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v. Abstract 

Skin is a complex organ comprising many synergising cell types. It serves a vital role in 

the immune system as the first line of defence against pathogens. In homeostatic 

conditions, skin must be primed to respond to an overwhelming diversity of pathogens 

from the environment while simultaneously avoiding excessive immune responses and 

autoimmunity. Understanding of the intercellular heterogeneity that is required for this 

balance during steady state is crucial to understanding how these cells act during 

dysregulation, and could aid in the understanding of diseases such as eczema and 

psoriasis. 

 

Healthy adult skin, obtained from reconstructive surgery, was enzymatically dissociated 

and profiled using single cell RNA sequencing and mass cytometry, and further validated 

using flow cytometry and immunohistochemistry. By sequencing 82,490 single cells from 

healthy adult human skin of three donors, it was possible to profile the different 

transcriptomic states of keratinocytes, melanocytes, vascular and lymphatic 

endothelium, pericytes, fibroblasts, schwann cells, lymphoid cells and antigen 

presenting cells. 1,959,717 single cells from four donors were analysed using a 37-

marker mass cytometry panel, allowing for a comparison between the proteomes and 

transcriptomes of skin cells. 

 

Interrogation of the stromal cells at high resolution revealed previously unreported 

heterogeneity, including the presence of specialised vascular endothelial structures in 

healthy skin, which appear to mirror the high endothelial venules found in lymphoid 

tissues. These structures may be critical to leukocyte infiltration during homeostasis and 

inflammatory conditions. 

 

This study provides a powerful resource, as a repository of healthy skin single cell 

heterogeneity, for future research into deviations from health, including inflammation, 

infection and disease. 
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1.1 Introduction 

Skin encompasses many subsets of heterogeneous stromal cells, antigen presenting cells 

and lymphoid cells. These cells perform a wide variety of functions in both steady state 

and inflammation. Purification and analysis of skin cells in the context of diseases and 

treatment targets has historically relied on knowledge of marker expression derived 

from bulk cell analysis and mouse models (Rinkevich et al., 2015; Liu et al., 2009). These 

approaches derive two major drawbacks to be addressed. i) Bulk analysis of cells can 

mask heterogeneity by losing rare, yet potentially functionally important, expression to 

averaging. Separation of cell signatures with such methods also relies heavily on a priori 

knowledge, which introduces bias into the analysis. ii) Murine models of the various 

components of skin have been extensively compared to human populations (Reynolds & 

Haniffa, 2015; Zomer & Trentin, 2018; Hagai et al., 2018), providing valuable information 

from readily manipulatable organisms. However, murine cells and in vitro cultured 

human skin cells have many transcriptional differences with in vivo human cell 

populations (Harman et al., 2013; Reynolds & Haniffa, 2015). Human skin is an accessible 

model organ to interrogate tissue cell populations with high dimensional single cell 

analysis, and by using these techniques, this thesis aims to categorise the cell types 

present in healthy adult human skin and improve the understanding of the cellular 

heterogeneity present therein.  

 

This literature review will attempt to collate the findings within the literature of known 

heterogeneity within the cell populations of skin in both the epidermis and dermis, with 

the aim of identifying the areas of interest and gaps in the literature with which a 

comprehensive single cell study of skin could add insight in a significant way. This review 

will also aim to help annotate the data generated in this study, and ground the findings 

therein.   

 

It will also cover the use of single cell technologies, namely mass cytometry and single 

cell RNA sequencing (scRNA-seq), and discuss the merits and issues to consider with 

using such technologies and interpreting the data they can produce. Finally, this review 
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will cover the use of scRNA-seq to interrogate skin in the literature, the reported 

findings and the strengths and weaknesses of these studies. 

 

1.2 Cellular Anatomy of the Epidermis 

The epidermis is the apical layer of skin, covering almost the entire human body as the 

interface to the environment. It comprises primarily layers of keratinocytes which 

differentiate from nuclear cells at the basal layer to anuclear keratinized structures at 

the apex. The basal layer also contains melanocytes, which primarily produce melanin to 

protect against UV damage, and Merkel cells which receive touch signals in touch-

sensitive skin as well. Throughout the epidermis Langerhans cells (LCs) and T cells shape 

the epidermal immune system, maintaining tolerance while sensing for pathogenic 

disturbance.  

 

1.2.1 Functionality of Keratinocytes 

Keratinocytes are the primary cell type of the epidermis, making up over 95% of its cells 

(Wikramanayake et al., 2014). They provide the mechanical and water barrier functions 

of the epidermis, and also provide vital support to the epidermal immunological barrier. 

 

Keratinocytes produce keratins, fibrous proteins with high physical toughness which 

support the cells’ cytoskeletons and give the epidermis its strength and flexibility (Fuchs, 

1995). Throughout differentiation, production changes to different sets of keratins. For 

example, in the basal layer keratinocytes produce keratins 5 and 14, and keratins 1 and 

10 are solely expressed by suprabasal keratinocytes (Alam et al., 2011). At the apex of 

the epidermis, terminally differentiated keratinocytes (corneocytes) lack nuclei, 

organelles and cytoplasm and contain high amounts of suprabasal keratins as well as 

additional structural proteins including involucrin and filaggrin, which further support 

the physical barrier of the epidermis (Steinert & Marekov, 1995). 

 

1.2.2 Epidermal water barrier properties 

The epidermis, when intact, is also a near-impermeable barrier to water, and 

keratinocytes facilitate this vital function required to avoid organisms drying out. This is 
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maintained by the presence of insoluble keratin proteins, and the production of lamellar 

bodies – secretory organelles containing water-repellent lipids and lipid-associated 

proteins (Feingold, 2012). Keratinocytes secrete lamellar bodies into the extracellular 

matrix (ECM) to form a continuous barrier of water-repellent molecules across the 

epidermis. Lamellar body expression is increased in the upper layers of the epidermis, 

and both secretion and production are increased as part of the wound healing process 

(Menon et al., 1994). 

 

The contents of lamellar bodies include a variety of hydrophobic lipids. They also contain 

supporting proteins such as the lipid transport channel ABCA12, and the vesicle 

transport protein CLIP1 (Raymond et al., 2008). Lamellar body dysregulation is 

associated with specific ichthyoses (a group of skin diseases resulting in severely dry 

skin), due to the effects they have on the water retaining properties of the epidermis. 

Akiyama et al. link multiple loss of function mutations in ABCA12 with harlequin 

ichthyosis (Akiyama et al., 2005). Mutations in SPINK5 can also cause unregulated 

lamellar body secretion, leading to symptoms of ichthyosis (Bitoun et al., 2002). 

Raymond et al. show that human keratinocytes are differentially lamellar body enriched 

or lacking, and further investigation into the heterogeneity between the two fractions 

may aid in the understanding of the formation and possible treatment of ichthyoses 

(Raymond et al., 2008). 

 

Lamellar body secretion is also upregulated in response to injury, in order to restore the 

damaged water barrier at a site of injury. This is regulated by a gradient of extracellular 

calcium ions, from low in the basal layer to high in the stratum corneum, which keeps 

homeostatic lamellar body release under control (Menon et al., 1994). This gradient is 

disrupted by physical injuries, which increase transepidermal water loss (TEWL) until the 

resulting lamellar body secretions can restore the water barrier (Menon et al., 1994). 

TEWL occurs at a low rate in homeostatic conditions as the epidermal water barrier is 

not entirely impermeable, and increases in this rate can be used to measure the extent 

of certain skin diseases.  

 

1.2.3 Immunomodulation in keratinocytes 
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The immunological barrier of the epidermis is a result of keratin-dense corneocytes 

providing a physical barrier to pathogenic invasion, homeostatic immune surveillance by 

LCs and T cells, and immunological support directly from keratinocytes (Grice & Segre, 

2011; Schön, 2019). Keratinocytes can secrete chemokines including C-c motif 

chemokine ligand (CCL)27, which attracts memory T cells by C-c motif chemokine 

receptor (CCR)10 expression, allowing for the guidance of the skin immune system 

(Homey et al., 2002). Keratinocytes can even present antigen via major 

histocompatibility complex (MHC) class II expression during inflammation to aid in T cell 

priming (Kim et al., 2009). In the absence of inflammation, T cell homeostatic responses 

to the skin microbiome are assisted by steady state MHC class II expression in 

keratinocytes, which can induce Th1 activation through presentation of commensal 

antigens (Tamoutounour et al., 2019). 

 

Psoriatic keratinocytes express high levels of CCL20, perpetuating the local inflammation 

by leukocyte chemotaxis (Harper et al., 2009). Harper et al. show that Th17 cytokine 

secretion can induce CCL20 production, but further than this the origin of inflammatory 

psoriatic keratinocytes has not been fully explored (Harper et al., 2009). As well as 

sending signals to leukocytes, keratinocytes also receive signals from the immune 

system. IL20 secreted from infiltrating monocytes in psoriatic skin stimulates 

proliferation in IL20R-expressing keratinocytes, contributing to the thickened epidermis: 

a key feature of psoriasis (Sa et al., 2007; Myles et al., 2013). 

 

Keratinocytes also directly produce anti-microbial molecules during inflammation 

including human beta-defensin 2, an anti-microbial protein against gram negative 

bacteria, which is secreted from keratinocyte lamellar bodies (Oren et al., 2003). The 

cathelicidin LL-37 is also produced by keratinocytes in psoriatic skin, as well as in 

response to injury (Frohm et al., 1997; Dorschner et al., 2001). LL-37 is capable of killing 

both gram negative and gram positive bacteria (Dorschner et al., 2001). 

 

A better understanding of whether specific keratinocyte subsets are responsible for 

these immunomodulatory functions, and how this may link to the development of 

inflammatory skin diseases such as psoriasis, could aid in treatment development.  
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1.2.4 Epidermal Layers and Keratinisation 

The epidermis is arranged into multiple layers of keratinocytes with different specialised 

functions. Keratinocyte morphology, structure, gene expression and, as a result of all 

these, function, changes dramatically throughout the ~60 day span of differentiation 

from basal keratinocyte to terminally differentiated corneocyte (Halprin, 1972). 

 

Basal keratinocytes enter the suprabasal layer and differentiate in a process called 

keratinisation, whereby their protein expression changes as they physically move to the 

more superficial layers. They exchange expression of basal keratins (e.g. keratins 5 and 

14) for suprabasal keratins (e.g. keratins 1 and 10), and eventually de-nucleate as part of 

terminal differentiation into corneocytes, expressing high levels of terminal markers 

such as involucrin and filaggrin, which aid in the physical barrier of the epidermis (Jones 

et al., 2007; Alam et al., 2011). These corneocytes eventually shed from the skin (Jones 

et al., 2007).  

 

1.2.5 The Basement Membrane 

The epidermis is anchored to the dermis by an acellular basement membrane, also 

known as the dermo-epidermal junction (DEJ). This structure is a common dividing 

protein fibre layer found in many tissues, and consists largely of collagen IV fibres 

(Behrens et al., 2012). The dermal ECM is attached to the basement membrane by 

collagen VII, and basal keratinocytes are attached by integrin alpha 6/beta 4 complexes 

(Behrens et al., 2012). 

 

1.2.6 Stratum Basale 

The deepest layer of the epidermis is called the Stratum Basale, or basal layer, and is a 

monolayer of basal keratinocytes which also contains melanocytes and Merkel cells. It is 

connected to the basal lamina of the basement membrane (Goleva et al., 2019). Basal 

keratinocytes are sometimes considered to be stem cells, as they divide and migrate to 

replace the upper layers of keratinocytes (Blanpain & Fuchs, 2006). There are varying 

theories as to the distribution of dividing keratinocytes in the epidermis. Two schools of 

thought are either that specialised stem cells found in the interfollicular epidermis basal 
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layer and in hair follicles divide laterally to replenish the non-dividing cells as they leave 

the basal layer during keratinisation; or that any basal keratinocyte can become mitotic, 

and that the stochastic destination of daughter cells in either the basal or suprabasal 

layers maintains cell numbers in both layers (Jones et al., 2007; Lechler & Fuchs, 2005). 

 

Previously an intermediate cell type was theorised called the transit amplifying cell 

(Potten, 1981). Experiments in mouse show the arrangement of mouse keratinocytes in 

discrete hexagonal columns called epidermal proliferative units (Mackenzie, 1970). One 

stem cell per column divides to produce multiple transit amplifying cells, with limited 

mitotic capability, which in turn divide to maintain the epidermis (Jones et al., 2007).  

 

Keratinocyte division mechanics are mostly studied in mouse and such studies are 

difficult to undertake in human, requiring lineage tracing and live imaging experiments, 

which are further confounded by the slow turnover of keratinocytes in vivo (Ghazizadeh 

& Taichman, 2001; Halprin, 1972). Skin organoid cultures are being developed rapidly in 

recent years, which may be one possible model with which to interrogate human 

keratinocyte mitosis, although this is still one step away from in vivo work (Lee et al., 

2020). 

 

1.2.7 Stratum Spinosum 

The stratum spinosum, or suprabasal layer, is directly above the basal layer and consists 

of suprabasal keratinocytes. The suprabasal layer is multiple cells thick, and this 

thickness varies widely with body site (Chopra et al., 2015). LCs are also found in the 

suprabasal layer (Jaitley & Saraswathi, 2012). 

 

1.2.8 Stratum Granulosum 

The stratum granulosum, or granular layer, is above the suprabasal layer. It varies 

between 3-5 cells thick depending on the body site, and consists of granular 

keratinocytes which are flatter, have thicker membranes and are beginning to undergo 

keratinization by producing lamellar bodies and keratohyalin, which is a granular 

formation of keratins and other proteins (Westerhof & Dingemans, 1986; Hollander et 

al., 2015).  
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1.2.9 Stratum Lucidum  

The stratum lucidum is a thin layer of translucent keratinocytes which is only present in 

thick skin such as palms and soles (Sharma & Yousef, 2017). Keratinocytes in this layer 

are filled with eleidin – a clear, lipid-rich protein that contributes to the skin water 

barrier (Sharma & Yousef, 2017). 

 

1.2.10 Stratum Corneum 

The stratum corneum is the most superficial layer of the epidermis. Here, keratinocytes 

have undergone keratinisation (also called cornification) and have lost most of their 

organelles, including nuclei, becoming corneocytes (Eckhart et al., 2013). These keratin 

rich corneocytes provide a mechanical and pathogenic barrier to the outside 

environment. The number of layers varies widely depending on body site (Maiti et al., 

2020). These cells are eventually shed from skin in the process of desquamation (Eckhart 

et al., 2013). 

 

1.2.11 Hair Follicles 

Hair-bearing skin contains many hair follicles, which are keratinocyte structures that are 

continuous with the basal epidermis. They span deep into the reticular dermis, and are 

associated with multiple types of glands.  

 

Hair follicles have a bulb at their deepest point, which is directly supplied with venous 

and arteriolar capillaries, and contains a niche of leucine-rich repeat-containing G-

protein coupled receptor 5 (LGR5)+ stem cells (Jaks et al., 2008). The hair follicle shaft 

leads to the skin surface and is connected to arrector pili muscle structures, which can 

contract to raise hairs. Arrector pili muscle cells express common muscle markers 

including alpha smooth muscle actin (Morioka et al., 2011). 

 

Sebaceous glands also connect to the hair follicle shaft, and are made up of vesicle-filled 

cells which produce high amounts of lipids to release as sebum (Lovászi et al., 2017). 

Sebaceous gland cells express sebum-producing enzymes including Stearoyl-CoA 

desaturase-1 (SCD1) (Joost et al., 2016). Sebum release is holocrine, requiring cell 
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membrane rupture to release the molecules into the hair follicle shaft, and as such 

mitotic sebaceous gland cells turn over regularly in the base of the gland to replace 

these lost cells (Horsley et al., 2006). Kobayashi et al. recently demonstrated that innate 

lymphoid cells (ILCs) are required to regulate the division of these sebaceous gland stem 

cells via tumour necrosis factor (TNF) signalling (Kobayashi et al., 2019). Interactions 

such as this support the need to investigate skin stromal cells together with leukocytes 

when interrogating homeostasis.  

 

Using scRNA-seq on mouse skin, Joost et al. revealed transcriptomic heterogeneity 

between keratinocytes in different spatial locations of the hair follicle, including those in 

the inner and outer cell layers of the bulb and those higher up in the hair follicle shaft 

(Joost et al., 2016). The existence of different spatial niches in hair follicles was 

previously reported, but confirmation by scRNA-seq can be useful by providing the 

entire transcriptomic differences that coincide with the otherwise limited protein 

expression diversity that was known (Schepeler et al., 2014). 

 

1.2.12 Melanocytes 

Melanocytes are found in the basal layer of the epidermis and produce the pigment 

melanin to protect against UV exposure. Melanocytes are rarer than keratinocytes, 

found at a 1:10 ratio in the basal layer (Cichorek et al., 2013). They produce melanin 

through a process called melanogenesis in organelles called melanosomes, and can use 

their dendritic morphology to transfer these organelles to neighbouring keratinocytes 

(Singh et al., 2017). Melanogenesis is a pathway involving the enzymes tyrosinase (TYR) 

and tyrosinase related proteins 1 and 2 (TYRP1/2), which convert the amino acid 

tyrosine into eumelanin or pheomelanin (Cichorek et al., 2013).  

 

Melanocytes differentiate from pluripotent embryonic neural crest cells via an 

intermediate melanoblast stage (Adameyko et al., 2009). Pluripotent embryonic neural 

crest cells can also differentiate into Schwann cells (Adameyko et al., 2009). In adult skin 

melanocytes can be replaced by self-renewing hair follicle precursors (Nishimura et al., 

2002). 
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1.2.13 Merkel Cells 

Skin is innervated with sympathetic, parasympathetic and sensory neurons. These 

neurons are found in the dermis. Merkel cells in the basal layer of the epidermis are soft 

touch receptors, innervated by dermal sensory neurons which reach the basement 

membrane. They are found primarily in touch sensitive thick skin (Morrison et al., 2009). 

 

Murine studies have shown that Merkel cells use Piezo2, an ion channel activated by 

mechanical force, to initiate an action potential (Woo et al., 2015). Atoh1 expression is 

also important for Merkel cell function, as skin from mouse knockouts for Atoh1 lack 

Merkel cells, and does not respond to soft touch with sensory neuron firing patterns 

(Maricich et al., 2009). 

 

Merkel cells are not well studied with single cell techniques, partly due to their scarcity 

and the difficulty of isolating them from human skin. They are primarily studied using 

either murine Merkel cells, which are more frequent than human Merkel cells – 

particularly in whisker follicles; or Merkel cell carcinoma samples, which may not reflect 

healthy skin Merkel cell phenotypes and will include bulk analysis contamination from 

other epidermal cell types (Wright et al., 2017; Knepper et al., 2019). Because much of 

what is understood about Merkel cells arises from cancerous tissue, there is room in the 

literature to hone in on the expression profiles and functionality of these cells in healthy 

skin. 

 

1.3 Epidermal Immune Cells 

The epidermis is one of the largest organs by surface area and the first point of contact 

for the vast majority of foreign bodies, antigens both harmful and inert, and pathogens. 

As such it is a specialised site of immunological defence, requiring a diverse array of 

immune cells capable of maintaining the homeostatic balance of inflammation and 

tolerance. 

 

1.3.1 Langerhans Cells 
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LCs are found in the epidermis, in which they are the primary antigen presenting cell 

(APC) subset. They process epidermal antigens and migrate to skin draining lymph nodes 

in order to activate specific T cell responses (Furio et al., 2010). LCs have dendrites which 

increase their surface area for antigen capture and presentation. They can be 

characterised by their expression of CD1a, CD1c, langerin and Birbeck granules 

(Valladeau et al., 2000). Due to their similar ontogeny to macrophages, LCs are often 

described as a subset of macrophages (Guilliams et al., 2014). They have also been 

grouped together with dermal conventional dendritic cells (cDCs) due to sharing many 

common gene signatures, although they remain to be transcriptomically distinct 

(Carpentier et al., 2016). 

 

As with dendritic cells, LCs are professional antigen presenting cells and express high 

levels of MHC class II (Bertram et al., 2019). They are capable of CCR7 mediated 

migration, and express cDC gene signatures such as the transcription factor Zbtb46 

(Deckers et al., 2018). However, they also display macrophage qualities such as FLT3 

independent development, self renewal and a developmental dependence on tissue 

microenvironment signals (Deckers et al., 2018). 

 

LCs are commonly distinguished from other skin cells by the expression of langerin 

(CD207) – a C-type lectin involved in antigen presentation (Valladeau et al., 2000; 

Hunger et al., 2004). Langerin is expressed on the cell surface membrane and collects in 

LC-specific organelles called Birbeck granules after interacting with antigens. High 

expression of CD1 family proteins, particularly CD1a and CD1c, also allows LCs to 

effectively present lipid antigens to T cells in skin draining lymph nodes. In common with 

all APCs, LCs express high levels of MHC class II. They also express high levels of FcεR1, a 

receptor for the heavy chain of IgE, which mediates inflammatory allergy responses in 

mast cells (Shin & Greer, 2015). In LCs, this process results in the secretion of both 

inflammatory cytokines such as TNFα and interleukin (IL)6 as well as anti-inflammatory 

cytokines such as IL10, suggesting that FcεR1 expression on LCs contributes towards the 

maintenance of homeostatic inflammatory balance (Shin & Greer, 2015). Further 

experiments have shown that FcεR1 may also improve antigen presentation efficiency of 

IgE-bound antigens (Shin & Greer, 2015). Often, however, studies into LCs analyse all 
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CD1a or langerin expressing skin cells (Patterson et al., 2002; Greter et al., 2012), which 

may misrepresent the true extent of epidermal cell heterogeneity (Bertram et al., 2019). 

 

Yolk sac-derived LC precursors seed the epidermis during embryonic haematopoiesis 

(Gomez Perdiguero et al., 2015). In addition, in late embryogenesis foetal liver 

haematopoiesis produces monocytes which can migrate to skin and also differentiate 

into LCs (Hoeffel et al., 2012). LCs of both origins are capable of self-renewal throughout 

adulthood, which has been shown in mouse (Hoeffel et al., 2012; Merad et al., 2002). 

After LC migration in response to inflammation, skin LCs can be replaced by monocyte-

derived LCs from circulating monocytes and inflammation-induced LC proliferation 

(Collin et al., 2006; Deckers et al., 2018; Chorro et al., 2009). 

 

Langerhans cells, as tissue resident APCs, differ from circulating dendritic cells (DCs) in 

part due to their microenvironment. It could be speculated that, as the most common 

cell type in the epidermis, keratinocytes provide the signals and interactions that shape 

LC phenotype. For example LC expression of EpCAM, a homotypic adhesion molecule, 

allows LCs to bind to other epidermal cells, in particular keratinocytes (Deckers et al., 

2018). Furthermore, keratinocytes secrete IL34 which binds to colony stimulating factor 

1 receptor (CSF1R) on LCs, contributing to their differentiation and self-renewal (Wang 

et al., 2012). Keratinocytes can also secrete CCL20, a chemokine that can attract 

monocyte derived LCs to reseed the epidermis after inflammation (Harper et al., 2009). 

 

LCs are capable of migration across the basement membrane to the dermis, and 

subsequently to the lymphatics (Ohl et al., 2004). Upregulation of CCR7 in response to 

infection facilitates lymphatic homing by lymphatic endothelial-mediated CCL21 

chemoattraction (Ohl et al., 2004; Ouwehand et al., 2010). Ohl et al. have shown with 

CCR7 knockout mice that CCR7 is not required for basement membrane trafficking (Ohl 

et al., 2004). Yoshino et al. have shown that this trafficking occurs in steady state as well 

as inflammation, suggesting that LCs may continuously survey healthy skin for antigens 

(Yoshino et al., 2003). 

 

1.3.2 Inflammatory Dendritic Epidermal Cells 



32 

 

Non-LC dendritic cells are also found in human epidermis during inflammation. 

Inflammatory dendritic epidermal cells (IDECs) were first characterised in eczema and 

psoriasis skin as CD1alow FcεRIhigh (and later shown to be CD207- (Yoshida et al., 2014)) 

DCs lacking other LC characteristics like Birbeck granules (Wollenberg et al., 1996). 

 

IDECs are DCs which infiltrate skin during local inflammation (Yoshida et al., 2014). IDEC 

origins are particularly challenging to confirm in human without the use of lineage 

tracing or live imaging techniques that can be used in mouse models, but model cells 

with an IDEC phenotype have been generated from human monocyte-derived DCs by 

treatment with reducing agents (Dijkstra et al., 2008; Novak et al., 2002). 

 

IDECs are primarily found in the basal layer of the epidermis, having migrated from 

dermal vasculature, whereas LCs are mostly suprabasal, being positioned for early 

sensing of antigens breaching the skin surface (Otsuka et al., 2018). This difference in 

antigen sensing is further supported by Yoshida et al.’s finding that, unlike LCs, IDEC 

dendrites do not penetrate the tight junctions to the stratum corneum (Yoshida et al., 

2014). IDECs have high levels of mannose receptor expression and endosomes, both of 

which are associated with high antigen uptake and presentation in macrophages 

(Wollenberg et al., 2002). IDECs also display a proinflammatory cytokine profile, with in 

vivo culture models having been shown to secrete Th1-inducing IL12 and IL18 cytokines 

(Novak, Valenta, et al., 2004).  

 

1.3.3 Epidermal T cells 

T cells are a vital part of skins immunological defence, with resident memory T cells 

constantly surveilling for their cognate pathogenic antigens. While the majority of blood 

T cells are circulating naïve T cells, in skin most are resident memory T cells which persist 

outside of infection without circulating (Clark et al., 2006). T cell skin homing occurs in T 

cells which were activated in skin draining lymph nodes and is facilitated by expression 

of cutaneous lymphoid antigen (CLA), which aids vascular extravasation by adhesion to 

endothelial selectins, and the chemokine receptor CCR4, as well as CCR10 on a subset of 

skin homing T cells (Matsuo, Nagakubo, et al., 2018, p.4; Soler et al., 2003, p.4). Naïve 

CD45RA+ T cells can also be found in skin at low levels (Cose et al., 2006). 
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T cells are further divided into CD8+ cytotoxic (Tc), CD4+ helper (Th) and FOXP3+ 

regulatory (Treg) T cells, all of which are found within healthy skin (Sabat et al., 2019). 

Most T cells in skin express the alpha and beta T cell receptor (TCR) chains, and as such 

are called αβ T cells. A rare γδ T cell subset also exists in skin. In mouse these epidermal 

γδ T cells are named dendritic epidermal T cells, and display unique functional roles in 

wound healing (MacLeod et al., 2013). 

 

The lymphocyte compartment of skin is partially shaped by the skin microbiome. 

Homeostatic immune responses occur in steady state as epidermal T cells must 

recognise and respond to the skin microbiota without mounting inappropriate or 

excessive inflammatory responses (Tamoutounour et al., 2019). The skin lymphocyte 

compartment relies on this homeostatic interplay for its development, and it has been 

shown in mice that an absence of skin microbiota results in heavily altered T cell 

phenotypes (Naik et al., 2012). Commensal bacteria are also involved in the localisation 

of skin T cells. High numbers of Treg cells become localised to hair follicles where more 

microbes are found (Sanchez Rodriguez et al., 2014; Belkaid & Harrison, 2017). Little 

research has been done on the differences between dermal and epidermal T cells in 

regards to epidermal access to the skin microbiome, and this could potentially be an 

interesting avenue to investigate through single cell research. 

 

1.4 Cellular Anatomy of the Dermis 

The dermis is the deeper layer of skin, below the superficial epidermis. It is much less 

cellularly dense than the epidermis, comprising primarily extracellular matrix and the 

fibroblasts producing and maintaining it. It is split into two distinct regions: the apical 

papillary dermis, which follows the peaks and troughs of the epidermal papillae, and the 

reticular dermis, approximately 100μm below the DEJ (Philippeos et al., 2018). The 

dermis is supplied by blood and lymphatic vessels, and is innervated at touch-sensitive 

skin sites. This direct blood supply also provides the dermis with leukocyte access, 

including dendritic cell and monocyte influx during inflammatory conditions. 

 

1.4.1 Fibroblasts 
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Fibroblasts produce and maintain the collagenous extracellular matrix that makes up the 

structure of the dermis. As well as homeostatic ECM maintenance, this involves wound 

healing and scarring during skin perturbation (Rinkevich et al., 2015). Fibroblasts also 

have a variety of other homeostatic and inflammatory functions including cytokine and 

chemokine secretion in response to inflammation, and homeostatic tissue signal 

production. 

 

The dermal extracellular matrix consists primarily of collagens and elastins. Dermal 

fibroblasts produce a wide array of collagen subtypes including types I, III, IV, V, VI and 

VII, each with different physical properties which give the strength required for the ECM 

(Tracy et al., 2016). Elastin produced by fibroblasts is formed into the elastic fibres that 

provide elasticity to skin (Rnjak-Kovacina & Weiss, 2013). Fibroblasts also continue to 

maintain the ECM through the production of ECM-specific proteases including matrix 

metalloproteinases (MMPs) and A disintegrin and metalloproteinases (ADAMs), 

individual members of which degrade different ECM proteins (Bonnans et al., 2014). 

 

During wound healing and infection, dermal fibroblasts aid in immune and inflammatory 

responses. Production of proinflammatory cytokines including TNFα and IL6, and 

chemokines including CCL1, help to directly address infection, modulate the immune 

response and recruit APCs to sites of potential infection (Fahey et al., 1995; Yaszay et al., 

2001; Bautista-Hernández et al., 2017).  

 

Fibroblast heterogeneity is reported on multiple levels. Spatial heterogeneity exists 

between fibroblasts found in the papillary and reticular dermis. Driskell et al. report 

functional heterogeneity during wound healing: wounded mouse skin required CD26+ 

papillary fibroblasts for hair follicle repair, and Dlk1+Sca1- reticular fibroblasts for 

dermal ECM repair (Driskell et al., 2013). Phillippeos et al. later sorted for these two 

mouse fibroblast subsets and, using microarray analysis, reported gene ontology terms 

of ECM organization and Wnt signalling for reticular and papillary fibroblasts 

respectively (Philippeos et al., 2018). Functional heterogeneity is also reported within 

these spatial groups as well. Tabib et al. actually report that, by single cell RNA 

sequencing analysis, human fibroblasts do not appear to group at all by papillary vs 
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reticular and instead cells from both compartments were mainly separated by transcript 

expression of homeostatic vs fibrotic ECM production genes (Tabib et al., 2018a). This 

could perhaps suggest that these spatial differences are exacerbated by other 

microenvironmental signals during wounding. 

 

1.4.2 Vascular endothelium 

The epidermis is avascular and exchanges nutrients via diffusion from the dermis to the 

basal layers. The increasingly superficial layers of epidermis are composed of 

decreasingly viable cells through keratinisation, matching nutrient supply with demand. 

The dermis, however, is heavily vascularised.  

 

Arterioles run through the dermis ~1mm deep and parallel to the surface (Braverman, 

2000). These supply vascular capillaries, a single vessel of which loops and branches out 

into each of the dermal papilla before joining the collecting venule. Dermal capillaries 

consist of a monolayer of vascular endothelial cells surrounded by a basement 

membrane, with interspersed pericytes attached to the apical surface. 

 

The primary function of dermal endothelium is to facilitate water and nutrient exchange 

with the cells in skin. This is facilitated by the expression of various aquaporins and ion 

transport channels on the surface of endothelial cells (Verkman, 2002). Dermal 

capillaries are also surrounded in a basement membrane made primarily of collagen IV 

produced by the endothelial cells it surrounds. This is anchored to the endothelial cells 

by integrins such as the integrin alpha 6/beta4 complex, and keeps the capillaries in 

place by attaching to collagen VII in the ECM (Watanabe et al., 2018; Tani et al., 1996). 

 

Extravasation is a vital function for the resolution of infection via inflammation, as well 

as for immune system homeostasis in skin. The passage of leukocytes into skin is 

mediated by vascular endothelial cells and their protein expression profiles. This is a 

four-step process: chemoattraction, rolling adhesion, hard adhesion and transmigration. 

Chemoattraction is the process of attracting cells down a chemical gradient. Endothelial 

cells secrete chemokines, particularly in inflammatory conditions, such as CCL2 and IL8, 

to attract leukocytes expressing CCR2 and CXCR1 respectively (Goebeler et al., 1997). 
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Rolling adhesion is mediated by weakly binding adhesion molecules such as E-selectin 

(SELE) and P-selectin (SELP), which slow the leukocytes to be trafficked (McEver & Zhu, 

2010). This aids more strongly binding adhesion molecules, such as intracellular 

adhesion molecule 1 (ICAM1) and vascular adhesion molecule 1 (VCAM1), to initiate 

hard adhesion, arresting cell movement and attaching it to the endothelium (Cook-Mills 

et al., 2011). Finally, transmigration occurs, allowing a cell to pass through either the 

cytoplasm of an endothelial cell or to pass between endothelial cells (Feng et al., 1998). 

This is mediated by endothelial cell expression of proteins such as CD31, CD99 and F11R, 

and blocking these proteins can prevent transmigration in vivo (Schenkel et al., 2002; 

Qing et al., 2001; Woodfin et al., 2011). 

 

Increases in leukocyte trafficking are required during times of immune challenge and 

inflammation, and are a result of upregulation of the proteins that facilitate 

extravasation. The mechanisms behind this rely on cell to cell communication occurring 

within the dermis or through the blood. TNFα reception by vascular endothelial cells 

induces highly increased expression of adhesion molecules VCAM1, ICAM1, and SELE as 

well as cytokines including IL8 and monocyte-attracting CCL2 (Xia et al., 1998; Yang et 

al., 2009; Makó et al., 2010).  

 

Demyanets et al. show that IL33 mediates a similar effect via interaction with IL1 

receptor like 1 (IL1RL1/ST2) rather than the IL1 receptor, increasing surface expression 

of VCAM1, ICAM1 and SELE as well as secretion of CCL2, IL6 and IL8 (Demyanets Svitlana 

et al., 2011), and Puhlmann et al. report that the same proteins can be upregulated on 

endothelial cells by IL1β (Puhlmann et al., 2005), although O’Carroll et al. report that the 

relative upregulation of each protein varies between each stimulus in brain 

microvasculature (O’Carroll et al., 2015), which likely holds true for dermis as well. 

 

These cytokines can come systemically from the blood, or from other cell types within 

skin during local inflammation. UVB induced inflammation causes production of TNFα by 

keratinocytes and fibroblasts (although fibroblasts first require IL1α co-stimulation), as 

well as pro-inflammatory inducible nitrogen oxide synthase (iNOS) production in 

endothelial cells, which is further increased by the detection of TNFα (Clingen et al., 
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2001; Fujisawa et al., 1997; Suschek et al., 2004). An increase in TNFα production from 

keratinocytes has also been observed in lesional psoriatic skin (Johansen et al., 2006). 

Inflammatory skin diseases such as psoriasis and eczema can be powerful models for the 

effects of general skin inflammation, which can only otherwise be directly modelled in 

animal models.   

 

Leukocyte trafficking primarily occurs in the venular ends of capillaries. It is unknown 

exactly how this specificity is regulated, but there is experimental evidence towards two 

mechanisms. The first is the reduced hydrodynamic forces from blood flow, which may 

control protein expression on endothelium via shear stress (Cicha et al., 2009; Young et 

al., 2009). The second is heterogeneity in gene expression. While there is no 

morphological division or clearly demarcated midpoint, gene expression differences 

between the arterial and venular ends of these capillaries have been reported in studies 

in mice – ACKR1, a surface protein that prolongs chemokine secretion, is specific to 

venular capillaries (Thiriot et al., 2017). There is notable disagreement on this topic, 

however, as experimental evidence both for (Young et al., 2009) and against (Ley K & 

Gaehtgens P, 1991) shear-stress induced extravasation control has been published, and 

hard evidence of transcriptional heterogeneity is recent and limited in scope (Thiriot et 

al., 2017). Investigating this phenomenon at single cell level could add insight into the 

vasculature field in general. 

 

1.4.3 Pericytes 

Specialised smooth muscle cells called pericytes wrap around and attach to dermal 

vascular capillaries. Pericytes are found between the vascular basement membrane and 

the endothelial cells, and are anchored to the endothelial cells by adhesion plaques 

containing N-cadherin (Bergers & Song, 2005). They interact with vascular endothelial 

cells via direct cell-cell gap junction contact, which has been shown to be necessary for 

Transforming growth factor beta (TGFβ)-induced pericyte differentiation and Platelet-

derived growth factor subunit B (PDGF-B)-induced pericyte recruitment, to give two 

examples (Zonneville et al., 2018; Hellstrom et al., 1999). 
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The main function of pericytes is that of small vessel vascular smooth muscle cells: to 

modulate blood flow through capillaries by contracting and relaxing to cause 

vasoconstriction and vasodilation in capillaries. They have also been proposed to guide 

angiogenesis via chemotactic vascular endothelial growth factor (VEGF) expression and 

inhibit angiogenesis via CXCR3 secretion, and even to promote efficient wound healing 

in skin specifically (Bodnar et al., 2016, 2013). They can also act pro-inflammatorily 

during infection with chemokine production promoting leukocyte skin infiltration, and 

antigen presentation capabilities to activate T cells (Venetz et al., 2010; Pober et al., 

2017). 

 

Pericytes express smooth muscle markers necessary for contraction such as alpha 

smooth muscle actin, but can be distinguished from skeletal muscle particularly by 

expression of RGS5, a G-protein signalling regulator expressed specifically in pericytes 

(Mitchell et al., 2008). 

 

1.4.4 Lymphatic endothelium 

As well as blood capillaries, the dermis is also supplied by a network of lymphatics. 

These vessels, made of a monolayer of lymphatic endothelial cells, facilitate tissue 

immune surveillance via the collection of leukocytes from skin to lymph nodes, assisting 

in antigen presentation. Lymphatic vessels also contribute to a vital portion of interstitial 

fluid recirculation and the absorption of specific fats and salts from tissue (Escobedo & 

Oliver, 2017). 

 

Lymphatic capillary vessels are much larger than vascular capillaries (~100μm compared 

to ~10μm diameter (Wang et al., 2014)). They are subcategorised based on their location 

and the direction of lymph flow. Afferent lymphatics bring lymph to lymph nodes, and 

these are found throughout the dermis. Efferent lymphatics take lymph away from 

lymph nodes (Sawa et al., 2007). These are less common and directly connect lymph 

nodes or bring circulated nutrients to the vasculature. As efferent lymphatic vessels 

branch off of lymph nodes, they aren’t found in the dermis (Sawa et al., 2007). In the 

dermis, lymphatic vessels are one-way. Smaller initial lymphatic vessels extend from 

close to the DEJ to around 500μm deep, draining interstitial fluid and immune cells 
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(Wang et al., 2014). These converge at larger collecting lymphatics at around 500μm 

deep, which carry lymph back to the lymph nodes. The larger collecting vessels contain 

valves to prevent backflow because of the low pressure gradient of the lymphatics, 

which is mostly circulated by skeletal muscle movement (Wang et al., 2014). Protein 

expression heterogeneity has been observed between these two types of vessel, which 

ties into their differing functions. Wang et al. found higher levels of CCL21 expression in 

initial lymphatics, matching their need to attract and collect activated immune cells, as 

well as increased expression of podoplanin (PDPN) in the collecting vessels (although the 

exact function of PDPN in lymphatics is not known) and the presence of valves 

distinguishing the intersect between the two vessel types (Wang et al., 2014; Astarita et 

al., 2012).  

 

Migration of leukocytes to lymph nodes is facilitated by the secretion of the chemokine 

CCL21 from lymphatic endothelial cells, which attracts activated DCs and T cells upon 

their upregulation of the cognate receptor CCR7 (Vaahtomeri et al., 2017). Lymphatic 

nutrient recirculation is aided by expression of various proteins. For example LYVE1, a 

common cell surface marker of lymphatic endothelial cells, can internalise the dermal 

ECM component hyaluronan (Lawrance et al., 2016). The interplay between these two 

seemingly distinct functionalities of lymphatic vessels has yet to be fully explored, a 

point that is reiterated by Chakraborty et al.’s review questioning the link in terms of 

metabolic syndrome (Chakraborty et al., 2010), and it would be interesting to explore 

the possibility functional heterogeneity of lymphatic endothelial cells at a single cell 

level.  

 

1.4.5 Schwann cells 

The dermis is innervated for autonomic control of blood flow, hair follicle movement 

and gland secretion among other functions, as well as for touch sensation from 

epidermal merkel cells. The axons of these nerves span throughout the dermis, and the 

cell bodies reside in the spinal cord. While some mRNA is transported down axons, this 

does mean that the majority of neural mRNA isn’t found in the dermis, which could lead 

to difficulties in detecting dermal neuron transcripts (Sahoo et al., 2018). 
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Schwann cells in close contact to these axons are found throughout the dermis and 

provide supporting functions to dermal neurons. Schwann cells are functionally divided 

into myelinating and non-myelinating. Myelinating schwann cells tightly surround axons 

and improve action potential speeds by providing insulation, and inducing saltatory 

conduction between the myelin gaps (Salzer, 2015). They express the protein 

constituents of the myelin sheath, including myelin protein zero (MPZ) and myelin basic 

protein (MBP) (Le et al., 2005). Nonmyelinating schwann cells provide other homeostatic 

functions to the nerve axons, including axonal maintenance, regeneration and 

remodelling (Griffin & Thompson, 2008). They express markers not found on myelinating 

schwann cells including the nerve growth factor receptor p75NTR as well as the 

adhesion marker NCAM (Gonçalves et al., 2019; Kim et al., 2019). 

 

1.5 Dermal antigen presenting cells 

Monocytes, macrophages and dendritic cells are leukocytes which professionally present 

antigen to T cells in order to initiate immune responses, as well as contributing to 

immune regulation and general homeostasis via other functions such as phagocytosis 

and cytokine secretion (Haniffa et al., 2015). APCs are the first responders of the innate 

immune system, and as the large surface area of skin is constantly exposed to foreign 

antigens, dermal APCs are particularly important. 

 

APCs are highly heterogeneous across and within tissues, and characterising and 

labelling particular subsets across studies can be problematic. Subset definition is often 

classified by surface marker expression, function or ontogeny. APC origin and 

differentiation has been well mapped in mice, but the picture in humans is still 

incomplete due to the lesser availability of human samples, heterogeneity within human 

subsets compounding the ability to accurately resolve progenitors and the complexity of 

embryonic haematopoiesis and tissue microenvironment contribution making it difficult 

to track cells from their precursors to their fully differentiated states. 

 

1.5.1 Dendritic Cells 
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DCs are key initiators of the immune response, linking innate to adaptive immunity by 

processing antigen in non-lymphoid tissue (NLT) and migrating to lymphoid tissue (LT) to 

present it to naïve T cells. Their morphology is typically specialised in the form of long 

reaching dendrites which significantly increase the surface area of the cell, providing 

increased opportunity for antigen uptake and presentation to take place (Mellman & 

Steinman, 2001). Peripheral blood DCs are commonly divided into cDCs, which display 

dendritic morphology and can be further divided into CD141+ cDC1 DCs and CD1c+ cDC2 

DCs, and plasmacytoid DCs (pDCs), which have a plasma cell-like morphology (Rhodes et 

al., 2019). In skin, phenotypically similar subsets have been identified (Haniffa et al., 

2012). A recent single cell study of human blood by Villani et al. has further classified 

these known DC subsets into six transcriptomically distinct subsets, creating an 

opportunity to delineate the microenvironmentally-generated differences between skin 

and blood DCs at a single cell level (Villani et al., 2017).  

 

1.5.2 Dermal DCs 

In the skin, DCs are found closer to the surface than macrophages and T cells (Wang et 

al., 2014). This facilitates their role as immune sentinels, allowing them to sense antigen 

quickly when pathogens invade the physiological barrier of the skin. Dermal CD141+ DCs 

and CD1c+ DCs are found in the skin, matching the blood cDC1 and cDC2 populations 

respectively (Haniffa et al., 2012).  

 

1.5.3 cDC1s 

In the blood, cDC1 DCs can be identified by the expression of markers that are mostly 

unique to them, such as CD141, CLEC9A, XCR1 and CADM1 (Carpentier et al., 2016). 

They are alternately named throughout the literature by marker expression, for example 

as CD141+ DCs, or XCR1+ DCs in mouse (Balan & Dalod, 2016; Breton et al., 2016). They 

are the least common of the DC subsets within the blood (Balan & Dalod, 2016). cDC1s 

possess strong cross presentation capabilities, allowing them to present exogenous 

antigen to CD8+ T cells on MHC I molecules. cDC1 DCs have been shown to induce both 

Th1 and Th2 T cell responses depending on the stimulus (Segura et al., 2012). 
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In the skin, cDC1s migrate to skin draining lymph nodes in order to both present and 

cross present endogenous and exogenous antigen respectively (Haniffa et al., 2012). 

They express similar markers to blood cDC1s (Haniffa et al., 2012). 

 

1.5.4 cDC2s 

cDC2 DCs express CD1c, CD11b and CD11c (Plantinga et al., 2013). They are present in 

much higher numbers than cDC1s and are much more diverse in regards to function and 

gene expression. It is thought that this is due to either heterogeneity within the subset 

or the effects of micro-environmental factors and transient changes such as 

inflammation (Haniffa et al., 2015). It is likely that both factors have an impact on the 

diversity of cDC2s. They express many pattern recognition receptors (PRRs). This allows 

for detection of a wide range of pathogens. They also express the anti-fungal proteins 

CLEC6A and CLEC7A, and can polarise Th1, 2 and 17 responses depending on the 

stimulus (Lundberg et al., 2013). In skin, cDC2 can upregulate expression of langerin, 

which could possibly confound the use of langerin as a marker for LCs in whole skin 

(Bigley et al., 2015). 

 

1.5.5 pDCs 

pDCs share similar morphology to plasma cells. They are commonly identified by 

expression of CD123, CD303 and CD304 (Boiocchi et al., 2013), although Villani et al 

show that isolating peripheral blood mononuclear cells (PBMCs) using these markers 

also captures an AXL+ SIGLEC6+ classical DC subset (Villani et al., 2017). They are 

specialised towards anti-viral activity. pDCs detect foreign nucleic acids via toll-like 

receptors (TLRs) 7 and 9, and produce type 1 interferons (IFNs) in response to inhibit 

viral replication (Kadowaki et al., 2001). Like cDC1s, pDCs can polarise T cells towards 

either Th1 or Th2 responses (Haniffa et al., 2015). 

 

pDCs are developmentally dependent on the transcription factor E2-2, which 

upregulates pDC-specific gene expression and simultaneously downregulates genes 

specific to cDC DCs such as CD11c (Cisse et al., 2008). The requirement of E2-2 for pDC 

development has been experimentally supported by the loss of pDCs in E2-2 knockout 

mice (Hansen et al., 2015). pDCs are reportedly absent from the skin in steady state, but 
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can infiltrate tissue from the blood during inflammation, and are found in inflammatory 

eczema skin (Novak, Allam, et al., 2004). 

 

1.5.6 Macrophages  

Macrophages are noncirculating tissue-specific APCs. Macrophages have high phagocytic 

activity for defence against pathogens as well as fulfilling a wide range of tissue specific 

homeostatic requirements. This includes wound healing and extracellular matrix 

remodelling in the dermis (Okabe & Medzhitov, 2016), regulation of haematopoiesis in 

the bone marrow (Heideveld & van den Akker, 2017) and synaptic pruning in the central 

nervous system (CNS) (Hong et al., 2016). Tissue specific macrophages display 

heterogeneity in the signals required for their differentiation. For example, TGFβ 

secreted in the CNS is required, alongside other signals, for microglial differentiation 

(Butovsky et al., 2014). The transcription factor PPAR-γ has been shown to be required 

for alveolar macrophage development in mice as well (Schneider et al., 2014). 

 

Skin resident macrophages are highly autofluorescent due to the presence of melanin 

granules within their cytoplasm (Haniffa et al., 2009). They can be identified by 

expression of CD14, CD11b and FXIIIa (Haniffa et al., 2015). As APCs, macrophages also 

present antigen to activate T cells, but to a lesser degree than DCs (Tamoutounour et al., 

2013). 

 

Tissue resident macrophages were previously thought to arise primarily from circulating 

monocytes migrating into tissue and differentiating into macrophages (Ginhoux & 

Guilliams, 2016). It has more recently been made apparent that while this does occur, 

the relative contribution of monocyte-derived macrophages to tissue resident 

macrophages is tissue specific, and in most tissues they are not the main contributors of 

tissue resident macrophages, which have been shown to self-renew from embryonic 

seeded cells (Hashimoto et al., 2013; Ginhoux & Guilliams, 2016).  

 

1.5.7 Monocytes 

Human monocytes are commonly divided into CD14+ CD16-, CD14- CD16+ and CD14+ 

CD16+ subsets (Ziegler-Heitbrock et al., 2010). Identification of further heterogeneity has 
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since been reported, tangentially to the CD14/CD16 split (Wong et al., 2012), yet human 

monocytes are still often simplified into these three subsets today (Ong et al., 2019). 

This surface marker strategy has also been shown, using scRNA-seq on PBMCs, to fail to 

fully distinguish the transcriptomic states of blood monocytes (Villani et al., 2017). This is 

one strong example of the need for unbiased high resolution techniques to confidently 

delineate cellular heterogeneity. 

 

Monocytes are not terminally differentiated, and have the capacity to differentiate into 

various monocyte-derived cells, including DCs and macrophages (Sprangers et al., 2016). 

Undifferentiated monocytes are not thought to be found in steady state human skin, but 

have the potential to migrate into the skin and differentiate into monocyte-derived cells 

during inflammation in vivo (Sprangers et al., 2016). 

 

1.5.8 Monocyte-derived DCs 

Monocyte-derived DCs are found in mouse skin expressing cDC2 transcripts 

(Tamoutounour et al., 2013). They have not been isolated from human skin and instead 

are widely studied as in vitro derived cells by culturing monocytes with IL4 and GM-CSF 

(Saalbach et al., 2015; Williams et al., 2017), but they are thought to be CD14+ CD1c+, a 

cell compartment which has not yet been fully categorised in human skin (Durand & 

Segura, 2015). It is also possible that they are transient with inflammation, and that 

circulating monocytes infiltrate the skin to add to the DC pool as a response to 

inflammation.  

 

1.5.9 Monocyte-derived macrophages 

Skin resident monocyte-derived macrophages are CD14+, and unlike embryonic HSC 

derived macrophages are negative for autofluorescence (McGovern et al., 2014). These 

cells aren’t found in patients suffering from an IRF8 mutation which results in a total lack 

of monocytes, supporting their lineage as monocyte-derived cells (Hambleton et al., 

2011; McGovern et al., 2014). Monocyte-derived macrophages were previously 

attributed to being dermal DCs due to expression of DC markers including CD141, which 

is no longer though to be the case (McGovern et al., 2014). 
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Inflammation causes the transient development of various subsets of APCs with 

different phenotypes to steady state subsets (Chu et al., 2011). These cells have been 

difficult to study due to their transient nature. Studies into inflammatory events in 

humans are particularly challenging as the exact points of immune system challenge and 

resolution cannot be easily tracked. Parallels can be drawn from studying inflammatory 

skin conditions and the differences in the immune compartment to healthy skin. TNF- 

and iNOS-producing DCs (TIP-DCs) are present in psoriatic skin, where they agitate 

symptoms by secreting pro-inflammatory TNF and iNOS (Chu et al., 2011). 

 

1.6 Dermal lymphoid cells 

1.6.1 Microenvironmental differences between Dermal and Epidermal T cells 

T cells in skin are found in both the epidermis and dermis, and few specific differences 

between these populations have been highlighted in the literature. Dermal T cells largely 

match the previous description of epidermal T cells, however the dermis contains many 

more T cells than the epidermis due to the presence of dermal vascular and lymphatic 

capillaries (Gebhardt et al., 2011). Wang et al. showed using whole mount 

immunofluorescence microscopy that while T cells were found throughout the papillary 

dermis, they were much more common 40-60μm below the DEJ, deeper on average 

than dermal DCs (Wang et al., 2014). Deeper into the reticular dermis, T cells were 

almost entirely perivascular, being found close to blood vessels (Wang et al., 2014). 

Epidermal T cells are found close to the basement membrane (Clark et al., 2006). CD103- 

resident memory T cells are more common in the dermis as opposed to CD103+ T cells 

residing in the epidermis, a phenotype which is upregulated by keratinocyte co-culture, 

and results in increased secretion of cytokines including INFγ and TNFα (Watanabe et al., 

2015). 

 

1.6.2 Innate lymphoid cells 

Multiple subsets of innate lymphoid cells reside in the dermis, primarily natural killer 

(NK) cells and ILC1/2/3, which mirror the adaptive functions of Tc and Th cells 

respectively. Skin NK cells recognise virally infected cells through the expression of 

receptors including killer cell immunoglobulin-like receptors (KIRs), primarily detecting 
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the loss of MHC class I expression in infected cells (Campbell & Purdy, 2011). They 

respond to these cells through the secretion of granzymes and perforin, which lyse the 

target cells (Pardo et al., 2002). Natural killer T (NKT) cells have also been reported in 

skin, which express TCR on their surface, unlike other NK cells (Balato et al., 2009). NKTs 

recognise CD1 presentation of lipid antigens, and reportedly infiltrate psoriasis and 

eczema affected skin (Gober et al., 2008). 

 

ILC1/2/3 are analogous to innate Th cells in that they modulate inflammation through 

cytokine secretion. Three ILC subsets (ILC1, ILC2 and ILC3) are reported in various 

connective and mucosal tissues (Kim, 2015). ILC1s produce IFN-gamma in response to 

IL12 and IL15, and can display cytotoxic properties similarly to CD8 T cells and NK cells 

(Fuchs et al., 2013). ILC2s express IL1RL1, allowing recognition of IL33, and secrete 

proinflammatory cytokines including IL5 and IL13 (Kim et al., 2013). ILC3 are mainly 

found within mucosal tissue, and secrete IL22 to induce antimicrobial protein expression 

in nonimmune cells (Cella et al., 2009; Fuchs et al., 2013). 

 

1.6.3 Mast cells 

Mast cells are tissue resident leukocytes which are found in low numbers in close 

proximity to dermal blood vessels (Janssens et al., 2005). Mast cells contribute to both 

innate and adaptive immune responses in skin. Adaptive responses occur via IgE antigen 

recognition, mediated by FcεRI expressed on the surface of mast cells (Douaiher et al., 

2014). Antigen recognition causes degranulation, whereby mast cells release high 

quantities of inflammatory granules. These contain proteases which break down the 

ECM and DEJ (Kaminska et al., 1999). Histamine release from these granules increases 

vascular permeability, which combined with chemokine and cytokine secretion, as well 

as mast cell spatial proximity to the vasculature, promotes leukocyte migration into the 

dermis (Gurish et al., 1991; Ashina et al., 2015). Inappropriate mast cell degranulation in 

response to inert antigens is a critical mechanism behind allergic responses as well as 

some autoimmune diseases (Douaiher et al., 2014).  

 

Mast cells can also mediate inflammation innately by responding to pathogen-

associated molecular patterns (PAMPs) binding to TLRs (Matsushima et al., 2004). This 
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causes secretion of inflammatory mediators including TNFα and IL13, without resulting 

in degranulation (Matsushima et al., 2004). Stratification between innate and adaptive 

mast cells has not been reported, and it is not specifically known whether the same mast 

cell can respond with equal vim to IgE crosslinking as to PAMP recognition. Protein 

expression heterogeneity has been reported in dermal mast cells – for example, CD25- 

mast cells appear to have increased migration capacity (Deho’ et al., 2014). Mucosal 

mast cells differentiate from the same circulating precursor as skin mast cells, but tissue-

specific differences in protease contents have been shown (Gurish & Austen, 2012). 

Despite these findings, as of yet there is no widely accepted categorisation of dermal 

mast cell subsets. 

 

Mast cells can infiltrate into the epidermis during skin inflammation, and this occurs in 

inflammatory skin diseases including eczema (Sehra et al., 2016). Sehra et al. showed 

that mast cell-deficient mice produced less keratinocyte terminal differentiation 

proteins, such as filaggrin and involucrin, and therefore had reduced barrier function 

(Sehra et al., 2016). This suggests that epidermal mast cells in eczema may be part of a 

protective response rather than a cause of the inflammation. The relationship between 

dermal and epidermal mast cells in inflammatory skin conditions has not been fully 

explored, and a better understanding of whether all skin mast cells, or only a subset, are 

capable of supporting keratinocyte terminal differentiation, could be relevant for the 

treatment of such skin conditions.
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There are a wide array of cell types, subtypes and cell states reported in skin, and 

although a lot of heterogeneity is reported in marker expression and function of these 

cells, there have been relatively few definitive studies correlating these findings and 

unambiguously categorising all of the cell types in skin. High dimensional single cell 

analytical techniques are one approach with which this could be achieved. 

 

1.7 High Dimensional Single Cell Analysis Technologies 

Techniques for high dimensional analysis of single cells have been advancing rapidly in 

recent years. There are multiple techniques with different advantages, disadvantages 

and data outputs that can be best used in a complementary fashion, and this thesis will 

be focussing on the use of cytometry by time of flight (CyTOF) and scRNA-seq to 

distinguish heterogeneity at the single cell level of proteomic and transcriptomic 

expression respectively.  

 

1.7.1 CyTOF 

Mass cytometry, or CyTOF, is a technique derived from flow cytometry which allows for 

the simultaneous detection of more markers. In theory this could go up to 100 markers, 

but in practice due to the constraints of available metal tags the upper limit is around 40 

(Tanner et al., 2013; Giesen et al., 2014; Yao et al., 2014). This can be further increased 

by running concurrent barcoded samples with overlapping panels. The basics of the 

technique involve staining fixed and permeabilized cells with antibodies bound to metal 

isotopes of specific unique molecular masses, then vaporising individual cells and 

passing the surviving metal contents through a mass spectrometer (Tanner et al., 2013). 

This detects the molecular mass of the metals present in each cell, which determines the 

equivalent markers that were present on, or within, the cell. 

 

CyTOF drastically lowers the issue of spectral overlap that occurs in flow cytometry as, 

unlike the broad absorption and emission spectra in flow cytometry, the readouts are 

well defined mass integers. However, this comes with separate compensation issues. 

‘Spill over’ can occur due to the sensitivity of the machine within a mass difference of +/-

1. This is also compounded by isotopic impurities in the metals used. Metal oxidation 
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can also result in mass values of +16 (Tanner et al., 2013). Unlike flow cytometry 

compensation, these spill overs are difficult to remove computationally, however the 

percentages of isotopic impurities and oxidation are universal physical properties of 

these elements, so accounting for them with clever panel design is possible (Tanner et 

al., 2013). Ensuring that, when relative expression is known, abundantly expressed 

markers are not placed in adjacent mass channels to rarely expressed markers will 

reduce the impact of mass channel spill over (Tanner et al., 2013). The lack of light 

scattering properties by CyTOF removes some valuable data provided by flow cytometry. 

Cell size and the presence of doublets are much harder to verify as a result. 

 

CyTOF is also much slower than flow cytometry, and as the cells are vaporised they 

cannot be sorted for downstream functional studies. The size of the metals conjugated 

to antibodies also reduces the number of antibodies that can physically bind to each cell, 

reducing the separation between cells with low and high marker expression. These 

issues potentially limit the data output of CyTOF. 

 

Alcántara-Hernández et al. used mass cytometry to profile the DC compartment from 

skin, blood, spleen and tonsil (Alcántara-Hernández et al., 2017). They identified that 

pDC-like AXL+ DCs aren’t found in healthy human skin (Alcántara-Hernández et al., 

2017). This finding is noteworthy as these cells were only recently identified as distinct 

from pDCs (Villani et al., 2017), and pDCs are also reportedly absent in healthy skin. 

Investigating the presence or absence of skin AXL+ DCs in a disease setting where pDCs 

are found in skin, such as psoriasis (Nestle et al., 2005), could shed further light on the 

cells’ possible functionality. The authors also identify a mismatch in published mRNA 

expression of CLEC9A in skin cDC1 with a lack of protein expression in these cells 

(Alcántara-Hernández et al., 2017). This finding highlights that direct cross-technology 

study of protein and mRNA expression could provide a lot of power to future research of 

all skin cell subsets. 

 

1.7.2 Single Cell RNA Sequencing 

scRNA-seq allows for the interrogation of cell populations in a less biased fashion than 

other cell analysis techniques by relying on all or most of a cell’s transcribed mRNA, 
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which better reflects the functional capabilities of a cell than selected surface protein 

markers. Analysing RNA content per single cell also overcomes the limitations of bulk 

analysis, whereby populations with specific properties are indistinguishable from the 

tissue as a whole, and these properties are either drowned out or incorrectly attributed 

to a more common cell type. 

 

scRNA-seq experiments involve three steps: single cell separation, sequencing, and 

analysis. The development of improved techniques usually focusses on the single cell 

separation stage, where time, cost and cell recovery are important variables, although 

the use of different primers and enzymes also has knock-on effects on the cDNA quality 

at sequencing. Over recent years many bespoke and commercial scRNA-seq 

technologies have emerged with the aims of reducing cost and increasing throughput 

(Tang et al., 2009; Picelli et al., 2014; Hughes et al., 2019).  

 

The experimental steps leading up to single cell separation can have large effects on the 

quality of the final data. While cell suspensions such as PBMCs need minimal 

preparation, tissues like skin need to be first dissociated to a single cell suspension. 

Enzymatic treatments including trypsin and collagenase are common, and often require 

37oC incubation which can impact cell phenotype and transcriptome (O’Flanagan et al., 

2019; Botting et al., 2017). After dissociation, removal of low quality cells (dead or dying 

cells and doublets) greatly improves data quality, as computational removal of these 

cells is more difficult, and this also increases the cost efficiency of sequencing. These 

steps are often done using fluorescence activated cell sorting (FACS) or magnetic bead 

separation steps, and an important consideration when removing cells is balancing the 

introduction of biases into the data via pre-selection with ensuring data quality is high. 

 

The single cell separation step involves segregating each cell before lysis, and barcoding 

each mRNA molecule so that it can be computationally attributed to its cell of origin. 

There are many methods available to date, but most fall under plate-based or droplet 

based separation. Plate based approaches use methods such as FACS, or even manual 

pipetting under a microscope, to place one cell into each well of a plate. Droplet based 
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approaches make use of microfluidics and concentration calculations to estimate the 

capture of one cell per stream droplet, similarly to flow cytometry.  

 

Reverse transcription, library preparation, PCR amplification and sequencing are 

required in the same manner as bulk RNA sequencing. Pooling of single cell material can 

occur before or after library preparation, depending on when barcoding occurs in the 

specific protocol used. After sequencing, the raw data is stored as fastq files, which have 

to be aligned to a reference genome. 

 

1.7.3 Analysis of single cell RNA sequencing data 

The resulting data is represented as a count table of single cells against genes, with each 

cell of the table containing the unique molecular identifier (UMI) count of one gene in 

one cell. With scRNA-seq experiments typically analysing thousands to hundreds of 

thousands of cells, and thousands of genes per cell, this results in enormous datasets, 

which are impossible to visualise, and are computationally demanding to analyse 

without first simplifying the data. Much of scRNA-seq data analysis can be described as 

the simplification and visualisation of high dimensional data into fewer dimensions. 

 

The data must be normalised so that highly expressed genes do not drown out 

uncommon genes in downstream analysis.  Low quality data must be filtered out, which 

usually involves the removal of cells with low gene counts, which are likely to be low 

quality; cells with high mitochondrial gene expression, which are often dying cells 

releasing their mitochondrial contents into the cytoplasm; and genes found in very few 

cells, which may be erroneously mapped (Luecken & Theis, 2019).  

 

After normalisation and quality control (QC), principal component analysis (PCA) is 

computed. This generates new dimensions (principal components (PCs)) by summarising 

the most variable aspects in the data. In this way the first PC will be a numerical product 

of the genes responsible for the most variance in the scRNA-seq dataset, the second PC 

will be account for the next set of high variance genes and so on. PCA results in a dataset 

with tens of dimensions (one per PC) from a dataset with thousands of dimensions (one 

per gene). Finally, to identify populations of transcriptomically similar cells in an 
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unbiased way, the data is clustered. Cells with similar PCA data are grouped together 

into discrete clusters, which can be compared and contrasted to annotate the cell types 

they represent by looking at the genes which are differentially expressed between each 

cluster (Luecken & Theis, 2019). Each of these steps can be performed using a variety of 

methods with different pros and cons, and in recent years, new computational packages 

for scRNA-seq analysis are frequently developed. 

 

1.7.4 Interpretation of single cell RNA sequencing data 

After scRNA-seq raw data is analysed, the result is a set of clusters, each labelled with an 

integer. To impose biological meaning on these clusters, gene expression must be 

interpreted. As the data contains expression values for thousands of genes in each cell in 

each cluster, annotation is often done by interpreting the most differentially expressed 

genes between clusters, which represent the transcripts that identify cells in one cluster 

as functionally different to cells in other clusters. Differential gene expression is also 

often simplified down to the average expression level in a cluster, and the percentage of 

cells within a cluster expressing the gene.  

 

The results of differential gene expression analysis depend on context. The differential 

expression of each cluster is determined by the cells in the other clusters it is compared 

with. Iterative rounds of annotation and re-clustering can be useful as, in a diverse set of 

cells, distinct cell types such as immune cells and stromal cells will be readily segregated. 

However, minute differences between similar immune cells will be masked by the much 

greater variance in the dataset, such as immune versus nonimmune. Re-clustering and 

re-analysing only immune cells in this case could reveal further heterogeneity. 

 

There is also merit to analysing the highest expressed genes in each cluster 

independently of the rest of the data. This will be much more consistent, as it does not 

depend on context, although biologically meaningful data may be masked by high 

ubiquitous expression, for example of housekeeping genes (Miao et al., 2020). 

 

Applying biological interpretation to the data can be done manually, by comparing gene 

expression to published literature of each gene. This is very time consuming, but 
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integrating published information about a gene within and without the context of the 

analysed tissue can result in very focussed findings. This is however prone to introducing 

bias in two major ways, either from the available published data or from the interpreting 

scientist. Introducing bias from a priori knowledge is against the core principles of most 

scRNA-seq experiments, but is necessary to some extent, as the gene expression data is 

meaningless without the functional implications of expressing these genes. Because 

such manual comparisons are difficult to quantify, the individual interpreting the data 

may also be inadvertently swayed towards, or even actively seek out, papers that agree 

with their theories. 

 

Automated approaches to annotation are also readily available, such as using gene 

ontology tools to analyse the common functionalities of all genes in a differentially 

expressed gene set. These methods reduce interpretation bias, but ultimately the a 

priori knowledge bias still exists, in the form of the particular database of assigned gene 

ontologies used, rather than in the meaning assigned through manual analysis of papers. 

There is a need to use known information about gene markers to annotate single cell 

data, which inevitably introduces biases. This should be considered and balanced in a 

way that doesn’t rule out novel findings, nor force them. 

 

1.8 Single cell sequencing protocols 

1.8.1 Plate based sequencing 

Smart-seq2 (SS2) is a plate based single cell separation protocol for the generation of 

high quality, low throughput single cell RNA sequencing data. It involves separation of 

single cells into each well of a 96-well plate using FACS, and manual library preparation 

of each cell. It results in full length RNA sequencing via template switching during 

reverse transcription, reducing the 3’ bias introduced by oligo(dT) priming (Picelli et al., 

2014). This protocol improves on the original SmartSeq protocol published by the same 

group in 2012 with various alterations to cell lysis and reverse transcription that improve 

final cDNA yield. (Ramsköld et al., 2012) 
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As with all sequencing techniques, SS2 introduces biases into the results. Primarily, 

amplification is based on the presence of polyadenylation, and so RNA without PolyA 

tails will not be included in the analysis, in practice meaning only mRNA will be 

sequenced (Picelli et al., 2014). The main downside to SS2 is the throughput. The 

maximum number of cells which can be sequenced at once (per sequencer) is eight 

lanes of multiplexed 96-well plates, giving data for less than a thousand cells (Picelli et 

al., 2014). Collection and preparation of eight 96 well plates is also an arduous 

procedure. Data analysis is also difficult, as technical and biological noise is high for 

single cells and must be accounted for (Picelli et al., 2013). 

 

Apostolidis et al. used a modified SS2 protocol to sequence 88 skin cells from one 

healthy donor and 96 cells from one systemic sclerosis patient (Apostolidis et al., 2018). 

Analysing the differentially expressed genes between endothelial cells in the two 

donors, they found two disease-specific markers, HSPG2 and APLNR, that they validate 

by immunohistochemistry (IHC) and 8 patients by quantitative PCR (qPCR) (Apostolidis 

et al., 2018). This is a strong use of single cell sequencing to delineate population specific 

expression differences that would be obscured in bulk sequencing data. The single donor 

for both normal and disease state makes it difficult to make any statistical conclusions 

from this single cell data set, although the two genes the paper presents as novel 

systemic sclerosis markers were tested more rigorously by IHC and qPCR in multiple 

patients. A similar approach would be required to support other findings in the rest of 

the single cell skin dataset. 

 

Philippeos et al. sorted CD90+/- CD45- CD31- CDH1- cells from human dermis of a single 

donor, aiming to enrich for fibroblasts, and subsequently sequenced 184 of these cells 

using SmartSeq2 (Philippeos et al., 2018). Analysis of this data revealed three fibroblast 

clusters, with differential gene expression characterising DCN and LUM as pan-fibroblast 

markers and identifying markers which separate the three clusters. They used these 

markers to generate a staining panel which confirmed the lack of spatial distinction 

between these fibroblast identities (Philippeos et al., 2018). 

 

1.8.2 Droplet based sequencing 
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Droplet based single cell separation is an automated process using calibrated 

microfluidics to separate cells into oil droplets (Macosko et al., 2015). This procedure 

generally trades precision for speed and lower cost. 10x Sequencing is one such protocol 

for the generation of lower quality, higher throughput scRNA-seq data when compared 

with plate based approaches such as SS2 (Coombe et al., 2016). The protocol differs in 

the single cell separation step, which uses a microfluidics machine called the Chromium 

Controller to rapidly create an emulsion of single cells contained within oil droplets 

which contain the reagents require for downstream sequencing, such as lysis buffer, as 

well as uniquely barcoded RNA capture beads. These barcode each RNA strand so that it 

can be traced back to its original cell post sequencing. This method can separate 

thousands of cells within a period of about six minutes, without the need for time 

consuming cell sorting and manual pipetting steps (Coombe et al., 2016). Thousands of 

cells can be sequenced on each of up to eight lanes simultaneously, allowing for the 

collection of a large amount of single cell data. However, the read coverage is much 

lower than SS2 as the entire cDNA fragments within each bead are not read (Goodwin et 

al., 2016). This results in either a 3’ or 5’ bias in the data depending on the primer 

sequences on the RNA capture beads. 

 

Tabib et al. used 10x sequencing to profile 8,522 skin cells from six donors (Tabib et al., 

2018a). The authors controlled for body site by collecting only mid-forearm skin, but 

mixed male and female donors. Skin samples were digested using the Miltenyi Biotec 

Whole Skin Dissociation Kit, and the cell suspension was run through the 10x protocol 

without dead cell or doublet removal. After clustering analysis, the authors list the cell 

types found before analysing the fibroblast data alone in further detail. They present 

their findings as two major subgroups of fibroblasts in human skin, with further 

heterogeneity within those groups (Tabib et al., 2018a). They also present the lack of 

correlation between murine and human fibroblast heterogeneity based on murine 

lineage markers. They confirmed the presence of morphologically distinct fibroblasts 

expressing either SFRP2 and DPP4 or FMO and LSP1 (Tabib et al., 2018a). The authors 

claim that sequencing 2,742 cells is a high enough number that rare cells are unlikely to 

have been missed, which is potentially a contentious point. High numbers of rare 



56 

 

populations are required to give the statistical power to resolve the population as a 

distinct cluster (Luecken & Theis, 2019).  

 

Cheng et al. profiled a total of 92,889 single cells from 12 donors: 3 different healthy 

donors from each of foreskin, scalp and trunk, and 3 inflamed trunk samples (Cheng et 

al., 2018). The high sample numbers and comparison of healthy skin with inflammatory 

diseases resulted in the finding of some disease specific gene expression patterns 

(Cheng et al., 2018). However, the authors had the tissue at 4oC for two days prior to 

digestion and sequencing. While the low temperature may help to offset this, the long 

duration ex vivo may have caused many transcriptional changes due to stress responses. 

The lack of reception of normal homeostatic signals from the blood may have also 

altered tissue gene expression within this time period. 

 

1.9 Project Aims 

The aim of this project is to use single cell RNA sequencing and mass cytometry to 

delineate the heterogeneity present in the a priori defined cell types of human skin 

within the literature. By comparing the transcriptomes of all immune and nonimmune 

cells within skin, the aim is to find the transcripts that best separate human skin cell 

populations. Mass cytometry will be employed in parallel to compare high dimension 

protein expression and outline the differences in protein and RNA expression in these 

cells. This exploratory data generation should generate hypotheses to test further 

through the possible discovery of previously unreported cell types, as well as by finding 

potential functions that cells may be performing based on transcript expression. IHC and 

flow cytometry will be used to validate the protein expression of such interesting 

findings within the scRNA-seq dataset. To summarise briefly, the aims of this thesis are 

as follows: 

• To investigate skin tissue dissociation for comprehensive capture, high cell 

recovery and low cell death 

• To categorise the cellular heterogeneity in human skin using scRNA-seq 

• To compare transcript expression to protein expression using CyTOF 

• To validate the findings from scRNA-seq using IHC and flow cytometry 
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The first mention of a reagent is followed by its supplier and product number in 

brackets. Each subsequent mention, where this information is not shown, refers to the 

same product. 

 

2.1 Materials 

Antibodies used for flow cytometry, CyTOF, IHC and immunofluorescence (IF) are listed 

in Table 1 along with their clones and suppliers. Cell washes were performed at 500g for 

5 minutes unless otherwise stated. Incubations were performed at 37oC, 5% CO2 unless 

otherwise stated. Where not specified, percentage concentrations are v/v. 

 

2.1.1 Buffers 

• RF-10 media consists of Roswell Park Memorial Institute media (RPMI)(Sigma, 

R0883) supplemented with 10% foetal calf serum (FCS)(Life technologies, 

10270106), 100U/ml Penicillin (Sigma, P0781), 100µg/ml Streptomycin (Sigma, 

P0781) and 1% L-Glutamine (Sigma, G7513).  

• Flow buffer consists of Dulbecco’s phosphate buffered saline (PBS)(Sigma, 

D8537) supplemented with 2% FCS and 2mM EDTA (Sigma, E7889).  

• Sort buffer consists of PBS supplemented with 0.5% FCS and 2mM EDTA. Freezing 

media consists of 10% DMSO (OriGen Biomedical, CP-50) and 90% FCS.  

• Wash buffer for CyTOF consists of PBS supplemented with 2% FCS.  

• Citrate buffer consists of 0.21% (w/v) citric acid (Sigma, 606081) and 14mM 

NaOH (Sigma, 221465) made in up water and prior to each experiment was set to 

pH 6 using a pH meter, 1M HCl (Sigma, 258148) and 1M NaOH. 

• Tris buffered saline (TBS) buffer consists of 0.0605% (w/v) Tris HCL (Sigma, 

T3253), 0.8% (w/v) NaCL and 38mM HCl made in up water and prior to each 

experiment was set to pH 7.6 using a pH meter, 1M HCl and 1M NaOH. 
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Table 1 

Flow Cytometry  

Antigen Fluorochrome Clone Manufacturer 

CD56 FITC NCAM16.2 BD 

CD141 PerCP/Cy5.5 M80 Biolegend 

CD31 APC WM59 Biolegend 

CD1a AF700 HI149 Biolegend 

CD11c APC/Cy7 Bu15 Biolegend 

EpCAM VioBlue HEA125 Miltenyi 

CD3 Bv605 SK7 Biolegend 

CD4 Bv711 RPA-T4 Biolegend 

HLA-DR Bv785 L243 Biolegend 

CD207 PE 10E2 Biolegend 

CD14 PE/Dazzle HCD14 Biolegend 

CD49f PE/Cy7 GoH3 eBioscience 

CD45 BuV395 HI30 BD 

CD3 FITC SK7 BD 

CD19 FITC 4G7 BD 

CD20 FITC L27 BD 

CCR7 BV605 3D12 BD 

CD1c PE/Cy7 L161 Biolegend 

CD34 APC/Cy7 581 Biolegend 

CD73 FITC AD2 BD 

ACKR1 PE NaM185-2C3 BD 

SELP Bv421 AK4 BD 

SELE Bv605 68-5H11 BD 

ICAM1 Bv711 HA58 BD 

      

Mass Cytometry (*Custom conjugated using Fluidigm metal kit) 

Antigen Metal tag Clone Manufacturer 

CD45 89Y HI30 Fluidigm 

CD103 *141Pr Ber-Act8 Biolegend 

FoxP3 *142Nd 259D/C7 Biolegend 

CD127 (IL-7Ra) 143Nd A019D5 Fluidigm 

CD69 144Nd FN50 Fluidigm 

CD31 145Nd WM59 Fluidigm 

CD203c *146Nd NP4D6 Biolegend 

CD11c 147Sm Bu15 Fluidigm 

CD34 148Nd 581 Fluidigm 

CD25 (IL-2R) 149Sm 2A3 Fluidigm 

Siglec 8 *150Nd 7C9 Biolegend 
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CD14 151Eu M5E2 Fluidigm 

GATA3 *152Sm TWAJ Biolegend 

CD62L (L-selectin) 153Eu DREG-56 Fluidigm 

CD3 154Sm UCHT1 Fluidigm 

CD45RA 155Gd HI100 Fluidigm 

CD117 (ckit) *156Gd 104D2 Biolegend 

CD123 (IL-3R) *158Gd 6H6 Biolegend 

CD161 159Tb HP-3G10 Fluidigm 

Tbet 160Gd 4B10 Fluidigm 

CD370 (CLEC9A) 161Dy 8F9 Fluidigm 

CD8a 162Dy RPA-T8 Fluidigm 

CD294 (CRTH2) 163Dy BM16 Fluidigm 

CD49F/alpha 1 164Dy G0H3 Fluidigm 

CD163 165Ho GHI/61 Fluidigm 

CD5 *166Er UCHT2 Biolegend 

CD197 (CCR7) 167Er G043H7 Fluidigm 

CD73 168Er AD2  Fluidigm 

CD1c/BDCA1 169Tm AD5-8E7 Miltenyi 

CD45RO *170Er UCHL1 Biolegend 

CD56 *171Yb REA196 Miltenyi 

CD15 172Yb W6D3 Fluidigm 

HLA-DR 173Yb L243 Fluidigm 

ROR gamma *174Yb REA278 Miltenyi 

S100A8/9 *175Lu CF-145 eBioscience 

CD4 176Yb RPA-T4 Fluidigm 

CD16 209Bis 3G8 Fluidigm 

    

IHC/IF 

Antigen Experiment Clone Manufacturer 

Keratin 17 IHC     

CD83 IHC Polyclonal (ab205343) Abcam 

CD83 IF HB15e Novus 

Wide spectrum keratin IF Polyclonal (ab9377) Abcam 

AE1/AE3/PCK26 Pan Keratin IHC Polyclonal (760-2595) Roche 

CD31 IF C31/1395R Novus 

Gamma synuclein IF 1H10D2 Abcam 

Table 1 – List of antibodies used. Subtitles refer to the experiment in which each 

antibody was used. Antibodies that were custom conjugated are shown by an asterisk 

(*) before the mass cytometry metal tags. 



63 

 

2.2 Generation of single cell suspensions from skin 

Surplus skin from breast reconstruction surgery was collected in accordance with the 

Newcastle and North Tyneside 1 Research Ethics Committee at the Royal Victoria 

Infirmary, Newcastle upon Tyne NHS Foundation Trust (Newcastle Dermatology Biobank 

- REC reference: 08/H0906/95+5). All work on skin tissue was done within class II 

biological safety cabinets using autoclave-sterilised equipment. 

 

Skin was cut to approximately 3cm wide strips in 4oC PBS and then a 200μm whole skin 

layer was cut using a dermatome with a Pilling Wecprep blade and a .008 gauge Goulian 

guard.  

 

2.2.1 Preparation of whole skin digest 

For whole skin digestion, following Section 2.2 a grid of slits was then cut into the whole 

skin sections to aid enzymatic access. Skin was then digested in a 10cm tissue culture 

dish overnight at 37oC, 5% CO2 in RF-10 media with 1.6mg/ml type IV collagenase 

(Worthington, CLS-4). The media was then collected with a serological pipette, pipetted 

up and down over the remnants of skin, and filtered through a sterile 100μm cell 

strainer (BD Falcon, 352360). The tissue culture dish and strainer were washed through 

with RF-10 to collect any remaining cells. Cells were pelleted by centrifuging at 500g for 

5 minutes. Supernatant was discarded and the pellet resuspended in 1ml RF-10 by 

gently pipetting up and down. Cells were then counted by taking off 10μl, mixing 1:1 

with 0.4% trypan blue (Sigma, T8154) to stain dead cells and counting on a 

haemocytometer. 

 

2.2.2 Optimisation of collagenase digestion of whole skin 

Skin was prepared as described in Section 2.2.1 with the following changes: Prior to 

cutting slits for enzymatic access, an 8mm diameter punch biopsy was used to cut 

volume-matched discs of 200μm thick whole skin. For each of the five dissociation 

timepoints to test, three punch biopsies were taken, totalling 30mm3 of skin per 

timepoint (0.2*3*π42). Three biopsies per tissue culture dish were treated with type IV 

collagenase and at 2, 4, 6, 8, 10 and 12 hours after adding the collagenase and 
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incubating, cells from one tissue culture dish were collected as described in Section 

2.2.1, and stained for flow cytometry as described below. 

 

2.2.3 Dermal and epidermal peeling 

For the generation of scRNA-seq data, CyTOF, flow cytometry experiments, IHC and 

whole mount staining skin was first treated with dispase and the epidermis and dermis 

separated to analyse separately. 

 

Following Section 2.2 a grid of slits was cut into the skin sheets to aid enzymatic access, 

then the skin was treated with 2U/ml dispase II (Roche, 04942078001) in RPMI at 37oC 

for 1 hour. The epidermis was peeled from the dermis using forceps. 

 

Dermis and epidermis were rinsed in PBS to remove dispase. For microscopy, these 

peeled sheets were used as described below. For the generation of single cell 

suspensions, both fragments were separately digested in a tissue culture dish at 37oC, 

5% CO2 in RF-10 media with 1.6 mg/ml type IV collagenase (Worthington, CLS-4) 

overnight and harvested as described in Section 2.2.1. Note that dermis dissolves leaving 

no visible remnants, whereas epidermis leaves visible sheets of stratum corneum. 

 

2.2.4 Comparison of collagenase digestion between whole skin and peeled dermis 

and epidermis 

To match volumes of whole skin with the equivalent volume of peeled dermis and 

epidermis, for each time point six 8mm punch biopsy punches were taken from skin 

sheets prepared as in Section 2.2. Three punches per time point were kept in PBS at 4oC 

while three punches per time point were treated with dispase II and peeled, as 

described in 1.2.3. For each time point, three whole skin 8mm punches, three dermis 

8mm punches and three epidermis 8mm punches were separately digested in 10cm 

tissue culture dishes at 37oC, 5% CO2 in RF-10 media with 1.6 mg/ml type IV collagenase. 

After 2, 6, 12 and 16 hours, cells were collected as described in Section 2.2.1, and 

stained for flow cytometry as described below. 

 

2.2.5 Freezing cells for short term storage 
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Cells were pelleted by centrifuging at 500g for 5 minutes. Supernatant was removed and 

the pellet resuspended in 1ml freezing media, then made up to ~107 cells per 1ml 

freezing media. The cell suspension was aliquoted into cryotubes, which were wrapped 

in bubble wrap to prevent flash freezing and stored in a -80oC freezer. 

 

2.3 Flow cytometry 

2.3.1 Flow cytometry analysis of cell suspensions 

Suspensions of whole skin, dermal or epidermal cells were resuspended in 100μl of flow 

buffer per 107 cells, transferred to polystyrene FACS tubes (BD Falcon, 352054) and 

stained with a cocktail containing 5μl of each antibody per 107 cells (as previously 

optimised in the lab) for 30 minutes at 4oC in the dark. Cells were washed in flow buffer 

by centrifuging at 500g for 5 minutes, then resuspended in 200μl of flow buffer per 106 

cells. Immediately prior to analysis, cells were spiked with 1:10 DAPI (Sysmex Partec, 05-

5005) added by volume and filtered through 35μm cell strainer caps (BD Falcon, 

352235). Cells were then run through a Fortessa X20 for analysis. 

 

2.3.2 FACS isolation of skin cells 

Dermal and epidermal cells were separately resuspended in 100μl of flow buffer per 107 

cells, transferred to polypropylene FACS tubes (BD Falcon, 352063) and stained with a 

cocktail containing 5μl of each antibody per 107 cells for 30 minutes in 4oC in the dark. 

Cells were washed in flow buffer by centrifuging at 500g for 5 minutes, then 

resuspended in 1ml of flow buffer per 2×107 cells. Immediately prior to sorting, cells 

were spiked with 1:10 DAPI by volume and filtered through 35μm cell strainer caps. Cells 

were then filtered using a 100μm cell strainer and sorted using a BD FACSAria Fusion 

Sorter with a 100μm fluidics nozzle. The Fusion Sorter was operated by a Flow 

Cytometry Core Facility (FCCF) core technician at all times. I devised and checked the 

gating and sorting strategies, and sorting was then carried out by the core technician. 

 

Sorting was carried out into FACS tubes containing 500μl PBS. Prior to sorting, the sorter 

surfaces and centrifuge were cleaned with RNaseZap (ThermoFisher, AM9780). After 
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sorting, cells were centrifuged at 500g for 5 minutes and resuspended in <50μl PBS and 

counted using a haemocytometer. 

 

2.4 Mass cytometry (CyTOF) 

All mass cytometry experiments were carried out using filter tips to avoid environmental 

metal contamination. 

 

2.4.1 Mass cytometry analysis of cell suspensions 

The mass cytometry staining protocol used was developed by the FCCF staff members 

Drs G. Hulme, D. McDonald and A. Filby collaborating with Dr C. Lamb. 

 

Suspensions of 3x106 dermal or epidermal cells were incubated with 2.5μM Cell-ID 

Cisplatin (Fluidigm, 201064) made up in PBS for 5 minutes at room temperature before 

washing twice in wash buffer at 500g for 5 minutes. A master mix of cell surface-

targeted metal-tagged antibodies was made up (Table 1) and cells were stained for 1 

hour at room temperature, made up to 100μl wash buffer. After washing twice in PBS at 

500g for 5 minutes, cells were fixed for 30 minutes at room temperature in a solution of 

FOXP3 fix-perm buffer (eBiosciences, 00-5523-00) with 1.6% formaldehyde 

(Polysciences, 18814). Cells were then washed twice in FOXP3 fix-perm buffer then 

stained with an intracellularly targeted antibody cocktail (Table 1) for 1 hour at room 

temperature. Cells were washed twice at 500g for 5 minutes in PBS, then incubated in 

Iridium intercalator (Fluidigm, 201192A) at 125nM in PBS for 1 hour. Cells were further 

fixed at 1.6% formaldehyde for 30 minutes at room temperature, washed twice in PBS 

and twice in distilled water. Cell pellets were then resuspended in 500μl of distilled 

water and 10μl was run on a BD Accuri cytometer to accurately measure the cell 

concentration. Cells were then made up to 0.5 x10­6 cells/ml in distilled water with 10% 

(v/v) EQ beads (Fluidigm, 201078) for analysis on the Helios mass cytometer (Fluidigm). 

 

2.4.2 Metal tagged antibody conjugation 

Where pre-conjugated metal tagged antibodies were not available, antibodies were 

custom conjugated using carrier-free unconjugated antibodies and Maxpar Antibody 
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Labelling Kits (Fluidigm, 201141A-201176B). Custom conjugated antibodies are listed in 

Table 1 with an asterisk. Conjugation was carried out as per the manufacturer’s 

instructions as follows: The Maxpar polymer was spun briefly in a microcentrifuge then 

resuspended thoroughly in 95μl L-buffer, then 5μl of the specific metal solution was 

added and incubated for 30 minutes at 37oC on a heat block. This solution was then 

transferred to a 3kDa centrifugal filter (Millipore, UFC500396) and made up to 300μl 

with L-buffer before centrifuging for 12,000g for 25 minutes. The filtered waste was 

discarded, and the metal mixture resuspended in 400μl C-buffer and centrifuged at 

12,000g for 30 minutes. 

 

100μg of specific carrier-free unconjugated antibody was made up to 400μl in R-buffer 

in a 50kDa centrifugal filter (Millipore, UFC505096), then spun at 12,000g for 10 

minutes. The filtered waste was discarded, and the antibody resuspended in 100μl 0.5M 

TCEP solution before incubating for 30 minutes at 37oC on a heat block.  300μl of C-

buffer was added before centrifuging at 12,000g for 10 minutes. The filtered waste was 

discarded, the antibody resuspended in 400μl C-buffer and centrifuged for 12,000g for 

10 minutes. 

 

The metal was resuspended in 60μl C-buffer, then transferred to the antibody filter and 

mixed thoroughly before incubating for 90 minutes at 37oC on a heat block. 200μl W-

buffer was added to this mixture and centrifuged at 12,000g for 10 minutes four times, 

being topped up with 400μl of W-buffer between each spin. The purified conjugated 

antibody was then made up to 100μl with W-buffer and 1μl tested on a NanoDrop 

spectrophotometer (Thermofisher) at 280nm absorbance to check protein 

concentration. Antibodies were made up to 0.5mg/ml concentration using 0.05% 

sodium azide made up in W-buffer (Sigma, S2002). 

 

2.4.3 Antibody testing on beads 

To test the success of metal conjugation, beads were stained with each custom-

conjugated antibody and run through the Helios mass cytometer. AbC Total Antibody 

Compensation positive beads (Thermofisher, A10497) were used to test antibodies 

raised in rat and mouse, and UltraComp eBeads (Thermofisher, 01-2222-41) were used 
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for recombinant human antibodies. Multiple antibodies were tested in a single bead 

tube, so to minimise the impact of isotope impurity and oxidation, metals with an 

isotope 1 or 16 atomic mass apart were stained in separate tubes. Two drops of beads 

were added to each polystyrene FACS tube and 125nM iridium intercalator (Fluidigm, 

201192A) was added in 200μl PBS + 1% FCS to each tube and incubated at room 

temperature for 1h. Beads were washed once in PBS and twice in Milli-Q purified water, 

each at 2000g for 8 minutes, prior to running on the Helios mass cytometer. The Helios 

was operated by an FCCF core technician at all times. The presence of 191Ir/193Ir 

positive events with signal in the expected channels was used to confirm conjugation 

success. 

 

2.4.4 Antibody testing on cells 

To test that the antibody binding sites were not denatured past epitope recognition 

during the heating steps, custom conjugated antibodies were tested as a panel as 

described in Section 2.4.1, on whole skin cells. 

 

2.4.5 Antibody titration 

Both custom conjugated and pre-conjugated metal tagged antibodies were titrated to 

achieve optimal separation and minimise the effects of spillover. Multiple panels were 

devised to ensure no +/-1 or +16 channels were occupied so that spillover could be 

analysed from each channel, and each antibody was tested at three concentrations for 

staining (either “1:200, 1:100 and 1:50”, or where separation was worse during cell 

staining testing “1:100, 1:50 and 1:25” was used) using the method described in Section 

2.4.1 on whole skin. Staining index was calculated as ((positive MFI – negative MFI)/2 × 

negative standard deviation), and the highest value was chosen for the final staining 

concentration of each antibody. Antibodies with high background staining and spillover 

at their lowest titration were stained at 1:400. No further titration was required.  

 

2.5 Immunohistochemistry (IHC) 

2.5.1 Whole mount immunofluorescence staining of dermis and epidermis 
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Peeled dermis and epidermis sheets were cut to 1cm2 and fixed in 2% formaldehyde 

(Polysciences, 18814) and 30% (w/v) sucrose in PBS for 24 hours at 4oC. Dermis and 

epidermis sheets were incubated in 300mM glycine for 24 hours at 4oC, washed in PBS 

twice for 10 minutes each on a gentle rocker, then blocked and permeabilized in PBS 

with 20% goat serum (R&D Systems, DY005) and 0.2% Triton X-100 (Sigma, T8787) for 24 

hours at 4oC then washed in PBS with 0.1% Triton X-100 twice times for 10 minutes each 

on a gentle rocker. Primary antibodies were added in PBS with 20% goat serum and 0.1% 

Triton X-100 for 48 hours at 4oC then washed in PBS with 0.1% Triton X-100 five times 

for 10 minutes each on a gentle rocker. Secondary antibodies were added in PBS with 

20% goat serum and 0.1% Triton X-100 for 24 hours then washed in PBS with 0.1% Triton 

X-100 five times for 10 minutes each on a gentle rocker. 

 

For epidermal sheets, sheets were covered in 2 drops spectral DAPI (Perkin Elmer, 

FP1490) added to 500μl PBS for 30 minutes at room temperature. For dermal sheets, 

sheets were covered in 500μl of 0.1% DRAQ5 (Abcam, ab108410) in PBS for 30 minutes 

at room temperature.  

 

Sheets were washed in PBS with 0.1% Triton X-100 three times for 10 minutes each on a 

gentle rocker, then mounted in Vectashield antifade mounting medium (Vector 

Laboratories, H-1000) and set for at least 24 hours before imaging. Slides were imaged 

using a Zeiss LSM800 Airyscan/Spinning disk Confocal Microscope and Zeiss ZEN Pro 

software (Zeiss, Germany). 

 

For each experiment, a skin sheet was prepared in the same way but with only PBS with 

20% goat serum and 0.1% Triton X-100 added for 48 hours, with no primary antibody. A 

second skin sheet was prepared in the same way but with no primary or secondary 

antibodies added. For each primary antibody (and for nuclear stains DAPI and DRAQ5), a 

further skin sheet was prepared and stained with only a single primary antibody and its 

secondary antibody. These were imaged to respectively confirm the lack of secondary-

only staining caused by non-specific binding, to see the background fluorescence from 

the skin samples, and to confirm the lack of spillover into other channels where positive 

staining was found. 
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2.5.2 Immunohistochemistry on skin sections 

Sheets of whole skin, dermis and epidermis were prepared as Sections 2.2 and 2.2.3 and 

cut to 1cm2 before fixation in 10% neutral-buffered formalin (Cellpath, BAF-6000-08A) 

for at least 24 hours. Fixed skin was sent to the Newcastle Molecular Pathology Node for 

paraffin embedding and slide sectioning. Sections were cut to standard 4μm thickness. 

 

2.5.3 H&E staining 

Formalin-fixed paraffin embedded (FFPE) skin section slides were dewaxed in xylene 

(Fisher Scientific, 534056) for 5 minutes at room temperature. Slides were rehydrated in 

graded ethanol for 30 seconds at each of 99%, 95% and 70% ethanol (Fisher Scientific, 

BP28184) (diluted with water), and finally washed in running water. Slides were dipped 

in Mayer’s Haematoxylin (Sigma, MSH16), water, Scotts tap water substitute (Sigma, 

S5134), Eosin (Sigma, HT110132) and water for 30 seconds each in sequence. Slides 

were dehydrated in graded ethanol for 30 seconds at each of 70%, 95% and 99% ethanol 

followed by 5 minutes in xylene. Excess xylene was carefully removed with tissue paper 

prior to cover slip mounting with DPX (Sigma, 06522). 

 

2.5.4 Antibody staining 

Dual-colour chromogen staining was done by the Newcastle Molecular Pathology Node. 

Single colour chromogen staining was carried out as follows: 

 

FFPE skin section slides were dewaxed in xylene for 5 minutes. Slides were rehydrated in 

graded ethanol for 30 seconds at each of 99%, 95% and 70% ethanol (diluted with 

water), and finally washed in running water. Slides were treated with hydrogen peroxide 

(made up to 0.3% v/v in water, Sigma, H1009) for 10 minutes and rinsed in water. Slides 

were submerged in citrate buffer in a pressure cooker until 2 minutes after max 

temperature and pressure had been reached. Slides were placed in TBS buffer for 5 

minutes on a rocker.  
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Staining was done using a Vector Immpress Staining Kit (Vector Laboratories, MP-7800-

15) containing 2.5% normal horse serum, peroxidase conjugated secondary antibody 

and DAB. 

 

Slides were covered in 2.5% normal horse serum for 20 minutes at room temperature, 

then placed in primary antibody, diluted in TBS buffer, for 60 minutes at room 

temperature before washing twice for 5 minutes in TBS on a rocker. Slides were then 

stained using the secondary antibody for 30 minutes before washing twice for 5 minutes 

in TBS on a rocker. Slides were developed in DAB for 30 seconds, washed in running 

water, stained in Mayer’s Haematoxylin for 30 seconds, washed in running water, 

stained in Scotts tap water substitute for 30 seconds, then washed in running water. 

Slides were dehydrated in graded ethanol for 30 seconds at each of 70%, 95% and 99% 

ethanol followed by 5 minutes in xylene. Excess xylene was carefully removed with 

tissue paper prior to cover slip mounting with DPX. Slides were imaged using a Zeiss 

Axioimager Microscope and Zeiss ZEN Pro software (Zeiss, Germany). 

 

For each experiment, a slide was treated identically but treated with TBS buffer instead 

of primary antibody to confirm the lack of nonspecific staining. 

 

2.6 Single cell RNA sequencing 

Library preparation was done by Emily Stephenson, and libraries were sent to the 

Wellcome Sanger Institute for sequencing. Cells were counted on a haemocytometer 

and loaded at 400-800 cells/μl with the aim of recovering 7000 live, single cells onto 

each channel of the Chromium chip (10x Genomics, Pleasanton, CA, USA) before droplet 

encapsulation on the Chromium Controller. Sequencing libraries were generated using 

the Single Cell 3’ reagent kits as per the manufacturer’s protocol. Libraries were 

sequenced using an Illumina HiSeq 4000 using v4 SBS chemistry to achieve a minimum 

depth of 50,000 raw reads per cell using the following parameters: Read1: 26 cycles, i7: 

8 cycles, i5: 0 cycles; Read2: 98 cycles to generate 75bp paired end reads. 

 

2.7 Data analysis 
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2.7.1 Statistics and graphs 

Bar graphs, scatter plots and t tests were generated using GraphPad Prism 7.00 

(GraphPad Software, La Jolla California USA).  

 

2.7.2 Flow Analysis 

Flow cytometry and CyTOF analysis and layouts were produced using FlowJo_V10 

(FlowJo LLC, Ashland Oregon).  

 

2.7.3 Mass cytometry clustering analysis 

Data from peeled, digested epidermis and dermis from 4 donors was clustered 

separately using the cytofkit Bioconductor package version 1.6.1 (Chen et al., 2016). 

Data was downsampled to a maximum of 100,000 cells per experiment, transformed 

using the cytofAsinh option, clustered with Rphenograph and visualized as tSNE plots.  

 

2.7.4 Microscopy imaging and analysis 

Zeiss ZEN Pro software (Zeiss, Germany) was used for imaging IHC and IF slides, as well 

as for tiling and Z-stack reconstruction of 3D models. ImageJ (NIH, Maryland) was used 

to enhance contrast in microscopy images, as well as for counting nuclei of tiled images. 

 

2.7.5 Figure preparation  

Figures were prepared using Adobe Illustrator_2018 (Adobe, California) for the 

generation and standardisation of legends, labels and axes text. 

 

2.8 Single cell RNA sequencing data analysis 

scRNA-seq data was computationally analysed by Dr Peter Vegh, and the below 

analytical methods used are displayed for the purpose of following the experimental 

procedures. 

 

2.8.1 Alignment and quality control of scRNA-seq data 

scRNA-seq data was quantified using the Cell Ranger Single-Cell Software Suite (version 

2.0.2, 10x Genomics Inc) and aligned to the GRCh38 reference genome (official Cell 
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Ranger reference, version 1.2.0). Cells with under 200 genes detected or over 20% 

mitochondrial gene expression were removed. Genes expressed in fewer than 3 cells 

were also removed. 

 

2.8.2 Doublet detection and exclusion 

Doublets were detected using a support vector machine (SVM) algorithm trained on our 

scRNA-seq data and simulated doublets. Simulated doublets were generated by 

randomly choosing pairs of cells from the same sequencing lane and combining their 

raw gene counts. The SVM was trained to identify simulated doublets using the SVC 

(support vector classifier) from the svm module in the sklearn package (version 0.19.1) 

in Python (v3.6.3). A grid search was applied during the training of the SVM models to 

optimise its hyperparameters using the GridSearchCV class in sklearn. Next, Scrublet 

(v0.2) was applied to remove further doublets, using an exclusion threshold suggested 

by the package (Wolock et al., 2019). 

 

2.8.3 Data normalization and feature selection 

Data was normalized using the NormalizeData function in Seurat (v2.3.4) in R (v3.5.2) 

(Butler et al., 2018) (R Core Team 2018). Gene expression values were scaled and 

centred using the ScaleData function in Seurat.  Highly variable genes were detected 

using the FindVariableGenes function in Seurat with minimum cut-off values 0.1 and 0.5 

for expression and dispersion respectively.  

 

2.8.4 Data embedding, visualization and clustering 

Principal components were calculated using RunPCA and adjusted for donor-to-donor 

variation using the Harmony package (v0.1.0). Dimensionality reduction and embedding 

was performed using Uniform Manifold Approximation and Projection (UMAP) by the 

RunUMAP function in Seurat with 20 PCs. The resultant k-nearest neighbours graph was 

clustered using the Louvain graph-based method.  

 

2.8.5 Calculation of differential gene expression  

Differentially expressed genes were calculated using the Wilcoxon sum rank test on 

genes expressed in at least 30% of cells in either of the two populations compared, and 
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with a fold change cut-off of 0.25 (natural log scale). All p-values were adjusted for 

multiple testing using the Bonferroni correction. Initial annotation was performed by 

comparing these genes to published information of defined cell types, as well as using 

the FACS protein information coded for in the sequencing lanes. Following this, four 

major groups (lymphoid cells, APCs, keratinocytes, and other non-immune cells) were 

subsetted for higher resolution analysis using the methods from Sections 2.8.3 to 2.8.5.  

  

2.8.6 Trajectory analysis 

Keratinocyte trajectory analysis was done using partition-based approximate graph 

abstraction (PAGA) in Scanpy v1.4 (sc.tl.paga) (Wolf et al., 2019). Diffusion pseudotime 

values were assigned to cells along the resultant differentiation pathways using Scanpy 

(sc.tl.dpt) (Wolf et al., 2018). Genes related to cell cycle were excluded from the 

analysis.  

 

2.8.7 CellPhoneDB 

CellPhoneDB (Vento-Tormo et al., 2018) was used to identify significant (p < 0.05) 

potential receptor-ligand interactions, using 1000 iterations of data permutations. A 

minimum threshold of 10% cells expressing a receptor or ligand in a given cell type was 

used. 
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3.1 Chapter 3 Introduction 

To construct a comprehensive single cell report of healthy adult skin cells which 

adequately captures the heterogeneity therein, the main challenges in experimental 

design to consider were comprehensive sampling and capturing biologically 

representative data.  

 

Comprehensively sampling single cell heterogeneity requires a tissue dissociation 

method that can liberate the diverse cell types present. Skin requires dissociating to a 

single cell level, which requires cleavage of the cell surface adhesion molecules, 

collagens and other extracellular matrix components which hold these cells firmly in 

place. Universal dissociation is confounded by expression of different adhesion proteins, 

and in particular the stark difference between the dermal and epidermal extracellular 

matrices.  

 

Skin digestion protocols are widely variable between studies. Trypsin (Cheng et al., 2018; 

Santegoets et al., 2008), collagenase (McGovern et al., 2014; Philippeos et al., 2018), 

pre-made enzyme blends (Tabib et al., 2018b; Kim et al., 2020) and collecting migrating 

cells without digestion are all common strategies to obtain single cell suspensions from 

skin tissue, with or without prior epidermal separation. Multiple protocols for epidermal 

separation are used, including dispase treatment (Kitano & Okada, 1983) and micro-

dissection (Gulati et al., 2013). Historically, heat-separation was also employed for 

epidermal separation (Kassis & Søndergaard, 1982). 

 

Botting et al. compared common skin dissociation protocols, and reported higher cell 

yields from epidermis treated with trypsin instead of type IV collagenase and the reverse 

in dermis (Botting et al., 2017). They also reported that trypsin cleaves many more 

common surface protein markers than type IV collagenase. Incubating skin for up to 48 

hours at 37oC, 5% CO2 and collecting the surrounding media without dissociation 

treatment is also commonly used to analyse the cells which migrate out of the skin, 

which is limited to DCs and LCs, and so would not account for stromal cells, 

macrophages or T cells (Botting et al., 2017). 
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The rarity of potential cell subsets is another issue to tackle. Villani et al. reported the 

cellular makeup of human PBMC using SmartSeq2 (Villani et al., 2017), and reported a 

previously undiscovered population at <0.1% of PBMC. Without the pre-selection 

required in plate sorting, which removed T cells and monocytes (the majority of PBMCs), 

finding this population in the 2,400 cells analysed would have been extremely 

improbable. As there would be no published marker profile for undiscovered cells in 

skin, erring on the side of large cell numbers would be key to avoid missing 

heterogeneity. 

 

To hold biological relevance, the cell transcriptomes should mirror those in vivo as 

closely as possible. Any tissue digestion protocol, while absolutely necessary to analyse 

skin at a cellular level, will adversely impact experimental observations by changing cell 

phenotypes from steady state. Examples include cleavage of extracellular proteins and 

inducing phenotypic changes (Botting et al., 2017). Minimising or accounting for these 

effects is important to recapitulate the true phenotype and functions of these cells in 

vivo. Harsh digestion protocols are more likely to release a representative cell 

suspension, but risk accentuating these effects. Cells remaining outside of tissue also 

change due to the lack of reception of homeostatic signalling, although this can be offset 

at lower temperatures. 

 

With these thoughts on sampling in mind, the chosen approach was to use a droplet 

based single cell separation approach to perform scRNA-seq, in order to sequence high 

numbers of cells with the aim of resolving clusters containing potential unknown rare 

cells that could otherwise be missed. Collagenase IV dissociation was used to balance 

high cell numbers (relative to DC migration or other enzyme blends) with lower effects 

on phenotype and function (relative to trypsin). The digestion method was optimised for 

the ideal treatment duration. A comprehensive sorting strategy was devised based on 

reported markers (Haniffa et al., 2012; Bertram et al., 2019) to further improve the 

chances of representing every cell type while avoiding removing cells through marker 

biases. 

 



79 

 

3.2 Results 

3.2.1 Optimisation of tissue dissociation 

To recapitulate in vivo skin as best as possible and to capture this heterogeneity while 

introducing as little bias as possible, the tissue dissociation conditions were first 

optimised in favour of high cell numbers, high variation in cell types released and high 

cell viability. In order to optimise the yield and viability of skin cells liberated through 

digestion, matched volumes of whole skin were incubated with type IV collagenase at 

increasing time points and analysed by flow cytometry for a single donor (Figure 1). 

Whole skin was first shaved to 200μm depth, sampling the epidermis and papillary 

dermis. This was chosen to sample the most leukocyte-rich and cellularly dense portion 

of the dermis (Wang et al, 3D atlas), while keeping the skin depth consistent between 

donors for each experiment, and to aid digestion by increasing the surface area to 

volume ratio of the samples. The 200μm sheet was volume-matched using an 8mm 

diameter punch biopsy. Three punches were used per time point, giving a total volume 

of 30mm3 per time point. 

 

Skin was collagenase IV digested for 2, 4, 6, 8 and 12 hours before staining with a broad 

panel of antibodies selected based on literature knowledge (Haniffa et al., 2012; 

Bertram et al., 2019) of skin cell markers, and analysing cell numbers and cell viability 

released by each time point by flow cytometry.  
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Figure 1

 

Figure 1 – Optimisation of collagenase digestion duration. Left axis: A stacked bar graph 

displaying the number of cells liberated and analysed by flow cytometry from 30mm3 of 

whole skin treated with type IV collagenase at 37oC 5% CO2 for set durations. Each 

colour represents cells from the flow gates shown in Figure 2. Right axis: The 

corresponding proportion of total live cells measured as the DAPI- gate as a percentage 

of the singlet cell gate in Figure 2, displayed as grey crosses. n = 1. DC = Dendritic cell; 

DN = double negative. 



81 

 

3.2.2 Overnight collagenase dissociation increases immune cell liberation with little 

effect on viability 

Cell viability, as a measure of DAPI- cells, was at its highest between 2 and 6 hours of 

digestion (Figure 1). However, at 2 and 4 hours of digestion the vast majority of the cells 

released were CD45- nonimmune cells. These cell types had much higher viability than 

CD45+ cells across all digestion time points, and so the eventual release of less viable 

CD45+ immune cells will have weighted the total cell viability negatively at later time 

points. Cell viability plateaued after 4 hours, suggesting that collagenase digestion times 

between 6 and 12 hours have little effect on cell death. 

 

The following cell types were identified: CD4 T cells, CD8 T cells, macrophages, mast 

cells, fibroblasts and DCs split by variable expression of CD1a and CD11c. The remaining 

denominations are “other nonimmune cells”, which should comprise CD45- CD73- 

endothelial cells, pericytes, keratinocytes and melanocytes. As well as “lymphoid”, which 

should comprise CD45+ HLA-DR- SSClow CD3- natural killer cells and B cells (Figure 2). 

 

The total cell numbers released correlated largely with digestion time. Prior to 8 hours of 

digestion, relatively few cells were released. Between 8 and 12 hours there is less of a 

difference in total cell numbers, but there are noticeable differences in the amounts of 

rarer immune cell types released. Macrophages and dendritic cell subsets in particular 

are largely increased in number from 8 to 12 hours of digestion. This suggested that at 

least 12 hours of collagenase IV digestion would be more likely to sufficiently sample 

absolute skin cell heterogeneity.  

 

It is notable that from the flow cytometry panel used, keratinocytes could not be reliably 

gated for. The epidermal immune cell subsets also cannot be reliably separated from 

their dermal counterparts. To approach these issues, epidermal separation was 

therefore used prior to collagenase digestion.
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Figure 2

 

Figure 2 – Gating strategy for the optimisation of collagenase digestion duration. Skin 

from a single sample was treated with collagenase for 2, 4, 6, 8, 10 and 12 hours then 

stained with a broad cell type panel to analyse the frequency of different cell types 

present using flow cytometry. This gating strategy was used for all time points, with 

representative data shown from 12 hours of collagenase treatment. The name of each 

gate corresponding to the data in Figure 1 is shown next to each gate, and the 

percentage of the parent gate found within each gate is displayed underneath this 

name. DC = Dendritic cell; DN = double negative; Fb = fibroblast. 
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3.2.3 Separation of dermis and epidermis leads to increased cell liberation by type IV 

collagenase 

Efficient digestion relies on exposed surface area to allow enzymatic access. The apical 

surface of the epidermis is protected by the keratin heavy matrix making up the Stratum 

Corneum, and these keratins are not susceptible to type IV collagenase digestion. The 

Stratum Basale is held together by desmosomes and hemidesmosomes which include 

collagen type VII, a protein susceptible to type IV collagenase (Watanabe et al., 2018). 

Separating the epidermis from the dermis allows collagenase access through the basal 

layer, increasing epidermal cell liberation, and also allows for separation of the dermal 

and epidermal cell types without the need for additional flow cytometry antibodies; the 

size of the antibody panel used was already limited by the spectra available, on top of 

which there are no effective markers available with strong dermal-epidermal separation.  

 

To compare cell liberation and viability after mechanical separation of the dermis and 

epidermis with unseparated whole skin, the above experiment was repeated, and a 1 

hour dispase treatment step was used to digest the DEJ. Sample and volume matched 

whole skin, dermis and epidermis was then treated with type IV collagenase for 2, 6, 12 

and 16 hours before flow cytometric analysis (Figures 3-8). At each time point the total 

cells liberated from the epidermis and dermis combined largely outnumbered those 

liberated from whole skin alone. Viability dropped more rapidly with time for dermis 

alone compared to whole skin, and the viability of epidermal cells released was much 

lower than both. However, the total number of viable cells released was greater after 

separation regardless. The low epidermal viability could possibly be caused by the 

release of dying suprabasal keratinocytes closer to terminal differentiation. 

 

Treating skin with dispase and mechanically separating dermis from epidermis prior to 

tissue dissociation was chosen due to the benefits of increased cell numbers as well as 

the ability to barcode the tissue origin of each cell by sorting dermal and epidermal cells 

separately and sequencing them on different lanes. It is also unknown whether T cells 

found in the dermis and epidermis differ in a distinct way with which they could be 

computationally separated based on transcriptome alone.  



84 

 

Figure 3 

 

 

Figure 4 

 

 

Figure 5 
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Figure 3 – Comparison of collagenase digestion duration of whole skin. 

Figure 4 – Comparison of collagenase digestion duration of dermis. 

Figure 5 – Comparison of collagenase digestion duration of epidermis. 

Left axis: A stacked bar graph displaying the number of cells liberated and analysed by 

flow cytometry of skin treated with type IV collagenase at 37oC 5% CO2 for 2, 6, 12 and 

16 hours. Right axis: The corresponding proportion of total live cells measured as the 

DAPI- gate as a proportion of its parent gate in Figure 2, displayed as grey crosses. Data 

shown from a single repeat. Fb = fibroblast; LE = lymphatic endothelium; VE = vascular 

endothelium. 

 

Figure 3: 30mm3 of whole skin was treated with type IV collagenase for each timepoint. 

Each colour represents the cells captured in the flow gates shown in Figure 6. 

 

Figure 4: Dermis peeled from 30mm3 of whole skin after dispase treatment was treated 

with type IV collagenase for each timepoint. Each colour represents the cells captured in 

the flow gates shown in Figure 7. 

 

Figure 5: Epidermis peeled from 30mm3 of whole skin after dispase treatment was 

treated with type IV collagenase for each timepoint. Each colour represents the cells 

captured in the flow gates shown in Figure 8. 
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Figure 6 

 

 

Figure 7 

 

 

Figure 8 
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Figure 6 – Gating strategy for the optimisation of whole skin collagenase digestion.  

Figure 7 – Gating strategy for the optimisation of dermis collagenase digestion.  

Figure 8 – Gating strategy for the optimisation of epidermis collagenase digestion. 

Skin from a single sample was punch biopsied, with equal volumes of skin being directly 

collagenase treated or dispase treated, peeled and the dermis and epidermis undergoing 

collagenase treatment. 2, 6, 12 and 16 hours of collagenase treatment were tested, and 

the resulting cells stained with a broad cell type panel to analyse the frequency of 

different cell types present using flow cytometry. The same gating strategy was used for 

each time point, and representative data is shown from 16 hours of collagenase 

treatment. The name of each gate is shown next to each gate, and the percentage of the 

parent gate found within each gate is displayed underneath this name. These gates 

correspond to the data in Figures 3-5. 

 

Figure 6: 30mm3 of whole skin was treated with type IV collagenase for each timepoint.  

 

Figure 7: Dermis peeled from 30mm3 of whole skin after dispase treatment was treated 

with type IV collagenase for each timepoint. 

 

Figure 8: Epidermis peeled from 30mm3 of whole skin after dispase treatment was 

treated with type IV collagenase for each timepoint. 
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3.2.4 FACS improves sampling of rare skin cell types 

To further increase the sampling of rare cell types, FACS was employed prior to single 

cell sequencing, for a total of three donors (Figures 9-10). This enabled the removal of 

cellular debris, dead cells and doublets which would waste sequencing “real-estate” and 

contaminate the downstream data, as dead cells and doublets are difficult to remove 

computationally. By using a gating strategy with no gaps between gates, no biasing was 

introduced into the collection of cells for sequencing by excluding cells of potentially 

important specific protein expression, such as those far from the population median or 

cells within areas of poor separation, which can be difficult to label as positive or 

negative for a marker and are therefore often discarded (Figures 9-10).  

 

The effect of this strategy, compared to loading equal numbers of dermal and epidermal 

cells without sampling, was to downsample the most common cell types: dermal 

fibroblasts and CD8 T cells as well as epidermal keratinocytes and melanocytes. Dermal 

endothelial cells were not affected, being sampled at the same rate pre- and post-

sorting (Table 2). By sequencing relatively less of these common cell types much more 

immune cells could be sequenced. Cells from particularly uncommon gates were 

sampled at much higher rates than they otherwise would have been, allowing for 

capture of rare heterogeneity. For example, epidermal CD45+ HLA-DR+ CD11c+ cells 

were captured approximately 38 times more than their expected rate, and dermal 

CD45+ HLA-DR+ autofluorescent- CD14- CD11c- CD141- cells were captured at 

approximately a 10 times higher rate than without sorting (Table 2). 
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Figure 9

 

Figure 9 – Gating strategy for the sampling of dermal skin cell types for scRNA-seq. 

Epidermis and dermis from 200μm sheets of skin were separated after 1 hour dispase 

treatment. Dermis was digested with collagenase overnight then stained with a broad 

cell type panel for flow sorting. Cells were sorted from each gate and combined into four 

broad categories: myeloid (purple), lymphoid (blue), fibroblasts (orange) and 

endothelium (red) as shown by arrows of the same colour. These labels represent the 

10X lanes each gate was sequenced on, as shown in Figure 18. Gates are named A-M 

which refers to the statistics in Table 2. Representative data is shown from a one of n = 3 

donors. 
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Figure 10

 
Figure 10 – Gating strategy for the sampling of epidermal skin cell types for scRNA-seq. 

Epidermis and dermis from 200μm sheets of skin were separated after 1 hour dispase 

treatment. Epidermis was digested with collagenase overnight then stained with a broad 

cell type panel for flow sorting. Cells were sorted from each gate and combined into four 

broad categories: myeloid (green), lymphoid (purple), CD49flow KCs (pink) and CD49fhigh 

KCs (brown) as shown by arrows of the same colour. These labels represent the 10X 

lanes each gate was sequenced on, as shown in Figure 18. Gates are named A-G which 

refers to the statistics in Table 2. Representative data is shown from a one of n = 3 

donors. KC = keratinocyte.
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Table 2  

Tissue Dermis 

Droplet encapsulation lane Myeloid Fibroblasts Endothelium Lymphoid 

FACS gate A B C D E F G H I J K L M 

Percentage by loading 
unsampled 0.11 1.38 0.52 0.30 0.93 0.14 1.25 25.69 12.48 0.30 1.24 5.44 0.28 

Percentage loaded after gating  1.28 2.30 1.96 1.40 1.69 1.55 2.30 12.50 12.50 3.34 3.39 3.39 2.39 

Percentage upsampled 1161.34 167.44 378.17 468.10 182.34 1086.40 184.22 48.66 100.14 1103.00 272.64 62.35 842.45 

 

Tissue Epidermis 

Droplet encapsulation lane Myeloid 
CD49f low 
KCs  

CD49f high 
KCs Lymphoid 

FACS gate A B C D E F G 

Percentage by loading 
unsampled 0.80 0.05 0.09 30.93 17.79 0.06 0.29 

Percentage loaded after gating  6.67 1.73 4.10 12.50 12.50 2.53 9.97 

Percentage upsampled 836.37 3817.31 4604.19 40.42 70.27 4298.83 3498.30 

Table 2 – Sampling difference of skin cells with and without sorting. Cells were sorted from dermis and epidermis using the Figure 9-10 gating 

strategies to capture higher proportions of uncommon cell types. Columns represent the tissue and sorting gates. The “Percentage by loading 

unsampled” row shows the percentage of live single cells found in each gate, calculated as the mean of three samples and halved to account 

for equal loading of dermis to epidermis. The “Percentage loaded after gating” row shows the percentage of all 10X sequenced cells that 

originated from each gate, calculated as the mean of three samples. The “Percentage upsampled” row shows the percentage increase from 

the unsampled row to the gated row. Green numbers represent an increase in proportion, red numbers represent a decrease and yellow 

numbers represent gates for which the proportion has not changed by more than 5%. KC = keratinocyte.
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3.2.5 Dissociation of human skin leads to loss of follicular structures 

To investigate the effects of epidermal peeling on the structures found, skin was 

formalin fixed and paraffin embedded at various stages of the dissociation process, and 

slides H&E stained to aid in viewing morphology (Figure 11). Prior to cutting the skin to a 

uniform depth of 200μm, many structures can be seen, including hair follicles, 

associated sebaceous glands and endothelial vessels. The epidermis is easily 

recognisable by dark purple haematoxylin staining. The papillary dermis and reticular 

dermis are noticeably distinct, with eosin staining resulting in a much deeper hue of pink 

in the more collagen-rich reticular dermis. The increased cell density in the papillary vs 

reticular dermis is also visible through the blue nuclear staining. 

 

While hair follicles are continuous with the epidermis, the vast majority of follicular 

keratinocytes are found deep in the reticular dermis where the bulb lies, much deeper 

than the 200μm depth used for dissociation. Sebaceous glands are also found deeper 

within the reticular dermis (Figure 12).  

 

After cutting the 200μm thick skin graft, the reticular dermis can no longer be seen, as 

expected (Figure 11). The skin graft varies in thickness with the rising and falling of 

papilla. For example, in the image shown in Figure 11, this ranges from 258μm at the 

papillary trough to 402μm deep at the papillary peak. This may occur due to the papilla 

being squeezed through the graft knife. Some traces of hair follicle can still be seen after 

this cut is made, but the hair follicle bulbs containing the bulk of follicular cells are not 

seen (Figure 11).  

 

After peeling the epidermis from the dermis, no epidermal structures can be seen in 

either tissue (Figure 11). It could be that the dispase separates hair follicles from the 

dermis, and the mechanical separation of the epidermis from the dermis breaks these 

structures from the epidermis, causing them to be lost during processing.
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Figure 11 

 
Figure 11 – Hair follicles are lost during tissue processing. Skin samples were collected 

from surgery, cut to 200μm depth using a dermatome, treated with dispase then peeled 

to separate dermis and epidermis. At each stage, ~1cm2 of skin was formalin fixed for 

paraffin embedding, slides were sectioned and stained with H&E. Top left: Whole skin as 

received from surgery. Bottom left: Whole skin after cutting to 200μm depth. Middle: 

Schematic diagram of 200μm depth skin. Top right: Dispase separated epidermis. 

Bottom right: Dispase separated dermis. Scale bars represent the distance written 

above them. Representative images from one of n = 3 samples shown. 
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Figure 12

 
Figure 12 – Hair follicle bulbs are found deep within the reticular dermis. H&E stained slides from surgically removed skin (the top left panel 

of Figure 24) were imaged along their entire width by stitching tiled images and annotated with morphological features visible by H&E staining. 

Scale bar represents 500μm. Representative image from one of n = 3 samples shown.
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IHC staining for keratin 17, a marker of hair follicles, and haematoxylin was done on 

slides from each stage of dissociation to investigate whether hair follicle keratinocytes 

were detectable in the epidermal basal layer after mechanical separation (Figures 13-

16). Hair follicles and sebaceous gland structures differentially stain positive for keratin 

17 in the initial surgically removed skin, however after the skin graft cutting and 

mechanical separation of the epidermis, no positive cellular staining is seen (Figures 15-

16). 

 

3.2.6 Distorted distribution of basal and suprabasal keratinocytes 

Another interesting result is the ratio of basal to suprabasal cells found by flow 

cytometry (1:1.74, mean of 3 donors), as well as by CyTOF data shown in the next 

chapter (1:1.49, mean of 4 donors). In breast skin this ratio should be between 1:4 to 1:8 

basal to suprabasal layers (Oltulu et al., 2018) (Figure 12). However, all live cells were 

liberated by enzymatic digestion, as evidenced by H&E staining of the epidermal 

material remaining after collagenase digestion, which shows that only the anuclear 

stratum corneum remains (Figure 17).  
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Figure 13 

  

Figure 14

  

Figure 15

  

Figure 16 

 
Figure 13 – Follicular keratinocytes are present in surgically removed skin. 

Figure 14 – Follicular keratinocytes are not present in 200μm depth skin. 

Figure 15 – Follicular keratinocytes are not present in peeled epidermis. 

Figure 16 – Follicular keratinocytes are not present in peeled dermis. 

FFPE skin slides were collected as in Figure 11 and stained for keratin 17 (yellow) and 

haematoxylin. Scale bars represent the distance written above them. n = 1. 
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Figure 17 

 
Figure 17 – The stratum corneum alone remains after overnight epidermal collagenase 

digestion. H&E staining of FFPE remnants of epidermis after 16 hours of collagenase 

digestion. Scale bar represents 100μm. Representative image from one of n = 2 shown. 



98 

 

3.3 Discussion 

Tissue dissociation is an inevitable concern when it comes to analysing cell suspensions from 

tissues. Every step in a dissociation protocol between collecting a sample and gaining data 

from it is time in which the cells are further from in vivo conditions, which can affect their 

expression profiles and phenotype. The overnight collagenase digestion used optimised the 

collection of the highest number of cells with an acceptably small viability loss, and without 

cleaving the protein markers needed for FACS. This is important as failing to capture rare 

heterogeneity cannot be retrospectively solved, as there is no way to definitively know if 

any unreported cell types or states exist and were not accounted for.  

 

The optimisation results reveal that treating the epidermis for less time with type IV 

collagenase might have resulted in a higher yield, but keeping the conditions consistent 

across tissues was critical to comparatively analysing cells from dermis and epidermis 

(Figures 3-5). While trypsin digestion may also have liberated more epidermal cells, it has 

been reported to cleave many surface markers that would have hindered the FACS sampling 

of rarer immune cells (Botting et al., 2017). Cheng et al. analysed 92, 889 human epidermis 

cells from 12 samples using 10x, but the use of trypsin digestion liberated mostly 

keratinocytes with minimal immune cells (Cheng et al., 2018). Tabib et al. reported a much 

larger variety of cell types than Cheng et al. by using Miltenyi biotec’s ready-made skin 

dissociation kit, but without epidermal peeling or sorting cells they also recovered few 

immune cells or keratinocytes (Tabib et al., 2018a).  

 

It would be a helpful endeavour to compare transcriptome profiles under different 

dissociation conditions, to assess the level of inevitable transcriptome impact imparted from 

the dissociation method. Liberating single cells from tissue for scRNA-seq without any 

impact is currently impossible, but comparing data from shorter time courses of collagenase 

dissociation, as well as bulk data from immediately lysed tissue before and after dispase 

treatment could help to assess these impacts. Furthermore, the optimisation of dissociation 

presented in this thesis aimed only to ensure adequate variety and quantity in cells 

released, as well as to minimise cell death – a de facto marker of cell health and deviation 

from in vivo conditions. To refine the collagenase time point chosen, other biomarkers 
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which more directly assess the effects of ex vivo culture could have been assessed at each 

time point. For example, qPCR targeted for stress-response genes such as heat shock 

proteins could have more accurately determined the length of dissociation treatment at 

which optimal cell quality is maintained (Denisenko et al., 2020). 

 

Having sampled only the papillary dermis and above, hair follicles and their associated cells, 

including arrector pili muscle cells, follicular stem cells and sebaceous gland cells, were not 

accounted for in this experiment. Hair follicle gene signatures have been previously 

reported as specific to mechanically separated reticular dermis, which Phillippeos et al. 

attribute to the placement of the follicular bulb deep within the reticular dermis (Philippeos 

et al., 2018). Hair follicle cell states have been dissected with scRNA-seq in mouse, revealing 

previously unreported follicular populations, as well as the mixed contributions of both 

interfollicular epidermis (IFE) and follicular cells towards IFE wound healing (Joost et al., 

2018, 2016). This approach was possible due to both the vastly increased density of hair 

follicles in murine skin compared to human as well as the authors use of Sca-1 bead 

enrichment to select for follicular cells. Investigation and validation of this heterogeneity 

within the cellular constituents of human hair follicles would be an interesting avenue to 

explore, and would likely require a specialised protocol such as microdissection to extract 

hair follicles at a high enough proportion for single cell capture. 

 

Other than hair follicle structures, the remaining live cells appear to have been completely 

dissociated from skin as evidenced by H&E staining of the material left post digestion. 

However, less suprabasal keratinocytes were found by flow and mass cytometry than 

expected. This may be because cells in the basal layer will be more easily liberated by type 

IV collagenase due to the expression of collagen type VIII (COL7A1) that bind the cells to the 

DEJ, and as a result partially liberated clumps of suprabasal cells may have been filtered out 

(Watanabe et al., 2018). The more superficial cells in the suprabasal layers also begin to lose 

their nuclei and stop transcribing RNA, so it is likely that these cells would be lost to dead 

cell gating by flow, and would not picked up by sequencing regardless, due to the lack of 

cytoplasmic RNA. 
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Another avenue for the expansion of this dataset is the comparison of skin from different 

sites. Breast skin was chosen due to the availability of sample with the aim of sequencing 

high cell numbers to interrogate potential rare populations, and this sample site was kept 

consistent within the experimental design. In particular, the number of immune cells found 

in skin varies widely with anatomical site, with higher concentrations of LCs and T cells 

found in back skin than in arm, abdomen or thigh skin (Del Duca et al., 2019). They can also 

differ functionally. For example, Bertram et al. report differences in HIV trafficking in LC 

subsets from anogenital skin (Bertram et al., 2019), and Del Duca et al. report heterogeneity 

of inflammatory marker expression by T cells and LCs across body sites (Del Duca et al., 

2019). The number of layers of keratinocytes, and the density and diameter of hair follicles, 

also varies between anatomical sites, and with this likely comes differences in the 

keratinisation process (Oltulu et al., 2018; Otberg et al., 2004). 

 

It is of note that the tissue dissociation optimisation presented here is therefore also specific 

to breast skin. Differences in epidermal thickness will particularly affect this processing 

method. The epidermis of dorsal hand skin can be more than twice as thick as that of breast, 

and as such would significantly reduce the amount of dermis sampled in the 200μm layer 

removed, and could possibly require harsher dissociation than overnight collagenase due to 

the lower surface area to volume ratio of the thicker epidermis (Oltulu et al., 2018). In terms 

of practicality, small skin samples will also be much more difficult to mechanically separate. 

These considerations mean that the optimised methods for high skin cell recovery would 

need to be worked up on skin from other body sites. 

 

The optimised method of cell recovery from breast skin by using overnight treatment of 

type IV collagenase after dispase-assisted epidermal separation allowed for the liberation of 

high numbers of cells from both dermis and epidermis, with significant upsampling ratios of 

rare immune cells. These results ensured that skin heterogeneity would be adequately 

captured at a single cell level for scRNA-seq and mass cytometry.
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Chapter 4. Single cell analysis of the cellular 

composition of human skin 
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4.1 Chapter 4 Introduction 

Skin is highly cellularly diverse. It carries out vital functions as a barrier to infection, 

water loss and physical injury. These functions, and normal skin homeostasis, require 

this cellular heterogeneity and crosstalk between the diverse cell types in skin. Further 

understanding this intercellular heterogeneity is therefore of great interest. Skin is also a 

highly accessible organ. Healthy skin is commonly surgically removed, unlike most 

organs for which research samples are primarily resected due to disease, and is 

therefore a good model organ to profile healthy tissue. 

 

Much of current skin knowledge is based on bulk skin experiments such as whole tissue 

sequencing, low parameter single cell experiments such as flow cytometry and 

microscopy (Haniffa et al., 2012; Wang et al., 2014) or the use of model systems, i.e. 

cultured cell lines or mammalian models (mostly murine) which, while useful, do not 

fully recapitulate the cellular landscape of human skin. Single cell RNA sequencing allows 

for both high dimensionality and analysis of single cell heterogeneity. Analysis of whole 

transcriptomes also addresses the bias introduced with selecting markers, and the issues 

inherent to transient changes in surface protein expression which can mask cell identity.  

 

Therefore scRNA-seq was employed to generate a robust and comprehensive report of 

transcriptomes of the cell types present in healthy adult human skin, the heterogeneity 

within these cell types and to identify the transcriptomic markers which best identify 

each of these cells. 

 

4.2 Results 

4.2.1 Droplet based single cell sequencing of healthy human skin 

Healthy adult human skin from the breast of female donors was dissociated after 

dispase-separation of epidermis and dermis, and FACS was employed to remove dead 

cells and doublets as well as upsample rare cell types (Chapter 3, Figures 9-10). A 

droplet based sequencing approach, specifically the 10x Genomics Chromium Controller, 

was then used to separate the FACS purified and sampled cells into barcoded single cells 

for sequencing (Figure 18). This high throughput approach allowed for the sequencing of 
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many more cells than a plate based approach, to better account for the cellular 

heterogeneity in human skin. 

 

After sequencing and alignment, the sequencing data from all three donors was 

combined and processed as described in the methods by Dr Peter Vegh, a post-doctoral 

computational scientist in the Haniffa Lab. Single cell sequencing plots were generated 

in R and Python primarily by Dr Peter Vegh and Dr Gary Reynolds. Annotation of the 

scRNA-seq data and interpretation and generation of figures was carried out primarily 

by myself, as fully detailed in the declaration at the beginning of this thesis.  

 

Single cell sequencing data consists of thousands of dimensions, which is impossible for 

a human to visualise and extremely time consuming for a computer to analyse. To 

simplify the data for visualisation and analysis, gene expression, which represents 

thousands of plottable axes in the data, are converted into principle components by PCA 

– tens of axes of sets of genes representing most of the variation within the data. This 

was then further simplified into two axes by uniform manifold approximation and 

projection (UMAP), and in parallel cells were grouped by similarity using Louvain 

clustering, and the resulting clusters annotated by matching gene expression to 

published gene and protein expression knowledge, along with the sequencing-lane-

barcoded knowledge of the FACS gate origin and tissue origin (epidermis or dermis) of 

each cell. 
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Figure 18 

 
Figure 18 – Experimental overview of 10X sequencing of healthy adult human skin. 

Skin from three donors was dispase treated and peeled to separate dermis and 

epidermis. Each tissue was collagenase digested and the cells stained with a broad cell 

type panel, then separated using FACS with the gating strategies shown in Figures 9-10. 

FACS enriched cells were loaded on the 10X Chromium Controller before sequencing. 

The coloured numbers are the final cell numbers analysed per lane by scRNA-seq. k = the 

total number of cells analysed post-QC from n = 3 donors. KC = keratinocyte. 
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In total 82,490 cells passed QC, with an average of ~3000 genes per cell. Louvain 

clustering resulted in nineteen clusters at broad low resolution, done with the aim of 

segregating the cells into their cell types prior to breaking down the inter-cell-type 

heterogeneity (Figures 19-22). Sample mixing was done using Harmony (Korsunsky et 

al., 2018) to correct for differences caused by batch effect, and all three samples showed 

good mixing, with each of the nineteen clusters containing cells from each sample 

(Figure 20 and Table 3). Average UMI and gene counts varied largely by sort gate, but 

these trends were consistent across each sample (Figure 23). For example, lymphoid 

cells (CD45+ HLA-DR-) in both the epidermis and dermis contained the lowest UMI and 

gene counts across all gates in each of the three samples, and nonimmune cells 

(fibroblasts, CD49flow KCs and CD49fhigh KCs) were the highest in each sample (Figure 23). 

 

The top differentially expressed genes in each cluster highlights the cellular identity of 

each cluster, as well as providing the most rigorous RNA markers with which to identify 

these cells in future experiments (Figure 24).  

 

In the epidermis, the following populations were identified: suprabasal keratinocytes 

expressing KRT1 and lacking ITGA6 expression, basal keratinocytes expressing ITGA6, 

KRT5 and KRT14, melanocytes expressing DCT and PMEL, and epidermal APCs expressing 

MHC class II subtypes and RNASE1 (Alam et al., 2011; Baxter & Pavan, 2003) (Figures 19, 

22 and 24). 

 

The dermal cell types found were: fibroblasts expressing DCN and TNFAIP, pericytes 

expressing RGS5, vascular endothelial cells expressing PECAM1, lymphatic endothelial 

cells expressing CCL21, schwann cells expressing FGL2, a subset of schwann cells 

expressing fibroblast genes like LUM called stromal schwann cells, plasma cells 

expressing immunoglobulin genes such as IGKC, pDCs expressing GZMB and dermal APCs 

expressing MHC class II subtypes (Zhang et al., 2018; Mitchell et al., 2008; Schenkel et 

al., 2002; Vaahtomeri et al., 2017; Gould et al., 2019; Jahrsdörfer et al., 2010) (Figures 

19, 22 and 24). 



107 

 

Figure 19 

 

Figure 20 

 

Figure 19 – Broad cellular heterogeneity of healthy adult skin. scRNA-seq data of skin 

cells that passed QC from n = 3 donors was clustered and then UMAP coordinates were 

generated and plotted by Dr Peter Vegh. Clusters were manually annotated by 

comparing differentially expressed genes between clusters to the literature, as well by 

using the tissue and FACS gate origin of cells in each cluster. Each dot represents a single 

cell. Each colour represents a different cell type. The coloured bar between the UMAP 

and the legend represents the proportion of each annotated cell type. APC = antigen 

presenting cell; Epi = epidermal; Fb = fibroblast; ILC = innate lymphoid cell; KC = 

keratinocyte; LE = lymphatic endothelium; NK = Natural killer cell; pDC = plasmacytoid 

dendritic cell; S_Schwann = Stromal Schwann cell;  SB KC = suprabasal KC; Tc = cytotoxic 

T cell; Th = T helper cell; VE = vascular endothelium. 
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Figure 20 – UMAP visualization of scRNA-seq analysis of healthy adult skin cells 

annotated by sample. UMAP plot generated by Dr Peter Vegh. The same UMAP 

displayed in Figure 19, coloured by donor. 

 

Figure 21 

 

Figure 22 

 
Figure 21 – UMAP visualisation of scRNA-seq analysis of healthy adult skin cells 

annotated by 10x lane. UMAP plot generated by Dr Peter Vegh. The same UMAP 

displayed in Figure 19, coloured by 10X lane. Labels refer to the lanes described in 

Figures 9-10. 

Figure 22 – UMAP visualisation of scRNA-seq analysis of healthy adult skin cells 

annotated by tissue. The same UMAP displayed in Figure 19, but coloured by tissue of 

origin. 
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Table 3 

 
Table 3 – Cell numbers per sample of detailed annotations of adult skin scRNA-seq 

data. The broad annotations shown in Figure 19 were subsetted into four groups (APCs 

– Epi APC, Dermal APC; Lymphoid – NK, ILC, Tc, Th, Treg; Nonimmune – Schwann, 

S_Schwann, Fb, Pericyte, LE, VE, Melanocyte; Keratinocytes – SB KC, Basal KC). Each 

group was reanalysed to generate more detailed clusters and differentially expressed 

gene lists. Columns s1, s2 and s3 display the number of cells in each of the three samples 

found in each of these more detailed clusters. DC = dendritic cell; ILC = innate lymphoid 

cell; F = fibroblast; LC = Langerhans cell; LE = lymphatic endothelium; Mel = melanocyte; 

mig_cDC = migratory conventional DC; moDC = monocyte-derived DC; NK = Natural killer 

cell;  pDC = plasmacytoid DC; s = sample; Tc = cytotoxic T cell; Th = T helper cell; T reg = 

regulatory T cell; VE = vascular endothelium. 
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Figure 23 

  
Figure 23 – QC Violin plots of UMIs and genes found per cell in each 10x lane. Violin 

plots generated by Dr Peter Vegh. Data metrics per sample and 10x lane. Unique 

molecular identifiers (UMIs) track the number of RNA molecules captured from each 

individual cell. Genes detected refer to the number of unique genes identified per cell, 

regardless of UMI count per gene. The width of each violin plot is related to the ratio of 

cells found at a particular Y coordinate. KC = keratinocyte.
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Figure 24 

 
Figure 24 – Top differentially expressed genes between the cell types in healthy adult 

skin. Heatmap generated by Dr Peter Vegh. Differentially expressed genes were 

calculated for each cell type and plotted as a heatmap, alongside genes of protein 

markers used in for CyTOF (demarcated by a preceding asterisk (*)) (Figures 35-36 and 

Table 1). Cluster labels on the X axis correspond to those displayed in Figure 19. The 

radius of each circle corresponds to the percentage of cells within a cluster positively 

expressing each marker. The intensity of colour, from blue to red, corresponds to the 

relative average intensity of expression of cells within the cluster. 
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Across both tissue compartments the following cell types were identified: Cytotoxic T 

cells expressing CD8A and CD8B, helper T cells expressing CD3D and lacking CD8A/B 

expression, regulatory T cells expressing TIGIT, natural killer cells expressing GNLY, 

innate lymphoid cells expressing high levels of IL7R and mast cells expressing KIT (Joller 

et al., 2014; Veljkovic Vujaklija et al., 2013; Rafei-Shamsabadi et al., 2018; Cruse et al., 

2014)(Figures 19, 22 and 24). 

 

4.2.2 Skin APCs are highly heterogeneous 

To further interrogate the heterogeneity found within the cell types of healthy adult 

human skin, the scRNA-seq data was split into four subsets: APCs, lymphoid cells, 

keratinocytes and the remaining nonimmune cells. Dr Gary Reynolds carried out higher 

resolution clustering on the APC fraction of the data, pulling out 14 clusters (Figure 25). 

Of mostly dermal cells: 4 DC clusters, 3 monocyte clusters and 2 macrophage clusters 

were found. Of mostly epidermal cells, 5 clusters of LCs were found. pDCs were also 

found but weren’t included in the APC subset due to their stark transcriptional 

differences that would drive variable gene calculation towards splitting pDCs from the 

remaining APCs. 

 

4.2.3 DCs with dermal signatures isolated from the epidermis 

At both broad annotations and higher resolution clustering, dermal and epidermal APCs 

remain mostly distinct (Figures 22 and 26). However, some epidermal cells clustered 

together into dermal transcriptome identities. In particular, the moDC and migratory DC 

clusters contained cells isolated from the epidermis. This could suggest that these cells 

are able to migrate between the dermis and epidermis in healthy skin. 

 

4.2.4 Langerhans cells can display low HLA-DR protein expression   

The majority of the Langerhans cells were captured in the CD45+ HLA-DR+ gates and ran 

on the Epidermal Myeloid lane (Figure 27). However, most of the KLF10+ LCs and some 

of the LC1 cells were captured in Epidermal Lymphoid lane, meaning they fell into the 

CD45+ HLA-DR- gates (Figures 10 and 27). This is unexpected, as LCs classically express 

high levels of HLA-DR, and may mean that many studies isolating LCs in this manner do 

not account for, or misrepresent the rarity of, these particular subsets.
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Figure 25 

 

Figure 25 – Heterogeneity of APC populations in healthy human skin. UMAP plot 

generated by Dr Gary Reynolds. UMAP visualisation of antigen presenting cell (APC) 

populations found in epidermis and dermis. Colours represent cell types. DC = dendritic 

cells; LC = Langerhans cell; moDC = monocyte-derived DC; Mono = monocyte.  

 

Figure 26 

 

Figure 26 – UMAP visualisation of scRNA-seq analysis of skin APC populations 

annotated by tissue. UMAP plot generated by Dr Gary Reynolds. The same UMAP 

displayed in Figure 25, coloured by tissue. 
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Figure 27 

 

Figure 27 – UMAP visualisation of scRNA-seq analysis of skin APC populations 

annotated by 10x lane. The same UMAP displayed in Figure 25, coloured by 10x lane. 

 

 



115 

 

4.2.5 Innate and adaptive lymphoid cell heterogeneity 

Re-clustering the lymphoid cells at higher resolution revealed three clusters of NK cell 

(named NK1, NK2 and NK3) along with the helper, cytotoxic and regulatory T cell 

divisions and ILCs (Figure 28). Plasma cells and mast cells weren’t included in the 

clustering and UMAP analysis due to their very different transcriptomes, which would 

drive the variable gene analysis towards separating them from the other lymphoid cells, 

rather than separating the heterogeneity within the lymphoid cells. 

 

T cells did not form biologically meaningful distinct groupings further than the expected 

Tc, Th and Treg subsets, and rather separated primarily by their origin of epidermis or 

dermis (Figure 29). Interestingly, some expression of gamma-delta TCR genes (TRGC1, 

TRGC2 and TRDC) was seen in the Tc cells, but these did not form a clear and distinct √δ 

T cell cluster (Figure 30). 

 

The four clusters of innate lymphoid cells could be split by expression of key killer cell 

functional genes (Figure 31). NK1 express high levels of XCL1 and XCL2, as well as KIT 

which is not expressed in the other NK clusters. NK2 express the canonical NK receptor 

genes KLRD1 and KLRC1, which are involved in initiating cytokine secretion upon 

immune challenge. NK3 are characterised by expression of the granzyme and perforin 

genes GZMA, GZMB, GZMH and PRF1 and appear to be functionally active (Figure 31). 

Interestingly, the vast majority of epidermal NK cells were in the NK1 cluster (Figure 29). 

ILCs expressed high levels of the ILC receptor IL7R as well as KLRB1, and did not express 

the granzymes and killer genes expressed in the NK clusters. They may correspond to 

ILC3 phenotype due to expression of KIT (Bar-Ephraim et al., 2017). 
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Figure 28 

 

Figure 28 – Lymphoid cell heterogeneity in healthy human skin. UMAP plot generated 

by Dr Peter Vegh. UMAP visualisation of lymphoid cell populations found in epidermis 

and dermis. Colours represent cell types. ILC = innate lymphoid cell;  NK = Natural Killer 

cell; Tc = cytotoxic T cell; Th = T helper cell; Treg = regulatory T cell.  

 

Figure 29 

 

Figure 29 – UMAP visualisation of scRNA-seq analysis of skin lymphoid cell populations 

annotated by tissue. UMAP plot generated by Dr Peter Vegh. The same UMAP displayed 

in Figure 28, coloured by tissue.
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Figure 30 

  

Figure 30 – Gamma delta TCR expression in healthy skin. Feature plots showing the 

expression of TCR genes on the UMAP shown in Figure 28. Relative expression is 

displayed from grey (no expression) to bright red (high expression). 

 

Figure 31 

 

Figure 31 – Functional gene variance in skin innate lymphoid cells. Expression of genes 

reported in Natural Killer (NK) cells and Innate Lymphoid cells (ILCs) displayed as a 

heatmap. The radius of each circle corresponds to the percentage of cells within a 

cluster positively expressing each marker. The intensity of colour, from blue to red, 

corresponds to the relative average intensity of expression of cells within the cluster. 
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4.2.6 Tissue microenvironmental differences affect lymphocyte transcription 

As lymphoid cells were the only cells that clustered together regardless of dermal or 

epidermal origin, differential gene expression between the two compartments was 

interpreted to investigate the possible effects of microenvironmental cues. Tregs, helper 

T cells, cytotoxic T cells, NK1 and mast cells were found in both tissue compartments. 

 

Differential gene expression between epidermal and dermal T cells revealed a number 

of genes upregulated in epidermal T cells. This included genes involved in TCR priming 

including GADD45B, LMNA and TNFRSF18 as well as genes involved in tolerance such as 

DUSP4, CD96 and LY9 (Figure 32)(Bignon et al., 2015; Oukka et al., 2004; Stanko et al., 

2018). Epidermal T cells may be more primed to respond to antigen presentation with 

either an immune response or tolerance due to the closer proximity to skin surface 

antigen challenge. To show that these expression differences weren’t introduced by 

“soup effect”, the introduction of noise in single cell sequencing data from free-floating 

RNA, dermal and epidermal NK1 were also compared, and the extent of differential 

expression of these genes was much lower than in the T cells (Figure 32). 

 

Next, NK1 cells were compared across dermis and epidermis, as this was the only NK 

cluster with high cell numbers in both tissue compartments, revealing genes 

upregulated in each compartment. XCL1 and XCL2, chemokines for XCR1, were both 

upregulated in epidermal NK1, suggesting a role in the potential trafficking of XCR1+ 

leukocytes into the epidermis (Matsuo, Kitahata, et al., 2018). Dermal NK1 expressed 

higher levels of functional killer genes such as KLRB1, GNLY and the anti-viral interferon-

induced transmembrane proteins IFITM1, IFITM2 and IFITM3 (Figure 33)(Bailey et al., 

2014). The gene expression profiles of NK cells in healthy skin may therefore vary to 

accommodate different functional roles the epidermis and dermis. 
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Figure 32 

 

Figure 32 – Tissue microenvironment-specific gene expression in skin T cells. Heatmap 

displaying differentially expressed genes between dermal and epidermal T cells. NK1 

cells are displayed as a control for tissue-wide gene expression differences. The radius of 

each circle corresponds to the percentage of cells within a cluster positively expressing 

each marker. The intensity of colour, from blue to red, corresponds to the relative 

average intensity of expression of cells within the cluster. 
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Figure 33 

 

Figure 33 – Tissue microenvironment-specific gene expression in skin NK cells. 

Heatmap displaying differentially expressed genes between dermal and epidermal NK 

cells. The radius of each circle corresponds to the percentage of cells within a cluster 

positively expressing each marker. The intensity of colour, from blue to red, corresponds 

to the relative average intensity of expression of cells within the cluster. Derm = Dermal; 

Epi = Epidermal. 
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4.2.7 Epidermal mast cells are present at low numbers in healthy skin 

Mast cells were also found in both the dermis and epidermis, identifiable by known mast 

cell markers including KIT, CTSG and TPSAB1 (Figure 34) (Douaiher et al., 2014). These 

key functional receptors and mast cell granule proteases are expressed in both tissue 

compartments. However, differential gene expression analysis between the two clusters 

showed unique expression of some genes in each compartment. This includes pro-

inflammatory LXN expression (Seed et al., 2019) in dermal mast cells, and anti-

inflammatory SOCS4 expression (Kedzierski et al., 2014) in epidermal mast cells which 

may suggest, counter to reports that epidermal mast cells are only seen during 

inflammation, that epidermal mast cells are present in healthy non-inflamed skin and 

are playing a more anti-inflammatory role than their dermal counterparts in steady state 

(Figure 34). 

 

4.2.8 Mass cytometric proteomic profiling of human skin 

To compare the scRNA-seq data with protein expression profiling, Cytometry by Time of 

Flight (CyTOF/Mass Cytometry) was performed in parallel to sequencing. As only up 40 

protein markers can be used, CyTOF has much less resolving power than scRNA-seq, but 

the differences in RNA and protein expression are important to account for where 

possible regardless.  

 

Dermal and epidermal cells were prepared in the same way as the scRNA-seq 

experiment, as detailed in methods, for four donors, and the cells were stained with a 

panel designed with the aim of capturing the phenotypes of all the major skin cell types 

(Table 1). The FCS files generated were gated to remove 191Ir- acellular debris, 195Pt+ 

dead cells, QC beads (used to determine the efficiency of the CyTOF fluidics), and 

133Cs+ environmental contamination. 
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Figure 34 

 

Figure 34 – Tissue microenvironment-specific gene expression in skin mast cells. 

Heatmap displaying both known mast cell functional genes and differentially expressed 

genes between dermal and epidermal mast cells. Genes upregulated in the dermis or 

epidermis are labelled as dermal markers and epidermal markers respectively. Genes 

labelled as mast cell markers are known mast cell functional genes. The radius of each 

circle corresponds to the percentage of cells within a cluster positively expressing each 

marker. The intensity of colour, from blue to red, corresponds to the relative average 

intensity of expression of cells within the cluster. Derm = Dermal; Epi = Epidermal.
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The remaining 1,959,717 live cells from four donors were processed using the cytofkit 

package in R. They were downsized to a maximum of 100,000 cells per tissue layer per 

donor to balance the cell numbers for comparison, as well as for computational 

practicality (for a total of 756,977 cells). They were then normalised, transformed using 

inverse hyperbolic sine transformation, clustered using PhenoGraph (Levine et al., 2015) 

and tSNE coordinates were generated for visualisation (Figures 35-36). The data from 

each donor was kept separate and the results of each donor were compared.   

 

Clustering of the CyTOF data resulted in 21-41 clusters in each donor for epidermis, and 

between 28-44 clusters in each donor for dermis (Figures 37-38). Manual gating was 

then overlaid to determine the cell types present (Figures 39-40), and the relative 

proportions of each cell type were calculated, which is more accurate to the true mix of 

cell types found in vivo than the resampled scRNA-seq data (Figures 35-36, coloured 

stacked bars). The manually gated cells match the clusters well, but simplify multiple 

clusters into each cell type label (Figures 37-38). This is due to using high resolution with 

the aim of over-clustering to ensure that populations with few events were not 

erroneously integrated into larger clusters, and is also confounded by the inclusion of 

markers with little to no positive expression. These markers were not excluded from the 

clustering algorithm in order to avoid biasing the analysis, but the variation in negative 

expression contributes to biologically meaningless division of clusters.
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Figure 35 

 

Figure 35 – Protein expression heterogeneity of epidermal cells in healthy skin. 

Epidermal cells collected after collagenase digestion were stained with antibodies 

against surface markers as well as cis-platin (live-dead separation) and an iridium 

intercalator (cell-debris separation), then fixed, permeabilised and stained with 

antibodies against intracellular and intranuclear markers for a total panel of 37 metal-

conjugated antibodies for CyTOF. After Helios analysis, the live single cells were 

subsetted from the FCS file, downsampled to a maximum of 100,000 cells, clustered and 

tSNE coordinates were calculated. Cells were then manually gated (Figure 39) and this 

annotation was overlaid onto the tSNE visualization. Representative tSNE image from 

one of n = 4 samples shown. The coloured bar represents the mean proportion of each 

gate from n = 4 samples. APC = Antigen presenting cell; KC = keratinocyte; SB KC = 

suprabasal KC; Tc = cytotoxic T cell; Th = helper T cell; Treg = regulatory T cell. 
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Figure 36 

 

Figure 36 – Protein expression heterogeneity of dermal cells in healthy skin. Dermal 

cells collected after collagenase digestion were stained with antibodies against surface 

markers as well as cis-platin (live-dead separation) and an iridium intercalator (cell-

debris separation), then fixed, permeabilised and stained with antibodies against 

intracellular and intranuclear markers for a total panel of 37 metal-conjugated 

antibodies for CyTOF. After Helios analysis, the live single cells were subsetted from the 

FCS file, downsampled to a maximum of 100,000 cells, clustered and tSNE coordinates 

were calculated. Cells were then manually gated (Figure 40) and this annotation was 

overlaid onto the tSNE visualization. Representative tSNE image from one of n = 4 

samples shown. The coloured bar represents the mean proportion of each gate from n = 

4 samples. cDC = conventional Dendritic cell; NK = NK cell; LE = lymphatic endothelium; 

moDC = monocyte-derived DC; Tc = cytotoxic T cell; Th = helper T cell; Treg = regulatory 

T cell; VE = vascular endothelium.
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Figure 37 

 

Figure 37 – Manual gating versus clustering of epidermal CyTOF data. Epidermal CyTOF 

data from Figure 35, expanded to show the plots from each of four samples. Left: tSNE 

plots annotated by overlaying a manual gating strategy (Figure 39). Right: tSNE plots 

annotated by automatic unbiased clustering. APC = antigen presenting cell; KC = 

keratinocyte; SB KC = suprabasal KC; Tc = cytotoxic T cell; Th = helper T cell; Treg = 

regulatory T cell.
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Figure 38 

 
Figure 38 – Manual gating versus clustering of dermal CyTOF data. Dermal CyTOF data 

from Figure 36, expanded to show the plots from each of four samples. Left: tSNE plots 

annotated by overlaying a manual gating strategy (Figure 40). Right: tSNE plots 

annotated by automatic unbiased clustering. cDC = conventional Dendritic cell; NK = NK 

cell; LE = lymphatic endothelium; moDC = monocyte-derived DC; Tc = cytotoxic T cell; Th 

= helper T cell; Treg = regulatory T cell; VE = vascular endothelium.
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Figure 39

 

Figure 39 – Gating strategy for CyTOF analysis of healthy adult epidermis cells. The 

CyTOF data gating strategy used to annotate Figure 35. Representative image from one 

of n = 4 samples shown. The red arrow represents the data that was downsampled and 

clustered using cytofkit. Before this arrow, brackets notate the presence of a marker in a 

channel which was also used for QC. After the red arrow, protein names for markers are 

written outside of brackets, and where they differ the corresponding gene names are 

written in brackets. APC = Antigen presenting cell; KC = keratinocyte; SB KC = suprabasal 

KC; Tc = cytotoxic T cell; Th = helper T cell; Treg = regulatory T cell.
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Figure 40

 

Figure 40 – Gating strategy for CyTOF analysis of healthy adult dermis cells. The CyTOF 

data gating strategy used to annotate Figure 36. Representative image from one of n = 4 

samples shown. The red arrow represents the data that was downsampled and clustered 

using cytofkit. Before this arrow, brackets notate the presence of a marker in a channel 

which was also used for QC. After the red arrow, protein names for markers are written 

outside of brackets, and where they differ the corresponding gene names are written in 

brackets. cDC = conventional Dendritic cell; NK = NK cell; LE = lymphatic endothelium; 

moDC = monocyte-derived DC; Tc = cytotoxic T cell; Th = helper T cell; Treg = regulatory 

T cell; VE = vascular endothelium.
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With a minimum of 19 antibodies in the dermis and 8 antibodies in the epidermis, most 

of the same populations highlighted in Figure 19 could be recapitulated in the dermis, 

with the exceptions of schwann cells, plasma cells, pDCs and ILCs. As schwann cells were 

isolated from the CD49f+ gate in the scRNA-seq data (Figure 21), they will be found in 

the vascular endothelial cell gate. Plasma cells are CD45+, HLA-DR- and otherwise 

marker negative in the context of this CyTOF panel and so will be found primarily within 

the ungated lymphoid cells which are double negative for KIT and KLRB1. ILCs express 

KRLB1 and so will likely be found within the NK2 gate. pDCs will likely be captured within 

the cDC gate due to their expression of CD45 and HLA-DR, and the lack of expression of 

the other APC markers used. NK1 and NK2 cells could be split by expression of KIT, while 

NK3 will likely fall in the NK2 KIT- gate as no antibodies for granzymes, which are 

markers necessary for their separation, were included in the panel. Protein expression 

also allowed for the identification of memory and naïve T cells by CD45RO and CD45RA 

respectively – post translational splicing modifications to CD45 that therefore could not 

be detected at RNA level (Figure 36) (Ganguly et al., 2016). This revealed that most 

dermal T cells found in healthy skin were CD45RO+ memory T cells, however in all 4 

patients analysed naïve Tc cells were much more common than their Th counterparts. 

 

In addition, pericytes were gated as marker negative, which will have inaccuracies 

introduced due to cells lacking expression of canonical markers falling here. In particular, 

fibroblasts lacking only CD73 expression will be found in this marker negative gate. The 

relative ratio of pericytes to fibroblasts is higher than that seen in the scRNA-seq data 

(1:4.68 by scRNA-seq, 1:1.74 by CyTOF), which suggests the extent of this gating 

contamination. 

 

The epidermis was less well recapitulated, in part due to the overwhelming percentage 

of keratinocytes compared to immune cells. With the CyTOF panel used, melanocytes, 

NK cells and ILCs could not be gated for specifically. While melanocytes are found in the 

basal layer, they do not express CD49f, unlike basal keratinocytes. This is confirmed by 

the scRNA-seq data whereby melanocytes are primarily found within the lane loaded 

with CD49f- sorted cells (Figure 21). With no strongly positive markers for melanocytes 

in the panel, they will likely be found in the marker negative clusters identified as 
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suprabasal keratinocytes. NKs and ILCs were difficult to pull out due to the low numbers 

of lymphoid cells present in the epidermis relative to the total number of nonimmune 

cells. This is because the epidermis is much more cellular than the dermis, where most 

of the structure comes from ECM. They will likely be within the Th gate, as the weaker 

CD4 staining makes it more difficult to distinguish Th cells from NKs and ILCs.  

 

CD45+ HLA-DR- CD3- CD203c+ epidermal mast cells could also be found by CyTOF, 

matching their gene expression by scRNA-seq (Figure 39). They were, however, much 

rarer than those found in the dermis, and so were likely highly upsampled by the FACS 

gating strategy used for capturing cells for scRNA-seq (Figures 36-37). 

 

4.2.9 Skin cells display mismatches in RNA and protein expression 

The unbiased clustering of CyTOF and transcriptomic data on cells treated under the 

same conditions allows for the validation of protein expression of the detected 

transcripts, and provides an insight into protein-RNA mismatches. For example, CD117 

(the protein product of KIT. Gene and protein names are standardised in Appendix Table 

3.) staining in the epidermis was not sufficient to detect melanocytes despite detection 

of KIT in melanocytes (Figure 24). KIT expression is reported as important to melanocyte 

differentiation and is expressed at protein level on immature precursors (Zocco & 

Blanpain, 2017; Wehrle-Haller, 2003). The presence of RNA without protein may suggest 

that mature differentiated melanocytes continue to transcribe KIT from their precursor 

programming without translating the CD117 protein. CD4 RNA is detected at low levels 

in Tregs, and is almost absent in Th cells (Figure 24). This was unexpected, but matches 

the consistently low expression of CD4 protein found in both CyTOF and flow cytometry 

(Figures 6-9). 

 

The archetypical T cell transcription factors GATA3 and FOXP3 were expectedly found in 

keratinocytes/Th/Treg and Treg cells respectively at RNA level, but were undetected at 

protein level and the cells may have required stimulation to actively translate these TFs 

(Zeitvogel et al., 2017; Lu et al., 2017)(Figure 24). 
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Interestingly, ITGA6 RNA expression on basal keratinocytes and vascular endothelium is 

quite low, and is almost absent on LE cells, despite the fact that these cells were found 

almost exclusively by gating on positive expression for CD49f (the protein product of 

ITGA6), and this expression is confirmed by CyTOF (Figures 9-10, 24, 39-40). This could 

be caused by low turnover of the protein requiring little ITGA6 transcription to maintain 

the protein expression. RNA expression of ITGA6 is also seen in schwann cells but not 

stromal schwann cells, and both were captured by the CD49f+ sort gate (Figures 9 and 

24). 

 

In the endothelial fraction, CD73 is also highlighted as an efficient protein marker for 

lymphatic endothelial cells as well as fibroblasts, which can be further divided by LE 

CD49f expression (Figure 40). VE markers CD34 and CD31 are only found on CD49f+ 

CD73- cells, splitting the three cell types with variable expression of two markers. 

However, the high protein expression of CD73 on fibroblast and LE cells is not mirrored 

in the RNA data, with very few fibroblasts expressing high levels of NT5E (The gene for 

CD73) transcript (Figure 24). 

 

4.3 Discussion 

The optimisation of cell sampling was successful for comprehensively sequencing the 

cell types in skin. Overnight type IV collagenase followed by cell sorting and the high 

throughput of the 10x solution droplet encapsulation resulted in capturing most of the 

expected cell types at high numbers. The experimental design of separating dermis and 

epidermis, type IV collagenase digestion, FACS sampling and droplet separation scRNA-

seq successfully generated an extensive transcriptomic profile of the cell types found in 

the top 200μm of healthy adult breast skin. In particular, pre-sorting the cells allowed 

for the capture of different phenotypes of skin DCs that would have likely been too rare 

to otherwise analyse. Sequencing 82,490 cells from 3 donors provided power to resolve 

clusters of uncommon cell types, including schwann cells and melanocytes. 

 

The recovery of high numbers of cells from most skin cell types, and with good average 

gene counts of ~3000 per cell makes this a dataset a good resource for future human 

skin studies. The single cell sequencing data allows for the interpretation of cell-level 
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gene co-expression for any known deleterious mutation, providing a great resource for 

the investigation of cells involved in particular skin diseases. This human healthy data is 

also directly applicable to human disease, without the requirement of validating cross-

species expression patterns. The data also crucially reveals the theoretically most 

efficient RNA markers for isolating specific skin cell types in future studies (Figure 24). 

Paired with the protein data of unbiased CyTOF clustering this gives an insight into which 

genes are strong markers at protein-level, which is more directly applicable to 

techniques such as FACS and IHC, and expanding on this data by validating each of the 

top markers at protein level would be a valuable avenue to expand on this study. 

 

Of particular relevance to the wider scope of skin immunology literature are some of the 

transcriptome-proteome mismatches identified. The semi-unbiased FACS isolation 

strategy, which aimed to prevent expression-based exclusion of specific cells, uncovered 

LCs with a specific transcriptome profile (KLF10+ LCs and LC1) within the CD45+ HLA-DR- 

gate (Figures 25 and 27). A CD45 low LC population has been previously described by 

Bertram et al., named CD33low cells, which may relate to these cells (Bertram et al., 

2019). The epidermal gating strategy used here did aim to capture these same cells as 

CD1alow CD11c- cells by using a relatively low HLA-DR gate for LCs, but even so further 

LCs were found in the CD45- gate (Figure 10). This is particularly important as LCs are 

classically considered to be HLA-DR+ and so these cells may be overlooked in studies 

considering them as such (Bertram et al., 2019), although many studies of LCs use only 

CD1a or langerin expression as the definition of an LC (Patterson et al., 2002; Greter et 

al., 2012). 

 

Epidermal DC migration occurs in human during inflammation, and has been shown in 

mouse at steady state (Ohl et al., 2004) theoretically to maintain tolerance (Zaba et al., 

2009) The finding of transcriptomically dermal APCs in the epidermis could support this 

functionality in human, and is also in line with the finding of CD11c+ dermal-like DCs in 

the epidermis (Bertram et al., 2019). Epidermal DC migration would be difficult to 

definitively prove in human, as transgenic organisms were required in mouse, or simply 

relied on langerin/CD207 expression, which can be seen in other tissues (Yoshino et al., 

2006; Eriksson & Singh, 2008; Stoitzner et al., 2005). 
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This finding is unlikely to be due to contamination, as during peeling the epidermis is 

peeled away from the dermis, and then washed in PBS. For dermal APCs to contaminate 

the epidermis they would have to be loose individual cells, which should have been 

removed by PBS washing, or pieces of dermis remaining attached to the epidermis. 

However, the same level of epidermal cell contamination should then be seen in the 

dermal nonimmune cells, and this is not the case (Figure 22). 

 

Capturing anti-inflammatory epidermal mast cells in healthy skin by both scRNA-seq and 

CyTOF is a novel finding, and could possibly represent a tolerogenic mechanism against 

allergy. In steady state mast cells migrate into the dermis before maturing, reportedly 

remaining close to blood vessels (Janssens et al., 2005). They reportedly infiltrate the 

epidermis during inflammation, and the presence of epidermal mast cells has even been 

used as a disease biomarker (Green et al., 1977; Sehra et al., 2016). They may not have 

been previously reported in healthy epidermis due to their scarcity: By CyTOF, only 

0.09% (mean of n = 4 to 2d.p.) of epidermal cells displayed the mast cell surface marker 

phenotype, and some of these may have even been other cells, for example CD117+ 

natural killer cells (Figure 35). Higher numbers were found by scRNA-seq, which may be 

due to the sorting strategy employed. Granulocytes are common in steady state 

circulation, but the surgically removed skin is removed from its blood supply, and the 

epidermis is avascular, so it is unlikely that these were an inflammatory artefact from 

tissue processing. 

 

There are, however, gaps in this study. As described in the previous chapter, hair follicles 

and follicular cell types were not captured at single cell resolution by the scRNA-seq or 

CyTOF data. Similarly, Merkel cells were not found in this study. This also may be due to 

rarity, as Merkel cells are primarily found in touch-sensitive hairless skin such as hands 

and feet, and are also more common in murine skin (Halata et al., 2003). It would be 

particularly interesting to dissect the single cell transcriptome of Merkel cells in healthy 

skin as a comparison to the primary research target of these cells which is in disease: 

Merkel cell carcinoma. The possibility that they are generated in response to skin injury 
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in mice also provides an avenue for the analysis of heterogeneity between long lived and 

injury-induced Merkel cells (Wright et al., 2017).  

 

With the exception of hair follicles and Merkel cells, the majority of skin cell types were 

accounted for by scRNA-seq and CyTOF, resulting in the successful categorisation of the 

cellular heterogeneity present in healthy human skin by protein and RNA. 
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Chapter 5. Stromal cell heterogeneity  

within human skin 
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5.1 Chapter 5 Introduction 

Skin is supported by an array of stromal cells. The dermis consists of fibroblasts 

connected by a collagenous extracellular matrix of their construction, which also 

anchors vascular and lymphatic vessels. The epidermis consists primarily of layers of 

keratinocytes with little interstitial space between them. These cells are responsible for 

holding the mechanical structure of skin, but also provide homeostatic functions and 

responses to perturbation, including inflammation and wound repair. 

 

Nonimmune heterogeneity is widely reported at bulk level. Transcriptomic differences 

between venular and arteriolar dermal endothelium have been reported (Thiriot et al., 

2017), and phenotypic differences are observed between papillary and reticular 

fibroblasts (Sorrell & Caplan, 2004). Additionally, different transitional states of both 

keratinocytes and fibroblasts are reported during wound healing versus tissue 

maintenance during homeostasis (Rognoni et al., 2018; Noguchi et al., 2014). 

 

Despite using the moniker ‘nonimmune’, the skin stromal cells are also a vital part of the 

immune system. The vasculature brings immune cells into skin for surveillance during 

steady state, and this is crucially exacerbated during inflammatory response. Endothelial 

cells secrete a host of chemokines and express cell surface adhesion proteins to 

facilitate this extravasation into the dermis. Similarly, dermal lymphatics ensure skin 

lymphocytes circulate to lymph nodes for antigen presentation. In healthy epidermis, 

keratinocytes direct T cells through variable chemokine signalling, and can even initiate 

inflammatory responses via PRR and IFN-gamma induced MHC class II expression 

(Mansfield & Naik, 2020; Banerjee et al., 2004). 

 

Delving into the stromal cell heterogeneity of skin could expand on the heterogeneity 

reported at bulk level, and uncovering the specific interactions between stromal and 

immune skin cells could provide insights into the skin immune system as a whole. 

 

5.2 Results 

5.2.1 Cellular heterogeneity of the stromal cells within skin 
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To interrogate the heterogeneity found within human skin nonimmune cells, two major 

subsets of the scRNA-seq data were created: keratinocytes, and the remaining 

nonimmune cells. These groups were selected by a combination prior knowledge of 

similarity and by their visualised relationships by UMAP (Figure 41). Of particular note, 

melanocytes fell closer to the dermal nonimmune cells, which may be due to their 

shared origins with schwann cells (Adameyko et al., 2009). Analysing keratinocytes 

separately also had the added biological relevance of allowing for keratinocyte 

trajectory analysis. Hence the division of nonimmune cells and keratinocytes, rather 

than separating dermal from epidermal nonimmune cells. 

 

The melanocytes and dermal nonimmune cells were re-clustered, resulting in 12 groups: 

three fibroblast clusters named F1, F2 and F3; two lymphatic endothelial cell clusters 

named LE1 and LE2; three vascular endothelial cell clusters named VE1, VE2 and VE3; a 

cluster of pericytes; a melanocyte cluster and two schwann cell clusters named schwann 

cells and stroma schwann cells (Figure 41). These clusters showed good sample mixing, 

with cells from each of the three samples being found in each of the 12 clusters (Figure 

42). 

 

The 10x lane that each cell was run on provides an interesting look at the surface protein 

expression of these cells (Figure 43). As expected, most vascular and lymphatic cells fall 

in the endothelium gate, so are CD49f positive. Melanocytes are mostly CD49f low 

epidermal cells, and most fibroblasts fell within the CD45- CD49f- gate. Both clusters of 

schwann cells however were found in the CD49f positive endothelium lane. Some 

endothelial cells were found in the fibroblast gate and vice versa, which is likely due to 

the design of the gating strategy lacking gaps between populations to reduce selection 

bias.
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Figure 41 

 

Figure 41 – Heterogeneity of nonimmune cell populations in healthy human skin. 

Melanocytes and dermal nonimmune cells from three samples were re-clustered at 

higher resolution and then UMAP coordinates were generated and plotted by Dr Peter 

Vegh. Clusters were then manually annotated by comparing differentially expressed 

genes between clusters to the literature, as well by using the tissue and FACS gate origin 

of cells in each cluster. Each dot represents a single cell. Each colour represents a 

different cluster. F = fibroblast; LE = lymphatic endothelium; VE = vascular endothelium.
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 Figure 42 

 

Figure 42 – UMAP visualisation of scRNA-seq analysis of nonimmune cells annotated 

by sample. UMAP plot generated by Dr Peter Vegh. The same UMAP displayed in Figure 

41, coloured by sample.
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Figure 43 

 

Figure 43 – UMAP visualisation of scRNA-seq analysis of nonimmune cells annotated 

by 10x lane. UMAP plot generated by Dr Peter Vegh. The same UMAP displayed in 

Figure 41, coloured by 10X lane. Labels refer to the lanes described in Figures 9-10 and 

18. 
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5.2.2 Fibroblasts in human skin vary in immunomodulatory gene expression 

The three fibroblast clusters (F1, F2 and F3) are distinguishable as fibroblasts by 

expression of fibroblast markers including PTGES, PTGDS and NT5E (Figures 24, 44 and 

Appendix Table 1). The differentially expressed genes between these populations 

suggest differing functions of ECM production/remodelling and 

inflammation/immunomodulation. F1 fibroblasts express immunomodulatory cytokines 

including TNFAIP, IL6 and CXCL1, as well as higher levels of stress related pro-

inflammatory molecules MT2A and PTGES, suggesting an increased role in immune cell 

interaction (Figure 44). F2 fibroblasts display increased expression of genes involved in 

extracellular matrix production and remodelling including MFAP5, MXRA8 and PODN 

(Figure 44). F3 fibroblasts share expression of the F1 cluster immunomodulatory 

markers, but also express high levels of the apoptosis-inducing molecule CD82 and the 

CCR7-attracting chemokine CCL19. F3 fibroblasts also express genes associated with 

wound healing, for example TNC and TGFB3 (Figure 44)(Lichtman et al., 2016; Trebaul et 

al., 2007). The transcript expression of F1 and F2 fibroblasts are not exclusively geared 

towards inflammation or ECM maintenance respectively, and appear instead to be 

differential in their contributions to these key fibroblast functions. For example, F2 

fibroblasts express the monocyte chemokines CXCL3 and CXCL12 at higher levels than F1 

cells, and the F1 cluster expresses higher levels of the matrix metalloprotease MMP2 

(Figure 44).  

 

5.2.3 Melanocyte and schwann cell transcriptome profiles 

In spite of being dissociated from different tissue layers, melanocytes and schwann cells 

are found close together by their UMAP coordinates, the spatial relationship of which is 

related to transcriptomic relationship, and may be indicative of their shared origin from 

neural crest precursor cells (Figure 41). Melanocytes can be distinguished from the other 

nonimmune clusters by unique expression of markers including PMEL, DCT, TYR, TYRP1 

and MLANA (Figure 44 and Appendix Table 1).
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Figure 44 

 

Figure 44 – Top differentially expressed genes between the nonimmune cells in 

healthy skin. Heatmap generated by Dr Peter Vegh. After clustering and annotating the 

nonimmune scRNA-seq data, differentially expressed genes were calculated and plotted 

as a heatmap. Cluster labels on the X axis correspond to those displayed in Figure 41. 

The radius of each circle corresponds to the percentage of cells within a cluster 

positively expressing each marker. The intensity of colour, from blue to red, corresponds 

to the relative average intensity of expression of cells within the cluster. F = fibroblast; 

LE = lymphatic endothelium; VE = vascular endothelium.
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Schwann cells formed two distinct clusters, both identifiable by shared expression of the 

neurotrophin receptor NGFR. The first cluster, named schwann cells, also expresses high 

levels of FLG2 as well as SOX10, an important regulator of myelination (Figure 44 and 

Appendix Table 1)(Fujiwara et al., 2014). The other cluster expresses fibroblast markers, 

including DCN, FGF7 and MMP2, and so was named stromal schwann cells (Figure 44). 

The unique gene expression profile of stromal schwann cells appears to closely match 

that of a skin cell cluster briefly described by Tabib et al. as a “rare fibroblast subset” 

(Tabib et al., 2018a)(named Cluster 7 in their Supplementary Figure S3).  

 

5.2.4 Heterogeneity of pericytes and lymphatic endothelial cells 

Pericytes formed a single cluster expressing high levels of RGS5, MCAM and PDGFRB 

(Figures 24, 44 and Appendix Table 1). Lymphatic endothelial cells formed two separate 

clusters, named LE1 and LE2 (Figure 41). Both clusters express the lymphatic markers 

CCL21, LYVE1 and PDPN. However, LE1 expresses higher levels of LYVE1 and lower levels 

of PDPN than LE2. This is in agreement with the reported difference in protein 

expression between initial lymphatics and the deeper collecting vessels (Wang et al., 

2014) and so LE1 may be endothelial cells from initial lymphatic vessels, and LE2 cells 

from collecting vessels. LE1 also expresses higher levels of CCL21, a key chemokine 

which recruits CCR7+ APCs into the lymphatics, which further supports this distinction. 

Angiogenesis markers SDPR and CCND1 are also found on LE1 cells, and LE2 differentially 

expresses GBP2 and SOD2 (Figure 44 and Appendix Table 1). 

 

5.2.5 Three distinct clusters of vascular endothelial cells 

Interestingly, a lot of heterogeneity is found within the vascular endothelial cells of the 

papillary dermis. Three clusters, named VE1, VE2 and VE3, are positive for blood vessel 

markers PECAM1 and CD34 and negative for the lymphatic vessel markers CCL21 and 

LYVE1 (Figures 24 and 44). 

 

VE2 can be distinguished from VE1 by the expression of ACKR1, a nonspecific chemokine 

receptor. ACKR1 has been shown to be expressed in post-capillary venules and not pre-

capillary arterioles, demarcating the areas of endothelium where leukocyte trafficking 

primarily occurs (Thiriot et al., 2017). As the skin was cut to 200μm deep, excluding 
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anything deeper than papillary dermis, capillary endothelial cells should account for 

most, if not all, of the vascular endothelial cells present as the arteriolar and venular 

plexuses are found at over 1000μm depth (Braverman, 2000). 

 

This could suggest that VE1 and VE2 represent the divide in capillary endothelial cells 

between the venular (ACKR1+, VE2) and arteriolar (ACKR1-, VE1) branch points (Figure 

45). The ratio of VE2 to VE1 cells found by sequencing is approximately 1:1 (0.97:1, 

mean of n = 3), as would be expected for a single dermal papilla capillary branch being 

halved at an imaginary midpoint. Furthermore, VE2 is higher in expression of the rolling 

adhesion proteins SELE and SELP and the hard adhesion molecule ICAM1, supporting the 

concept of ACKR1 being selective of endothelial cells with leukocyte trafficking 

capabilities (Figure 44 and Appendix Table 1). 

 

To assess these key expression differences at protein level, flow cytometry was 

employed. Gating vascular endothelial cells as live, single CD45- CD73- CD49f+ CD34+ 

cells revealed ACKR1 positive and negative populations, with a ratio of 1.11:1 for 

ACKR1+ to ACKR1- cells, closely mirroring the ratio of VE2 to VE1 by scRNA-seq (Figure 

46).  

 

Next, expression of SELP, SELE and ICAM1 was compared between the ACKR1+ 

population (VE2) and the ACKR1- population (VE1) (Figures 46-47). SELE and SELP 

expression appears to be mostly specific to ACKR1+ cells, as expected. ICAM1 is seen on 

both VE1 and VE2, but with proportionally higher expression on VE2, which is mirrored 

in the scRNA-seq data. Plotting the ratio of cells positive for each adhesion molecule to 

cells negative for the same molecule shows a similar trend – that adhesion molecules 

are proportionally expressed more on ACKR1+ cells. However, this difference is only 

statistically significant (p<0.05) for SELE expression. The difference in SELP and ICAM 

expression are not significant (p=0.089 and p=0.222 respectively) (Figure 47). Further 

repeats may be necessary to overcome the biological variability between donors.
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Figure 45 

 

Figure 45 – The potential morphology of VE1 and VE2 cells within a single dermal 

papilla. ACKR1 expression is reportedly exclusive to post-capillary venules (blue), which 

occur below 1mm depth in skin, and its expression marks the transcriptional 

heterogeneity between endothelium with or without leukocyte trafficking capabilities. 

As the scRNA-seq data captures endothelium within 200μm depth, the split between 

ACKR1+/- clusters may represent the divide either side of the midpoint of the single 

capillary and its branches found within a dermal papilla (Braverman, 2000). VE = vascular 

endothelium.
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Figure 46 

 

Figure 46 – Expression of endothelial adhesion markers is higher in ACKR1+ cells. Dermal cells were stained for markers to isolate vascular 

endothelial cells as well as antibodies against adhesion markers. Representative plots are shown from one of n = 3 samples. The percentage of 

each quadrant is displayed as mean +/- SD of three samples.
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Figure 47 

 

Figure 47 – Vascular endothelial cell adhesion marker heterogeneity. Bar graph 

displaying the ratio of vascular endothelial cells positive for each x axis marker to cells 

negative for that marker, using the data generated by the quadrant gates in Figure 46. 

Bars display the mean of 3 samples, error bars display the SD. Paired t tests were used 

between ACKR1+ and ACKR1- values to calculate p values shown above each pair. 

Asterisks show significance at p<0.05. 
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5.2.6 Specialised leukocyte trafficking structures are present in healthy skin 

A third population of vascular endothelial cells, VE3, was found at much lower numbers. 

VE3 makes up 2.82% (mean of n = 3) of the vascular endothelial cells sequenced, and 

therefore is much rarer than VE1 and VE2. VE3, like VE2, is positive for ACKR1 and as 

such is likely found in pre-venular capillary (Thiriot et al., 2017), and is characterised by 

much higher expression of adhesion markers, inflammatory cytokines and leukocyte-

attracting chemokines such as ICAM1, IL33 and CCL23 respectively (Figure 44 and 

Appendix Table 1).  

 

As VE3 appears to represent an endothelial cell with increased leukocyte extravasation 

capabilities, whole mount immunofluorescence staining was undertaken to determine 

whether this represented a specific type of capillary vessel or simply individual cells in a 

state of activation. CD31 (PECAM1) was used a classical marker of vascular endothelium 

and gamma synuclein (SNCG) as a marker for VE3 due to its specificity at transcript level 

by scRNA-seq (Figure 44). This staining revealed rare patches of SNCG+ vascular 

endothelium with a distinct distended morphology (Figure 48). PECAM1+ SNCG- vascular 

endothelium is a consistent diameter. Each PECAM1+ SNCG+ area found was much 

wider and less regularly structured. Notably, they were also connected to the thin 

PECAM1+ SNCG- vessels, so these structures appear to occur within VE2 vessels rather 

than forming their own capillary vessels. 



151 

 

Figure 48 

 
Figure 48 – Whole mount imaging of SNCG expression on dermal vasculature. Peeled dermis was cut to roughly 1cm2 squares and fixed and 

dehydrated overnight in formaldehyde and sucrose. Tissue was blocked, stained with primary antibodies to CD31 (PECAM1) and gamma 

synuclein (SNCG) then secondary fluorescent antibodies and DRAQ5 nuclear stain and then imaged using confocal microscopy. Left: Still image 

using 5x objective lens. Middle: 3D reconstruction of z-stack tiled images taken using 20x objective lens showing all three channels. Images 

were taken of the region in the dashed yellow square in the left panel. Right: Separate signals of PECAM1 (top) or SNCG (bottom) from middle 

panel. n = 3, representative images from a single sample. 
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Figure 49

 
Figure 49 – Potential interactions between the vasculature and dermal leukocytes. 

Heatmap was plotted by Dr Peter Vegh. Heatmap showing expression of selected 

receptor-ligand pairs from CellPhoneDB between vascular endothelium clusters (red 

genes) and dermal leukocyte clusters (blue genes), as represented in the diagram above 

the heatmap. The radius of each circle corresponds to the averaged relative expression 

of both the receptor and ligand expressed in their relevant clusters. The intensity of 

colour, from blue to red, corresponds to the statistical significance of both genes being 

truly expressed. Genes were manually categorised by general function.  VE = vascular 

endothelium; DC = dendritic cell; moDC = monocyte-derived DC; Tc = cytotoxic T cell; Th 

= helper T cell; Treg = regulatory T cell.
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Figure 50 

 
Figure 50 – Heterogeneity in immunomodulatory gene expression between vascular 

endothelial cell clusters. Violin plots showing the expression differences of the 

receptors and ligands in Figure 49 across the three vascular endothelium (VE) clusters. 

The width of each violin plot is related to the ratio of cells found at a particular Y 

coordinate. 
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As this distended “leaky” appearance fit with the transcriptome profile of leukocyte 

trafficking, VE3 interactions with the immune system were next interrogated. 

CellPhoneDB, a database of receptors and their cognate ligands (Efremova et al., 2019), 

was used to evaluate the statistically significant interactions between each vascular 

endothelial cluster and dermal leukocytes (Figure 49). The genes with roles in 

endothelium:leukocyte interactions were grouped into three categories: those with 

roles in immunomodulation, such as inflammatory and tolerogenic cytokines; adhesion 

molecules and transmigration receptors; and recruitment receptors and chemokines. As 

predicted, VE3 appeared to have more interactions with leukocytes than VE1 or VE2, 

and this difference was accentuated by plotting the expression levels of each of the 

genes highlighted by CellPhoneDB as violin plots (Figure 50). The expression of 

basement membrane anchors and cell-cell adhesion proteins such as COL4A1 and ITGB1 

was also decreased in VE3, which may facilitate the distended morphology of VE3 

endothelium and aid in allowing leukocytes to pass between endothelial cells (Figure 

51). 
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Figure 51 

 

Figure 51 – VE3 cells express lower levels of cell-cell adhesion proteins. Violin plots 

showing the expression differences of selected receptor-ligand pairs from CellPhoneDB 

where both the receptor and cognate ligand are expressed on the same vascular 

endothelium (VE) cluster. The width of each violin plot is related to the ratio of cells 

found at a particular Y coordinate. 
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5.2.7 Keratinocyte heterogeneity follows keratinisation 

Keratinocytes formed 8 clusters (Figure 55) which fell into four main groups: pre-

proliferation KCs, post-proliferation KCs, proliferative KCs and a fourth group of KCs 

expressing various leukocyte markers including CD83 (Figure 52). These groups showed 

good sample mixing with cells from each of the three samples falling into each cluster 

(Figure 53). Pre-proliferation KCs express transcripts for basal layer keratins including 

KRT5 and KRT14 (Figure 54). Most of these cells were found in the CD45- CD49f+ gate, 

which are also markers for basal layer keratinocytes (Figure 21). 

 

Post-proliferation KCs include some cells expressing basal markers, but transition to 

express only suprabasal markers including KRT1 and KRT10 (Figure 54). The proliferating 

KCs include cells with both transcriptome profiles of basal and suprabasal genes, but are 

characterised by high expression of cell cycle progression markers such as CDK1, MKI67 

and HMMR (Figure 54 and Appendix Table 2). 
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Figure 52 

 

Figure 52 – Force-directed graph visualization of scRNA-seq analysis of keratinocytes. 

Keratinocytes from three samples were re-clustered at higher resolution and then force 

atlas (FA) coordinates were generated and plotted by Dr Peter Vegh. Cells in close 

proximity follow a trajectory of changing transcriptomes. Clusters were then manually 

annotated and combined by comparing differentially expressed genes between clusters 

to the literature. Each dot represents a single cell. Each colour represents a different 

cluster. KC = Keratinocyte.
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Figure 53 

 

Figure 53 – Force-directed graph visualization of scRNA-seq analysis of keratinocytes 

annotated by sample. FA plot generated by Dr Peter Vegh. The same FA plot displayed 

in Figure 52, but coloured by the sample. 
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Figure 54 

  

Figure 54 – Keratinocyte subset markers in healthy adult skin. Heatmap generated by 

Dr Peter Vegh. After annotating the keratinocyte data, differentially expressed genes 

and selected genes from literature were plotted as a heatmap. Cluster labels on the X 

axis correspond to those displayed in Figure 52. The radius of each circle corresponds to 

the percentage of cells within a cluster positively expressing each marker. The intensity 

of colour, from blue to red, corresponds to the relative average intensity of expression 

of cells within the cluster. KC = keratinocyte.
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5.2.8 Distinct differentiation pathway of lamellar body-producing KCs 

Trajectory analysis was run by Dr Peter Vegh using Force-directed graph (FDG) and PAGA 

in order to interrogate the differentiation process of keratinocytes from the basal layer 

to the stratum corneum (Figure 55). This revealed two differentiation trajectories linking 

the basal and corneal layers. By probing the differentially expressed genes between the 

two pathways, I interpreted a possible biological explanation for the divide. One arm 

(non-LB) shows a direct transition from undifferentiated basal keratinocytes to the 

suprabasal layers, transitioning from expression of basal genes, e.g. KRT5 and KRT14, to 

suprabasal genes like KRT1 and KRT10, and finally to terminal differentiation markers 

including IVL and PERP. The other arm shows this same well categorised trajectory, but 

becomes enriched for transcripts involved in lamellar body generation, including 

ABCA12, CKPA4 and CLIP1, in the post-proliferation KCs (Figure 56). Both pathways 

appear to converge at the terminally differentiated cells (Cluster 7, Figure 56). 

 

5.2.9 CD83+ Inflammatory keratinocytes reside in healthy skin 

The fourth group of keratinocytes, CD83+ KCs, express suprabasal transcripts as well as 

inflammatory markers including the activated APC marker CD83, the T cell homing 

chemokine CCL20, the intercellular adhesion marker ICAM1, the inflammatory 

bradykinin receptor BDKRB1 and the inflammatory cytokine TNF (Figure 57). The 

presence of these genes suggests that these cells may have an inflammatory or 

immunomodulatory function. 
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Figure 55

 
Figure 55 – Trajectory visualization of adult skin keratinocytes. Force atlas (FA) and 

approximate graph abstraction (AGA) plots generated by Dr Peter Vegh. Left: The same 

FA plot displayed in Figure 52, but coloured by detailed clustering. Cells in close 

proximity follow a trajectory of changing transcriptomes. Right: AGA plot of the same 

keratinocyte clusters. Thicker lines represent closer connections between clusters. 

Arrows indicate the annotation of two differentiation pathways from basal to suprabasal 

keratinocytes. LB = Lamellar body expressing; non-LB = non-lamellar body expressing. 
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Figure 56 

 
Figure 56 – Expression of lamellar body-related genes in specific keratinocyte clusters. Heatmap generated by Dr Peter Vegh. Keratinocyte 

clusters as shown in Figure 55 were plotted on the Y axis. The brown boxes highlight the high expression of lamellar body related genes in the 

LB pathway. The radius of each circle corresponds to the percentage of cells within a cluster positively expressing each marker. The intensity of 

colour, from blue to red, corresponds to the relative average intensity of expression of cells within the cluster. 
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Figure 57 

  
Figure 57 – CD83+ KCs express higher levels of immunomodulatory genes. Violin plots 

showing the top immunomodulatory differentially expressed genes between CD83+ KCs 

and the other keratinocyte subsets. The width of each violin plot is related to the ratio of 

cells found at a particular Y coordinate. X axis labels refer to the annotations shown in 

Figure 52. KC = keratinocyte.  
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Whole mount immunofluorescence staining for CD83 was employed to determine if 

these cells are present prior to cell dissociation and incubation at 37oC, which may affect 

cell activation, as well as to validate the protein expression of this marker. Dual staining 

with a pan-keratin antibody was used to distinguish these cells from LCs, which may also 

express CD83. Keratin- CD83+ LCs were found, as well as Keratin+ CD83+ keratinocytes 

(Figure 58). The double positive cells were rarer than expected from the scRNA-seq data, 

and the papillary folds of the epidermis made scalable quantification of these cells 

difficult by whole mount staining. Therefore, IHC staining of skin slides was undertaken 

to quantify these cells.  

 

Dual staining of CD83 and pan-keratin showed dual positive cells in the interfollicular 

epidermis, consistent with the whole mount staining (Figure 59). Dual positive cells were 

also found within hair follicles (Data not shown). Quantification was possible by counting 

CD83+ keratin+ cells as a percentage of all pan-keratin positive nuclei, giving the relative 

proportion of CD83+ keratinocytes (Figure 60). This came to 0.14 +/- 0.04% (mean +/- 

SD, n = 3) CD83+ keratinocytes, much lower than the 7.56 +/- 5.18% (mean +/- SD, n = 3) 

of keratinocytes found in the scRNA-seq inflammatory CD83+ keratinocyte cluster. This 

may be due to multiple reasons. CD83 may be translated at a much lower rate than it is 

transcribed in these cells, leading to the marker poorly recapitulating their presence in 

tissue. There may also be a protein-RNA mismatch in these cells if they are 

transcriptionally primed to respond to inflammation, but do not express inflammatory 

proteins at steady state. This result may also be due to the effects of tissue dissociation 

increasing the proportion of inflammatory cells seen as the cells respond to tissue 

damage, which would be seen far less, if at all, in sections from tissue which was rapidly 

fixed in formaldehyde after excision. 
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Figure 58

 
Figure 58 – Whole mount imaging of CD83 expression on keratinocytes. Peeled 

epidermis was cut to roughly 1cm2 squares and fixed and dehydrated overnight in 

formaldehyde and sucrose. Tissue was blocked, stained with primary antibodies to 

CD83) and pan cytokeratin then secondary fluorescent antibodies and DAPI nuclear stain 

and then imaged using confocal microscopy. The top white arrow shows a CD83+ 

keratin+ keratinocyte. The bottom white arrow shows a CD83+ keratin- Langerhans cell. 

Scale bars represent 20μm. n = 3, representative images from a single sample. 
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Figure 59 

 
Figure 59 – In situ visualization of CD83+ keratinocytes in healthy adult skin. Slides of healthy adult skin were stained by the Newcastle 

Molecular Pathology Node for CD83 (purple) and pan-keratin (yellow). Green arrows show double positive cells. Scale bars represent 100μm 

on the left panel and 20μm on the right panel. Representative images shown from one of n = 3 samples. 
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Figure 60 

 
Figure 60 – Percentage of CD83+ keratinocytes found in healthy adult epidermis. 

Nuclei of keratin+ (yellow) cells were counted on slides from n = 3 samples in Figure 59. 

The number of CD83+ keratin+ cells in each slide are shown as a percentage of keratin+ 

cells. 
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5.2.10 CD83+ keratinocytes may interact with epidermal T cells 

Epidermal T cells were revealed to be more immunologically primed than dermal T cells 

in Chapter 4 (Figure 32). As the main epidermal microenvironmental signals likely come 

from keratinocytes, investigation of the possible interactions between CD83+ 

keratinocytes and epidermal T cells was carried out. CellPhoneDB was used, comparing 

interactions of the four main groups of keratinocytes with epidermal Tc, Th and Treg 

cells (Figure 61). Many of the statistically significant immunomodulatory interactions are 

specific to CD83+ KCs, which can further be seen by comparing the expression of the 

receptors and ligands from these interactions which are expressed by the keratinocytes 

(Figure 62). In particular, the interactions which are not also found between dermal 

nonimmune and dermal immune cells may contribute to the tissue-specific 

microenvironmental cues for priming epidermal T cells (Figure 63). These epidermal-

specific interactions include CD83+ keratinocyte CCL20 expression, which may attract 

Th/Treg and Tc cells by their expression of CCR6 and CXCR3 respectively. Expression of 

the adhesion molecules CDH1 and ICAM4 may provide specific adherence to epidermal T 

cells via expression of integrin complexes αEβ7 and αLβ2 respectively. Furthermore, 

expression of LTB receptor on CD83+ KCs may allow for increased anti-viral activity, and 

secretion of TNF may mediate T cell apoptosis in return (Koroleva et al., 2018). 
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Figure 61 

 
Figure 61 – Potential interactions between CD83+ keratinocytes and epidermal T cells. 

Heatmap was plotted by Dr Peter Vegh. Heatmap showing expression of selected 

receptor-ligand pairs from CellPhoneDB between keratinocyte clusters (red genes) and 

epidermal T cell clusters (blue genes), as shown in the diagram below the heatmap. The 

radius of each circle corresponds to the averaged relative expression of both the 

receptor and ligand expressed in their relevant clusters. The intensity of colour, from 

blue to red, corresponds to the statistical significance of both genes being truly 

expressed. KC = keratinocyte; Tc = cytotoxic T cell; Th = helper T cell; Treg = regulatory T 

cell. 
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Figure 62 

 
Figure 62 – CD83+ keratinocytes express higher levels of T cell interacting genes. Violin 

plots showing the expression differences of the receptors and ligands in Figure 61 across 

the four keratinocyte clusters shown in Figure 52. The width of each violin plot is related 

to the ratio of cells found at a particular Y coordinate. Keratinocyte = KC. 

 

Figure 63 

 
Figure 63 – Diagram representing the receptor-ligand interactions between CD83 KCs 

and T cells that are unique to the epidermis. Of the gene pairs shown in Figures 61 and 

62, interactions that were not also found in any dermal nonimmune and T cell 

interactions are represented schematically, with their potential functions shown in red.  
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5.3 Discussion 

In depth clustering of the stromal cells within skin was successfully able to identify 

heterogeneity between cell states. Fibroblast heterogeneity is often reported between 

papillary and reticular fibroblasts (Philippeos et al., 2018; Janson et al., 2012) although 

this wasn’t recapitulated at single cell level by Tabib et al. (Tabib et al., 2018a). Tabib et 

al. do report heterogeneity of inflammatory and ECM maintenance genes within healthy 

skin fibroblasts, however the reported transcript markers do not match the F1, F2 and 

F3 clusters presented here. Hagai et al. show that dermal fibroblast immune functional 

gene expression (as opposed to transcription factors and other regulators) is not well 

conserved across species, including inflammatory cytokine expression (Hagai et al., 

2018). This is postulated as an evolutionary advantage enabling adaptation of innate 

immunity (Hagai et al., 2018). This functional gene expression in fibroblasts may also be 

highly biologically variable between individuals or body sites, which could explain the 

difference in findings between this study and other papers. 

 

VE3 structures appear to be analogous to high endothelial venules (HEVs), sharing 

similar morphology and gene expression. HEVs are specialised vascular structures found 

in the post-capillary veins of lymphoid organs, with the appearance of a swollen vessel 

(Mionnet et al., 2011). These vessels express many of the leukocyte adhesion markers 

expressed by VE3 (Veerman et al., 2019; Pollheimer Jürgen et al., 2013, p.33), and in 

particular IL33, which is also expressed almost exclusively in VE3 within this data set, is a 

marker of HEVs and was first isolated as an HEV-specific nuclear protein (Miller, 2011). 

HEVs facilitate leukocyte extravasation into lymph nodes, even outside of inflammatory 

conditions, in order to aid immune surveillance and antigen sampling during steady state 

homeostasis and infection (Mionnet et al., 2011), therefore VE3 structures may also 

facilitate this function in skin. 

  

The finding of gamma synuclein (SNCG) positive vascular endothelial cells is particularly 

interesting in healthy skin. While SNCG was chosen as a marker of VE3 due to its high 

specificity rather than its functional relevance, interestingly it has been proposed to alter 

cytoskeletal morphology by decreasing microtubule rigidity (Zhang et al., 2011), which 

could be postulated as a function of SNCG expression in VE3 to aid in leukocytes 
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physically passing through endothelial cells during transmigration, and could also 

account for the distended appearance of these structures by microscopy (Figure 48). It 

should be noted that SNCG was expressed only on VE3 and LE1 cells. The discussed 

functionality of the gene would fit CCL21high initial lymphatic capillaries as well. In order 

to distinguish the SNCG+CD31+ structures found by whole mount staining as vascular, 

morphology was observed. SNCG+ vessel sections were continuous with <10μm wide 

vasculature, and did not approach the 50-100μm diameter previously observed in 

dermal lymphatics by Wang et al. (Wang et al., 2014).  

 

Another functional link between SNCG expression and the probable leukocyte 

extravasation functions of VE3 comes from the reported links between high expression 

of SNCG and cancer metastases (Surguchov et al., 2001; Shao et al., 2018). Data from a 

single cell study into malignant melanoma tissue by Tirosh et al. also reveals high levels 

of SNCG, which was exclusive to endothelial cells (Tirosh et al., 2016). Taken together 

with the findings in this study, this could provide a linking mechanism whereby an 

increase in VE3 phenotype within endothelium could possibly facilitate excessive cellular 

extravasation, leading to an increased likelihood of metastasis. Investigating this 

possibility directly by comparing this scRNA-seq data with a large dataset of melanoma 

endothelium for the presence of VE3 signatures could further substantiate this theory. 

 

VE2 appears to represent pre-venular capillary, as supported by the co-expression of 

ACKR1 with adhesion markers by flow cytometry, as well as the 50:50 split of ACKR1 

expression on vascular endothelial cells. However, whole mount staining for ACKR1, 

PECAM1 and SNCG together would be required to confirm the proposed spatial 

arrangement of cells with VE1, VE2 and VE3 transcriptomes. As protein expression 

doesn’t necessarily match RNA expression, using FACS to isolate these ACKR1+ 

endothelial cells within the top 200μm of skin, and sequencing them to confirm that 

they match the VE2 expression profile could also confirm that these are the same cells 

as found by protein expression. 

 

No specific surface markers were identified for VE3, making it difficult to perform 

functional studies on them. Sorting and comparing the three subsets of VE using a 
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leukocyte adhesion assay to quantitively compare endothelial adhesion properties 

would be an interesting way to interrogate their leukocyte transmigration capabilities in 

healthy skin (Wilhelmsen et al., 2013; Lamberti et al., 2014). However, many of the 

markers exclusive to VE3 cells are intracellular, so live unfixed unpermeabilised cells 

cannot be sorted using these proteins. The strong cell surface markers for VE3, mostly 

leukocyte adhesion markers, are also expressed on VE2 at lower levels by transcript. A 

clear distinction between low and high expressing populations could not be seen in the 

flow data, and so sorting and sequencing of “buckets” of variable expression for these 

markers would likely be required to identify and confirm a valid sorting strategy for VE3 

cells. 

 

Trajectory analysis of keratinocytes inferred the existence of two differentiation 

trajectories, differing by development of lamellar bodies or not. Heterogeneity among 

keratinocytes with respect to lamellar body production has previously been reported at 

protein level by Raymond et al., who used density gradient centrifugation to separate 

bulk keratinocytes into an LB-enriched fraction and a LB-low fraction (Raymond et al., 

2008). Mass spectrometry on these fractions revealed a large number of proteins 

differentially expressed between the two, many of which match up to those found in 

this study, for example CLIP1 and ABCA12 among many others (Raymond et al., 2008). It 

is particularly interesting that the two keratinocyte trajectories infer that lamellar body 

expression could be decided in the basal layer, and that these basal cells differentiate 

into LB expressing suprabasal keratinocytes.  

 

The water-retaining properties of the epidermis are provided by lamellar body secretion, 

and as such many of these secreted proteins are found continuously across the 

epidermis. They are reported as such in healthy skin, and discontinuous expression of 

these proteins is seen in disease conditions, in particular ichthyosis: a dry skin condition 

strongly linked with dysregulation of lamellar body proteins such as ABCA12 (Thomas et 

al., 2006; Elias et al., 2017). It is of note that the scRNA-seq results suggest that this 

continuous barrier may be maintained by only a fraction of keratinocytes in adult skin, 

and this may provide some insight into how to more selectively approach treatment for 

diseases such as ichthyosis. 
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It is important to note that lamellar body production and secretion is upregulated as an 

injury response in order to stem water loss from an epidermal wound. The triggering 

mechanism for this is linked to the loss of an extracellular calcium gradient, normally 

from low extracellular calcium in the basal layer to high in the suprabasal layer (Menon 

et al., 1994). This system could have been perturbed as the skin for scRNA-seq was 

digested in calcium-free media, although it would be difficult to maintain a gradient 

throughout digestion. As all skin cells were subject to the same methods and only some 

expressed transcripts for LB-associated proteins, this suggests that this heterogeneity 

could be genuine. Staining for proteins which would not be secreted, such as 

transcription factors, would be a good way to validate this heterogeneity within 

unperturbed skin. 

 

The exact mechanics of keratinocyte differentiation throughout adulthood, and the 

maintenance and location of epidermal stem cells with proliferative ability is still a topic 

for debate, with supporting experimental evidence towards different theories. It is 

therefore of note that the finding of mitotic keratinocytes within this dataset, as well as 

the trajectories plotted, do not necessarily support either the hierarchical or stochastic 

models of keratinocyte division, as these mitotic cells could be the transit amplifying 

cells or be basal progenitor keratinocytes which have stochastically entered a division 

cycle (Roshan et al., 2016).  

 

CD83 KCs express CCL20, secretion of which in keratinocytes is a well reported marker of 

psoriasis (Harper et al., 2009). Further comparison between the CCL20-expressing CD83+ 

keratinocytes found in healthy skin with psoriatic keratinocytes would be interesting to 

explore the possibility of this cell state being linked to inflammatory keratinocytes in 

disease. Cheng et al. report, using scRNA-seq, a healthy skin keratinocyte subset 

enriched for cell-cell communication genes across multiple skin sites, which may be 

related to the finding of CD83+ KCs (Cheng et al., 2018). 

 

The spatial location of CD83+ keratinocytes could be important information when 

considering the cells they might interact with. Transcriptomically they are mostly 
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suprabasal, yet some cells in the cluster express basal keratins. This is supported by the 

IHC staining, as most of the CD83+ keratin+ epidermal cells were found in the stratum 

spinosum. Spatial mapping of CD83+ keratinocytes and T cells together may help to 

delineate the possibility of interaction, as epidermal T cells are found closer to the 

basement membrane (Clark et al., 2006). While this staining was used to validate the 

expression of CD83 in the IFE (the epidermal area best matching the cells in the scRNA-

seq data), it is interesting that CD83+ keratinocytes were also found, at similarly rare 

numbers, in both the infundibulum region and bulb of hair follicles. As these regions 

were not captured for scRNA-seq, it isn’t known whether or not keratinocytes with a 

similar inflammatory transcriptome profile are present therein. However, hair follicles 

are known to be sites of increased immunomodulation and Tregs are specifically guided 

to the infundibulum by keratinocytes during development, so it would be interesting to 

explore the similarities and differences between CD83 expressing keratinocytes in the 

IFE and in hair follicle regions (Scharschmidt et al., 2017). Particularly, microdissection 

and scRNA-seq of human hair follicles could provide a comparison between these cells 

and provide a clearer picture of the single cell heterogeneity involved in follicular T cell 

trafficking. 

 

Tamoutounour et al. report MHC class II+ keratinocytes in both the IFE and 

infundibulum which play a role in modulating steady state homeostatic T cell response 

to commensal microbes (Tamoutounour et al., 2019). In mice these keratinocytes were 

shown to express Ccl20 and Icam1, which are differentially expressed in CD83+ KCs. It 

would be advantageous to functionally compare these cells, and ascertain whether or 

not human CD83+ KCs interact with the microbiome. This could be investigated 

computationally by aligning the human and mouse datasets, or experimentally by 

following a similar protocol to Tamoutounour et al. and repeating the staining done in 

Figure 59 after topical culture of commensal bacteria (Tamoutounour et al., 2019). 

 

Investigation of the heterogeneity present in the stromal cells of healthy human skin has 

expanded on what is known about stromal interaction with the skin’s immune system, in 

particular by identifying different states of immunomodulatory fibroblasts, HEV-like VE3 

cells and inflammatory gene signatures in CD83+ keratinocytes.  These findings could 
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have widespread implications for inflammatory skin diseases which involve immune 

infiltration and stromal interactions in skin.
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6.1 Chapter 6 Introduction 

Skin is composed of a wide array of distinct cell types with corroborating functions that 

provide mechanical, water and immunological barrier properties. Skin is highly cellularly 

heterogeneous, and much of this heterogeneity is masked when analysing skin cells or 

tissue in bulk. Segregating cell identities via single- or double-digit parameter protein 

analysis also poses problems as low parameter analysis can be subject to bias, whereby 

cells that are distinct by expression of unreported markers go overlooked, and surface 

proteins can be regularly expressed and sequestered. Much of human skin research 

correlates with findings in mouse skin, but there remain to be features unique to either 

human or mouse. Characterising skin cell heterogeneity by performing scRNA-seq on 

human skin aimed to overcome these issues and provide an unbiased comprehensive 

resource of human skin cell transcriptome profiles. 

 

In this study a combination of FACS and droplet based scRNA-seq was employed to 

comprehensively analyse the cellular heterogeneity of healthy adult human skin. CyTOF 

was run in parallel to compare known protein expression with single cell transcriptomes. 

The dissociation method was optimised to provide a balance of high cell numbers and 

low cell death. Single cell sequencing successfully recapitulated the heterogeneity within 

most skin cell types, providing a strong reference dataset for future skin studies, and 

also revealed previously unreported findings including steady state epidermal mast cells, 

HEV-like vessels in non-lymphoid tissue, multiple states of NKs, fibroblasts and lymphatic 

endothelium. 

 

6.2 The novelty of findings from skin single cell analysis 

6.2.1 Relevance of optimisation to future skin studies 

In order to minimise the chances of missing a rare cell type or infrequent transitional 

state, durations of skin dissociation were compared using flow cytometry. Separation of 

dermis and epidermis was deemed as necessary to recover any meaningful epidermal 

data, as epidermal nonimmune cells were otherwise liberated at very low numbers and, 

with some exceptions, epidermal immune cell profiles would have been impossible to 

accurately separate from dermal immune cell profiles. Type IV collagenase was chosen 
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based on published comparisons of common skin dissociation techniques (Botting et al., 

2017), and 12-16 hours of digestion (The range between which gave a good practical 

variance for experiments by dissociating skin overnight) gave many more total cells, and 

much more variance in the immune cell phenotypes released, than 2-10 hours of 

dissociation.  

 

 Much of published skin research using single cell analysis, particularly flow cytometry, 

uses varied dissociation methods across different labs. Multiple studies have been 

carried out comparing the common methods more extensively, and though there is 

general agreement between these studies in regards to the benefits and costs of using 

specific treatments, there yet remains to be one unifying ‘ideal’ method of skin 

dissociation used in the field (Gunawan et al., 2016; Botting et al., 2017; Waise et al., 

2019). The optimisation presented in this thesis is very specific to epidermis and 

papillary dermis in human breast skin. It may be that skin dense in hair follicles or sweat 

glands, such as scalp or armpit skin respectively, requires different dissociation 

conditions. Additionally, while breast skin provides a highly accessible model, it accounts 

for a relatively low proportion of the skin covering any one human. It may also have site 

specific features, such as metabolic differences caused by the higher levels of 

subcutaneous fat (Schautz et al., 2011). It is worth considering, then, that while the 

optimisation performed here was robust for this study, it would still be beneficial for 

future skin studies to include their own more targeted dissociation optimisation.   

 

It could also be said that this study aimed to refine a dissociation protocol which 

balances the effects on all skin cell types, whereas the previous study by Botting et al. 

focusses on APCs, and Waise et al. focus on fibroblasts (Botting et al., 2017; Waise et al., 

2019). One aim of this thesis was to empower skin researchers to focus on the specific 

cells relevant to their research questions. If this was successful in doing so, then more 

future studies should hopefully be able to focus on their cells of interest, and their 

dissociation methods should therefore be tailored to these particular cells. 

 

6.2.2 Capture of rare cell types for comprehensive sequencing 
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Employing FACS prior to both bulk and single cell sequencing is common in order to 

remove dead cells and doublets, which is a very valuable technique in order to reduce 

noise in the data. It is also widely used to select for cell types of interest, which can 

provide beneficial focus to a study but can also introduces bias whereby cells of interest 

which don’t match the reported surface phenotype are unaccounted for, and continue 

to go unreported (Philippeos et al., 2018; Haniffa et al., 2012). The use of contiguous 

gates within this study, encompassing all skin cells, reduced the sampling bias to only 

events removed based on low size and granularity (acellular debris), high DAPI uptake 

(dead and dying cells) and non-uniform ratio of forward scatter area vs height (cell 

doublets). This is not a perfect strategy, as the possibility remains of losing cells with 

unusual properties, for example extremely small cells, cells that facilitate DAPI uptake, 

cells that display autofluorescence in the DAPI channel or pairs of cell types that 

naturally adhere at high rates in vivo. These risks were deemed unavoidable, as without 

these steps high levels of noise would be introduced into the data. This gating strategy 

allowed for efficient enrichment of rare cell types, and was inspired by the contiguous 

gating strategy employed by Villani et al. in order to avoid monocyte oversampling from 

PBMCs (Villani et al., 2017). Adapting this further to resample more populations than 

could be assigned to individual sequencing lanes successfully resulted in the capture of 

previously unreported levels of heterogeneity within human skin. 

 

Unlike the optimised dissociation protocol, I believe that this strategy could be more 

widely applicable to many studies. As mentioned, similar strategies of contiguous gating 

have been used in the past, but resampling cells based on diverse cell type markers is 

not widely performed. This strategy could greatly aid skin research where there is an 

interest in cellular diversity, or in studies aiming to comprehensively profile other 

tissues. This strategy does, however, muddy the analysis of cell proportions which could 

be particularly disadvantageous for quantitative comparisons of cells in disease states. 

 

H&E analysis of skin at various stages of the dissociation process confirmed that all cells 

within the top 200μm of skin were being liberated, with the exceptions of hair follicles 

and anuclear corneocytes. This is an important observation, especially as hair follicle cell 

states are missing from other recent human skin scRNA-seq studies (Tabib et al., 2018a). 
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This knowledge necessitates a different approach for capturing hair follicle cells in future 

studies. One possible approach is the microdissection of individual hair follicles (Limbu & 

Higgins, 2020). 

 

Combining the approach of dissociating high cell numbers from large skin samples and 

sorting to capture rare cells with the high throughput of droplet based scRNA-seq 

resulted in a dataset that met the aims of this study as a comprehensive view of the 

cellular heterogeneity within healthy adult skin. As well as providing a useful reference 

dataset for future studies, detailed annotation revealed some interesting findings, 

including the presence of epidermal mast cells and NK cell heterogeneity in healthy skin. 

 

6.2.3 Proteomic profiling of human skin by CyTOF 

CyTOF was undertaken using a panel of markers selected from known protein 

expression in skin, and amalgamating APC, lymphoid and nonimmune markers into one 

panel allowed for a more comprehensive look at skin protein expression than previously 

published panels which were focussed on one compartment (Alcántara-Hernández et al., 

2017; Guo et al., 2019). The comparison of CyTOF and scRNA-seq datasets gave insight 

into protein-RNA mismatches of these known markers, and in particular revealed the 

lack of RNA expression of some nonimmune cell markers, including ITGA6/CD49f and 

NT5E/CD73. This could provide insights into protein stability and tissue longevity of 

these cells, as these cells express high protein levels but do not continue to transcribe 

the relevant genes. The CyTOF data also provided a comparison of accurate cell type 

proportions, something that was obfuscated by the FACS strategy in the scRNA-seq data. 

Following on from this work, it would be valuable to design additional CyTOF panels in 

order to investigate and validate the expression of many of the genes that have been 

mentioned as functionally relevant and interesting in this study.  

 

While not fully explored as part of this thesis outside of a comparison to scRNA-seq data, 

this proteomic characterisation data is useful in and of itself. There are few studies 

integrating the immune and nonimmune cells of human skin by protein expression, and 

none with high parameter techniques such as CyTOF. CyTOF has been used to analyse 

skin dendritic cells as well as blood T cells from psoriatic patients, in two separate 
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studies (Alcántara-Hernández et al., 2017; Guo et al., 2019). Analysing all skin cell types 

in a single panel allows for the evaluation of markers that can be used to pick out a 

single cell type from all of skin, which is very useful for downstream studies of particular 

cells. This condensing of panels allows for future experiments to be done with flow 

cytometry, which has marked advantages over CyTOF in my opinion. Firstly, cells are not 

destroyed and so can be sorted for further experiments. And secondly, flow antibodies 

are more widely accessible in a wider variety of pre-conjugated fluorophores. This 

makes it more practical to add to and change marker panels as new protein expression 

information is learned. 

 

6.2.4 Focussed analysis of cellular heterogeneity in scRNA-seq data 

scRNA-seq analysis centres around interpretation of variable gene expression. In order 

to look at the variable gene expression within specific subsets of cells, without masking 

these subtle differences with the much more variable expression differences between 

subsets, the data was split into four parts: keratinocytes, other nonimmune cells, APCs 

and lymphoid cells. 

 

scRNA-seq resulted in a broad dataset with many findings, both entirely unreported or 

previously unconfirmed at single cell level, that would be interesting to explore in 

further detail by validating both protein expression and the functional validity of these 

findings. While this work was targeted at broadly interrogating many aspects of skin, 

experimental investigation of the novel findings could have sustained a large body of 

work in each compartment alone. In the interest of generating a more concise report, 

specific scRNA-seq results were chosen for further validation. 

 

6.2.5 Dermal nonimmune and vascular heterogeneity 

Analysis of the nonimmune cells in particular unveiled heterogeneity within dermal 

fibroblasts, schwann cells, lymphatic endothelial cells and vascular endothelial cells. The 

vasculature was particularly intriguing as the three clusters appeared to correspond to 

functionally and spatially distinct cells that could be tested for with staining. Flow 

cytometry analysis of dermal vascular endothelial cells supported the idea that dermal 

capillaries mirror the expression differences in larger vessels (venules and arterioles), 
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with ACKR1 and other leukocyte adhesion molecules being specifically co-expressed. 

This could be of particular relevance to inflammatory skin diseases. Knowing the 

transcriptome expression of capillaries with extravasation capabilities provides many 

theoretical target genes to investigate in regards to slowing excessive trafficking of 

immune cells into diseased skin. 

 

Furthermore, whole mount staining for SNCG, a transcript marker uniquely expressed on 

VE3 among all vascular endothelial cells, revealed strikingly morphologically distinct 

structures within the dermal vascular capillaries. These enlarged, distended looking 

sections of vessel were found at similar rarity to VE3 by scRNA-seq, in skin that was fixed 

very quickly after surgery, having only gone through one hour of dispase treatment. 

Assuming these are the same cells as highlighted in the VE3 cluster by scRNA-seq, they 

are transcribing high levels of chemokines, adhesion molecules and immunomodulatory 

genes involved in leukocyte transmigration. The appearance and functional gene 

expression patterns of VE3 closely mirror lymphoid tissue vascular microstructures 

called HEVs, which facilitate steady state immune surveillance by passing leukocytes into 

lymph nodes and increasing T cell-DC interaction frequency. VE3 structures could be 

contributing to non-lymphoid tissue in a similar way, and it would be interesting to both 

functionally validate this increased extravasation capability as well as to look for VE3-like 

structures in other non-lymphoid tissue immune barriers, such as the gut. The existence 

of this structure could be vitally important if the link to cancer metastases discussed in 

Section 5.3 was further explored, as it could provide opportunities for pre-emptive 

diagnostic methods targeted at VE3. Even without this exploration, targeting VE3 could 

be useful in any studies into the movement of skin immune cells. 

 

6.2.6 Keratinocyte heterogeneity and immunomodulation 

Trajectory analysis of the keratinocyte compartment computationally recapitulated the 

known keratinisation differentiation pathway from basal to suprabasal cells. It also 

revealed a distinct transcriptional trajectory for lamellar body production. This could be 

particularly useful to dissect further for research into ichthyoses, as well looking into the 

role of lamellar bodies in wound responses. 
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The keratinocyte sub-clustering also revealed a cluster of keratinocytes expressing 

inflammatory transcripts. While this didn’t form a clear singular trajectory, it did appear 

as though cells from both LB trajectory arms (primarily suprabasal KCs) fed into this 

CD83+ KC cluster. It would be of interest to determine whether these cells are actively 

surveilling healthy skin, or if they represent an inflammatory state that any keratinocyte 

can become under the right conditions, which is something that is already reported in 

the literature (Juráňová et al., 2017). IHC staining lent evidence towards both, as cells 

expressing both keratin and CD83 were present in the epidermis of skin fixed within 

minutes of surgical removal, meaning these cells were likely not expressing CD83 in 

response to wounding or collagenase digestion, but they were much less common by 

protein staining than by scRNA-seq. Direct spatial interrogation of RNA expression, for 

example RNAScope staining or spatial transcriptomics, could further elucidate this. The 

presence of these cells could be very important for the understanding of T cell priming 

and tolerance in healthy skin. They may also provide a link to inflammatory 

keratinocytes in disease states. If the inflammatory gene signatures in healthy CD83+ 

keratinocytes can become accentuated in diseases like psoriasis, this knowledge could 

provide gene targets to investigate for the prevention of unregulated psoriatic 

inflammation.  

 

6.3 Single cell sequencing publications 

When this project was conceived in early 2016, single cell RNA sequencing was a 

growing field and there were no published uses of this technology analysing skin. Since 

then, multiple skin scRNA-seq works have been published. This study primarily achieved 

novelty by both taking a broad scope and interrogating biological meaning – as many of 

these studies are either broad but purely computational and do not delve into skin 

biology, or are very focussed and do not analyse the interactions between stromal cells 

and immune cells. 

 

However, these studies represent an enormous combined dataset, with skin dissociated 

using multiple different methods, and many different findings reported. Many of the 

same findings will be given different nomenclature across different studies, something 
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which is increasingly common with single cell analysis whereby clusters are often given 

semi-unbiased names (such as celltype1, celltype2 and so on) to avoid locking in a 

suggestive name before new information comes to light about the cell type. 

Alternatively, there will be genuinely inconsistent findings across studies as well due to 

variables such as donor-donor differences and dissociation protocol differences. 

 

Forming a consensus of the clusters identified across these papers would be a powerful 

way to consolidate all of these findings. As of now, it can be very difficult to work out the 

relationship between, for example, SFRP2/DPP4 fibroblasts highlighted by Tabib et al. 

and PRG4 fibroblasts identified by Philippeos et al. simply by reading these papers (Tabib 

et al., 2018a; Philippeos et al., 2018). Even scouring extensive supplementary heatmaps 

may not reveal a straightforward answer, as marker overlap between studies is far from 

perfect, possibly due to the aforementioned introduced variables. A large scale 

computational study in which as many published skin scRNA-seq datasets as possible are 

analysed in parallel, but still kept related to their original annotations (in particular 

where functional validation has been carried out), would be a monumental task but one 

that could solidify the landscape of skin cell heterogeneity. 

 

6.4 The power of investigative scRNA-seq  

The ultimate aim of an encyclopaedic scRNA-seq study is to fully categorise the 

transcriptomes of all cells in a tissue. This study demonstrates that this technique can 

reveal novel findings as well as solidify a priori knowledge from bulk experiments. 

However, it also shows that the technology isn’t yet on par with the goal of fully 

categorising all heterogeneity within a tissue. Here, around 5,000-10,000 UMIs were 

sequenced per cell, capturing an average of the 3,000 most highly expressed genes per 

cell. Mammalian cells can express more than 50,000 individual transcripts, meaning this 

likely underrepresents the mRNA in each cell by a significant margin (Marinov et al., 

2014). It is possible that this could result in the concealment of heterogeneity of 

functionally important genes which are transcribed at low levels. scRNA-seq also suffers 

from the need to validate protein expression for any gene the expression of which may 

be deemed relevant to a functional hypothesis. 
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scRNA-seq is still a rapidly developing field. Early studies, between 2009-2012, were able 

to attain high transcriptome coverage in low cell numbers (Tang et al., 2009; Ramsköld 

et al., 2012). This study, initiated in 2016, was able to balance lower coverage with high 

cell numbers. In 2019, Hughes et al. developed a method to increase transcriptome 

coverage without sacrificing as much in terms of cell numbers (Hughes et al., 2019). 

There are also different single cell capture reagents available with unique benefits. 10x 

Genomics offers a TCR profiling kit that can provide information on T cell clonality, but 

even this enriches only alpha and beta chain TCR genes and doesn’t capture gamma or 

delta chain expression. In 5-10 years time, it seems likely that further advances in 

scRNA-seq technologies will allow for even more transcriptome coverage and more 

single cells at more practical costs. This study was carried out using the cutting edge 

approaches of 2016, and it is probable that repeating the experimental pipeline 

presented here using the technology of 2026 will uncover even more novelties of skin 

cell heterogeneity. 

 

6.5 Further work 

To take this work further, I have since been involved in a wider team effort within the 

Haniffa Lab expanding on and comparing this healthy adult dataset to foetal skin as well 

as adult psoriasis and eczema skin. Many of the interesting findings in this study stem 

from finding features that are in accordance with inflammatory responses at low 

amounts in healthy skin, and so looking at inflammatory skin conditions by scRNA-seq 

provides an opportunity to investigate the possibility of certain cell states, such as VE3, 

F3 and CD83+ KCs, being the healthy counterparts to inflammatory cells, with their 

differentiation pathway being exaggerated in disease. Some of the findings from this 

work include the absence of specific lamellar body-expressing KCs in early foetal skin 

and an increase in VE3 cells in both inflammatory skin conditions. 

 

Spatial mapping of the cell clusters found by scRNA-seq would be a good next step in 

expanding on an atlas of cell states in healthy adult skin. As the scope of this study was 
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quite broad, there remain many questions that could be expanded on spatially, such as 

the confirmation of the proposed spatial arrangement of VE1 and VE2 cells.  

 

Protein staining is useful as confirming that a cell expresses a protein is necessary to 

draw functional conclusions about how that cell might use that protein. By IHC, ~1-4 

proteins can be stained for at once. By imaging mass cytometry, this increases to a 

theoretical limit of 40+, but as of writing this a practical limit of closer to 20 is more 

reasonable (Tanner et al., 2013; Baharlou et al., 2019). In all cases these analyse much 

fewer parameters than sequencing, and cell identification must rely on uniquely 

expressed markers to accurately identify specific cells. Crucially, protein staining alone 

as a validation of sequencing data must also rely on the dangerous assumption that RNA 

and protein expression is matched, both on the positive and negative cells – something 

that could be overcome with an intermediate step of extensive plate-based sequencing, 

using indexing data to match protein expression patterns to sequencing clusters. 

 

Directly interrogating spatial RNA expression has the potential to overcome these issues. 

For example, staining with RNA-specific antibodies using RNAScope or using spatial 

transcriptome sequencing techniques could provide useful information. Finding specific 

cell states in close proximity could help to confirm possible interactions. For example, 

are CCL19-expressing F3 cells actively recruiting CCR7+ leukocytes in healthy skin? Such 

validation could also help to confirm that no specific cell subsets failed to be dissociated 

for the scRNA-seq experiments. 

 

A single skin slide from one donor was run and processed using Spatial Transcriptomics, 

whereby a tissue section is attached to a chip covered in 100μm diameter spots, each of 

which contains RNA probes and unique barcodes (Ståhl et al., 2016). The tissue is lysed 

on the chip and RNA from each spot is sequenced as the bulk collection of all cells that 

fell on that area. In theory, this shows RNA expression in situ, and could help to spatially 

decode the heterogeneity revealed in this study. Ultimately, this line of experimentation 

wasn’t continued as the wide diameter spots meant that only 1-2 spots represented the 

200μm depth accounted for in the scRNA-seq data, and so the result was close to 

representing bulk sequencing of separated epidermis and dermis. Higher resolution 



189 

 

solutions are continually being developed, which could provide great insights into the 

arrangement of cells in skin (Burgess, 2019). 

 

Experimental perturbations on VE3 may be able to delineate more about its purpose and 

ontogeny. One difficulty in scRNA-seq analysis is that similar cells forming distinct 

subsets of unique origins are difficult to tell apart from identical cells in different 

activation states, or different phases of differentiation. Cells in both circumstances 

should express similar key functional transcriptomic markers with a transitional range of 

differentially expressed genes. To investigate whether VE3 represents a permanent 

structure present from development, or an activated response to inflammatory 

challenge, one possible experiment would be to try to challenge VE3. TNFα has been 

shown to upregulate many of the adhesion molecules expressed by VE3, including 

ICAM1 and SELE (Yang et al., 2009; Makó et al., 2010). TGFβ reportedly upregulates 

SNCG expression in tumours, which may be driving a VE3 phenotype in the tumour 

vasculature (Shao et al., 2018). If a time course of TNFα or TGFβ treatment of dermal 

sections was able to increase the numbers of VE3 cells present, this would suggest that 

VE3 forms as an activated inflammatory state. This could be measured by flow 

cytometric analysis of SNCG+ vascular cells in treated and untreated dermis. If a 

statistically significant increase in quantity was not seen, however, the reverse would 

not be proven as there may be other inflammatory signals required for VE3 activation. 

Confirmation of VE3-like cells in murine skin, followed by lineage tracing experiments 

tracking SNCG expression in developing mice skin, could be useful to interrogate VE3 as 

a fixed cell type in this case. 

 

Expanding on the datasets collected is possible on multiple fronts. As discussed in 

Chapter 3, hair follicles and their related glands and structures as well as Merkel cells 

and their innervating neurons would need to be captured to fully encompass the cell 

types in human skin. In addition, this study was limited to epidermis and papillary 

dermis. The reticular dermis is less cellular, and physically separating it to dissociate and 

sequence independently would allow for an interesting comparison between the cells 

found there and the papillary dermal cells analysed in this study. 
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Collecting skin from different sites would also greatly expand on this work. This study 

represents a near-comprehensive analysis of cell states in breast skin, and site-specific 

differences in both stromal and immune cells are widely reported at bulk level. 

Consolidating these differences in one high-parameter dataset with scRNA-seq and 

CyTOF would improve on the resource aspect of this data, providing future skin studies 

with site-specific data which is crucial for certain studies, for example anogenital skin in 

research into HIV transfer, or sun-exposed vs non-sun-exposed skin in cancer studies. 

 

Differences in patient demographics are another source of potential investigation. To 

avoid seeing large biological differences within the relatively small sample size of this 

study, only skin from females, collected in the North East of England, was sequenced. 

However, ethnicity and sex innately have marked effects on skin, and ageing and 

environmental factors such as sun exposure continue to affect the composition and 

phenotype of skin cells throughout life (Dao & Kazin, 2007; Solé-Boldo et al., 2020; 

Martincorena et al., 2015). 

 

Thoroughly investigating patient demographics with single cell techniques would require 

a vast sample cohort, but also incredible computational power. scRNA-seq data analysis 

in particular becomes very computationally demanding and time consuming with high 

cell numbers, and analysing high cell numbers in each of tens-to-hundreds of patients in 

parallel would currently be very impractical. Another solution to demographic-based 

questions in scRNA-seq findings would be to take a targeted approach. The specific 

result(s) of interest, found in one patient group by scRNA-seq, could be validated using 

more scalable experimental techniques within other patient groups of interest. 

 

While the effects of tissue dissociation were investigated and minimised here, a more in 

depth look at the exact effects of this process on skin cell transcription could help to 

normalise for (or at least understand) the differences between skin cells in vivo and skin 

cells in their analysed state post-dissociation. Firstly, only one sample per experiment 

was run for most of the optimisation experiments. Repeating these at least three times 

total would allow for the calculation of statistical significance and ensure that the results 

weren’t outliers. Secondly, the ideal experiment would be to sequence skin dissociated 
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for different durations, with multiple donors at each duration, and compare the 

transcriptomic differences. scRNA-seq or CyTOF would be impossible to perform without 

dissociation, but the tissue can be directly lysed to undergo bulk sequencing, which can 

be deconvoluted using scRNA-seq data, although such techniques can struggle to 

identify rare cell types, especially if these cells express no unique markers, or if 

transcription of these markers are sensitive to dissociation effects. Spatial 

transcriptomics would provide another possibility as a compromise between bulk and 

single cell sequencing of “unperturbed” skin. 

 

6.6 Concluding remarks 

The cellular diversity of skin is vital for its ability to protect against immunological 

challenges, maintain tolerance to self and inert antigens, and respond to physical 

damage. This study was able to comprehensively categorise healthy skin cells in a semi-

unbiased manner by both transcript and protein expression, providing an invaluable 

reference for the study of skin diseases and their specific cellular deviations from health. 

In particular, definitive RNA and protein marker characterisation of skin cells will allow 

for much more targeted analysis of populations of interest. This study also highlighted 

previously unreported cell types in healthy skin: the presence non-lymphoid HEV-like 

vessels in the dermis, a rare subset of epidermal mast cells and potentially 

immunomodulatory keratinocytes. The scRNA-seq data also displayed high levels of 

heterogeneity within keratinocytes, fibroblasts, dermal APCs, LCs, schwann cells, NK 

cells and vascular and lymphatic endothelial cells. These results constitute a significant 

contribution to the pool of knowledge in this field. Building upon this framework by 

further investigating the functional roles of the cells identified, categorising hair follicles 

and Merkel cells, contrasting patient demographics and integrating other skin single cell 

datasets could re-determine the way in which skin cells are analysed and interpreted 

going forward. 
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7  Appendix tables 

Appendix Table 1 

Gene Cluster p_val p_val_adj FC pct.1 pct.2 

TNFAIP6 F1 0 0 12.07701033 0.999 0.345 

THBS2 F1 0 0 9.139773447 0.993 0.235 

SERPINE2 F1 0 0 7.655962455 0.93 0.286 

STC1 F1 0 0 7.058463987 0.727 0.301 

PTGES F1 0 0 6.856350275 0.997 0.249 

MMP2 F1 0 0 6.026928253 0.998 0.259 

PTX3 F1 0 0 5.811789942 0.444 0.067 

MT1X F1 0 0 5.614997982 0.88 0.322 

IL6 F1 0 0 5.384974766 0.904 0.286 

AKR1C1 F1 0 0 5.177622277 0.89 0.392 

G0S2 F1 0 0 4.996891006 0.794 0.438 

PDPN F1 0 0 4.946624222 0.981 0.257 

MT2A F1 0 0 4.906508534 0.999 0.786 

COMP F1 0 0 4.859774548 0.544 0.069 

DCN F1 0 0 4.857275516 0.989 0.309 

PLIN2 F1 0 0 4.845230611 0.922 0.503 

CFD F1 0 0 4.544779134 0.968 0.296 

CD44 F1 0 0 4.511398952 0.997 0.37 

COL6A2 F1 0 0 4.374495221 0.999 0.358 

CRISPLD2 F1 0 0 4.367825926 0.976 0.238 

NAMPT F1 0 0 4.344654886 0.996 0.781 

CTSL F1 0 0 4.323252206 0.945 0.422 

IGFBP4 F1 0 0 4.292129023 0.969 0.391 

AKR1C2 F1 0 0 4.275432156 0.778 0.244 

CEMIP F1 0 0 4.226899799 0.654 0.111 

GREM1 F1 0 0 4.117239982 0.684 0.096 

ADAMTS5 F1 0 0 4.099964115 0.664 0.068 

CXCL14 F1 0 0 3.838872348 0.893 0.217 

GLUL F1 0 0 3.830049779 0.917 0.585 

CP F1 0 0 3.765961572 0.825 0.133 

COL1A1 F2 0 0 17.04066191 0.871 0.196 

COL1A2 F2 0 0 9.634031749 0.898 0.28 

COL3A1 F2 0 0 9.188583877 0.819 0.211 

CXCL3 F2 0 0 9.041058049 0.68 0.208 

SFRP2 F2 0 0 9.00582815 0.769 0.173 

PTGDS F2 0 0 8.505071008 0.768 0.236 

CXCL12 F2 0 0 8.280744951 0.724 0.231 
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MT1M F2 0 0 7.174043136 0.791 0.205 

DCN F2 0 0 6.94409887 0.992 0.364 

HSPA1A F2 0 0 6.774176173 0.837 0.532 

CCDC80 F2 0 0 6.758430057 0.932 0.306 

MT1E F2 0 0 6.642733344 0.765 0.178 

HSPA1B F2 0 0 6.638511849 0.766 0.273 

CFD F2 0 0 6.242307816 0.966 0.351 

PLAC9 F2 0 0 5.953643913 0.75 0.152 

TPPP3 F2 0 0 5.536965223 0.657 0.113 

CXCL2 F2 0 0 5.289597048 0.673 0.318 

S100A4 F2 0 0 5.183238204 0.933 0.391 

MFAP4 F2 0 0 5.122282856 0.864 0.225 

SERPINF1 F2 0 0 4.897063255 0.896 0.26 

SEPP1 F2 0 0 4.846551391 0.814 0.269 

TSC22D3 F2 0 0 4.838582745 0.856 0.298 

FBLN1 F2 0 0 4.78751356 0.714 0.17 

APOE F2 0 0 4.665701445 0.491 0.135 

DPT F2 0 0 4.609801233 0.879 0.208 

LUM F2 0 0 4.5066534 0.845 0.266 

CXCL14 F2 0 0 4.47479844 0.898 0.272 

GEM F2 0 0 4.36839009 0.779 0.276 

CTSK F2 0 0 4.299703355 0.904 0.262 

COL6A1 F2 0 0 4.216100939 0.971 0.376 

CCL19 F3 0 0 21.26528073 0.828 0.193 

IGFBP5 F3 0 0 6.800469652 0.835 0.251 

FGF7 F3 0 0 4.43137731 0.76 0.167 

MEDAG F3 0 0 4.282088463 0.942 0.282 

CD82 F3 0 0 3.755577973 0.779 0.112 

TNFAIP6 F3 0 0 3.315545653 0.998 0.411 

CRISPLD2 F3 0 0 3.28846467 0.95 0.314 

TNC F3 0 0 3.277036986 0.63 0.126 

C3 F3 0 0 3.218764334 0.794 0.168 

CEMIP F3 0 0 3.141452497 0.692 0.163 

SERPINE2 F3 0 0 3.132526448 0.913 0.353 

PTGES F3 0 0 3.099446194 0.984 0.325 

TGFB3 F3 0 0 2.990080291 0.59 0.1 

TUBB2B F3 0 0 2.965600395 0.647 0.18 

CD44 F3 0 0 2.742652287 0.997 0.433 

PTGS2 F3 0 0 2.70739641 0.649 0.186 

PRDX6 F3 0 0 2.667608988 0.941 0.71 

EDNRB F3 0 0 2.613099988 0.727 0.253 

C1S F3 0 0 2.609683766 0.967 0.343 
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APOE F3 0 0 2.605061035 0.728 0.125 

CXCL14 F3 0 0 2.531935697 0.838 0.289 

CTSL F3 0 0 2.500153428 0.944 0.475 

BNIP3L F3 0 0 2.486558244 0.971 0.746 

MT1X F3 0 0 2.473817956 0.846 0.381 

TMEM176B F3 0 0 2.439862801 0.728 0.184 

CFH F3 0 0 2.425986604 0.941 0.349 

MT1A F3 0 0 2.40532425 0.609 0.197 

CYP1B1 F3 0 0 2.346135809 0.718 0.212 

IL6 F3 0 0 2.345757152 0.858 0.352 

AXL F3 0 0 2.342593661 0.807 0.261 

RGS5 Pericyte 0 0 18.64537522 0.762 0.039 

MGP Pericyte 0 0 7.238671695 0.79 0.438 

NDUFA4L2 Pericyte 0 0 6.714125441 0.731 0.048 

TFPI Pericyte 0 0 5.478454534 0.909 0.54 

KCNE4 Pericyte 0 0 5.072996593 0.755 0.093 

NR2F2 Pericyte 0 0 4.699060562 0.673 0.131 

KCNJ8 Pericyte 0 0 4.636718646 0.598 0.015 

PDGFRB Pericyte 0 0 4.305616983 0.864 0.212 

GJA4 Pericyte 0 0 4.302113279 0.638 0.044 

CPE Pericyte 0 0 4.106765345 0.654 0.073 

LURAP1L Pericyte 0 0 3.989245094 0.619 0.051 

C11orf96 Pericyte 0 0 3.658131178 0.675 0.096 

HIPK2 Pericyte 0 0 3.446498884 0.661 0.175 

CYP26B1 Pericyte 0 0 3.161539263 0.542 0.118 

SSTR2 Pericyte 0 0 3.158846028 0.487 0.027 

SNHG15 Pericyte 0 0 3.086471412 0.74 0.418 

PI15 Pericyte 0 0 3.077537651 0.305 0.008 

VEGFA Pericyte 0 0 2.917523448 0.681 0.27 

ZFHX3 Pericyte 0 0 2.906521782 0.588 0.104 

TPM2 Pericyte 0 0 2.900582527 0.54 0.124 

EDNRB Pericyte 0 0 2.893515073 0.729 0.253 

ZNF503 Pericyte 0 0 2.713766992 0.567 0.144 

PROCR Pericyte 0 0 2.67648698 0.553 0.186 

SMIM3 Pericyte 0 0 2.638875012 0.649 0.156 

CALD1 Pericyte 0 0 2.627235251 0.97 0.768 

CHN1 Pericyte 0 0 2.622943726 0.435 0.078 

CLMN Pericyte 0 0 2.5034239 0.459 0.011 

CRYAB Pericyte 0 0 2.468551136 0.678 0.239 

PRRX1 Pericyte 0 0 2.375959359 0.631 0.191 

SH3PXD2A Pericyte 0 0 2.353498493 0.656 0.243 

CDH19 Schwann 0 0 8.051749806 0.79 0.003 



195 

 

NRXN1 Schwann 0 0 7.397381699 0.728 0.001 

ANK3 Schwann 0 0 6.327759946 0.667 0.004 

MYOT Schwann 0 0 5.193800166 0.556 0.001 

CADM2 Schwann 0 0 4.124918583 0.531 0.007 

COL28A1 Schwann 0 0 4.054130387 0.667 0.001 

S100B Schwann 0 0 3.971816176 0.321 0.004 

ITGB8 Schwann 0 0 3.865815509 0.543 0.013 

SLITRK6 Schwann 0 0 3.573965206 0.519 0.001 

CADM4 Schwann 0 0 3.443702583 0.63 0.02 

FOXD3-AS1 Schwann 0 0 3.344356283 0.531 0.003 

FIGN Schwann 0 0 3.1343144 0.519 0.006 

SOX10 Schwann 0 0 2.922821964 0.543 0.005 

MAL Schwann 0 0 2.721143821 0.321 0.003 

GFRA3 Schwann 0 0 2.59077766 0.309 0 

XKR4 Schwann 0 0 2.504580273 0.358 0.002 

ERBB3 Schwann 0 0 2.385438437 0.358 0.005 

ART3 Schwann 0 0 2.133572804 0.309 0.001 

SLC35F1 Schwann 0 0 1.899552698 0.309 0.002 

NTM Schwann 5.53E-303 1.29E-298 4.38482911 0.568 0.017 

PCSK2 Schwann 5.12E-300 1.19E-295 2.906220649 0.444 0.01 

IQGAP2 Schwann 1.73E-276 4.03E-272 2.801206063 0.494 0.014 

SSUH2 Schwann 1.64E-250 3.83E-246 2.296571231 0.346 0.007 

GPM6B Schwann 2.29E-246 5.34E-242 9.297041666 0.926 0.061 

NGFR Schwann 3.68E-244 8.58E-240 3.597730568 0.506 0.016 

PLP1 Schwann 1.29E-234 3.00E-230 6.368680228 0.741 0.038 

SEMA3C Schwann 8.17E-229 1.90E-224 4.471026421 0.679 0.033 

GPR155 Schwann 7.11E-190 1.66E-185 3.534128922 0.58 0.029 

MPZ Schwann 7.63E-163 1.78E-158 11.98441232 0.321 0.01 

COL8A1 Schwann 3.68E-131 8.58E-127 2.301120433 0.321 0.012 

SFRP4 Stromal_Schwann 0 0 10.8015825 0.551 0.019 

NGFR Stromal_Schwann 0 0 3.156125895 0.488 0.016 

CLDN1 Stromal_Schwann 1.95E-239 4.55E-235 3.169207105 0.409 0.016 

P2RY14 Stromal_Schwann 7.32E-224 1.71E-219 2.557378236 0.394 0.016 

C2orf40 Stromal_Schwann 6.91E-192 1.61E-187 2.11651273 0.323 0.013 

GPC3 Stromal_Schwann 2.73E-151 6.36E-147 3.271408382 0.535 0.046 

SLC22A3 Stromal_Schwann 3.05E-133 7.10E-129 1.845190491 0.354 0.022 

MTSS1 Stromal_Schwann 2.69E-122 6.27E-118 2.458940397 0.504 0.05 

INHBA Stromal_Schwann 7.76E-112 1.81E-107 2.482125677 0.346 0.026 

HGF Stromal_Schwann 1.73E-109 4.03E-105 2.162221132 0.37 0.029 

ABCA8 Stromal_Schwann 1.19E-98 2.77E-94 2.897389371 0.449 0.049 

LUM Stromal_Schwann 2.05E-89 4.78E-85 15.32410296 0.945 0.313 

MFAP5 Stromal_Schwann 1.01E-87 2.37E-83 3.361388694 0.528 0.073 
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DKK3 Stromal_Schwann 1.38E-82 3.22E-78 2.577803889 0.559 0.089 

IGFBP6 Stromal_Schwann 1.78E-78 4.14E-74 5.524663417 0.598 0.11 

CYP1B1 Stromal_Schwann 5.62E-76 1.31E-71 11.36144604 0.803 0.244 

PLEKHA4 Stromal_Schwann 3.31E-67 7.73E-63 2.898774023 0.63 0.139 

TGFBI Stromal_Schwann 4.34E-63 1.01E-58 4.404832904 0.685 0.18 

NOV Stromal_Schwann 6.41E-58 1.49E-53 2.306356898 0.323 0.041 

PDGFRL Stromal_Schwann 8.13E-57 1.90E-52 2.430482642 0.535 0.109 

DCN Stromal_Schwann 8.32E-57 1.94E-52 2.807786554 1 0.416 

LRRN4CL Stromal_Schwann 1.75E-56 4.08E-52 2.091702489 0.378 0.057 

PRRX1 Stromal_Schwann 2.68E-56 6.24E-52 3.333002765 0.724 0.218 

FGF7 Stromal_Schwann 2.54E-55 5.91E-51 5.390987116 0.709 0.205 

PTGDS Stromal_Schwann 3.42E-50 7.98E-46 9.255883864 0.756 0.28 

APOD Stromal_Schwann 8.10E-45 1.89E-40 36.74191335 0.835 0.44 

CHRDL1 Stromal_Schwann 1.09E-44 2.55E-40 2.181977387 0.472 0.104 

LTBP4 Stromal_Schwann 3.81E-43 8.88E-39 2.903540649 0.78 0.361 

MATN2 Stromal_Schwann 4.16E-43 9.70E-39 1.799343695 0.362 0.067 

LSP1 Stromal_Schwann 3.28E-42 7.64E-38 1.662657193 0.307 0.048 

DCT Melanocyte 0 0 82.61034845 0.988 0 

TYRP1 Melanocyte 0 0 47.99542911 0.947 0 

PMEL Melanocyte 0 0 39.56373908 0.967 0.007 

MLANA Melanocyte 0 0 35.74107086 0.984 0.001 

CAPN3 Melanocyte 0 0 11.68848078 0.893 0.005 

CYB561A3 Melanocyte 0 0 10.59804392 0.832 0.071 

PLP1 Melanocyte 0 0 8.368797148 0.893 0.032 

QPCT Melanocyte 0 0 8.08184621 0.861 0.117 

TYR Melanocyte 0 0 6.509830994 0.75 0 

GPM6B Melanocyte 0 0 6.288758218 0.779 0.056 

CHCHD6 Melanocyte 0 0 6.2748146 0.709 0.033 

KRT1 Melanocyte 0 0 6.221240054 0.766 0.039 

MFSD12 Melanocyte 0 0 6.186074991 0.75 0.052 

PCSK2 Melanocyte 0 0 6.151651996 0.783 0.003 

NSG1 Melanocyte 0 0 6.015767952 0.791 0.002 

TFAP2A Melanocyte 0 0 5.882201008 0.754 0.006 

BCAN Melanocyte 0 0 5.787947343 0.742 0.001 

TRPM1 Melanocyte 0 0 5.443524288 0.746 0 

SFN Melanocyte 0 0 5.376778933 0.795 0.069 

DMKN Melanocyte 0 0 5.293600773 0.807 0.035 

STXBP6 Melanocyte 0 0 4.02691734 0.73 0.043 

FRZB Melanocyte 0 0 3.901811254 0.561 0.017 

SLCO4A1-
AS1 Melanocyte 0 0 3.749466724 0.602 0.006 

KRTDAP Melanocyte 0 0 3.736026755 0.635 0.029 
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RAB38 Melanocyte 0 0 3.725073464 0.643 0.022 

FXYD3 Melanocyte 0 0 3.68968717 0.574 0.005 

CRABP1 Melanocyte 0 0 3.67467313 0.48 0.019 

MIA Melanocyte 0 0 3.55002793 0.488 0.005 

KRT17 Melanocyte 0 0 3.446357986 0.676 0.045 

KIT Melanocyte 0 0 3.406209955 0.594 0.006 

CCL21 LE1 0 0 36.579416 0.967 0.222 

TFF3 LE1 0 0 27.56395513 0.975 0.082 

SDPR LE1 0 0 8.537278725 0.867 0.032 

FABP4 LE1 0 0 6.493791424 0.64 0.081 

LYVE1 LE1 0 0 5.67995764 0.692 0.067 

EFEMP1 LE1 0 0 5.369110772 0.816 0.219 

SNCG LE1 0 0 5.365495877 0.739 0.045 

MMRN1 LE1 0 0 5.342780511 0.787 0.074 

LAPTM5 LE1 0 0 4.522067176 0.779 0.1 

CHRDL1 LE1 0 0 2.916030767 0.602 0.094 

IGF1 LE1 0 0 2.508052666 0.424 0.03 

UCP2 LE1 0 0 2.32297169 0.391 0.011 

PDE1A LE1 0 0 2.054385393 0.387 0.016 

CRACR2B LE1 0 0 1.866015238 0.335 0.017 

SCNN1B LE1 0 0 1.820518507 0.308 0.011 

PROX1 LE1 2.21E-258 5.14E-254 2.537780348 0.495 0.079 

FXYD6 LE1 1.09E-254 2.54E-250 2.376729019 0.503 0.084 

TFPI LE1 1.96E-250 4.57E-246 3.87259123 0.992 0.556 

FLT4 LE1 1.51E-235 3.52E-231 1.753177916 0.325 0.037 

HES1 LE1 5.23E-233 1.22E-228 7.201088287 0.654 0.162 

ADIRF LE1 2.11E-231 4.92E-227 6.282208368 0.938 0.567 

CLDN5 LE1 7.71E-213 1.80E-208 3.809675538 0.936 0.399 

FABP5 LE1 3.31E-201 7.72E-197 2.922868392 0.832 0.293 

HSPA1A LE1 1.22E-198 2.84E-194 9.146164961 0.915 0.551 

RAMP2 LE1 7.55E-179 1.76E-174 3.77656577 0.793 0.33 

CCND1 LE1 9.61E-172 2.24E-167 2.662317454 0.584 0.162 

ARL4A LE1 9.69E-168 2.26E-163 3.622832473 0.853 0.436 

HSPA1B LE1 2.02E-163 4.72E-159 6.859993041 0.739 0.307 

GADD45B LE1 2.01E-161 4.68E-157 6.982039541 0.957 0.754 

ECSCR.1 LE1 1.81E-160 4.23E-156 2.85918206 0.894 0.465 

CCL21 LE2 0 0 12.02136532 0.931 0.204 

FABP4 LE2 0 0 10.85876777 0.628 0.067 

MMRN1 LE2 0 0 7.737375363 0.838 0.053 

AKR1C3 LE2 0 0 5.223892704 0.907 0.509 

FABP5 LE2 0 0 5.189222386 0.816 0.28 

ANGPT2 LE2 0 0 4.919836368 0.89 0.441 
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TFF3 LE2 0 0 4.751773918 0.85 0.064 

STMN1 LE2 0 0 4.439261787 0.943 0.385 

LYVE1 LE2 0 0 4.241353062 0.691 0.051 

TFPI LE2 0 0 4.031197823 0.981 0.545 

EGLN3 LE2 0 0 4.024765519 0.859 0.298 

CNKSR3 LE2 0 0 3.944603338 0.86 0.271 

AKR1C1 LE2 0 0 3.923799163 0.943 0.45 

CLDN5 LE2 0 0 3.810925205 0.913 0.386 

NRP2 LE2 0 0 3.616308137 0.736 0.172 

PROX1 LE2 0 0 3.562433963 0.619 0.062 

PPFIBP1 LE2 0 0 3.379544426 0.889 0.362 

CARHSP1 LE2 0 0 3.262138738 0.874 0.475 

IRF8 LE2 0 0 3.202624084 0.672 0.101 

SNCA LE2 0 0 3.051509865 0.664 0.092 

NUPR1 LE2 0 0 3.003777358 0.976 0.699 

SCN3B LE2 0 0 2.97822545 0.619 0.036 

ARL4A LE2 0 0 2.954498398 0.875 0.424 

CD200 LE2 0 0 2.94029674 0.877 0.368 

PLA1A LE2 0 0 2.756594047 0.5 0.013 

COX17 LE2 0 0 2.747199187 0.86 0.493 

TGFB2 LE2 0 0 2.740498485 0.627 0.025 

HEBP1 LE2 0 0 2.734183331 0.839 0.398 

C16orf62 LE2 0 0 2.652599216 0.657 0.113 

CHRDL1 LE2 0 0 2.573816004 0.628 0.08 

EMCN VE1 0 0 4.4751932 0.956 0.377 

PLS3 VE1 0 0 3.507352316 0.964 0.511 

CYP1A1 VE1 0 0 3.505113585 0.471 0.121 

CX3CL1 VE1 0 0 3.495485106 0.614 0.225 

SPARCL1 VE1 0 0 3.354468197 0.989 0.576 

HEY1 VE1 0 0 3.114718182 0.607 0.128 

RCAN1 VE1 0 0 3.022621637 0.96 0.551 

ENG VE1 0 0 2.767292876 0.872 0.597 

TAGLN VE1 0 0 2.716730379 0.452 0.196 

IFI27 VE1 0 0 2.684363324 0.957 0.602 

MRPL33 VE1 0 0 2.621214604 0.956 0.595 

RBP7 VE1 0 0 2.608931603 0.475 0.131 

PNP VE1 0 0 2.555337478 0.885 0.46 

PLVAP VE1 0 0 2.547462808 0.876 0.387 

CD200 VE1 0 0 2.514174096 0.746 0.269 

SPRY1 VE1 0 0 2.499568095 0.831 0.58 

TSPAN13 VE1 0 0 2.447236514 0.695 0.27 

ADGRL4 VE1 0 0 2.418685683 0.857 0.331 
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STK38L VE1 0 0 2.385710453 0.61 0.254 

MYL9 VE1 0 0 2.374380202 0.714 0.388 

CD83 VE1 0 0 2.284138406 0.528 0.194 

SOX17 VE1 0 0 2.271459115 0.597 0.223 

SGK1 VE1 0 0 2.261424434 0.688 0.397 

MYCBP2 VE1 0 0 2.242233955 0.844 0.506 

CALCRL VE1 0 0 2.224308088 0.774 0.333 

MTUS1 VE1 0 0 2.216323215 0.484 0.217 

MCTP1 VE1 0 0 2.213904868 0.839 0.335 

MYLK VE1 0 0 2.177794109 0.727 0.315 

PKIG VE1 0 0 2.173386705 0.897 0.649 

PLK2 VE1 0 0 2.168395564 0.447 0.176 

ACKR1 VE2 0 0 4.15347959 0.762 0.15 

SERPINE1 VE2 0 0 4.090638477 0.954 0.568 

HLA-DRB1 VE2 0 0 3.722493614 0.989 0.517 

TM4SF1 VE2 0 0 3.091981868 1 0.563 

HLA-DQA1 VE2 0 0 3.015197808 0.709 0.177 

EDN1 VE2 0 0 2.78828737 0.444 0.178 

FABP5 VE2 0 0 2.727977 0.5 0.239 

UPP1 VE2 0 0 2.694008344 0.951 0.478 

NCOA7 VE2 0 0 2.619760423 0.857 0.6 

HLA-DQB1 VE2 0 0 2.612968092 0.844 0.272 

CAV1 VE2 0 0 2.512104753 0.988 0.767 

CYR61 VE2 0 0 2.508957582 0.766 0.496 

HLA-DRB5 VE2 0 0 2.462262871 0.892 0.348 

TMEM173 VE2 0 0 2.400436325 0.884 0.453 

COL15A1 VE2 0 0 2.396656757 0.924 0.462 

SELE VE2 0 0 2.331816508 0.546 0.132 

CD74 VE2 0 0 2.319751613 0.987 0.579 

HLA-DRA VE2 0 0 2.306768867 0.937 0.431 

PRSS23 VE2 0 0 2.273642494 0.822 0.334 

EGFL7 VE2 0 0 2.268909875 0.654 0.242 

C10orf10 VE2 0 0 2.249843197 0.908 0.459 

PDLIM1 VE2 0 0 2.233343356 0.972 0.72 

PIM3 VE2 0 0 2.222104285 0.868 0.507 

ESAM VE2 0 0 2.213954371 0.908 0.432 

SLCO4A1 VE2 0 0 2.191209329 0.82 0.292 

PLVAP VE2 0 0 2.18316196 0.878 0.39 

ACTN1 VE2 0 0 2.168561796 0.976 0.577 

ZNF385D VE2 0 0 2.124636381 0.876 0.392 

CLDN5 VE2 0 0 2.10746063 0.694 0.316 

ETS2 VE2 0 0 2.09610904 0.961 0.581 
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AQP1 VE3 0 0 6.790659202 0.928 0.209 

SDPR VE3 5.16E-269 1.20E-264 2.247503835 0.458 0.044 

SNCG VE3 1.33E-267 3.11E-263 2.663031273 0.493 0.054 

RNASE1 VE3 1.84E-262 4.30E-258 3.42070776 0.622 0.096 

HLA-DMA VE3 3.00E-243 6.98E-239 3.3112151 0.666 0.123 

CCL14 VE3 5.12E-238 1.19E-233 4.377189552 0.758 0.17 

SELE VE3 3.67E-225 8.55E-221 18.76593531 0.818 0.228 

CD34 VE3 1.11E-203 2.60E-199 3.483016383 0.775 0.201 

CYTL1 VE3 6.86E-203 1.60E-198 2.237366181 0.357 0.037 

IL33 VE3 8.37E-199 1.95E-194 2.361762522 0.516 0.078 

ACKR1 VE3 1.62E-186 3.78E-182 9.968142915 0.839 0.297 

RAMP3 VE3 3.28E-183 7.65E-179 2.663719901 0.536 0.096 

CD74 VE3 2.64E-176 6.15E-172 4.574791729 0.997 0.677 

HLA-DRA VE3 3.29E-167 7.67E-163 4.636888694 0.971 0.553 

CTGF VE3 1.05E-164 2.45E-160 3.863035685 0.651 0.152 

HSPA1B VE3 1.24E-164 2.88E-160 4.100736478 0.85 0.308 

HLA-DPA1 VE3 1.03E-163 2.41E-159 4.198004698 0.916 0.416 

PDK4 VE3 3.14E-154 7.31E-150 3.882178158 0.646 0.166 

ADIRF VE3 5.58E-145 1.30E-140 4.842436775 0.928 0.57 

ICAM1 VE3 4.13E-140 9.62E-136 4.939901762 0.957 0.727 

HSPA1A VE3 1.21E-134 2.81E-130 4.530594242 0.914 0.553 

GNG11 VE3 2.24E-134 5.22E-130 3.219935081 0.98 0.619 

SCARB1 VE3 4.13E-134 9.62E-130 2.013030958 0.366 0.058 

HLA-DPB1 VE3 4.57E-131 1.06E-126 3.633871055 0.873 0.469 

RND1 VE3 4.32E-130 1.01E-125 4.880807592 0.798 0.33 

ITM2A VE3 6.62E-124 1.54E-119 2.956733676 0.839 0.364 

RAMP2 VE3 4.45E-119 1.04E-114 3.139159886 0.798 0.333 

ICAM2 VE3 3.82E-117 8.90E-113 2.471436098 0.507 0.128 

BCAM VE3 2.53E-113 5.90E-109 2.817770383 0.83 0.392 

Appendix Table 1 – Detailed nonimmune cluster differentially expressed genes. 

Differentially expressed genes calculated by Dr Peter Vegh. The top 30 differentially 

expressed genes per cluster between all nonimmune cells, using the annotations in 

Figure 41. FC = Expression fold change between the cluster and all other nonimmune 

cells. pct1 = The percentage of cells in the cluster expressing the gene. pct2 = The 

percentage of all nonimmune cells expressing the gene. p_val = p value; p_val_adj = 

adjusted p value.
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Appendix Table 2 

Gene Cluster p_val p_val_adj FC pct.1 pct.2 

IER2 CD83_KC 0 0 6.675290753 0.993 0.759 

EIF5 CD83_KC 0 0 6.332748961 0.983 0.58 

RSRP1 CD83_KC 0 0 5.698293897 0.974 0.599 

NR4A2 CD83_KC 0 0 5.639839976 0.744 0.142 

EGR1 CD83_KC 0 0 5.551869024 0.882 0.494 

TRA2B CD83_KC 0 0 5.519836487 0.99 0.644 

IRF1 CD83_KC 0 0 5.307507862 0.972 0.502 

RSRC2 CD83_KC 0 0 5.153803431 0.997 0.757 

HIST1H4C CD83_KC 0 0 5.139470069 0.884 0.264 

CCL20 CD83_KC 0 0 5.066553803 0.664 0.297 

PPP1R10 CD83_KC 0 0 5.061975711 0.875 0.24 

BAZ1A CD83_KC 0 0 4.966619981 0.983 0.746 

CLK1 CD83_KC 0 0 4.878709984 0.988 0.665 

DNAJA1 CD83_KC 0 0 4.851498222 0.974 0.598 

YME1L1 CD83_KC 0 0 4.745463508 0.893 0.327 

ARID4B CD83_KC 0 0 4.451682476 0.909 0.374 

TUBB4B CD83_KC 0 0 4.438752845 0.982 0.691 

GPBP1 CD83_KC 0 0 4.234178678 0.974 0.599 

WSB1 CD83_KC 0 0 4.232163917 0.973 0.562 

NCOA7 CD83_KC 0 0 4.193773592 0.828 0.413 

DDX39A CD83_KC 0 0 4.077378239 0.927 0.338 

ZBTB10 CD83_KC 0 0 4.034030347 0.751 0.118 

ID3 CD83_KC 0 0 4.032075101 0.766 0.233 

TRA2A CD83_KC 0 0 3.99445965 0.931 0.389 

FOS CD83_KC 0 0 3.986961074 0.944 0.606 

ARL5B CD83_KC 0 0 3.962181335 0.957 0.497 

KMT2E CD83_KC 0 0 3.927524952 0.944 0.484 

NR4A1 CD83_KC 0 0 3.925421846 0.961 0.58 

NR1D1 CD83_KC 0 0 3.865609836 0.978 0.705 

SERTAD1 CD83_KC 0 0 3.770099493 0.925 0.432 

STMN1 Mitotic_KC 0 0 7.615204598 0.927 0.134 

CDK1 Mitotic_KC 0 0 4.530656035 0.899 0.046 

UBE2C Mitotic_KC 0 0 4.510343314 0.765 0.023 

NUSAP1 Mitotic_KC 0 0 3.504960505 0.864 0.106 

TOP2A Mitotic_KC 0 0 3.476584412 0.711 0.009 

CENPW Mitotic_KC 0 0 3.270965208 0.866 0.109 

CENPF Mitotic_KC 0 0 3.215735055 0.646 0.01 

KIAA0101 Mitotic_KC 0 0 2.900758825 0.619 0.019 

ANLN Mitotic_KC 0 0 2.791121462 0.709 0.023 
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PRC1 Mitotic_KC 0 0 2.777128876 0.782 0.07 

TK1 Mitotic_KC 0 0 2.612459886 0.567 0.015 

AURKB Mitotic_KC 0 0 2.504323908 0.646 0.006 

CDKN3 Mitotic_KC 0 0 2.44928279 0.619 0.012 

CCNB2 Mitotic_KC 0 0 2.430372849 0.616 0.012 

BIRC5 Mitotic_KC 0 0 2.376682196 0.597 0.016 

MKI67 Mitotic_KC 0 0 2.347879186 0.612 0.006 

ASPM Mitotic_KC 0 0 2.245544856 0.502 0.007 

ZWINT Mitotic_KC 0 0 2.227122032 0.659 0.022 

TPX2 Mitotic_KC 0 0 2.155984031 0.612 0.02 

MAD2L1 Mitotic_KC 0 0 2.143847678 0.655 0.028 

PBK Mitotic_KC 0 0 2.138242766 0.578 0.004 

KIF20B Mitotic_KC 0 0 2.138228628 0.567 0.074 

CCNB1 Mitotic_KC 0 0 2.134911078 0.422 0.022 

CDC20 Mitotic_KC 0 0 2.054791759 0.437 0.012 

HMMR Mitotic_KC 0 0 2.044355914 0.489 0.007 

NUF2 Mitotic_KC 0 0 1.959228717 0.562 0.007 

SMC2 Mitotic_KC 0 0 1.910217021 0.64 0.066 

TROAP Mitotic_KC 0 0 1.899066874 0.466 0.004 

UBE2T Mitotic_KC 0 0 1.879126356 0.537 0.027 

RRM2 Mitotic_KC 0 0 1.874875573 0.401 0.004 

KRTDAP Postmitotic_KC 0 0 12.07245251 0.95 0.346 

SPRR1B Postmitotic_KC 0 0 8.774331158 0.678 0.221 

SBSN Postmitotic_KC 0 0 8.370798971 0.871 0.328 

KRT1 Postmitotic_KC 0 0 6.921164425 0.98 0.483 

LYPD3 Postmitotic_KC 0 0 5.574193703 0.849 0.336 

CALML5 Postmitotic_KC 0 0 5.565261774 0.563 0.135 

KRT10 Postmitotic_KC 0 0 3.882492055 0.964 0.686 

CD24 Postmitotic_KC 0 0 3.594958356 0.449 0.128 

FABP5 Postmitotic_KC 0 0 3.226072342 0.34 0.099 

KRT16 Postmitotic_KC 0 0 3.187894067 0.722 0.487 

SULT2B1 Postmitotic_KC 0 0 2.947868244 0.531 0.165 

LAMTOR4 Postmitotic_KC 0 0 2.889885878 0.929 0.677 

CA2 Postmitotic_KC 0 0 2.866888359 0.631 0.364 

CSTA Postmitotic_KC 0 0 2.750305071 0.808 0.528 

TMEM40 Postmitotic_KC 0 0 2.512458945 0.623 0.19 

PRSS3 Postmitotic_KC 0 0 2.457717342 0.62 0.254 

DEFB1 Postmitotic_KC 0 0 2.4121537 0.726 0.259 

MSMO1 Postmitotic_KC 0 0 2.340249893 0.533 0.166 

DBI Postmitotic_KC 0 0 2.220742054 0.791 0.504 

CSTB Postmitotic_KC 0 0 2.213359297 0.912 0.675 

NUPR1 Postmitotic_KC 0 0 2.119078376 0.921 0.685 
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GLTP Postmitotic_KC 0 0 2.0327077 0.539 0.241 

APOE Postmitotic_KC 0 0 2.007094286 0.684 0.258 

DYNLL1 Postmitotic_KC 0 0 1.998058258 0.92 0.712 

RHOV Postmitotic_KC 0 0 1.951431194 0.749 0.248 

TMEM45B Postmitotic_KC 0 0 1.910089422 0.347 0.042 

TSC22D1 Postmitotic_KC 0 0 1.879918063 0.728 0.515 

CTNNBIP1 Postmitotic_KC 0 0 1.822574733 0.5 0.221 

PKP1 Postmitotic_KC 0 0 1.714431264 0.694 0.422 

KCNK7 Postmitotic_KC 0 0 1.706763455 0.453 0.099 

KRT15 Premitotic_KC 0 0 11.38496611 0.816 0.093 

POSTN Premitotic_KC 0 0 6.84303572 0.765 0.053 

KRT5 Premitotic_KC 0 0 5.837743857 0.998 0.719 

COL17A1 Premitotic_KC 0 0 5.348815699 0.94 0.237 

DST Premitotic_KC 0 0 3.54687091 0.881 0.402 

ZFP36L2 Premitotic_KC 0 0 3.134501964 0.845 0.581 

CYR61 Premitotic_KC 0 0 2.950208896 0.469 0.205 

S100A6 Premitotic_KC 0 0 2.94661124 0.868 0.419 

IFITM3 Premitotic_KC 0 0 2.839256501 0.69 0.2 

PDLIM1 Premitotic_KC 0 0 2.802099834 0.869 0.486 

ITGB1 Premitotic_KC 0 0 2.74922679 0.758 0.247 

SOX4 Premitotic_KC 0 0 2.666276033 0.317 0.113 

SYT8 Premitotic_KC 0 0 2.634834147 0.71 0.252 

TGFBI Premitotic_KC 0 0 2.433934559 0.725 0.309 

GADD45A Premitotic_KC 0 0 2.42658929 0.729 0.374 

BGN Premitotic_KC 0 0 2.352650512 0.596 0.179 

LAMB3 Premitotic_KC 0 0 2.290895499 0.642 0.212 

EFEMP1 Premitotic_KC 0 0 2.253835889 0.51 0.066 

RND3 Premitotic_KC 0 0 2.211151886 0.821 0.598 

ITGA2 Premitotic_KC 0 0 2.173046282 0.486 0.138 

ASS1 Premitotic_KC 0 0 2.076950189 0.47 0.039 

CAV2 Premitotic_KC 0 0 2.059749637 0.793 0.522 

WNT3 Premitotic_KC 0 0 2.049212056 0.493 0.073 

CTNNAL1 Premitotic_KC 0 0 2.028828361 0.482 0.015 

DCN Premitotic_KC 0 0 1.957127966 0.514 0.193 

IL1R2 Premitotic_KC 0 0 1.872429324 0.308 0.103 

ASPN Premitotic_KC 0 0 1.846601996 0.327 0.042 

GDPD2 Premitotic_KC 0 0 1.840814075 0.398 0.029 

COL7A1 Premitotic_KC 0 0 1.812454056 0.39 0.066 

ITGA6 Premitotic_KC 0 0 1.807363037 0.463 0.123 

Appendix Table 2 – Detailed keratinocyte cluster differentially expressed genes. 

Differentially expressed genes calculated by Dr Peter Vegh. The top 30 differentially 
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expressed genes per cluster between all keratinocytes, using the annotations in Figure 

52. FC = Expression fold change between the cluster and all other keratinocytes. pct1 = 

The percentage of cells in the cluster expressing the gene. pct2 = The percentage of all 

keratinocytes expressing the gene. p_val = p value; p_val_adj = adjusted p value. 
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Appendix Table 3 

Gene 
symbol Gene name HCNG ID 

Alternate protein 
name 

ABCA12 ATP binding cassette subfamily A member 12 HGNC:14637   

AC092580.4 N/A N/A   

ACKR1 atypical chemokine receptor 1 (Duffy blood group) HGNC:4035   

ACOT7 acyl-CoA thioesterase 7 HGNC:24157   

AKR1C1 aldo-keto reductase family 1 member C1 HGNC:384   

ALCAM activated leukocyte cell adhesion molecule HGNC:400   

APLNR apelin receptor HGNC:339   

APOD apolipoprotein D HGNC:612   

APP amyloid beta precursor protein HGNC:620   

ATOH1 atonal bHLH transcription factor 1 HGNC:797   

ATXN1 ataxin 1 HGNC:10548 SCA1 

AXL AXL receptor tyrosine kinase HGNC:905   

BDKRB1 bradykinin receptor B1 HGNC:1029   

BST2 bone marrow stromal cell antigen 2 HGNC:1119   

CADM1 cell adhesion molecule 1 HGNC:5951   

CCL1 C-C motif chemokine ligand 1 HGNC:10609   

CCL14 C-C motif chemokine ligand 14 HGNC:10612   

CCL19 C-C motif chemokine ligand 19 HGNC:10617   

CCL2 C-C motif chemokine ligand 2 HGNC:10618   

CCL20 C-C motif chemokine ligand 20 HGNC:10619   

CCL21 C-C motif chemokine ligand 21 HGNC:10620   

CCL23 C-C motif chemokine ligand 23 HGNC:10622   

CCL27 C-C motif chemokine ligand 27 HGNC:10626   

CCL3 C-C motif chemokine ligand 3 HGNC:10627   

CCL5 C-C motif chemokine ligand 5 HGNC:10632   

CCR10 C-C motif chemokine receptor 10 HGNC:4474   

CCR2 C-C motif chemokine receptor 2 HGNC:1603   

CCR4 C-C motif chemokine receptor 4 HGNC:1605   

CCR7 C-C motif chemokine receptor 7 HGNC:1608   

CCRL2 C-C motif chemokine receptor like 2 HGNC:1612   

CD14 CD14 molecule HGNC:1628   

CD151 CD151 molecule (Raph blood group) HGNC:1630   

CD19 CD19 molecule HGNC:1633   

CD1A CD1a molecule HGNC:1634   

CD1C CD1c molecule HGNC:1636   

CD207 CD207 molecule HGNC:17935 Langerin 

CD247 CD247 molecule HGNC:1677 PD-L1 

CD33 CD33 molecule HGNC:1659   

CD34 CD34 molecule HGNC:1662   

CD3D CD3d molecule HGNC:1673 CD3 

CD3E CD3e molecule HGNC:1674 CD3 

CD4 CD4 molecule HGNC:1678   

CD40 CD40 molecule HGNC:11919   

CD40LG CD40 ligand HGNC:11935   

CD44 CD44 molecule (Indian blood group) HGNC:1681   

CD46 CD46 molecule HGNC:6953   

CD47 CD47 molecule HGNC:1682   

CD5 CD5 molecule HGNC:1685   

CD6 CD6 molecule HGNC:1691   

CD69 CD69 molecule HGNC:1694   

CD7 CD7 molecule HGNC:1695   

CD74 CD74 molecule HGNC:1697   

CD82 CD82 molecule HGNC:6210   

CD83 CD83 molecule HGNC:1703   

CD8A CD8a molecule HGNC:1706 CD8 

CD8B CD8b molecule HGNC:1707 CD8 
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CD9 CD9 molecule HGNC:1709   

CD96 CD96 molecule HGNC:16892   

CD99 CD99 molecule (Xg blood group) HGNC:7082   

CDH1 cadherin 1 HGNC:1748 E-cadherin 

CDH2 cadherin 2 HGNC:1759 N-cadherin 

CDK1 cyclin dependent kinase 1 HGNC:1722   

CERS3 ceramide synthase 3 HGNC:23752   

CFD complement factor D HGNC:2771   

CKAP4 cytoskeleton associated protein 4 HGNC:16991   

CLEC2D C-type lectin domain family 2 member D HGNC:14351   

CLEC4C C-type lectin domain family 4 member C HGNC:13258 CD303 

CLEC6A C-type lectin domain containing 6A HGNC:14556   

CLEC7A C-type lectin domain containing 7A HGNC:14558   

CLEC9A C-type lectin domain containing 9A HGNC:26705   

CLIP1 CAP-Gly domain containing linker protein 1 HGNC:10461   

CMA1 chymase 1 HGNC:2097   

COL15A1 collagen type XV alpha 1 chain HGNC:2192   

COL18A1 collagen type XVIII alpha 1 chain HGNC:2195   

COL1A1 collagen type I alpha 1 chain HGNC:2197   

COL1A2 collagen type I alpha 2 chain HGNC:2198   

COL4A1 collagen type IV alpha 1 chain HGNC:2202   

COL4A2 collagen type IV alpha 2 chain HGNC:2203   

COL6A2 collagen type VI alpha 2 chain HGNC:2212   

COL7A1 collagen type VII alpha 1 chain HGNC:2214   

CPA3 carboxypeptidase A3 HGNC:2298   

CREM cAMP responsive element modulator HGNC:2352   

CRYAB crystallin alpha B HGNC:2389   

CSF1R colony stimulating factor 1 receptor HGNC:2433 CD115 

CSF2 colony stimulating factor 2 HGNC:2434 GMCSF 

CSF3 colony stimulating factor 3 HGNC:2438 GCSF 

CST6 cystatin E/M HGNC:2478   

CTNNAL1 catenin alpha like 1 HGNC:2512   

CTSG cathepsin G HGNC:2532   

CXCL1 C-X-C motif chemokine ligand 1 HGNC:4602   

CXCL12 C-X-C motif chemokine ligand 12 HGNC:10672   

CXCL14 C-X-C motif chemokine ligand 14 HGNC:10640   

CXCL16 C-X-C motif chemokine ligand 16 HGNC:16642   

CXCL3 C-X-C motif chemokine ligand 3 HGNC:4604   

CXCL8 C-X-C motif chemokine ligand 8 HGNC:6025   

CXCR1 C-X-C motif chemokine receptor 1 HGNC:6026   

CXCR3 C-X-C motif chemokine receptor 3 HGNC:4540   

CXCR4 C-X-C motif chemokine receptor 4 HGNC:2561   

CXCR6 C-X-C motif chemokine receptor 6 HGNC:16647   

CYP4F22 cytochrome P450 family 4 subfamily F member 22 HGNC:26820   

DCN decorin HGNC:2705   

DCT dopachrome tautomerase HGNC:2709   

DLK1 delta like non-canonical Notch ligand 1 HGNC:2907   

DMKN dermokine HGNC:25063   

DNAJB1 DnaJ heat shock protein family (Hsp40) member B1 HGNC:5270   

DPP4 dipeptidyl peptidase 4 HGNC:3009   

DUSP4 dual specificity phosphatase 4 HGNC:3070   

ELOVL4 ELOVL fatty acid elongase 4 HGNC:14415   

ENPP3 ectonucleotide pyrophosphatase/phosphodiesterase 3 HGNC:3358 CD203c 

EPCAM epithelial cell adhesion molecule HGNC:11529 EpCAM 

F11R F11 receptor HGNC:14685   

F13A1 coagulation factor XIII A chain HGNC:3531 FXIIIA 

FABP4 fatty acid binding protein 4 HGNC:3559   

FAM3C FAM3 metabolism regulating signaling molecule C HGNC:18664   

FAS Fas cell surface death receptor HGNC:11920   

FASLG Fas ligand HGNC:11936   
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FCER1A Fc fragment of IgE receptor Ia HGNC:3609 FCεR1 

FCGR3A CD151 molecule (Raph blood group) HGNC:1630 CD16 

FGF7 fibroblast growth factor 7 HGNC:3685   

FGL2 fibrinogen like 2 HGNC:3696   

FLG filaggrin HGNC:3748   

FLG2 filaggrin family member 2 HGNC:33276   

FLT1 fms related receptor tyrosine kinase 1 HGNC:3763   

FLT3 fms related receptor tyrosine kinase 3 HGNC:3765 CD135 

FOXP3 forkhead box P3 HGNC:6106   

FUT4 fucosyltransferase 4 HGNC:4015 CD15 

GADD45B growth arrest and DNA damage inducible beta HGNC:4096   

GATA3 GATA binding protein 3 HGNC:4172   

GBP2 guanylate binding protein 2 HGNC:4183   

GLG1 golgi glycoprotein 1 HGNC:4316   

GNLY granulysin HGNC:4414   

GZMA granzyme A HGNC:4708   

GZMB granzyme B HGNC:4709   

GZMH granzyme H HGNC:4710   

GZMK granzyme K HGNC:4711   

GZMM granzyme M HGNC:4712   

HBEGF heparin binding EGF like growth factor HGNC:3059   

HDC histidine decarboxylase HGNC:4855   

HES1 hes family bHLH transcription factor 1 HGNC:5192   

HEY1 hes related family bHLH transcription factor with YRPW motif 1 HGNC:4880   

HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 HGNC:4942   

HLA-DQB2 major histocompatibility complex, class II, DQ beta 2 HGNC:4945   

HLA-DRA major histocompatibility complex, class II, DR alpha HGNC:4947   

HMMR hyaluronan mediated motility receptor HGNC:5012   

HPGD 15-hydroxyprostaglandin dehydrogenase HGNC:5154   

HSPA1A heat shock protein family A (Hsp70) member 1A HGNC:5232   

HSPA1B heat shock protein family A (Hsp70) member 1B HGNC:5233   

HSPB1 heat shock protein family B (small) member 1 HGNC:5246   

HSPE1 heat shock protein family E (Hsp10) member 1 HGNC:5269   

HSPG2 heparan sulfate proteoglycan 2 HGNC:5273   

ICAM1 intercellular adhesion molecule 1 HGNC:5344   

ICAM4 
intercellular adhesion molecule 4 (Landsteiner-Wiener blood 
group) HGNC:5347   

ID2 inhibitor of DNA binding 2 HGNC:5361   

IFITM1 interferon induced transmembrane protein 1 HGNC:5412   

IFITM2 interferon induced transmembrane protein 2 HGNC:5413   

IFITM3 interferon induced transmembrane protein 3 HGNC:5414   

IFNA1 interferon alpha 1 HGNC:5417 IFN alpha 

IFNG interferon gamma HGNC:5438 IFN gamma 

IGHA1 immunoglobulin heavy constant alpha 1 HGNC:5478   

IGKC immunoglobulin kappa constant HGNC:5716   

IGLC2 immunoglobulin lambda constant 2 HGNC:5856   

IL10 interleukin 10 HGNC:5962   

IL12A interleukin 12A HGNC:5969   

IL13 interleukin 13 HGNC:5973   

IL15 interleukin 15 HGNC:5977   

IL18 interleukin 18 HGNC:5986   

IL1A interleukin 1 alpha HGNC:5991   

IL1B interleukin 1 beta HGNC:5992   

IL1RL1 interleukin 1 receptor like 1 HGNC:5998   

IL22 interleukin 22 HGNC:14900   

IL2RA interleukin 2 receptor subunit alpha HGNC:6008 CD25 

IL2RB interleukin 2 receptor subunit beta HGNC:6009   

IL33 interleukin 33 HGNC:16028   

IL34 interleukin 34 HGNC:28529   

IL3RA interleukin 3 receptor subunit alpha HGNC:6012 CD123 
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IL4 interleukin 4 HGNC:6014   

IL5 interleukin 5 HGNC:6016   

IL6 interleukin 6 HGNC:6018   

IL7R interleukin 7 receptor HGNC:6024   

ITGA6 integrin subunit alpha 6 HGNC:6142 CD49f 

ITGAE integrin subunit alpha E HGNC:6147 CD103 

ITGAM integrin subunit alpha M HGNC:6149 CD11b 

ITGAX integrin subunit alpha X HGNC:6152 CD11c 

ITGB1 integrin subunit beta 1 HGNC:6153 CD29 

ITGB4 integrin subunit beta 4 HGNC:6158 CD104 

IVL involucrin HGNC:6187   

JAG1 jagged canonical Notch ligand 1 HGNC:6188   

JAM2 junctional adhesion molecule 2 HGNC:14686   

JCHAIN joining chain of multimeric IgA and IgM HGNC:5713   

JUN Jun proto-oncogene, AP-1 transcription factor subunit HGNC:6204   

KIT KIT proto-oncogene, receptor tyrosine kinase HGNC:6342 CD117 

KLF10 Kruppel like factor 10 HGNC:11810   

KLK7 kallikrein related peptidase 7 HGNC:6368   

KLRB1 killer cell lectin like receptor B1 HGNC:6373 CD161 

KLRC1 killer cell lectin like receptor C1 HGNC:6374 CD159a 

KLRD1 killer cell lectin like receptor D1 HGNC:6378 CD94 

KRT1 keratin 1 HGNC:6412   

KRT10 keratin 10 HGNC:6413   

KRT14 keratin 14 HGNC:6416   

KRT17 keratin 17 HGNC:6427   

KRT2 keratin 2 HGNC:6439   

KRT5 keratin 5 HGNC:6442   

KRTDAP keratinocyte differentiation associated protein HGNC:16313   

L1CAM L1 cell adhesion molecule HGNC:6470   

LAMC1 laminin subunit gamma 1 HGNC:6492   

LAT linker for activation of T cells HGNC:18874   

LGR5 leucine rich repeat containing G protein-coupled receptor 5 HGNC:4504   

LIFR LIF receptor subunit alpha HGNC:6597   

LILRA4 leukocyte immunoglobulin like receptor A4 HGNC:15503   

LMNA lamin A/C HGNC:6636   

LSP1 lymphocyte specific protein 1 HGNC:6707   

LTB lymphotoxin beta HGNC:6711   

LTBR lymphotoxin beta receptor HGNC:6718   

LUM lumican HGNC:6724   

LXN latexin HGNC:13347   

LY9 lymphocyte antigen 9 HGNC:6730   

LYVE1 lymphatic vessel endothelial hyaluronan receptor 1 HGNC:14687   

MBP myelin basic protein HGNC:6925   

MEDAG mesenteric estrogen dependent adipogenesis HGNC:25926   

MGP matrix Gla protein HGNC:7060   

MIF macrophage migration inhibitory factor HGNC:7097   

MKI67 marker of proliferation Ki-67 HGNC:7107   

MMP2 matrix metallopeptidase 2 HGNC:7166   

MPZ myelin protein zero HGNC:7225   

MT2A metallothionein 2A HGNC:7406   

NCAM1 neural cell adhesion molecule 1 HGNC:7656 CD56 

NFKBIA NFKB inhibitor alpha HGNC:7797   

NGFR nerve growth factor receptor HGNC:7809 p75NTR 

NIPAL4 NIPA like domain containing 4 HGNC:28018   

NKG7 natural killer cell granule protein 7 HGNC:7830   

NOS2 nitric oxide synthase 2 HGNC:7873 iNOS 

NR4A2 nuclear receptor subfamily 4 group A member 2 HGNC:7981   

NRP1 neuropilin 1 HGNC:8004 CD304 

NT5E 5'-nucleotidase ecto HGNC:8021 CD73 

OCLN occludin HGNC:8104   
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OSM oncostatin M HGNC:8506   

PDGFB platelet derived growth factor subunit B HGNC:8800   

PDGFRA platelet derived growth factor receptor alpha HGNC:8803   

PDPN podoplanin HGNC:29602   

PECAM1 platelet and endothelial cell adhesion molecule 1 HGNC:8823 CD31 

PERP p53 apoptosis effector related to PMP22 HGNC:17637   

PILRA paired immunoglobin like type 2 receptor alpha HGNC:20396   

PIM3 Pim-3 proto-oncogene, serine/threonine kinase HGNC:19310   

PLEK pleckstrin HGNC:9070   

PMEL premelanosome protein HGNC:10880   

PMP22 peripheral myelin protein 22 HGNC:9118   

PPARG peroxisome proliferator activated receptor gamma HGNC:9236   

PRDM1 PR/SET domain 1 HGNC:9346   

PRDX1 peroxiredoxin 1 HGNC:9352   

PRF1 perforin 1 HGNC:9360   

PRSS8 serine protease 8 HGNC:9491   

PTGDR2 prostaglandin D2 receptor 2 HGNC:4502 CD294 

PTGDS prostaglandin D2 synthase HGNC:9592   

PTGES prostaglandin E synthase HGNC:9599   

PTPRC protein tyrosine phosphatase receptor type C HGNC:9666 CD45 

RELA RELA proto-oncogene, NF-kB subunit HGNC:9955   

RELB RELB proto-oncogene, NF-kB subunit HGNC:9956   

RGS1 regulator of G protein signaling 1 HGNC:9991   

RGS10 regulator of G protein signaling 10 HGNC:9992   

RGS5 regulator of G protein signaling 5 HGNC:10001   

RIPK1 receptor interacting serine/threonine kinase 1 HGNC:10019   

RNASE1 ribonuclease A family member 1, pancreatic HGNC:10044   

RORC RAR related orphan receptor C HGNC:10260 ROR gamma 

S100A2 S100 calcium binding protein A2 HGNC:10492   

S100A8 S100 calcium binding protein A8 HGNC:10498   

S100A9 S100 calcium binding protein A9 HGNC:10499   

SCD stearoyl-CoA desaturase HGNC:10571   

SDPR caveolae associated protein 2 HGNC:10690 Cavin2 

SDR9C7 short chain dehydrogenase/reductase family 9C member 7 HGNC:29958   

SELE selectin E HGNC:10718   

SELK selenoprotein K HGNC:30394   

SELL selectin L HGNC:10720   

SELP selectin P HGNC:10721   

SELPLG selectin P ligand HGNC:10722   

SERPINE1 serpin family E member 1 HGNC:8583   

SFRP2 secreted frizzled related protein 2 HGNC:10777   

SFRP4 secreted frizzled related protein 4 HGNC:10778   

SIGLEC6 sialic acid binding Ig like lectin 6 HGNC:10875   

SIGLEC8 sialic acid binding Ig like lectin 8 HGNC:10877   

SIRPA signal regulatory protein alpha HGNC:9662   

SLC27A4 solute carrier family 27 member 4 HGNC:10998   

SNCG synuclein gamma HGNC:11141   

SOCS4 suppressor of cytokine signaling 4 HGNC:19392   

SOD2 superoxide dismutase 2 HGNC:11180   

SOX10 SRY-box transcription factor 10 HGNC:11190   

SPARCL1 SPARC like 1 HGNC:11220   

SPINK5 serine peptidase inhibitor Kazal type 5 HGNC:15464   

SPTSSB serine palmitoyltransferase small subunit B HGNC:24045   

SULT2B1 sulfotransferase family 2B member 1 HGNC:11459   

TBX21 T-box transcription factor 21 HGNC:11599 TBET 

TCF4 transcription factor 4 HGNC:11634 E2-2 

TFF3 trefoil factor 3 HGNC:11757   

TFPI tissue factor pathway inhibitor HGNC:11760   

TGFB1 transforming growth factor beta 1 HGNC:11766   

TGFBR3 transforming growth factor beta receptor 3 HGNC:11774   
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TGM1 transglutaminase 1 HGNC:11777   

THBD thrombomodulin HGNC:11784 CD141 

THBS1 thrombospondin 1 HGNC:11785   

THY1 Thy-1 cell surface antigen HGNC:11801 CD90 

TIGIT T cell immunoreceptor with Ig and ITIM domains HGNC:26838   

TJP1 tight junction protein 1 HGNC:11827   

TLR7 toll like receptor 7 HGNC:15631   

TLR9 toll like receptor 9 HGNC:15633   

TM4SF1 transmembrane 4 L six family member 1 HGNC:11853   

TNF tumor necrosis factor HGNC:11892 TNF alpha 

TNFAIP6 TNF alpha induced protein 6 HGNC:11898   

TNFRSF10B TNF receptor superfamily member 10b HGNC:11905   

TNFRSF18 TNF receptor superfamily member 18 HGNC:11914   

TNFRSF1A TNF receptor superfamily member 1A HGNC:11916   

TNFRSF1B TNF receptor superfamily member 1B HGNC:11917   

TNFSF10 TNF superfamily member 10 HGNC:11925   

TPSAB1 tryptase alpha/beta 1 HGNC:12019   

TPSB2 tryptase beta 2 HGNC:14120   

TRAC T cell receptor alpha constant HGNC:12029   

TRDC T cell receptor delta constant HGNC:12253   

TRGC1 T cell receptor gamma constant 1 HGNC:12275   

TRGC2 T cell receptor gamma constant 2 HGNC:12276   

TXN thioredoxin HGNC:12435   

TYR tyrosinase HGNC:12442   

TYRP1 tyrosinase related protein 1 HGNC:12450   

VCAM1 vascular cell adhesion molecule 1 HGNC:12663   

VDR vitamin D receptor HGNC:12679   

VEGFA vascular endothelial growth factor A HGNC:12680   

VWA5A von Willebrand factor A domain containing 5A HGNC:6658   

XCL1 X-C motif chemokine ligand 1 HGNC:10645   

XCL2 X-C motif chemokine ligand 2 HGNC:10646   

XCR1 X-C motif chemokine receptor 1 HGNC:1625   

ZBTB10 zinc finger and BTB domain containing 10 HGNC:30953   

 

Appendix Table 3 – Gene symbols listed with standardised nomenclature. A list of all 

genes mentioned within the text and figures of this thesis. Gene names and HCNG ID’s 

are taken from the HUGO Gene Nomenclature Committee database (accessed via 

https://www.genenames.org/). Alternate protein names are shown where the protein 

product of a gene is referred to by a different name or symbol within this thesis.
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