the DNMTs individually can be found 

in the Methods chapters (2.2 DNA methylation microarray with DNMT overexpressing cells, 

page 43). 

In brief, DNA was extracted from cell lines that overexpress each of the DNMTs 

individually (see section 2.2.1 in Methods section, page 43). After DNA was extracted, all 

DNA samples were measured for the concentration and purity using Nanodrop and all 

samples were sent to Eurofins Genomics, Germany, to perform EPIC array. Statistical 

analysis and data analysis for EPIC data were performed using R studio (R version 3.6.0) with 

the Bioconductor package (see section 2.2.2 in Methods section, page 43). The ∆β values 

were set the cut-offs at Δβ ≤ -0.2 and Δβ ≥ 0.2, Δβ ≤ -0.3 and Δβ ≥ 0.3, and Δβ ≤ -0.4 and Δβ 

≥ 0.4 with FDR adjusted p-value ≤ 0.05. DNMT over expressing dataset was explored in 

order to determine the DNA methylation patterns and CpG target sites of DNMTs. Moreover, 

IPA was conducted to investigate the enrichment of pathways, biological functions, and 

potential diseases. 

 

4.6 Results 

4.6.1 Selection of duplicate cell clones for each overexpressing DNMT cell 

To select biological duplicates of each overexpressing DNMT cell for EPIC array analysis, 

five cell clones of each overexpressing DNMT cell were measured the levels of exogenous 

DNMTs by qPCR. Two clones were selected with the similar levels of exogenous DNMT, 

individually (Figure 4.1): clone 2 and 5 for DNMT3A1, clone 2 and 5 for DNMT3A2, clone 

number 1 and 5 for DNMT3B1, clone number 2 and 3 for DNMT3B2, clone number 1 and 5 

for DNMT3B3, clone number 3 and 4 for DNMT3B4, clone number 4 and 5 for DNMT3B5, 
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clone number 4 and 5 for DNMTΔ3B1, clone number 4 and 5 for DNMTΔ3B2, clone number 

1 and 3 for DNMTΔ3B3, clone number 2 and 5 for DNMTΔ3B4, clone number 1 and 2 for 

DNMT3L, and clone number 2 and 5 for DNMT1. 

 

 

Figure 4.1 Exogenous expression of individual DNMTs in overexpressing DNMT cells. 

 

4.6.2 Data quality checking and preprocessing 

To normalise data and check the quality of EPIC datasets, all datasets from cell lines 

overexpressing individual DNMT isoforms were analysed in R studio using the Bioconductor 

package. After normalisation using the ssNoob method, β values of Infinitum I and II probes 

were adjusted and the probe biases were removed (Figure 4.2). The β values expressed the 

level of DNA methylation, ranging from 0 to 1.  
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Figure 4.2 β density of all 14 datasets. The distributions of β value from the Infinium I 
(yellow lines) and II (purple lines) probes were showed before (left graph) and after (right 
graph) applying the ssNoob normalisation method. 

 

After filtering a high detected p-value (p-value ≤ 0.05), normalising, adjusting probe-

type bias, and removing rs probes, 814,341 probes remained. Bland Altman analysis was 

performed to illustrate the similarity, and differences, between duplicate biological samples 

and the 95% limits of agreement (mean ± 1.96SD) were calculated (Figure 4.3). Probes that 

had a difference value greater than 95% limits of agreement, were filtered out (approximately 

6.8% of 814,341 probes) (Table 4.1). Therefore, only high correlation probes were selected 

from duplicates of each DNMT cell and Myc cell to get reliable results. Among these probes, 

those of each over-expressed DNMT cell that were found in common with Myc cell were 

selected. The final number of remaining probes is shown in Table 4.1. 
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Figure 4.3 Bland Altman plots of each DNMT cell. The scatter plots showed the distribution 
of mean β values and the difference of DNA methylation levels from each biological 
duplicate (single cell clones that over-expressed each DNMT isoform and Myc). 
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Table 4.1 The number of remaining probes after filtering. The probes were selected by mean 
± 1.96SD and then those of each over-expressed DNMT cell that were found in common with 
Myc cell were selected. 

DNMT isoforms 
The number of the 

remaining probes after 
selecting by mean ± 1.96SD 

The number of the remaining 
probes that were found in 
common with Myc cell 

DNMT3A1 755,841 719,204 
DNMT3A2 759,760 721,122 
DNMT3B1 759,105 722,459 
DNMT3B2 758,044 721,013 
DNMT3B3 759,484 721,685 
DNMT3B4 758,196 721,175 
DNMT3B5 758,100 720,891 

DNMTΔ3B1 756,788 719,958 
DNMTΔ3B2 761,685 723,441 
DNMTΔ3B3 758,191 720,896 
DNMTΔ3B4 760,585 722,149 

DNMT3L 763,014 725,148 
DNMT1 761,073 723,090 

 

DNA methylation changes were analysed by subtracting the β value for each CpG in 

the Myc control from the β value for the corresponding CpG site in each individual DNMT 

dataset. The methylation changes of each DNMT isoform were indicated in the volcano plots 

with p-value ≤ 0.05 (Figure 4.4). 
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Figure 4.4 Volcano plots of each DNMT isoform. Volcano plots demonstrated the distribution 
of the DNA methylation changes (Δβ; DNMTs - Myc control) with -log10 (p-value) of 
significant loci (p-value ≤ 0.05) in cell lines over-expressing individual DNMT isoforms. 
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Three different cut-offs: Δβ ≤ -0.2 and Δβ ≥ 0.2, Δβ ≤ -0.3 and Δβ ≥ 0.3, and Δβ ≤ -0.4 

and Δβ ≥ 0.4 with FDR adjusted p-value ≤ 0.05, were set to observe the significant loci of 

each DNMT (Table 4.2). Narrowing the cut-offs did not significantly change the ranking of 

DNMTs by number of loci; DNMT3A2 and DNMTΔ3B4. Also, the distribution of significant 

loci by genomic region was not significantly different among the cut-offs (Figure 4.5-4.7). 

The significant probes were significantly annotated at the gene body and TSS1500 (p-value ≤ 

0.05) in DNMT cells; the significant probes in DNMT3L and DNMTΔ3B2 were annotated at 

the gene body (p-value ≤ 0.05), and the significant probes in DNMT3A1, DNMT3A2, 

DNMT3B1, DNMT3B4, DNMT3B5, DNMTΔ3B1, DNMTΔ3B3, DNMTΔ3B4, and DNMT1 

were annotated at TSS1500 (p-value ≤ 0.05). 

 

Table 4.2 The number of significant loci of each DNMT after using three different cut-offs: 
Δβ ≤ -0.2 and Δβ ≥ 0.2, Δβ ≤ -0.3 and Δβ ≥ 0.3, and Δβ ≤ -0.4 and Δβ ≥ 0.4 with FDR 
adjusted p-value ≤ 0.05. 

DNMT isoforms Δβ ≤ -0.2 and 
Δβ ≥ 0.2 

Δβ ≤ -0.3 and 
Δβ ≥ 0.3 

Δβ ≤ -0.4 and 
Δβ ≥ 0.4 

DNMT1 2,576 896 272 
DNMT3L 4,433 1,517 404 
DNMT3A1 2,149 702 199 
DNMT3A2 6,612 2,874 983 
DNMT3B1 2,564 825 226 
DNMT3B2 2,380 722 189 
DNMT3B3 2,211 700 178 
DNMT3B4 4,430 1,625 495 
DNMT3B5 2,251 783 202 
DNMTΔ3B1 2,682 909 247 
DNMTΔ3B2 4,459 1,913 719 
DNMTΔ3B3 4,775 1,749 536 
DNMTΔ3B4 6,121 2,128 607 
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Figure 4.5 Mean Δβ DNA methylation pattern (setting cut-of at Δβ ≤ -0.2 and Δβ ≥ 0.2) by 
genomic location of cells overexpressing DNMTs: 3’UTR: 3’ untranslated region, TSS1500: 
transcription start site 1500, TSS200: transcription start site 200, 1stExon: the first exon, 
body: gene body, 5’UTR: 5’ untranslated region. 
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Figure 4.6 Mean Δβ DNA methylation pattern (setting cut-of at Δβ ≤ -0.3 and Δβ ≥ 0.3) by 
genomic location of cells overexpressing DNMTs: 3’UTR: 3’ untranslated region, TSS1500: 
transcription start site 1500, TSS200: transcription start site 200, 1stExon: the first exon, 
body: gene body, 5’UTR: 5’ untranslated region. 
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Figure 4.7 Mean Δβ DNA methylation pattern (setting cut-of at Δβ ≤ -0.4 and Δβ ≥ 0.4) by 
genomic location of cells overexpressing DNMTs: 3’UTR: 3’ untranslated region, TSS1500: 
transcription start site 1500, TSS200: transcription start site 200, 1stExon: the first exon, 
body: gene body, 5’UTR: 5’ untranslated region. 
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CpG sites that showed Δβ ≤ -0.4 and Δβ ≥ 0.4 were retained for further analysis and 

the distribution of those CpGs is shown as volcano plots with the number of hyper- and hypo- 

methylated loci (Figure 4.5). The expected methylation increase was observed for the 

majority of DNMT isoforms, where hypermethylated probes were in higher number than 

hypomethylated ones. However, DNMT3A1, DNMT3B3, and DNMT3B5 showed lower 

DNA methylation levels (more hypomethylated probes, in proportion). 
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Figure 4.8 Volcano plots of each DNMT isoform. Volcano plots demonstrated the distribution 
of the methylation change (Δβ ≤ -0.4 and Δβ ≥ 0.4) with -log10 (p-value) of significant loci 
(p-value ≤ 0.05) in cell lines over-expressing individual DNMT isoforms. The number of 
hypomethylated and hypermethylated loci was labelled in each plot. 
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4.6.3 The effect of over-expressed DNMTs on the DNA methylation pattern 

PCA was performed using β values for all probes to visualise methylation pattern differences 

by DNMT isoforms (Figure 4.9). PC1 explained 16.04% of the variance between samples 

while 9.8% of the variance was explained by PC2. There was no noticeable clustering pattern 

by DNMT isoforms (Figure 4.9A) but the β values of duplicate samples were not significantly 

different (Figure 4.9B). 
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Figure 4.9 Principal component analysis (PCA). PCA was performed using β values from all 
probes passed the quality control for all overexpressing DNMT cells. A) colour dots indicate 
individual DNMT isoforms B) multicolour dots indicate individual DNMT isoforms with 
duplicates (indicated by .1 labelling). 
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To explore the DNA methylation patterns in cell lines that overexpress each of the 

DNMTs individually, a two-dimensional unsupervised hierarchical cluster analysis of all 

hyper/hypo-methylated loci (after selecting from cut-offs, Δβ ≤ -0.4 and Δβ ≥ 0.4), compared 

with Myc control, was conducted. The majority of DNA methylation patterns of DNMTs did 

not depended on the structurally similar DNMTs, but there were two clustering induced by 

structurally similar DNMTs: 1) DNMTΔ3B4 and DNMTΔ3B2, 2) DNMT3B2 and 

DNMT3B3 (Figure 4.5). The DNA methylation patterns of DNMT3A2, DNMTΔ3B4 and 

DNMTΔ3B2, presented more hypermethylated patterns than other isoforms. The DNA 

methylation patterns of DNMT3B3 appeared to be hypomethylated pattern. The smallest 

isoform missing catalytic domains on C terminus, DNMT3L, shown a unique pattern and it 

was clustered in the same group with DNMT1 and DNMTΔ3B3. 
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Figure 4.10 Heatmap of DNA methylation data with 3,544 CpG sites (after selecting from 
cut-offs, Δβ ≤ -0.4 and Δβ ≥ 0.4 in cell lines over-expressing individual DNMT isoforms). 
CpGs were selected as they were targeted by at least one DNMT isoform. Myc was a control. 
Red colour represents high methylation β values and blue indicates low methylation β values. 
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To observe a clear hypermethylation patterns by DNMTs, a two-dimensional 

unsupervised hierarchical cluster analysis using only hypermethylated probes (2,833 loci) of 

each isoform was computed. The DNA methylation patterns of DNMT3B5, DNMT3A1, 

DNMT3B2, and DNMT3B3 were correlated with Myc control (Figure 4.6). DNMT3A2, 

DNMTΔ3B4 and DNMTΔ3B2 showed the hypermethylation patterns as the same as in Figure 

4.5. DNMT1 and DNMTΔ3B3 were grouped together and were clustered with DNMT3L. 

 

 
Figure 4.11 Heatmap of DNA methylation data with 2,833 CpG sites (Δβ ≥ 0.4). CpGs were 
selected as they were targeted by at least one DNMT isoform. Myc was a control. Red colour 
represents high methylation β values and blue indicates low methylation β values. 
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4.6.4 De novo target CpG sites of each DNMT isoform 

Significant (FDR-adjusted p-value ≤ 0.05) CpG sites with ∆β ≥ 0.4 were identified in each 

DNMT isoform. Although there is a similarity of catalytic sites among DNMT isoforms, 

unique target CpGs of each isoform were identified (Figure 4.7). 23.2% of the 

hypermethylated probes of DNMT3A1 overlapped with the hypermethylated probes of 

DNMT3A2: this was 2.5% when it was calculated from the total of hypermethylated probes 

of DNMT3A2. 27% of the hypermethylated probes of DNM3B1, 30.5% of the 

hypermethylated probes of DNM3B2, 41.7% of the hypermethylated probes of DNM3B3, 

25% of the hypermethylated probes of DNM3B4, and 27.8% of the hypermethylated probes 

of DNM3B5 were overlapped with other DNMT3Bs. The percentage of the hypermethylated 

probes of DNMTΔ3B1, DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4 overlapping among 

DNMTΔ3Bs was 42%, 25.5%, 37.5%, and 31.7%, respectively. Top five of de novo 

hypermethylated probes with gene name of each DNMT isoform were showed in the Table 

4.3. Additionally, other target genes of each DNMT isoform were showed in Appendix C.
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Figure 4.12 Venn diagrams of specific and overlapping target CpG sites of cell lines over-expressing individual DNMT isoforms. The number of 
target hypermethylated probes for each DNMT family; DNMT3A, DNMT3B, and DNMTΔ3B, overlapping with target CpG sites within those 
DNMT families is depicted.
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Table 4.3 Top five hypermethylated loci of each DNMT isoform. 

DNMT 
isoforms  

CpG  Chromosome  
Relation to 
CpG island  

β DNA methylation  ∆β  
Gene name 

DNMT Myc  

DNMT3A1 
 
 
  

cg21534766 chr21 OpenSea 0.64 0.24 0.41 NCAM2 

cg06041732 chr18 OpenSea 0.78 0.13 0.65 LINC00907 
cg17001806 chr8 OpenSea 0.82 0.40 0.42 - 
cg08969304 chr10 CpG Island 0.67 0.24 0.43 - 

cg01460940 chr14 OpenSea 0.58 0.16 0.42 RP11-
123M6.2 

DNMT3A2 
 
 
  

cg02732111 chr4 OpenSea 0.77 0.21 0.56 - 
cg15930380 chr1 South Shelf 0.63 0.16 0.47 MIER1 
cg16204524 chr2 North Shelf 0.61 0.20 0.42 GPR113 

cg07018561 chr3 South Shore 0.65 0.12 0.52 ENTPD3-
AS1 

cg03647393 chr13 OpenSea 0.63 0.19 0.44 LINC01069 

DNMT3B1 
 
 
  

cg09102332 chr7 OpenSea 0.62 0.22 0.40 - 
cg01529359 chr8 OpenSea 0.52 0.08 0.44 - 
cg23967739 chr12 OpenSea 0.61 0.19 0.43 A2ML1 

cg23491841 chr2 North Shelf 0.55 0.10 0.44 C2orf85 

cg06329392 chr13 OpenSea 0.55 0.12 0.43 - 

DNMT3B2 
 
 
  

cg18425254 chr13 CpG Island 0.67 0.15 0.52 - 

cg01986486 chr3 OpenSea 0.55 0.07 0.47 C3orf67 

cg02286819 chr1 OpenSea 0.52 0.09 0.43 - 
cg17764572 chr10 CpG Island 0.68 0.27 0.41 - 
cg11457308 chr14 OpenSea 0.53 0.10 0.43 GALNT16 

DNMT3B3 
 
  

cg06580033 chr17 South Shore 0.64 0.10 0.54 ZNF830; 
CCT6B 

cg12173487 chr16 OpenSea 0.63 0.20 0.43 CPNE2 
cg22354874 chr5 OpenSea 0.87 0.45 0.42 - 
cg12583095 chr10 South Shore 0.57 0.16 0.41 HTR7 

DNMT3B4 
 
 
  

cg26286826 chr18 OpenSea 0.54 0.12 0.42 - 
cg08954783 chr2 OpenSea 0.60 0.13 0.47 - 
cg24424219 chr15 OpenSea 0.57 0.14 0.43 - 
cg10483660 chr13 South Shelf 0.66 0.11 0.55 - 
cg26432128 chr8 South Shelf 0.80 0.38 0.41 - 

 

 

 

 

 

 

 
Table 4.3 (continue) Top five hypermethylated loci of each DNMT isoform. 
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DNMT 
isoforms 

 

CpG 
 

Chromosome 
 

Relation_to_Island 
 

β DNA 
methylation 

 ∆β 
Gene name 

DNMT Myc  
DNMT3B5 

 
 
 
 

cg15923359 chr8 OpenSea 0.79 0.27 0.52 CSGALCT1 
cg11439662 chr8 OpenSea 0.74 0.32 0.42 - 
cg13081981 chr4 OpenSea 0.62 0.12 0.50 - 
cg20268758 chr15 North Shelf 0.68 0.25 0.43 FAM189A1 
cg13659542 chr2 OpenSea 0.77 0.36 0.41 - 

DNMT∆3B1 
 
 
 
 

cg26763380 chr8 OpenSea 0.73 0.30 0.43 EIF3E 
cg16318688 chr1 OpenSea 0.64 0.19 0.45 EPHX4 
cg13054800 chr4 OpenSea 0.50 0.07 0.44 - 

cg03894789 chr5 OpenSea 0.71 0.27 0.44 
MIR874; 
KLHL3 

cg19945464 chr11 South Shore 0.47 0.07 0.40 GAS2 

DNMT∆3B2 
 
 
  

cg01910804 chr14 North Shore 0.48 0.08 0.40 TTC6 
cg10617796 chr5 OpenSea 0.54 0.12 0.42 EDIL3 
cg21808287 chr2 OpenSea 0.58 0.12 0.45 TNP1 
cg04502126 chr4 OpenSea 0.67 0.21 0.46 LINC01258 
cg25533247 chr19 South Shore 0.63 0.12 0.50 AKAP8L 

DNMT∆3B3 
 
 
  

cg08927738 chr20 OpenSea 0.60 0.18 0.42 BCAS1 
cg04751120 chr8 OpenSea 0.68 0.27 0.40 RP1L1 
cg03883300 chr8 OpenSea 0.56 0.15 0.41 - 
cg20364776 chr4 OpenSea 0.80 0.36 0.44 EEF1AL7 
cg13491907 chr9 OpenSea 0.87 0.46 0.41 - 

DNMT∆3B4 
 
 
  

cg26295057 chr5 CpG Island 0.55 0.12 0.43 GDNF 
cg22976313 chr14 North Shore 0.77 0.36 0.41 TMEM179 
cg07504154 chr4 OpenSea 0.53 0.10 0.42 ASB5 
cg04220501 chr14 OpenSea 0.53 0.09 0.44 - 
cg06440519 chr19 CpG Island 0.65 0.21 0.45 SYT3 

DNMT3L 
 
 
  

cg07383415 chr2 OpenSea 0.79 0.34 0.44 FAM49A 
cg12150401 chr7 OpenSea 0.74 0.33 0.41 TAS2R16 
cg20540357 chr5 OpenSea 0.69 0.19 0.50 PPP2R2B 
cg16796997 chr7 OpenSea 0.71 0.17 0.54 - 
cg12958892 chr2 OpenSea 0.62 0.16 0.45 LOC101927285 

DNMT1 
 
 
  

cg06877649 chr8 OpenSea 0.71 0.20 0.51 - 
cg20943641 chr12 South Shore 0.47 0.07 0.40 CCDC53 
cg09559735 chr22 OpenSea 0.49 0.05 0.43 - 
cg21298915 chr4 OpenSea 0.64 0.21 0.43 - 
cg26096646 chr12 OpenSea 0.64 0.22 0.42 - 
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 All hypermethylated loci of each DNMT isoform were explored the DNA methylation 

levels by CpG density (Figure 4.8). The majority of the hypermethylated probes was 

annotated at CpG Island and Opensea (p-value ≤ 0.05) in DNMT cells. Also, the 

hypermethylated probes after overexpression of DNMT3A2, DNMT3B4, DNMT∆3B4, and 

DNMT3L were significantly annotated at North shore and South Shore (p-value ≤ 0.05). Only 

the hypermethylated probes after overexpression of DNMT∆3B2 was significantly annotated 

at CpG island, North Shelf, and Opensea. 
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Figure 4.13 Mean Δβ DNA methylation pattern by CpG density of cells overexpressing 
DNMTs. N_shelf: North Shelf, N_shore: North Shore, Island: CpG island, S_shore: South 
Shore, S_shelf: South Shelf.  
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4.6.5 The implication of target DMPs of each DNMT isoform using pathway 

analysis 

To investigate possible links with mechanisms underlying human diseases, the target DMPs 

(significantly hyper- and hypomethylated probes) were performed in DAVID (for data after 

setting cut-off at Δβ ≤ -0.2 and Δβ ≥ 0.2) and IPA (for data after setting cut-off at Δβ ≤ -0.4 

and Δβ ≥ 0.4. DAVID was used to highlighted pathway members within the biochemical 

pathways provided by KEGG. The p-value and the Benjamini-Hochberg FDR were used to 

determine significant of enrichment or overrepresentation of terms for each annotation in 

DAVID. Canonical pathway analysis identified the top pathways from IPA knowledge Base 

and Fischer’s exact test was used to calculate a p-value determining the probability of the 

association between the significant loci and canonical pathway. The top enriched categories 

of KEGG pathway and canonical pathways with a p-value ≤ 0.05 were listed in Table 4.4 and 

4.5, respectively.  

 For KEGG pathway in Table 4.3, the significant probes after overexpression of 

DNMT3A1, DNMT3B3, DNMT3B4, DNMTΔ3B1, and DNMTΔ3B3, were associated with 

neuroactive ligand-receptor interaction. The significant loci in DNMT3A2, DNMTΔ3B4, and 

DNMT3L cells were correlated with focal adhesion. Calcium signalling was associated with 

the target DMPs of DNMT3A1, DNMT3B1, and DNMT3B3. PI3K-Akt signalling was 

enriched in DNMT3B3, DNMTΔ3B4, and DNMT3L. Ascorbate and aldarate metabolism 

were correlated with the target DMPs of DNMT3B4 and DNMTΔ3B3. The target DMPs of 

DNMTΔ3B1 and DNMTΔ3B4 were associated with axon guidance. The significant loci in 

DNMT3B3, DNMT3B5, DNMTΔ3B3, and DNMT3L were correlated with glutamatergic 

synapse. Chondroitin sulfate biosynthesis was enriched in the target DMPs of DNMT3A1 and 

DNMT1. 

For canonical pathway in Table 4.5, the significant probes after overexpression of 

DNMT3B2, DNMT3B3, and DNMTΔ3B1, were associated with Synaptogenesis signalling 

pathway. The significant probes in DNMTΔ3B3 and DNMT3B3 cells were correlated with 

CREB signalling in neurons and glutamate receptor signalling. IL-15 production was enriched 

in the target DMPs of DNMT3A2 and DNMT3L. Citrulline-nitric oxide cycle was associated 

with the target DMPs of DNMT3B1 and DNMT3L. GP6 signalling pathway was enriched in 

DNMTΔ3B2 and DNMTΔ3B4. GPCR-mediated integration of enteroendocrine signalling 

exemplified by an L cell was correlated with the target DMPs of DNMT3B2 and DNMT1. 

The target DMPs of DNMTΔ3B1 and DNMT1 involved in Renin-angiotensin signalling. The 
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significantly target probes of DNMT3A2, DNMTΔ3B2, and DNMT3L were associated with 

sperm motility.  

 

Table 4.4  List of top KEGG pathways of each DNMT isoform. 

DNMT 
isoforms Top Canonical pathways p-value 

Benjamini-
Hochberg 

FDR 

DNMT3A1 

Cell adhesion molecules 0.016 0.230 
Neuroactive ligand-receptor interaction 0.019 0.140 
Calcium signalling 0.068 0.310 
Chondroitin sulfate biosynthesis 0.077 0.270 
NOD-like receptor signalling 0.690 0.900 

DNMT3A2 

Focal adhesion 0.00000052 0.000096 
Regulation of actin cytoskeleton 0.00000120 0.000110 
Adherens junction 0.00002300 0.001300 
Neurotrophin signalling 0.00012000 0.005300 
Tight junction 0.00013000 0.004800 

DNMT3B1 

Calcium signalling 0.00000700 0.001800 
Insulin secretion 0.00003800 0.005 
Circadian entrainment 0.00004900 0.004300 
Rap1 signalling 0.00015000 0.009500 
Pentose and glucoronate interconversions 0.00028000 0.012 

DNMT3B2 

Protein digestion and absorption 0.00035000 0.088 
Mucin type O-glycan biosynthesis  0.00140000 0.160 

Rap1 signalling 0.00160000 0.130 
Regulation of actin cytoskeleton 0.00340000 0.200 
Ras signalling 0.004 0.190 

DNMT3B3 

Calcium signalling  0.00004600 0.012 
ECM-receptor interaction 0.00014000 0.017 
PI3K-Akt signalling 0.00020000 0.017 
Neuroactive ligand-receptor interaction 0.00050000 0.032 
Glutamatergic synapse 0.00075000 0.038 

DNMT3B4 

Pentose and glucoronate interconversions 0.00000360 0.000930 
Ascorbate and aldarate metabolism 0.00001300 0.003600 
Steroid hormone biosynthesis 0.00014000 0.018 
Drug metabolism-cytochrome P450 0.00015000 0.013 
Neuroactive ligand-receptor interaction 0.00015000 0.013 
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Table 4.5 (continue) List of top KEGG pathways of each DNMT isoform. 

DNMT 
isoforms Top Canonical pathways p-value 

Benjamini-
Hochberg 

FDR 

DNMT3B5 

Focal adhesion 0.0001100 0.029 
Oestrogen signalling 0.0025000 0.280 
Amyotrophic lateral sclerosis 0.0028000 0.220 
Glutamatergic synapse 0.0036000 0.210 
Regulation of actin cytoskeleton 0.0041000 0.200 

DNMT∆3B1 

Neuroactive ligand-receptor interaction 0.0000370 0.00620 
Axon guidance 0.0002800 0.073 
Morphine addiction 0.0003100 0.026 
Hippo signalling 0.0003800 0.050 
Wnt signalling 0.0008200 0.070 

DNMTΔ3B2 

Phosphatidylinositol signalling  0.0000270 0.00640 
Cholinergic synapse 0.0004100 0.048 
Rap1 signalling 0.0004100 0.035 
Retrograde endocannabinoid signalling 0.0004500 0.032 
Salivary secretion  0.0005400 0.130 

DNMT∆3B3 

ECM-receptor interaction  0.0000020 0.00049 
Neuroactive ligand-receptor interaction 0.0001700 0.044 
Ascorbate and aldarate metabolism  0.0002300 0.029 
Glutamatergic synapse 0.0003900 0.032 
Dopaminergic synapse 0.0004500 0.028 

DNMT∆3B4 

Focal adhesion 0.0000050 0.00130 
Ras signalling  0.0000110 0.00150 
Proteoglycans in cancer 0.0000380 0.00960 
Axon guidance  0.0000440 0.00560 
PI3K-Akt signalling 0.0004100 0.051 

DNMT3L 

Focal adhesion 0.0000400 0.010 
ECM-receptor interaction 0.0000540 0.007 
Amoebiasis 0.0007300 0.018 
PI3K-Akt signalling 0.0009500 0.120 
Glutamatergic synapse 0.0015000 0.120 

DNMT1 

MAPK signalling 0.009 0.770 
Dilated cardiomyopathy 0.026 0.880 
Chondroitin sulfate biosynthesis 0.028 0.790 
ECM-receptor interaction 0.036 0.780 

Pancreatic cancer 0.039 0.730 

Genes were categorised to KEGG pathways from gene enrichment analysis was used to 
calculate p-value and Benjamini-Hochberg FDR determining the probability of the association 
between the significant genes and KEGG pathways. 
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Table 4.5 List of top canonical pathways of each DNMT isoform. 

DNMT 
isoforms Top Canonical pathways p-value 

DNMT3A1 

LXR/RXR activation  0.003 
IL-10 signalling 0.005 
RhoGDI signalling 0.011 
Circadian rhythm signalling  0.011 
GABA receptor signalling  0.011 

DNMT3A2 

Sperm motility  0.003 
PTEN signalling 0.006 
Myo-inositol biosynthesis  0.009 
IL-15 production 0.010 
SAPK/JNK signalling 0.012 

DNMT3B1 

Superpathway of citrulline metabolism  0.004 
Lipoate biosynthesis and incorporation II  0.013 
Serotonin and melatonin biosynthesis  0.025 
Citrulline-nitric oxide cycle 0.032 
Urea cycle 0.038 

DNMT3B2 

PFKFB4 signalling pathway 0.001 
GPCR-mediated integration of enteroendocrine 
signalling exemplified by an L cell 0.005 

Trehalose degradation II (Trehalase) 0.015 
Synaptogenesis signalling pathway  0.018 
Adenine and adenosine salvage III 0.025 

DNMT3B3 

Chondroitin sulfate biosynthesis  0.002 
Dermatan sulfate biosynthesis  0.002 
Glutamate receptor signalling 0.002 
CREB signalling in neurons 0.002 
Synaptogenesis signalling pathway  0.003 

DNMT3B4 

GDP-glucose biosynthesis  0.002 
Glucose and glucose-1-phosphate degradation 0.003 
UDP-N-acetyl-D-galactosamine biosynthesis II 0.005 
PFKFB4 signalling pathway 0.020 
cAMP-mediated signalling 0.020 
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Table 4.5 (continue) List of top canonical pathways of each DNMT isoform. 

DNMT 
isoforms Top Canonical pathways p-value 

DNMT3B5 

HER-2 signalling in breast cancer 0.001 
ErbB signalling 0.014 
iCOS-iCOSL signalling in T helper cells 0.017 
Triacylglycerol degradation 0.018 
Chronic myeloid leukaemia signalling 0.019 

DNMT∆3B1 

FGF signalling  0.003 
RANK signalling in osteoclasts 0.004 
Synaptogenesis signalling pathway  0.007 
Endocannabinoid developing neuron pathway 0.010 
Renin-angiotensin signalling 0.010 

DNMTΔ3B2 

T helper cell differentiation <0.001 
Calcium signalling <0.001 
Cellular effects of sildenafil (Viagra) 0.001 
GP6 signalling pathway 0.002 
Sperm motility  0.004 

DNMT∆3B3 

Netrin signalling  <0.001 
Amyotrophic lateral sclerosis signalling  <0.001 
Glutamate receptor signalling  0.009 
CREB signalling in neurons  0.001 
Opioid signalling pathway  0.005 

DNMT∆3B4 

p53 signalling  <0.001 
Amyotrophic lateral sclerosis signalling <0.001 
Human embryonic stem cell pluripotency  0.001 
GP6 signalling pathway 0.001 
Leukocyte extravasation signalling 0.001 

DNMT3L 

Citrulline-nitric oxide cycle 0.001 
Sperm motility  0.004 
Neuroinflammation signalling pathway 0.005 
IL-15 production 0.005 
Dopamine receptor signalling  0.005 

DNMT1 

EGF signalling 0.008 
Rac signalling 0.008 
Renin-angiotensin signalling  0.010 
ERK/MAPK signalling 0.012 
GPCR-mediated integration of enteroendocrine 
Signalling exemplified by an L cell 0.015 

Genes were categorised to canonical pathways from IPA knowledge Base and Fischer’s exact 
test was used to calculate a p-value determining the probability of the association between the 
significant genes and canonical pathways. 
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 DNA methylation of the protocadherin genes was explored as loss of methylation at 

the protocadherin gamma gene cluster particularly affects the A and B class variable genes 

(97). Overexpression of DNMTs increased DNA methylation levels of probes located on 

PCDHG (Figure 4.14). However, there are some probes showed low methylation after 

overexpression of DNMTs, i.e. cg16541259, cg 16626420, cg23347399, cg00118365, 

cg00888801, cg07802710, cg21185686, cg27639030, and cg12145907. 

 

 
Figure 4.14 DNA methylation levels of PCDHG by overexpressing DNMT cells. The 
significant probes of PCDHG were represented in green colour (low methylation compared 
with Myc control) and red colour (hypermethylation compared with Myc control). 
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In addition to pathway analysis, differentially methylated loci were also categorised to 

related diseases. Similar as the results from canonical pathway analysis, disease with a p-

value ≤ 0.05 were listed in Table 4.6. Most DNMTs were associated with cancer and 

organismal injury and abnormalities. Hereditary disorder and metabolic disorder were 

associated only with DNMT3B1. Also, only DNMT3B3, DNMT3B4, DNMT3B5, 

DNMTΔ3B1, and DNMTΔ3B4 were associated with CVD, psychological disorders, 

inflammatory response, infectious diseases, and hepatic system disease, respectively. 

However, these markers could not be specifically linked. 

 

Table 4.6 List of top diseases of each DNMT isoform. 

Red boxes represent the significant diseases at p-value ≤ 0.05 and white boxes are not 
analysed. Genes were categorised to related disease from IPA knowledge Base and Fischer’s 
exact test was used to calculate a p-value determining the probability of the association 
between the significant genes and diseases. 
 

 

 

 

Diseases 3A1 3A2 3B1 3B2 3B3 3B4 3B5 ∆3B1 ∆3B2 ∆3B3 ∆3B4 DNMT1 3L 

Cancer                           

Organismal injury and 

abnormalities                           

Reproductive system 

disease                            

Gastrointestinal disease                           

Auditory disease                           

Endocrine system disorders                           

Hereditary disorder                           

Metabolic disease                            

Dermatological disease and 

conditions                           

Respiratory disease                            

Cardiovascular disease                            
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4.7 Discussion 

 

4.7.1 Main findings 

Investigation of the de novo targets of DNMT isoforms revealed that DNMT isoforms that are 

over-expressed in HEK293T cells can influence DNA methylation with increased methylation 

and decreased methylation at different CpG sites. Although there was some overlap in the 

target DMPs within DNMT families (e.g. DNMT3A, DNMT3B, and DNMTΔ3B), the 

majority of the hypermethylated probes was unique to individual DNMTs. This suggests that 

a splicing variance of DNMTs results in different target sites of each DNMT. 

Hypermethylation level changes were lower than 0.7, indicating this was a limitation of 

increase methylation by DNMTs. Moreover, the profiling of de novo DNA methylation target 

CpG sites for each DNMT isoform was revealed and annotated to potential biological 

pathways and diseases. 

 

4.7.2 De novo DNA methylation target DMPs of DNMT isoforms 

Nowadays, the activity of DNMT1, DNMT3A, and DNMT3B can be measured using a 

commercial kit but it cannot measure specific sub-isoforms of DNMTs due to the close 

similarity of the structure of each DNMT sub-family. In this study, 13 different DNMT cell 

lines were created and these cells were used to explore the DNA methylation patterns 

including identifying the de novo methylation sites. Also, the use of EPIC array can enable 

the identification of de novo DNA methylation target sites of DNMT isoforms. 

This study is the first one to identify the de novo methylation sites using biological 

duplicates from single clonal cells. In contrast, a previous publication investigated the over-

expressed DNMTs from a mixed cell population (87). Over 850,000 CpGs were measured for 

DNA methylation levels in this study and the cut-offs of ∆β value were set at three different 

values: Δβ ≤ -0.2 and Δβ ≥ 0.2, Δβ ≤ -0.3 and Δβ ≥ 0.3, and Δβ ≤ -0.4 and Δβ ≥ 0.4. However, 

there was no significant different of the distribution of significant loci along with genomic 

regions among three cut-offs. Additionally, 1,505 loci from the Illumina GoldenGate 

Methylation Cancer Panel I were explored in this study in order to compare the DNA 

methylation levels with the previous study. However, only 436 probes out of 1,505 probes 

passed the quality check and more than 95% of these probes showed -0.4 < ∆β < 0.4. Also, 

the top loci, which were found in the previous study, did not show significant changes in this 

study. This is due to the fact that the data analysis including normalisation and filtering in this 

study, was more robust with statistic analysis.  
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Generally, DNA was hypermethylated in cells that over-expressed each individual 

DNMT. In this study, hypermethylated probes of each DNMT isoform were significantly 

located on CpG island and Opensea areas where low methylation levels are, suggesting that 

these areas were sensitive to induce DNA methylation. Additionally, the significant loci of 

both hyper and hypomethylated probes were enriched in gene body and TSS1500 areas where 

may block the initiation of transcription (299, 300) and also may be more important for 

controlling gene splicing (300) and control of developmental timing of expression (301).  

Obviously, there is no difference in the DNMT isoforms after PCA analysis from the 

whole loci, which passed the quality control and filtering. However, after selecting only the 

significant loci using cut-offs at Δβ ≤ -0.4 and Δβ ≥ 0.4, the results of clustering analysis 

revealed that DNMT3A2, DNMT∆3B2, and DNMT∆3B4 contributed to DNA 

hypermethylation and were clustered in the same group. This suggests that there is a 

specificity of modulating DNA methylation levels by DNMT isoforms. Not only 

hypermethylation but hypomethylation was observed after DNMT overexpression. After 

setting the cut-offs at Δβ ≤ -0.4 and Δβ ≥ 0.4, the number of hypomethylated probes exceeded 

those of hypermethylated probes in cells that over-expressed DNMT3A1, DNMT3B3, and 

DNMT3B5. The hypotheses of this observation are that 1) trans-regulation of DNMTs can 

control the promoter activity of certain DNMTs leading to inducing hypermethylation or 

hypomethylation at its target CpGs 2) the different structure of each DNMT isoform resulted 

in different function of DNMTs. It suggests that lack of catalytic C-terminal of DNMT3B3 

and DNMT3B5 is associated with DNA hypomethylation. Similarly, the DNA methylation 

activities of purified Dnmt3b1-Dnmt3b3 were determined, and results showed that Dnmt3b3 

has no activity toward the methyl acceptors (302). However, DNMT3B4 also lacks the 

conserved methyltransferase motifs IX and X as well as DNMT3B5 does, but DNMT3B4 

showed more hypermethylated probes than DNMT3B5. Furthermore, lacking 200 amino 

acids from the N-terminal area of DNMT3B, DNMTΔ3B1-DNMTΔ3B4 showed higher 

number of hypermethylated probes than DNMT3B families, suggesting that lacking those 

areas enhanced DNA methylation levels. 

DNMT3A2 acts as an active DNMT and displays a localisation pattern suggestive of 

euchromatin association, while DNMT3A1 is a full-length DNMT3A and is concentrated on 

heterochromatin (84). DNMT3A2 is highly expressed in embryonic stem cells and embryonal 

carcinoma cells, while DNMT3A1 is expressed at low levels ubiquitously (84). In this study, 

the basal DNMT3A2 was highly expressed in HEK293T cell. This might lead to increase a 

number of DNMT3A2 protein after overexpression and DNMT3A2 increased DNA 
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methylation of several CpG targets. Another reason is that DNMT3A2 shares binding regions 

with DNMT3A1 and DNMT3B1, while DNMT3A1 has distinct binding targets (303).  

DNMTΔ3B2 showed the highest number of hypermethylated probes and 25% of these 

probes overlapped with the target probes of other DNMTΔ3Bs. Although, the structure of 

DNMTΔ3B2 is similar to DNMTΔ3B1, the number of overlapped hypermethylated probes 

was 5%. Only DNMTΔ3B2 and DNMTΔ3B4 showed low number of hypomethylated probes 

compared to other DNMT3Bs. It suggests that lacking 200 amino acid N-terminal and exon 6 

of DNMT3B in both isoforms induces hypermethylation within 103 shared target CpG sites. 

DNMT1 and DNMT3L induced hypermethylation and this result was concomitant with 

previous publication (87). Although DNMT3L is an inactive form, DNMT3L plays an 

important role in modulating DNA methylation through activating or recruiting de novo 

DNMTs (111-113). In this study, DNMT3L showed an activity to increase DNA methylation. 

This is concordant with Duymich C.E.’s study, which showed that DNMT3L demonstrated 

the ability to restore DNA methylation in DNMT3B deficient cells (277). Additionally, 

DNMT3L enhanced DNMT activity of DNMT3A2 and increased SAM binding by binding to 

DNMT3A2 promoters resulting in reorganisation of DNMT3A2 subunits (304).   

 

4.7.3 Implication of de novo DNA methylation targets of DNMTs to biological 

pathways and diseases 

In the introduction chapter (see section 1.4.2, page 14), I reviewed evidence that DNMTs play 

an important role in human diseases and especially in cancers. Increased hypermethylation of 

tumour suppressor genes in cancer cells is attributable to the aberrant expression or activity of 

DNMT1, DNMT3A, or DNMT3B (283, 305-307). The de novo target DMPs of each DNMT 

were located in the genes enriched in cancer and in cancer-related pathways such as IL-10 

signalling (308), RhoGDI signalling (309), PTEN signalling (310), HER-2 signalling (311, 

312), focal adhesion (313), PI3K-Akt (314), calcium signalling (315), and ERK/MAPK 

signalling (316). To my knowledge no previous publication has investigated the prediction or 

association of specific DNMTs to other diseases apart from cancers. These pathways 

identified in this study, that were predicted from the de novo DNA methylation target of 

individual DNMT isoforms, showed the potential for associations between individual DNMTs 

and a number of other diseases. The target CpGs of DNMT3B1 was associated with 

hereditary disorder and metabolic disease, while CVD, psychological disorders, and 

inflammatory were associated with DNMT3B3, DNMT3B4, and DNMT3B5, respectively. 
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Infectious diseases, hepatic system disease, and connective injury and abnormalities were 

specific associated with DNMT∆3B1, DNMT∆3B4, and DNMT3L, respectively.  

 The identified target CpGs would be a good marker to measure DNA methylation 

changes by specific DNMT isoforms in order to identify specific health conditions. For 

example, the dysregulation of DNMT3B contributes to ICF syndrome and the depletion of 

DNMT3B was associated with hypomethylation of PCDHG (97, 317). In this study, the 

overexpression of DNMT isoforms especially DNMTΔ3B can increase DNA methylation 

levels of PCDHG. However, further studies need to investigate and research the function of 

those targets on specific health conditions using the different cohort studies. 

 

4.8 Conclusion 

Using an unbiased genome-wide technique, this study examined the de novo target DMPs of 

13 DNMT isoforms from stably transduced single‐cell‐derived clonal lines. The DNA 

methylation patterns of each DNMT were not dependant on the structure of DNMT variants.  

Although some DNMT isoforms showed similar catalytic sites, they modulated DNA 

methylation levels in different CpG sites. Also, some DNMT isoforms might show a trans-

regulated activity on other DNMTs leading to hypomethylation. The majority of the 

preferential target sites of DNMTs were located on CpG island and Opensea where there is a 

space for increased DNA methylation. Not only the similarity of cancer-associated genes was 

identified from target DNMTs, but there were some unique genes associated with specific 

health condition. Therefore, there is a possible way for future mechanistic research to predict 

specific health condition from specific DNMT activity. 
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5. Chapter 5: The effect of dietary constituents (polyphenols and vitamin C) 
on DNA methylation levels in over-expressed DNMT cell lines 

 

 

5.1 Introduction 

As reviewed in the introduction section (see section 1.6.2, page 22), nutrition modulates the 

DNA methylation patterns either at the global scale or at locus specific CpG sites. Specific 

nutrients can alter DNA methylation in two possible ways: 1) through the provision of 

substrates or cofactors required for one-carbon metabolism (Figure 1.10), which generates 

SAM; and 2) through inhibition the activity of DNMT. The methyl donor (SAM) for DNMT 

is synthesised via one-carbon metabolism using nutrients such as folate, choline, betaine, 

vitamin B12 and B6 (198). Diets that are deficient in methyl donors such as folate cause 

reduced concentration of SAM and increased concentration of SAH (318, 319), which have 

been correlated with global DNA hypomethylation (251). In older people (age 65-75 years), 

supplementation with folic acid (400 µg) and vitamin B12 (500 µg) for two years increased 

DNA methylation at hypomethylated areas in the genome including North Shore, South 

Shore, and CpG islands (320). In addition, these supplementations increased methylation of 

locus-specific loci related pre-symptomatic dementia (one of the papers I published as the 

first-author during my PhD training). Altering the enzyme activity of DNMTs is the second 

possible mechanism by which nutrients may modulate patterns of DNA methylation.  

The potential of specific nutrients and other food constituents to inhibit DNMT 

activity has been evaluated (see introduction section 1.5.2, page 17). For example, tea 

polyphenols and bioflavonoids (quercetin, fisetin, and myricetin) have been found to be 

DNMT1 inhibitors and the structural model of DNMT1 catalytic domain revealed a 

substantial interaction with polyphenols (166, 167). In studies with cell lines, treatment with 

EGCG reduced mRNA levels and protein expression of DNMTs resulting in decreased DNA 

methylation and increased histone acetylation (168, 169). Genistein inhibits the effects of 

DNMT1 activity in a dose-dependent manner, but has no effect on expression of DNMTs at 

the mRNA level (227). CA and chlorogenic acid, common coffee polyphenols, increased 

SAH and inhibited of CpG methyltransferase (M.SssI)-mediated DNA methylation (173). 

Analysis of molecular docking showed that curcumin blocked the catalytic domain of 

DNMT1 and it also inhibited the activity of M.SssI (174). However, there have been few 

investigations of the effects of nutrients and other food constituents on the activity of specific 

DNMT isoforms. In this study, the sensitivity and specificity of DNMT inhibitors were 

investigated with polyphenols and vitamin C in various concentrations in order to understand 
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the effect of these compounds on DNMT sub-isoforms. EGCG, curcumin, theaflavin, CA, and 

vitamin C were investigated in this study as these compounds were found the inhibitory effect 

on DNMTs (see the Table 1.2 in Introduction section 1.5.2, page 17). DNA methylation of the 

target DNMTs (hypermethylated probes from EPIC array analysis described in Chapter 4) 

was quantified with/without exposure to each of polyphenols and vitamin C separately in cell 

lines that over-expressed each of the individual DNMT isoforms compared with control cells. 

From EPIC data analysis, DNMT3A2, DNMT3B4, DNMTΔ3B2, DNMTΔ3B4, and DNMT1 

showed more than 300 hypermethylated probes, and they were selected for dietary treatment. 

Although DNMT1 showed less than 300 hypermethylated probes, DNMT1 was selected as it 

is the full length isoform. Furthermore, for CA only, DNMT activity was measured to confirm 

the inhibitory effect of the food derived-polyphenol on target DNMTs. This research aims to 

find the specific effects of food constituents on activity of individual DNMTs as a first step 

towards being able to target, and inhibit, the activities of these DNMT isoforms. 

 

5.2 Hypotheses 

The hypotheses for this study were: 

1. The global DNA methylation is reduced in treated cells with food-derived polyphenols 

(theaflavin, EGCG, CA, curcumin) and vitamin C, compared with untreated cells. 

2. DNMT inhibitors attenuate DNA methylation with specificity to target CpG of 

DNMTs.  

3. DNMT activity is decreased by DNMT inhibitor including food-derived polyphenols 

(theaflavin, EGCG, CA, curcumin) and vitamin C.  

 

5.3 Aim 

• To test the above hypotheses, the sensitivity and specificity of the effects of food-

derived polyphenols (theaflavin, EGCG, CA, and curcumin) and vitamin C on 

methylation will be measured using target CpG sites of each DNMT isoform as a 

marker. 

 

5.4 Objectives 

The objectives of this study were: 
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1. To perform pyrosequencing to confirm the DNA methylation level results from EPIC 

array (in chapter 4) in the overexpressing DNMT isoform. 

2. To optimise the concentration of dietary constituents and time for treatment into the cell 

lines that overexpress each of the DNMTs individually. 

3. To use pyrosequencing to provide DNA methylation levels of global and specific CpGs 

in treated cells with DNMTi (food-derived compounds) compared with untreated cells. 

 

5.5 Overview of methods 

A detailed description of the experimental procedure and methods for measuring cell 

viability, DNA methylation, and DNMT activity can be found in the Method chapter sections 

2.3 and 2.4, pages 45 and 50, respectively. 

 In brief, seven cell lines that overexpress each of the DNMTs individually 

(DNMT3A2, DNMT3B4, DNMT∆3B2, DNMT∆3B3, DNMT∆3B4, DNMT1, and 

DNMT3L) were treated with several concentrations of food-derived polyphenols (theaflavin, 

EGCG, CA, curcumin) and vitamin C (see section 2.3.1 in Methods section, page 45) to find 

the optimum concentrations of each of these compounds for use in the cell culture 

experiments. After that, cells overexpressing each individual DNMT isoform were cultured 

with the specific concentration of each compound for 48 hours (see section 2.3.2 in Methods 

section, page 46). Global DNA methylation and methylation at specific CpG sites was 

quantified using pyrosequencing (see section 2.3.3 in Methods section, page 46). Finally, 

DNMTΔ3B4 was extracted from the cell line that over-expressed this DNMT isoform (see 

section 2.4.1 in Methods section, page 50), precipitated using IP/Co-IP (see section 2.4.2 in 

Methods section, page 50) and its activity was determined using a DNMT inhibition assay 

(see section 2.4.3 in Methods section, page 51). 

 

5.6 Results 

 

5.6.1 Viability of cells overexpressing DNMTΔ3B2 and Myc after treatment with 

theaflavin, EGCG, CA, curcumin, and vitamin C 

Cells overexpressing DNMTΔ3B2 and Myc control cell were selected as the experimental 

sample in order to determine the cell viability after treatment with a range of concentrations 

of theaflavin, EGCG, CA, curcumin, and vitamin C. This choice was made because cells 
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overexpressing DNMTΔ3B2 showed the highest number of hypermethylated CpG sites (using 

data from the EPIC array – see Chapter 4, section 4.6.1, page 84) and the cell-line 

overexpressing Myc was used as the control. Cell viability was assessed with theaflavin 

concentrations of 0, 8.1, 20.1, 40.3, 80.5, 161.0 µM and with concentrations of 0, 10, 25, 50, 

100, 200 µM of vitamin C, EGCG, CA, and curcumin (Figure 5.1). 

 Since the average doubling time of HEK293T cells is 24 hours, cell viability was 

assessed after treatment with food constituents for up to 72 hours to select the optimum of 

incubation time. The viability of cells overexpressing DNMTΔ3B2 and of Myc cells after 

treatment with various concentrations of food constituents showed similar trends in both cell 

lines (Figure 5.1). The proportion of viable cells declined linearly with increasing dose of 

theaflavin, EGCG, CA and, especially, curcumin, but there was no evidence of any effect of 

vitamin C on viability of either cell line at any of the doses tested (Figure 5.1). In addition, for 

curcumin, but not for any of the other food constituents, there was a strong effect of time with 

greater loss of cell viability with increasing duration of exposure (Figure 5.1). The 

concentrations of food constituents to be used in further experiments were selected so that the 

percentage of cell viability was higher than 50%. These were: EGCG at 0, 50, 100 µM, 

curcumin at 0, 10, 25 µM, CA at 0, 100, 200 µM, theaflavin at 0, 80.5, 161 µM and vitamin C 

at 0, 100, 200 µM. Also, the optimum of incubation time was 48 hours. 
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Figure 5.1 Viability of the cell lines overexpressing DNMTΔ3B2 and Myc after treatment 
with selected dietary constituents. The concentrations of selected dietary constituents were 
theaflavin at 0, 8.1, 20.1, 40.3, 80.5, 161.0 µM and vitamin C, EGCG, CA, curcumin, at 0, 10, 
25, 50, 100, 200 µM. Cells were treated for 12, 24, 48, and 72 hours. Error bars represent 
standard deviation from triplicates. 
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5.6.2 Effects of treatment with food constituents on global DNA methylation  

To understand global DNA methylation level, LINE-1 assay was measured in Myc (control) 

and cells overexpressing DNMT3A2, DNMT3B4, DNMT∆3B2, DNMT∆3B3, DNMT∆3B4, 

DNMT1 and DNMT3L. It was found for these cells that global DNA methylation was 

significantly (p-value ≤ 0.05) increased compared with the control Myc cell (Figure 5.2).  

 

 
Figure 5.2 The level of LINE-1 methylation in DNMT cells. Global DNA methylation level 
(using LINE-1 assay) was measured in the selected cell lines (DNMT3A2, DNMT3B4, 
DNMT∆3B2, DNMT∆3B3, DNMT∆3B4, DNMT1, and DNMT3L) compared with that in the 
control Myc cell line. Error bars represent standard deviation from triplicates and * represents 
p-value ≤ 0.05. 

 

 Global DNA methylation (assessed used the LINE-1 assay) was quantified in cells 

overexpressing DNMT3A2, DNMT3B4, DNMT∆3B2, DNMT∆3B3, DNMT∆3B4, DNMT1, 

and DNMT3L after treatment with theaflavin, vitamin C, EGCG, CA, and curcumin. After the 

48-hour treatment with CA, global DNA methylation of cells overexpressing DNMT∆3B4 

decreased significantly from 66.2% to 63.2% (p-value ≤ 0.05) at 100 µM CA and to 60.6% 

(p-value ≤ 0.05) at 200 µM CA (Figure 5.3) but there were no significant changes global 

DNA methylation for the other cell lines at either concentration of CA. 
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Figure 5.3 Global DNA methylation changes after treatment with CA. The global DNA 
methylation levels (using LINE-1 assay) were measured after treatment with CA at 100 and 
200 µM for 48 hours in cells overexpressing DNMT3A2, DNMT3B4, DNMTΔ3B2, 
DNMTΔ3B3, DNMTΔ3B4, DNMT1, and DNMT3L. Error bars represent standard deviation 
from triplicates and * represents p-value ≤ 0.05 compared with untreated condition. 

  

As for EGCG, the concentration at 100 µM reduced significantly of the global DNA 

methylation from 53.7% to 48.3% (p-value ≤ 0.05) in cells overexpressing DNMT1 (Figure 

5.4).  

 

 
Figure 5.4 Global DNA methylation changes after treatment with EGCG. The global DNA 
methylation levels (using LINE-1 assay) were measured after treatment with EGCG at 50 and 
100 µM for 48 hours in cells overexpressing DNMT3A2, DNMT3B4, DNMTΔ3B2, 
DNMTΔ3B3, DNMTΔ3B4, DNMT1, and DNMT3L. Error bars represent standard deviation 
from triplicates and * represents p-value ≤ 0.05 compared with untreated condition. 
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For curcumin and vitamin C, there were no significant changes after treatment (Figure 

5.5 and 5.6). Global DNA methylation level in cells overexpressing DNMT1 was decreased 

significantly from 53.7% to 48.0% (p-value ≤ 0.05) after treatment with theaflavin at 80.5 µM 

for 48 hours (Figure 5.7). I cannot detect the global methylation from DNA of cells 

overexpressing DNMT3L treated with curcumin at 25 µM and of cells overexpressing 

DNMTΔ3B3, DNMTΔ3B4, DNMT1, and DNMT3L treated with theaflavin at 161 µM for 48 

hours (data not available). 

 

 
Figure 5.5 Global DNA methylation changes after treatment with curcumin. The global DNA 
methylation levels (using LINE-1 assay) were measured after treatment with curcumin at 10 
and 25 µM for 48 hours in cells overexpressing DNMT3A2, DNMT3B4, DNMTΔ3B2, 
DNMTΔ3B3, DNMTΔ3B4, DNMT1, and DNMT3L. Error bars represent standard deviation 
from triplicates and * represents p-value ≤ 0.05 compared with untreated condition. 
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Figure 5.6 Global DNA methylation changes after treatment with vitamin C. The global DNA 
methylation levels (using LINE-1 assay) were measured after treatment with vitamin C at 100 
and 200 µM for 48 hours in cells overexpressing DNMT3A2, DNMT3B4, DNMTΔ3B2, 
DNMTΔ3B3, DNMTΔ3B4, DNMT1, and DNMT3L. Error bars represent standard deviation 
from triplicates and * represents p-value ≤ 0.05 compared with untreated condition. 

 

 
Figure 5.7 Global DNA methylation changes after treatment with theaflavin. The global DNA 
methylation levels (using LINE-1 assay) were measured after treatment with theaflavin at 
80.5 and 161 µM for 48 hours in cells overexpressing DNMT3A2, DNMT3B4, DNMTΔ3B2, 
DNMTΔ3B3, DNMTΔ3B4, DNMT1, and DNMT3L. Error bars represent standard deviation 
from triplicates and * represents p-value ≤ 0.05 compared with untreated condition. 

   

5.6.3 Screening of the effect of selected food constituents on DNA methylation 

changes of target CpGs for across DNMT isoforms 

To identify the specificity of inhibitory effects from theaflavin, EGCG, CA, curcumin, and 

vitamin C on any of the five DNMT isoforms (DNMT3A2, DNMT3B4, DNMTΔ3B2, 
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DNMTΔ3B3, and DNMTΔ3B4), DNMT-specific hypermethylated CpG sites were selected 

from EPIC array analysis. Methylation at cg25843713 (Figure 5.8A) and cg04458645 (Figure 

5.8B) in five selected cells was higher than in Myc control cell and cells overexpressing 

DNMT3L (non-target cell). Therefore, cg25843713 and cg04458645 were selected to 

quantify the methylation in across cells overexpressing DNMT3A2, DNMT3B4, 

DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4, including cells overexpressing DNMT3L as 

non-target cell, after treatment with selected food constituents.  

 

 
Figure 5.8 DNA methylation levels (data from EPIC array) of target CpGs for across DNMT 
isoforms. A) cg25843713 and B) cg04458645 were specific across 5 DNMTs (DNMT3A2, 
DNMT3B4, DNMTΔ3B2, DNMTΔ3B3, DNMTΔ3B4) compared with cells overexpressing 
DNMT3L and Myc control cell. Error bars represent standard deviation from duplicates. 

After 48 hours of CA treatment, CA at 100 and 200 µM exhibited a significant 

inhibitory effect on cg25843713 (p-value ≤ 0.05) in cells overexpressing DNMT∆3B2 (from 

59.1% to 56.3% at 100 µM and 56.1% at 200 µM) and cells overexpressing DNMT∆3B4 

(from 72.5% to 66.6% at 100 µM and 64.5% at 200 µM) (Figure 5.9A) and cg04458645 in 
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cells overexpressing DNMTΔ3B4 (from 77.2% to 71.2% at 100 µM and 68.5% at 200 µM) 

(Figure 5.9B).  

 

 
Figure 5.9 Effect of CA at 100 and 200 µM on specific CpG sites for 48 hours. A) 
cg25843713 and B) cg04458645 were specific to across 5 DNMTs (DNMT3A2, DNMT3B4, 
DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4). Cells overexpressing DNMT3L was a non-
target cell of these CpGs. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition. 
 
 

EGCG at 50 µM showed a significant increase of DNA methylation (p-value ≤ 0.05) 

at cg25843713 in cells overexpressing DNMTΔ3B4 (from 69.0% to 73.1%) and DNMT3L 

(from 12.5% to 17.2%) (Figure 5.10A) and also at cg04458645 in cells overexpressing 

DNMTΔ3B3 (from 58.5% to 63.2%), while this concentration exhibited a significant decrease 

(p-value ≤ 0.05) of DNA methylation at cg04458645 in cells overexpressing DNMTΔ3B2 

(from 64.4% to 59%) (Figure 5.10B). Moreover, EGCG at 100 µM increased significantly 
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DNMT methylation (p-value ≤ 0.05) at cg25843713 in cells overexpressing DNMT3L (from 

12.5% to 16.5%) (Figure 5.10A) and cg04458645 in cells overexpressing DNMTΔ3B4 (from 

72.5% to 77.8%), but this concentration decreased DNA methylation at this loci in cells 

overexpressing DNMT3A2 (from 70.7% to 64.8%) and DNMT3B4 (from 60.8% to 53.8%) 

(Figure 5.10B). 

 

 
Figure 5.10 Effect of EGCG at 50 and 100 µM on specific CpG sites for 48 hours. A) 
cg25843713 and B) cg04458645 were specific to across 5 DNMTs (DNMT3A2, DNMT3B4, 
DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4). Cells overexpressing DNMT3L was a non-
target cell of these CpGs. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition. 

Curcumin at 10 µM showed a significant increase of DNA methylation (p-value ≤ 

0.05) at cg25843713 in cells overexpressing DNMT3B4 (from 45.6% to 60.0%) (Figure 

5.11A). Additionally, at 25 µM of curcumin, it significantly enhanced DNA methylation 

levels (p-value ≤ 0.05) at cg25843713 in cells overexpressing DNMT3A2 (from 34.44% to 
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36.35%) and DNMT3B4 (from 45.6% to 64.4%) (Figure 5.11A). This concentration also 

significantly increased of DNA methylation levels at cg04458645 in cells overexpressing 

DNMTΔ3B2 (from 60.3% to 64.0%) (Figure 5.11B). However, curcumin at 25 µM exhibited 

a significant inhibitory effect on cg04458645 (p-value ≤ 0.05) in cells overexpressing 

DNMTΔ3B3 (from 60.4% to 55.1%) (Figure 5.11B). Data is not available from cg25843713 

and cg04458645 in cells overexpressing DNMT3L treated with curcumin at 25 µM for 48 

hours due to technical limitations. 

 

 

 
Figure 5.11 Effect of curcumin at 10 and 25 µM on specific CpG sites for 48 hours. A) 
cg25843713 and B) cg04458645 were specific to across 5 DNMTs (DNMT3A2, DNMT3B4, 
DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4). Cells overexpressing DNMT3L was a non-
target cell of these CpGs. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition. 
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At 100 and 200 µM of vitamin C, it decreased significantly DNA methylation levels at 

cg25843713 in cells overexpressing DNMT3A2 (from 35.8% to 33.4% and 32.8%), 

DNMT3B4 (from 63.7% to 51.2% and 53.3%), DNMTΔ3B2 (from 58.4% to 52.7% and 

53.5%), DNMTΔ3B3 (from 69.3% to 63.8% and 64.9%), and DNMTΔ3B4 (from 69.0% to 

48.5% to 61.5%) but these concentrations also decreased significantly DNA methylation 

levels at this loci in cells overexpressing DNMT3L (from 12.5% to 9.7% to 9.2%, 

respectively) (Figure 5.12A). Also, at a concentration of 100 µM, it significantly reduced 

DNA methylation levels at cg04458645 (p-value ≤ 0.05) in cells overexpressing DNMTΔ3B2 

(from 64.4% to 59.2%) (Figure 5.12B). 

 
Figure 5.12 Effect of vitamin C at 100 and 200 µM on specific CpG sites for 48 hours. A) 
cg25843713 and B) cg04458645 were specific to across 5 DNMTs (DNMT3A2, DNMT3B4, 
DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4). Cells overexpressing DNMT3L was a non-
target cell of these CpGs. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition. 
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As for theaflavin, its concentration at 161 µM increased significantly DNA 

methylation levels at cg25843713 in cells overexpressing DNMT3A2 (from 35.8% to 38.1%) 

and DNMTΔ3B2 (from 58.4% to 61.9%) (p-value ≤ 0.05) (Figure 5.13A). At 80.5 µM of 

theaflavin, the DNA methylation of cg25843713 also increased significantly in cells 

overexpressing DNMT3L (from 12.5% to 16.0%) (p-value ≤ 0.05), but it was significantly 

decreased in cells overexpressing DNMT3B4 (from 60.0% to 54.1%) (p-value ≤ 0.05) (Figure 

5.13A). This nutrient at 161 µM enhanced DNA methylation level of cg04458645 in cells 

overexpressing DNMT3A2 (from 70.7% to 74.8%) but this concentration decreased DNA 

methylation at cg04458645 in cells overexpressing DNMT3B4 (from 60.79 to 60.08) (p-value 

≤ 0.05) (Figure 5.13B). However, DNA methylation level of this loci was significantly 

decreased (p-value ≤ 0.05) in cells overexpressing DNMT3L (from 20.2% to 17.8%) after 

treatment with theaflavin at 80.5 µM (Figure 5.13B). Moreover, I cannot detect the 

percentage of DNA methylation on both cg25843713 and cg04458645 in cells overexpressing 

DNMTΔ3B3, DNMTΔ3B4, and DNMT3L treated with theaflavin at 161 µM for 48 hours 

(data not available).  
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Figure 5.13 Effect of theaflavin at 80.5 and 161 µM on specific CpG sites for 48 hours. A) 
cg25843713 and B) cg04458645 were specific to across 5 DNMTs (DNMT3A2, DNMT3B4, 
DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4). Cells overexpressing DNMT3L was a non-
target cell of these CpGs. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition. 
 

 

 

5.6.4 The specificity and sensitivity of DNMT isoforms on selected food 

constituents 

To identify the specificity and sensitivity of each DNMT isoform to each of the food 

constituents (CA, EGCG, curcumin, vitamin C, and theaflavin), methylation at one or two 

target CpG sites from top 10 DMPs for each DNMT isoform was quantified by 

pyrosequencing after treatment with selected food constituents. cg02372111 and cg16204524 

were specific targets of DNMT3A2, cg02788195 for DNMT3B4, cg21808287 and cg 
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25533247 for DNMTΔ3B2, cg08927738 and cg20364776 for DNMTΔ3B3, cg22976313 and 

cg07504154 for DNMTΔ3B4, cg01065960 for DNMT1, cg12150401 and cg20540357 for 

DNMT3L (see Chapter 4, 4.6.3, Table 4.2). Most of these specific loci for each individual 

DNMT showed no differences of the DNA methylation levels measured by EPIC array and 

pyrosequencing (Figure 5.14) but the DNA methylation levels, measured by pyrosequencing, 

of cg02788195, cg16204524, cg21808287, cg25533247, cg08927738, cg07504154, 

cg12150401, and cg20540357 were lower than measuring by EPIC array. In each case, the 

cell lines were treated, separately, with 100 and 200 µM of CA and vitamin C, 50 and 100 of 

EGCG, 10 and 25 µM of curcumin, 80.5 and 161 µM of theaflavin for 48 hours. 
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Figure 5.14 The DNA methylation levels of each target loci for each DNMT between EPIC 
array and pyrosequencing methods.   
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DNA methylation at cg02372111 in cells overexpressing DNMT3A2 was increased 

significantly (p-value ≤ 0.05) after treatment with EGCG at 200 µM (from 83.8% to 86.1%), 

curcumin at 10 and 25 µM (from 84.2% to 85.2% and 87.5%, respectively), and theaflavin at 

80.5 and 161 µM (from 83.8% to 86.6% and 87.1%, respectively) (Figure 5.15A). However, 

methylation at this locus was increased significantly (from 84.2% to 85.2%) after treatment 

with 10 µM curcumin (p-value ≤ 0.05). Methylation at cg16204524 increased significantly 

after treatment with EGCG at 200 µM (from 46.6% to 51.3%) (Figure 5.15B). In contrast, 

methylation at this locus in the DNMT3A2 overexpressing cell line decreased substantially, 

and significantly, after treatment with 25 µM curcumin (from 56.4% to 32.8%), 100 and 200 

µM vitamin C (from 46.6% to 38.5% and 39.4%, respectively), and 161 µM theaflavin (from 

46.6% to 41.7%) (p-value ≤ 0.05) (Figure 5.15B). 



136 
 

 

 
Figure 5.15 DNA methylation changes in specific CpG sites of cells overexpressing DNMT3A2 after treatment with selected food constituents 
for 48 hours. The effects of 100 and 200 µM CA, 50 and 100 µM EGCG, 10 and 25 µM curcumin, 100 and 200 µM vitamin C, 80.5 and 161 µM 
theaflavin, on A) cg02732111, B) cg16204524 were measured by pyrosequencing. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition. 
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 Methylation at cg02788195 in cells overexpressing DNMT3B4 was decreased 

significantly from 35.5% to 33.3% after treatment with 100 µM CA (p-value ≤ 0.05) (Figure 

5.16) with a similar fall in methylation at this CpG (from 35.2% to 32.8%) after treatment 

with 100 µM EGCG (p-value ≤ 0.05) (Figure 5.16). However, methylation at cg02788195 in 

cells overexpressing DNMT3A2 was increased from 12.4% to 15.7% (p-value ≤ 0.05) after 

treatment with 25 µM curcumin (Figure 5.16). 

In cells overexpressing DNMTΔ3B2, treatment with 100 µM EGCG and 80.5 µM 

theaflavin, increased methylation at cg21808287 from 47.67% to 52.51% and 47.67% to 

51.44%, respectively (p-value ≤ 0.05) (Figure 5.17A). After treatment with 200 µM CA, 10 

µM curcumin, and 200 µM vitamin C, methylation at this locus decreased significantly (p-

value ≤ 0.05) from 51.2% to 46.6%, 51.3% to 49.3%, and 55.1% to 50.2% respectively 

(Figure 5.17A). Also, cells overexpressing DNMTΔ3B2 showed decrease of methylation at 

cg25533247 after treatment with 100 µM and 200 µM (from 54.5% to 52.6% and 48.5%, 

respectively) (p-value ≤ 0.05) (Figure 5.17B), while methylation at this locus was increased 

from 47.7% to 52.5% after treatment with 200 µM EGCG (Figure 5.17B). Moreover, I cannot 

detect the DNA methylation of both target sites of DNMTΔ3B2 from DNA of cells 

overexpressing DNMT3L treated with curcumin at 25 µM and with theaflavin at 161 µM for 

48 hours (data not available). 
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Figure 5.16 DNA methylation changes in specific CpG site of cells overexpressing DNMT3B4 after treatment with selected food constituents for 
48 hours. The effects of 100 and 200 µM CA, 50 and 100 µM EGCG, 10 and 25 µM curcumin, 100 and 200 µM vitamin C, 80.5 and 161 µM, on 
cg02788195 were measured by pyrosequencing. Error bars represent standard deviation from triplicates and * represents p-value ≤ 0.05 
compared with untreated condition. 
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Figure 5.17 DNA methylation changes in specific CpG sites of cells overexpressing DNMTΔ3B2 after treatment with selected food constituents 
for 48 hours. The effects of 100 and 200 µM CA, 50 and 100 µM EGCG, 10 and 25 µM curcumin, 100 and 200 µM vitamin C, 80.5 and 161 
µM theaflavin, on A) cg21808287 B) cg25533247 were measured by pyrosequencing. Error bars represent standard deviation from triplicates 
and * represents p-value ≤ 0.05 compared with untreated condition. 
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 Methylation at cg08927738 in cells overexpressing DNMTΔ3B3 were increased 

significantly after treatment with 25 µM curcumin (from 52.7% to 63.2%) and 80.5 µM 

theaflavin (from 53.2% to 57.1%) (p-value ≤ 0.05) (Figure 5.18A). In contrast, vitamin C 

exhibited an inhibitory effect on cg20364776 in cells overexpressing DNMTΔ3B3 (from 

100% to 85.85% and 85.91% at 100 and 200 µM, respectively) (p-value ≤ 0.05) (Figure 

5.18B). However, I cannot detect the DNA methylation of both target sites of DNMTΔ3B3 

from DNA of cells overexpressing DNMT3L treated with curcumin at 25 µM and with 

theaflavin at 161 µM for 48 hours, and of cells overexpressing DNMTΔ3B3 treated with 

theaflavin at 161 µM for 48 hours (data not available). 
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Figure 5.18 DNA methylation changes in specific CpG sites of cells overexpressing DNMTΔ3B3 after treatment with selected food constituents 
for 48 hours. The effects of 100 and 200 µM CA, 50 and 100 µM EGCG, 10 and 25 µM curcumin, 100 and 200 µM vitamin C, 80.5 and 161 µM 
theaflavin, on A) cg08927738 B) cg20364776 were measured by pyrosequencing. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition.
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 Methylation at cg22976313 in cells overexpressing DNMTΔ3B4 was decreased 

significantly after treatment with 200 µM CA (from 84.9% to 74.9%) (p-value ≤ 0.05) (Figure 

5.19A). Also, CA showed the inhibitory effect on another loci (cg07504154) in cells 

overexpressing DNMTΔ3B4 (from 43.29% to 26.62% and 36.70% at 100 and 200 µM, 

respectively) (p-value ≤ 0.05) (Figure 5.19B). Additionally, methylation at cg07504154 was 

decreased significantly after treatment with 100 and 200 µM vitamin C (from 39.5% to 23.0% 

and 18.9%, respectively) (p-value ≤ 0.05) (Figure 5.19B). In contrast, methylation at 

cg07504154 in the DNMTΔ3B4 overexpressing cell line increased substantially, and 

significantly, after treatment with 100 and 200 µM EGCG (from 39.5% to 42.2% and 42.8%, 

respectively), 10 and 25 µM curcumin (from 41.6% to 46.3% and 45.0%, respectively), and 

80.5 µM theaflavin (from 39.5% to 43.7%) (p-value ≤ 0.05) (Figure 5.19B). Furthermore, 200 

µM curcumin increased methylation at cg22976313 from 85.8% to 89.3% (p-value ≤ 0.05) 

(Figure 5.19A). However, I cannot detect the DNA methylation of both target sites of 

DNMTΔ3B4 from DNA of cells overexpressing DNMT3L treated with curcumin at 25 µM 

and with theaflavin at 161 µM for 48 hours, and of cells overexpressing DNMTΔ3B4 treated 

with theaflavin at 161 µM for 48 hours (data not available). 
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Figure 5.19 DNA methylation changes in specific CpG sites of cells overexpressing DNMTΔ3B4 after treatment with selected food constituents 
for 48 hours. The effects of 100 and 200 µM CA, 50 and 100 µM EGCG, 10 and 25 µM curcumin, 100 and 200 µM vitamin C, 80.5 and 161 µM 
theaflavin, on A) cg22976313 B) cg07504154 were measured by pyrosequencing. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition. 
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 Methylation at cg01065960 in cells overexpressing DNMT1 was decreased 

significantly after treatment with 100 and 200 µM vitamin C (from 60.9% to 52.9% and 

55.2%, respectively) (p-value ≤ 0.05) (Figure 5.20). However, I cannot detect the DNA 

methylation of target site of DNMT1 from DNA of cells overexpressing treated with 

theaflavin at 161 µM for 48 hours (data not available). 

Methylation at cg12150401 in cells overexpressing DNMT3L was increased 

significantly after treatment with 200 µM EGCG (from 67.8% to 74.2%) and 80.5 µM 

theaflavin (from 67.8% to 71.7%) (p-value ≤ 0.05) (Figure 5.21A). Moreover, methylation at 

cg20540357 was increased in cells overexpressing DNMT3L after treatment with 100 µM 

CA (from 40.7% to 46.5%) and 80.5% µM theaflavin (from 40.6% to 46.5%) (p-value ≤ 

0.05) (Figure 5.21B). However, I cannot detect the DNA methylation of both target sites of 

DNMT3L from DNA of cells overexpressing DNMT3L treated with curcumin at 25 µM and 

with theaflavin at 161 µM for 48 hours, and of cells overexpressing DNMTΔ3B3 treated with 

theaflavin at 161 µM for 48 hours (data not available). 
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Figure 5.20 DNA methylation changes in specific CpG site (cg01065960) of cells overexpressing DNMT1 after treatment with selected food 
constituents for 48 hours. The effects of 100 and 200 µM CA, 50 and 100 µM EGCG, 10 and 25 µM curcumin, 100 and 200 µM vitamin C, 80.5 
and 161 µM theaflavin, on cg01065960 were measured by pyrosequencing. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition. 
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Figure 5.21 DNA methylation changes in specific CpG sites of cells overexpressing DNMT3L after treatment with selected food constituents for 
48 hours. The effects of 100 and 200 µM CA, 50 and 100 µM EGCG, 10 and 25 µM curcumin, 100 and 200 µM vitamin C, 80.5 and 161 µM 
theaflavin, on A) cg12150401 B) cg20540357 were measured by pyrosequencing. Error bars represent standard deviation from triplicates and * 
represents p-value ≤ 0.05 compared with untreated condition.
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5.6.5 Effect of CA on DNMT enzymatic activity  

In the previous section, I reported that DNMTΔ3B4 was targeted specifically by CA and that 

this led to reduced methylation levels of its target CpG sites (see section 5.6.4, Figure 5.19). 

To investigate the possible mechanism for this effect, the enzymatic activity of the DNMT 

was quantified after treatment with a range of concentrations of CA. Cells overexpressing 

DNMTΔ3B4 were selected to quantify the inhibitory effect of CA, as these cells showed low 

methylation in both methylation of global and site-specific loci after treatment with CA. 

DNMTΔ3B4 proteins were extracted and purified from cells overexpressing DNMTΔ3B4. 

The method used (described in the Methods chapter, section 2.4) ensured that only DNMT 

proteins tagged with Myc i.e. those derived from the over-expressed DNMTΔ3B4 isoform 

were captured by Myc-antibody. These proteins were eluted and used to perform the DNMT 

activity assay. CA exhibited the inhibitory effect on DNMTΔ3B4 activity at all concentrations 

tested from 25 to 300 µM (p-value ≤ 0.05) (Figure 5.22A). The degree of inhibition decreased 

linearly with increasing CA concentrations (Figure 5.22B).  

 

 
Figure 5.22 DNMT activity (%) of DNMTΔ3B4 after treatment with CA. DNMTΔ3B4 was 
treated with CA at 25, 50, 100, 200, and 300 µM; A) the percentage of DNMTΔ3B4 activity 
after treatment with CA B) linear regression of concentration of CA and DNMTΔ3B4 
activity. Error bars represent standard deviation from triplicates and * represents p-value ≤ 
0.05 compared with untreated condition. 
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5.7 Discussion 

 

5.7.1 Main findings 

The primary objectives of this study were to quantify the effects of food-derived polyphenols 

(theaflavin, EGCG, CA, curcumin) and of vitamin C on cell lines over-expressing individual 

DNMT isoforms and to determine whether these effects of these food constituents were 

specific to particular DNMT isoforms. Target CpG sites of each DNMT isoform were 

selected from the EPIC array data (described in Chapter 4) to test the effect of each 

polyphenol and of vitamin C, separately. Table 5.1 shows the summary of finding all 

significant methylation changes after treatment with selected dietary constituents. The results 

show that curcumin at 100 and 200 µM and theaflavin at 80.5 decreased global DNA 

methylation in cells that over-expressed DNMTΔ3B4 and DNMT1, respectively. For 

screening the effect of food constituents on cells overexpressing DNMTs, CA showed the 

inhibitory effect on cells overexpressing DNMTΔ3B2 and DNMTΔ3B4 by decreasing the 

DNA methylation of their target CpGs. Vitamin C also decreased the DNA methylation of 

target CpGs in cells overexpressing DNMT3A2, DNMT3B4, DNMTΔ3B2, DNMTΔ3B3, 

DNMTΔ3B4, and DNMT1. EGCG, curcumin, and theaflavin showed both enhancement and 

reduction of the DNA methylation levels of target CpGs across the DNMT isoforms. After 

investigation of each DNMT isoform to dietary constituents, DNA methylation changes of 

their target CpG sites in DNMT3A2 and DNMT1 were unique to vitamin C treatment, and 

DNMTΔ3B2 and DNMTΔ3B4 were to CA. The confirmation of inhibitory effect on DNMT 

activity revealed that CA decreased DNMTΔ3B4 activity. 

 
 
Table 5.1 Summary the significant decrease or increase of methylation after treatment with 
dietary constituents. 

Over-
expressed 
DNMT cells 

CA 
(µM) 

EGCG 
(µM) 

Curcumin 
(µM) 

Vitamin C 
(µM) 

Theaflavin 
(µM) 

100 200 50 100 10 25 100 200 80.5 161 
Global DNA methylation  
DNMTΔ3B4           
DNMT1           
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Table 5.1 (Continue) Summary the significant decrease or increase of methylation after 
treatment with dietary constituents. 
Over-
expressed 
DNMT cells 

CA 
(µM) 

EGCG 
(µM) 

Curcumin 
(µM) 

Vitamin C 
(µM) 

Theaflavin 
(µM) 

100 200 50 100 10 25 100 200 80.5 161 
Screening of the effect of selected food constituents on DNA methylation changes of target 
CpGs for across DNMT isoforms 
cg25843713 
DNMT3A2           
DNMT3B4           
DNMTΔ3B2           
DNMTΔ3B3           
DNMTΔ3B4           
cg04458645 
DNMT3A2           
DNMT3B4           
DNMTΔ3B2           
DNMTΔ3B3           
DNMTΔ3B4           
The effect of selected food constituents on DNA methylation changes of target CpGs for 
each individual DNMT isoform 
DNMT3A2 
cg02732111           
cg16204524           
DNMT3B4 
cg02788195           
DNMTΔ3B2 
cg21808287           
cg25533247           
DNMTΔ3B3 
cg08927738           
DNMTΔ3B4 
cg22976313           
cg07504154           
DNMT1 
cg01065960           
DNMT3L 
cg12150401           
cg20540357           
: hypermethylation; : hypomethylation. 
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5.7.2 The effect of selected food constituents on DNMT isoforms through 

modulating DNA methylation in global DNA methylation and site-specific target 

CpGs 

Epigenetic studies have tried to reveal the link between diet and DNA methylation. The 

results from computer models (119) and in vitro studies (165) show that nutrition interferes 

with DNA methylation by changing the cofactors and substrates in one-carbon metabolism 

and food constituents such as polyphenols inhibits DNMT activity (see Introductory section 

1.5.2 and 1.6.2). Hypermethylation of DNA was one of the epigenetic mechanisms for 

silencing the gene expression, including tumour suppressor genes (321, 322). The inhibition 

of DNMTs is a possible therapeutic mechanism that contributes to protection against cancer. 

Although DNMT subfamilies have been identified, most studies focus on the main DNMT 

isoforms (DNMT3L, DNMT1, DNMT3A, and DNMT3B). There is a limitation of the study 

about the sensitivity and specificity of DNMT inhibitors to DNMT subfamilies as there is no 

specific antibody to each DNMT subfamily due to the similarity of the structure. 

 In this study, five dietary constituents: CA, curcumin, EGCG, vitamin C, and 

theaflavin, were selected as these nutrients showed a potential inhibitory effect on DNMT 

activity (see Introduction section 1.5.2, page 17). To my knowledge, apart from the major 

DNMT isoforms (DNMT1, DNMT3A, and DNMT3B), there is no published study that has 

investigated the effects of these particular food constituents on methylation of target CpGs by 

individual DNMT isoforms. This is the first one to investigate the effect of polyphenols and 

vitamin C on DNMT sub-isoforms. Cells overexpressing DNMT3A2, DNMT3B4, 

DNMTΔ3B2, DNMTΔ3B3, DNMTΔ3B4, and DNMT3L were selected in this study based on 

the number of significant hypermethylation probes, which were more than 300 probes. Also 

DNMT1 was selected as it is a full-length isoform and several studies showed that DNMT1 

was inhibited by polyphenols (166, 223). 

To investigate the effect of selected compounds on DNMT sub-isoforms, the DNA 

methylation levels were measured at the target CpGs of DNMTs before and after treatment 

with polyphenols and vitamin C. Firstly, the specificity of all the target CpG sites (across 

DNMT isoforms across DNMTs and specific DNMT targets) selected from EPIC data 

analysis, was confirmed by pyrosequencing as the baseline of DNA methylation level of 

target CpG sites was higher than the control cell. The global methylation was also 

investigated using LINE-1 assay to observe levels as the baseline and after treatment with 

dietary constituents. 
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CA 

In this study, DNA methylation of LINE-1 was reduced in the over-expressed DNMTΔ3B4 

cell after treatment with CA at 100 and 200 µM. CA also showed specific inhibitory effect on 

DNMTΔ3B2 and DNMTΔ3B4 at specific CpG target sites and DNMTΔ3B4 activity by dose-

dependence. CA was found as DNMTi through inhibiting the activity of M.SssI and DNMT1 

(173). Dibutyltin (IV) complex of CA decrease global DNA methylation using imprint DNA 

methylation kit (323). However, no previous study has explored inhibition of DNMTΔ3B4 by 

CA. It was interesting that the catalytic sites of DNMTΔ3B2, DNMTΔ3B3, and DNMTΔ3B4 

are identical (see introduction section, Figure 1.7), but only DNMTΔ3B2 and DNMTΔ3B4 

can be inhibited by CA. This finding indicates that lacking 200 amino acids at the N-terminal 

and exon 6 of DNMT3B in DNMTΔ3B2 and DNMTΔ3B4 was important for interaction with 

CA.   

 

EGCG 

Molecular modelling studies demonstrate that EGCG is well accommodated in a hydrophilic 

pocket of DNMT1 by at least four hydrogen bonds (167). In this study, EGCG at 100 μM 

showed the inhibitory effect on global DNA methylation in the over-expressed DNMT1 cell 

and this concentration decreased the methylation of the target CpG of DNMT3B4. 

Concomitantly, this dose of EGCG showed the potent anti-proliferative effects on HCT-116 

cells (324). However, Fang MZ. et al. found that 20 and 50 µM EGCG are the effective 

concentration to re-activate of methylation-silenced genes (Retinoic acid receptor beta and 

p16INK4a genes) (167).  

EGCG has demonstrated beneficial effects in cancer prevention through the inhibition 

of DNMT (167). In addition, expression of DNMT1, DNMT3a, and DNMT3b at both RNA 

and protein levels in human skin cancer cells was inhibited after EGCG treatment (168). 

Further, EGCG inhibit DNMT activity in human cervical HeLa cells (325). Also, EGCG 

treatment did not affect the mRNA expression of DNMT3A, DNMT3B, and DNMT1 (167, 

326). There is no study showing an enhancing effect of EGCG on locus-specific CpGs. 

However, the results from this study showed the enhancing effect of EGCG on the target 

DMPs of DNMTΔ3B4 and DNMT3L. This effect is hypothesised that the endogenous 

expression of DNMT3B4, which was inhibited specifically by EGCG, might be inhibited in 

cells overexpressing DNMTΔ3B4 and DNMT3L after treatment. This effect leads to 

hypermethylation at the target DMPs of DNMTΔ3B4 and DNMT3L by activating these 

isoforms. 
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Vitamin C 

Vitamin C is a co-factor or the catalytic activity of Tet enzymes that are involved in 

demethylation of DNA (327). Vitamin C does not change Tet expression (328) but it enhances 

the activity of Fe (II)-2-oxoglutarate dioxygenases, including TETs, as a critical step in DNA 

demethylation (329). Vitamin C also was demonstrated to prevent hypermethylation and 

prevent loss of DlK1-Dio3 imprinting gene in iPS cell (330). Vitamin C accumulated in 

haematopoietic stem cells promotes Tet function and suppressing leukaemogenesis (331).  

According to the formulations of DMEM and serum used in this study, the culture 

media does not contain a detectable amount of vitamin C (332). This study exhibits that 

vitamin C decreased DNA methylation of some CpG target sites of DNMT3A2, DNMTΔ3B2, 

DNMTΔ3B4, and DNMT1. However, other over-expressed DNMT cells (DNMT3B4, 

DNMTΔ3B3, and DNMT3L) did not change the levels of DNA methylation at the specific 

CpG sites after treatment with vitamin C. For the concentration of vitamin C in this study, the 

highest concentration was 200 µM and this concentration does not harm cell viability. Also, 

this concentration can inhibit the methylation of both target sites of DNMT3A2. 

Concomitantly, the high concentration (8 mM) of vitamin C inhibited the DNMT activity in 

nuclear extracts of melanoma cells (176). However, it is important to note that the 

concentration of vitamin C in plasma for supplementation, following oral administration of 

high doses of vitamin C (>500 mg/day), does not exceed 150 µM, because of the intestinal 

absorption (333).  

 

Curcumin 

Curcumin has beneficial activities such as antioxidant and anti-cancer properties (334). Liu Z. 

et al. (174) showed the molecular docking analysis between catalytic pocket of DNMT1 and 

curcumin. In this study, curcumin increased DNA methylation of the target CpGs of 

DNMT3A2 and also decreased DNA methylation at cg16204524, which was another target 

site of DNMT3A2, suggesting that modulating activity on DNA methylation by curcumin is 

independent of its direct effect on DNMTs. Concomitantly with previous publication, 

DNMT1 expression and activity analyses following treatment with curcumin failed to observe 

any significantly changes (335). Also, curcumin can restore the DNMT activity and DNMT1 

expression in the retinal pigment epithelial cell of diabetes mice (336). Its effects also 

downregulated the oxidative stress-induced expression of miR-302, which is an inhibitor of 

DNMT1 (337). The antioxidative effect of curcumin might therefore be a potential factor in 

modulating DNMT functions, a hypothesis that needs to be explored in future studies. 
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Theaflavin 

Theaflavin and its galloyl esters are the main red pigment in black tea. From in vitro study, 

the theaflavin has been found to reduce the viability of ovarian cancer cells and it appears to 

mediate apoptosis pathway via both intrinsic and extrinsic pathways. In this study, theaflavin 

increased DNA methylation of target CpG sites of DNMTΔ3B2 and DNMT3L. It is possible 

that theaflavin might modulate the SAM and SAH intracellular ratio, thus this ratio should be 

further measured after treatment with theaflavin in cells overexpressing DNMTΔ3B2 and 

DNMT3L. From in vitro study, theaflavin found to be an inhibitor of Dnmt3a (175). In this 

study, theaflavin showed both hypermethylation and hypomethylation on the CpG targets of 

DNMT3A2, suggesting that theaflavin might inhibit other DNMTs in cells overexpressing 

DNMT3A2 leading to hypermethylation at DNMT3A2’s target CpG. 

 

5.8 Conclusion 

Here, for the first time, the target CpG sites of each DNMT were used to explore the 

sensitivity and specificity of polyphenols and vitamin C to DNMTs. This study also shows 

that CA inhibits DNMTΔ3B2 and DNMTΔ3B4 through decreased DNA methylation of the 

target CpGs of DNMTΔ3B2 and DNMTΔ3B4, and decreased DNMTΔ3B4 enzyme activity. 

Vitamin C also decreased DNA methylation levels of the target CpGs of DNMT3A2, 

DNMTΔ3B2, DNMTΔ3B4, and DNMT1. However, EGCG, curcumin, and theaflavin 

showed both increased and decreased DNA methylation, suggesting that these compounds act 

independently or inhibit endogenous DNMT targets resulting in hypermethylation at some 

target CpGs of DNMTΔ3B4, DNMT3L, or DNMT3A2. 
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6. Chapter 6: General discussion 
 

 
The objectives of my PhD project were  

1) to generate the cell lines that over-expressed 13 individual DNMT isoforms (DNMT3A1, 

DNMT3A2, DNMT3B1, DNMT3B2, DNMT3B3, DNMT3B4, DNMT3B5, DNMTΔ3B1, 

DNMTΔ3B2, DNMTΔ3B3, DNMTΔ3B4, DNMT3L, and DNMT1) and to identify the de 

novo DNA methylation target sites of each specific DNMT isoform,  

2) to undertake genome-wide DNA methylation analysis using the Illumina Infinium 

Methylation EPIC BeadChip, 

3) to assess CpG specific DNMTs in relation to biological mechanism by pathway analysis 

according to enrichment statistics of the difference of gene and 

4) to investigate interactions between selected food constituents, i.e. theaflavin, EGCG, CA, 

curcumin, and vitamin C, and specific DNMT isoforms in modulating DNA methylation 

patterns.  

 

6.1 Generating the over-expressed DNMT cells 

There are three enzymatically active DNMTs i.e. DNMT3A, DNMT3B, and DNMT1, and an 

enzymatically inactive regulatory factor, DNMT3L (338). In addition, multiple subfamilies of 

DNMT3A and DNMT3B have also been identified (106). In this study, 13 isoforms were 

investigated. Of these isoforms, nine contained the catalytically active region (see 

Introduction section 1.4, page 9), whilst the other four i.e. DNMT3B3, DNMT3B4, 

DNMT3B5, and DNMT3L did not. However, DNMT3B3 and DNMT3B4 are over-expressed 

in many tumour cell lines where they bind to, and regulate the activity of DNMT3A or 

DNMT3B (85). In addition, DNMT3B4 and DNMT3B5 are over-expressed in gastric 

carcinoma (278). DNMT1 acts primarily as a maintenance methyltransferase and it can 

maintain DNA methylation even when uncoupled from the DNA replication machinery (339). 

All DNMTs facilitate a similar catalytic mechanism in which a covalent reaction intermediate 

is formed between the substrate and its catalytic pocket. The identity matrix of the catalytic 

sites of the previously mentioned 13 DNMT isoforms plus DNMT2 was analysed by 

Fernanda I. et al. (119) (see Introduction section 1.4.1, page 11). Nonetheless, DNMT 

isoforms have specific and overlapping target CpG sites (shown in Choi’s study (87)). This 
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study used an earlier version of the Illumina DNA methylation assay which contained probes 

for only 1,505 CpG sites from 808 cancer-related genes to identify the CpG sites that were the 

targets of each of the DNMTs (87). To enable my investigation of de novo target CpG sites of 

each DNMT isoform, I generated cell lines that over-expressed each of 13 individual DNMT 

isoforms (DNMT3A1, DNMT3A2, DNMT3B1, DNMT3B2, DNMT3B3, DNMT3B4, 

DNMT3B5, DNMTΔ3B1, DNMTΔ3B2, DNMTΔ3B3, DNMTΔ3B4, DNMT3L, and DNMT1) in 

a separate cell line. These cell lines were generated successfully by integrating the mRNA of 

each DNMT isoform into HEK293T genome using a lentiviral system. 

Use of the lentiviral system was an effective approach for incorporating the exogenous 

DNMTs into both the HEK293T genome and the MEG-01 genome. However, the amount of 

positive GFP cells was higher in HEK293T cells compared with MEG-01 cells because of 

their reliable growth and propensity for incorporating exogenous DNA. Another factor is that 

the doubling time of HEK293T (24 hours) (340) is shorter than MEG-01 cells (36-48 hours) 

(341). The reduced cell population after a governed time point in MEG-01 populations is 

likely to impact the number of transgene-expressing cells. mRNA expression of exogenous 

DNMTs in HEK239T cells was detected by qPCR using a pair of primers that bound to the 

Myc-tag sequence and to the relevant DNMT isoform.  

Exogenous DNMT expression was clearly observed in GFP positive cells compared 

with Myc control cell. However, the mRNA expression of DNMT3A2 in Myc control cell was 

higher than in cells overexpressing DNMT3A2, possibly due to high expression of 

endogenous DNMT3A2 in HEK293T cells. The expression of exogenous DNMTs was not 

correlated with protein expression levels, especially DNMT3ΔB3 (see Discussion section 3.7.3 

in the Chapter 3, page 79). This observation was consistent with a previous publication (87). 

Additionally, Duymich, C.E. et al. (277) reported that the different mRNA expression of 

DNMT3Bs was seen for each of DNMT3B, but the protein levels showed a large variation, 

indicating the different stabilities of the DNMT variants. Also, Fredrik E. et al. found the 

correlation between total RNA expression (assessed using transcriptomics) and protein 

expression (assessed using proteomics) of the selected 55 genes (DNMT was not included) in 

HEK293 cells to be 0.39 (294). However, cell lines that over-expressed DNMT showed a 

significant increase in global methylation (Figure 5.2, page 122), suggesting that the extent of 

over-expression of each DNMT isoform is sufficient to modulate DNA methylation patterns. 
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6.2 Identifying de novo DNA methylation target sites of each specific DNMT isoform 

After generating single cell clone of individually overexpressing DNMTs, the target 

CpG sites of each DNMT isoform were explored using the Illumina EPIC array, which has 

probes for more than 850,000 CpG sites. As mentioned earlier, due to the structural 

similarities between each DNMT, a limitation is to targeting individual isoforms is the lack of 

specific antibodies to the sub-families of DNMT isoforms. There are a small selection of 

specific antibodies on the market available for DNMT1, DNMT3A, DNMT3B and 

DNMT3A2. Also, the specificity of each splice variant of DNMT isoforms using specific 

primers to discriminate their mRNA levels has not been fully investigated. Therefore, it 

remains unclear over which sub-family of DNMTs would be a specific marker in disease 

conditions as well as which DNMTs are inhibited by a given DNMTi. Over-expressed DNMT 

cells can fill in this gap and provide epigenetic information about their target CpGs. The 

results from the current cannot be compared with the previous work from Choi SH. et.al (87) 

because I used a different method for generating the cells overexpressing DNMTs and a 

different parameter for statistical analysis. In this study, the cut-offs for Δβ values were set at 

different values: ≥ 0.2 and ≤ -0.2, ≥ 0.3 and ≤ -0.3, ≥ 0.4 and ≤ -0.4 relative to the β values of 

the Myc control cell. However, the results from different cut-offs showed the same proportion 

of significant loci along the genomic location and these results strengthen the analysis of the 

sites showing ≥ 0.4 difference in β values. These stringent criteria were selected due to the 

limitation of only running biological duplicates and the variation this may introduce, but also 

to considerably reduce the incidence of false results, i.e. readings that cannot be reaffirmed by 

pyrosequencing. The number of significantly hypermethylated probes was distributed from 

36-915 probes across the cells overexpressing DNMTs. The lowest numbers of 

hypermethylated probes (36 and 79 probes respectively) were observed in cells lines that 

over-expressed the catalytically inactive DNMT3B3 and DNMT3B5. Also, the numbers of 

hypomethylated probes in both DNMT3B3 and DNMT3B5 (142 and 123, respectively) were 

higher than the numbers of hypermethylated probes, suggesting that these isoforms might 

inhibit, or compete for binding to, the same CpG positions as other DNMT3 isoforms. 

Another explanation might be the possibility of DNMT3B3 and DNMT3B5 as trans-

regulatory elements, leading to hypermethylation of target promoters to other DNMTs. This 

could result in hypomethylation of the target CpG sites of those DNMTs (illustrated 

conceptually in Figure 6.1). 
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Figure 6.1 The diagrammatic overview of trans-regulation by DNMTy on the promoter of 
DNMTx leading to hypomethylation on the target CpG of DNMTx. 

 

DNMT3B4, shortest isoform compared with DNMT3B1-DNMT3B5, showed 320 

hypermethylated probes. This corresponded to the mRNA levels of DNMT3B4, which showed 

the highest expression among DNMT3B cells. However, in a previous study, the over-

expression of DNMT3B4 using transient transfection in HEK293 cells led to DNA 

hypomethylation in pericentromeric satellite regions analysed by Southern blotting, 

depending on the expression level of DNMT3B4 (285). From pathway analysis (see Table 4.3, 

page 109), the target CpGs of DNMT3B4 involved in cell growth and cell proliferation 

through DP-glucose Biosynthesis, Glucose and Glucose-1-phosphate Degradation, and 

PFKFB4 Signalling Pathway. This observation is supported by finding Shao G. et al. who 

observed that DNMT3B4 inhibited cell proliferation in HEK293A cell line through inducing 

p21, a cyclin-dependent kinase inhibitor (342).  

Moreover, in my study, in cell lines that over-expressed DNMT3L and DNMT1, they 

showed identified 394 and 197 hypermethylated probes, respectively (see Figure 4.4, page 

94). Since there were approximately twice as many hypermethylated probes with DNMT3L 

than with DNMT1, this suggests that DNMT3L might play a regulatory role in DNA 

methylation at certain CpG sites via interaction with endogenous DNMT3A and DNMT3B 

(116). This finding supports the activity of DNMT3L to restore DNA methylation in 

DNMT3B-deficient cells (3BKO and DKO8 derivatives of the HCT116 colon cancer cell 

line) (277). 

Furthermore, in this study, the cell line that over-expressed DNMT3A2 cells showed 

the highest number of hypermethylated probes (915 probes). With this finding, it is plausible 

to postulate that high endogenous DNMT3A2 might cause aberrant DNA methylation in over-

expressed DNMT3A2 cells. Also, DNMT3A2 shares binding targets with DNMT3A1 and 

DNMT3B1 (303) and this sharing caused an increase of hypermethylated loci. Furthermore, 

the majority of Δβ levels in the over-expressed DNMT cell lines showed hypermethylation 

below 0.7. These results are consistent with those observed in a previous publication (87), 

suggesting a limitation to increasing DNA methylation of the human genome by DNMT. 
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6.3 Determining the sensitivity and specificity of theaflavin, EGCG, CA, curcumin, and 

vitamin C in interactions with specific DNMT isoforms 

Natural products known as DNMTi or demethylating agents have been extensively 

investigated (119, 343) because there is a great need for the development of nontoxic and 

effective inhibitors of DNMTs. Natural DNMTi products have distinct chemical scaffolds, 

providing a starting point in determining their mechanism to inhibit DNMT activity. Although 

the specificity of these DNMTi products to DNMT sub-isoforms is poor understood, the 

structural variation amongst DNMTs supports the concept of each natural DNMTi specifically 

targeting a DNMT isoform(s) as opposed to all isoforms. The chemical structures of these 

natural products and food chemicals have been computerised in search of their inhibitory 

mechanism on DNMTs. However, the lack of appropriate cell models and antibodies specific 

to each DNMT sub-family isoform have hindered the progression in efforts towards 

identifying the mechanistic effect of DNMTi. Therefore, over-expressed DNMT cells, as 

created for this study, are important tools to boost the research in this field. 

 In this study, theaflavin, EGCG, CA, curcumin, and vitamin C were selected to test 

the sensitivity and specificity to each DNMT isoform. These dietary constituents have shown 

the modulating effects on DNMT activity or expression (see Introduction section, 1.5.2, page 

17). Based on previous publications, these compounds affect DNMTs in a concentration-

dependent manner, and with cell availability greater than 50%. However, there is no study to 

specify the activity of those compounds on DNMT subfamilies. There is evidence of 

differential expression of some DNMT variants in diseases and in distinctive cell types. For 

example, DNMT∆3B4 was highly expressed in non-small cell lung cancer (104). DNMT3L is 

expressed in only embryonic stem cells and germ cells (111, 112). DNMT1 and DNMT3A1 

are expressed more abundantly than DNMT3B and DNMT3A2 (84, 344, 345). Therefore, the 

study of DNMTi on each DNMT isoform will bring closer the understanding of the specific 

targets of each DNMTi and to which DNMT isoform they act upon. CA was found to be a 

specific DNMTi to DNMTΔ3B2 and DNMTΔ3B4 but not specific to DNMTΔ3B3. This 

implies that, despite these isoforms exhibiting a similar catalytic structure, the interaction 

between CA with affected DNMTs may be different. It suggests that lacking 200 amino acid 

N-terminal and exon 6 of DNMT3B in DNMTΔ3B2 and DNMTΔ3B4 isoforms are sensitive 

and specific to CA. Vitamin C showed inhibitory effects to DNMT3A2, DNMTΔ3B2, 

DNMTΔ3B4, and DNMT1. This finding supports the DNMT inhibitory activity of vitamin C, 

but the doses of this vitamin performed in this study were lower than in the Venturelli’s study 

(176). Theaflavin enhanced the DNA methylation of the target CpGs of DNMT3L in over-
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expressed DNMT3L, DNMTΔ3B3, and DNMTΔ3B4 cells, suggesting that this compound 

increases DNA methylation levels in the over-expressed inactive-DNMT cells. EGCG and 

curcumin showed both types of methylation marks in over-expressed DNMT cells; 

hypermethylation and hypomethylation. This can be explained by trans-regulation effects of 

DNMTs. In the illustration (Figure 6.2), EGCG or curcumin might inhibit DNMTy, leading to 

hypomethylation in the promoter area of DNMTx, and in turn, increased DNMTx expression 

and methylation of its target CpG sties. 

 

 

Figure 6.2 The diagrammatic overview of the effect of DNMTi (EGCG and curcumin) on 
trans-regulation of DNMTy on the promoter of DNMTx. This effect led to increase DNMTx 
and hypermethylation on the target CpG of DNMTx. 

 

6.4 Strengths and limitations of the overall project 

The main strength of this study was the ability to generate novel stable cell lines that over-

expressed each of the DNMT isoforms, individually. In addition, the use of single cell clones 

provided a homogeneous population of cells and avoid the likely variation that would have 

occurred with use of heterogeneous cell lines. Also, this study covered all the major DNMT 

isoforms which allowed the understanding of the different structure on DNA methylation 

patterns. Biological duplicates were used in this study, each from a different single cell clone. 

This approach was taken to reduce sample bias. Additionally, cell lines that overexpress each 

of the DNMTs individually, were generated using a lentivirus system, which is a highly 

efficient method for introducing foreign mRNA into the host genome. This exogenous mRNA 

is inherited to subsequent cell generations. In this study, DNMTs were over-expressed in two 

different cell types to begin with MEG-01 and HEK293T cells. HEK293T was the selected 

cell type for the main study due to its more reliable expression of exogenous DNMTs, 

compared with MEG-01 cells (see section 3.6.4, page 72). The reference genes for making a 

comparative quantification were calculated and selected using eleven house-keeping genes 

calculated by geNorm programme. By this calculation, the stable house-keeping genes across 
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over-expressed DNMT cells and the Myc control were selected to obtain a more accurate 

expression. Furthermore, this study measured DNA methylation changes using the EPIC 

array, which interrogates >850,000 CpGs. Pyrosequencing was conducted to confirm the 

DNA methylation levels from EPIC array findings and to measure the DNA methylation of 

CpG sites targeted by DNMTs. Discordant duplicates from the EPIC array data were filtered 

out of the analysis. Additionally, the cut-offs for Δβ were set at Δβ ≤ -0.4 and ≥ 0.4 to capture 

true changes in DNA methylation, which were confirmed by pyrosequencing. All 

measurements of DNA methylation changes and DNMT activity were performed with 

technical triplicates.  

The limitations of this study are that 1) the single cell clone cannot be generated for 

MEG-01 cells because of technical problems including separating live and dead cells, and 2) 

the number of samples replicates carried forward for EPIC array analysis was small (two 

samples represented each cell line that overexpresses each of the DNMTs individually) due to 

the budget of the research grant 3) the bioinformatic tool for pathway analysis was changed 

due to the current inability to access IPA from home during the Covid-19 pandemic. 

However, the vulnerabilities in the study design from point 2 above were somewhat negated 

by the statistical approach to select only for significant or true positive results, through 

employing the cut-offs (Δβ ≤ -0.4 and ≥ 0.4). Difficulties were experienced in achieving 

distinct bands in western blots, due to each DNMT isoform differing in expression level and 

in protein stability. Thus, the western blot was performed across a concentration gradient. 

Although DNMTΔ3B3 was not clearly detected on the blot, the function of this isoform can 

be measured using LINE-1 assay. Global methylation was increased by this isoform (see 

section 5.6.2, page 122).  

 

6.5 Future studies 

The panel of cell lines created in this project is a valuable tool to facilitate in studying of the 

function of individual DNMT isoforms because these cell lines make it possible to observe 

the changes in DNA methylation patterns for each DNMT individually. Over-expression of 

DNMTs is associated with a number of diseases, especially cancer (see Introduction section, 

1.4.2 and Table 1.1). Some leukaemia cases, as well as, pancreatic cancer, colon and lung 

cancers show elevated expression of DNMT1 and DNMT3B (306, 346-348). Furthermore, 

high expression of DNMT1 might correlate with the fast growth rate of some tumours, 
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including cancer cell lines, e.g. H69 and U937 (306). Concurrently, Dnmt1 overexpression in 

ES cells showed a significant change of the genomic DNA methylation level (281). 

Studies investigating all potential DNMTi and methyl donors are needed to understand 

the biological link and broader picture of the function of DNMTs under micronutrient 

exposure. Epigenetic traits are cell and tissue specific, thus the study of epigenetics in model 

organisms may provide extrapolative findings. This study provides some clues about the 

concentration and timing of treatment with nutritional compounds. These can be applied in 

the setup of an epigenetics intervention study in disease prevention, since the timing of 

epigenetic modification through exposure to a medicinal compound might be of significance. 

Conducting further investigation of downstream analyses will give a deeper understanding of 

the underlying epigenetic modifying mechanism of each nutrient. It would be beneficial to 

carry out gene expression profiles and protein quantitation of DNMT target genes and then, 

predict potential pathways which may form as potential targets for therapy. In future work, 

methylation profiles could be recorded prior to, and after, treatments with the nutritional 

compounds, where correlation may be drawn with the data obtained from this study. This type 

of dataset would provide detail on the epigenetic profiles in other CpG sites rather than target 

CpG sites of DNMTs. Furthermore, the relationship between DNA methylation and histone 

modification can be explored as both mechanisms influence transcription. Yang C. et al. 

found that epigenetically methylated CpG sites of Cellular Retinoic Acid Binding Protein 2 

might affect histone binding and associated this with gene silencing (349).  

 Given the opposite DNA methylation patterns measured at the CpGs targeted by 

DNMTs in dietary constituents treated HEK293T cells (e.g. from methylated to 

unmethylated), it is worth examining the effects of these compounds in a broader range of cell 

types to enhance our understanding on the effects of nutrition by cell type. The interaction of 

DNMTs and CA or vitamin C should be investigated by ICM assay described by Kui L. et al. 

(350) to track DNMT’s binding to genomic DNA. Moreover, the computerisation analysis 

should be performed to see how CA and vitamin C binds to DNMTs to confirm the inhibitory 

effects observed in this study. Another proposal for future examination is the research of the 

reversible epigenetic modifications through diet or specific nutrients, which could also help 

health maintenance and disease prevention. Moreover, the outcomes of this study can form 

the basis of finding a suitable balance of DNA methylation levels from dietary DNMTi and 

methyl donors. Tailoring nutriepigenomics will bring us steps closer to the ultimate goal of 

PN, where intake is adjusted to each individual to achieve the optimal health status (Figure 

6.3). 
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Figure 6.3 Personalised nutriepigenomics. In a typical interaction between environment and 
genome, diet is fed into the body (referred to as a light-dispersing from prism). The individual 
genome and epigenome, including the difference of either the expression or the activity of 
DNMT isoforms, response to diet in a multiway (referred to as individual dispersed light). 
The nutriepigenomic response is a function of the characteristics of the individual reaction to 
nutrient or food bioactive compounds. When taken through a personal nutrition regime, the 
balance diet between methyl donor and DNMT inhibitor diets will be ultimately be controlled 
by the personalised diet intervention (referred to as the last converging lens), leading to an 
optimal health status taking individual characteristics into consideration. 

 

6.6 Conclusion 

This study was successful to generate the novel single stable cell lines with 13 individually 

over-expressed DNMTs from HEK293T cells. The data derived from the EPIC data analysis 

supports my hypothesis that the pattern of DNA methylation in cells that overexpress 

individual DNMT isoforms is altered by the structure of each DNMT isoform. Also, the 

outcome from EPIC analysis allows to identify the de novo target CpG sites of each 

individual DNMT isoform. Results obtained from the outcome measure on DNA methylation 

in over-expressed DNMT cells after treatment with polyphenols and vitamin C support my 

hypothesis that global DNA methylation and locus-specific DMPs were modulated by these 

dietary constituents. Additionally, the activity of DNMT∆3B4 and DNMT3A2 can be 

specifically modulated by CA and AA, respectively, in a dose-response manner. These 

observations further understanding of nutrition-epigenetic mechanisms, especially interactions 

with enzymatic activity and these understanding provides novel evidence on the effect of 

DNMTi diet on DNMT sub-isoforms. These findings highlight the further need to investigate 

the intervention study using CA and vitamin C supplementation to manipulate epigenome, 

especially the DNMT activity. This understanding could be applied to modulate DNA 

methylation profiles using food-derived bioactive compounds in PA. This application of this 

concept in humans remains to be demonstrated. 
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8. Appendix A: Sequencing by Sanger analysis of each DNMT isoform and alignment analysis  
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Figure A1 Alignment result between DNMT3B1 and DNMT3B2. Majority is a method to 
sum the weights of a base in DNA sequences, yellow highlights represent 100% similar 
sequences with majority, number indicates the number of base pair. 
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Figure A2 Alignment result among DNMT3B2, DNMT3B3, DNMT3B4 and DNMT3B5. 
Majority is a method to sum the weights of a base in DNA sequences, yellow highlights 
represent 100% similar sequences with majority, number indicates the number of base pair. 
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Figure A3 Alignment result between DNMT3A1 and DNMT3A2. Majority is a method to 
sum the weights of a base in DNA sequences, yellow highlights represent 100% similar 
sequences with majority, number indicates the number of base pair. 
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Figure A4 Alignment result among DNMTΔ3B1, DNMTΔ3B2, DNMTΔ3B3, and 
DNMTΔ3B4. Majority is a method to sum the weights of a base in DNA sequences, yellow 
highlights represent 100% similar sequences with majority, number indicates the number of 
base pair. 

 

 

 

 

 



 

200 
 

Figure A5 Alignment result between DNMT3L and pcDNA-MycDNMT3L (commercial 
plasmid). Majority is a method to sum the weights of a base in DNA sequences, yellow 
highlights represent 100% similar sequences with majority, number indicates the number of 
base pair. 
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Figure A6 Alignment result between DNMT1 and pcDNA-MycDNMT1 (commercial 
plasmid). Majority is a method to sum the weights of a base in DNA sequences, yellow 
highlights represent 100% similar sequences with majority, number indicates the number of 
base pair. 
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DNMT3A1:  
 
Homo sapiens DNA methyltransferase 3 alpha (DNMT3A), transcript variant 3, mRNA 
Sequence ID: NM_022552.5 Length: 9421Number of Matches: 1 
 

Score Expect Identities 

1317 bits(713) 0.0 713/713(100%) 

Query  1    ATGCCCGCCATGCCCTCCAGCGGCCCCGGGGACACCAGCAGCTCTGCTGCggagcgggag  60 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  278  ATGCCCGCCATGCCCTCCAGCGGCCCCGGGGACACCAGCAGCTCTGCTGCGGAGCGGGAG  337 

 

Query  61   gaggaccgaaaggacggagaggagcaggaggagccgcgtggcaaggaggagcgccaagag  120 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  338  GAGGACCGAAAGGACGGAGAGGAGCAGGAGGAGCCGCGTGGCAAGGAGGAGCGCCAAGAG  397 

 

Query  121  cCCAGCACCACGGCACGGAAGGTGGGGCGGCCTGGGAGGAAGCGCAAGCACCCCCCGGTG  180 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  398  CCCAGCACCACGGCACGGAAGGTGGGGCGGCCTGGGAGGAAGCGCAAGCACCCCCCGGTG  457 

 

Query  181  GAAAGCGGTGACACGCCAAAGGACCCTGCGGTGATCTCCAAGTCCCCATCCATGGCCCAG  240 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  458  GAAAGCGGTGACACGCCAAAGGACCCTGCGGTGATCTCCAAGTCCCCATCCATGGCCCAG  517 

 

Query  241  GACTCAGGCGCCTCAGAGCTATTACCCAATGGGGACTTGGAGAAGCGGAGTGAGCCCCAG  300 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  518  GACTCAGGCGCCTCAGAGCTATTACCCAATGGGGACTTGGAGAAGCGGAGTGAGCCCCAG  577 

 

Query  301  CCAGAGGAGGGGAGCCCTGCTGGGGGGCAGAAGGGCGGGGCCCCAGCAGAGGGAGAGGGT  360 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  578  CCAGAGGAGGGGAGCCCTGCTGGGGGGCAGAAGGGCGGGGCCCCAGCAGAGGGAGAGGGT  637 

 

Query  361  GCAGCTGAGACCCTGCCTGAAGCCTCAAGAGCAGTGGAAAATGGCTGCTGCACCCCCAAG  420 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  638  GCAGCTGAGACCCTGCCTGAAGCCTCAAGAGCAGTGGAAAATGGCTGCTGCACCCCCAAG  697 

 

Query  421  GAGGGCCGAGGAGCCCCTGCAGAAGCGGGCAAAGAACAGAAGGAGACCAACATCGAATCC  480 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  698  GAGGGCCGAGGAGCCCCTGCAGAAGCGGGCAAAGAACAGAAGGAGACCAACATCGAATCC  757 

 

Query  481  ATGAAAATGGAGGGCTCCCGGGGCCGGCTGCGGGGTGGCTTGGGCTGGGAGTCCAGCCTC  540 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  758  ATGAAAATGGAGGGCTCCCGGGGCCGGCTGCGGGGTGGCTTGGGCTGGGAGTCCAGCCTC  817 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_022552.5?report=genbank&log$=nuclalign&blast_rank=1&RID=HY7Z0R7Z016
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Query  541  CGTCAGCGGCCCATGCCGAGGCTCACCTTCCAGGCGGGGGACCCCTACTACATCAGCAAG  600 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  818  CGTCAGCGGCCCATGCCGAGGCTCACCTTCCAGGCGGGGGACCCCTACTACATCAGCAAG  877 

 

Query  601  CGCAAGCGGGACGAGTGGCTGGCACGCTGGAAAAGGGAGGCTGAGAAGAAAGCCAAGGTC  660 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  878  CGCAAGCGGGACGAGTGGCTGGCACGCTGGAAAAGGGAGGCTGAGAAGAAAGCCAAGGTC  937 

 

Query  661  ATTGCAGGAATGAATGCTGTGGAAGAAAACCAGGGGCCCGGGGAGTCTCAGAA  713 

            ||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  938  ATTGCAGGAATGAATGCTGTGGAAGAAAACCAGGGGCCCGGGGAGTCTCAGAA  990 
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DNMT3A2:  
 
Homo sapiens DNA methyltransferase 3 alpha (DNMT3A), transcript variant 3, mRNA 
Sequence ID: NM_022552.5Length: 9421Number of Matches: 1 
 

Score Expect Identities 

1491 bits(807) 0.0 807/807(100%) 

Query  1     AATGCTGTGGAAGAAAACCAGGGGCCCGGGGAGTCTCAGAAGGTGGAGGAGGCCAGCCCT  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  950   AATGCTGTGGAAGAAAACCAGGGGCCCGGGGAGTCTCAGAAGGTGGAGGAGGCCAGCCCT  1009 

 

Query  61    CCTGCTGTGCAGCAGCCCACTGACCCCGCATCCCCCACTGTGGCTACCACGCCTGAGCCC  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1010  CCTGCTGTGCAGCAGCCCACTGACCCCGCATCCCCCACTGTGGCTACCACGCCTGAGCCC  1069 

 

Query  121   GTGGGGTCCGATGCTGGGGACAAGAATGCCACCAAAGCAGGCGATGACGAGCCAGAGTAC  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1070  GTGGGGTCCGATGCTGGGGACAAGAATGCCACCAAAGCAGGCGATGACGAGCCAGAGTAC  1129 

 

Query  181   GAGGACGGCCGGGGCTTTGGCATTGGGGAGCTGGTGTGGGGGAAACTGCGGGGCTTCTCC  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1130  GAGGACGGCCGGGGCTTTGGCATTGGGGAGCTGGTGTGGGGGAAACTGCGGGGCTTCTCC  1189 

 

Query  241   TGGTGGCCAGGCCGCATTGTGTCTTGGTGGATGACGGGCCGGAGCCGAGCAGCTGAAGGC  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1190  TGGTGGCCAGGCCGCATTGTGTCTTGGTGGATGACGGGCCGGAGCCGAGCAGCTGAAGGC  1249 

 

Query  301   ACCCGCTGGGTCATGTGGTTCGGAGACGGCAAATTCTCAGTGGTGTGTGTTGAGAAGCTG  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1250  ACCCGCTGGGTCATGTGGTTCGGAGACGGCAAATTCTCAGTGGTGTGTGTTGAGAAGCTG  1309 

 

Query  361   ATGCCGCTGAGCTCGTTTTGCAGTGCGTTCCACCAGGCCACGTACAACAAGCAGCCCATG  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1310  ATGCCGCTGAGCTCGTTTTGCAGTGCGTTCCACCAGGCCACGTACAACAAGCAGCCCATG  1369 

 

Query  421   TACCGCAAAGCCATCTACGAGGTCCTGCAGGTGGCCAGCAGCCGCGCGGGGAAGCTGTTC  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1370  TACCGCAAAGCCATCTACGAGGTCCTGCAGGTGGCCAGCAGCCGCGCGGGGAAGCTGTTC  1429 

 

Query  481   CCGGTGTGCCACGACAGCGATGAGAGTGACACTGCCAAGGCCGTGGAGGTGCAGAACAAG  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1430  CCGGTGTGCCACGACAGCGATGAGAGTGACACTGCCAAGGCCGTGGAGGTGCAGAACAAG  1489 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_022552.5?report=genbank&log$=nuclalign&blast_rank=1&RID=HY8K7KYZ014
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Query  541   CCCATGATTGAATGGGCCCTGGGGGGCTTCCAGCCTTCTGGCCCTAAGGGCCTGGAGCCA  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1490  CCCATGATTGAATGGGCCCTGGGGGGCTTCCAGCCTTCTGGCCCTAAGGGCCTGGAGCCA  1549 

 

Query  601   CCAGAAGAAGAGAAGAATCCCTACAAAGAAGTGTACACGGACATGTGGGTGGAACCTGAG  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1550  CCAGAAGAAGAGAAGAATCCCTACAAAGAAGTGTACACGGACATGTGGGTGGAACCTGAG  1609 

 

Query  661   GCAGCTGCCTACGCACCACCTCCACCAGCCAAAAAGCCCCGGAAGAGCACAGCGGAGAAG  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1610  GCAGCTGCCTACGCACCACCTCCACCAGCCAAAAAGCCCCGGAAGAGCACAGCGGAGAAG  1669 

 

Query  721   CCCAAGGTCAAGGAGATTATTGATGAGCGCACAAGAGAGCGGCTGGTGTACGAGGTGCGG  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1670  CCCAAGGTCAAGGAGATTATTGATGAGCGCACAAGAGAGCGGCTGGTGTACGAGGTGCGG  1729 

 

Query  781   CAGAAGTGCCGGAACATTGAGGACATC  807 

             ||||||||||||||||||||||||||| 

Sbjct  1730  CAGAAGTGCCGGAACATTGAGGACATC  1756 
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DNMT3B1: 
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 1, mRNA 
Sequence ID: NM_006892.4Length: 4336Number of Matches: 1 
 

Score Expect Identities    

1803 bits(976) 0.0 984/987(99%)    

Query  1     AAGGGAGACACCAGGCATCTCAATGGAGAGGAGGACGCCGGCGGGAGGGAAGACTCGATC  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  325   AAGGGAGACACCAGGCATCTCAATGGAGAGGAGGACGCCGGCGGGAGGGAAGACTCGATC  384 

 

Query  61    CTCGTCAACGGGGCCTGCAGCGACCAGTCCTCCGACTCGCCCCCAATCCTGGAGGCTATC  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  385   CTCGTCAACGGGGCCTGCAGCGACCAGTCCTCCGACTCGCCCCCAATCCTGGAGGCTATC  444 

 

Query  121   CGCACCCCGGAGATCAGAGGCCGAAGATCAAGCTCGCGACTCTCCAAGAGGGAGGTGTCC  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  445   CGCACCCCGGAGATCAGAGGCCGAAGATCAAGCTCGCGACTCTCCAAGAGGGAGGTGTCC  504 

 

Query  181   AGTCTGCTAAGCTACACACAGGACTTGACAGGCGATGGCGACGGGGAAGATGGGGATGGC  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  505   AGTCTGCTAAGCTACACACAGGACTTGACAGGCGATGGCGACGGGGAAGATGGGGATGGC  564 

 

Query  241   TCTGACACCCCAGTCATGCCAAAGCTCTTCCGGGAAACCAGGACTCGTTCAGAAAGCCCA  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  565   TCTGACACCCCAGTCATGCCAAAGCTCTTCCGGGAAACCAGGACTCGTTCAGAAAGCCCA  624 

 

Query  301   GCTGTCCGAACTCGAAATAACAACAGTGTCTCCAGCCGGGAGAGGCACAGGCCTTCCCCA  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  625   GCTGTCCGAACTCGAAATAACAACAGTGTCTCCAGCCGGGAGAGGCACAGGCCTTCCCCA  684 

 

Query  361   CGTTCCACCCGAGGCCGGCAGGGCCGCAACCATGTGGACGAGTCCCCCGTGGAGTTCCCG  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  685   CGTTCCACCCGAGGCCGGCAGGGCCGCAACCATGTGGACGAGTCCCCCGTGGAGTTCCCG  744 

 

Query  421   GCTACCAGGTCCCTGAGACGGCGGGCAACAGCATCGGCAGGAACGCCATGGCCGTCCCCT  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  745   GCTACCAGGTCCCTGAGACGGCGGGCAACAGCATCGGCAGGAACGCCATGGCCGTCCCCT  804 

 

Query  481   CCCAGCTCTTACCTTACCATCGACCTCACAGACGACACAGAGGACACACATGGGACGCCC  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  805   CCCAGCTCTTACCTTACCATCGACCTCACAGACGACACAGAGGACACACATGGGACGCCC  864 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_006892.4?report=genbank&log$=nuclalign&blast_rank=3&RID=HYA6CHF2014
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Query  541   CAGAGCAGCAGTACCCCCTACGCCCGCCTAGCCCAGGACAGCCAGCAGGGGGGCATGGAG  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  865   CAGAGCAGCAGTACCCCCTACGCCCGCCTAGCCCAGGACAGCCAGCAGGGGGGCATGGAG  924 

 

Query  601   TCCCCGCAGGTGGAGGCAGACAGTGGAGATGGAGACAGTTCAGAGTATCAGGATGGGAAG  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  925   TCCCCGCAGGTGGAGGCAGACAGTGGAGATGGAGACAGTTCAGAGTATCAGGATGGGAAG  984 

 

Query  661   GAGTTTGGAATAGGGGACCTCGTGTGGGGAAAGATCAAGGGCTTCTCCTGGTGGCCCGCC  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  985   GAGTTTGGAATAGGGGACCTCGTGTGGGGAAAGATCAAGGGCTTCTCCTGGTGGCCCGCC  1044 

 

Query  721   ATGGTGGTGTCTTGGAAGGCCACCTCCAAGCGACAGGCTATGTCTGGCATGCGGTGGGTC  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1045  ATGGTGGTGTCTTGGAAGGCCACCTCCAAGCGACAGGCTATGTCTGGCATGCGGTGGGTC  1104 

 

Query  781   CAGTGGTTTGGCGATGGCAAGTTCTCCGAGGTCTCTGCAGACAAACTGGTGGCACTGGGG  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||| 

Sbjct  1105  CAGTGGTTTGGCGATGGCAAGTTCTCCGAGGTCTCTGCAGACAAACTGGTGGCACT-GGG  1163 

 

Query  841   GCTGTTCAGCCAGCACTTTAATTTGGCCACCTTCAATAAGCTCGTCTCCTATCGAAAAGC  900 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1164  GCTGTTCAGCCAGCACTTTAATTTGGCCACCTTCAATAAGCTCGTCTCCTATCGAAAAGC  1223 

 

Query  901   CATGTACCATGCTCTGGAGAAAGCTAGGGTGCGAGCTGGCAAGACCTTCCCCAGCAGCCC  960 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1224  CATGTACCATGCTCTGGAGAAAGCTAGGGTGCGAGCTGGCAAGACCTTCCCCAGCAGCCC  1283 

 

Query  961   TGGAAGACTCATTGGAAGGACCAGCTG  987 

             |||| ||||||||||| |||||||||| 

Sbjct  1284  TGGA-GACTCATTGGA-GGACCAGCTG  1308 
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DNMT3B2:  
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 1, mRNA 
Sequence ID: NM_006892.4Length: 4336Number of Matches: 1 
 

Score Expect Identities 

1829 bits(990) 0.0 990/990(100%) 

Query  1     AGGCACAGCGGCCGAGGCCAAGCTTCAGGAGCCCTGGAGCTGTTACATGTGTCTCCCGCA  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1851  AGGCACAGCGGCCGAGGCCAAGCTTCAGGAGCCCTGGAGCTGTTACATGTGTCTCCCGCA  1910 

 

Query  61    GCGCTGTCATGGCGTCCTGCGGCGCCGGAAGGACTGGAACGTGCGCCTGCAGGCCTTCTT  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1911  GCGCTGTCATGGCGTCCTGCGGCGCCGGAAGGACTGGAACGTGCGCCTGCAGGCCTTCTT  1970 

 

Query  121   CACCAGTGACACGGGGCTTGAATATGAAGCCCCCAAGCTGTACCCTGCCATTCCCGCAGC  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1971  CACCAGTGACACGGGGCTTGAATATGAAGCCCCCAAGCTGTACCCTGCCATTCCCGCAGC  2030 

 

Query  181   CCGAAGGCGGCCCATTCGAGTCCTGTCATTGTTTGATGGCATCGCGACAGGCTACCTAGT  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2031  CCGAAGGCGGCCCATTCGAGTCCTGTCATTGTTTGATGGCATCGCGACAGGCTACCTAGT  2090 

 

Query  241   CCTCAAAGAGTTGGGCATAAAGGTAGGAAAGTACGTCGCTTCTGAAGTGTGTGAGGAGTC  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2091  CCTCAAAGAGTTGGGCATAAAGGTAGGAAAGTACGTCGCTTCTGAAGTGTGTGAGGAGTC  2150 

 

Query  301   CATTGCTGTTGGAACCGTGAAGCACGAGGGGAATATCAAATACGTGAACGACGTGAGGAA  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2151  CATTGCTGTTGGAACCGTGAAGCACGAGGGGAATATCAAATACGTGAACGACGTGAGGAA  2210 

 

Query  361   CATCACAAAGAAAAATATTGAAGAATGGGGCCCATTTGACTTGGTGATTGGCGGAAGCCC  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2211  CATCACAAAGAAAAATATTGAAGAATGGGGCCCATTTGACTTGGTGATTGGCGGAAGCCC  2270 

 

Query  421   ATGCAACGATCTCTCAAATGTGAATCCAGCCAGGAAAGGCCTGTATGAGGGTACAGGCCG  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2271  ATGCAACGATCTCTCAAATGTGAATCCAGCCAGGAAAGGCCTGTATGAGGGTACAGGCCG  2330 

 

Query  481   GCTCTTCTTCGAATTTTACCACCTGCTGAATTACTCACGCCCCAAGGAGGGTGATGACCG  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2331  GCTCTTCTTCGAATTTTACCACCTGCTGAATTACTCACGCCCCAAGGAGGGTGATGACCG  2390 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_006892.4?report=genbank&log$=nuclalign&blast_rank=2&RID=HYAMDM91016
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Query  541   GCCGTTCTTCTGGATGTTTGAGAATGTTGTAGCCATGAAGGTTGGCGACAAGAGGGACAT  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2391  GCCGTTCTTCTGGATGTTTGAGAATGTTGTAGCCATGAAGGTTGGCGACAAGAGGGACAT  2450 

 

Query  601   CTCACGGTTCCTGGAGTGTAATCCAGTGATGATTGATGCCATCAAAGTTTCTGCTGCTCA  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2451  CTCACGGTTCCTGGAGTGTAATCCAGTGATGATTGATGCCATCAAAGTTTCTGCTGCTCA  2510 

 

Query  661   CAGGGCCCGATACTTCTGGGGCAACCTACCCGGGATGAACAGGCCCGTGATAGCATCAAA  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2511  CAGGGCCCGATACTTCTGGGGCAACCTACCCGGGATGAACAGGCCCGTGATAGCATCAAA  2570 

 

Query  721   GAATGATAAACTCGAGCTGCAGGACTGCTTGGAATACAATAGGATAGCCAAGTTAAAGAA  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2571  GAATGATAAACTCGAGCTGCAGGACTGCTTGGAATACAATAGGATAGCCAAGTTAAAGAA  2630 

 

Query  781   AGTACAGACAATAACCACCAAGTCGAACTCGATCAAACAGGGGAAAAACCAACTTTTCCC  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2631  AGTACAGACAATAACCACCAAGTCGAACTCGATCAAACAGGGGAAAAACCAACTTTTCCC  2690 

 

Query  841   TGTTGTCATGAATGGCAAAGAAGATGTTTTGTGGTGCACTGAGCTCGAAAGGATCTTTGG  900 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2691  TGTTGTCATGAATGGCAAAGAAGATGTTTTGTGGTGCACTGAGCTCGAAAGGATCTTTGG  2750 

 

Query  901   CTTTCCTGTGCACTACACAGACGTGTCCAACATGGGCCGTGGTGCCCGCCAGAAGCTGCT  960 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2751  CTTTCCTGTGCACTACACAGACGTGTCCAACATGGGCCGTGGTGCCCGCCAGAAGCTGCT  2810 

 

Query  961   GGGAAGGTCCTGGAGCGTGCCTGTCATCCG  990 

             |||||||||||||||||||||||||||||| 

Sbjct  2811  GGGAAGGTCCTGGAGCGTGCCTGTCATCCG  2840 
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DNMT3B3:  
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 1, mRNA 
Sequence ID: NM_006892.4Length: 4336Number of Matches: 1 
 

Score Expect Identities 

1576 bits(853) 0.0 853/853(100%) 

Query  1     GACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATGTATGATGACGATGGCTATCAGTC  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1689  GACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATGTATGATGACGATGGCTATCAGTC  1748 

 

Query  61    TTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTGCTTTGCAGCAACACGAGCTGCTG  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1749  TTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTGCTTTGCAGCAACACGAGCTGCTG  1808 

 

Query  121   CCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGTGGGCACAGGCACAGCGGCCGAGGC  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1809  CCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGTGGGCACAGGCACAGCGGCCGAGGC  1868 

 

Query  181   CAAGCTTCAGGAGCCCTGGAGCTGTTACATGTGTCTCCCGCAGCGCTGTCATGGCGTCCT  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1869  CAAGCTTCAGGAGCCCTGGAGCTGTTACATGTGTCTCCCGCAGCGCTGTCATGGCGTCCT  1928 

 

Query  241   GCGGCGCCGGAAGGACTGGAACGTGCGCCTGCAGGCCTTCTTCACCAGTGACACGGGGCT  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1929  GCGGCGCCGGAAGGACTGGAACGTGCGCCTGCAGGCCTTCTTCACCAGTGACACGGGGCT  1988 

 

Query  301   TGAATATGAAGCCCCCAAGCTGTACCCTGCCATTCCCGCAGCCCGAAGGCGGCCCATTCG  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1989  TGAATATGAAGCCCCCAAGCTGTACCCTGCCATTCCCGCAGCCCGAAGGCGGCCCATTCG  2048 

 

Query  361   AGTCCTGTCATTGTTTGATGGCATCGCGACAGGCTACCTAGTCCTCAAAGAGTTGGGCAT  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2049  AGTCCTGTCATTGTTTGATGGCATCGCGACAGGCTACCTAGTCCTCAAAGAGTTGGGCAT  2108 

 

Query  421   AAAGGTAGGAAAGTACGTCGCTTCTGAAGTGTGTGAGGAGTCCATTGCTGTTGGAACCGT  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2109  AAAGGTAGGAAAGTACGTCGCTTCTGAAGTGTGTGAGGAGTCCATTGCTGTTGGAACCGT  2168 

 

Query  481   GAAGCACGAGGGGAATATCAAATACGTGAACGACGTGAGGAACATCACAAAGAAAAATAT  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2169  GAAGCACGAGGGGAATATCAAATACGTGAACGACGTGAGGAACATCACAAAGAAAAATAT  2228 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_006892.4?report=genbank&log$=nuclalign&blast_rank=5&RID=HYAY4ZEZ014
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Query  541   TGAAGAATGGGGCCCATTTGACTTGGTGATTGGCGGAAGCCCATGCAACGATCTCTCAAA  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2229  TGAAGAATGGGGCCCATTTGACTTGGTGATTGGCGGAAGCCCATGCAACGATCTCTCAAA  2288 

 

Query  601   TGTGAATCCAGCCAGGAAAGGCCTGTATGAGGGTACAGGCCGGCTCTTCTTCGAATTTTA  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2289  TGTGAATCCAGCCAGGAAAGGCCTGTATGAGGGTACAGGCCGGCTCTTCTTCGAATTTTA  2348 

 

Query  661   CCACCTGCTGAATTACTCACGCCCCAAGGAGGGTGATGACCGGCCGTTCTTCTGGATGTT  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2349  CCACCTGCTGAATTACTCACGCCCCAAGGAGGGTGATGACCGGCCGTTCTTCTGGATGTT  2408 

 

Query  721   TGAGAATGTTGTAGCCATGAAGGTTGGCGACAAGAGGGACATCTCACGGTTCCTGGAGTG  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2409  TGAGAATGTTGTAGCCATGAAGGTTGGCGACAAGAGGGACATCTCACGGTTCCTGGAGTG  2468 

 

Query  781   TAATCCAGTGATGATTGATGCCATCAAAGTTTCTGCTGCTCACAGGGCCCGATACTTCTG  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2469  TAATCCAGTGATGATTGATGCCATCAAAGTTTCTGCTGCTCACAGGGCCCGATACTTCTG  2528 

 

Query  841   GGGCAACCTACCC  853 

             ||||||||||||| 

Sbjct  2529  GGGCAACCTACCC  2541 
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DNMT3B4:  
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 1, mRNA 
Sequence ID: NM_006892.4Length: 4336Number of Matches: 1 
 

Score Expect Identities 

1838 bits(995) 0.0 995/995(100%) 

Query  1     GACCGAGGGGATGAAGATCAGAGCCGAGAACAAATGGCTTCAGATGTTGCCAACAACAAG  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1546  GACCGAGGGGATGAAGATCAGAGCCGAGAACAAATGGCTTCAGATGTTGCCAACAACAAG  1605 

 

Query  61    AGCAGCCTGGAAGATGGCTGTTTGTCTTGTGGCAGGAAAAACCCCGTGTCCTTCCACCCT  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1606  AGCAGCCTGGAAGATGGCTGTTTGTCTTGTGGCAGGAAAAACCCCGTGTCCTTCCACCCT  1665 

 

Query  121   CTCTTTGAgggggggCTCTGTCAGACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATG  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1666  CTCTTTGAGGGGGGGCTCTGTCAGACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATG  1725 

 

Query  181   TATGATGACGATGGCTATCAGTCTTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTG  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1726  TATGATGACGATGGCTATCAGTCTTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTG  1785 

 

Query  241   CTTTGCAGCAACACGAGCTGCTGCCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGTG  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1786  CTTTGCAGCAACACGAGCTGCTGCCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGTG  1845 

 

Query  301   GGCACAGGCACAGCGGCCGAGGCCAAGCTTCAGGAGCCCTGGAGCTGTTACATGTGTCTC  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1846  GGCACAGGCACAGCGGCCGAGGCCAAGCTTCAGGAGCCCTGGAGCTGTTACATGTGTCTC  1905 

 

Query  361   CCGCAGCGCTGTCATGGCGTCCTGCGGCGCCGGAAGGACTGGAACGTGCGCCTGCAGGCC  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1906  CCGCAGCGCTGTCATGGCGTCCTGCGGCGCCGGAAGGACTGGAACGTGCGCCTGCAGGCC  1965 

 

Query  421   TTCTTCACCAGTGACACGGGGCTTGAATATGAAGCCCCCAAGCTGTACCCTGCCATTCCC  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1966  TTCTTCACCAGTGACACGGGGCTTGAATATGAAGCCCCCAAGCTGTACCCTGCCATTCCC  2025 

 

Query  481   GCAGCCCGAAGGCGGCCCATTCGAGTCCTGTCATTGTTTGATGGCATCGCGACAGGCTAC  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2026  GCAGCCCGAAGGCGGCCCATTCGAGTCCTGTCATTGTTTGATGGCATCGCGACAGGCTAC  2085 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_006892.4?report=genbank&log$=nuclalign&blast_rank=5&RID=HYCCY5PV016
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Query  541   CTAGTCCTCAAAGAGTTGGGCATAAAGGTAGGAAAGTACGTCGCTTCTGAAGTGTGTGAG  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2086  CTAGTCCTCAAAGAGTTGGGCATAAAGGTAGGAAAGTACGTCGCTTCTGAAGTGTGTGAG  2145 

 

Query  601   GAGTCCATTGCTGTTGGAACCGTGAAGCACGAGGGGAATATCAAATACGTGAACGACGTG  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2146  GAGTCCATTGCTGTTGGAACCGTGAAGCACGAGGGGAATATCAAATACGTGAACGACGTG  2205 

 

Query  661   AGGAACATCACAAAGAAAAATATTGAAGAATGGGGCCCATTTGACTTGGTGATTGGCGGA  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2206  AGGAACATCACAAAGAAAAATATTGAAGAATGGGGCCCATTTGACTTGGTGATTGGCGGA  2265 

 

Query  721   AGCCCATGCAACGATCTCTCAAATGTGAATCCAGCCAGGAAAGGCCTGTATGAGGGTACA  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2266  AGCCCATGCAACGATCTCTCAAATGTGAATCCAGCCAGGAAAGGCCTGTATGAGGGTACA  2325 

 

Query  781   GGCCGGCTCTTCTTCGAATTTTACCACCTGCTGAATTACTCACGCCCCAAGGAGGGTGAT  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2326  GGCCGGCTCTTCTTCGAATTTTACCACCTGCTGAATTACTCACGCCCCAAGGAGGGTGAT  2385 

 

Query  841   GACCGGCCGTTCTTCTGGATGTTTGAGAATGTTGTAGCCATGAAGGTTGGCGACAAGAGG  900 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2386  GACCGGCCGTTCTTCTGGATGTTTGAGAATGTTGTAGCCATGAAGGTTGGCGACAAGAGG  2445 

 

Query  901   GACATCTCACGGTTCCTGGAGTGTAATCCAGTGATGATTGATGCCATCAAAGTTTCTGCT  960 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2446  GACATCTCACGGTTCCTGGAGTGTAATCCAGTGATGATTGATGCCATCAAAGTTTCTGCT  2505 

 

Query  961   GCTCACAGGGCCCGATACTTCTGGGGCAACCTACC  995 

             ||||||||||||||||||||||||||||||||||| 

Sbjct  2506  GCTCACAGGGCCCGATACTTCTGGGGCAACCTACC  2540 
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DNMT3B5:  
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 1, mRNA 
Sequence ID: NM_006892.4Length: 4336Number of Matches: 2 
 

Score Expect Identities 

1733 bits(938) 0.0 938/938(100%) 

Query  1     GTCAGACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATGTATGATGACGATGGCTATC  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1685  GTCAGACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATGTATGATGACGATGGCTATC  1744 

 

Query  61    AGTCTTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTGCTTTGCAGCAACACGAGCT  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1745  AGTCTTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTGCTTTGCAGCAACACGAGCT  1804 

 

Query  121   GCTGCCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGTGGGCACAGGCACAGCGGCCG  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1805  GCTGCCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGTGGGCACAGGCACAGCGGCCG  1864 

 

Query  181   AGGCCAAGCTTCAGGAGCCCTGGAGCTGTTACATGTGTCTCCCGCAGCGCTGTCATGGCG  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1865  AGGCCAAGCTTCAGGAGCCCTGGAGCTGTTACATGTGTCTCCCGCAGCGCTGTCATGGCG  1924 

 

Query  241   TCCTGCGGCGCCGGAAGGACTGGAACGTGCGCCTGCAGGCCTTCTTCACCAGTGACACGG  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1925  TCCTGCGGCGCCGGAAGGACTGGAACGTGCGCCTGCAGGCCTTCTTCACCAGTGACACGG  1984 

 

Query  301   GGCTTGAATATGAAGCCCCCAAGCTGTACCCTGCCATTCCCGCAGCCCGAAGGCGGCCCA  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1985  GGCTTGAATATGAAGCCCCCAAGCTGTACCCTGCCATTCCCGCAGCCCGAAGGCGGCCCA  2044 

 

Query  361   TTCGAGTCCTGTCATTGTTTGATGGCATCGCGACAGGCTACCTAGTCCTCAAAGAGTTGG  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2045  TTCGAGTCCTGTCATTGTTTGATGGCATCGCGACAGGCTACCTAGTCCTCAAAGAGTTGG  2104 

 

Query  421   GCATAAAGGTAGGAAAGTACGTCGCTTCTGAAGTGTGTGAGGAGTCCATTGCTGTTGGAA  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2105  GCATAAAGGTAGGAAAGTACGTCGCTTCTGAAGTGTGTGAGGAGTCCATTGCTGTTGGAA  2164 

 

Query  481   CCGTGAAGCACGAGGGGAATATCAAATACGTGAACGACGTGAGGAACATCACAAAGAAAA  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2165  CCGTGAAGCACGAGGGGAATATCAAATACGTGAACGACGTGAGGAACATCACAAAGAAAA  2224 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_006892.4?report=genbank&log$=nuclalign&blast_rank=5&RID=HYD2MR02014
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Query  541   ATATTGAAGAATGGGGCCCATTTGACTTGGTGATTGGCGGAAGCCCATGCAACGATCTCT  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2225  ATATTGAAGAATGGGGCCCATTTGACTTGGTGATTGGCGGAAGCCCATGCAACGATCTCT  2284 

 

Query  601   CAAATGTGAATCCAGCCAGGAAAGGCCTGTATGAGGGTACAGGCCGGCTCTTCTTCGAAT  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2285  CAAATGTGAATCCAGCCAGGAAAGGCCTGTATGAGGGTACAGGCCGGCTCTTCTTCGAAT  2344 

 

Query  661   TTTACCACCTGCTGAATTACTCACGCCCCAAGGAGGGTGATGACCGGCCGTTCTTCTGGA  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2345  TTTACCACCTGCTGAATTACTCACGCCCCAAGGAGGGTGATGACCGGCCGTTCTTCTGGA  2404 

 

Query  721   TGTTTGAGAATGTTGTAGCCATGAAGGTTGGCGACAAGAGGGACATCTCACGGTTCCTGG  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2405  TGTTTGAGAATGTTGTAGCCATGAAGGTTGGCGACAAGAGGGACATCTCACGGTTCCTGG  2464 

 

Query  781   AGTGTAATCCAGTGATGATTGATGCCATCAAAGTTTCTGCTGCTCACAGGGCCCGATACT  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2465  AGTGTAATCCAGTGATGATTGATGCCATCAAAGTTTCTGCTGCTCACAGGGCCCGATACT  2524 

 

Query  841   TCTGGGGCAACCTACCCGGGATGAACAGGCCCGTGATAGCATCAAAGAATGATAAACTCG  900 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2525  TCTGGGGCAACCTACCCGGGATGAACAGGCCCGTGATAGCATCAAAGAATGATAAACTCG  2584 

 

Query  901   AGCTGCAGGACTGCTTGGAATACAATAGGATAGCCAAG  938 

             |||||||||||||||||||||||||||||||||||||| 

Sbjct  2585  AGCTGCAGGACTGCTTGGAATACAATAGGATAGCCAAG  2622 
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DNMTΔ3B1: 
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 1, mRNA 
Sequence ID: NM_006892.4Length: 4336Number of Matches: 1 
 

Score Expect Identities 

1600 bits(866) 0.0 869/870(99%) 

Query  1     GAGTCCCCGCAGGTGGAGGCAGACAGTGGAGATGGAGACAGTTCAGAGTATCAGGATGGG  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  922   GAGTCCCCGCAGGTGGAGGCAGACAGTGGAGATGGAGACAGTTCAGAGTATCAGGATGGG  981 

 

Query  61    AAGGAGTTTGGAATAGGGGACCTCGTGTGGGGAAAGATCAAGGGCTTCTCCTGGTGGCCC  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  982   AAGGAGTTTGGAATAGGGGACCTCGTGTGGGGAAAGATCAAGGGCTTCTCCTGGTGGCCC  1041 

 

Query  121   GCCATGGTGGTGTCTTGGAAGGCCACCTCCAAGCGACAGGCTATGTCTGGCATGCGGTGG  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1042  GCCATGGTGGTGTCTTGGAAGGCCACCTCCAAGCGACAGGCTATGTCTGGCATGCGGTGG  1101 

 

Query  181   GTCCAGTGGTTTGGCGATGGCAAGTTCTCCGAGGTCTCTGCAGACAAACTGGTGGCACTG  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1102  GTCCAGTGGTTTGGCGATGGCAAGTTCTCCGAGGTCTCTGCAGACAAACTGGTGGCACTG  1161 

 

Query  241   GGGCTGTTCAGCCAGCACTTTAATTTGGCCACCTTCAATAAGCTCGTCTCCTATCGAAAA  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1162  GGGCTGTTCAGCCAGCACTTTAATTTGGCCACCTTCAATAAGCTCGTCTCCTATCGAAAA  1221 

 

Query  301   GCCATGTACCATGCTCTGGAGAAAGCTAGGGTGCGAGCTGGCAAGACCTTCCCCAGCAGC  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1222  GCCATGTACCATGCTCTGGAGAAAGCTAGGGTGCGAGCTGGCAAGACCTTCCCCAGCAGC  1281 

 

Query  361   CCTGGAGACTCATTGGAGGACCAGCTGAAGCCCATGTTGGAGTGGGCCCACGGGGGCTTC  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1282  CCTGGAGACTCATTGGAGGACCAGCTGAAGCCCATGTTGGAGTGGGCCCACGGGGGCTTC  1341 

 

Query  421   AAGCCCACTGGGATCGAGGGCCTCAAACCCAACAACACGCAACCAGTGGTTAATAAGTCG  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1342  AAGCCCACTGGGATCGAGGGCCTCAAACCCAACAACACGCAACCAGTGGTTAATAAGTCG  1401 

 

Query  481   AAGGTGCGTCGTGCAGGCAGTAGGAAATTAGAATCAAGGAAATACGAGAACAAGACTCGA  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1402  AAGGTGCGTCGTGCAGGCAGTAGGAAATTAGAATCAAGGAAATACGAGAACAAGACTCGA  1461 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_006892.4?report=genbank&log$=nuclalign&blast_rank=1&RID=HYDF8DYC014
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Query  541   AGACGCACAGCTGACGACTCAGCCACCTCTGACTACTGCCCCGCACCCAAGCGCCTCAAG  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1462  AGACGCACAGCTGACGACTCAGCCACCTCTGACTACTGCCCCGCACCCAAGCGCCTCAAG  1521 

 

Query  601   ACAAATTGCTATAACAACGGCAAAGACCGAGGGGATGAAGATCAGAGCCGAGAACAAATG  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1522  ACAAATTGCTATAACAACGGCAAAGACCGAGGGGATGAAGATCAGAGCCGAGAACAAATG  1581 

 

Query  661   GCTTCAGATGTTGCCAACAACAAGAGCAGCCTGGAAGATGGCTGTTTGTCTTGTGGCAGG  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1582  GCTTCAGATGTTGCCAACAACAAGAGCAGCCTGGAAGATGGCTGTTTGTCTTGTGGCAGG  1641 

 

Query  721   AAAAACCCCGTGTCCTTCCACCCTCTCTTTGAgggggggCTCTGTCAGACATGCCGGGGA  780 

             ||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||| 

Sbjct  1642  AAAAACCCCGTGTCCTTCCACCCTCTCTTTGAGGGGGGGCTCTGTCAGACATGCC-GGGA  1700 

 

Query  781   TCGCTTCCTTGAGCTGTTTTACATGTATGATGACGATGGCTATCAGTCTTACTGCACTGT  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1701  TCGCTTCCTTGAGCTGTTTTACATGTATGATGACGATGGCTATCAGTCTTACTGCACTGT  1760 

 

Query  841   GTGCTGCGAGGGCCGAGAGCTGCTGCTTTG  870 

             |||||||||||||||||||||||||||||| 

Sbjct  1761  GTGCTGCGAGGGCCGAGAGCTGCTGCTTTG  1790 
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DNMTΔ3B2: 
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 2, mRNA 
Sequence ID: NM_175848.2Length: 4276Number of Matches: 1 
 

Score Expect Identities 

1415 bits(766) 0.0 769/770(99%) 

Query  1     GAGTCCCCGCAGGTGGAGGCAGACAGTGGAGATGGAGACAGTTCAGAGTATCAGGATGGG  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  922   GAGTCCCCGCAGGTGGAGGCAGACAGTGGAGATGGAGACAGTTCAGAGTATCAGGATGGG  981 

 

Query  61    AAGGAGTTTGGAATAGGGGACCTCGTGTGGGGAAAGATCAAGGGCTTCTCCTGGTGGCCC  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  982   AAGGAGTTTGGAATAGGGGACCTCGTGTGGGGAAAGATCAAGGGCTTCTCCTGGTGGCCC  1041 

 

Query  121   GCCATGGTGGTGTCTTGGAAGGCCACCTCCAAGCGACAGGCTATGTCTGGCATGCGGTGG  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1042  GCCATGGTGGTGTCTTGGAAGGCCACCTCCAAGCGACAGGCTATGTCTGGCATGCGGTGG  1101 

 

Query  181   GTCCAGTGGTTTGGCGATGGCAAGTTCTCCGAGGTCTCTGCAGACAAACTGGTGGCACTG  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1102  GTCCAGTGGTTTGGCGATGGCAAGTTCTCCGAGGTCTCTGCAGACAAACTGGTGGCACTG  1161 

 

Query  241   GGGCTGTTCAGCCAGCACTTTAATTTGGCCACCTTCAATAAGCTCGTCTCCTATCGAAAA  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1162  GGGCTGTTCAGCCAGCACTTTAATTTGGCCACCTTCAATAAGCTCGTCTCCTATCGAAAA  1221 

 

Query  301   GCCATGTACCATGCTCTGGAGAAAGCTAGGGTGCGAGCTGGCAAGACCTTCCCCAGCAGC  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1222  GCCATGTACCATGCTCTGGAGAAAGCTAGGGTGCGAGCTGGCAAGACCTTCCCCAGCAGC  1281 

 

Query  361   CCTGGAGACTCATTGGAGGACCAGCTGAAGCCCATGTTGGAGTGGGCCCACGGGGGCTTC  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1282  CCTGGAGACTCATTGGAGGACCAGCTGAAGCCCATGTTGGAGTGGGCCCACGGGGGCTTC  1341 

 

Query  421   AAGCCCACTGGGATCGAGGGCCTCAAACCCAACAACACGCAACCAGAGAACAAGACTCGA  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1342  AAGCCCACTGGGATCGAGGGCCTCAAACCCAACAACACGCAACCAGAGAACAAGACTCGA  1401 

 

Query  481   AGACGCACAGCTGACGACTCAGCCACCTCTGACTACTGCCCCGCACCCAAGCGCCTCAAG  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1402  AGACGCACAGCTGACGACTCAGCCACCTCTGACTACTGCCCCGCACCCAAGCGCCTCAAG  1461 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_175848.2?report=genbank&log$=nuclalign&blast_rank=1&RID=HYDNPSAZ016
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Query  541   ACAAATTGCTATAACAACGGCAAAGACCGAGGGGATGAAGATCAGAGCCGAGAACAAATG  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1462  ACAAATTGCTATAACAACGGCAAAGACCGAGGGGATGAAGATCAGAGCCGAGAACAAATG  1521 

 

Query  601   GCTTCAGATGTTGCCAACAACAAGAGCAGCCTGGAAGATGGCTGTTTGTCTTGTGGCAGG  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1522  GCTTCAGATGTTGCCAACAACAAGAGCAGCCTGGAAGATGGCTGTTTGTCTTGTGGCAGG  1581 

 

Query  661   AAAAACCCCGTGTCCTTCCACCCTCTCTTTGAgggggggCTCTGTCAGACATGCCGGGGA  720 

             ||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||| 

Sbjct  1582  AAAAACCCCGTGTCCTTCCACCCTCTCTTTGAGGGGGGGCTCTGTCAGACATGCC-GGGA  1640 

 

Query  721   TCGCTTCCTTGAGCTGTTTTACATGTATGATGACGATGGCTATCAGTCTT  770 

             |||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1641  TCGCTTCCTTGAGCTGTTTTACATGTATGATGACGATGGCTATCAGTCTT  1690 
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DNMTΔ3B3:  
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 1, mRNA 
Sequence ID: NM_006892.4Length: 4336Number of Matches: 2 
 

Score Expect Identities 

1380 bits(747) 0.0 751/753(99%) 

Query  53    AGGTCTCTGCAGACAAACTGGTGGCACTGGGGCTGTTCAGCCAGCACTTTAATTTGGCCA  112 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1133  AGGTCTCTGCAGACAAACTGGTGGCACTGGGGCTGTTCAGCCAGCACTTTAATTTGGCCA  1192 

 

Query  113   CCTTCAATAAGCTCGTCTCCTATCGAAAAGCCATGTACCATGCTCTGGAGAAAGCTAGGG  172 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1193  CCTTCAATAAGCTCGTCTCCTATCGAAAAGCCATGTACCATGCTCTGGAGAAAGCTAGGG  1252 

 

Query  173   TGCGAGCTGGCAAGACCTTCCCCAGCAGCCCTGGAGACTCATTGGAGGACCAGCTGAAGC  232 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1253  TGCGAGCTGGCAAGACCTTCCCCAGCAGCCCTGGAGACTCATTGGAGGACCAGCTGAAGC  1312 

 

Query  233   CCATGTTGGAGTGGGCCCACGGGGGCTTCAAGCCCACTGGGATCGAGGGCCTCAAACCCA  292 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1313  CCATGTTGGAGTGGGCCCACGGGGGCTTCAAGCCCACTGGGATCGAGGGCCTCAAACCCA  1372 

 

Query  293   ACAACACGCAACCAGTGGTTAATAAGTCGAAGGTGCGTCGTGCAGGCAGTAGGAAATTAG  352 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1373  ACAACACGCAACCAGTGGTTAATAAGTCGAAGGTGCGTCGTGCAGGCAGTAGGAAATTAG  1432 

 

Query  353   AATCAAGGAAATACGAGAACAAGACTCGAAGACGCACAGCTGACGACTCAGCCACCTCTG  412 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1433  AATCAAGGAAATACGAGAACAAGACTCGAAGACGCACAGCTGACGACTCAGCCACCTCTG  1492 

 

Query  413   ACTACTGCCCCGCACCCAAGCGCCTCAAGACAAATTGCTATAACAACGGCAAAGACCGAG  472 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1493  ACTACTGCCCCGCACCCAAGCGCCTCAAGACAAATTGCTATAACAACGGCAAAGACCGAG  1552 

 

Query  473   GGGATGAAGATCAGAGCCGAGAACAAATGGCTTCAGATGTTGCCAACAACAAGAGCAGCC  532 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1553  GGGATGAAGATCAGAGCCGAGAACAAATGGCTTCAGATGTTGCCAACAACAAGAGCAGCC  1612 

 

Query  533   TGGAAGATGGCTGTTTGTCTTGTGGCAGGAAAAACCCCGTGTCCTTCCACCCTCTCTTTG  592 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1613  TGGAAGATGGCTGTTTGTCTTGTGGCAGGAAAAACCCCGTGTCCTTCCACCCTCTCTTTG  1672 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_006892.4?report=genbank&log$=nuclalign&blast_rank=2&RID=HYDZFBCM01R
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Query  593   AgggggggCTCTGTCAGACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATGTATGATG  652 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1673  AGGGGGGGCTCTGTCAGACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATGTATGATG  1732 

 

Query  653   ACGATGGCTATCAGTCTTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTGCTTTGCA  712 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1733  ACGATGGCTATCAGTCTTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTGCTTTGCA  1792 

 

Query  713   GCAACACGAGCTGCTGCCGGTGTTTCTGTGTGGAGTGCCTGNAGGTGCTGGTGGGGCACA  772 

             ||||||||||||||||||||||||||||||||||||||||| |||||||||| ||||||| 

Sbjct  1793  GCAACACGAGCTGCTGCCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGT-GGGCACA  1851 

 

Query  773   GGCACAGCGGCCGAGGCCAAGCTTCAGGAGCCC  805 

             ||||||||||||||||||||||||||||||||| 

Sbjct  1852  GGCACAGCGGCCGAGGCCAAGCTTCAGGAGCCC  1884 
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DNMTΔ3B4: 
 
Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript variant 2, mRNA 
Sequence ID: NM_175848.2Length: 4276Number of Matches: 1 
 

Score Expect Identities 

1199 bits(649) 0.0 651/652(99%) 

Query  53    AGGTCTCTGCATACAAACTGGTGGCACTGGGGCTGTTCAGCCAGCACTTTAATTTGGCCA  112 

             ||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1133  AGGTCTCTGCAGACAAACTGGTGGCACTGGGGCTGTTCAGCCAGCACTTTAATTTGGCCA  1192 

 

Query  113   CCTTCAATAAGCTCGTCTCCTATCGAAAAGCCATGTACCATGCTCTGGAGAAAGCTAGGG  172 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1193  CCTTCAATAAGCTCGTCTCCTATCGAAAAGCCATGTACCATGCTCTGGAGAAAGCTAGGG  1252 

 

Query  173   TGCGAGCTGGCAAGACCTTCCCCAGCAGCCCTGGAGACTCATTGGAGGACCAGCTGAAGC  232 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1253  TGCGAGCTGGCAAGACCTTCCCCAGCAGCCCTGGAGACTCATTGGAGGACCAGCTGAAGC  1312 

 

Query  233   CCATGTTGGAGTGGGCCCACGGGGGCTTCAAGCCCACTGGGATCGAGGGCCTCAAACCCA  292 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1313  CCATGTTGGAGTGGGCCCACGGGGGCTTCAAGCCCACTGGGATCGAGGGCCTCAAACCCA  1372 

 

Query  293   ACAACACGCAACCAGAGAACAAGACTCGAAGACGCACAGCTGACGACTCAGCCACCTCTG  352 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1373  ACAACACGCAACCAGAGAACAAGACTCGAAGACGCACAGCTGACGACTCAGCCACCTCTG  1432 

 

Query  353   ACTACTGCCCCGCACCCAAGCGCCTCAAGACAAATTGCTATAACAACGGCAAAGACCGAG  412 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1433  ACTACTGCCCCGCACCCAAGCGCCTCAAGACAAATTGCTATAACAACGGCAAAGACCGAG  1492 

 

Query  413   GGGATGAAGATCAGAGCCGAGAACAAATGGCTTCAGATGTTGCCAACAACAAGAGCAGCC  472 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1493  GGGATGAAGATCAGAGCCGAGAACAAATGGCTTCAGATGTTGCCAACAACAAGAGCAGCC  1552 

 

Query  473   TGGAAGATGGCTGTTTGTCTTGTGGCAGGAAAAACCCCGTGTCCTTCCACCCTCTCTTTG  532 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1553  TGGAAGATGGCTGTTTGTCTTGTGGCAGGAAAAACCCCGTGTCCTTCCACCCTCTCTTTG  1612 

 

Query  533   AgggggggCTCTGTCAGACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATGTATGATG  592 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1613  AGGGGGGGCTCTGTCAGACATGCCGGGATCGCTTCCTTGAGCTGTTTTACATGTATGATG  1672 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_175848.2?report=genbank&log$=nuclalign&blast_rank=3&RID=HYE6R8N3014
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Query  593   ACGATGGCTATCAGTCTTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTGCTTTGCA  652 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1673  ACGATGGCTATCAGTCTTACTGCACTGTGTGCTGCGAGGGCCGAGAGCTGCTGCTTTGCA  1732 

 

Query  653   GCAACACGAGCTGCTGCCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGT  704 

             |||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1733  GCAACACGAGCTGCTGCCGGTGTTTCTGTGTGGAGTGCCTGGAGGTGCTGGT  1784 
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DNMT1: 
 
Homo sapiens DNA methyltransferase 1 (DNMT1), transcript variant 2, mRNA 
Sequence ID: NM_001379.4Length: 5226Number of Matches: 1 
 

Score Expect Identities 

1664 bits(901) 0.0 901/901(100%) 

Query  1    CCGGCGCGTACCGCCCCAGCCCGGGTGCCCACACTGGCCGTCCCGGCCATCTCGCTGCCC  60 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  58   CCGGCGCGTACCGCCCCAGCCCGGGTGCCCACACTGGCCGTCCCGGCCATCTCGCTGCCC  117 

 

Query  61   GACGATGTCCGCAGGCGGCTCAAAGATTTGGAAAGAGACAGCTTAACAGAAAAGGAATGT  120 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  118  GACGATGTCCGCAGGCGGCTCAAAGATTTGGAAAGAGACAGCTTAACAGAAAAGGAATGT  177 

 

Query  121  GTGAAGGAGAAATTGAATCTCTTGCACGAATTTCTGCAAACAGAAATAAAGAATCAGTTA  180 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  178  GTGAAGGAGAAATTGAATCTCTTGCACGAATTTCTGCAAACAGAAATAAAGAATCAGTTA  237 

 

Query  181  TGTGACTTGGAAACCAAATTACGTAAAGAAGAATTATCCGAGGAGGGCTACCTGGCTAAA  240 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  238  TGTGACTTGGAAACCAAATTACGTAAAGAAGAATTATCCGAGGAGGGCTACCTGGCTAAA  297 

 

Query  241  GTCAAATCCCTTTTAAATAAAGATTTGTCCTTGGAGAACGGTGCTCATGCTTACAACCGG  300 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  298  GTCAAATCCCTTTTAAATAAAGATTTGTCCTTGGAGAACGGTGCTCATGCTTACAACCGG  357 

 

Query  301  GAAGTGAATGGACGTCTAGAAAACGGGAACCAAGCAAGAAGTGAAGCCCGTAGAGTGGGA  360 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  358  GAAGTGAATGGACGTCTAGAAAACGGGAACCAAGCAAGAAGTGAAGCCCGTAGAGTGGGA  417 

 

Query  361  ATGGCAGATGCCAACAGcccccccAAACCCCTTTCCAAACCTCGCACGCCCAGGAGGAGC  420 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  418  ATGGCAGATGCCAACAGCCCCCCCAAACCCCTTTCCAAACCTCGCACGCCCAGGAGGAGC  477 

 

Query  421  AAGTCCGATGGAGAGGCTAAGCCTGAACCTTCACCTAGCCCCAGGATTACAAGGAAAAGC  480 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  478  AAGTCCGATGGAGAGGCTAAGCCTGAACCTTCACCTAGCCCCAGGATTACAAGGAAAAGC  537 

 

Query  481  ACCAGGCAAACCACCATCACATCTCATTTTGCAAAGGGCCCTGCCAAACGGAAACCTCAG  540 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  538  ACCAGGCAAACCACCATCACATCTCATTTTGCAAAGGGCCCTGCCAAACGGAAACCTCAG  597 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_001379.4?report=genbank&log$=nuclalign&blast_rank=1&RID=HYEEPEDC016
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Query  541  GAAGAGTCTGAAAGAGCCAAATCGGATGAGTCCATCAAGGAAGAAGACAAAGACCAGGAT  600 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  598  GAAGAGTCTGAAAGAGCCAAATCGGATGAGTCCATCAAGGAAGAAGACAAAGACCAGGAT  657 

 

Query  601  GAGAAGAGACGTAGAGTTACATCCAGAGAACGAGTTGCTAGACCGCTTCCTGCAGAAGAA  660 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  658  GAGAAGAGACGTAGAGTTACATCCAGAGAACGAGTTGCTAGACCGCTTCCTGCAGAAGAA  717 

 

Query  661  CCTGAAAGAGCAAAATCAGGAACGCGCACTgaaaaggaagaagaaagagatgaaaaagaa  720 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  718  CCTGAAAGAGCAAAATCAGGAACGCGCACTGAAAAGGAAGAAGAAAGAGATGAAAAAGAA  777 

 

Query  721  gaaaagagaCTCCGAAGTCAAACCAAAGAACCAACACCCAAACAGAAACTGAAGGAGGAG  780 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  778  GAAAAGAGACTCCGAAGTCAAACCAAAGAACCAACACCCAAACAGAAACTGAAGGAGGAG  837 

 

Query  781  CCGGACAGAGAAGCCAGGGCAGGCGTGCAGGCTGACGAGGACGAAGATGGAGACGAGAAA  840 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  838  CCGGACAGAGAAGCCAGGGCAGGCGTGCAGGCTGACGAGGACGAAGATGGAGACGAGAAA  897 

 

Query  841  GATGAGAAGAAGCACAGAAGTCAACCCAAAGATCTAGCTGCCAAACGGAGGCCCGAAGAA  900 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  898  GATGAGAAGAAGCACAGAAGTCAACCCAAAGATCTAGCTGCCAAACGGAGGCCCGAAGAA  957 

 

Query  901  A  901 

            | 

Sbjct  958  A  958 
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DNMT3L: 
 
Homo sapiens DNA methyltransferase 3 like (DNMT3L), transcript variant 1, mRNA 
Sequence ID: NM_013369.4Length: 1387Number of Matches: 1 
 

Score Expect Identities 

1650 bits(893) 0.0 898/900(99%) 

Query  1     GCGGCCATCCCAGCCCTGGACCCAGAGGCCGAGCCCAGCATGGACGTGATTTTGGTGGGA  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  169   GCGGCCATCCCAGCCCTGGACCCAGAGGCCGAGCCCAGCATGGACGTGATTTTGGTGGGA  228 

 

Query  61    TCCAGTGAGCTCTCAAGCTCCGTTTCACCCGGGACAGGCAGAGATCTTATTGCATATGAA  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  229   TCCAGTGAGCTCTCAAGCTCCGTTTCACCCGGGACAGGCAGAGATCTTATTGCATATGAA  288 

 

Query  121   GTCAAGGCTAACCAGCGAAATATAGAAGACATCTGCATCTGCTGCGGAAGTCTCCAGGTT  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  289   GTCAAGGCTAACCAGCGAAATATAGAAGACATCTGCATCTGCTGCGGAAGTCTCCAGGTT  348 

 

Query  181   CACACACAGCACCCTCTGTTTGAGGGAGGGATCTGCGCCCCATGTAAGGACAAGTTCCTG  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  349   CACACACAGCACCCTCTGTTTGAGGGAGGGATCTGCGCCCCATGTAAGGACAAGTTCCTG  408 

 

Query  241   GATGCCCTCTTCCTGTACGACGATGACGGGTACCAATCCTACTGCTCCATCTGCTGCTCC  300 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  409   GATGCCCTCTTCCTGTACGACGATGACGGGTACCAATCCTACTGCTCCATCTGCTGCTCC  468 

 

Query  301   GGAGAGACGCTGCTCATCTGCGGAAACCCTGATTGCACCCGATGCTACTGCTTCGAGTGT  360 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  469   GGAGAGACGCTGCTCATCTGCGGAAACCCTGATTGCACCCGATGCTACTGCTTCGAGTGT  528 

 

Query  361   GTGGATAGCCTGGTCGGCCCCGGGACCTCGGGGAAGGTGCACGCCATGAGCAACTGGGTG  420 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  529   GTGGATAGCCTGGTCGGCCCCGGGACCTCGGGGAAGGTGCACGCCATGAGCAACTGGGTG  588 

 

Query  421   TGCTACCTGTGCCTGCCGTCCTCCCGAAGCGGGCTGCTGCAGCGTCGGAGGAAGTGGCGC  480 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  589   TGCTACCTGTGCCTGCCGTCCTCCCGAAGCGGGCTGCTGCAGCGTCGGAGGAAGTGGCGC  648 

 

Query  481   AGCCAGCTCAAGGCCTTCTACGACCGAGAGTCGGAGAATCCCCTTGAGATGTTCGAAACC  540 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  649   AGCCAGCTCAAGGCCTTCTACGACCGAGAGTCGGAGAATCCCCTTGAGATGTTCGAAACC  708 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NM_013369.4?report=genbank&log$=nuclalign&blast_rank=2&RID=HYEKNX34014
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Query  541   GTGCCTGTGTGGAGGAGACAGCCAGTCCGGGTGCTGTCCCTTTTTGAAGACATCAAGAAA  600 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  709   GTGCCTGTGTGGAGGAGACAGCCAGTCCGGGTGCTGTCCCTTTTTGAAGACATCAAGAAA  768 

 

Query  601   GAGCTGACGAGTTTGGGCTTTTTGGAAAGTGGTTCTGACCCGGGACAACTGAAGCATGTG  660 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  769   GAGCTGACGAGTTTGGGCTTTTTGGAAAGTGGTTCTGACCCGGGACAACTGAAGCATGTG  828 

 

Query  661   GTTGATGTCACAGACACAGTGAGGAAGGATGTGGAGGAGTGGGGACCCTTCGATCTTGTG  720 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  829   GTTGATGTCACAGACACAGTGAGGAAGGATGTGGAGGAGTGGGGACCCTTCGATCTTGTG  888 

 

Query  721   TACGGCGCCACACCTCCCCTGGGCCACACCTGTGACCGTCCTCCCAGCTGGTACCTGTTC  780 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  889   TACGGCGCCACACCTCCCCTGGGCCACACCTGTGACCGTCCTCCCAGCTGGTACCTGTTC  948 

 

Query  781   CAGTTCCACCGGCTCCTGCAGTACGCACGGCCCAAGCCAGGCAGCCCCAGGCCCTTCTTC  840 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  949   CAGTTCCACCGGCTCCTGCAGTACGCACGGCCCAAGCCAGGCAGCCCCAGGCCCTTCTTC  1008 

 

Query  841   TGGATGTTCGTGGACAATCTGGTGCTGAAACAAGGAAGACCTGGAACGTCGCATCTCGCT  900 

             ||||||||||||||||||||||||||| |||||||||||||||| ||||||||||||||| 

Sbjct  1009  TGGATGTTCGTGGACAATCTGGTGCTG-AACAAGGAAGACCTGG-ACGTCGCATCTCGCT  1066 
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9. Appendix B: Sequencing by Sanger analysis of each DNMT isoform and alignment analysis 
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Figure B1 Alignment result between DNMT1 and pcDNA-MycDNMT1 (commercial 
plasmid). Majority is a method to sum the weights of a base in DNA sequences, yellow 
highlights represent 100% similar sequences with majority, number indicates the number of 
base pair. 
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Figure B2 Alignment result between DNMT3A1 and pIRESpuro3-DNMT3A1. Majority is a 
method to sum the weights of a base in DNA sequences, yellow highlights represent 100% 
similar sequences with majority, number indicates the number of base pair. 
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Figure B3 Alignment result between DNMT3A2 and pcDNA3-DNMT3A2. Majority is a 
method to sum the weights of a base in DNA sequences, yellow highlights represent 100% 
similar sequences with majority, number indicates the number of base pair. 
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Figure B4 Alignment result among DNMT3B2, pIRESpuro3-DNMT3B2, DNMT3B3, and 
pIRESpuro3-DNMT3B3. Majority is a method to sum the weights of a base in DNA 
sequences, yellow highlights represent 100% similar sequences with majority, number 
indicates the number of base pair. 
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Figure B5 Alignment result among DNMT3B2, DNMT3B3, DNMT3B4, and DNMT3B5. 
Majority is a method to sum the weights of a base in DNA sequences, yellow highlights 
represent 100% similar sequences with majority, number indicates the number of base pair. 
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Figure B6 Alignment result between DNMT3B1 and pIRESpuro3-DNMT3B1. Majority is a 
method to sum the weights of a base in DNA sequences, yellow highlights represent 100% 
similar sequences with majority, number indicates the number of base pair. 
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Figure B7 Alignment result among DNMTΔ3B1, DNMTΔ3B2, DNMTΔ3B3, and 
DNMTΔ3B4. Majority is a method to sum the weights of a base in DNA sequences, yellow 
highlights represent 100% similar sequences with majority, number indicates the number of 
base pair. 
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Figure B8 Alignment result between DNMT3L and pcDNA-MycDNMT3L (commercial 
plasmid). Majority is a method to sum the weights of a base in DNA sequences, yellow 
highlights represent 100% similar sequences with majority, number indicates the number of 
base pair. 

 

Figure B9 Alignment result between Myc and pIRESpuro3-Myc. Majority is a method to sum 
the weights of a base in DNA sequences, yellow highlights represent 100% similar sequences 
with majority, number indicates the number of base pair. 

  



 

255 
 

10. Appendix C: Target genes for each DNMT isoform  
 

Table C1 Target genes of DNMT1 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg19245525 ACACB cg08387944 LINC00964 

cg18295758 ADAMTS16 cg27636676 LMX1A 

cg24985738 ADAMTS2 cg15671466 
LOC100506457 

cg26983228 ARHGAP15 cg23676348 

cg05927763 ATXN10 cg10171489 LY86 

cg24859648 BANF2 cg23094728 MAP3K1 

cg20943641 CCDC53 cg23220346 MIR128-2 

cg14085446 CDX1 cg07284339 OSBPL5 

cg13851989 CER1 cg25711003 PHLDB2 

cg23013853 CHGA cg10207469 PLX4 

cg20348618 CMKLR1 cg07461239 PTPRM 

cg10985909 CNST cg13173924 SCN1A 

cg09185643 CRMP1 cg16968681 SHC2 

cg26942892 DLGAP2 cg09868003 SHC4 

cg07611000 EHBP1L1 cg18886071 SLAMF1 

cg01065960 ERAL1 cg04914221 TLN2 

cg15865055 FAM55A cg15646382 TMCO6 

cg24636477 GDF10 cg16933440 VEPH1 

cg08053904 GPR139 cg24885481 ZNF287 

cg20663347 GRIN3A 

cg25751961 KCNJ1 
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Table C2 Target genes of DNMT3L 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg08344180 AADACL4 cg03853861 EDA2R 

cg21211413 ACAN cg14435469 EHHADH-AS1 

cg06904000 ACSM5 cg17313986 EPHB1 

cg24893551 ACVR1C cg12665345 EVC2 

cg16754015 ADARB2 cg06551520 FAM170B-AS1 

cg10533744 ADARB2 cg09543693 FAM19A5 

cg22069688 ADGRE1 cg07383415 FAM49A 

cg11425164 AGPAT9 cg16967830 GABRA5 

cg08624915 AHSP cg18172281 GFRA2 

cg03459928 AK7 cg04096150 GPR176 

cg04188756 AKAP6 cg25041439 HYLS1 

cg04304338 ANKRD33B cg07164224 IL1R1 

cg03501666 ANKS1B cg05903710 IL4R 

cg11984673 APBB1IP cg02238012 IRX4 

cg20118431 B3GAT1 cg06828335 KCNMA1 

cg05355436 C10orf107 cg16324958 KCNQ1 

cg27153327 C16orf73 cg08947191 KDR 

cg26090020 C17orf102 cg17031773 KLK9 

cg03343128 C1orf150 cg10334948 L3MBTL4 

cg01311470 C9 cg20840054 LIMS2 

cg23550589 CCDC149 cg18597321 LINC01091 

cg14455169 CCDC162P cg02419849 LINC01107 

cg07125635 CHRM5 cg12958892 LOC101927285 

cg24838240 CLEC17A cg05888741 LOC101928651 

cg15965233 COBLL1 cg19283824 LOC101928940 

cg15784618 CPM cg16653838 LOC101929450 

cg02763813 CRTAM cg23522965 LOC101929608 

cg26975860 DAB1 cg16031039 LOC102477328 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg07855920 MACF1 cg02399826 SPOCK1 

cg06150437 MEG8 cg14940332 SQRDL 

cg04251661 MIR4280 cg09365942 SUGCT 

cg00269670 MIR548F5 cg15260465 SUN3 

cg14241523 MKLN1 cg12150401 TAS2R16 

cg00817995 MOV10L1 cg02606650 TENM2 

cg04434896 NKX2-6 cg17153727 TFAP2B 

cg07990664 NOS1 cg09982570 TRPM1 

cg07182163 NRXN3 cg05150480 WISP1 

cg14079660 PAMR1 

cg12157387 PARD3B 

cg12175689 PDE11A 

cg19077019 PDYN 

cg04993169 PHACTR3 

cg14875564 PLA2G4A 

cg24855857 PLK2;PLK2 

cg03358250 PPP1R1C 

cg20540357 PPP2R2B 

cg22915460 PTK2B 

cg13470291 PTPRE 

cg00533835 PTPRN2 

cg10249637 PTPRN2 

cg08403027 RASL12 

cg11823687 RELN 

cg04444865 RGS6 

cg17674543 RIMS4 

cg17078629 RTP2 

cg01660114 SCD5 

cg20921778 SLC6A13 

cg17264397 SMOC2 

cg25045972 SNORD113-6 

cg11419498 SNX29 
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Table C3 Target genes of DNMT3A1 

CpG UCSC_RefGene_Name 

cg27039534 C10orf90 

cg13395712 C17orf97 

cg07613458 EEPD1 

cg04726310 FRMD5 

cg09203312 GJB6 

cg25085070 KIF18A 

cg06041732 LINC00907 

cg15424570 LINC00907 

cg13693143 MIR206 

cg27559408 MIR330 

cg01307483 NRF1 

cg12962308 OR5D16 

cg17514068 SYNE2 

cg15565110 TMEM67 

cg07225782 TRPM8 

cg02867216 TSHZ1 

cg25743243 ZNF679 
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Table C4 Target genes of DNMT3A2 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg14426428 AIM1 cg20593471 BCL2 

cg17095685 ALADL2 cg15729649 BICC1 

cg16074390 ALDH1A2 cg18849256 BICD1 

cg17778221 ALG9 cg01848236 BIRC6 

cg13526659 AMPH cg12328330 BLOC1S4 

cg19159985 ANKHD1 cg02238928 BMP7 

cg09033641 ANKRD11 cg03291755 BNC2 

cg27079614 ANKRD13A cg10649841 BRD8 

cg11672099 ANKRD35 cg25223634 C10orf26 

cg13355704 ANXA4 cg04532551 C19orf47 

cg23267831 AOAH cg04932658 C19orf81 

cg17727159 ARHGAP31 cg21268653 C1orf203 

cg12150041 ARHGAP32 cg18729148 C21orf62-AS1 

cg13376104 ARHGDIB cg17903782 C4orf22 

cg06967020 ARHGEF10L cg09681278 C4orf37 

cg20092396 ARHGEF37 cg07204005 C6orf106 

cg04606397 ARID1B cg09503608 C6orf26 

cg16677621 ARID1B cg19965099 C6orf48 

cg01087456 ARIH1 cg24612707 C7orf68 

cg20452714 ARTN cg03029255 C8orf31 

cg25570306 ASPH cg06758746 C9orf3 

cg05342446 ATAD1 cg21256342 CACUL1 

cg18165237 ATE1 cg22828602 CADPS2 

cg27629145 ATF6B cg09367967 CALR 

cg05433448 ATP2C1 cg18093691 CCNI2 

cg12097550 ATP5G2 cg12824456 CCNY 

cg03034900 ATP5I cg17862993 CDH18 

cg10075191 ATP6V1A cg09781028 CDK14 



 

260 
 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg18090634 CELF1 cg07587451 DPYSL2 

cg27638662 CEP170 cg10258107 DYNC1I1 

cg10169382 CGREF1 cg16893968 DYNC1I2 

cg00239870 CH25H cg25329325 E2F6 

cg27018185 CH25H cg21978593 EBF1 

cg03542374 CHD2 cg23029193 EGFLAM 

cg03212674 CLK2 cg15052505 EIF2AK1 

cg13630493 CLTA cg09241638 ELMO1 

cg09006659 CLU cg15810415 ENPEP 

cg11662760 COG3 cg07018561 ENTPD3-AS1 

cg23211065 COPB2 cg06129726 EPB41L3 

cg10325507 COQ5 cg16411256 EPHX2 

cg18179075 CPA2 cg12413918 ERBB2 

cg15095213 CRACR2A cg11492274 ERICH1-AS1 

cg07492937 CREM cg10426370 ESM1 

cg15029935 CRTC3 cg08079330 ESRRB 

cg27082285 CTN3 cg16934235 EXPH5 

cg13180058 CTNNBL1 cg01297479 FAM108C1 

cg07115822 CXADR cg10833066 FAM109A 

cg06817368 DCP2 cg14140515 FAM159B 

cg10706802 DDX6 cg00184203 FAM171B 

cg03263272 DENND3 cg15133477 FAM205BP 

cg27037802 DEPDC5 cg26062455 FAM71F1 

cg14240608 DESI2 cg15357165 FANCC 

cg14735313 DH14 cg15828427 FBXW9 

cg07134608 DHDH cg00723017 FER1L6 

cg13880379 DLC1 cg16794471 FMNL2 

cg21678614 DLGAP1 cg18174678 FOXJ3 

cg22337620 DLGAP1 cg10036013 FOXK1 

cg25072592 DLST 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg12152765 FOXK2 cg20696451 HSPA14 

cg10551484 GATB cg10400423 HSPA5 

cg17430362 GBA2 cg07310984 IFIT3 

cg13808803 GHR cg01396302 IGF2BP2 

cg06245658 GLI2 cg16181505 IGF2BP2 

cg26875524 GLIS1 cg19230532 IGF2BP2 

cg17753877 GLIS3 cg09202145 IGFBP7 

cg07038690 GLTSCR1 cg09729065 IKZF3 

cg11267359 GMDS cg04100971 IL18 

cg02948693 GNB1 cg08978665 IL32 

cg08038054 GNG11 cg01806261 IMMP2L 

cg09726355 GPATCH8 cg23806656 IMMP2L 

cg01987047 GPCPD1 cg06779086 INPP5F 

cg16204524 GPR113 cg25238640 IP 

cg04685975 GRB2;GRB2 cg02835421 IPO13 

cg10020309 GTF2E1 cg02802590 ITPRIPL1 

cg02749560 GTPBP2 cg03474430 KANK1 

cg19475988 GULP1 cg04852685 KCNMB2 

cg24238527 H2AFV cg13329032 KDM2A 

cg22277567 HDAC4 cg26671851 KDM6A 

cg14973347 HDAC9 cg04458670 KIAA0947 

cg09624120 HEATR6 cg01885559 KIDINS220 

cg11677533 HHLA3 cg15819739 KIFC1 

cg21461470 HIST2H2AA4 cg06326971 KIFC3 

cg24245397 HK1 cg19823803 KIT 

cg18348836 HOOK1 cg16167943 KLB 

cg07797397 HOXD1 cg01260308 KLHDC2 

cg13044985 HOXD1 cg05241571 KRTDAP 

cg22501143 HP1BP3 cg20498763 LAMA2 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg17190362 LAMA4 cg11346282 MAP4K3 

cg01895696 LATS2 cg09331409 MAP6 

cg18708502 LATS2 cg01837497 MAPK14 

cg05527869 LHX1 cg14455887 MAST4 

cg23966569 LIMS2 cg12688268 MBP 

cg23345395 LINC00343 cg25737410 MCF2L2 

cg03647393 LINC01069 cg21444749 MDN1 

cg25043996 LINC01307 cg07593915 MED13L 

cg26734132 LINC01330 cg08581446 MED13L 

cg21817764 LINC01489 cg21265996 MED21 

cg13572309 LMO3 cg09221431 METTL24 

cg20017295 LOC100506844 cg13302154 MGP 

cg21231068 LOC101926975 cg15930380 MIER1 

cg00524136 LOC101927780 cg01069675 MIP 

cg02254041 LOC101928103 cg04933317 MIR1273H 

cg03288924 LOC101929123 cg25970929 MIR155HG 

cg14132585 LOC101929710 cg03794238 MITD1 

cg13696490 LOC201651 cg07113570 MITF 

cg26759486 LOC645434 cg02296932 MMD2 

cg10445599 LOH12CR1 cg09637723 MON1A 

cg07263235 LPL cg19753469 MORF4L1 

cg22985146 LRRFIP2 cg06470279 MRC2 

cg06171633 LTK cg15709536 MRPS31 

cg09879137 LUC7L3 cg12935350 MRPS9 

cg08443014 LYPD6 cg14679803 MTFMT 

cg06473548 MACF1 cg13628726 MTMR3 

cg09866472 MACF1 cg23423181 MTRNR2L4 

cg10946938 MACROD1 cg18121434 MYO18A 

cg26187339 MAD2L1BP cg08663213 MYO18A 

cg12396641 MAML3 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg24581547 MYO5B cg25064395 PDGFRA 

cg25551043 MYOF cg10206741 PHC1 

cg14125537 NBPF8 cg01428071 PHIP 

cg00813334 NCOA6 cg02304767 PHLPP1 

cg20537764 NEK11 cg05018608 PIP5K1B 

cg06703222 NFAT5 cg17047829 PLCE1 

cg03449946 NFIA cg16222616 POC1B 

cg15484811 NGRN cg22956231 PPP2R2C 

cg08546514 NINL cg07182343 PPP6R3 

cg26739807 NME2 cg14217558 PRDM16 

cg26954135 NOCT cg06135990 PRR5-ARHGAP8 

cg03446508 NOVA1 cg27441872 PSME1 

cg01432046 NR5A2 cg10589408 PTP4A2 

cg17530754 NRIP1 cg01369817 PTPN23 

cg01654560 NTM cg18122501 PTPRN2 

cg12682110 NTM cg17698886 PTPRS 

cg17619803 NUMBL cg00632811 PWP1 

cg12582028 OAZ3 cg12130067 RAB11FIP1 

cg03727842 OPHN1 cg15415783 RAB40C 

cg00516867 OPN1SW cg26734848 RALB 

cg13212525 OTOL1 cg09202322 RBM18 

cg17466151 PACS1 cg14615491 RBM33 

cg24934408 PADI1 cg02698507 RFX2 

cg16684992 PAFAH1B1 cg03191504 RNF149 

cg02187196 PANK2 cg17796813 RNF168 

cg06903211 PBX1 cg15672877 RNF43 

cg16155772 PCCA cg19083634 RNFT2 

cg15770136 PCDH9 cg05572461 RPA3 

cg07537734 PDGFC cg09401696 RPS26 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg05651511 RPTOR cg16911115 SRP72 

cg14640066 RTN4 cg05465104 ST7L 

cg17401362 RWDD4 cg04828068 STAM2 

cg24089111 SARM1 cg27328824 STAMBPL1 

cg24196318 SCAF4 cg20716209 STAT3 

cg05463545 SCAPER cg05692128 STIM2 

cg04274830 SCARB2 cg06075946 STPG1 

cg02390614 SCMH1 cg14994183 SYN2 

cg13001838 SEC61G cg21958743 SYT1 

cg03855973 SENP6 cg13449839 TAF4B 

cg14423617 SERPI5 cg00274587 TAPBP 

cg00049545 SERPINB13 cg00555420 TAPT1 

cg14677615 SEZ6 cg06218079 TBCD 

cg07126559 SGCG cg05555876 TCEA1 

cg04297507 SGMS2 cg07321291 TCEB1 

cg13667782 SH3GLB2 cg19261940 THRA1/BTR 

cg00961640 SLC16A4 cg18953822 TIAM1 

cg05487207 SLC39A14 cg24262469 TIPARP 

cg20392013 SLC39A9 cg11454957 TMEFF2 

cg00029150 SLC51A cg25565793 TMEM260 

cg04799948 SMAD5-AS1 cg19490180 TMPRSS6 

cg05730460 SMARCA2 cg26745222 TOX2 

cg19927678 SMG6 cg13059495 TPRG1L 

cg20188739 SNORD87 cg12825509 TRA2B 

cg13074203 SNTB1 cg02854396 TRHDE 

cg05614305 SNX10 cg20792582 TRIM24 

cg03594550 SOX11 cg13628022 TTLL11 

cg16920608 SPATA16 cg03487391 TTLL4 

cg23079866 SPDYC cg24829718 TTLL5 

cg08732275 SPSB1 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg20249071 UBASH3B cg18978297 ZBTB10 

cg02020772 UBE2D2 cg16958493 ZCCHC7 

cg22455082 UBE2K cg17692028 ZDHHC17 

cg22212260 UBP1 cg25766774 ZDHHC3 

cg04839974 UGCG cg24857943 ZFAND3 

cg01062424 UHRF1BP1 cg23661268 ZFHX3 

cg24310913 USP3 cg16586418 ZFHX4 

cg26561986 USP44 cg22043381 ZHX2 

cg27257939 VBP1 cg08769844 ZNF233 

cg09954698 VSX2 cg06704974 ZNF438 

cg03268306 WDFY4 cg19866478 ZNF480 

cg01096191 WDR25 cg04085696 ZNF559 

cg03104358 WDTC1 cg17712400 ZNF652 

cg21360126 WIPF2 cg02205936 ZYG11B 

cg19886272 WWP2 

cg23370051 XPR1 
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Table C5 Target genes of DNMT3B1 

CpG UCSC_RefGene_Name 

cg23967739 A2ML1 

cg18502829 ACCN1 

cg00584743 APBB2 

cg03276883 BDH2 

cg23491841 C2orf85 

cg13270972 CNPY3 

cg07212793 DOCK4 

cg06801857 GALNT2 

cg19710449 JAKMIP1 

cg11235869 KIF26B 

cg09385371 LOC153910 

cg08485086 MAPK1IP1L 

cg26515755 MYH11 

cg15368193 MYO5B 

cg21610390 MYO5B 

cg17274916 POLDIP2 

cg08553820 PRKD2 

cg06339171 PTPRG 

cg01496696 PTPRN2 

cg25338587 SYNE1 

cg10960152 ZNF713 
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Table C6 Target genes of DNMT3B2 

CpG UCSC_RefGene_Name 

cg23984908 ARMC8 

cg06419218 C11orf44 

cg01986486 C3orf67 

cg06081039 CCDC64 

cg20924286 CLDN11 

cg21824190 DERA 

cg19918866 DIRC3 

cg23465427 DLG4 

cg20234991 DOC2B 

cg24762962 FLJ37543 

cg11457308 GALNT16 

cg10131699 GALNTL2 

cg26310920 GCK 

cg17983064 IL3 

cg17407969 KNDC1 

cg04372796 LOC101929517 

cg14351952 PDCD1LG2 

cg27007060 RTN4IP1 

cg12106308 RUFY4 

cg15686094 SNTG2 

cg13274534 TEX29 

cg10062150 TMEM59 

cg23831942 TSHZ2 
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Table C7 Target genes of DNMT3B3 

CpG UCSC_RefGene_Name 

cg12173487 CPNE2 

cg12583095 HTR7 

cg06580033 ZNF830 

 

 

Table C8 Target genes of DNMT3B4 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg26975768 ABLIM1 cg18537730 IZUMO1 

cg03745383 ACCN1 cg03890215 LINC00907 

cg00354572 ACSS3 cg00935967 LOC100133612 

cg04977222 ATP13A5 cg18976321 LOC102546229 

cg27163126 AZIN1-AS1 cg10081994 LONRF2 

cg03380861 B3GLCT cg08643824 LPXN 

cg10687420 C7orf58 cg26179289 LY86 

cg27167221 CAMTA1 cg19995387 MC5R 

cg26636590 COX7B2 cg10350998 MLLT3 

cg07233933 CPEB4 cg02765998 MOB3B 

cg14776738 DENND1C cg06797656 MYO18B 

cg05101674 DOK5 cg14736911 MYOZ2 

cg12269473 EHF cg26657649 NEDD4L 

cg07196212 ESR1 cg05112298 NOD2 

cg09096933 FGD4 cg07494218 OR2C1 

cg25980637 FLJ37453 cg02399892 OTOA 

cg06830784 FRZB cg20836372 OTOA 

cg03345391 GCK cg17637556 PACRGL 

cg26966698 HECW2 cg00354484 PAX8 

cg11451043 HLA-DPA1 cg00586113 PCSK5 

cg00310588 HTR3C cg12381317 PFKM 

cg09992309 ISPD cg02788195 PHYHIPL 
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CpG UCSC_RefGene_Name 

cg11015424 RALGAPA1 

cg00754426 RALGAPB 

cg03965221 RPGRIP1 

cg00554229 RSPO1 

cg22063989 RSPO1 

cg13440637 RTN1 

cg17723122 SLC45A3 

cg20413514 SMG6 

cg01082554 SMYD3 

cg27454528 SMYD3 

cg01190484 TRIM40 

cg22594238 WIPF2 

cg19913551 ZFR2 

cg11180789 ZNF615 

cg23501467 ZNF93 
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Table C9 Target genes of DNMT3B5 

CpG UCSC_RefGene_Name 

cg15366573 ABHD2 

cg17053902 ADAM12 

cg02633229 C15orf23 

cg11788263 CCSER2 

cg15923359 CSGALCT1 

cg12640568 DLGAP1 

cg15625693 F11 

cg20268758 FAM189A1 

cg06695675 LOC101927641 

cg09307121 LOC101929450 

cg21225049 LOC102723828 

cg02920604 MYO1E 

cg19805562 SEC23A 

cg19296884 TSRE1 
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Table C10 Target genes of DNMTΔ3B1 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg22381317 ACVR1B cg01400040 RORA 

cg09302836 ALPK2 cg09001356 RPTOR 

cg15872575 ASB18 cg10821341 SIL1 

cg06650659 ATP13A5 cg19819818 SLC24A4 

cg06717221 ATP8B3 cg02965511 SLC51A 

cg19378216 C20orf114 cg24871226 SSH1 

cg19399653 CEACAM8 cg09044458 ST5 

cg17309085 CNTN5 cg12603229 STK4 

cg01287361 DJC15 cg13693826 SYNE2 

cg26763380 EIF3E cg21918419 TAPT1 

cg16318688 EPHX4 cg06490287 TCTE3 

cg11703750 FAM13C cg14665901 TEAD1 

cg23752752 FOXK1 cg16275707 ZNF10 

cg24949632 GABRB1 cg07790111 ZNF470 

cg19945464 GAS2 

cg11452221 GEFT 

cg26877678 KSR1 

cg12111733 LINC01443 

cg12688894 LINC01564 

cg07680037 LIPC 

cg11304573 LOC101928994 

cg20546365 LOC145845 

cg03894789 MIR874 

cg06970884 MNT 

cg21991396 NLRP3 

cg09259409 OR2W5 

cg07597882 OXT 

cg14930579 PAPD7 

cg19931348 PI3 

cg12406507 POLD3 
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Table C11 Target genes of DNMTΔ3B2 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg23891985 A1CF cg03191962 C9orf98 

cg15769388 A2ML1 cg17108476 CA12 

cg05894322 ABCA10 cg10352688 CAMK4 

cg00747477 ACCN1 cg24521848 CCDC108 

cg21474880 AFAP1 cg10106388 CD244 

cg23434264 AKAP13 cg09781987 CDYL 

cg15930120 AKAP6 cg10375597 CEACAM20 

cg25533247 AKAP8L cg23818780 CECR2 

cg18761400 ALDH8A1 cg24229206 CELF2 

cg25104512 ALS2CL cg00028056 CHPF 

cg22615730 ANXA4 cg17599620 CLASP2 

cg00341504 ARHGAP28 cg10223809 CLEC12A 

cg26988221 ARPC2 cg11937448 CLEC12B 

cg11304664 ATF5 cg10301072 CLGN 

cg05365685 ATP2B2 cg05404912 CLIP3 

cg16847719 ATP8A2 cg13507084 CNTFR 

cg12431207 ATRNL1 cg03122917 COL6A5 

cg03440454 B3GNTL1 cg19985724 CORIN 

cg04628938 BCAS3 cg11270449 CPB2-AS1 

cg09911747 BCL11B cg14806927 CR1 

cg14168713 BICC1 cg05080132 CTBP2 

cg00076072 BPIFB3 cg14665921 DCDC2C 

cg21488132 C11orf31 cg27228578 DH9 

cg16216885 C19orf81 cg03831312 DIRC3 

cg22213391 C1orf106 cg05511924 DIRC3 

cg01450736 C1orf110 cg01697794 DLG4 

cg24731625 C1orf229 cg12017315 DLST 

cg11123493 C5orf13 cg01708284 DMRT1 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg22811478 DOCK4 cg01858205 GPR108 

cg05465131 DRD3 cg25244238 GPR108 

cg05292310 DSPP cg09648243 GPR39 

cg01248810 DYDC1 cg05458052 GRHL2 

cg17372920 EDDM3A cg21007931 GSG1L 

cg10617796 EDIL3 cg04836362 GTF2IRD1 

cg17877237 EEF1DP3 cg05309750 GXYLT2 

cg03746008 EIF2B5-AS1 cg06118312 GZMA 

cg04054100 ENTHD1 cg22438640 HCG4 

cg17572324 ESYT2 cg11246805 HDLBP 

cg26404422 ETS1 cg16638857 HKDC1 

cg05643360 FAM110B cg26784412 HLA-DPB2 

cg00205703 FAM131A cg05500783 HLA-DRA 

cg16782425 FAM171B cg02563789 HNRNPC 

cg02536065 FLI1 cg02264990 HOXC4 

cg24022651 FNDC3B cg00377794 HUNK 

cg19418525 FRAS1 cg04412506 ICA1 

cg16531955 FRS2 cg11609995 IL18R 

cg16534289 FSTL1 cg16319517 IL1RAP 

cg00056280 G12 cg02349850 IPO11 

cg04769577 G12 cg16840156 ITGA11 

cg21684809 G12 cg09934565 ITPR1 

cg00019118 GALNT9 cg24323597 KALRN 

cg10356397 GBE1 cg05658173 KCNK15 

cg00416130 GJA4 cg08856529 KCNK9 

cg19720377 GLP2R cg14601981 KCNMA1 

cg13559820 GLT6D1 cg19584551 KIAA1217 

cg18138010 GMDS-AS1 cg27587063 KIAA1751 

cg23541617 GNPTAB cg14950072 LAMA1 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg03368758 LDB2 cg21435394 NUDT14 

cg03730738 LINC00351 cg18949521 OR5V1 

cg04502126 LINC01258 cg17473495 OSBPL3 

cg17981966 LMO3 cg02078558 OSBPL6 

cg00684347 LOC100271832 cg21191347 PA2G4 

cg03177464 LOC100288798 cg02644583 PDCD1LG2 

cg14236242 LOC101448202 cg10989138 PDE1C 

cg11035685 LOC101927769 cg02202052 PDE3A 

cg23071261 LOC101928162 cg26062141 PDE4B 

cg09552181 LOC101929596 cg20133730 PDK2 

cg07152607 LOC105616981 cg27355501 PFDN6 

cg02088996 LOC285954 cg25845380 PID1 

cg23275355 LOC392232 cg26723002 PLAG1 

cg01680573 LOC729991-MEF2B cg15034764 POSTN 

cg15790804 LRTM2 cg25464078 PPTC7 

cg03354707 LTBP4 cg26493631 PRDM11 

cg04447756 MATR3 cg09420520 PRMT8 

cg26231094 MBOAT7 cg14044685 PRRG4 

cg21331791 MCF2L cg09267188 PTDSS1 

cg13272357 MIR20B cg03398844 PTK2 

cg06671868 MIR548G cg20006825 PTMS 

cg26374481 MIR548G cg07775266 PTPRM 

cg22877504 MREG cg14129439 PTPRZ1 

cg15344442 MYT1L cg26654286 RARA 

cg07918168 NCAM2 cg08384130 RBFOX3 

cg18402101 NDUFC2 cg09959490 RBM47 

cg02870676 NEDD4L cg00430372 RCAN3 

cg01281210 NRG1 cg19585586 RPL17 

  cg21287940 SCG5 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg06621691 SDK1 cg10980788 TMC1 

cg27378216 SETBP1 cg14031220 TMEM178A 

cg05777337 SGK223 cg13740979 TNFRSF10B 

cg04421348 SH2D4B cg21808287 TNP1 

cg15710554 SIL1 cg20243424 TNXB 

cg04095373 SKAP1 cg04639174 TRAF6 

cg19734536 SLAMF1 cg23624321 TRAF6 

cg23642651 SLC13A3 cg01910804 TTC6 

cg06421013 SLC24A3 cg11963464 TTPA 

cg04292976 SLC26A9 cg26161386 TTPA 

cg16923485 SLCO1A2 cg12142328 USP34 

cg26990023 SMOC2 cg07337250 USP43 

cg02077920 SMYD3 cg15405572 V3 

cg16046833 SNX7 cg13084429 VWA2 

cg18544696 SORL1 cg17276624 WBSCR17 

cg17284609 SOX6 cg04372929 WISP2 

cg06728232 SPATA16 cg17167536 XKR6 

cg02405517 SPC2 cg20060356 ZFPM2-AS1 

cg14742361 STAU2 cg11473417 ZNF251 

cg10429523 STL cg05859088 ZNF365 

cg04759244 STX16 cg08370080 ZNF429 

cg10206882 STXBP6 cg00845602 ZNF438 

cg26535273 SYNGAP1 cg15604051 ZNF502 

cg08699646 TEPP cg19819404 ZNF718 

cg26323602 TEX26 cg24071762 ZNF839 

cg11265171 TFDP2 

cg12397274 TIG 

cg12625508 TKT 

cg08757862 TLR1 
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Table C12 Target genes of DNMTΔ3B3 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg07152070 ADGRG4 cg18226835 FSHR 

cg19561181 ANKRD60 cg27154418 GP6 

cg08490364 AP2B1 cg25762753 GPR156 

cg00950473 APCDD1L cg20934765 GRID2 

cg06376392 ARHGAP15 cg12518734 HAP1 

cg18484278 ARHGAP22 cg03965949 HECTD2-AS1 

cg26499611 BAIAP3 cg10759591 HRNBP3 

cg08927738 BCAS1 cg08067312 IGFBPL1 

cg17512348 C9orf171 cg16217885 IL1R1 

cg09756599 CALN1 cg24530225 IL1R1 

cg23388535 CDCP1 cg26810336 IL1RAPL1 

cg22379697 CHD6 cg01849284 KCNMB2 

cg04075184 CLASP1 cg12033029 KIF5C 

cg15501456 CNDP1 cg10637292 KRT74 

cg04066265 CSGALCT1 cg14807428 LARP4B 

cg11822265 CTN3 cg26020743 LINC00299 

cg07089660 DEFA4 cg05191222 LINC00703 

cg19839614 DGKK cg15262365 LINC00929 

cg09055992 DLGAP2 cg04008237 LIPE-AS1 

cg00529424 DMRT1 cg22676735 LOC101929710 

cg15665376 DSCR10 cg02542440 LOC441601 

cg20364776 EEF1AL7 cg14704531 LOXHD1 

cg27494843 EHF cg17838834 MIATNB 

cg14055970 ENG cg21876806 MIR299 

cg26381730 ERICH1-AS1 cg19444866 MIR6854 

cg05949399 ERICH1-AS1 cg10609662 MMP24 

cg27343917 FAM176A cg17964305 MSRA 

cg19218438 FAM19A5 cg21467050 MX1 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg08004620 MYOM2 cg20838631 TRRAP 

cg04717370 MYT1L cg12968088 WDFY4 

cg08635101 NBPF25P cg01317060 XYLT1 

cg14608275 NCEH1 cg14289985 ZNF471 

cg12123879 NCR1 

cg11872504 NDN 

cg03466998 NLRP3 

cg18183941 NLRP3 

cg21360918 OR7G1 

cg02462812 PCDHB4 

cg15956339 PHOX2B 

cg17255063 PHOX2B 

cg16323609 PRKAR2A 

cg16490431 REPS2 

cg04751120 RP1L1 

cg09193037 RPEL1 

cg06329972 RYR3 

cg11257864 SERPI5 

cg20254658 SHROOM3 

cg24247040 SKAP1 

cg25221452 SLAMF7 

cg12187305 SLC8A3 

cg03288304 SLC9A4 

cg00975791 SNORD114-18 

cg19200333 SORCS1 

cg18658556 SORCS2 

cg16902385 ST8SIA3 

cg25256067 THSD7A 

cg06196379 TREM1 

cg20936707 TRIM58 
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Table C13 Target genes of DNMTΔ3B4 

CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg17713190 ABLIM3 cg13770691 C19orf6 

cg23976464 ACCN1 cg00588517 C2 

cg20240860 ACCS cg01383890 C2CD4A 

cg03202077 ADAMTS5 cg21490417 CAC1A 

cg16559275 ADAMTSL4 cg25231948 CAMK4 

cg13940693 ADCYAP1 cg01544580 CBX1 

cg22842879 AFAP1 cg25051805 CCDC126 

cg14134368 AGFG1 cg25872744 CCDC83 

cg14667832 ALK cg10042846 CCL13 

cg24603490 AMIGO2 cg13720316 CCND1 

cg16859696 AMMECR1 cg24729983 CCNO 

cg02548132 ANGPT2 cg10185424 CD180 

cg15855924 ANKRD10 cg11874272 CD86 

cg11713658 ARHGAP10 cg03829839 CDK4 

cg10984236 ARID1B cg18094824 CENPE 

cg11090211 ARL5C cg20539142 CHR6 

cg14451560 ARRDC1 cg09449447 CLDN14 

cg07504154 ASB5 cg25272432 CLGN 

cg21068480 ATOH8 cg15862165 CRADD 

cg27450074 ATP9B cg06794775 CREB3L4 

cg26402735 BASP1 cg16596604 CRYM 

cg21500300 BCAT1 cg07752723 CT45A10 

cg04678713 BDH1 cg21921460 CTNND2 

cg14304249 BEST2 cg06643622 CTTNBP2 

cg16965449 BRD7 cg20502337 CXorf36 

cg24671734 BTBD11 cg03142049 CYSTM1 

cg03359067 BTNL3 cg02872476 DBNDD1 

cg04358214 C16orf70 cg17110349 DIDO1 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg27369423 DKFZP434H168 cg16415340 INS-IGF2 

cg12954425 DOCK8 cg21912938 JAZF1 

cg07258372 DT cg09244349 KANSL1 

cg05293775 DUSP26 cg18639125 KCNF1 

cg11806102 EHHADH cg04431946 KCNK12 

cg26246486 ELAVL2 cg07685869 KIFC3 

cg02156680 ENPP2 cg15199350 KIRREL3 

cg05075705 ENPP3 cg21807198 KSR2 

cg07482337 EOMES cg19909349 LAMA1 

cg24460563 EPAS1 cg04850395 LINC01470 

cg00157656 ERICH1 cg09413116 LOC101928233 

cg06752040 FAM107B cg23281602 LOC101928489 

cg15904427 FAM122C cg17264609 LOC150568 

cg17114257 FCHSD2 cg03065467 LOC641518 

cg22454769 FHL2 cg03946923 LOC641518 

cg24561572 FMNL1 cg04162032 LOC646627 

cg16509658 GABRB2 cg10222309 LRRC3C 

cg13881405 GADD45G cg10316899 MACF1 

cg25435255 GBF1 cg16896847 MAFA 

cg26295057 GDNF cg06852975 MAGEC1 

cg04714954 GLO1 cg18858249 MAGI2 

cg22702243 GNE cg26328687 MAML2 

cg06460174 GON4L cg07618155 MIR124-2HG 

cg21351852 GPR84 cg24603444 MIR125B1 

cg20947470 GT1 cg10082525 MIR380 

cg12151328 GTPBP8 cg20751048 MIR548W 

cg05380503 HECW1 cg02047319 MIR654 

cg13308279 HECW2 cg24456365 MMP16 

cg26746878 IKZF1 cg13644221 MMP20 
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CpG UCSC_RefGene_Name CpG UCSC_RefGene_Name 

cg01157261 MOSPD3 cg13130398 RABGAP1L 

cg25584313 MROH7 cg06705767 RARB 

cg14546394 MSC cg06237092 RBM20 

cg16751754 MX1 cg04448201 RBM28 

cg05512413 MYO1D cg03273615 RBM41 

cg27523882 NDUFA4L2 cg08972081 RBP1 

cg18844118 NFE2L3 cg09566735 RGS6 

cg14260162 OR2S2 cg12765549 RGSL1 

cg22075486 OR6B1 cg10827810 RNF125 

cg21515384 OXCT1 cg23548670 RNLS 

cg20701646 PAX6 cg25892001 RTN1 

cg13229291 PCGEM1 cg18426142 SCN8A 

cg11416338 PDE3A cg24867550 SDC2 

cg22488256 PDE4B cg11772956 SERPINB8 

cg09092093 PDE4D cg26840598 SH2D5 

cg21363050 PDGFRA cg04489366 SMPX 

cg21799736 PDHA1 cg09083139 SMURF2 

cg13846114 PEBP4 cg12167284 SNORA11B 

cg07980164 PHLDB3 cg15989068 SOX11 

cg16797824 PIK3R1 cg27463758 SP110 

cg26827893 PLK1S1 cg02213437 ST18 

cg27022570 POLE2 cg09147776 SV2B 

cg01195861 POP5 cg13919174 SVEP1 

cg06649437 PPP4R1L cg02015876 SYNM 

cg20557183 PRDM11 cg06440519 SYT3 

cg15088491 PRLR cg02829601 SYTL3 

cg03049691 PROCA1 cg02833108 TAF4B 

cg00446900 PTPRE cg15657686 TBC1D1 

cg02535073 PTRH1 cg00427635 TBC1D21 
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CpG UCSC_RefGene_Name 

cg08448379 TFCP2 

cg12430467 TJP1 

cg22976313 TMEM179 

cg23376554 TMSB4X 

cg24098643 TRIM5 

cg20467195 TULP3 

cg04770550 VAV1 

cg13411784 WDR85 

cg17133224 WFDC9 

cg07657743 WNT7A 

cg20769177 WNT9B 

cg02171206 WWOX 

cg10772868 ZNF235 

cg26101904 ZNF385B 

cg14393114 ZSWIM2 

cg04391391 ZSWIM4 
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11. Appendix D: Schematic location of the pyrosequencing assay 
locations 
  

Yellow highlight represents a CpG site, Green highlight represents a primer, Blue highlight represents 
a part of EPIC probe. Underline represents a sequence primer. 

 

1. cg01065960: DNMT1 

>hg19_dna range=chr17:27181267-27183516 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence:  

GAAAAAGGGATCACCCGCTCCCTCGCGACATGAGGGCCCACCTGCCAGACTCTTAACACCGATTGAAC
AAGCCTAGCCCCGCGCCAGCTGGGGGCAGCCATTACAGCCGCAAGGCACTGCGGGAACCGACCAGGAG
CGCTCCTACGATTGAACAGAGCGGCTGACGAACCAGCGAGTAGGAGAGAGGTAGGTCTGCCCAAATTG
AAAGCCGAGACACATGGGATGTGGGCGGGAGGAGGAATTGCTCTGGAGACTGGTGGAGGCTAAGGAAA
GGGGAAAATGTGTATTTAGAGTCTGTGCAAGCATGACGGTAGTTTTGGACTCCCATACACAACGTATT
TTTTTCTTCTGCCAAAGTTTTGTAAACGGCCCTTCTGGCCATGTCTCCTAAAAGACTACATTTCCCAT
GAGGCCAAATAGCAGAAATCGTCCTCCCATCGAGGGAGGAATGGTTGTGGGAGTGGGAGGGGGCACTG
TTCCGCCTGTCCCCGTAAGGGTTTTGTTGTTGTTTGTTCCTAGTCCTTTCCATCCTTTGGCCTGCAGG
ATCCTCTCCCAGCCTTAATTTGGCTTGCCCTAGAGGTCAGCGGTGGCCCCGGGCTGTCTGCACCTTTG
CTTTAGGCTAGGTTCCTGGAAGGAGTGGTCCTTGGGTCGGTGTTTGGGATGAAGAGCAGGTCTGGATT
TCCCTCCTGTAAGCCTTGGCTACTGTCTACTATCTGAGGTCATTCCTTTATGGAGAACAACCAGAGGG
TTTGCAAAGGAGGAAGAAGTGGCTTAGCCACCTAAGGTCTCCTAGACCGCTCTAGCAGCCGGAGAAAC
TCATTTACCTTGCTCTGTTTGAGGCCTTGAGCCCTCTTCATCCTTTGTAGCCTCTAAATCAAACACTT
GAA 

 

Bisulfite sequence:  

GAAAAAGGGATTATTCGTTTTTTCGCGATATGAGGGTTTATTTGTTAGATTTTTAATATCGATTGAAT
AAGTTTAGTTTCGCGTTAGTTGGGGGTAGTTATTATAGTCGTAAGGTATTGCGGGAATCGATTAGGAG
CGTTTTTACGATTGAATAGAGCGGTTGACGAATTAGCGAGTAGGAGAGAGGTAGGTTTGTTTAAATTG
AAAGTCGAGATATATGGGATGTGGGCGGGAGGAGGAATTGTTTTGGAGATTGGTGGAGGTTAAGGAAA
GGGGAAAATGTGTATTTAGAGTTTGTGTAAGTATGACGGTAGTTTTGGATTTTTATATATAACGTATT
TTTTTTTTTTGTTAAAGTTTTGTAAACGGTTTTTTTGGTTATGTTTTTTAAAAGATTATATTTTTTAT
GAGGTTAAATAGTAGAAATCGTTTTTTTATCGAGGGAGGAATGGTTGTGGGAGTGGGAGGGGGTATTG
TTTCGTTTGTTTTCGTAAGGGTTTTGTTGTTGTTTGTTTTTAGTTTTTTTTATTTTTTGGTTTGTAGG
ATTTTTTTTTAGTTTTAATTTGGTTTGTTTTAGAGGTTAGCGGTGGTTTCGGGTTGTTTGTATTTTTG
TTTTAGGTTAGGTTTTTGGAAGGAGTGGTTTTTGGGTCGGTGTTTGGGATGAAGAGTAGGTTTGGATT
TTTTTTTTGTAAGTTTTGGTTATTGTTTATTATTTGAGGTTATTTTTTTATGGAGAATAATTAGAGGG
TTTGTAAAGGAGGAAGAAGTGGTTTAGTTATTTAAGGTTTTTTAGATCGTTTTAGTAGTCGGAGAAAT
TTATTTATTTTGTTTTGTTTGAGGTTTTGAGTTTTTTTTATTTTTTGTAGTTTTTAAATTAAATATTT
GAA 
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cg01065960-BS-F AGGTTAGGTTTTTGGAAGGAG 
cg01065960-BS-R-bio CCTCCTTTACAAACCCTCTAA 
cg01065960-BS-SP AGGTTAGGTTTTTGGAAGGAG 
Sequencing entry TGGTTTTTGGGTC/TGGTG 

 

2. cg20943641: DNMT1 

>hg19_dna range=chr12:102455342-102456841 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence:  

TCATTCTCTCCTTGATTTGTGCGTTTTGTCCAATTCTTTGTTCAAAAGAACCTGGACACCCTCCACCA
GTAACACTCTTACCTCATTTCCTACCATTCTCCATTTATGGGATTATTTGCTTCAACCAAACCAACAG
GCCAGGTGCCAGTGGCTCACACCTATAATCCCAGCACTTAGGGAGGCCAAGGCATGAGGATCATTTGA
GCCAAAGGGTTTGAGACTAAGGTGAGCTATGATCCTCACTGCACGCCAGACTGGGTAACAAAGCGAGA
CCCCCCATCTTTAAAACAAAACTGCCCACTGCAGTCTTGGTCTTCATCTTTTTGATGCTCCCTGTAAG
TGGCAGTCACTTCCGTAGGTTTGTGCCTCACATCTAGTAGTTGACATTTTATTTCATGTTTTAAAAAC
CTTTGGAAGACCAGGCGCGTTGGCTCACGCCTGTAATCCCAGCACTCTGTGAGGCTGAGGCAGGAGAA
TCGTGTGAGGCTGAGGCAGGAGAATCGCTTGAGGCCAGGAGTTCGAGACCAGCCTGGGGAAATAGCGA
GAACTTGTGTGTATACACACACACACGCTTTGGAAGTAGGTCTTATTTCTCATTCTTCAGGGCATAAA
CCTCTCCCGTGCAGCAATCAAACTCAATCTTTGTTTTCCCAGTAAAAGCCTAGCAGAGTATATGGCAC
TTAGGATTAACAACAACAAAAAAAAAATTGTTGCTCAAGGAATGACGGAGTTATTATATAACAGACAG
GACTAAGTAGGGATAACCTCAAAAGGACGCAACTTCTGGCTTTGTTTTTTTGTTTTGTTTTGTTGCCT
CCTTTCTAAGATTTCAGTGCTCTAACTGCATCCTTGCACCACCGCGCGCCACCCCGAAATTGACGTCA
CAATCTGGACTAAAACTACCAATCCCAGAATGCCGAGCGAGGAGGCGGGCTCTCCGGAAGCCGCCGAG
TGATTAGTGAGCGGAGAAGCTTTCTTCCGGCGGGAAGGGCCCCGGAGGCGGGCACTTGGGGGGAAAGT
TGAGACGTGATTACCGGGTTGGGCGGGCCCCATCTGGGAGGGGTTTGTGGGTGAACTCGGGGTCCACC
GCCCGCTGAGGAGATGGATGAGGACGGGCTTCCTCTCATGGGGTCAGGCATAGACCTGACCAAGGTTT
GTAAAAGACGGTGCTAGACTCCCGACGAGCCGGGAGGAGGATGGGGAAGACGCAGCTTTCCGGGGAGA
CACCCACCTTCCGAGTCCCCACCCTGTCACGGCCTCGGGCCCTTGTGACAGGCCTGTGGGGCCTCAGG
AGGGAGAGCCCCACAGTCCACCTTGAAATGGGGTCCCTCCTGAGCTGATTAAGGAGACGGTGTGCATC
TCCCAACTGTCGCTTCCCATCTCGCTTGTCTCTCTGCCGCCGGCGACACACGCCGGTTGCGATAGCTA
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GCCCTACCTCTTATTCAGCCCCCAAGATTTTGTGTGTGTTTATGTGTGGTGCTTTTTGCCTGCCAAAA
TTCG 

 

Bisulfite sequence: 

TTATTTTTTTTTTGATTTGTGCGTTTTGTTTAATTTTTTGTTTAAAAGAATTTGGATATTTTTTATTA
GTAATATTTTTATTTTATTTTTTATTATTTTTTATTTATGGGATTATTTGTTTTAATTAAATTAATAG
GTTAGGTGTTAGTGGTTTATATTTATAATTTTAGTATTTAGGGAGGTTAAGGTATGAGGATTATTTGA
GTTAAAGGGTTTGAGATTAAGGTGAGTTATGATTTTTATTGTACGTTAGATTGGGTAATAAAGCGAGA
TTTTTTATTTTTAAAATAAAATTGTTTATTGTAGTTTTGGTTTTTATTTTTTTGATGTTTTTTGTAAG
TGGTAGTTATTTTCGTAGGTTTGTGTTTTATATTTAGTAGTTGATATTTTATTTTATGTTTTAAAAAT
TTTTGGAAGATTAGGCGCGTTGGTTTACGTTTGTAATTTTAGTATTTTGTGAGGTTGAGGTAGGAGAA
TCGTGTGAGGTTGAGGTAGGAGAATCGTTTGAGGTTAGGAGTTCGAGATTAGTTTGGGGAAATAGCGA
GAATTTGTGTGTATATATATATATACGTTTTGGAAGTAGGTTTTATTTTTTATTTTTTAGGGTATAAA
TTTTTTTCGTGTAGTAATTAAATTTAATTTTTGTTTTTTTAGTAAAAGTTTAGTAGAGTATATGGTAT
TTAGGATTAATAATAATAAAAAAAAAATTGTTGTTTAAGGAATGACGGAGTTATTATATAATAGATAG
GATTAAGTAGGGATAATTTTAAAAGGACGTAATTTTTGGTTTTGTTTTTTTGTTTTGTTTTGTTGTTT
TTTTTTTAAGATTTTAGTGTTTTAATTGTATTTTTGTATTATCGCGCGTTATTTCGAAATTGACGTTA
TAATTTGGATTAAAATTATTAATTTTAGAATGTCGAGCGAGGAGGCGGGTTTTTCGGAAGTCGTCGAG
TGATTAGTGAGCGGAGAAGTTTTTTTTCGGCGGGAAGGGTTTCGGAGGCGGGTATTTGGGGGGAAAGT
TGAGACGTGATTATCGGGTTGGGCGGGTTTTATTTGGGAGGGGTTTGTGGGTGAATTCGGGGTTTATC
GTTCGTTGAGGAGATGGATGAGGACGGGTTTTTTTTTATGGGGTTAGGTATAGATTTGATTAAGGTTT
GTAAAAGACGGTGTTAGATTTTCGACGAGTCGGGAGGAGGATGGGGAAGACGTAGTTTTTCGGGGAGA
TATTTATTTTTCGAGTTTTTATTTTGTTACGGTTTCGGGTTTTTGTGATAGGTTTGTGGGGTTTTAGG
AGGGAGAGTTTTATAGTTTATTTTGAAATGGGGTTTTTTTTGAGTTGATTAAGGAGACGGTGTGTATT
TTTTAATTGTCGTTTTTTATTTCGTTTGTTTTTTTGTCGTCGGCGATATACGTCGGTTGCGATAGTTA
GTTTTATTTTTTATTTAGTTTTTAAGATTTTGTGTGTGTTTATGTGTGGTGTTTTTTGTTTGTTAAAA
TTCG 
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cg20943641-BS-F AAAGTTTAGTAGAGTATATGGTATTTAGGA 
cg20943641-BS-R-bio TTAATAATTTTAATCCAAATTATAAC 
cg20943641-BS-SP TTGTTGTTTAAGGAATGA 
Sequencing entry C/GGAGTTATTATATA 

 

 

3. cg02732111: DNMT3A2 

 

>hg19_dna range=chr4:71728583-71730082 5'pad=0 3'pad=0 strand=+ repeatMasking=none 

 

Genomic sequence:  

AAAAGAAAACTAGGAAATTTTGTTTAATAGGGACTTGCAAGTTAAGATTCCAGATGCCATCCAGATTT
TCCATTGACTTCCTTCGTGCTGTCTTCCTGAAATGCATTTCTGTATAATGATGCATATGTAGGACCGA
CTTTATGGATAGGTAAAAAGAAGCTATTCCCTAAGTAATGTCATTTGTGGGACCAGGAAGCAAAGCCT
TTCCTCCCTCAACCACCCCCACCCCAAGCTGTCATAGAGTCTCAAATCCCACCATTAGCATTTCTGAA
GAAATAGCACATTAAATGAAGCCACACTAGGGTGTTAACAACATATCAGATAGATTTTGTCCTGACAT
TGGGGACCGTGGGAAATACAGAACCACTAGCAAAGGAGAAAGCACTAAAAATAGAGAAGAGGGAGGCA
ACACTAAGGCAGGGTGAACCAGAGATTCCCAGCAGTCCACAGACAGAGAGCCTTGGTTGATTACATGA
GAAGGACCTGGAATTTGTTCAAAATACTGTTTTTAGGATTCCTCCTTGTATTATTTGTCACAAGAGGT
CTGGGGTGGATTCCTGGGTGATTTCGATGTGCAGCTAAGTTCAGAAACTGTTAACTATGAAGCCACAT
AAAAAGAAACAAACATCAACAACAAAAAAACCCCACATGACTTCCCCACCTCACGTAAACACAGAGTC
AATGTTCCCATCCTGCCTAGGCCCATCACAGTTTGTTCATATGAACGGCTCTTGCCCTAAAGTCTCTA
AGGGAAAGGTTATGGGAAAAGCCAGTGACACATTAGGTACCTGTTGAAATGTGTCACTGACGTTGTGA
AAGTTTTTAAGTCTACTTAAACAACAGTGAGTTTTCAATGAACAGAACTATGATAATGAGTACAGAAC
AACACATAACAGTTTGCCTTTAAAACTTGTCGGCAATGGTGAAACCCCATCTCTACTAAAAATACAAA
AAGTTTAGCCGGGCATGATGGCGCATGCCTGTAATCCCAGCCACTCAGTAGCCTGAGGCAGGAGAATC
GCTTGAACCCAGGCGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGACA
GAGTGAGACTCTGTCTCAAAACAAACAAAAAAACTTCTTGGCAATTGGAATGTCTATGTCTCTTAGGA
TAAGACTTTACTCCTGGCATACCACTCAGAGCAGACCTCTCAAAGTTTATAAAAGAAATTAAGGAGCC
TTGTTAGATGGTAACTATTTACACAAAATTATTTTACCTACTATTATAATTGGTTAATTGATCTTTCA
AAGTTCCACAGTGACTGATGGTAAGTCACTCTGACGCAAATGCCCAGTGCCCTAAATGTTTAAATTTA
TATAAACATTAGGTCATCAGGCCTCGTGATAGCTTTGTGAATTAAGTGGCAAGTTTTAGTTCACTTTA
AACTATAGAAAATAGACAAGGGAGCAAAAGTGCATTAAGGTATAATGCAGTGATTTAAAAAAATATTC
TTGG 
 

Bisulfite sequence: 

AAAAGAAAATTAGGAAATTTTGTTTAATAGGGATTTGTAAGTTAAGATTTTAGATGTTATTTAGATTT
TTTATTGATTTTTTTCGTGTTGTTTTTTTGAAATGTATTTTTGTATAATGATGTATATGTAGGATCGA
TTTTATGGATAGGTAAAAAGAAGTTATTTTTTAAGTAATGTTATTTGTGGGATTAGGAAGTAAAGTTT
TTTTTTTTTTAATTATTTTTATTTTAAGTTGTTATAGAGTTTTAAATTTTATTATTAGTATTTTTGAA
GAAATAGTATATTAAATGAAGTTATATTAGGGTGTTAATAATATATTAGATAGATTTTGTTTTGATAT
TGGGGATCGTGGGAAATATAGAATTATTAGTAAAGGAGAAAGTATTAAAAATAGAGAAGAGGGAGGTA
ATATTAAGGTAGGGTGAATTAGAGATTTTTAGTAGTTTATAGATAGAGAGTTTTGGTTGATTATATGA
GAAGGATTTGGAATTTGTTTAAAATATTGTTTTTAGGATTTTTTTTTGTATTATTTGTTATAAGAGGT
TTGGGGTGGATTTTTGGGTGATTTCGATGTGTAGTTAAGTTTAGAAATTGTTAATTATGAAGTTATAT
AAAAAGAAATAAATATTAATAATAAAAAAATTTTATATGATTTTTTTATTTTACGTAAATATAGAGTT
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AATGTTTTTATTTTGTTTAGGTTTATTATAGTTTGTTTATATGAACGGTTTTTGTTTTAAAGTTTTTA
AGGGAAAGGTTATGGGAAAAGTTAGTGATATATTAGGTATTTGTTGAAATGTGTTATTGACGTTGTGA
AAGTTTTTAAGTTTATTTAAATAATAGTGAGTTTTTAATGAATAGAATTATGATAATGAGTATAGAAT
AATATATAATAGTTTGTTTTTAAAATTTGTCGGTAATGGTGAAATTTTATTTTTATTAAAAATATAAA
AAGTTTAGTCGGGTATGATGGCGTATGTTTGTAATTTTAGTTATTTAGTAGTTTGAGGTAGGAGAATC
GTTTGAATTTAGGCGGCGGAGGTTGTAGTGAGTCGAGATCGCGTTATTGTATTTTAGTTTGGGCGATA
GAGTGAGATTTTGTTTTAAAATAAATAAAAAAATTTTTTGGTAATTGGAATGTTTATGTTTTTTAGGA
TAAGATTTTATTTTTGGTATATTATTTAGAGTAGATTTTTTAAAGTTTATAAAAGAAATTAAGGAGTT
TTGTTAGATGGTAATTATTTATATAAAATTATTTTATTTATTATTATAATTGGTTAATTGATTTTTTA
AAGTTTTATAGTGATTGATGGTAAGTTATTTTGACGTAAATGTTTAGTGTTTTAAATGTTTAAATTTA
TATAAATATTAGGTTATTAGGTTTCGTGATAGTTTTGTGAATTAAGTGGTAAGTTTTAGTTTATTTTA
AATTATAGAAAATAGATAAGGGAGTAAAAGTGTATTAAGGTATAATGTAGTGATTTAAAAAAATATTT
TTGG 

 

 

cg02732111-BS-F TTGTTTAGGTTTATTATAGTTTG 
cg02732111-BS-R-bio TCAATAACACATTTCAACAAATAC 
cg02732111-BS-SP TTGTTTAGGTTTATTATAGTTTG 
Sequencing entry TTTATATGAAC/TGGTTT 

 

4. cg16204524: DNMT3A2 

 

>hg19_dna range=chr2:26565034-26566533 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence:  

CGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAATATAAAAACAAAATTAGCCGGG
CGTGGTGGCGGGTACCTGTAGTCCCAGCTACTCGGAAGGCTGAGGCAGGAGAATGGTGTGAACCCGGG
AGGCGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGTCTGGGTGACACAGCGAGGCTCTG
TCTCAAAAAAATAAAAAAAAAAAAGATCATTTGATCCTAAGATCTAATTCGATCCATTAGAACCTATT
AGGTACTACGATCCTATTCATCTCTGAAATTCAGTGAAACTGTATATCATATAACTTCTCTGAGATTA
AGTCATCTCATCTGGGAAATCTTGTCTTACCTACAATGATATGGCCCCAGTCTGTTCAATTAAATTCA
TACAAATTTAAGATATTAGTCATGCTCCATATAACCATGTTTCCGTCAATGAGGGACCACATGTGGTC
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CCTTAAGATTATAGTGGAGCTGAAAAATTTCTGTCATCTAGTGACATCCTAGCTGTCAAAATGTTGTA
ACACAAGGCATTACTCACGTTCGTGGTAATGCTAGTGTAAACAAACCTACCGCGCTGCCAGTCATCTA
AAAGTATAGCACATATAATTATGTACACTACTGAATACTTGATAATAACTAACTGTCTTACTGGCTTT
TGTATTTACTATCAGAGCATATCCTGTCATTAAGTGATGCATGACTGTATTTTCGCAGAATTCTGTGA
ATCCTAAACCCGGCAGGCATGGTCACGTGGGAAGAGAAAAATGTCATGGAAACAAATTTGCCTTTGGA
ACTAAGTCACCTTTCTGTTTCCTCGTTCCCAAATTTTATTCCAGGAGGCATTTTTCCCTAAGGCAGCC
CAGCTGCCCCGGACTGCTTTAGATTGGCCTTGTTATTCCCATCTGTGCTCTACACGCCACATTCCTGA
GTGTAGTTTATTATTGCTTTGTTTCCCATGTCTGCCTCTTCATCCATTGAAGTTTATTTCTTCTACAT
CTTGTACACTCAAGATCAGGCATTTTGCCTTCCAGAATAATAATCATAGAAAATATCAATTCGTGCTA
GAAACAATATTTTTATTTTTATAATATAACCAAAATAAAGTGTTTTAAGTTCCTGGAGTGCCTGTTTT
ATTTAGTCTGAATAAGAGTGTATCAGATAAATGGAGACAGCCAAAAAATATTGGAGGTTAATTAAGGA
CTAATGTAGTTAATAACTCCAATATAAGTTACTGAAGCCATAAAAATGGGCAGGGTCTTCCAAAGAAG
TTTGTAAAAAGGTATTGATTTAGTTCTCATTTTAAAATAAAAATGAATGCCTTATACACATAAACTCT
GGTTCTCAAAGCAGTTTCACATGACTAACAATCCTGAGCCATGGGCCTGATGGCTGTTCCAATTGTAT
AGAGTGGAACAATAGAATAGTAATATATCTTACCAAAAGTCACCCAGGAAAGAGGAACACAGGTCATC
AGAC 

 

Bisulfite sequence: 

CGAGATTATTTTGGTTAATACGGTGAAATTTCGTTTTTATTAAAAATATAAAAATAAAATTAGTCGGG
CGTGGTGGCGGGTATTTGTAGTTTTAGTTATTCGGAAGGTTGAGGTAGGAGAATGGTGTGAATTCGGG
AGGCGGAGTTTGTAGTGAGTCGAGATCGCGTTATTGTATTTTAGTTTGGGTGATATAGCGAGGTTTTG
TTTTAAAAAAATAAAAAAAAAAAAGATTATTTGATTTTAAGATTTAATTCGATTTATTAGAATTTATT
AGGTATTACGATTTTATTTATTTTTGAAATTTAGTGAAATTGTATATTATATAATTTTTTTGAGATTA
AGTTATTTTATTTGGGAAATTTTGTTTTATTTATAATGATATGGTTTTAGTTTGTTTAATTAAATTTA
TATAAATTTAAGATATTAGTTATGTTTTATATAATTATGTTTTCGTTAATGAGGGATTATATGTGGTT
TTTTAAGATTATAGTGGAGTTGAAAAATTTTTGTTATTTAGTGATATTTTAGTTGTTAAAATGTTGTA
ATATAAGGTATTATTTACGTTCGTGGTAATGTTAGTGTAAATAAATTTATCGCGTTGTTAGTTATTTA
AAAGTATAGTATATATAATTATGTATATTATTGAATATTTGATAATAATTAATTGTTTTATTGGTTTT
TGTATTTATTATTAGAGTATATTTTGTTATTAAGTGATGTATGATTGTATTTTCGTAGAATTTTGTGA
ATTTTAAATTCGGTAGGTATGGTTACGTGGGAAGAGAAAAATGTTATGGAAATAAATTTGTTTTTGGA
ATTAAGTTATTTTTTTGTTTTTTCGTTTTTAAATTTTATTTTAGGAGGTATTTTTTTTTAAGGTAGTT
TAGTTGTTTCGGATTGTTTTAGATTGGTTTTGTTATTTTTATTTGTGTTTTATACGTTATATTTTTGA
GTGTAGTTTATTATTGTTTTGTTTTTTATGTTTGTTTTTTTATTTATTGAAGTTTATTTTTTTTATAT
TTTGTATATTTAAGATTAGGTATTTTGTTTTTTAGAATAATAATTATAGAAAATATTAATTCGTGTTA
GAAATAATATTTTTATTTTTATAATATAATTAAAATAAAGTGTTTTAAGTTTTTGGAGTGTTTGTTTT
ATTTAGTTTGAATAAGAGTGTATTAGATAAATGGAGATAGTTAAAAAATATTGGAGGTTAATTAAGGA
TTAATGTAGTTAATAATTTTAATATAAGTTATTGAAGTTATAAAAATGGGTAGGGTTTTTTAAAGAAG
TTTGTAAAAAGGTATTGATTTAGTTTTTATTTTAAAATAAAAATGAATGTTTTATATATATAAATTTT
GGTTTTTAAAGTAGTTTTATATGATTAATAATTTTGAGTTATGGGTTTGATGGTTGTTTTAATTGTAT
AGAGTGGAATAATAGAATAGTAATATATTTTATTAAAAGTTATTTAGGAAAGAGGAATATAGGTTATT
AGAT 
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cg16204524-BS-F ATTTTGTTATTAAGTGATGTATGATTGTAT 
cg16204524-BS-R-bio ACCTCCTAAAATAAAATTTAAAAAC 
cg16204524-BS-SP ATTTTGTGAATTTTAAATT 
Sequencing entry C/TGGTAGGTATGGTTAC/TGTGGG 

 

5. cg26286826: DNMT3B4 

 

>hg19_dna range=chr18:65084835-65086334 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence:  

TGAAAGTTTTAAGAATAAAAAGCAAATGCTTGAGAGACATGTCTAAGCCATTAGTTGGTTGATCAGAG
TAATAATTCAACAAATTAATTATTTGACAAGGAAGGACAAGTTTCAAAATCTTCCACAAACTATAATG
AAAATGAGACTGACCACCATCTGTCAATCAGTTCACCAAGTGGCAACAGAACCTAATTAAACTAGTGA
ATCACTAGAAATATGGGAACCTTTGGAAACAGTAAAAGGAAAATACAGGAACTTACGGTCACGCTACT
TTTTTTTTTTTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCCAGGCTGGAGTGCAGTGGC
GCGATCTCGGCTCACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGT
AGCTGGGACTACAGGCGCCCGCTACCACGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTT
CACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTG
CTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCCACGCTACTTTTTACCATTCCGAGAAATGTGCGG
TCCATGTATTGCCACCAAACATATATTGATTATTTCAACTATGGGAGTTTACAAGCCTTGAGTGTAAC
CTAGGGTTTGGAATCTGAAATGGAAATGGGTCAGAGCATGAATCACGGGCACTAGATCCGAGAGGACT
CTTTTAGTTGGCTCAGTTGCTTTCACTTTCGTTTGTTGCTGAAGGAGAAACTCACAGCAGAAGGGTGC
ATGAGCTAGAGCTGCTAGTGACTGAATGGAGAGTTCCCTGATTCCTTTCCAGTTCCTTAAGGAAAACT
AATTTGGTGGCTAAAGCAAAGTGAAGCACCTACTTATTTAGAAGAGTCTGGAGGAAATAATTTCCTGT
TTTTTAAAATACCAAGTGAAAGAGGAAACACATCTCCACTCACATGTGTCCTTGCTGTTAGATAAGAC
AGTTTCTTTCAGTATTACAGTCACATATATCTGTGTTCTTTTTTTTTTTTTTTTTTTTGCTGTATGAT
CAGACCTACTGCAGTCTTCACTGTGCCCCAACCTATATACACTCTAGCAAACTGATAAGCATTCCAAG
AATAGGTATATGAATCTGTGAACACATTTTGAGCATTTACTCATTCATGTATTAATATTACCTCTAAC
AAGTTTTAAGCTACAATAGCTTAGAAAAAATAGCGATGATCTCACCCAAACTCAAAATTTACCCAAAG
GCTAAACAACATAACCAACCTCATGTAGTAACTCACTGAGAAAGATCAAAAGAAAGAAATGTATTCTT
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AGTTCATTGATGAACTGACATCAATATAATTTTTAAACTATAGTACATATTTAGACATGGCCGAGCAC
AGTGGCTCATGCCTGTAATCCCAGCTTTTGGGAGGCCGAGGCAGGCAGATCACCTGAGGTCAGGAGTT
CAAG 

 

Bisulfite sequence: 

TGAAAGTTTTAAGAATAAAAAGTAAATGTTTGAGAGATATGTTTAAGTTATTAGTTGGTTGATTAGAG
TAATAATTTAATAAATTAATTATTTGATAAGGAAGGATAAGTTTTAAAATTTTTTATAAATTATAATG
AAAATGAGATTGATTATTATTTGTTAATTAGTTTATTAAGTGGTAATAGAATTTAATTAAATTAGTGA
ATTATTAGAAATATGGGAATTTTTGGAAATAGTAAAAGGAAAATATAGGAATTTACGGTTACGTTATT
TTTTTTTTTTTTTTTTTTTTTTTTTGAGACGGAGTTTCGTTTTGTCGTTTAGGTTGGAGTGTAGTGGC
GCGATTTCGGTTTATTGTAAGTTTCGTTTTTCGGGTTTACGTTATTTTTTTGTTTTAGTTTTTCGAGT
AGTTGGGATTATAGGCGTTCGTTATTACGTTCGGTTAATTTTTTGTATTTTTAGTAGAGACGGGGTTT
TATCGTGTTAGTTAGGATGGTTTCGATTTTTTGATTTCGTGATTCGTTCGTTTCGGTTTTTTAAAGTG
TTGGGATTATAGGCGTGAGTTATCGCGTTCGGTTTACGTTATTTTTTATTATTTCGAGAAATGTGCGG
TTTATGTATTGTTATTAAATATATATTGATTATTTTAATTATGGGAGTTTATAAGTTTTGAGTGTAAT
TTAGGGTTTGGAATTTGAAATGGAAATGGGTTAGAGTATGAATTACGGGTATTAGATTCGAGAGGATT
TTTTTAGTTGGTTTAGTTGTTTTTATTTTCGTTTGTTGTTGAAGGAGAAATTTATAGTAGAAGGGTGT
ATGAGTTAGAGTTGTTAGTGATTGAATGGAGAGTTTTTTGATTTTTTTTTAGTTTTTTAAGGAAAATT
AATTTGGTGGTTAAAGTAAAGTGAAGTATTTATTTATTTAGAAGAGTTTGGAGGAAATAATTTTTTGT
TTTTTAAAATATTAAGTGAAAGAGGAAATATATTTTTATTTATATGTGTTTTTGTTGTTAGATAAGAT
AGTTTTTTTTAGTATTATAGTTATATATATTTGTGTTTTTTTTTTTTTTTTTTTTTTTGTTGTATGAT
TAGATTTATTGTAGTTTTTATTGTGTTTTAATTTATATATATTTTAGTAAATTGATAAGTATTTTAAG
AATAGGTATATGAATTTGTGAATATATTTTGAGTATTTATTTATTTATGTATTAATATTATTTTTAAT
AAGTTTTAAGTTATAATAGTTTAGAAAAAATAGCGATGATTTTATTTAAATTTAAAATTTATTTAAAG
GTTAAATAATATAATTAATTTTATGTAGTAATTTATTGAGAAAGATTAAAAGAAAGAAATGTATTTTT
AGTTTATTGATGAATTGATATTAATATAATTTTTAAATTATAGTATATATTTAGATATGGTCGAGTAT
AGTGGTTTATGTTTGTAATTTTAGTTTTTGGGAGGTCGAGGTAGGTAGATTATTTGAGGTTAGGAGTT
TAAG 

 

 

cg26286826-BS-F TTTTTTAAAGTGTTGGGATTATAGG 
cg26286826-BS-R-bio CTAAACCAACTAAAAAAATCCTCTC 
cg26286826-BS-SP GGTTAGAGTATGAATTA 
Sequencing entry C/TGGGTATTAGATTC/TGAG 
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6. cg21808287: DNMTΔ3B2 

 

>hg19_dna range=chr2:217724164-217725663 5'pad=0 3'pad=0 strand=+ repeatMasking=none 

Genomic sequence:  

AAAGATCAAAGTAAACATTTCTGCTTTCAAAGTTTTATTGAGATGTTGGGGAAAAACAGCCAACATAT
ACATTCCTCATTTCGTCACAACTGGCATTTGATCCACATTCCATAGGCTCCTCTCTGGCTTTGATCTA
ACATCAGGTCTCCTTGGCAGTTCCCCTTCTGCTGTTCTTGTTGCTGCTTGGTGCTGTGTGAAGCGCAC
CAGGGCAGAGCCCGCTGGGGGCTCACAAGTGGGAGCGGTAATTGCGATTGGCTGTGGGAAAGGACAGG
TTTGCAACAGAGACACGAATTAGAACATTCCCATCAAGACTCTTGTTGCTCAAATCTGCATTTAGTTA
TTGGAAATAATCTCAGGCCAAGATTTCAGGGTCCTGTGAGAGCTGCCTCCAAGAGGGAGGGCCTGGCA
GCAATGTGTGCCTAAGTTTGGCAATCTCCTCCCCATCCCTCACTCACCGTCATCGCCCCGTTTCCTAC
TTTTCAGGTTGCCCTTACGGTATTTTCTTTTGCTGCCACCTCTCTTGACTCCCTTGTGAGGAGATCGG
CTCTTGCTCCTCCTCATGCCATGACTCTTTAATTTGCGGCTGGTCGACATGGTAAGTTCTGCCAAAAT
GAGGGGCTTTGCAAGGCCCGGGGGCCAGGAGTCTGGGTATTTAAGGCCTTGGCCATTGTGACAGGGAA
GGGGCATGGCTCAGCAGGTGGGCGGGGCTCTACTGTGCTGTCACTCACCTTTGCTGCACTTTGGTCAC
ATTTGTGAAATAAGGTGGTCCTTTTCGTGCAGCTCAAGGGCTGCCCTCAGTTTTGAGGTCCTTTTTAT
GTTAAGTGAGGCTTTCCCAGAGAGGTGTTATTGAGAAACTGAATCCCAGCCCTGTGCCAGGCATTGGA
TGAGTACAAGAGACCATTCAGATATGCTTCTCCTGCCTGTAGGAAATGTAACAGTCATTGAGTGTGTG
TGTATGCATGACTGTTTAAGTCTCTCACAGCATCCAGAGATAATAAATTTATTTCTGTAAGGACTTGA
CTCTACAGAACCCAATTCAATATGATCAAAATAGAAATATTCCTTCTTTTTCATCTAGGTCAGGATTT
CTCAGTCTTGGCACTGTTGACACAATGGGCAGGGTAACTTTCAGTGGGCTGTCTTGTGCACCCTAGGA
TGTTTGGCAACATCCCTGGCCATTACCCACTGGACACCAGAGAAGCCTGGCAGCTATGACAACCCAAA
ATATTCCCAAACATTGCCACCTGTTTCTTTGGGAGGCTGGGGAAGTGAGGGAAAAAATGGCTCTGGTT
CAGAACAATTAACCTAATCATTTTTTAAAATTCAGTCACAGATATTGATCACATAGCATATGCCATAC
ATTTAGGTGGTAGAAAATTAGTGGAGGATAAACACACGTAGATACTGTGCTCATGGAACTCTCAGCCC
ACTGGGGAGAAAGCCATTCATCAGATGTCTACATAAATCAGTGAGTAAGTACTTACGGAGTCATTTTG
GCTG 

 

Bisulfite sequence: 

AAAGATTAAAGTAAATATTTTTGTTTTTAAAGTTTTATTGAGATGTTGGGGAAAAATAGTTAATATAT
ATATTTTTTATTTCGTTATAATTGGTATTTGATTTATATTTTATAGGTTTTTTTTTGGTTTTGATTTA
ATATTAGGTTTTTTTGGTAGTTTTTTTTTTGTTGTTTTTGTTGTTGTTTGGTGTTGTGTGAAGCGTAT
TAGGGTAGAGTTCGTTGGGGGTTTATAAGTGGGAGCGGTAATTGCGATTGGTTGTGGGAAAGGATAGG
TTTGTAATAGAGATACGAATTAGAATATTTTTATTAAGATTTTTGTTGTTTAAATTTGTATTTAGTTA
TTGGAAATAATTTTAGGTTAAGATTTTAGGGTTTTGTGAGAGTTGTTTTTAAGAGGGAGGGTTTGGTA
GTAATGTGTGTTTAAGTTTGGTAATTTTTTTTTTATTTTTTATTTATCGTTATCGTTTCGTTTTTTAT
TTTTTAGGTTGTTTTTACGGTATTTTTTTTTGTTGTTATTTTTTTTGATTTTTTTGTGAGGAGATCGG
TTTTTGTTTTTTTTTATGTTATGATTTTTTAATTTGCGGTTGGTCGATATGGTAAGTTTTGTTAAAAT
GAGGGGTTTTGTAAGGTTCGGGGGTTAGGAGTTTGGGTATTTAAGGTTTTGGTTATTGTGATAGGGAA
GGGGTATGGTTTAGTAGGTGGGCGGGGTTTTATTGTGTTGTTATTTATTTTTGTTGTATTTTGGTTAT
ATTTGTGAAATAAGGTGGTTTTTTTCGTGTAGTTTAAGGGTTGTTTTTAGTTTTGAGGTTTTTTTTAT
GTTAAGTGAGGTTTTTTTAGAGAGGTGTTATTGAGAAATTGAATTTTAGTTTTGTGTTAGGTATTGGA
TGAGTATAAGAGATTATTTAGATATGTTTTTTTTGTTTGTAGGAAATGTAATAGTTATTGAGTGTGTG
TGTATGTATGATTGTTTAAGTTTTTTATAGTATTTAGAGATAATAAATTTATTTTTGTAAGGATTTGA
TTTTATAGAATTTAATTTAATATGATTAAAATAGAAATATTTTTTTTTTTTTATTTAGGTTAGGATTT
TTTAGTTTTGGTATTGTTGATATAATGGGTAGGGTAATTTTTAGTGGGTTGTTTTGTGTATTTTAGGA
TGTTTGGTAATATTTTTGGTTATTATTTATTGGATATTAGAGAAGTTTGGTAGTTATGATAATTTAAA
ATATTTTTAAATATTGTTATTTGTTTTTTTGGGAGGTTGGGGAAGTGAGGGAAAAAATGGTTTTGGTT
TAGAATAATTAATTTAATTATTTTTTAAAATTTAGTTATAGATATTGATTATATAGTATATGTTATAT



 

291 
 

ATTTAGGTGGTAGAAAATTAGTGGAGGATAAATATACGTAGATATTGTGTTTATGGAATTTTTAGTTT
ATTGGGGAGAAAGTTATTTATTAGATGTTTATATAAATTAGTGAGTAAGTATTTACGGAGTTATTTTG
GTTG 

 

cg21808287-BS-F TTTTATGTTATGATTTTTTAATTTG 
cg21808287-BS-R-bio CTAAAAACAACCCTTAAACTACA 
cg21808287-BS-SP TATATTTGTGAAATAAGGTGG 
Sequencing entry TTTTTTTC/GTGTAGT 

 

7. cg25533247: DNMTΔ3B2 

 

>hg19_dna range=chr19:15529905-15531404 5'pad=0 3'pad=0 strand=+ 
repeatMasking=none 
 

Genomic sequence:  

GTCTATCTCTATGCCTCCTCATATCAGTGGCTGGAAGCTGCTGGCAATCTCGTGAGAGCCCCGCCTTG
TCCCCGCCTTCTGTTATTCTAAGGCCTCAGTGATTGGCCTACAGAAGCCGGCAGAGAGGCGGAGTCCT
ATAGAATTTGAGGGGGCGGAGCTGTGCACTACGGAAAGGCCCAAGGCCCAAGCATGGTCGGGCTGGAG
GAGCGCCCGTACCCTGGAGACCCGCCAGAGGGAGTCGGGTCTACGGCTCAGGGCAGGGCTGGGATGCC
AACTCCGCCACCGAGGTGCTGGGTAGGGGACCTAGCTAAGTCTCTCAAATTCTCTGGCCTTCGGCTCC
AAAACAAGCATAGCAAAGCCATGTTGAGAAGAGAAAATTAAAACAGCACCAAACAAGATGCTGGACAC
ACGTTTCAACATTACGTGACAAAGTGTGTGTAAAGAAATCATTCTGGTGCCAGTGCACTGAATAAATG
TGATTAATCGTAACAAAACGATAATATATTTATATGGCATATGCTTATATGTGTAATAATTCCGTTTG
TATTGTGTGTCATTCGAATGCTCCTTCAAACCTGCAAAAAGCTTTTAATCCTCACTTAAAACTGAAGC
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TTGGAACTCATGATTTGCTCAAGGTCCTTGACAGTTACGTGTTAAAATGGGAGCTTTGCTTCTAAAAC
CCTCCTGATTCACTCTGGGCTCGAGAGATCCTGCAATAGTGCAGCCGGGCACCAGTCATGTCCTCAGT
CTGTTTCCTGGGCATATGGAAACCCTGCCAGGGACAACTCATAATTTCTAGAGATGACAGAGCTGCAC
CGAAGAGTACTTAACACGTGTGTTTGTGAAAACTCATTAAGCTGCGCAATTACGACTTCTACGCTTCG
TGTGTTTTAAAACTTTTTTTAAGGTATGCTGTTTCTTTTTGATATTGTTGATTTCTTTAGGTGTAATA
GTGGCATTTACAACGTTGAGAGAAACATACTGAAATACTAAGAAGTTAACTGATCTTATGGCCAGGAT
GTGCTTCACACAATTCAGACAGGTAGAGAGAGGAGGAGGAAGCAAGGAGCTATAAGATAAATCTCTGA
CAGCTGAAGACATTGGTCATGGGTTGGTGATGGATAGATGAGAGTCCATTTTACTGTTTGCTCTACTT
TTGTATAGTTGGAATTCTCCATGATAAACTGTTTTAATAAAACTCCCCCCACCCAAATGAGGCTTCTG
CAGAACTTGCTGCCATACGGAACAAAGCCACTTCTGATGTGTTAAGTGAGCAAACTCCAAACATGAAG
CAGAGATCTGACGGATAAGCACTCTGGCTTCGGGGTTCATCTCCCCATCAGCCTCAGGGATGCCTGCC
TGTCTTCCAAACCAAGGCAGGGCCCCAGGACACGTCTTCTGCGCCCTGCAGGTTCGTTCCTTCATCGC
ACTTGCCACAGTCATCATTGTACCGATTTGATTTCGTTCACATCCAACACCCTCAGAGACCACGGCTC
AAAA 

 

 

Bisulfite sequence: 

GTTTATTTTTATGTTTTTTTATATTAGTGGTTGGAAGTTGTTGGTAATTTCGTGAGAGTTTCGTTTTG
TTTTCGTTTTTTGTTATTTTAAGGTTTTAGTGATTGGTTTATAGAAGTCGGTAGAGAGGCGGAGTTTT
ATAGAATTTGAGGGGGCGGAGTTGTGTATTACGGAAAGGTTTAAGGTTTAAGTATGGTCGGGTTGGAG
GAGCGTTCGTATTTTGGAGATTCGTTAGAGGGAGTCGGGTTTACGGTTTAGGGTAGGGTTGGGATGTT
AATTTCGTTATCGAGGTGTTGGGTAGGGGATTTAGTTAAGTTTTTTAAATTTTTTGGTTTTCGGTTTT
AAAATAAGTATAGTAAAGTTATGTTGAGAAGAGAAAATTAAAATAGTATTAAATAAGATGTTGGATAT
ACGTTTTAATATTACGTGATAAAGTGTGTGTAAAGAAATTATTTTGGTGTTAGTGTATTGAATAAATG
TGATTAATCGTAATAAAACGATAATATATTTATATGGTATATGTTTATATGTGTAATAATTTCGTTTG
TATTGTGTGTTATTCGAATGTTTTTTTAAATTTGTAAAAAGTTTTTAATTTTTATTTAAAATTGAAGT
TTGGAATTTATGATTTGTTTAAGGTTTTTGATAGTTACGTGTTAAAATGGGAGTTTTGTTTTTAAAAT
TTTTTTGATTTATTTTGGGTTCGAGAGATTTTGTAATAGTGTAGTCGGGTATTAGTTATGTTTTTAGT
TTGTTTTTTGGGTATATGGAAATTTTGTTAGGGATAATTTATAATTTTTAGAGATGATAGAGTTGTAT
CGAAGAGTATTTAATACGTGTGTTTGTGAAAATTTATTAAGTTGCGTAATTACGATTTTTACGTTTCG
TGTGTTTTAAAATTTTTTTTAAGGTATGTTGTTTTTTTTTGATATTGTTGATTTTTTTAGGTGTAATA
GTGGTATTTATAACGTTGAGAGAAATATATTGAAATATTAAGAAGTTAATTGATTTTATGGTTAGGAT
GTGTTTTATATAATTTAGATAGGTAGAGAGAGGAGGAGGAAGTAAGGAGTTATAAGATAAATTTTTGA
TAGTTGAAGATATTGGTTATGGGTTGGTGATGGATAGATGAGAGTTTATTTTATTGTTTGTTTTATTT
TTGTATAGTTGGAATTTTTTATGATAAATTGTTTTAATAAAATTTTTTTTATTTAAATGAGGTTTTTG
TAGAATTTGTTGTTATACGGAATAAAGTTATTTTTGATGTGTTAAGTGAGTAAATTTTAAATATGAAG
TAGAGATTTGACGGATAAGTATTTTGGTTTCGGGGTTTATTTTTTTATTAGTTTTAGGGATGTTTGTT
TGTTTTTTAAATTAAGGTAGGGTTTTAGGATACGTTTTTTGCGTTTTGTAGGTTCGTTTTTTTATCGT
ATTTGTTATAGTTATTATTGTATCGATTTGATTTCGTTTATATTTAATATTTTTAGAGATTACGGTTT
AAAA 
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cg25533247-BS-F  AGAGATTTTGTAATAGTGTAGT 
cg25533247-BS-R-bio ATACAACTCTATCATCTCTAAA 
cg25533247-BS-SP AGAGATTTTGTAATAGTGTAGT 
Sequencing entry C/TGGGTATTAGTTATGT 

 

8. cg08927738: DNMTΔ3B3 

 

>hg19_dna range=chr20:52686669-52688168 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence:  

TCTATTTCTCTCCCTTAGCTGCCTTGGCTTTTCTTTTATAATGAGAATCACACCCTGTAATTCTATGT
TTATATTTACAGGATTCTATGTCCAATGACACTGAGTGCAAGAAGGGTAGAGACCCAGCATCTTTTAC
TCACCTCTTTAAACTCTGGCTTATATATATAGCCTGGTGCTTGACAAGTATTCATGATAGGGGTTAAG
CTGAGTATACTGTTGAATAAAACCACAATAATTATTGGTCGCAATTCTCTTGAATGTCTTCTCCAGAG
CACTAAGTAGTGTAACTTATCAAGTTTCCTTTCTTGCATTGGCTGTTAGGAAGCTCAAAGCCATATCT
GCAAACCCTTCATAGCAAGTCTGTAAATCAACAAGAGCATTTATTTTTGATCCTGTTCTCATTTGATG
TTCCAAATTTTGTTCTTCAATCTTCTTTTGTTACATGTTATTTCATGCTCTCATAATCTATTGTATAT
GTCCTTGTAAGACACTTTAAACAACATCCTTGCTTGAATTAAATAAATTGCATAGCCTGTCGAATTTC
TGGCCTGCAAAGAAAAAGAATGCCCTTTCCAACATCATGGTATGTCTCCAGAGCAATAAACCACCCTC
AGGTTACCTGATTTCTGGTGTCCAAACCCCTTTGGGAATAAGGTTTACATGACTAGGGGTAGTTGAGT
GGATGAGAAGCTATTTCCTTCCAATTAGGTGGTTAGGTGGTGGTGGAGGTGGTGTTCTGAAGTCAGCA
GACAGAACTACAAAATCTCACAGAACGTGTTTTCCCTGCTCTGACCATGACCTACGGTTACTGGGGAA
GGAAACTGCTTCCCCAGGTCAACCCGGCAGCCTCAGTAGGTGAGGGGCACTGGGTAGAATACTTGGGG
TGCCAGGGAGGCATTAATGCGAGAGGAGTCAGGTGCTCAGTTTTTATTGGAGTTGGGAGGGCAGCCCC
ACATCAGGAAGAGAACCTGTTTCTGCAGGATGGTCCGGGGAGAAGGGAGGACTCCACCCAGGCTTGTG
TTTGCCCTGCTCTGTGTATTCAGCCAGCAGGCTCTGCACAAGGAAGCAAAGTGCAGGGAGCCAGGCTC
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CACCGACAGCCAGGCACTGGGCAGCACGCACTGGAGACCCAGGACCCTGTGCAGGAGCAGCTCCGGGT
GACACGAGGGGACTGAAGATACTCCCACAGGGGCTCAGCAGGTAACTGCTTTCAGATCCTTTAGGCAT
GGCTGGAGGGTTTGCTGTTTGTGGTAGACGGTGTCATATAGAGGCCAGGGGTCAGACAGGGTCAAGTT
TGATCCCAGCTCTGCCTTCTGTTCACTGTGTGGCCTTGGATATGTGTAAGCCTCAGTTCCACTATCTG
TGAAATGGACCCAAAGATAGCACTCATCTCAAAGTTTTTAGTTTTACAAGGAGCAAATGACAATGTGG
TCAGTGTTAGGCGCATAGCCACATAAATAACTCCTATTTGGTGGAACTATTGAGGGTCATTTCAAGCA
CAGG 

 

Bisulfite sequence: 

TTTATTTTTTTTTTTTAGTTGTTTTGGTTTTTTTTTTATAATGAGAATTATATTTTGTAATTTTATGT
TTATATTTATAGGATTTTATGTTTAATGATATTGAGTGTAAGAAGGGTAGAGATTTAGTATTTTTTAT
TTATTTTTTTAAATTTTGGTTTATATATATAGTTTGGTGTTTGATAAGTATTTATGATAGGGGTTAAG
TTGAGTATATTGTTGAATAAAATTATAATAATTATTGGTCGTAATTTTTTTGAATGTTTTTTTTAGAG
TATTAAGTAGTGTAATTTATTAAGTTTTTTTTTTTGTATTGGTTGTTAGGAAGTTTAAAGTTATATTT
GTAAATTTTTTATAGTAAGTTTGTAAATTAATAAGAGTATTTATTTTTGATTTTGTTTTTATTTGATG
TTTTAAATTTTGTTTTTTAATTTTTTTTTGTTATATGTTATTTTATGTTTTTATAATTTATTGTATAT
GTTTTTGTAAGATATTTTAAATAATATTTTTGTTTGAATTAAATAAATTGTATAGTTTGTCGAATTTT
TGGTTTGTAAAGAAAAAGAATGTTTTTTTTAATATTATGGTATGTTTTTAGAGTAATAAATTATTTTT
AGGTTATTTGATTTTTGGTGTTTAAATTTTTTTGGGAATAAGGTTTATATGATTAGGGGTAGTTGAGT
GGATGAGAAGTTATTTTTTTTTAATTAGGTGGTTAGGTGGTGGTGGAGGTGGTGTTTTGAAGTTAGTA
GATAGAATTATAAAATTTTATAGAACGTGTTTTTTTTGTTTTGATTATGATTTACGGTTATTGGGGAA
GGAAATTGTTTTTTTAGGTTAATTCGGTAGTTTTAGTAGGTGAGGGGTATTGGGTAGAATATTTGGGG
TGTTAGGGAGGTATTAATGCGAGAGGAGTTAGGTGTTTAGTTTTTATTGGAGTTGGGAGGGTAGTTTT
ATATTAGGAAGAGAATTTGTTTTTGTAGGATGGTTCGGGGAGAAGGGAGGATTTTATTTAGGTTTGTG
TTTGTTTTGTTTTGTGTATTTAGTTAGTAGGTTTTGTATAAGGAAGTAAAGTGTAGGGAGTTAGGTTT
TATCGATAGTTAGGTATTGGGTAGTACGTATTGGAGATTTAGGATTTTGTGTAGGAGTAGTTTCGGGT
GATACGAGGGGATTGAAGATATTTTTATAGGGGTTTAGTAGGTAATTGTTTTTAGATTTTTTAGGTAT
GGTTGGAGGGTTTGTTGTTTGTGGTAGACGGTGTTATATAGAGGTTAGGGGTTAGATAGGGTTAAGTT
TGATTTTAGTTTTGTTTTTTGTTTATTGTGTGGTTTTGGATATGTGTAAGTTTTAGTTTTATTATTTG
TGAAATGGATTTAAAGATAGTATTTATTTTAAAGTTTTTAGTTTTATAAGGAGTAAATGATAATGTGG
TTAGTGTTAGGCGTATAGTTATATAAATAATTTTTATTTGGTGGAATTATTGAGGGTTATTTTAAGTA
TAGG 
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cg08927738-BS-F AGGTGGTGTTTTGAAGTTAGTAGATAGA 
cg08927738-BS-R-bio CTTCCTAATATAAAACTACCCTCCCA 
cg08927738-BS-SP ATTATAAAATTTTATAGAA 
Sequencing entry C/GTGTTTTTTTTGTT 

 

9. cg20364776: DNMTΔ3B3 

 

>hg19_dna range=chr4:106405077-106406576 5'pad=0 3'pad=0 strand=+ repeatMasking=none 

 

Genomic sequence:  

TTTCGAGTGTACTATTTAGTGGTACTTAGCATAGTCACAATATTGTACAACTGCCACTTCCTTCTAGT
TTCAAAACATTTTCATCATCCCAGAAGAATACCTCATATCCTTTAAGTAATCACTTCCTGTTCCCCCC
TGCCACCCGCTGACATCCACTAATCAGCTTGCCTATTTTGGATATTTCACATAAGAGGAATCATATGA
CATGCGGCTTTTTGTGTCTAGTGTCTTTCACTTAGCATAATGCTTTTGGTGTCCATCCACATTCTAGA
ATATATGAAACCTTCATTCCTTTTTATGCCTGAATAATATTTCATTGTATATCATTGTACGTTATGAT
TTGTTTATCACACTCAACAATAAAAAGGCAACCTACAGAATGGGAGAAAATTTTTGCAATCTAGCCAT
CTGACAAAGAGTTAATATCCAGAATCTACAAAGAACTTAAACAAATTTACAAGAAAAAACAGACAACC
CCATCAAAAAGTGGGTGAAGGATATGAACAGACACTTCTCAAGACACTTACGCAGCCAACAAATATAT
GAGAACAGACACTTCTCAAAAGAAGACATTTATGAGGTCAAAAAACATTAAAAAGAGCTCATCATCAC
TGGTCATTGAGAAATGCAAGTCAAAACCACAATGAGATACCATCTCACGCCAGTTAGAATGACGATCA
TTAAAAAGTCAGGAAACTTTTTTGTTTTTTTCTCAATGGGTTTGCCACCAGAACACAGGTATCGTGAA
AACTACCCCTACCTATAAGCCAGAACGAGAAAGGAAAAGACTCATATCAACACTGTGATCATCGGACA
CGTAGATTCGGGCAAGTCCACCACTACTGGCCATCTGATCTACAAATGCGGTGGCGTCGACAAAAGAA
CCATCGAAAAATTTGAGAAGGAGGCTGCTGAGATGGGAAAGTGCTCCTTCAAGTATGCCTGGGTCTTG
GATAAACTGAAAGCTGAGCGTGAACATGGTATCACCATTGATATCTCTTTGTGGAAATTTGAGACCAG
CAAGTACTATGTGACTATCATTGATGCCCCAGGACACAGAGACCTCATCAAAAACATGATTACAGGGA
CATCTCAGGCTGACTGTGCTGTCTTGATTGTTGCTGCTGGTTTTGGTGAATTTGAAGCTGGTATCTCC
AAGAATGGGCAGACCCGAGAGCACGCCCTTCTGGCTTACACACTGGGTGTGAAACAACTAATTGTTGG
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TGTTAACAAAATGGATTCCACTGAGCCACCCTACAGCCATAAGAGATATGAGGAAATTGTTAAGGAAG
TCAGCACTTACATTAAGAAAATTGGCCACAACACCGACACAGTAGCATTTGTGCCAGTTTCTGGTTGG
AATGGTGACAACACGCTGGAGCCAAGTGCTAACATGCCTTGGTTCAAGGGATGGAAAGTCACCCGTAA
GGATGGCAATGCCAGTGGAACCACGCTGCTTGAGGCTCTTGACTGCATCCTACCACCAACTCGTCCAA
CTGA 

 

Bisulfite sequence: 

TTTCGAGTGTATTATTTAGTGGTATTTAGTATAGTTATAATATTGTATAATTGTTATTTTTTTTTAGT
TTTAAAATATTTTTATTATTTTAGAAGAATATTTTATATTTTTTAAGTAATTATTTTTTGTTTTTTTT
TGTTATTCGTTGATATTTATTAATTAGTTTGTTTATTTTGGATATTTTATATAAGAGGAATTATATGA
TATGCGGTTTTTTGTGTTTAGTGTTTTTTATTTAGTATAATGTTTTTGGTGTTTATTTATATTTTAGA
ATATATGAAATTTTTATTTTTTTTTATGTTTGAATAATATTTTATTGTATATTATTGTACGTTATGAT
TTGTTTATTATATTTAATAATAAAAAGGTAATTTATAGAATGGGAGAAAATTTTTGTAATTTAGTTAT
TTGATAAAGAGTTAATATTTAGAATTTATAAAGAATTTAAATAAATTTATAAGAAAAAATAGATAATT
TTATTAAAAAGTGGGTGAAGGATATGAATAGATATTTTTTAAGATATTTACGTAGTTAATAAATATAT
GAGAATAGATATTTTTTAAAAGAAGATATTTATGAGGTTAAAAAATATTAAAAAGAGTTTATTATTAT
TGGTTATTGAGAAATGTAAGTTAAAATTATAATGAGATATTATTTTACGTTAGTTAGAATGACGATTA
TTAAAAAGTTAGGAAATTTTTTTGTTTTTTTTTTAATGGGTTTGTTATTAGAATATAGGTATCGTGAA
AATTATTTTTATTTATAAGTTAGAACGAGAAAGGAAAAGATTTATATTAATATTGTGATTATCGGATA
CGTAGATTCGGGTAAGTTTATTATTATTGGTTATTTGATTTATAAATGCGGTGGCGTCGATAAAAGAA
TTATCGAAAAATTTGAGAAGGAGGTTGTTGAGATGGGAAAGTGTTTTTTTAAGTATGTTTGGGTTTTG
GATAAATTGAAAGTTGAGCGTGAATATGGTATTATTATTGATATTTTTTTGTGGAAATTTGAGATTAG
TAAGTATTATGTGATTATTATTGATGTTTTAGGATATAGAGATTTTATTAAAAATATGATTATAGGGA
TATTTTAGGTTGATTGTGTTGTTTTGATTGTTGTTGTTGGTTTTGGTGAATTTGAAGTTGGTATTTTT
AAGAATGGGTAGATTCGAGAGTACGTTTTTTTGGTTTATATATTGGGTGTGAAATAATTAATTGTTGG
TGTTAATAAAATGGATTTTATTGAGTTATTTTATAGTTATAAGAGATATGAGGAAATTGTTAAGGAAG
TTAGTATTTATATTAAGAAAATTGGTTATAATATCGATATAGTAGTATTTGTGTTAGTTTTTGGTTGG
AATGGTGATAATACGTTGGAGTTAAGTGTTAATATGTTTTGGTTTAAGGGATGGAAAGTTATTCGTAA
GGATGGTAATGTTAGTGGAATTACGTTGTTTGAGGTTTTTGATTGTATTTTATTATTAATTCGTTTAA
TTGA 
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cg20364776-BS-F TGAAAATTATTTTTATTTATAAGTTAGAA 
cg20364776-BS-R-bio ACTTAAAAAAACACTTTCCCATCTC 
cg20364776-BS-SP TGAAAATTATTTTTATTTATAAGTTAGAA 
Sequencing entry C/GAGAAAGGAAAAG 

 

10. cg07504154: DNMTΔ3B4 

 

>hg19_dna range=chr4:177158662-177160161 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence:  

TACCTTTTGTGTGTTAGTCATAGAATCTGGTCTTATCCAAGCTCCTCATTTTATAGAGAAGGAAACTA
TGGTGTCATTAAGCTACTCGCTCCAGGTCACACAAACAGCTGGTAGGATTAGAACTTAATTGAAGATA
AGGAAAAGATATGTGTGGTATTCATTAGCGATAACTTGAGGTAAACACTGGCAGTGTAATATGGCAGC
AAATGTCCATAGGGTAGTGCATAGGACAGAATTATAGTCATAATTTTTTTTTCTCTTACTTGGCTTGT
TACATGAAGACAATAACCCCAGTAATACTTTTTTCCTTTTATATACTAGCAGAAGGTAGAGCCTTAAA
AATACTGATGAAAAAAAGATAGATAACAGAATCTGTCACCATATTTCAGCAAGACAGATTTCAGTATG
TTAATACTCTGTAACGTGATCACCAGCTCAGTTAATCCTTGGAGTCCTATCATAGTTCGGTCGCTGCT
CTTGATTCCATCATAGACTCTGTGCCTTTTTCAACTTTATAGGCCAGTAAAAAATACCAGGCACATGT
TTGGTTTTTCCTCTCATCCTGCCAACTACCCTTTCCTCTGCCTTTTAGGGTGAAAAATCTCAGCTGTA
CTTAAATTGACTGCTGACGTCTTTTGATTTAGAGATGACCTCTAGAAAAATCACAATAGTGAGCTGTG
CCTATATAAATAAGAGGACTGTGATTTTGTATTGAAGCCAATTCTAAACTTAGATCCTTGCAAAATGA
AAACATGAGCTGGCTACCAGCTGACCGTAATGCACTTTTTTTTTTTTTTTTTTTTTGAGACGGAGTCT
CCTTCTGTCGCCCAGGCTGGAGTGCAGTGGTACAATCTCTGCCTCCCGGGTTCAAGTGATTCTCCCGC
CTCAGCCTTCTGAGTAGCTGGGACTACAGGCGCCCCGTCCCTATGTCCAGCTAATTTTTGTATTTTTA
GTAAAGACGGGGTTTCACCACGTTGGCCAGGCTGGTCTCTAACCCCTGACCTCAGGTGATCTGCCTGC
CTCGGCCTCCCAAGGTGCTGGGATTACAGGCGTGAGCCACCACGCCCAGCCCTAAGGCACATCTCATA
CTTACTCCTGAGGATGAAGGAGAAAGGCTAACCTAGTCACTGATCACTACTGAGCTTTCTGGCTGCAA
TATTCTGTCTGCAGTCATTATCAACAGGCAATTTTACATTTGATTGATTTGTAGGTTCTTTAAATAGG
CTTTTATCTTTTAACGATAGAGCTCATTTCTATTCTGTTTCGACTAGGAAAAGCAATTATACCCACTT
TTTACTTTCTATATCACACAAATAGTTAAAGACTTCCGGCTGCAGCATGTCTCTGCTTTAAAAATAGA
AAATGCTCCAGCATTTCTGGCCCATCCTCCACATTGCACCTACCAGCCCTGATCCAAGTGTTTCTGAA
TAGAGTTCAATGTTGAAGACATCTCAAGTTAGCACACAGGAACCTTTGTGAAAGTCTGAAGGGAAGGA
AAAA 

 

Bisulfite sequence: 

TATTTTTTGTGTGTTAGTTATAGAATTTGGTTTTATTTAAGTTTTTTATTTTATAGAGAAGGAAATTA
TGGTGTTATTAAGTTATTCGTTTTAGGTTATATAAATAGTTGGTAGGATTAGAATTTAATTGAAGATA
AGGAAAAGATATGTGTGGTATTTATTAGCGATAATTTGAGGTAAATATTGGTAGTGTAATATGGTAGT
AAATGTTTATAGGGTAGTGTATAGGATAGAATTATAGTTATAATTTTTTTTTTTTTTATTTGGTTTGT
TATATGAAGATAATAATTTTAGTAATATTTTTTTTTTTTTATATATTAGTAGAAGGTAGAGTTTTAAA
AATATTGATGAAAAAAAGATAGATAATAGAATTTGTTATTATATTTTAGTAAGATAGATTTTAGTATG
TTAATATTTTGTAACGTGATTATTAGTTTAGTTAATTTTTGGAGTTTTATTATAGTTCGGTCGTTGTT
TTTGATTTTATTATAGATTTTGTGTTTTTTTTAATTTTATAGGTTAGTAAAAAATATTAGGTATATGT
TTGGTTTTTTTTTTTATTTTGTTAATTATTTTTTTTTTTGTTTTTTAGGGTGAAAAATTTTAGTTGTA
TTTAAATTGATTGTTGACGTTTTTTGATTTAGAGATGATTTTTAGAAAAATTATAATAGTGAGTTGTG
TTTATATAAATAAGAGGATTGTGATTTTGTATTGAAGTTAATTTTAAATTTAGATTTTTGTAAAATGA
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AAATATGAGTTGGTTATTAGTTGATCGTAATGTATTTTTTTTTTTTTTTTTTTTTTGAGACGGAGTTT
TTTTTTGTCGTTTAGGTTGGAGTGTAGTGGTATAATTTTTGTTTTTCGGGTTTAAGTGATTTTTTCGT
TTTAGTTTTTTGAGTAGTTGGGATTATAGGCGTTTCGTTTTTATGTTTAGTTAATTTTTGTATTTTTA
GTAAAGACGGGGTTTTATTACGTTGGTTAGGTTGGTTTTTAATTTTTGATTTTAGGTGATTTGTTTGT
TTCGGTTTTTTAAGGTGTTGGGATTATAGGCGTGAGTTATTACGTTTAGTTTTAAGGTATATTTTATA
TTTATTTTTGAGGATGAAGGAGAAAGGTTAATTTAGTTATTGATTATTATTGAGTTTTTTGGTTGTAA
TATTTTGTTTGTAGTTATTATTAATAGGTAATTTTATATTTGATTGATTTGTAGGTTTTTTAAATAGG
TTTTTATTTTTTAACGATAGAGTTTATTTTTATTTTGTTTCGATTAGGAAAAGTAATTATATTTATTT
TTTATTTTTTATATTATATAAATAGTTAAAGATTTTCGGTTGTAGTATGTTTTTGTTTTAAAAATAGA
AAATGTTTTAGTATTTTTGGTTTATTTTTTATATTGTATTTATTAGTTTTGATTTAAGTGTTTTTGAA
TAGAGTTTAATGTTGAAGATATTTTAAGTTAGTATATAGGAATTTTTGTGAAAGTTTGAAGGGAAGGA
AAAA 

 

cg07504154-BS-F GATTTTTGTAAAATGAAAATATGAGTTG 
cg07504154-BS-R-bio TCCCAACTACTCAAAAAACTAAAAC 
cg07504154-BS-SP GATTTTTGTAAAATGAAAATATGAGTTG 
Sequencing entry GTTATTAGTTGATC/GTAATG 

 

11. cg22976313: DNMTΔ3B4 

 

>hg19_dna range=chr14:105069615-105071114 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence:  

GCGGCCTTCCCGCCGCCGCTCTCGCCCGGGCCGGCCATGGCGCTCAACAATTTCCTTTTCGCTCAGTG
CGCCTGCTACTTCTTGGCCTTCCTGTTCAGCTTCGTGGTGGTGGTCCCGCTGTCCGAGAACGGCCACG
ACTTCCGCGGCCGCTGCCTGCTCTTCACCGAGGGCATGTGGCTGAGCGCCAACCTCACGGTGCAGGAG
CGCGAGCGCTTCACGGTGCAGGAGTGGGGCCCGCCGGCCGCCTGCCGCTTCAGCCTGCTCGCCAGCCT
CCTGTCTCTGCTGCTGGCCGCCGCGCACGCCTGGCGCACGCTCTTCTTCCTCTGCAAGGGACACGAGG
GGTAAGTGGGGGCCGCTCCCGGCGCGGCGCCCCTTCCATGCCCCCAGCGCCCCCAGACCCACCTCCCC
GGGGAGGCGCGCGAGTCCCTCCGTCTCTCAGGCAGCTCCGAGGCCCGCAAATGTCAACAATCCGCCCT
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CACCCCCTCCACTCAGACCGCCCTTTGTCTACACACACATCCAGGGACCATGACGACCACCGGTCCTG
CGTACAAGGCCAGTGCCTCCCCTCCCCAGCTGCGCATCACCTCCCGCTTCCGGGCATCTGCTCCCTTG
GGTTGCAGATGTTGCACTGTCATCACCCAGCAGGCCTGGACCTTCCTGGGCGGGCTCAGCCGGGCCAC
ACTCGCCAGGACCGGCGACAACTCCCAGCCCGGTCTAGGGCTTGCACTGAGCTCTCCAGGTCCCAGTG
ACAAGGCGAACTGGGGAGCCCCACCCGGCACCATCGCCCCGGGAAAGGGACGGCAGATGGCTGTCTGG
AGGGGAGCCACCCAGGCCCACCTCGAGCTCAGGCCTTGGATGGGGAGCTGGAGAGAGACTGCAGGGCG
AGGGCTGTGCCTTGTGGGCTCAGCGCCTTCCTCCTCCTGGCCTGCATTTTCCTCTTTCTCTTTCCTGC
TCCGGCTAGATACTGGAGCCCATACAACCTGGTTCACCTGGGGTGCGGTGACACCCTTAGCCAGTGGC
ACCCTGGGGGCCCTCTGGGGGCCCACCCACTCCCTCTGCAGGTGCTCTCTGTGAACCCTCCCACTCCC
TCTGTGAGCCCACCCACTCCCTCTGTGAACCCACCCTCTCCCTCTGTGGGTGCCCTCTGTGAGCCCAT
CTACCACCTCTGTGAATCCACCCACCCCCTCTGTGAACCCACCCACCCCCTCTGTGAGCCCACCCACC
CCCTCTGTGAGCCCACCCACTCCCTCTGTGAACCCACCCACTCCCTCTGTGGGTGCCCTCTGTGGGCC
CTCCCACTCCCCTGGCTGAGGCCTGCTGTGCCCAGGAGCAGCCCGAGATCCTGTAGAGGTTCCGGGAG
AGCACTCATGAAACCCAGGCTCCTCCCAAACTCTGCCCTCACCCCCATCCTTTGTTGTAGGTTTTCAC
TTCCTGCACGCAGGTGGGAGATGAGAAGGGCTCAGAGGGGTGTGGGCGGCAGGAGTGGGGAAGCCCTC
CTGT 

 

Bisulfite sequence: 

GCGGTTTTTTCGTCGTCGTTTTCGTTCGGGTCGGTTATGGCGTTTAATAATTTTTTTTTCGTTTAGTG
CGTTTGTTATTTTTTGGTTTTTTTGTTTAGTTTCGTGGTGGTGGTTTCGTTGTTCGAGAACGGTTACG
ATTTTCGCGGTCGTTGTTTGTTTTTTATCGAGGGTATGTGGTTGAGCGTTAATTTTACGGTGTAGGAG
CGCGAGCGTTTTACGGTGTAGGAGTGGGGTTCGTCGGTCGTTTGTCGTTTTAGTTTGTTCGTTAGTTT
TTTGTTTTTGTTGTTGGTCGTCGCGTACGTTTGGCGTACGTTTTTTTTTTTTTGTAAGGGATACGAGG
GGTAAGTGGGGGTCGTTTTCGGCGCGGCGTTTTTTTTATGTTTTTAGCGTTTTTAGATTTATTTTTTC
GGGGAGGCGCGCGAGTTTTTTCGTTTTTTAGGTAGTTTCGAGGTTCGTAAATGTTAATAATTCGTTTT
TATTTTTTTTATTTAGATCGTTTTTTGTTTATATATATATTTAGGGATTATGACGATTATCGGTTTTG
CGTATAAGGTTAGTGTTTTTTTTTTTTAGTTGCGTATTATTTTTCGTTTTCGGGTATTTGTTTTTTTG
GGTTGTAGATGTTGTATTGTTATTATTTAGTAGGTTTGGATTTTTTTGGGCGGGTTTAGTCGGGTTAT
ATTCGTTAGGATCGGCGATAATTTTTAGTTCGGTTTAGGGTTTGTATTGAGTTTTTTAGGTTTTAGTG
ATAAGGCGAATTGGGGAGTTTTATTCGGTATTATCGTTTCGGGAAAGGGACGGTAGATGGTTGTTTGG
AGGGGAGTTATTTAGGTTTATTTCGAGTTTAGGTTTTGGATGGGGAGTTGGAGAGAGATTGTAGGGCG
AGGGTTGTGTTTTGTGGGTTTAGCGTTTTTTTTTTTTTGGTTTGTATTTTTTTTTTTTTTTTTTTTGT
TTCGGTTAGATATTGGAGTTTATATAATTTGGTTTATTTGGGGTGCGGTGATATTTTTAGTTAGTGGT
ATTTTGGGGGTTTTTTGGGGGTTTATTTATTTTTTTTGTAGGTGTTTTTTGTGAATTTTTTTATTTTT
TTTGTGAGTTTATTTATTTTTTTTGTGAATTTATTTTTTTTTTTTGTGGGTGTTTTTTGTGAGTTTAT
TTATTATTTTTGTGAATTTATTTATTTTTTTTGTGAATTTATTTATTTTTTTTGTGAGTTTATTTATT
TTTTTTGTGAGTTTATTTATTTTTTTTGTGAATTTATTTATTTTTTTTGTGGGTGTTTTTTGTGGGTT
TTTTTATTTTTTTGGTTGAGGTTTGTTGTGTTTAGGAGTAGTTCGAGATTTTGTAGAGGTTTCGGGAG
AGTATTTATGAAATTTAGGTTTTTTTTAAATTTTGTTTTTATTTTTATTTTTTGTTGTAGGTTTTTAT
TTTTTGTACGTAGGTGGGAGATGAGAAGGGTTTAGAGGGGTGTGGGCGGTAGGAGTGGGGAAGTTTTT
TTGT 
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cg22976313-BS-F AGTTTTTTAGGTTTTAGTGATAAGG 
cg22976313-BS-R-bio TAAATAACTCCCCTCCAAACAAC 
cg22976313-BS-SP AGTTTTTTAGGTTTTAGTGATAAGG 
Sequencing entry C/GAATTGGGGAGTTTTATTC/GGTATTATC/GTT 

 

12. cg12150401: DNMT3L 

 

Genomic sequence:  

GAAATACTTGAAGGTCTGGGGTTCAGCAATTTTGTGGAATTTCGGAGGAAAGACTTTTCATT
ATCATTTTTATTTACCCTCACACTTTGGTTGTAGCATCCACCACTAGCTGCCATGAGAACTG
GGAAGATAGGGCTTCTGAGGTTCGCTTTGGTACTGCACTCAACAGAGCAGAAACATCATGCA
GGACGTGAATGAACAGGGAAGGATTCATCTTTCTTGTTGCTCAAATTTTAGGTTAAAAGAGT
GAAGATGTCATTTAAAGAAGATAAGGAAATAAGCTAAGTGCACCTCAGAAAAAGAGGAAATA
AACAACATGGTTATGAAATACATATGCCTTTTTGGAATAATCAAATCACCTCAGGAGCAGGA
ATCCACATTTAAACATTTCCCTACATTCAGATGTGATAGCAAACCAGCAAGCAAAGCATAAA
CAAATTCTATAGATAGGAAAATGACAAAATCAAAAATGAGCTTGGGAAAATTTGCTTCCAGA
GAGAGGGGTTTTCTTGTACCAGACAGTGGTGGAATCAGGAACCCATTCTCTACCTGGAAATT
GGTACAGAGATTCAGAGTCTTTGTCCAGGAAGACACTTTGGAGTAGAAGAATGATACCCATC
CAACTCACTGTCTTCTTCATGATCATCTATGTGCTTGAGTCCTTGACAATTATTGTGCAGAG
CAGCCTAATTGTTGCAGTGCTGGGCAGAGAATGGCTGCAAGTCAGAAGGCTGATGCCTGTGG
ACATGATTCTCATCAGCCTGGGCATCTCTCGCTTCTGTCTACAGTGGGCATCAATGCTGAAC
AATTTTTGCTCCTATTTTAATTTGAATTATGTACTTTGCAACTTAACAATCACCTGGGAATT
TTTTAATATCCTTACATTCTGGTTAAACAGCTTGCTTACCGTGTTCTACTGCATCAAGGTCT
CTTCTTTCACCCATCACATCTTTCTCTGGCTGAGGTGGAGAATTTTGAGGTTGTTTCCCTGG
ATATTACTGGGTTCTCTGATGATTACTTGTGTAACAATCATCCCTTCAGCTATTGGGAATTA
CATTCAAATTCAGTTACTCACCATGGAGCATCTACCAAGAAACAGCACTGTAACTGACAAAC
TTGAAAATTTTCATCAGTATCAGTTCCAGGCTCATACAGTTGCATTGGTTATTCCTTTCATC
CTGTTCCTGGCCTCCACCATCTTTCTCATGGCATCACTGACCAAGCAGATACAACATCATAG
CACTGGTCACTGCAATCCAAGCATGAAAGCGCGCTTCACTGCCCTGAGGTCCCTTGCCGTCT
TATTTATTGTGTTTACCTCTTACTTTCTAACCATACTCATCACCATTATAGGTACTCTATTT
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GATAAGAGATGTTGGTTATGGGTCTGGGAAGCTTTTGTCTATGCTTTCATCTTAATGCATTC
CACTTCACTGATGCTGAGCAGCCCTACGTTGAAAAGGATTCTAAAGGGAAAGTGCTAGGCCT
AGAGGTTGCCTG 
 

Bisulfite sequence: 

GAAATATTTGAAGGTTTGGGGTTTAGTAATTTTGTGGAATTTCGGAGGAAAGATTTTTTATTATTATT
TTTATTTATTTTTATATTTTGGTTGTAGTATTTATTATTAGTTGTTATGAGAATTGGGAAGATAGGGT
TTTTGAGGTTCGTTTTGGTATTGTATTTAATAGAGTAGAAATATTATGTAGGACGTGAATGAATAGGG
AAGGATTTATTTTTTTTGTTGTTTAAATTTTAGGTTAAAAGAGTGAAGATGTTATTTAAAGAAGATAA
GGAAATAAGTTAAGTGTATTTTAGAAAAAGAGGAAATAAATAATATGGTTATGAAATATATATGTTTT
TTTGGAATAATTAAATTATTTTAGGAGTAGGAATTTATATTTAAATATTTTTTTATATTTAGATGTGA
TAGTAAATTAGTAAGTAAAGTATAAATAAATTTTATAGATAGGAAAATGATAAAATTAAAAATGAGTT
TGGGAAAATTTGTTTTTAGAGAGAGGGGTTTTTTTGTATTAGATAGTGGTGGAATTAGGAATTTATTT
TTTATTTGGAAATTGGTATAGAGATTTAGAGTTTTTGTTTAGGAAGATATTTTGGAGTAGAAGAATGA
TATTTATTTAATTTATTGTTTTTTTTATGATTATTTATGTGTTTGAGTTTTTGATAATTATTGTGTAG
AGTAGTTTAATTGTTGTAGTGTTGGGTAGAGAATGGTTGTAAGTTAGAAGGTTGATGTTTGTGGATAT
GATTTTTATTAGTTTGGGTATTTTTCGTTTTTGTTTATAGTGGGTATTAATGTTGAATAATTTTTGTT
TTTATTTTAATTTGAATTATGTATTTTGTAATTTAATAATTATTTGGGAATTTTTTAATATTTTTATA
TTTTGGTTAAATAGTTTGTTTATCGTGTTTTATTGTATTAAGGTTTTTTTTTTTATTTATTATATTTT
TTTTTGGTTGAGGTGGAGAATTTTGAGGTTGTTTTTTTGGATATTATTGGGTTTTTTGATGATTATTT
GTGTAATAATTATTTTTTTAGTTATTGGGAATTATATTTAAATTTAGTTATTTATTATGGAGTATTTA
TTAAGAAATAGTATTGTAATTGATAAATTTGAAAATTTTTATTAGTATTAGTTTTAGGTTTATATAGT
TGTATTGGTTATTTTTTTTATTTTGTTTTTGGTTTTTATTATTTTTTTTATGGTATTATTGATTAAGT
AGATATAATATTATAGTATTGGTTATTGTAATTTAAGTATGAAAGCGCGTTTTATTGTTTTGAGGTTT
TTTGTCGTTTTATTTATTGTGTTTATTTTTTATTTTTTAATTATATTTATTATTATTATAGGTATTTT
ATTTGATAAGAGATGTTGGTTATGGGTTTGGGAAGTTTTTGTTTATGTTTTTATTTTAATGTATTTTA
TTTTATTGATGTTGAGTAGTTTTACGTTGAAAAGGATTTTAAAGGGAAAGTGTTAGGTTTAGAGGTTG
TTTG 

 

cg12150401-BS-F TGGGTAGAGAATGGTTGTAAG 
cg12150401-BS-R-bio CCCAAATAATTATTAAATTACAAAAT 
cg12150401-BS-SP TTATTAGTTTGGGTATTT 
Sequencing entry TTC/GTTTTTGTTTAT 
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13. cg20540357: DNMT3L 

 

>hg19_dna range=chr5:146026941-146027940 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence: 

AATGGCTCAAACAAATAAAAGATTATTTTCGTATGAAGTCTAATATTGATGATCCCCATCAGCAGGCA
GCCTCCTCCAATCAGTAATTCAGAAACTCGGGCCTCTTTCATTTGCAGCTCCCCAATGTTACCATGTT
TATAGCAGGACTGTAAAAGGGGAAGGTCATGGAAGATCACAAGTGGGAGATTCCTCTGAGCCATGCCC
TAAAAAAGTATGCATTCCATTGGCTAGAATTCAGCCACATGGCTAACTCTTAACTGCAAGGCAGCCTA
GGAAATGTAGTCTGGCTGTGTGCCCAGGATAAAAAGACCCGGTTTTGGTACACAGCTAGCTAGTCTCC
ACCATGGAGAGCACTCAACCGTCTCCAAGGGCTTTCAGGGAAGGCAGCTTTAATCAGATAGTGGCAAT
TATGAGATATATTTGGAGACAATGAGAACTGACCATCAGGACCATGCCTGGCATATTTTGTTGATCAC
GGAACAGACTCCACATGCTGTCTGGGCCTGCCTACAGATTTTGCCTGGCAGTGCAGCTGCTAATAGAA
TGAGTGTGGGTGGTGGTTCCCTTTTTCTCTCTCCATCTATTCCAAGAGCCAGAAATCTGCTCAGGCTC
AGCTGGCTGTCACTCTGAGCTTCTGCTTCCCCAGTCTAGGTGACATGTTTTCTGAATTTTGCCTCTAG
GCCTTCAAGGGGGAGGGGAGTTTCTTTAGGCATTTTGGGAGACAGATGCCTTGGGGAGAATGCAAAGG
GGAAATATTAACAGCGCAGTTTAGGTTATATTCTGCAGATGTGTGACAGACTGCCAGATGCTGGCATA
CAAATGAGACCGTGCCATTCACCCTTAAAGCAGCCATATGTAAAATAATCATTGTCATCATGAGAACG
ATGATAAGTGATATCTATATAGTTCTTTTCAACCAGACCGCCCTAAGCACTGAGCCTCTCATCACTGA
AGTATAGCCACCTCTGGGGTAGGAAGCGGCCATCTTTCAAAACAGTCT 

 

Bisulfite sequence: 

AATGGTTTAAATAAATAAAAGATTATTTTCGTATGAAGTTTAATATTGATGATTTTTATTAGTAGGTA
GTTTTTTTTAATTAGTAATTTAGAAATTCGGGTTTTTTTTATTTGTAGTTTTTTAATGTTATTATGTT
TATAGTAGGATTGTAAAAGGGGAAGGTTATGGAAGATTATAAGTGGGAGATTTTTTTGAGTTATGTTT
TAAAAAAGTATGTATTTTATTGGTTAGAATTTAGTTATATGGTTAATTTTTAATTGTAAGGTAGTTTA
GGAAATGTAGTTTGGTTGTGTGTTTAGGATAAAAAGATTCGGTTTTGGTATATAGTTAGTTAGTTTTT
ATTATGGAGAGTATTTAATCGTTTTTAAGGGTTTTTAGGGAAGGTAGTTTTAATTAGATAGTGGTAAT
TATGAGATATATTTGGAGATAATGAGAATTGATTATTAGGATTATGTTTGGTATATTTTGTTGATTAC
GGAATAGATTTTATATGTTGTTTGGGTTTGTTTATAGATTTTGTTTGGTAGTGTAGTTGTTAATAGAA
TGAGTGTGGGTGGTGGTTTTTTTTTTTTTTTTTTATTTATTTTAAGAGTTAGAAATTTGTTTAGGTTT
AGTTGGTTGTTATTTTGAGTTTTTGTTTTTTTAGTTTAGGTGATATGTTTTTTGAATTTTGTTTTTAG
GTTTTTAAGGGGGAGGGGAGTTTTTTTAGGTATTTTGGGAGATAGATGTTTTGGGGAGAATGTAAAGG
GGAAATATTAATAGCGTAGTTTAGGTTATATTTTGTAGATGTGTGATAGATTGTTAGATGTTGGTATA
TAAATGAGATCGTGTTATTTATTTTTAAAGTAGTTATATGTAAAATAATTATTGTTATTATGAGAACG
ATGATAAGTGATATTTATATAGTTTTTTTTAATTAGATCGTTTTAAGTATTGAGTTTTTTATTATTGA
AGTATAGTTATTTTTGGGGTAGGAAGCGGTTATTTTTTAAAATAGTTT 
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cg20540357-BS-F ATTGATTATTAGGATTATGTTTGG 
cg20540357-BS-R-bio aaaccaccacccacactcat 
cg20540357-BS-SP ATTGATTATTAGGATTATGTTTGG 
Sequencing entry TATATTTTGTTGATTAC/GGAA 

 

14. cg04458645: DNMT3A2, DNMT3B4, DNMTΔ3B2, DNMTΔ3B3, DNMTΔ3B4, DNMT1 

 

>hg19_dna range=chr11:43588792-43590291 5'pad=0 3'pad=0 strand=+ repeatMasking=none 

 

Genomic sequence: 

GAACACATTCAAAATCCAAGGGCCAGAAAAATTTTAAGCTCCAGCCTCAGCCTCCGATCTCCTGGGAC
CAGCCCCATAAGAACCATCCATTCTAGCCCAACTTGCAAATGGAGCCCAAGAGTTGAACCTCGGCATG
GGACTCAAGATGTCTCTAAAGTTCAAAAACACCTGGATTACCTGAAAGCAGAACCGGGTCCAGGTCCT
GTGCTGAGGTCTCCAGTTTTCTCTAAGTAAAATATTTCTAGTGGAGAAAAAGCCTGTGGCCTCTGGGC
AGAGATTTGTTCTATAGAGAAATGAAGGAAATGTGCAAGAGAGAACAGTTTTACTCTGGAGCTCCCTC
TACTGGCTCTTTGATAGAAATCCATCGCAGTTATTCCGCCCTGCCTTGTGGGTATCAAGTTAAAGCAT
CCGAGCATCCTGGCACCTTGAAGCAAGGAGAAAAGGTGTCCTGAGGTGCCAAGGAAGATGAAACTGCA
GATACTGGTTTCTTCTGCCTCTTTTACAATTTCATCTAATGTTTTGGGGGTGCCAAGATAGTGCTAAG
CATTTTGTGTGCATTATTTCATTTAATACTCACCATAAACCAGCATTTTACAAATGAGGCAGCTGAGA
CCTGAAGGGATTAAATAAGTTCCTGGCATCACCATAGACTAATAGACCCCCTTAGTGACCCTCATAAT
TCTTATGATTCTCCTGAGTGACAACTCAAGAGAAGCAAGAGTCAACGGACAATGTGAGGTTGGAAGTG
GCACTTGATCTCATCACCTAATATAAAGAGGCTCTGAGATTGCGCCATAAACTTCCTAGGTCCTATAG
AATCTCAGCCCTGTTTGTTTTTTTATTCTTTTAATTTTATTTATTTATTTATTTATTTAAGACGAACT
CTCACTCTGTTGCCCGGGACGGAGTGTGCAGTGGTGTGATCTTGGCTCACTGCAACCTCCACCTCCTG
GTTTCAAGCAATCTTCCCACCTCAGCCTCCCGAGTAGCTAGAATTACAGGCATGCACCATCACACCTC
GTTAATTTTTTCTGTATTTTTAGTAGAGAAAGGGTTTCACCATGTTGGCCAGGCTGGTCTTGATCTTC
TGACCTCAAGTGATCCACCCGCCTCAGCCTCCCAAAGTGCTAGGATTACAGGCGTGAGCCACTGCACC
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CAGCCTCCTGTTTGTTTGTTTTTTTTTTAATTCAGCCCTCGAGGCAATTAATTACATGGCAAGGCTTT
GTCCAATCTGCACTCTCACTGTGATGCCCAAGTTGAAGAAAGCAGGGAACTACCACAGTGACTAAGAA
GAGTTTCCATGACAGAAGTGAGGCCTTTTAAAATTTGTGGAACATGTTCACGCCTACTTTTAAAATAA
AATTCCATGAGATAGGTAGGGCAGATAGTGCCCACACATTTTATAGGTTGGGAACTTAAGATACTGAG
TGCCTGTTTCCAGGTTTTGTTTAGGGGCAAATGGCAGAATCAAGACCAGAACTGTCACTCTCAGCTTA
AGTT 

 

Bisulfite sequence: 

GAATATATTTAAAATTTAAGGGTTAGAAAAATTTTAAGTTTTAGTTTTAGTTTTCGATTTTTTGGGAT
TAGTTTTATAAGAATTATTTATTTTAGTTTAATTTGTAAATGGAGTTTAAGAGTTGAATTTCGGTATG
GGATTTAAGATGTTTTTAAAGTTTAAAAATATTTGGATTATTTGAAAGTAGAATCGGGTTTAGGTTTT
GTGTTGAGGTTTTTAGTTTTTTTTAAGTAAAATATTTTTAGTGGAGAAAAAGTTTGTGGTTTTTGGGT
AGAGATTTGTTTTATAGAGAAATGAAGGAAATGTGTAAGAGAGAATAGTTTTATTTTGGAGTTTTTTT
TATTGGTTTTTTGATAGAAATTTATCGTAGTTATTTCGTTTTGTTTTGTGGGTATTAAGTTAAAGTAT
TCGAGTATTTTGGTATTTTGAAGTAAGGAGAAAAGGTGTTTTGAGGTGTTAAGGAAGATGAAATTGTA
GATATTGGTTTTTTTTGTTTTTTTTATAATTTTATTTAATGTTTTGGGGGTGTTAAGATAGTGTTAAG
TATTTTGTGTGTATTATTTTATTTAATATTTATTATAAATTAGTATTTTATAAATGAGGTAGTTGAGA
TTTGAAGGGATTAAATAAGTTTTTGGTATTATTATAGATTAATAGATTTTTTTAGTGATTTTTATAAT
TTTTATGATTTTTTTGAGTGATAATTTAAGAGAAGTAAGAGTTAACGGATAATGTGAGGTTGGAAGTG
GTATTTGATTTTATTATTTAATATAAAGAGGTTTTGAGATTGCGTTATAAATTTTTTAGGTTTTATAG
AATTTTAGTTTTGTTTGTTTTTTTATTTTTTTAATTTTATTTATTTATTTATTTATTTAAGACGAATT
TTTATTTTGTTGTTCGGGACGGAGTGTGTAGTGGTGTGATTTTGGTTTATTGTAATTTTTATTTTTTG
GTTTTAAGTAATTTTTTTATTTTAGTTTTTCGAGTAGTTAGAATTATAGGTATGTATTATTATATTTC
GTTAATTTTTTTTGTATTTTTAGTAGAGAAAGGGTTTTATTATGTTGGTTAGGTTGGTTTTGATTTTT
TGATTTTAAGTGATTTATTCGTTTTAGTTTTTTAAAGTGTTAGGATTATAGGCGTGAGTTATTGTATT
TAGTTTTTTGTTTGTTTGTTTTTTTTTTAATTTAGTTTTCGAGGTAATTAATTATATGGTAAGGTTTT
GTTTAATTTGTATTTTTATTGTGATGTTTAAGTTGAAGAAAGTAGGGAATTATTATAGTGATTAAGAA
GAGTTTTTATGATAGAAGTGAGGTTTTTTAAAATTTGTGGAATATGTTTACGTTTATTTTTAAAATAA
AATTTTATGAGATAGGTAGGGTAGATAGTGTTTATATATTTTATAGGTTGGGAATTTAAGATATTGAG
TGTTTGTTTTTAGGTTTTGTTTAGGGGTAAATGGTAGAATTAAGATTAGAATTGTTATTTTTAGTTTA
AGTT 
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cg04458645-BS-F TTTTTGAGTGATAATTTAAGAGAAGTAAGA 
cg04458645-BS-R-bio ATAAACCAAAATCACACCACTACAC 
cg04458645-BS-SP TTTTTGAGTGATAATTTAAGAGAAGTAAGA 
Sequencing entry GTTAAC/TGGATAAT 

 

15. cg25843713: DNMT3A2, DNMT3B4, DNMTΔ3B2, DNMTΔ3B3, DNMTΔ3B4, DNMT1 

 

>hg19_dna range=chr18:57347696-57349195 5'pad=0 3'pad=0 strand=- repeatMasking=none 

 

Genomic sequence: 

 

TCCAGGTCTGACCGTCTGACAGGGACCACTCCCACCTTCACAGAGAGCAGAGTAAACAGAAGCGCATT
TAGTTTACAGCCCAGGGGATTTGCTTAACACAAGGGTGATCATCTCGACTGAGGGAGACTCTGCAGTA
CTTATCTCTAATCAGCCTTACAAACATGATAGCCATCTTTGCACTGTGGATTTAATCTCTTGAATGGC
TTTAATGGTTTCTTCCCCAATTATTAAAAAGGAAAAAGTCTTTTTACTCCCCAGGTCTATGCTTTAAA
GTGGGCTGCTATCTGCTGCAAGCTCATGCTGGGTAAGTGCAGGAGCCCATCAAAGTGTTAAGGGCCCT
GGCTGGCCACTGGCTGGCTCGCATTTCACTGCTTGCTTTGAACATGTGCTGTGCCATAGGATAGCAGA
ACACAGGGTGAAGTATCAGCTTCCTCGCTTCATGGAGAGCTGTAGTCCCACGGCACCCACTCCCTTCC
TAAAAAGGAGAAATTGAGTTGCCTTTGGGCAGACTCCTGCTAATAAAGTGGGAAGAAAAGGGGACATC
AGATCAGCTTTCTCATAAAATTTCTTACACATCTTTTATCTTAACATACTGGACTTAGTATGTTTCTT
ATATTTACTAAGGTTTCTATTACAGACTTATTTTTCAACACGTGTCTCCTTCTGAATGTACTTATTTT
ATGGACCAAAGAGCCTCTGCTCAGTGTCTCTAAGGGCCCTCGTAAAGACTTCATGTGCAAATTTGCTG
GCTGTGGCCTTGCTGCCATTTTCATCGTTCTGCTGCTCCGGGTTCTGGTTCCATATTTGGCTCTGTTT
AAAGATTCCGAGGGAAATGGTGACACAAGACAGCTATGCAACTTAGCTATATATGTTTAAAAAGATAC
CAAACAGCTTTCCTTTTTTTTTTTTTTTTTCTCAGCCAAATTACCTTCCTAAAAGGATGAGGCTTCTC
TTGAATAACCCAGATAATTATCAGGTTTTTGTATTTATTAACATCCTTTCCATATTTAGGCAGTCTCA
GCTTAATAAAAAGGTATCACTTGAGTTTAGCATGAGATCAACAGGCCGCTGGTTTGAAGTTTGATTCC
TTCTTTCTCCTGCTTGCAAGTTAATCTGTCTAATCTGCATTTTAACCTACGCTCCTTTGGAAGGAATG
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TAGTTAAGGCTGGGTTTGTAACCTGATGGATGAAAGGGAATCTCCACTGCAGCTGTTGTTTCTTCATT
TTTGTTTTGTTTTGTTTTGTTTTGTTTTTTCTTTTTTTTTTGAGATGGAGTCTCGCTCTGTCTCCCAG
GCTGGAGTGCAGTGGCAGCAATCTCGGCTCACTGCAACCTCCGCCTCCCGGGTTCACGCCATTCTCCT
GCCTCAGCCTCCCCAGTAGCTGGGACTACAGGCGCCCGCCACCACGCCCGGCTAATTTTTTGTGTTTT
TAGTAGAGACAGGGTTTCACCATGTTAGCCAGCATGGTCTTGATCTCCTGACCTCGTGATCCTCCCGC
CTCA 

 

Bisulfite sequence: 

TTTAGGTTTGATCGTTTGATAGGGATTATTTTTATTTTTATAGAGAGTAGAGTAAATAGAAGCGTATT
TAGTTTATAGTTTAGGGGATTTGTTTAATATAAGGGTGATTATTTCGATTGAGGGAGATTTTGTAGTA
TTTATTTTTAATTAGTTTTATAAATATGATAGTTATTTTTGTATTGTGGATTTAATTTTTTGAATGGT
TTTAATGGTTTTTTTTTTAATTATTAAAAAGGAAAAAGTTTTTTTATTTTTTAGGTTTATGTTTTAAA
GTGGGTTGTTATTTGTTGTAAGTTTATGTTGGGTAAGTGTAGGAGTTTATTAAAGTGTTAAGGGTTTT
GGTTGGTTATTGGTTGGTTCGTATTTTATTGTTTGTTTTGAATATGTGTTGTGTTATAGGATAGTAGA
ATATAGGGTGAAGTATTAGTTTTTTCGTTTTATGGAGAGTTGTAGTTTTACGGTATTTATTTTTTTTT
TAAAAAGGAGAAATTGAGTTGTTTTTGGGTAGATTTTTGTTAATAAAGTGGGAAGAAAAGGGGATATT
AGATTAGTTTTTTTATAAAATTTTTTATATATTTTTTATTTTAATATATTGGATTTAGTATGTTTTTT
ATATTTATTAAGGTTTTTATTATAGATTTATTTTTTAATACGTGTTTTTTTTTGAATGTATTTATTTT
ATGGATTAAAGAGTTTTTGTTTAGTGTTTTTAAGGGTTTTCGTAAAGATTTTATGTGTAAATTTGTTG
GTTGTGGTTTTGTTGTTATTTTTATCGTTTTGTTGTTTCGGGTTTTGGTTTTATATTTGGTTTTGTTT
AAAGATTTCGAGGGAAATGGTGATATAAGATAGTTATGTAATTTAGTTATATATGTTTAAAAAGATAT
TAAATAGTTTTTTTTTTTTTTTTTTTTTTTTTTAGTTAAATTATTTTTTTAAAAGGATGAGGTTTTTT
TTGAATAATTTAGATAATTATTAGGTTTTTGTATTTATTAATATTTTTTTTATATTTAGGTAGTTTTA
GTTTAATAAAAAGGTATTATTTGAGTTTAGTATGAGATTAATAGGTCGTTGGTTTGAAGTTTGATTTT
TTTTTTTTTTTGTTTGTAAGTTAATTTGTTTAATTTGTATTTTAATTTACGTTTTTTTGGAAGGAATG
TAGTTAAGGTTGGGTTTGTAATTTGATGGATGAAAGGGAATTTTTATTGTAGTTGTTGTTTTTTTATT
TTTGTTTTGTTTTGTTTTGTTTTGTTTTTTTTTTTTTTTTTGAGATGGAGTTTCGTTTTGTTTTTTAG
GTTGGAGTGTAGTGGTAGTAATTTCGGTTTATTGTAATTTTCGTTTTTCGGGTTTACGTTATTTTTTT
GTTTTAGTTTTTTTAGTAGTTGGGATTATAGGCGTTCGTTATTACGTTCGGTTAATTTTTTGTGTTTT
TAGTAGAGATAGGGTTTTATTATGTTAGTTAGTATGGTTTTGATTTTTTGATTTCGTGATTTTTTCGT
TTTA 
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cg25843713-BS-F TTTGTTTAGTGTTTTTAAGGGTTTT 
cg25843713-BS-R-bio ACTATCTTATATCACCATTTCCCTC 
cg25843713-BS-SP GGTTTTGTTGTTATTTTTAT 
Sequencing entry C/TGTTTTGTTGTTTC/TGGGT 
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