
School of Computing

Innovative Big Data Integration
and Analysis Techniques for Urban

Hazard Management

Jedsada Phengsuwan

Submitted for the degree of Doctor of
Philosophy in the School of Computing,

Newcastle University, UK

December 25, 2020

c© 2020,



Abstract

Modern early warning systems (EWS) require sophisticated knowledge of natural haz-

ards, the urban context and underlying risk factors to enable dynamic and timely

decision making (e.g., hazard detection, hazard preparedness). Landslides are a com-

mon form of natural hazard with a global impact and are closely linked to a variety of

other hazards. EWS for landslide prediction and detection relies on scientific methods

and models which require input from the time-series data, such as the earth observation

(EO) and ancillary data. Such data sets are produced by a variety of remote sensing

satellites and Internet of Things sensors which are deployed in landslide-prone areas.

Besides, social media-based time-series data has played a significant role in modern

disaster management. The emergence of social media has led to the possibility of the

general public contributing to the monitoring of natural hazard by reporting incidents

related to hazard events. To this end, the data integration and analysis of potential

time-series data sources in EWS applications have become a challenge due to the com-

plexity and high variety of data sources. Moreover, sophisticated domain knowledge of

natural hazards and risk management are also required to enable dynamic and timely

decision making about serious hazards. In this thesis, a comprehensive set of algo-

rithmic techniques for managing high varieties of time series data from heterogeneous

data sources is investigated. A novel ontology, namely Landslip Ontology, is proposed

to provide a knowledge base that establishes the relationship between landslide hazard

and EO and ancillary data sources to support data integration for EWS applications.

Moreover, an ontology-based data integration and analytics system that includes hu-

man in the loop of hazard information acquisition from social media is proposed to

establish a deeper and more accurate situational awareness of hazard events. Finally,

the system is extended to enable an interaction between natural hazard EWS and

electrical grid EWS to contribute to electrical grid network monitoring and support

decision-making for electrical grid infrastructure management.
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1
Introduction

1.1 Background and Motivation

Natural disasters are a consequence of natural hazard impacts on human settlement

and their exposure [1]. The occurrence of a natural disaster in urban areas can cause

the loss of life, the damage to properties and infrastructures, and economic loss and

disruption. Efficient urban hazard management thus requires decision support sys-

tems to provide preparation and mitigation strategies for urban disaster risk reduction

and disaster resilience. The advancement of Early Warning Systems (EWS) for nat-

ural disasters and urban vulnerabilities is playing a significant role in mitigation and

minimising loss of life and damage to properties. Such systems require strong techni-

cal principles and sophisticated knowledge of the natural hazard, the urban context

and risk management to enable dynamic and timely decision making against serious

hazards. Landslides are a common form of natural hazard with global impacts. In

particular, this is because landslides are closely linked with a variety of other natu-

ral hazards such as storms, earthquakes, flooding and volcanic eruptions. However,

predicting individual landslide occurrence is problematic as it depends on many lo-

cal factors and variables and anthropogenic inputs. Current Early Warning Systems

(EWS) for landslides rely on scientific methods such as hyperlocal rainfall monitor-

ing, slope stability models and sensor technologies such as the Internet of Things and

Remote Sensing. Decision-makers analyse Earth Observation (EO) and ancillary data

produced by sensors which are deployed in landslide-prone areas for landslide moni-

toring and prediction. The emergence of social media (e.g. Facebook, Twitter and

Instragram) has led to the possibility of people also contributing to landslide moni-
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Chapter 1: Introduction

toring by reporting warning signs related to landslide. Social media data produced by

people can be considered as “human sensors” but these need to be coupled to efficient

event detection systems to detect potential landslide events from social media streams.

Based on this, knowledge about the interaction between warning signs from human

sensors and landslides has to be realised to provide more accurate event detection and

decision-making. Moreover, these events detected from social media need to be verified

by decision-makers by analyzing IoT sensors or other corroborating data from the area

of interest. Heterogeneity of sensor types (e.g. rain gauges, soil moisture, piezometers,

inclinometers) and a wide spectrum of performance and accuracy characteristics and

thus this leads to challenges in data integration and analysis to verify landslide pre-

cursors identified from social media. Ontology is a logic modelling technology which

can be used to capture such knowledge from a domain expert to provide machine-

understandable and parsable relationships and inferences. Generally, EWS analyses

both historical and real-time time-series data to understand the changing pattern

of hazardous events and provide decision making support from various perspectives.

However, such data provided by multiple data sources exhibit different characteris-

tics and heterogeneous representations. These raise a new challenge for existing EWS

platforms as regards integrating heterogeneous time-series data across multiple data

sources to enable multi-dimensional queries in various context (e.g. hazardous event,

data sources, spatial and temporal).

In this thesis, a comprehensive set of algorithmic techniques for managing wide va-

rieties of time series data from heterogeneous data sources is investigated. A novel

ontology, namely the Landslip Ontology, is proposed to provide the knowledge base

that establishes the relationship between landslide hazard and EO and ancillary data

sources to support data integration for EWS applications. Moreover, ontology-based

data integration and analytics systems that include human in the loop of hazard in-

formation acquisition from social media is proposed to establish a deeper and more

accurate situational awareness of hazard events. The Landslip Ontology and the sys-

tem are key contributions of this thesis for the Landslip project, a Natural Environ-

ment Research Council (NERC) funded project which aims to reduce the impacts of

landslide multi-hazards in India. Finally, the system is extended to enable an interac-
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Chapter 1: Introduction

tion between natural hazard EWS and electrical grid EWS to contribute to electrical

grid network monitoring and support decision making for electrical grid infrastructure

management.

1.2 Early Warning System for Urban Hazard Man-

agement

Rapid population growth in cities demands effective plans to protect people from vul-

nerabilities, for example, natural disasters. However, most disaster-prone cities are un-

prepared for future disasters and ill-equipped to reduce associated risks [2]. The urban

settlement extension of the Predeal town, a famous skiing resort located in the highest

altitude in the Romanian Carpathians (975 - 1060 meters), on to a landslide-prone area

presents a potential hazard for future urban development [3]. A tool that integrated

scientific expertise for landslide susceptibility within the urban development framework

was developed for local authorities to support effective urban planning. RAPIDS [4]

is an Early Warning System developed to manage urban flooding and water quality

hazards. Here, Artificial Neural Networks are used for real-time prediction of flooding

based on weather radar and rain gauge rainfall data. This research was conducted

using case studies for the town of Keighley, West Yorkshire, UK, to demonstrate the

proof-con-concept. Alerta-Rio [5] is an Early Warning System operated by Rio de

Janeiro city in Brazil to deal with rainfall and landslide. This system’s major process

is to monitor landslide and rainfall using a correlation model and rainfall threshold to

issue a warning.

According to the ISDR definition, the early warning is “the provision of timely and

effective information, through identified institutions, that allows individuals exposed to

a hazard to take action to avoid or reduce their risk and prepare for effective response”

[6]. An Early Warning System (EWS) for urban hazard management can play a

significant role in enabling dynamic and timely decision-making for risk management in

cities. The EWS is the process of analyzing vast amounts of urban data to understand

and holistically model city vulnerability. Due to the complexity of risk management for

cities, this process requires sophisticated techniques such as data integration, pattern
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detection, and data mining to manage and process big data from different sources using

both real-time and batch-processing models. Thus, it has become a grand challenge

problem in the computing science domain to support efficient Early Warning System

development.

1.3 Internet of Things (IoT) and Time-Series Data

for Urban Hazard Management

The concept of the Internet of Things (IoT) technology was first presented by Kevin

Ashton at Procter & Gamble (PG) in 1999 [7]. Keven Ashton defines the IoT as

unique identifiable entities which are connected and interoperable with radio-frequency

identification (RFID) technology. The mature development of IoT technology has

the potential to enhance the effectiveness of disaster management. The paradigm of

IoT enables the effective ability of data collection and sharing. The technology thus

becomes an enabling technology to improve the effectiveness of applications in disaster

management which include disaster prevention and mitigation, emergency response,

and disaster recovery [8].

The Early Warning System (EWS) is one of the most significant parts of disaster

prevention and mitigation in disaster management as it provides decision support to

decision-makers in the disaster preparation and response [9]. An Early Warning System

for the prediction and detection of natural hazard and disaster relies on scientific

methods [10] and models which require input from the time-series data, such as the

Earth Observation (EO) and ancillary data. The time-series data is a collection of

continuous observation and measurement obtained at consecutive time points [11].

Additionally, the EO data are produced by a variety of remote sensing satellites and

IoT sensors (e.g. Wireless Sensor Network (WSN), ground-based or in-situ sensors)

which are deployed in the natural hazard-prone areas. Examples of EO Data are

satellite image time series, precipitation, temperature, and humidity. The ancillary

data include the natural hazards-related data collected from other data sources or

methods (e.g. manually recorded by a human, data mining techniques, and scientific

models). Examples of ancillary data are the total number of dead, missing, and injured
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people, damage to specific locations, and hazard-related events.

The time-series data have been widely used in natural hazard early warning in urban

areas. Balai Litbang Sabo (BLS) has developed a Landslide Early Warning System

(LEWS) that utilises different time interval of cumulative precipitation data (e.g. 1-

Day and 3-Day) obtained from various data sources to observe and predict the occur-

rence of landslides in Indonesia [12]. A study in [13] analyses a large volume of EO and

ancillary data obtained from various sources to conduct a landslide hazard assessment

in the urban area around Langat River Basin, Selangor, Peninsular Malaysia. Such

data include slope, elevation, drainage density, erosion, soil series, land use, 100-years

flood data, precipitation, buildings, road, and essential facilities demographic. The

RAPIDS [4] has been developed as an Early Warning System (EWS) that applies a

data-driven based Artificial Neural Network to analyse weather radar and historical

rain gauge rainfall data for real-time urban hazard prediction in the UK.

The utilisation of time-series data in such applications reveals the research challenges

of time-series data management in EWSs for urban hazard management. Additionally,

the management of time-series data for disaster management involves the integration

of heterogeneities and wide varieties of data sources, data ingestion, and data fusion

[14]. For example, this could be the integration of time-series satellite images provided

by a variety of remote sensing satellites and the integration of weather data produced

by the IoT sensors which are deployed in a natural hazard-prone area. Based on this,

the discovery of data sources has thus become a significant part of time-series data

integration due to the variety of disaster or hazard applications and a large number of

data sources. The efficient time-series data sources discovery could suggest a sufficient

number of data sources relevant to a particular disaster or hazard of interest. Hence,

this thesis investigates the efficient discovery of data sources to support time-series

data integration for urban hazard management.
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1.4 The Role of Social Media in Urban Hazard

Management

The emergence of social networks and crowd-sourcing has opened up new opportuni-

ties in several areas such as marketing, Customer Relationship Management (CRM),

information and knowledge sharing, collaborative activities, organisation communica-

tions, education and training, and disaster management [15]. In the context of disaster

management, social media enables the application of human-centric approaches that

allow the public to provide essential disaster-related information that can be used to

enhance the effectiveness of disaster management in reducing the impact of natural

disasters. Social media users are “human sensors” [16] that observe and measure real-

world phenomena and generate different types of social media data. The social media

data produced by the human sensors are time-series data that contain rich informa-

tion about human activities, environmental conditions, and public sentiment, which

geographic information scientists, computer scientists and domain scientists can use

for data analysis [17–19].

According to recent research, social media data is being used in disaster manage-

ment for disseminating hazard-related and early warning information to the public

[20, 21], establishing situational awareness [22–24], and supplemental information for

decision-making [25, 26]. However, the vast volume and wide variety of generated

social media data create an obstacle in preventing disaster management by limiting

the availability of actionable information from social media. Several approaches have,

therefore, been proposed in the literature to cope with the challenges of social media

data for disaster management. Natural Language Processing and classification models

are standard techniques for extracting hazard-related information (e.g. hazard events,

hazard-warning signs, geo-location, time) [23, 24]. These techniques are unable to re-

veal the relationship between the information extracted from social media data where

decision-makers can utilise the extracted information with their relationship for more

accurate decision; for example, heavy rain and cracks are observed and posted by

different social media users who are in the same area.

Although the techniques are mature for extracting information and identifying hazard
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events from the social media data, they are unable to reveal the relationship between

the extracted information. This issue is mainly because such relationships are com-

plicated and require domain knowledge to identify the relationships. Additionally,

natural hazard events usually comprise of several properties, e.g. types, location,

time, and have interconnection with various hazard-related events, e.g. hazard inter-

actions, triggers and warning signs. The extracted information from social media and

their relationships can be used to form a knowledge base and help decision-makers to

understand the overall situation based on social media data and enable more accurate

decision making. This process requires domain experts in natural hazards to define

the relationships and a methodology to organise the extracted information and their

relationships and represent them as a knowledge base that can be used to enhance the

effectiveness of decision-making.

Besides, a single post from a public user typically does not provide all the necessary

information, and some pieces of information related to a potential hazard might be

missing. The knowledge base can be used to recognise the missing information and

can be applied to obtain the missing pieces of information from social media.

This thesis investigates the development of a conceptual model that contains the knowl-

edge of natural hazards captured from domain experts and use the developed model

with social media data to construct a knowledge base which can be used to support

decision making for natural hazards. Moreover, the developed model can be applied

in an application to obtain missing pieces of information from social media.

1.5 Urban Risk Analytics Framework for Urban

Hazard Management

The urban risk analytics framework is a conceptual architecture for a cloud-based

urban hazard Early Warning system. Figure 1.1 illustrates the main components of the

framework, which comprises comprehensive components that satisfy the requirements

of general urban risk analytics.
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Figure 1. An urban risk analytics framework for processing heterogeneous city data. The framework comprises 
comprehensive components that satisfy the requirements of general urban risk analytics.
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Figure 1.1: An urban risk analytics framework for processing heterogeneous time-series
data in urban hazard management

1.5.1 Big City Data Processing Technology Ecosystem

This layer includes big data processing frameworks (BDPFs) that enable the creation

of a big data application architecture. These frameworks can be classified as follows.

• Distributed message queuing frameworks — Such frameworks provide

a reliable, high-throughput, and low-latency system of queuing real-time data

streams from social media and other streaming sources. Examples include Ama-

zon Kinesis and Apache Kafka.

• Data mining frameworks — These frameworks implement a wide range of

data analysis algorithms for analyzing massive datasets, from natural language

processing (NLP, including latent Dirichlet allocation, regression, or näıve Bayes)

to computational statistics (Bayesian networks or state vector machines). Ex-

amples include FlexGP, ApacheMahout, MLBase, and Apache SAMOA.

• Parallel and distributed data programming frameworks — These frame-

works, such as Apache Hadoop, Apache Spark, and Apache Storm, provide a dis-

tributed system implementation of big data programming models that includes

stream processing and batch processing. Distributed system resource manage-
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ment complexities such as task scheduling, data staging, fault management, in-

terprocess communication, and result collection are automatically taken care of

in Apache Hadoop and Apache Storm. The large-scale data mining frameworks

mentioned previously are generally implemented on top of Hadoop, Spark, or

Storm.

• Datastore frameworks — These include SQL and NoSQL database frame-

works in which message queuing, data mining, and parallel or distributed data

programming frameworks persist the intermediate and final data. NoSQL frame-

works (such as MongoDB, HyperTable, Cassandra, or Amazon Dynamo) support

data manipulation based on nonrelational primitives. Such nonrelational data

manipulation patterns lead to better scalability and performance for unstruc-

tured data (for instance, social media postings or mobile app data). On the

other hand, SQL data stores (MySQL, SQL Server, or PostgreSQL) are based

on relational data manipulation primitives in which SQL can be used to manip-

ulate data (insert, delete, or update). Urban risk analytics frameworks will use

both NoSQL and SQL data stores, driven by data variety and querying needs.

1.5.2 Cloud Computing Ecosystem

This layer comprises hardware resources (CPU, storage, and networking) provided by

private (the Natural Environment Research Council data centers, for example) and

public (Amazon Web Services) cloud data centers. The hardware resources at this

layer provide computational and storage capabilities to the big data processing frame-

works. The end-to-end lifecycle operations (including selection, deployment, monitor-

ing, and runtime control) of big data programming frameworks on cloud resources can

be dynamically controlled via research orchestration frameworks [27].

Current big data analysis frameworks (such as Apache YARN or Mesos) do not need

to meet the requirement raised by new classes of applications. That is no workflows,

no dynamic indexing of existing and new data sources, no cloud-based implementa-

tion, and no dynamic tuning of the performance of big data processing frameworks to

meet users’ decision-making requirements. Applications such as urban risk analytics,

however, require support for holistically processing data emitted by multiple sources.
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1.6 Big Data Integration for Urban Hazard Man-

agement

A variety of urban hazard and risk management applications can lead to new research

opportunities in urban risk analytics. The following research challenges, including

semantic-based data integration, data classification, data indexing, trajectory data,

and edge analytics, arise when developing big data integration and analytics algorithms

for urban hazard risk management.

1.6.1 Semantic-based Data Integration of Multiple
Data Sources

The integration of EO data and ancillary data from multiple sources is one of the

most challenging problems for natural hazard early warning systems. There is always

the possibility that data from different data sources are provided in the different data

models (e.g. text, CSV, XML, JSON). Also, there is the possibility of data conflicts

among various data sources. Examples of data conflicts are vocabulary, date format,

data units, data precision, spatial and temporal scale. These conflicts reveal the chal-

lenges in the integration of wide varieties of data sources in semantically meaningful

ways. Besides, multi-hazard applications require knowledge of the relationship among

the data sources and hazardous events to answer complex questions and to support

critical decision making. Based on this, Semantic Web technology has thus played

a significant role to solve the problem for data integration of multiple data sources.

Here, a number of ontologies have been proposed in the literature to conceptualise

the knowledge of EO Data and hazards. SSN [28] is an ontology that describes the

concepts of sensors, observations and related concepts. Landslide [29] is an ontology

that describes the knowledge of landslide process, trigger events, and related haz-

ards. SWEET [30] is a collection of multiple ontologies that represent concepts and

relationships in the domain of earth and environment. Even though these ontologies

provide comprehensive concepts for sensor data and hazard event, there is a lack of

ability to represent concepts of human sensors (e.g. social media data). Supplemental

processes are required when applying these ontologies to EWS for multi-hazard ap-
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plications. Moreover, integrating data from wide varieties of data sources by using a

single ontology approach is difficult due to the conflicts of data.

1.6.2 Data Classification

Datasets from multiple sources (e.g. social media, mobile apps, Instagram, and sensor

networks) flow at different speeds and volume, and in heterogeneous formats (e.g. text

streams from social media or mobile apps and numeric streams from landslide sensors).

This diverse nature of data sources leads to heterogeneous requirements in terms of

developing computer algorithms for data classification (e.g. NLP for text streams,

and continuous numeric computation, including finding the max, min, average, and

standard deviation, over streams from landslide sensors) and event detection (e.g.

detecting the occurrence of keywords from social media streams and detecting flooding,

landslide, or tsunami signals from real-time sensor streams).

Furthermore, based on data characteristics (static versus real-time), these computer

algorithms will need to be implemented in multiple big data platforms that support

heterogeneous programming abstractions. For example, historical datasets are in gen-

eral handled by frameworks such as Apache Hadoop and Apache Mahout (a machine

learning library for Hadoop), which offer map and reduce functions. On the other hand,

computer algorithms for classification and event detection (also known as sliding win-

dow analytics) over real-time data will need to be implemented in stream processing

frameworks such as Apache Storm and Yahoo S4. It is well understood that program-

ming computer algorithms in these big data platforms that can handle multiple data

sources and data formats simultaneously while ensuring data processing efficiency is a

challenging research problem [31, 32].

1.6.3 Data Indexing

Developing an indexing algorithm that can seamlessly integrate and establish relation-

ships among static and real-time data across multiple data sources in a multidimen-

sional querying context (spatial, temporal, semantics, source types, event types, and so

on) remains a very challenging problem [33]. Although it is relatively straightforward
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to design relational or nonrelational schema to store the raw or classified data for a

single source type (such as social media or sensor feeds), establishing a relationship

and dependencies among the sources in a multidimensional querying context remains

an unsolved problem.

1.6.4 Trajectory Data

Dealing with the trajectories of dynamic data produced by multiple sources is also

a challenge (for example, the trajectories of taxis and buses are sequences of GPS

samples, whereas the trajectories of smartcard ticketing devices are sequences of bus

or subway stations). Notably, these trajectories differ in terms of data velocity, volume,

and location accuracy.

1.6.5 Edge Analytics

Latency-sensitive data analytics tasks (such as analyzing streaming data from sensors)

can benefit from “edge analytics” techniques, which have benefits including:

• reduced network congestion achieved by filtering non-relevant events at the edge;

and

• reduced event-detection latency (such as detecting dangerous water flow levels by

analyzing real-time images in on-board processors available in sensor gateways

such as Raspberry Pi 3), as sensors and gateways no longer need to send data to

far-off cloud data centers.

However, it remains an open challenge how to enact and provision data analytics tasks

across edge and cloud data centers so that decision-making latency is minimised while

event-detection precision and accuracy is maximised.

1.7 Landslip Project

India is one of the countries most affected by natural disaster, including landslides

[34, 35]. Approximately 0.42 million square kilometres or 12.6% of land area in India
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is susceptible to landslide hazards [36]. Landslip1 is a Natural Environment Research

Council (NERC) funded project which aims to reduce impacts of landslide multi-

hazards in India, especially the hydrological related landslide multi-hazards. The

Landslip consortium is formed of scientists and researchers from nine organisations

which include the British Geological Survey (BGS), King’s College London, MetOf-

fice, Newcastle University, Practical Action Consulting UK (PA-UK), Amrita Univer-

sity, Geological Survey of India (GSI), Practical Action Consulting India (PA-India),

and Consiglio Nazionale delle Ricerche (CNR). The scientific research in the Landslip

project focuses on the study of weather patterns, landscape systems, rainfall thresh-

olds, and societal factors to enhance landslide-related hazard assessment in India at

regional scales (e.g. > 5 km) in two main case-study regions, Nilgiris District and

Darjeeling/East Sikkim Districts. The understanding of the processes and method-

ologies developed for the case-study regions can contribute to early warning systems

in the regions and other landslide-prone regions in South Asia. Based on this, the

project comprises of seven interlinked work packages with different research areas (e.g.

meteorological, landscape, social and multi-hazard).

The research conducted in this thesis contributes to the Landslip project as a part of

Work Package 5 (WP5: social dynamics and vulnerability). The main aim of WP5

is to investigate the potential use of social media in landslide hazard Early Warning

Systems. There are several tasks in this work package which include Ontology devel-

opment, social media data classification and event detection algorithms, and mobile

phone application. The key contributions of this thesis for WP5 of the Landslip project

are as follows:

1. The Landslip Ontology — the Landslip Ontology proposed in this thesis plays

a significant role in representing the knowledge of the landslide hazard domain

captured from scientists and researchers who are expert in landslide multi-hazard

management and members of the Landslip project. This knowledge presents

concepts and relationships of landslide hazard, social media, and time-series

data sources. The Landslip Ontology is used to facilitate social media-based

event detection and time-series data integration.

1http://www.landslip.org
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2. Human in the Loop Social Media Analytics System — the system collects and

extracts social media streams to detect landslide-related events. The system

includes a dialogue system that can actively communicate with social media

users to obtain missing pieces of information and provide rich information for

decision-makers for more accurate decision making.

1.8 A Scenario of Big Data Integration and Anal-

ysis in Urban Hazard Management

This scenario focuses on the application of big data integration and analysis for urban

hazard management in a city that is vulnerable to disaster risk. The city is located

in a mountainous area and near a river basin and is prone to natural hazards such

as landslide and flood. Infrastructures and utilities such as roads, railways, electricity

supply, and water supply have been provided in the city. This city drives the economy

within the country and has a high density of population due to the rapid migration of

people from other towns and the countryside. Consequently, the city and population

settlements are expanding on to the area previously covered by landslides without ad-

equate planning from the local authorities. The site is vulnerable to landslide disaster

due to the inadequacy of structural mitigation works on the unstable slopes.

Urban data collection systems derived from IoT sensors are being deployed in the city.

These systems, while currently delivering moderate data volumes, will soon ramp up

to produce significant data volumes for real-time data analysis and data mining-based

analysis of historical data. People in the city are already creating additional streams

of potentially valuable data via social media (e.g. Twitter, Instagram, Facebook) and

other crowd-sourcing mobile applications. As a result, the city is overflown many times

a day by various orbital platforms that provide near real-time Earth observation (EO)

and ancillary data covering various metrics, from urban temperature to atmospheric

conditions. Moreover, the city infrastructure systems underpinning the movement

of people, electricity supply, water supply, and waste management around the city

also provide real-time information on the state or flows to support urban emergency

management.
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Figure 1.2: Urban hazard management scenario

The Department of Disaster Prevention and Mitigation (DPM) interested in the mon-

itoring and forecasting of natural hazards in the city might wish to:

• analyse historical EO and ancillary data (slope, soil type and the impact of the

flow of water in an area) to create a landslide susceptibility map and identify

areas which are vulnerable to landslide and improve the urban expansion plan;

• analyse a historical archive of accumulated precipitation data to look at changing

patterns of rainfall across the city;

• monitor the water level of the river in the city in real-time;

• analyse social media for relevant keywords or phrases to detect warning signs of

landslides and floods;

• communicate with social media users who posted a message related to landslide

and ask for more details; and

• develop real-time warning systems for landslides and floods.

Individually, each of these tasks requires a huge amount of data collection, data prepa-

ration, and subsequent analysis.
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The city exhibits multiple levels of complexity across a large number of interacting

domains (e.g. natural hazards, climate, transport, traffic control, electricity supply

management) that operate on many temporal and spatial scales. This diversity of

data and associated temporal and spatial variability has direct impacts on the ability

to reliably and objectively monitor and characterise the environmental condition of

cities. For example, although it might be possible to monitor slope movement in real-

time using IoT sensors deployed in several locations in the city [37], it is unrealistic to

undertake to do so in all areas in the city. However, images acquired by EO satellites

and airborne remote sensing devices could let us extrapolate such measurements to the

entire city. However, to gain maximum utility from such a diverse range of data, we

require new integration approaches and associated analytics. This has been identified

as a grand challenge problem in the computing science domain [31, 32].

1.9 The Research Challenges

This thesis mainly focuses on addressing the research challenges of big data integration

and analysis for urban hazard management, especially the discovery of a wide variety of

time-series data sources, and the organisation and construction of a knowledge base of

hazard-related social media data. The complexity and the wide variety of time-series

data sources with the absence of machine-understandable ontologies and knowledge

bases are the major obstacles to data integration for urban hazard management. Data

sources discovery is an essential part of the data integration for selecting potential data

sources of EO and ancillary data efficiently. The data sources discovery associated with

urban hazard knowledge is empowered to choose a sufficient number of data sources

based on an understanding of the urban hazard context. For instance, when heavy

rain has been detected in a particular landslide-prone area, the data sources discovery

can suggest data sources providing EO and ancillary data for landslide monitoring in

that area due to the knowledge that heavy rain is a warning sign for landslide hazards.

Besides, the variety and arbitrariness of hazard-related information extracted from the

high volume of social media data are impediments to the organising and inferencing

of the extracted information. Decision-makers are unable to understand the current
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situation of an urban hazard clearly or explore useful information to gain confidence in

decision-making. Furthermore, well-organised information enables decision-makers to

easily recognise where there are missing pieces of important information that should be

further collected for more accurate decision making. This problem requires machine-

understandable ontologies to facilitate the organisation and construction of a knowl-

edge base of social media data for urban hazard management.

1.10 Research Questions

This thesis mainly investigates the problem of time-series data integration and analysis

for urban hazard management. The landslide hazard domain is the primary focus of

this thesis as it is closely linked to various other natural hazards with global impact. In

particular, data sources discovery is the major obstacle to data integration in landslide

hazards due to the complexity and wide variety of time-series data sources. Hence,

the thesis focuses on the following research problems.

• How can we represent knowledge of the landslide domain that conceptualise the

relationship between landslide hazard, social media, and wide varieties of time-

series data to support landslide early warning and decision making?

• How can we utilise social media in context-based knowledge discovery to identify

landslide events and discover potential time-series data sources to support time-

series data integration for a landslide hazard Early Warning System?

• How can we perform landslide events information enrichment using social media

to support early warning and decision making in landslide hazard management?

This thesis has addressed these research problems to enhance the efficiency of time-

series data integration and analysis for urban hazard management. Specifically, the

Landslip Ontology developed in this thesis has addressed the lack of a formal knowledge

base of landslide domain concepts and relationships to facilitate time-series data source

discovery. Furthermore, an ontology-based system for discovering landslide induced

emergencies in the electrical grid has been developed to utilise social media and a
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knowledge base to identify landslide events and time-series data sources to monitor

electrical grid infrastructure. Finally, the scarcity of information provided by social

media users for landslide early warning and decision making has been addressed by a

social media analytics system for active hazard observation developed in this thesis.

1.11 Scope and Contributions

This thesis investigates a comprehensive set of techniques to address the challenges of

big data integration and analysis for urban hazard management. The investigation is

conducted at different levels, ranging from conceptual models to concrete applications.

The scope of the thesis is comprised of four main stages, as shown in Figure 1.3.

• Landslip Ontology — This stage aims at developing the Landslip Ontology (LO)

to represent the knowledge of the landslide domain and provide a knowledge base

that establishes relationships between landslide hazard, social media, and time-

series data sources. The LO plays a significant role in this thesis to address the

challenges in a wide variety of big data integration and analysis for urban hazard

management. In addition, it is designed to facilitate time-series data sources

discovery and social media event detection in the upper stage. The knowledge

sources for the Landslip Ontology development are based on knowledge and

experiences from scientists and experts who are members of the Landslip project.

• Data Integration and Analysis Architecture — This stage focuses on designing

a common architecture that integrates essential components for ontology-based

data integration and analysis system. The system is driven by the LO for data

integration and analysis and is used to deploy concrete applications such as EWSs

and Decision support tools.

• Data Integration and Analysis Techniques — This stage investigates a set of

comprehensive techniques for two major components of data integration and

analysis for urban hazard management, time-series data sources discovery and

social media event detection. The time-series data sources discovery addresses

the integration challenge of a wide variety of time-series data sources. The social
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Landslip Ontology (Chapter 3)

Data Integration and Analysis Framework (Chapter 5)

EWS and Decision support tools

Electrical Grid Network Monitoring (Chapter 4)
Active Hazard Observation using Social Media (Chapter 5)

          Data Integration and Analysis Techniques

Time-series Data Sources Discovery (Chapter 3) 
Social Media Event Detection (Chapter 5)

Figure 1.3: Scope of the thesis

media event detection integrates Machine Learning and Knowledge Representa-

tion and Reasoning techniques to provide context-based knowledge discovery of

hazard events.

• EWS and Decision Support Tools — This stage provides concrete applications

that utilise the techniques and designs derived from the previous stages to sup-

port the decision making in urban hazard management. There are two main

applications present in this thesis, electrical grid network monitoring and active

hazard observation using social media. The first application demonstrates an

application of the LO and ontology-based data sources discovery technique in

order to enhance the efficiency of electricity supply management in the areas that

are prone to natural hazard. The latter application demonstrates a system that

can observe natural hazards via the monitoring of the social media stream. Here,

a Dialogue System is included in the system to provide an active way of natural

hazard decision making by having a human in the loop of hazard information

acquisition from social media. The proposed system addresses the challenge of

social media information enrichment where missing hazard-related information

can be obtained from specific social media users.

The major contributions of this thesis are as follows.

1. A formal knowledge base of landslide domain concepts to enable the integration

of time series data from multiple and heterogeneous data sources for the early
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prediction of landslide events, in Chapter 3.

2. An ontology-based data integration and analysis techniques to enable the dis-

covery of time-series data sources and the detection of social media events for a

landslide Early Warning System, in Chapter 4.

3. A process for harmonising the landslide knowledge base and electrical grid infor-

mation services for monitoring of electricity grid network, in Chapter 4.

4. Data integration and analysis system for active hazard observation using social

media, in Chapter 5.

1.12 Thesis Structure

This thesis is comprised of six chapters; the organisation of the thesis chapters is

presented in Figure 1.4.

• Chapter 1, Introduction — This chapter explains the general background

of big data integration analysis for urban hazard management. The background

includes (i) the roles of Internet of Things technology, time-series data and social

media data in urban hazard management; (ii) urban risk analytics framework;

(iii) several topics on big data integration in hazard management; and (iv) the

overview of the Landslip project. It reveals challenges and research questions

for time-series data management, including IoT and social media data, in the

context of hazard management. Novel techniques of big data and analysis for

urban hazard management are introduced in this chapter, along with the thesis

contributions.

• Chapter 2, Literature review — This chapter is a literature survey of the

methodologies for social media data management and analysis for disaster man-

agement which is the key contribution of the thesis. A research taxonomy for

the analysis and management of social media data is proposed to provide a sys-

tematic literature survey. This chapter also includes Research gaps analysis on

big data integration in hazard management.
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• Chapter 3, Ontology-based Discovery of Time-Series Data Sources for

Urban Hazard Management — This chapter presents a methodology for

the integration of time-series data in the context of hazard management. The

Landslip Ontology (LO), a novel ontology providing a formal knowledge base of

landslide domain concepts, is proposed in this chapter to enable the integration

of time-series data from multiple heterogeneous data sources. The purpose of

the LO is to facilitate the discovery of time series data sources, an essential

component of time-series data integration, for timely verification and prediction

of landslide hazards. Ontology-based data sources discovery for landslide hazard

Early Warning System is presented in this chapter to demonstrate the data

integration methodology.

• Chapter 4, An Ontology-based System for Discovering Landslide-induced

Emergencies in the Electrical Grid — This chapter presents an application

of LO that harmonises the knowledge base of the landslide domain and electrical

grid information services for monitoring of electrical grid network. The appli-

cation demonstrates the utilisation of data integration across domains using the

technique proposed in Chapter 4.

• Chapter 5, Social Media Analytics System for Active Hazard Obser-

vation — This chapter presents a big data integration and analysis system for

active hazard observation using social media. It shows a concrete system as a

prototype that utilises the LO for bi-directional interaction between social media

users and the system to provide an active way of hazard information acquisition

from social media that includes the human in the loop.

• Chapter 6, Conclusion — This chapter concludes the thesis, along with the

discussion of future works.
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Literature Review

This chapter provides a survey of how social media data contribute to disaster manage-

ment and the methodologies for social media data management and analysis in disaster

management. This survey includes the methodologies for social media data classifica-

tion and event detection as well as spatial and temporal information extraction. Fur-

thermore, a taxonomy of the research dimensions of social media data management

and analysis for disaster management is also proposed, which is then applied in the

survey of existing literature and discussion of the core advantages and disadvantages

of the various methodologies.

2.1 Introduction

Disaster management has played a significant role in mitigating and minimising loss

of life and damage to properties and infrastructure. Effective disaster management

demands intelligent infrastructure for the collection, integration, management, and

analysis of a variety of distributed data sources including ground-based sensors, video

streaming, and satellite imagery [38]. The emergence of social network and crowd-

sourcing enables the application of human-centric approaches that allow the public to

provide essential disaster-related information that can be used to enhance the effec-

tiveness of disaster management in reducing the impact of natural disasters. Social

media data contain rich information about human activities, environmental conditions,

and public sentiment, which geographic information scientists, computer scientists and

domain scientists can use for data analysis [17–19]. Social media not only generates

massive volumes of data but also a wide variety of data types such as text, images,

and videos. In 2020, there were 3.5 billion social media users worldwide, equivalent to

about 45% of the world’s population [39]. Facebook had over 2.6 billion monthly active
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users (MAUs) and 1.73 billion daily active users as of March 31 2020. Twitter had 330

million MAUs and 145 million daily active users [40] in 2019. 500 million tweets are

sent by Twitter users every day, equivalent to 5,787 tweets per second [41]. Moreover,

there were 1 billion MAUs on Instagram as of June 2018, and 500 million daily active

users updated their stories. The large number of posts generated by these active users

exemplifies the variety of dimensions of social media data. For instance, Twitter data

comprises of several types of information, including account IDs, timestamps, user

tweets (e.g. texts, images, videos), coordinates, retweets and so forth. The volume,

velocity, and variety of data thus make it increasingly difficult for disaster managers

to extract relevant and timely information from such data.

A comprehensive taxonomical framework is presented in this article to effectively ex-

plore, assess, contrast and compare existing approaches that use social media data for

disaster management. Previous surveys in this subject area have mostly focused on

specific aspects, hence, they appear to be narrow and fragmented. Topics include: (i)

digital volunteerism [42]; (ii) disaster management lifecycle [43] including Warning, Im-

pact, Response, and Relief; and (iii) disaster response [44] and [45]; considering aspects

such as space, time, content, and network reach. Although the above-mentioned papers

classified the literature based on taxonomies that covered aspects related to the effect

of emergency occurrences on social media, social media data gathering and process-

ing, and social media’s effect on post disaster management, they are limited in scope

with only a “broad” significance. In contrast, we present a holistic and comprehensive

taxonomical framework. We propose a taxonomy that is much more exhaustive with

additional (sub-)dimensions that contribute to an “in-depth” understanding of end-to-

end challenges (e.g., data source, application, methodology, information dimension,

and language) related to managing social media data for detecting, predicting, and

responding to natural disasters. To date, this level of investigation has received lit-

tle attention, and this article aims to alleviate this gap. While the existing surveys

mainly discuss the novel techniques used to analyse social media data , their proposed

classifications cannot represent the overall perspectives for applying social media data

in disaster management. Overall, this survey proposes a novel taxonomy designed for

understanding all significant aspects of social media data management and analysis

- 24 -



Chapter 2: Literature Review

for disaster management challenges, ranging from data sources to social media ap-

plications. Our taxonomical framework’s main advantage is that it can provide the

guidance of data management processes required in the context of using social media

data for disaster management.

The focus of the work presented in this chapter is on understanding how social me-

dia data contribute to disaster management. We do this by surveying the literature

for methodologies for social media data management and analysis for disaster man-

agement. We classify social media data based on their sources, language, information

dimension, methodologies for data management, analysis, evaluation, and applications.

The aim of this work is to provide a useful classification that could potentially be used

to improve decision-making by enabling disaster managers to identify the appropriate

data sources and the corresponding methodologies for analysis and management.

The main contributions of this chapter are as follows:

1. identifying the research challenges involved in using social media data for disaster

management and the methodologies for data analysis and management

2. a research taxonomy for analysis and management of social media data

3. application of the proposed taxonomy to survey the existing literature of data

analysis and management.

The rest of this chapter is structured as follows: motivation for this work is presented in

Section 2.2 followed by the details of the survey method in Section 2.3. Classification

details are presented in Section 2.4 including a categorisation of the data sources,

language analysis, and identification of types of users. Languages presented in social

media data that are used for social media data analysis are discussed in section 2.5.

In Section 2.6, the approaches to how social media includes Spatial and Temporal

Information are discussed. The methodologies for social media data management and

the application of this data in disaster management are discussed in Sections 2.7 and

2.8 respectively before summarising the chapter in Section 2.9.
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2.2 Motivation

During natural disasters, social media can play an essential role in the emergency re-

sponse and provide a complete picture of situational awareness during and after the

disaster. There are several challenges in acquiring and extracting hazard-related infor-

mation from social media including volume, unstructured data sources, signal to noise

ratio, ungrammatical and multilingual data, and fraudulent message identification and

removal.

The massive amounts and variety of data generated by social media lead to a dif-

ferent level of information being extracted from the social media data. For instance,

geographical information (geo-tagging) attached to a tweet about a roadblock on a

hilly road provides more useful contextual information than a similar tweet without

geo-tagging. Similarly, a tweet with attached images could potentially provide more

situational awareness. For example, a tweet with photos of a roadblock in a hilly road

can help people who are driving on the road nearby to understand the current situation

of the roadblock and change to a new route away from the blocked area.

Due to the volume and complexity in such a large amount of social media data, it is cru-

cial to have tools and systems that can automatically classify and extract information

which could turn data into meaningful, actionable information to those attempting to

manage the situation. This information has to be systematically managed and made

available upon request and to be queried based on different query conditions. The

main dimensions of query include geo-location/geo-fence, keywords and their disam-

biguations, user type (e.g. government, NGOs, news agencies, public etc.), and type

of message (e.g. warning, news, SOS, request for supplies, general posts/tweets about

an ongoing or impending situation). It is also important for the system to remove

common false-positive patterns. For instance, the word “Landslide” in a tweet talking

about a landslide victory of a sports team could potentially be classified as a tweet

about a landslide hazard. To support this, the use of a tool such as an ontology can be

applied to yield meaningful information from complex data. For instance, an ontology

of landslides would represent the domain of landslide hazard through relevant terms

and relationships between them. These relationships provide formal definitions to the
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domain terms thereby enabling machines to understand and analyse them. Thus, the

knowledge represented in an ontology enables machines to perform intelligent tasks

such as interactively communicating with social media users to extract contextual in-

formation related to an event of interest, identifying the relation of this information

with the hazard of interest and providing this to the decision maker as a complete

picture to enable informed decision making.

An ontology-based approach is thus more sophisticated than traditional data man-

agement approaches since it combines the data model with the associated domain

knowledge that can be processed by machines to obtain semantically rich and mean-

ingful information [46]. Systematic extraction of important information and semantic

meaning of the free text in social media will help make the systems intelligent enough

to organise and present data in an actionable form. Similarly, Natural Language Pro-

cessing (NLP) is an important technology to understand and extract information from

user-generated text content. We reviewed several natural language processing methods

and case studies [47–49].

In this survey, the applications described above, including ontological support, NLP

and data mining, are reviewed in the context of social media and natural hazard

response and recovery.

2.3 Scope and Survey Procedure

In this section, we present a taxonomy of the existing research in social media data

management and the procedure for selecting the publications discussed in this chapter.

2.3.1 Scope

Social media data provide a rich footprint of real-world events that can be used to

facilitate the management of disasters. Several research works have proposed methods

for exploiting social media data for the efficient management of disasters. The scope

of our survey is determined by the common issues discussed in existing research works.

Based on these issues, we have developed a taxonomy of social media data management

and analysis for disaster management. Figure 2.1 depicts the taxonomy that shows six
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different aspects discussed in existing research including data source, language, social

media user, information dimension, methodology, and application.
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Figure 2.1: Taxonomy of Social Media Data Management

The taxonomy elements are described below.

• Data Source —refers to sources of social media data and ancillary data provided

by other sources (e.g. physical sensors, WSN, and Web Services) that are used

to facilitate social media data analysis in disaster management. We frame the

dimension of data sources into four sub-classes, Sensor, Social Media User, So-

cial Media Platform, and Third Party, based on the common attributes of data

sources mentioned in the selected papers. The Sensor class is divided into Phys-

ical Sensor, Human Sensor, and the Social Media User is divided into four types

of social media users including Government Authorities, Research/Academic In-

stitutions, Non-Governmental Organisations (NGOs), and Public.

• Language — refers to the language used for making a post on social media.

Language is classified into Global Language, Local Language, Mixed Language,

and Mixed Script types.

• Information Dimension — There are two major dimensions of information avail-

able in social media content, Spatial and Temporal. The methodologies for
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analysing social media content to extract spatial and temporal information are

also included in this category. The spatial dimension refers to the represen-

tation of geographical information in social media and the methodologies for

geo-location identification and analysis. The geographical information is present

in several ways, including Geo-tagging, User-defined, and Spatial Coverage. The

Temporal dimension refers to the utilisation of temporal information describing

disaster-related events in the existing system for event detection. The temporal

dimension is further classified as Pre-event, Real-time, and Post-event based on

the temporal categories of real events.

• Methodology — refers to the methodologies and algorithms used to analyse so-

cial media data, especially the spatial and temporal information. We categorise

the methodology based on data analysis stages that include Methodology for

Data Management and Methodology for Data Analysis. The evaluations for each

methodology are also summarised.

• Application — refers to the current uses of social media data for disaster man-

agement that are classified into two aspects of Disaster Management Phases and

Disaster Management Types.

2.3.2 Research Gap Analysis

The recent emergence of cloud services, for instance, Microsoft Azure, Google App

Engine, and Amazon Web Services, provides virtualised hardware resources and Big

Data Processing Frameworks (BDPFs) to facilitate the development of Early Warn-

ing System for urban hazard management. However, state of the art in efficiently

undertaking multi-source and multi-dimensional big data analytics for urban hazard

domains is still relatively primitive. For example, BDPFs such as Apache Mahout

and Apache SAMOA provide a platform for developing and executing classification

and event detection algorithms (based on machine learning algorithms for NLP) over

Apache Hadoop and Apache Storm, respectively. However, they do not guide how to

define and model “events” relevant to a particular data source type or how to train

the existing NLP algorithms to automatically detect and query [50] these events from
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the real-time and historical data. Moreover, BDPFs do not know the underlying ma-

chine learning algorithm and the overarching data analytics application. Hence, they

are unable to adapt to the algorithm’s performance based on application requirements

and cloud resource availability. Furthermore, there is still a gap in the development

of unsupervised machine-learning approaches that can help match a given data source

to the best and most accurate machine-learning algorithm based on application-level

goals [51] — for example, by maximising event detection accuracy and precision, min-

imising querying latency across multiple data sources. Furthermore, the Spark project

at the University of California, Berkeley, released a new heterogeneous data querying

engine called Spark SQL [52]. Spark SQL’s DataFrame API is able to manage a dis-

tributed collection of data organised into named columns [52], which is similar to a

traditional database. Multiple data sources from both external databases (JavaScript

Object Notation, relational database management systems, or Apache Hive) and in-

ternal Spark data collections can be manipulated and processed through this API.

Additionally, the mechanisms of multi-dimensional querying and ad hoc analysis are

important to urban risk analysis frameworks. Integrating online analytical process-

ing—a business intelligence technique—with DataFrame is one potential challenge for

big data integration. Although Spark SQL can query multiple structured data sources,

it cannot automatically integrate and resolve dependencies across those data sources

in a multi-dimensional querying context, as noted.

Integrating and analysing heterogeneous sensor data from multiple data sources in

an urban risk analytics framework is very hard due to the variety of data formats

and sources. An effective urban risk analytics framework is driven by enabling tech-

nologies, which can range from IoT sensors technology to remote sensing technology.

Moreover, with the high volume and extremely high rate of the data streams generated

by heterogeneous sensors, ontology and Semantic Web technologies have emerged as

one possible solution for integrating heterogeneous data. In other words, to develop

an effective mechanism for urban risk data integration, there is a strong requirement

to provide a formal description of the relationships among the variety of data sources.

Ontology engineering is a widely used technique in data integration, in which a knowl-
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edge base is captured from multiple sources such as domain experts, articles, processes,

and knowledge is modelled using some standardised ontology language (for instance,

the Web Ontology Language). Recently, several methodologies have been proposed for

developing multisource data integration ontologies [53]. METHONTOLOGY [54] is

one method that is widely used to develop ontologies in several domains. This method

provides completed processes that cover the whole lifecycle of ontology development.

Based on this, ontology engineering has become important in establishing a common

understanding among experts from different areas that are working toward urban risk

data analytics frameworks.

The Semantic Sensor Network Ontology (SSN) 1 [28] is a W3C standard for describing

the concepts of sensors and observations. These concepts include sensor and sensor

network modeling, measuring capabilities, sensor data, constraints, processes, deploy-

ments, and so on. SSN is widely used in sensor-based applications, including satellite

imagery, scientific monitoring, and industrial infrastructure. SSN is a key ontology

used for integrating varieties of sensor data and analysing disaster events. However,

these comprehensive concepts do not cover descriptions related to specialised urban

risks such as flooding, tsunamis, landslides, and so on.

2.3.3 Survey Procedure

The taxonomy presented in 2.3.1 is defined based on the common research issues

mentioned in the selected publications in this survey. Our process for choosing the

publications is divided into three main steps: (i) taxonomy and keyword determination;

(ii) publication search; (iii) publication review; and (iv) publication selection.

• Step i. Taxonomy and keyword determination — We created a primary

taxonomy and identified keywords based on the application of social media data

in disaster management. The taxonomy and keywords were determined based on

the requirements of our ongoing Landslip project2. The keywords were further

used in step ii to search for publication candidates. Further, the set of keywords

and taxonomy were iteratively refined throughout the process. We also used the

1www.w3.org/TR/vocab-ssn/
2http://www.landslip.org
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keywords provided in the selected papers (in step iv.) to identify more keywords

and analyse the critical issues in the selected papers to refine the taxonomy.

• Step ii. Publication Search — We searched for publication candidates from

several potential repositories based on the set of keywords identified in step i.

The main publication repositories and search engine used in this step included

IEEE Xplore3, ACM Digital Library4, SpringerLink5, ScienceDirect6 and Google

Scholar7. In addition, search results from Google Scholar directed to the sources

of the publication candidates, which included ResearchGate, JMR, ScienceAd-

vances, PLOS, MDPI, and Tandfonline. The keywords can be classified into three

main classes: Social Media (e.g. Social Media, Social Network, Crowd-sourcing,

Twitter, Microblogs), Disaster (e.g. Disaster Management, Emergency Man-

agement, Landslide, Earthquake, Flood, Rainfall), and Data Management and

Analysis (e.g. Data Analysis, Data Management, Data Mining). The search

for publications was based on the combinations of keywords from these classes,

which helped to narrow down the search leading to more focused and relevant

results.

• Step iii. Publication Review — The search results of publications returned

from repositories and search engines were reviewed and selected as candidates

based on information provided in the title, keywords, and abstract of the pub-

lications and relevant to one of the scopes defined in the taxonomy (Section

2.3.1). As a result, 200 publications from the repositories and search engines

were selected as publication candidates.

• Step iv. Publications Selection — We scanned through the contents in the

publication candidates and selected the publications for this survey based on

their relevance to terms in the taxonomy. For example, [16] is one of the selected

papers that provides information relevant to all terms defined in the taxonomy

shown in Section 2.3.1. Accordingly, 40 publications from several repositories

3https://ieeexplore.ieee.org
4https://dl.acm.org
5https://link.springer.com
6https://www.sciencedirect.com
7https://scholar.google.com
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Table 2.1: Number of selected publications from repositories and search engines

Repository Num of publications

IEEE Xplore 12
ACM Digital Library 9
ScienceDirect 7
SpringerLink 4
Others (via Google Scholar) 8

and search engines were selected. These are presented in Table 2.1. Next, we

analysed the selected publications to extract more keywords and update the list

of the keywords identified in step i. Furthermore, critical issues mentioned in

the selected papers were used to refine and update terms and sub-terms in the

taxonomy.

2.4 Data Source for Social Media Data Analysis

Effective disaster management demands high quality and rich data from many data

sources that are related to the disaster of interest. Data sources could be any sensors

and data services that provide data to a data consumer. This section presents four main

data sources for social media data analysis classified in the taxonomy as Sensor, Social

Media User, Social Media Platform, and Third Party. We analyse the characteristics

of data sources for each aspect used for disaster management.

2.4.1 Sensor

The subclass Sensor includes data sources that produce original data for social media

data analysis. Such data sources include physical sensors (e.g. remote sensing, in-

situ sensor, wireless sensor network) and human sensors (e.g. social media, blogs and

crowd sourcing). A physical sensor is a set of physical sensing devices that observe

and measure physical phenomena and transform observation and measurement into

a human-readable form. On the other hand, a social or human sensor comprises of

human activities and interactions to observe real-world events and produce information

in the social network[55].
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• Physical Sensor — Earth Observation (EO) and ancillary data generated from

physical sensors can enhance the effectiveness of social media data analysis for

disaster management. There are several types of sensors generating EO and an-

cillary data. The in-situ sensor is a basic sensor that is deployed in the place of

interest to observe and measure the physical phenomena directly. Examples of

in-situ sensors include temperature sensors, rain gauges, and soil moisture sen-

sors. In-situ sensing is suitable for analytics that requires high accuracy observa-

tion. Furthermore, Wireless Sensor Network (WSN) [56] is an advanced in-situ

sensor system that consists of spatially distributed sensors, called nodes. Each

node is usually equipped with wireless connectivity, a microcontroller, a power

source and multi-type sensors. Based on this, data observed by each node can

be exchanged among nodes within the system. With the computing capability,

WSN can be applied in many applications, including industrial process monitor-

ing and control, machine health monitoring, natural hazards and fire detection.

Even though the in-situ sensing method can provide highly accurate data, the

deployment of in-situ sensors to cover a wide area is difficult and extremely ex-

pensive. Remote sensing technologies (e.g., radar, satellite and airborne) have

thus been used to remotely sense physical and environmental conditions and

generate observation data that cover a wide area.

• Human Sensor — Human sensors utilise people to observe and measure real-

world phenomena and generate different types of observation data including so-

cial media data. The emergence of social networks and mobile applications has

enabled people to report about observed events. These activities are considered

as human sensing [16] and can be a significant data source for effective urban risk

analytics. The data sources include RSS feed, social media, Instagram, Twit-

ter, Facebook, SMS, and online news. Similarly, crowdsourcing is a process that

encourages people to give their contributions with regard to certain tasks in a

specific context. This process is widely used in disaster management applica-

tions where people can report a disaster event they observed. For example, in

2010, people used Ushahidi, a web-based and mobile crowdsourcing application,

to report about the earthquakes in Haiti [57].
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The integration of physical sensor and human sensor data sources can enhance early

warning and decision making in hazard management. In addition, social media data

analysis utilises data produced by the human sensor to detect warning signs and other

hazard-related events. However, the warning sign observed by social media users who

are unknowledgeable about hazards requires additional processes to verify the potential

of hazards. Based on this, Earth Observation (EO) and ancillary data generated from

physical sensors play an important role in the verification and prediction processes.

Spatial (e.g. geo-locations) and temporal (e.g. observation times) attributes are the

most common attributes of the physical sensor and human sensor data sources to select

potential physical data sources for the verification.

2.4.2 Social Media User

Messages originating from different accounts in social media have different quality and

trustworthiness [58]. For instance, official accounts used by government agencies are

likely to have more trustworthiness than public users with personal accounts. However,

although government agencies that are responsible for the management of disasters

use social media to disseminate disaster-related information, they still play a limited

role in the communities. Instead, it is the public users that play a significant role in

contributing to information networks during disaster events. Paper [59] shows different

distributions of Twitter users participating in various disaster events with public users

having a clearly greater percentage of participation. To summarise, different types of

social media users play different roles in disaster management, each providing different

context, quality and trustworthiness of social media data. In this chapter, we classify

types of social media users as government authorities, research/academic institutions,

Non-Governmental Organisations (NGO), and the public.

• Government Authority — refers to government organisations involved in dis-

aster response and support. These organisations are authorised to: (i) dissem-

inate official announcement and actionable warning information to people in a

disaster risk area e.g., National Disaster Management Authority (NDMA) and

(ii) provide supporting information for disaster management e.g., Geological Sur-
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11/29/2020 survey_taxonomy
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Figure 2.2: Social Media User

vey of India (GSI), British Geological Survey (BGS) and national Meteorological

Offices.

• Research/Academic Institution — refers to institutions or research groups

who are conducting research on disaster management.

• Non-Governmental Organisation (NGO) — refers to private-sector organi-

sations that are disseminating disaster-related information on social media. This

user type contributes a greater percentage of information than the government

authorities and provides higher quality of information compared to the informa-

tion provided by individual users. Examples of NGOs include Save the Hills,

CNN, and ANI.

• Public — refers to individual users with personal social media accounts. This

user type makes the most contribution to social media by sharing disaster-related

information. With a huge number of users in this category, it constitutes the

greatest percentage in information networks compared to other types of users.

Most research [23, 60–64] relies on information contributed by public users even

though the information may be of uncertain quality and trustworthiness. As a

consequence, social media data preparation techniques (e.g. data filtering, data

classification, and data extraction) to improve data quality and enhance the

accuracy of social media data analysis proves challenging.

2.4.3 Social Media Platform

Generally, social media data are directly accessible from social media platforms (e.g.

Facebook, Twitter, and Instagram). These platforms are considered as major data
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sources for social media data analytics in disaster management. Most social media

platforms provide HTTP-based APIs for data consumers to access their social media

services (e.g. data service and analytics services). Data consumers can use their tools

to communicate with the respective APIs to collect and store social media data for their

purpose [65]. For example, Twitter provides search APIs which enable consumers to

find historical or real-time data by using keywords or hashtags. Much research on using

social media data for disaster management utilises such APIs to access social media

data directly from the social media platform [23, 60–62]. Due to the unstructured

characteristics of social media data and indeterminacy of originated sources, the quality

and trustworthiness of the collected social media data become significant issues [58].

Based on this, additional processes (e.g. data filtering, data classification and data

extraction) for data preparation are required. Due to privacy concerns, some of the

social media platforms (e.g. Facebook and Twitter) have put several restrictions on

data access.

2.4.4 Third Party

Social media data are also collected and organised by organisations and institutes for

specific purposes. Due to the benefits of Open Data, some of them have been inter-

ested in opening their collected social media data for others [58]. These organisations

are considered as alternative data sources for social media data. This section discusses

the different methods of accessing social media data. Third parties who provide their

collected social media data are considered as alternative data sources for conducting

research on social media data analytics for disaster management. This social media

data is collected and organized in a specific way to be used for a specific purpose.

For example, CrisisLexT26 [63] provides crisis-related tweets during emergency events

which are collected from Twitter by using crisis-specific keywords. CrowdFlower [66]

provides the Figure Eight platform for free open datasets. These include tweets rel-

evant to various kinds of disasters. Most social media data collected by third-party

data sources is usually prepared using additional processes to provide higher quality

datasets. As well as using datasets from third-party data sources for disaster manage-

ment, such datasets can be used as training datasets and evaluation for data analysis
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in many research on disaster management. For example, [64] utilises datasets from

CrisisLexT26 and CrowdFlower as training datasets for identifying disaster-related

tweets.

Table 2.2 depicts some existing works that use social media data sources for disaster

management. Twitter is a major source of social media data which can be accessed

via the Twitter API.

Table 2.2: Data Source of Social Media for Disaster Management

Data Source

References Physical Sensor Human Sensor Access Method

[16] USGS, NOAA
Flickr
crowdsourcing

Web, Web Services

[57] -
Ushahidi
crowdsourcing

Mobile App,
Web Services

[55] - Twitter
Direct access via
Twitter APIs

[23] - Twitter
Direct Access via
Twitter APIs

[60] - Twitter
Direct Access via
Twitter APIs

2.5 Language

Language refers to the language used for making a post on social media. Languages

of the social media data are investigated and classified into four categories: global

language, local language, mixed language, and mixed script.

• Global Language — refers to social media posts that are in English.

• Local Language — refers to social media posts in languages other than English.

• Mixed Language — refers to social media posts that are a combination of two

or more languages.
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Figure 2.3: Language

• Mixed Script — refers to social media posts that are in a stylistic or linguistic

variation of two or more languages. For example, a Twitter user may tweet in

Hindi language using English script.

Table 2.3 illustrates the variety of languages presented in social media data. Social me-

dia posts in English are used in most research, and English is also a common language

for social media posts in mixed language. Moreover, multiple local languages can be

seen in the social media post in some research. Such variety has become challenging in

the understanding of text based information produced by social media. Here, Natural

Language Processing (NLP) has played an essential role in understanding and extract-

ing useful information from the text information and facilitating disaster management.

Research works in NLP are discussed in section 2.7

Table 2.3: Language Used in Social Media for Disaster Management

Language

References Global Local Mixed Language Mixed Script

[23] X - - -
[60] X Arabic English, Arabic -
[67] X - - -
[68] X Filipino English, Filipino -
[69] X Hindi English, Hindi Hindi
[70] X Spanish, German - -

2.6 Information Dimension

This section presents two major dimensions of information, spatial and temporal, which

are essential parts of social media data for disaster management as we explain below.
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We also investigate the variety of methodologies for analysing social media contents

to extract the spatial and temporal information.

2.6.1 Spatial

Although spatial representation of social media data such as geo-location plays an

essential part in social media-based event detection or event analysis, there is little

social media data that provides information about users’ location [71]. Furthermore,

there is a variety of location information represented in social media ranging from a

very precise location using geographic coordinates (e.g. longitude and latitude) to a

very fuzzy location using descriptive language (e.g. city name).

Geographical information is represented in several ways on social media as shown in

figure 2.4.

Data Source

Physical Sensor Human Sensor Access Method

Direct Access Third-Party

Language

Global Language Local Language Mixed Language Mixed Script

Social Media User

Government
Authorities

Research/Academic
Institutions

Non-Governmental
Organizations (NGO) Public

Spatial

Geo-tagging User-defined Spatial Coverage

Temporal

Pre-even Real-time Post-event

Figure 2.4: Spatial Representation of Geographical Information in Social Media

• Geo-tagging. The social media systems attach geographical information auto-

matically or manually (by users) when the users post a message.

• User-defined.The user will mention the location in the post, either as the place

name or as geographic coordinates.

• Spatial coverage. Many posts only mention the geographical extent such as

the town/village/locality, or a district, or a country/province, or the continent

or similar information.

Several approaches have been proposed in the literature to address the issues of spa-

tial representation in social media. Here, we present the state-of-the-art methods to

identify and analyse the spatial information of social media data.
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Geo-location identification The research in [71] shows that 0.42% of all tweets have

the latitude and longitude function to tag their geo-location, and out of 1 million Twit-

ter users, only 26% have listed a city name. In most cases, general expressions (such as

California), or nonsensical expressions (such as wonderland) are used. This research

aimed to detect the location of the tweets that do not clearly mention geographic infor-

mation. To this end, the authors proposed a method to compute the probability that

a word links to a city. In order to improve accuracy, the authors introduce a model

of spatial variation for analysing the geographic distribution of words in tweets. [72]

mentioned that geo-location information in tweet data may have noisy signals. For

example, a user in the UK tweets about a Houston Rocket’s game or his vacation in

India. To overcome this, the authors integrate two types of signals (user’s friend and

user’s tweet’s nearby location) from a social network to predict a user’s location.

Geo-location analytics The authors in [73] discussed the effect of the earthquake on

the East Coast of the United States (US) on August 23, 2011 by analysing the collected

tweet data. The main finding of the paper is the patterns between the distance from

the epicentre and the time after the earthquake. [74] used sensor data to identify the

flood-affected regions. The authors performed some statistical analysis of the collected

data to find the general spatial patterns and to explore the differences between the

spatial patterns among the relevant tweets. On the other hand, methods such as

Kernel density estimation (KDE) have been widely used in clustering the activities

of Hurricane Sandy [75] and spatial hotspot detecting for the 2012 Beijing rainstorm

[18].
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2.6.2 Temporal

Most of the social media applications attach a time-stamp to the data posted. The

temporal relation between events can be derived from the time-stamp of the event and

the content. We studied how temporal information is used in the existing systems

for event detection. In the context of event detection, we categorised the temporal

information into three categories as follows:

Data Source

Physical Sensor Human Sensor Access Method

Direct Access Third-Party

Language

Global Language Local Language Mixed Language Mixed Script

Social Media User

Government
Authorities

Research/Academic
Institutions

Non-Governmental
Organizations (NGO) Public

Spatial

Geo-tagging User-defined Spatial Coverage

Temporal

Pre-event Real-time Post-event

Figure 2.5: Temporal

• Pre-event: Represents the time period before the occurrence of the event of

interest. In general, a social media message that is posted before the event

occurrence can be analysed to derive the following information: (i) warnings -

e.g. a post about bad weather from Met-Office before heavy rainfall or a cyclone

alert etc. serves as a warning message for an impending natural disaster, (ii)

precursor event detection - e.g. social media post about leaning electric pole

in a location can serve as a precursor for landslide event detection, and (iii)

temporal offset - pre-event posts from social media are analysed to determine

the offset between the time of the post and time of the actual event such as, for

instance, the time taken after the leaning pole post and the actual landslide in

that locality. Pre-event posts from social media can thus be utilised for serving

the mitigation and preparedness phases of emergency management.

• Real-time: Represents the time span during which the event is happening.

In the real-time of the event occurrence, social media may be widely used for

information sharing about the incidents related to the event. Generally, the real-

time posts from social media, during the occurrence of the event, can be analysed

for: (i) obtaining situational awareness - e.g. “trains cancelled, schools closed in
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Kerala due to heavy rains”; a social media post about“roadblock due to landslides

on NH-8”, (ii) deriving/issuing warnings about the after-effects/impacts of a

disaster - e.g. “high tides are expected in coastal areas after the tremors”, and (iii)

response, relief and recovery - e.g., a tweet during Kerala flood 2018: “shortage

of bubble wrap and ready to eat items in Sanskrit College Palayam”.

• Post-event: Represents the time period after the occurrence of the event of

interest. Often after disasters, social media is widely used to communicate about

supplies required, information about missing people, death toll, property loss,

relief operations planned by the government and NGOs, protective measures to

be undertaken while returning home, funds donated by various authorities, etc.

Thus, the post-event data can generally be analysed for: (i) warning of further

events, (ii) deriving information on the impact of the event, (iii) identifying the

relief and recovery measures required, and (iv) determining the temporal offset

between the time of the post and time of the actual event.

It is important to analyse the behaviour of the public/communities before, during

and after disasters for bringing in effective disaster response, management, planning,

and mitigation. Since social networks serve as the easiest and most common way for

sampling public opinion, we can make use of the time-stamped, geo-tagged data from

social media for this purpose. Chae et al. [76] explain about the temporal analysis of

Twitter data related to hurricane Sandy wherein they analyse the Twitter user density

distribution two weeks before and after the date of the event as well as for a time

period on the day of the event, right after the announcement of the evacuation order.

A similar study on the spatio-temporal analysis of Twitter data for the same disaster

event was performed by Kryvasheyeu et al. [77], according to whom, the persistence

of the Twitter activity levels in the time frame immediate to the occurrence of the

event (post-event) is a good indicator to determine which areas are likely to need the

most assistance. Further, during a disaster, normalised activity levels, rates of original

content creation, and rates of content rebroadcast must be considered to identify the

hardest-hit areas in real-time. In [78], the number of tweets during the Christchurch,

New Zealand earthquakes were analysed over time for a window of five minutes. The
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analysis indicated that when a 4.2 magnitude or stronger earthquake occurred at a

particular time, it correlated with the spike in the number of tweets over that time

frame.

Another crucial factor to be considered while choosing the time frame for social media

data collection is the type of disaster. For disasters like landslides, floods, and storms,

we may be able to capture some of the warning signs for these events from the social

posts before the actual occurrence of these events whereas for other events such as

wildfires and earthquakes, the posts relevant or related to them may surface only after

the occurrence of these events. Wang et al. [79] analysed wildfire-related tweets of some

of the major wildfires that occurred in San Diego County, US, with respect to space,

time, content, and network by collecting Twitter data from the day when the first

wildfire occurred to the date when most of these wildfires were 100% contained. The

temporal evolution of wildfire related tweets obtained using different keywords, with

and without the location, gave an insight into the time-lag taken for the spreading of

the information. Furthermore, as Granell and Ostermann mention in [80], the duration

of the impact of these events also affects the temporal and contextual variation in

the data related to these events. For instance, real-time and post-event data can be

utilised for disaster response and recovery whereas pre-event data can be utilised for

preparedness and planning. A case study to analyse the social media text during and

after the 2012 Beijing Rainstorm is described in [18], where the authors performed

time-series decomposition of the data to identify the overall trend and variations with

respect to different development stages of the event as well as the cyclical trends

of microblogging activity. They concluded that the trend analysis of text streams

for different topics over time corresponded well to different development stages of the

event. For example, texts related to the event increased in the week after the rainstorm

following which, they began to subside slowly, and finally faded out.

The classification of these social media messages into different contextual categories

and their analysis over time helps to identify the transition between various phases of

disaster management and supports effective decision-making for disaster preparedness,

response, and recovery. [81] presents a classifier based on logistic regression, which

automatically classifies the gathered social media data into various topic categories

- 45 -



Chapter 2: Literature Review

during various disaster phases and the temporal trend of these topic categories in

different phases. The experimentation using tweets related to hurricane Sandy revealed

that: i) tweets regarding preparedness reached their peak on the day before the event

when the emergency declaration was issued, ii) a large proportion of tweets related

to impact are observed within a few days of the event occurrence, and iii) the largest

peak of tweets related to disaster recovery was observed five days after the event.
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2.7 Methodology

In the previous section, we discussed the state-of-the-art methodologies and algorithms

used in research for extracting the spatial and temporal information from social media.

However, methodologies and algorithms are used in all stages of social media data

analytics. In this section, we categorise the most popular methodologies applied in

social media data based on the data analysis stages.

11/29/2020 survey_taxonomy

1/1

Methodology

Data Management Data Analysis Evaluation

Taxonomy

Data Source Language Social Media User Spatial Temporal Methodology Application

Application

Disaster  Management Phase Disaster Management Type

Methodology

Data Management Data Analysis

Figure 2.6: Methodology

2.7.1 Methodologies Used for Data Management

Data management for social media includes collecting, indexing, storing and querying

of social media data for accessibility, reliability and timeliness of the data. Social

media is generating a large volume of data everyday. For instance, according to [82],

Facebook generates around four petabytes of data every day. The sheer amount of

data itself poses a significant challenge in social media data management, making it

a Big Data problem. Data management and analysis systems for social media data

must therefore be able to handle the four Vs of Big Data analytics namely, volume,

variety, velocity and veracity. In this section, we present the state-of-the-art in various

systems and in research involving social media analytics for disaster management.

From the data management perspective, we reviewed how data are collected, filtered,

pre-processed, localised, stored, indexed and queried.

Maynard et al. [49] present a framework for real-time semantic social media analysis,

which is based on the popular open-source framework for natural language processing

GATE [83]. For the evaluation of the framework, they used the Twitter streaming

API for data collection. Both streaming and batch processing approaches have been

evaluated. GATE Cloud Paralleliser (GCP) [84] was used to perform batch processing
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of text, which supports execution of NLP processing pipelines with millions of docu-

ments. It performs the pre-processing and transformations required to load into the

main information management system in the GATE pipeline, Mı́mir (Multi-paradigm

Information Management Index and Repository). It also supports indexing of text,

annotations and semantics. In real-time stream analysis, the Twitter client is used to

capture data from the Twitter streaming API to feed into a message queue. Separate

semantic analysis processors analyse and annotate the text and push into Mı́mir, which

in turn enables semantic search using the knowledge encoded in knowledge graphs or

ontologies[85]. This enables the indexed documents to form semantic relationships and

thus making it easy to perform complex semantic searches over the indexed dataset.

GATE Prospector [48] is used for exploring and searching datasets in the Mı́mir sys-

tem. This system is reviewed in the next section.

Kim et al. propose a conceptual framework [86] for social media data collection and

quality assessment. The framework’s strategy consists of three major steps to de-

velop, apply and validate search filters. Retrieval precision and retrieval recall are

measured. Quality assessment of data collection is an important aspect of analysing a

large amount of data such as social media contents. This is very much relevant in the

disaster management scenario. Search filter development is performed with keyword

selection, which includes disambiguations and slang words, and this procedure was

generally performed manually by domain experts. Search filters are developed using

standard logical operators like AND, OR, NOT and by involving data pre-processing

techniques such as n-gram analysis and proximity operator. D-record [87] utilises

three data sources: Twitter, OpenStreetMap and satellite images. A set of keywords

for a needed concept was expanded using topic modelling learned using an SVM-based

classifier with SMOTE. Goonetilleke et al. in ”Twitter Analytics: A big data man-

agement perspective” [47] reviewed several open source and commercial tools for data

collection, management and querying for Twitter, many of which have been used in

disaster management applications. Wang et al. 2013 and Wang et al. 2010 [88][89]

developed a scalable CyberGIS for analysing large amounts of social media content in

a natural disaster context. The system employs data fusion techniques to fuse social

media data with census data and remote-sensing imagery. Slamet et al. proposed a
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system design [90] to find a Secure Place Locator (SPL) which covers a system infor-

mation engineering aspect. It involves combining multiple data sources like location

databases, governmental information and information from the community as it uses

a relational database model to store and process the data.

Yates et al. performed a case study on emergency knowledge management and social

media technologies [91]. The study investigated social media and related tools for

effective knowledge management. It discusses how US Government agencies use social

media data as an informal information dispersal mechanism and also studies how visual

information layering helped the disaster management scenario.

Apart from text information, the use of multimedia data, such as images, audio, and

video, in extreme event management [92] remains challenging due to the variety and

complexity of the social media contents. Such events require sophisticated techniques

to represent and analyse the multimedia contents to understand extreme events better.

Research work in [93] proposes a novel data model based on a hypergraph structure

to manage the massive amount of multimedia data produced by social media. The

proposed data model comprises three different entities, users, multimedia objects, and

annotation objects, to represent the variety and complexity relationships of the mul-

timedia contents. This approach enables merging social media contents from different

social media platforms in a single data structure. Here, the influence diffusion algo-

rithm [94] has been proposed to investigate social media users who have significant

interactions on a particular social media object.
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2.7.2 Methodologies Used for Data Analysis

In [96], researchers have shown an example of an earthquake event and early warn-

ing using a social approach. It is accomplished by integrating semantic analysis and

real-time data from Twitter. They have made two primary assumptions that each

Twitter user is a sensor, and each tweet is associated with a time and location. Se-

mantic analysis is used for classifying tweets into positive and negative classes. Tweets

related to earthquake events are classified as a positive class, while tweets unrelated to

earthquake events are classified as a negative class. Furthermore, they use the machine

learning algorithm Support Vector Machine (SVM) for tweet classification.

On the other hand, Latent Dirichlet Allocation (LDA), a topic modelling technique in

the information retrieval domain, is used in [97]. LDA is used to extract the inherent

topic structure from a set of social media messages, and the extracted topic refers to

an event (e.g. 2011 Virginia Earthquake).

The authors have given an example of topics and their proportion of each topic to all

messages and showed how earthquake events, captured from the topics, constituted

a small proportion of messages. Using the LDA topic model approach, meaningful

topics are discovered with many iterations. Abnormal events, captured from extracted

topics, do not happen frequently and cover only a small fraction of the social media

data stream. In order to identify such abnormal events, the authors use Seasonal-Trend

Decomposition based on locally-weighted regression (Loess) known as STL. In STL,

the reminder component is used to implement control charts. The detected anomaly

events are compared with other social media data to confirm the anomalies.

A candidate retrieval algorithm is used in [98] for retrieving events from the database.

The authors implement feature extraction for extracting spatial, temporal and textual

information and then used scoring and ranking to determine which document belongs

to what event. SVM based classification is the methodology used in this paper for

event detection.

An architecture for a public health surveillance process using SMART-C is presented

in [100]. The architecture explains the data sources with their modalities, users, and

services provided by the underlying system to enable enhanced situational awareness
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and informed decision making during all phases of disaster management. The authors

discuss the requirements for implementing the following services: event classification/-

grouping, semantic reasoning, location determination, event extraction, speech analy-

sis, text analysis, video analysis, sensor analysis, geospatial analysis, response planning

and generation, and alert dissemination service. They also present a discussion on se-

curity and privacy, event detection, and correlation.

Classification and information extraction from Twitter is carried out in [67]. The

authors use free software parts of speech tagging for Twitter and Weka data mining

tools. For classification purposes, they first broadly classify the tweets into personal,

informative and other tweets. They further classify the informative tweets into: (i)

caution and advice, (ii) damage, (iii) donations, (iv) people, and (v) other. They use

a Naive Bayesian classifier for feature extraction and use unigram, bigrams, and Part-

of-Speech (POS) tagging to provide a rich set of features in the classifier. Once a tweet

is classified, a sequence labelling task identifies relevant information using conditional

random fields.

A participatory sensing-based model is discussed for mining spatial information of ur-

ban emergency events in [101]. The researchers conduct simulations on the typhoon

event, Typhoon Chan-hom. They propose a hierarchical data model with three differ-

ent layers: (i) Social user layer, (ii) Crowdsourcing layer, and (iii) Spatial information

layer. In the Social user layer, the proposed method collects data related to emergency

events. In the Crowdsourcing layer, the positive samples are collected, and the address

and GIS information are mined. Information related to the same emergency events is

clustered in this layer. In the Spatial information layer, the spatial information of the

emergency event is mined. Semantic analysis on the geo-tagged microblog data helped

obtain a public opinion from the spatial perspective and assistance could be offered

where it was required. From the collected data, it was observed that the risk was high

in Beijing, Zhejiang, Jiangsu, and Shanghai.

In [71], the authors propose a probabilistic framework for identifying the location of

a Twitter user based on the content of their tweet. The authors use a simple cart

classifier to classify the tweets with strong geo-scope and then use a lattice-based

neighbourhood smoothing model to refine user location. They also show that, with an
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increase in the number of tweets, the location estimation process converges.

The authors in [72] propose a unified discriminative influence model to solve the prob-

lem of profiling users’ home locations on Twitter. They adapt probabilistic methods

for local prediction and global prediction for profiling user location. Local prediction-

based profiling uses the user’s friends, followers and their tweets to profile the user’s

location efficiently, whereas global prediction, in addition, uses unlabelled users to ac-

curately profile user location. In D-record [87], text sentences are vectorised to capture

their semantics. Before featuring, the text is pre-processed by stemming, case folding

and removing noisy lexical elements using SVM classifier with a lexicon-based feature,

TF-IDF vectors and gensim’s word2vec embedding.

2.8 Application

In this section, we investigate the contribution of a social media application in the

context of disaster management strategy, which is a discipline to deal with disasters

or avoid disasters where possible. In general, disaster management strategies consist

of four phases: Mitigation, Preparedness, Response, and Recovery [102]. These four

phases demand supporting tools and technologies for effective disaster management.

Several recent research works have utilised social media data to address problems in

different types of disasters and phases of disaster management. According to EM-DAT

[103], there are two general groups of disasters: natural disasters and technological dis-

asters with several types of disasters within each of these groups. Figure 2.7 depicts

two significant dimensions of social media applications in disaster management stud-

ied in this chapter, disaster management phase and disaster management type. The

disaster management phase represents the stage in life-cycle of disaster management

contributed by social media applications whereas the disaster management type rep-

resents a disaster group of applications. Based on these dimensions, we investigate the

current coverage of existing social media applications for disaster management and the

overall picture of existing applications.
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Figure 2.7: Dimensions of Social Media Applications in Disaster Management

2.8.1 Disaster Management Phases

Disaster management phases describe the normal life-cycle of a disaster and provide

a useful framework for response [102]. As we have already established, there has been

an increased use of social media in different phases of disaster management. Several

techniques for the application of social media for disaster management have been

proposed in the literature. As presented in Sections 2.6.1 and 2.6.2, social media data

is usually generated with spatial and temporal information. Such information can be

used to facilitate disaster management in different phases.

• Mitigation — the actions to minimise the cause and impact of hazards and

prevent them from developing into a disaster.

• Preparedness — the action plans and educational activities for communities

to confront unpreventable hazard events.

• Response — the actions to protect people’s lives and properties during hazards

or disaster events.

• Recovery — the actions to restore damaged properties and communities’ in-

frastructures and to cure people of their illnesses.

2.8.2 Disaster Management Types

Disaster management types refer to groups of disasters, which are classified based on

the root cause of the disaster. According to the International Disaster Database (EM-
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Table 2.7: Application of Social Media Data in Disaster Management

Application

Publications Disaster Management Phase Disaster Management Type

[16] Preparedness, Response Technological, Natural

[76]
Preparedness, Response,
Recovery

Natural disaster

[77]
Preparedness, Response,
Recovery

Natural disaster

[18] Response Natural disaster
[81] Preparedness, Response Natural disaster

DAT) [103], there are two main groups of disasters, natural disasters and technological

disasters.

• Natural Disasters — are natural events that emerge from natural processes or

phenomena and may cause loss of people’s lives and properties. Natural disasters

are further divided into six sub-groups: Biological, Geophysical, Climatological,

Hydrological, Meteorological and Extra-terrestrial disasters. Some examples of

natural hazards are flood, landslide, earthquake, and tsunami.

• Technological Disasters — these are disasters that are a consequence of tech-

nological processes or human activities. Some examples of technological disasters

are industrial and transport accidents.

Table 2.7 lists the application of social media data in disaster management. We identify

the sub-class of both disaster management phase and disaster management type to the

application of social media proposed by each publication. Consequently, it reveals the

current coverage of the existing application of social media in disaster management.

The research in [16] proposes a novel approach to view social media data as a human

sensor and use social media to observe technological disasters (sightings of oil) and

natural disasters (earthquake and air quality). Geo-location is extracted and used as

a boundary for the prediction of an oil spill. Authors in [76] and [77] analysed Twitter

data to identify public behaviour patterns from both, spatial and temporal perspec-

tives during the natural disaster, Hurricane Sandy. An investigation of the emergency

information distribution using social media during an emergency event is studied in
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[18]. This work analyses the social media stream during the 2012 Beijing Rainstorm

by using classification and location models. The authors in [81] analysed tweets about

Hurricane Sandy to find temporal trends using a classifier based on logistic regres-

sion. The applications of social media mentioned in Table 2.7 are proposed to address

problems in a different phase of disaster management. The work in [16, 76, 77, 81]

addresses problems in the Preparedness phase while the outcomes in [16, 18, 76, 77, 81]

are utilised for the Response phase. The applications outlined in [76, 77] are used for

the Recovery phase.

It can be seen that most research has focused on the application of social media data for

natural disasters rather than technological disasters. However, the approach presented

in most of these works can be applied to multiple phases of disaster management.

Interestingly, the Response phase is the most popular aspect to exploit social media

data while there are no publications available to apply for the mitigation phase.

2.9 Summary

In this chapter, we reviewed research publications to investigate the contribution of

social media data and the techniques for data management and analysis in disaster

management. We studied the various dimensions of the contributions based on our

proposed taxonomy that includes data sources, languages, spatial and temporal infor-

mation, methodology, and applications. Human-centric approaches (e.g. social media,

blogs, and crowdsourcing) have become a significant data source that provides the

observation data of real-world events and contributes to disaster management. Several

research publications have proposed exploiting social media data for disaster manage-

ment with Twitter being one of the most significant social media data sources used for

disaster management. The temporal and spatial information extracted from Twitter is

critical information to support decision-making in disaster management. Geo-location

identification and analysis are key research challenges of the spatial perspective in

disaster management. Even though several methodologies have been proposed in the

literature, these challenges remain unresolved. However, social media content, along

with temporal information, including posting time, and event time, can be used to
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facilitate disaster management in several ways. Many research works used such infor-

mation to detect precursor events or support decision making during disasters. Fur-

thermore, several approaches for managing, analysing, and evaluating social media

data have been proposed in the literature. It is evident that Big Data technology is a

key technology for social media data management due to the high volume of generated

social media data. Moreover, machine learning and information retrieval algorithms

are widely used to collect, classify, and extract essential information from social me-

dia. Such information includes temporal and spatial information and disaster events.

F-Measure, precision, and recall are common techniques for evaluation of the proposed

methods for data collection, classification and extraction. Finally, the application per-

spective of this survey has shown evidence that social media plays a significant role in

every phase of disaster management and the generated data has been extensively used

in such management.
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Ontology-based Discovery of
Time-Series Data Sources for

Urban Hazard Management

The research work in this chapter proposes a novel ontology, namely the Landslip

Ontology, to provide the knowledge base that establishes the relationship between

landslide hazard and EO and ancillary data sources. The Landslip Ontology (LO), a

key contribution in this chapter, aims to facilitate time-series data source discovery

to verify and predict landslide hazards. The LO is evaluated based on scenarios and

competency questions to verify the coverage and consistency. Moreover, the LO can

also be used to realise the implementation of a data sources discovery system which

is an essential component in EWS that needs to manage (store, search, process) rich

information from heterogeneous data sources.

3.1 Introduction

The analysis of big time series data has been a a grand challenge in several domains in-

cluding health healthcare [104–107] and natural hazard management [6]. The advance-

ment of Early Warning Systems (EWS) for natural hazards and urban vulnerabilities

is playing a significant role in mitigation and minimising loss of life and damage to

infrastructure. EWS systems require strong technical underpinning and sophisticated

knowledge of the natural hazards such as the urban context and risk factors to enable

dynamic and timely decision-making. Landslides, the main focus of this paper, are

a common form of natural hazard that has global importance. Landslides are closely

linked with a variety of other natural hazards such as storms, earthquakes, flooding

and volcanic eruptions. The prediction of individual landslide occurrence is complex
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as it depends on many local factors, variables and anthropogenic (caused or produced

by human beings) activities. Current EWS for landslides rely on scientific methods

such as hyperlocal rainfall monitoring, slope stability models and analysis of remotely

sensed images. With the emergence of Internet of Things (IoT), decision makers are

also analysing observation and measurement data produced by sensors (e.g., soil mois-

ture, soil movement, rainfall, humidity, wind speed) which are deployed in landslide

prone areas.

Moreover, the emergence of social media (e.g. Facebook, Twitter and Instagram) has

lead to the possibility for general public to also contribute to landslide monitoring by

reporting warning signs related to landslide events. Before EWS can optimally utilise

information from multiple, heterogeneous time series data sources (e.g., social media,

IoT sensors), it is essential to realise a common knowledge base for capturing the core

conceptual information and the cross co-relationship between events (that could be

potentially discovered by analysing those data sources). Moreover, cross co-analysis

of time series data sources is not only useful for the discovery of event co-relation

but also allows for additional event verification. For example, landslide early warning

sign detected by processing Twitter streams (e.g., by monitoring tweets relevant to

landslides) can be verified by analyzing IoT sensor data or other corroborating data

(e.g., news feed, remotely sensed satellite data) obtained from the area of interest.

However, discovering such cross co-relationship of events from heterogeneous time

series data sources has many challenges including lack of common terminology and

presence of implicit relationships that are difficult to manually identify and analyse.

The main contribution of this chapter is a formal knowledge base of landslide domain

concepts to enable the integration of time series data from multiple heterogeneous

sources for real-time analysis and early prediction of landslide events. Underpinning

this knowledge base is the Landslip ontology that captures the relationships between

landslides, multi-hazards, warning signs, sensor data and other time series data sources.

The purpose of the ontology is to facilitate data discovery which will be used to find

potential data sources for landslide verification. The proposed Landslip ontology is

evaluated based on scenarios and evidence from landslide hazard in Southern India

(an area prone to landslide activity) [62]. The experimental results show the accuracy
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of the data discovery mechanism and indicate the benefits of using social media (along

with other time series data sources) as a potential warning mechanism to bolster the

potential of landslide early warning.

The rest of this chapter is organised as follow: related work is discussed next in Section

3.2, followed by a Landslip scenario in Section 3.3. The detail of Landslip ontology

is described in Section 3.4, followed by the design of data sources discovery system in

Section 3.5. The evaluation of Landslip ontology is discussed in Section 3.6. Finally,

we summarise this chapter and future work in section 3.7.

3.2 Related Works

3.2.1 Data Utilisation in Multi-Hazard Early Warning Sys-
tem

Multi-hazard refers to a collection of multiple major hazards that a country faces [6]

. There is a possibility that several hazardous events occur simultaneously and are

interrelated. Tropical storms, for example, is one of the most common environmental

hazards (in the tropics), which can trigger multiple hazards such as heavy rainfall that

in in turn can induce flash flooding. Furthermore, heavy rain and flooding increase

the moisture content of soil in a mountainous area and this may induce landslide.

To minimise the loss of life and property damage from these inter-related hazards a

comprehensive strategy for hazard management is required. In general, a strategy for

hazard management is comprised of four phases [108]: (i) mitigation — the actions

to minimise the cause and impact of hazards and prevent them from developing into

full-blown disaster; (ii) preparedness — the action plans and educational activities

for communities to confront with unpreventable hazard events; (iii) response — the

actions for emergency situations to protect people life and properties during hazard

or disaster events; and (iv) recovery — the actions to restore damaged properties

and community’s infrastructures and to cure people from their illnesses. These four

phases demand supporting tools and technologies to enhance the effectiveness of hazard

management.

Several modern multi-hazard early warning systems take advantage of the data ex-
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plosion on the social media. Authors in [64] proposes using a twitter data analysis

framework for identifying tweets that are relevant to a particular type of disaster (e.g.

earthquake, flood, and wildfire). Several techniques, including matching-based and

learning-based, to identify relevant tweets are also evaluated. The work in [109] stud-

ies the potential of using social media data to identify peatland fires and haze events in

Sumatra Island, Indonesia. A data classification algorithm is used to analyse the tweets

and the results are verified by using hotspot and air quality data from NASA satellite

imagery. A data classification algorithm is also used in [57] to automatically classify

tweets and text messages (from Ushahidi crowdsourcing application) generated during

the Haiti earthquake in 2010. The goal of their work is to provide an information in-

frastructure for timely delivery of appropriately classified messages to the appropriate

responsible departments. Work in [110] proposed a decision support system that inte-

grates crowd sourcing information with Wireless Sensor Networks (WSN)to improve

the coverage of monitoring area in flood risk management in Brazil. This research

introduces the Open Geospatial Consortium (OGC) standards to facilitate the data

integration among crowd sourcing information and WSN.

3.2.2 Semantic Web Technologies and High Variety Data
Management for Multi-hazards

Earth Observation (EO) and urban data provided by multiple data sources are ac-

cessible by different methods ranging from direct download to various standard Web

Services APIs (e.g. Web Map Services, Web Feature Services, Sensor Observation

Services, RESTful API, SOAP-based API, etc.). In addition, there are heterogeneities

among EO and urban data provided by different data sources [111] including: (i)

syntactic heterogeneity — the difference in data format or data model for present-

ing datasets (e.g. plain text, CSV, Excel, XML, JSON, O&M, SensorML, etc.); (ii)

structural heterogeneity — the difference in data schema for describing the same types

of datasets (e.g. describing soil moisture using different XML Schemas); and (iii) se-

mantic heterogeneity — difference in meaning or context of the content in datasets.

These heterogeneities reveal the challenging problems brought forth by the high variety

data availability in multi-hazard applications. Semantic Web Technologies have thus
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played a significant role by providing languages and tools for modelling domains in-

cluding describing the concept and relationship among the data and hazardous events.

According to W3C definition [112][113], the Semantic Web is a web of data that pro-

vides a common framework for data sharing and reuse across applications, enterprises,

and communities.

Ontology, a key element of the Semantic Web, is a specification of a conceptual model

for describing knowledge about a domain of interest. A basic concept in a form of

ontology can be described by an Resource Description Framework (RDF) triple [114]

which is comprised of a subject, a predicate and an object. Concepts described by RDF

can be extended by Web Ontology Language (OWL) [115] to construct an ontology for

representing rich and complex knowledge about things. In the case of multi-hazards

application, an ontology can be used to: (i) represent domain knowledge through

concepts, their attributes and relationships between data sources, data and hazards;

and (ii) facilitate data integration across multiple data sources that represent varieties,

velocity and volume characteristics of big data.

Ontologies are widely used in hazard management to model knowledge about hazards

and use it to manage actual data derived from EO and urban sources. Hazard assess-

ment and urbanisation analysis are two of the common application areas where ontolo-

gies are used. The Semantic Sensor Network Ontology (SSN) [28] and the Semantic

Web for Earth and Environmental Terminology (SWEET) [30] are two significant on-

tologies that are commonly applied for hazard management. Authors in [30] reuse

SWEET to conceptualise knowledge and expertise of several areas, such as buried as-

sets (e.g. pipes and cables), soil, roads, the natural environment and human activities.

Additionally, the Ontology of Soil Properties and Process (OSP) is proposed in their

work to describe a concept of soil properties (e.g. soil strength) and process of soil

(e.g. soil compaction). The OSP and other concepts are used to express how they

affect each other in asset maintenance activities. Furthermore, [28] and [116] present

the application of SSN for wind monitoring. The first work uses SSN with Ontology

for Kinds and Units (QU) [117] to conceptualise wind properties (e.g. wind speed

and direction) while the later uses SSN and SWEET to model the concepts of wind

sensors and data streams of wind observations. The Landslides ontology [29] extends
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SSN to organise knowledge for the landslides domain such as the concepts of landslides,

earthquake, geographical units, soil, precipitation and wind. Even though these on-

tologies provide comprehensive concepts for sensor data and hazard event, and provide

a reusable, widely used semantic underpinning, they do not cover conceptual aspects

on human sensors (e.g. social media data). Hence, currently additional processes are

required when applying these ontologies to EWS for multi-hazard application.

The related literature in the context of multi-hazard management can be classified

based on the following three perspectives, data sources, hazardous event analytics,

and EO and urban time series data management. It can be seen that effective multi-

hazard management demands high quality and rich data from vast amount of data

sources that are related to the hazard of interest. Data sources utilised by multi-

hazard management applications can be any sensors and/or data services that provide

EO and urban data. Such data sources include physical sensor (e.g. remote sensing,

in-situ sensor, wire- less sensor network) and human sensor (e.g. social media, blogs

and crowd sourcing). Recent data analytics research for multi-hazard management

focused on hazardous event analysis, which are conducted into three main directions,

event identification, event verification, and event prediction. These research reveal the

challenging problems in the EO and urban time series data management, especially

the discovery of potential time series data sources over the complexity and high variety

of such data sources in multi-hazard management applications. Ontology is a common

method for not only modeling knowledge about hazard but also managing EO and

urban data. Recent work around developing the ontology in this domain are classified

as standardizing ontology and reusing ontology. They have shown that current standard

ontologies for data sources discovery do not exist. In addition, existing applications

of ontology in this domain mostly investigate specific problems, in other words these

approaches are not generalized. They fail to model the relationship between data

sources and the domain knowledge which is an important factor for efficient data

integration and data sources discovery.
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3.3 Landslip Scenario

The development of Early Warning System and Decision Support System for multi-

hazards can be accomplished in several approaches [118], depending on (i) the rules

stakeholders engage in hazard risk reduction, (ii) geographical conditions of hazard

prone area, and (iii) EO and urban data provided by responsible organizations. To

achieve the goals of risk prevention and mitigation on landslide multi-hazards, scenario-

based approach [119] is thus used in order to specify the scope of landslide problems and

landslide hazard management activities. Additionally, the scenario-based approach is

defined as a narrative story that represent expected uses of a system in the domain

of interest from both domain experts and ontology developers viewpoints. Therefore,

the scenario helps to identify the scope of the domain ontology to be designed.

3.3.1 Scenario

The Landslip scenario is co-created with domain experts who are members of Land-

slip. In addition, the Landslip is an NERC funded project involving the analysis of

observation data and social media data provided by several institutions to contribute

to the reduction of landslide impacts in the risk area of India. The scenario focuses on

the preparedness phase of disaster management where warning signs of landslide from

social media and observation data are detected before the occurrence of landslides.

The landslide warning sign is an incident that indicates the potential of landslide

hazard. It can be observed by human or an early warning system. The examples

of landslide warning signs are the physical changes of utilities or infrastructure (e.g.

blocked road, Leaning telephone poles, retaining walls or fences), a movement of soil

from foundation, and a change of color in a river. In addition, a warning sign observed

by people who are unknowledgeable about landslide hazard (e.g. social media users)

requires additional process to verify the potential of landslide. Designing the scenario,

historical event of landslide and domain experts experiences are considered. Figure 3.1

illustrates a situation before landslide that happens in a place located in an urban area.

This area encompasses both natural environment (e.g. river, and mountain) and built

environment (e.g. schools, hospitals, road, water supply and electricity). Locating in a
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high slope area, the place is prone to landslide and is monitoring by the National Dis-

aster Management Authority (NDMA). Here, an expert from NDMA analyses satellite

images to detect warning signs and informs decision makers for the potential landslide

hazard. Meanwhile, person A who lives in the place is enjoying his leisure time by

walking around his house. Living in the landslide prone area, it raises his awareness

on possibility of landslide hazard. Then he is keen to contribute to his community by

reporting any incident observed in his daily life via his social media account. While

walking around his place, he has observed a leaning pole nearby his house. Thus, he

takes a photo of the leaning pole and reports the incident to social network using his

Twitter account. He also gives additional information such as observed time and place

to the tweet. Besides, person B who lives in a nearby area has observed that the

color of tab water in his house become brown. He thus uses hist Facebook account to

report this incident. These messages from social media are collected by NDMA Early

Warning System (EWS) to detect landslide warning signs. Here, an NDMA’s staff

who is a member of decision making team receives a notification message from EWS

with regard to the leaning telephone pole. The incident is considered as a warning sign

for landslide hazard. Receiving such information from social media users, the decision

maker needs to verify the information before making further decision. Base on this, the

decision maker who is a domain expert in landslide hazard risk assessment performs

data analysis using an appropriate landslide analytical model. This process requires

adequate historical events of landslide, EO and urban data provided by various data

sources to get more accuracy of the data analysis. Hence, the decision maker searches

for potential data sources from the Data Sources Discovery Service (DS) and gathers

EO and urban data from the discovered data sources. The gathered data is then used

to verify the social media information. Furthermore, the decision maker utilizes the

EWS to assess the risk and impact of the landslide event using EO and urban data

and take timely actions against the event. An example of such actions is disseminating

actionable warning information to people in the landslide prone area.
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Figure 3.1: Overall of Landslip Ontology.

3.3.2 Overall Concepts

The above scenario reveals the essential role of data-driven early warning system for

landslide hazard management which comprises of 5 main components.

• Exposure — refers to people and environment which are living or located in land-

slide hazard prone area and are affected by landslide multi-hazard. In addition,

environment can be classified to natural environment and built environment.

The natural environment is all living and non-living things that occurred natu-

rally (e.g. animals, river, forest, mountain, etc.). On the other hand, the built

environment [120] is a combination of infrastructures and facilities produced by

people as a core foundation in the community (e.g. house, school, road, bridge,

electricity, water supply, etc)

• Stakeholder — refers to people or organizations who have a stake in the land-

slide event. In the scenario, stakeholders are: (i) social media users who report

landslide warning signs through their social media (e.g. Facebook, Twitter, In-

stragrams, etc.); (ii) data collectors and providers who deploy sensor devices in

landslide hazard prone area and provide EO and urban data collecting from such
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devices to EWS for analysis. Data providers also include the third parties who

collect data from sensor devices owned by the others. (iii) Decision makers who

have responsible for conducting landslide hazard risk assessment using available

social media data and EO and urban data. They make a decision based on re-

sult from Decision Support System and hazard risk management plan in order

to inform people in risk area before the occurrence of landslide hazard.

• Event — refers to an occurrence which is related to a hazard. Additionally,

hazard itself is also consider as an event. The hazard-related event is classified

as pre-hazard event, post-hazard event and event during hazard. Since Early

Warning System analyse EO and urban data to predict the potential of hazard in

the area of interest, warning signs and anthropogenic processes are the majority

of events in this scenario. In addition, a warning signs is an event that can

indicate a possibility of hazards. An example of the warning sign is broken

underground utilities which can be a warning sign for landslide hazard. An

anthropogenic process refers to human activities which can induce hazards. An

example of such activities is vegetation removal which induce landslide.

• Data Sources — refer to any sensors and data services that provide data to

data consumers. These data sources have different capabilities to provide data.

Sensor is a component that observes and measures physical phenomena and

transform the observation and measurement into a human readable form. There

are two types of sensor, physical sensor and human sensor. The data service

is an application software that collects, stores and provides data from multiple

devices. Several types of data sources are currently available to provide EO and

urban data for multi-hazard applications.

• Decision Support Applications — refer to an integrated system that provide

functionalities for stakeholders to monitor, forecast and predict, validate and

assess hazardous events. In this scenario, EO and urban data collection system,

data sources discovery services, hazardous event detection system and Early

Warning System (EWS) are major components of Decision Support Applications.

As a consequence, these applications enable stakeholders to take timely actions
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to reduce impacts of landslide hazard in advance. For example, once a landslide

hazard is likely to be happened, a decision maker can make a decision based

on information and knowledge from EWS to disseminate actionable warnings

information to people in the landslide prone area.

The Data-driven early EWS analyses landslide-related data to enable dynamic and

timely decision making against landslide hazard. Such data includes historical land-

slide events, historical and real-time observation data generated by physical sensors,

and social media data. In addition, a number of sensor devices have been deployed in

the landslide hazard prone area by organizations who are in charge of landslide hazard

management. the organizations collect EO and ruban data from their sensors to mon-

itor landslide hazard events in real-time. Besides, the collected data is stored in their

local repositories and is provided as data sources to their co-ordinated organizations

for further analysis. Here, the data sources metadata is published to a Data Sources

Discovery Services (DS) which is an application of Decision Support System. The

DS enables data publishers to advertise their data sources by registering data sources

metadata to a metadata registry service. Moreover, It allows data consumers to search

for their potential data sources to be used in their applications.

3.4 Landslip Ontology

Our proposed Landslip Ontology is developed based on NeOn [121] methodology. We

define scope and purpose of the ontology based on the scenario mentioned in section 3.3.

The ontology is implemented in OWL and is built in Protege. According to the scenario

mentioned in the previous section, Landslip Ontology is designed and developed to

conceptualize the knowledge of landslide hazard and its warning signs. Moreover,

knowledge of data sources is also necessary to facilitate data sources discovery and

landslide precursor verification. Based on this, Landslip ontology is comprised of two

main modules, Landslip Common and Landslip-DataSources.

The main contribution of the Landslip Ontology to domain knowledge is to repre-

sent the knowledge of landslide domain experts and provide machine-understandable

and parsable relationship and inferences. The Landslip Ontology utilises its landslide

- 69 -



Chapter 3: Ontology-based Discovery of Time-Series Data Sources for Urban Hazard
Management

conceptual model and knowledge base to facilitate efficient data integration and data

sources discovery. In addition, the relationship between landslides, other hazards and

their interaction, social media, time-series data sources is used to discover a sufficient

number of data sources based on an understanding of the land hazard context.

Scope and Purpose — The development of Landslip Ontology is driven by the goal

of Landslip project to mitigate the impact of landslide hazard. Thus, the ontology fo-

cuses on the preparedness phase of disaster management where landslide warning signs

play an important role to indicate the potential of landslide. The scope of Landslip

Ontology is defined based on the scenario in section 3.3. Based on this, the ontology

conceptualizes knowledges of landslide hazard specifically causes of landslide hazard

and multi-hazards interactions which can trigger landslide hazard. Furthermore, the

ontology conceptualizes landslide-related incidents which can be observed by people

in landslide prone area. These incidents are considered as warning signs for landslide

hazard. The concepts of landslide hazards are linked to EO and urban data which are

set of properties for landslide observation. The ontology focuses on Landslide multi-

hazard domain. The level of granularity is determined to the competency questions

and terms identified.

Knowledge Sources — The ontology is design based on knowledge and experiences

from four scientists and experts, from Landslip project, who are specialists in landslide

hazard management with average 10 years experiences. Specifically, One scientist

works for British Geological Survey (BGS) with focus on multi-hazard management.

Other One is a scientist from Geological Survey of India (GSI) who are working on

landslide hazard management in India. The two others are academic staffs who are

specialist in natural hazard and geoscience.

Besides, publications [122], [123]and standard specifications [28, 30, 124–126]involving

multi-hazards and geo-spatial data models are also used as additional knowledge

sources to design the ontology.

The main goal of Landslip Ontology design is to capture necessary concepts and their

relationships of the landslide hazard domain. To achieve the design goal, we have

organised a workshop and interview to collect information for the design. A workshop

session was organised in the 3rd Annual Partners Project Meeting for LANDSLIP to
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Figure 3.2: Overall of Landslip Ontology.

discuss how social media has been used in natural hazard EW systems. There were

35 domain experts in natural hazard management, including scientists, social scien-

tists, local authorities, and NGOs. The domain experts are from several organisations,

including Amrita University, BGS, CNR, KCL, UK MetOffice, Newcastle University,

Keystone, PAC-India, GSI, Save the Hill, and Siligun College. The participants were

divided into three groups to discuss ”questions”they would like to know from social me-

dia users in different period of the disaster occurrence, pre-disaster, during a disaster,

and post-disaster, respectively. Moreover, we organised an interview with landslide

domain experts to discuss the questions obtained from the workshop. As a result,

important questions have been selected by the domain experts to use in the design of

Landslip Ontology. Furthermore, the concepts of data sources have to take into ac-

count for data sources discovery under the landslide hazard context. In addition, the

design goal of data sources concepts is to provide metadata for accessing a wide variety

and geographically distributed EO and ancillary data sources. Based on this, Landslip

Ontology’s overall design comprised major concepts, landslide domain concepts, and

data sources concepts. These two major concepts are parts of the Landslip Ontology

and can be used dependently for other purposes in the future.

Figure 3.2 depicts overall concepts of our proposed Landslip Ontology. The ontology
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is comprised of two modules: (i) Landslip Common Ontology – defines concepts about

landslide hazard and its interaction to another hazards and anthropogenic process;

and (ii) Landslip Data Sources Ontology – defines concepts about observation and

data sources for landslide hazard risk assessment. The Landslip ontology reuses SSN

ontology and terminology defined in OGC standards (e.g. Observation and Measure-

ment [124], SensorML [125] and SOS [126]).

3.4.1 Landslip Common Ontology

The purpose of Landslip Common Ontology is to provide a conceptual knowledge

model of landslide domain. In addition, the Common Ontology is a combination of

theoretical knowledge and human experiences to identify warning sign before landslide.

Basically, landslide is one of the most significant multi-hazards which can be found in

many places around the globe [127]. Such hazard has interactions or can be triggered by

another hazards [122]. Based on this, the Landslip Common Ontology conceptualizes

knowledges of landslide and its interaction with other multi-hazards [122, 123] and

knowledge of warning signs that can be observed by human and use such knowledge

to indicate landslide event before the occurrence of landslide. The knowledge defined

in the ontology can be used to facilitate landslide early warning based on warning

signs observed and reported by people in social network. Figure 3.3 (a) illustrates the

concept of the Landslip Common Ontology which comprises of four main concepts as

follow:

• UrbanArea — defines concepts about urban area that prone to landslide including

its basic elements. The urban area encompasses both natural resources (e.g.

river, and mountain) and built environment, including infrastructure (e.g. road

and railway), utility (e.g. electricity and tab water) and place (e.g. school,

hospital, house and flat). Located in landslide prone area, these elements can be

affected by landslide and other multi-hazards.

• NaturalHazard — defines a set of multi-hazards which can trigger landslide

hazard. This concept captures knowledge mainly on the interactions between

landslide hazard and other multi-hazards (e.g. flood, earthquake, tsunami, and
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drought). In addition, the interactions between other multi-hazards are able to

indicate landslide hazard.

• AnthropogenicProcess — defines a set of human activities that produce negative

effects to landslide [122]. This concept also captures knowledge about the inter-

action with in the processes to provide direct and indirect indications of landslide

hazards. In addition, the direct indications are the processes that are a trigger of

landslide while the indirect indications are the processes that trigger other pro-

cesses which trigger landslide. Moreover, the major indicators for anthropogenic

processes are warning sign observed by a person.

• WarningSign — defines a set of incidents that can be an indications of landslide

hazard, other multi-hazards and anthropogenic processes. The concept of warn-

ing sign is mainly focus on incidents which can be observed by a person. Such

incidents are useful for landslide EWS in order to detect landslide precursors

based on incidents reported in social network.

Figure 3.3: Common Ontology
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Figure 3.4: Data Source Ontology

3.4.2 Landslip Data Sources Ontology

EO and urban data observed by sensors indicate events or changes of landslide phe-

nomena. Such data (e.g. rain, temperature, soil moisture. etc.) from a variety of

data sources is collected by data provider and provides for stakeholders to be used in

their landslide hazard applications [128]. Due to the high variety and geographically

distributed nature of OE and urban data sources, effective data sources discovery [129]

is thus required in order to provide sufficient amount and quality of data for landslide

hazard risk assessment. Landslip Data Sources Ontology is developed to enable se-

mantically discovery of data sources. In addition, the ontology describes concepts and

relationships of EO and urban data, data sources, sensor devices, and data providers.

With the combination of this ontology and Landslip Common Ontology, data sources

discovery mechanism utilizes knowledge of landslide hazards to discover data sources

which are related to the hazard of interest. Specifically, the knowledge of landslide

warning sign can be used to identify appropriate observed properties and data sources

for landslide precursor verifications. This capability enable EWS to provide dynamic

and timely decision making against landslide hazards. Figure 3.4 (b) illustrates the

Landslip Data Sources Ontology which comprises of three main concepts and reuse

SSN Ontology [28] and OGC standard [124–126] for the concepts of observation and

sensors.
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Table 3.1: Landslip Ontology features

Feature Value

No of classes 98
No of properties 26
No of individuals 30
No of axioms 462
DL expressivity ALCH(D)

• DataSource — is the main concept of Landslip Data Sources Ontology. A data

source is any sensors or data services that provide observation data (e.g. physical

sensor, human sensor and data service). DataSource defines a set of comprehen-

sive information related to observation and data sources metadata which are the

details of data sources.

• Observation — defines a set of observed properties (EO and urban data) which

are used to observed features of interest related to landslide hazard. The exam-

ples of observed properties are soil moisture, soil movement, rain, earth quake

magnitude, temperature, humidity, and wind speed. These observed properties

are accessible to EWS via data sources.

• DataSourceMetadata — defines a set of information which are necessary for data

acquisition process. This concepts is comprised of four groups of information

profile: (i) observation profile – a set of observed properties provided by a data

source; (ii) observed property profile – provides information about data type,

feature of interest, and phenomenon time; (iii) sensor profile – provides informa-

tion about type of sensor, feature of interest, and list of event to be observed;

(iv) service profile – provides information which can be used to access a service

(e.g. service type, endpoint, provider); and (v) provider profile – provide the

information about data provider (e.g. provider name, contact address).

3.4.3 Ontology Metrics

Table 3.1 shows a summary of the ontological features of Landslip Ontology in terms

of size (number of classes, properties, and individuals), expressivity, and complexity

of the core knowledge captured by axioms.
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3.5 System Architecture

To realise the ontology-based data sources discovery system, we have designed the

architecture which comprise of three main layers: (i) data sources layer; (ii) data dis-

covery layer; and; and (iii) hazard applications layer. Figure 3.5, depicts the overview

architecture of our proposed data sources discovery services.

Figure 3.5: Landslip Data Sources Discovery Service Architecture.

• data sources layer — consist of a number of data sources provided by various

data providers. Data sources collects EO and urban data from physical sensors

deployed in landslide prone area. These sensors observe or measure properties

of landslide and other earth observation which can be use to indicate landslde

hazard. The data sources are accessible through a variety of methods (e.g. REST

API, RDBMS, WSN) depending on data source providers. Moreover, data from

social medias is also considered as data soures in this layer.

• data sources discovery layer — maintains the Lanslip ontology which represents

knowledge of landslide and data sources in a triplestore. It also provides data

sources registry which store data sources metadata, including metadata for sen-

sor, service and observation. Furthermore, there are a number of functionalities

provided by this layer which allow uers to (1) publish data sources; (2) search
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for potential data sources; and (3) indicate landslide hazard using warning signs.

These functionalities are accomplished based on knowledge of landslide and data

sources provided by the Landslip Ontology. In addition, the functionalities pro-

vided by this layer is accessible through data sources discovery service APIs

which are available in form of RESTful Web Services API.

• hazard applications layer — privides client APIs to access the functionalities

offered by the data sources discovery layers. In addition, the client APIs are

design for both data provider and data consumer. Here, data provider can user

the client API to register their data sources along with data sources metadata.

On the other hand, data consumer uses the client API to search for potential

data sources based on landslide warning sign.

Figure 3.6: Overall of Landslip Ontology.

Figure 3.6 illustrates the interactions among the three layers. Initially, multiple data

sources provided by different providers are registered to the data sources registry. In

addition, the actual knowledge of landslide is constructed based on Landslip Ontol-

ogy and information extracted from social media. Both data sources metadata and

landslide knowledge are stored in Triplestore. Here, a hazard application utilizes the

system by invoking the Data Sources Discovery API to ask a competency question
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which is related to landslide multi-hazard. The API then generates a SPARQL query

which correspond to the selected competency question and submit the Triplestore for

reasoning query. As a result, the API suggests potential hazardous event based on ex-

isting knowledge. Built from social media, the knowledge requires further analysis to

verify the correctness of the suggested event. The API generates additional SPARQL

query for the discovery of potential data sources. Finally, data sources metadata pro-

viding the detail of the potential data sources is returned to the hazard application.

The application then use the information to access actual data sources and retrieve

EO and urban time series data for hazard event verification and other data analytics.

3.6 Evaluation

An evaluation was conducted to verify the coverage of the Landslip Ontology and its

application in landslide early warning. Whilst various approaches for evaluating an

ontology exist, competency questions remain the most common approach [130, 131].

This approach stipulates that an ontology must be able to represent the competency

questions using its terminology and answer these questions using the axioms [132].

According to the use case mentioned section 3.3, some of competency questions are

developed as shown in table 3.2. We arranged an interview with domain experts who

are members of the Landslip project. Those domain experts include two academic

staffs who are specialist in natural hazard and geoscience, and a scientist from British

Geological Survey (BGS). Based on the interview, 12 competency questions were re-

ceived and some of main competency questions are developed as shown in table 3.2

for the evaluation.

The competency questions were used for ontology validation and evaluation. The

evaluation was conducted using a set of synthesised data that represent the use case

of landslide hazard mentioned section 3.3. We manually added information of nat-

ual hazards and EO and urban data to our knowledge base. The information includes

landslide hazard, hazard triggers, warning signs, EO and urban data, and data sources.

We performed validation over the dataset using Pellet to check for ontology consis-

tency, concept satisfiability, classification, and realisation. Based on the competency
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Table 3.2: An example of Competency Questions

Competency Questions

Q1 What other hazards are likely to happen when hazard
H has happened?

Q2 What is the probability of an event E occurring when
warning sign W has been observed?

Q3 What is the probability of an event E occurring when
a set of warning sign,W1, W2, W3, . . . , Wn have been
observed?

Q4 Is warning sign W an indicator for landslide L?
Q5 What are observed properties that can be used to

verify landslide when a warning sign W is observed?
Q6 Identify the data sources and their metadata required

to observe a set of hazards (H1, H2, H3, . . . , Hn)

questions, we performed preliminary experiments by querying over the knowledge base.

In order to write competency questions and to demonstrate that the LANDSLIP on-

tology can be used to ask and answer these questions we use the semantic query lan-

guage called SPARQL Protocol and RDF Query Language (SPARQL).Using SPARQL

query language, we defined query for each competency question to get answers from

our knowledge base. Figure 3.7 and 3.8 show snapshots of SPARQL query for Q2 and

Q6 and output for the competency question Q6 on running the query in protégé. By

executing the query based on the competency questions Q1 - Q6, we could verify the

coverage of the Landslip ontology. From the results it can be seen that the ontology

is able to identify hazard events based on an observed warning sign. Furthermore, the

ontology can suggest potential data sources and their metadata which can be used by

domain experts to perform timely decision making against hazards.

- 79 -



Chapter 3: Ontology-based Discovery of Time-Series Data Sources for Urban Hazard
Management

Figure 3.7: SPARQL Query for Competency Question Q1 to Q6.
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Figure 3.8: SPARQL Output for Competency Question Q6.

3.7 Summary

This chapter proposed the Landslip Ontology to address the research problem of dis-

covering a wide variety of data sources. The LO represents the knowledge of the land-

slide domain and provides a knowledge base that establishes relationships between

landslide hazard, social media, and time-series data sources. This thesis’s essential

contribution is used as a formal knowledge base of landslide domains throughout the

thesis. Additionally, the LO is utilised to harmonise with electrical grid information

services to monitor the electrical grid network’s failure during a landslide, as described

in the next chapter (Chapter 4). It is also utilised in Chapter 5 to facilitate monitoring

the potential occurrence of landslide events and generate questions for communicating

with social media users to obtain more detail of the potential event.
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An Ontology-based System for
Discovering Landslide Induced
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Early Warning Systems (EWS) for electrical grid infrastructure have played a signif-

icant role in efficient electricity supply management in natural hazard-prone areas.

This chapter prototypes the system using landslides as an example of a natural haz-

ard for electrical grid infrastructure monitoring. Essentially, the system consists of

background knowledge about landslides derived from the Landslip Ontology proposed

in Chapter 3 and information about data sources to facilitate the process of data

integration and analysis. Using the LO, the prototype system can report potential

landslide occurrence and suggest potential data sources for the electrical grid network

monitoring. This chapter’s main contribution is a process for the harmonisation of the

knowledge base and electrical grid information services for monitoring of the electrical

grid network.

4.1 Introduction

People around the globe rely heavily on electrical energy, provided by the electrical

grid system, often more than other sources of energy. The electrical grid is a complex

network of electrical power system which includes electricity generation, transmission

and distribution (TD), and consumption. It provides a variety of operation to deliver

electrical power from the place where it is generated to the consumers [133]. The

infrastructure of the electrical grid system comprises of several key components to

support the delivery of electricity to consumers: (i) Generating Plants – where elec-

tricity is produced; (ii) Transmission Networks — an infrastructure which allows high
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voltage electricity to be transported over long distances; (iii) Substations — where the

electricity voltage is changed by utilising a transformer mechanism; and (iv) Distribu-

tion Networks — an infrastructure, similar to the transmission lines, to transmit lower

voltage electricity. High voltage electricity from the generating plants is transmitted

along the transmission lines from where it reaches the substations in the grid network.

Following a reduction in the voltage of the electricity by the transformer at the sub-

station, it travels along the distribution line to various types of consumers (including

industrial consumers, commercial consumers, and resident consumers). Specifically,

transmission and distribution networks are set up to cover the whole geographic area

in the country. The transmission network carries overhead electricity lines on pylons, a

steel lattice tower, while the distribution network transmits electricity either through

an overhead line or underground. The overhead line in the distribution network is

carried on small steel towers, concrete poles or wooden poles [134].

Reliability is the most crucial element in the operation of electrical grid systems. A

failure of the grid system infrastructure can lead to disruption of electricity supply,

leading to major economic chaos in the country as well as impacting upon the safety

and well being of people in the affected area. In particular, the transmission and distri-

bution network within the grid system infrastructure is frequently affected by climate

change and natural hazards such as landslides, earthquakes, and flooding. Grid sys-

tems are often the most frequently affected by landslides as can be noted from reports

in several countries. In 2018, a landslide occurred near Invergarry in Scotland and

damaged overhead power lines[135]. As a consequence, 23,000 people in Skye and the

Western Isles had their electricity supply cut off for several hours after the event. The

same year, in Thailand[136], a landslide in a waste dump zone at the Electricity Gener-

ating Authority of Thailand (EGAT) Mae Moh mine in Lampang province, damaged

some electricity poles and led to road closures in the area. The disruption was so

serious that an evacuation plan for the people had to be put in place. The Wenchuan

Earthquake in 2008 [137] caused serious damage to the Sichuan electrical grid system.

A number of electrical equipment, transmission and distribution networks were broken

and buried due to landslides that occurred during the earthquake. Due to minimal

protection of transmission and distribution networks, they are very vulnerable to such
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natural hazards. EWS can therefore play a vital role in monitoring the grid network

to predict such failures and minimise the consequent disruptions.

Nowadays, EWS for natural hazards utilise strong technical underpinning and sophis-

ticated knowledge of natural hazards such as the hazard context and risk factors to

enable dynamic and timely decision-making. Landslides, the natural hazard this chap-

ter focuses on, have global significance given their frequency of occurrence as well as

potential to cause disruption. Where electrical grid systems are commonly affected by

landslides, it is because of parts of the grid infrastructure being located in landslide-

prone areas. Moreover, landslides are also closely linked with a variety of other natural

hazards such as storms, earthquakes, floods, and volcanic eruptions. These hazards

can also affect electrical grid systems. Therefore, the prediction of individual landslide

occurrence is beneficial to the monitoring of electrical grid infrastructure. However,

such prediction is complex as it depends on many local factors, variables, and anthro-

pogenic activities (caused or produced by human beings). Current EWS for landslides

rely on scientific methods such as hyperlocal rainfall monitoring, slope stability mod-

els, and analysis of remotely sensed images. With the emergence of Internet of Things

(IoT), decision makers are also analysing observation and measurement data produced

by sensors (e.g., soil moisture, soil movement, rainfall, humidity, wind speed) which are

deployed in landslide prone areas. [138, 139] Furthermore, other observation and mea-

surement data such as wind speed, wind direction, soil temperature, tilt, and vibration

are also being used for the monitoring of electrical grid system. [134, 140]

Before EWS for landslide can optimally utilise information from multiple, hetero-

geneous time series of data sources (IoT sensors), it is essential to realise a com-

mon knowledge base for capturing the core conceptual information and the cross co-

relationship between events (that could be potentially discovered by analysing those

data sources). Moreover, cross co-analysis of time series data sources is not only useful

for the discovery of event correlation but also allows for the interaction of electrical

grid system with EWS. For example, a landslide detected by processing of time series

data from IoT sensors (e.g. using accumulative rainfall threshold) provides informa-

tion about location and time of the landslide occurrence. This information can be used

to identify parts of the electrical grid infrastructure that are potentially vulnerable to
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the detected landslide and need to be monitored intensively. However, discovering

such cross correlation of events from heterogeneous time series data sources has many

challenges including a lack of common terminology that make analysis particularly

difficult.

The main contributions of this chapter are as follows.

1. A formal knowledge base of landslide domain concepts to enable the integration

of time series data from multiple and heterogeneous data sources for the early

prediction of landslide events.

2. A process for the harmonisation of the knowledge base and electrical grid infor-

mation services for monitoring of electricity grid network.

The results of landslide prediction are utilised to suggest the monitoring of electrical

grid infrastructure in order to minimise the loss of electric energy during natural haz-

ard events. Underpinning this knowledge base is the Landslip Ontology that captures

the concepts of and relationships between landslide, landslide-related hazards, warn-

ing signs, sensor data and other time series data sources. The purpose of the ontology

is to facilitate data discovery, which will be used to find potential data sources for

landslide prediction and electrical grid infrastructure monitoring. The proposed Land-

slip Ontology is evaluated using competency questions for electrical grid systems in

landslide prone areas. The experimental results show the accuracy of the data discov-

ery mechanism and indicate the benefits of using Landslip Ontology in electrical grid

management applications.

The rest of the chapter is organised as follows: related work is discussed next followed

by a discussion on the landslip scenario in Section 4.3. Landslip Ontology for electrical

grid is described in Section 4.4 and the design of data sources discovery system in

Section 4.5. Evaluation of the Landslip Ontology is discussed in Section 4.6. Finally,

summary of this chapter is presented in Section 4.7.
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4.2 Related Works

4.2.1 Data Utilisation in Multi-Hazard Early Warning Sys-
tem

The term, multi-hazard, refers to a collection of multiple major hazards that a coun-

try faces [6]. There is a possibility that several hazardous events occur simultaneously

and are interrelated. Tropical storms, for example, are one of the most common envi-

ronmental hazards (in the tropics), which can trigger multiple hazards such as heavy

rainfall that in turn can induce flash flooding. Furthermore, heavy rain and flooding

can increase the moisture content of soil in mountainous areas inducing landslides.

To minimise the loss of life and property damage from these inter-related hazards,

a comprehensive strategy for hazard management is required. In general, a strategy

for hazard management comprises of four phases [108]: (i) mitigation — actions to

minimise the cause and impact of hazards and prevent them from developing into

full-blown disasters; (ii) preparedness — action plans and educational activities for

communities to confront unpreventable hazard events; (iii) response — actions for

emergency situations to protect peoples’ lives and properties during hazard or disaster

events; and (iv) recovery — the actions to restore damaged properties and commu-

nity’s infrastructures and to provide medical care to the affected population. These

four phases require supporting tools and technologies to improve the effectiveness of

hazard management.

Several modern multi-hazard early warning systems take advantage of the data ex-

plosion on social media. The authors in [64] propose using a Twitter data analysis

framework for identifying Tweets that are relevant to a particular type of disaster (e.g.

earthquake, flood, and wildfire). Several classification techniques, including keywords

and hashtags matching and classification machine learning, are also evaluated to iden-

tify tweets which are relevant to a particular hazard. The work in [109] studies the

potential of using social media data to identify peatland fires and haze events in Suma-

tra Island, Indonesia. A data classification algorithm is used to analyse the Tweets

and the results are verified by using hotspot and air quality data from NASA satellite

imagery. A data classification algorithm is also used in [57] to automatically classify
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Tweets and text messages (from the Ushahidi crowdsourcing application) generated

during the Haiti earthquake in 2010. The goal of their work is to provide an infor-

mation infrastructure for timely delivery of appropriately classified messages to the

appropriate responsible departments. Work in [110] proposed a decision support sys-

tem that integrates crowd sourcing information with Wireless Sensor Networks (WSN)

to improve the coverage of monitoring area in flood risk management in Brazil. The

research introduces the Open Geospatial Consortium (OGC) standards to facilitate

the data integration among crowd sourcing information and WSN.

4.2.2 IoT Resource Management

The emergence of Internet of Things allows decision makers to analyse observation

and measurement data produced by IoT devices. These IoT devices have the ability

to sense, process, communicate and store the data observed or measured from the

physical world [141]. Moreover, the number of IoT devices has increased dramatically

and they are heterogeneous in nature. Based on this, efficient techniques for IoT re-

sources management have been investigated to address the challenging problems of

IoT (e.g. IoT management framework, data processing, and security) [142–146]. Here,

several frameworks for IoT resource management have been proposed. Authors in [142]

proposed a paradigm of Everything-as-a-Resource (*aaR) to enable efficient resource

allocation of collaborative applications on the Web. The framework has been applied

to IoT applications in the healthcare domain. [143] proposes a resource preservation

net (RPN) framework for IoT resource management in edge computing. The frame-

work has been applied to smart healthcare applications where real-time systems with

complex and dynamic behaviour are essential parts of the systems but suffer from

resource shortage and resource management efficiency challenges. In the RPN frame-

work, a smart healthcare workflow and non-consumable resource pools are defined to

enable process execution and resource assignment in the cloud and solve the problem of

resource management efficiency. Besides, a number of approaches on IoT data analysis

have been proposed to address issues in multi-hazard and electrical grid applications.

The work in [144] presents a novel technique of machine learning and neural network

to predict the severity of floods. Essentially, a machine learning technique is utilised
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to analyse new datasets of flood events to predict the severity of flood events and clas-

sify outcomes into normal, abnormal, and high-risk flood. The prediction of the flood

severity aims to address issues of flood mitigation. Security and privacy are crucial

issues in IoT resource management due to the sensitivity of IoT data in many appli-

cation domains. The research in [145] focuses on securing IoT-enabled applications at

the Fog layer to secure a massive amount of sensitive data produced by IoT devices

and enable efficient resource consumption (i.e., memory, storage and processing) of the

IoT devices. The work in [146] proposes a secure fog-based platform for SCADA-based

IoT critical infrastructure. The platform is designed to address the performance and

security issue of Supervisory Control and Data Acquisition (SCADA) systems and en-

hance security of data generated from IoT devices and deploy edge data centers in fog

architecture.

4.2.3 Semantic Web Technologies and High Variety Data
Management for Multi-hazards

Earth Observation (EO) and ancillary data provided by multiple data sources are ac-

cessible by different methods ranging from direct download to various standard Web

Services APIs (e.g. Web Map Services, Web Feature Services, Sensor Observation

Services, RESTful API, SOAP-based API, etc.). In addition, there is heterogeneity

among EO and ancillary data provided by different data sources [111] including: (i)

syntactic heterogeneity — the difference in data format or data model for presenting

datasets (e.g., plain text, CSV, Excel, XML, JSON, O&M, SensorML, etc.); (ii) struc-

tural heterogeneity — the difference in data schema for describing the same types of

datasets (e.g., describing soil moisture using different XML Schemas); and (iii) seman-

tic heterogeneity — difference in meaning or context of the content in datasets. This

heterogeneity reveals the challenging problems brought forth by the high variety of

data in multi-hazard applications. Semantic Web Technologies play a significant role

by providing languages and tools for modelling domains including consistent and for-

mal descriptions of concepts and relationships among the data and hazardous events.

According to the W3C definition [112, 113], the Semantic Web is a web of data that

provides a common framework for data sharing and reuse across applications, enter-
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prises, and communities.

Ontology, a key element of the Semantic Web, is a specification of a conceptual model

for describing knowledge about a domain of interest. A basic concept in a form of

ontology can be described by an Resource Description Framework (RDF) triple [114]

which is comprised of a subject, a predicate and an object. Concepts described by RDF

can be extended by Web Ontology Language (OWL) [115] to construct an ontology

for representing rich and complex knowledge about things. In the case of multi-hazard

applications, an ontology can be used to: (i) represent domain knowledge through

concepts, their attributes and relationships between data sources, data and hazards;

and (ii) facilitate data integration across multiple data sources that represent variety,

velocity and volume characteristics of big data.

Ontologies are widely used in hazard management to model knowledge about hazards

and to manage actual data derived from EO and ancillary sources. Ontologies also

promote the associative retrieval in spatial big data [147]. Hazard assessment and

risk analysis are two of the common application areas where ontologies are used. The

Semantic Sensor Network Ontology (SSN) [28] and the Semantic Web for Earth and

Environmental Terminology (SWEET) [30] are two of the commonly applied ontologies

in hazard management applications. The SWEET ontology is reused to conceptualise

the knowledge from several areas, such as buried assets (e.g. pipes and cables), soil,

roads, the natural environment and human activities. Additionally, the Ontology of

Soil Properties and Process (OSP) is proposed in their work to describe the concept of

soil properties (e.g., soil strength) and processes (e.g., soil compaction). The ontology

is used to express how asset maintenance activities affect each other. Furthermore,

[28] and [116] present the application of SSN for wind monitoring. The former uses

SSN with Ontology for Quantity Kinds and Units (QU) [117] to conceptualise wind

properties (e.g. wind speed and direction) while the latter uses SSN and SWEET

to model the concepts of wind sensors and data streams of wind observations. The

Landslides ontology [29] extends SSN to organise knowledge for the landslides domain

such as the concepts of landslides, earthquake, geographical units, soil, precipitation

and wind. Even though these ontologies provide comprehensive concepts for sensor

data and hazard event, and provide a reusable, widely used semantic underpinning,
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they do not cover conceptual aspects of human sensors (e.g. social media data). Hence,

currently additional processes are required when applying these ontologies to EWS for

multi-hazard applications.

The related literature in the context of multi-hazard management can be classified

based on the following three perspectives: data sources, hazardous event analytics,

and EO and ancillary time series data management. It can be seen that effective

multi-hazard management demands high quality and rich data from a vast amount of

data sources that are related to the hazard of interest. Data sources utilised by multi-

hazard management applications can be sensors and/or data services that provide EO

and ancillary data. Such data sources include physical sensors (e.g., remote sensors,

in-situ sensors, wireless sensor network) and human sensors (e.g., social media, blogs

and crowd sourcing). Recent data analytics research for multi-hazard management is

focused on hazardous event analysis, which has three main directions: event identifi-

cation, event verification, and event prediction. The research in this area reveals the

challenging problems in EO and ancillary time series data management, especially the

discovery of potential time series data sources given the complexity and high variety of

such data sources in multi-hazard management applications.Several ontologies [148–

150] have been proposed for not only modelling knowledge about hazards but also

managing EO and ancillary data. They have shown that current standard ontologies

for data sources discovery do not exist. In addition, existing applications of ontology

in this domain mostly investigate specific problems, in other words these approaches

are not generalised. They fail to model the relationship between data sources and the

domain knowledge, which is an important factor for efficient data integration and data

sources discovery.

4.3 Landslide Scenario for electrical grid Early Warn-

ing System

Efficient EWS for landslide multi-hazards is essential for the prevention and mitigation

of electrical grid failure in hazard-prone areas. Generally, the development of EWS for

natural hazards can be accomplished through several approaches [118], depending on:
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(i) the rules stakeholders engage in hazard risk reduction, (ii) geographical conditions

of the hazard-prone area, and (iii) EO and ancillary data provided by responsible

parties. The approaches have shown the significance of the synchronisation of EWS for

landslide multi-hazards and EWS for electrical grid systems. Based on this, a scenario-

based approach [119] is applied in this work to specify the scope of the EWS for an

electrical grid system and its synchronisation. The scenario-based approach describes

a story that represents the ordinary uses of a system in the domain of interest from

both, domain experts’ and ontology developers’ viewpoints. The scenario thus helps

to identify the scope of the domain ontology.

4.3.1 Scenario

The Landslip scenario for electrical grid EWS focuses on the preparedness phase of

disaster management where the prediction of individual landslides’ occurrence using

time-series data sources is used to predict possible failure of electrical grid infrastruc-

ture. Several techniques for landslide prediction rely on the analysis of time-series data

from rain-gauge sensors [151, 152]. An example of the technique is to calculate local

rainfall thresholds for the occurrence of landslides [153]. In the local areas of inter-

est, the rainfall threshold is determined by the extraction of local rainfall events from

daily accumulative rainfall to reconstruct triggering rainfall conditions for landslide

occurrences in particular areas. Here, the calculated thresholds are used for analysing

real-time accumulative rainfall for predicting the occurrence of landslides and their

location. Parts of transmission networks or distribution networks that are vulnerable

to landslides in the predicted areas are identified and monitored.

The interaction between landslide and electrical grid system is considered when de-

signing the scenario. Figure 4.1 illustrates a situation before the occurrence of a

landslide event in a remote location. This area is a high slope and encompasses both

natural environment (e.g. rivers and mountains) and built environment (e.g. schools,

hospitals, road, water supply and electricity). The area is prone to landslides and

is monitored by the National Disaster Management Authority (NDMA). An expert

from NDMA explores potential data sources from the Data Sources Discovery Service

(DS) and gathers EO and ancillary data from the discovered data sources. The ex-
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pert then utilises the Early Warning System (EWS) for landslide to detect warning

signs by analysing daily rainfall, soil moisture, and water level and informs decision

makers of the potential landslide hazard. The EWS also sends event notifications to

other systems to inform of the potential landslide hazard. The event notification is

accompanied with additional information including prediction time, geo-location of

landslide occurrence, and geographical boundary of the place where the landslide is

likely to occur. Meanwhile, the EWS for electrical grid system monitors the overall

operation for the delivery of electricity to consumers. On receiving an event notifica-

tion from the landslide EWS, the electrical grid EWS uses the geographical boundary

to identify distribution networks and list of distribution poles that are located there is

a potential landslide hazard that needs to be monitored. This process is achieved by

invoking third party services provided by electrical grid system providers. Here, the

geo-locations of the distribution poles are identified. These geo-locations are used to

discover data sources that provide observed properties for distribution pole monitoring

(e.g. wind speed, wind direction, soil temperature, tilt, and vibration). Gathered from

data sources, the observed properties are analysed in real-time to monitor the failure

of each individual distribution pole. To summarise, the distribution poles that are

highly vulnerable to landslides are identified and the EWS informs the decision maker

about the possibility of a potential failure of the distribution poles.

4.3.2 Concepts

The scenario reveals the essential role of data-driven EWS for landslide risk prediction

and electrical grid system monitoring, which comprises of five main components.

• Exposure — refers to people and the environment in landslide hazard-prone ar-

eas. The environment comprises natural and built environments. The natural

environment encompasses of living and non-living things (e.g. animals, river,

forest, mountain, etc.). The built environment [120] is a core foundation of the

community, which is constructed by people. It is comprised of infrastructure and

facilities (e.g. house, school, road, bridge, electricity, water supply, etc).

• Stakeholder — refers to people or organisations who have a stake in the landslide
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Figure 4.1: Landslip Scenario for Electrical Grid Early Warning system.

or the electricity grid failure event.The stakeolders could include: (i) data col-

lectors and providers who deploy sensor devices in a landslide hazard-prone area

or electricity grid components and provide EO and ancillary data collected from

the sensor devices to EWS for analysis. The third parties who provide EO and

ancillary data collected from others are also considered as data providers and

(ii) Decision makers who have the responsibility for conducting landslide haz-

ard risk assessment using EO and ancillary data. They make a decision based

on the result from the Decision Support System and hazard risk management

plan in order to inform people in a risk area and other organisations before the

occurrence of landslides.

• Event — refers to an occurrence which is related to a hazard and electrical grid

system. The hazard itself is also considered as an event based on the context.

Hazard-related events can be classified as pre-hazard events, post-hazard events

and events during a hazard. Since the aim here is to monitor the failure of the

electrical grid system, landslide events are the majority of events in this scenario.

Landslide events can indicate the distribution networks and list of distribution

poles to be monitored by the EWS for an electrical grid system.
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• Data Sources — refers to any sensor devices and data services that provide

EO and ancillary data to data consumers. These data sources have different

capacities to provide data. Sensor devices are components that observe and

measure physical phenomena and transform the observation and measurement

into a human-readable form. A data service is an application software that

stores and provides data collected from multiple sensor devices. Nowadays, EO

and ancillary data for multi-hazard and electrical grid management applications

are available from several types of data sources.

• Decision Support Applications — refers to an integrated system that provides

functionalities for stakeholders to monitor, forecast and predict, validate and

assess hazardous events. In this scenario, EO and ancillary data collection sys-

tems, data sources discovery services, and EWS for landslide and electrical grid

are significant components of Decision Support Applications. These applications

enable stakeholders to take timely actions to reduce the impact of landslide haz-

ard and electric power shortage in advance. For example, once is it established

that the failure of distribution poles is likely to happen, a decision-maker can

co-operate with an electrical grid provider to prepare for the maintenance of the

poles or prepare for mobile power generation in the landslide occurrence area.

The data-driven EWS realises dynamic and timely decision making for landslide pre-

diction and monitoring of the electrical grid system by analysing EO and ancillary

data. Such data includes historical landslide events, electrical grid components, and

historical and real-time data produced by sensor devices. Additionally, several sensor

devices have been deployed in the landslide hazard-prone area by organisations who

are responsible for landslide hazard management. Also, electrical grid components are

equipped with sensors devices to observe the status of the components. These sensor

devices produce EO and ancillary data and send to EWS to monitor the landslide

hazard and electrical grid system in real-time.

Furthermore, the organisations store the data in their local repositories and provide

the data repositories as data sources for further analysis. Here, metadata of these data

sources are published to a Data Sources Discovery Service (DS), which is a part of De-
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cision Support Systems. The DS allows data publishers to advertise their data sources

by registering data sources metadata via a data sources registry service. Furthermore,

it allows data source consumers to explore potential data sources from the service to

be used in their applications.

4.4 Landslip Ontology for electrical grid Network

Monitoring

The monitoring of electrical grid network failure, the focus of this chapter, relies on

the prediction of landslides. This prediction requires rich information from multiple

data sources to provide more accurate predictions. For this purpose, the Landslip

Ontology as presented in Chapter 3 is reused and utilised to provide an efficient data

sources discovery mechanism in landslide prediction and electrical grid network moni-

toring. Basically, the landslip Ontology was designed and developed to conceptualise

the knowledge of landslide hazard and its warning signs. Moreover, knowledge of data

sources is also provided to facilitate data sources discovery and landslide precursor

verification. The ontology has been used to support data integration and analysis in

landslide early warning application using social media. The Landslip Ontology com-

prises of two main modules, Landslip Common and Landslip Data Sources. According

to the scenario mentioned in Section 4.3, the Landslip Data Sources is reused for effi-

cient data integration in the EWS for landslide and electrical grid systems. To account

for the lack of electrical grid knowledge representation, the Landslip Ontology is reused

by tying together with external services provided by the electrical grid providers in

order to indicate failure of the electrical grid network.

Scope and Purpose — The goal of the Landslip Ontology application for electrical

grid system monitoring is to indicate the distribution poles in the electrical grid system

that are vulnerable to landslide hazard and are likely to fail. Thus, the application

of the Landslip Ontology focuses on the preparedness phase of disaster management

where landslide events play an important role to enhance the efficiency of the monitor-

ing. The Landslip Ontology conceptual knowledge of landslide hazard, multi-hazard

interaction, and landslide-related incidents is utilised to support data integration and
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analysis in landslide hazard and electrical grid systems. The concepts of landslide

hazards are linked to EO and ancillary data, which constitute a set of properties for

landslide observation. Even though the ontology focuses on the landslide multi-hazard

domain, the concept of data source in the ontology can also be applied for the electrical

grid system application. The level of granularity is determined based on the compe-

tency questions and the terms identified thereof. However, external services from the

electrical grid system are also required in order to answer the competency questions.

Knowledge Sources — Built for landslide EWS, the ontology is designed based on

knowledge and experiences from scientists and experts who have the domain knowledge

of landslide hazard management. Research [122, 123] and standard specifications [28,

30, 124–126] involving multi-hazards and geo-spatial data models are also used as

additional knowledge sources to design the ontology. Further, related research works

[133, 134, 154, 155] were reviewed as knowledge sources of electrical grid systems and

the assessment of electrical grid networks for the design the harmonisation of the

ontology and the electrical grid information services. Moreover, this knowledge is also

used to conceptualise data sources for an electrical grid network assessment.

Figure 4.2: Snapshot of Landslip Ontology.

Figure 4.2 is a snapshot of the Landslip Ontology, which is comprised of two modules,

Landslip Common Ontology and Landslip Data Sources Ontology. The Landslip Com-

mon Ontology defines concepts about landslide hazard and its interaction with other
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hazards and anthropogenic processes. The Landslip Data Sources Ontology defines

concepts about observation and data sources for landslide hazard and electrical grid

systems. The Landslip Ontology reuses SSN ontology and terminology defined in OGC

standards (e.g. Observation and Measurement [124], SensorML [125] and SOS [126]).

4.4.1 Landslip Common Ontology

The Landslip Common Ontology conceptualises the knowledge of landslides hazard.

The ontology model combines theoretical knowledge and human experiences to identify

warning signs before the occurrence of landslides. Landslides are one of the most

significant multi-hazards found in many places around the globe [127]. Landslides

not only interact with but are also triggered by other hazards [122]. Therefore, the

Landslip Common Ontology conceptualises knowledge of landslides and the interaction

with other multi-hazards [122, 123]. It also conceptualises knowledge of warning signs,

observed by humans, which are used to indicate possible landslide events before the

occurrence of a landslide. Thus, the ontology represents warning signs of a landslide,

observed and reported by people in a social network, that can be used to facilitate

social media-based early warnings.

The Landslip Common Ontology comprises of four main concepts:

• RemoteArea — defines concepts about a remote area that is prone to land-

slide. The remote area encompasses both natural environment (e.g. river and

mountain) and built environment which includes infrastructure (e.g. road and

railway), utility (e.g. electricity and tap water) and place (e.g. school, health

care unit, and house). Located in a landslide-prone area, these elements can be

affected by landslides and other multi-hazards.

• NaturalHazard — defines a set of multi-hazards that can trigger landslides. This

concept mainly captures knowledge about the interactions between landslide

hazard and other multi-hazards (e.g. flood, earthquake, tsunami, and drought).

In addition, it also captures the interactions between other multi-hazards that

can, in turn, indicate the (potential) occurrence of landslides.
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• AnthropogenicProcess — defines a set of human activities that are contributing

factors in causing landslides [122].The knowledge of interactions within the pro-

cesses is also captured to conceptualise direct and indirect indication of landslide

hazards. Direct indications refer to the processes that trigger landslides while

indirect indications refer to the processes that trigger other processes, which in

turn, trigger landslides.

• WarningSign — defines a set of incidents for landslide hazard indication, other

multi-hazards and anthropogenic processes. The concept of warning signs is

mainly focused on incidents that are observed by a person or EWS.

4.4.2 Landslip Data Sources Ontology

EO and ancillary data observed by sensor devices indicate events or changed pattern of

landslide phenomena. Such data (e.g. rain, soil moisture, electrical grid components)

from a variety of sensor devices is collected by data providers and provided as data

sources for stakeholders to be used in their landslide hazard applications [128]. Due

to the wide variety and geographically distributed nature of EO and ancillary data

sources, it is essential to investigate efficient data source discovery [129] to provide

sufficient amount and quality of data sources for landslide hazard risk assessment and

electrical grid system monitoring. the Landslip Data Sources Ontology is thus designed

to enable discovery of data sources semantically. This ontology represents concepts

and relationships of EO and ancillary data, data sources, sensor devices, and data

providers. When combined with the Landslip Common Ontology, the knowledge of

landslide hazards can enhance data source discovery mechanisms to efficiently discover

data sources that are related to the hazard of interest. Specifically, the knowledge of

landslide warning sign can identify appropriate observed properties and data sources

for the verification of a landslide precursor. This capability enables EWS to provide

dynamic and timely decision-making for landslide hazards.

The Landslip Data Sources Ontology is comprised of three main concepts. The con-

cepts of observation and sensors reuse existing ontologies, SSN Ontology [28] and OGC

standard [124–126].
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• DataSource — is the central concept of the Landslip Data Sources Ontology. A

data source is any sensor (e.g. physical sensor, human sensor) or data service

that provides EO and ancillary data. DataSource defines a set of comprehensive

information about observation and data sources metadata.

• Observation — defines a set of observed properties (EO and ancillary data) that

are used to observe features of interest related to landslide hazard. Examples

of observed properties include rain, earthquake magnitude, soil moisture, soil

movement, temperature, humidity, and wind speed. These observed properties

are accessible to EWS via data sources.

• DataSourceMetadata — defines a set of information, which is essential for the

data acquisition mechanism. This concept is comprised of four groups of profiles

namely, ObservationProfile, SensorProfile, ServiceProfile, and ProviderProfile.

The ObservationProfile represents a set of observed properties provided by a

data source. SensorProfile provides information about sensor type, a feature of

interest, and a list of events to be observed. ServiceProfile provides information

which can be used to access a service (e.g. service type, endpoint, provider).

Finally, ProviderProfile provides information about a data provider (e.g. provider

name, contact address).

4.4.3 Ontology Metrics

An ontology comprises of a finite list of concepts and the relationships among them to

represent the domain of interest [156]. The ontology metrics illustrate the number of

classes, properties, individuals, and Description Logic (DL) expressivity of the ontol-

ogy. Classes describe concepts of the domain of interest at an abstract level. Properties

describe features and attributes of the classes and relationship among classes. Indi-

viduals are instances that represent concrete objects of the classes. For example, the

classes Landslide, Earthquake represent landslide and earthquake events respec-

tively. A property triggers represents the relationship between Landslide and

Earthquake concepts where a specific Earthquake event triggers a specific Land-

slide event. A specific landslide event (e.g. landslides triggered by the Hokkaido
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Table 4.1: Landslip Ontology features

Feature Value

Number of classes 98
Number of properties 26
Number of individuals 30
DL expressivity ALCH(D)

earthquake in Japan, 2018) is an individual or instance of Landslide. Table 4.1

shows a summary of the ontological features of Landslip Ontology in terms of size

(number of classes, properties, and individuals), expressivity, and complexity of the

core knowledge of the Landslip Ontology.

The DL expressivity represents the complexity of the logic underlying a particular

ontology [157]. For Landslip Ontology, AL (Attributive Language) [158] is used to

represent its complexity. Here the DL expressivity of Landslip Ontology is represented

by ALCH(D) which comprises of (i) AL — a Description Logic used to describe

the ontology, (ii) C — an extension for representing Concept Negation; (iii) H — an

extension for representing Role hierarchy; and (D) — an extension for representing

data type.

4.5 Electricity Grid Network Monitoring using Land-

slip Ontology

To enable efficient electrical grid network monitoring under the condition of landslide

hazard, EWS for electrical grid systems need to harmonise the Landslip Ontology

with information services provided by electrical grid providers. For example, the EWS

utilises knowledge base provided by the ontology to indicate the potential occurrence of

landslide and its location. In addition, both the knowledge base provided by Landslip

Ontology and the electricity grid provider have the coordination information which

the grid network monitoring system can use to integrate both systems based on geo-

location of detected landslide. Such information, particularly the landslide location,

can then be utilised by invoking the information services to retrieve a list of distribution

poles that it is necessary to monitor due to the landslide. To realise this, interaction
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between the electrical grid system and the landslide hazard needs to be investigated

and processes for the harmonisation between the Landslip Ontology and the electrical

grid information services need to be defined.

In this research, we focus on the monitoring of electrical grid network where the trans-

mission network and the distribution network are deployed across large regions in the

country including remote areas that are prone to hazards. A significant correlation

between the electrical grid network and landslide occurrence is geographical informa-

tion (e.g. geo-location and geographical coverage). With a prediction of landslide,

geographical coverage of the landslide affected area is identified. In addition, the

geographical coverage is represented as a boundary or bounding box coordination.

Meanwhile, geo-locations of electric pylons and poles within an electrical grid network

are identified by their individual geographical coordination (e.g. latitude, longitude).

Based on this, potential vulnerable electric pylons and poles are indicated by searching

for pylons and poles where their geo-locations are inside the geographical coverage of

the predicted landslide.

The process of harmonising the Landslip Ontology and electrical grid information ser-

vices in electrical grid EWS is divided into two sub-processes: landslide EWS process

and electrical grid EWS process. These sub-processes interact with each other and

require EO and ancillary data for their analysis. EWS for landslide collects EO and

ancillary data from multiple sensors deployed in the landslide prone area to analyse

and predict the occurrence of landslide. The EO and ancillary data produced by data

sources (e.g. IoT sensors) is a representation of observations. The observation is a

collection of measurement of phenomena for observing the changing pattern of the area

of interest. The measurement of phenomena is represented as an observed property,

which is observed or measured by sensors deployed in the area of interest. Landslide

observation comprises of sensors that observe or measure properties of landslides. Ex-

amples of the observed properties for landslide are precipitation, soil movement, soil

potential, temperature, and humidity.

The sequence diagram in Figure 4.3 illustrates the interaction among the components

of landslide EWS in order to monitor and predict the occurrence of landslides. Initially,

multiple data sources provided by different providers are registered to the data sources
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registry. In addition, the actual knowledge of landslides is constructed based on the

Landslip Ontology. Both data sources, metadata and landslide knowledge, are stored

in a triplestore, which is a semantic database. A hazard application utilises the system

by querying the knowledge base to retrieve processing rules that can be used for the

monitoring of landslides in the area of interest. Next, the system submits a query to the

knowledge base again to perform data source discovery to search for potential data

sources that correspond to the processing rules. Thereafter, the EWS collects data

sources based on suggested information from the knowledge base and starts processing

based on the suggested rules. Subsequently, decision makers are notified of landslide

events detected by the EWS. Such information includes event types, time, geo-location,

affected area, and other processing results. This information is also used by other

systems including the electricity grid monitoring system.

Figure 4.4 illustrates the utilisation of knowledge base in an electricity grid monitoring

systems (EGMS). Once a landslide is predicted, the landslide EWS sends a notification

with the landslide information to the EGMS. The information includes geo-locations

and the areas likely to be affected by the predicted landslide. The areas are are

represented by the bounding box from the observation. This extracted information is

used to identify electricity poles, which are at risk of failure caused by landslide. Next,

the EGMS calls external services provided by electricity grid providers to retrieve a list

of electricity poles located in the affected areas including their metadata. Thereafter,

the EGMS submits a query to the knowledge base to get potential processing rules and

observed properties, which are used to monitor the failure of the potential electricity

poles. Next, data sources are discovered by invoking the data source discovery service

to facilitate the monitoring of electricity pole failure. Collecting data from potential

data sources, EGMS is able to process the EO and ancillary data to monitor the failure

of the electricity grid network in the landslide prone area.

4.6 Evaluation

An evaluation was conducted to verify the coverage of the Landslip Ontology and its

application in electrical grid network monitoring. This includes the harmonisation
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Figure 4.3: An interaction among the components of EWS for landslide.

Table 4.2: An example of Competency Questions

Competency Questions

Q1 Which distribution networks are affected by landslide L?
Q2 Which distribution poles are affected by landslide L?
Q3 Which distribution networks are located in a landslide prone area?
Q4 Which distribution networks or substations need to be monitored because of the

potential of the occurrence of a landslide hazard?
Q5 What observed properties O can be used to monitor a distribution network D?
Q6 What data sources are providing observed property O to monitor a distribution

network D?

between the Landlsip ontology and electrical grid information services.Whilst various

approaches for evaluating an ontology exist, competency questions remain the most

common approach [130, 131]. This approach stipulates that an ontology must be

able to represent the competency questions using its terminology and answer these

questions using the axioms [132]. According to the use case mentioned in Section 4.3,

competency questions were developed as shown in Table 4.2. As the Landslip Ontology

provides only knowledge of landslide and data sources, the evaluation requires the the

harmonisation between the Landslip ontology and electrical grid information services.

Here, the result from the Landslip Ontology query will be used as an input to invoke

the electrical grid information services.
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Figure 4.4: A utilisation of knowledge base in electricity grid monitoring system
(EGMS).

The evaluation was conducted using a set of synthesised data that represents the use

case of landslide hazard mentioned in Section 4.3. We manually added information of

natural hazards and EO and ancillary data to our knowledge base. The information

includes landslide hazard, hazard triggers, warning signs, EO and ancillary data, and

data sources. The data sources include both data sources for landslide hazard and

electrical grid system. We performed validation over the dataset using Pellet to check

for ontology consistency, concept satisfiability, classification, and realisation. Based

on the competency questions, we performed preliminary experiments by querying over

the knowledge base.
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Q1 
Q2 

 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX : 
<http://www.semanticweb.org/ncl/ontologies/2018/6/landslip#> 
 
SELECT  ?geo ?p ?value 
 WHERE { :landslide_1 :hasGeoLocation ?geo . 
                 ?geo ?p ?value 
                 FILTER (?p = :bbox)} 
 

Q3 

 
SELECT  ?hazard ?geo ?p ?value 
 WHERE { ?hazard rdf:type :Landslide .  
                 ?hazard :hasGeoLocation ?geo . 
                 ?geo ?p ?value 
                 FILTER (?p = :bbox) } 
 

Q4 

 
SELECT ?hazard ?geo ?p ?value 
 WHERE { :flood_1 :triggers ?hazard . 
         ?hazard rdf:type :Landslide .  
                 ?hazard :hasGeoLocation ?geo . 
                 ?geo ?p ?value 
                 FILTER (?p = :bbox)} 
 

Q5 

SELECT    ?observedProperty  
WHERE {   
 ?observation :isObservationFor :gridnetwork_1 . 
 ?observedProperty :isObservedPropertyFor ?observation .} 
 

Q6 

 
SELECT  ?gridnetwork ?observation ?observedProperty 
?dataSource ?metadata ?profile ?p ?value 
WHERE {   
 ?observation :isObservationFor ?gridnetwork . 
 ?observedProperty :isObservedPropertyFor ?observation . 
 ?dataSource :isDataSourceFor ?observedProperty . 
 ?dataSource :hasDataSourceMetadata ?metadata . 
 ?metadata :hasProfile ?profile . 
 ?profile ?p ?value . 
 VALUES (?gridnetwork) { (:gridnetwork_1) } . 
 FILTER (?p != rdf:type)   
} 
 

 

Figure 4.5: SPARQL Queries for Competency Questions Q1 to Q6.

Figure 4.6: SPARQL Query Output for Competency Question Q6.

In order to write competency questions and to demonstrate that the Landslip Ontology

can be applied for electrical grid network monitoring and answer these questions, we

used the SPARQL Protocol and RDF Query Language (SPARQL).Using SPARQL, we

defined a formal query for each natural language competency question to get answers

from the knowledge base. Figures 4.5 and 4.6 show snapshots of the SPARQL queries

for Q2 and Q6 and the output for the competency question Q6 on running the query

in Protégé [159]. By executing the query based on the competency questions Q1 -
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Q6, we could verify the coverage of the Landslip Ontology. From the results, it can

be seen that the ontology is able to identify a list of pylons and poles in an electrical

grid network. Furthermore, the ontology can suggest potential data sources and their

metadata, which can be used by domain experts to perform timely decision making

against the failure of electrical grid network.

4.7 Summary

This chapter demonstrated the application of the Landslip Ontology, an Ontology in

the electricity grid domain. Specifically, the LO is utilised with external services for

electrical grid information services to monitor a failure of the electrical grid network

due to a landslide occurrence. The process for harmonising the LO and electrical

grid information services for an efficient Early Warning System in the electrical grid

domain is demonstrated in this chapter. The LO supports the EWS for the electrical

grid system by enhancing the efficiency of electrical grid network monitoring under

landslide hazard. Moreover, the LO enables decision-makers to find potential data

sources for monitoring. This chapter’s contribution is a process for the harmonisation

of the knowledge base and electrical grid information services for monitoring of the

electrical grid network. This contribution lays at the top layer of the thesis’s scope (the

EWS and Decision support tools) as an EWS for the electrical grid domain. The next

chapter demonstrates an EWS and decision support tool for bi-directional information

exchange with social media users for enhanced hazard observation.
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This chapter demonstrates a Social Media Analytics System for Active Hazard Obser-

vation (AHOM) that proposed an active way to include the human in the loop of hazard

information acquisition from social media. Unlike the state of the art, it supports bi-

directional interaction between social media data processing systems and social media

users, which leads to the establishment of deeper and more accurate situational aware-

ness of hazard events. The utilisation of Twitter streams and bi-directional information

exchange with social media users for enhanced hazard observation is demonstrated in

this chapter.

5.1 Introduction

The application of Early warning Systems (EWS) to predict natural hazards and vul-

nerabilities plays a vital role in preventing loss of life and damage to property. For

effective and timely decision-making, EWS requires a strong technical underpinning

and sophisticated knowledge of the natural hazards and risk management. Landslides

are a commonly occurring natural hazard with global impact and is closely linked to

many other natural hazards such as earthquakes, storms, flooding and volcanic erup-

tions. Predicting individual occurrences of landslide events is complex as it depends

upon many local factors, variables and anthropogenic input. For predicting and mon-

itoring landslides, decision makers use scientific models to analyse Earth Observation

(EO) data from satellites and ancillary data produced by Internet-of-Things (IoT)

sensors deployed in landslide-prone areas. In addition, the ancillary data includes sen-

sor data, social media data and data from other sources which are essential for the
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prediction and monitoring of hazard events. Such EO and sensor data used for the

analysis are usually obtained from multiple and heterogeneous data sources. Further-

more, through social media channels (Facebook, Twitter, Instagram etc.) the general

public can also contribute to landslide monitoring by reporting observations that could

be warning signs for landslides. However, decision-makers need to verify the detected

events reported from social media by analysing sensor or other corroborating data from

the area of interest. Hence, EO and data representing the event in the area of interest

is essential for the verification.

Effective response [160–162] to crises and hazard events such as landslides, floods,

fires, hurricanes, tsunamis, and man-made hazards is dependent on the availability of

historical data as well as on the effective real-time integration and utilization of data

streaming from social media feeds (such as Facebook, Twitter, and Weibo). However,

the existing social media data processing and/or acquisition methods are solely based

on Machine Learning (ML) and Natural Language Processing (NLP) classifiers, while

lacking the capability to include the human experts who can contribute to the data

collection and processing loop in the real-time (i.e., while hazard event is unfolding).

This leads to following drawback: the information extracted by pre-defined ML and

NLP classifiers may miss the information about antecedent hazards that leads to full-

fledged disaster. To illustrate this shortcoming, let us consider the following real-world

example from our research project (http : //www.landslip.org/) where a twitter user

posts a message to report hazards such as leaning utility poles, trees cracking, or

collapsed road beds in their village. Given these events, the social media data analysis

system can potentially predict the likelihood of the occurrence of a more serious hazard,

such as landslide, if some further contextual information can be collected from the

Twitter user (human in the loop) such as the location of the village and whether there

have been rainfall and flooding events in the past few hours/days.

In order to study how the social media users and human experts can more actively

contribute to data analysis (collection and processing) loop for natural hazard response

and planning, we develop the AHOM system, which has the following unique features

that differentiate it from previous social media data analysis systems.

Human in the loop AI system To enable bi-directional interaction with the social media
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users, AHOM uses a novel ontology, namely the Landslip Ontology (LO) as presented

in Chapter 3, that abstracts the landslide experts’ knowledge showing the relations

among landslip, landslip warning signs, and other potential occurrence of hazards.

This enables a new generation of interaction between data processing systems and

social media users, based on various “what if” scenarios modeled by the ontology-

based data integration and querying engine. This way the exhaust of social media is

used to develop more deep situational awareness of disaster events.

Integrative data management pipeline As a proof of concept, we develop a social me-

dia data processing pipeline (systems) which comprises of a Stream processing engine

(Kafka), NoSQL database (Elastic search), Natural Language Processing (NLP) en-

gine (spaCy1), and a novel Landslip Ontology for data integration and querying (an

Ontology-based data integration and querying (Triplestore) engine). While Kafka and

Elastic search are capable of accommodating real-time and historical social-media feeds

respectively. spaCy is used and interacted with Kafka stream processing APIs, pas-

sively extracting information from social media platforms in real-time. LO, which is

hosted in an ontology database, Triplestore, enables the generation of automatic and

interactive follow-up questions based on various “what if” scenarios modeled by the

ontology. A running version of our system is available at GitHub2, and the live demo

is available at here3.

The rest of the chapter is organised as follows: related work is discussed next in Section

5.2, followed by discussing the development of context-based knowledge discovery and

querying for social media data which is a knowledge-based for AHOM in Section 5.3.

The overall design of the AHOM and its implementation are discussed in Section 5.4

and 5.5, respectively. Finally, the summary of this chapter is presented in Section 5.6.

5.2 Related Work

This section discusses related work on data integration and analytics, and natural

language processing in multi-hazard EWS.

1µhttps://spacy.io/
2µhttps://github.com/ncl-iot-team/active-hazard-monitoring
3µhttps://bit.ly/2V9MkG4
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5.2.1 Data Integration and Analytics In multi-hazard Early
Warning Systems

EWS have played a significant role in natural hazard management to minimise loss

of life and damage to property. Additionally, several modern multi-hazard EWS take

advantage of various type of data sources, including remote sensing satellites, IoT sen-

sors, and social media. Due to the heterogeneity of the data sources, data integration

becomes a vital part of EWS to provide high-quality data for the effective prediction

of hazard events. Several works on data integration and analysis for multi-hazard

have been proposed in the literature. A data analytic framework for Twitter data was

proposed in [64] to identify twitter messages that are related to a particular type of

disaster (e.g. earthquake, flood, and wildfire). Several methods, including matching-

based and learning-based, to identify relevant tweets, are also evaluated. In [109],

the authors describe a study on the identification of peatland fires and haze events

in Sumatra Island, Indonesia, by using social media data. A data classification al-

gorithm is applied to analyse the tweets, and the outcomes are verified by using hot

spot and air quality data from NASA satellite imagery. The authors in [57] propose

an information infrastructure for timely delivery of social media and crowd-sourcing

message (from Ushahidi platform) to potentially responsible departments during the

Haiti earthquake in 2010. A data classification algorithm is used to provide an au-

tomatic classification mechanism over the messages. A decision support system that

integrates crowd-sourcing data with Wireless Sensor Networks (WSN) to widen the

coverage of the monitoring area for flood risk management in Brazil is proposed in

[110]. The Open Geospatial Consortium (OGC) standards are used in the research to

aid in the integration of the crowd-sourced data.

5.2.2 Natural Language Processing

Natural Language Processing (NLP) is a set of information engineering techniques

which enables computers to process and make sense of human (natural) languages.

NLP technique has evolved from complex handwritten rules to models trained using

machine learning. Earlier machine learning techniques like decision trees[163, 164]

generated rules similar to handwritten ones, using machine learning. The application
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of NLP in this work is to extract useful information from the natural language and

to classify the content into different topics of interest. Language modelling techniques

apply probability distribution over a sequence of words. Unigram, n-gram [165, 166],

Exponential and Neural networks [167–169] are the main types of language models

in use. Recent studies promise high accuracy in classifying natural language using

a neural network. A unified architecture for NLP using deep learning technique has

been introduced in work [170] by NEC Labs. In this work, the input sentence can be

processed to perform part-of-speech tagging, chunking, named entity tags, semantic

roles etc. using a language model and CNN. A study [171] at New York University

reveals a series of experiments using Convolutional Neural Network (CNN) which is

trained on a pre-trained model of word vectors for sentence classification in which the

model showed significant improvement in performance in several NLP tasks. Over the

years several open-source NLP projects like NLTK[172], CoreNLP[173], Spacy[174],

GATE[83] etc. gained interest of both academia and industry. While these meth-

ods and tools support natural language processing, building knowledge from natural

language pose several challenges.

5.3 Development of Context-based Knowledge Dis-

covery and Querying for Social Media Data

5.3.1 Knowledge-base Development

Earth Observation (EO) and ancillary data provided by multiple data sources con-

tribute to the high variety of characteristics of data sources in EWS. In addition, such

data sources differ in terms of: (i) data type — the different types of EO and ancillary

data used in a particular analysis, e.g. soil properties, temperature, humidity; (ii) data

storage — the difference in methods for collecting and organising data, e.g. RDBMS,

NoSQL database, and distributed file system; and (iii) data access — data sources

are accessible by different methods, ranging from direct access through data stores

(e.g. JDBC) to standard Web Services (e.g. OGC, SOAP, Restful). These differences

make the discovery, access and integration of data in EWS quite challenging. A formal

semantic representation of the data sources, domain knowledge about natural hazards
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and the relationship between them can help address the challenges arising from such

differences and enable data integration and analysis.

The knowledge base for data integration and analysis is designed and developed based

on the principles of Semantic Web Technology [112]. A core component of the knowl-

edge base is an ontology, which can be can be defined as ”a formal, explicit specification

of a shared conceptualisation” [175]. That is, an ontology models the agreed knowl-

edge about the real world through explicitly defined concepts and constraints on them

that are machine readable. In this work, we have developed an ontology, namely the

Landslip Ontology, which is based on OWL 2 [176]. The Landslip Ontology contains

knowledge on the relationships between landslides and data sources for EO and other

data. Additionally, it also contains the domain knowledge for describing the interac-

tion of landslide event to other hazards and the warning signs, which can be precursors

to landslides. Figure 5.1 shows the steps of the Landslip ontology development. The

primary knowledge sources for designing the ontology came from interviews with four

scientists and experts in landslide hazard management with an average of 10 years of

experience between them. Besides, publications [122], [123] and standard specifica-

tions [28, 30, 124–126] involving multi-hazards and geospatial data models were also

used as knowledge sources to design the ontology. A scenario-based approach [119]

was used to define a narrative representing expected uses of an EWS in the domain

of interest from the viewpoint of both domain experts as well as ontology developers.

The scenario helps to define the scope of the domain ontology to be designed and frame

competency questions to model the domain knowledge as well as for evaluating the

ontology [130, 131]. The Landslip ontology is developed and imported to a triple store

as a model for building the knowledge base for Landslide multi-hazard EWS. Finally,

a knowledge API is developed, which provides the consumer with an access point to

the knowledge base.

The Landslip Ontology which has been developed in Chapter 1 is used to construct

the knowledge base. The ontology is comprised of two modules: (i) Landslide Hazard

Ontology – defines concepts about landslides and the interaction to other hazards

and corresponding warning signs; and (ii) Data Sources Ontology – defines concepts

about observation and data sources for landslide hazard risk assessment. The Landslip
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Knowledge 
Sources

develop a scenario

Landslip 
Scenario

Competency 
Ques9ons

develop competency 
questions

model domain 
knowledge

Landslip 
Ontology

Knowledge Base
(triplestore)

Knowledge API 
(based on competency questions)

Figure 5.1: Landslip Knowledge base development process

ontology reuses the SSN ontology as well as terminologies defined in OGC standards

(e.g. Observation and Measurement [124], SensorML [125] and SOS [126]).

The ontology was evaluated for consistency and correctness through competency ques-

tions and a set of synthesised data that represent the use case(s) of landslide hazard.

The competency questions were defined in SPARQL [177] and the knowledge base

queried for answers. An example competency questions is ”What are data sources and

their metadata to observe a set of hazards H1, H2, . . . Hn” and the corresponding

SPARQL query to answer this question is defined as follows:

Listing 5.1: SPARQL example for data sources selection

SELECT ?hazard ?observation

?observedProperty

?dataSource ?metadata

?profile ?predicate ?_value

WHERE {

?observation :isObservationFor

?hazard .

?observedProperty

:isObservedPropertyFor ?observation .

?dataSource :isDataSourceFor

?observedProperty .

?dataSource :hasDataSourceMetadata

?metadata . ?metadata :hasProfile

?profile . ?profile ?predicate ?_value .
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VALUES (? hazard)

{ (: flood_1) (: landslide_1) } .

FILTER (?p != rdf:type)

}

5.3.2 Populating the Knowledge Base from Social Media
Content

The Landslip Ontology is a conceptual model that formally represents domain knowl-

edge about landslides captured from domain experts of natural hazards management.

Th ontology consists of concepts and relationships but does not model concrete objects

or named individuals, that represent actual events of landslides. With the emergence

of social media as a potential resource to build the domain knowledge, social media

contents to represent actual events of landslides are dynamically instantiated within

the ontology. In order to do this however, sophisticated techniques are required to

understand the context of the social media content and extract information from the

content to create individuals based on the conceptual model.

Social Media Content 
Classifica0on

messages

Information Extraction 
and Annotation

Classification Model

Knowledge Base 
and Ontology

Social Media

Knowledge base

Classification Model

Domain Ontology

keywords and 
concepts

model

feed

Figure 5.2: Process of populating the Knowledge Base from social media content
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Figure 5.2 shows the process of populating the knowledge base from social media

content to facilitate landslide-related knowledge discovery in an EWS. Historical data

related to past events of landslides collected from social media platforms are also

added to the knowledge base. The knowledge base thus consists of a set of synthesised

data for hazards (landslides, flood), warning signs (e.g. leaning light pole, blocked

road), and EO and ancillary data (e.g. water potential, moisture and temperature).

Due to the wide variety of information provided in each text from the collected social

media data, classification of the text into the topics of interest and extraction of

useful information from the content are required. One of the most critical challenges

while dealing with user-generated content is to capture the semantics of the content

using Natural Language Processing (NLP)/ Natural Language Understanding (NLU)

techniques. Our prototype system is designed with two modules to achieve this task:

A data classification/topic detection module for social media content classification

and a data extraction module to extract useful information, which can be used for

instantiating objects in the ontology. The modules are described next.

1. Social Media Content Classification — The first step to process the user

text is to identify the hazard which the user is referring to on social media. Re-

current Neural Network (RNN) [178] such as Long Short Term Memory networks

(LSTM) and Convolutional Neural Network (CNN) are widely used in text clas-

sification. In this work, we have used CNN, a deep learning technique, [171]

to perform text classification. A model, which is custom trained using weather

related text is used. The model training and inference processes are explained

in the following sections.

• Model — A classification hierarchy, as shown in Figure 5.3, has been

defined for our prototype system. A model is trained using 1000 user-

generated texts related to hazards, which are marked for different hazard

events and warning signs (for example, Events: Flood, Heavy Rainfall, Snow

etc.; Warning Signs: Leaning Light Pole, Water Discolouration etc.). Each

class has around 200 records. TensorFlow [179], an open source library, was

used for data preparation, training and inference. The model is similar to
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the one proposed by Kim Yoon in his work Convolutional Neural Networks

for Sentence Classification [171], which achieved good classification perfor-

mance for different text classification tasks like sentiment analysis and is a

standard baseline for new text classification methods. The model consists

of a word embedding layer, which maps vocabulary word indices to lower

dimensional vector spaces. The convolutional layer calculates convolutions

over the embedded word vectors using different filter sizes as each convo-

lution produces tensors of different shapes followed by max-pooling, which

is a sampling-based discretization process. These vectors are later merged

to form a large feature vector. Full details of the CNN layers and training

process are beyond the scope of this work.

• Inference — Every text message received by the Landslip agent is passed

to the classifier, which outputs the hazard event and any warning sign

mentioned in the text. This step enables the system to understand the

topic from the user-generated content. Data classification for this system is

a two-step process involving the classification of hazards and warning signs.

In the first step, the classifier tags the message whether a hazard or warning

sign is present in the text. The second step involves two classifiers, one for

classifying the type of hazard and the second for categorising the kind of

warning sign as per the classification hierarchy.In some cases, a message

may contain information about both hazard and warning sign. In such a

scenario, the system passes this message to both classifiers. In the inference

step, the result is attached as metadata to the input text.

Source Text

OtherHazards

Landslide

Warning Signs

Increase in
Water LevelFlood Leaning

Telephone Pole

Figure 5.3: Data Classification Hierarchy

2. Information Extraction and Annotation — In this step, a scenario is de-
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veloped using information about the situation from user-provided text. NLP

techniques, namely Part of Speech (PoS) tagging and Named Entity Recognition

(NER) are used to extract useful information from the text. Pre-trained NLP

models for the English language recognise Geo-location and affected entities (for

example, Road, Building, Electric Pole, etc.). The English language model,a

multi-task CNN trained on OntoNotes[180], with GloVe[181] vectors trained on

Common Crawl[182] is used in this work. This model is built for assigning word

vectors, context-specific token vectors, POS tags, dependency parse and named

entity recognition.

Tokenizer PoS 
Tagger Parser NERText

Text
with 

Entity Tags

Figure 5.4: NLP Pipeline for Named Entity Recognition

As mentioned in Section 5.2, named entities are extracted from the user-generated

content using NER. An NLP tool called Spacy [174] was used to perform the se-

ries of tasks required to perform NER. The processing pipeline consists of a

tokenizer, PoS tagger, Parser, and NER. The tokenizer tokenizes sentences into

words for which a PoS tag is attached based on the sentence structure. Then

the parser performs a dependency parsing of the sentence, which represents its

grammatical structure and defines the relationship between words. This step

is followed by the NER phase, which identifies the type of entity such as geo-

location, person, organisation, physical object, date, time, building/infrastruc-

ture etc. This model and pipeline gave a largely accurate prediction of the type

of the entity from the noun words tagged from the PoS tagging phase. Figure

5.5 shows an example of a sentence being processed and labelled.

The entity tags are attached to the original data as metadata for storage and

indexing. This extracted information is instantiated as objects based on the

concepts defined in the ontology and stored in the knowledge base.
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I saw leaning poles near Hill Cart Road  at 8.00 PM

I saw leaning poles near Hill Cart Road  at 8.00 PM
ENTITY:FACILITY

ENTITY:GEOLOCATION
ENTITY:TIMEENTITY:EVENT

ENTITY:OBJECT

NER

ENTITY:PERSON

Keywords & Concepts

Figure 5.5: Named Entity Recognition Example

5.4 System Overview

5.4.1 System architecture

Essentially, AHOM is a loosely-coupled run-time system that allows the human experts

to participate in the information acquisition. As shown in Figure 5.6, there are four

main components in AHOM: Storage system, Stream processing, Human ma-

chine interaction and AHOM API. First, social media data streams from various

sources are injected into the Storage system where Apache Kafka is used to con-

sume the input streams. Next, the Stream processing component applies a set of

machine learning models (mainly NLP models) to process the injected streams and the

outputs of the models are stored in an Elastic Search Database for further queries. The

machine learning models are containerized as microservices that are easy to plug-in

and plug-off to AHOM via the Kafka publish/subscribe message system. The details

of each machine learning model are illustrated in §5.4.2. When the pre-defined an-

tecedent hazard events are detected and the number of the detected events exceeds

a threshold, the Human machine interaction framework utilizes the LO that we

developed in Chapter 3 to strengthen the awareness of the situation that domain ex-

perts and/or the hazard managers may seek further information from the social media

users based on automated follow-up questions generated by our system (see §5.4.3).

Thus, the higher resolution information particularly interested by human experts can

be collected from users’ replies with a few iterations. Finally, AHOM API provides a

dashboard to visualize the information of the detected events, extracted from massive

social media data.
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Figure 5.6: AHOM architecture

5.4.2 Data processing pipeline

In this section, we discuss the details of each machine learning model and its execu-

tion workflow. First, the data streams are fed to User Classifiers that identify who is

posting this message. In this demo, we only consider the classification of two type of

users: one is an official account such as Meteorological Office; the other is for normal

users. In general, the information provided by official accounts is more reliable com-

pared with normal users, but the normal users can provide richer information. Since

Twitter and Facebook already provide the user information, we use the Twitter han-

dle to classify the users based on a dictionary. Next, the Event Classifiers are used to

identify whether a message relates to landslide hazard and antecedent hazard events

(i.e., warning signs). These classifiers are developed by using spaCy a NLP framework.

To this end, we collect a small amount of labeled data and then use the dataset to

retrain spaCy’s convolutional neural network (CNN) models [183, 184] to improve the

accuracy of detecting events (these models will also be used to support the Human

machine interaction in §5.4.3). Obtaining the geolocation information from the men-

tions in the message is also essential for analyzing landslides. This task consists of two

steps: Information Extraction and Location Identification. The Information Extrac-

tion component aims to extract the named entities of a message via en_core_web_lg

model (available on spaCy), a CNN model trained on OntoNotes[180]. These ex-

tracted named entities are the inputs of the Location Identification that classifies the
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named entities as including geolocation information or not. If yes, these geo-names

are converted to geo-coordinates by OpenStreetMap (OSM) datasets 4 using geocoding

method5. A single geo-name may have multiple entries in the OSM dataset. For this

demo purpose we take the first entry from the OSM dataset. As future work we will

seed the module with the location of interest. Finally, all the outputs are published to

Kafka and stored in Elastic Search Database for further analysis.

• Scalability — Data processing pipeline runs on Apache Kafka[185] which pro-

vides parallelism using data partitioning and consumer groups. In the demon-

stration system, for the Twitter topic, we used 3 partitions with the Twitter

handle as the partition key. The system can be scaled easily by increasing the

number of partitions. The number of workers for each processing step in the data

processing pipeline can be scaled up to the number of partitions for the given

topic. Kafka cluster consists of multiple brokers and a degree of replication

ensuring scalability and resilience.

• NLP model accuracy evaluation — In this demo, we trained our models

with a small dataset of 5000 tweets. The data is collected using Twitter stream-

ing API using keywords landslide and flood. We manually labeled the dataset

in two regards: 1) we labeled tweets related to landslide and its antecedent haz-

ard events; 2) for each tweet, we extracted the geolocation named entities e.g.,

country, state, street etc. The trained models have very good accuracy, where

the Event detection model only for landslide hazard achieves 92% accuracy and

the Geolocation extraction model extracts geolocation named entities with 87%

accuracy.

5.4.3 Human machine interaction

Based on input obtained from domain experts, LO is a knowledge model representing

information about natural hazards, including hazards such as landslide, flood, rockfall,

and earthquake; hazard warning signs such as rainfall and leaning utility poles; and

4µhttps://wiki.openstreetmap.org/wiki/Downloading_data
5µhttps://nominatim.org/
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Figure 5.7: Human machine interaction framework and its execution flow

observers such as social media users. The actual events detected or collected from

social media can be mapped to the LO. LO, together with the actual events, acts

as a knowledge base that can be queried and used for decision making. Based on the

mapping, the “hot zone” of the knowledge base can be identified, which represents

information that is of special interested to the decision makers and human experts.

Next, the missing knowledge in this “hot zone” can be used to generate the follow-

up questions for social media users to obtain further contextual information vital for

decision making.

To this end, we develop a framework of human-machine interaction based on LO

and the knowledge base discussed above and shown in Figure 5.6. This framework

utilizes machine learning techniques implemented in the stream processing component

to understand and extract landslide-related information from a large number of social

media users and then proactively acquire the missing landslide related information

from specific users. The framework consists of three main steps.

• Message Classification — event classifiers developed in the stream processing

component are utilized to collect the tweets related to the context of landslide

hazard and landslide warning signs. In addition, the classification models are

trained based on the taxonomy of natural hazards and warning signs defined in
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the LO.

• Information Extraction — allows the machine to extract actual contents from

a tweet using the NLP techniques. For example, we use the location identifier

to extract the geolocation information. The essential information for landslide

events extracted from the social media includes location, time and warning signs.

This information will be used in the next process to investigate missing pieces

of landslide related information.

• Semantic Querying — provides more comprehensive information about events

for decision making. In AHOM, we present three types of information using NLP

techniques and ontology based querying: i) essential information about an event

(such as location, time, and observation of events), ii) warning signs to indicate

potential occurrence of landslides, and iii) potential occurrence of other hazards

that could act as triggers for landslide. The aim is to provide as much relevant

information as possible to support human experts in making informed decisions.

AHOM uses LO, to provide information about warning signs and other related

hazards to enable human experts to predict the likelihood of the occurrence

of landslides with increasing certainty. As can be seen from Figure 5.7, vital

information about warning signs and related hazards is obtained from LO.

We use the following example to explain the process depicted in Figure 5.7. Using

NLP techniques, it can be determined that a user has tweeted about a leaning pole

(step 1 in Figure 5.7). The system then seeks further clarification from the user by

asking if they have noticed or observed anything else such as rainfall (step 2). The

observations from the user’s replies are extracted (step 3) and fed into LO to determine

the relation of these observations (leaning pole and rainfall) with landslide and also

to extract further relevant information. For each observation extracted from the tweet

and the user’s subsequent replies, SPARQL query [177] is used to ask the LO whether

it is an indicator (warning sign) for landslide (natural hazard) (step 4). The shortened

query is presented below:

Listing 5.2: SPARQL example for warning sign indicator

ASK {? observation:isWarningSignFor?landslide}
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If the answer to the query is ‘true’ (yes), then the information about the warning sign

is returned to the human expert (step 5). For example, in this case, the leaning pole

is a warning sign for landslide as modeled in the LO and hence the answer would

be true. If, however, the answer obtained is ‘false’ (no) then for each observation in

question, LO is further queried to determine if the observation is an indicator for any

other hazard(s). For example, since rainfall is not by itself an indicator of landslides

according to the relationship modeling in LO, the answer obtained for the above

query for rainfall would be ‘false’. In this case, the following question is asked of LO

to determine if rainfall is an indicator of any other hazard (step 6):

Listing 5.3: SPARQL example for hazard indicator using a warning sign

SELECT ?hazard

WHERE {: Rainfall:isWarningSignFor?hazard}

If the query yields an answer (step 7), which in this case would be flood and rockfall,

then follow-on questions are asked of the LO about the hazards identified. In this

example, the questions would be whether flood and/or rockfall can trigger landslides

(step 8):

Listing 5.4: SPARQL example for examining a landslide trigger by other hazards

ASK {:Flood:triggers?landslide}

#and

ASK {: Rockfall:triggers?landslide}

If the answer is ‘true’, then the information about the type of hazard is returned to

the human expert (step 10). In parallel with step 8, the user is also asked whether the

hazard(s) (obtained as answer to the query in step 7, which in this example are flood

and rockfall) are occurring or have occurred in their location (step 9). If the answer

is ’true’, then this information is presented to the human expert (step 10). Thus, in

this example where the hazard of interest is landslide, in addition to the location and

time of each observation, the following critical information is presented to the human

expert with the help of LO: i) Leaning pole has been observed, which is a warning sign

for the occurrence of landslides and ii) rainfall has been observed, which is a warning

sign for flood, which in turn can trigger landslides. Further, the user has confirmed

there is flooding in their location (see §5.5.2).
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The human expert thus receives information about possible indicators or warning signs

for a natural hazard as well as information about other hazards that may eventually

lead to the hazard in question. This example demonstrates how rich semantic querying

with LO can help to identify further relevant information, which may not have been

otherwise directly available, thereby providing more comprehensive knowledge that is

essential for informed decision making.

5.5 Implementation and Deployment

This section gives a demonstration of AHOM, with experiments conducted with Twit-

ter via its commercial APIs.

5.5.1 System deployment

The core parts of AHOM (i.e., Stream processing and Semantic query) were imple-

mented in the Python language, and deployed on an Ubuntu server with 20 cores

(Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz) and 64 GB memory. The Storage

System was deployed on another server with the same configuration. The Kafka clus-

ter was set up using Apache Kafka 2.12, the Elastic Search Database and Knowledge

Base were developed by using Elastic search 7.6 and Stardog respectively.

5.5.2 Execution sequence

This subsection illustrates the execution sequence of our AHOM to demonstrate its

ease-of-use and support for disaster management (see Figure 5.8).

1. Stream monitoring — The Twitter stream APIs are used to pull tweets, us-

ing a set of subscribed keywords generated by landslide experts, e.g., landslide,

landslip and land movement etc [186] (see Step 1). Then, the user accounts are

identified in Step 2. Step 3 leverages the trained NLP models to classify landslide

related events. If the tweet is related, in Step 4 and 5, the geolocation name en-

tities are extracted (if they exist), via the models discussed in §5.4.2. Finally, all

processing results are stored in Elastic Search Database (Step 6) and visualized

- 124 -



Chapter 5: Social Media Analytics System for Active Hazard Observation
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Figure 5.8: Execution pipeline

Figure 5.9: Screenshot of stream monitoring

in real-time as shown in Figure 5.9, where the size of cycle represents the number

of tweets i.e., the bigger size the higher the number of tweets. Moreover, our

system can monitor and visualize over a defined geographical area. For exam-

ple, the right side of Figure 5.9) shows the number of tweets related to landslide

within a 200KM radius of Newcastle upon Tyne. If the number of tweets exceeds

the predefined threshold (i.e., 50 in this demo), the system will randomly select

some tweets and ask some questions (see Step 7).

2. Semantic query — Figure 5.10 is a snapshot of the human-machine interaction

system in action. The series of questions posed here for the user and the reasoning

- 125 -



Chapter 5: Social Media Analytics System for Active Hazard Observation

Figure 5.10: Screenshot of Twitter interaction

behind them is explained in Semantic query in §5.4.3 with reference to Figure

5.7. The process described in Figure 5.7 corresponds to steps 8 - 11 in Figure

5.8, which gives the big picture view of the execution pipeline. These steps in

Figure 5.8 represent the bidirectional interaction of the interaction engine with

LO (steps 8 and 9) and of the engine with the social media user (steps 10 and

11).

5.6 Summary

A comprehensive set of EO and ancillary data from multiple and heterogeneous data

sources is essential for an effective early warning system (EWS). Social media and

other unstructured data are increasingly important for EWSs in natural hazard man-

agement by augmenting traditional data sources used by, for example, landslide sci-

entists. This chapter shows that the proposed prototype, AHOM, is able to process

massive amounts of data from social media to provide meaningful content to emergency

responders, planners and local and national decision makers. Additional benefits ac-

crue by enhancing the completeness of a dataset through automated question-based

information gathering which in turn improves perceived trust in and reliability of the

data collected.
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Conclusion

6.1 Thesis Summary

This thesis’s research works were motivated by modern Early Warning System (EWS)

requirements for analysing high volume-velocity-variety Earth Observation (EO) and

ancillary data to monitor and predict the occurrence of natural hazards for efficient

urban area management. Such time-series data are produced by a variety of IoT

sensors deployed in a natural hazard-prone area. Moreover, social media’s emergence

allows people to act as human sensors to report warning signs or any incidents related

to natural hazards. This thesis mainly addresses the problems of big data integration

and analysis for urban hazard management, especially the discovery of a wide variety

of time-series data sources, and the organisation and construction of a knowledge base

of hazard-related social media data. Here, the landslide hazard domain was selected

as a case study of a natural hazard to investigate the techniques for time-series data

integration. In particular, this is because landslides are a common form of natural

hazard with global impact and are closely linked with various other natural hazards

such as storms, earthquakes, flooding and volcanic eruptions.

The research problems were addressed by utilising knowledge representation and rea-

soning techniques to capture knowledge from landslide experts and develop machine-

understandable ontology and knowledge base to facilitate data integration for landslide

EWS. Here, the Landslip Ontology was developed to represent the knowledge of the

landslide domain and provide a knowledge base that establishes relationships between

landslide hazard, social media, and time-series data sources. The major knowledge

sources for the LO development are from interviews of landslide experts who are mem-

bers of the Landslip project. The evaluation of the LO was conducted based on the
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domain experts’ competency questions to verify the coverage of the Landslip Ontology

and its application in a landslide early warning. Besides, the LO is a key contribution

of the thesis to facilitate data sources discovery and the organisation and construction

of a social media knowledge base to support landslide decision-making.

The LO knowledge base was adopted to design an ontology-based process to dis-

cover landslide-induced emergencies in the electrical grid. The process harmonises

the knowledge base and electrical grid information services to monitor electricity grid

networks and identify parts of the electrical grid infrastructure potentially vulnera-

ble to a detected landslide. The evaluation was performed by verifying the coverage

of the ontology in harmonising with the electrical grid information services based on

competency questions.

Finally, a data integration and analysis system for active hazard observation using

social media was developed to enable bi-directional information exchange with so-

cial media users for enhanced hazard observation. The system utilises the LO and

knowledge base populated from social media data to detect the potential occurrence

of landslide events and generate questions for communicating with social media users.

As a result, the system helps decision-makers to obtain missing pieces of information

from potential social media users to enable more accurate decision-making.

6.1.1 Limitations

The Landslip Ontology provides a formal knowledge base of landslide domain con-

cepts to enable time-series data integration in urban hazard management. The LO

and knowledge base can answer decision-makers questions. For example, is a leaning

telephone pole an indicator for a landslide? However, the questions to be answered by

the LO are limited by the competency questions, which are defined by landslide experts

from the Landslip project. In addition, domain experts working in another landslide-

prone area may have different experiences, expertise, and applications in landslide

hazard management. Based on this, the LO could be improved by collaborating with

other domain experts to answer more questions.

The current version of the active hazard observation system using social media is

a research-level prototype that contributes to the Landslip project. The automated
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communication between the system and social media users was implemented based on

the Twitter API with many Automation rules1. Thus, the system is only tested and

demonstrated within a closed group of the Landslip project. It needs to be compiled

with the Twitter rules, especially the sufficient consent to take automated actions

through Twitter users, to be deployed at the production level and provided to the

public.

6.1.2 Contributions

The research work in this thesis contributes to big data integration and analysis for

urban hazard management at several levels, ranging from conceptual model to concrete

applications. The main contribution of this research is the Landslip Ontology (LO),

a formal model that represents the knowledge of the landslide domain and provides a

knowledge base that establishes relationships between landslide hazard, social media,

and time-series data sources. Moreover, the discovery of time-series data sources and

the detection of social media events for the landslide Early Warning System are the

other contributions of this research to support decision-making in landslide hazard

management. The active hazard observation system using social media contributes to

enabling information enrichment from social media to enhance decision-making accu-

racy. Finally, this research has also contributed to the Landslip project, a Natural

Environment Research Council (NERC) funded project that aims to reduce the im-

pacts of landslide multi-hazards in India.

6.2 Future Research Directions

Directions for further research in big data integration and analysis techniques as out-

lined in this thesis can be seen in the following three fields.

6.2.1 Ontology-based data integration

As mentioned in the discussion on the limitation of the research work in this thesis,

there are many research opportunities to enhance the efficiency and capability of the

1https://help.twitter.com/en/rules-and-policies/twitter-automation
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ontology-based data integration techniques for urban hazard management. The col-

laboration with domain experts from other institutions to develop more competency

questions is a significant key to improve the capability of the Landslip Ontology to

answer more questions for urban hazard management.

Current urban hazard knowledge proposed in this thesis is driven by the Landslip

Ontology, where the warning signs and hazard interactions can indicate the potential

of landslide occurrence. Thus, the Landslip Ontology can be expanded to form an

urban hazard ontology which is the combination of supplementary knowledge of other

multi-hazards (e.g. the warning sign of other hazards). However, it is necessary to

collaborate with domain experts of the hazard of interest to develop the urban hazard

ontology.

The research work on knowledge representation and reasoning techniques, which is a

field of Artificial Intelligence, for emergency management can be a long term research

direction achieved from this thesis. Additionally, cross-domain ontology integration is

an opportunity to adopt the Landslip Ontology in other emergency management ap-

plications. For example, the Landslip Ontology integrated with Electric Vehicle (EV)

related ontology can help the electric energy planing in an urban area that has experi-

enced an urban hazard. Additionally, the EVs with power batteries are considered as

a mobile power supply that can contribute their electric power to hospitals, emergency

shelters, and public transport etc., during an emergency situation. A cross-domain

ontology that captures knowledge from domain experts could help decision-makers in

planning and communicating with EV owners.

6.2.2 Cloud-based Risk Analytics Framework for Emergency
Management

The following research activities within the context of a cloud-based risk analytics

framework for emergency management can be the future direction of the work de-

scribed in the thesis.

• Algorithmic techniques for urban risk analytics that support storage, classifi-

cation, and event detection over data obtained from multiple sources, both in
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real-time (such as data emitted by wireless sensor networks) and via historical

repositories (for example, Twitter Firehose);

• Scalable data integration (meta-data management) techniques that can enable

multi-dimensional querying over heterogeneous, real-time, and historical data

in multiple contexts (such as spatial, temporal, semantics, source types, event

types); and

• Cloud resource management methodologies that can seamlessly deal with het-

erogeneity in data analytic tasks, computational models, big data programming

models, and cloud resource types (datacenter versus network edge, for example).

6.2.3 Data Management for Electric Vehicles Energy Man-
agement in an emergency

The emergence of Electric Vehicles (EVs) raised new research opportunities for energy

management during emergency situations. In an emergency situation such as disaster,

the EVs providing battery units can be considered a mobile service provider of energy

stores to charge and discharge the energy to/from the grid and supply to critical

infrastructures (CIs). For example, landslides can cause power supply disruption so

that EVs, as a mobile energy provider, can charge electric energy to the grid to provide

power supply for hospitals and emergency shelters in disaster relief services. Here, data

management has thus played a significant role in managing IoT and EV sensor streams

during the emergency. The potential research direction in data management for EV

energy management in an emergency is as follows.

• Analysis of core data and access types – The data collection of IoT and

EV sensors (such as smart meters, battery/photovoltaics (PV) panels for moni-

toring CIs energy supply and demand) is a challenge in EV energy management

for emergencies. The variety of access protocols to the IoT and EV sensor sys-

tems requires technical and socio-technical processes to enable access to the

data stream. Additionally, the data stream can be accessed directly through a

device with internet connectivity or a third-party cloud data platform. Data pro-

vided retrospectively (such as city planning data from City Information Modeling
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(CIM)/Building Information Modeling (BIM) and road networks) may require

the social and process-based access system to data incorporating suitable trust,

security, provenance, governance, Quality Assurance (QA) and management re-

quirements.

• Urban Information Modeling of cities — This research involves the devel-

opment of a model enabling representation of critical infrastructure identified

in the city (such as building, hospitals, schools) and identify the interactions

between the microscale model of Building Information Model (BIM) with the

large-scale model at the City level provided by the Urban Information Model

(UIM). The occurrence of micro-scale phenomena in the city (such as an electric

power disruption) may affect the service at a local scale, for example, people

in a railway station or hospital are prevented from using an elevator due to an

electric blackout. This research will investigate the modelling of the city services

provided by critical infrastructures (e.g. Transportation system, power network,

Telecom Mobile service) into the BIM.

• Development of technique for holistic (IoT-Edge-Cloud) data collec-

tion, filtering, and monitoring — Data collection, filtering and monitoring of

EV data during emergencies may experience unexpected events that can degrade

the abilities of edge devices, for example, the sudden unavailability of sensing

devices due to the failure of internet communications. Several techniques, such

as statistical data sampling, online caching (such as storing previous computa-

tion results), have to be investigated to deal with the uncertainties at the data

collection level. The research focuses on characterising high latencies and soft-

ware/hardware failures during data offloading between the edge and cloud due

to undesirable dynamics in communication and computation processes. The ex-

pected result will be an intelligent data collection and filtering technique that

yields high data availability to provide energy restoration to CIs in disaster-

affected urban areas.

• Edge-Cloud data storage and querying — This research investigates tech-

niques for collecting real-time data from IoT monitoring devices, smart sensors,
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and EVs, and the storing and sharing of such data using edge-cloud infrastructure

over longer time frames. Here, the development of hybrid big data management

platforms for heterogeneous database architectures (such as stream processing,

batch processing, SQL database, and NoSQL database) for disparate IoT data

sensors (such as smart meters, EV sensors) to support seamless access to data

distributed across different architectures (edge-cloud) is a major challenge of this

research.

6.2.4 Time-series data analytics for event detection in haz-
ard management

Time-series data analytics for event detection in hazard management is a significant

future research direction of the thesis. The real-time response and future event pre-

diction are essential topics in this research. In addition, the real-time response process

analyses massive time-series data stream in real-time to identify hazards and hazard-

related events to provide effective response to hazard and support timely decision

making. The future event prediction is a process for analysing historical time-series

data to understand the changing pattern of data and predict the potential of future

hazard events.

• Social media data analysis for emergency management — Social media

has played essential roles as valuable data sources to support timely decision mak-

ing in hazard management. The techniques such as Natural Language Processing

(NLP) and Convolutional Neural Network (CNN) has been used to extract and

detect events in natural hazard contexts. However, there have been several open

issues in social media data analysis that need to be investigated. The examples

are (i) spatial and temporal analysis of social media data to identify/predict lo-

cation and occurrence time of the hazard of interest; (ii) sentiment analysis from

social media in active hazard warning and emergency response; (iii) real-time

disaster damage assessment on social media; (iv) the analysis of social media

pattern during hazard events; and (v) Hazard data quality assurance for social

media data.
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• Knowledge graph data integration analysis — The knowledge graph can

be used to solve the challenge in the wide variety and heterogeneity of time-

series data. Data extracted from social media is a potential source of time-series

data that can be used to construct a domain-specific knowledge graph in real-

time to enable social-driven decision support in emergency management. Based

on this, several techniques for real-time construction of knowledge graph (e.g.

data acquisition, information extraction) and the knowledge graph analysis (real-

time reasoning, Machine Learning over knowledge graph) to support emergency

response during hazard need to be further investigated.

• Time-series data analysis for event prediction in hazard management

— Nowadays, there is a great effort to develop techniques that analyse a massive

amount of time-series data to forecast hazards. Event prediction is an essential

process to identify the potential occurrence of a future hazard. The process

analyses historical time-series data using sophisticated techniques such as Data

mining, Machine Learning to predict the future occurrence of hazards. The

orchestration of time-series data from physical sensors and social media data

is one of the challenging research in this topic to enhance the effectiveness of

hazard event prediction. Such research includes (i) pattern recognition to forecast

hazard occurrence using social media and physical sensors; (ii) development of

geospatial techniques for hazards risk assessment using a time series of satellite

images and social media; and (ii) Machine learning techniques (e.g. Bayesian

network learning) to analyse time-series data and deal with uncertainty factors

in natural hazard assessments.
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Appendix I: Landslip Ontology

<?xml version=”1.0 ”?>
<Ontology xmlns=”ht tp : //www.w3 . org /2002/07/ owl#”

xml:base=”ht tp : //www. semanticweb . org / nc l / on t o l o g i e s /2018/6/ l a nd s l i p#”
xmlns : rd f=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns:xml=”ht tp : //www.w3 . org /XML/1998/ namespace ”
xmlns:xsd=”ht tp : //www.w3 . org /2001/XMLSchema#”
xmlns : rd f s=”ht tp : //www.w3 . org /2000/01/ rdf−schema#”
onto logyIRI=”ht tp : //www. semanticweb . org / nc l / on t o l o g i e s /2018/6/ l a nd s l i p#”>

<Pre f i x name=”” IRI=”ht tp : //www. semanticweb . org / nc l / on t o l o g i e s /2018/6/ l a nd s l i p#”/>
<Pre f i x name=”owl ” IRI=”ht tp : //www.w3 . org /2002/07/ owl#”/>
<Pre f i x name=”rd f ” IRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”/>
<Pre f i x name=”xml” IRI=”ht tp : //www.w3 . org /XML/1998/ namespace ”/>
<Pre f i x name=”xsd ” IRI=”ht tp : //www.w3 . org /2001/XMLSchema#”/>
<Pre f i x name=” rd f s ” IRI=”ht tp : //www.w3 . org /2000/01/ rdf−schema#”/>
<Dec la ra t ion>

<ObjectProperty IRI=”hasNaturalResource ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Di s t r i bu t i onL ine ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” s o i l mo i s t u r e 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”column”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”WindDirection ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”i sLocatedIn ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”BulkDensity ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”has Ind i ca to r ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”SnowStorm”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Wi ld f i r e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” f l o od 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”VegetationRemoval ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=” f e a t u r eL i s t ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”ds metadata 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Phys i ca lSensor ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=” l i v e s I n ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” p r o v i d e r p r o f i l e 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”account ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”AnthropogenicProcess ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”NaturalResource ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”RegionalSubs idence ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”isConnectedTo ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”QuarryingSerfaceMining ”/>
</Dec la ra t ion>
<Dec la ra t ion>
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<Class IRI=”Agr i cu l tura lPract i ceChange ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”ObservedPropertyPro f i l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=” c o l l e c t i o n ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”crack on s ideWalk 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”measures ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”TreeFal l ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”WaterAddition ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”HeavyRainFall ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”TransmissionNetwork ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”ds metadata 3 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”D i s t r i bu t i onPo l eFa l l ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”WarningSign ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”IncreaseInWaterLeve l ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”ObservedProperty ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Railway ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=” In f r a s t ru c tu r eCons t ru c t i on ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”eventL i s t ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” s e n s o r p r o f i l e 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”isObservedPropertyFor ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Hosp i ta l ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”S e r v i c eP r o f i l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=” t r i g g e r s ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Transmiss ionLine ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasSocia lMedia ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Resident ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”soi l movement 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Residence ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Flood ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”U t i l i t y ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasMetadataProperty ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”ChemicalExplosion ”/>
</Dec la ra t ion>
<Dec la ra t ion>
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<NamedIndividual IRI=” s e n s o r p r o f i l e 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”NewclearExplost ion ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”tab l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”ExtremeTemperatureHot ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”FlashOver ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasObservedProperty ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”In f i l l edGround ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=” I n f r a s t r u c t u r e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”LeaningTelephonePole ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” o b s p r o f i l e 2 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”UrbanArea ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”obs 3 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=” long i tude ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Mountain ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Slope ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Prov i d e rP ro f i l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”OverheadTransmissionPoleBroken ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasPlace ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasGeoLocation ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”ConcretePole ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”TreeLeaning ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasObservation ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Urbanisat ion ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”GridNetwork ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”obs 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Tide ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”EarthQuakeMagnitude ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Transmiss ionPoleLeaning ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”GroundWater ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”phenomenonEndTime”/>
</Dec la ra t ion>
<Dec la ra t ion>
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<Class IRI=”Substat ion ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”AirPressure ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Person ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”CrackOnSideWalk ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Lightning ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”rep r e s en t ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Transmiss ionPoleFa l l ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”observedPropertyType ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”VoltageSurge ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”obs 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”tapwater ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Lean ingElec t ron i cPo le ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”GroundCollapse ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Drought ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”SeismicWave ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=” e l e c t r i c i t y ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” f o i Ka r e l a bbox 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”procedure ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”isWarningSignFor ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”isObservat ionFor ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” f l o od 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” r a i n 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”ha sU t i l i t y ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”ReservoirAndDamConstruction ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”serv iceAdapter ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”CrackOnConcreteFloor ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” f o i Ka r e l a bbox 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”postdate ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”BulgeOnGround”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”GroundHeave ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Bio l og i ca lAt tack ”/>
</Dec la ra t ion>
<Dec la ra t ion>
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<DataProperty IRI=” l a t i t u d e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”isDataSourceFor ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Publ icPlace ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”So i lMo i s ture ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Socia lMedia ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Earthquake ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”ImpactEvent ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” l a nd s l i d e 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”isGeoLocationFor ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”serviceURL ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasDataSourceMetadata ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”ExtremeTemperatureCold ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=” i s I nd i c a t i onO f ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Expert ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”OverheadDistr ibut ionLineBroken ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” o b s p r o f i l e 1 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”So i lLoca lSubs idence ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”House ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Observation ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Generat ingPlant ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”DataSource ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”MobileApp ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” l a nd s l i d e 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”gr idnetwork 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasWarningSign ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”GridSystem ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”CrackOnWall ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”In f r a s t ruc tu r eLoad ing ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”T i l t ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” o b s p r o f i l e 1 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”School ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”g eo l o c a t i on 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>
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<Class IRI=”Flat ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”mediaType ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Cumulat iveRainfa l l ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”FoI ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Humidity ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Place ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”s e rv i c eP rov id e r ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”HailStorm ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”dbname”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Road”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”OilGasExtract ion ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Sen s o rP r o f i l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”observes ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”HumanSensor ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Lake ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Rain ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”VolcanicErupt ion ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”SoilMovement ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”con t r i bu t e s ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”BrokenUndergroundUti l ity ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”River ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”observedPropertyName ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Di s t r i bu t i onPo l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”WindSpeed”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Storm”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Tsunami ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”SubsurfaceMining ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”DataSourceMetadata ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Obse rva t i onPro f i l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”AirTemperature ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Mat e r i a lF l u i d In j e c t i on ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Water fa l l ”/>
</Dec la ra t ion>
<Dec la ra t ion>
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<Class IRI=”DrainageAndDewatering ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”bbox”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=” f e a t u r eO f I n t e r e s t ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Dis t r ibut ionPo leLean ing ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”InS i tu ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”SnowAvalanche ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”CrackonBuilding ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Vibrat ion ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”GeoLocation ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Subsu r f a c e In f r a s t ruc tu r eCons t ruc t i on ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasDataSource ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”TapWaterColourChange ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”g eo l o c a t i on 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Ste e lPo l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”CrackOnStreet ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasObservedPropertyPro f i l e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”dataSource 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”serv iceType ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” l e an i n g t e l e phon e po l e 1 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”providerName ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”ha s I n f r a s t r u c tu r e ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”WaterLevel ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Lands l ide ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”timeInstanceOrPer iod ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Soi lTemperature ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”path ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”dataSource 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Pylon ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”Socia lMediaUser ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”c r a ck on wa l l 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”sensorType ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=” p r o v i d e r p r o f i l e 2 ”/>
</Dec la ra t ion>
<Dec la ra t ion>
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<Class IRI=”Landsl ideProneArea ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”NaturalHazard ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”DataService ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”where ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<DataProperty IRI=”phenomenonBeginTime ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”WoodenPole ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”dataSource 3 ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<ObjectProperty IRI=”hasFoI ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<Class IRI=”SocialMediaAccount ”/>
</Dec la ra t ion>
<Dec la ra t ion>

<NamedIndividual IRI=”ds metadata 1 ”/>
</Dec la ra t ion>
<SubClassOf>

<Class IRI=”Agr i cu l tura lPract i ceChange ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”AirPressure ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”AirTemperature ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Bio l og i ca lAt tack ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”BrokenUndergroundUti l ity ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”BulgeOnGround”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”BulkDensity ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”ChemicalExplosion ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”ConcretePole ”/>
<Class IRI=”Di s t r i bu t i onPo l e ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”CrackOnConcreteFloor ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”CrackOnSideWalk ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”CrackOnStreet ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”CrackOnWall ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”CrackonBuilding ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Cumulat iveRainfa l l ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”DataService ”/>
<Class IRI=”DataSource ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Di s t r i bu t i onL ine ”/>
<Class IRI=”GridNetwork ”/>
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</SubClassOf>
<SubClassOf>

<Class IRI=”Di s t r i bu t i onPo l e ”/>
<Class IRI=”GridNetwork ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”D i s t r i bu t i onPo l eFa l l ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Dis t r ibut ionPo leLean ing ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”DrainageAndDewatering ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Drought ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”EarthQuakeMagnitude ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Earthquake ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Expert ”/>
<Class IRI=”Person ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”ExtremeTemperatureCold ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”ExtremeTemperatureHot ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”FlashOver ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Flat ”/>
<Class IRI=”Place ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Flood ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Generat ingPlant ”/>
<Class IRI=”GridSystem ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”GridNetwork ”/>
<Class IRI=”GridSystem ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”GroundCollapse ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”GroundHeave ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”GroundWater ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”HailStorm ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”HeavyRainFall ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Hosp i ta l ”/>
<Class IRI=”Publ icPlace ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”House ”/>
<Class IRI=”Place ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”HumanSensor ”/>
<Class IRI=”DataSource ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Humidity ”/>
<Class IRI=”ObservedProperty ”/>
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</SubClassOf>
<SubClassOf>

<Class IRI=”ImpactEvent ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”InS i tu ”/>
<Class IRI=”Phys i ca lSensor ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”IncreaseInWaterLeve l ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”In f i l l edGround ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=” In f r a s t ru c tu r eCons t ru c t i on ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”In f r a s t ruc tu r eLoad ing ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Lake ”/>
<Class IRI=”NaturalResource ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Lands l ide ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Landsl ideProneArea ”/>
<Class IRI=”UrbanArea ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Lean ingElec t ron i cPo le ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”LeaningTelephonePole ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Lightning ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Mat e r i a lF l u i d In j e c t i on ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”MobileApp ”/>
<Class IRI=”HumanSensor ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Mountain ”/>
<Class IRI=”NaturalResource ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”NewclearExplost ion ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”OilGasExtract ion ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”OverheadDistr ibut ionLineBroken ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”OverheadTransmissionPoleBroken ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Phys i ca lSensor ”/>
<Class IRI=”DataSource ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Publ icPlace ”/>
<Class IRI=”Place ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Pylon ”/>
<Class IRI=”TransmissionNetwork ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”QuarryingSerfaceMining ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Railway ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
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</SubClassOf>
<SubClassOf>

<Class IRI=”Rain ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”RegionalSubs idence ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”ReservoirAndDamConstruction ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Residence ”/>
<Class IRI=”Place ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Resident ”/>
<Class IRI=”Person ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”River ”/>
<Class IRI=”NaturalResource ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Road”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”School ”/>
<Class IRI=”Publ icPlace ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”SeismicWave ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Slope ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”SnowAvalanche ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”SnowStorm”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Socia lMedia ”/>
<Class IRI=”HumanSensor ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Socia lMediaUser ”/>
<Class IRI=”Person ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”So i lLoca lSubs idence ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”So i lMo i s ture ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”SoilMovement ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Soi lTemperature ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Ste e lPo l e ”/>
<Class IRI=”Di s t r i bu t i onPo l e ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Storm”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Substat ion ”/>
<Class IRI=”GridSystem ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Subsu r f a c e In f r a s t ruc tu r eCons t ruc t i on ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”SubsurfaceMining ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”TapWaterColourChange ”/>
<Class IRI=”WarningSign ”/>
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</SubClassOf>
<SubClassOf>

<Class IRI=”Tide ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”T i l t ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Transmiss ionLine ”/>
<Class IRI=”TransmissionNetwork ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”TransmissionNetwork ”/>
<Class IRI=”GridSystem ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Transmiss ionPoleFa l l ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Transmiss ionPoleLeaning ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”TreeFal l ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”TreeLeaning ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Tsunami ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Urbanisat ion ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”VegetationRemoval ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Vibrat ion ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”VolcanicErupt ion ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”VoltageSurge ”/>
<Class IRI=”WarningSign ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”WaterAddition ”/>
<Class IRI=”AnthropogenicProcess ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”WaterLevel ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Water fa l l ”/>
<Class IRI=”NaturalResource ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”Wi ld f i r e ”/>
<Class IRI=”NaturalHazard ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”WindDirection ”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”WindSpeed”/>
<Class IRI=”ObservedProperty ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”WoodenPole ”/>
<Class IRI=”Di s t r i bu t i onPo l e ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=” e l e c t r i c i t y ”/>
<Class IRI=”U t i l i t y ”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”tapwater ”/>
<Class IRI=”U t i l i t y ”/>

</SubClassOf>
<Di s j o i n tC l a s s e s>

<Class IRI=”Agr i cu l tura lPract i ceChange ”/>
<Class IRI=”ChemicalExplosion ”/>
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<Class IRI=”DrainageAndDewatering ”/>
<Class IRI=”In f i l l edGround ”/>
<Class IRI=” In f r a s t ru c tu r eCons t ru c t i on ”/>
<Class IRI=”In f r a s t ruc tu r eLoad ing ”/>
<Class IRI=”Mat e r i a lF l u i d In j e c t i on ”/>
<Class IRI=”NewclearExplost ion ”/>
<Class IRI=”OilGasExtract ion ”/>
<Class IRI=”QuarryingSerfaceMining ”/>
<Class IRI=”ReservoirAndDamConstruction ”/>
<Class IRI=”Subsu r f a c e In f r a s t ruc tu r eCons t ruc t i on ”/>
<Class IRI=”SubsurfaceMining ”/>
<Class IRI=”Urbanisat ion ”/>
<Class IRI=”VegetationRemoval ”/>
<Class IRI=”WaterAddition ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AirPressure ”/>
<Class IRI=”AirTemperature ”/>
<Class IRI=”BulkDensity ”/>
<Class IRI=”Cumulat iveRainfa l l ”/>
<Class IRI=”EarthQuakeMagnitude ”/>
<Class IRI=”GroundWater ”/>
<Class IRI=”Humidity ”/>
<Class IRI=”Rain ”/>
<Class IRI=”SeismicWave ”/>
<Class IRI=”Slope ”/>
<Class IRI=”So i lMo i s ture ”/>
<Class IRI=”SoilMovement ”/>
<Class IRI=”Soi lTemperature ”/>
<Class IRI=”Tide ”/>
<Class IRI=”T i l t ”/>
<Class IRI=”Vibrat ion ”/>
<Class IRI=”WaterLevel ”/>
<Class IRI=”WindDirection ”/>
<Class IRI=”WindSpeed”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AirPressure ”/>
<Class IRI=”AirTemperature ”/>
<Class IRI=”EarthQuakeMagnitude ”/>
<Class IRI=”Humidity ”/>
<Class IRI=”Rain ”/>
<Class IRI=”SeismicWave ”/>
<Class IRI=”So i lMo i s ture ”/>
<Class IRI=”SoilMovement ”/>
<Class IRI=”Tide ”/>
<Class IRI=”WindSpeed”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=”DataSource ”/>
<Class IRI=”DataSourceMetadata ”/>
<Class IRI=”FoI ”/>
<Class IRI=”GeoLocation ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Observation ”/>
<Class IRI=”Obse rva t i onPro f i l e ”/>
<Class IRI=”ObservedProperty ”/>
<Class IRI=”Person ”/>
<Class IRI=”Place ”/>
<Class IRI=”Sen s o rP r o f i l e ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>
<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>
<Class IRI=”WarningSign ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=”DataSource ”/>
<Class IRI=”DataSourceMetadata ”/>
<Class IRI=”FoI ”/>
<Class IRI=”GeoLocation ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Observation ”/>
<Class IRI=”ObservedProperty ”/>
<Class IRI=”Person ”/>
<Class IRI=”Place ”/>
<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=”DataSource ”/>
<Class IRI=”DataSourceMetadata ”/>
<Class IRI=”FoI ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Observation ”/>
<Class IRI=”ObservedProperty ”/>
<Class IRI=”Person ”/>
<Class IRI=”Place ”/>

147



<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=”DataSource ”/>
<Class IRI=”DataSourceMetadata ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Observation ”/>
<Class IRI=”ObservedProperty ”/>
<Class IRI=”Person ”/>
<Class IRI=”Place ”/>
<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=”DataSource ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Observation ”/>
<Class IRI=”ObservedProperty ”/>
<Class IRI=”Person ”/>
<Class IRI=”Place ”/>
<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Observation ”/>
<Class IRI=”ObservedProperty ”/>
<Class IRI=”Person ”/>
<Class IRI=”Place ”/>
<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Observation ”/>
<Class IRI=”Person ”/>
<Class IRI=”Place ”/>
<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Person ”/>
<Class IRI=”Place ”/>
<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Place ”/>
<Class IRI=”UrbanArea ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”Place ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=”NaturalHazard ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>

</ D i s j o i n tC l a s s e s>
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<Di s j o i n tC l a s s e s>
<Class IRI=”AnthropogenicProcess ”/>
<Class IRI=”NaturalHazard ”/>
<Class IRI=”NaturalResource ”/>
<Class IRI=”U t i l i t y ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Bio l og i ca lAt tack ”/>
<Class IRI=”BrokenUndergroundUti l ity ”/>
<Class IRI=”BulgeOnGround”/>
<Class IRI=”CrackOnConcreteFloor ”/>
<Class IRI=”CrackOnSideWalk ”/>
<Class IRI=”CrackOnStreet ”/>
<Class IRI=”CrackOnWall ”/>
<Class IRI=”CrackonBuilding ”/>
<Class IRI=”D i s t r i bu t i onPo l eFa l l ”/>
<Class IRI=”Dis t r ibut ionPo leLean ing ”/>
<Class IRI=”FlashOver ”/>
<Class IRI=”HeavyRainFall ”/>
<Class IRI=”IncreaseInWaterLeve l ”/>
<Class IRI=”Lean ingElec t ron i cPo le ”/>
<Class IRI=”LeaningTelephonePole ”/>
<Class IRI=”OverheadDistr ibut ionLineBroken ”/>
<Class IRI=”OverheadTransmissionPoleBroken ”/>
<Class IRI=”TapWaterColourChange ”/>
<Class IRI=”Transmiss ionPoleFa l l ”/>
<Class IRI=”Transmiss ionPoleLeaning ”/>
<Class IRI=”TreeFal l ”/>
<Class IRI=”TreeLeaning ”/>
<Class IRI=”VoltageSurge ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Bio l og i ca lAt tack ”/>
<Class IRI=”BrokenUndergroundUti l ity ”/>
<Class IRI=”BulgeOnGround”/>
<Class IRI=”CrackOnConcreteFloor ”/>
<Class IRI=”CrackOnSideWalk ”/>
<Class IRI=”CrackOnStreet ”/>
<Class IRI=”CrackOnWall ”/>
<Class IRI=”CrackonBuilding ”/>
<Class IRI=”D i s t r i bu t i onPo l eFa l l ”/>
<Class IRI=”Dis t r ibut ionPo leLean ing ”/>
<Class IRI=”FlashOver ”/>
<Class IRI=”IncreaseInWaterLeve l ”/>
<Class IRI=”Lean ingElec t ron i cPo le ”/>
<Class IRI=”LeaningTelephonePole ”/>
<Class IRI=”OverheadDistr ibut ionLineBroken ”/>
<Class IRI=”OverheadTransmissionPoleBroken ”/>
<Class IRI=”TapWaterColourChange ”/>
<Class IRI=”Transmiss ionPoleFa l l ”/>
<Class IRI=”Transmiss ionPoleLeaning ”/>
<Class IRI=”TreeFal l ”/>
<Class IRI=”TreeLeaning ”/>
<Class IRI=”VoltageSurge ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”BrokenUndergroundUti l ity ”/>
<Class IRI=”BulgeOnGround”/>
<Class IRI=”CrackOnConcreteFloor ”/>
<Class IRI=”CrackOnSideWalk ”/>
<Class IRI=”CrackOnStreet ”/>
<Class IRI=”CrackOnWall ”/>
<Class IRI=”CrackonBuilding ”/>
<Class IRI=”IncreaseInWaterLeve l ”/>
<Class IRI=”Lean ingElec t ron i cPo le ”/>
<Class IRI=”LeaningTelephonePole ”/>
<Class IRI=”TapWaterColourChange ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”ConcretePole ”/>
<Class IRI=”Ste e lPo l e ”/>
<Class IRI=”WoodenPole ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Di s t r i bu t i onL ine ”/>
<Class IRI=”Di s t r i bu t i onPo l e ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Drought ”/>
<Class IRI=”Earthquake ”/>
<Class IRI=”ExtremeTemperatureCold ”/>
<Class IRI=”ExtremeTemperatureHot ”/>
<Class IRI=”Flood ”/>
<Class IRI=”GroundCollapse ”/>
<Class IRI=”GroundHeave ”/>
<Class IRI=”HailStorm ”/>
<Class IRI=”ImpactEvent ”/>
<Class IRI=”Lands l ide ”/>
<Class IRI=”Lightning ”/>
<Class IRI=”RegionalSubs idence ”/>
<Class IRI=”SnowAvalanche ”/>
<Class IRI=”SnowStorm”/>
<Class IRI=”So i lLoca lSubs idence ”/>
<Class IRI=”Storm”/>
<Class IRI=”Tsunami ”/>
<Class IRI=”VolcanicErupt ion ”/>
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<Class IRI=”Wi ld f i r e ”/>
</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Expert ”/>
<Class IRI=”Resident ”/>
<Class IRI=”Socia lMediaUser ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Flat ”/>
<Class IRI=”House ”/>
<Class IRI=”Publ icPlace ”/>
<Class IRI=”Residence ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Generat ingPlant ”/>
<Class IRI=”GridNetwork ”/>
<Class IRI=”Substat ion ”/>
<Class IRI=”TransmissionNetwork ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Hosp i ta l ”/>
<Class IRI=”School ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”HumanSensor ”/>
<Class IRI=”Phys i ca lSensor ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Lake ”/>
<Class IRI=”Mountain ”/>
<Class IRI=”River ”/>
<Class IRI=”Water fa l l ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”MobileApp ”/>
<Class IRI=”Socia lMedia ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Pylon ”/>
<Class IRI=”Transmiss ionLine ”/>

</ D i s j o i n tC l a s s e s>
<Di s j o i n tC l a s s e s>

<Class IRI=”Railway ”/>
<Class IRI=”Road”/>

</ D i s j o i n tC l a s s e s>
<Clas sAsse r t i on>

<Class IRI=”CrackOnSideWalk ”/>
<NamedIndividual IRI=”crack on s ideWalk 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”CrackOnWall ”/>
<NamedIndividual IRI=”c r a ck on wa l l 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Phys i ca lSensor ”/>
<NamedIndividual IRI=”dataSource 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Phys i ca lSensor ”/>
<NamedIndividual IRI=”dataSource 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Phys i ca lSensor ”/>
<NamedIndividual IRI=”dataSource 3 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”DataSourceMetadata ”/>
<NamedIndividual IRI=”ds metadata 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”DataSourceMetadata ”/>
<NamedIndividual IRI=”ds metadata 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”DataSourceMetadata ”/>
<NamedIndividual IRI=”ds metadata 3 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Flood ”/>
<NamedIndividual IRI=” f l o od 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Flood ”/>
<NamedIndividual IRI=” f l o od 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”FoI ”/>
<NamedIndividual IRI=” f o i Ka r e l a bbox 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”FoI ”/>
<NamedIndividual IRI=” f o i Ka r e l a bbox 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”GeoLocation ”/>
<NamedIndividual IRI=”g eo l o c a t i on 1 ”/>
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</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”GridNetwork ”/>
<NamedIndividual IRI=”gr idnetwork 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Lands l ide ”/>
<NamedIndividual IRI=” l a nd s l i d e 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Lands l ide ”/>
<NamedIndividual IRI=” l a nd s l i d e 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”LeaningTelephonePole ”/>
<NamedIndividual IRI=” l e an i n g t e l e phon e po l e 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Observation ”/>
<NamedIndividual IRI=”obs 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Observation ”/>
<NamedIndividual IRI=”obs 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”ObservedPropertyPro f i l e ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”ObservedPropertyPro f i l e ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”ObservedPropertyPro f i l e ”/>
<NamedIndividual IRI=” o b s p r o f i l e 2 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Prov i d e rP ro f i l e ”/>
<NamedIndividual IRI=” p r o v i d e r p r o f i l e 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Prov i d e rP ro f i l e ”/>
<NamedIndividual IRI=” p r o v i d e r p r o f i l e 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Rain ”/>
<NamedIndividual IRI=” r a i n 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Sen s o rP r o f i l e ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”Sen s o rP r o f i l e ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”S e r v i c eP r o f i l e ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”S e r v i c eP r o f i l e ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”S e r v i c eP r o f i l e ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”So i lMo i s ture ”/>
<NamedIndividual IRI=” s o i l mo i s t u r e 1 ”/>

</ Cla s sAsse r t i on>
<Clas sAsse r t i on>

<Class IRI=”SoilMovement ”/>
<NamedIndividual IRI=”soi l movement 1 ”/>

</ Cla s sAsse r t i on>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isWarningSignFor ”/>
<NamedIndividual IRI=”crack on s ideWalk 2 ”/>
<NamedIndividual IRI=” l a nd s l i d e 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isWarningSignFor ”/>
<NamedIndividual IRI=”c r a ck on wa l l 2 ”/>
<NamedIndividual IRI=” l a nd s l i d e 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”hasDataSourceMetadata ”/>
<NamedIndividual IRI=”dataSource 1 ”/>
<NamedIndividual IRI=”ds metadata 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isDataSourceFor ”/>
<NamedIndividual IRI=”dataSource 1 ”/>
<NamedIndividual IRI=” s o i l mo i s t u r e 1 ”/>
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</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”hasDataSourceMetadata ”/>
<NamedIndividual IRI=”dataSource 2 ”/>
<NamedIndividual IRI=”ds metadata 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isDataSourceFor ”/>
<NamedIndividual IRI=”dataSource 2 ”/>
<NamedIndividual IRI=”soi l movement 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”hasDataSourceMetadata ”/>
<NamedIndividual IRI=”dataSource 3 ”/>
<NamedIndividual IRI=”ds metadata 3 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isDataSourceFor ”/>
<NamedIndividual IRI=”dataSource 3 ”/>
<NamedIndividual IRI=” r a i n 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 1 ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 1 ”/>
<NamedIndividual IRI=” p r o v i d e r p r o f i l e 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 1 ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 1 ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 2 ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 2 ”/>
<NamedIndividual IRI=” p r o v i d e r p r o f i l e 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 2 ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 2 ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 3 ”/>
<NamedIndividual IRI=” o b s p r o f i l e 2 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 3 ”/>
<NamedIndividual IRI=” p r o v i d e r p r o f i l e 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 3 ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”ha sP r o f i l e ”/>
<NamedIndividual IRI=”ds metadata 3 ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=” t r i g g e r s ”/>
<NamedIndividual IRI=” f l o od 1 ”/>
<NamedIndividual IRI=” l a nd s l i d e 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”hasGeoLocation ”/>
<NamedIndividual IRI=” l a nd s l i d e 1 ”/>
<NamedIndividual IRI=”g eo l o c a t i on 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”hasGeoLocation ”/>
<NamedIndividual IRI=” l a nd s l i d e 2 ”/>
<NamedIndividual IRI=”g eo l o c a t i on 2 ”/>

</ObjectPropertyAssert ion>
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<ObjectPropertyAssert ion>
<ObjectProperty IRI=”isWarningSignFor ”/>
<NamedIndividual IRI=” l e an i n g t e l e phon e po l e 1 ”/>
<NamedIndividual IRI=” f l o od 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isWarningSignFor ”/>
<NamedIndividual IRI=” l e an i n g t e l e phon e po l e 1 ”/>
<NamedIndividual IRI=” l a nd s l i d e 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”hasFoI ”/>
<NamedIndividual IRI=”obs 1 ”/>
<NamedIndividual IRI=” f o i Ka r e l a bbox 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isObservat ionFor ”/>
<NamedIndividual IRI=”obs 1 ”/>
<NamedIndividual IRI=” l a nd s l i d e 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”hasFoI ”/>
<NamedIndividual IRI=”obs 2 ”/>
<NamedIndividual IRI=” f o i Ka r e l a bbox 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isObservat ionFor ”/>
<NamedIndividual IRI=”obs 2 ”/>
<NamedIndividual IRI=” f l o od 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”hasFoI ”/>
<NamedIndividual IRI=”obs 3 ”/>
<NamedIndividual IRI=” f o i Ka r e l a bbox 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isObservat ionFor ”/>
<NamedIndividual IRI=”obs 3 ”/>
<NamedIndividual IRI=”gr idnetwork 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isObservedPropertyFor ”/>
<NamedIndividual IRI=” r a i n 1 ”/>
<NamedIndividual IRI=”obs 2 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isObservedPropertyFor ”/>
<NamedIndividual IRI=” s o i l mo i s t u r e 1 ”/>
<NamedIndividual IRI=”obs 1 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isObservedPropertyFor ”/>
<NamedIndividual IRI=” s o i l mo i s t u r e 1 ”/>
<NamedIndividual IRI=”obs 3 ”/>

</ObjectPropertyAssert ion>
<ObjectPropertyAssert ion>

<ObjectProperty IRI=”isObservedPropertyFor ”/>
<NamedIndividual IRI=”soi l movement 1 ”/>
<NamedIndividual IRI=”obs 1 ”/>

</ObjectPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”bbox”/>
<NamedIndividual IRI=”g eo l o c a t i on 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>[ 2553624 .5 , 6988200 .5 , 2602467 .0 , 7022520 .0 ]</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”bbox”/>
<NamedIndividual IRI=”g eo l o c a t i on 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>[ 1 543624 .5 , 7988200 .5 , 1602467 .0 , 6022520 .0 ]</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=” l a t i t u d e ”/>
<NamedIndividual IRI=”g eo l o c a t i on 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /2001/XMLSchema#decimal ”>8 .434</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=” long i tude ”/>
<NamedIndividual IRI=”g eo l o c a t i on 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /2001/XMLSchema#decimal ”>44.295</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=” f e a t u r eO f I n t e r e s t ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>f o i k a r e l a bb o x 1</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”observedPropertyName ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>s o i l mo i s t u r e 1</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”observedPropertyType ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>So i lMo i s tu re</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>
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<DataProperty IRI=”phenomenonBeginTime ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /2001/XMLSchema#dateTime ”>2004−01−01T00:00:00</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”phenomenonEndTime”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /2001/XMLSchema#dateTime ”>2018−07−21T00:00:00</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=” f e a t u r eO f I n t e r e s t ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>f o i k a r e l a bb o x 1</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”observedPropertyName ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>so i l movement 1</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”observedPropertyType ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>SoilMovement</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”phenomenonBeginTime ”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /2001/XMLSchema#dateTime ”>2004−01−01T00:00:00</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”phenomenonEndTime”/>
<NamedIndividual IRI=” o b s p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /2001/XMLSchema#dateTime ”>2018−07−21T00:00:00</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=” f e a t u r eO f I n t e r e s t ”/>
<NamedIndividual IRI=” o b s p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>f o i k a r e l a bb o x 2</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”observedPropertyName ”/>
<NamedIndividual IRI=” o b s p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>r a i n 1</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”observedPropertyType ”/>
<NamedIndividual IRI=” o b s p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Rain</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”phenomenonBeginTime ”/>
<NamedIndividual IRI=” o b s p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /2001/XMLSchema#dateTime ”>2004−01−01T00:00:00</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”phenomenonEndTime”/>
<NamedIndividual IRI=” o b s p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /2001/XMLSchema#dateTime ”>2018−07−21T00:00:00</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”providerName ”/>
<NamedIndividual IRI=” p r o v i d e r p r o f i l e 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Amrita</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”providerName ”/>
<NamedIndividual IRI=” p r o v i d e r p r o f i l e 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>MetOff ice</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”eventL i s t ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Lands l ide</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=” f e a t u r eL i s t ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>f o i k a r e l a bb o x 1</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”sensorType ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>in−s i t u</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”eventL i s t ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Flood</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=” f e a t u r eO f I n t e r e s t ”/>
<NamedIndividual IRI=” s e n s o r p r o f i l e 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>f o i k a r e l a bb o x 1</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”sensorType ”/>
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<NamedIndividual IRI=” s e n s o r p r o f i l e 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>in−s i t u</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”column”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>∗</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”dbname”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>mysql</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serv iceAdapter ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Rest adaptor 11</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”s e rv i c eP rov id e r ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Amrita</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serv iceType ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>REST</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serviceURL ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>ht tp : //127 . 0 . 0 . 1 / r e s t /moisture</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”tab l e ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>NorthSlopHigherRawData</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”where ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”></ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=” c o l l e c t i o n ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>BGS−north−s lope−h igher raw data</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”column”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>∗</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”dbname”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>mogodb</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serv iceAdapter ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Rest adaptor 12</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”s e rv i c eP rov id e r ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Amrita</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serv iceType ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>REST</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serviceURL ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>ht tp : //127 . 0 . 0 . 1 / r e s t /moisture</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”where ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 1 2 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”></ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”dbname”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>hdfs</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”path ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>img /1 . jpg , img /2 . jpg , img /3 . jpg , v ideo /1 .mp4 , v ideo /2 .mp4</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serv iceAdapter ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>
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<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>Rest adaptor 21</ L i t e r a l>
</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”s e rv i c eP rov id e r ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>MetOff ice</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serv iceType ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>REST</ L i t e r a l>

</DataPropertyAssert ion>
<DataPropertyAssert ion>

<DataProperty IRI=”serviceURL ”/>
<NamedIndividual IRI=” s e r v i c e p r o f i l e 2 1 ”/>
<L i t e r a l datatypeIRI=”ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#P l a i nL i t e r a l ”>ht tp : //127 . 0 . 0 . 1 / r e s t /moisture</ L i t e r a l>

</DataPropertyAssert ion>
<SubObjectPropertyOf>

<ObjectProperty IRI=”hasGeoLocation ”/>
<ObjectProperty abbrev iatedIRI=”owl : topObjectProperty ”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”isConnectedTo ”/>
<ObjectProperty abbrev iatedIRI=”owl : topObjectProperty ”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”isGeoLocationFor ”/>
<ObjectProperty abbrev iatedIRI=”owl : topObjectProperty ”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=” l i v e s I n ”/>
<ObjectProperty abbrev iatedIRI=”owl : topObjectProperty ”/>

</SubObjectPropertyOf>
<Inve r s eOb j e c tPrope r t i e s>

<ObjectProperty IRI=”hasDataSource ”/>
<ObjectProperty IRI=”isDataSourceFor ”/>

</ Inve r s eOb j e c tPrope r t i e s>
<Inve r s eOb j e c tPrope r t i e s>

<ObjectProperty IRI=”hasGeoLocation ”/>
<ObjectProperty IRI=”isGeoLocationFor ”/>

</ Inve r s eOb j e c tPrope r t i e s>
<Inve r s eOb j e c tPrope r t i e s>

<ObjectProperty IRI=”has Ind i ca to r ”/>
<ObjectProperty IRI=” i s I nd i c a t i onO f ”/>

</ Inve r s eOb j e c tPrope r t i e s>
<Inve r s eOb j e c tPrope r t i e s>

<ObjectProperty IRI=”hasObservation ”/>
<ObjectProperty IRI=”isObservat ionFor ”/>

</ Inve r s eOb j e c tPrope r t i e s>
<Inve r s eOb j e c tPrope r t i e s>

<ObjectProperty IRI=”hasObservedProperty ”/>
<ObjectProperty IRI=”isObservedPropertyFor ”/>

</ Inve r s eOb j e c tPrope r t i e s>
<Inve r s eOb j e c tPrope r t i e s>

<ObjectProperty IRI=”hasPlace ”/>
<ObjectProperty IRI=”i sLocatedIn ”/>

</ Inve r s eOb j e c tPrope r t i e s>
<Inve r s eOb j e c tPrope r t i e s>

<ObjectProperty IRI=”hasWarningSign ”/>
<ObjectProperty IRI=”isWarningSignFor ”/>

</ Inve r s eOb j e c tPrope r t i e s>
<ObjectPropertyDomain>

<ObjectProperty IRI=”hasDataSourceMetadata ”/>
<Class IRI=”DataSource ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”hasFoI ”/>
<Class IRI=”Observation ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”ha s I n f r a s t r u c tu r e ”/>
<Class IRI=”UrbanArea ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”hasNaturalResource ”/>
<Class IRI=”UrbanArea ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”hasObservedPropertyPro f i l e ”/>
<Class IRI=”Obse rva t i onPro f i l e ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”hasSocia lMedia ”/>
<Class IRI=”Socia lMediaUser ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”ha sU t i l i t y ”/>
<Class IRI=”UrbanArea ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”isDataSourceFor ”/>
<Class IRI=”DataSource ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=” i s I nd i c a t i onO f ”/>
<Class IRI=”WarningSign ”/>
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</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”i sLocatedIn ”/>
<Class IRI=”Place ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”isObservat ionFor ”/>
<Class IRI=”Observation ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”isObservedPropertyFor ”/>
<Class IRI=”ObservedProperty ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”isWarningSignFor ”/>
<Class IRI=”WarningSign ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=” l i v e s I n ”/>
<Class IRI=”Person ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”observes ”/>
<Class IRI=”Person ”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=” t r i g g e r s ”/>
<Class IRI=”NaturalHazard ”/>

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI=”hasDataSourceMetadata ”/>
<Class IRI=”DataSourceMetadata ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”hasFoI ”/>
<Class IRI=”FoI ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”ha s I n f r a s t r u c tu r e ”/>
<Class IRI=” I n f r a s t r u c t u r e ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”hasNaturalResource ”/>
<Class IRI=”NaturalResource ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”hasObservedPropertyPro f i l e ”/>
<Class IRI=”ObservedPropertyPro f i l e ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”hasSocia lMedia ”/>
<Class IRI=”SocialMediaAccount ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”ha sU t i l i t y ”/>
<Class IRI=”U t i l i t y ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”isDataSourceFor ”/>
<Class IRI=”ObservedProperty ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=” i s I nd i c a t i onO f ”/>
<Class IRI=”AnthropogenicProcess ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”i sLocatedIn ”/>
<Class IRI=”UrbanArea ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”isObservat ionFor ”/>
<Class IRI=”NaturalHazard ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”isObservedPropertyFor ”/>
<Class IRI=”Observation ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”isWarningSignFor ”/>
<Class IRI=”NaturalHazard ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=” l i v e s I n ”/>
<Class IRI=”Place ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”observes ”/>
<Class IRI=”WarningSign ”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=” t r i g g e r s ”/>
<Class IRI=”NaturalHazard ”/>

</ObjectPropertyRange>
<SubDataPropertyOf>

<DataProperty IRI=”account ”/>
<DataProperty abbrev iatedIRI=”owl:topDataProperty ”/>
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</SubDataPropertyOf>
<SubDataPropertyOf>

<DataProperty IRI=”mediaType ”/>
<DataProperty abbrev iatedIRI=”owl:topDataProperty ”/>

</SubDataPropertyOf>
<SubDataPropertyOf>

<DataProperty IRI=”postdate ”/>
<DataProperty abbrev iatedIRI=”owl:topDataProperty ”/>

</SubDataPropertyOf>
<DataPropertyDomain>

<DataProperty IRI=”account ”/>
<Class IRI=”SocialMediaAccount ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”bbox”/>
<Class IRI=”GeoLocation ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=” c o l l e c t i o n ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”column”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”dbname”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”eventL i s t ”/>
<Class IRI=”Sen s o rP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=” f e a t u r eL i s t ”/>
<Class IRI=”Sen s o rP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=” f e a t u r eO f I n t e r e s t ”/>
<Class IRI=”ObservedPropertyPro f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=” l a t i t u d e ”/>
<Class IRI=”GeoLocation ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=” long i tude ”/>
<Class IRI=”GeoLocation ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”mediaType ”/>
<Class IRI=”SocialMediaAccount ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”observedPropertyName ”/>
<Class IRI=”ObservedPropertyPro f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”observedPropertyType ”/>
<Class IRI=”ObservedPropertyPro f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”path ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”phenomenonBeginTime ”/>
<Class IRI=”ObservedPropertyPro f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”phenomenonEndTime”/>
<Class IRI=”ObservedPropertyPro f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”postdate ”/>
<Class IRI=”SocialMediaAccount ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”procedure ”/>
<Class IRI=”Sen s o rP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”providerName ”/>
<Class IRI=”Prov i d e rP ro f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”sensorType ”/>
<Class IRI=”Sen s o rP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”serv iceAdapter ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”s e rv i c eP rov id e r ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>
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</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”serv iceType ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”serviceURL ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”tab l e ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”timeInstanceOrPer iod ”/>
<Class IRI=”Sen s o rP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”where ”/>
<Class IRI=”S e r v i c eP r o f i l e ”/>

</DataPropertyDomain>
<DataPropertyRange>

<DataProperty IRI=”account ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”bbox”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=” c o l l e c t i o n ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”column”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”dbname”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”eventL i s t ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=” f e a t u r eL i s t ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=” f e a t u r eO f I n t e r e s t ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=” l a t i t u d e ”/>
<Datatype abbrev iatedIRI=”xsd :double ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=” long i tude ”/>
<Datatype abbrev iatedIRI=”xsd :double ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”mediaType ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”observedPropertyName ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”observedPropertyType ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”path ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”phenomenonBeginTime ”/>
<Datatype abbrev iatedIRI=”xsd:dateTime ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”phenomenonEndTime”/>
<Datatype abbrev iatedIRI=”xsd:dateTime ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”postdate ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”procedure ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”providerName ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>
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</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”sensorType ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”serv iceAdapter ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”s e rv i c eP rov id e r ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”serv iceType ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”serviceURL ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”tab l e ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”timeInstanceOrPer iod ”/>
<Datatype abbrev iatedIRI=”xsd:dateTime ”/>

</DataPropertyRange>
<DataPropertyRange>

<DataProperty IRI=”where ”/>
<Datatype abbrev iatedIRI=”x s d : s t r i n g ”/>

</DataPropertyRange>
</Ontology>
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