
Applying Machine Learning to enhance
payments systems security

Mario Parreño Centeno

School of Computing Science

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

November 2020





I would like to dedicate this thesis to my loving parents





Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Mario Parreño Centeno
November 2020





Acknowledgements

I want to thank many people I met during this marvellous trip to achieve my PhD degree, and
without whom I would not have completed this thesis.

First, I want to express my immense gratitude to my supervisor Professor Aad van Moorsel.
He has provided me with invaluable support, guidance, and crucial insights throughout these
four years.

Further, I want to offer my special thanks to Dr Yu Guan for his technical support and
suggestions. I also wish to thank Professor Rajiv Ranjan and Dr Stephen McGough for their
comments and advice.

My gratitude extends to the Centre for Doctoral Training in Cloud Computing for Big
Data. As a student in this centre, I have enjoyed working alongside numerous brilliant
and inspirational people. I want to express my enormous gratitude to the centre’s directors,
Professor Paul Watson and Professor Darren Wilkinson. Furthermore, I wish to thank the
following people for their support: Profesor Stefano Castruccio, Dr Mathew Forshaw, Dr
Sarah Heaps, Barry Hodgson, Steve Caughey, Oonagh McGee, Jennifer Wood, and all the
rest of the PhD students, especially to the first cohort.

My PhD has taken place at the Secure and Resilient Systems research group, where I met
extraordinary friends and colleagues. Some of them are Maher Alharby, Luca Arnaboldi,
Amjad Aldweesh, Uchechi Nwadike, Roberto Metere, Dr Mohammed Aamir, Dr Martin
Emms and Dr Ioannis Sfyrakis.

Also, I want to express my sincere thanks to the students and staff I met at The Alan Turing
Institute during my internship, which was a fantastic experience.

I also wish to acknowledge my internal examiner Jaume Bacardit and my external Noura
Al-Moubayed for their relevant comments and feedback on this thesis.



viii

Finally, I wish to mention my family and friends for their kindness, understanding and
motivation. I want to express my sincere gratitude to Marino Parreno-Lujan, Sagrario
Centeno-Jara, Gemma Parreno, Xavier Cardus and Emma Cardus. And an extraordinary
mention of gratitude to Laura Sanchez for her help and invaluable support.



Abstract

During the last two decades, the economic losses because fraudulent card payment transac-
tions have tripled. The significant percentage of losses is because of fraud on e-commerce
transactions. Nowadays, there is a clear trend to use more and more mobile devices to make
electronic purchases, and it is estimated that this trend will continue in the coming years.

In the card payment scheme, big financial institutions process millions of transactions every
day; thus, they can model the processed transactions to predict fraud. On the other hand,
merchants process a much lower number of transactions, but they have access to valuable
information that they can collect from the devices that users utilise during the transaction.

In this thesis, we propose a series of measures to enhance the security of these two scenarios
based on past transactional data and information collected from the users’ device. Most of
the approaches proposed so far to model processed transactions were based on supervised
Machine Learning techniques. We propose a fraud detection system for card payments based
on an unsupervised machine learning technique; thus, the system may be able to recognise
new patterns of fraud.

On the other hand, we are looking far ahead, and because of the increment of use of mobile
devices to conduct payments, we propose a series of measures to enhance the security of the
mobile payment system. We have proposed a user identification and verification systems
for smartphones. We base the identification and verification systems on motion data, so the
systems will not require any explicit action from users.
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Chapter 1

Introduction

Since the 1970s, a variety of schemes have been proposed to allow card payments. Typically,
card payment has been categorised into card present and card, not present (CNP). In card
present payment, the cardholder is physically present at the merchant store, and payment
is performed by swiping (magnetic stripe), inserting (CHIP & PIN) or tapping (in case of
contactless) a payment card to the merchant provider’s point of sale (PoS) terminal/reader. On
the other hand, CNP involves online, telephone and mail transactions where the cardholder is
identified by the card details but is not physically present with the card. In the early years of
the development of the payment technologies, card-present was the most popular transactions.
However, with the arrival of the Internet, the use of Card Not Present transactions drastically
increased [111]. We are using more and more electronic devices to carry on activities we
were used to conduct in other ways. The United Kingdom had the fourth largest e-commerce
market in the world, with a value of 78,903 million dollars [39]. It is estimated that in 2021
more than half of these purchases take place on mobile devices [177].

During the first years of the development of card payment transactions technology, fraudsters
focused on making profit mainly with counterfeit and lost and stolen card frauds. However,
with the introduction of CHIP & PIN technology in 2003, this landscape changed drastically.
The introduction of this measure significantly enhanced the security of card-present payment,
and fraudsters decided to focus their activity on the CNP scheme. Since then, economic losses
from fraudulent CNP transactions have fluctuated because of the constant development of
anti-fraud measures and campaigns, but nowadays, the economic losses because of fraudulent
CNP payments in the UK are three times higher than 20 years ago (exclude the effect of
inflation). Most of these losses are because of fraud in e-commerce.



2 Introduction

Currently, in the UK, the two major contributions to fraud losses in card payments are
the theft of personal information through social engineering and data breaches [64]. Our
fast adoption of the use of new technologies in our daily routine helps fraudsters to steel
information. The popularity of social media has opened other channels for fraudsters to
contact and obtain information from their victims [155]. Furthermore, the increment of use
of mobile devices makes it more difficult for users to spot fake sites, i.e., the size of the
mobile devices screens is considerable smaller what hindered users’ ability to account for
anomalies [94]. On the other hand, data breaches occur more often, and their impact is larger.
Nowadays, double data breaches have been reported in the United Kingdom than a decade
ago (1244 in 2018 compared to 656 in 2008) [47].

To fight fraud in card payments, initially, financial institutions implemented some form of
transaction classification systems, often a set of rules, which raised alerts on individual
transactions, which are considered suspicious [44]. The first Fraud Detection Systems for
card payments were based on rules, i.e., a set of thresholds established by experts trigger
an alarm [73]. In 1993, a Canadian bank generated a report each night [68] with accounts
that break specific rules, e.g., too many items with high value or too many purchases in a
short period. Managers review the reports to flag potential fraud and contact the cardholders.
Because the process was time-consuming and demanding, and in an attempt to make the
rule-based systems more reliable and avoid the difficulty of setting up the rules, data mining
techniques were introduced to set up the association [17].

Since the 90s, Machine Learning (ML) techniques were used to learn fraudulent patterns from
past data. ML techniques in fraud detection systems operated on two different levels [166]:
transaction level (individual or aggregation) and account level (behavioural models). In
this thesis, we focus on enhancing the security of electronic payments systems. We propose
approaches for both operating levels.

Financial institutions, such as banks, process millions of transactions every day. They can
analyse the characteristics of past transactions to model normal and fraudulent payments. On
the other hand, merchants will only process transactions from their customers, which is a
much smaller number. However, they have access to other sources of data that they can use
to model their clients’ behaviours to build a fraud detection system. For example, modelling
the web browsing user behaviour of customers when they make purchases online takes into
account data sources such as cadence when clicking.
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Because of the increment in the trend of using mobile devices for online purchases, we
propose an authentication system for smartphones at the account level.

The three available factors for authentication are:

1. Something the user knows, e.g., a PIN

2. Something, the user, posses, e.g., card, smartphone

3. Something the user is, e.g., fingerprint

Traditionally, the pin has been the most popular method for authentication, although their
weakness has been proven multiple times [179]. Some disadvantages of token-based methods
are the discomfort for users to carry on the token and that it can be stolen [137].

With the incorporation of new sensors in mobile devices, biometric authentication methods
such as fingerprint and Facial Recognition has become very popular in recent years [50].
However, these types of authentication systems require explicit action from users. We
investigate authentication approaches based on motion data, i.e., accelerometer, gyroscope,
and magnetometer data, which do not require any explicit action from the user. We propose
different approaches for identification and verification based on Machine Learning techniques.

For specific scenarios, the merchant can be interested in identifying the user between a
group of them, e.g., identifying the member of a family who is using a sharing tablet. We
compare the performance of several supervised ML methods. On the other hand, we propose
a verification approach that uses a deep learning technique for feature extraction and bases
the classification phase in an unsupervised method.

Furthermore, we investigate the goodness of the approach for continuous authentication.
Because biometrics methods such as face recognition require an explicit action from the
user, they are not convenient for continuous authentication, i.e., the user experience will be
deeply affected, continually asking for a new picture. However, since motion authentication
does not require any explicit action from the user, it could be implemented as a continuous
authentication system where the user is verified continuously without requiring any specific
action from the user.

Moreover, EU Payment Services Directive [58] is arranged to make essential changes to
the payment industry by March 2021. From that date, electronic payments (except for
some exemptions) must be authenticated with multi-factor authentication. The new directive
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called Strong Customer Authentication will require at least two independent factors in the
authentication process; thus, our approach could support this new directive.

On the other hand, we have proposed several approaches that operate at the transaction level.
Many of the approaches that model the characteristics of individual transactions proposed
so far are supervised detection systems. The models have been trained to learn the patterns
of normal and fraudulent transactions. This approach presents the main disadvantage, i.e.,
the system may only detect known fraudulent patterns. If the model is trained to recognise
specific patterns of fraud, it may not recognise new fraudulent patterns when they occur. Thus,
we have investigated the performance of several card payment fraud detection systems based
on unsupervised Machine Learning methods. Moreover, we have investigated cost-sensitive
models. Many of the models are trained to minimise the number of false positives and false
negatives. We have investigated if models can be more effective in minimising financial
losses.

1.1 Research Problem

To enhance the security of electronic payments systems, we investigate the following research
problems:

Card payment fraud. Despite the many different measures to avoid fraud proposed
since the inception of the card payments technology, losses because the fraudulent
activity has tripled in the last 20 years. It is essential to understand the current card
payment system and fraud related to them to propose efficient fight fraud measures.

Supervised identification of smartphone users. It is common to share mobile
devices in a group of people between the members of a family. Here, it will be useful
to identify different users within a group to grant them different privileges.

Most of the identification approaches proposed so far require explicit action from users
producing less user-friendly systems.

On the other hand, it will be desirable that the system identify the user during the
whole session instead of just one time at the beginning of the session.

Unsupervised verification of smartphone users. In specific scenarios, merchants
will not be interested in identifying a user within a group. They will only be concerned
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with verifying the user’s identity utilising the device to realise the transaction, i.e., the
smartphone.

Unsupervised fraud detection systems for electronic payments. Financial institu-
tions such as banks have access to millions of transactions performed by customers.
Machine learning techniques have been successful in modelling this vast amount
of information to detect fraud. However, many of the approaches proposed so far
are supervised approaches, limiting the system’s ability to recognise new fraudulent
patterns.

On the other hand, usually, these types of systems are required to detect the highest
number of fraudulent transactions as possible. However, the main goal of financial
institutions is to increase their benefits.

1.2 Contributions

The work presented in this thesis makes several key contributions:

(i) It provides a comprehensive survey of the economics of payment systems’ frauds and
identifies different types of frauds in card payment and mobile payment.

(ii) Proposal and evaluation of and smartphone user identification system based on sensor
data and supervised Machine Learning techniques. Merchants can collect a large
amount of information during the payment process, not necessarily related to the
transaction. It can be information related to the device from the customer initiating
the transaction. Nowadays, mobile devices process most of the payment transactions.
Many of these devices, such as smartphones and tablets, include motion sensors, i.g.
accelerometers. We could use them to authenticate users based on their movements.

(iii) Introduce a novel verification system for smartphone users based on unsupervised
Machine Learning techniques. We have investigated unsupervised verification ap-
proaches for smartphones, i.e., the system learns the owner’s patterns and calculates
the probability that new samples belong to the same distribution.

(iv) Introduce an We demonstrate that we can increase the approach’s accuracy by trans-
forming the raw data into a more meaningful representation.
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(v) Introduce an innovative fraud detection system for electronic card payment transac-
tions based on unsupervised Machine Learning techniques. We have investigated the
development of unsupervised fraud detection systems for card payments to detect new
fraudulent patterns.

Moreover, we have investigated cost-sensitive models. Many of the models are trained
to minimise the number of false positives and false negatives. We have investigated if
models can be more effective in reducing financial losses.

1.3 Thesis Structure

This thesis is organised as follows.

Chapter 1 describes the motivations behind the work carried out as part of this thesis
and highlights the main contributions of the research. We describe the related peer-
reviewed publications produced throughout my PhD.

Chapter 2 introduces and provides context for the Machine Learning models we used
in the research. The chapter is divided into two main sections, on supervised and
unsupervised techniques, respectively.

Chapter 3 investigates credit card payment technologies, fraud for each method of
card payments, attack mechanisms and economics of fraud. To propose efficient
defences for card payment systems, first, we have to know the weakness and strengths
of the current systems.

Chapter 4 proposes a motion-based identification approach for mobile devices based
on supervised machine learning techniques. The experiments are based on motion
sensor data, i.e., accelerometer, gyroscope and magnetometer data.

Chapter 5 proposes a motion-based verification approach for smartphones based on
unsupervised machine learning techniques. Similar to Chapter 4, the experiments are
based on motion data. We investigate the efficiency of different approaches, as well as
feature importance and the re-authentication time.

Chapter 6 proposes an unsupervised fraud detection system for card payment transac-
tions comparing several machine learning and deep learning models. It investigates
transaction feature selection and cost-sensitive models.
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Chapter 7 summarises the conclusions of the work presented in this thesis and moti-
vates future directions for work in the area.

1.4 Related Publications

During my PhD. I have contributed to the following peer-reviewed publications:

Mohammed Aamir Ali, Muhammad Ajmal Azad, Mario Parreno Centeno, Feng Hao,
Aad van Moorsel. Consumer-facing technology fraud: Economics, attack methods and
potential solutions, Future Generation Computer Systems, Volume 100, 2019, Pages
408-427, ISSN 0167-739X,

This paper investigates fraud over the Internet, which has increased dramatically. It presents
the anatomy of frauds for different consumer-facing technologies from three broad per-
spectives — it discusses the Internet, mobile, and traditional telecommunication, from the
perspective of losses through frauds over the technology, fraud attack mechanisms and
systems used for detecting and preventing frauds. The paper also provides recommendations
for securing emerging technologies from fraud and attacks. My contributions to this paper
were section 4 integrally and figure 2 in section 3. These contributions to this paper form the
basis of Chapter 3 of this Thesis.

Mario Parreño Centeno, Yu Guan and Aad van Moorsel. Mobile Based Continuous
Authentication Using Deep Features. In Proceedings of the 2nd International Workshop
on Embedded and Mobile Deep Learning (EMDL’18). 2018. ACM, New York, NY,
USA, 19-24. DOI: https://doi.org/10.1145/3212725.3212732

This paper investigates continuous authentication approaches to authenticate smartphone
users during a work session, i.e., for mobile banking applications. The approach is based
on motion patterns. We also investigate how the authentication accuracy is affected by the
sampling frequency and the re-authentication time. This paper forms the basis of Chapters 4
and 5.

Mario Parreño Centeno, Mohammed Aamir Ali, Yu Guan and Aad van Moorsel.
Unsupervised Machine Learning approaches for card payment fraud detection. In
Proceedings of the 14th International Conference on Risks and Security of Internet
and Systems (CRISIS’19). 2019.
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This paper investigates the current fraud detection systems for card payments and proposes
an unsupervised approach. This paper forms the basis of Chapter 6.



Chapter 2

Background–Machine Learning
techniques

2.1 Introduction

Machine Learning (ML) is in the area of artificial intelligence (AI), and it gives computers
the ability to make predictions or decisions without being explicitly programmed for it. Their
criteria are based on algorithms that are built mathematically modelling past data.

Today, machine learning is so popular that one can use dozens of times a day without realising
it. In the last few years, machine learning has contributed enormously to developing a massive
variety of solutions in driverless vehicles, speech recognition systems, effective web search
engines, and knowledge of the human genome.

Machine Learning problems are classified into these three main categories: unsupervised,
supervised, and reinforcement learning.

Supervised learning is meant to find patterns in the data corresponding to a label that defines
the meaning of each sample. For example, there could be millions of pictures of animals and
include an explanation of what each animal is. Here, we could create a machine learning
application that distinguishes an animal from another.

In unsupervised learning, there are no labels associated with the input data. It can be used to
find commons patterns on a group of samples.
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Reinforcement learning computer programs interact with an environment to learn a task, i.e.,
playing a game. As it navigates into the problem, the environment provided feedback in the
form of reward that the algorithm tries to maximise.

In this thesis, we investigate the application of supervised and unsupervised algorithms.

2.2 Supervised Machine Learning methods

Supervised learning techniques use labels to identify patterns in the input data for prediction.

Predictive modelling can be divided into classification and regression problems. In classifica-
tion modeling an approximation function maps the input variables (independent variables) to
a discrete output variable (the dependent variable DV).

We can describe variables as categorical, ordinal, or numerical. Categorical variables have
two or more categories in intrinsic ordering, i.e., eye colour. Ordinal variables are similar
to categorical, but they can be ordered, i.e., high and low. Finally, numerical variables are
identical to ordinal variables except that they are numerical, i.e., £10,£20, and £30.

On the other hand, in regression modelling, the output variable is continuous.

In this section, we are going to introduce the different classification techniques which we
will use through this work. For it, we are going to use the following notation:

– x(i) denotes a vector of input variables with i = 1, ...,m where m equal to the number
of training samples.

– x(i)j denotes a element of the vector of input variables with i = 1, ...,m where m equal
to the number of training samples and with j = 1, ...,n where n equal to the number of
features in the input vector.

– y(i) denotes the target variable to be predicted with i = 1, ...,m.

– the tuple (x(i),y(i)) denotes a training sample with i = 1, ...,m.

– a list of m training samples {(x(i),y(i))} where i = 1, ...,m denotes the training dataset.

– X ε Rrxc is matrix of r rows and c columns. Each element can be indexed by a
xi j |0 ≤ i ≤ r and 0 ≤ j ≤ c.

– X denotes the space of input values.
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– Y denotes the space of output values.

So, giving a training dataset {(x(i),y(i))}, the machine learning model pretends to learn a
function h : X 7→ Y ,where h(x) should be a good predictor of y. Probabilistic classifiers
infer a probability distribution over a set of classes, while non-probabilistic classifiers infer
the most likely class for a given sample. Logistic Regression, Neural Networks, Random
Forest and k-Nearest Neighbours are examples of probabilistic classifiers and Support Vector
Machines of non-probabilistic. Some probabilistic techniques such as Logistic Regression
and Neural Network, provide a functional form f and parameter vector α to express P(y|x)
as:

P(y|x) = f (x,α)

The parameters α are determined based on the training data [49].

k-Nearest Neighbours, determine the value of P(y|x) as the ratio samples of the class y among
the k nearest neighbors of x.

2.2.1 Logistic regression

Logistic Regression (also known in the literature as logit regression, maximum-entropy
classification, or the log-linear classifier) is a generalised linear model for classification
where the DV is categorical. In the case of a binary DV, the output can take only two values,
0 and 1. Some of the assumptions of the LR model are:

– The dependent variable should be dichotomous in nature (e.g., presence vs absent).

– There should be no outliers in the data.

– There should be no high correlations among the predictors.

– We Assume that the m training examples were generated independently.

We can interpret the parameters of the model, coefficients and intercept, to understand the
relative importance of the input features.

To show the mathematical definition of the LR model, first, we are going to introduce the
linear regression model, which has many similarities to it.

Linear regression is a linear approach for modelling the relationship between a scalar DV y

and one or more explanatory variables. In linear regression, the relationships are modelled
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using linear predictor functions whose unknown model parameters are estimated from past
data. The linear regression model approximates y with the following lineal function of x:

hθ = θ0x0 +θ1x1 + · · ·+θnxn = θ0

n

∑
i=1

θixi,

where the constant θ0 (by setting x0 = 1) is call the intercept term and the n parameters θ are
call the weights. The weights parametrise the space of linear functions mapping from X to
Y . This expression is called the decision function and can be rewritten in vector form as:

hθ = θ
T x (2.1)

where θ T is a matrix with θ T ε R(n+1)x1 and x is a vector of (n+1) elements.

In LR, we still want to solve a linear combination of features and weights, but we map this
linear combination to a binary output , y ε {0,1}. A simple way to force the output of the
expression 2.1 to take a value between 0 and 1 is changing the model hθ to:

hθ = g(θ T x) =
1

1+ e−θ T x
, (2.2)

where:
g(z) =

1
1+ e−z (2.3)

g(z) is called the logistic or sigmoid function and its graph is shown in Figure 2.1
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1+e−z

Figure 2.1 Graph of the sigmoid function.

Notice that g(z), and hence also hθ , are always bounded between 0 and 1.

Notice that g(z), and hence also hθ , are always bounded between 0 and 1.

Given the LR hypothesis in 2.2 we need to fit the parameters θ . As we told before, LR
learns the parameters θ from past data. Given a training dataset consisting of a list of m

training samples {(x(i),y(i))}, we want to make hθ close to y. Newtons Method can be used
to solve Logistic Regression. Logistic Regression uses the concept of Log-Likelihood. We
use the hypothesis function hθ , and formulate the likelihood function to maximise and fit
the weights. We can fit the parameters via maximum likelihood under a set of probabilistic
assumptions. Let us assume that the output of the LR hypothesis function is the estimated
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probability that y = 1 for a given sample x parametrised by θ :
P(y = 1|x;θ) = hθ (x)

Thus, because this is a binary classification model, the estimated probability that y = 0 for a
given sample x is:

P(y = 0|x;θ) = 1−hθ (x).

Then, the probability of y given x is:
p(y|x;θ) = (hθ (x))y(1−hθ (x))1−y

So, in LR we define a hypothesis function hθ such as:

hθ = g(θ T x)

1 if θ T x ≥ 0,

0 otherwise
(2.4)

Where θ T x= 0 defines the decision boundary, which divides the data space into two areas and
depending on the position respect to the decision boundary the sample x(i) will be classified
belonging to any of the two classes y = 1 or y = 0. Fig. shows a graphical representation of
the decision boundary for a scenario with two θ parameters.

θ2

θ1

θ
T x=

0

y = 1 y = 0

Figure 2.2 LR decision boundary for a case where the hypothesis has to θ parameters.

Because logistic regression predicts probabilities, rather than just classes, we can fit it using
likelihood. We write the likelihood of the parameters as:

L(θ) = p(y|x;θ) =
m

∏
i=1

p(y(i)|x(i);θ) =
m

∏
i=1

(hθ (x(i)))y(i)(1−hθ (x(i)))1−y(i)

However, taking the log of the expression make the problem more tractable (because we
multiply m likelihoods together, all of them less than 1, the program may run out of precision.
On the other hand, taking the log we guarantee that the objective function is strictly concave,
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meaning there is just one local maximum). This new expression is known as the log-likelihood
of the hypothesis function:

L (θ) = logL(θ) =
m

∑
i=1

y(i) logh(x(i))+(1− y(i)) log(1−h(x(i))) (2.5)

To find the θ ’s parameters that define the decision boundary, we want to maximise the
log-likelihood L of the hypotheses hθ (x). There are many methods to solve optimisation
problems (minimising or maximising some function f (x)) such as gradient descent, which
we will introduce in 2.2.2. In this section, we are going to use Newton’s method to find w∗,
which are the values for the vector w, which maximise our objective function.

Newton’s method uses a second-order Taylor series expansion to approximate f (x) near
some point x(0) [74]:

f (x)≈ f (x(0))+(x− x(0))T
∆x f (x(0)+

1
2
)(x− x(0))T H( f )(x(0))(x− x(0))

And solving for the critical point of the function, we obtain:
x∗ = x(0)−H( f )(x(0))−1

∆x f (x(0)) (2.6)

Substituting in 2.6 our objective function L (θ), we can use the same algorithm to update
each θn, and we obtain the update rule:

θn := θn −H−1
L (θ)∇θL (θ) (2.7)

where ∇θL (θ) is the vector of partial derivatives of L (θ) with respect to the θi (it is call the
gradient) and Hθ (L (θ)) is an n+1 by n+1 matrix (assuming that it includes the intercept
term) called the Hessian matrix, whose entries are the second derivatives of our objective
function (note if a function has n input dimensions, there are n2 second derivatives), which
can be represented in a matrix with entries:

HL (θ) i j =
δ2L (θ)

δθiδθ j

So, applying Newton’s methods to maxime the log-likelihood L (θ) of our hypothesis
function hθ (x) consists in applying the follow steps:

1. Calculate the gradient of L (θ)

2. Calculate the Hessian of L (θ)

3. Update the values of the vector θ using 2.7

4. Repeat steps 1,2 and 3, until the result converges
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When the L (θ) is a positive definite quadratic function, the Newton method will find the
maximum directly, so it will find w∗ applying equation 2.7 once. When L (θ) is not truly
quadratic but can be locally approximated as a positive definite quadratic, we will find the
solution throw the iterative algorithm much faster than gradient descent would. Although
one iteration of Newton’s method can be more computational expensive since it requires to
calculate the Hessian, as long as n is not too large, it is much faster overall.

Regularisation

To improve the generalisation of our model, i.e., the performance on unseen data, we can use
regularisation. Instinctively, It can be seen as a penalty to prevent that the model picks up the
peculiarities or noise.

Technically, adding regularisation to the model means adding bias if the model suffers from
high variance, i.e., avoiding overfitting. However, high bias will lead to underfitting, i.e., low
performance for the training and testing datasets.

Variance is the variability of the model prediction, which shows the spread of the data. Model
with high variance performance very well on the training data but does not generalise well
on unseen data.

On the other hand, bias is the difference between the mean prediction of the model and the
true label. Models with high bias do not pay attention to the training data and oversimplify
the resulting model. It leads to a high error in training and test data.

Underfitting in supervised learning happens when the model is not able to capture the
underlying patterns of the data. In this case, usually, the model has high bias and low
variance. It occurs when we do not have enough data to train the model or when we try to
train a linear model with nonlinear data. On the other hand, overfitting occurs when the model
captures the noise along with the underlying patterns in the data. It usually happens when
the training data is very noisy. As a result, these models have low bias and high variance.

To build a proper model, we need to balance the bias and variance, i.e., to minimises the total
error, to generalise well and to prevent overfitting. regularisation can help with it.

Our goal in an unregularised model is to minimise the cost function, i.e., we want to find
the feature weights that correspond to the global cost minimum (note that the logistic cost
function is convex).



16 Background–Machine Learning techniques

In equation 2.5 we have written the expression of the log-likelihood. Instead of minimising
this cost function, in regularised logistic regression, we minimise the following cost function:

L (θ) =
m

∑
i=1

[y(i) logh(x(i))+(1− y(i)) log(1−h(x(i)))]+λR(θ) (2.8)

This approach penalises high coefficients by adding a regularisation term R(θ) multiplied by
a parameter λ . We penalise high coefficients because LR assigns a high weight if a feature
appears only in one class.

The two most common regularisation terms to penalise high coefficients are the l1 norm or
the square of the norm l2 multiplied by. Thus, they are called L1 and L2 regularisation:

The l1 norm term:

R(θ) = ||θ ||1 =
n

∑
i=0

|θi|, (2.9)

and the l2 regularisation term is defined as:

R(θ) =
1
2
||θ ||22 =

1
2

n

∑
i=0

θ
2
i . (2.10)

The parameter λ controls the effect of the regularisation term. Higher values of λ lead to
smaller coefficients, but when λ is very high can lead to underfitting.

2.2.2 Multi Layer Perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network. The term ‘neural
network’ was proposed when looking for mathematical representations of biological systems
[40, 157].

The perceptron

Given a list of training samples {x(i),y(i)}, the Perceptron Learning Algorithm tries to find a
hypothesis function h that predicts the label y(i) of every x(i) correctly.

Figure 2.3 is the graphical representation of the simplest feedforward network, including
only one neuron (the perceptron). In this example, the neuron has n inputs for each feature
value of the input sample and one more input for the bias, which gives flexibility to the model.
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Each of the connections between the input units and the neuron has associated a weight (w or
b depending on the kind of input unit).

Σ g

+1

x1

x2

x3

xn

b
θ1

θ2

θ3

θ n

h(x;θ ,b)

...

Figure 2.3 The simplest feedforward network including only one neuron.

The output of the neuron, call the decision function (the hypothesis function), is the summa-
tion of each input multiply by the weight associated to the connection.

h(x;θ ,b) = θ1x1 + ...+θnxn +b (2.11)
where n is equal to the number of inputs parameters of the model and b the intercept which
we called bias. Differently from 2.2, we use this notation where we treat the intercept term b

separately and do not treat it such as extra parameter in the feature vector. 2.11 can also be
written in vectorial form as:

h(x;θ ,b) = θ
T x+b .

However, because the output could take any real value, we map it throw another function:
h(x;θ ,b) = g(θ T x+b) .

where g(z) is called the activation function. Mapping the output helps to prevent the problem
of vanishing/exploding gradients when training the model. So, when a neural network
includes just one neuron and a sigmoid activation function 2.3, it will show the same results
than a Logistic regression model shown in 2.2.

Here, as we see for the LR model, we could find the parameters θ from past data using
Newton’s method. However, in Neural Networks is common to use the stochastic gradient
descent algorithm. Although, as we saw, Newton’s method in the LR model has been proven
to converge faster than gradient descent, there are two main reasons to use gradient descent
to optimise the objective function in neural networks:

• Newton’s method assumes convexity, and large data spaces are very much non-convex.
The ratio of saddle points increases exponentially with the dimensionality of the feature
space. Newton’s method does not deal properly with saddle points. "While gradient
descent dynamics are repelled away from a saddle point to a lower error by following
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directions of the negative curvature, saddle-points instead become attractive under the
Newton dynamics".

• The application of Newton’s method for training large neural networks impose a
significant computational burden. While gradient descent maximises the objective
function using its derivative, Newton’s method uses knowledge of its second derivative.
The later can be faster when the second derivative is known and easy to compute.
However, the analytic expression for the second derivative is often complicated or
intractable when the number of parameters grown.

In the 2.2.1, we used a probabilistic approach to define the cost function of our hypotheses,
i.e., maximise the log-likelihood of the data under the probabilistic model. As we saw, it
was relevant to be able to apply the Newton’s method because the log-likelihood is a convex
function. In this function, we are going to define a different cost function which may be not
convex. For each value of θ ’s we measure how close the h(x(i)) are to the corresponding
label y(i):

J(θ) =
m

∑
i=1

(h(x(i);θ ,b)− y(i))2 (2.12)

We iterate through the list of training samples to minimise the above function and update the
parameters θ and b in the direction of minimising each of the term of the objective function.
So, we update the parameters in the following manner:

θn := θn −α∆θn (2.13)

b := b−α∆b (2.14)

where α is a small non-negative scalar called the learning rate. The update is related to the
value of α i.e. large value of α will lead large updates. This algorithm is known as the
gradient descent.

Note that we will update all the model parameters, θ ’s and b, simultaneously.

To find the optimal values of the parameters α and b which better approximate h to y, we
calculate the partial derivative of the cost function respect to each of the parameters which
gives us a descent direction and it is known as the gradient. Because, the objective function
is composed of functions of functions, we use the the chain rule to compute the derivatives:

δg
δx

=
δg
δ z

δ z
δx
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Therefore, at example x(i), we can compute the partial derivative of θ as:

∆θn =
δ

δθn
(h(x(i);θ ,b)− y(i))2

= 2(h(x(i);θ ,b)− y(i))
δ

δθn
h(x(i);θ ,b)

= 2(g(θ T x(i)+b)− y(i))
δ

δθn
g(θ T x(i)+b)

(2.15)

Applying the change rule and noting that δg
δ z = [1−g(z)]g(z), we have:

δ

δθn
g(θ T x(i)+b) =

δg(θ T x(i)+b)
δ (θ T x(i)+b)

δ (θ T x(i)+b)
δθ1

= [1−g(θ T x(i)+b)]g(θ T x(i)+b)
δ (θ1x(i)1 + ...+θnx(i)n +b

δθn
)

= [1−g(θ T x(i)+b)]g(θ T x(i)+b)x(i)n

(2.16)

And substituting 2.16 in 2.15 leads to:

∆θn = 2[g(θ T x(i)+b)− y(i)][1−g(θ T x(i)+b)]g(θ T x(i)+b)x(i)n (2.17)

where:
g(θ T x(i)+b) =

1
1+ exp(−θ T x(i)−b)

And similar derivations lead to:

∆b = 2[g(thetaT x(i)+b)− yi][1−g(θ T xi +b)]g(θ T x(i)+b) (2.18)

Here, the stochastic gradient descent algorithm to learn the decision function h(x;θ ,b) is:

1. Initialise the parameters θ and b randomly.

2. Pick a random example {x(i),y(i)}.

3. Compute the partial derivatives of each parameter θn and b by equations 2.17 and 2.18.

4. Update the parameters using equations 2.13 and 2.14, then back to step two.

The process is repeated until converges the result or the number of iterations exceeds a
specific value.
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Figure 2.4 A feedforward network including three layers. The first and second layers consist
in two neurons each; the third layer includes one neuron.

Regularisation

In 2.12 we have define the cost function of the perceptron.

J(θ) =
m

∑
i=1

(h(x(i);θ ,b)− y(i))2 +λ

n

∑
j=1

θ
2
j (2.19)

We iterate through the list of training samples to minimise the above function and update the
parameters θ and b in the direction of minimising each of the term of the objective function.
So, we update the parameters in the following manner:

Multi Layer Perceptron

However, using only one neuron as in the sample study so far, we can separate the data space
in two areas by a linear boundary [55]. The Multi-Layer Perceptron (MLP) architecture
consists of perceptrons’ layers only with forward connections to successive layers. Thus, we
separate the data spaces in several areas and split the data space with non-linear boundaries .
It is shown in fig. 2.4. In this new neural network architecture, including several neurons,
also we can find the θ parameters using the gradient descent algorithm, we need to calculate
the partial derivative respect each parameter of the objective function.

Because each parameter may affect the objective functions from different ways we can
use the backpropagation algorithm to calculate the derivatives of each parameter. The
backpropagation algorithm is an implementation of the chain rule specifically designed for
neural networks. To make reference to each of the theta parameters, from now, we will use
the notation θ

(l)
i j which means theta parameter at the lth layer connecting neuron (or input)

jth to the neuron ith in layer l +1th. And we are going to refer to the b parameters such as
bl

i which means the bias of neuron i. The layers are indexed from 1 for the input layer to
L to the last layer. And the number of neurons in the layer l is equal to sl . Using this new
notation, we can show the recursive computation of h(x;θ ,b) as:

h(1) = x

h(2) = g((θ (1))T h(1)+b(1))
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...

h(L−1) = g((θ L−2)T h(L−2)+b(L−2))

h(x) = H(L) = g((θ (L−1))T h(L−1)+b(L−1))

And we can specify the steps of the backpropagation algorithm as:

1. Compute h(1) to h(L).

2. In the output layer compute the gradient as:
δ
(L)
1 = 2(h(L)− y)g′(sumsL−1

j=1 θ
(L−1)
1 j hL−1

j +b(L−1)
1 )

3. In each node i in layer l, compute the gradient as:

δ
(l)
i = (

sl+1

∑
j=1

θ
(l)
ji δ

(l+1)
j )g′(sumsl−1

j=1 θ
(l−1)
i j hl−1

j +b(l−1)
i )

4. And finally the partial derivatives can be computed as:
∆θ

(l)
i j = h(l)j δ

(l+1)
i

∆b(l)i = δ
(l+1)
i

2.2.3 Convolutional Neural Network

A Convolutional Neural Networks (CNN) model, as the name suggests, it is a kind of Neural
Network. Similar to the Multilayer Perception Model introduce in 2.2.2, the model consists
of a number of layers stacked. Similarly, for each input sample x(i), we run the network in
the forward pass, getting the prediction in the output layer L. And during the training phase,
we will compare the prediction with the target y(i) to update the parameters of the model
until the prediction error converges.

CNN also can use the Stochastic Gradient Descent and Backpropagation algorithm to learn
the optimal parameters of the model. The main difference between the MLP model and the
CNN model is the type of layers included. In MLP, we built the layers stacking perceptrons
vertically. Although the CNN approach can include layers of perceptrons, it can include
another kind of layers such as a convolutional layer, a pooling layer, a normalisation layer,
etc., which we describe later.

Note that it is common to call fully connected layers to the layers of perceptrons where
each perceptron is connected to all the outputs from the previous layer in the same way we
introduce the MLP model.
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Common types of Layers in the CNN model

This section introduces some of the more common layers in a CNN, such as the convolutional
layer, the pooling layer, and the fully-connected (FC) layer. Not all of these layers applied
transformations in the parameters of the model (weights and bias). While the convolutional
and FC layers perform transformations that are a function of not only the activations in the
input volume but also of the parameters, on the other hand, the pooling layer implement a
fixed function. Thus, only the parameters in the convolutional and FC layers will be trained
with gradient descent.

The convolutional layer

The first layer on CNN is always a Convolutional Layer. The input to a convolutional layer
is a matrix XεRrxc where r is the number of rows and c the number of columns. Here, we
can define the convolutional kernel (or filter) as a matrix KεRuxp where u ≤ r and p ≤ c.
The convolution operation consists in selecting a sub-matrix CεRuxp from the matrix X and
perform the dot product between C and K. The result of the convolution is a scalar, and we
repeat the same operation for all the sub-matrix C included in X , obtaining an activation
map that gives the responses of that filter at every spatial position. Figure 2.5 shows the
two-dimensional convolutional layer procedure. The one-dimensional and three dimensional
procedures are explained in [164] and [15] respectively.

Here, we have to define the stride, which defines the way we slide the filter throw the input
matrix X . When the stride is equal to one, we will move the filter one cell at the time, when
the stride is two, we will move the filter two cells at the time and so on.

Another important concept when convolving is zero-padding. We could pad the input matrix
X with zeros around the border. This allows us to control the dimensions of the output
volume.

We can compute the spatial size of the output volume as a function of the input volume size
X , the size of the filter K, the stride which we have applied S, and the zero-padding value (P),
in the form:

(W −F +2P)
S

+1

For example, in Fig. 2.5, for a input size 7x7 and a filter 3x with stride 1 and pad 0, we get
an output of 5x5. In this case, with stride two, we would get a 3x3 output.
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It is common to apply more than one filter to the input matrix X . Here, we will stack the
activation map produce for each filter, resulting in an output volume with depth dimension
equal to the number of filters.

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0X

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

X∗K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.5 Convolution operation.

The ReLU (Rectified Linear Units) Layer It is common applying a nonlinear layer (or
activation layer) immediately after each convolutional layer. The reason is to introduce
nonlinearity to the system. In the past, nonlinear functions like tangential and sigmoid were
used, but it has been found out that ReLU layers work better because the network canto train
a lot faster without making a significant difference to the accuracy.

The RELU activation function is defined as the positive part of its argument:
g(z) = z+ = max(0,z),

and we can see its graph in Fig. 2.6.

−2 −1 0 1 2 3 4 5

0.0

2.0

4.0

z

g(
z)

g(z) = z+ = max(0,z)

Figure 2.6 Graph of the RELU activation function.

The pooling layer A pooling operation consists in the application of a filter to reduce the
dimensionality of a matrix (as well overfitting). A common pooling filter is the max-pooling.
It selects each uxp sub-matrix of the original input matrix and selects the maximum element
of the sub-matrix. It very frequently apply a max-pooling filter of dimension 2x2 and stride
2, it is shown in 2.7.

It is usually applied after a conv layer or a RELU layer.



24 Background–Machine Learning techniques
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2×2 max pooling

9 5 9

9 9 7
2

2

Figure 2.7 Max pooling operation in a 2D matrix.

The fully connected layer As we told before, a fully connected layer is a layer build stacking
neurons vertically. The fully connected term makes reference to the fact in each perceptron
of the layer lth will be connected to each output from the previous layer lth −1 (to each of
the inputs if the previous layer lth −1 was the input layer).

One difference in the CNN architectures with the MLP architectures is that being, as we saw,
the hypothesis function of the perceptron:

h(x;θ ,b) = g(θ T x+b) .
It is common to use the Rectifier Linear Unit (RELU) as activation function instead of the
sigmoid or the tangent functions, which are more common in the MLP approach.

2.2.4 Recurrent Neural Networks

As we said, the MLP model introduces in 2.2.2 takes an independent variable vector x and a
dependent variable vector y and it learns the mapping between x and y from past data. Once
the model has learned the proper parameters w and b to perform the mapping, giving a new
independent variable sample vector, we predict the dependent variable (the class).

However, if the order of the elements of x matter, this model does not take it into account.
A particular type of a Neural Network called Recurrent Neural Network (RNN), takes into
account the order of the elements of x sharing parameters across different parts of the model.
A recurrent neural network shares the same weights across several time steps.

Giving a list of m training samples such as {x(i),y(i)} . Each training input vector and label
will be a sequence of elements. We index each element of the input vector and label such as:

• x(i)<t> | 0 ≤ t ≤ Tx where Tx is equal to the length of the input sequence.

• y(i)<t> | 0 ≤ t ≤ Ty where Ty is equal to the length of the label sequence.
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Figure 2.8 A simple Recurrent Neural Network architecture.

At time step t the input of the network will be x(i)<t> and the model will try to predict y(i)<t>

taking into account the value of x(i)<t> and the activation value of the previous time step
h(i)<t−1>. Note that with this procedure, at time step t the neuron will take into account the
value of x(i)<t> and all the elements with smaller t (the previous elements in the sequence)
throw h(i)<t−1>. This procedure is repeated for all the Tx elements in the sequence. The
procedure is shown in Fig. 2.8. Note that in this example Tx is equal to Ty, but it is not a
requirement.

Because in the time step t − 1 there is not a previous time step, in some approaches, the
neuron will take as the previous activation value a vector of 0’s. It is known as the Zero
activation approach, but there are others such as used a random vector.

If we call the weight parameters governing the connection from x<t> to the hidden layer as
Wxh, to the parameters weights governing the connection between hidden layers as Whh, and
the parameters governing the connection between the hidden layer and y<t> as Why (these
are the same of parameters for each time step)., we can describe mathematically the forward
propagation of the RNN model as:

h<t> = q(Wxhx<t>+Whhh<t−1>+bh) (2.20)

ŷ<t> = r(Whyh<t>+by), (2.21)

where q(z) and r(z) are activation functions such as the sigmoid shown in 2.9, the hyperbolic
tangent (tanh) or the RELU shown in 2.6. For q(z),it is common use the tanh activation
function. Tanh activation function is define such as:

g(z) =
exp2z−1

exp2z+11
,
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and its graph is shown in Fig. 2.9.
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Figure 2.9 Graph of the hyperbolic tangent function.

In binary classification problems, for r(z), it is a common choice to use the sigmoid or the
softmax activation functions.

The softmax function constraint the outputs of each unit to be between 0 and 1, the same as
the sigmoid function. But, the softmax function also divides each output such that the total
sum of the outputs is equal to 1. Thus, the output of the softmax function corresponds to a
categorical probability distribution specifying the probability of the sample to belong to any
of the classes.

Mathematically the softmax function is:

g(z) j =
expz j

∑
k
k=1 expzk

We can simplify the notation in 2.20 stacking the parameter matrices Wah and Whh together
in Wh; and the matrices h<t−1> and x<t> in [x<t>,h<t−1>], in the way:

[
Wah | Whh

][ x<t>

h<t−1>

]
=Wxhx<t>+Whhh<t−1>

And, we can rewrite 2.20 such as:
h<t> = q(Wh[x<t>,h<t−1>]+bh) (2.22)

And in similar way, we can rewrite 2.21 as:
ŷ<t> = r(Wyh<t>+by), (2.23)

Backpropagation through time algorithm

The Backpropagation Through Time (BPTT) algorithm is an expansion of the standard
backpropagation algorithm that performs gradient descent on a complete unfolded network.
In RNN we can define the cross-entropy loss of a single element of a sequence such as:

L <t>(ŷ<t>,y<t>) =−y<t> log ŷ<t>− (1− y<t>) log(1− ŷ<t>) (2.24)
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It is known as the element-wise loss force. The cross-entropy loss for the entery sequence
will be:

L (ŷ,y) =
Ty

∑
t=1

L <t>(ŷ<t>,y<t>), (2.25)

thus, different from the update function of the general SGD algorithm introduce in 2.13, for
the RNN model the gradient descent weight updates have contributions from each time-step
(from each element in the sequence:

∆wi j =−α
δL (ŷ,y)

δwi, j
(2.26)

where α is the learning rate. Thus, the partial derivatives δL (ŷ,y)/δwi, j have contributions
from the multiple weights wi j ∈ {Wxh,Whh} and depend on the inputs and hidden unit
activations at previous time steps. So, the errors now have to be back-propagated through
time as well as through the network.

RNN for classification

The architecture we have introduced in 2.8 corresponds to a kind of architecture called many
to many. In this architecture, the input sequence x and the output sequence y are vectors. This
kind of architecture is useful for problems such as text translation or creates a description of
a giving image. Beyond this kind of architecture, it exits others such as:

• one to one

• one to many

• many to one

For binary classification problems such as ours, where we have a sequence of input data, and
we want to map it to a class, 0 or 1, we could use the many to one architecture which graph
is shown in 2.10.

Long Short Term Memory units

As we have told RNN, uses past elements in the sequence to predict the previous one.
However,in practice , a limitation of the basic RNN architecture which we have seen so far, it
is that they have difficulty to use information from past elements which are separate with a
big gap from the previous one [16]. Long Short Term Memory (LSTM) networks which are
a type of RNN, are able of learning long-term dependencies.
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Figure 2.10 A Recurrent Neural Network with a many-to-one architecture.
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Figure 2.11 Visualisation of the RNN cell.

Figure 2.11 visualise the RNN cell, when the activation function in 2.22 is the tanh. The
inputs to the cell are the element sample in the current step x<t> and the activation function
value from the previous step h<t−1>. The RNN cell only has one hidden neuron, in this case
with the f tanh activation function. This hidden neuron calculates h<t> in the form 2.22. The
result is passed to the next RNN cell and to the output layer to calculate y<t>.

The idea of LSTM is to include paths where the gradient can flow for long durations (these
paths act as a memory). With a self-loo,p the LSTM cell included recurrence inside the
cell in addition to the outer recurrence. The LSTM unit has four hidden neurons interacting
between them. Some of the hidden units are used as a gate to control, based on the context,
when forgot and updated the current memory state. We can see the scheme of the LSTM
cell in Fig.2.12. The memory state of the LSTM unit is the c(t) vector, which has the same
dimension as the activation function value h<t>.
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The flow in the LSTM cell is as follow (with the corresponding forward propagation equa-
tions):

• The previous value in the memory state c<t−1> is input to the unit. It would be deleted
if the forget gate decide it.

Γ f = σ(Wf [x<t>,h<t−1>]+b f )

• The previous activation function value h<t−1> and the value of the current element of
the sequence x<t> is given to the input neuron, to the update gate, to the forget gate
and to the output gate.

• The input neuron (commonly with a tanh activation function) calculates the update
candidate c̃<t> as:

c̃<t> = tanh(Wc[x<t>,h<t−1>]+bc)

• The update gate decide if the update candidate value will be accumulated into the
memory state:

Γu = σ(Wu[x<t>,h<t−1>]+bu)

• At this point the new value of the memory cell is known:
c<t> = Γu ∗ c̃<t>+Γ f ∗ c̃<t−1>

which is passed to the next LSTM unit and to the output layer to calculate y<t>.

• At the same time, the output gate has been calculating:
Γo = σ(Wo[x<t>,h<t−1>]+bo)

And the inner product between the result of the output gate Γo and the known new value
of the memory state, is passed to next LSTM cell as the current activation function
value:

h<t> = Γo ∗ c̃<t>

As we have seen, the gating units control the flow of information. All of them have a sigmoid
activation function and their result has the same dimension as the activation function value.

Bidirectional Recurrent Neural Networks

There is a type of recurrent networks call Bidirectional Recurrent Neural Networks. Them
connect hidden layers in both opposite directions. In this way, layers can simultaneously
obtain information from the past and future states (backward and forward).
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Figure 2.12 Visualisation of the LSTM cell.

2.2.5 Siamese architecture

A Siamese network is a neural network that consists of two or more identical subnetworks.
The objective of this network is to find the similarity or a relationship between two compa-
rable observations. Some examples are sentence similarity [103], where the inputs are two
sentences, and the output is a score of how similar they are; or signature verification [26],
where the objective is to find whether two signatures are from the same person. Another
application where Siamese Networks have been used is for image similarity [11]. Here, the
output indicates how similar two images are. We can see the architecture of a Siamese net-
work in Fig. 2.13. In this example, the architecture consists of two subnetworks. Because the
two subnetworks share the weights w and biases b, physically, there is a unique subnetwork
which computes different observations in different time steps. We can choose the architecture
of the subnetwork i.e. MLP, 1D-CNN, and 2D-CNN.
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Pairwise loss function

One way to learn the parameters of the Siamese network, which gives us a good encoding
for the input vector is to define the pairwise loss function and apply gradient descent on it.
For each pair of samples, the distance between the output vectors of the two networks is fed
into the contrastive loss function. The contrastive loss penalises small or large distances,
depending on the similarity label y(i). We can see a Pairwise neural network architecture in
Fig. 2.13 .

If we call f(w,b)(x(i)) the encoding of the input vector x(i) and f(w,b)(x( j)) the encoding
of the input vector x( j). And we define the parametrised distance function to be learned
d(w,b)(x(i),x( j)) such as the euclidean distance between the encoding vectors f(w,b)(x(i)) and
f(w,b)(x( j)) [148] [77]:

d(w,b)(x
(i),x( j)) = || f(w,b)(x(i))− f(w,b)(x

( j))||2

Different from other classification neural networks architectures which use the cross entropy
loss function to predict the class of the observation, here, the model learns the parameters
which satisfy the following conditions:

d(w,b)(x
(i),x( j))= || f(w,b)(x(i))− f(w,b)(x

( j))||2
small if f(w,b)(x(i)) similar to f(w,b)(x( j))

large if f(w,b)(x(i)) different to f(w,b)(x( j)).

(2.27)

Then the loss function in its most general form is [77]:

ℓ(w,b) =
m

∑
i, j=1

L(w,b)(x
(i),x( j),y(i))

L(w,b)(x
(i),x( j),y(i)) = (1− y(i))

1
2
(d(w,b))

2 +(y(i))
1
2
{max(0,α −d(w,b))}2 (2.28)

where α > 0 is called the margin.

Being objective function:
d(x(i),x( j))≤ u(i, j) ∈ S

d(x(i),x( j))≥ l (i, j) ∈ D

And the cost function:
max(0,d(x(i),x( j))−u), (i, j) ∈ S

max(0, l −d(x(i),x( j))), (i, j) ∈ D
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2.2.6 Support Vector Machines

Support Vector Machines (SVM) is a non-probabilistic binary linear algorithm that can be
used for classification and regression. In binary classification problems for each class present
in the training dataset, SVM defines a hyperplane in a high dimensional space. The algorithm
maximises the distance between the hyperplane and the nearest training sample from any
class solving a constrained quadratic optimisation problem. This distance is known as the
geometric margin, and usually, a larger margin means lower generalisation error.

SVM can implement non-linear classification using a technique known as kernel trick. It will
map the samples to a high-dimensional feature space to separate the different classes. Note
that because being a non-probabilistic technique, the result will specify the category assigned,
but it will not show the probability of belonging to the class. However, it is possible to
produce probabilities from an SVM method e.g., fitting a sigmoid function that maps the
SVM outputs to posterior probabilities [120].

Differently from LR where we considered hθ equal to 1 when θ T x ≥ 0, and 0 otherwise, in
SVM we define a hypothesis function such as:

hw,b = g(wT x+b)

1 if wT x+b ≥ 0,

−1 otherwise
(2.29)

Note that we use different notation, we refer to the parameters θ as w to follow the common
notation in the literature and similarly to 2.2.2, we treat the intercept term b separately.

Separable data: Hard Margin

Given a linearly separable dataset {(x(i),y(i) |x(i) ε Rp,y(i) ε {−1,1}}m
i=1, we can use a hy-

perplane to conduct binary classification. We use the relative position of each sample x(i)

with respect to the hyperplane to predict the belonging class as shown in fig. 2.14.

Then, defining the hypothesis function 2.29 of the SVM model as hw,b = g(wT x+ b), the
decision hyperplane can be defined by an intercept term b and a decision hyperplane normal
vector w which is perpendicular to the hyperplane. Being the training data set linearly
separable, we can find infinite values of w, which define different hyperplanes that could
classify all the training samples correctly, as we can see in fig. 2.15.

The perceptron model introduces in 2.2.2, updates the parameters w’s until they converge,
defining a hyperplane that correctly classifies all training samples. This model will not take
into account any consideration to choose a specific hyperplane between all of those, which
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Figure 2.14 Binary classification using a hyperplane on a linearly separable data.
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Figure 2.15 Binary classification using different hyperplanes on a linearly separable data.
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can classify the training samples correctly. Thus, the perceptron model can define a different
hyperplane every time we run the algorithm (modeling the same training samples) because
when using the stochastic gradient descent algorithm to minimise the cost function 2.12, the
parameters w and b, are initialised randomly and the training samples {x(i),y(i)}are randomly
chosen. Choosing a different plane each time we run the algorithm means that the hyperplane
sometimes will be closer to the training samples than others. When the hyperplane is closer
to the training samples, it could mean that the algorithm does not generalise properly.

In the SVM algorithm, we impose a constraint to choose the hyperplane between all of
them that could classify the training samples correctly. We want to find the hyperplane
H0 = wT x+ b = 0 that is farther from the training samples. For that, we maximise the
geometric margin. The geometric margin is the maximum width of the band that can be
drawn separating the support vectors of the two classes.

Geometrically, we can find H0 such as the hyperplane which is equidistant to two others
hyperplanes H1 and H2 which are define by:

H1 = wT x+b = 1
H2 = wT x+b =−1

These two plains must meet the condition that cannot be any sample between them, so, for
each sample x(i): wT x(i)+b ≥ 1 for x(i) belonging to the class 1,

wT x(i)+b ≤−1 for x(i) belonging to the class −1.
(2.30)

Here, we can combine both conditions in 2.30 in a unique constraint:
y(i)(wT x(i)+b ≥ 1 where 1 ≤ i ≤ m. (2.31)

Giving the equation of the geometric margin as:

γ =
2

∥w∥ ,

where ∥w∥ is the L2-norm of wεRn and is given by ∥w∥2 = wT w, we want to find the
hyperplane with w and b values which maximise the geometric margin γ = 2

∥w∥ among all
possible hyperplanes meeting the constraints 2.31, as shown in Fig. 2.16.

In this manner, we will choose the optimal hyperplane for the giving dataset among all
possible hyperplanes such as that which has a larger geometric margin. However, we can
rewrite it such as minimising problem since maximising 2/∥w∥ is the same as minimising
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Figure 2.16 Maximum-margin hyperplane and margins for an SVM trained with samples
from two classes.

∥w∥2/2 [105]. So, we can rewrite the optimisation problem as:

minimise
γ,w,b

1
2
∥w∥2

subject to y(i)(wT x(i)+b ≥ 1, i = 1, . . . ,m.

(2.32)

where we have the objective function
f rac12∥w∥2 and m functions y(i)(wT x(i)+ b ≥ 1 which define inequality constraints. We
want to find the w∗ for which the objective function is at its minimum and the value meet the
constraints.

Because our objective function is quadratic, it is a convex function with just a single global
minimum (thus avoiding the problem with local minimums in the perceptron algorithm).

There are many algorithms to solve our optimisation problem with a quadratic function
subject to linear constraints [105] implemented in quadratic programming (QP) libraries.
However, we are going to use a method called Lagrange duality to solve the problem. The
Dual form solution usually does better than QP and will allow us to use kernels to get the
optimal margin classifiers to compute problems efficiently in very high dimensional spaces.

Lagrange Multipliers is a mathematical method used to solve constrained optimisation
problems of differentiable functions.

Giving the optimisation problem:

minimise
x

f (x)

subject to g(x) = 0,
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we find the minimum of f when its gradient point in the same direction as the gradient of g,
so:

∇ f (x) = λ∇g(x),

where λ is call the Lagrange multipliers. To find the minimum of f under the constraint g,
we can solve:

∇ f (x)−λ∇g(x) = 0.

Here, we define the Lagrangian such as:
L (x,λ ) = f (x)−λg(x),

and its gradient as:
∇L (x,λ ) = ∇ f (x)−λ∇g(x). (2.33)

Then, giving our optimisation problem with the objective function to minimise:

f (w) =
1
2
∥w∥2

and m constraints functions:
g(i)(w,b) = y(i)(wx(i))+b)−1, where i = 1, . . . ,m,

we construct the Lagrangian function such as:

L (w,b,λ ) = f (w)−
m

∑
i=1

λ(i)g(i)(w,b)

=
1
2
∥w∥2 −

m

∑
i=1

λ(i)

(
y(i)(wx(i)+b)−1

) (2.34)

We could try to find a minimum of f solving:
∇L (x,λ ) = 0.

but the problem can only be solved analytically when the number of examples is small
[141]. So, we rewrite the problem using the duality principle. The duality principle treats the
problem from two perspectives. The first one is the primal problem, which is the minimisation
problem in our case, and the other one is the dual problem, which will be a maximisation
problem (the maximum of the dual problem will always be less than or equal to the minimum
of the primal problem, it provides a lower bound to the solution of the primal problem).
Solving the dual will lead to the same result than solving the primal and the calculations are
more tractable.

Being the Lagrangian function 2.34, the primal optimisation problem is:

minimise
γ,w,b

1
2
∥w∥2

subject to y(i)(wT x(i)+b ≥ 1, i = 1, . . . ,m.

(2.35)
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To solve the minimisation problem, we take the partial derivatives of L with respect to w

and b:

∇wL = w−
m

∑
i=1

λiy(i)x(i) = 0 (2.36)

δL

δb
=−

m

∑
i=1

λiy(i) = 0 (2.37)

From 2.16, we have that:

w =
m

∑
i=1

λiy(i)x(i) (2.38)

And plugging 2.38 in 2.34:

w(λ ,b) =
1
2

(
m

∑
i=1

λiy(i)x(i)
)(

m

∑
j=1

λ jy( j)x( j)

)
−

m

∑
i=1

λi

(
y(i)
((

m

∑
j=1

λ jy( j)x( j)

)
x(i)+b

)
−1

)

=
1
2

m

∑
i=1

m

∑
j=1

λiλ jy(i)y( j)x(i)x( j)− summ
i=1λiy(i)

((
m

∑
j=1

λ jy( j)x( j)

)
x(i)+b

)
+

m

∑
i=1

λi

=
1
2

m

∑
i=1

m

∑
j=1

λiλ jy(i)y( j)x(i)x( j)−
m

∑
i=1

m

∑
j=1

λiλ jy(i)y( j)x(i)x( j)−b
m

∑
i=1

λiy(i)+
m

∑
i=1

λi

=
m

∑
i=1

λi −
1
2

m

∑
i=1

m

∑
j=1

λiλ jy(i)y( j)x(i)x( j)−b
m

∑
i=1

λiy(i)

(2.39)

Furthermore, plugging 2.37 in 2.39 we eliminated the b parameter and we obtain the Wolfe
dual Lagrangian function:

w(λ ) =
m

∑
i=1

λi −
1
2

m

∑
i=1

m

∑
j=1

λiλ jy(i)y( j)x(i)x( j) (2.40)

And we can rewrite our optimisation problem in dual form such as:

maximise
λ

wλ =
m

∑
i=1

λi −
1
2

m

∑
i=1

m

∑
j=1

λiλ jy(i)y( j)x(i)x( j)

subject to λi ≥ 0, i = 1, . . . ,m
m

∑
i=1

λiy(i) = 0

(2.41)

Generally, when dealing with optimisation problems which involve inequality constraints,
the solution must also satisfy the Karush-Kuhn-Tucker (KKT) conditions and some regularity
conditions. In our specific problem, the only requirement for the solution to be optimal it is
satisfying he KKT conditions [75]. The Karush-Kuhn-Tucker conditions are:
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• Stationary condition:

∇wL = w−
m

∑
i=1

λiy(i)x(i) = 0

δL

δb
=−

m

∑
i=1

λiy(i)x(i) = 0

• Primal feasibility condition:

y(i)(wx(i)+b)−1 ≥ 0, i = 1, . . . ,m

• Dual feasibility condition:

λi ≥ 0, i = 1, . . . ,m

• Complementary slackness condition:

λi(y(i)(wx(i)+b)−1) = 0, | i = 1, . . . ,m

To sum up, to solve the optimisation dual problem in 2.41 we may:

• First, we put the equations into the form of a Lagrangian give in 2.34.

• We solve for the gradient of the Lagrangian give in 2.33 which gives us a set of partial
derivatives respect x, y and λ ’s parameters. We solve for the λ ’s parameters taking
into account the inequality constraints and we obtain we obtain the vector λ which
contain all the Lagrange multipliers. (note that only the parameters λ from the support
vectors will be different from 0).

• Once we know the λ ’ parameters from the previous step, we obtain w∗ from 2.38.

• We obtain b∗ from:

b∗ =−
maxi:y(i)=−1 w∗T x(i)+mini:y(i)=1 w∗T x(i)

2

• If the solution meet the KKT constraint conditions, we will have the optimal hyperplane
which classify the training dataset correctly.
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Using 2.29 (the same than in the perceptron model 2.2.2), we can predict the class a new
sample calculating wtx(i)+b and predict y = 1 if and only if the result is higher than one.
With the new Dual formulation, using 2.38, we can rewrite wtx(i)+b as:

wtx(i)+b =

(
m

∑
i=1

λiy(i)(x(i)
)T

x+b, (2.42)

so the prediction will be based only in the support vectors since only the parameter λ from
the support vector are different from 0.

Non separable data: Soft Margin

So far, we have dealt with a linearly separable training dataset, but real datasets can include
noisy that will stack the method seen so far to find the optimal hyperplane. Furthermore,
this method is very sensitive to outliers — the classification hyperplane in Fig. 2.17 it is
very close to the samples of the negative class (empty circles) because the positive class (full
circles) includes one outlier. Intuitively, we can see that this hyperplane might not generalise
correctly.

y

x

2∥w∥

Figure 2.17 Maximum-margin hyperplane and margins for an SVM trained with samples
from two classes when including outliers.

To be able to deal with non-linear and noisy datasets, we can allow the algorithm to make
some classification mistakes. We can achieve this reformulating our optimisation problem
2.35 to add a regularisation term [36]:

minimise
γ,w,b

1
2
∥w∥2 +C

m

∑
i=1

ζi

subject to y(i)(wT x(i)+b ≥ 1−ζi, i = 1, . . . ,m

ζi ≥ 0, i = 1, . . . ,m.

(2.43)

This formulation is known as the L1 soft-margin SVM. The changes we have introduced are:
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• we change the constraint 2.31 adding a parameter ζ to allow the geometric margin to
be less than one:

y(i)(wT x(i)+b ≥ 1 where 1 ≤ i ≤ m.

So, some samples could be misclassified or be closer to the hyperplane.

• We add the term ∑
m
i=1 ζi to the objective function to penalise the choice of a high value

of ζ (if the value of ζ was very high, the constraint always would be meet. It is called
the regularisation term.

• We multiply the regularisation parameter by a constant C to control the trade-off
between making the ∥w∥2 small (making the margin larger) and ensuring that most
training samples have functional margin at least 1.

• We avoid minimise the function using negative values of ζ adding a constraint that:
ζi ≥ 0, i = 1, . . . ,m

Here, we can rewrite the soft-margin optimal problem in dual form such as:

maximise
λ

wλ =
m

∑
i=1

λi −
1
2

m

∑
i=1

m

∑
j=1

λiλ jy(i)y( j)x(i)x( j)

subject to 0 ≤ λi ≤C, i = 1, . . . ,m
m

∑
i=1

λiy(i) = 0

(2.44)

So, we only change the constraint from the dual form of the hard case 2.41.

We could reformulate the quadratic optimisation problem in 2.43 to allow multiclass classifi-
cation. Binary classification is performed by the plane defined by the quadratic optimisation
problem. Multiclass classification is done by combining the output of all classifiers

Kernels

Giving a dataset that is not linearly separable such that shown in 2.18a, we can map the
original features to a new set of features that can be linearly separable using a feature mapping
denote by φ . So, rather than applying SVMs using the original input attributes x, we may
instead want to learn using some features φ(x). Thus, giving a feature mapping φ , we define
the corresponding kernel as:

k(x,z) = φ(x)T
φ(z)
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(b) Radial transformation of two dimensional
dataset.

Figure 2.18 Example of radial transformation of two dimensional dataset

Kernel trick: the transformation from the original feature space to the new can be an expensive
calculation when our dataset is big. However, we do not need explicitly transform the data
since the SVM model is entirely written with inner products ⟨x,z⟩, so we can replace all these
inner products with ⟨φ(x),φ(z)⟩. Thus, we can rewrite the soft-margin dual optimisation
problem as:

maximise
λ

wλ =
m

∑
i=1

λi −
1
2

m

∑
i=1

m

∑
j=1

λiλ jy(i)y( j)x(i)x( j)

subject to 0 ≤ λi ≤C, i = 1, . . . ,m
m

∑
i=1

λiy(i) = 0

(2.45)

There are some common types of kernels such as:

• Linear kernel: It is the most simple kind of kernel where:
k(x,x′) = xx′
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• Polynomial Kernel: It has the parameter c which is a constant term and d which is the
degree of the kernel:

k(x,x′) = (xx′+ c)d

• Radial Basis Function Kernel: it projects vectors into an infinite dimensional space.
The parameter γ defines how far the influence of a single training samples reaches.

k(x,x′) = exp(−γ∥xx′∥2)

Choosing which transformation to apply depends on the specific dataset, and the decision
should be made via trial and error.

2.2.7 Decision Tree

Decision trees are decision support methods that use tree-like models to map a series of
inputs to possible related outcomes. They are non-parametric techniques, so they model the
relations between the input and output data spaces without any prior assumption. Some of
the advantages of this kind of algorithm are:

• They are interpretable.

• They are robust to noise and outliers because they intrinsically implement feature
selection.

• They can learn efficiently from small training sets.

• They can deal with high-dimensional feature spaces and complex structures.

• They can handle qualitative and quantitative attributes.

Tree-based algorithms approximate the Bayes model’s partition by recursively partitioning
the input space X into subspaces R j. Then, a prediction value ŷ is assigned to each terminal
subspace R j | i = 1, . . . ,J. In regression trees, usually, the prediction value assigned is the
mean or mode of the training samples belonging to the particular sub-space.

We can summarise the set of splitting rules in a tree. Trees are usually drawn upside down,
being the leaves at the bottom of the tree. We connect the vertices of the tree by one unique
path (an edge). The root of the tree has all the edges away from itself. When there is an edge
from the node a to the node b, the node a is the parent node of the node b, which is the child.
We call a node internal if it has one or more children and terminal if it has no children (the
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leaves). Fig. 2.19 shows a graphical representation of a decision tree. We can interpret the
importance of each feature by its hierarchical position in the tree.
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Figure 2.19 Graph of a decision tree.

Classification trees

We use classification trees to predict categorical classes.

To build the tree, we perform recursive binary splitting. First, we select an attribute xi | i =
1, . . . ,n and the cut-point sin[min{xi..max{xi}, splitting the attribute space in two regions
{x|xi ≤ s} and {x|xi > s}. We repeat the same operation iteratively, dividing the attribute
space x into J non-overlapping regions R j | j = 1, . . . J. Then, the algorithm will predict the
same class for each new sample x(i) which fall in the same region R j. Classification trees
assigns the class of the training samples which most occurring frequency in the region. So,
if a node t, representing a region Rt with Mt observations, the proportions of samples with
class k in the node is:

p̂tk =
1

Mt
∑

x(i)inRt

I(y(i) = k),

then the class predicted in the node t is that of the majority of observations in the region:
k(t) = argmax

k
p̂tk

To grown the tree, for each split a greedy algorithm is used to decide which attribute xi and
which cut-point s should be choose. From all the observations Mt in the node t, considering
a splitting feature xi and split point s, for each candidate θ(i,s) partition the data in:

Rle f t(i,s) = {x|xi ≤ s} and Rrigth(i,s) = {x|xi > s}. (2.46)
and being the number of observations in Rle f t equal to Mle f t and the number of observations
in Rrigth(i,s) equal to Mright , we define the impurity in the node t using an impurity function
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I() as:

G(R,θ) =
Mle f t

Mle f t +Mrigth
H(Rle f t(θ))+

Mright

Mle f t +Mrigth
H(Rright(θ))

We will select the attribute and which cut-point θ(i,s) which minimise G(Q,θ):
θ
∗ = argminθ G(R,θ)

For the case of classification trees common choices of the impurity function I() are:

• Misclassification error:
Imisclassi f ication = 1− p̂tk (2.47)

• Gini impurity :

IGini =
K

∑
k=1

p̂tk(1− p̂tk) (2.48)

• Shannon’s Entropy:

IEntropy =−
K

∑
k=1

p̂tk log p̂tk (2.49)

Once we have found the best split for the node t, we partition the data into the two resulting
regions, and we repeat the splitting process iteratively on each of the new two regions.

Here, we have to decide how long to split the tree. Very large trees may overfit the training
data, while small trees may not capture the underneath data relations [78]. A common method
to decide the tree size is grown a large tree T0 ending the splitting process using a predefined
stopping criterion, such as a minimum number of observations in each region R j. Then this
large tree is pruned using a method called cost-complexity pruning. This process consists in,
for all the T ⊂ T0 which can be obtain by collapsing any number of the internal nodes of T0

calculate the complexity criterion define such as:

Cα(T ) =
|T |
∑
t

Mle f t +MrightI(T )+α|T |,
where |T | is the number of nodes of T , I() is one of the impurity functions seen in 2.47,2.48
and 2.49; and the scalar α ≥ 0 defines the trade-off between the size and the goodness of the
tree to capture the underneath data relations. To find the appropriate tree size, we should find
the value of α and T , which minimises Cα(T ).
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Ensemble methods

Decision trees are known to suffer from bias and variance i.e. high bias with simplest trees
and high variance with complex ones. Ensemble methods, combines several decision trees
to improve the performance of the single decision tree. techniques to perform ensemble
decision trees:

A common way to construct several learners is using methods such as Bagging (Bootstrap
Aggregating) and boosting. The procedure of these two methods is:

1. Producing distributions of simple models on subsets of the training dataset.

2. Combine all distributions into one aggregated solution.

Bagging and Boosting generate additional data in the training phase by random sampling with
replacement from the original dataset. By sampling with replacement, some observations
may be repeated in each new training data set. The difference between them is that bagging
samples each observation with the same probability while boosting weight the observations,
giving to the misclassified samples more preference. Thus, while Bagging decreases the
variance of the prediction and avoids overfitting, boosting decreases the variance and bias.
Furthermore, both methods give stability to the predictions.

To predict the class of y(i), we will use the prediction of each of the learners. In Bagging, we
obtain the result by averaging the responses of the learners (or majority vote on classification
problems). Boosting takes the weighted average (or average voting), giving more importance
to the prediction from learners with good classification results in the training phase.

Random Forest

Random Forest (RF) is a learning method for classification and regression. RF constructs
multiple decision trees to predict to the class of an unseen sample y(i) based on the prediction
of all of them.

1.

2.

RF algorithm tries to improve the variance reduction of Bagging by reducing the correlation
between the trees. For this, when growing the three, RF chooses the splitting attribute
between a random selection of all of them.
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Thus, RF improves the prediction accuracy of other tree-based methods such that seen in
2.2.7 (at expenses of losing some interpretability) [78].

The steps which follow RF are summarised in:

1. For each tree e of the desired number of trees E of the forest:

(a) Draw a bootstrap sample from the training dataset

(b) Grown an RF decision tree until reaching the minimum node size

i. Randomly select a subset of the attributes

ii. Pick the best split attribute/split point

iii. Split the data space in to regions

2. Combine the ensemble of trees {Te}E
1

And to make a prediction of an unseen sample y(i):

• For regression:

f̂ B
r f (x) =

1
E

E

∑
e=1

Te(x)

• For classification:
ˆCE
r f (x) = majority vote {Ĉe(x)}E

1 ,

where Ĉe(x) is the class prediction of the eth RF decision tree.

We should tune the parameters of the model, such as the size of the data subset, number of
trees, and minimum node size, to choose the optimal.

2.2.8 k-nearest neighbors

k-nearest neighbors (K-NN) is a simple non-parametric method which can be used for
classification. It assumes that samples with similar patterns are close to each other in the
feature space. It is useful to perform discriminant analysis when parametric estimates of
probability densities are unknown or difficult to determine.

It classifies samples based on the majority vote of the k neighbors i.e., the predicted class
will be that of the most common class among the k nearest neighbors.
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There are different metrics to calculate the distance between the sample and their neighbors,
and one way might be preferable depending on the specific problem [123]. However,
Euclidean distance is a popular choice.

The K-NN Algorithm steps are:

• Load the data and chose the number of neighbors k

• For each of the points in the feature space:

1. Calculate the distance between the current sample and the rest of them

2. Sort the collection of distances in ascending order

3. return the most common class of the K first entries

2.2.9 Hidden Markov Model

Hidden Markov Model (HMM) is a probabilistic approach for modeling sequences to capture
hidden information, i.e., that cannot be observed, in markovian processes.

Markov chain is a stochastic model which describe a sequence by:

• possible stages

• the probabilities of moving from one stage to other i.e. the transiction probabilities.

• the initial state of probabilities

And the characteristics of the model are:

• The number of stages is finite

• The probability of the next stage depends only on the current stage and it does not in
the previous ones i.e. memoryless property.

• The transiction probabilities are constant over time.

We can discriminate between discrete-time Markov chain when events occur in discrete time
steps and continuous-time Markov chain, when time is continuous.



2.3 Unsupervised Machine Learning methods 49

We define S as the set of possible steps S = S1,S2, ...Sm. If at current time n the sytem is in
the state i the probability to be in the state j at the next step n+1 is P(Xn+1 = j|Xn = i) with
pi j ≥ 0,∀i, j,∈ S∑ j∈S pi j = 1,∀i ∈ S.

We can represent the Markov chain by a trasiction graph such in 2.20.

Si S j
pi j

p ji

pii p j j

Figure 2.20 Markov chain graph.

Hidden Markov Model sequences are generated from two coexistent stochastic processes: a
process defining the movements between stages and a process that define an output.

The process which defines the movements between stages is a Markov chain. And the process
which defines the output is characterised by the emission of one character of a given alphabet
from each state, with a probability distribution that only depends on the state. So, it is defined
by emission probabilities and initial probabilities.

We cannot observe the sequence of transitions directly, but we can guess there observing the
sequence of emitted symbols, i.e., it is because of the name of the Hidden Markov Model.

2.3 Unsupervised Machine Learning methods

In this thesis, we will use unsupervised machine learning methods for classification and
dimensionality reduction. In this section, we introduce the approaches we have used.

2.3.1 Deep Learning Autoencoders

In Chapter 6, we use a particular deep learning method called an autoencoder, which consists
of an input layer, an output layer of equal size, and one or more hidden layers connecting
them. Autoencoders have been used for data representation [171] and, more recently, for
authentication [31].

In this context, the input is the input vector ti = (a1, ...,an) and the output is:
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u(t) = hu(Wut+bu) , (2.50)

where Wu ∈ Rd×s is a weight matrix, bu ∈ Rs is the bias vector, a1,a2, ...,an ∈ Rd are the
input features of the sample i and hu is called the activation function, which in this approach
we define such the hyperbolic tangent function [88]. The process of the approach is performed
in two stages: the encoding and decoding steps. In the encoding step, the input a is mapped
to the abstract representation u(t) according to Eq. 2.50, and in the decoding step, the latent
space is reconstructed to the output representation t̂, which is an approximation of the input
vector, according to the decoder function:

t̂ = hd[Wd{u(t)}+bd] ,

where Wd ∈Rs×d is the weights decoding matrix, bd ∈Rs is the decoding bias vectors, and hd

the decoding activation function. We restrict the degrees of freedom using a tied architecture,
where the encoding matrix is the transpose of the decoding matrix, i.e. Wd = WT

u [160].

More than one hidden layer can be applied to achieve higher flexibility (and abstraction) in
the model. In a multiple layers architecture, encoders and decoders are stacked symmetrically,
where the output from the kth encoder, is the input of the k+1th encoder.

We train the model using back propagation to minimise the loss. After, we compute the mean
squared error (MSE) between the input vector t and its representation t̂ on the output of the
autoencoder.

When the goal is to reconstruct the input as accurately as possible, a loss function is frequently
used, i.e., Mean squared error (MSE). MSE is the mean of the squared difference between
the input vector t and the network output t̂ .

Two of the most popular applications of autoencoders are data denoising and dimensionality
reduction i.e., with dimensionality and sparsity constraints, autoencoders learn new data
projections.

Less often, autoencoders are used for novelty detection. The model is trained with a unique
class of samples. If the MSE of a new sample is higher than a threshold, this sample is
considered an anomaly.
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Figure 2.21 Maximum-margin hyperplane and margins for an one-class SVM trained with
samples from one class.

Variatonal Autoencoder

The difference between Variational autoencoders and vanilla autoencoders is that in the
former, we add regularisation during the training to avoid overfitting and ensure characteristics
of the latent space-specific of generative models.

Variational autoencoder as well is trained through gradient descent in an encoder-decoder
manner, but instead of encoding an input sample as a single vector, we encode it as a
distribution over the latent space.

Thus, the Variational autoencoders training steps are:

• encode the input as a distribution over the latent space

• sample point from the latent space distribution

• decode the sample point and calculate the reconstruction

• propagate the reconstruction through the network

Then, the loss function that is minimised to training the VAE consists of the reconstruction
term and a regularisation term that makes the distribution of the latent space close to a normal
distribution.



52 Background–Machine Learning techniques

That regularisation term is formulated as the Kulback-Leibler divergence between the returned
distribution and a Gaussian distribution [109].

Minimising the KL divergence, we optimise the probability distribution parameters (µ and σ )
to closely resemble that of the target distribution. For VAEs, the KL loss is equivalent to the
sum of all the KL divergences between the component Xi N (µi,σ

2
i ) in X , and the standard

normal distribution i.e it is minimised when µi = 0, σi = 1. This stochastic generation means
that the encoding will have a random component and will vary on each pass.

VAEs have proof better performance for some applications, i.e., generating variations on an
input image.

2.3.2 One-class SVM

As we saw in the previous section, SVM learns how to discriminate between two data
categories. From past data, it finds the line/plane/hyperplane that best separates the samples
from both categories.

One-class SVM is an extension of the binary SVM learning algorithm to enable the training
of the classifier only with samples of one class. So, one-class SVM tries to identify if
new samples belong to the same distribution of observable samples from one specific class.
Training can be achieved by treating the origin ( of the coordinate system) as the only member
of the second class 2.21, separating a certain number of samples from the rest of them. Thus,
It forms the decision boundary around the learned data domain without knowledge of the
samples outside the boundary.

Mathematically, it can be formulated by providing a measure f (z) of the distance d(z) to the
positive class and a threshold θ to distinguish between the positive class and the outliers:

f (z) = I(d(z)< θd (2.51)

where I is the class (negative or positive).

We can apply kernels to one-class SVM in the same way we did for the binary SVM in the
previous section. It will allow us to model more complicated datasets. Same that in the SVM
case, data points are mapped by mean of the kernel to a high dimensional feature space. In
the new feature space, we will search for the maximal separation between classes.
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2.3.3 Multivariate Gaussian Model

Given the dataset x(i)j , we will take into account only those samples labeled as a normal. We
assume that each attribute is normally distributed and we calculate the Gaussian parameters
i.e. the mean µi and variance σ2 for each of the features as follow:

µi =
1
m

Σ
m
j=1a( j)

i (2.52)

σ
2
i =

1
m

Σ
m
j=1(a

( j)
i −µi)

2 (2.53)

where i ∈ {1,2, ...,d} and d equal to the number of features.

Given a new sample, we will calculate the probability to belong to the same distribution as
follow:

P(t) = P(a1; µ1,σ
2
1 )P(a2; µ2,σ

2
2 )...P(ad; µd,σ

2
d ) =

=
d

∏
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2
j ) =

d

∏
j=1

1
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√

2π
e−(a j−µ j)

2
/

2σ2
j

(2.54)

And we will consider the transaction as fraudulent if P(t) < ε where ε is the probability
threshold.





Chapter 3

Card Payment systems

3.1 Introduction

The value of global non-cash transactions is growing every year, and it is estimated to reach
beyond 720 billions of dollars in 2020 [29]. Fig. 3.1 breaks down the total transactions
value by global growth regions, i.e., North America, Europe, Mature Asia-Pacific (APAC),
Emerging Asia, Central Europe Middle East and Africa (CEMEA) and Latin America
(LATAM) between 2012 and 2021 (Note that values between 2019 and 2021 are estimated).
We can see an increasing trending, which is significantly stronger in emerging Asia and
CEMEA. In those regions, where the card network development is immature, the proliferation
of card use is mainly due to the increase in mobile payments and wallets. On the other
hand, in mature markets such as North America, Europe and mature APAC, the adoption of
NFC/contactless technology has powered the increment of the card operations.

At the same time that the value of the global card payments transactions grown, fraud
activities and losses related to them have increased too. During the last few years, most
of the losses are related to Card Not Present (CNP) interfaces [151]. CNP involves online,
telephone and mail transactions, being most of the losses because of online transactions.

The European Central Bank, in its last report on card payments fraud, informed that CNP
fraud increased 66% for five years with an approximate 1000 EUR millions of losses in 2016
in Europe [57].

Fighting fraud is a difficult task, and merchants prefer that security measures have little
or no impact on the customer experience. On the other hand, security procedures against
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Figure 3.1 Estimated value of world wide non-cash transactions from 2012 to 2021 [167]

online fraud which require extensive personal information are also a source of vulnerability.
This information can be exposed after data breaches, and once stolen, it can be used in
fraudulent activities. Furthermore, customers used the same access information for different
sites, allowing fraudsters to make a profit in many different ways.

3.2 Card payments

Card payment is a financial system where an institution, i.e., a bank, issues a card to clients,
which enables its owner to access the funds in the customer’s designated account, pay with
electronic funds transfer, and access automated teller machines.

3.2.1 Actors involved

For a better understanding of the different scenarios of card payments, it is essential to know
who are the actors involved. Figure 3.2 shows those playing a role in one way or other in
card transactions which are:

1. The holder or applicant: The cardholder is the natural or legal person in whose name
the card is issued. The credit institution authorised him to use it under the contract
signed between the financial institution and the applicant. The applicant and the holder
can be a different actor or the same. On the other hand, some financial institutions allow
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Figure 3.2 Card payments scheme.

different holders for the same card, where a single contract results in the emission of
several cards. Here, we distinguished between the principal holder and the authorised
holders. When the applicant is the holder too, he will be in charge of the liabilities
of the contract. On the other hand, when the applicant is not a holder, the authorised
holders will be liable.

2. The merchant: they are the shops that accept a card as a means of payments for goods
or services which they offer. The shop will accept card payments from one or more
card providers. There is a contract between the shop and the different providers (when
there are more than one). The store guarantees the acceptance of the payment enabling
a terminal point of sale (POS) compatible with the system of the care provider in
question.

3. The Issuer: it is the entity which, as part of his business, makes available to a customer
a payment card, under a contract concluded between them.

4. The acquirer: it is the financial institution or bank which is responsible for authorising
and processing payments by card through the payment gateway system.

5. Card scheme: This is the brand owner of the credit card, which grants the license
to financial institutions that are members of its system for issuing this payment to
individuals and companies, and conclude contracts with businesses that want to join
the system of payments, i.e., Visa international.
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3.2.2 Card payments types and procedure

Commonly, we can categorise card payment systems into either card-present and card-not-
present (CNP) systems.

In card-present payment systems, the cardholder is physically present at the merchant store,
and he/she perform the payment by swiping (magnetic stripe), inserting (chip and PIN)
or tapping (contactless) payment card to the merchant provider point of sale (PoS), i.e., a
terminal or reader. Here, in the payment process, the identity of the cardholder is validated
either by requesting a card’s PIN or by the cardholder signature. However, note that in the
case of contactless payments, which usually only accept transactions of a low amount of
money, i.e., a maximum of 30 in the UK [1], the identity of the cardholders is not validated.

On the other hand, in Card Not Present (CNP) transactions, the process takes place remotely,
i.e., the cardholders type their payment card details on the checkout page provided by a
merchant website. The security of the CNP payment system relies upon the cardholders
correctly providing their payment card details. A CNP payment system has two grievous
security limitations. Firstly, the identity of the actual cardholder cannot be established by
the merchant or by the card issuer, and secondly, the card details are static and remain the
same until the card service is expired. To overcome these limitations, the payment industry
proposes a user-authentication scheme which requires the cardholder to establish their identity
with the card issuer before the transaction is approved. During many years, Fraud detection
systems (FDS’s) for CNP transactions has been based on rules established by experts. The
main limitation of these systems is the inability of the approach to recognise new types of
fraud that have not been previously target. Modern approaches establish dynamically the
ruling criteria for detection using Machine Learning techniques, which learn from past data.

3.2.3 Authentication method on card payments

To make a transaction using a card, it is required to follow the authentication steps. The
authentication method varies according to the type of transaction. We are going to describe
some of the most popular authentication methods for the two basic types of transactions:
Authentication methods for card-present transactions

• Signature stripe: A signature strip is an area on the back of the card that can hold
ink. Owners of the card have to sign there for identification purposes. This method
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of authentication is used to support a more secure method such as Magnetic Stripe or
Chip & Signature authentication method.

• Magnetic stripe: The magnetic stripe is a black or brown band. This band is made
adding to a resin small magnetic particles such as iron oxide or barium ferrite. Thanks to
the ferromagnetic activity of these compounds, the stripe will be able to be magnetised,
creating a kind of bar code consists of magnetised areas. When the card is swiped at a
certain speed in a specific reader, the magnetic induction creates a voltage which will
be translated into a binary code. The first swipe cards were used in the early sixties
on public transport, London Transit Authority installed a magnetic stripe card in the
London Underground train system in London. In the late sixties, financial institutions
implemented the plastic card with a magnetic strip. Some of the information stored
in the magnetic strip is the card number, the holder’s name, and the expiration date.
A problem with this authentication method is that the information is not encrypted.
Anyone with the card can access the information and duplicate that with a simple
device to clone magnetic stripes. Sometimes as part of the process, the cardholder will
be required to provide a signature on the terminal receipt to authorise the transaction.
Furthermore, many times, the user will be asked for an id proof too.

• EMV card: The EMV (Europay MasterCard VISA) system is named after the three
companies that developed the project. Later in 2004, Japan Credit Bureau (JCB) joined
the project and American Express in 2009, so most of the cards issued worldwide to
implement this technology. EMV validates the operations through information stored
in a chip instead of in a magnetic stripe. There are two types of EMV authentication
methods to consider: Chip & Pin and Chip & signature.

• Chip & PIN: A Chip and PIN card requires the cardholder to enter a four-digit pass-
word. The majority of UK issued cards will be processed as chip & PIN transactions
[The UK Cards Association].

• Chip & signature: they require that the cardholder sign on a piece of paper that comes
up after a machine reads the card’s chip. The merchant will compare in situ the
signature of the user with the signature of the signature stripe in the back of the card.

• Contactless transaction: the payment is made bringing the card near the terminal.
This method, which was announced during the London Olympics 2012 by Visa, is
configured not to have to enter the PIN code to pay an amount smaller than £20.
Undoubtedly, these cards allow us to pay faster, but they have against you in case of
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theft, payments can be made without knowing the PIN code. Data such as cardholder
name, date of issuance, card number, or expiration date, can be obtained by a smart
card reader. This data can be read by anyone because it is not encrypted. Overall the
information that is printed on the card, according to the EMV standard [4], the only
thing that cannot be obtained is the Card Verification Value (CVV) number. What
makes different the contactless cards is that they can be read without having to maintain
contact with it, thanks to the Near Field Communication (NFC) technology. Nowadays,
almost all mobile phones support this technology. Placing an NFC smartphone near
a card, it can be read. Note that this communication can be established even if the
card is into our wallet. In September 2015, "£758.6m was spent in the UK in the
month using a contactless card. This is an increase of 19.7% on the previous month
and 19.8% over the year" [The UK association] .From 1st September 2015, the higher
contactless limit in the UK has been moved from £20 to £30. This could bring more
retailers’ average shop or individual items into range for contactless cards and should
drive higher acceptance rates [The UK association] .

Authentication methods for card no present transactions

When a user wants to make a card not present transaction by online, mail, or telephone,
the merchant asks the customer about some information to identify the owner of the card
and validate the purchase. There is no regulation about which data the merchant have to
request, and they decide what to ask [89]. Some of the information given by the user can be
compared with the information stored by the card provider, but once more, the merchant is
free to decide which information check. Some of the information asked the customer by the
merchant it is not printed the card, such as the card holder’s postcode and some information
are printed on both sides of the card such as:

• Card number: It is a number between 13 and 18 digits. Often it is a 16-digit number.
Typical exceptions are American Express which has 15 digits, Diners Club which is
between 14 and 15 digits. This number is unique for each issued card. Since 1989 the
numbering of all credit or debit cards must be adapted to the ISO/IEC 7812 standard
[81] . This standard identifies the positions and meanings of the numbers of the card
number. Holder’s name: Name of the owner of the card.

• Expiration date: date until when the card will be useful. The format is mm/yy.
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• Verification number: it was designed to increase security in electronic transactions.
It is used to confirm that the client has physical access to the card being used in a
transaction. This system takes different names CVV2 (Visa), CVC2 (MasterCard), or
CID (American Express). Visa, Maestro, MasterCard and Eurocard, the number is
on the back of the card, near the signature. The number consists of three digits. For
American Express cards, the number is located in the front of the card, right above the
number of the credit card. The number consists of four digits. The verification code
is printed flat, not embossed like the card number or the expiration date, this makes
it impossible to obtain copies by coal or similar techniques. Usually, the customer
must provide the card holder’s name, the card number, the expiration date and the
CVV. On many websites, it is mandatory to enter the CVV, but it is not the case for
all, for example, in Amazon. Here only the name of the holder, the card number, and
the expiration date is necessary. That means that someone with a mobile NFC can
read a contactless card and then make a purchase on Amazon [45] . Moreover, if we
will not manage to get the card holder’s name by this method, anyway we could make
the purchase only with the card number and the expiration date because Amazon only
checks the credit card number and expiration day with the card provider [5] .

3.3 Frauds Over Internet Technologies

3.4 Frauds Over Internet Technologies

Commonly, cybercriminals use Internet technology for committing fraud activities in two
different ways:

1. spreading malicious content, e.g., malware, Trojans, or viruses that, in turn, leak private
information of the victims

2. convincing victims to disclose their private information via social engineering attacks

Internet-based applications have brought uncountable new opportunities for businesses, but
at the same time, it has smooth the way for fraudsters to use the latest technology to commit
fraud against users and businesses. Every year, a large number of people lose their money
to different types of fraud over the Internet applications such as e-commerce, online dating,
online gaming, credit card frauds, telephone frauds, mobile payment frauds, etc. The e-
commerce frauds can be of a different type: e.g., the merchant does not deliver the product
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or has sent a product of lower quality than the advertisement. Some of the most common
online frauds are buyers not receiving goods that they have ordered, receiving products that
have inferior value, or are significantly different from the original description. The statistics
by Experian show that e-commerce frauds (online auctions, buying products) have increased
by 33% since 2015 [65]. Frauds over the online marketplaces have resulted in an annual loss
of billions of dollars to customers all over the world.

Over the Internet, fraudsters have created a large number of fake pages for two purposes: 1)
they convince end-users to click on some links through social engineering or phishing attacks
or exploit some browser system vulnerabilities to silently download malicious software on
the user’s computer whenever the user visits the malicious web page. These fraudsters also
convince users to call a premium telephone number, which not only results in a financial loss
but also disclosure of their financial information to fraudsters. Another type of fraud that is
popular over the Internet is Advanced Fee Fraud (AFF). This fraud is committed by asking
victims to pay some amount to process their incentive, which can be in the form of leftover
money of a deceased Nigerian rich person, an offer of a job with high pay, and the lucky win
of being selected for a holiday vacation. The common attribute of these frauds is that the
victim must pay a small amount of money first before they can get a larger amount from the
attacker later. The Internet of Things devices has also been used to target the end-users for
malicious activities, e.g. DDos and massive spamming.

3.4.1 Economics of Card Payments Frauds

Payment card fraud is an international issue that spans across nations, states, and borders.
Fraud from overpayment cards has amounted to a total of $22.80 billion globally in the year
2016 [2]. This is 4.4% increase in the global card payment fraud rate as compared to the year
2015, where it was recorded $21.79 billion [2]. The United States (US) alone accounts for
an overall of two-fifths (38.7%) of the global card payment fraud totalling to $8.45bn for the
year 2016, and it is estimated that by the year 2020 the US card payment fraud could surpass
$28bn [3]. On the other side of the Atlantic, card fraud losses for Europe in 2016 reached
$2.12bn coming most of them (73%) from the United Kingdom (UK) and France [62].

Recently, it has been established that the costs associated with the losses on financial systems
constituted the largest single category of fraud across the globe and over the Internet [62].
Thus, fighting international and organised card payment fraud has become part of the list



3.4 Frauds Over Internet Technologies 63

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
50

100

200

300

400

500

600

135

188.4

317

411.5424.6420.4

504.8

439.4427

535.2

609.9

440.1

365.4
340.9

388.3

450.4
479

567.5

618

566

671.5

Total CNP Counterfeit Lost & Stolen Fraud Abroad

Figure 3.3 UK Card fraud by type from 1998 to 2018.

of the most serious priorities for Europe, and it is under Europol’s priority crime areas
(2018-2021 EU Policy Cycle [37]).

In most of the cases, fraudsters make a profit over electronic payment systems targeting
the weakness in the system technologies. The methods vary depending on the type of the
system (among card-present and CNP) being targeted, and they can be better understood by
mapping the payment card fraud patterns over the evolution/improvements of card payment
technologies. We are going to focus on card payment fraud patterns in the UK.

Figure 3.3 shows UK card fraud statistics from 1998 to 2018 [65]. In the figure, red and black
lines represent losses on the two main card-present payment types of fraud, and the blue line
signifies the fraud that occurred over CNP payment interfaces. The grey line represents the
percentage of fraud that takes place abroad.

After the implementation of Chip and PIN in 2004 replacing earlier magnetic stripe cards for
card-present transactions, fraudsters moved their activities from card-present to CNP fraud.
Thus, tosses because of counterfeit fraud, after a peak in 2008 because of the delay in the
deployment of CHIN and PIN technology abroad, decrease year by year until nowadays. On
the other hand, fraud because lost and stolen cards after ann initial decrement has kept almost
the same losses over all the period.
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We can see losses on CNP interfaces double in only four years, from 150 million pounds in
2004 to 328 million pounds in 2008. In 2008, the deployment of preventive measures such as
transaction risk profiling and authentication processes such as MasterCard SecureCode and
Verified by Visa [63], lead to a decrement of 30% in fraud losses between 2008 and 2011.

However, nowadays, the situation is very different. During the last few years, a new scenario
has been created, and it has brought new opportunities to fraudsters. Two facts have a lot
to do with the new circumstances. The use of mobile devices for online purchases such
as mobile phones and tablets; and the massive use of social media [96]. Mobile devices
present new vulnerabilities, and the widespread use of social media is another channel where
fraudsters can obtain private information to commit fraud. As a result, CNP fraud losses
grew drastically from 2011 to nowadays, and the amount was beyond 500 million pounds in
2018.

3.4.2 CNP Payments - Technology, Limitations and Attacker Methods

The ease and convenience with which a customer can make purchases over the Internet bene-
fited both the customer and the merchants alike. Within the CNP payment system we have
authorisation-only and user-authentication enabled CNP payment protocols. Authorisation-
only CNP protocols provided convenience to the shopping process where customers were
only required to fill and submit their payment card details which include 16 digit card number,
card’s expiry date, three-digit card security code (CVV2) and cardholder address informa-
tion to the Internet-based merchants. For fraudsters, however, this convenience came as an
opportunity to steal customer’s card details and misuse them.

The first attempt to combat growing CNP payment fraud came in the year 2001, where pay-
ment networks (Visa, MasterCard, American Express, et al.) introduced the 3 Domain Secure
(3DS) protocol. It introduced the concept of user-authentication for payment transactions
over the Internet. For every CNP payment transaction, 3DS required the customers to provide
a password, thus combating the growing CNP payment fraud. However, the 3DS protocol
exhibited two design flaws: activation during shopping and the use of static passwords.
Activation during shopping required the cardholders to register with 3DS during the time of
purchase. This enabled even attackers with stolen card details to register the victim’s card
over the 3DS. Additionally, attackers were still able to trick victims into giving away their
static 3DS password. Because of these reasons, most merchants still stay hesitant to adopt
the 3DS and prefer using the authorisation-only CNP payment protocol. This freedom of
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choice for the merchants (i.e., the use of user authentication and/or authorisation-only), in
the ways to accept online payments, even left pathways for the attacker to exploit loopholes
and practice fraud over the CNP payment system.

The most common techniques employed by fraudsters to abuse the CNP payment include
phishing and targeting the victim’s machines with specially crafted malware, which is
designed to steal payment card details. Stolen card details are either used by adversaries or are
traded on online portals. Since phishing [46][54], card details stealing malware[149][56][72]
and trading of card details in underground forums [175][174] have been comprehensively
studied, we do not expand these attacker techniques in this thesis.

3.5 M-commerce Fraud

Mobile commerce is the activity of buying and selling products or services through mobile
devices connected wirelessly, such as cell phones and personal digital assistants (PDAs).
M-commerce allows the user to shop from any place.

Currently, consumers are increasingly turning to the Internet and mobile devices in their
buying habits. M-commerce is fast growing. Mobile devices are predicted to account for
more than 40% of all online retail sales in 2019, [85] . It has been predicted that the global
mobile-payments market will grow by more than 33% through the year 2022 to reach $3,388
billion [142].

Mobile payments have been adopted in different ways. We are using mobile devices for
online shopping and paying for digital services. Moreover, they have become popular for
contactless payments instead of paying with debit or credit cards. The main models for
mobile payments usually are relayed in one of the following technologies [38]:

• Stored value account systems: Usually, the method is integrated into an app on the
mobile device, i.e., payment wallet. Apple Pay, Samsung Pay, Android Pay, Microsoft
Wallet, and PayPal are the most widely used wallets, with Paypal being the only one
that works across different operating systems. They allow a customer to make faster
online payments (when the merchant accepts them) and contactless transactions using
the Near Field Communication technology included in many mobile devices. Other
popular wallet apps are brand specific, such as Boost Mobile and the Starbucks Wallet
app, which usually include loyalty programs.
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• Account-based systems: A mobile web payment system can store card details that can
be remembered for future purchases turning the payment into a simple click-to-buy.
Commonly, strong authentication is required to commit large-value payments. Banks
have taken advantage of this technology, and they have developed applications that
allow customers to operate in their accounts in real-time, i.e., direct transfers.

• Mobile billing systems: The customer uses a premium SMS or direct carrier billing
during the checkout. The success of earlier mobile content services, such as logos and
ringtones introduced consumers to use this type of payment. An advantage of this type
of payment is that existing telecom operator billing systems are suitable for handling
micropayments transactions.

As we have seen in the previous section, the use of mobile devices for online purchases such
as mobile phones and tablets is one of the main reasons why CNP fraud stands out to be the
single largest category of fraud in electronic transactions, amounting to a total of 70% of
the total card fraud for the year 2016 [65]. Mobile web fraud strategies are quite similar to
those used on traditional online fraud, making the adaptation of cyber frauds to the mobile
situation often straightforward. Furthermore, fraudsters have found new chances to make a
profit specifically for mobile applications.

Some of the characteristics that have helped to increase the popularity of mobile devices
such as ease of use and mobility create new security risks not associated with computers. It
is common that mobile devices are often shared with friends and family, and it is potentially
easier to leave them unattended in public spaces where they can be used for a second person
or easily stolen.

A common way to steal payment information is through malware, which has been installed
previously in the device. Other ways are social engineering and fake apps [12, 80]. Because
of the low prices of mobile devices, fraudsters can afford using many different devices
to commit the attack, and most of the observed fraudulent e-commerce transactions are
originated from new devices[28]. By using new devices, fraudsters can avoid some of the
traditional anti-fraud measures such as those based on a persistent identification which, i.e.,
the merchant can identify that is the same device trying to get access to a different account.

On the other hand, because of the low prices of mobile devices, fraudsters can afford using
many different devices to commit the attack, and most of the observed fraudulent e-commerce
transactions are originated from devices that are ‘new’ [28]. By operating in this manner,
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fraudsters can avoid some of the traditional anti-fraud measures, such as those based on
persistent identification.

As we have mentioned, one step authentication processes are easier to hijack, especially
because users many times utilise the same access info for different services. Combining
several types of measures makes the device less likely to be compromised.

In this scene, Machine Learning (ML) techniques begin to play an important role. The
investment in ML-based methods for identifying and mitigating fraud has grown 13% since
2015 [24]. ML algorithms are employed to analyse user behavioural and transactional data,
helping to detect anomaly patterns which can be correlated with fraud. ML algorithms have
proved to be very efficient, but their use of mobile devices is limited to the computational
resources available. For this reason, some authors propose a distributed approach in which
some of the computational burdens are offloaded to the cloud [115].

Supervised techniques such as Support Vector Machine (SVM) and Hidden Markov Model
(HMM) [169, 176] have been actively studied. In [106], the authors compared both techniques
to identify users based on the way they walk. The authors showed that SVM was slightly
superior to HMM with Equal Error Rate (ERR) of around 10%. In the same context,
researchers in [107] showed that the K-Nearest Neighbours technique achieved slightly better
results than HMM and SVM. These techniques as well have been studied in other contexts
such as touch recognition [131, 34, 97], use of the software [41] and malware detection
[147, 98, 168].

On supervised approaches, the model is trained with normal and fraudulent samples, which
limit the operation of the system when the fraudulent patterns change. One-class SVM is
a semi-supervised algorithm that learns a decision function to classify new data as similar
or different to the training set, which only includes normal samples. In [21], the authors
introduced a multi-modal approach that employed accelerometer and gyroscope data together
with touch biometrics. First, the authors use a one-class SVM model to classify the samples
as either belonging to the owner or another person. The decision is made based on a group
of samples instead of a single observation. Subsequently, they build a dataset based on
the previous classification process to train a two-class SVM i.e., the owner or the intruder.
With some similarities, more recently, a semi-supervised approach was proposed [139]. The
authors use the same sources of data and a classification algorithm based on the one-class
SVM method. They test the approach with a dataset collected in a controlled environment
where users were asked to type text during sitting and walking. They obtained an ERR
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of 7.16% when the user was walking and 10.05% when the user was sitting. The authors
deferred the evaluation of the approach to real-world scenarios for future studies.

More recently, other semi-supervised approaches have been proposed based on Deep Learning
techniques such as Convolutional and Recurrent Neural Networks. In [104, 116], the authors
used CNN to identify smartphone users in the way they hold the device.

3.5.1 Attack Methods in Mobile Payments

Many types of fraud affect the end-user of mobile devices. We describe the group with a
higher incidence.

Account Takeover

Account takeover is the most frequent type of fraud [66]. After fraudsters have found out
about the access information of a user, they utilise it to sign up for an expensive service
or purchase a product. Bad actors manage to access personally identifiable information in
many different ways, such as data breaches, which become more and more frequent, i.e.,
between May and July of 2017, Equifax, a large credit bureau in the U.S, was a victim of
a data breach. In this case, personal information of almost 150 million of customers was
exposed, including in a few cases credit card data [125].

Once an account has been taken over, it is difficult to fight because both legitimate and
fraudulent users use the correct login credentials. Customers are particularly vulnerable when
they do not use strong passwords, and they re-use them for several accounts [76]—increasing
the exposure of customers when providers utilise one-factor authentication methods. For
example, after the coffee chain, Starbucks launched an app which allowed customers to pay
for their coffee, several customers reported that money was withdrawn from their accounts
without authorisation [114]. After fraudsters managed to log into the app, they top up the
Account using the stored credit card, and then they purchased gift cards that can be sold in
the black market. The company said that criminals were obtaining login credentials from
hacked websites and trying them out in the Starbucks app.

Phishing

Phishing is a well-known cyberattack where fraudsters steal personal information from users
under false pretence by email, phone call, or social media sites. It is one of the oldest types of
cyber fraud attacks, but still, it is frequently used in mobile channels, i.e., mobile users are 18
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times more likely to be exposed to a phishing attempt than to malware [86], and three times
more vulnerable to a phishing attack than to computers. While many users have learned to
be suspicious of links and attachments in emails, however, today 66% of emails are checked
on the mobile devices [145]. Similarly, the popularity of mobile applications like SMS and
WhatsApp also attracted the fraudsters to utilise the medium for getting personal information
of the victim via the phishing attack.

Fake Applications

Scammers develop fake apps that may include malware or are designed to steal personal
info. Sometimes phantom applications use an organisation brand without permission to trick
the user easily. Financial Trojan horse malware is one of the most popular cases because of
the increasing availability of malware-as-a-service kits available in the cyber underground
[28]. In some cases, the fake application sends premium SMS messages where an amount of
money charged to the phone bill of the user goes directly to the fraudsters. Several researchers
demonstrated the use of fake Near Field Communication (NFC) reader application on android
enabled platforms. NFC enabled mobile phones to use ISO 14443 Identification cards –
Contactless integrated circuit cards – Proximity cards (part 1-4) communication standards,
and these are the same standards as used by contactless payment cards and readers to facilitate
payments.

Mehrnezad et al. in [102] demonstrated the practicality of fake NFC applications initiating a
fraudulent transaction with contactless payment cards. In that, the researchers were able to
design a fake NFC app on an Android phone which can interact with the contactless cards
kept in a mobile phone wallet and make fraudulent transactions, read user locations and
upload these to an attacker-controlled server. In fact, in a single Google play search, we
found 38 such NFC android mobile applications capable of reading contactless payment
cards.

Fraudulent Website

A large number of fake websites will use a domain name that impersonates or refer to a
well-known brand. But this would not represent the official website. For example, you apply
for the job online, and they ask to deposit funds to process your application. This type of
fraud shows the same characteristics of the computer case. However, in mobile devices, it
is more successful because users are less likely to notice that a website is slightly different
from the original [23]. This is because the size of the screen of mobile devices is relatively
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small, constraining the user interface. This makes it considerably more difficult for users to
recognise which mobile application or website they are interacting with [60].

3.5.2 Anti-fraud card payments measures on m-commerce

The trade-off of usability-security is the main concern when implementing anti-fraud mea-
sures. Users do not want their online experience to be affected by security steps. At the same
time, merchants know that if they are not able to provide a smooth setting, they will have to
deal with the user disappointment and economic loss.

On the other hand, because of the specific hardware specifications of mobile devices, the
adopted measures must meet certain intrinsic aspects of the platform:

• lightweight: The computational demand of the system has to be low since mobile
computational power is limited.

• restrict the communications: some mobile device users, i.e., smartphone users, can be
charged by data rates. Additionally, bandwidth or data usage may be limited. Therefore,
the amount of information sent and received for the security approach should be small.

• restrict energy consumption: battery life is nowadays a big concern in mobile technol-
ogy. It is required that the energy consumption level is as much efficient as possible.

Transaction risk profiling

The card payment industry is continually seeking measures to combat fraud activities. How-
ever, where a new protective procedure is introduced, fraudsters adapt to it. One of the
measures conduct by issuers and acquired during the last 20 years has been modelling
transactions to develop tools to detect fraudulent activities.

However, because merchants do not process the same amount of transactions as issuers and
acquire, often they opt to model the user behaviour, i.e., the way users interact with the web
browser.

Control access: authentication mechanisms

An authentication mechanism is a common measure to enhance the security of mobile devices.
In an authentication process, the identity of the user is verified according to different sources
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of information provided, directly or indirectly, by the user. We can classify authentication
methods to the following:

• Knowledge-based methods: the process is based on information that the user knows,
i.e., a password or a Personal Identification Number (PIN).

• Object-based methods: the process is based on something the user possesses, i.e., a
hardware token.

• Biometric-based methods: the process is based on information obtained, usually from
sensors. This information describes the physical or behavioural characteristics of the
users, such as the tone, cadence, and pitch of their voice.

Knowledge-based methods such as PIN and passwords have been used for mobile phone
authentication since the inception of this technology in the market more than twenty years
ago, and they are still widely used, despite their intrinsic weaknesses have been largely
demonstrated. Furthermore, PIN/Passwords are intrusive techniques that require a specific
action of the user, and they take place only once at the beginning of the session.

Biometrics based methods have been introduced more recently, and they are receiving
much attention from the community. Biometric data describe the physical or behavioural
characteristics of a human being. Different sources will include different attributes, such as
features that describe a voice pattern and motion patterns.

A Biometric Authentication System (BAS) evaluates biometric data for verification or
identification of individuals. Nowadays, many different sensors have been incorporated into
the smartphone, such as environmental, location, and motion sensors. Obtaining biometric
data from them is easy and straightforward, and BAS have been used in many practical
applications successfully.

Biometrics-based methods are considered more reliable and secure [159], and the recent
embedding of many new sensors in mobile devices has to lead to the development of
many different approaches such as those based in the face, iris, periocular and fingerprint
recognition [154, 126, 136].

3.5.3 Traditional authentication methods on Smartphones

Because of the easy portability of mobile devices, access control measures are necessary. An
authentication mechanism is a common measure to prevent unauthorised access to the device.
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In an authentication process, the identity of the user is verified according to the information
provided either directly or indirectly by the user.

In [90], researchers introduced an object-based approach using a Bluetooth token. In this
approach, when the user attempts to gain access to the device, a smartphone tries to com-
municate with a token through Bluetooth connection. If the token can be reached and the
smartphone receives confirmation of the communication, it will be unlocked. However,
object-based authentication methods have rarely been implemented for mobile devices.
Nowadays, people bring their devices most of the time with them, and the obligation to carry
on an authentication device makes these systems less practical.

Knowledge-based methods have been used for a long time on mobile authentication processes,
and they are still used widely. PIN and password have been for years the most common
authentication approach, despite that their inconvenience and weakness have been proved
many times. This method is susceptible to simple attacks, i.e., shoulder surfing where
fraudsters spy the actions of victims and smudge attacks where smudge stains on the display
are used to infer the password [43]. On the other hand, because the user has to remember
the code, often they either use the same memorable instance for different accounts, or they
choose a weak one. A study has shown that among over 6,000,000 passwords, 91% of all of
them belong to a list of just 1,000. The same study points out that in this list, 8.5% of the
individuals use either “password” or “123456” as a password [61]. Furthermore, passwords
have been reported stolen from big databases on many occasions.

Some approaches have tried to overcome some of the limitations of PINs and passwords.
In [53], researchers introduce a graphical authentication system that attempts to confuse an
observer with different information each time the user tries to log in. To make the system
more manageable, users have to remember a group of images instead of codes, and they will
have to select the images they know among those revealed. The study showed an increment
of the time to log in and lower the success rate. In [43] the researchers attempted to address
the threat of the shoulder surfing attack. In this case, the user should draw a shape in the
back of the device, the area which should be more difficult for someone over the shoulder to
watch. The system was developed in a prototype because the additional hardware required is
not available in any smartphone in the market. PIN and password have been for years the
predominant authentication approach on mobile phones. Although the inconvenience and
weakness of these authentication methods have been pointed in numerous instances, there are
still widely used on smartphones, sometimes with variations such as the grid unlock, which
consists of drawing a lock pattern on the screen.
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These methods are intrusive techniques that require an explicit action of the user. Since the
user must remember the authentication key, a weak one is usually chosen, and often the
same key is utilised for different purposes. A study showed that over 6,000,000 passwords,
91% of them belong to a list of just 1,000. The same study shows that in this list, 8.5%
of the individuals use either “password” or “123456” as the password [118]. Additionally,
passwords have been reported stolen from big databases in many instances. Such approaches
are one-time authentication methods, which are activated once at the beginning of the session.
For added security, it would be desirable to have a continuous validation of the user identity.
Furthermore, traditional methods are susceptible to simple attacks like shoulder surfing,
where a fraudster spies the actions of victims, or smudge attacks, where smudge stains on the
display are used to infer the password pattern [43].

3.6 Biometric authentication

Biometric data describe the physical and/or behavioural characteristics of a smartphone user,
and each acquisition consists of a group of features that describe a biometric pattern such as
voice or motion. A Biometric Authentication System (BAS) captures and processes data for
identification of allowed individuals on a smartphone. Differently from a knowledge-based
method, which requires active actions from the users, BAS is an automatic identification
process.

Nowadays, many different sensors that can capture environmental, locational, and user-
specific motion information have been incorporated in the smartphone. Hence, obtaining
biometric data from a modern smartphone is easy and straightforward. BAS are believed
to be trustworthy, and their applicability in smartphone platforms is receiving increased
considerably over recent years.

3.6.1 General scheme of a biometric authentication system

The operation of a biometric authentication approach comprises of two phases, as shown
in Fig. 3.6. In the first phase, referred to as the enrolment phase, biometric instances are
captured, and a feature vector is extracted and stored. The feature vectors are meaningful
representations of the data and represent individual-specific patterns. Verification systems
store patterns from a unique user, while identification systems from a group of individu-
als. Lately, many authentication systems have been based on Machine Learning methods,
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i.e., semi-supervised learning approaches for verification systems and supervised learning
approaches for identification systems.

In the second phase of the BAS, referred to as the recognition phase, a new instance from
an authentication request is provided to the system. After the same pre-process and feature
extraction mechanisms, as in the enrolment phase, the feature vector is transferred to the
matching algorithm, which performs two operations. Firstly, in the matcher module, the
feature vector from the authentication request is compared with those stored in the enrolment
phase. The result of the comparison will be a match score that is assigned to the authentication
request instance. The second operation is performed in the decision module, which classifies
the instance comparing the match score calculated to a Decision Threshold (DT). Here, it is
expected that instances belonging to different individuals will have very different score value
distributions, as exemplified in Fig. 3.4. If the score is higher than the DT, the instance of the
authentication request will be considered legitimate.

Some BASs take into account more than one source of biometric data. Multimodal biometric
authentication systems have been proposed as a means to mitigate some problems of unimodal
systems such as noisy data, spoof attacks, low detection rates, and high false-positive rate.
Data from different sources can be combined at different levels, and the authentication from
the combined information is typically performed in a different module of the biometric
scheme. However, capturing and processing more data will increase the computational
burden of the approach [130].

Figure 3.4 An example of the decision threshold for match score distributions from two
different users, one legitimate and one fraudulent.
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3.6.2 Biometric functions

Biometric systems pretend to recognise individuals. There are two main functions in the
process:

• Enrolment function: it generates the biometric reference for a person from the biometric
characteristics and saving it for further comparisons.

• Recognition function: it recognises users. It exits two methods: verification and
identification. In the verification process, the system checks if the person is who the
user claim to be. In the identification process, the system will indicate who the user is.

The norm ISO/IEC JTC 1/SC 37 Biometrics define five parts in a general biometric system
[1] :

• Data Capture subsystem: it is in charge of capture the biometric sample and converts it
in digital format.

• Data Storage subsystem: it stores the biometric samples.

• Signal processing subsystem: it generates a features vector from the biometric sample.

• Comparison subsystem: it compares the sample with a model.

• Decision subsystem: it takes the decision based on the decision threshold.

Figure 3.5 shows the diagram of this system. Some authors combine the Comparison
subsystem and the Decision subsystem in the same module.

3.6.3 Multimodal Information Fusion

The information fusion level on multimodal systems depends on the module where the
biometric information is combined. We identify four data fusion levels. We differentiate
each of the four fusion levels depending on which of these four subsystems take place: in the
Data Capture subsystem, in the Data Storage subsystem, in the Signal Processing subsystem,
or in the Comparison subsystem.

• Sensor/Data level: we can merge the sensor data directly when sensor signals are
comparable. There are three fusion paradigms:
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Figure 3.5 General Biometric System - ISO/IEC JTC 1/SC 37 Biometrics .

• The complementary data fusion paradigm: each sensor provides independent infor-
mation about an aspect of an object. All the information is combined to obtain more
detailed information about the object.

• The competitive data fusion paradigm: each sensor provides different independent
information about the same aspect of an object. The system decides which sensor most
correctly represents the aspect.

• The cooperative data fusion paradigm: each sensor provides different independent
information about the same aspect of an object. Combining this information, we will
retrieve the knowledge which could not be obtained separately from the information of
the individual sensors.

3.6.4 Biometric authentication continuous systems

Nowadays, many different sensors that can capture biometric data such as environmental,
locational, and user-specific motion information have been incorporated in the smartphone,
and the capture process is easy and straightforward. BAS are believed to be trustworthy, and
their applicability in smartphone platforms is receiving increased considerably over recent
years.

The practical implementation of BASs is hampered by engineering challenges in the data
acquisition process, as well as methodological challenges in the development of efficient
machine learning algorithms that could achieve a satisfactory effectiveness rate.
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Similarly to knowledge-based methods, BASs such as face and voice recognition are one-time
authentication systems: the user is validated only at the beginning of the session. BASs
based on information such as motion or location can be, however, designed as a continuous
authentication system, constantly verifying the user-identity throughout the whole session.
The re-authentication is performed with a given frequency depending on the system capability.
Continuous BASs should not be intrusive and transparent and do not require any attention or
action from users.

Continuous authentication [42], can be used either as a primary authentication method or
an auxiliary fraud indicator for higher assurance [83]. In typical use cases, continuous
authentication adds extra reliability to the system and improves usability. For example, when
the authentication system expresses continued confidence in the identity of the user, a service
provider may decide to skip further security queries, i.e., not requiring extra info to complete
a new transaction.

3.6.5 Identification vs Verification

Biometrics-based access management and security systems can operate in two different
modes:

• identification (1-to-n): We take into account the information from the individual, and
we compare his/her biometrics to a database of possible identities to match them and
determine his/her identity. For example, it is how law enforcement and border control
use biometrics – running a fingerprint against a database.

• verification (1-to-1): It is the process of proving your identity. The user will be claiming
the identity of someone already known to the system, and we need to verify that it is
true. For example, when an individual uses his/her fingerprint to unlock a smartphone,
we are verifying that it is the same fingerprint that was previously scanned.
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Figure 3.6 General authentication biometric scheme. (a) Denotes the enrolment phase i.e.
the training of the algorithm. (b) Denotes the recognition phase, i.e. the decision rule.



Chapter 4

Motion-based identification on
Smartphones

4.1 Introduction

The smartphone has become an increasingly popular device in both emerging and developed
countries, and over a third of the world’s population is projected to own one by this year
[144]. These devices are currently used for an endless list of purposes, such as paying public
transport, accessing corporate data emails, performing banking transactions and accessing
social media accounts. Mobile phone apps contribute to this trend facilitating interaction
with the device, and a large number of companies offer services through them [170].

While performing all these activities, critical and sensitive information is stored in the device.
The characteristics which have contributed to increasing the popularity of smartphones, such
as portability and ease of use, also introduce critical security vulnerabilities [93]. Fraudsters
have caught the wave of opportunity, and they have been shifting their activities to this
channel [122], and this prompts the community and industry to continually search for the
best trade-off between security and usability to prevent unauthorised use.

Identification is a procedure where users’ identity is determined. This strategy allows for
granting different privileges for each user. It can be useful in many cases, i.e., avoiding that the
youngest of the family buy game applications from the father’s smartphone. In this chapter,
we consider a scenario where a different person has physical access to a smartphone, such
as family members or co-workers attempting to access the device or associated resources.
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Figure 4.1 Confusion matrix

We propose a biometric identification system based on motion data, i.e., accelerometer,
gyroscope and magnetometer data.

This chapter is organised as follows. Section 4.2 introduces the metrics used to show the
effectiveness and to compare the performance of different approaches. Section 4.3 reviews
identification approaches for electronic devices and those specific to smartphones. Section
4.4 describes the dataset used to show the results of this study and introduces several pre-
processing techniques which we have applied. Section 4.8 shows the experiments results of
identifying users based on motion data and Section 4.9 concludes with a discussion.

4.2 Effectiveness metrics

A common option to measure the effectiveness of binary classification models is the confusion
matrix shown in Fig. 4.1 [150]. The confusion matrix shows for each class the number of
samples classified correctly and the number of them misclassified.

The goal of an identification system maximises the number of true positives (TPs) when
keeping the number of false negatives (FPs) low.

Some common measures derived from the confusion matrix are True Positive Rate (TPR) eq.
4.1, True Negative Rate (TNR) eq. 4.2 and False Positive Rate (FPR) eq. 4.3. TPR, as well as
call sensitivity or recall, measures the proportion of positives cases (i.e., which are correctly
identified. On the other hand, TNR, as well as call specificity, measures the proportion of
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negative cases (legitimate transactions) that are correctly identified. Finally, FPR measure
the proportion of false alarm cases.

T PR =
T P

T P+FN
(4.1)

T NR =
T N

T N +FP
(4.2)

FPR =
FP

FP+T N
= 1−T NR (4.3)

We are going to introduce a set of well-established performance metrics which will be
used throughout this work to evaluate the accuracy and precision of the proposed biometric
identification system, and to compare its performance with previous studies:

• Accuracy is the ratio of correctly predicted observation of the total observations.
Accuracy is not a good measure for imbalanced datasets, i.e., the different ratios of
samples from each class.

Accuracy(ACC) =
∑True positive+∑True negative

∑Total population

• Precision (also known as specificity) is the ratio of correctly predicted positive obser-
vations of the total predicted positive observations. In our context, precision is the
fraction of the fraudulent predictive instances which have been classified correctly.

Precision =
∑True positive

∑Predictive condition positive

• Recall (also known as sensitivity) is the ratio of correctly predicted positive obser-
vations to all observations in the actual class. In our context, it is the fraction of
fraudulent instances that have been detected.

Recall =
∑True positive

∑Condition positive

• F1-score is the weighted average of Precision and Recall. Therefore, this score takes
both false positives and false negatives into account and works better than accuracy
with imbalanced datasets. However, ff the cost of false positives and false negatives
are very different, Precision and Recall will be more informative.

F1score =
2

1
Recall +

1
Precision
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• The false acceptance rate (FAR) is the measure of the likelihood that a biometric
security system accepts an access attempt by an unauthorised user, i.e., the ratio of
the number of false acceptances attempts divided by the number of identification
attempts. On the other hand, the false recognition rate (FRR) is the measure of the
likelihood that a biometric security system rejects an access attempt by an authorised
user, i.e., the ratio of the number of false recognitions attempts divided by the number
of identification attempts. In our context. FAR is the rate of fraudulent instances
classify as legitimate and FRR the rate of legitimate instances classify as fraudulent.

FAR =
∑ f alse negative

∑ f alse negative+∑ true positive

FRR =
∑ f alse positive

∑ f alse positive+∑ true negative

• Equal Error Rate (ERR) is the percentage when the FAR and FRR are equal, i.e.,
the number of false acceptances attempts is equal to the number of false rejections
attempts. The lower the ERR value, the higher the accuracy of the biometric system.

• Receiver operating characteristic curve (ROC curve) is a graphical plot that shows
the goodness of a binary classifier. ROC curve plots the FAR against the true positive
rate ( TPR as well known as sensitivity or recall an equal to 1-FRR) when varying a
discrimination threshold. In the ROC curve, the intersection between the curve with a
line with intercept one and slope minus one indicates the ERR.

4.3 Identification approaches

Identification systems have been shown useful for multiple scenarios. Reference [112]
developed a system for identifying people based on their footstep force profiles. They created
user footstep models based on footstep profile features. They achieved an accuracy rate of
93%.

The authors of [6] proposed an identification system to distinguish between the passengers
and the driver of a car. The system was proposed to offer a safer and more pleasant driven
experience to the users. The approach relied on analysing the user smartphone motion
data when entry to the vehicle, i.e., accelerometer, gyroscope and magnetometer data, and
doors signals (if available). Experiments demonstrated the usefulness and effectiveness of
the introduced probabilistic identification approach, which was based on a linear logistic
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regression model. They showed an accuracy rate of over 90% when the doors signal was not
available.

Authors of [91] developed an identification system for electronic devices based on fingerprint
data. First, they extracted features of the image, i.e., the minutiae, and they stored them on a
database. In the verification phase, they performed one-to-one matching between the input
sample and the templates data previously stored in the database. The matching approach was
based on the difference of the ridge orientation and the edit-distance between the template
and the input samples. The approach obtained an ERR of 0.92%. Similarly, reference [162]
presented a user identification system using finger-vein technology. They first conduct a
feature extraction process using Radon transform and singular value decomposition (SVD).
Later, they classify the feature vector using a normalised distance measure. The experimental
results showed an ERR of 0.99%.

Reference [173] proposed an identification approach based on web browsing behaviour.
Identifying web users is useful for a product recommendation, personalised advertising, etc.
They experimented in different datasets, including a different number of users, i.e., 2, 5, 10,
20, 50, 75 and 100 and sliding windows including a different number of sessions, i.e., ranging
from 1 to 100. They compared the performance of two approaches based on SVM and DT
techniques. The results showed that the support-based profiling method significantly got
better classification results when the size of the sliding window was larger and the number of
users increased (87% accuracy rate with 100 users and sliding window size equal to 100).
The DT approach performed better when the sliding window size was smaller (68% accuracy
rate with 100 users, and a sliding window size equal to 1).

4.3.1 Smartphone user identification

Identification systems have been largely used in smartphones. Face recognition was widely
used in banking and security access systems. With the integration of low-cost and high-
quality cameras on smartphones, it has been investigated for smartphone identification [138].
In face recognition for identification, the system is trained with photos from all the users,
and in the recognition phase, the approach matches the new sample with a known user. The
process of image acquisition is not completely reliable as it is influenced by a number of
external conditions such as the illumination or the clothes worn by the individual. One of
the main threats of this method is face spoof attacks, which, in its simplest form, consist of
misleading the system displays an image of the victim (print and replay attacks). Moreover,
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given the widespread use of social media networks, it is now very easy to access to pictures
and videos from potential victims. Measures to mitigate such attacks have been proposed,
but an effective approach has not yet been developed [117].

Similarly to face recognition, iris identification uses the device’s camera to capture biometric
samples from the user’s eye. Reference [22] introduced an approached which extracted a
one-dimensional representation of the grey-level profiles of the iris from each picture.

Another BAS which has been extendedly studied on smartphones is touchscreen recognition.
In this method, which has also been proposed as a continuous authentication approach, the
user touch to the screen is used as a means to authentication. In the authors, [10] collected
data from 32 participants when they were drawing a pattern on the screen device to unlock it.
They compared the performance of six algorithms based in the Euclidean distance, manhattan
distance Mahalanobis distance, SVM and RF. The approach based on the RF algorithm
obtained the best accuracy results with an ERR of 10.39%.

In [165] the authors investigate the usage of app signature to identify users. They conduct
experiments in a dataset, including over 46000 participants. They found that when using an
app signature-based in the 60 most used apps, they are able to differentiate correctly 99.4%
of the users. Furthermore, they found that the average minimum Hamming distance to a
different user was 25.93. They establish as a future work the calculation of the time required
to be able to identify users.

In [71], the authors used accelerometer, gyroscope, and magnetometer data to identify
smartphone users. They based their approach in an SVM algorithm to classify samples from
two users at the time (from an original dataset including samples from 300 users). They
show the accuracy results in two different groups. For one group, the ERR was around 0.9%
and for the other group 0.6%. They conclude that for some users, it was not possible to find
characteristic motion patterns.

In [7], the authors used a motion dataset, including samples from 10 participants for six
different physical activities, i.e., walking, sitting, standing, running, walking upstairs, and
walking downstairs. They collected samples for 3-5 minutes for each activity and participant.
They tested the accuracy of three different machine learning algorithms, i.e., K-Nearest
Neighbour (K-NN), Bayes Net (BN), and Support Vector Machine (SVM). BN and SVM
obtained an equal average accuracy result of 94% and K-NN of 90%.
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Reference [108] compares an approach using the same type of data. They used a dataset of
36 subjects and compared the performance of three algorithms, i.e., HMM, SVM, and KNN.
KNN obtained the best accuracy result of ERR 8.24% (HMM and SVM obtained 8.75% and
8.85% respectively).

4.4 Dataset

In the experiments of this chapter, we are going to use a publicly available dataset of
behavioural data on smartphones [172]. The dataset contains samples from 100 volunteers,
which encompass multiple modalities including movement, pausality, orientation, touch and
gesture. Data was collected under three task scenarios (reading, writing, and map navigation)
and two body motion conditions (sitting and walking).

Each session lasts about 15 minutes, and each volunteer performs 24 sessions (8 reading
sessions, 8 writing sessions, and 8 map navigation sessions). In total, each volunteer
contributes about 6 hours of behavioural traits.

The following 9 categories of data were recorded:

1. Accelerometer: timestamp, acceleration force along X/Y/Z-axis. Sampling frequency
100 Hz.

2. Gyroscope: timestamp, rotation rate along X/Y/Z-axis. A sampling frequency of 100
Hz.

3. Magnetometer: timestamp, ambient magnetic field along X/Y/Z-axis. Sampling
frequency 100 Hz.

4. Raw touch event: timestamp, finger count, finger ID, raw touch-type, X/Y coordinate,
contact size, screen orientation.

5. Tap gesture: timestamp, tap type, raw touch-type, X/Y coordinate, contact size, screen
orientation.

6. Scale gesture: timestamp, pinch type, time delta, X/Y focus, X/Y span, scale factor,
screen orientation.

7. Scroll gesture: starting and current timestamp, X/Y coordinate, and contact size; speed
along X/Y coordinate; screen orientation.
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8. Fling gesture: starting and ending timestamp, X/Y coordinate, and contact size; speed
along X/Y coordinate; screen orientation.

9. Keypress on the virtual keyboard: timestamp, press type, key ID, screen orientation.

Figure 4.2 shows samples from the accelerometer gyroscope and magnetometer sensors from
a user reading a text when sitting. Each row includes samples for each of the directional axis
of each of the sensors.
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Training and testing datasets

To show the performance of each approach, we have produced 100 datasets. Each dataset
includes samples from two users, i.e., the legitimated and fraudulent user. For each dataset,
both users are picked up randomly from the whole list of them. We test every identification
approach in each dataset, and we show the average of the performance results.

We split each of the 100 datasets into a training and testing datasets. They include samples
from two users (legitimate and fraudulent users). The training dataset is 54 minutes length,
and the testing dataset 18 minutes length (with the same proportion for each of the users).
Furthermore, each of the datasets includes the same proportion of samples from each of
the task-condition cases defined (reading-sitting, reading-walking, writing-sitting, writing-
walking, navigating-sitting, and navigating-walking) from each of the users. The training
dataset includes samples from three sessions for each task-motion case (18 sessions in total)
and the testing dataset from one session for each task-motion case. Note that samples in the
testing dataset are from different sessions of those in the training dataset.

Thus, each of the training and testing datasets represents a scenario where known users utilise
the device in different periods of time, and we want to know who is the user utilising the
device on each moment. Training and testing datasets include samples for one user when
performing the mentioned activities, followed by the same number of samples from another
user performing the same activities.

4.5 Windowing

We split the stream of data sampled from the sensors in segments. We call instance to the
vector which includes samples from the three space directional components for each of the
sensors taking into account. We sort the elements of the segment concatenating the samples
from each dimensional axis of each of the sensors consecutively. For example, an instance
including samples from the accelerometer and gyroscope sensors, it has the form:

instance= {ax1,ax2, ...,axm,ay1,ay2, ...,aym,az1,az2, ...,azm,gx1,gx2, ...,gxm,gy1,gy2, ...,gym,gz1,gz2, ...gzm}

The longitude of the segment m and the sampling frequency of the sensor fs determine the
re-authentication time i.e. how often we are able to validate the user:

reauthentication-time =
m
fs

seconds
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In the experiments, we are going to use two window sizes, i.e., a window including 500
samples and a window, including 50 samples.

4.6 Normalisation

It is common to apply normalisation before building a model. It is because:

1. Some data mining methods require the range of the input attributes lie between 0 and 1
[30].

2. In another case in certain algorithms, attributes with the highest range would contribute
more to the modeling decision making process.

Two common approaches for normalisation are Standardisation and min-max scaling:

Standarisation

The result of standardisation (or Z-score normalisation) is that the features will be rescaled
so that they will have the properties of a standard normal distribution with:

µ = 0
σ = 1

where µ is the mean (average) and σ is the standard deviation from the mean; standard scores
(also called z scores of the samples are calculated as follows:

z =
x−µ

σ

Min-max scaling

The result of min-max scaling (or normalisation) is that the features will be rescaled to a fixed
range, usually 0 to 1. The cost of having this bounded range - in contrast to standardisation
- is that we will end up with smaller standard deviations, which can suppress the effect of
outliers. A Min-Max scaling is typically done via the following equation:

xnorm =
x− xmin

xmax − xmin

We are going to show the performance results from each identification approach when
standardising and scaling the data. To normalise each dataset, we calculate the parameters to
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normalise the data, i.e., µ , σ , min and max from the training dataset, and we used them for
normalising the training and testing dataset.

4.7 Sampling

Sampling is a statistical method by which one works with a subset of data significant enough
to represent all of them. Sampling is a very common preprocessing process in data mining.
There are several reasons for that:

1. On the one hand, usually datasets are pretty large, and the process of training in the
whole dataset can be quite computationally expensive.

2. Furthermore, some algorithms load the entire training data sets into the main memory,
so they cannot operate with large datasets because they cannot be allocated in the
memory [146].

3. Sometimes datasets are imbalanced, i.e., there is a higher number of samples of some
class. Then subsampling or oversampling can be used to balance the number of samples
of each class.

We are going to conduct several experiments to show how it affects sampling when identifying
users. We are going to test how the performance of the proposed models change when
varying the sampling frequency of the motion sensors, i.e., accelerometer, gyroscope and
magnetometer.

Practically, we are going to sample the dataset introduce in 4.4 to two different ratios of
samples, i.e., 100 samples per second and 25 samples per second. Because the data originally
have been recorded at 100 Hz, to get 25 Hz sampling frequency, we sample one reading
every four. We will show the comparison for each of the approaches in the next section.

4.8 Experiments results

In this section, we analyse the potential of several supervised Machine methods to identify
users based on sensor motion data. We train each model with data from two different users,
and we test the ability of the model to identify each of the users.
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Furthermore, we show the effect of using different sampling frequencies, window sizes,
numbers of sensors taking into account and preprocessing techniques to scale the data
(according to the values mentioned in the previous sections).

4.8.1 Logistic Regression

In this section we test the accuracy of the logistic regression model when we vary the
regularisation strength parameter along [0.1,1,3,5,10,100,300] (smaller values specify
stronger regularisation).

Figure 4.3 shows the highest accuracy achieved between the models with different regulari-
sation strength parameter, when sampling the data with different frequencies (100 and 25
Hz), using different window sizes (500 and 50 samples) and taken into account data from
different sensors. Figures 4.3a and 4.3b show the results of the training and testing phases
when the data has been normalised; and figures 4.3c and 4.3d, shows the prediction results of
the training and testing phases when the data has been standardised.

We can observe that:

• As it was expected, accuracy results during the training are better than during the
testing. We can observe a bit of overfitting during the training when the sampling
frequency is 25 and window size 500, e.g., the training accuracy is much higher
(97.74%) than testing accuracy 77.57% (when normalising in this example).

• We obtain better accuracy results standardising the data when we include data only
from the accelerometer sensor. When we include data from more than one sensor, we
obtain better accuracy results when normalising the data.

• During the testing, when standardising the data, reducing the window size from 500 to
50 improves the accuracy, whatever is the sampling frequency. This is less significant
or null when normalising the data.

• Reducing the sampling frequency, decrease the accuracy. The decrement of accuracy
is higher when the window size is larger.

• Taking into account data from more sensors increase the accuracy. In the testing
phase, the highest accuracy result when taking into account three sensors is 84.15%,
and taking into account only accelerometer data is 76.%. However, when taking into
account data from the accelerometer and magnetometer sensors, the highest accuracy
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Figure 4.3 Accuracy prediction results of the training and testing phases of the logistic
regression model. Top row shows the results when the data has been normalised and the
bottom row when the data has been standardised.

is 83.9%, almost the same as taking into account three sensors. When taken into
account data from the accelerometer and gyroscope sensors, the highest accuracy score
is 77.78%.

4.8.2 Multi Layer Perceptron

In this section, we test the accuracy of the multi-layer perceptron algorithm with L2 regulari-
sation.

The model includes two layers. We have test models with a different number of input and
hidden units for each layer when the window size is 500 we have test four models with the
number of input units for each hidden layer of 1000− 1000, 1000− 500, 500− 1000 and
500−500, when the window size is 50 we have test four models with the number of input
and hidden units for each hidden layer of 50−50, 50−25, 25−50 and 25−25.
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Figure 4.4 shows the highest accuracy achieved between the models with different archi-
tecture, when sampling the data with different frequencies (100 and 25 Hz), using different
window sizes (500 and (50 samples) and taken into account data from different sensors.
Figures 4.4a and 4.4b show the prediction results of the training and testing phases when
the data has been normalised; and figures 4.4c and 4.4d show the prediction results of the
training and testing phases when the data has been standardised.

We can observe in the testing phase results that:

• the accuracy is higher standardising the data instead normalising it, whatever is the
sampling frequency, window size and sensors taking into account

• Same as of the LR results, reducing the window size from 500 to 50 improves the
accuracy, whatever is the sampling frequency and reducing the sampling frequency
decreases the accuracy.

• As well, like of the LR prediction accuracy results, taking into account data from more
sensors increase the accuracy. The highest accuracy result, when taking into account
three sensors, is 88.37% and taking into account only accelerometer data is 83.95%.
However, when taking into account data from the accelerometer and magnetometer
sensor, the highest accuracy is 88.15%, almost the same as taking into account three
sensors. On the other hand, when taken into account data from the accelerometer and
gyroscope sensors, the highest accuracy score is 83.21%.

4.8.3 Convolutional neural network model

In this section, we test the accuracy of a convolutional neural network model, including four
convolutional layers. The input to the first convolutional layer is a matrix of dimensions
(128,ninputs) where ninputs it is the number of sensors taking into account. The kernel size of
each layer is 2, and the numbers of filters apply in each layer are 18, 36, 72 and 144.

We choose this architecture after testing a few of them but we are not going to report the
results from others

Figure 4.5 shows the accuracy achieved for the model when sampling the data with different
frequencies (100 and 25 Hz) when the window size is 128 and taken into account data from
different sensors. Figures 4.5a and 4.5b show the prediction results of the training and testing
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Figure 4.4 Accuracy prediction results of the training and testing phases of the MLP model.
Top row shows the results when the data has been normalised and the bottom row when the
data has been standardised.

phases when the data has been normalised; and figures 4.5c and 4.5d show the prediction
results of the training and testing phases when the data has been standardised.

We can observe in the testing phase that:

• the accuracy higher standardising the data instead of normalising, whatever is the
sampling frequency, window size and sensors taking into account, e.g., when taking
accelerometer at 100 Hz, standardising the data the accuracy is 84.28% and normalising
76.28%

• When standardising the data, reducing the sampling frequency decreases the accuracy,
the same as the accuracy results of the LR and MLP models. However, it does not
occur the same when normalising

• Differently than the accuracy results of the LR and MLP models, when taking into
account data from the three sensors does not improve the accuracy. The maximum
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Figure 4.5 Accuracy prediction results of the training and testing phases of the CNN model.
Top row shows the results when the data has been normalised and the bottom row when the
data has been standardised.

accuracy occurs when taking into account data from the accelerometer and magne-
tometer sensors 87.67%, while the accuracy when taking data from the three sensors is
86.93%. Taking into account, only data from the accelerometer sensor and from the
accelerometer and gyroscope sensors together decrease the accuracy results to 85.06%
and 83.65%, respectively. Note than when taking data from the accelerometer and
gyroscopes sensors together; the accuracy is lower than when taking into account only
data from the accelerometer sensor.

4.8.4 Recurrent neural network

In this section, we test the accuracy of a recurrent neural network, including two LSTM
layers.

Figure 4.6 shows the accuracy achieved for the model when sampling the data with different
frequencies (100 and 25 Hz) when the window size is 128 and taken into account data from
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different sensors. Figures 4.6a and 4.6b show the prediction results of the training and testing
phases when the data has been normalised; and figures 4.6c and 4.6d show the prediction
results of the training and testing phases when the data has been standardised.

We can observe in the testing phase results that:

• Same to the MLP and CNN models, the accuracy is higher standardising the data
instead normalising it, whatever is the sampling frequency, window size and sensors
taking into account

• Same than the accuracy results of the LR, ML Pand CNN models, reducing the
sampling frequency decreases the accuracy.

• Like in the LR and MLP prediction accuracy results, taking into account data from
more sensors increase the accuracy. The highest accuracy result, when taking into
account three sensors, is 90.23% and taking into account only accelerometer data is
88.25%. However, in this model, differently from LR, MLP and CNN, when taking
into account data from the accelerometer and magnetometer sensor have approximately
the same accuracy than when taking into account data from the accelerometer and
gyroscope sensor, 89.09% and 90.03% respectively.

4.8.5 Support vector machines models

In this section, we show the prediction results of the Support Vector Machine model when
we vary the parameters:

• Penalty parameter of the error term. It also controls the trade-off between smooth
decision boundaries and classifying the training points correctly.

• We test four different kernels: linear, poly, sigmoid and radial.

• The kernel coefficient for the poly, sigmoid and radial Kernels. As we saw in section
2.2.6, the gamma parameter defines how large is the influence of a single training. Low
values are meaning strong influence and high values meaning low influence.

Figure 4.7 shows the highest effectiveness result of SVM with different penalty and gamma
parameters for models with four different kernels (linear, poly, sigmoid and radial) when we
are pre-processing the data using the standardisation and normalisation techniques.
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Figure 4.6 Accuracy prediction results of the training and testing phases of the RNN model.
Top row shows the results when the data has been normalised and the bottom row when the
data has been standardised.

We can observe in the results of the testing phase, using a linear kernel, the accuracy is the
same (79.21%) using both pre-processing techniques. When using the poly and sigmoid
kernels, the accuracy drops whatever is the scaling technique used. The decrement is higher
when using the standardisation technique. Using an RBF kernel with the standardisation
technique leads to a small accuracy (0.5%). However, using the scaling technique, the
model achieves the highest accuracy between that obtained from each of the different models
(81.97%).

Figure 4.8 shows the effectiveness of an SVM model with a radial kernel when normalising
the data (which was the model that achieved the highest accuracy in the previous experiment).
We show the highest accuracy result for models with different penalty and gamma parameters
when sampling the data with different frequencies (100 and 25 Hz), using different window
sizes (500 and (50 samples), and taking into account data from a different number of sensors.
Figure 4.8a shows the prediction results of the training phase and figure 4.8a of the testing
phase.
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Figure 4.7 Accuracy of the SVM model in the training and testing phases when normalising
and standardising the data; and using four different kernels: linear, polynomial, sigmoid and
radial.

The same principles which we have seen for the LR algorithm when using different frequen-
cies, window sizes and sources of data occur for the SVM algorithm.

We can observe in the testing phase results:

• Reducing the window size from 500 to 50 improves the accuracy, whatever is the
sampling frequency.

• Reducing the sampling frequency, decrease the accuracy. The decrement is higher
when the window size is larger.

• Taking into account data from more sensors increase the accuracy. The highest accuracy
result when taking into account three sensors is 89.69%, and taking into account only
accelerometer data is 87.77%. However, when taking into account data from the
accelerometer and magnetometer sensor, the highest accuracy is 89.31%, almost the
same as taking into account three sensors. On the other hand, when taken into account
data from the accelerometer and gyroscope sensors, the highest accuracy score is
87.85%.

4.8.6 Random forest model

In this section, we test the accuracy of the random forest algorithm when the number of trees
in the forest takes a value of [50,100,200,300,400,500].

Figure 4.9 shows the highest accuracy achieved between the models with a different number
of trees, when sampling the data with different frequencies (100 and 25 Hz), using different
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Figure 4.8 Accuracy results in the training and testing phases of the SVM model with a radial
kernel when normalising the data .

window sizes (500 and (50 samples) and taken into account data from different sensors.
Figures 4.9a and 4.9b show the prediction results of the training and testing phases when
the data has been normalised; and figures 4.9c and 4.9d, shows the prediction results of the
training and testing phases when the data has been standardised.

We can observe in the testing results, that there is no difference in the accuracy when
normalising or standardising the data. About using different sampling frequencies, window
sizes, and the number of sensors, the same principles observed in the previous models (LR,
MLP, RNN and SVM) occur.

4.9 Conclusions

In this chapter, we have used the supervised machine learning techniques introduce in Chapter
2 to identify users based in motion data, and we have compared the effect of using different
window sizes, sampling frequencies, number of sensors and preprocessing techniques to
scale the data.

Table 4.2 shown the highest effectiveness results of each of the models analysed in section
4.8. We can observe that the RNN model achieves the highest accuracy of 0.902. However,
as well, it is the method which takes more time to train the model 170.16 seconds.

Trought the experiments of section 4.8, we can extract some of the conclusions about using
different sampling frequencies, window sizes, number of sensors taking into account and
preprocessing techniques to scale the data.
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Figure 4.9 Accuracy of the RF model in the training and testing phases .Top row show
the results when the data has been normalised and the bottom row when the data has been
standardised.

We can establish that:

• We obtain better accuracy results standardising the data for the LR and SVM models.
For models based on neural networks such as MLP, CNN and RNN, it is better to
scale the data. For the RF model, the preprocessing technique applied does not have a
significant impact on the prediction results.

• Reducing the window size improves accuracy.

• Reducing the sampling frequency, decrease the accuracy.

• Taking into account data from more sensors increases the accuracy, but the increment
is very small when taking into account data from all the sensors instead of data only
from the accelerometer and magnetometer sensors.

We can conclude that user identification is feasible from motion data. However, the current
experiments have some limitations which will be interesting to review in future work:
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• We have conducted identification discriminating between two people. Future work
could extend these experiments and complete the same investigations distinguishing
between more persons.

• We have not compared the efficiency of different architectures for the CNN and RNN
models. It will be interesting to compare and report them in future work.

• We use a CNN architecture with a maximum kernel size of 2. Because the input
instance can have a dimension of 128samplesx3channels (note that here channels
equal to the number of sensors taking into account), this kernel could not capture
some patterns for these instances. In future jobs, it would be interested comparing the
performance result with architecture with a filter of a bigger size.
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Chapter 5

User motion behavioural verification

5.1 Introduction

Continuous authentication is a promising approach to verify users during a work session,
e.g., for mobile banking applications, the user does not need to input security information
to authorise several operations. Recently, it has been demonstrated that changes in the
motion patterns of the user may help to note the unauthorised use of mobile devices. Several
approaches have been proposed in this area but with relatively weak performance results. In
this chapter, we propose an approach that uses a Siamese convolutional neural network to
learn the signatures of the motion patterns from users and achieve a competitive verification
accuracy up to 95.8%.

Siamese neural networks have been successfully used in the context of face verification to
learn a distance metric of the data space, which can be used to compare previously-unseen
classes, i.e., images from people not seen during training [33]. Motivated by this, we propose
a continuous authentication system, which detects unauthorised use on the smartphone, using
the characteristic motion patterns of each individual interacting with the device. We use a
Siamese convolutional neural network (CNN), which learns a distance metric from a large
dataset, based on which we can extract deep features for new user authentication.

The authentication process is performed continuously during the whole session without
requiring any explicit action from the user. The proposed approach meets the intrinsic design
requirements of the platform, and achieve an accuracy rate near to 96% using a simple
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classifier (one-class SVM), increasing the effectiveness of similar authentication approaches
based on motion behavioural analytics.

5.2 Biometric approaches for user verification on smart-
phones

In this section, we review some different Biometric Authentication Systems (BASs) utilise
for user validation on smartphones and discuss some of the engineering and methodological
challenges limiting their implementation.

In verification systems based on face recognition, the system stores feature of images or
video frames which are unique to the user. During the verification phase, the features of the
new image sample are determined to belong to the user or not [8] . Iris verification system
has used too for user verification. Most of the non-mobile iris user-verification systems
use images obtained in near-infrared illumination since the iris is more effectively captured
under this light condition [154]. When a picture of the iris is taken in real-world scenarios,
distortion is introduced, and this causes a significant drop in accuracy [127], especially when
the front camera is used. Additionally, the iris is constantly moving, and it is difficult to
localise it in eye images. Although the quality of the smartphone camera has improved in
recent years, this BAS is one with the highest FER, and smartphones do not rely on this
technology yet. A noticeable exception is the Arrows NX F-04G model from Fujitsu Limited
available in Japan, which has shown higher performance.

Periocular user-verification systems share a lot of similarities with iris and face recognition
schemes. Periocular biometric features are extracted from an image of the facial region
in the vicinity of the eye. The main advantage of the iris recognition method is that the
data are easier to capture. Furthermore, an invisible light source is not required to capture
the image. Extensive research of this method for smartphone user-validation purposes has
been performed [128, 119, 101]. In [126], a one-time periocular authentication approach is
presented, based on a semi-supervised anomaly detection method using a deep autoencoder.
The BAS obtained the best performance results of a 8% FRR and 10% FAR.

More recently, some smartphone manufacturers have included a fingerprint reader, and they
used it for user-verification purposes [84]. The main difference with face, iris, and periocular
recognition is the focus of features obtained from the print pattern of the individual. An
important percentage of smartphone users trust this validation method [178]. However, it
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still suffers from high FAR and FRR [136]. Conventional touch sensors introduce physical
distortion because of the pressure applied from the individual at the capture frame, and
this critically affects the authentication process [136]. Furthermore, the classification is
influenced by other environmental factors such as humidity. To mitigate these issues, a
touchless fingerprint has been proposed where the device camera is used to capture an image
of the dactylogram [136]. Besides acquisition challenges, fingerprint images databases
represent a considerable risk: should there be a security breach, and fingerprint patterns are
stolen, the authentication patterns could not be reset.

Voice recognition user-verification methods use the voice of each individual to discriminate
between users. Banks have been very interested in this technology since it can be integrated
into telebanking applications. In smartphone user-validation systems, this method has not
received widespread attention. In a comparison among several BASs, voice recognition
was found less practical than password entry and face recognition: most of the participants
involved gave negative feedback it [140]. A commercial voice-based solution developed by
Google called Trusted Voice, advise that the method is less secure than PIN, password, and
pattern lock during the activation process. This technology cannot be easily implemented
as a continuous authentication method since in the vast majority of activities performed on
smartphones do not involve voice [140].

With the embedding of sensors such as an accelerometer, magnetometer, and gyroscope,
motion user-verification for smartphones became a subject of an increasing number of studies.
Some of the recent literature is focused on identifying users based on their holding patterns
[35]. Since motion data on smartphones can be continuously collected, a similar methodology
can be used to implement continuous BASs, although the literature in this area is very sparse
[92].

In [104], a continuous motion recognition system was proposed base on accelerometer and
gyroscope data. The method is applied in two phases. In the first phase, they transformed the
observations in a new set of features and estimated their general distribution using a Gaussian
mixture model. When a new user joins the scheme, the performance maximum a posteriori
adaptation of the mean vectors of the general data model to build a client-specific model.
Then, both models are used to produce a verification score for each new observation. The
authors obtained an ERR of 18.2% in real-world scenarios.

In [139] the authors introduced a multi-modal approach including accelerometer, gyroscope,
and touch-screen observations. The authors use a one-class SVM model to classify the
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samples as either belonging to the owner or a guest/attacker. They test the approach with a
dataset collected in a controlled environment where users were asked to type a text when
sitting and when walking. They obtained an ERR of 7.16% when the user was walking and
10.05% when the user was sitting. The authors deferred the evaluation of the approach to
real-world scenarios for future studies.

In [92], it was proposed a continuous verification approach based on keystroke data and the
weighted k-nearest neighbour algorithm. Experiments in a controlled environment showed
an ERR of 3.5% when the re-authentication time was set up to ten minutes. Decreasing
the re-authentication time gives considerably worse results, thus limiting the practicality of
the approach on real scenarios being the average smartphone session duration 72 seconds,
as a recent study suggests [27]. Additionally, an obvious limitation of touch recognition
for continuous authentication is the requirement of continuous input from the user. The
smartphone activity usage is very diverse, and some of the most popular activities involve
few typing.

5.3 Data Selection

Feature Learning is the process of selecting the most important and/or relevant characteristics
of a data set, with the aim of improving the prediction performance of the predictors,
providing faster and more profitable predictors, and providing a better understanding of
the process underlying that generated the data. In the data selection process, a subgroup
of features is chosen between all included in the dataset. The subgroup means to include
the most influential variables to the problem. There are several ways to conduct the data
selection process, which we are going to introduce in this section.

The size of the datasets is different for each problem. Sometimes they can be small while
others are tremendously large in size, especially when they have a large number of features,
which may cause them to be difficult to process. Some of the difficulties High-dimensional
data sets may introduce are :

• Some features may act as noise, which reduces the accuracy of the machine learning
approach.

• The model takes longer to train.

• Allocation of unnecessary resources for these characteristics.
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For all this, feature selection can be beneficial in our approach. Machine learning models
learn from past data. In some cases, captured features may be irrelevant what may influence
the effectiveness results of the approach. Finding a meaningful representation of the data
may help to improve the accuracy rate of the system and reduce the computational burden.

Previous results indicate that feature vector representations extracted from convolutional
neural networks are very powerful [129]. Commonly, the new representation is obtained from
a hidden layer of the CNN which has been previously trained. This vector representation has
two important properties:

• Dimensionality Reduction: it is a more efficient representation

• Contextual Similarity: it is a more expressive representation

The new data space, which contains the new representations, is usually called the embedded
space.

Transfer learning

Many times, in the feature extraction process, people use pre-trained CNN models. This
practice is usually called transfer learning. For example in [129] the authors used a publicly
available CNN called OverFeat [135] which was trained for the classification, localisation
and detection tasks of the ImageNet Large Scale Visual Recognition Challenge 2013 [132].
The authors use the features extracted from the OverFeat network as a generic image
representation for a range of tasks of object image classification, scene recognition, fine-
grained recognition, and image retrieval applied to a diverse set of datasets. They selected
the tasks and datasets as they are gradually different from the original task and data the
OverFeat network was trained to solve. Thus, showing the advantages of using the deep
learned features.

5.4 Dataset

To evaluate our approach, we use a publicly available dataset of behavioural data on smart-
phones [172]. The dataset contains samples from 100 volunteers, which includes multiple
modalities: movement, orientation, touch, and gesture. The data was collected under three
task scenarios (reading, writing, and map navigation) and two body motion conditions (sitting
and walking). It is the same dataset used in the experiments in Chapter 4.
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Between all the volunteers, 90 of them performed 24 sessions (8 reading sessions, 8 writing
sessions, and 8 map navigation sessions), each session lasting about 15 minutes. We will use
data from this group of 90 volunteers. We discharge data from the other 10 users because the
sequence is too short for the experiment we want to show.

We split the group of 90 users into two subgroups, of 60 and 30 users. We used data from
the first subgroup (data from the group of 60 users) to train the feature extractor model (a
siamese neural network model). We used the data from the second subgroup (data from the
group of 30 users) to train and test the verification model based on the one-class SVM model
(note that the testing dataset includes samples not seen in the training phase).

As we have said, to train the feature extraction model, we generate a training dataset
combining samples from each of users in the group of 60 users.

• positive pairs: both samples of the pair are from the same user (the number of positives
pairs is equal for each of the users, i.e. we balance the number of positive pairs by
user).

• negative pairs: we generate negative pairs matching samples from one user with a
sample from a different user. We repeat the process from all possible combinations of
users, with the same number of negative pairs for each singular user, i.e. we balance
the number of positive pairs by user.

Furthermore, we generate the same percentage of positive pairs than negative ones, i.e. we
balance the number of positive and negative pairs by class.

Once the deep feature model has been trained, we transform the samples from the group of
30 users. Based on the deep features of the samples from this group of users, we train the
one-class SVM model with observations from one of the 30 users -i.e., the legitimate user-
and we evaluated the model with a testing dataset including samples from the same user and
from one different user, i.e., the fraudulent user. Thus, we evaluate the ability of the approach
classifying unseen observations as either belonging to the owner of the device or not. We
repeat the same experiment for all possible pairs of legitimate-fraudulent users, and we show
the average of the results (in total, 870 scenarios).

Note that, the training dataset includes samples from 18 sessions, 6 sessions for each task-
motion condition activity (from the legitimate user). The testing dataset includes observations
from 6 sessions, one for each task-motion condition activity from each of the users (from the
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Figure 5.1 Machine learning pipeline of our approach.

legitimate and fraudulent users). The observations from the legitimate user are different from
those used to train the model.

5.5 Experiments results

First, we are going to transform the feature space of a group of users of the dataset introduced
in 5.4. For the data transformation, we are going to use the Siamese neural network approach
presented in 2.2.5 when using different architectures, i.e., MLP, 1d-CNN, and 2d-CNN. We
are going to visualise for each architecture, the data transformation of two groups of users
containing 6 and 18 users. Through the visualisation, we want to show which of the different
architectures used to transform the data lead to a more meaningful representation.

After that, we will implement the user-detection system introduced in 5.4 with the siamese
network architecture, which produce a more meaningful data transformation according to
the previous experiment. We will compare this pipeline (siamese network + oc-SVM) with
others which have not transformed the data using a Siamese neural network, i.e. transforming
the data with a CNN, or the data have not been transformed at all, i.e. using the raw data
directly.

5.5.1 Distribution of deeply learned features

Here, we are going to visualise the data transformation of users from the dataset introduced in
5.4. We are going to train different Siamese networks 2.2.5 when using different architectures,
i.e., MLP, 1d-CNN, and 2d-CNN. We will show the data transformation of two groups of
users for each architecture, with 6 and 18 users respectively (we want to understand how to
change the new feature space when including more and more users).

To show the data transformation space, we apply Principal Component Analysis to the output
vector from the Siamese Network, and we plot the two main principal components as shown
in figures 5.2 through 5.8.
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MLP Siamese neural network

We have used an MLP Siamese network to learn deeply features of the HMOG dataset. Each
subnetwork consists of a multilayer perceptron network with two hidden layers.

Figure 5.2 shows the distribution of deeply learned features of six users of the HMOG dataset.
Each subfigure shows the result for four different scenarios with different users. We can see
that deeply features of each class are not separate.

Figure 5.3 shows the distribution of the deeply learned features of 18 users of the HMOG
dataset. Each subfigure shows the result for four different scenarios with different users. The
same of the scenario with six users deeply features are not separate by the user.

1d-CNN Siamese neural network

Here, we used a 1d-CNN Siamese network to transform the data from the same group of
users. Each subnetwork consists in four 1d-CNN layers and four pooling layers.

Figure 5.4 shows the distribution of the deeply learned features of six users. Each subfigure
shows the result for four different scenarios with different users. We can see that distribution
of each class are well separate but close each other in a diagonal.

Figure 5.5 shows the distribution of the deeply learned features of 18 users of the HMOG
dataset. Each subfigure shows the result for four different scenarios with different users.
Different that the scenario with 6 users clusters are not in a diagonal but still they are quite
close one each other.

2d-CNN Siamese neural network

We have used a 2d-CNN Siamese network to learn deep features of the HMOG dataset. Each
subnetwork consists in a 2d-CNN network with four convolutional layers and four pooling
layers.

Figure 5.6 shows the distribution of the deeply learned features of six users of the HMOG
dataset. Each subfigure shows the result for four different scenarios with different users.
Generally, samples of the same class are grouped together and far away from groups of the
rest of the classes.

Figure 5.7 shows the distribution of the deeply learned features of 18 users of the HMOG
dataset. Each subfigure shows the result for four different scenarios with different users. The
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Figure 5.2 Distribution of the deeply learned features of six users of the HMOG dataset using
an MLP Siamese network with a pairwise constraint. Each subfigure shows a scenario with
different users.

deeply learned features of the same classes are grouped together, but groups from different
classes are close to each other.

5.5.2 Motion user detection system

Figure 5.1 shows the machine learning pipeline of our proposed detection system, which
is based on motion data. In an off-line phase, we use a Siamese neural network to learn a
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Figure 5.3 Distribution of the deeply learned features of 18 users of the HMOG dataset using
a MLP Siamese network with a pairwise constraint. Each sub figure shows a scenario with
different users.

meaningful representation of motion patterns. Samples from users are transformed into the
embedded space learned by the Siamese network. We use the deep features of each user, i.e.,
the legitimate user, to train a one-class support vector machine model. New observations
captured with the same device will be classified as belonging to the owner or to a different
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Figure 5.4 Distribution of the deeply learned features of six users of the HMOG dataset using
a 1d-CNN Siamese network with a pairwise constraint. Each subfigure shows a scenario
with different users.

person, i.e., the intruder. To evaluate the effectiveness of our proposed approach, first, we
train a Siamese 2D-CNN with a pairwise constraint with observations from 60 users picked
up randomly from the HMOG dataset [172], which represent the user population. We use the
2D-CNN architecture for the Siamese neural network as it was the architecture that shows
better transformation representation in the experiments of the previous subsection.
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Figure 5.5 Distribution of the deeply learned features of 18 users of the HMOG dataset using
a 1d-CNN Siamese network with a pairwise constraint. Each subfigure shows a scenario
with different users.

The architecture of the Siamese CNN consists of 4 convolutional layers and 4 max-pooling
layers connected alternatively. A 2D block of motion data of size window size by nine
channels (one channel for each directional axis of each sensor taken into account, i.e.,
accelerometer, gyroscope, and magnetometer) is given to a convolutional layer with 32
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Figure 5.6 Distribution of the deeply learned features of six users of the HMOG dataset using
a 2d-CNN Siamese network. Each subfigure shows a scenario with different users.

filters of size 7× 7. The configuration of the second and third convolutional layers is 64
filters of size 5× 5 and 128 filters of size 3× 3, respectively. We change the number of
filters of the fourth convolutional layer with size 3×3 depending on the window size of the
scenario. Thus, we can compare the accuracy rate for different sampling frequencies when
the re-authentication time is the same. We reshape the output of the top layer of the network
approximately to a 64-dimensional feature vector.
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Figure 5.7 Distribution of the deeply learned features of 18 users of the HMOG dataset using
a 2d-CNN Siamese network with a pairwise constraint. Each subfigure shows a scenario
with different users.

As noted, the resulting feature maps from the convolutional layers are fed to a max-pooling
layer, which takes the max over 2×2 spatial neighbourhoods (for all four pooling layers).
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To show the distribution of the learned features, we apply dimensionality reduction using
the principal component analysis to the extracted features of the testing dataset, including
samples from the group of 30 users. Figure 5.8 shows the first two principal components. We
can observe that samples of the same user are predominantly grouped together, and groups
of observations are separate between them.

Then, using the Siamese model, we transform the observations of the training dataset of the
group of 30 users, and we train a one-class SVM model with a radial basis function kernel.
We vary the gamma parameter (the inverse of the radius of influence of samples selected by
the model as support vectors) with values between 0.0001 and 100, and we show the best
accuracy rate obtained between all the results.

We have tested our approach with the following set ups:

• different sequence lengths: 0.5, 1 and 2 seconds.

• different sampling frequencies: 25 Hz and 100 Hz.

Furthermore, to show the importance of the feature extraction process, we also show the
accuracy when the one-class SVM model is trained:

• with raw data.

• with the set of angles α{x,y,z}, φ{x,y,z} and β{x,y,z} describing the orientation of
the three sensors (accelerometer, gyroscope and magnetometer) and their magnitudes
|a|, |g| and |m| [104] (we call these variable engineered features).

• with statistics extracted from each window: mean, median, standard deviation, variance,
max, min, mean of the module, mean of the set of angles for each axe of the three
sensors. In total, for each instance, we extract 66 features.

• with a 64-dimensional features vector extracted by a CNN (with the same architecture
of the Siamese subnetwork).

Figure 5.9 shows the averaged effectiveness results for the different training datasets. We
observe that the model trained with raw data has an accuracy rate of 84.9%. Observations are
very noisy, and observations from the legitimate and fraudulent users are not separated in the
data space; thus, the boundary which calculates the one-class SVM model cannot separate
the group observations from both classes (we can see that false acceptance rate and false
rejection rate are quite high). When we train the model with the group of features we call
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Figure 5.8 Transformation of the observations from 30 users by a Siamese CNN.

engineered (sets of angles describing the orientation and the magnitudes of the three sensors),
the accuracy rate increased slightly to 85.5%, and it reached to 86.4% when we train the
model with statistics (mean, median, variance, etc.) of the window. Experimental results
suggest feature engineering improve moderately performance accuracy.
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Table 5.1 Confusion matrix of the approach when the feature extraction is done by a Siamese
CNN with a sampling frequency of 25 Hz and a window size of 1 second. We show the
summation of the results of all the scenarios, including different legitimate and fraudulent
users.

1 -1
1 226916 7987
-1 11745 223155

On the other hand, the accuracy when we perform feature extraction using a conventional
CNN is as high as 85.9%. However, we see that, when we transform the input data using
the Siamese CNN model, accuracy results are significantly better—using the same sampling
frequency and window size, the accuracy rate increases to 94.3%. We can see within
the figure that the false acceptance rate decreases significantly (from 9.3% to 5%). Thus,
intuitively, the Siamese CNN model can learn representations of the observations from each
of the users who are closer to each other in the embedded space, whatever is the activity
which is performing the user.

On the other hand, we have evaluated the accuracy of the Siamese CNN model when using
different sampling frequencies and window sizes. We can see that when the sampling
frequency is 100 Hz, the accuracy rate decreases slightly when increasing the window size,
from 94.3% when the window length is 0.5 seconds to 93.8% when it is 2 seconds. When
the window size is bigger, the observations will include samples from a higher number of
different movements, which could generate representations of the observations which are
more widely spread in the embedded data space.

When the input to the model has been sampled with a lower frequency, the accuracy rate is
higher, whatever is the window size. When the sampling frequency is 25 Hz, the accuracy
is higher when the length of the window is 1 second and lower otherwise. This is the case
with the highest accuracy (95.8%) between all the different scenarios (Table 5.1 shows the
confusion matrix of the classification results). Nevertheless, these observations indicate that
our method is robust regarding the sampling rate and window length, which can reduce the
computational burden significantly.
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5.6 Conclusion

We propose a continuous authentication biometric system for a smartphone that can detect
fraudulent use by exploiting the user’s specific motion patterns. We have evaluated the
effectiveness of the system with a comprehensive case study.

Throughout the experiments, we have shown that the learning feature extraction process
using a Siamese CNN model improves the verification rate, even using a simple novelty
detection model (one-class SVM).

Furthermore, we have shown that, by adjusting the parameters of the scenario, sampling
frequency and window size, we may be able to improve the effectiveness or efficiency of the
authentication system.

Some of the limitations of these work are:

• We have used data from a constraint environment. Although the dataset we have used
to perform the experiments included a high number of participants doing a variety of
activities, it is not real data. It would be interesting to show the performance with a
"wild" dataset.

• We have done some experiments to chosen the neural network architectures, i.e.,
feedforward, 1d-CNN, and 2d-CNN, but we have not reported them. It would be
interesting to make an exhaustive comparison of performance results using a different
number of layers and hidden units for the architecture.

• To compare between approaches, we need to choose a threshold to calculate perfor-
mance accuracy, i.e., we select a threshold for the autoencoder model score output to
decide if the instance is legitimate or fraudulent. To show each of the models’ results,
we have chosen the threshold that maximises the accuracy detection rate, meaning an
overestimation of the detection results.





Chapter 6

Unsupervised Machine Learning in Card
Payments Fraud Detection Systems

6.1 Introduction

In this chapter, we propose an unsupervised approach which learns the patterns of normal
transactions to detect potentially fraudulent transactions. Thus, it can detect previously
undiscovered types of fraud. We study several Machine Learning and Deep Learning models
i.e. an autoencoder, a multivariate Gaussian Mixture Model and an OC-SVM . We conduct
the experiments in a real-world card payments transaction dataset from a European acquirer.
Furthermore, we study the importance of transactional attributes and show their effect on
detection performance.

In summary, the contributions of this chapter are as follows:

• It provides a comprehensive survey of the state of the art card payment fraud detection
systems proposed so far.

• It provides an exhaustive description of the challenges of modelling card payment
transactions and solutions to improve the detection of fraud.

• It evaluates the accuracy of different unsupervised approaches on card payments
real-world transactions dataset.

• It shows the effect of feature selection in the performance of the detection system.
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Table 6.1 Card payment fraud detection approaches based on Unsupervised Machine learning
techniques

Author Year Techniques Dataset
Quantitative
Results

Aleskerov, E. et al. [9] 1997 Neural Network sinthetic Yes
Quah, J. et al. [124] 2008 Self Organized Maps collected No
Srivastava, A. et al. [143] 2008 Hidden Markov model sinthetic Yes
Bhusari, V. et al. [20] 2011 Hidden Markov model sinthetic Yes
KhanT, A. et al. [4] 2011 Hidden Markov model sinthetic Yes
Iyer, D. et al. [82] 2011 Hidden Markov model sinthetic Yes
Hejazi, M. et al. [79] 2013 one-class SVM collected Yes
Bansal, M. et al. [13] 2014 Self Organized Maps collected Yes
Tech, V. et al. [150] 2014 K-Menas sinthetic No

This chapter is organised as follows. Section 6.2 discusses the traditional fraud detection
systems and those based on machine learning techniques proposed so far. Section 6.3
introduces the dataset used to evaluate our approach, describes the feature selection process
and discuss the importance of the transaction’s attribute. Section 6.4 introduces cost metrics.
Section 6.5 discuss the performance of the unsupervised approaches proposed and the
trade-off number of attributes-performance. Section 6.6 concludes the chapter.

6.2 Machine Learning approaches for card payments fraud
detection

In this section, we discuss some of the machine learning approaches proposed so far for
card payments fraud detection. We classify them in supervised and unsupervised systems.
The distinction of the group is made based on whether the specific target value to predict is
known for the available samples and in the manner that the algorithm is trained.

6.2.1 Supervised learning

The emphasis on card payment fraud detection systems is on supervised classification
methods. It is a discriminative technique trained to find previously known fraud patterns. In
classification problems, the system scores the input transaction based on similarities with the
attributes of the previously seen fraudulent patterns. Depending on whether the score exceeds
a predefined threshold, the transaction will be classified, such as legitimate or fraudulent.
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Neural Networks (NNs) was one of the first ML techniques use to develop FDS more than
20 years ago, and they have become very popular since then. In 1994, [73] developed a fraud
detection system based on a 3-layers P-RCE feedforward network. They used a dataset of
transactions processed by Mellon Bank during six months of 1991. The original training
dataset was sampled to include 3.33% of fraudulent accounts, and a feature selection process
was applied to the original group of attributes. The results showed that when the system
flagged 50 accounts as fraudulent per day, 40% of fraudulent transactions were detected. That
meant an improvement of the previous operative FDS based on rules. In [25] an FDS was
proposed combining a NN with a rule-based approach. They used a dataset of approximately
500K transactions from a German acquirer. After subsampling the number of legitimate
transactions, both modules were combined in a unique sequential system, resulting in a 90%
TNR performance and 91.5% TPR.

Reference [100] compared the accuracy of an Artificial Neural Network (ANN) with a
Bayesian Belief network. They tested the approaches in a real-world dataset, but they did not
describe it because of a privacy agreement with the source entity. After feature selection, the
best accuracy of the NN was 22.3% ERR. The BBN performed slightly better, detecting 8%
more of fraudulent transactions.

Reference [69] compared the performance of an FDS based in a NN with four other systems
based in an Artificial Immune Systems (AIS), a Naive Bayes (NB), a Bayesian Network
(BN) and a Decision Tree (DT) algorithms. They used a real-world dataset from a Brazilian
card issuer. They applied feature selection, and only they consider 17 features from the 33
available. To evaluate the approaches the minimise the monetary losses. The NN and the
AIS methods obtained the best accuracy results.

Authors of [14] compared the performance of FDSs based in two different NNs, a Committed
Neural Network and a Clustered Committed Neural Network. They tested the approaches
in a real-world dataset with almost 4 million legitimate transactions and 1000 fraudulent
transactions. For training, they undersample the number of legitimate transactions to 7000.
The Clustered Committed network architecture showed better detection results, with the
highest accuracy of 91.7% TPR and 82.6% TNR.

More recently, [67] compared the performance of a NN with a Convolutional Neural Network
(CNN), a Random Forest (RF) and a Support Vector Machine (SVM). They tested the
approach in a real-world dataset from a bank consisting of 260 million transactions (100
were fraudulent). The CNN obtained the best accuracy result.
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In [87] a the authors compared the performance of two FDSs based in an RF and a Recurrent
Neural Network (RNN) models. They investigated the effectiveness of the approach in two
real-world datasets. One of the datasets consisted of e-commerce transactions, and the other
one in a face to face transactions. The LSTM performed better on the offline transactions
dataset, but there was no difference in both approaches in the online dataset. Furthermore,
the authors pointed out that the LSTM model patterns were different from patterns seen for
the RF model.

[158] proposed a game-theoretic approach. They model the interaction between an attacker
and an FDS, such as a multi-stage game between two players, both trying to maximise
financial gain. The model consists of a two-tiered architecture, being the first layer of defence
a set of rules. They tested the approach with volunteers. Most of them were not able to learn
the game’s strategy, i.e., the established set of rules, but 40% of them were able to do so.

In 2010 [19] compare the accuracy of an SVM, an RF, and LR models. They tested the
approaches in a real-world dataset from an international credit card issuer, including 50
million transactions (with 2420 fraudulent transactions from 506 cards). They created 16
derived features from the original ones, i.e., Average daily over a month. RF obtained the
highest accuracy with a 78% F-score, followed by LR with 70% and SVM with 62%.

In [133] the authors compared the effectiveness of two FDSs based in an SVM and DT
algorithms. The dataset was the same used in [19]. DT obtained the best accuracy rate with
approximately 95% while SVM got 93%.

[166] conducted a study to show whether transaction aggregation may improve the fraud
detection rate. The analysis showed that RF, LR, SVM, KNN and Quadratic Discriminant
(QDA) improve their accuracy with aggregation. However, DT (CART) did not. They showed
the result in two independent datasets from two banks. In both analyses, QDA obtained the
highest detection accuracy.

Machine Learning (ML) techniques have demonstrated to be useful to detect fraudulent
payments transactions, but keeping a low FAR with a high detection rate is a difficult task.
We have seen that FDS has a high FAR when keeping a high detection rate, [18]. FAR has a
high impact on the effectiveness of the system. It has associated a cost and customer relations
are directly affected.

On the other hand, one characteristic present on all the real card fraud transactional datasets
used to train the model is that they are very imbalanced. The percentage of fraudulent trans-
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actions is extremely lower than that for legitimate transactions. Usually, the percentage of
fraudulent transactions is just between 0.1% and 0.5% [25]. In this scenario, misclassification
arises because of the difficulty of the FDS to learn the fraud patterns.

6.2.2 Unsupervised learning

One of the main advantages of using unsupervised techniques in card fraud detection systems
is the possibility of found undiscovered fraudulent patterns. However, approaches for card
fraud detection systems based on unsupervised techniques are less common.

In 1997, an FDS based in an auto-associative NN was proposed in [9]. Differently from
the FDS’s based on Supervised Neural Networks proposed in [73] and [25], this model was
trained only with legitimate transactions (300 samples). They test the approach in a synthetic
dataset generated with a Gaussian model. Each transaction consists of four attributes, and the
rate of normal samples was 5 : 1. The results of the test showed that the system classified all
the legitimate transactions correctly and misclassified 15.09% of the fraudulent transactions.
The limitation of this system is that they used one network per customer, and they tested the
approach only in synthetic data simulated from a Gaussian distribution.

In 2008, an FDS based on a Hidden Markov Model (HMM) was proposed in [143]. Same
that in [9], this FDS created a spending habit model for each cardholder. The category of
items purchased was represented as the underlying finite Markov chain. The transactions
were observed through the stochastic process that produces the sequence of the amount of
money spent on each transaction. The observation symbols were defined, clustering the
purchase values of the historical transactions of each cardholder. They were clustered in
three price ranges low, medium and high. They tested the system in a synthetic dataset. The
test results showed the best result of 80% of accuracy.

In 2014, [13]compared two approaches based on SOM and decision tree algorithms. The
approaches clustered the data into four groups low, high, risky and highly risky. Both
methods were tested in four datasets, including 500, 100, 1500 and 2000 transactions (not
more information was specified about the data). SOM had slightly better FPR (23.52% and
28% respectively) and 20% better TPR than decision tree (92.5% and 72.5%). Furthermore,
the authors conclude that using the longest dataset, FPR improved 50% and TPR 20%.

In the same year, an unsupervised FDS based on a K-Means algorithm was suggested in
[150]. The system was tested in a synthetic dataset. Some of the attributes of the dataset
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were transaction ID, transaction amount, transaction country, transaction date, credit card
number, merchant category id, cluster id and indicative of fraud. The classification classes
were the same four groups of the previous approach [13], i.e., low, high, risky and high risky.
The authors did not show the results quantitatively.

Table 6.1 synthesises the main aspects, i.e. authors, technique, type of dataset and analysis of
quantitative results for each of the unsupervised approaches reviewed in this section. We can
see that only two of the approaches [79, 13] were tested in real-world data while showing
quantitative results. Between these two approaches, the one based on the OC-SVM model
[79] achieved a higher accuracy result, i.e. 93%.

6.3 Dataset

A card fraudulent transactional dataset is a group of m transactions T :
T = (t1, ..., tm) (6.1)

Each transaction can be seen as a data tuple of n attributes a:
ti = (a1, ...,ad) (6.2)

We find that datasets in card FDS literature have between 20 and 50 attributes (numerical
and categorical). The range of unique values of attributes can vary from two values up to
several hundred thousand [30].

Some common attributes are current transaction description, transaction history description,
payment history description and regional descriptors [51, 73]. Attributes documented in real
data sets are the date, amount of the transaction, merchant category code (CCC), transaction
type [99]. Many times a full list of them is not specified because of confidentiality concerns.

Usually, merchants record a much bigger list of attributes related to the transaction, such as
the number of items purchased, but transaction risk profiling systems usually do not have
access to them [4]. Some synthetic datasets included personal parameters of the user, such
as age and income of the cardholder. When developing an FDS, some authors refuse to use
them to build the models of the systems because those are not available in practice [82].

As we have seen, in the card fraud detection literature, only a few publications use real fraud
transactional datasets [69]. There are not many card fraud transactional datasets publicly
available [163] mainly because of anonymity and security reasons [163], i.e., financial insti-
tutions usually do not make public the private information of their customers. Furthermore,
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companies are not in a position to share sensitive information with their competitors. On the
other hand, usually, reveal information concerned with fraud detection systems is declared to
violate a vital security interest.

To show the effectiveness of our approach, we use a publicly available dataset realised
for a leader in electronic transactions [121]. The datasets contain transactions made by
credit cards by European cardholders. Each transaction consists of 30 features. To preserve
the confidentiality of the customers, most of the variables are the principal components
transformation of the original values. Only features ’Time’ and ’Amount’ preserve the
original value. ’Time’ is the seconds elapsed between each transaction and the first transaction
in the dataset. The feature ’Amount’ is the economic transaction amount.

Furthermore, each transaction has associated a label which indicates whether the transaction
is either legitimate or fraudulent such as:

label =

1, if T is fraudulent

0, otherwise

No more extra background information has been given for the rest of the features.

Table 6.2 shows an example of some features for several transactions.

We normalise the feature Time and Amount with the max-min technique introduce in Section
4.6. Furthermore, we transform the feature Time to indicate the hour of the day which the
transaction in the following manner:

f (t) =
t

60∗60
(mod n).
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6.3.1 Imbalanced dataset

The dataset includes transactions that occurred over two days, where 492 out of 284,807 are
fraudulent transactions. Note that the dataset is highly unbalanced; the positive class (frauds)
account for 0.172% of all transactions.

One characteristic present on all the real card fraud transactional datasets is that they are
very imbalanced. The percentage of fraudulent transactions is extremely lower than that for
legitimate transactions. Usually, the percentage of fraudulent transactions is just between
0.1% and 0.5% [25]. In this scenario, misclassification arises because of the difficulty of the
FDS to learn fraud patterns.

We find some incongruences in the literature when some authors such as [59] state to use real
card fraudulent transactional datasets with a ratio of 20% of fraudulent transactions without
applying any sampling process.

In this same paper, they studied the influenced by using different distributions to train a
system. The system tested was a meta-learning method. The meta-classifier and base
classifiers were based on four methods ID3 decision tree, CART decision tree, BAYES and
RIPPER. The different distributions fraudulent/legitimate used were: 20%/80%, 25%/75%,
33%/67%, 50%/50% and 67%/33% (note that the original datasets was sampled from
500.000 transactions to 50.000 with the different distributions. 84% of the data was used
for the training set, 8% for the meta-learning set and 8% for the testing set). They measure
the performance of each combination classifier-distribution for meta-classifiers and base
classifiers. They find that indistinctly for meta-classifiers and base classifiers, each algorithm
obtained a higher TP rate and lower FP rate when data distribution was 50%/50%.

However, in unsupervised approaches, the goal is to model only normal available data. Thus,
we will not have to tackle imbalance during training.

6.3.2 Sampling

1.

2.

3.
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Sampling is a very common process when building FDS.. Usually, datasets to train FDS
are very skewed, thus, undersampling and oversampling are common techniques to balance
datasets in this area cite809570. In [14], we can see an example. The original dataset
included 3.728.713 legitimate transactions and 1006 fraudulent transactions. The dataset
resulted from the sampling process consisted of 7.210 legitimate transactions and 581
fraudulent transactions. Thus, the percentage of fraudulent transactions changed from 0.02%
to 7.45%.

A different approach was followed in [32]. To train the model, the authors created several
datasets with different class distributions. . The final model was obtained, averaging the
partial results calculated firstly.

•

•

We will conduct a series of experiments to show how it affects sampling to the approaches
we propose. Furthermore, we will use sampling to build a sensible-cost system.

6.3.3 Training and testing dataset

We have split the original dataset into training and testing datasets for the experiments we
conduct in the next section. The training dataset includes 75% of the legitimate transactions,
and the testing dataset consists of the 25% of the legitimate transactions and all the fraudulent
transactions. We will repeat the experiments ten times, and each of the time, we will choose
randomly the split 75%−25% of the legitimate transactions.

6.3.4 Feature selection

Most of the FDS in the literature use a feature selection process because:

• Improve training time: some models are computationally intensive when building the
models. If the amount of data that they have to compute is fewer, the time to train the
model will be lower.

• Improve response of real-time systems: FDSs are expected to detect fraudulent transac-
tions in real-time. Detection can be faster if the number of attributes of each transaction
is low.
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The number of attributes of the system can be significantly reduced. For example in [69] the
number of attributes was reduced from 33 to 17.

Some of the authors specify which feature selection process they used, such as in [Ush et al.]
which based the process in a GA but many of them do not. On the other hand, the information
provided for some attributes can be essential for the making decision process. In [73] a
comparison of the performance of an FDS using two different groups of attributes is made.
One of the groups includes payment-related information and the other not. The results
showed that the model trained without payment-related information produced twice as many
TP as the model, which includes the related-payment information. Furthermore, accuracy
was improved, too, including this extra information.

In [134] a comparison of the impact on the effectiveness of using different groups of features
is made. They divided attributes into four groups, history descriptors, regional descriptors,
daily amount descriptors and daily account descriptors. When the regional descriptors group
of features was not taken into account, the effectiveness of the FDS was almost 80% less.
However, the effectiveness of the system only was committed by 5% when the daily account
descriptors were not taken into in account, 10% when history descriptors and 22% when
daily amount descriptors.

Figure 6.1 shows the relation between the variables of the dataset, which we are using in
the present investigation. We can see that more than half of the features are correlated to
"amount", "time" and "Class", but they are not correlated between them. On the other hand,
as well we can see that the rest of the features are not correlated between them either.

We have used an extra-Trees algorithm to calculate the importance of the features of the
dataset such as in [95]. We use the depth of the node assigned to each of the features to
calculate the relative importance of that feature. Features on the top of the tree contribute
to a higher rate to the final prediction of the model. We used the average between several
randomised trees to reduce the variance of the prediction

Figure 6.2 shows the relevance importance of the features obtained. We can observe that
features ’V17’ and ’V14’ are relatively much more informative than other features. Later,
we will test the accuracy of the different approaches taking into account different groups of
features.

Figures 6.3 and 6.4 show the density function of the two most important features (V17 and
V14) and figures 6.5 and 6.6 the less important (V2 and V23). We can observe for the two
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Figure 6.1 Correlation coefficient between figures.

most relevant features, that density functions of fraudulent and non-fraudulent transactions
do not overlap as much for those of the less important features.

6.4 Effectiveness metrics

Datasets of electronic transactions are highly imbalanced. As we have said in 6.3.2, these
include a much higher number of samples of normal transactions than fraudulent. This
characteristic makes essential choosing the sensitive metrics which allow us to show the real
detection capabilities of each approach.

Figures 6.7 and 6.8 show the detection results of a fraud detection system in the dataset
describe in 6.3 when we refer to the predominant class as negative and positive respectively.
The detection system is based on an autoencoder introduced in 2.3.1. The graphs show the
ROC and Precision-Recall (PR) curves, accuracy and F-score when varying the similarity
threshold (as we explain in the next section) to classify the samples. We can see that the
precision-recall curve, accuracy and F-score show a very high performance when we refer to
the normal class as positive and very low performance when we refer to them as negative.
However, ERR is the same beyond the nomenclature we use.
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Figure 6.2 Feature importance.

However, some authors state that true positive rate (TPR) 6.5, true negative rate (TNR) 6.6
and false positive rate (FPR) 4.2 are not suitable for card FDS because they establish the
same importance for the misclassification of each transaction without taking into account
economic losses. For this reason, some authors suggest the implementation of sensible
misclassification costs.

A way to do build a sensible cost system is make the misclassification of certain class more
expensive. In [70], based in the domain knowledge from fraud preventions specialists and
experimental results the authors of the paper set an average cost of $1 for every verification
(CFP = $1) and an average loss of $100 for every undetected fraud transaction (CFN = $100),
resulting in a cost function:

$cost = $100∗FN +$1∗ (FP+T P) (6.3)

Because in this paper they sampled the original dataset available to 10% of legitimate
transactions and 100% of fraudulent transactions, they adjust the cost function to:

$cost = $100∗FN +$10∗FP+$1∗T P (6.4)

Since in card payments, the amount of each transaction is different, some authors suggest a
misclassification cost where the importance of misclassified a transaction depends on the
amount saved or lost. In [52] the authors introduce a variable misclassification cost system.
We can have a clear view of the metrics throw the confusion matrix shown in fig. 6.9 . FP
transactions have a misclassification cost of CFP, which is a fixed cost based on the domain
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Figure 6.3 Density function of the feature V17.

expertise of the authors. FN transactions have a variable cost equal to the available usable
limit of the card in the moment of the transaction.

In [113], the same variable misclassification costs system was used to update an FDS of a
Turkey bank. Improvement of the effectiveness of the FDS was shown. When redefining the
model, the Bank was not kind to increment the current FP percentage. To achieve this aim
was set an extra 50% cost for an FP when the FP rate was up to 150% of the previous FP
rate, an extra 100% cost when the FP rate was between 150% and 200% and an extra 500%
cost when was bigger than 200%.

Another sensible misclassification cost system can be model sampling the training dataset.
Costs of the fraudulent and legitimate transactions conveyed by the appearance of the
examples in the dataset [48]. In section s:results, we will sample the dataset according to the
economic amount of the transaction and we will evaluate the economic losses due related to
the proposed detection system using the following metrics:

NegativeClassPro f it =
CostT P

CostT P+CostFN
(6.5)
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Figure 6.4 Density function of the feature V14.

PositiveClassPro f it =
CostT N

CostT N +CostFP
(6.6)

6.5 Proposed approaches for card payments FDS

We propose an unsupervised FDS for card payments transactions. We compare the per-
formance between three systems based on a deep learning technique (autoencoder), in a
statistical model (a multivariate Gaussian model) and an ML model (OC-SVM, which was
previously used in [79] to detect fraudulent payment transactions).

In our system, we use only normal transactions to train the model. It learns the characteristics
of the normal samples. Once the model has been trained, each new transaction is classified
as normal or fraudulent depending on how similar they are to the learnt patterns.

Deep Learning Autoencoders Giving a card fraudulent transactional dataset T of m trans-
actions t, the input of the model is the transaction vector T and the output is that in equation
2.50. In this experiments, we define the activation function as the hyperbolic tangent function
[110] and we restrict the degrees of freedom using a tied architecture, where the encoding
matrix is the transpose of the decoding matrix, i.e. Wd = WT

u [161].
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Figure 6.5 Density function of the feature V2.

Furthermore, we test three architectures with one, three and five hidden layers to achieve
higher flexibility (and abstraction) of the model.

In the learning process, only data from legit transactions are input to the system, thus learning
the model the characteristic patterns of them.

Our approach uses gradient descent and backpropagation to learn the encoder function to
obtain the output feature vector T̂. The algorithm is training minimising the mean squared
error (MSE). We run the training process for that number of iteration that MSE converge.
The MSE gives us the reconstruction loss error value between the input and output features
vector, which we call the similarity score for each transaction.

During the detection phase, once we have calculated the match score of the new instance, it
is compared against the decision threshold. If the match score is higher than the decision
threshold, the authentication request instance will be classified as fraudulent, as shown in
6.10.

Multivariate Gaussian distribution Given the card payments transnational dataset T =

(t1, ..., tm) we will take into account only those transactions labeled as a normal. We assume
that each attribute is normally distributed and we calculate the Gaussian parameters i.e. the
mean µi and variance σ2 for each of the features as in 2.52 and 2.53.
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Figure 6.6 Density function of the feature V23.

And we will consider the transaction as fraudulent if P(t) < ε where ε is the probability
threshold.

Performance comparison of the proposed approaches

In this section, we compare the performance of the two proposed approaches i.e. autoencoder
and multivariate Gaussian model, with an approach proposed in [79] which was based in an
OC-SVM model. So, we compare the performance of these approaches:

• an autoencoder with one hidden layer and 15 hidden units.

• a multivariate Gaussian model with one component.

• a one-class SVM.

Table 6.3 shows the ERR obtained by each model. We can see that the autoencoder and
GMM models get the highest ERR, 9.8% and 9.7% respectively. On the other hand, oc-class
SVM obtain the lowest ERR (11.2%).

Figure 6.11 shows the ROC curve of the three different models. The ROC curve of the
autoencoder and multivariate Gaussian model are very similar. On the other hand, although
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Figure 6.7 Accuracy results when the preominant class is the negative class.

the oc-SVM is the model with the highest ERR, it keeps a higher True Acceptance Rate
(TAR = 1−FRR), when the FAR is very small.

Table 6.3 ERR of three different unsupervised models on the dataset shown previously.

Models ERR
Autoencoder 9.8%

multivariate Gaussian model 9.7%
OC-SVM 11.2%

Deeper and variational autoencoder architectures

Figure 6.12 show the ROC curve of the autoencoder with three different architectures:

• one hidden layers with 15 hidden units

• three hidden layers with 15x7 hidden units

• five hidden layers with 15x30x7 hidden units

We can see that the numbers of hidden layers and hidden units do not affect the accuracy of
the model on this dataset. We have repeated the same experiment for the number of hidden
units equal to 30, 15, 7 and 3 for each of the layers, obtaining similar results to the shown
figure.
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Figure 6.8 Accuracy results when the preominant class is the positive class.

We are going to compare the performance of the autoencoder and a variational autoencoder
(VAE) models.

. Figure 6.13 shows the comparison of the performance of the autoencoder and a variational
autoencoder (VAE)models. We can see that performance, in this case, is the same for both
models, and there is not an improvement of the accuracy when using a VAE model.

6.5.1 Feature importance experiments

We have seen that the autoencoder and multivariate Gaussian model obtained very similar
accuracy results. However, deep learning models can manage a high number of input features
and transform the input vector of features in a more meaningful lower-dimensional data
representation [115]. On the other hand, multivariate Gaussian models work better on low
dimensional space problems. Thus, we are going to reduce the input dimensionality space
from 30 features to 7 using the five layers autoencoder, i.e. the embedded representation
of the middle layer of the autoencoder is used as the input of the multivariate Gaussian
model. Figure 6.14 shows the ROC curve of the approach and the ROC curve of the
multivariate Gaussian model for comparison. We can see that ERR does not improve, but the
autoencoder+multivariate Gaussian model approach keeps higher TAR when FAR is very
small.

On the other hand, we are going to test the accuracy of the multivariate Gaussian model
when changing the input vector taking into account different numbers of attributes in groups
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Figure 6.9 Confusion matrix realted to cost.

according to the importance calculate in Section 6.3.4. Figure 6.15 show the ROC curve of the
results. We can observe that the model taking into account the two more informative features
has the lowest ERR (8.55%) and the model only taken into account the most informative
feature has the highest (12.5%).

When the model includes features one by one (by incremental importance), the ERR con-
stantly increase until including 8 features, after that, the ERR increase but not improving the
accuracy of the model taking into account four or fewer features (except the model taking
into account one feature).

6.5.2 Subsampling

We want to see the effect of the multivariate Gaussian model’s performance when subsampling
the training dataset by the monetary amount of the transactions. Figure 6.17 shows the ROC
graph of the model when considering two features and subsampling the transactions according
to their monetary amount, i.e., transactions of an amount higher than 100, 1000, 5000, and
10000 euros. In the graph for comparison, we include the performance results of the model
considering two features and all the features without subsampling.

As we saw before, the ERR of the model, when considering two features, is 8.55%. When
subsampling the transactions with an amount higher than 100 euros, the ERR increases
slightly to 8.65%. However, when subsampling the transactions an amount higher than 1000
euros, the ERR decreases to 8.35%, the highest accuracy over all the experiments we have
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Figure 6.10 An example of the decision threshold for match score distributions from two
different users, one legitimate and one fraudulent.

conduct. When subsampling the transactions with an amount higher than 5000 and 10000,
the ERR increases to 9.17% and 18.4%, respectively.

So, when sampling the training dataset by the monetary amount of the transactions, we can
improve the approach’s accuracy slightly, and we do not need to model all the transactions,
which computationally could mean a series of advantages such as reducing the computational
burden. But we want to know that sampling the training dataset does not mean to increase
the monetary losses of fraud. Figure 6.18 shows the Negative Class Losses Rate-Positive
Class Profit Rate, i.e., the rate between the monetary amount of the legitimate transaction
and the fraudulent transactions. We can see that economic losses are higher for the models:

• taking into account all the features and without subsampling the rate is 18.5%

• taking into account two features and training only with the transactions with amount
higher than 10000 the rate is 18.9%

For the rest of the models are very similar with a slightly higher profit with the model taking
into account two features and training with transactions higher than 100:

• taking into account two features without subsampling the rate is 13.55%

• taking into account two features subsampling transactions higher than 100 the rate is
13.5%



144 Unsupervised Machine Learning in Card Payments Fraud Detection Systems

0.0 0.1 0.2 0.3 0.4 0.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False Acceptance Rate

T
ru

e 
A

cc
ep

ta
nc

e 
R

at
e

autoencoder
Gaussian
o-class SVM

Figure 6.11 ROC curves of the three unsupervised approaches i.e autoencoder,multivariate
Gaussian model and OC-SVM used to model normal card payment transactions.

• taking into account two features subsampling transactions higher than 1000 the rate is
13.7%

• taking into account two features subsampling transactions higher than 5000 the rate is
13.85%

Then, when subsampling the transactions with a monetary amount higher than 1000, we
improve the ERR of the system, but we have slightly higher losses. But we could sample
transactions with a monetary amount of 100. In this case, although the ERR is lower than
when not sampling, we will reduce the fraud losses.

6.6 Conclusion

,This chapter has proposed two unsupervised ML approaches to model card payments
transactions and detect fraudulent activity. We have seen that both proposed systems based
on an autoencoder and a multivariate Gaussian model, have better detection accuracy than a
previously proposed approach based in an oc-SVM.

On the other hand, we have shown that the feature extraction and selection ability of deep
learning models to build a new data representation of the raw data, does not help to improve
the accuracy of the multivariate Gaussian model. However, we have demonstrated that only
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Figure 6.12 ROC curves of the autoencoder model with different number of layers.

taking into account the two most important attributes selected by a tree model; we improve
the detection accuracy of the model.

,Furthermore, we have shown that sampling the training dataset beyond advantages such as
reduce the computational burden of the model, It helps to improve the ERR of the model and
decrease the monetary fraud losses

Some of the limitations of the experiments showed here are:

• ,We have used a public dataset which a limited number of transactions. Furthermore,
we do not know the name of many of the features. Knowing the name, we could
compare the results more exhaustively with other works, and we will be able to
propose better solutions

• ,For the autoencoder architecture, we have chosen the number of hidden units after an
experimental exploration. It would be interesting in future work to compare and report
differences in accuracy when using architectures with a different number of hidden
units.
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Figure 6.13 ROC curves of different autoencoders.
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6.6 Conclusion 147

0.0 0.1 0.2 0.3 0.4 0.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False Acceptance Rate

T
ru

e 
A

cc
ep

ta
nc

e 
R

at
e

1 feature
2 features
3 features
4 features
5 features
6 features
7 features
8 features
9 features
10 features
15 features
20 features
25 features
30 features

Figure 6.15 ROC curves of multivariate Gaussian models taking into account different groups
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# features ERR
1 87.5%
2 91.45%
3 90.89%
4 90.45%
5 90.29%
6 90.4%
7 90.0%
8 89.5%
9 90.43%

10 90.4%
11 90.37%
12 90.58%
13 90.36%
14 90.35%
15 90.54%
20 90.46%
25 90.45%
30 90.03%
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Figure 6.17 Cost ERR the of multivariate Gaussian models taking into account two features
and sumsampling the training dataset by amount of the transactions.
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Figure 6.18 Cost ERR the of multivariate Gaussian models taking into account two features
and sumsampling the training dataset by amount of the transactions.





Chapter 7

Conclusion

In this chapter, we summarise the research work presented in this thesis on investigating
approaches to enhance the security of the electronic card payment system. We outline the
contributions and limitations of these works, and discuss open research problems in the field,
motivating a number of future work directions.

7.1 Thesis Summary

In this thesis, we have investigated enhancing the security of the electronic card payment
system.

Making an exhaustive analysis of the card payment systems, we can immediately realise
that they evolve very fast through time. The main actors involved in transactions, i.e., the
merchants, the acquirers, and the issuers, continuously adapt new technologies to the systems
to offer new services to cardholders. Cardholders quickly habituate to the latest advances,
and the popularity of card payment systems has increased exponentially for the last 20 years.

Analysing the losses because of fraud in the same period, we observed a similar increasing
trend to the higher use and expenditure of card payment transactions, but understanding the
former event’s causation becomes essential to be able to reduce the damage. Our investigation
highlights that the increment of payment technology’s utilisation does not cause an increment
in fraudulent activities.

In recent years, we have identified the use of mobile devices and data breaches, such as the
current main contributors to fraud losses on electronic card payments. We have investigated
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several approaches that consider both aspects, and we developed all the approaches using
Machine Learning techniques.

It seems that improving authentication approaches for mobile devices should be urgent to
battle current fraudulent activities in payment systems. We have proposed approaches for
two different scenarios. An identification approach is useful in scenarios where a group of
people shares the same device and a verification approach to certify the user’s identity.

In Chapter 4, we have proposed an identification user system for Smartphones. We have
based the system on motion data, i.e., accelerometer, magnetometer, and gyroscope data. We
compared several approaches based on distinct supervised ML techniques. We have shown
that it is possible to distinguish between users very accurately based on motion patterns.
Also, we have investigated different technical aspects of the approach. We concluded that
specific normalisation helps each approach to perform better, i.e., LR and SVM perform
better when standardising and neural networks when scaling. Smaller window sizes improve
the accuracy rates, contrary to sampling with smaller frequencies. And we have considered
using a different combination of motion data sources to establish than using data from more
sensors improves the accuracy of the model, but the improvement is minimal when using data
from three sensors instead of two, but with the extra computational burden for the system.

In Chapter 5, we have proposed a verification system for Smartphones. The system was
based on motion data as well. We demonstrated that by transforming the raw data in a more
meaningful representation using a deep learning technique, we could substantially increase
the identification system’s accuracy. For this, we have compared the verification system’s
performance when conducting feature extraction, i.e., extracting some statistics from the in-
stance, extracting features with a CNN, and with a siamese neural network. We demonstrated
that the siamese NN architecture, based on a 2D-CNN, cluster more meaningfully the samples
from the different users in the latent space, which leads to better classification accuracy. The
Siamese CNN model can learn representations of the observations from each of the users who
are closer to each other in the embedded space, whatever is the activity that is performing
the user. Here too, we compared different technical aspects of the approach. Similar to the
results in Chapter 4, reducing the window size increase the performance. Although bigger
window sizes should include longer movements, it seems that to differentiate between users,
micro-movements characterised better the person.

Demonstrating a successful effectiveness rate of the proposed authentication approaches
and because they have been based on motion data allows us to use them as a continuous
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authentication approaches. Integrating security measures without the requirement of explicit
actions from the users, we manage to improve the user experience. We have shown that with
relatively small windows sizes, i.e., from 0.5 to 2 seconds, It is possible to get high accuracy
detection rates, and it means that we can identify very frequently and continuously the users.

Motion data can be easily acquired from merchants, but issuers hold millions of transaction
records which they can use to identify users. Chapter 6 investigates the development of
a card payments fraud detection system that learns from past data to detect fraudulent
transactions. If a data breach made public access credentials such as passwords, we could
still look at the user transactional, behavioural profile to recognise disparities with their
everyday conduct. Similar approaches were proposed in the literature before, but we based
the system on an unsupervised Machine Learning technique instead of the supervised, which
have been habitual. Thus, the system may recognise unseen patterns of fraud instead of
searching only for those who have already been caught up. We compared the performance of
two systems based in an autoencoder and a multivariate Gaussian model with an approach
proposed previously in the literature, based in an oc-SVM. The two proposed methods had
better accuracy than the proposed so far. The initial results showed that both proposed
approaches got the same detection performance. After conducting feature selection to
train the multivariate Gaussian model, the autoencoder performs it intrinsically; the former
performs better. However, at this point, we thought that the ultimate goal of a transactional
fraud detection system is to reduce economic losses, beyond that loss of reputation and
loss play a crucial role in banking. Thus, we investigated and showed that by training the
model with a subsampled dataset, we could keep the same economic losses reducing the
computational burden.

7.2 Limitations and Future research directions

Here we motivate a number of areas of future research arising from lessons learned throughout
the PhD.

7.2.1 Unconstrained environment

We have tested the identification approach proposed in Chapter 4, and the verification
approach proposed in Chapter 5 with a dataset wich only contains motion samples from users
performing a specific activity. Although the results on motion identification and verification
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are promising, both approaches should be tested in an unconstrained environment, e.g., based
on daily activities.

7.2.2 Multi-biometric system

We have seen that including data from more sensors in our identification and verification
approaches improves the accuracy of the systems. It would be interesting to see if we can
continue improving the performance, including data from other sensors.

7.2.3 Collection new transactional features

The accuracy of our card payments fraud detection system seems to be limited because of
the scarcity of the features recorded. It would be interesting testing if collecting new features
could help to detect more fraudulent transactions.

7.2.4 Merging our approaches

After seeing that motion data is useful to recognise users and that it is possible to learn the
pattern of normal transactions, It would be interesting to see if merging the authentication
score and the fraudulent transactional score helps to detect fraud.

7.2.5 Others transactional dataset

The transactional dataset consists of real transactions from a leading European acquirer.
However, the dataset only includes transactions from two consecutive days, and values
and names of most of the features have been to preserve some confidentiality. It is very
complicated to have access to real transactional datasets, but testing the results in another
bigger dataset will reinforce our conclusions. Furthermore, knowing the name of all the
attributes will help better understand the current fraud detection systems’ strengths and
weaknesses and design new ones.

7.2.6 Testing Neural Networks architecture effect

In Chapters 4,5 and 6, we have tested several models based on neural network methods,
i.e., feedforward neural network, CNN, and RNN. We chose the specifications of the, i.e.,
number of layers and number of hidden units after some experimentation, but in the future
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wok will be interesting to see an exhaustive comparison reporting and comparing the effects
in performance when using different architectures.

7.2.7 Overestimation of the results

In the experiments of this thesis, we have chosen the parameters of the models based on the
test performance. For this reason, some of the reported results through the thesis are over-
optimistic. To obtain a more unbiased estimate of predictive performance, a methodology
such as nested cross-validation should be used.
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