
AN ANALYSIS OF HUMAN MOVEMENT

ACCELEROMETERY DATA FOR STROKE

REHABILITATION ASSESSMENT

SHANE HALLORAN

Thesis submitted for the degree of

Doctor of Philosophy

School of Mathematics, Statistics & Physics

Newcastle University

Newcastle upon Tyne, United Kingdom

September 2019

Acknowledgements

Firstly, I would like to express my gratitude to my supervisory team and close collabo-

rators who provided me with invaluable mentoring and were a pleasure to work closely

with during my PhD: Jian Qing Shi, Yu Guan, Thomas Ploetz, Lin Tang and Nils Ham-

merla. Secondly, I would like to thank the EPSRC Centre of Doctoral Training in Cloud

Computing for Big Data staff, who provided an excellent environment for me to research

and study in over the past five years: Paul Watson, Darren Wilkinson, Matthew Forshaw,

Sarah Heaps, Barry Hodgson, Oonagh McGee, Jennifer Wood and Andrew Turnbull.

I would also like to thank my family, especially my parents for the assistance which

they provided me with, as always. My parents often remark on how pleasant each and

every PhD student is when they visit. In particular I would like to warmly acknowledge

Ossama Alshabrawy, Alex Brown, Mario Parreño Centeno, Xi Chen, Richard Cloete,

Tom Cooper, Michael Dunne-Willows, Matt Edwards, Darren Fletcher, Naomi Han-

naford, Jonny Law, Lauren Roberts, Ashleigh McLean, Jinzhao Liu, Dan Jamieson, Peťo

Michalák, Tim Osadchiy and Pengcheng Zeng who have been a major source of support.

Finally, I would like to thank friends and people who I met along the way who also

helped enrich my journey in various ways: Taiki Isami, Richard Brady and Ian MacKay,

Nurses Jennifer, Lynn, Lynne, Katie, Alison and Debbie, Pol Bolı́var, Mark Brunton,

Michael Carey, Mary and Thomas Delaney, John Hinde, Mia Jiang, Kevin Jennings,

Beth Gadsby, Fanting Hu, Yanling Jin, Mohammed Ali Kazi, Stephen Kinsella, William

Laroche, Thomas Leahy, Bob Loughnane, Concepta McHugh, Alan Molloy, Daniel and

Michael O'Connell, Lil O'Mahony, Erik and Christina Osborne, William Power, Priscilla,

Niccolò Rivato, Jerome Sheehan, Evgeniya Shmeleva, Finbarr O'Sullivan, Jonathan Walsh,

Binbin Wei, Xhaça and Cheda.

Abstract

Human Activity Recognition (HAR) is concerned with the automated inference of what a

person is doing at any given time. Recently, small unobtrusive wrist-worn accelerometer

sensors have become affordable. Since these sensors are worn by the user, data can be

collected, and inference performed, no matter where the user may be. This makes for a

more flexible activity recognition method compared to other modalities such as in-home

video analysis, lab-based observation, etc. This thesis is concerned with both recognizing

subjects activities as well as recovery levels from movement-related disorders such as

stroke.

In order to perform activity recognition or to assess the degree to which a subject

is affected by a movement-related disease (such as stroke), we need to create predictive

models. These models output either the inferred activity (e.g. running or walking) in a

classification model, or else the inferred disease recovery level using either classification

or regression (e.g. inferred Chedoke Arm and Hand Activity Inventory Score for stroke

rehabilitation assessment). These models use preprocessed data as inputs, a review of

preprocessing methods for accelerometer data is given.

In this thesis, we provide a systematic exploration of deep learning models for HAR,

testing the feasibility of recurrent neural network models for this task. We also discuss

modelling recovery levels from stroke based on the number of occurrences of events

(based on mixture model components) on each side of the body. We also apply a Multi-

Instance Learning model to model stroke rehabilitation using accelerometer data, which

has both visualization advantages and the potential to also be applicable to other diseases.

Contents

1 Introduction 1

1.1 Background . 2

1.2 Contributions in this thesis . 3

1.3 Structure of Thesis . 4

Appendices 5

1.A A note on notation in this thesis . 5

2 Introduction to Feature Extraction for Accelerometer Data 7

2.1 Purpose of feature extraction . 7

2.2 Accelerometer movement process . 8

2.2.1 Data sampling and observed data 9

2.3 Time domain . 9

2.4 Frequency Domain . 12

2.5 Symbolic and mixture-based features . 12

2.6 Neural Network-based Features . 15

2.6.1 Calculating covariates using feedforward neural network 15

2.6.2 Calculating covariates using convolutional neural network 17

2.6.3 Calculating covariates using recurrent neural network 23

2.6.4 Bidirectional recurrent neural network models 27

i

Contents

2.6.5 Parameter estimation approaches for neural network models . . . 28

2.7 Principal Component Analysis . 30

2.7.1 Functional PCA . 30

2.8 Conclusion . 32

3 Supervised Learning for Activity Recognition 33

3.1 Supervised Learning for Accelerometer Data 34

3.1.1 Multinomial model . 35

3.1.2 Model evaluation . 35

3.2 Neural network hyperparameters . 37

3.2.1 Learning-related hyperparameters 38

3.2.2 Regularisation-related hyperparameters 39

3.2.3 Architecture-related hyperparameters 40

3.3 Investigating hyperparameters effect on model performance 41

3.3.1 Experiments for hyperparameter selection 42

3.3.2 Datasets . 42

3.4 Results . 48

3.5 Discussion and Conclusion . 51

Appendices 52

3.A Multinomial model and derivation of its log-likelihood 53

4 New features for stroke patients' accelerometer data 56

4.1 Methodology . 57

4.1.1 Preprocessing steps used on accelerometer data 57

4.1.2 Parallel Computing . 58

4.2 Feature extraction approaches . 60

4.2.1 GMM-based features . 60

ii

Contents

4.2.2 Multi Instance Learning (MIL)-based covariates 64

4.2.3 Motivation for using Random Forest Regression 67

4.3 Visualisation results . 68

4.3.1 Visualising learned cluster components 68

4.3.2 Visualisation based on MIL-based method 69

4.4 Conclusion . 71

Appendices 75

4.A Theoretical Motivation for Random Forest 75

5 Prediction of stroke recovery score 76

5.1 Background to stroke recovery prediction using accelerometer data 76

5.2 Predictive model . 78

5.2.1 Estimation . 81

5.2.2 Prediction: random effects . 81

5.2.3 Prediction: mixed effects . 82

5.3 Results . 83

5.3.1 Prediction using GMM-based covariates 83

5.3.2 Prediction using MIL-based covariates 84

5.4 Discussion . 86

5.4.1 Performance with and without GP prior 86

5.4.2 Comparison of performance between GMM and MIL-based co-

variates . 88

5.5 Contributions and Conclusion . 89

6 Conclusion 91

6.1 Findings on evaluating upper limb function 91

6.2 Both Statistical and Machine Learning Models perform well 92

iii

Contents

6.3 Future Work . 93

iv

List of Symbols

#Kernl The number of convolutional kernels on the lth layer of a CNN.

δ The learning rate in the backpropagation algorithm for training a neural network.

δaij,hk Binary variable denoting whether xaij,h belongs to the kth cluster.

γ The parameter associated with momentum in the Adagrad learning rule

L̂aij,hk The inferred probability that datapoint xaij,h belongs to the kth mixture compo-

nent. L̂aij,hk ∈ [0, 1]

ι A hyperparameter which denotes which less discriminatory datapoints to exclude,

as shown in Equation (4.11).

X∗,h The hth (sliding-window) datapoint in our dataset, from all patients at all times of

data collection, in a matrix of dimension w timestep samples × d sensor channels.

x∗,i Another version of X∗,i, where the contents are flattened into a vector of length

dw.

act
(l)
i,m Activation value of the mth node on the lth layer for the ith datapoint

πk, µk, Σk, 0 < k < K Parameters of a Gaussian Mixture Model with K components.

ρih,m The probability that subject i is undertaking activity class m during the hth sliding

window

v

Contents

˜̀(π,θ;x,L) The estimated likelihood from each M-step of the EM algorithm.

%
(l)
j→iτ+1

Used to change the learning rate in the Adagrad learning rule

ϑ The decay of the learning rate on each iteration of the backpropagation algorithm

for training a neural network.

θk The parameters of the kth component of a Gaussian Mixture Model, θk = {µk,Σk}.

Qi,Ψ Used in principal component procedure

sh Covariates generated from the hth sliding window datapoint in a neural network

model, used later for calculating prediction.

x Denotes collection of sliding window datapoints from all patients, all weeks from

either limb, where each datapoint is from one limb only.

xi Denotes the collection of all sliding window datapoints from patient i.

xaij,h The hth sliding window from the ith patient on the jth week from locations on the

body indexed by a.

xaij Denotes the collection of all sliding window datapoints from patient i on week j

for the limb indexed by a.

xij Denotes the collection of all sliding window datapoints from patient i on week j.

Laij Vector representing all of the latent component-memberships in a GMM of sliding

window datapoints from the ith patient's ath limb from the jth week.

ζ ′(·) The inferred recovery score of a sliding window datapoint, but replaced with 0 if

a criterion is not met, as shown in Equation (4.11).

ζ(·) The inferred prediction of recovery score of a sliding window datapoint using a

regression method, on a continuous scale.

vi

Contents

a The index number referring to each limb, or the data from the accelerometer sensor

placed on it. Where a = 1, the data is from the paretic side. Where a = 2, the data

is from the non-paretic side.

ax(t), ay(t), az(t) The values of the X,Y and Z sensor channels at time t.

b
(l)
0,m Intercept term in neural network calculation of the activation of the mth node on

the lth layer

b
(l)
j→m Parameter in neural network, denoting the linear effect of that node j on the previ-

ous layer has on node i of layer J .

d The number of sensor channels present in the data

H ′ij The number of elements of patient i’s data for which ζ ′(xij,h) 6= 0.

Hij The number of sliding window datapoints from patient i on week j, where data-

points on each limb are treated separately.

L The number of layers in a neural network model.

Laij,hk Binary variable denoting if the latent variable Laij,h belongs to the kth cluster.

Laij,h Latent variable denoting which component the hth sliding window datapoint from

the ith patient from the jth week from the ath limb. Laij,h ∈ {1, . . . , K}.

Lseq The length of subsequence used to train an LSTM model.

Ml The number of nodes in the lth layer of a neural network.

n The number of patients or other human subjects in the dataset.

ni The number of weeks of data which were collected for patient i

vii

Contents

p The number of supervised learning classes which can be associated with each dat-

apoint, for Human Activity Recognition.

rl Convolutional filter length on the lth convolutional layer in CNNs.

SVM(t) The Signal Vector Magnitude of the signal at time t ∈ R.

tk The time at the kth index of data

u(·) The Rectified Linear Unit activation function, defined in Equation (2.6).

w The integer number of samples in each sliding window

zijk One of K covariates, denoting the difference in number of occurrences of mixture

component k on each side of the body for patient i on week j.

Ψ A covariance matrix of a dataset used in Principal Components Analysis in Section

2.7.

a(t) The continuous-time acceleration process at time t, usually multivariate

viii

List of Figures

1.1 Structure of thesis and notation used . 6

2.21 Schematic diagram of accelerometer data sampling. 10

2.61 Overview of computation steps in convolutional layer of Convolutional

Neural Network. 18

2.62 An overview of the convolution operation on the convolutional stage in

convolutional layers. In this example, the kernel width rl is 2. 20

2.63 Illustration of sparsity of parameters in a convolutional layer with kernel

width rl = 3 (top) compared to feedforward layers (lower). In convolu-

tional layers, the value of each element only affects a small number of

output nodes, so therefore the layer requires less parameters. 22

2.64 Illustration of max pooling with pooling region width ∆l = 3. 23

3.31 Setup for data collection in the Opportunity Dataset (Chavarriaga et al.,

2013). 44

3.32 Setup for data collection in the Daphnet Gait dataset (Bachlin et al., 2009). 47

3.41 (a)-(c): Cumulative distribution of recognition performance for each dataset.

(d): results from fANOVA analysis, illustrating impact of hyperparameter-

categories on recognition performance (see table 3.31). 55

4.11 Preprocessing steps used . 59

ix

List of Figures

4.21 Patient-wise Training/testing partitioning scheme in evaluating function ζ

in Equation (4.12). 67

4.31 Clusters obtained by using 1% of the sliding windows. 70

4.32 Clusters obtained by using 1% of the sliding windows. (continued) 70

4.33 Extracted trend component ζtrend in selected patient's recovery. Three

days from the four weeks the patient was in the study are plotted, showing

that capability deteriorated in day 2 of weeks 1 and 3. 72

4.34 Selected patient's daily capabilities in ζseason are shown for each 15-

minute interval throughout their diurnal schedule. Perhaps the patient

often undertakes a demanding activity after 1PM on many days. 73

4.35 Residuals ε showing when selected patient exerts themselves more (less),

given trend and diurnal context. Times with residual greater (less) than 2

standard deviations are denoted with a + (-) symbol. 74

5.31 Clinically-assessed CAHAI score and predicted CAHAI using the ac-

celerometer data, using GMM-based covariates described in Section 4.2.1. 85

5.32 Clinical assessed CAHAI score and predicted CAHAI using the accelerom-

eter data, using MIL-based covariates described in Section 4.2.2. 87

5.33 The clinical assessment of the recovery level (CAHAI-9 score) for acute

patients (left panel) and chronic patients (right panel). Each curve repre-

sents observations for one patient. 88

x

List of Tables

3.31 Hyper-parameters of the models and the ranges of values explored in ex-

periments. 43

3.32 List of activities performed by subjects in the PAMAP2 dataset (Reiss and

Stricker, 2012). 46

3.41 Best results obtained for each model and dataset, along with some base-

lines for comparison. Mean and weighted F1 scores are defined in Equa-

tions (3.2) and (3.6) respectively. Delta from median (lower part of table)

refers to the absolute difference between peak and median performance

across all experiments. 48

5.11 Scoring scale for tasks in CAHAI-9 assessment (Barreca et al., 2005). . . 77

5.12 Review of related user studies. Asterisk (*) denotes studies conducted in

hospital inpatient settings. 79

5.31 Comparison of Mean Square Error of prediction both with and without

using GP prior. Acute patients are those who suffered a stroke less than

6 months ago, and chronic patients are those who suffered a stroke more

than 6 months ago. The best performing model/covariate combination for

both acute and chronic sets of patients is bolded. 84

5.32 Selected clusters for the predictive model. 84

xi

Chapter 1

Introduction

The overall aim of this project is to improve modelling and feature extraction approaches

for accelerometer data, especially for healthcare data in automated stroke rehabilitation

assessment. In this thesis, predictive models are created for human activity recognition

(HAR) — i.e. classification of the human subjects' current activity into discrete classes

such as walking or sitting — as well as the regression problem of inference of the Chedoke

Arm and Hand Inventory (CAHAI) score for stroke rehabilitation assessment. All of

the accelerometer data approaches make use of the preprocessing and feature extraction

approaches in Chapter 2.

The activity classification for HAR is primarily discussed in Chapter 3, along with a

systematic exploration of hyperparameters for deep learning models and of the feasibility

of recurrent neural networks for this task.

In Chapter 5, we model recovery levels from stroke based on two sets of covariates:

one based on the number of occurrences of events (mixture model components) on each

side of the body, and another set of covariates based on a Multi-Instance Learning (MIL)-

based model. In Chapter 4, we outline our methods for generating these sets of covariates.

We also outline the visualisation advantages of both approaches and the potential of the

MIL-based approach to also generalise to other diseases.

1

Chapter 1. Introduction

1.1 Background

As mentioned in the abstract of this thesis, accelerometer sensors and models based on

data collected from them have the potential to improve applications in healthcare and

in other areas. A typical application using accelerometer data uses a feature extraction

approach, followed by modelling the desired quantity related to the human movement ob-

served. An overview of feature extraction methods used for accelerometer data is given in

Chapter 2, but mainly comprise of time domain, frequency domain, symbolic and neural

network features (Figo et al., 2010). One possible aspect of human movement we may

wish to model is in human activity that is recognising which of p a user is undertaking at

any given time (e.g. running, walking, sitting, etc), where the set of classes is defined for

each individual application. There has been extensive work in this field for many different

applications. Non-statistical based methods typically involve using basic calculated cri-

terion to determine occurrence of events of interest — for example to determine walking

step counts or to detect when the human subject has suffered a fall (Bulling et al., 2014).

Alternatively, more sophisticated models can be based on supervised learning models for

time series data. In this thesis, we outline the background and explain our work on mod-

elling stroke recovery using accelerometer data, as well as exploring the suitability of

neural network-based methods for HAR in Chapter 3. In the rest of this section we dis-

cuss the background to stroke as a disease and briefly discuss the background of usage of

accelerometer data for modelling stroke recovery. A more extensive background review

of modelling stroke recovery using accelerometer data is given in Section 5.1.

Stroke, a leading cause of disability and death, occurs when a blood clot cuts off

oxygen supply to a region of the brain. Often, hemiparesis, a reduction in the ability to

perform activities using the opposite side of the body to where the blood clot occurred,

results. Patients can recover some of their capabilities with intense therapeutic input.

Approaches to monitoring patient's recovery in the time after their stroke discussed

2

Chapter 1. Introduction

in the literature include brain imaging (Wintermark et al., 2005), questionnaire-based

approaches, and lab-based clinical assessments. Advanced methods such as brain imaging

are not commonly used in clinical routine (Santisteban et al., 2016), often due to cost, and

moreover does not provide image of the brain during completion of naturalistic tasks in

their living environment.

Questionnaire-based approaches enquire about physical or functional capabilities over

the past several days, and can be divided into two types: patient-completed and caregiver-

completed. Both are subject to recall bias, since the patient may not remember their

activities, and also caregivers may not be with the patient the entire time to be able to

observe the patient (Ferrari et al., 2007).

Lab-based task assessments exist for physical ability (capability of moving parts of

each upper limb, such as the Fugl-Meyer Score and Wolf Motor Function Test) and func-

tional capability (completing tasks in their preferred manner, including using the domi-

nant upper limb to compensate for weakness in the non-dominant hand).

On the other hand, accelerometer sensors, which measure the acceleration force pro-

duced by movement of limbs they are affixed to, have the potential to provide a more ob-

jective measure of recovery levels of patients. In Chapter 4, we outline how we generate

useful covariates from long-term accelerometer data for use in (automated and remote)

prediction of rehabilitation levels. In Chapter 5, we outline a predictive model for the

Chedoke Hand and Arm Inventory (CAHAI) score of patients, using the aforementioned

covariates.

1.2 Contributions in this thesis

In this thesis the main contributions are threefold, we provide an exploration of deep

learning for human activity recognition (through classification models for activities), as

discussed in our published paper Hammerla et al. (2016) and Chapter 3 of this thesis. We

3

Chapter 1. Introduction

also develop new covariate extraction methods for stroke rehabilitation recovery assess-

ment (from accelerometer data), as discussed in our two papers Halloran et al. (2019) and

Tang et al. (2019) (the first of which has been published, and the latter of which is cur-

rently under review) and Chapter 4. These features are used in a non-linear mixed effects

model (NLME) for longitudinal data analysis. While this is a mature statistical method, it

is new to the field of healthcare accelerometery data analysis, and is discussed in our pa-

per Tang et al. (2019) (currently under review) and in Chapter 5. The resulting predictive

model uses either of these sets of covariates automatically and accurately assesses how

well patients recover, without human intervention.

1.3 Structure of Thesis

The structure of the thesis is as follows, and is shown in Figure 1.1.

In Chapter 2, we give an overview of feature extraction methods used in the literature

of analysis of accelerometer data, many of which are used throughout the rest of the thesis.

In Chapter 3, we discuss the usage of neural network models for Human Activity

Recognition (HAR) for activity classes, and then we outline some of the findings from the

experiments exploring the feasibility of advanced neural networking models for Human

Activity Recognition in our published paper (Hammerla et al., 2016).

In Chapter 4, we outline our approaches to extraction of new covariates (for assess-

ment of stroke patient recovery using accelerometer data) and associated visualisation of

their workings, based on some of the methods described in Chapter 2. These are dis-

cussed in our published paper (Halloran et al., 2019), and in our paper currently under

review (Tang et al., 2019).

In Chapter 5, we give an account of the non-linear mixed effects (NLME) predictive

model for longitudinal data analysis, and predictive results from using the covariates ob-

tained using the methods described in Chapter 4. This is discussed in our paper which is

4

Chapter 1. Introduction

currently under review (Tang et al., 2019).

In Chapter 6, we give a conclusion of our results from Chapters 3, 4 and 5.

1.A A note on notation in this thesis

We use bolded lowercase letters to denote vectors and functions which take vector values,

for example a1 and a(t1) respectively.

We use uppercase bolded letters to denote matrices or tensors, for example C.

5

Chapter 1. Introduction

Raw accelerometer data a(t)

Preprocessed

accelerometer

data from sliding

windows xaij,h

SV
M

,Sliding
W

indow

PC
A

(C
hapter2

)

Outputs ζ(·) from supervised

learning (e.g. Random Forest)

for each sliding window are ag-

gregated to form covariates zMIL
ij

for prediction of stroke recovery

Supervised
learning

aggregation
(Section

4.2.2)

GMM-based

covariates zGMM

for predicting

stroke recovery

GM
M

-ba
sed

fea
tur

e ex
tra

cti
on

(S
ec

tio
n 4.2

.1)

Features sh from

final layer of a

neural network

N
eural netw

ork-based

feature
extraction

(Section
2.6)

Predictive model

in Chapter 5

Classification

models in Chap-

ter 3

M
axim

um
L

ikelihood
in

E
quation

(3.1)

Figure 1.1: Structure of thesis and notation used

6

Chapter 2

Introduction to Feature Extraction for

Accelerometer Data

In this chapter, we review a commonly discussed part of machine learning and data anal-

ysis pipelines, feature extraction (Figo et al., 2010; Hinton and Salakhutdinov, 2006),

where relevant features, perhaps expressing the most useful characteristics of data sam-

ples, in a low dimension, are extracted. We provide an outline of the approaches used on

human accelerometer data in the literature, including those based on time, frequency and

symbolic domains, neural networks and dimensionality reduction methods and the usage

of mixture models on sliding windows of the data to extract features. These methods will

be used in the later chapters, in Chapter 3 for activity classification and in Chapters 4 and

5 in remote rehabilitation assessment of stroke patients.

2.1 Purpose of feature extraction

We may find that while data may be from a physical process which is of great interest to

us, in its raw form the data is too heterogeneous or in too high a dimension to be useful

due to the curse of dimensionality (Bellman, 1961), especially if we consider using the

7

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

sliding window procedure as shown in Section 2.3. A preprocessing function transfers the

function into a space where the data is in a more useful form, where there may be better

separation between classes of interest. In the rest of this chapter, we discuss sampling the

accelerometer data as well as common feature extraction approaches.

2.2 Accelerometer movement process

In carrying out movements and activities of interest, acceleration forces are exerted on

locations around the body of a human subject where sensors are situated. As part of our

discussion of acceleration signals, we use the notational conventions for vectors (bolded

lowercase) and matrices (bolded uppercase) mentioned in the Appendix of Chapter 1.

Let a(t) ∈ Rd be some acceleration process in continuous time t ∈ [0, T). Usually

this process has d = 3 channels per location of interest on the body (where a sensor may

be placed), denoting the anterior-posterior direction, medio-lateral direction, and vertical

relative acceleration directions (often referred to as the 'X', 'Y' and 'Z' directions). In the

case of one sensor location, then the vector is simply a(t) = (ax(t), ay(t), az(t)), where

ax(t) is the acceleration measure at time t on the 'X' direction, and likewise for ay(t) and

az(t). In this thesis we assume that there is no error in the sensed acceleration signal

(unless otherwise stated). This is likely to be an unrealistic assumption.

Concurrently, c(t) ∈ {1, ..., p}, also in continuous time, denotes which of p possible

activities the human subject is carrying out while the force is exerted. It is hypothesised

that there is a relationship between the activity the subject undertakes and the forces ex-

erted at the sensor locations.

In the next sections, we consider the observed realisations of this process, how we

preprocess this data, approaches to modelling the data, as well as methods to calculate

covariates for our models.

8

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

2.2.1 Data sampling and observed data

These processes are observed at N discrete timepoints , t1, ..., tN . The sampling rate, the

reciprocal of the duration of time between ti and ti+1, can be chosen on a case-by-case

basis for each application (for example taking into account between accuracy and battery

life).

In Figure 2.21, we give a schematic example of continuous data being sampled at a

rate of R = 100Hz (100 times per second) at N = 251 discrete timepoints, i.e. a(t1)

is sampled at 0.00 seconds from the start of the data recording, a(t2) is sampled at 0.01

seconds, and so forth, until a(t251) is sampled at 2.50 seconds from the start. In practical

applications, of course, the duration of data recorded is likely to be much longer than in

this illustrative example. We see that for each of the N = 251 discrete sampling points

over T = 2.50 seconds of data, a vector of length d = 3 is sampled.

For notational simplicity, we denote the vector of sampled accelerometer data as

ai = a(ti) at the ith sampling timepoint (and assume that there is no sensor error). The

corresponding activity label is denoted as ci = c(ti). i ∈ N, i ≤ (TR) + 1

In the rest of this chapter, we will discuss bow to extract features from this observed

(sampled) data.

2.3 Time domain

The simplest feature extraction techniques involve basic statistical summaries of the amount

of movement in a sliding window around a timepoint, and can be related to the average

amount of force (and by proxy human energy level exerted) during that period of time.

The sliding window duration can be chosen based on the typical movement durations in

the application of interest.

9

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

a201 = a(2.0) =

1.7

0.2

−2.1

Figure 2.21: Schematic diagram of accelerometer data sampling.

Given a multivariate time series with N discrete timesteps a1, ...,aN as input, and

using the notation defined in Section 2.2.1, the hth sliding window of duration w samples,

with 50% overlap, is defined as (in matrix form):

X∗,h = {ak : kMID
∗,h − w

2
≤ k < kMID

∗,h +
w

2
} (2.1)

where kMID
∗,h = w × h

2
is the midpoint of the hth sliding window, k < N , 0 ≤ h ≤ N

w
,

h, k ∈ N.

The matrix form of X∗,h ∈ Rd×w is used especially in Section 2.6.2, but we more

commonly use the flattening of this matrix into a vector x∗,h ∈ Rdw.

The subscript on the left hand side of Equation 2.1 denotes the hth datapoint from a

dataset of all human subjects, without specifically referring to a particular patient, location

on the body or episode of data collection. In later chapters, we will use xaij,h to refer to

the hth sliding window from the ith patient on the jth week from locations around the

body indexed by a. We will also use N∗ = N
w

to denote the number of sliding windows

generated.

10

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

In our sliding window models, we assume the activities associated with nearby frames

are not temporally dependent. However, in reality this is not the case: overlapping frames

will contain samples of data from the same activity, and nearby frames will likely coincide

with the occurrence of correlated activities. When we partition our data, frames from our

test set may be close by to those assigned to our training set, which they may be correlated

with those assigned to our test set (Hammerla and Plötz, 2015).

For each sliding window, some measurements based on the time domain we can take

are the mean, standard deviation minimum, maximum and range of measurements on each

sensor channel or on all channels combined. These measurements can denote the energy

of movement in each direction from a subject's body, as well as gestures when the user is

still (due to the effect of gravity due to the direction that a person may be standing in, for

example). Another statistic used from sliding windows is the number of zero crossings,

i.e. the number of times each of the sensor channel signals crossed the zero axis. This

usually indicates the number of repetitions of actions of a user, and for example may

indicate the difference between walking (fewer zero crossings) and running (more zero

crossings). The Signal Moving Average (SMA) is the sum of the accelerometer signals

over time duration of the sliding window. Should the duration of the sliding window be

long, it may correlate with the amount of energy a patient has expended over that duration.

It is closely related to the Signal Vector Magnitude (SVM), which measures how different

the radius of acceleration is to that of a resting position:

SVM(t) =

∣∣∣∣√ax(t)2 + ay(t)2 + az(t)2 − 1

∣∣∣∣ (2.2)

These measurements tend to be useful for distinguishing different activities which

require significantly different levels of human exertion (for example recognising when a

patient is idle compared to when a patient is walking).

11

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

2.4 Frequency Domain

Since many human activities of interest could be based on repetitive motions which are

the similar speed each time it is carried out, and different patients often carry out these ac-

tions within the same range of speeds, frequency domain features could be useful. These

techniques decompose a sliding window into coefficients based on Fast Fourier Trans-

form (FFT) or wavelet. FFT allows one to convert a signal from the time domain into

the frequency domain, and analyse the frequencies of activity present. Some frequen-

cies may be particularly interesting to certain applications, for example walking activity

may lie in the 0.5Hz to 2.5Hz range (Sharma et al., 2008). Wavelet transforms involve

computing the dot-product similarity between the sliding window and a mother wavelet

which has been multiplied by various amplitudes and stretched by different frequencies

(Daubechies, 1990).

2.5 Symbolic and mixture-based features

Symbolic domain features compress the signal into a string of discrete symbols, rep-

resenting similar observations. For example, in Piecewise Aggregate Approximation

(PAA), symbols strings can initially be formed from the construction of optimally-fitting

piecewise-constant approximation to the signal, where the values of the piecewise con-

stant parts are determined from percentiles of values of the signal. These methods are

sometimes used in combination with Dynamic Time Warping, which enables the com-

parison of signal windows of different length when possibly two instances of activities

have the same accelerometer signal representation apart from the speed at which they are

carried out (Lin et al., 2007).

Another approach to symbolic string representations of accelerometer data is by using

Gaussian Mixture Models (GMMs) over sliding windows. Chapter 5, we make exten-

12

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

sive use of GMMs to create symbolic representations of the data over sliding windows.

A mixture model represents the presence of distributions of a subpopulation in an overall

population, without requiring that any observed data explicitly indicates which subpopula-

tion component it belongs to. GMMs are widely used in data mining, pattern recognition,

machine learning and statistical analysis due to their capability of representing different

subpopulations in an overall sampling distribution (Bishop, 2006). Therefore, for the pre-

processed data set, we consider a GMM with fixed number of components to find a single

set of clusters which exist within both the paretic and non-paretic data.

Suppose that for the data from all patients, the extracted data set is denoted as {x∗,1,

. . . ,x∗,N}, x∗,h ∈ Rdw. Our goal is to partition the data set into some given number K of

clusters. For this, data vectors are assumed to be generated from a mixture of Gaussian

distributions. Let N (µk,Σk), (k = 1, . . . , K) denote the probability density function

of the Gaussian distribution with mean vector µk and covariance matrix Σk representing

the clusters, then the distribution of x∗,h can be expressed with a mixture of K Gaussian

distributions as

p(x∗,h) =
K∑
k=1

πkN (x∗,h|µk,Σk), (2.3)

where πk is the probability of the data belonging to the k-th component and typically

{πk : k = 1, . . . , K} satisfy

0 ≤ πk ≤ 1, and
K∑
k=1

πk = 1. (2.4)

Details of the expectation-maximization inferential procedures we have used for GMMs

are given in Section 4.2.1.

Some problems which can occur with this model are (1) avoiding the possibility of de-

generate components, where the variances along the diagonal of each Σk tends closer to 0

on each iteration and (2) we have no principled way to choose the number of components

13

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

in the model (apart from, for example, hyperparameter cross validation). A solution to

both of these problems is to use a Dirichlet Process Gaussian Mixture Model (DPGMM).

When computed using a variational inference approach, the model and inferential proce-

dure for a DPGMM are very similar to that above, apart from the use of Maximum A Pos-

teriori (MAP) estimation instead of maximum likelihood for the component distribution

parameters, and the weights of each component are governed by a Dirichlet-Multinomial

distribution, instead of being estimated as scalars π1, ..., πk (Blei et al., 2006).

Using the EM algorithm for fitting a Gaussian Mixture model is similar to using a

K-Means clustering algorithm, apart from providing soft cluster assignment probabilities

which indicate the degree of certainty. Indeed, where the covariance matrices of each

Gaussian are constrained to be diagonal and as the elements of the diagonal tend toward

zero in the limit case, they are equivalent (Bishop, 2006; MacQueen et al., 1967).

Other approaches to estimating the parameters of the mixture model include Markov

Chain Monte Carlo (MCMC)-based methods. An ergodic Markov Chain is created which

has a stationary distribution equal to the posterior distribution of the parameters of the

mixture model (McLachlan et al., 2019). Variational inference is considered to be less

computationally intensive on larger datasets compared to MCMC-based methods (Blei

et al., 2017).

Mixtures for time series have been developed where it can not be assumed that concur-

rent observations are independent (Nguyen et al., 2016). However, in applications such

as our long-term accelerometer data which we discuss in Chapters 4 and 5, this may be

a more realistic assumption as data dependent on an observation will amount to a very

small fraction of our total duration of data.

Mixture models have also been used with non-Gaussian component distributions. For

example, mixtures of (multivariate) Bernoullis have been used for clustering text docu-

ments, based on binary vectors encoding which words were contained in each document

14

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

(Juan and Vidal, 2002).

2.6 Neural Network-based Features

Many of the features discussed previously require quite a large degree of domain-specific

knowledge in order to choose the appropriate ones for each application. Alternatively, in

the case where we have access to response data for each datapoint (i.e. an activity label for

each second), we can make use of neural network models in order to automatically create

a prediction function from the initial raw data without the need for preprocessing. The

neural network model achieves this firstly through usage of a high level of parametriza-

tion so that a large number of possible prediction functions can be approximated through

the Universial Approximation Theorem. Secondly, the neural network makes use of reg-

ularization, so that the learning procedure doesnt result in a prediction function which is

unlikely to be useful.

In the next subsections, we outline the structure of feedforward, convolutional and

recurrent neural network models, the parameter estimation algorithms, as well as show

some experiments on some lab-based accelerometer data.

2.6.1 Calculating covariates using feedforward neural network

A feedforward neural network acts as a function which outputs sh for each flattened input

window x∗,h using a highly non-linear function. This function is the composition of

a series of hidden layers, each of which acts as a learnable non-linear function of its

inputs, with learnable parameters and a non-linear activation function. Theoretical results

(Cybenko, 1989; Hornik, 1993) show that for any underlying non-linear function and

multi-layer perceptron architecture, there exists a set of parameters which approximate

this function.

15

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

For the hth input vector x∗,h, the activation for the mth node on the first layer is

calculated as a linear combination with bias before a non-linearity function u (such as

Equation (2.6) is applied:

act
(1)
h,m = u(b

(1)
0,m +

w∑
j=1

x∗,hjb
(1)
j→m) b

(1)
0,m, b

(1)
j→m ∈ R (2.5)

Where x∗,hj ∈ R is the jth element of the input vector. (As we mention in Section

2.3, x∗,h ∈ Rwd. We denote the jth element of this vector as x∗,hj ∈ R). Each b(1)
j→m is a

scalar learnable parameter, which denotes the effect of the jth element of the input on the

mth node on the first layer.

We employ the ReLU (Rectified Linear Unit) activation function.

u(·) = max(·, 0) (2.6)

The derivative of the ReLU activation function is:

u′(·) =

1, if · > 0

0, otherwise
(2.7)

Since the derivative of the activation function for active units (those corresponding

to the first case in Equation (2.7)) in our network is always 1, then errors do not vanish

when we repeatedly multiply derivatives as we descend layers in the backpropagation

algorithm. This makes it easier for us to train networks with many layers in comparison

to the use of a sigmoid activation function, where the derivatives are never equal to 1.

Using both a ReLU activation function and bias parameter allows us to set the activation

of any node to zero when the weighted linear combination is below the value of the bias

parameter.

Likewise, the activation value of the mth node of the lth layer for the hth datapoint is

16

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

calculated as:

act
(l)
h,m = u(b

(l)
0,m +

Ml−1∑
j=1

act
(l−1)
h,j b

(l)
j→m) (2.8)

where b(l)
0→m, ..., b

(l)
Ml−1→m ∈ R are learnable parameters and act

(l)
h,m ∈ R.

There are L layers, and on the lth layer, there are Ml nodes.

After successive non-linear transformations from several layers, we obtain the vector

of features describing the hth datapoint sh from the activations of the last layer after

inputting the frame sample x∗,h:

shm ← act
(L)
h,m m ∈ 1, ...,ML (2.9)

2.6.2 Calculating covariates using convolutional neural network

Convolutional Neural Networks, or CNNs (LeCun et al., 1995) are specialised neural

networks for processing data that has a grid-like topology. Application examples in-

clude time series data (with kernels convoluted along the time dimension) and image data

(where 2D kernels are convoluted along the width and length of an image). CNNs con-

sist of a series of layers, typically one or several convolutional layers followed by some

feedforward layers (discussed in Section 2.6.1). In this section, we will give an account

of each of three computation steps in convolutional layers for multidimensional time se-

ries data (see Figure 2.61 on steps in convolutional layer), and the motivation for each of

them.

Convolution operator

To motivate the convolutional stage of a convolutional layer (as labelled 'A' in Figure

2.6.1), we first introduce the convolutional operation. The convolutional operator on a

17

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

Input to Layer

A: Convolutional stage

B: Nonlinearity (e.g. ReLU)

C: Pooling stage

Next layer

CONVOLUTIONAL LAYER

Figure 2.61: Overview of computation steps in convolutional layer of Convolutional Neu-
ral Network.

continuous time function Γcts, with a weighting function ωcts is given by:

(Γcts ∗ ωcts)(t) =

∫
Γcts(χ)Tωcts(t− χ)dχ (2.10)

where t ∈ R, and Γcts(t), ωcts(t) ∈ Rd. Γcts(χ)T is the transpose of Γcts(χ).

The convolution operator's output at any point t ∈ R is the integral of Γcts times the

kernel function ωcts centred on the point t. In this way, the convolution's output at t gives

us a measure of how well the function Γcts correlates with the kernel function around the

timepoint t.

The analogous discrete operator is:

(Γdiscrete ∗ ωdiscrete)(t) =
∞∑

χ=−∞

Γdiscrete(χ)Tωdiscrete(t− χ) (2.11)

In CNN terminology the first argument to the above equations (Γcts or Γdiscrete) would

be termed the input function and the second (ωcts or ωdiscrete) the kernel function. Where

we access values outside the domain of Γdiscrete where Γdiscrete is undefined, we may

assume that the value of the function is zero. This is called zero padding.

18

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

First step in convolutional layer: Convolution

For our application of CNNs to multivariate time series data, we use the notation defined

in Section 2.1 for sliding window data with internal time ordering preserved in matrix

form asX∗,h.

Then, the calculation of the convolutional feature map, the convolutional stage of the

first convolutional layer, for the kth kernel is given by:

act
(1,k)
h,m = u(b

(1)
0,k + (X∗,h ∗Kernl,k)(m)), Kernl,k ∈ Rd×rl ,X∗,h(m) ∈ Rd (2.12)

1 ≤ l ≤ #conv−layers, 1 ≤ k ≤ #Kernl, 1 ≤ m ≤ rl, 1 ≤ h ≤ N∗

where the number of convolutional layers is denoted as #conv−layers, the number

of kernels on the lth convolutional layer is denoted #Kernl, the width (in number of time

samples) of the kernels on the lth layer is denoted rl, and the number of sliding windows

in the dataset considered is N∗.

A diagrammatic illustration of this is given in Figure 2.62, where Kernl,k is the kth

kernel from the lth convolutional layer, and is of width rl along the time axis. Later, we

denote the number of kernels used on the lth convolutional layer as #Kernl.

Motivations for convolutional stage

There are three motivations for using the convolutional stage in a neural network, in com-

parison to a fully connected feedforward layer (FCFFL) like described in Section 2.6.1

(Goodfellow et al., 2016). Firstly, convolutional layers benefit from sparse interactions,

that is there are far less parameters to compute and store on convolutional layers compared

19

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

X·,h1,1
X·,h2,1

X·,h3,1
. . .

X·,h1,2
X·,h2,2

X·,h3,2
. . .

...
...

... . . .

Krnk1,1 Krnk2,1

Krnk1,2 Krnk2,2

.

.

.
.
.
.

b
(1)
0,k

+

X·,h1,1
Krnk1,1+

X·,h2,1
Krnk2,1+

X·,h1,2
Krnk1,2+

X·,h2,2
Krnk2,2+

. . . +

X·,h2,d
Krnk2,d

b
(1)
0,k

+

X·,h2,1
Krnk1,1+

X·,h3,1
Krnk2,1+

X·,h2,2
Krnk1,2+

X·,h3,2
Krnk2,2+

. . . +

X·,h3,d
Krnk3,d

b
(1)
0,k

+

X·,h3,1
Krnk1,1+

X·,h4,1
Krnk2,1+

X·,h3,2
Krnk1,2+

X·,h4,2
Krnk2,2+

. . . +

X·,h4,d
Krnk4,d

hth sliding window as matrix X·,h ∈ Rd×w

d
se

ns
or

ch
an

ne
ls

w timepoints per sliding window

Convolutional kernel Krnk ∈ Rd×rl

r
l

=
2

tim
ep

oi
nt

s

Figure 2.62: An overview of the convolution operation on the convolutional stage in
convolutional layers. In this example, the kernel width rl is 2.

20

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

to fully-connected layers, especially when the convolutional kernel width is much shorter

than the length of input datapoints. Figure 2.63 gives a comparison between the num-

ber of connections (and therefore parameters) on convolutional compared to feedforward

layers.

A second motivation is parameter sharing, because rather than each parameter being

used in only one location in the input vectors in FCFFL, convolutional layers use each

learned parameter at every single location (element) of the inputted object (i.e. sliding

window X∗,h). Therefore, parameter sharing is drastically more efficient in terms of

storage requirements compared to FCFFL.

A third desirable feature is equivalence to translation, that is if some feature is seen

later in an input object, then the resultant features will be the same , and simply appear in

the corresponding part of the output of the convolutional layer.

Second step in convolutional layer: Nonlinearity

The second step in the convolutional layer (as shown as Part 'B' in Figure 2.61) is the

nonlinearity (e.g. rectified linear unit). The motivation relating to the Universal Approxi-

mation Theorem is discussed in Section 2.6.1.

Third step in convolutional layer: Pooling

The third and final step is pooling (part 'C' in Figure 2.61), most commonly max pooling.

This replaces the output of the latter at regular intervals (every ∆l elements) with a sum-

mary statistic of nearly outputs from the previous step. This is shown diagrammatically

in Figure 2.64, and is defined formulaically as:

act
(l,k) NEW
h,m ← max

∆lb m∆l c≤j<∆lb m∆l c+m
act

(l,k)
h,m (2.13)

21

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

act
(1,k)
h,m−2 act

(1,k)
h,m−1 act

(1,k)
h,m act

(1,k)
h,m+1 act

(1,k)
h,m+2

X∗,hm−2 X∗,hm−1 X∗,hm X∗,hm+1 X∗,hm+2

act
(1,k)
h,m−2 act

(1,k)
h,m−1 act

(1,k)
h,m act

(1,k)
h,m+1 act

(1,k)
h,m+2

X∗,hm−2 X∗,hm−1 X∗,hm X∗,hm+1 X∗,hm+2

Figure 2.63: Illustration of sparsity of parameters in a convolutional layer with kernel
width rl = 3 (top) compared to feedforward layers (lower). In convolutional layers, the
value of each element only affects a small number of output nodes, so therefore the layer
requires less parameters.

22

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

0.1 1.0 0.2 0.1 0.0 0.1 0.0

1.0 0.2 0.1

Figure 2.64: Illustration of max pooling with pooling region width ∆l = 3.

For the second and subsequent convolutional layers, then the output of the previous

convolutional layers is used as input to the next, and the outputs from the next layers are

computed in a similar manner.

Typically in a CNN model, there may be one or more convolutional layers, before

some feedforward layers, to finally arrive at a feature vector sh, the usage of which we

will discuss in Chapter 3.

2.6.3 Calculating covariates using recurrent neural network

Another approach to modelling time series data is to use state-space models (SSMs). In

SSMs, a hidden state vector is calculated at each discrete timestep, based on hidden state

values in the previous timestep, and input values (e.g. accelerometer data) in the current

timestep (Goodfellow et al., 2016).

A useful advantage of these types of models with 'hidden states' for accelerometer data

is that we may not need to use sliding windows at all (for example x∗,h), as the models

can operate on the discrete timesteps corresponding to raw high-frequency accelerometer

data (for example ai).

A basic RNN (recurrent neural network) can be described as a state space model, with

discrete timesteps, where the hidden state at every timestep is updated based on an affine

transformation of the previous hidden state and some input vector containing acceleromter

data, before a non-linear (elementwise) transformation is applied:

23

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

hiddeni = u(W hxai +W hhhiddeni−1 + bh), i ≤ (TR) + 1 (2.14)

where W hx ∈ Rd×m, W hh ∈ Rm×m, bh ∈ Rm are learnable parameters, and u is a

non-linear transformation such as defined in Equation (2.6).

Then, the predicted class probabilities of the current timestep can be computed using

the multinomial model discussed in Section 3.A.

The model is trained by backpropagation, taking the derivative of the output with

respect to each parameter and optimizing through a gradient descent procedure which we

will discuss in Section 2.6.5. Additionally, Backpropagation Through Time (BPTT) is

commonly used, where prediction errors are propagated back through the sequence of the

input time series (Werbos et al., 1990; Graves, 2012).

This model, however, often results in hidden states which are not useful because of

the multiplicative nature Equation (2.14). Since we are repeatedly multiplying the hidden

vector on each timestep by the transition matrix W hh, then magnitudes of these values

will tend to explode (tend toward infinity) or vanish (tend toward zero) over time. It is not

possible for a hidden state to stay approximately constant for a long-term period, while

also having the flexibility to change to differing values later when context changes.

Long Short-Term Memory (LSTM) network

It might be useful for our models to forget its hidden state (either completely or in part by

some weight). Long Short-Term Memory (LSTM) neural networks allow us to do this.

The hidden state is considered 'short-term memory' memory, but the LSTM network has

the ability to retain this state for a dynamic, potentially long number of timesteps (hence

the name Long Short-Term Memory) (Gers et al., 2000; Goodfellow et al., 2016).

The motivation for LSTM is apparent in modelling accelerometer data, as previous

24

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

accelerometer data and activities of a human subject are highly relevant in determining

what activity (class) they are likely to be currently undertaking, even before taking into

account current and recent accelerometer data. Additionally, context can stay constant for

a long amount of time and then suddenly change, which we will discuss in this section.

The key principle of LSTM networks is to have a linear self-loop which is gated

(controlled by another unit called the forget gate). Self-loop refers to each element of the

current timestep only affecting the same element in the next timestep. By gating the self-

loop (which determines whether and how much the network should carry over memory

in each step), then the time scales over which internal state are held can be changed

dynamically.

Instead of a unit that simply applies a non-linearity to a linear transformation of inputs

and previous state (as in Equation (2.14)), LSTM networks have 'LSTM cells' that have

an internal recurrence (a self-loop), in addition to an outer recurrence of the RNN (we see

the outer recurrence in Equation 2.14, where each element of the hidden state vector is

directly affected by all of the elements of the previous timestep). Each cell has the same

inputs and outputs as an ordinary RNN, but has more parameters and a system of gating

units that controls the flow of information. The most important is the state unit memoryi,

which has a linear self-loop. The self-loop weight is controlled by an elementwise forget

gate unit forgeti, which always has a value between 0 and 1 due to use of a sigmoid

non-linearity:

forgeti = sigmoid(W fxai +W fHhiddeni−1 + bforget)

forgeti, bforget,hiddeni−1 ∈ Rm,W fx ∈ Rm×d,W fH ∈ Rm×m
(2.15)

25

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

where the sigmoid function for any real value is defined as:

sigmoid(·) =
exp(·)

1 + exp(·)
(2.16)

and is applied elementwise for vector inputs.

We see where the forget gate is used in a self loop inside the first parenthesis of the

following equation. We see that the previous LSTM memory cell state memoryi−1 is

carried over to the current timestep using the elemetwise multiplication operator ◦ with

forgeti:

memoryi = (memoryi−1 ◦ forgeti) + (celli ◦ inputi)

memoryi, celli, inputi ∈ Rm

(2.17)

The term in the second parenthesis of Equation (2.17) refers to celli. celli is the 'outer

loop' of the LSTM cell, since the value of this vector on each timestep depends on all of

the elements in the vector hiddeni in the previous timestep:

celli = u(W cxai +W cHhiddeni−1 + bcell)

celli, bcell ∈ Rm.W cx ∈ Rm×d,W cH ∈ Rm×m
(2.18)

The value of celli is gated (elementwise multiplied by to create a weighting between

zero and one) in the second parenthesis of Equation (2.17) by the input gate inputi. The

value of the input gate at each timestep is calculated the same way as the forget gate, but

with its own parameters:

inputi = u(W Ixai +W IHhiddeni−1 + binput)

inputi, binput ∈ Rm.W Ix ∈ Rm×d,W IH ∈ Rm×m
(2.19)

The external output of the LSTM network,hiddeni, is based on gating the memory

state of the network as calculated in Equation (2.17):

26

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

hiddeni = tanh(memoryi) ◦ outputi (2.20)

where the values of the output gate are calculated in the same way as the forget and

input gates, but with different parameters:

outputi = u(W oxai +W oHhiddeni−1 + boutput)

outputi, boutput ∈ Rm,W ox ∈ Rm×d,W oH ∈ Rm×m
(2.21)

A prediction of the class probability (in this case which activity a human subject is

carrying out) can be made by using a logistic model (described in Appendix 3.A) with the

vector hiddeni as the input.

Because the rates of forgetting of the hidden state are learnable functions based on the

previous hidden state and current inputs, rather than simply based on static state transition

matrices, the model is capable of holding state information for longer and varying amount

of time. For example, an element of the hidden state vector could hold one value, until

such time as the observation vector ai is a certain value related to a critical event which

changes all the predictions later in the time series. One situation when this may occur

is if the transition matrix W cx is close to an identity matrix, all elements of the input

gate vector are close to 0, and all elements of the forget gate vector are close to 1, until ai

reaches a critical value, and then elements of the input gate become non-zero and the input

data after the ith timestep start to have an effect on the hidden state vector (Goodfellow

et al., 2016).

2.6.4 Bidirectional recurrent neural network models

Where we want to carry out an inference at timestep i, based on what has come be-

fore and after timestep i, we can use bidirectional neural networks (b-LSTM-s) (Graves

and Schmidhuber, 2005). In this model, the time series is split into sequences of length

27

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

Nseq which occur one after another, and an LSTM recurrent neural network (as described

above in Section 2.6.3), and is fed the sequence of observations from the startpoint of

the sequence which timestep i belongs to (for instance time tSeqStart) until the end of the

sequence timestep i belongs to tSeqStart +Nseq, before being fed the sequence in reverse,

that is (atSeqStart , ...,ai, ...,atSeqStart+Nseq , ...,ai, ...,atSeqStart). The corresponding data la-

bels used in training are (ctSeqStart , ..., ci, ..., ctSeqStart+Nseq , ..., ci, ..., ctSeqStart). Then, the

hidden states for timestep i for both the forward and reverse passes are used as covariates

for prediction at timestep i.

2.6.5 Parameter estimation approaches for neural network models

In this section, we discuss some possible approaches to parameter estimation for the neu-

ral network model discussed in the previous sections of this chapter, as well as approaches

we used in our deep learning exploration experiments in greater detail. We also discuss

approaches to regularization for improving the generalisability of neural network models.

From a random initialization of model parameters — based on some random samples

from a Gaussian distribution such as based on Xavier or Glorot initialization as discussed

in Sutskever et al. (2013) — gradient descent attempts to maximize the likelihood of the

model we are fitting (for example in supervised learning classification we may wish to

maximize the likelihood of the multinomial distribution of all the classes for all the data-

points, given in Equation (3.1)). We calculate the gradient with respect to each parameter

in the model, where the gradient of the parameter denoting the influence which the jth

node on the l− 1th layer has on the mth node on the lth layer is denoted as∇L(b
(l)
j→m) on

the τ th iteration of this gradient descent algorithm.

Then, we update the weights according to the Adagrad rule:

b
(l)
j→mτ+1

= b
(l)
j→mτ −

δ∇L(b
(l)
j→mτ)√

%
(l)
j→mτ+1

+ ε
(2.22)

28

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

where ε > 0 is a small numerical constant for numerical precision and

%
(l)
j→mτ+1

= %
(l)
j→mτ +∇L(b

(l)
j→mτ)

2 (2.23)

Equation (2.22) is the standard gradient descent equation with learning rate δ ∈ (0, 1],

where the learning rate is divided by a value based on Equation (2.23). This number in-

creases the weight update for parameters which previously had small weight updates, thus

making it easier to tune the weights of parameters in parts of the model which are infre-

quently activated, for example in the case of datapoints of a rare class. Some other similar

learning rate rules are given in Adam (Kingma and Ba, 2014) and RMSProp (Ruder,

2016). Learning rate decay allows us to reduce the learning rate by a factor of ϑ ∈ (0, 1]

on each successive iteration of our backpropagation algorithm through our dataset. This

allows us to be less dependent on a particular choice of learning rate, as the effective learn-

ing rate δϑτ can range through different orders of magnitude as our learning procedure

progresses. Then, our update equation becomes:

b
(l)
j→mτ+1

= b
(l)
j→mτ −

δϑτ∇L(b
(l)
j→mτ)√

%
(l)
j→mτ+1

+ ε
(2.24)

We use minibatch stochastic gradient descent (SGD) when training. This is where

we carry out backpropagation using batches of 64 frames at a time. SGD calculates the

gradient using subsets of the available training data called batches (Zhang, 2004). This

is as opposed to batch gradient descent which calculates gradient descent for the entire

dataset before calculating the new weights of the network using backpropagation. Usage

of random subsets of the data introduces randomness, which helps avoid local minima

in the loss function, since each minibatch will have a different effect on the model’s

parameters.

29

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

2.7 Principal Component Analysis

Once some features based on sliding windows are chosen, there may be too many dimen-

sions in the data, hindering the ability to perform inference. Principal Components Anal-

ysis (PCA) is a method of finding a set of basis vectors which span an input space, and for

which act as linear transformations into a reduced-dimensionality space, and where these

basis vectors capture as much of the variability in the input data as possible (Jolliffe,

1986). Suppose we have a dataset in a q-dimensional space, with a covariance matrix

Ψ ∈ Rq×q. Then, the q-dimensional linear combination of the input variables which

maximizes the variance of the transformed data is given by:

max
Q1∈Rq

QT
1 ΨQ1

The optimal vector Q1 ∈ Rq is given by the leading eigenvector of the covariance

matrix Ψ, where the leading eigenvector is defined as the one with the highest eigenvalue.

Likewise, the next most important linear combination vectors which explain variability

can be computed using the remaining eigenvectors, in descending order of their eigen-

values. The benefit of using this approach is that we are able to effectively reduce the

dimensionality of our data, while being able to inspect the resulting principal components

for their possible meaning.

2.7.1 Functional PCA

Functional PCA is similar to the approach we have discussed, but is more suitable for

the case of where we observe functions with possible sensing measurement errors which

are assumed to be independent and identically distributed at each time ti seconds after

the start of the signal, and have variance governed by a smooth (for example constant)

function σ2(t), for example representing sensor measurement error.

30

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

We will discuss and example where sliding windows are treated as realisations of func-

tions. Suppose we haveN∗ realisations v∗,1, ...,v∗,N∗ of a function v sampled on a regular

grid at w points, which is composed of the one-dimensional Signal Vector Magnitude of

movement (i.e. in this case d = 1):

v∗,h = (SVM(a(t
(h)
1)), ..., SVM(a(t(h)

w)))T (2.25)

where SVM is defined in Equation (2.2), and t(h)
i ∈ [0, T) is the real-valued timepoint

associated with the ith element of the hth sliding window. Because the SVM function

outputs real-valued numbers, then v∗,h ∈ Rw. If we assume that there is an underlying

physical process with an associated underlying physical signal vector magnitude value

SVMPHY S(t) ∈ R, and a sensor error of σ2(t) ∈ R which has a distribution which is

smooth or constant over time, then:

v∗,h = (SVMPHY S(a(t
(h)
1)) + σ2(t

(h)
1), ..., SV MPHY S(a(t(h)

w)) + σ2(t(h)
w))T (2.26)

Before carrying out the PCA procedure as discussed before, we construct a covariance

matrix Ψw×w (taking into account that in this case d = 1). This matrix contains the

covariances of each point on the regular sensing grid (i.e. the correlations between the

ith and jth elements of each realisation v∗,h). A smoother is applied to the matrix Ψ to

account for the effect of the error terms given by the function σ2(t), before the previously-

discussed PCA steps are carried out (Wang et al., 2016; Ramsay and Silverman, 2007).

Functional PCA can visualise the important features of large colelctions of similar

curves (Jones and Rice, 1992).

31

Chapter 2. Introduction to Feature Extraction for Accelerometer Data

2.8 Conclusion

In this chapter, we discussed the various ways of extracting features from sliding windows

of accelerometer data: statistical, frequency, symbolic and neural network features (in-

cluding parameter estimation approaches in neural network models), as well as the usage

of dimensionality reduction and mixture models on data. These methods are used exten-

sively in the next chapters: the usage of neural network features for supervised learning is

discussed in Chapter 3, while the usage of dimensionality reduction and mixture models

for the automated assessment of recovery levels of patients with stroke is discussed in

Chapter 5.

32

Chapter 3

Supervised Learning for Activity

Recognition

In this chapter, we discuss Human Activity Recognition (HAR), supervised learning clas-

sification models used for HAR, as well as an exploration of deep neural network models

for HAR applications. Later in this chapter, we also provide an exploration of the pre-

dictive accuracy of some neural network models including feedforward (referred to as

deep neural networks or DNN, discussed in Section 2.6.1), convolutional (CNN outlined

in Section 2.6.2) and more recent recurrent neural network models. The recurrent neural

network models include sliding window (frame)-based LSTM (referred to as LSTM-F),

a sample-wise LSTM where non-sliding window data is input (referred to as LSTM-s,

as outlined in Section ??) and bidirectional LSTM (referred to as b-LSTM-s, outlined

in Section 2.6.4) on some benchmark HAR datasets. To the best of our knowledge, this

is the first work which includes an extensive hyperparameter search for the construction

of neural network models for accelerometer-based HAR, with insights of which types of

hyperparameters are most important to pay attention to when constructing a neural net-

work for a new HAR application. HAR, like the remote stroke rehabilitation discussed

in later chapters, makes use of the feature extraction approaches discussed in Chapter 2.

33

Chapter 3. Supervised Learning for Activity Recognition

In this chapter we focus our interests on inferring which human activity, from a set of p

pre-selected classes (e.g. walking, sitting, etc), a user is carrying out while they are wear-

ing the body-worn accelerometer device, at any given time. The neural network based

covariates may also be used in prediction of stroke rehabilitation, see the discussion in

Section 6.3.

This chapter is structured as follows. In Section 3.1, we give an account of the task

of classification in supervised learning for accelerometer data, how the performance of

models is evaluated for that task. In Section 3.2 we give an outline of neural network

hyperparameter choices. In Section 3.3 we give an account of experiments we performed

to investigate the effect of model and hyperparameter choice on model performance. In

Section 3.4 we give provide the results of our exploratory experiments and in Section 3.5

we give a discussion and conclusion on the outcomes of our experiments.

3.1 Supervised Learning for Accelerometer Data

Given an unforeseen vector time series of accelerometer data (a1, ...,aT), HAR aims to

assign probabilities that a human subject (e.g. a patient) is carrying out each of p classes

of activity for each timepoint (e.g. by using sliding windows). To achieve this, raw time

series data could be preprocessed and features extracted using some of the approaches

outlined in Chapter 2. Then, a learnable function could map the preprocessed sliding

window datapoints to probabilities predictive of the subjects current activity class. Some

possible supervised learning models suitable for this purpose, given training time series

from patients, could include a multinomial logistic model using covariates from either the

deep feedforward (referred to as DNN later in this chapter), convolutional (referred to as

CNN) or recurrent neural networks (referred to as LSTM-F later in this chapter) discussed

in Chapter 2. We note that also it is also possible to use the recurrent neural network mod-

els to infer directly an associated activity label for each discrete input timepoint (sample)

34

Chapter 3. Supervised Learning for Activity Recognition

of raw accelerometer data, and we have explored this model configuration (referred to as

LSTM-s) later in this chapter.

3.1.1 Multinomial model

To construct the prediction function using supervised learning, we consider a model for

the activity class cih the ith subject is undertaking as being multinomially-distributed with

one trial at each time index h. Let ρih = (ρih,1, ..., ρ
i
h,p) represent the inferred probabilities

of each subject undertaking each class. The log-likelihood of a multinomial distribution

over all of the data from n subjects, with Ni datapoints from the ith subject, is:

`(c1
1, ..., c

n
N∗|ρ

1
1, ...,ρ

n
N∗) =

n∑
i=1

Ni∑
h=1

p∑
m=1

I(cih = m) ln(ρih,m) (3.1)

where N∗ denotes the total number of datapoints from all patients, and I(·) is an indicator

function which takes the value of 1 if the statement in its argument is true and 0 otherwise.

The derivation of this log-likelihood, and its use with the feature vectors from Section 2.6

are given in Appendix 3.A at the end of this chapter.

To fit our supervised learning classification algorithm, we maximize the likelihood in

Equation (3.1) through the gradient descent procedure discussed in Section 2.6.5. Ap-

proaches for model evaluation are discussed in Section 3.1.2, model hyperparameter

choices are outlined in Section 3.2, and the effect of the model hyperparameter choices is

explored in Section 3.3.

3.1.2 Model evaluation

To find the optimal parameters for our neural network models (discussed in Section 2.6),

we can employ an iterative gradient descent procedure to maximize the likelihood of the

model, which we will discuss in Section 2.6.5.

35

Chapter 3. Supervised Learning for Activity Recognition

We will want to assess the accuracy of our model, both after the inference procedure

to assess the quality of fit on an unseen test set, and during the inference procedure to

assess when we have met the necessary conditions to halt the model fitting. A commonly

used metric in HAR and other classification tasks with multiple classification categories is

called the mean F1 score (Bulling et al., 2014). It takes into account the condition where

the ability of the model to detect if the model is overestimating the probability of the

dominant class, for example by classifying all datapoints as being part of the dominant

class. In this metric, the F1 score of each of p classes is calculated, and then they are

averaged:

Mean F1 Score =
1

p

p∑
m=1

F1(Class m) (3.2)

where the F1 score for the mth class is calculated as:

F1(Class m) = 2× (
Precision(Class m)× Recall(Class m)

Precision(Class m) + Recall(Class m)
) (3.3)

where the precision is the proportion of datapoints classified as belonging to class m

that are actually part of class m:

Precision(Class m) =
#True Positives for Class m

#True Positives for Class m+ #False Positives for Class m

(3.4)

and recall is the proportion of datapoints which are actually in class m that are cor-

rectly classified as being part of that class:

Recall(Class m) =
#True Positives for Class m

#True Positives for Class m+ #False Negatives for Class m

(3.5)

36

Chapter 3. Supervised Learning for Activity Recognition

Similarly, the Weighted F1 score is an average of the F1 scores over all the classes,

weighted by how prevalent each class is:

Weighted F1 Score =

1∑p
m=1 Instances of class m

×
p∑

m=1

Instances of class m× F1(Class m)

(3.6)

In Section 2.6.5, we discuss parameter estimation approaches, and later we use these

performance metrics and parameter estimation approaches in experiments to determine

which configuration of neural networks is best for various typical HAR tasks.

3.2 Neural network hyperparameters

When constructing a neural network model for HAR, it is necessary to decide both on the

type of network (i.e. DNN, CNN, LSTM-s, LSTM-F or b-LSTM-s, all of which are out-

lined in Section 2.6) and other choices related to learning scheme (parameter estimation),

regularization and architecture (e.g. model size). The values of these choices are termed

hyperparameters. In this section, we outline the main hyperparameter choices under the

headings learning, regularization and architecture. Then for the rest of this chapter, we

give an account of an exploration of the effect of all these hyperparameter values on pre-

dictive performance on three popular benchmark HAR accelerometer datasets, where the

ranges of hyperparameters explored are shown in Table 3.31.

37

Chapter 3. Supervised Learning for Activity Recognition

3.2.1 Learning-related hyperparameters

The first hyperparameter choice shown in Table 3.31, and one which we found to be

crucial in our experiments later in this chapter, is learning rate. It determines the extent

to which the model's parameters should change in response to each training data sample

or minibatch. If the learning rate is too high, then the gradient descent-based algorithms

will not succeed in finding good optimal parameter solutions, as each successive change

in parameters may overshoot local minima in the loss function. If the learning rate is too

low, then the model will learn very slowly (require a large number of training iterations

to attain a good performance). It is defined in Section 2.6.5 and is denoted in this thesis

with δ. In most applications of neural networks, practitioners experiment with a range of

learning rates which vary by orders of magnitude, so for our experiments we randomly

selected the learning rate to use in each experiment from a log-uniform distribution.

A closely-related hyperparameter which is also defined in Section 2.6.5 is learning

rate decay. It determines the rate at which we decay the learning rate on each training

iteration through the dataset, allowing us to effectively use a range of learning rates. It is

denoted as ϑ in this thesis, and is shown on the second column of Table 3.31. For similar

reasons to the previously-discussed hyperparameter, we also randomly select the value of

learning rate decay for each experiment from a log-uniform distribution.

For LSTM recurrent neural networks (i.e. LSTM-F, LSTM-s and b-LSTM-s), the

length of training sequences, is also a learning-related hyperparameter. To train these

models, the dataset must be split into non-overlapping subsequences which are assumed to

be independent of one another. If the length of these subsequences Lseq is too short, then

it is impossible in this application to capture and predict with crucial contextual aspects

as the subsequence will not capture important things which happened in the recent past

(for example if a fridge door has just been opened, it is likely to be closed again soon).

If a training subsequence is too long, the model could suffer from overfitting and poor

38

Chapter 3. Supervised Learning for Activity Recognition

learning. This model choice is denoted as Lseq and is shown in the third column of Table

3.31.

3.2.2 Regularisation-related hyperparameters

Regularisation techniques are required to learn simpler models, so that the models gener-

alize well to unseen test sets as opposed to overfit to the training dataset used. We used

the approaches such as momentum, max-in-norm, p-carry, and dropout.

Momentum (Sutskever et al., 2013) refers to replacing the gradient in Equation (2.22)

with a weighted moving average of the current and past gradients over previous iterations,

with hyperparameter γ ∈ (0, 1]. It encourages regularization by preventing the learned

parameters from being changed too much based on any one minibatch:

b
(l)
j→mτ+1

= b
(l)
j→mτ −

δϑτ
∑τ

k=0 γ
τ−k∇L(b

(l)
j→mτ)√

%
(l)
j→mτ+1

+ ε
(3.7)

The ranges of momentum we tried in our experiments is shown in Table 3.31.

Dropout (Srivastava et al., 2014) is a form of model regularization for neural net-

works. It is designed to be an efficient way to implicitly emulate bagging (bootstrapped

aggregation) in estimating model parameters. Bagging is a way of combining many high-

variance, low bias expert models for parameter estimation through model averaging. In

dropout, a proportion of neurons in the network are randomly zeroed out in the training

phase. In the feedforward phase of training, for each pass, the network acts like a com-

ponent of a mixture-of-experts system. Model parameters are updated through backprop-

agation based on the subset of parameters which are activated. In the test or application

phases, we can multiply the parameters by the reciprocal of the dropout percentage to

obtain the average of all the subnetworks in the training phase. In this way, we are im-

plicitly model averaging over many different models. To limit the number of dimensions

39

Chapter 3. Supervised Learning for Activity Recognition

in our hyperparameter search, we chose not to explore the effect of this hyperparameter

on model performance.

Max-in-norm refers to scaling the incoming weights to each node in the neural net-

work to have a maximum Euclidean length. It is suggested that this approach performs

well when dropout is used (Srivastava et al., 2014). The range of values for this hyperpa-

rameter is shown in the fifth column of Table 3.31.

pcarry is the hyperparameter associated with a regularisation technique for recurrent

(e.g. LSTM-based) neural network models which to the best of our knowledge has not

been employed in other works before. In the recurrent neural network models (LSTM-

F, LSTM-s and b-LSTM-s), we carry over the internal states of the model (given by the

hidden state hiddent−1 and memory cell memoryt−1) with probability pcarry between

consecutive minibatch subsequences. The length of training subsequences denoted by

Lseq is another closely-related hyperparameter which we explored and discussed in Sec-

tion 3.2.1.

3.2.3 Architecture-related hyperparameters

Architecture-related hyperparameters govern the number of parameters in the neural net-

work model. The more parameters a model has, the more likely that the model will overfit

to the training dataset used and not generalize well to testing datasets, unless regulariza-

tion is employed. However, if a model doesn't have a sufficient number of parameters, it

may not be expressive enough to predict the human activity classes well.

For both DNN models (which are composed of hidden fully-connected feedforward

layers) and CNN models (which are composed of some hidden fully-connected feed-

forward layers which process the outputs of some convolutional layers), the number of

hidden feedforward layers (denoted as L in Section 2.6.1) has an obvious effect on the

number of parameters in the model, as each hidden feedforward layer has M hidden

40

Chapter 3. Supervised Learning for Activity Recognition

nodes, and for each of those nodes there is a separate parameter associated with the affect

of each element of the input of the layer on the activation value of that node.

Likewise, for CNNs, the number of convolutional layers (which is shown as the ninth

column of Table 3.31), as well as the kernel widths on each layer (r1, r2 and r3, which are

in the 10th−13th column of Table 3.31) as well as the number of kernels on each of those

layers (shown on the 14th to 16th columns) all affect the expressiveness of the model. As

outlined in Section 2.6.2, the number of kernels used on a layer allows us to match more

patterns, while having a wider kernel allows us to match patterns of a longer duration.

Appropriate kernel widths may depend on the application in which the CNNs are being

used in.

For the rest of this chapter, we discuss the methods for exploration and the effect

of hyperparameter choice on predictive results on typical HAR tasks with accelerometer

data.

3.3 Investigating hyperparameters effect on model per-

formance

In order to estimate the impact of each hyperparameter on the performance observed

across all experiments we apply the fANOVA analysis framework. fANOVA (Hutter et al.,

2014) determines the extent to which each hyperparameter contributes to a network’s per-

formance. It builds a predictive model (Random Forest) of the model performance as a

function of the model’s hyperparameters. This non-linear model is then decomposed into

marginal and joint interaction functions of the hyperparameters, from which the percent-

age contribution to overall variability of network performance is obtained. fANOVA has

been used previously to explore the hyperparameters in recurrent networks (Greff et al.,

2015).

41

Chapter 3. Supervised Learning for Activity Recognition

For the practitioner it is important to know which aspect of the model is the most

crucial for performance. We grouped the hyperparameters of each model into one of

three categories (see Table 3.31): i) learning, parameters that control the learning process;

ii) regularisation, parameters that limit the modelling capabilities of the model to avoid

overfitting; and iii) architecture, parameters that affect the structure of the model. Based

on the variability observed for each hyperparameter we estimate the variability that can be

attributed to each parameter category, and to higher order interactions between categories.

3.3.1 Experiments for hyperparameter selection

The different hyper-parameters explored in this work are listed in Table 3.31. The last col-

umn indicates the number of parameter configurations sampled for each dataset, selected

to represent an equal amount of computation time. We conduct experiments on three

benchmark datasets representative of the problems tyical for HAR (described below). Ex-

periments were run on a machine with three GPUs, where two model configurations are

run on each GPU except for the largest networks.

After each epoch of training we evaluate the performance of the model on the valida-

tion set. Each model is trained for at least 30 epochs and for a maximum of 300 epochs.

After 30 epochs, training stops if there is no increase in validation performance for 10

subsequent epochs. We select the epoch that showed the best validation-set performance

and apply the corresponding model to the test-set.

3.3.2 Datasets

We select three datasets typical for HAR for the exploration in this work. Each dataset cor-

responds to an application of HAR. The first dataset, Opportunity, contains manipulative

gestures like opening and closing doors, which are short in duration and non-repetitive.

The second, PAMAP2, contains prolonged and repetitive physical activities typical for

42

Chapter 3. Supervised Learning for Activity Recognition

L
ea

rn
in

g
ra

te
δ

L
R

de
ca

y
ϑ

Se
qu

en
ce

le
ng

th
L
s
e
q

m
om

en
tu

m
γ

m
ax

-i
n

no
rm

p
ca

rr
y

#l
ay

er
s
L

#u
ni

ts
M

#c
on

v.
-l

ay
er

s

K
er

ne
lw

id
th
r 1

K
er

ne
lw

id
th
r 2

K
er

ne
lw

id
th
r 3

#
K

er
n

1

#
K

er
n

2

#
K

er
n

3

#e
xp

er
im

en
ts

Category Learning Regularisation Architecture
log-uniform? y y - - - - - - - - - - - - -

DNN max 10−1 10−3 - 0.99 4.0 - 5 2048 - - - - - - - 1000min 10−4 10−5 - 0.0 0.5 - 1 64 - - - - - - -

CNN max 10−1 10−3 - 0.99 4.0 - 3 2048 3 9 5 3 128 128 128 256min 10−4 10−5 - 0.0 0.5 - 1 64 1 3 3 3 16 16 16

LSTM-F max 10−1 - 64 - 4.0 1.0 3 384 - - - - - - - 128min 10−3 - 8 - 0.5 0.0 1 64 - - - - - - -

LSTM-s max 10−1 - 196 - 4.0 1.0 3 384 - - - - - - - 128min 10−3 - 32 - 0.5 0.0 1 64 - - - - - - -

b-LSTM-s max 10−1 - 196 - 4.0 1.0 1 384 - - - - - - - 128min 10−3 - 32 - 0.5 0.0 1 64 - - - - - - -

Table 3.31: Hyper-parameters of the models and the ranges of values explored in experi-
ments.

systems aiming to characterise energy expenditure. The last, Daphnet Gait, corresponds

to a medical application where participants exhibit a typical motor complication in Parkin-

son’s disease that is known to have a large inter-subject variability. Below we detail each

dataset:

The Opportunity dataset (Opp) (Chavarriaga et al., 2013) consists of annotated

recordings from on-body sensors from 4 participants instructed to carry out common

kitchen activities. Data is recorded at a frequency of 30Hz from multiple locations on

the body, and annotated with 18 mid-level gesture annotations (e.g. Open Door / Close

Door). For each subject, data from 5 different runs is recorded. We used the subset of

sensors that did not show any packet-loss, which included accelerometer recordings from

the upper limbs, the back, and complete IMU data from both feet. The sensor locations on

the body as well as the room where the data was recorded is illustrated in Figure 3.31. The

resulting dataset had 79 dimensions. We use run 2 from subject 1 as our validation set,

and replicate the most popular recognition challenge by using runs 4 and 5 from subject

2 and 3 in our test set. The remaining data is used for training. For frame-by-frame anal-

ysis (used in DNN, CNN and LSTM-F models), we created sliding windows of duration

1 second and 50% overlap. The resulting training-set contains approximately 650, 000

43

Chapter 3. Supervised Learning for Activity Recognition

samples (43, 000 frames).

A top view of the data recording room. The dashed line shows a typical user trajectory in the drill
run.

The positions of on-body sensors.

Figure 3.31: Setup for data collection in the Opportunity Dataset (Chavarriaga et al.,
2013).

44

Chapter 3. Supervised Learning for Activity Recognition

The PAMAP2 dataset (Reiss and Stricker, 2012) consists of recordings from 9 par-

ticipants instructed to carry out 12 lifestyle activities, including household activities and

a variety of exercise activities (Nordic walking, playing soccer, and more shown in Ta-

ble 3.32). Accelerometer, gyroscope, magnetometer, temperature and heart rate data are

recorded from inertial measurement units located on the hand, chest and ankle over 10

hours (in total). The resulting dataset has 52 dimensions. We used runs 1 and 2 for sub-

ject 5 in our validation set and runs 1 and 2 for subject 6 in our test set. The remaining data

is used for training. In our analysis, we downsampled the accelerometer data to 33.3Hz

in order to have a temporal resolution comparable to the Opportunity dataset. For frame-

by-frame analysis, we replicate previous work with non-overlapping sliding windows of

5.12 seconds duration with one second stepping between adjacent windows (78% over-

lap) (Reiss and Stricker, 2012). The training-set contains approximately 473, 000 samples

(14, 000 frames).

The Daphnet Gait dataset (DG) (Bachlin et al., 2009) consists of recordings from

10 participants affected with Parkinson’s Disease (PD), instructed to carry out activities

which are likely to induce freezing of gait. Freezing is a common motor complication

in PD, where affected individuals struggle to initiate movements such as walking. The

objective is to detect these freezing incidents, with the goal to inform a future situated

prompting system. This represents a two-class recognition problem. Accelerometer data

was recorded from above the ankle, above the knee and on the trunk. An illustration of

data collection is given in Figure 3.32. The resulting dataset has 9 dimensions. We used

run 1 from subject 9 in our validation set, runs 1 and 2 from subject 2 in our test set,

and used the rest for training. In our analysis, we downsampled the accelerometer data to

32Hz. For frame-by-frame analysis, we created sliding windows of 1 second duration and

50% overlap. The training-set contains approximately 470, 000 samples (30, 000 frames).

45

Chapter 3. Supervised Learning for Activity Recognition

Activity Name

Lying
Sitting
Standing
Walking
Running
Cycling
Nordic Walking
Computer work
Car driving
Ascending stairs
Descending stairs
Vacuum cleaning
Ironing
Watching TV
Folding laundry
House cleaning
Playing soccer
Rope jumping
Other (transient activities)

Table 3.32: List of activities performed by subjects in the PAMAP2 dataset (Reiss and
Stricker, 2012).

46

Chapter 3. Supervised Learning for Activity Recognition

Sensor locations in the Daphnet Gait
dataset (Bachlin et al., 2009): sensors
are attached to the shank (just above
the ankle) and the thigh (just above
the knee) using an elasticized strap and
Velcro. A third sensor is attached to
the belt where also the wearable com-
puter (used for data storage and auto-
matically prompting the patient) is at-
tached to.

A snapshot of the study taking place . A Parkinson's Dis-
ease patient is depicted alongside a therapist (near the sub-
ject for safety reasons) and the research assistants (more
remotely from the patient) who were documenting trials.

Figure 3.32: Setup for data collection in the Daphnet Gait dataset (Bachlin et al., 2009).
47

Chapter 3. Supervised Learning for Activity Recognition

PAMAP2 DG OPP
Performance Mean F1 F1 Mean F1 Weighted F1

DNN 0.904 0.633 0.575 0.888
CNN 0.937 0.684 0.591 0.894
LSTM-F 0.929 0.673 0.672 0.908
LSTM-s 0.882 0.760 0.698 0.912
b-LSTM-s 0.868 0.741 0.745 0.927
CNN Yang et al. (2015) − 0.851
CNN Ordóñez and Roggen (2016) 0.535 0.883
DeepConvLSTM Ordóñez and Roggen (2016) 0.704 0.917
Delta from median ∆(Mean F1) ∆F1 ∆(Mean F1) ∆(Weighted F1)
DNN 0.129 0.149 0.357 0.221
CNN 0.071 0.122 0.120 0.104
LSTM-F 0.10 0.281 0.085 0.156
LSTM-s 0.128 0.297 0.079 0.168
b-LSTM-s 0.087 0.221 0.205 0.172

Table 3.41: Best results obtained for each model and dataset, along with some baselines
for comparison. Mean and weighted F1 scores are defined in Equations (3.2) and (3.6)
respectively. Delta from median (lower part of table) refers to the absolute difference
between peak and median performance across all experiments.

3.4 Results

In this work we explored the performance of state-of-the-art deep learning approaches for

Human Activity Recognition using wearable sensors. We described how to train recurrent

approaches in this setting and introduced a novel regularisation approach. In thousands of

experiments we evaluated the performance of the models with randomly sampled hyper-

parameters. We found that bi-directional LSTMs (b-LSTM-s, introduced in Section 2.6.4)

outperform the current state-of-the-art on Opportunity, a large benchmark dataset, by a

considerable margin.

However, interesting from a practitioner’s point of view is not the peak performance

for each model, but the process of parameter exploration and insights into their suitability

for different tasks in HAR. Recurrent networks (LSTM-s and to a lesser extent LSTM-F)

outperform convolutional networks significantly on activities that are short in duration but

48

Chapter 3. Supervised Learning for Activity Recognition

have a natural ordering, where a recurrent approach benefits from the ability to contextu-

alise observations across long periods of time — for example on the Opportunity dataset.

For bi-directional RNNs we found that the number of units per layer has the largest effect

on performance across all datasets. For prolonged and repetitive activities like walking or

running we recommend to use CNNs. Their average performance in this setting makes it

more likely that the practitioner discovers a suitable configuration, even though we found

some RNNs that work similarly well or even outperform CNNs in this setting. We further

recommend to start exploring hyperparameters related to learning rates (those hyperpa-

rameters in the first group of columns in Table 3.31), before optimising the architecture

of the network (those hyperparameters in the rightmost columns of Table 3.31), as the

learning-parameters had the largest effect on performance in our experiments (see Figure

3.41(d)).

We found that models differ in the spread of recognition performance for different

parameter settings. Regular DNNs, a model that is probably the most approachable for a

practitioner, requires a significant investment in parameter exploration and shows a sub-

stantial spread between the peak and median performance. Practitioners should therefore

not discard the model even if a preliminary exploration leads to poor recognition perfor-

mance. More sophisticated approaches like CNNs or RNNs show a much smaller spread

of performance, and it is more likely to find a configuration that works well with only a

few iterations.

Results are illustrated in Figure 3.41. Graphs (a-c) show the cumulative distribution

of the main performance metric on each dataset. Graph (d) illustrates the effect of each

category of hyper-parameter estimated using fANOVA.

Overall we observe a large spread of peak performances between models on OPP

and DG, with more than 15% mean F1-score between the best performing approach (b-

LSTM-s) and the worst (DNN) on OPP (12% on DG) (see Table 3.41). On PAMAP2

49

Chapter 3. Supervised Learning for Activity Recognition

this difference is smaller, but still considerable at 7%. The best performing approach on

OPP (b-LSTM-s) outperforms the current state-of-the-art by a considerable margin of 4%

mean F1-score (1% weighted F1-score). The best CNN discovered in this work further

outperforms previous results reported in the literature for this type of model by more than

5% mean F1-score and weighted F1-score (see Table 3.41). The good performance of

recurrent approaches, which model movement at the sample level, holds the potential for

novel (real-time) applications in HAR, as they alleviate the need for segmentation of the

time-series data.

The distributions of performance scores differ between the models investigated in this

work. CNNs show the most characteristic behaviour: a fraction of model configurations

do not work at all (e.g. 20% on PAMAP2), while the remaining configurations show little

variance in their performance. On PAMAP2, for example, the difference between the

peak and median performance is only 7% mean F1-score (see Table 3.41). The DNNs

show the largest spread between peak and median performance of all approaches of up to

35.7% on OPP. Both forward RNNs (LSTM-F, LSTM-s) show similar behaviour across

the different datasets. Practically all of their configurations explored on PAMAP2 and

OPP have non-trivial recognition performance.

The effect of each category of hyperparameter on the recognition performance is il-

lustrated in Figure 3.41(d). Interestingly, we observe the most consistent effect of the

parameters in the CNN. In contrast to our expectation it is the parameters surrounding the

learning process (see Table 3.31) that have the largest main effect on performance. We

expected that for this model the rich choice of architectural variants should have a larger

effect. For DNNs we do not observe a systematic effect of any category of hyperparam-

eter. On PAMAP2, the correct learning parameters appear to the be the most crucial. On

OPP it is the architecture of the model. Interestingly we observed that relatively shallow

networks outperform deeper variants. There is a drop in performance for networks with

50

Chapter 3. Supervised Learning for Activity Recognition

more than 3 hidden layers. This may be related to our choice to solely rely on super-

vised training, where a generative pre-training may improve the performance of deeper

networks.

The performance of the frame-based RNN (LSTM-F) on OPP depends critically on

the carry-over probability introduced in this work. Both always retaining the internal

state (pcarry closer to 1) and always forgetting the internal state (pcarry closer to 0) lead

to the lower performance. We found that pcarry of 0.5 works well for most settings. Our

findings merit further investigation, for example into a carry-over schedule, which may

further improve LSTM performance.

Results for sample-based forward LSTMs (LSTM-s) mostly confirm earlier findings

for this type of model that found learning-rate to be the most crucial parameter Greff et al.

(2015). However, for bi-directional LSTMs (b-LSTM-s) we observe that the number of

units in each layer has a suprisingly large effect on performance, which should motivate

practitioners to first focus on tuning this parameter.

3.5 Discussion and Conclusion

In this chapter we explored the performance of state-of-the-art deep learning approaches

for Human Activity Recognition using wearable sensors. We described how to train re-

current approaches in this setting and introduced a novel regularisation approach. In thou-

sands of experiments we evaluated the performance of the models with randomly sampled

hyper-parameters. We found that bi-directional LSTMs (b-LSTM-s) outperform the cur-

rent state-of-the-art on Opportunity, a large benchmark dataset, by a considerable margin.

This approach may be where particularly useful where data for HAR is collected from a

naturalistic environment (similar to the Opportunity dataset) and where time ordering of

activities is relevant to the application.

However, interesting from a practitioner’s point of view is not the peak performance

51

Chapter 3. Supervised Learning for Activity Recognition

for each model, but the process of parameter exploration and insights into their suitabil-

ity for different tasks in HAR. Recurrent networks outperform convolutional networks

significantly on activities that are short in duration but have a natural ordering, where a

recurrent approach benefits from the ability to contextualise observations across long pe-

riods of time. For bi-directional RNNs we found that the number of units per layer has

the largest effect on performance across all datasets. For prolonged and repetitive activi-

ties like walking or running we recommend to use CNNs. Their average performance in

this setting makes it more likely that the practitioner discovers a suitable configuration,

even though we found some RNNs that work similarly well or even outperform CNNs

in this setting. We further recommend to start exploring learning-rates, before optimis-

ing the architecture of the network, as the learning-parameters had the largest effect on

performance in our experiments.

We found that models differ in the spread of recognition performance for different

parameter settings. Regular DNNs, a model that is probably the most approachable for a

practitioner, requires a significant investment in parameter exploration and shows a sub-

stantial spread between the peak and median performance. Practitioners should therefore

not discard the model even if a preliminary exploration leads to poor recognition perfor-

mance. More sophisticated approaches like CNNs or RNNs show a much smaller spread

of performance, and it is more likely to find a configuration that works well with only a

few iterations.

In future work, the approaches discussed in this chapter, approaches such as bi-directional

LSTMs (b-LSTM-s) could be integrated with the approach described in Equation (4.12)

to construct better covariates for prediction of stroke patient recovery.

52

Chapter 3. Supervised Learning for Activity Recognition

3.A Multinomial model and derivation of its log-likelihood

To construct the prediction function using supervised learning, we consider a model for

the activity class cih the ith subject is undertaking as being multinomially-distributed with

one trial at each time index h (where the first argument of the multinomial distribution is

the number of trials):

cih ∼ Multinomial(1, ρih,1, ..., ρ
i
h,p) h ∈ N h < N∗

p∑
m=1

ρih,m = 1 (3.8)

where ρih,m = P (cih = m|xij,h) is the probability of activity m at discrete time index h

for subject i, and xij,h is the hth preprocessed sliding window from the ith subject from

the jth accelerometer data recording session.

Using this approach assumes that individual datapoints are independent, i.e. that

P (cih+1|cih) = P (cih+1). However, this may not be the case, especially with datapoints

which is from the same subject and temporally close to each other. Some solutions to

this problem could include collecting more data such that there exists a sufficient number

of datapoints far away from one another temporally to be more independent, as well as

collecting data from different subjects.

We model the probabilities ρih,m based on covariates extracted from a neural network

describing the contents of the hth sliding window from the ith subject sih ∈ R (which is

for the ith subject, and is discussed in Section 2.9):

ρih,m = P (cih = m|sih) =
P (sih|cih = m)P (cih = m)∑p
k=1 P (sih|cih = k)P (cih = k)

(3.9)

Let ηh,m = lnP (sih|cih = m)P (cih = m) ηh,m ∈ R m ∈ 1, ..., p. Then, the proceeding

equation reduces to a normalized exponential — often referred to in the neural network

literature as softmax (Goodfellow et al., 2016):

53

Chapter 3. Supervised Learning for Activity Recognition

ρih,m = P (cih = m|sih) =
exp(ηh,m)∑p
k=1 exp (ηh,k)

(3.10)

We model ηh,m as a linear combination of our covariates in the final layer of our neural

network model:

ηh,m = βTms
i
h + βmo (3.11)

where βmo ∈ R and βm ∈ RML are learnable parameters. Since the final layer of our

network has ML nodes, therefore the network outputs a vector of length ML, so sih and

the associated parameters are in RML .

Let ρih = (ρih,1, ..., ρ
i
h,p). The log-likelihood of a multinomial distribution over all of

the data from n subjects, with Ni datapoints from the ith subject, is:

`(c1
1, ..., c

n
N∗|ρ

1
1, ...,ρ

n
N∗) =

n∑
i=1

Ni∑
h=1

p∑
m=1

I(cih = m) ln(ρih,m) (3.12)

where I(·) is an indicator function which takes the value of 1 if the statement in its argu-

ment is true and 0 otherwise (Bishop, 2006).

54

Chapter 3. Supervised Learning for Activity Recognition

Figure 3.41: (a)-(c): Cumulative distribution of recognition performance for each dataset.
(d): results from fANOVA analysis, illustrating impact of hyperparameter-categories on
recognition performance (see table 3.31).

55

Chapter 4

New features for stroke patients'

accelerometer data

In this chapter, we outline how we extract useful covariates from large scale accelerome-

ter data collected from stroke patients. We construct new covariates describing aspects of

activities of the stroke patients, and in doing so use some of the preprocessing techniques

outlined in Chapter 2, namely Signal Vector Magnitude, sliding window extraction and

Principal Components Analysis. These covariates are used in Chapter 5 to predict the

recovery levels of stroke patients. Two separate approaches are employed to construct

covariates. Firstly, a Gaussian Mixture Model-based method which allows us to visu-

alise the clustering patterns used in our model. We analyse and plot the learned Gaussian

cluster components which are most important in predicting stroke rehabilitation levels.

Separately, we outline a Multi-Instance Learning (MIL)-based method based on aggre-

gating the outputs of regression models from each sliding window in the dataset from

each patient that week. That method allows us to visualise aspects of recovery through

time.

This chapter is structured as follows. In Section 4.1 we give an outline of how data

was collected from the patients and preprocessed. In Section 4.2 we give an account of

56

Chapter 4. New features for stroke patients' accelerometer data

how we extracted new features or covariates describing the movements of the patients. In

Section 4.3 we describe how visualizations can be made of the workings of our covariate

generation methods. Finally, in Section 4.4 we provide a conclusion summarising our

findings and contributions in this chapter.

4.1 Methodology

Data was collected from 59 patients who had a stroke in the past 2 years. Accelerometer

data was collected at 100Hz from both wrists of each patient for 24 hours a day, for 3 days

per week over the course of 8 weeks. Concurrently, patients’ upper limb functionality was

assessed using the CAHAI-9 score, a measure of how much upper limb function a patient

has recovered so far, which is discussed in greater detail in Section 5.1 (Barreca et al.,

2005).

One AX3 triaxial lightweight accelerometer1 was placed on each wrist, attached with

a wrist strap. We use data from both wrists due to the asymmetric nature of stroke. Pre-

diction based on activity levels from just one side of the body likely wouldn't be effective

(Wei et al., 2018), as a key feature of stroke is parallelization of one side of the body

(hemiparesis), which can be best understood when we know the activity levels on both

sides of the body. Then, a model based on time series from both sides of the body is likely

to work best, such as those described in Sections 4.2.1 and 4.2.2.

4.1.1 Preprocessing steps used on accelerometer data

In the analysis of the accelerometer data, preprocessing is a necessary step used to remove

the noise of the original signals, reduce the dimensionality and extract representative fea-

tures from the raw accelerometer data. The preprocessing procedure can improve the

1https://axivity.com/product/ax3

57

Chapter 4. New features for stroke patients' accelerometer data

quality of the raw data and such improvements is later measured by fitting the predictive

model over the data. In order to eliminate the effects of the potentially irrelevant night-

time data, we (1) only focus on the analysis of the data collected during the daytime hours

from 9 a.m. to 9 p.m.. Then we (2) compute the Signal Vector Magnitude of the signal

as discussed Section 2.3, take one second sliding windows with 50% overlap and (3) take

the first 10 principal components of each sliding windows as described in Section 2.7

(the first 10 components account for approximately 75% of the variation in the data). See

Figure 4.11 for a diagrammatic overview of the preprocessing steps we have used.

Let x1ij,h and x2ij,h be the vectors including the first 10 principal components of the

hth sliding window for the paretic and non-paretic hand of the ith patient for the jth

week, respectively. Both x1ij,h and x2ij,h are 10 × 1 vectors of sliding windows. Then,

all the following analyses are based on the dataset {xaij,h : a = 1, 2; i = 1, ..., n; j =

1, ..., ni, h = 1, ..., Hij}

where Hij is the number of sliding windows from the ith patient over the jth week.

The first subscript, a, indexes over limbs (where a value of 1 corresponds with the paretic-

side limb and 2 the non-paretic limb). The second subscript, i, indexes over patients. The

third, j, indexes over weeks. The final subscript, h, indexes over sliding windows. ni

refers to the number of weeks of data collected from patient i.

4.1.2 Parallel Computing

To preprocess our data, we make use of Apache Spark version 2.3 (Meng et al., 2016;

Shanahan and Dai, 2015; Zaharia et al., 2012; Armbrust et al., 2015; Kestelyn, 2013) to

manage the splitting of the computational tasks across worker machines in a computing

cluster. We create a Spark cluster on Microsoft Azure’s HDInsight with 4 large-size

worker nodes. We estimate the cost of running all of the machines to be approximately

58

Chapter 4. New features for stroke patients' accelerometer data

Paretic (affected) side Non-paretic side Dimension of data (per upper limb)

Hij × 3

Extract Daytime DataExtract Daytime Data

Hij × 1

SVMSVM

bHij
w
c × w

Sliding WindowSliding Window

First 10 PCsFirst 10 PCs

x1ij,1

x1ij,2

...

x1ij,Hij

...

x1ij,1

x1ij,2

...

x1ij,Hij

x2ij,1

x2ij,2

...

x2ij,Hij

...

x2ij,1

x2ij,2

...

x2ij,Hij

bHij
w
c × 10

Figure 4.11: Preprocessing steps used
59

Chapter 4. New features for stroke patients' accelerometer data

5 GBP per hour. Processing our 120GB of Comma Separated Values format data from

59 chronic and acute patients takes approximately 7 hours (approximately 8 minutes per

patient).

4.2 Feature extraction approaches

In this section, we outline two feature extraction approaches – one based on mixture

model features and another based on Multi Instance Learning – and contrast the qualities

of both.

4.2.1 GMM-based features

We begin with the application of Gaussian Mixture Models (Bishop, 2006) as a tool for

clustering the accelerometer data. GMMs have been widely used as a clustering method

for both theoretical and computational considerations. With GMMs, the Activities of

Daily Living (ADLs) measured by the accelerometer can be partitioned into homogeneous

groups, which can capture the information contained in the raw accelerometer data and

also will facilitate modelling the recovery level of the upper limb function. Assume that

each xaij,h comes from a mixture of K Gaussian distributions such that

f(xaij,h) =
K∑
k=1

πkN (xaij,h;µk,Σk),

a = 1, 2; i = 1, . . . , n; j = 1, . . . , ni; h = 1, . . . , Hij,

(4.1)

where πk is the mixing proportions with constraints
∑K

k=1 πk = 1 and 0 ≤ πk ≤ 1 for

all k = 1, . . . , K. N (·;µk,Σk) is the corresponding density of multivariate Gaussian

distribution of xaij,h parameterized by θk = {µk,Σk}. Let Laij = (Laij,1, . . . , Laij,Hij)
T

be a latent variable with Laij,h ∈ {1, . . . , K}, where Laij,h = k indicates that xaij,h be-

longs to the k-th cluster. For notational simplicity, denote the data from all patients as

60

Chapter 4. New features for stroke patients' accelerometer data

x = {x1, . . . ,xn}, data from all weeks from patient i as xi = {xi1, . . . ,xini}, from

patient i's jth week as xij = {x1ij,x2ij}, where the sliding windows from that patient,

from that week, on their ath upper limb is denoted as xaij = {xaij,1, . . . ,xaij,Hij}. Sim-

ilarly, we define L = {L1, . . . ,Ln}, Li = {Li1, . . . ,Lini} and Lij = {L1ij,L2ij},

where Laij = (Laij,1, . . . , Laij,Hij)
T. Then the joint distribution of the complete data set

{x1, . . . ,xn,L1, . . . ,Ln} is

f(x,L;π,θ)

=
n∏
i=1

ni∏
j=1

2∏
a=1

Hij∏
h=1

f(Laij,h)f(xaij,h|Laij,h)

=
n∏
i=1

ni∏
j=1

2∏
a=1

Hij∏
h=1

K∏
k=1

{πkN (xaij,h;µk,Σk)}Laij,hk ,

where

Laij,hk =

 1, if Laij,h = k

0, if Laij,h 6= k
,

π = (π1, . . . , πk)
T and θ = {θ1, . . . ,θk}. The complete data log-likelihood function is

denoted as

`(π,θ;x,L) =
n∑
i=1

ni∑
j=1

2∑
a=1

Hij∑
h=1

K∑
k=1

Laij,hkln[πkN (xaij,h;θk)]. (4.2)

The estimation of (π,θ) can be obtained by maximizing Equation (4.2) using the

EM algorithm. At the (s + 1)-th iteration, the E-step involves calculating the posterior

probability of xaij,h belongs to the k-th cluster as

P (Laij,hk = 1|xaij,h; π(s)
k ,θ

(s)
k)

4
= L̂

(s)
aij,hk =

π
(s)
k N (xaij,h;θ

(s)
k)

K∑
l=1

π
(s)
l N (xaij,h;θ

(s)
l)

, (4.3)

where π(s)
k and θ(s)

k = (µ
(s)
k ,Σ

(s)
k) are the values of πk and θk at the s-th iteration, re-

61

Chapter 4. New features for stroke patients' accelerometer data

spectively. Given the above posterior probability L̂
(s)
aij,hk ∈ [0, 1], the M-step involves

maximizing the following equation

˜̀(π,θ;x,L) =
n∑
i=1

ni∑
j=1

2∑
a=1

Hij∑
h=1

K∑
k=1

L̂aij,hkln[πkN (xaij,h;θk)]. (4.4)

with constraint
∑K

k=1 πk = 1. This can be achieved using a Lagrange multiplier and

maximizing the following equation

˜̀(π,θ;x,L) + λ

(K∑
k=1

πk − 1

)
,

which yields the updated equation for the mixing proportions as

π
(s+1)
k =

1

2× n× ni ×Hij

n∑
i=1

ni∑
j=1

2∑
a=1

Hij∑
h

L̂
(s)
aij,hk, (4.5)

We can also obtain the updated equations for the mean and the covariance matrix as

µ
(s+1)
k =

n∑
i=1

ni∑
j=1

2∑
a=1

Hij∑
h=1

L̂
(s)
aij,hkxaij,h

n∑
i=1

ni∑
j=1

2∑
a=1

Hij∑
h=1

L̂
(s)
aij,hk

, (4.6)

and

Σ
(s+1)
k =

n∑
i=1

ni∑
j=1

2∑
a=1

Hij∑
h=1

L̂
(s)
aij,hk(xaij,h − µ

(s)
k)(xaij,h − µ(s)

k)T

n∑
i=1

ni∑
j=1

2∑
a=1

Hij∑
h=1

L̂
(s)
aij,hk

. (4.7)

The above EM algorithm for clustering can be implemented by the following steps:

(1) Initialize L̂
(0)

and let s = 1.

(2) Calculating π̂(s) and µ̂(s) with L̂
(s−1)

using equations (4.5) and (4.6).

62

Chapter 4. New features for stroke patients' accelerometer data

(3) Calculating Σ̂
(s)

with L̂
(s−1)

and µ̂(s) using equation (4.7).

(4) Update L̂
(s)

with (π̂(s), µ̂(s), Σ̂
(s)

) using equation (4.3).

(5) Repeat Step (2) - (4) until convergence.

New features

Hemiparesis often occurs in stroke survivors due to brain injury. For most stroke sur-

vivors, there is a dramatic reduction in the ability to use their paretic hand and they carry

out ADLs mainly using their non-paretic hand instead. In evaluating the recovery level

of the upper limb function by using the measurements of ADLs, it is of interest to find

the most informative features from the clustering in order to build predictive models to

estimate the recovery level of the upper limb function based on these features. By con-

sidering the asymmetry of the effect of the disease on upper limb movement, we propose

to use the following new covariates for modelling the recovery level of the upper limb

function of stroke survivors:

zGMM
ijk =

Hij∑
h=1

(δ1ij,hk − δ2ij,h,k), i = 1, . . . , n; j = 1, . . . , ni; k = 1, ..., K, (4.8)

where δaij,hk(a = 1, 2) is an indicator function such that

δaij,h,k =

 1, xaij,h belongs to the k-th cluster

0, otherwise.

Actually, Equation (4.8) counts the difference between two upper limbs of the number

of occurrences that the sliding windows {xaij,h : i = 1, . . . , n; j = 1, . . . , ni; h =

1, . . . , Hij; a = 1, 2} are clustered into the k-th mixture component. In this way, the new

features in Equation (4.8) can simultaneously capture the information contained in the raw

63

Chapter 4. New features for stroke patients' accelerometer data

data and indicate the asymmetric feature of the upper limb actions, which are useful in

assessing the recovery level of stroke survivors. More explanation about the new features

will be given in Section 4.3.1.

4.2.2 Multi Instance Learning (MIL)-based covariates

According to Amores (2013) (which reviews approaches to Multi Instance Learning in

a classification context), a bag is a set, where the elements are feature vectors called

instances in Multi Instance Learning (MIL) terminology, and the number of instances can

be different in each set. The objective of the MIL problem is to learn a model, at training

time, that can be used to predict classification or regression problems for unseen bags.

This approach is applicable and useful to the case of modelling disease recovery scores

using accelerometer data from each patient different weeks. For each patient for each

week, we have a bag of Hij of sliding windows Sij =
⋃Hij
h=1 xij,h, where xij,h are instance

vectors.

Outline of Multi Instance Learning

Although Amores (2013) is mainly concerned with the classification problem, we see

there are three main ways in which MIL methods can be grouped: instance-space, bag-

space and embedding space. Instance-space methods involve extracting some useful fea-

ture from each instance vector and then performing an aggregation operation over all these

features. Bag-space methods involve construction of features about bags in a global way,

without aggregating over individual instances. Embedding-space methods seek to con-

struct new vectors which describe the contents of entire bags, which can then be used in

the classification or regression task. We are mainly concerned with instance-space meth-

ods, as they are amenable to computational parallelisation and their simplicity leads to

interpretability advantages (as shown in Section 4.3.2).

64

Chapter 4. New features for stroke patients' accelerometer data

Instance-based methods generally take the approach of carrying out a computation

(e.g. a regression or classification prediction) on individual instances, and combining all

of the outputs from the bag together using some aggregation operator:

Prediction =
ζ(xij,1)⊕ ...⊕ ζ(xij,Hij)

Z
(4.9)

where ⊕ denotes some aggregation operator (popular choices include sum or max), and

Z denotes some normalization constant (which could be the number of instances in each

bag, or 1 if we choose not to use normalization). Some instance-based approaches assign

instances different weights based on some inferred measure of importance, while others

give the same weight to each instance. Modelling a time series problem with MIL would

imply that we are treating the sliding windows as independent to one another, i.e. that

P (yij|xij,h) = P (yij|xij,h, xij,k) ∀h 6= k. This is somewhat unrealistic to assume, though

in datasets of long duration pairs of points further away in time from one another may be

less correlated.

Our approach to Multi Instance Learning

We use Random Forest regression to assign a recovery score to each instance, and use

summation to aggregate. Finally, we employ Isotonic regression to calibrate our predic-

tions (Best and Chakravarti, 1990; Chakravarti, 1989). We use isotonic regression to fit

fi to (the ith week of) data. Then, our prediction can be used as a covariate in Chapter 5.

The equation to obtain our new covariate becomes:

z∗
MIL

ij0 = fi(
1

Hij

Hij∑
h=1

ζ(xij,h)) (4.10)

where ζ(xij,h) is the instance-wise Random Forest Regression (Breiman, 2001; Pe-

dregosa et al., 2011) prediction of CAHAI score of the hth sliding window of patient i

65

Chapter 4. New features for stroke patients' accelerometer data

on week j, after concatenating the (preprocessed) data from the paretic and non-paretic

upper limbs.

Isotonic regression fits a non-decreasing non-linear function to data, for example to

predicted values produced by a model, in order to reduce the error of predictions further.

This is useful in applications such as ours where there may be more bias in predicted

values for some parts of the range of predicted values compared to others.

To fit function ζ , we use CAHAI scores associated with that week as the response,

and assume it applies to all days in the week. Further work may involve sampling training

accelerometer instances such that this assumption isn’t necessary, potentially enhancing

predictive performance. We discuss our rational for choosing to use Random Forest re-

gression in Section 4.2.3, and describe the theoretical motivation for Random Forests in

Appendix 4.A.

Excluding less relevant datapoints

To only consider datapoints exemplary of the most discriminative patterns, we may ex-

clude datapoints where ζ(xij,h) is close to the median response. We exclude datapoints

with ζ(xij,h) within a hyperparameter ι of the median response, m = 37. This is similar

to the approach used in Gao et al. (2019).

Suppose we let

ζ ′(xij,h) =

ζ(xij,h), if |ζ(xij,h)−m|> ι

0, otherwise
(4.11)

and also if we letH ′ij be the number of elements of patient i’s data for which ζ ′(xij,h) 6=

0. Then, the covariates we construct become:

66

Chapter 4. New features for stroke patients' accelerometer data

Testing Partition Training Partition

Fold 1 Patients 1,2,3,4,5 Rest
Fold 2 Patients 6,7,8,9,10 Rest
Fold 3 Patients 11,12,13,14,15 Rest
Fold 4 Patients 16,17,18,19,20 Rest
Fold 5 Patients 21,22,23,24 Rest

Figure 4.21: Patient-wise Training/testing partitioning scheme in evaluating function ζ in
Equation (4.12).

zMIL
ijk = fi(

1

H ′ij

H′ij∑
h=1

ζ ′(xij,h)) (4.12)

for various values of ι = ι1, ..., ιK−1, the value for each of which is determined based

on percentiles of the values of ζ(xij,1), ..., ζ(xij,Hij). Subsequently, we model average

over this hyperparameter, evaluating predictions with ι. This generates K covariates

(when the output of Equation (4.10) is also included), which we use in Chapter 5 to

model recovery level scores.

To ensure no ground truth leakage in our experiments, we group patients into 5 folds

(shown in Figure 4.21), and use the function ζ ′ in Equation (4.12) for prediction on each

fold by training it on data from all remaining folds.

4.2.3 Motivation for using Random Forest Regression

In this work, we chose to use the Random Forest (RF) algorithm (Breiman, 2001) for sev-

eral reasons. Firstly, it is relatively straightforward to use and in many other applications

gives close to state-of-the-art performance with little need for hyperparameter tweaking.

Secondly, fitting an RF is relatively time efficient in comparison with other algorithms,

especially for large datasets. Thirdly, excellent off-the-shelf implementations of the algo-

rithm exist, for example in this work we use the implementation of Python's Sklearn 0.18.1

(Pedregosa et al., 2011). Fourthly, RFs have some of the advantages of non-parametric

67

Chapter 4. New features for stroke patients' accelerometer data

classification algorithms, but have the benefit that the overall storage space required for

the fitted models can be limited even when the models are trained on large datasets. This

is in comparison to other classification and regression algorithms we could potentially

have chosen, such as kNN (Cover and Hart, 1967), for which in naive implementations

the trained model requires a storage space equal to the size of the training dataset (though

more space-efficient formulations exist). If it is attempted to use kNN, then the size of

the trained model will likely not fit in the RAM of a single computer, and this problem is

further exacerbated when multiple models have to be stored when evaluating predictions

using cross validation with several folds.

4.3 Visualisation results

In this section, we show some visualisation results associated with both of the covariate

generation methods discussed in Sections 4.2.1 and 4.2.2. In Section 4.3.1, we show and

interpret the learned clusters in our GMM-based method, and in Section 4.3.2 we analyse

datapoint-wise trends in our MIL-based method.

4.3.1 Visualising learned cluster components

After preprocessing, the GMM-based method is used to cluster the data in each of acute

group and chronic group. The number of the mixture component is set to be 20, which

we assume that is large enough to cover all the patterns of ADLs during daytime. We

randomly select 1% of all the sliding windows {xaij,h : i = 1 . . . , n; j = 1, . . . , ni; h =

1 . . . , Hij; a = 1, 2} as the training data. Given the algorithm in Section 4.2.1, the

unknown parameters {(µk,Σk) : k = 1, . . . , 20} in the mixture components are trained

and then the mixing proportions are predicted for all the sliding windows to decide their

cluster membership. The clusters are presented in Figures 4.31 and 4.32.

68

Chapter 4. New features for stroke patients' accelerometer data

We can see from those figures that the activities considered to be potentially from the

same source are merged into a single cluster. In some clusters, such as Cluster 2 and

Custer 4, the signals are near zero, perhaps correspond to those activities such as sleeping

or sitting on the couch without doing anything. Most clusters correspond to the signals of

having a relatively low amount of activity, see for example, Cluster 5, Cluster 6, Cluster

9, Cluster 11, Cluster 16 and Cluster 18. These signals might correspond to the situation

that the patients practice to use their paretic hands to carry out activities. The less idleness

on the paretic hand compared to the non-paretic hand, the better the patient is likely to be

able to move his/her paretic hand. Cluster 7 corresponds to signals of doing an activity

at a high intensity for a short of time, this might illustrate that the patient tried to carry

out an activity but not being able to do it. If this patient is only able to sustain force for

a short of time on their paretic hand, then they may not be recovering well. In clusters

such as Cluster 10 and Cluster 15, the patient is idle for a period of time before carrying

out activity at a relatively high intensity. This might indicate that if the patient uses the

paretic hand more and more often than the non-paretic hand and thus they are recovering

very well.

With these clusters, by taking the asymmetric feature of the upper limb actions af-

ter stroke into consideration, we calculate the new features based on Equation (4.8) for

modelling the recovery level of the upper limb function.

4.3.2 Visualisation based on MIL-based method

Seasonal decomposition methods attribute variations in time series observations to overall

trends, diurnal patterns, as well as random variation at individual timepoints. This allows

us to plot long term inferred recovery score trends, without overwhelming the medical

practitioner with information. To examine patterns in the data of patient j, we first define

a shorthand notation ζh = ζ(xij,h). The time series ζ observed S times per day can be

69

Chapter 4. New features for stroke patients' accelerometer data

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6 (g) Cluster 7 (h) Cluster 8

(i) Cluster 9 (j) Cluster 10

Figure 4.31: Clusters obtained by using 1% of the sliding windows.

(k) Cluster 11 (l) Cluster 12 (m) Cluster 13 (n) Cluster 14

(o) Cluster 15 (p) Cluster 16 (q) Cluster 17 (r) Cluster 18

(s) Cluster 19 (t) Cluster 20

Figure 4.32: Clusters obtained by using 1% of the sliding windows. (continued)

70

Chapter 4. New features for stroke patients' accelerometer data

decomposed as (Cleveland et al., 1990; Seabold and Perktold, 2010):

ζh = ζtrendh + ζseasonh mod S + εh h ∈ N (4.13)

Extracted functions ζtrend, ζseason and ε on the right hand side of Equation (4.13)

each provide understanding on patient recovery trend, diurnal pattern and outlier times,

respectively. In Figure 4.33, we see the selected patient improves during the study, and

see where fluctuations in this trend exist. In Figure 4.34, we see selected patient's esti-

mated diurnal pattern in CAHAI scores: a slight daily pattern, where the patient can vary

by about 1.5 units on the CAHAI scale over the course of the day. This may prompt a

clinician to investigate the patient’s activities during particular times in their daily sched-

ule. Furthermore, Figure 4.35 indicates points of high residual ε, which perhaps could be

flagged for attention to the clinician analysing the data.

4.4 Conclusion

In Chapter 5, we use the feature extraction methods discussed in this chapter to predict

the recovery score of patients. The GMM-based approach has the advantage of allowing

us to visualise clusters, allowing us to create more interpretable models. The MIL-based

approach has the generalizability advantage: the model structure is not related to any as-

pect of stroke itself and could potentially be applied to prediction of affliction to other

movement-related disorders, as long as periodic assessments could be completed along-

side continuous accelerometer collection.

Furthermore, we show the possibility to extract useful daily patterns, trends as well as

identify when unusual levels of capability are exhibited, which may be useful for guiding

treatment plans for patients. Moreover, it would be interesting to understand and model

how daily schedules of patients change as they rehabilitate, possibly even leading to im-

71

Chapter 4. New features for stroke patients' accelerometer data

Figure 4.33: Extracted trend component ζtrend in selected patient's recovery. Three days
from the four weeks the patient was in the study are plotted, showing that capability
deteriorated in day 2 of weeks 1 and 3.

72

Chapter 4. New features for stroke patients' accelerometer data

Figure 4.34: Selected patient's daily capabilities in ζseason are shown for each 15-minute
interval throughout their diurnal schedule. Perhaps the patient often undertakes a demand-
ing activity after 1PM on many days.

73

Chapter 4. New features for stroke patients' accelerometer data

Figure 4.35: Residuals ε showing when selected patient exerts themselves more (less),
given trend and diurnal context. Times with residual greater (less) than 2 standard devia-
tions are denoted with a + (-) symbol.

74

Chapter 4. New features for stroke patients' accelerometer data

proved stroke prompting systems. Also, it would be interesting to carry out a user study

with daily behavioural diaries such as the Motor Activity Log (Uswatte et al., 2006b), to

understand the effectiveness of our visualisation system on a daily basis.

4.A Theoretical Motivation for Random Forest

Whereas the Mean Square Error (MSE) of a model's predictions can be decomposed into

terms related to the model's predictive bias and variance (Friedman et al., 2001), and many

classification and regression models have hyperparameters which represent a tradeoff be-

tween flexible models (with lower predictive bias and higher variance) and less flexible

models (with higher predictive bias though lower variance), Ensemble Learning models

are composed of a large number of flexible models which are aggregated to reduce the

overall predictive variance. In bagging (bootstrapped aggregation) for regression, each

constituent model may be different due to different bootstrapped samples of the training

data being taken, and the final predictions are arrived at by simply averaging the predic-

tions of constituent models.

Deep CART trees (e.g. with little pruning) provide low bias, high variance predictors,

which individually may not be so accurate. Breiman (2001) proposed RFs as an ensemble

learning method over CART trees (Breiman et al., 1984), which take the bootstrapped

aggregation approach previously mentioned, but also change how individual trees are

constructed to make each have more variance in their predictions. In standard CART

trees, the training dataset is partitioned recursively using a greedy algorithm, where each

partition is made using the best covariate amongst all available covariates. However, in an

RF, each node is split using the best of a subset of predictors randomly chosen at that node

(Liaw and Wiener, 2002). This adds even more variance to the predictive performance of

each constituent model, and the overall model turns out to perform well amongst other

classifiers (Liaw and Wiener, 2002; Breiman, 2001).

75

Chapter 5

Prediction of stroke recovery score

In this chapter, we outline prediction methods for rehabilitation levels in stroke patients.

A non-linear mixed effects (NLME) model is employed to model both fixed and indi-

vidual effects. We use the covariates generated using the methods in Chapter 4, where

GMM-based set of covariates are used separately to the MIL-based set of covariates in

the same predictive models. Predictive performances are shown in Section 5.3. We note

that the predictive performance of both covariate-generating methods from Chapter 4 are

quite similar, though comparative qualitative advantages for each, interpretability for the

GMM-based covariates and generalizability for the MIL-based covariates.

5.1 Background to stroke recovery prediction using ac-

celerometer data

It has been proposed to use accelerometer sensors on both wrists in a patient's naturalistic

environment to assess rehabiltation (see for example Noorkiv et al. (2014) for an excellent

survey). Accelerometer-based systems are objective and have a cost saving advantage due

to reduced requirement for trained assessment professionals.

76

Chapter 5. Prediction of stroke recovery score

Score Description
1 0-24% of task completed.
2 25-49% of task completed.
3 50-74% of task completed.
4 75-99% of task completed.
5 100% of task completed, but with some cueing, coaxing or help with setting

up objects.
6 Almost independent, apart from assistive devices, or more than reasonable

time required for task completion, or there were safety concerns with how
well the task is completed.

7 Task completed fully independently in a reasonable time, without modification
or assistive devices.

Table 5.11: Scoring scale for tasks in CAHAI-9 assessment (Barreca et al., 2005).

In this study, we aim to predict patients' Chedoke Arm and Hand Inventory (CAHAI)

recovery score. It measures recovered upper limb functionality in stroke patients. In this

thesis, we refer to the CAHAI-9 variant, an assessment based on 9 tasks, for example,

pouring a bottle of water, dialling 911, etc (Barreca et al., 2005). Tasks test the patient's

capability to plan and complete simple tasks in a lab based environment. It is graded on

a continuous scale from 9 to 63, the summation of scores involved in its composite tasks,

each given a score between 1 and 7, as shown in Table 5.11. It is lab-based, thus may

be affected by observer bias, such as when a patient puts in more effort completing tasks

over the relatively short duration assessment duration (25 minutes) compared to what is

possible to sustain while carrying out Activities of Daily Living (ADLs) in a naturalistic

home environment (Lang et al., 2013; Barreca et al., 2005).

Related studies include computation of basic statistics describing a patient's behaviour

(Joseph et al., 2018; Gebruers et al., 2014), or validating that various rehabilitation as-

sessment scales – questionnaire-based (Uswatte et al., 2006a) and task-observation based

(Thrane et al., 2011; Rand and Eng, 2012; Lang et al., 2007; Jing et al., 2011; Bailey et al.,

2015; Gebruers et al., 2014) – correlate with real world activity levels. Those studies don’t

have a predictive focus in reporting a train-test split with their correlatory results. Predic-

77

Chapter 5. Prediction of stroke recovery score

tive studies include Kumar et al. (2013), which was based on data collected from patients

in the semi-constrained inpatient hospital setting. To our knowledge, our work is the first

study with a predictive focus (using a validatory testing set while attempting to predict

some aspect of stroke recovery) which is based on naturalistically-collected free-living

data from patients in normal community dwelling.

Other studies include assessment of upper limb functional rehabilitation using remote

video and accelerometer-based systems (Patel et al., 2010; Yu et al., 2016; Salazar et al.,

2014), ADL (activities of daily living) recognition (Roy et al., 2009; Anderson et al.,

2018) and prompting exercise of affected limb using diurnal context (Moore et al., 2016).

A survey of related works are given in Table 5.12.

5.2 Predictive model

We develop a predictive model to evaluate the recovery level of the upper limb function

based on the features from Chapter 4 extracted from the raw accelerometer data and other

variables. In this section we discuss the model, in Section 5.2.1 we discuss the estimation

procedure, in Section 5.2.2 we discuss the predictive distribution of the random effects

part, and in Section 5.2.3 we show the predictive distribution for the mixed effects model.

Let yij be the CAHAI response for the i-th patient measured at the j-th week (i =

1, . . . , n; j = 1, . . . , ni). zij = (zij1, . . . , zijK , yi,0)T is a K ′ = (K + 1)-dimensional

covariate vector including the features calculated from Equation (4.8) or (4.12), and where

the last element refers to the initial CAHAI score at the start of the study. To address the

problems of heterogeneity and nonlinearity, we consider the following nonlinear mixed

effects model with the nonlinear patient-specific random effects modelled by a Gaussian

process prior:

yij = zT

ijβ + g(φij) + εij, εij ∼ N (0, σ2
FIX), (5.1)

78

Chapter 5. Prediction of stroke recovery score

Citation Predictive Community-
based free-
living data

Outputs recov-
ery score?

Num of partic-
ipants

Accelerometer
duration

Ours Yes Yes Yes 24 3 days x 8
weeks

Gao et al.
(2019)

Yes No Yes 4-10 minutes x
155 trials

Kumar et al.
(2013)

Yes No* Yes 15 5 hours

Patel et al.
(2010)

Yes No Yes 24 During assess-
ment only

Yu et al.
(2016)

Yes No Yes 5 1 hour x 10
days

Roy et al.
(2009)

Yes No No 10 During assess-
ment only

Rau et al.
(2013)

Yes No Yes 12 During assess-
ment only

Ferrari et al.
(2007)

No Yes No 7 days x 4
weeks

Lang et al.
(2007)

No No* Yes 34 24 hours

Gebruers et al.
(2014)

No No* Yes 129 48 hours

Lee et al.
(2018)

No No* No 24 3 days

Urbin et al.
(2015)

No Mixed Yes 35 22 hours

Uswatte et al.
(2006a)

No Yes Yes 222 3 days x wak-
ing hours

Thrane et al.
(2011)

No Yes Yes 31 24 hours

van der Pas
et al. (2011)

No Yes Yes 45 3 days

Jing et al.
(2011)

No Yes Yes 51 -

Rand and Eng
(2012)

No Yes Yes 60 6 days

Liu et al.
(2018)

No Yes No 10 8 hours

Joseph et al.
(2018)

No Yes No 23 18 days

Chen et al.
(2018)

No Yes Yes 82 6 days x 4
weeks

Narai et al.
(2016)

No Yes Yes 19 24 hours

Bailey et al.
(2015)

No Yes Yes 126 25-26 hours

Wei et al.
(2018)

No Yes Yes 24 3 hours x 7
days x 4 weeks

Salazar et al.
(2014)

No No No 4 During assess-
ment only

Table 5.12: Review of related user studies. Asterisk (*) denotes studies conducted in
hospital inpatient settings.

79

Chapter 5. Prediction of stroke recovery score

where zT
ijβ is the fixed effects with regression coefficients β of dimension K ′, εij are

independent random errors and g(φij) is an unknown nonlinear function of φij . φij

can be selected as subsets of zij with dimension Kg. For each patient, we include in

our sets of covariates the initial CAHAI score yi0, which is assessed at the start of the

study. When we are using the GMM-based set of covariates from Chapter 4, then zij =

((zGMM
ij)T , yi0)T from Equation (4.8), and similarly when we use the MIL-based set of

covariates from Equation (4.12) then zij = ((zMIL
ij)T , yi0)T . As one of the nonparametric

Bayesian regression approaches, the following zero-mean GP prior can be used to model

the unknown function g(φij) as

g(φij) ∼ GP (0,κ(·, ·;θg)), (5.2)

where κ(·, ·;θg) is the kernel covariance function parameterized by θg. A popular choice

of the covariance kernel is a squared exponential covariance kernel given by

κ(φij,l, φ
′
ij,l;θg) = v0 exp

{
− 1

2

Kg∑
l=1

wl(φij,l − φ′ij,l)2

}
, (5.3)

where φij,l is the l-th element of φij , θg = (v0, w1, . . . , wKg , σ
2
RDM)T is the set of hyper-

parameters. σ2
RDM is the noise of observations from the Gaussian Process and is regarded

as a hyperparameter. Other choices of the kernel covariance can be found in Shi and

Choi (2011). The fixed effects in Equation (5.1) provides a clear physical explanation

between the CAHAI response yij and the new features obtained in Section 4.2.1 (for the

GMM-based set of features) or Section 4.2.2 (for the MIL-based set of features), while

the unexplained part can be modelled by the nonlinear random effects g(φij).

80

Chapter 5. Prediction of stroke recovery score

5.2.1 Estimation

The estimation of parameters in the fixed effects and the estimation of hyper-parameters

in the nonlinear random effects can be obtained by using the following iterative procedure

(1) Initialize β(0) by fitting the linear regression model yij = zTijβ
(0) + r

(0)
ij , where r(0)

ij

is the residual error.

(2) Set r(τ)
ij ← yij−zTijβ(τ), where← is an assignment operation. Then, fit the Gaussian

Process to predict each residual rij , using the covariates in φij , i.e. r(τ)
ij = ĝ(τ)(φ)+

γ
(τ)
ij , where γ(τ)

ij is an error term.

We can estimate the hyperparameters in the non-linear mixed effects g(φij) by

using the Empirical Bayesian method, which can be implemented using the R pack-

age GPFDA (Shi and Cheng, 2014). Once the estimate of the hyperparameter is

obtained, the fitted value ĝ(φij) can be calculated.

(3) Update β̂(τ+1) given ĝ(τ)(φij). To do this, fit a linear regression to predict γij using

zij as covariates, i.e. γ(τ)
ij = zTijβ

(τ+1) + ε
(τ+1)
ij using a linear regression model.

As shown in Equation (5.1), ε(τ+1)
ij is assumed to be normally distributed with zero

mean and heteroscedastic variance of σ2
FIX . This variance is calculated based on

the sum of squared deviations in linear regression.

(4) Repeat step (2) and (3) until convergence.

5.2.2 Prediction: random effects

It is of interest to predict the recovery level y∗ij at a new set of input (z∗ij,φ
∗
ij) based on the

training data D, where the ith patient is not included in the training data. It is straightfor-

ward to predict the fixed effects part by using the estimated coefficients from the training

data. Therefore, we will first discuss calculating the prediction to the random effects part.

81

Chapter 5. Prediction of stroke recovery score

Suppose we let C be the covariance matrix of g(φ) with each element calculated from a

covariance kernel with the estimated hyper-parameters. C is a square matrix, with each

dimension of the matrix being the number of datapoints in the training dataset. Then fol-

lowing Shi and Choi (2011), the predictive distribution of the random effect is Gaussian

distribution with mean and variance given by

E(g(φ∗ij)|D) = c∗ij
T (C + σ2

RDMI)−1r (5.4)

Var(g(φ∗ij)|D) = κ(φ∗ij,φ
∗
ij)− c∗ij

T (C + σ2
RDMI)−1c∗ij + σ2

RDM , (5.5)

where r is the vector of fixed effect residuals (similar to rij) associated with datapoints in

the training set D (and has length equal to the number of training datapoints), κ(φ∗ij,φ
∗
ij)

is the covariance corresponding to the new data point,C is the covariance matrix of g(φ)

and c∗ij is a vector the same length as the number of datapoints in the training dataset, and

each element of it contains the covariance between the new point which has covariates

φ∗ij , and each of the datapoints in the training dataset. The transpose of c∗ij is c∗Tij .

5.2.3 Prediction: mixed effects

The predictive distribution of the CAHAI score of the ith patient for the jth week, incor-

porating both fixed and random effects (from Section 5.2.2), is:

E(g(φ∗ij)|D) = z∗ij
Tβ + c∗ij

T (C + σ2
RDMI)−1r (5.6)

Var(g(φ∗ij)|D) = σ2
FIX + κ(φ∗ij,φ

∗
ij)− c∗ij

T (C + σ2
RDMI)−1c∗ij + σ2

RDM , (5.7)

where z∗ij and β are the fixed effects covariates and parameters from Equation (5.1),

and σ2
FIX is the variance of the fixed effects shown in Equation (5.1). Other notations are

82

Chapter 5. Prediction of stroke recovery score

defined in Section 5.2.2.

5.3 Results

In this section we give an account of predictive results using GMM-based (Section 5.3.1)

and MIL-based (Section 5.3.2) sets of covariates. The overall results are compared nu-

merically in Table 5.31 and are discussed in Section 5.4.

5.3.1 Prediction using GMM-based covariates

Based on the clusters in Section 4.3.1, we can calculate the new feature vector zGMM
ij =

(zGMM
ij,1 , . . . , zGMM

ij,K , yi0)T by Equation (4.8), where zij can be thought as aK ′ = (K+1)-

dimensional vector of variables used to model the CAHAI score. These features are re-

ferred to as GMM-based covariates.The least absolute shrinkage and selection operator

(LASSO) (Tibshirani, 1996) method is used to select the significant clusters for mod-

elling, as only a subset of the covariates are useful for modelling the CAHAI score. In this

case with 20 potential covariates to choose from, the LASSO method is preferred for com-

putational efficiency reasons to simpler methods like best subsets (which may consider as

many as 220 = 1048576 models with different combinations of covariates), or forward or

backward selection methods (which may consider as many as 20 + 19 + ... + 1 = 210

models, though would likely stop before then when some model fit criterion is reached).

Instead, the LASSO method merely requires the model to be evaluated with several dif-

ferent values for its shrinkage parameter.

The clusters corresponding to the selected covariates are shown in Table 5.32 and

visualizations of the selected clusters can be found in Figures 4.31 and 4.32. We can see

from Table 5.32 that for both groups, Cluster 2, Cluster 3 and Cluster 15 are selected as

the significant clusters in predicting the CAHAI score.

83

Chapter 5. Prediction of stroke recovery score

Acute Patients Chronic Patients

GMM-based covariates with GP 5.423231 3.633249
GMM-based covariates without GP 6.72677 3.528335

MIL-based covariates with GP 5.289253 3.468572
MIL-based covariates without GP 6.642244 3.541442

Table 5.31: Comparison of Mean Square Error of prediction both with and without us-
ing GP prior. Acute patients are those who suffered a stroke less than 6 months ago,
and chronic patients are those who suffered a stroke more than 6 months ago. The best
performing model/covariate combination for both acute and chronic sets of patients is
bolded.

Table 5.32: Selected clusters for the predictive model.

Selected clusters
Acute group Cluster 2, Cluster 3, Cluster 5, Cluster 10

Cluster 12, Cluster 15, Cluster 18

Chronic group Cluster 2, Cluster 3, Cluster 4, Cluster 8
Cluster 15, Cluster 20

Based on these selected clusters, then we can model the CAHAI score for the acute

patients and the chronic patients using the method in Section 5.2. We model the acute

patients and the chronic patients separately due to different recovery levels in those two

groups, see Figure 5.33 for example. A leave-one-patient-out cross-validation method

is used to validate the model and calculate the root mean squared error (RMSE) of pre-

dictions. For both the acute patients and the chronic patients, the data of each patient

is selected as the test data and the data of the other patients are used to train the model

according to Section 5.2.1. The trained model is then used to predict the CAHAI score of

the patient whose data is selected as test data using the algorithm given in Section 5.2.2.

As a comparison, we also calculate the results by using the predictive model without the

random effects. These results are shown in Figure 5.31.

84

Chapter 5. Prediction of stroke recovery score

(a) Results for acute patients without
using nonlinear random effects.

(b) Results for acute patients with non-
linear random effects.

(c) Results for chronic patients without
using nonlinear random effects.

(d) Results for chronic patients with
nonlinear random effects.

Figure 5.31: Clinically-assessed CAHAI score and predicted CAHAI using the ac-
celerometer data, using GMM-based covariates described in Section 4.2.1.

5.3.2 Prediction using MIL-based covariates

Likewise, we can use the MIL-based covariates from Section 4.2.2, using the predictive

method discussed in Section 5.3.1, and include the initial CAHAI score yi0 as a covari-

ate. As before, we model acute patients (those who had a stroke in the past six months)

separately to chronic patients (those who had a stroke more than six months ago), due to

the different recovery speeds of both groups of patients. As before, leave-one-patient-out

cross validation predictive performance is evaluated for both groups of patients, each both

with and without using the GP prior to model the nonlinear random effects.

85

Chapter 5. Prediction of stroke recovery score

In Figure 5.32, it is interesting that the RMSE of predictions, both for the chronic

and acute groups of patients and both with and without use of nonlinear mixed effects, is

slightly lower (better) when using these MIL-based covariates rather than when GMM-

based covariates are used in Section 5.3.1. This could indicate that clustering leads to

quanitzation error which slightly harms accuracy in this application, that is sliding win-

dows relating to different recovery levels can be assigned to the same GMM cluster. Co-

variates similar to those discussed in Section 4.2.2 may not be as prone to this issue as they

don't rely on clustering-based methods and therefore aren't prone to quantization error, as

mentioned in Gao et al. (2019). Furthermore, since the MIL-based covariates are not de-

pendent on specifics of stroke as a disease, they have the potential to generalize to any

similar study for completely different movement disorders, as long as periodic rehabilita-

tion assessments can be completed alongside the collection of free-living accelerometer

data from the relevant locations on the human body.

On the other hand, it may be useful in this application to be able to interpret how

covariates are generated, so then it may be preferred to use the GMM-based model, even

at the expense of slightly less accurate predictive performance.

5.4 Discussion

In this section, we discuss the results of running our models, comparing with and with-

out using the GP prior in Equation (5.1) in Section 5.4.1, as well as compare the model's

accuracy when using GMM-based covariates to the accuracy when using MIL-based co-

variates in Section 5.4.2.

86

Chapter 5. Prediction of stroke recovery score

(a) Results for acute patients without
using nonlinear random effects, using
Multi-instance learning covariates

(b) Results for acute patients with non-
linear random effects, using Multi-
instance learning covariates

(c) Results for chronic patients without
using nonlinear random effects, using
Multi-instance learning covariates

(d) Results for chronic patients with
nonlinear random effects, using Multi-
instance learning covariates

Figure 5.32: Clinical assessed CAHAI score and predicted CAHAI using the accelerom-
eter data, using MIL-based covariates described in Section 4.2.2.

5.4.1 Performance with and without GP prior

We see in Table 5.31 that for both GMM-based and MIL-based sets of covariates and on

both chronic and acute patient subgroups, the Root Mean Square Error (RMSE) is lower

(better) when using the non-linear GP prior for modelling the random effects for each

patient as opposed to simply using a fixed effects model. We see when comparing subplots

(a) and (b) in Figure 5.31 that when using GMM-based covariates, the predictions are

87

Chapter 5. Prediction of stroke recovery score

(a) Acute patients (b) Chronic patients

Figure 5.33: The clinical assessment of the recovery level (CAHAI-9 score) for acute
patients (left panel) and chronic patients (right panel). Each curve represents observations
for one patient.

quite similar for both patients whether or not the GP prior is used, apart from predictions

for a small number of patients for whom the accuracy improves when using the GP prior.

This is particularly the case for that patient denoted with the green diamond and the one

with the orange triangle. A similar pattern is observed when using MIL-based covariates

in subplots (a) and (b) in Figure 5.32.

For acute patients (stroke occurred less than 6 months ago), it seems that patients gen-

erally improve over the course of the study, and those with worse scores in the beginning

tend to improve at a slightly faster rate than others (see Figure 5.33), though recovery rate

is highly patient dependent. Therefore, acute patients with lower initial CAHAI scores, or

indeed with poorer movement shown in CAHAI scores, can be difficult to predict for over

the course of the study. The patient-specific non-linear random effects g(φ) in the mixed

effects model in Equation (5.1) help to account for this heterogeneity between patients.

However, for chronic patients (stroke occurred more than 6 months ago), the GP prior

does not help much to improve model performance. This is because for most patients, the

CAHAI score does not improve much from the initial CAHAI score (a covariate in our

model), so improvement is slow or non-existent for all chronic patients, and the accuracy

88

Chapter 5. Prediction of stroke recovery score

of predictions is less affected by heterogeneity between patients. We see in Table 5.31

that the benefit of the GP prior is mainly present when predicting for acute patients, rather

than chronic patients.

5.4.2 Comparison of performance between GMM and MIL-based

covariates

Another noticeable aspect of performance in Table 5.31 is performance of one set of

covariates over another. The set of MIL-based covariates tend to perform slightly better

than the set of GMM-based covariates. We have identified two potential reasons for this.

Firstly, the MIL-based covariates' predictions in Equation (4.12) are based on xij,h, which

is the concatenation of (preprocessed) sliding window datapoints from both the paretic

and non-paretic upper limbs. xij,h represents the patient's upper limb movement on both

sides of the body at the time that the hth sliding window was sampled. This is because

xij,h is the concatenation of vectors x1ij,h and x2ij,h, which are the movement data from

the paretic and non-paretic sides, respectively. Thus, ζ(xij,h) used in Equations (4.10) -

(4.12) captures whether or not the patient was moving both arms simultaneously or if the

paretic side had weaker movement compared to the non-paretic side. The capability of a

patient to simultaneously move both upper limbs and with the same strength is crucial to

understanding and monitoring recovery from hemiparesis in stroke.

Another reason the MIL-type approach detailed in Equation (4.12) can result in better

performance compared to the GMM-based approaches is that the MIL-based one is not

subject to quantization error, where cluster membership information does not accurately

represent the underlying data. It is possible that when the cluster memberships are ob-

tained, some of the (preprocessed sliding window) datapoints are quite dissimilar to other

datapoints in the same cluster (Gao et al., 2019).

89

Chapter 5. Prediction of stroke recovery score

5.5 Contributions and Conclusion

We present a useful method for modelling recovery in human movement disorders using

free-living accelerometer data. Overall, good predictive results are obtained in Table 5.31,

which could make remote automated stroke rehabilitation assessment in a community

setting, and the resulting cost savings this would bring, feasible. To our knowledge, this

is the first user study of its kind where accelerometer data from a community dwelling

setting is used to predict a measure of stroke rehabilitation (see Table 5.12 for a survey),

and also the first study in this application are to make use of the NLME model (described

in Section 5.2).

As discussed in Chapter 4, sets of covariates can both be introspected using visualiza-

tion techniques to obtain some interesting and useful understanding on how the model's

covariates were obtained. In future work, we may attempt to use both sets of covariates

(GMM and MIL-based) together in the same model with variable selection techniques, to

see if we would obtain a better predictive model.

Future work may also take into account use of censored regression techniques. The

model for prediction of CAHAI score in Equation (5.1) doesn’t take into account that the

CAHAI score lies in a bounded interval [9, 63]. This could be solved, and perhaps the

predictive performance improved, by using a censored regression model, such as a To-

bit model (Tobin, 1958). Future work could also include a hyperparameter search (with

patients split into training, validation and test groups) to find the optimal number of co-

variates for both GMM-based (i.e. number of components in the mixture model in Section

4.2.1) and MIL-based sets of covariates (from Section 4.2.2).

90

Chapter 6

Conclusion

6.1 Findings on evaluating upper limb function

In Chapter 5 , we detail the results of what is to our knowledge the first user study for

prediction of stroke rehabilitation using free-living accelerometer data in a community

setting (see Table 5.12 for a comparison with other studies). Furthermore, as shown in

Section 5.3, the models are accurate, attaining an RMSE of 5.3 for chronic patients and 3.5

for acute patients using Multi-Instance Learning-based covariates. This level of accuracy

would be useful for medical professionals to reduce the amount of costly home visits

which need to be made, as recovery levels can be assessed automatically and objectively

remotely by the prediction system. Recovery can automatically be assessed even for

patients who are deemed to be a lower priority due to cost constraints.

Of the two covariate generation methods discussed in Chapter 4, the GMM-based one

(Section 4.2.1) calculates based on the ratio of time which the paretic side upper limb is

used in comparison to the non-paretic side upper limb. Having explanations of how the

model works could aid clinicians’ understanding. On the other hand, our Multi-Instance

Learning-based model (Section 4.2.2) lends itself to interpretability through seasonal de-

composition of inferred recovery levels. We can see for individual patients how their

91

Chapter 6. Conclusion

recovery progressed (see Section 4.3.2).

6.2 Both Statistical and Machine Learning Models per-

form well

The non-linear mixed effects (NLME) model in Chapter 5 is very useful for predicting

CAHAI scores given the inputted covariates. Although this is not the first work to use

NLME for longitudinal data analysis, it is unique in the field of accelerometer data anal-

ysis for stroke patients’ recovery.

Our current feature extraction methods in Chapter 4 are basic but perform quite well

when input into the models in Chapter 5. In Chapter 3, we explore recurrent neural net-

work based feature extraction for accelerometer data, which can perform supervised clas-

sification and regression tasks on time series, without dependence on a particular choice

of sliding window duration, by taking into account the entire temporal context of events

before or even after a particular timepoint on which we would like to perform a prediction

on. Were a scheme to be developed to employ an RNN to calculate Equation 4.12, then it

is reasonable to assume that we could obtain an even better accuracy in our model. One

potential reason why this would lead to better model accuracy would be the potential for

the recurrent model to take into account not just how often one arm is used in comparison

to the other (as in our current models), but also aspects of temporal context such as the

amount of time for which an arm is used for during each bout of activity, which may be

much shorter on the paretic upper limb compared to the non-paretic side on patients who

are severely affected by stroke hemiparesis due to them getting fatigued quicker when

performing activities.

Also, the supervised learning models for Human Activity Recognition (HAR) dis-

cussed in Chapter 3 are very interesting by themselves, and show which neural net-

92

Chapter 6. Conclusion

work model architecture, particularly LSTM-based ones, are useful for HAR in semi-

naturalistic environments.

6.3 Future Work

Future work could include improving the covariates used. In Chapter 4, we mentioned two

sets of covariates, each of which were generated in different ways: GMM-based (Section

4.2.1) and MIL-based (Section 4.2.2). A better performance could be obtained simply by

using both sets of covariates together and employing a variable selection technique to pick

the best subset of variables from both sets of covariates. Yet another improvement would

be to design a covariate generation pipeline which combined the interpretability advan-

tages of both of the aforementioned methods (the ability to plot the the mixture component

distributions for the GMM-based method and the ability to decompose inferred recovery

levels into trend, seasonal and residual components for the MIL-based method). This

could perhaps be achieved either by using the mixture model component memberships of

sliding window datapoints to calculate the inferred CAHAI for the datapoint in Equation

4.12.

Other future work on model visualization includes validating our inferences of daily

recovery trends. When we decompose the recovery time series into trend, seasonal and

residual components (see Section 4.3.2) for our MIL-based covariates, we have no val-

idation that the inferred daily recovery trends are accurate about which days the patient

is recovering or deteriorating. This is because we only have ground truth measurements

once per week per patient, at most. Perhaps if additionally, a time and cost-efficient

self-administered questionnaire-based assessment of stroke recovery, such as the Motor

Activity Log (Uswatte et al., 2006b) were used in validation in data collection in a new

user study, then we could validate the inferred recovery levels at a daily frequency.

Finally, for our MIL-based covariate generation, it would be good to perform a com-

93

Chapter 6. Conclusion

parison between different (supervised learning) regression models for Equation 4.12, such

as neural networks, random forest, etc. For our GMM-based model, we may experiment

with using different models to represent our data as counts of observations of symbols

and calculate features based on ratios of these counts between both hands. For example,

recently on accelerometer data, approaches discussed in Lin et al. (2007) and Ciliberto

and Roggen (2019) represent the data in a simpler way to extract features from raw ac-

celerometer data and can be quite computationally efficient.

94

Bibliography

Amores, J. (2013). Multiple instance classification: Review, taxonomy and comparative

study. Artificial Intelligence, 201:81–105.

Anderson, J. L., Green, A. J., Yoward, L. S., and Hall, H. K. (2018). Validity and reliabil-

ity of accelerometry in identification of lying, sitting, standing or purposeful activity in

adult hospital inpatients recovering from acute or critical illness: a systematic review.

Clinical Rehabilitation, 32(2):233–242. PMID: 28805075.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan,

T., Franklin, M. J., Ghodsi, A., et al. (2015). Spark SQL: Relational data processing

in Spark. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pages 1383–1394. ACM.

Bachlin, M., Roggen, D., Troster, G., Plotnik, M., Inbar, N., Meidan, I., Herman, T.,

Brozgol, M., Shaviv, E., Giladi, N., and others (2009). Potentials of Enhanced Context

Awareness in Wearable Assistants for Parkinson’s Disease Patients with the Freezing of

Gait Syndrome. In Proceedings of the 2009 ACM International Symposium on Wear-

able Computers .

Bailey, R. R., Klaesner, J. W., and Lang, C. E. (2015). Quantifying real-world upper-limb

activity in nondisabled adults and adults with chronic stroke. Neurorehabilitation and

Neural Repair, 29(10):969–978.

95

Bibliography

Barreca, S. R., Stratford, P. W., Lambert, C. L., Masters, L. M., and Streiner, D. L. (2005).

Test-retest reliability, validity, and sensitivity of the Chedoke arm and hand activity

inventory: a new measure of upper-limb function for survivors of stroke. Archives of

Physical Medicine and Rehabilitation, 86(8):1616–1622.

Bellman, R. (1961). Curse of dimensionality. Adaptive Control Processes: A Guided

Tour. Princeton, NJ.

Best, M. J. and Chakravarti, N. (1990). Active set algorithms for isotonic regression; a

unifying framework. Mathematical Programming, 47(1-3):425–439.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag New

York.

Blei, D. M., Jordan, M. I., et al. (2006). Variational inference for Dirichlet Process mix-

tures. Bayesian analysis, 1(1):121–143.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review

for statisticians. Journal of the American Statistical Association, 112(518):859–877.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and

regression trees. CRC press.

Bulling, A., Blanke, U., and Schiele, B. (2014). A tutorial on human activity recognition

using body-worn inertial sensors. ACM Computing Surveys (CSUR), 46(3):33.

Chakravarti, N. (1989). Isotonic median regression: a linear programming approach.

Mathematics of Operations Research, 14(2):303–308.

96

Bibliography

Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S. T., Tröster, G., Millán, J. d. R.,

and Roggen, D. (2013). The Opportunity challenge: A benchmark database for on-body

sensor-based activity recognition. Pattern Recognition Letters, 34(15):2033–2042.

Chen, H., Lin, K., Hsieh, Y., Wu, C., Liing, R., and Chen, C. (2018). A study of pre-

dictive validity, responsiveness, and minimal clinically important difference of arm

accelerometer in real-world activity of patients with chronic stroke. Clinical Reha-

bilitation, 32(1):75–83.

Ciliberto, M. and Roggen, D. (2019). Wlcsscuda: a cuda accelerated template matching

method for gesture recognition. In Proceedings of the 2019 International Symposium

on Wearable Computers. Association for Computing Machinery.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I. (1990). STL: A

seasonal-trend decomposition. Journal Official Statistics, 6(1):3–73.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13(1):21–27.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-

matics of Control, Signals and Systems, 2(4):303–314.

Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal

analysis. IEEE Transactions on Information Theory, 36(5):961–1005.

Ferrari, P., Friedenreich, C., and Matthews, C. E. (2007). The role of measurement error in

estimating levels of physical activity. American Journal of Epidemiology, 166(7):832–

840.

Figo, D., Diniz, P. C., Ferreira, D. R., and Cardoso, J. M. (2010). Preprocessing tech-

niques for context recognition from accelerometer data. Personal and Ubiquitous Com-

puting, 14(7):645–662.

97

Bibliography

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical Learning,

volume 1. Springer series in Statistics, Springer, Berlin.

Gao, Y., Long, Y., Guan, Y., Basu, A., Baggaley, J., and Ploetz, T. (2019). Towards

reliable, automated general movement assessment for perinatal stroke screening in in-

fants using wearable accelerometers. Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, 3(1):1–22.

Gebruers, N., Truijen, S., Engelborghs, S., and De Deyn, P. P. (2014). Prediction of upper

limb recovery, general disability, and rehabilitation status by activity measurements

assessed by accelerometers or the Fugl-Meyer score in acute stroke. American Journal

of Physical Medicine & Rehabilitation, 93(3):245–252.

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget: Continual

prediction with lstm. Neural Computation, 12(10):2451–2471.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Graves, A. (2012). Supervised sequence labelling. In Supervised Sequence Labelling with

Recurrent Neural Networks, pages 5–13. Springer.

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with bidirec-

tional LSTM and other neural network architectures. Neural Networks, 18(5-6):602–

610.

Greff, K., Srivastava, R. K., Koutnı́k, J., Steunebrink, B. R., and Schmidhuber, J. (2015).

LSTM: A search space odyssey. arXiv preprint arXiv:1503.04069.

Halloran, S., Tang, L., Guan, Y., Shi, J. Q., and Eyre, J. (2019). Remote monitoring

of stroke patients' rehabilitation using wearable accelerometers. In Proceedings of the

2019 ACM International Symposium on Wearable Computers. ACM.

98

Bibliography

Hammerla, N. Y., Halloran, S., and Plötz, T. (2016). Deep, convolutional, and recurrent

models for human activity recognition using wearables. In Proceedings of the Twenty-

Fifth International Joint Conference on Artificial Intelligence, pages 1533–1540. AAAI

Press.

Hammerla, N. Y. and Plötz, T. (2015). Let’s (not) stick together: pairwise similarity biases

cross-validation in activity recognition. In Proceedings of the 2015 ACM International

Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2015.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507.

Hornik, K. (1993). Some new results on neural network approximation. Neural Networks,

6(8):1069–1072.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2014). An efficient approach for assessing

hyperparameter importance. In International Conference on Machine Learning, pages

754–762.

Jing, L., Zhou, Y., Cheng, Z., and Wang, J. (2011). A recognition method for one-stroke

finger gestures using a MEMS 3D accelerometer. The Institute of Electronics Informa-

tion and Communication Engineers (IEICE) Transactions on Information and Systems,

94(5):1062–1072.

Jolliffe, I. T. (1986). Principal Component Analysis and Factor Analysis. In Principal

Component Analysis, pages 115–128. Springer.

Jones, M. and Rice, J. A. (1992). Displaying the important features of large collections

of similar curves. The American Statistician, 46(2):140–145.

Joseph, C., Conradsson, D., Hagströmer, M., Lawal, I., and Rhoda, A. (2018). Objec-

tively assessed physical activity and associated factors of sedentary behavior among

99

Bibliography

survivors of stroke living in Cape Town, South Africa. Disability and rehabilitation,

40(21):2509–2515.

Juan, A. and Vidal, E. (2002). On the use of Bernoulli mixture models for text classifica-

tion. Pattern Recognition, 35(12):2705–2710.

Kestelyn, J. (2013). Introducing Parquet: Efficient columnar storage for Apache Hadoop.

Cloudera Blog, 3.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kumar, D., Gubbi, J., Yan, B., and Palaniswami, M. (2013). Motor recovery monitoring

in post acute stroke patients using wireless accelerometer and cross-correlation. In

2013 35th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), pages 6703–6706. IEEE.

Lang, C. E., Bland, M. D., Bailey, R. R., Schaefer, S. Y., and Birkenmeier, R. L. (2013).

Assessment of upper extremity impairment, function, and activity after stroke: founda-

tions for clinical decision making. Journal of Hand Therapy, 26(2):104–115.

Lang, C. E., Wagner, J. M., Edwards, D. F., and Dromerick, A. W. (2007). Upper ex-

tremity use in people with hemiparesis in the first few weeks after stroke. Journal of

Neurologic Physical Therapy, 31(2):56–63.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361(10):1995.

Lee, I.-M., Shiroma, E. J., Evenson, K. R., Kamada, M., LaCroix, A. Z., and Buring, J. E.

(2018). Accelerometer-measured physical activity and sedentary behavior in relation

to all-cause mortality: the womens health study. Circulation, 137(2):203–205.

100

Bibliography

Liaw, A. and Wiener, M. (2002). Classification and regression by RandomForest. R News

2 (3): 18–22. URL: http://CRAN. R-project. org/doc/Rnews.

Lin, J., Keogh, E., Wei, L., and Lonardi, S. (2007). Experiencing SAX: a novel symbolic

representation of time series. Data Mining and knowledge discovery, 15(2):107–144.

Liu, X., Rajan, S., Ramasarma, N., Bonato, P., and Lee, S. I. (2018). Finger-worn sen-

sors for accurate functional assessment of the upper limbs in real-world settings. In

2018 40th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), pages 4440–4443. IEEE.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of the 5th Berkeley symposium on Mathematical Statistics

and Probability, volume 1, pages 281–297. Oakland, CA, USA.

McLachlan, G. J., Lee, S. X., and Rathnayake, S. I. (2019). Finite mixture models. Annual

Review of Statistics and its Application, 6:355–378.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai,

D., Amde, M., Owen, S., et al. (2016). Mllib: Machine learning in apache spark. The

Journal of Machine Learning Research, 17(1):1235–1241.

Moore, S. A., Da Silva, R., Balaam, M., Brkic, L., Jackson, D., Jamieson, D., Ploetz, T.,

Rodgers, H., Shaw, L., van Wijck, F., and others (2016). Wristband Accelerometers

to motiVate arm Exercise after Stroke (WAVES): study protocol for a pilot randomized

controlled trial. Trials, 17(1):508.

Narai, E., Hagino, H., Komatsu, T., and Togo, F. (2016). Accelerometer-based monitoring

of upper limb movement in older adults with acute and subacute stroke. Journal of

Geriatric Physical Therapy, 39(4):171–177.

101

Bibliography

Nguyen, H. D., McLachlan, G. J., Ullmann, J. F., and Janke, A. L. (2016). Spatial clus-

tering of time series via mixture of autoregressions models and Markov random fields.

Statistica Neerlandica, 70(4):414–439.

Noorkiv, M., Rodgers, H., and Price, C. I. (2014). Accelerometer measurement of upper

extremity movement after stroke: a systematic review of clinical studies. Journal of

Neuroengineering and Rehabilitation, 11(1):144.

Ordóñez, F. J. and Roggen, D. (2016). Deep convolutional and LSTM recurrent neural

networks for multimodal wearable activity recognition. Sensors, 16(1):115.

Patel, S., Hughes, R., Hester, T., Stein, J., Akay, M., Dy, J., and Bonato, P. (2010). Track-

ing motor recovery in stroke survivors undergoing rehabilitation using wearable tech-

nology. In 2010 Annual International Conference of the IEEE Engineering in Medicine

and Biology, pages 6858–6861. IEEE.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research, 12:2825–2830.

Ramsay, J. O. and Silverman, B. W. (2007). Applied Functional Data Analysis: Methods

and Case Studies. Springer.

Rand, D. and Eng, J. J. (2012). Disparity between functional recovery and daily use of the

upper and lower extremities during subacute stroke rehabilitation. Neurorehabilitation

and Neural Repair, 26(1):76–84.

Rau, C.-L., Chen, Y.-P., Lai, J.-S., Chen, S.-C., Kuo, T.-S., Jaw, F.-S., and Luh, J.-J.

(2013). Low-cost tele-assessment system for home-based evaluation of reaching ability

following stroke. TELEMEDICINE and e-HEALTH, 19(12):973–978.

102

Bibliography

Reiss, A. and Stricker, D. (2012). Introducing a new benchmarked dataset for activ-

ity monitoring. In Proceedings of the 2012 16th Annual International Symposium on

Wearable Computers (ISWC).

Roy, S. H., Cheng, M. S., Chang, S.-S., Moore, J., De Luca, G., Nawab, S. H., and

De Luca, C. J. (2009). A combined sEMG and accelerometer system for monitoring

functional activity in stroke. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 17(6):585–594.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.

Salazar, A. J., Silva, A. S., Silva, C., Borges, C. M., Correia, M. V., Santos, R. S., and

Vilas-Boas, J. P. (2014). Low-cost wearable data acquisition for stroke rehabilitation:

a proof-of-concept study on accelerometry for functional task assessment. Topics in

Stroke Rehabilitation, 21(1):12–22.

Santisteban, L., Térémetz, M., Bleton, J.-P., Baron, J.-C., Maier, M. A., and Lindberg,

P. G. (2016). Upper limb outcome measures used in stroke rehabilitation studies: a

systematic literature review. PloS one, 11(5):e0154792.

Seabold, S. and Perktold, J. (2010). Statsmodels: Econometric and statistical modeling

with Python. In Proceedings of the 9th Python in Science Conference, volume 57,

page 61. Scipy.

Shanahan, J. G. and Dai, L. (2015). Large scale distributed data science using Apache

Spark. In Proceedings of the 21th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pages 2323–2324. ACM.

Sharma, A., Purwar, A., Lee, Y.-D., Lee, Y.-S., and Chung, W.-Y. (2008). Frequency

based classification of activities using accelerometer data. In 2008 IEEE International

103

Bibliography

conference on Multisensor Fusion and Integration for Intelligent Systems, pages 150–

153. IEEE.

Shi, J. and Cheng, Y. (2014). GPFDA: apply gaussian process in functional data analysis.

R package, https://CRAN.R-project.org/package=GPFDA.

Shi, J. Q. and Choi, T. (2011). Gaussian Process Regression Analysis for Functional

Data. New York: Chapman and Hall/CRC.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The Journal of

Machine Learning Research, 15(1):1929–1958.

Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. (2013). On the importance of

initialization and momentum in deep learning. International Conference on Machine

Learning, 28(1139-1147):5.

Tang, L., Halloran, S., Shi, J. Q., Guan, Y., Cao, C., and Eyre, J. (2019). Evaluating

upper limb function after stroke using the free-living accelerometer data (under review).

Statistical Methods in Medical Research.

Thrane, G., Emaus, N., Askim, T., and Anke, A. (2011). Arm use in patients with subacute

stroke monitored by accelerometry: association with motor impairment and influence

on self-dependence. Journal of Rehabilitation Medicine, 43(4):299–304.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Tobin, J. (1958). Estimation of relationships for limited dependent variables. Economet-

rica: journal of the Econometric Society, pages 24–36.

104

Bibliography

Urbin, M., Bailey, R. R., and Lang, C. E. (2015). Validity of body-worn sensor accel-

eration metrics to index upper extremity function in hemiparetic stroke. Journal of

Neurologic Physical Therapy: JNPT, 39(2):111.

Uswatte, G., Giuliani, C., Winstein, C., Zeringue, A., Hobbs, L., and Wolf, S. L. (2006a).

Validity of accelerometry for monitoring real-world arm activity in patients with sub-

acute stroke: evidence from the extremity constraint-induced therapy evaluation trial.

Archives of Physical Medicine and Rehabilitation, 87(10):1340–1345.

Uswatte, G., Taub, E., Morris, D., Light, K., and Thompson, P. A. (2006b). The motor

activity log-28. Neurology, 67(7):1189–1194.

van der Pas, S. C., Verbunt, J. A., Breukelaar, D. E., van Woerden, R., and Seelen, H. A.

(2011). Assessment of arm activity using triaxial accelerometry in patients with a

stroke. Archives of Physical Medicine and Rehabilitation, 92(9):1437–1442.

Wang, J.-L., Chiou, J.-M., and Müller, H.-G. (2016). Functional data analysis. Annual

Review of Statistics and Its Application, 3:257–295.

Wei, W. X., Fong, K. N., Chung, R. C., Myint, J. M., Cheung, H. K., and Chow, E. S.

(2018). Utility of a unilateral accelerometer for monitoring upper extremity use in

subacute stroke patients after discharge from hospital. Assistive Technology, pages 1–

6.

Werbos, P. J. et al. (1990). Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560.

Wintermark, M., Sesay, M., Barbier, E., Borbély, K., Dillon, W. P., Eastwood, J. D.,

Glenn, T. C., Grandin, C. B., Pedraza, S., Soustiel, J.-F., et al. (2005). Comparative

overview of brain perfusion imaging techniques. Stroke, 36(9):e83–e99.

105

Bibliography

Yang, J. B., Nguyen, M. N., San, P. P., Li, X. L., and Krishnaswamy, S. (2015). Deep con-

volutional neural networks on multichannel time series for human activity recognition.

In International Joint Conference on Artificial Intelligence.

Yu, L., Xiong, D., Guo, L., and Wang, J. (2016). A remote quantitative Fugl-Meyer as-

sessment framework for stroke patients based on wearable sensor networks. Computer

Methods and Programs in Biomedicine, 128:100–110.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J.,

Shenker, S., and Stoica, I. (2012). Resilient Distributed Datasets: A fault-tolerant

abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Con-

ference on Networked Systems Design and Implementation. USENIX Association.

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient

descent algorithms. In International Conference on Machine Learning, page 116.

106

	Introduction
	Background
	Contributions in this thesis
	Structure of Thesis

	Appendices
	A note on notation in this thesis

	Introduction to Feature Extraction for Accelerometer Data
	Purpose of feature extraction
	Accelerometer movement process
	Data sampling and observed data

	Time domain
	Frequency Domain
	Symbolic and mixture-based features
	Neural Network-based Features
	Calculating covariates using feedforward neural network
	Calculating covariates using convolutional neural network
	Calculating covariates using recurrent neural network
	Bidirectional recurrent neural network models
	Parameter estimation approaches for neural network models

	Principal Component Analysis
	Functional PCA

	Conclusion

	Supervised Learning for Activity Recognition
	Supervised Learning for Accelerometer Data
	Multinomial model
	Model evaluation

	Neural network hyperparameters
	Learning-related hyperparameters
	Regularisation-related hyperparameters
	Architecture-related hyperparameters

	Investigating hyperparameters effect on model performance
	Experiments for hyperparameter selection
	Datasets

	Results
	Discussion and Conclusion
	Appendices
	Multinomial model and derivation of its log-likelihood

	New features for stroke patients accelerometer data
	Methodology
	Preprocessing steps used on accelerometer data
	Parallel Computing

	Feature extraction approaches
	GMM-based features
	Multi Instance Learning (MIL)-based covariates
	Motivation for using Random Forest Regression

	Visualisation results
	Visualising learned cluster components
	Visualisation based on MIL-based method

	Conclusion
	Appendices
	Theoretical Motivation for Random Forest

	Prediction of stroke recovery score
	Background to stroke recovery prediction using accelerometer data
	Predictive model
	Estimation
	Prediction: random effects
	Prediction: mixed effects

	Results
	Prediction using GMM-based covariates
	Prediction using MIL-based covariates

	Discussion
	Performance with and without GP prior
	Comparison of performance between GMM and MIL-based covariates

	Contributions and Conclusion

	Conclusion
	Findings on evaluating upper limb function
	Both Statistical and Machine Learning Models perform well
	Future Work

