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Abstract

Stochastic differential equations (SDEs) provide a natural framework for describing the

stochasticity inherent in physical processes that evolve continuously over time. In this

thesis, we consider the problem of Bayesian inference for a specific class of SDE – one

in which the drift and diffusion coefficients are linear functions of the state. Although

a linear SDE admits an analytical solution, the inference problem remains challenging,

due to the absence of a closed form expression for the posterior density of the parameter

of interest and any unobserved components. This necessitates the use of sampling-based

approaches such as Markov chain Monte Carlo (MCMC) and, in cases where observed data

likelihood is intractable, particle MCMC (pMCMC). When data are available on multiple

experimental units, a stochastic differential equation mixed effects model (SDEMEM) can

be used to further account for between-unit variation. Integrating over this additional

uncertainty is computationally demanding.

Motivated by two challenging biological applications arising from physiology studies

of mice, the aim of this thesis is the development of efficient sampling-based inference

schemes for linear SDEs. A key contribution is the development of a novel Bayesian

inference scheme for SDEMEMs.
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Chapter 1

Introduction

Stochastic differential equations (SDEs) are arguably the most used and studied stochastic

dynamic models. SDEs (Fuchs, 2013) allow the representation of stochastic time-dynamics,

and are ubiquitous in applied research, most notably in finance (Steele, 2012), systems

biology (Wilkinson, 2018), pharmacokinetic/pharmacodynamic modelling (Lavielle, 2014)

and neuronal modelling (Saarinen et al., 2006). SDEs extend the possibilities offered by

ordinary differential equations (ODEs), by allowing random dynamics. As such, they

can in principle replace ODEs in practical applications, to offer a richer mathematical

representation for complex phenomena that are intrinsically non-deterministic.

However, in practice switching from ODEs to SDEs is usually far from trivial, due to the

absence of closed form solutions to SDEs (except for the simplest toy problems), implying

the need for numerical approximation procedures (Kloeden & Platen, 1992). Numeri-

cal approximation schemes, while useful for simulation purposes, considerably complicate

statistical inference for model parameters. For reviews of inference strategies for SDE

models, see e.g. Fuchs (2013) (including Bayesian approaches), Sørensen (2004) (classical

approaches) and Wilkinson (2018) (for sampling based approaches in the biological con-

text). Generally, in the non-Bayesian framework, the literature for parametric inference

approaches for SDEs is vast, however there is no inference procedure that is applicable to

general nonlinear SDEs that is also easy to implement on a computer. This is due to the

lack of explicit transition densities for most SDE models.

In this thesis, we consider a linear class of SDE model, for which the governing tran-

sition densities are available in closed form. We assume that observations are available

at discrete times, and the inferential goal is learning the SDE parameters and any unob-

served dynamic states. By adopting a Bayesian approach to inference, our prior beliefs

are encapsulated via a prior density, which is subsequently combined with the observed

data likelihood to give a posterior density. Unfortunately, the latter is rarely tractable,

and we turn to computationally intensive techniques to generate samples from the poste-
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Chapter 1. Introduction

rior distribution. We place particular emphasis on Markov chain Monte Carlo (MCMC)

methods (see e.g, book by Gamerman & Lopes (2006)) which will be used as the basis for

inference.

In this thesis, we consider “repeated measurement experiments” (longitudinal data),

modeled via mixed-effects, where the dynamics are Markov processes expressed via lin-

ear stochastic differential equations. These dynamics are assumed directly unobservable,

i.e. are only observable up to measurement error. The practical goal is to fit observa-

tions pertaining to several individuals (i.e. independent experiments) simultaneously, by

formulating state-space models having parameters randomly varying between those indi-

viduals. The resulting model is referred to as a stochastic differential equation mixed-effects

model (SDEMEM). SDEMEMs are interesting because, in addition to explaining intrinsic

stochasticity in the time-dynamics, they also take into account random variation between

experimental units. The latter variation permits the understanding of between-subjects

variability within a population. When considered in conjunction with an observation

model, these two types of variability (population variation and intrinsic stochasticity) are

separated from the third source of variation, namely residual variation (measurement er-

ror). Thanks to their generality, and the ability to separate the three levels of variation,

SDEMEMs have attracted attention, see e.g. Donnet & Samson (2013a) for a review and

Whitaker (2016) for a more recent account.

Here we review key papers on inference for SDEMEMs, and refer the reader to https:

//umbertopicchini.github.io/sdemem/ for a comprehensive list of publications. Early

attempts at inference for SDEMEMs use methodology borrowed from standard (deter-

ministic) nonlinear mixed-effects literature such as FOCE (first order conditional esti-

mation) combined with the extended Kalman filter, as in Overgaard et al. (2005). This

approach could only deal with SDEMEMs having a constant diffusion term. The resulting

inference is approximate maximum likelihood estimation, and no uncertainty quantifi-

cation is given. Moreover, only Gaussian random effects are allowed and measurement

error is also assumed Gaussian. Other maximum likelihood approaches are in Picchini

et al. (2010) and Picchini & Ditlevsen (2011), where a closed-form series expansion for

the unknown transition density is found using the method in Ait-Sahalia (2008), how-

ever the methodology could only be applied to reducible multivariate diffusions without

measurement error. Donnet et al. (2010) discuss inference for SDEMEMs in a Bayesian

framework. They implement a Gibbs sampler when the SDE (for each subject) has an

explicit solution, and consider Gaussian random effects and Gaussian measurement er-

ror. When no explicit solution exists, they approximate the diffusion process using the

Euler-Maruyama approximation. Donnet & Samson (2013b) construct an exact maximum

likelihood strategy based on stochastic approximation Euler-Maruyama (SAEM), where

latent trajectories are “proposed” via particle Markov chain Monte Carlo (Andrieu et al.,

2
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Chapter 1. Introduction

2010). The major problem with using SAEM is the need for sufficient summary statistics

for the “complete likelihood”, which makes the methodology essentially impractical for

arbitrarily complex models. Delattre & Lavielle (2013) also use SAEM, but they avoid

the need for the (usually unavailable) summary statistics for the complete likelihood, and

propose trajectories using the extended Kalman filter instead of particle MCMC. Unlike

in Donnet & Samson (2013b), the inference in Delattre & Lavielle (2013) is approximate

and measurement error and random effects are required to be Gaussian. Whitaker et al.

(2017) work with the Euler-Maruyama approximation and adopt a data augmentation

approach to integrate over the uncertainty associated with the latent diffusion process

by employing carefully constructed bridge constructs inside a Gibbs sampler. A linear

noise approximation (LNA) is also considered, see e.g. Golightly et al. (2015). However,

the limitations are that the observation equation has to be a linear combination of the

latent states and measurement error has to be Gaussian. In addition, constructing the

bridge construct in the data augmentation approach or the LNA-based likelihood requires

some careful analytical derivations. Consequently, neither approach can be regarded as

a plug-and-play method (that is, a method that only requires forward simulation and

evaluation of the measurement error density). In Picchini & Forman (2019), approximate

and exact Bayesian approaches for a tumour growth study were considered: the approxi-

mate approach was based on synthetic likelihoods, where summary statistics of the data

are used for the inference, while exact inference used pseudo-marginal methodology via

an auxiliary particle filter, which is suited to target measurements observed with a small

error. It was found that using a particle approach to integrate out the random effects

was very time consuming. Even though the dataset was small (comprising 5–8 subjects

to fit, depending on the experimental group, and around 10 observations per subject), the

number of particles required in the procedure was in the order of thousands.

1.1 Contribution of this thesis

The aim of thesis is to investigate Bayesian inference for linear SDEs with focus on SDE-

MEMs whose underlying dynamics are driven by linear SDEs. We consider separately,

scenarios for which the observed data likelihood is tractable and intractable. The for-

mer arises, for example, when the linear SDE admits a (linear) Gaussian transition den-

sity and the observation process is both linear and Gaussian. In this case, the observed

data likelihood can be calculated efficiently using a forward filter (Bucy & Joseph, 2005).

Metropolis-within-Gibbs scheme is then used to alternate between draws of blocks consist-

ing of parameters governing each experimental unit, the populations level parameters, and

the parameters governing the observation process. An intractable observed data likelihood

is encountered, for example, when a nonlinear observation model is assumed.

3
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In this case, we derive a pseudo-marginal Metropolis-Hastings scheme, within which

the intractable likelihood is replaced with an unbiased estimator thereof. A particle filter

(see Andrieu et al., 2009) is used to generate non-negative unbiased estimates (Del Moral

et al., 2006) giving an algorithm known as particle MCMC. We present a novel pMCMC

scheme, applicable to SDEMEMs. Our contribution here is two-fold:

1. We consider a blocking strategy that reduces the variance of the acceptance proba-

bility of the move-step for the parameters common to all experimental units, and

2. we exploit recent advances based on correlated pMCMC (see e.g. Deligiannidis et al.,

2018).

We apply the resulting methodology in two challenging applications. The first appli-

cation involves data consisting of hourly average temperature values in 20 mice, over a

period of six months. Of the 20 mice, 10 were fed ad libitum (AL) and 10 were caloric

restricted (CR), in which calorie intake is reduced but adequate nutrition is maintained.

The goal of this study is to look at the ways in which mice compensate for the reduction

in calories by studying their core body temperature. Caloric restriction has been shown to

delay the onset of some cancers and other age related diseases in organisms such as yeast,

worms, flies and mice (Weindruch & Walford, 1988). Most of the previous studies focus on

lifespan (see Spindler, 2005) or cancer incidence (see Volk et al., 1994) and few focus on the

whole-animal physiological response to CR. One such study jointly models temperature

and activity for late onset, short term caloric restriction (see Golightly et al., 2019) and

found that core body temperature was lower for CR mice, as found in other related work

(see Weindruch & Walford, 1988; Duffy et al., 1989; and Roth et al., 2002). Our focus is

to study how rodents may physiologically compensate for reduced food availability during

long term late onset CR whilst attempting to capture the inherent stochasticity in the

data, both within and between groups.

The second application considers synthetic data on tumour volume generated from

the SDEMEM described in Picchini & Forman (2019). We fit the synthetic data using

our novel pMCMC scheme. We seek to verify the accuracy of our approach and compare

efficiency with standard pMCMC approaches and a linear noise approximation (LNA).

1.2 Organisation of the thesis

This thesis is organised as follows. In Chapter 2 we introduce Monte Carlo methods

for estimating integrals including importance sampling and weighted resampling. This

takes us to an outline of Markov chain Monte Carlo (MCMC) as a method for simulating

from distributions whose densities are only available up to a normalising constant and

we introduce some variations on this technique; the Metropolis-Hastings algorithm, the

4
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Gibbs sampler, a pseudo-marginal MCMC scheme, and finally we introduce the correlated

version of the pseudo-marginal MCMC scheme.

In Chapter 3 we build up an intuitive understanding of SDEs by first considering

ODEs. We introduce Brownian motion and its properties, which form the building blocks

of SDEs. Geometric Brownian motion is used as the motivation for requiring a method

to integrate when Brownian motion is the integrator, introducing Itô integrals and the

fundamental concepts of Itô calculus. We then generalise to multivariate processes. We

focus on linear SDEs and review the different types by classifying them depending on the

characteristics of the governing coefficients. We further describe general solutions to linear

SDEs in the narrow sense and in the homogeneous case. Finally, we discuss how to create

a linear SDE approximation of a non-linear SDE using the linear noise approximation

(LNA).

In Chapter 4 we describe how to perform Bayesian inference for parameters that govern

linear SDEs, given observations at discrete times that may be incomplete and subject to

observational error. Inference in this case may be required for the joint distribution of the

parameters and the latent process, but we focus on inference via the marginal parameter

posterior given the observational data. We derive the forward filter which can be used

to calculate the marginal likelihood when the observation model is linear, and we briefly

discuss a backwards sweep to allow inference regarding the latent process. We describe

an MCMC scheme that we can use to perform inference on the unknown parameters that

makes use of the forward filter to calculate the marginal likelihood. We introduce having

a nonlinear observation model so that the marginal likelihood is intractable and we look

at how to linearise the model using the LNA from Chapter 3 allowing us to obtain a

tractable (but approximate) marginal likelihood. By recalling Chapter 2 we adapt the

theory of the pseudo-marginal MCMC scheme and the correlated version along with the

use of a bootstrap particle filter to obtain estimates of the observed data likelihood. We

conclude this chapter by performing Bayesian inference on an Ornstein-Uhlenbeck process

comparing PMMH with CPMMH schemes.

In Chapter 5 we consider models for repeated measurement experiments where we

allow for fixed effects and random effects. In the resulting mixed-effects framework, dy-

namics of each experimental unit are described by linear SDEs. We look at Bayesian in-

ference in this framework considering linear and non-linear observation models. We utilise

a Metropolis-within-Gibbs strategy and introduce auxiliary variables to allow pseudo-

marginal Metropolis-Hastings updates followed by correlated pseudo-marginal Metropolis-

Hastings updates. We again use a bootstrap particle filter to obtain estimates of the

observed data likelihood for each experimental unit.

In Chapter 6 we work on a real data set comprising of minutely observations of mice

temperatures over six months. The mice were subject to two different feeding regimes,

5
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or treatments, and we seek to understand the physiological impact of these treatments

via studying their core temperatures. We build an SDEMEM to jointly model core tem-

perature over multiple experimental units (mice). This allows for the incorporation of

intrinsic stochasticity inherent in observed temperature traces for time varying amplitude.

We start by building an SDE for individual units which are linear in the narrow sense

that we are then able to solve. Proceeding via Bayesian inference we utilise a forward

filter to find the marginal likelihood within a Metropolis-Hastings scheme. Following this

we extend the SDE to an SDEMEM allowing us to consider both fixed and mixed effects.

The results show a clear distinction between the two treatments.

In Chapter 7 we use a stochastic differential mixed effects model to describe the tumour

volume dynamics in mice receiving treatment for tumours. This is based on the work of

Picchini & Forman (2019). We use their model to generate synthetic data and compare four

approaches to perform Bayesian inference. The approaches we consider are a naive PMMH

(where the auxiliary variables are updated with both the subject specific and common

parameters), PMMH (where the auxiliary variables are only updated with the subject

specific parameters), CPMMH and the LNA based approach. The CPMMH scheme shows

a clear advantage in efficiency compared to the other schemes.

Finally, in Chapter 8 we discuss the thesis and results that we found and also present

some ideas for future work.
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Monte Carlo methods

Monte Carlo methods use the law of large numbers and repeated sampling of random vari-

ables to approximate an expected value. Probabilities, integrals and summations can all

be expressed as expectations, therefore Monte Carlo methods are widely used in Bayesian

statistics, particularly when the posterior distribution is intractable. We begin by re-

viewing key concepts such as Monte Carlo integration, importance sampling and weighted

resampling before giving an introduction to Markov chain Monte Carlo (MCMC).

2.1 Monte Carlo integration

Monte Carlo integration is a particular Monte Carlo method that uses random sampling to

numerically compute an estimate of an integral. Suppose we want to evaluate an integral

of the form

I =

∫
D
φ(θ)dθ

over some domain D, for which there is no closed-form analytical solution. If the integrand

can be written as

φ(θ) = φ̃(θ)π(θ)

for some density function π with support D, then the integral has the form∫
D
φ(θ)dθ =

∫
D
φ̃(θ)π(θ)dθ = E[φ̃(Θ)]

where Θ is a random variable with PDF π(·). If we know how to generate independent

realisations of Θ, say θ(1), . . . , θ(N) then we may construct the estimate

∫
D
φ(x)dx = E[φ̃(Θ)] ≈ 1

N

N∑
i=1

φ̃(θ(i)) = Î .

7
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Abusing notation, we will also denote the corresponding estimator by Î. This method of

approximating integrals is known as Monte Carlo integration. In its simplest form, the

domain D is just an interval [a, b] and we take the density π(θ) to be the uniform density
1

(b−a) , a < θ < b.

Note that E(Î) = I and V ar(Î) ∝ 1
N assuming that V ar(φ̂(Θ)) is finite. Hence Î is an

unbiased and consistent estimator of I, and the estimate will converge to the true value of

the expectation with large enough N . Now, consider again the variance of the estimator.

That is

V ar(Î) = V ar

[
1

N

∑
φ̃(Θ(i))

]
=

1

N
V ar

[
φ̃(Θ)

]
=

1

N

∫
D
π(θ)

(
φ̃(θ)− E

[
φ̃(Θ)

])2
dθ

=
1

N

∫
D
π(θ)

(
φ̃(θ)−

∫
D
φ̃(y)π(y)dy

)2

dθ.

This integral is a measure of the roughness of the function φ̃. However, we usually cannot

evaluate this integral either. Instead we work out the standard error of the estimator Î

which is an estimator of the variance. Explicitly

standard error2 =
1

N

N∑
i=1

(φ̃(θ(i))− Î)2.

2.2 Importance sampling

Importance sampling is another way of estimating integrals and may give an estimator

with smaller variance than the procedure described above. Suppose, as before we have

I =

∫
D
φ(θ)dθ =

∫
D
φ̃(θ)π(θ)dθ

but that we cannot easily simulate from π(·). Suppose that we can simulate from a density

g(·) that has the same support as π(·). Then∫
D
φ(θ)dθ =

∫
D

φ̃(θ)π(θ)

g(θ)
g(θ)dθ

≈ 1

N

N∑
i=1

φ̃(θ(i))π(θ(i))

g(θ(i))
= Îis.

8
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This is very similar to simple Monte Carlo integration, but we weight each contribution

to the sum by the ratio π(θ(i))/g(θ(i)). It is easy to show that Îis gives an unbiased

and consistent estimator of I, assuming V ar( φ̂(Θ)π(Θ)
g(Θ) ) is finite. Note that the variance

of the estimator can be reduced by finding an importance density g(·) that is a good

approximation of π(·)φ̂(·).

2.3 Weighted resampling

Consider now the problem of generating draws from π(·). The idea behind resampling

methods is to simulate from one distribution that is easy to simulate from and then correct

that value according to some criterion ensuring we get samples from the right distribution.

At the first step of the algorithm, N points {θ(1), . . . , θ(N)} are sampled from some

proposal density g(·). For each θ(j), a (normalised) weight w(j) is constructed as

w(j) =
π(θ(j))/g(θ(j))∑N
i=1 π(θ(i))/g(θ(i))

, j = 1, . . . , N. (2.1)

Finally, the second sample of size M (where M = N in practice) is drawn from the discrete

distribution on {θ(1), . . . , θ(N)} with probabilities {w(1), . . . , w(N)}. The resulting sample

{θ(1), . . . , θ(M)} has approximate distribution π(·). Note that if only π̃(·) = kπ(·) can be

evaluated (so that only the unnormalised target is available), then weighted resampling

can still be applied. The weights are

w(j) =
1
k π̃(θ(j))/g(θ(j))

1
k

∑N
i=1 π̃(θ(i))/g(θ(i))

, j = 1, . . . , N.

and as the ks cancel we are left with the earlier form of (2.1). Hence weighted resam-

pling is particularly useful in Bayesian statistics, where only the posterior density up to

proportionality is known. The method can be justified as follows.

For simplicity, consider a univariate Θ. The distribution function of a univariate Θ

generated by the algorithm is

F̃Θ(a) =
∑

j:θ(j)≤a

w(j)

=

∑N
j=1 π(θ(j))/g(θ(j))I(θ(j) ≤ a)∑N

i=1 π(θ(i))/g(θ(i))

9
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where I(θ(j) ≤ a) takes the value 1 if θ(j) ≤ a and 0 otherwise. Taking N →∞ yields

F̃Θ(a)→
∫
Θ [π(θ)/g(θ)] I(θ ≤ a)g(θ)dθ∫

Θ [π(θ)/g(θ)] g(θ)dθ

=

∫
Θ π(θ)I(θ ≤ a)dθ∫

Θ π(θ)dθ

= P (Θ ≤ a)

Example

If π(θ) is only known up to proportionality, that is we have π(·) = π̃(·)
k , then k =

∫
π̃(·)dθ.

It is clear that 1
NΣ

N
j=1

π̃(θ(j))

g(θ(j))
is an unbiased (and consistent) estimator of k as

k =

∫
π̃(θ)g(θ)

g(θ)
dθ = Eg

[
π̃(Θ)

g(Θ)

]
.

We see that the average unnormalised weight gives an unbiased and consistent estimator

of k.

Choosing a suitable proposal density can be far from straightforward in practice. We

therefore consider another simulation based technique, Markov chain Monte Carlo, which

has been ubiquitously applied in Bayesian statistics. In what follows we provide an intu-

itive introduction and refer the reader to Gamerman & Lopes (2006) for further details.

2.4 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a generic tool for simulating from distributions

whose density may be known only up to proportionality, which is particularly useful for

Bayesian inference. Suppose we have a generic target density π(θ) where θ = (θ1, . . . , θp)
T ∈

S, from which we wish to generate samples. The MCMC strategy takes advantage of the

fact that it is easy to simulate from a Markov chain. The basic strategy is as follows.

• Construct a Markov chain with stationary distribution π(θ).

• Simulate realisations of this chain.

• When the chain is in equilibrium, take the realisations as a (dependent) sample from

π(θ).

• Use this sample to evaluate integrals/perform inference.

Thus, providing that the chain has converged, any value sampled will be from the

density of interest π(·).

10
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2.4.1 Metropolis-Hastings algorithm

Metropolis et al. (1953) introduced this algorithm which was generalised by Hastings

(1970), hence the name Metropolis-Hastings. Central to the Metropolis-Hastings algo-

rithm is the idea of a proposal density, denoted q(·|·). It can be advantageous to have a

proposal density which is easy to simulate from, however it need not (necessarily) have

π(θ) as its stationary distribution. The Metropolis-Hastings algorithm is as follows:

1. Initialise the iteration counter to j = 1, and initialise the chain to θ(0) chosen from

somewhere in the support of π(θ).

2. Generate a proposed value θ∗ using the proposal density q(θ∗|θ(j−1)).

3. Evaluate the acceptance probability α(θ∗|θ(j−1)) of the proposed move, defined by

α(θ∗|θ(j−1)) = min

{
1,
π(θ∗)q(θ|θ∗)
π(θ)q(θ∗|θ)

}
.

4. Put θ(j) = θ∗ with probability α(θ∗|θ(j−1)); otherwise put θ(j) = θ(j−1).

5. Put j to j + 1 and go to step 2.

At each stage a new value is generated from the proposal distribution. This is either

accepted, in which case the chain moves, or is rejected, in which case the chain stays

at the same point. Note that the target density π(·) only enters into the acceptance

probability as a ratio, and so the method can be used when the target density is only

known up to a multiplicative constant. Plainly, the algorithm defines a first order Markov

chain. To see that the Markov chain has π(·) as an invariant distribution, we can check

that the detailed balance equation (see e.g. Chapter 4 Gamerman & Lopes, 2006) is

satisfied. Detailed balance is shown to hold for the chain θ(0), θ(1), θ(2), . . . in the following

way. First we need to obtain the transition kernel of the Markov chain. The transition

kernel is given by

p(φ|θ) = α(φ|θ)q(φ|θ) when θ 6= φ.

There is also a finite probability that the chain stays at θ, which depends on θ, and which

we denote as w(θ). The full transition kernel is

p(φ|θ) = α(φ|θ)q(φ|θ) + w(θ)δ(θ − φ)

where δ(·) is the Dirac delta function (δ(·) = 1 when θ = φ and δ(·) = 0 when θ 6= φ). To

find w(θ), note that the probability of the chain staying at θ is 1 minus the probability

11
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that the chain moves. Therefore

w(θ) = 1−
∫
S
q(φ|θ)α(φ|θ)dφ.

So the final expression for the transition kernel is

p(φ|θ) = q(φ|θ)α(φ|θ) + δ(θ − φ)

[
1−

∫
S
q(φ|θ)α(φ|θ)dφ

]
.

We can then check whether detailed balance holds:

π(θ)p(φ|θ) = π(θ)q(φ|θ) min

{
1,
π(φ)q(θ|φ)

π(θ)q(φ|θ)

}
+ π(θ)w(θ)δ(θ − φ)

= min {π(θ)q(φ|θ), π(φ)q(θ|φ)}+ π(θ)w(θ)δ(θ − φ)

The first term is clearly symmetric in θ and φ. Also, the second term is symmetric because

it is non-zero only when θ = φ. Detailed balance is satisfied since

π(θ)p(φ|θ) = π(φ)p(θ|φ)

and an easy consequence of this is that the Metropolis-Hastings algorithm defines a re-

versible Markov chain with stationary distribution π(·). It remains that we choose a

suitable proposal density q(·|·). In particular we want a chain that

• converges rapidly, and

• mixes well. That is, the chain

– moves often and

– moves around the support of π(·).

Some commonly used special cases are now considered.

2.4.2 Special cases of the Metropolis-Hastings algorithm

We now review some commonly used proposal mechanisms, and where appropriate give

the form of the acceptance probability for the resulting scheme.

Symmetric chains

If the proposal distribution is symmetric

q(θ∗|θ) = q(θ|θ∗) ∀θ, θ∗ ∈ S

12
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then the acceptance probability simplifies to

α(θ∗|θ) = min

{
1,
π(θ∗)

π(θ)

}
and hence does not involve the proposal density at all.

Random Walk chains

We can define the proposed move at iteration j to be θ∗ = θ(j−1) +wj where wj is a p× 1

random vector (completely independent of the state of the chain). Suppose that the wj

have density g(·) which is easy to simulate from. We can then simulate an innovation

wj and set the candidate point to θ∗ = θ(j−1) + wj . The proposal distribution is then

q(θ∗|θ) = g(θ−θ∗) and this can be used to calculate the acceptance probability. Of course,

if g(·) is symmetric about zero, then we have a symmetric random walk chain, and the

acceptance probability does not depend on g(·).

Example: Normal innovations Suppose we take wj ∼ Np(0, Σ) and so the proposal

distribution is

θ∗|θ ∼ Np(θ,Σ).

We should therefore choose (or tune) Σ to maximise the efficiency of the algorithm (in

terms of mixing). Note that choices of Σ that lead to large innovations will be capable

of moving the sampler further around the parameter space but is likely to lead to a large

number of rejected proposals. Conversely, choices of Σ that lead to small innovations will

lead to lots of small steps around the parameter space. This suggests an optimal value of

Σ.

Under certain constraints of the target distribution (see Roberts & Rosenthal, 2001),

it has been shown that the optimal choice of Σ (for large p) is

Σ =
2.382

p
V ar(Θ)

and this leads to an optimal acceptance rate of 0.234; see e.g. Sherlock et al. (2013) for

further details. Of course, we typically don’t know the variance V ar(Θ). However, we

could first run the MCMC algorithm (for example by using the prior variance V ar(Θ)

in place of Σ) to obtain an estimate of V ar(Θ). We should also note that in practice,

and especially for small p, the above formula for Σ should just be used as a guide – an

acceptance rate anywhere between 0.1 and 0.4 could be close to optimal.

Finally, note that for large p, sampling a new θ∗ from a multivariate Normal can be

expensive. An alternative approach is to take the components of wj = (wj1, . . . , w
j
p)T
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as iid (univariate) Normal random variables. That is, for a component i, wji ∼ N(0, s2i )

where, for example, s2i = 2.382

p V ar(Θi).

Independence chains

In this case the proposed transition is completely independent of the current position of the

chain and so q(θ∗|θ) = g(θ∗) for some density g(·). The acceptance probability becomes

α(θ∗|θ) = min

{
1,
π(θ∗)

g(θ∗)
× g(θ)

π(θ)

}
In this case, g(·) should ideally be as close to π(·) as possible, to give an acceptance rate

close to 1.

Componentwise transitions

Constructing a suitable q(·|·) may be difficult. Moreover, for many problems of interest,

full conditional distributions (FCDs) may be available for directly sampling from a subset

of components of θ.

Denote the FCD for the ith component of θ by π(θi|θ1, . . . , θi−1, θi+1, . . . , θp). The algo-

rithm is as follows:

1. Initialise the iteration counter to j = 1.

2. Obtain a new value θ(j) from θ(j−1) by successive generation of values.

• θ(j)1 ∼ π(θ1|θ(j−1)2 , . . . , θ
(j−1)
p ) using a Metropolis-Hastings step with proposal

distribution q1(θ1|θ(j−1)1 )

• θ(j)2 ∼ π(θ2|θ(j)1 , θ
(j−1)
3 , . . . , θ

(j−1)
p ) using a Metropolis-Hastings step with pro-

posal distribution q2(θ2|θ(j−1)2 ).
...

• θ(j)p ∼ π(θp|θ(j)1 , . . . , θ
(j)
p−1) using a Metropolis-Hastings step with proposal dis-

tribution qp(θp|θ(j−1)p ).

3. Change counter j to j + 1 and return to step 2.

This is in fact the original form of the Metropolis algorithm. Proving that π(θ) is the

stationary distribution of a Markov chain defined in this way can be achieved by induction

(see Gamerman & Lopes, 2006). Note that the Metropolis-Hastings algorithm as presented

in Section 2.4.1 can be seen as a special case of the above algorithm. If the FCD is

available for sampling from directly, for a particular component θi, it is easy to show that

the resulting acceptance probability is 1. When all FCDs are available for sampling from,

we obtain an algorithm known as the Gibbs sampler.
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2.4.3 Gibbs sampler

The Gibbs sampler (or generically Gibbs sampling) originated in the field of image process-

ing. It was introduced by Gemen & Gemen (1984) before being brought to the attention

of the larger statistical community by Gelfand & Smith (1990). In essence the Gibbs sam-

pler is an MCMC scheme in which the full conditional distributions are used to form the

transition kernel. Assume that, for all components of θ, the full conditional distributions

are available and can easily be sampled from. The algorithm has the following form:

1. Initialise the iteration counter to j = 1

Initialise the state of the chain to θ(0) = (θ
(0)
1 , . . . , θ

(0)
p )T

2. Obtain a new value θ(j) from θ(j−1) by successive generation of values

• θ(j)1 ∼ π(θ1|θ(j−1)2 , . . . , θ
(j−1)
p )

• θ(j)2 ∼ π(θ2|θ(j)1 , θ
(j−1)
3 , . . . , θ

(j−1)
p )

...

• θ(j)p ∼ π(θp|θ(j)1 . . . , θ
(j)
p−1)

3. Change counter j to j + 1 and return to step 2.

This clearly defines a homogeneous Markov chain, as each simulated value depends only

on the previous simulated value and not on any previous value or the iteration counter

j. However, we need to show that π(θ) is a stationary distribution of the chain. The

transition kernel is

p(φ|θ) =

p∏
i=1

π(φi|φ1, . . . , φi−1, θi+1, . . . , θp).

Therefore, we need to check that π(θ) is the stationary distribution of the chain with

this transition kernel. Unfortunately, the form of the Gibbs sampler specified here is not

reversible, so we cannot use detailed balance. We need to check stationarity directly, ie

prove that

π(φ) =

∫
p(φ|θ)π(θ)dθ

15



Chapter 2. Monte Carlo methods

For the bivariate case we have:∫
p(φ|θ)π(θ)dθ =

∫
π(φ1|θ2)π(φ2|φ1)π(θ1, θ2)dθ1dθ2

= π(φ2|φ1)
∫ ∫

π(φ1|θ2)π(θ1, θ2)dθ1dθ2

= π(φ2|φ1)
∫
π(φ1|θ2)

[∫
π(θ1, θ2)dθ1

]
dθ2

= π(φ2|φ1)
∫
π(φ1|θ2)π(θ2)dθ2

= π(φ2|φ1)π(φ1)

= π(φ1, φ2)

= π(φ).

The general case is similar, see e.g. Gamerman & Lopes (2006) for further details.

Example Consider a bivariate normal target with zero mean and unit variance for the

marginals, and a correlation of ρ between the two components. The target density is

f(θ1, θ2) ∝ exp

{
− 1

2ρ2
(θ21 + θ22 − 2ρθ1θ2)

}
, −∞ < θ1, θ2 <∞.

We construct a Gibbs sampler for this target. The full conditional density for Θ1 is

f(θ1|θ2) =
f(θ1, θ2)

f(θ2)

∝ f(θ1, θ2)

∝ exp

{
− 1

2(1− ρ2)
(θ21 − 2ρθ1θ2)

}
∝ exp

{
− 1

2(1− ρ2)
(θ1 − ρθ2)2

}
.

Hence, we recognise the full conditional distribution for Θ1 as

Θ1|Θ2 = θ2 ∼ N(ρθ2, 1− ρ2).

By symmetry, the full conditional distribution for Θ2 is

Θ2|Θ1 = θ1 ∼ N(ρθ1, 1− ρ2).

The Gibbs sampler for the target above then has the following form

1. Initialise the iteration counter to j = 1
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Initialise the state of the chain to θ(0) = (θ
(0)
1 , θ

(0)
2 )T

2. Obtain a new value θ(j) from θ(j−1) by successive generation of values

• θ(j)1 ∼ N(ρθ
(j−1)
2 , 1− ρ2)

• θ(j)2 ∼ N(ρθ
(j)
1 , 1− ρ2)

3. Change counter j to j + 1 and return to step 2.
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Figure 2.1: Trace plot (upper panel) and histogram (lower panel) from Gibbs sampler targeting a
bivariate normal, with zero mean and unit variance with a correlation of ρ = 0.1.

Figures 2.1 – 2.4 summarise the output of this Gibbs sampler for ρ ∈ {0.1.0.5, 0.9, 0.999}.
Trace plots can be used as a visual aid to assess mixing of the Markov chain. Trace plots

are constructed by plotting each Metropolis-Hastings sample against the iteration number.

Ideally, the trace plot should look like a “thick pen”. The trace plot can also be used to

diagnose poor mixing (for example, as a result of a small acceptance probability showing

periods of sticking at the same value), assess burn-in and convergence. Although formal

convergence tests are possible (Gamerman & Lopes, 2006), we typically eschew these in

favour of a simple graphical approach. As ρ approaches 1, we see the mixing deteriorate,

as the sample is slow to explore the parameter space, due to the high correlation between

Θ1 and Θ2 that can be seen in Figure 2.5.
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Figure 2.2: Trace plot (upper panel) and histogram (lower panel) from Gibbs sampler targeting a
bivariate normal, with zero mean and unit variance with a correlation of ρ = 0.5.

2.5 Pseudo-marginal MCMC

Suppose that only an estimate of π(θ) is available. This may occur, for example, if π(·) is

obtained through an integration (by marginalising out nuisance variables). We will denote

the estimator by π̂U (θ) where U denotes all the random variables used to construct the

estimator. Given U ∼ g(u), the corresponding estimate is denoted π̂u(θ).

Suppose that EU (π̂U (θ)) = π(θ) where U ∼ g(·) so that the estimator is unbiased. Con-

sider a joint density over U and θ of the form

π̂(θ, u) ∝ π̂u(θ)g(u) (2.2)

Running a Metropolis-Hastings scheme with joint proposal density q(θ∗|θ)g(u∗) yields an

acceptance probability of min{1, A} where

A =
π̂(θ∗, u∗)

π̂(θ, u)
× q(θ|θ∗)g(u)

q(θ∗|θ)g(u∗)

=
π̂u∗(θ∗)g(u∗)

π̂u(θ)g(u)
× q(θ|θ∗)g(u)

q(θ∗|θ)g(u∗)

=
π̂u∗(θ∗)

π̂u(θ)
× q(θ|θ∗)
q(θ∗|θ)
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Figure 2.3: Trace plot (upper panel) and histogram (lower panel) from Gibbs sampler targeting a
bivariate normal, with zero mean and unit variance with a correlation of ρ = 0.9.

We recognise this as the acceptance probability of an idealised Metropolis-Hastings scheme

targeting π(θ), with the estimates π̂u(θ) and π̂u∗(θ∗) used in place of π(θ) and π(θ∗).

Nevertheless, this scheme can be shown to exactly target π(·) since∫
π̂(θ, u)du =

∫
π̂u(θ)g(u)du

= EU [π̂U (θ)]

∝ π(θ).

2.5.1 Illustration

Consider a N(0, 1) target with density proportional to exp {−1
2θ

2}. To illustrate the

pseudo-marginal approach, we will take a joint density π̂(θ, u) ∝ π(θ)ug(u) where U ∼
LN

(
− τ2

2 , τ
2
)

.

Note that ∫
π̂(θ, u)du ∝ π(θ)

∫
ug(u)du

∝ π(θ)E(U)

∝ π(θ),
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Figure 2.4: Trace plot (upper panel) and histogram (lower panel) from Gibbs sampler targeting a
bivariate normal, with zero mean and unit variance with a correlation of ρ = 0.999.

since it is easy to show that E(U) = 1. Equivalently, let π̂u(θ) = π(θ)u, which is unbiased

for π(θ) since

Eu(π̂u(θ)) = π(θ)E(U) = π(θ).

We run a standard Metropolis-Hastings scheme targeting π̂(θ, u) with proposal density

q(θ∗, u∗|θ, u) = q(θ∗|θ)g(u∗) and we calculate the acceptance probability as

min

{
1,
π̂(θ∗, u∗)

π̂(θ, u)
× q(θ, u|θ∗, u∗)
q(θ∗, u∗|θ, u)

}
min

{
1,
u∗π(θ∗)g(u∗)

uπ(θ)g(u)
× q(θ|θ∗)g(u)

q(θ∗|θ)g(u∗)

}
min

{
1,
π(θ∗)u∗

π(θ)u
× q(θ|θ∗)
q(θ∗|θ)

}
min

{
1,
π̂u∗(θ∗)

π̂u(θ)
× q(θ|θ∗)
q(θ∗|θ)

}
.

Running this method for 10,000 iterations with a Gaussian random walk proposal mech-

anism and an initial value of θ to be zero, we can see the effect of varying τ . Figure 2.6

shows that increasing τ makes the exploration of the space ‘sticky’, meaning the chain

gets stuck in one place for a while as the proposals are all being rejected. As τ is increased
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Figure 2.5: Plots of Θ1 vs Θ2 from top left to bottom right with ρ = 0.1, ρ = 0.5, ρ = 0.9 and
ρ = 0.999 respectively.

the variance of U increases as

V ar(U) = e−τ
2+τ2(eτ

2 − 1)

= eτ
2 − 1.

Hence, for large τ , large values of π̂u∗(θ∗) are possible, leading to acceptance of θ∗ followed

by long periods of rejection, until a suitably large value of π̂u∗(θ∗) is generated, allowing

the chain to move on.

As a further diagnostic check, we may compute the effective sample size (ESS) for

each chain corresponding to τ ∈ {0.1, 2, 5}. ESS is the equivalent number of independent

samples, obtained as

ESS =
niters

1 +
∑∞

k=1 ψ(k)

where ψ(k) denotes the lag-k auto-correlation. Using the coda package in R (Plummer

et al., 2006) we obtain effective sample sizes for τ = 0.1, 2 and 5 as 1167, 242 and 100

respectively.

In order to reduce the variance of the Metropolis-Hastings acceptance ratio (and alle-

viate the sticky behaviour of the chain) we consider a simple modification of the pseudo-

marginal Metropolis-Hastings scheme, whereby positive correlation is introduced between

successive values of u and u∗.
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Figure 2.6: Histogram and trace plot of samples of θ using pseudo-marginal Metropolis-Hastings
with 10,000 iterations and a starting value of zero. The N(0, 1) target density is overlaid. From
left to right τ = 0.1, 2, and 5

2.6 Correlated pseudo-marginal MCMC

We see in PMCMC that a highly variable π̂u(θ) results in ‘sticky’ MCMC chains. Cor-

related PMCMC (CPMCMC) allows us to induce positive correlation between successive

values of π̂u(θ), which in turn reduces the variance of the pseudo marginal acceptance

ratio.

Consider again the joint density given in (2.2). Suppose that g(u) = N(u; 0, Id) where

Id is the d × d identity matrix and d is the dimension of the auxiliary variables u. The

correlated pseudo-marginal scheme (Deligiannidis et al., 2018, Dahlin et al., 2015) recog-

nises that rather than propose u∗ from g(·), we may use a kernel k(u∗|u), carefully chosen

to allow correlation between u and u∗ (and therefore π̂u(θ) and π̂u∗(θ∗)). In particular

k(u∗|u) should be g-invariant, that is the detailed balance equation

k(u∗|u)g(u) = k(u|u∗)g(u∗)

should be satisfied. A proposal kernel that meets these requirements is the Crank-Nicolson
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proposal (Cotter et al., 2013) which has density

k(u∗|u) = N(u∗; ρu, (1− ρ2)Id) (2.3)

and choosing ρ to be close to 1 will induce the required positive correlation between π̂u(θ))

and π̂u∗(θ∗). In the case where ρ = 0 we recover k(u∗|u) = g(u∗) which corresponds to

the PMCMC scheme. The role of correlation here should not be confused with the effect

of correlation between components in a Gibbs sampler. We emphasise that correlation is

used in CPMMH as a variance reduction technique.

The acceptance probability used in the CPMCMC scheme is min{1, A} where A =
π̂u∗ (θ

∗)
π̂u(θ)

× q(θ|θ∗)
q(θ∗|θ) , and remains unchanged from the PMCMC scheme. The Crank-Nicolson

proposal in equation (2.3) is g-invariant where g(·) is a standard normal density. In prac-

tice, the innovations u required to generate π̂u(θ) may not be Gaussian. Nevertheless,

innovations from commonly used densities can be obtained by applying the inverse Gaus-

sian CDF to u to obtain standard uniform quantities, followed by the inverse CDF of the

desired distribution. The technique is known as the inversion method (see e.g. Gamerman

& Lopes, 2006).

2.6.1 Illustration

Consider again the scenario in Section 2.5.1 with a N(0, 1) target and joint density

π̂(θ, u) ∝ π(θ)ug(u) where u ∼ LN(− τ2

2 , τ
2) and therefore g(u) = LN(u;− τ2

2 , τ
2). To

illustrate the CPMCMC scheme, let us rewrite π̂(θ, u) as

π̂(θ, u) ∝ π(θ)g(u) exp{−τ
2

+ τu}

where g(u) = N(u; 0, 1). It is easily checked that∫
π̂(θ, u)du ∝ π(θ)

∫ ∞
−∞

exp{−τ
2

+ τu}g(u)du

∝ π(θ)Eg(exp{−τ
2

+ τU})

∝ π(θ)

since exp{− τ
2 + τU} ∼ LN(− τ

2 , τ
2) with expectation 1.

We ran CPMCMC with a Gaussian random walk proposal for 10,000 iterations with

τ ∈ 0.1, 2, 5 and ρ = 0.99. Each MCMC scheme ran for 10,000 iterations and the effective

sample sizes for τ = 0.1, 2 and 5 were 1766, 1705, and 1029 respectively, this is considerably

better than the effective sample size when the innovations for u were not correlated.

As discussed in Deligiannidis et al. (2018), care must be taken on choosing ρ. For

ρ ≈ 1, the sampler will fail to adequately mix u, resulting in long range dependence in

23



Chapter 2. Monte Carlo methods

θ

D
en

si
ty

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

θ

D
en

si
ty

-4 -2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4
θ

D
en

si
ty

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Time

θ

0 2000 4000 6000 8000 10000

-4
-2

0
2

4

Time

θ

0 2000 4000 6000 8000 10000

-4
-2

0
2

4

Time

θ

0 2000 4000 6000 8000 10000
-4

-2
0

2
4

Figure 2.7: Histogram and trace plot of samples of θ using pseudo-marginal Metropolis Hastings
with 10,000 iterations and a starting value of zero. From left to right τ = 0.1, 2, and 5

the θ chain. We consider the effect of ρ in the context of an empirical application in

Chapter 7.
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Chapter 3

Stochastic Differential Equations

Stochastic differential equations are used as opposed to ordinary differential equations

(ODEs) in order to capture the inherent stochasticity that may be present in a given

process. These processes could be temperatures over time, see e.g. Figure 3.1, stock

exchange prices, or the population size of a species, to name a few. In what follows

Figure 3.1: Hourly average temperature of a mouse.

we give an intuitive introduction to SDEs, by first considering ODEs. For a rigorous

introduction to SDEs, we refer the reader to Øksendal (1995).

3.1 ODEs to SDEs

Let us take the evolution of the number of cells xt in an organism infected by a virus.

Suppose that over an infinitesimal time period the growth rate is θxt. The ODE system
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characterising this process is therefore

dxt
dt

= θxt, X0 = x0 ⇒ Xt = x0e
θt.

Although the solution to this simple ODE is available, analytic solutions of generic ODE

system are rarely tractable. In the absence of an analytic solution, an approximate nu-

merical solution can be used. We therefore compare the analytic solution xt+∆t = xte
θ∆t

with a simple numerical solution – the Euler approximation. The Euler approximation

has that
dxt
dt
≈ xt+∆t − xt

∆t

which we rearrange to give xt+∆t = xt + θxt∆t. We can see several numerical solutions

plotted in Figure 3.2 for decreasing ∆t. As ∆t → 0, the analytic solution is obtained.

Assume now that the growth rate is on average θ, but that there are fluctuations due to
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X
t

Figure 3.2: Growth of a virus with θ = 1 and x0 = 1. Analytic solution (black) and Euler
approximations (coloured) with ∆t = 1 (red), ∆t = 0.5 (green), ∆t = 0.1 (dark blue), and
∆t = 0.01 (light blue).

changing unpredictable biological conditions. So, at any given time the growth rate is θ

+ ‘noise’. Using uppercase to denote the resulting stochastic process, we obtain

dXt

dt
= (θ + ‘noise’)Xt, X0 = x0

and we specify the random noise terms so that their mean is 0. Figure 3.3 shows a

curve described by a deterministic ODE and corresponding curves that take into account

stochasticity by including the noise term. We denote the noise term as Wt. To formalise
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Figure 3.3: Deterministic growth curve of a virus (black) where θ = 1 and x0 = 1 and realisations
of growth of the virus taking unpredictable fluctuations into account (coloured).

the role of Wt, take an ordinary integral equation of the form

Xt = x0 +

∫ t

0
α(Xs)ds+ σWt, t ≥ 0 (3.1)

where α is some differentiable function and σ is a positive scaling constant used to tune the

effect of W on X. For σ = 0 we obtain a deterministic integral equation with equivalent

differential form given by dXt = α(Xt)dt. We wish for Wt to capture the discrepancy

between the smooth and rough path. At any time t, Wt has to be a random variable,

hence {Wt, t ≥ 0} will be a stochastic process and we need W0 = 0 to recover x0 at time

0. Working with increments of X we have

Xt+∆t −Xt =

∫ t+∆t

t
α(X)ds+ σ(Wt+∆t −Wt)

w α(Xt)∆t+ σ(Wt+∆t −Wt).

We would then like the process Wt to have the following four properties:

1. The expected value of the noise increment should be zero

E[Wt+∆t −Wt] = 0 ∀t,∆t.

2. The increment Wt1 −Wt0 is independent of the increment Wt2 −Wt1 for all times

0 < t0 < t1 < t2 <∞ and the increments are identically distributed.
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3. The distribution of Wt+∆t −Wt depends only on |∆t| and not on t.

4. W has differentiable sample paths.

However, such a stochastic process does not exist, but there is a process satisfying 1-3 with

continuous sample paths. This process is known as (standard) Brownian motion (BM)

also known as the Wiener process and is described below. Note that the integral equation

in (3.1) can be equivalently written in differential form as

dXt = α(Xt)dt+ σdWt

which is known as a stochastic differential equation (SDE). Since W and X are not dif-

ferentiable the above SDE only makes sense when integrated with respect to t, in which

case the integral equation is recovered. Therefore, we obtain∫ t

0
dWs = Wt −W0 = Wt.

Formally, {Wt, t ≥ 0} is a standard Brownian motion (BM) if Wt depends continuously

on t and the following three assumptions hold

1. W0 = 0.

2. For all times 0 ≤ t0 < t1 < t2 < ∞, the increment Wt2 −Wt1 is independent of the

increment Wt1 −Wt0 .

3. For all times 0 ≤ t0 < t1 <∞, Wt1 −Wt0 ∼ N(0, t1 − t0).

Several important properties can be deduced from the definition. For example the distri-

bution of Wti |Wti−1 for ti−1 < ti are deduced by writing Wti = Wti −Wti−1 +Wti−1 which

gives

Wti |Wti−1 = wti−1 ∼ N(wti−1 , ti − ti−1). (3.2)

Hence, for an interval [0, T ] partitioned as 0 = t0 < t1 < . . . < tn = T the process can

be simulated at these discrete times by recursively drawing from (3.2). A realisation of a

continuous-time process at discrete times is known as a skeleton path. Figure 3.4 shows

four realisations of BM giving random walk-like behaviour.

3.1.1 SDE examples

We now provide some illustrative examples of SDEs and motivate the need for a stochastic

integral.
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Figure 3.4: Brownian motion sample paths.

Generalised Brownian motion

Consider a process {Xt, t ≥ 0} satisfying an SDE of the form

dXt = µdt+ σdWt, X0 = x0, µ ∈ R, σ ∈ R+

⇒ Xt = x0 + µt+ σWt

where the last line is found by integrating both sides of the SDE between 0 and t. Note

that µ is known as the drift coefficient, and σ is known as the diffusion coefficient. Using

Wt ∼ N(0, t) gives Xt|X0 = x0 ∼ N(x0 + µt, σ2t). Moreover, for times ti < ti−1 and
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∆t = ti − ti−1, we obtain

Xti = Xti −Xti−1 +Xti−1

= Xti−1 + µ(ti − ti−1) + σ(Wti −Wti−1)

⇒ Xti |Xti−1 = xti−1 ∼ N(xti−1 + µ∆t, σ2∆t).

Hence, standard BM is generalised via a linear drift controlled by µ and a scaling parameter

σ. Recursive simulation from the above gives a skeleton path. Figure 3.5 shows four
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Figure 3.5: Generalised Brownian motion for different choices of µ and σ.

skeleton paths of generalised Brownian motion for different choices of µ and σ. The

straight line in each plot indicates the drift and the effect of σ can clearly be seen.

Geometric Brownian motion

Geometric Brownian motion was first introduced in 1973 as a way of modelling stock prices

(Merton, 1973). Consider an SDE of the form

dXt = µXtdt+ σXtdWt, X0 = x0, µ ∈ R, σ ∈ R+ (3.3)
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so that the drift and diffusion functions are proportional to the value of the process. Note

here that the integral equation is∫ t

0
dXs = µ

∫ t

0
Xsds+ σ

∫ t

0
XsdWs,

but we do not yet know how to deal with the last term, where Brownian motion is the

integrator. We require a method of dealing with integrals of the form,∫ t

0
β(Xs)dWs

known as Itô integrals.

3.1.2 Itô integrals

We cannot interpret ∫ b

a
β(Xt)

dWt

dt
dt

in the Riemann sense as although sample paths of standard Brownian motion are contin-

uous, Wt is nowhere differentiable. We consider a stochastic integral of the form

∫ b

a
β(Xt)dWt = lim

n→∞

n−1∑
i=0

β(Xti)∆Wti (3.4)

for a partition of [a, b] as a = t0 < t1 < . . . < tn = b, ∆Wti = Wti+1 −Wti and the limit

is in the mean square sense. The integral is obtained by considering appropriate limits

of the approximating sum as n → ∞. The choice of ti is important as different choices

give different limits. As written we obtain the Itô integral. Let us consider a simple Itô

integral where β(Xt) = 1. Using (3.4) directly gives

∫ t

0
Ws = lim

n→∞

n−1∑
i=0

∆Wti

= lim
n→∞

{
(Wt1 −Wt0) + (Wt2 −Wt1) + · · ·+ (Wtn −Wtn−1)

}
= lim

n→∞
(Wtn −Wt0)

= lim
n→∞

(Wt −W0)

= Wt −W0

= Wt.
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Throughout this thesis, we will typically be interested in integrals of the form∫ t

0
g(s)dWs

for some real valued, square-integrable function g(·). It can be shown that∫ t

0
g(t)dWt ∼ N

(
0,

∫ t

0
g2(t)dt

)
, (3.5)

where the result for the variance is typically referred to as the Itô isometry (Øksendal,

1995). The left hand side of (3.5) is an Itô integral, therefore we may write

∫ t

0
g(t)dWt = lim

n→∞

n−1∑
i=0

g(ti)∆Wti

for a partition 0 = t0 < . . . < tn = t with ti+1 − ti = ∆t. Using that ∆Wti ∼ N(0, ∆t)

we notice that within the summation we have a sum of constants multiplied by normal

random variables. Therefore

n−1∑
i=0

g(ti)∆Wti ∼ N

(
0,
n−1∑
i=0

g2(ti)∆t

)
.

As we take the limit to infinity, the partition gets finer and ∆t → 0, we get a Riemann

integral, as given in (3.5). Now suppose that we may write Xt =
∫ t
0 g(s)dWs. The

corresponding differential form is dXt = g(t)dWt. A generic (Itô) stochastic differential

equation satisfied by a process {Xt, t ≥ 0} is

dXt = α(t,Xt)dt+
√
β(t,Xt)dWt (3.6)

where α(·, ·) is the drift function (characterising the infinitesimal mean) and β(·, ·) is the

diffusion coefficient (characterising the infinitesimal variance). The corresponding integral

representation of Xt is

Xt = X0 +

∫ t

0
α(s,Xs)ds+

∫ t

0

√
β(s,Xs)dWs

where the first integral is of (deterministic) Riemann type and the second is of (stochastic)

Itô type. For a rigorous discussion of uniqueness and existence of solutions to SDEs we

refer the reader to Øksendal (1995). Of particular use to us is the chain rule for Itô

processes that we give in the following section.
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3.1.3 Itô formula

Consider an Itô process {Xt, t ≥ 0} satisfying the Itô SDE

dXt = α(t,Xt)dt+
√
β(t,Xt)dWt (3.7)

where α(t,Xt) is the drift and β(t,Xt) is the diffusion coefficient. Let g(t, x) be a real

valued function, once differentiable in t and twice differentiable in x. Let

gt =
∂g

∂t
, gx =

∂g

∂x
, gxx =

∂2g

∂x2

denote the first partial derivatives of g with respect to t, and the first two partial derivatives

with respect to x. Itô’s formula then gives the SDE satisfied by the process Yt, t ≥ 0, where

Yt = g(t,Xt) as

dYt =

(
gt(t,Xt) + α(t,Xt)gx(t,Xt) +

1

2
β(t,Xt)gxx(t,Xt)

)
dt

+
√
β(t,Xt)gx(t,Xt)dWt.

(3.8)

Itô’s formula is a method to obtain SDEs satisfied by transformation of Itô processes.

Equation (3.8) is the Itô calculus equivalent of the chain rule in classical calculus. When

applying Itô’s formula the following identities are used

dt2 = dtdWt = dWtdt = 0 and dW 2
t = dt.

To give an indication of why (3.8) is as it appears above, take a Taylor series expansion

of g(t+∆t, x+∆x) about (t, x) to give

dg(t, x) ≈ ∆t gt +∆xgx +
1

2
(∆t)2 gtt +

1

2
∆t∆xgtx +

1

2
(∆x)2 gxx + . . .

where gtt = ∂2g/∂t2 and gtx = ∂2g/∂t∂x. Using shorthand notation for α(·, ·) as α and

β(·, ·) as β, replace ∆x with α∆t+
√
β∆W and (∆x)2 by α2(∆t)2+2α

√
β∆t∆W+β(∆W )2

to obtain

dg(t, x) ≈ ∆t gt + (α∆t+
√
β∆W ) gx +

1

2
(∆t)2 gtt +

1

2
(α(∆t)2 +

√
β∆t∆W ) gtx +

+
1

2
(α2(∆t)2 + 2α

√
β∆t∆W + β(∆W )2) gxx + . . .
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Now approximate (∆W )2 by ∆t (and note in fact that E[(∆W 2)] = ∆t) to write the

preceding expression as

dg(t, x) ≈
(
gt + αgx +

β

2
gxx

)
∆t+

√
βgx∆W + o(∆t) .

Itô’s formula then follows by letting ∆t→ 0.

Geometric Brownian motion revisited

Let us again consider the SDE in (3.3). Let g(t, x) = log(Xt) and apply Itô’s formula. We

have

gt = 0, gx =
1

Xt
, gxx = − 1

X2
t

d log(Xt) = 0 +
1

Xt
dXt −

1

2

1

X2
t

(dXt)
2.

Substituting in dXt and (dXt)
2 = σ2X2

t dt gives

d log(Xt) =
1

Xt
Xt(µdt+ σdWt)−

1

2

1

X2
t

σ2X2
t dt

= µdt+ σdWt −
1

2
σ2dt

which we recognise as a generalised Brownian motion process. Now, integrating between

0 and t gives

log(Xt)− log(X0) =

(
µ− σ2

2

)
t+ σWt

and exponentiating both sides and applying our initial condition we obtain

Xt = x0 exp

{(
µ− σ2

2

)
t+ σWt

}
.

Now, using Wt ∼ N(0, t) gives

log
Xt

X0
∼ N

(
(µ− σ2

2
)t, σ2t

)
so that

Xt|X0 = x0 ∼ LN(log x0 + (µ− σ2

2
)t, σ2t)

where LN(·, ·) denotes the log normal distribution. More generally, for times 0 < s < t <

∞,

Xt|Xs = xs ∼ LN
(

log xs + (µ− σ2

2
)(t− s), σ2(t− s)

)
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and sampling from this distribution recursively gives a skeleton path. The geometric

Brownian motion is used as a model for stock indexes by Black & Scholes (1973). In

Figure 3.6 we can see four sample paths of geometric Brownian motion, all with the same

initial value, drift coefficient, and diffusion coefficient.

0 2 4 6 8 10

0
20

40
60

80
10

0
12

0

t

X
t

Figure 3.6: Realisations of four geometric Brownian motion paths with µ = 0.16 and σ = 0.2.
Mean trajectory overlaid (light blue).

3.2 Multivariate processes

We have so far only looked at univariate processes, however it is often the case that systems

of interest involve many components. Here we shall extend the previously written theory

to the case of multivariate scenarios.

Let us now consider a continuous-time d-dimensional Itô process {Xt, t ≥ 0} with Xt =

(X1,t, X2,t, . . . , Xd,t)
T (where superscript T denotes the transpose) and initial condition

X0 = x0, governed by the SDE

dXt = α(t,Xt)dt+
√
β(t,Xt)dWt. (3.9)

Here, the drift α is a d-vector, the diffusion coefficient β is a d × d positive definite

matrix with a square root representation
√
β such that

√
β
√
β
T

= β and Wt is a d-vector of

(uncorrelated) standard Brownian motion. The equation in (3.9) is the natural extension

to the univariate case in (3.7).

A non-linear transformation can be applied to (3.9) through the use of a multivariate

Itô formula. Again, we take Yt = g(t,Xt) where g(t, x) is a real-valued function, once
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differentiable in t and xi, i = 1, . . . , d. Let

gt,k =
∂gk
∂t

, gxi,k =
∂gk
∂xi

and gxi,xj ,k =
∂2gk
∂xixj

denote the first partial derivative of the kth element of g with respect to t, the first with

respect to xi and the mixed derivative with respect to xi and xj . Thus the kth component

of Yt, t ≥ 0 will satisfy the SDE given by

dYt,k = gt,kdt+

d∑
i=1

gxi,kdXt,i +
1

2

d∑
i=1

d∑
j=1

gxi,xj ,kdXt,idXt,j . (3.10)

The following identities are useful in the above calculations:

dt2 = dtdWt,i = dWt,idt = 0 and dWt,idWt,j = δijdt

where δij is the Kronecker delta.

3.3 Linear SDEs

Consider an Itô process {Xt, t ≤ 0} satisfying the Itô SDE

dXt = α(t,Xt)dt+
√
β(t,Xt)dWt (3.11)

α(t,Xt) = a1(t)Xt+a2(t),
[√

β(t,Xt)
]
j

= b1,j(t)Xt + b2,j(t)

where Xt = d-vector, a1 = d × d matrix, a2 = d-vector,
[√

β(t,Xt)
]
j

denotes the jth

column of
√
β(t,Xt) with b1,j(t) = d × d matrix, b2,j(t) = d-vector, j = 1, . . . ` and

dWt = `-vector of standard Brownian motion. We note the following:

• The linear SDE is autonomous if all coefficients are constant.

• The linear SDE is homogeneous if a2(t) = 0 and b2,j(t) = 0.

• The linear SDE is linear in the ‘narrow’ sense (additive noise) if b1,j(t) = 0.

• The noise is multiplicative if b2,j(t) = 0.

3.3.1 General solution to a linear SDE in the narrow sense

The linear SDE in the narrow sense means that b1 = 0, so the SDE becomes

dXt = (a1(t)Xt + a2(t))dt+ b2(t)dWt.
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We now consider the solution to the SDE. Let the fundamental matrix Pt satisfy

dPt
dt

= a1(t)Pt, P0 = Id (3.12)

where Id is the d× d identity matrix. Note that

d

dt
PtP

−1
t = Pt

dP−1t

dt
+
dPt
dt
P−1t = 0

⇒ dP−1t

dt
= −P−1t a1(t).

Now let Ut = P−1t Xt with initial condition U0 = P−10 X0 = X0 using equation 3.12. The

SDE satisfied by Ut is given by

dUt = d(P−1t Xt)

= (dP−1t Xt) + P−1t dXt.

Hence

dUt = −P−1t a1(t)Xtdt+ P−1t (a1(t)Xt + a2(t))dt+ P−1t b2(t)dWt

⇒ dUt = P−1t a2(t)dt+ P−1t b2(t)dWt.

Integrating both sides of dUt between 0 and t gives

Ut = U0 +

∫ t

0
P−1s a2(s)ds+

∫ t

0
P−1s b2(s)dWs.

Recall the Itô isometry (3.5)∫ t

0
g(s)dBs ∼ N

(
0,

∫ t

0
g(s)g(s)Tds

)
for a real-valued, square-integrable function g(·). Hence, the distribution of Ut|U0 is there-

fore

Ut|U0 ∼ N
(
U0 +

∫ t

0
P−1s a2(s)ds,

∫ t

0
P−1s b2(s)b2(s)

T (P−1s )Tds

)
.

Now, using U0 = x0 and Ut = P−1t Xt ⇒ Xt = PtUt to give

Xt|X0 = x0 ∼ N
(
Ptx0 + Pt

∫ t

0
P−1s a2(s)ds, Pt

∫ t

0
P−1s b2(t)b2(t)

T (P−1s )TdsP Tt

)
.
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An equivalent representation of the mean and variance can be found as follows. Let

mt = Ptx0 + Pt
∫ t
0 P
−1
s a2(s)ds denote the expectation of Xt. We have that

dmt

dt
=
dPt
dt
x0 + PtP

−1
t a2(t) +

d

dt
Pt

∫ t

0
P−1s a2(s)ds.

Hence, using (3.12)

dmt

dt
= a1(t)Ptx0 + a2(t) + a1(t)Pt

∫ t

0
P−1s a2(s)ds

⇒ dmt

dt
= a1(t)mt + a2(t), m0 = X0. (3.13)

Similarly, let

Vt = Pt

∫ t

0
P−1s b2(t)b2(t)

T (P−1s )TdsP Tt

then by the product rule

dVt
dt

= Pt
d

dt

(∫ t

0
P−1s b2(t)b2(t)

T (P−1s )TdsP Tt

)
+
d

dt
Pt

(∫ t

0
P−1s b2(t)b2(t)

T (P−1s )TdsP Tt

)
and applying the product rule again

dVt
dt

=Pt

(∫ t

0
P−1s b2(t)b2(t)

T (P−1s )Tds
d

dt
P Tt + P−1t b2(t)b2(t)

T (P−1t )TP Tt

)
+ a1(t)

(
Pt

∫ t

0
P−1s b2(t)b2(t)

T (P−1s )TdsP Tt

)
︸ ︷︷ ︸

Vt

[using (3.12)]

=Pt

∫ t

0
P−1s b2(t)b2(t)

T (P−1s )Tds[a1(t)Pt]
T︸ ︷︷ ︸

Vta1(t)T

+b2(t)b2(t)
T + a1(t)Vt

⇒ dVt
dt

=Vta1(t)
T + b2(t)b2(t)

T + a1(t)Vt, V0 = 0. (3.14)

To summarise, Xt|X0 = x0 ∼ N(mt, Vt)

Xt|X0 = x0 ∼ N(mt, Vt) (3.15)

where mt and Vt satisfy the ODE system given by equations (3.13) and (3.14). It will be

helpful later to note that for an interval [tj , tjj+1 ]

Xtj+1 |Xtj = xtj ∼ N(mtj+1 , Vtj+1) (3.16)
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where mtj+1 is the solution to (3.13), integrated over [tj , tj+1] with initial condition mtj =

xj+1 and Vtj+1 is the solution to (3.14), integrated over [tj , tj+1] with initial condition

Vtj = 0. That is

mtj+1 = mtj +

∫ tj+1

tj

(a1(s)mt + a2(s)) dt

and

Vtj+1 =

∫ tj+1

tj

(
Vta1(s)

T + b2(s)b2(s)
T + a1(s)Vt

)
dt.

Example: Ornstein-Uhlenbeck SDE

Take a1(t) = θ1, a2(t) = θ2 and b2(t) = θ3

⇒ dXt = (θ1Xt + θ2)dt+ θ3dWt.

The process satisfying the above SDE is known as an Ornstein-Uhlenbeck process. We

apply (3.13) and (3.14) to generate the following ODE system

dmt

dt
= θ1mt + θ2, m0 = X0 (3.17)

dVt
dt

= Vtθ1 + θ23 + θ1Vt = 2θ1Vt + θ23, V0 = 0 (3.18)

Using the method in Appendix A.1.2 we obtain the integrating factor e−θ1t and therefore

mt = m0e
θ1t + eθ1t ×

∫ t

0
e−θ1tdtθ2

= m0e
θ1t + eθ1t ×

[
−θ2
θ1
e−θ1t

]t
0

= m0e
θ1t + eθ1t × θ2

θ1

(
1− e−θ1t

)
= m0e

θ1t +
θ2
θ1
eθ1t

(
1− e−θ1t

)
.

To solve (3.18) we again use the integrating factor method with e−2θ1t as the integrating

factor and hence

Vt = e2θ1t ×
∫ t

0
e−2θ1tdtθ23

= e2θ1t ×
[
− θ23

2θ1
e−2θ1t

]t
0

=
θ23
2θ1

(
e2θ1t − 1

)
.
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Thus the distribution of Xt is

Xt|X0 = x0 ∼ N
(
x0e

θ1t +
θ2
θ1
eθ1t

(
1− e−θ1t

)
,
θ23
2θ1

(
e2θ1t − 1

))
.

For θ1 negative, the expectation tends to − θ2
θ1

and V ar(Xt)→ −
θ23
2θ1

as t→∞. Figure 3.7

shows 10 skeleton paths of the Ornstein-Uhlenbeck processes, with θ1 = −0.75, θ2 = 3,

θ3 = 0.5 on the interval [0, 10] with a time step of 0.1. We took X0 to be a random draw

from a N(0, 25) distribution.

Time
0 20 40 60 80 100

-5
0

5
10

Figure 3.7: Ten skeleton paths of the Ornstein-Uhlenbeck process.

3.3.2 Homogeneous case

Consider a univariate linear homogeneous SDE

dXt = a1(t)Xtdt+ b1(t)XtdWt.

To solve the SDE, we apply the Itô formula (3.8) with g(t, x) = log x. The three partial

derivatives we require are

gt =
∂g

∂t
= 0⇒ gt(t,Xt) = 0

gx =
∂g

∂x
=

1

x
⇒ gx(t,Xt) =

1

Xt

gxx =
∂2g

∂x2
= − 1

x2
⇒ gxx(t,Xt) = − 1

X2
t

.
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Hence

d logXt =

(
0 +

1

��Xt
a1(t)��Xt +

1

2

(
− 1

�
�X2
t

)
b21(t)�

�X2
t

)
dt+

1

��Xt
b1(t)��XtdWt

⇒ d logXt =

(
a1(t)−

b21(t)

2

)
dt+ b1(t)dWt

⇒
∫ t

0
d logXs =

∫ t

0

(
a1(s)−

b21(s)

2

)
ds+

∫ t

0
b1(s)dWs

⇒ Xt = X0 exp

{∫ t

0

(
a1(s)−

b21(s)

2

)
dt+

∫ t

0
b1(s)dWt

}
and using Itô isometry (3.5) the distribution of Xt is

Xt|X0 = x0 ∼ LN
(

log x0 +

∫ t

0

(
a1(s)−

b21(s)

2

)
dt,

∫ t

0
b21(s)dt

)
(3.19)

Example: geometric Brownian motion

Take a1(t) = θ1 and b1(t) = θ2 to give

dXt = θ1Xtdt+ θ2XtdWt

Using equation (3.19) we obtain

Xt|X0 = x0 ∼ LN
(

log x0 +

(
θ1 −

θ22
2

)
t, θ22t

)
and we recognise {Xt, t ≥ 0} as a geometric Brownian motion process.

3.4 Linear SDEs from non-linear SDEs

Consider a generic SDE of the form

dXt = α(t,Xt)dt+ ε
√
β(t,Xt)dWt (3.20)

where the roll of ε is to indicate that the stochastic term is small. For generic α(·, ·) and

β(·, ·) this SDE cannot be solved analytically (to give a closed form solution for Xt) so

we examine a computationally efficient approximation to the solution via a linear noise

approximation (LNA). The LNA can be derived by approximating the forward Fokker-

Planck equation through a Taylor series expansion (see e.g. Komorowski et al., 2009 and

Elf & Ehrenberg, 2003). In what follows we conduct a more intuitive derivation.
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Partition Xt into a deterministic path zt and a residual stochastic process, Mt such that

Xt = zt + εMt. Let zt be the solution to

dzt
dt

= α(t, zt), (3.21)

an ODE for the deterministic process. We assume that ‖Xt − zt‖ is O(ε) over a time

interval of interest. As Xt satisfies (3.20) the residual stochastic process Mt satisfies

dMt =
1

ε
{α(t,Xt)− α(t, zt)}dt+

√
β(t,Xt)dWt (3.22)

This SDE is typically intractable. A tractable approximation can be obtained via Taylor

expanding α(t,Xt) and β(t,Xt) about zt. We then obtain

α(t, zt + εMt) = α(t, zt) + εHtMt + · · ·

and

β(t, zt + εMt) = β(t, zt) + · · · ,

where Ht is the Jacobian matrix with (i, j)th element

(Ht)i,j =
∂αi(t, zt)

∂zj,t
. (3.23)

Collecting terms ofO(ε) gives an SDE satisfied by an approximate residual process {M̂t, t ≤
0} of the form

dM̂t = HtM̂tdt+
√
β(t, zt)dWt. (3.24)

To indicate that the stochastic term in (3.20) is small we have used ε, so the drift term

α(t,Xt) dominates the diffusion coefficient β(t,Xt), equivalently, diffusion << drift. How-

ever, ε does not feature in (3.21) or (3.24). From here, therefore, we assume ε = 1. In (3.24)

for zt in equilibrium and if α and β are time homogeneous, we get an Ornstein-Uhlenbeck

process for M̂t.

3.4.1 Solving the linear noise approximation

Let us assume that the initial condition for (3.24) is M̂0 = m̂0 and follows a Gaussian

distribution for all t > 0, so M̂0 ∼ N(m̂0, V̂0). Furthermore, let Pt be the d×d fundamental

matrix for the deterministic ODE

dm̂t

dt
= Htm̂t
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which satisfies
dPt
dt

= HtPt, P0 = Id (3.25)

where Id is the d× d identity matrix. Now,

d

dt
PtP

−1
t = Pt

dP−1t

dt
+
dPt
dt
P−1t = 0.

Therefore using (3.25) it follows that

dP−1t

dt
= −P−1t Ht. (3.26)

Set Ut = P−1t M̂t. Then U0 = M̂0. We write

dUt = d(P−1t M̂t)

= (dP−1t )M̂t + P−1t (dM̂t).

Then using (3.24) and (3.26) gives

dUt = (−P−1t Htdt)M̂t + P−1t (HtM̂tdt+
√
β(t, zt)dWt)

= −P−1t HtM̂tdt+ P−1t HtM̂tdt+ P−1t

√
β(t, zt)dWt

= P−1t

√
β(t, zt)dWt.

Hence we can write

Ut = U0 +

∫ t

0
P−1s

√
β(s, zs)dWs.

Appealing to linearity and Itô isometry, we obtain

Ut|U0 ∼ N
(
U0,

∫ t

0
P−1s β(s, zs)(P

−1
s )Tds

)
. (3.27)

Therefore, for the initial assumption above, that is M̂0 = U0 ∼ N(m̂0, V̂0), we have that

M̂t ∼ N
(
Ptm̂0, PtψtP

T
t

)
, (3.28)

where

ψt = V̂0 +

∫ t

0
P−1s β(s, zs)(P

−1
s )Tds.
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Thus, the SDE (3.24) satisfied by M̂t can be solved analytically, where Pt and ψt satisfy

the ODE system

dPt
dt

= HtPt, P0 = Id (3.29)

dψt
dt

= P−1t β(t, zt)(P
−1
t )T , ψ0 = V̂0. (3.30)

Hence, the approximating distribution of Xt|X0 is given by

Xt|X0 ∼ N
(
zt + Ptm̂0, PtψtP

T
t

)
. (3.31)

Note that (3.28) can be written as

M̂t|M̂0 = m̂0 ∼ N(mt, Vt)

where it is clear from (3.29) that

dmt

dt
= Htmt, m0 = m̂0 (3.32)

and the ODE for Vt = PtψtP
T
t can be obtained as

dVt
dt

=
d
(
PtψtP

T
t

)
dt

,

to which we apply the product rule and obtain

dVt
dt

= Pt
d

dt

(
ψP Tt

)
+

(
dPt
dt

)
ψtP

T
t

= Pt

{
ψt
dP Tt
dt

+

(
dψt
dt

)
P Tt

}
+HtPtψtP

T
t

= Pt

{
ψtP

T
t H

T
t + P−1t β(zt, θ)

(
P−1t

)T
P Tt

}
+HtPtψtP

T
t

= PtψtP
T
t Ht + β(zt, θ) +HtPtψtP

T
t

= VtH
T
t + β(zt, θ) +HtVt, V0 = 0. (3.33)

Now we can obtain a less computationally intensive solution by solving (3.21), (3.32) and

(3.33) instead of (3.21), (3.29) and (3.30), where now the approximating distribution of

Xt is

Xt ∼ N(zt +mt, Vt).
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3.4.2 LNA birth-death example

Consider a birth-death process satisfied by the following SDE

dXt = (θ1 − θ2)Xtdt+
√

(θ1 + θ2)XtdWt (3.34)

whereXt denotes a population of some species at time t, θ1 and θ2 denote the birth rate and

death rate respectively, and Wt, t ≥ 0 is standard Brownian motion. Here, Ht = (θ1 − θ2)
and the ODE system ((3.21), (3.29), (3.30)) governing the linear noise approximation of

(3.34) is given by

dzt
dt

= (θ1 − θ2)zt, z0 = x0

dPt
dt

= (θ1 − θ2)Pt, P0 = 1

dψt
dt

= P−2t (θ1 + θ2)zt

The above system of ODEs can be solved explicitly to give

zt = x0 exp {(θ1 − θ2)t},

Pt = exp {(θ1 − θ2)t},

ψt =
(θ1 + θ2)x0
(θ1 − θ2)

[1− exp {−(θ1 − θ2)t}] .

To generate a skeleton path of the birth-death process, we can iteratively draw from the

transition density under the LNA. We partition an interval [0, T ] as 0 = t0 < ti < . . . <

tn = T . Hence, given xti at a time ti, the ODEs for zt, Pt and ψt are initialised at xti , 1

and 0 respectively, and integrated over (ti, ti1 ]. We then draw Xti+1 ∼ N(zti+1 , P
2
ti+1

ψti+1)

to obtain xti+1 . Note that since we are initialising zt at the simulated value of xt in each

interval, we have that mt = 0 for t ∈ [0, T ]. Figure 3.8 shows a single realisation of

the process, and Figure 3.9 shows the mean and 95% credible region for Xt from 10, 000

simulations, where x0 = 10, θ = (0.2, 0.18) and a time-step ∆t = 0.05. In the next

section we will look at different methods of applying Bayesian inference for linear SDEs.
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Figure 3.8: A single realisation of a species Xt in the birth-death model, x0 = 10 and θ = (0.2, 0.18)
with time-step ∆t = 0.05
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Figure 3.9: Birth-death model. 95% credible region (red line) and mean (black line) for Xt, with
x0 = 10 and θ = (0.2, 0.18) with time-step ∆t = 0.05 from 10,000 simulations.
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Bayesian inference for linear

stochastic differential equations

We now consider the problem of performing Bayesian inference for the parameters θ gov-

erning an SDE of linear form given by (3.11). That is

dXt = α(t,Xt, θ)dt+
√
β(t,Xt, θ)dWt

where we now allow explicit dependence of α(·) and β(·) on an unknown parameter vector

θ = (θ1, . . . , θp)
T . Hence the drift and jth column of the diffusion coefficient take the form

α(t,Xt, θ) = a1(t, θ)Xt + a2(t, θ)[√
β(t,Xt, θ)

]
j

= b1,j(t, θ)Xt + b2,j(t, θ).

Given data at discrete times x = (xt0 , xt1 , . . . , xtn)T , the likelihood is given by

π(x|θ) =

n∏
i=1

π(xti |xti−1 , θ)

where π(xti |xti−1 , θ) is the transition density, obtained by solving the SDE. Hence upon

ascribing a prior density π(θ) to θ, Bayesian inference may proceed via the posterior

π(θ|x) ∝ π(θ)π(x|θ).

In practice, we anticipate that π(θ|x) will be intractable and we resort to the sampling

based approaches from Chapter 2 to generate draws from π(θ|x). In what follows, we

assume that {Xt, t ≥ 0} cannot be observed directly, and adopt an observation model of
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the form

Yt = h(Xt) + εt, εt
indep∼ N(0, Σ) (4.1)

allowing for observation of a transformation of (a subset of) components of Xt, subject

to additive Gaussian noise. We note that the observations are conditionally indepen-

dent given {Xt, t ≥ 0} and if inference is required for Σ, we augment θ to include the

components of Σ. Hence, the density linking the observations and latent process is

π(y|x, θ) =
n∏
i=0

π(yti |xti , θ).

If interest lies in the joint posterior for x and θ, we may construct this joint posterior

π(x, θ|y) ∝ π(θ)π(xt0)π(x|θ, xt0)π(y|x, θ) (4.2)

where π(xt0) is the prior density ascribed to xt0 . Note that the marginal parameter

posterior π(θ|y) is given by

π(θ|y) ∝ π(θ)π(y|θ) (4.3)

where the marginal likelihood term π(y|θ) is given by

π(y|θ) =

∫
π(xt0)π(x|θ)π(y|x, θ)dx. (4.4)

In what follows, we assume that interest lies in the marginal parameter posterior π(θ|y).

We now consider two cases: in the first case, we assume a linear observation model so

that the marginal likelihood is tractable. In the second case, we assume a non-linear

observation model and consider a linear approximation approach, and a pseudo-marginal

sampling-based approach.

4.1 Linear SDE in the narrow sense and linear observation

model

In this instance we assume a linear observation model so in (4.1) we take h(Xt) = F TXt

so we have

Yt = F TXt + εt, εt
indep∼ N(0, Σ), (4.5)

where F is a d× d0 constant matrix allowing for partial observation of the components of

Xt. In order to calculate the marginal likelihood π(y|θ) we make use of a forward filter,

often referred to in this context as a hybrid Kalman filter due to the latent process being in

continuous time and the observations being in discrete time. First note that the marginal
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likelihood can be factorised as

π(y|θ) = π(yt0 |θ)
n∏
j=1

π(ytj |yt0:tj−1 , θ) (4.6)

We use a forward filter to compute each term in (4.6) recursively. To simplify the notation,

we suppress the parameters θ where possible. Suppose at time tj we have Xtj |Yt0:tj ∼
N(aj , Cj). This is the filtering distribution at time tj . Using (3.16)

Xtj+1 |Yt0:tj ∼ N(mtj+1 , Vtj+1)

where mtj+1 is the solution to (3.13), integrated over [tj , tj+1] with initial condition aj ,

and Vtj+1 is the solution to (3.14) integrated over [tj , tj+1] with initial condition Vtj = Cj .

Hence, using

Ytj+1 |Xtj+1 ∼ N(F TXtj+1 , Σ)

and

Ytj+1 |Yt0:tj ∼ N(F Tmtj+1 , F
TVtj+1F +Σ)

we see that the marginal likelihood contribution is

π(ytj+1 |yt0:tj ) = N(ytj+1 ;F Tmtj+1 , F
TVtj+1F +Σ).

Now, to update the filtering distribution, we note that(
Xtj+1

Ytj+1

)∣∣∣∣∣yt0:tj ∼ N
((

mtj+1

F Tmtj+1

)
,

(
Vtj+1 Vtj+1F

F TVtj+1 F TVtj+1F +Σ

))
.

Hence conditioning on Ytj+1 = ytj gives

Xtj+1 |Yt0:tj = yt0:tj ∼ N(aj+1, Cj+1)

where

aj+1 = mtj+1 + Vtj+1F
(
F TVtj+1F +Σ

)−1 (
ytj+1 − F Tmtj+1

)
Cj+1 = Vtj+1 + Vtj+1F

(
F TVtj+1F +Σ

)−1
FVtj+1 .

The forward filter steps are as follows in Algorithm 1.

Note that for the forward filter there is no need to store values of aj or Cj . However,

this algorithm can be extended should we wish to find the smoothing distribution of

Xtj |yt0:tj enabling us to make inferences about the latent process.

Consider the marginal posterior for the latent process, π(x|y). We note the factorisa-
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Algorithm 1 Forward filter

1. Initialisation: Compute π (yt0) = N
(
yt0 ;F Ta, F TCF +Σ

)
. The posterior at time

t0 = 0 is therefore Xt0 |yt0 ∼ N (a0, C0) where

a0 = a+ CF
(
F TCF +Σ

)−1 (
yt0 − F Ta

)
C0 = C − CF

(
F TCF +Σ

)−1
F TC.

2. For iteration j = 0, 1, . . . , n− 1:

(a) Prior at tj+1. We have Xtj |Yt0:tj ∼ N
(
atj , Ctj

)
⇒ Xtj+1 |Yt0:tj ∼ N

(
mtj+1 , Vtj+1

)
where mtj+1 and Vtj+1 are the solutions to

the ODEs (3.13) and (3.14) initialised with mtj = atj and Vtj = Ctj .

(b) One step forecast:

Ytj+1 |Yt0:tj ∼ N
(
F Tmtj+1 , F

TVtj+1F +Σ
)

Compute the updated marginal likelihood

π
(
yt0:tj+1

)
= π

(
yt0:tj

)
π
(
ytj+1 |yt0:tj

)
= π

(
yt0:tj

)
N
(
ytj+1 ;F Tmtj+1 , F

TVtj+1F +Σ
)

(c) Posterior at tj+1. Combining the distributions in (a) and (b) gives the joint
distribution of Xtj+1 and Ytj+1 conditional on yt0:tj(

Xtj+1

Ytj+1

) ∣∣∣∣∣yt0:tj ∼ N
((

mtj+1

F Tmtj+1

)
,

(
Vtj+1 Vtj+1F

F TVtj+1 F TVtj+1F +Σ

))
and therefore Xtj+1 |yt0:tj+1 ∼ N(atj+1 , Ctj+1), where

atj+1 = mtj+1 + Vtj+1F
(
F TVtj+1F +Σ

)−1 (
ytj+1 − F Tmtj+1

)
,

Ctj+1 = Vtj+1 + Vtj+1F
(
F TVtj+1F +Σ

)−1
FVtj+1 .

tion

π(x|y) = π(xtn |yt0:tn)
n−1∏
j=0

π(xtj |xtj+1 , yt0:tj )

where π(xtn |yt0:tn) is available at the end of the forward sweep of the filter and the sub-

sequent terms can be obtained using a backwards sweep. In order to sample the latter

densities we require storage of Ptj+1 and can be obtained during step 2 of Algorithm 1

by additionally solving (3.12). We also store each value of atj+1 and Ctj+1 . Then we may

proceed with backwards sampling as in Algorithm 2.

Returning to the problem of inference for the parameters governing an SDE of the form
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Algorithm 2 Backwards sampler

1. Draw xtn from Xtn |y ∼ N(atj , Ctj )

2. For j = n− 1, n− 2, . . . , 0,

(a) Joint distribution of Xtj and Xtj+1 . Note that Xtj |yt0:tj ∼ N(atj , Ctj ). The
joint distribution of Xtj and Xtj+1 conditional on yt0:tj is(

Xtj

Xtj+1

) ∣∣∣∣∣yt0:tj ∼ N
((

atj
mtj+1

)
,

(
Ctj CtjP

T
tj+1

Ptj+1Ctj Vtj+1 .

))

(b) Backwards distribution. The distribution of Xtj |xtj+1 , yt0:tj is N(âtj , Ĉtj ) where

âtj = atj + CtjP
T
tj+1

V −1tj+1
(xtj+1 −mtj+1),

Ĉtj = Ctj − CtjP Ttj+1
V −1tj+1

Ptj+1Ctj .

Draw xtj from Xtj |xtj+1 , yt0:tj ∼ N(âtj , Ĉjj ).

(3.11) for an observation model of the form (4.1), we note that the marginal posterior

π(θ|y) ∝ π(θ)π(y|θ)

can be evaluated (up to a multiplicative constant) using the forward filter above. This leads

to the MCMC scheme in Algorithm 3 which assumes a Gaussian random walk proposal

mechanism.

4.2 Linear SDE and non-linear observation model

In this instance we assume a non-linear observation model. In this case, the marginal like-

lihood is intractable. In what follows, we therefore consider two approaches to inference:

an approximate inferential model based on a linearisation of the observed components and

exact (simulation-based) inference using pseudo-marginal methods.

4.2.1 Approximation via linearisation

Recall the general observation model (4.1) and take h(Xt) to be some non-linear function.

The marginal likelihood π(y|θ) here is intractable. However we may construct an appro-

priate linear noise approximation enabling us to obtain a tractable marginal likelihood.

For the case of d = 1, so that Xt is univariate, we apply the Itô formula to obtain the

stochastic differential equation satisfied by X̃t = h(Xt). The LNA (see Section 3.4) can
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Algorithm 3 MCMC with Gaussian random walk proposal

1. Initialise chain. Set θ(0) at some appropriate initial value. Set i = 0.

2. Propose θ∗ ∼ N(θ(i), Σθ).

3. Evaluate the acceptance probability:

α(θ∗|θ(i)) = min

{
1,
π(θ∗|y)

π(θ(i)|y)
× q(θ(i)|θ∗)
q(θ∗|θ(i))

}

where
q(θ∗|θ(i)) = N(θ∗; θ(i), Σθ)

hence:

α(θ∗|θ(i)) = min

{
1,

π(θ∗)p(y|θ∗)
π(θ(i))p(y|θ(i))

}
.

4. With probability α(θ∗|θ(i)) set θ(i+1) = θ∗, otherwise set θ(i+1) = θ(i).

5. Set i = i+ 1 and return to step 2.

then be applied to dX̃t. For d > 1, we note that in general the SDE satisfied by h(Xt) may

explicitly depend on (a subset of) components of Xt. Hence, in this case, we define the

(d0 + d) vector X̃t = (h(Xt)
T , XT

t )T and apply the multivariate Itô formula (see Section

3.2) to obtain

dX̃t = α̃(t, X̃t, θ)dt+

√
β̃(t, X̃t, θ)dWt.

Applying the LNA with the assumption that z0 = x̃0, then m0 = 0, gives

X̃t|X̃0 ∼ N(zt, PtψtP
T
t )

where

dzt
dt

= α̃(t, zt, θ), z0 = x̃0

dPt
dt

= H̃tPt, P0 = Id

dψt
dt

= P−1t β̃(t, zt, θ)(P
−1
t )T , ψ0 = V̂0

and

(H̃t)ij =
∂α̃i(t, zt, θ)

∂zj,t
.
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Using that X̃t = (h(Xt)
T , XT

t )T we see that the observation model can be written as

Yt = F T X̃t + εt, εt ∼ N(0, Σ)

where F is a (d0 + d)× d0 matrix, specifically

1 0 . . . 0

0 1 . . .
...

...
...

. . .
...

0 0 . . . 1

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


.

Hence, F is block partitioned with upper d0 × d0 elements as the d0 × d0 identity matrix

and the lower d× d0 elements as 0. Thus, we may compute the marginal likelihood under

the LNA,

π(y|θ) =

∫
π(x̃, y|θ)dx̃

using a forward filter, as described in Section 4.1.

4.2.2 Pseudo-marginal Metropolis-Hastings

Recall that we have an intractable observed data likelihood (4.4) due to our observation

model in (4.1) being non-linear with h(Xt) some non-linear function. Given the ability to

unbiasedly estimate the observed data likelihood π(y|θ), the pseudo-marginal Metropolis-

Hastings (PMMH) scheme of Section 2.5 is applicable. Denote the unbiased estimator

by π̂(y|θ) = π̂U (y|θ) where U denotes all the random variables used to construct the

estimator. Hence, the unbiasedness property gives EU (π̂U (y|θ)) = π(y|θ). Now, consider

a joint target

π(θ, u|y) ∝ π(θ)π̂u(y|θ)g(u) (4.7)

where g(u) denotes the density associated with U . It is easily checked that∫
π(θ, u|y)du ∝ π(θ)

∫
π̂u(y|θ)g(u)du

∝ π(θ)π(y|θ)

∝ π(θ|y).

and so marginalising out u gives the marginal parameter posterior in (4.3).

The pseudo-marginal Metropolis-Hastings approach can be seen as a standard Metropolis-
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Algorithm 4 Pseudo-marginal Metropolis-Hastings

1. For iteration (i = 0).

(a) Set θ(0) in the support of π(θ) and draw u(0) ∼ g(·).
(b) Compute π̂u(0)(y|θ(0))

2. For iteration i = 1, . . . , niters:

(a) Draw θ∗ ∼ q(|θ(i−1)) and u∗ ∼ g(·)
(b) Compute π̂u∗(y|θ∗).
(c) With probability α(θ∗, u∗|θ(i−1), u(i−1)) given by (4.8), put (θ(i), u(i)) = (θ∗, u∗)

otherwise store the current values (θ(i), u(i)) = (θ(i−1), u(i−1).)

Hastings scheme targeting (4.7) with a proposal density q(θ∗, u∗|θ, u) = q(θ∗|θ)g(u∗) for

which the acceptance probability is

α(θ∗, u∗|θ, u) = min

{
1,
π̂u∗(y|θ∗)π(θ∗)

π̂u(y|θ)π(θ)
× q(θ|θ∗)
q(θ∗|θ)

}
. (4.8)

The PMMH scheme is given by Algorithm 4. It remains that we can obtain estimates

π̂u(y|θ). As shown by (Del Moral, 2004) (also see Pitt et al., 2012) a particle filter can be

used to give realisations of an unbiased estimator π̂U (y|θ). The bootstrap particle filter re-

cursively draws from the filtering distribution π(xtj |yt0:tj , θ) for each j = 0, . . . , n (Gordon

et al., 1993) (see also Künsch, 2013). Essentially, a sequence of importance sampling and

resampling steps are used to propagate a weighted sample {(xtj ,k, w(utj ,k)), k = 1, . . . , N}
from the filtering distribution. Note that we let the weight depend explicitly on the cor-

responding component of the auxiliary variable u = (u0, . . . , un). At time t, the particle

filter uses the approximation

π̂(xtj |yt0:tj , θ) ∝ π(ytj |xtj , θ)
N∑
k=1

π(xtj |xtj−1,k, θ)w(utj−1,k). (4.9)

A simple importance sampling/resampling strategy follows, where particles are resampled

(with replacement) in proportion to their weights, propagated via xtj ,k = fj(utj ,k) ∼
π(·|xtj−1 , θ) and reweighted by π(ytj |xtj ,k, θ). Here, fj(·) is a deterministic function of

utj ,k (as well as the parameters and previous latent state, suppressed for simplicity) that

gives an explicit connection between the particles and auxiliary variables. Algorithm 5

provides a complete description of the bootstrap particle filter with input given by param-

eters θ, auxiliary variables u, data y and the number of particles N . However notice the

addition of a non-standard and optional sorting step (a), which is particularly useful when
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Algorithm 5 Bootstrap particle filter

1. Initialisation (t = 0).

(a) Sample the prior. Put xt0,k = f0(ut0,k) ∼ π(·), k = 1, . . . , N .

(b) Compute the weights. For k = 1, . . . , N set

w̃(ut0,k) = π(yt0 |xt0,k, θ), w(ut0,k) =
w̃(ut0,k)∑N

m=1 w̃(ut0,m)
.

(c) Update observed data likelihood estimate. Compute π̂ut0 (yt0 |θ) =∑N
k=1 w̃(u1,k)/N .

2. For j = 1, . . . , n:

(a) (optional) Sorting. Use Euclidean sorting on particles {xtj−1,1, ..., xtj−1,N}
and their weights if using CPMMH.

(b) Resample. Obtain ancestor indices aktj−1
, k = 1, . . . , N using systematic re-

sampling on the collection of weights {w(utj−1,1), . . . , w(utj−1,N )}.

(c) Propagate. Put xtj ,k = ftj (utj ,k) ∼ π
(
·|xtj−1,aktj−1

, θ

)
, k = 1, . . . , N .

(d) Compute the weights. For k = 1, . . . , N set

w̃(utj ,k) = π(ytj |xtj ,k, θ), w(utj ,k) =
w̃(utj ,k)∑N

m=1 w̃(utj ,m)
.

(e) Update observed data likelihood estimate. Compute

π̂ut0:tj (yt0:tj |θ) = π̂ut0:tj−1
(yt0:tj−1 |θ)π̂utj (ytj |yt0:tj , θ)

where π̂utj (ytj |yt0:tj−1 , θ) =
∑N

k=1 w̃(utj ,k)/N .

implementing a correlated pseudo-marginal approach, as described in Section 4.2.3. For

the resampling step we follow Deligiannidis et al. (2018) among others and use systematic

resampling (see e.g. Murray et al., 2016), which only requires simulating a single uniform

random variable at each time point.

It is straightforward to augment the auxiliary variable u to include the random variables

used in the resampling step. As a by-product of the particle filter, the observed data

likelihood π(y|θ) can be estimated via the quantity

π̂u(y|θ) = N−n
n∏
j=0

N∑
k=1

w̃(utj ,k). (4.10)
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4.2.3 Correlated pseudo-marginal Metropolis-Hastings

Using the PMMH scheme may lead to highly variable realisations of π̂u(y|θ) as we saw

in the example in Section 2.5. So we turn to correlated PMMH (CPMMH) to induce

positive correlation between successive values of π̂u(y|θ) as in Section 2.6. Consider the

joint density in (4.7). In step (2a) of Algorithm 4, pseudo-marginal Metropolis-Hastings,

the auxiliary variables u are proposed from the associated density g(·). The correlated

PMMH scheme generates a new u∗ from K(u∗|u) where K(·|·) satisfies detailed balance

equation

g(u)K(u∗|u) = g(u∗)K(u|u∗).

It is then straightforward to show that a MH scheme with proposal kernel q(θ∗|θ)K(u∗|u)

and acceptance probability (4.8) satisfies detailed balance with respect to the target

π(θ, u|y). Upon negating the trivial scenario that the chain does not move, we have

that

π(θ, u)q(θ∗|θ)K(u∗|u)α(θ∗, u∗|θ, u)

= min {π(θ)g(u)π̂u(y|θ)q(θ∗|θ)K(u∗|u), π̂u∗(y|θ∗)π(θ∗)q(θ|θ∗)g(u)k(u∗|u)}

= min {π(θ)g(u)π̂u(y|θ)q(θ∗|θ)K(u∗|u), π̂u∗(y|θ∗)π(θ∗)q(θ|θ∗)g(u∗)k(u|u∗)}

=π(θ∗, u∗)q(θ|θ∗)K(u|u∗)α(θ, u|θ∗, u∗)

We take g(u) as a standard Gaussian density and K(u∗|u) as the kernel associated with a

Crank–Nicolson proposal (Deligiannidis et al., 2018). Hence

g(u) = N (u; 0 , Id) and K(u∗|u) = N
(
u∗; ρu ,

(
1− ρ2

)
Id
)

where Id is the identity matrix whose dimension d is determined by the number of elements

in u. The parameter ρ is chosen to be close to 1, to induce strong positive correlation

between π̂u(y|θ) and π̂u∗(y|θ), thus reducing the variance of the acceptance probability in

(4.8), which is beneficial because it reduces the chance of accepting an overestimation of

the likelihood function. Taking ρ = 0 gives the special case that K(u∗|u) = g(u∗), which

corresponds to the standard PMMH. Iteration i of step 2 of Algorithm 4 then becomes

2. For i = 1, . . . , niters:

(a) Draw θ∗ ∼ q(·|θ(i−1)). Draw ω ∼ N(0, Id) and put u∗ = ρu(i−1) +
√

1− ρ2ω.

(b) Compute π̂u∗(y|θ(i−1)) by running Algorithm 5 with u∗, θ∗, and y.

(c) With probability given by (4.8) put θ(i) = θ∗ and u(i) = u∗. Otherwise, store

the current values θ(i) = θ(i−1) and u(i) = u(i−1).

Care must be taken here when executing Algorithm 5 in Step 2(b). Upon changing θ
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and u, the effect of the resampling step is likely to prune out different particles, thus

breaking the correlation between successive estimates of observed data likelihood. Sorting

the particles before resampling can alleviate this problem (Deligiannidis et al., 2018). We

follow Choppala et al. (2016) (see also Golightly et al., 2019) by using a simple Euclidean

sorting procedure which, for the case of a 1-dimensional latent state (e.g. when dim(Xi
t) =

1 for every t) implies, prior to resampling the particles, that the particles are sorted from

the smallest to the largest. Deligiannidis et al. (2018) sort the particles before resampling

via the Hilbert sort procedure of Gerber & Chopin (2015). This is step (2b) in Algorithm

5, denoted “optional” as it only applies to CPMMH, not PMMH.

Tuning advice

It remains that we can choose the number of particles N to be used to obtain estimates

of the observed data likelihood contributions π̂u(y|θ). In the case of PMMH, a simple

strategy is to fix θ, and Σ at some central posterior value (obtained from a pilot run),

and choose N so that the variance log(y|θ) (denoted σ2N ) is around 2 (Doucet et al., 2015;

Sherlock et al., 2015)). When using a CPMMH kernel, we follow Tran et al. (2017) by

choosing N so that σ2N = 2.162/(1 − ρ2l ) where ρl is the estimated correlation between

π̂u(y|θ) and π̂u∗(y|θ). Hence, an initial pilot run (with the number of particles set at some

conservative value) is required to determine plausible values of the parameters. This pilot

run can also be used to give estimates of var(θ|y), which can subsequently be used as the

innovation variance in a Gaussian random walk proposal for θ.

Example: Ornstein-Uhlenbeck SDE

We consider the following Ornstein-Uhlenbeck (OU) process{
Yt = Xt + εt, εt

indep∼ N(0, σ2ε )

dXt = θ1(θ2 −Xt)dt+ θ3dWt.
(4.11)

We adopt a parameterisation where θ2 ∈ R is the stationary mean for the {Xt} process,

θ1 > 0 is a growth rate (expressing how rapidly the system reacts to perturbations) and

θ3 is the diffusion coefficient. Let θ = (θ1, θ2, θ3). The SDE satisfied by Xt can be solved

analytically (following the procedure in 3.3.1) to give

Xt|X0 = x0 ∼ N
(
x0e
−θ1t + θ2(1− e−θ1t) ,

θ23
2θ1

(1− e−2θ1t)
)
.

Although the linear Gaussian solution and the additive Gaussian observation model permit

a tractable marginal likelihood, we apply the pseudo-marginal schemes discussed above.

We compare “PMMH”, which is Algorithm 4 with Algorithm 5 to find the data likelihood
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without step 2a, “CPMMH-099”, which is Algorithm 4 with a Crank-Nicolson proposal

for the u using a correlation of ρ = 0.99 in step 2a, and “CPMMH-0999” where we use

a correlation of ρ = 0.999 in step 2a. The number of particles used for each method was

selected using the methods described previously.

We simulate data with the following settings, n = 100 observations using an inter-

observation time of 1, θ = (1, 20, 1) and σε ∈ {0.1, 0.5, 1}. We assumed an initial condition

of x0 = 5 so that the process has a reasonable burn in period before it approaches the

reversion level of 20. We further assume x0 and σε to be known, for simplicity. The priors

assigned to θ were

log(θ1) ∼ N(3, 102),

log(θ2) ∼ N(3, 102),

log(θ3) ∼ N(3, 0.52).

We ran all three methods for the same simulated data set with σε ∈ {0.1, 0.5, 1} for 50k

iterations, considering the first 10k iterations to be the burn-in period. We set the initial

value for σε = 0.7 and the starting values for θ were set to their actual values.

Results are in Tables 4.1 – 4.2. As a reference for the efficiency of the considered

samplers, we take the minimum ESS per minute (mESS/m in Table 4.1 – 4.2) as measured

on PMMH as “base/default” value and set it to 1 in the rightmost column of Table 4.1

– 4.2. The minimum ESS per minute for the other samplers are relative to the PMMH

value. We can see the effect of varying σe, as the observation error decreases, the number

of particles required increases. However, the benefit in minimum effective sample size per

second due to increasing ρ from 0.99 to 0.999 is smaller as σe decreases. From Table 4.1

and Table 4.2 we conclude that CPMMH is about three times more efficient than PMMH

in terms of mESS/m when σe ∈ 0.5, 1, and from Table 4.3 we can conclude that CPMMH

is 15 – 25 times more efficient than PMMH in terms of mESS/m when σe = 0.1.

The marginal posteriors in Figures 4.1–4.3 show that the three methods generate very

similar posterior inferences when σe = 1 and the true values do not fall outside of the

tails, this was the case for each value of σe but plots for these cases are omitted.

Algorithm ρ N CPU (s) mESS mESS/s Rel.

PMMH 0 23 929 200 0.215 1
CPMMH-099 0.99 3 319 197 0.618 2.9
CPMMH-0999 0.999 3 362 264 0.729 3.4

Table 4.1: OU SDEMEM with σe = 1. Correlation ρ, number of particles N , CPU time (in minutes
m), minimum ESS (mESS), minimum ESS per minute (mESS/m) and relative minimum ESS per
minute (Rel.) as compared to PMMH. All results are based on 50k iterations of each scheme.
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Algorithm ρ N CPU (s) mESS mESS/s Rel.

PMMH 0 87 1982 3214 1.621 1
CPMMH-099 0.99 22 795 3348 4.213 2.6
CPMMH-0999 0.999 22 744 3189 4.285 2.6

Table 4.2: OU SDEMEM with σe = 0.5. Correlation ρ, number of particles N , CPU time (in
minutes m), minimum ESS (mESS), minimum ESS per minute (mESS/m) and relative minimum
ESS per minute (Rel.) as compared to PMMH. All results are based on 50k iterations of each
scheme.

Algorithm ρ N CPU (s) mESS mESS/s Rel.

PMMH 0 445 9221 2318 0.251 1
CPMMH-099 0.99 20 702 2529 3.803 15.1
CPMMH-0999 0.999 7 419 2644 6.309 25.1

Table 4.3: OU SDEMEM with σe = 0.1. Correlation ρ, number of particles N , CPU time (in
minutes m), minimum ESS (mESS), minimum ESS per minute (mESS/m) and relative minimum
ESS per minute (Rel.) as compared to PMMH. All results are based on 50k iterations of each
scheme.

4.2.4 Computational considerations

Although the approximate inferential approach based on the LNA gives a tractable marginal

likelihood, an order (d0 + d)2 system of coupled ODEs must be solved per marginal like-

lihood evaluation. Consequently, for systems with a large number of components (e.g.

d > 10), the LNA approach is likely to be computationally infeasible. Nevertheless, it

requires minimal tuning beyond a suitable innovation variance (if using a normal random

walk proposal mechanism) that can be obtained from a short pilot run. (C)PMMH re-

quires N × n one-step simulations per evaluation of an estimate of marginal likelihood.

For PMMH N should be order n (Bérard et al., 2013) and for CPMMH, N should be

order n1/2 for d = 1 and order n2/3 for d = 2 (see Deligiannidis et al. (2018) for further

discussion). Consequently, in scenarios with relatively short time series, CPMMH may

outperform the LNA approach computationally. However, we note that CPMMH requires

additional tuning. For example, choosing N is likely to require several short pilot runs of

the scheme. Moreover, and as discussed in Owen et al. (2015), pseudo-marginal schemes

can suffer from long burn-in times if poorly initialised.
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Figure 4.1: Marginal posterior densities for θ1 when σe = 1. Solid line PMMH, red line CPMMH-
099, green line CPMMH-0999, vertical line truth.
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Figure 4.2: Marginal posterior densities for θ2 when σe = 1. Solid line PMMH, red line CPMMH-
099, green line CPMMH-0999, vertical line truth.
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Figure 4.3: Marginal posterior densities for θ3 when σe = 1. Solid line PMMH, red line CPMMH-
099, green line CPMMH-0999, vertical line truth.
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Chapter 5

Bayesian inference for mixed

effects stochastic differential

equations

In this chapter we consider appropriate models for repeated measurement experiments.

We consider a mixed-effects framework, where dynamics of each experimental unit are

described by linear SDEs. We describe the modelling framework before considering infer-

ence in two settings; one in which a linear observation model is assumed and one in which

observations are assumed to arise from a nonlinear model.

5.1 Stochastic differential mixed-effects models

Consider the case where we have M experimental units randomly chosen from a theoretical

population, and associated with each unit i is a continuous-time d-dimensional Itô process

{Xi
t , t ≥ 0} governed by the SDE

dXi
t = α(Xi

t , κ, φ
i) dt+

√
β(Xi

t , κ, φ
i) dW i

t , Xi
0 = xi0, i = 1, . . . ,M. (5.1)

Here, α is a d-vector of drift functions, the diffusion coefficient β is a d×d positive definite

matrix with a square root representation
√
β such that

√
β
√
β
T

= β and W i
t is a d-vector

of (uncorrelated) standard Brownian motion processes. Note that we surpress dependence

of α and β on time t, for notational simplicity. Allowing explicit time dependence is

straightforward in what follows. The p-vector parameter κ = (κ1, . . . , κp)
T is common to

all units whereas the q-vectors φi = (φi1, . . . , φ
i
q)
T , i = 1, . . . ,M , are unit-specific effects,

which may be fixed or random. In the most general random effects scenario we let π(φi|η)

denote the joint distribution of φi, parameterised by the r-vector η = (η1, . . . , ηr)
T . The
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model defined by (5.1) allows for differences between experimental units through different

realisations of the Brownian motion paths W i
t and the random effects φi, accounting for

inherent stochasticity within a unit, and variation between experimental units respectively.

We assume that each experimental unit {Xi
t , t ≥ 0} cannot be observed exactly, but

observations yi = (yi1, . . . , y
i
n)T are available. We assume the same number of observations

per experimental unit for notational simplicity and note that allowing n to depend on i

is easily accommodated. The observations are assumed conditionally independent (given

the latent process) and we link them to the latent process via

Y i
t = h(Xi

t , D
i, εit), εit|Σ

indep∼ pε(Σ), i = 1, ...,M (5.2)

where Y i
t is a do-vector, εt is a random do-vector, do ≤ d, Di is a unit-specific static

or time-dependent deterministic input (e.g. covariates, forcing functions etc.), εit is the

measurement noise and h(·) is a possibly nonlinear function of its arguments. We denote

the density linking Y i
t and Xi

t by π(yit|xit, Σ). A special case that arises from our flexible

observation model is when h(Xi
t , ε

i
t) = F TXi

t + εit for a constant matrix F and εit|Σ
indep∼

N(0, Σ), allowing for observation of a linear combination of components of Xi
t , subject to

additive Gaussian noise. Note that our methodology in Sections 5.2–5.4.4 can be applied to

an arbitrary h(·), provided this can be evaluated pointwisely for any value of its arguments.

We refer to the model constituted by the system (5.1)–(5.2) as a stochastic differential

equation mixed effects model (SDEMEM). This is a state-space model, due to the Markov

property of the Itô processes {Xi
t , t ≥ 0}, and the assumption of conditional independence

of the observations given the latent process. The model is flexible: equation (5.1) explains

the intrinsic stochasticity in the dynamics (via β) and the variation between-units (via the

random effects φi), while (5.2) explains residual variation (measurement error, via Σ).

5.2 Linear stochastic differential equations with linear ob-

servation model

Suppose that the latent process associated with experimental unit i follows (5.1) where

the drift and diffusion functions are given by

α(Xi
t , κ, φ

i) = a1(κ, φ
i)Xi

t + a2(κ, φ
i)

β(Xi
t , κ, φ

i) = b(κ, φi)

where a1, a2 and b may depend on t but we suppress this dependence for notational sim-

plicity. Hence, we assume a linear SDE (in the narrow sense). Suppose further that the

observation model is

Y i
t = F TXi

t + εit, εt
indep∼ N(0, Σ).
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Given data y = (y1, . . . , yM )T , the joint posterior for the common parameters κ, fixed/ran-

dom effects φ = (φ1, . . . , φM )T , hyperparameters η, measurement error parameters Σ and

latent values x is

π(κ, η,Σ, φ, x|y) ∝ π(κ)π(η)π(Σ)π(φ|η)π(x|κ, φ)π(y|x,Σ) (5.3)

where π(κ)π(η)π(Σ) is the joint prior density ascribed to κ, η and Σ. In addition we have

that

π(φ|η) =

M∏
i=1

π(φi|η), (5.4)

π(y|x,Σ) =
M∏
i=1

n∏
j=1

π(yij |xij , Σ) (5.5)

and

π(x|κ, φ) =
M∏
i=1

π(xi1)
n∏
j=2

π(xij |xij−1, κ, φi). (5.6)

In what follows, we assume that interest lies in the marginal posterior for all parameters,

which is given by

π(κ, η,Σ, φ|y) ∝ π(κ)π(η)π(Σ)π(φ|η)π(y|κ,Σ, φ) (5.7)

∝ π(κ)π(η)π(Σ)

M∏
i=1

π(φi|η)π(yi|κ,Σ, φi). (5.8)

This factorization suggests a Gibbs sampler with separate blocks for each parameter vector

that sequentially takes draws from the full conditionals

1. π(φ|κ, η,Σ, y) ∝
∏M
i=1 π(φi|η)π(yi|κ,Σ, φi),

2. π(κ|η,Σ, φ, y) = π(κ|φ,Σ, y) ∝ π(κ)
∏M
i=1 π(yi|κ,Σ, φi),

3. π(Σ|κ, η, φ, y) = π(Σ|κ, φ, y) ∝ π(Σ)
∏M
i=1 π(yi|κ,Σ, φi),

4. π(η|κ,Σ, φ, y) = π(η|φ) ∝ π(η)
∏M
i=1 π(φi|η).

Although the likelihood terms π(yi|κ,Σ, φi) are tractable, and can be computed using a

forward filter of Algorithm 1 the full conditionals in steps 1, 2 and 3 will typically be

intractable necessitating Metropolis-Hastings steps. In scenarios where the (log of the)

random effects parameters φi follow normal distributions (as is the case in Chapters 3 and

4) a semi-conjugate prior specification for η is possible, admitting tractable Gibbs steps

for these parameters. The full inference scheme is given by Algorithm 6. Note that for

ease of presentation Σ and κ have been treated as a single block.
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Algorithm 6 Metropolis within Gibbs (tractable marginal likelihood)

1. Initialise η(0), κ(0), Σ(0), φ(0). Run M forward filters (conditional on κ(0), Σ(0), φ(0))

to obtain

π(y|κ(0), Σ(0), φ(0)).

Set the iteration counter to j = 1

2. (a) Propose (Σ∗, κ∗) ∼ q(·|Σ(j−1), κ(j−1))

(b) Run M forward filters (conditional on (Σ∗, κ∗)) to obtain π(y|κ∗, Σ∗, φ(j−1))

(c) With probability

α
(
[Σ∗, κ∗]|[Σ(j−1), κ(j−1)]

)
=

min

{
1,

π(Σ∗)π(κ∗)

π(Σ
(j−1)
e )π(κ(j−1))

× π(y|κ∗, Σ∗, φ(j−1))
π(y|κ(j−1), Σ(j−1), φ(j−1))

}

Put (Σ(j), κ(j)) = (Σ∗, κ∗) otherwise put (Σ(j), κ(j)) = (Σ(j−1), κ(j−1)).

3. For i = 1, . . . ,M :

(a) Propose φi∗ ∼ q(·|φi,(j−1))

(b) Run a forward filter (conditional on φi∗, Σ(j), κ(j)) to obtain

π̂(yi|κ(j), Σ(j), φi∗)

(c) With probability

α(φi∗|φi,(j−1)) = min

{
1,

π(φi∗|η)

π(φi,(j−1)|η(j−1))
× π(yi|κ(j), Σ(j), φi∗)

π(yi|κ(j), Σ(j), φi,(j−1))

}

Put φi,(j) = φi∗ otherwise put φi,(j) = φi,(j−1).

4. Draw η(j) ∼ π(·|φ(j)) [Gibbs or Metropolis-Hastings]

5. Set j := j + 1. Go to step 2.
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5.3 Linear stochastic differential equations with non-linear

observation model

Consider now an SDEMEM where the dynamics of each experimental unit is described

by a linear SDE and the observation model is of the form (5.2), where h(·) is a non-linear

function of Xi
t . We assume interest lies in the marginal posterior

π(κ, η,Σ, φ|y) ∝ π(κ)π(η)π(Σ)π(φ|η)π(y|κ,Σ, φ) (5.9)

∝ π(κ)π(η)π(Σ)
M∏
i=1

π(φi|η)π(yi|κ,Σ, φi) (5.10)

which suggests a Gibbs sampler that alternates between draws of 1, 2, 3, 4 as in Section 5.2.

Of course, in practice, the observed data likelihood π(yi|κ,Σ, φi) will be intractable. In

what follows, therefore, we consider a Metropolis within Gibbs strategy, and in particular

introduce auxiliary variables u to allow pseudo-marginal Metropolis-Hastings updates.

5.4 A pseudo-marginal approach

Consider again the intractable target in (5.9) and suppose that we can unbiasedly estimate

the intractable observed data likelihood π(y|κ,Σ, φ). To this end let

π̂U (y|κ,Σ, φ) =

M∏
i=1

π̂U i(yi|κ,Σ, φi)

denote a (non-negative) unbiased estimator of π(y|κ,Σ, φ), where u = (u1, . . . , uM )T is

the collection of auxiliary variables used to produce the corresponding estimate, with den-

sity π(u) =
∏M
i=1 g(ui). Now, the pseudo-marginal Metropolis-Hastings (PMMH) scheme

targets

π(κ, η,Σ, φ, u|y) ∝ π(κ)π(η)π(Σ)π(φ|η)π̂u(y|κ,Σ, φ)π(u) (5.11)

for which it is easily checked that∫
π(κ, η,Σ, φ, u|y)du ∝ π(κ)π(η)π(Σ)π(φ|η)

∫
π̂u(y|κ,Σ, φ)π(u)du

∝ π(κ, η,Σ, φ|y).

Hence, marginalising out U gives the marginal parameter posterior in (5.9). Directly

targeting the high dimensional posterior π(κ, η,Σ, φ, u|y) with PMMH is likely to give

very small acceptance rates. The structure of the SDEMEM naturally admits a Gibbs
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sampling strategy that we outline in the next section.

5.4.1 Gibbs sampling and blocking strategies

The form of (5.11) immediately suggests a Gibbs sampler that sequentially takes draws

from the full conditionals

1. π(φi, ui|κ, η,Σ, yi) ∝ π(φi|η)π̂ui(y
i|κ,Σ, φi)g(ui), i = 1, . . . ,M ,

2. π(κ, u|η,Σ, φ, y, u) = π(κ, u|φ,Σ, y) ∝ π(κ)
∏M
i=1 π̂ui(y

i|κ,Σ, φi)g(ui),

3. π(Σ, u|κ, η, φ, y, u) = π(Σ, u|κ, φ, y) ∝ π(Σ)
∏M
i=1 π̂ui(y

i|κ,Σ, φi)g(ui),

4. π(η|κ,Σ, φ, y, u) = π(η|φ) ∝ π(η)
∏M
i=1 π(φi|η).

Note that step 1 consists of a set of draws of M conditionally independent random variables

since

π(φ, u|κ, η,Σ, y) =
M∏
i=1

π(φi, ui|κ, η,Σ, yi).

Hence, step 1 gives a sample from π(φ, u|κ, η,Σ, y). Draws from the full conditionals in

1-3 can be obtained by using Metropolis-Hastings within Gibbs. Taking the [φi, ui] block

as an example, we use a proposal density of the form q(φi∗|φi)g(ui∗) and accept a move

from [φi, ui] to [φi∗, ui∗] with probability

min

{
1 ,

π(φi∗|·)
π(φi|·)

× π̂ui∗(yi|φi∗, ·)
π̂ui(y

i|φi, ·)
× q(φi|φi∗)
q(φi∗|φi)

}
.

Effectively, samples from the full conditionals in 1–3 are obtained via draws from pseudo-

marginal MH kernels. However, the above strategy is somewhat naive, since the auxiliary

variables U need only be updated once per Gibbs iteration. We therefore propose to

update the blocks [φi, ui], i = 1, . . . ,M in step 1, and condition on the most recent value

of u in the remaining steps. Explicitly, we take draws from

1. π(φi, ui|κ, η,Σ, yi) ∝ π(φi|η)π̂ui(y
i|κ,Σ, φi)g(ui), i = 1, . . . ,M ,

2. π(κ|η,Σ, φ, y, u) = π(κ|φ,Σ, y, u) ∝ π(κ)
∏M
i=1 π̂ui(y

i|κ,Σ, φi),

3. π(Σ|κ, η, φ, y, u) = π(Σ|κ, φ, y, u) ∝ π(Σ)
∏M
i=1 π̂ui(y

i|κ,Σ, φi),

4. π(η|κ,Σ, φ, y, u) = π(η|φ) ∝ π(η)
∏M
i=1 π(φi|η).

The aim of blocking in this way is to reduce the variance of the acceptance probability

associated with steps 2 and 3, which involve the product of M estimates as opposed to

a single estimate in each constituent part of step 1. The effect of blocking in this way is

explored empirically in Chapter 7.
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5.4.2 Estimating the likelihood

It remains that we can generate non-negative unbiased estimates π̂u(y|κ,Σ, φ). This can

be achieved by running a (bootstrap) particle filter that, for a single experimental unit,

recursively draws from the filtering distribution π(xit|yi1:t, κ,Σ, φi) for each t = 1, . . . , n, as

described in Section 4.2.2. Essentially, a sequence of importance sampling and resampling

steps is used to propagate a weighted sample {(xit,k, w(uit,k)), k = 1, . . . , Ni} from the

filtering distribution. Note that we let the weight depend explicitly on the tth component

of the auxiliary variable ui = (ui1, . . . , u
i
n), associated with experimental unit i. At time t,

the particle filter uses the approximation

π̂(xit|yi1:t, κ,Σ, φi) ∝ π(yit|xit, Σ)

Ni∑
k=1

π(xit|xit−1,k, κ, φi)w(uit−1,k). (5.12)

A simple importance sampling/resampling strategy follows, where particles are resam-

pled (with replacement) in proportion to their weights, propagated via xit,k = ft(u
i
t,k) ∼

π(·|xit−1,k, κ, φi) and reweighted by p(yit|xit,k, Σ). Recall that ft(·) is a deterministic func-

tion of uit,k (as well as the parameters and previous latent state, suppressed for simplicity)

that gives an explicit connection between the particles and auxiliary variables. An example

of ft(·) is to take the Euler-Maruyama approximation

ft(u
i
t,k) = xit−1,k + α(xit−1,k, κ, φ

i)∆t+
√
β(xit−1,k, κ, φ

i)∆tuit,k

where uit,k ∼ N(0, Id) and ∆t is a suitably chosen time-step. In practice, unless ∆t

is sufficiently small to allow an accurate Euler-Maruyama approximation, ft(u
i
t,k) will

describe recursive application of the numerical approximation.

For a linear SDE in the narrow sense, we have that

ft(U
i
t,k) = xit−1,k +mi

t|t−1 +
√
V i
t|t−1u

i
t,k

where mi
t|t−1 is given by (3.13) integrated over (t, t − 1] with initial condition xit−1,k and

V i
t|t−1 is (3.14) integrated over (t, t − 1] with initial condition 0. Algorithm 7 provides a

complete description of the particle filter. For the resampling step, we again use systematic

resampling (see e.g. Murray et al., 2016), which only requires simulating a single uniform

random variable at each time point. It is straightforward to augment the auxiliary variable

ui to include the random variables used in the resampling step. As a by-product of the

particle filter, the observed data likelihood π(yi|κ,Σ, φi) can be estimated via the quantity

π̂(yi|κ,Σ, φi) = N−ni

Ni∑
k=1

w̃(ui1,k)

n∏
t=2

Ni∑
k=1

w̃(uit,k). (5.13)

68



Chapter 5. Bayesian inference for mixed effects stochastic differential equations

Algorithm 7 Bootstrap particle filter for experimental unit i

1. Initialisation (t = 0).

(a) Sample the prior. Put xit0,k = f0(u
i
t0,k

) ∼ π(·), k = 1, . . . , Ni.

(b) Compute the weights. For k = 1, . . . , Ni set

w̃(uit0,k) = π(yit0 |x
i
t0,k, Σ), w(uit0,k) =

w̃(uit0,k)∑Ni
j=1 w̃(uit0,j)

.

(c) Update observed data likelihood estimate. Compute π̂uit0
(yit0 |κ,Σ, φ

i) =∑Ni
k=1 w̃(uit0,k)/Ni.

2. For times t = 2, 3, . . . , n:

(a) Resample. Obtain ancestor indices aktj−1
, k = 1, . . . , Ni using systematic

resampling on the collection of weights {w(uitj−1,1
), . . . , w(uitj−1,Ni

)}.

(b) Propagate. Put xitj ,k = ft(u
i
tj ,k

) ∼ π
(
· |xi

tj−1,aktj−1

, yitj , κ,Σ, φ
i
)
, k = 1, . . . , Ni.

(c) Compute the weights. For k = 1, . . . , Ni set

w̃(uitj ,k) = π(yitj |x
i
tj ,k

, Σ), w(uitj ,k) =
w̃(uitj ,k)∑Ni

m=1 w̃(uitj ,m)
.

(d) Update observed data likelihood estimate. Compute

π̂uit0:tj
(yit0:tj |κ,Σ, φ

i) = π̂uit0:tj−1
(yit0:tj−1

|κ,Σ, φi)π̂uitj (yitj |y
i
t0:tj−1

, κ,Σ, φi)

where π̂uitj
(yitj |y

i
t0:tj−1

, κ,Σ, φi) =
∑Ni

k=1 w̃(uitj ,k)/Ni.

We remind the reader that the corresponding estimator can be shown to be unbiased

(Del Moral, 2004; Pitt et al., 2012).

The full Gibbs sampler for generating draws from the joint posterior (5.11) is given

by Algorithm 8. For ease of exposition, we have blocked the updates for κ and Σ, but

note that the use of separate updates for these parameters is straightforward. The pre-

cise implementation of step 4 is likely to be example specific, and we anticipate that a

direct draw of η(j) ∼ π(·|φ(j)) will often be possible, for example when the components

of φ are assumed to be normally distributed and η consists of the corresponding means

and precisions, for which a semi-conjugate prior specification is possible. Executing Al-

gorithm 8 requires order n
∑M

i=1Ni draws from the transition density governing the SDE

in (5.1) per iteration. Although not considered in this thesis, we note that in scenarios
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Algorithm 8 Gibbs sampler

1. Initialise φ(0) = (φ1,(0), . . . , φM,(0)), κ(0), Σ(0). Draw ui,(0) ∼ g(·) and run
Algorithm 7 for i = 1, . . . ,M with ui,(0), φi,(0), κ(0), Σ(0) and yi to obtain
π̂ui,(0)(y

i|κ(0), Σ(0), φi,(0)). Set the iteration counter j = 1.

2. Update subject specific parameters. For i = 1, . . . ,M :

(a) Propose ui∗ ∼ g(·) and φi∗ ∼ q(·|φi,(j−1)).
(b) Compute π̂ui∗(yi|κ(j−1), Σ(j−1), φi∗) by running Algorithm 7 with ui∗, φi∗,

κ(j−1), Σ(j−1) and yi.

(c) With probability

min

{
1 ,

π(φi∗|η)

π(φi,(j−1)|η)
× π̂ui∗(yi|κ(j−1), Σ(j−1), φi∗)

π̂ui,(j−1)(yi|κ(j−1), Σ(j−1), φi,(j−1))
× q(φi,(j−1)|φi∗)
q(φi∗|φi,(j−1))

}
(5.14)

put φi,(j) = φi∗ and ui,(j) = ui∗. Otherwise, store the current values φi,(j) =
φi,(j−1) and ui,(j) = ui,(j−1).

3. Update common parameters.

(a) Propose (κ∗, Σ∗) ∼ q(·|κ(j−1), Σ(j−1)).

(b) Compute π̂u(j)(y|κ∗, Σ∗, φ(j)) =
∏M
i=1 π̂ui,(j)(y

i|κ∗, Σ∗, φi,(j)) by running Algo-
rithm 7 for i = 1, . . . ,M with ui,(j), φi,(j), κ∗, Σ∗ and yi.

(c) With probability

min

{
1 ,

π(κ∗)π(Σ∗)

π(κ(j−1))π(Σ(j−1))
× π̂u(j)(y|κ∗, Σ∗, φ(j))
π̂u(j)(y|κ(j−1), Σ(j−1), φ(j))

× q(κ(j−1), Σ(j−1)|κ∗, Σ∗)
q(κ∗, Σ∗|κ(j−1), Σ(j−1))

}
(5.15)

put (κ(j), Σ(j)) = (κ∗, Σ∗). Otherwise, store the current values (κ(j), Σ(j)) =
(κ(j−1), Σ(j−1)).

4. Update random effect population parameters. Draw η(j) ∼ π(·|φ(j)).

5. If j = niters, stop. Otherwise, set j := j + 1 and go to step 2.

where the transition density is intractable, draws of a suitable numerical approximation

are required. For example, we may use the Euler-Maruyama discretisation with time step

∆t = 1/m, where m is chosen to limit the associated discretisation bias. As discussed by

Andrieu et al. (2010), the number of particles per experimental unit, Ni, should be scaled

in proportion to the number of data points n. Consequently, the use of PMMH kernels is

likely to be computationally prohibitive in practice. We therefore consider the adaptation

of the correlated PMMH scheme (discussed in Section 4.2.2) to our problem.
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5.4.3 A correlated pseudo-marginal approach

Consider again the task of sampling the full conditional π(φi, ui|κ, η,Σ, yi) associated with

the ith experimental unit. In step 2(a) of Algorithm 8, a (pseudo-marginal) Metropolis-

Hastings step is used whereby the auxiliary variables ui are proposed from the associated

pdf g(·). Recall that as discussed by Deligiannidis et al. (2018) (see also Dahlin et al.,

2015), the proposal kernel need not be restricted to the use of g(ui). The correlated

PMMH (CPMMH) scheme generates a new ui∗ from K(ui∗|ui) where K(·|·) satisfies the

detailed balance equation

g(ui)K(ui∗|ui) = g(ui∗)K(ui|ui∗). (5.16)

It is then straightforward to show that a MH scheme with proposal kernel q(φi∗|φi)K(ui∗|ui)
and acceptance probability (5.14) satisfies detailed balance with respect to the target

π(φi, ui|κ, η,Σ, yi) (see the discussion in 4.2.2).

We take g(ui) as a standard Gaussian density and K(ui∗|ui) as the kernel associated

with a Crank–Nicolson proposal (Deligiannidis et al., 2018). Hence

g(ui) = N
(
ui; 0 , Id

)
and K(ui∗|ui) = N

(
ui∗; ρui ,

(
1− ρ2

)
Id
)

where Id is the identity matrix whose dimension d is determined by the number of ele-

ments in ui. The parameter ρ is chosen to be close to 1, to induce positive correlation

between π̂ui(y
i|κ,Σ, φi) and π̂ui∗(yi|κ,Σ, φi∗), thus reducing the variance of the accep-

tance probability in (5.14). Taking ρ = 0 gives the special case that K(ui∗|ui) = g(ui∗),

which corresponds using PMMH. Iteration j of step 2 of Algorithm 8 becomes

2. For i = 1, . . . ,M :

(a) Propose φi∗ ∼ q(·|φi,(j−1)). Draw ω ∼ N(0, Id) and put ui∗ = ρui,(j−1) +√
1− ρ2ω.

(b) Compute π̂ui∗(yi|κ(j−1), Σ(j−1), φi∗) by running Algorithm 7 with ui∗, φi∗, κ(j−1),

Σ(j−1) and yi.

(c) With probability given by (5.14) put φi,(j) = φi∗ and ui,(j) = ui∗. Otherwise,

store the current values φi,(j) = φi,(j−1) and ui,(j) = ui,(j−1).

Care must be taken here when executing Algorithm 7 in Step 2(b). Upon changing φi

and ui, the effect of the resampling step is likely to prune out different particles, thus

breaking the correlation between successive estimates of observed data likelihood. Sorting

the particles before resampling can alleviate this problem (Deligiannidis et al., 2018). We

follow the simple Euclidean sorting procedure of Section 4.2.2 to sort the particles before

resampling. We find that this works well for the example considered in Chapter 7.

71



Chapter 5. Bayesian inference for mixed effects stochastic differential equations

5.4.4 Tuning advice

It remains that we can choose the number of particles Ni to be used to obtain estimates of

the observed data likelihood contributions π̂ui(y
i|κ,Σ, φi). Note that we allow a different

number of particles per experimental unit to accommodate differing lengths of the yi and

potential model misspecification at the level of an individual unit. In the case of PMMH,

a simple strategy is to fix φi, κ and Σ at some central posterior value (obtained from a

pilot run), and choose Ni so that the variance of the log-posterior (denoted σ2Ni
) is around

2 (Doucet et al., 2015; Sherlock et al., 2015). When using a CPMMH kernel, we follow

Tran et al. (2017) by choosing Ni so that σ2Ni
= 2.16/(1 − ρ2l ) where ρl is the estimated

correlation between π̂ui(y
i|κ,Σ, φi) and π̂ui∗(yi|κ,Σ, φi). Hence, an initial pilot run (with

the number of particles set at some conservative value) is required to determine plausible

values of the parameters. This pilot run can also be used to give estimates of var(φi|yi),
i = 1, . . . ,M , each of which can subsequently be used as the innovation variance in a

Gaussian random walk proposal for φi.
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Application I

6.1 Background

Caloric restriction (CR) is when adequate nutrition is maintained but total caloric intake is

reduced. This has been shown to delay the onset of cancer and other age related diseases,

for example in organisms such as yeast, worms, flies and mice (Weindruch & Walford,

1988). It has been shown that the most dramatic effect on lifespan is when CR is early

onset, but there is also some evidence to suggest that late onset CR can result in beneficial

effects (Weindruch & Walford, 1988; Yu et al., 1985; Spindler, 2005). Most of the studies

focus on lifespan (Spindler, 2005) or cancer incidence (Weindruch & Walford, 1988; Volk

et al., 1994; Pugh et al., 1999; Spindler, 2005) and very few focus on the whole-animal

physiological response to late onset CR. In this work we look at the ways in which mice

compensate for the reduction in calories by studying their core body temperature. We

have data on 10 mice that were fed ad libitum (AL) and 10 mice that were subject to the

late onset CR diet. It has been widely shown that a reduction in core body temperature

is a key factor in increasing lifespan with CR, this result can vary with strain (Liao et al.,

2010). In this research we seek to find out if mice exposed to late onset CR also show a

reduction in body temperature.

Based on data arising from a 70 day study into the effect of late onset short term caloric

restriction on mice, Golightly et al. (2012) developed a joint model for physical activity and

core body temperature. They describe a sinusoidal pattern due to the circadian cycle in

both the activity and temperature along with a linear relationship between temperature

and (transformed) activity. A dynamic linear model was used to allow a time varying

amplitude and phase. Their initial analysis suggested that amplitude and phase were

plausibly constant and a simple hierarchical model was then used to quantify differences

between mice fed ad libitum and those that were caloric restricted. It was found that core

body temperature generally showed a decrease during caloric restriction and they found
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little difference in the linear coefficient characterising the relationship between temperature

and (transformed) activity between AL and CR mice. They also found that basal core

body temperature appeared to be fixed at a lower point in CR mice.

Unlike the approach of Golightly et al. (2012), we will use a SDEMEM to jointly

model core temperature over multiple experimental units (mice). This allows for the

incorporation of intrinsic stochasticity inherent in observed temperature traces. Moreover,

our hierarchical model allows for time varying amplitude.

6.2 The experimental data

Mice were taken from a long established colony of the C57/BL (ICRFa) strain and placed

into one of 20 cages (10 for males and 10 for females), with between four and six mice in

each cage. Mice were fed ad libitum (AL) until they were fourteen months old and cages

were then divided into two groups, with 10 cages in each group; five male cages and five

female cages. One group was allocated to AL feeding, and the other to caloric restriction

(CR) for 36 months. CR mice were provided with a 40% food restriction relative to the

AL group, delivered as one daily ration at around 9:30am. One randomly chosen mouse

in each cage was implanted with a wireless E-mitter which continuously monitored body

temperature. The data consist of hourly average temperature measurements, but due to

some power cuts there is some missingness in the data. Data were also removed for the

period between 9am and 12 noon every day due to the mice being disturbed then for

feeding. The first two weeks and the last two weeks worth of data were also removed. The

full data set corresponds to hourly temperature averages over a period of six months, for

each of the 20 mice.

Exploratory plots of the data are always useful for building good statistical models.

From Figure 6.1 it can be seen that all mice have a strong circadian pattern but there is a

clear difference in this pattern between CR and AL mice, along with an obvious difference

in overall temperature with CR mice appearing hold a lower temperature than the AL

mice. In what follows we construct and fit an appropriate SDEMEM for these data.

6.3 Modelling a single experimental unit

6.3.1 SDE model and solution

Consider a bivariate diffusion process {Xt, t ≥ 0} where

Xt = (Zt, At)
T .
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Figure 6.1: The average hourly temperatures of a single mouse randomly selected from each group
over eight days. The pink line denotes mice fed ad libitum and the blue denotes mice fed on the
caloric restricted diet.

Here Zt denotes temperature and At denotes amplitude. The dynamics of Xt are described

by a coupled SDE of the form

dZt = θ1 (θ2 − Zt) dt+
π

12
At cos

(
πt

12
+B

)
dt+ σ1dW1,t (6.1)

dAt = θ3 (θ4 −At) dt+ σ2dW2,t W1,t ⊥W2,t

Hence, we allow both amplitude and temperature to vary stochastically over time. We

anticipate that both processes will not deviate too far from some overall mean. We in-

corporate this belief via the form of the drift governing dAt and dZt, which ensures that

amplitude mean-reverts around a value θ4 at rate θ3 and the temperature process mean

reverts around θ2 at rate θ1. We have that σ1 and σ2 control the intrinsic noise for the

temperature and amplitude respectively, and B denotes the phase shift for the sinusoidal

behaviour of the temperature. See Figure 6.2 for how each parameter impacts the tra-

jectories of the temperature paths. Note that the coupled SDE above can be written

75



Chapter 6. Application I

Time

0 20 40 60 80 100

3
0

3
5

4
0

4
5

Time

0 20 40 60 80 100

3
0

3
5

4
0

4
5

θ1 = 0.5

Time

0 20 40 60 80 100

3
0

3
5

4
0

4
5

θ2 = 2

Time

0 20 40 60 80 100

3
0

3
5

4
0

4
5

θ3 = 0.5

Time

0 20 40 60 80 100

3
0

3
5

4
0

4
5

θ4 = 37

Time

0 20 40 60 80 100

3
0

3
5

4
0

4
5

σ1 = 0.5

Time

0 20 40 60 80 100

3
0

3
5

4
0

4
5

σ2 = 0.5

Time

0 20 40 60 80 100

3
0

3
5

4
0

4
5

B = 2

Figure 6.2: Each plot shows 10 simulated paths of mice temperatures using the model described
by (6.1) with an added observation error σε ∼ N(0, 1). Using (θ1 = 0.1, θ2 = 36, θ3 = 0.1, θ4 =
3, σ1 = 0.1, σ2 = 0.1, B = 0)T as the starting variables, we change each variable value separately
and in turn to see the effect this has on typical trajectories.
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as

dXt = [α1(t)Xt + α2(t)] dt+
√
β(t)dWt (6.2)

where

α1(t) =

−θ1
π
12 cos

(
πt
12 +B

)
0 −θ3

 ,

α2(t) =

θ1θ2
θ3θ4

 ,

β(t) =

σ
2
1 0

0 σ22

 ,

which is the form of a linear SDE in the narrow sense. This particular SDE can be solved as

follows; see also Section 3.3.1. Let Ut = P−1t Xt. Recall that Pt is known as a fundamental

matrix and satisfies the ODE:

dPt
dt

= α1(t)Pt, P0 = I2×2

Note that U0 = P−10 X0 = X0. Now

dUt = d(P−1t Xt)

and, since Ut is linear in Xt, Itô’s formula becomes

dUt = (dP−1t )Xt + P−1t dXt. (6.3)

Note that
d

dt
PtP

−1
t = Pt

dP−1t

dt
+
dPt
dt
P−1t = 0

⇒ Pt
dP−1t

dt
= −dPt

dt
P−1t

⇒ P−1t Pt
dP−1t

dt
= −P−1t α1(t)PtP

−1
t

⇒ dP−1t = −P−1t α1(t)dt.
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Substituting the above form into equation 6.3 and additionally using the form of dXt gives

dUt = −P−1t α1(t)Xtdt+ P−1t (α2(t) + α1(t)Xt) dt+ P−1t

√
β(t)dWt

= P−1t α2(t)dt+ P−1t

√
β(t)dWt

and hence

Ut = U0 +

∫ t

0
P−1s α2(s)ds+

∫ t

0
P−1s

√
β(s)dWs.

Using the Itô Isometry (3.5) we get

Ut|U0 ∼ N
(
U0 +

∫ t

0
P−1s α2(s)ds,

∫ t

0
P−1s β(s)(P−1s )Tds

)
.

Since Xt = PtUt we obtain

Xt|X0 ∼ N
(
PtX0 + Pt

∫ t

0
P−1s α2(s)ds, Pt

∫ t

0
P−1s β(s)(P−1s )TdsP Tt

)
.

To induce a compact notation we will write

Xt|X0 ∼ N(mt, Vt),

and consider mt and Vt as the solutions of a coupled ODE system which we derive as

follows.

We have mt = PtX0 + Pt
∫ t
0 P
−1
s α2(s)ds, so we apply the product rule to give

dmt

dt
=
dPt
dt
X0 +

dPt
dt

∫ t

0
P−1s α2(s)ds+ PtP

−1
t α2(t)

= α1(t)PtX0 + α1(t)Pt

∫ t

0
P−1s α2(s)ds+ α2(t)

= α1(t)

(
PtX0 + Pt

∫ t

0
P−1s α2(s)ds

)
+ α2(t)

⇒ dmt

dt
= α1(t)mt + α2(t).
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We have Vt = Pt
∫ t
0 P
−1
s β(s)(P−1s )TdsP Tt , so we apply the product rule twice to obtain

dVt
dt

= Pt

{
P−1t β(t)(P−1t )TP Tt +

∫ t

0
P−1s β(s)(P−1s )Tds× dP Tt

dt

}
+
dPt
dt

{∫ t

0
P−1s β(s)(P−1s )TdsP Tt

}
= β(t) + Pt

∫ t

0
P−1s β(s)(P−1s )TdsP Tt α2(t)

T

+ α2(t)Pt

∫ t

0
P−1s β(s)(P−1s )TdsP Tt

⇒ dVt
dt

= Vtα1(t)
T + β(t) + α1(t)Vt.

This yields the coupled ODE system
dVt
dt

= Vtα1(t)
T + β(t) + α1(t)Vt

dmt

dt
= α2(t) + α1(t)mt

(6.4)

with initial conditions m0 = x0 and V0 = 02×2, that is, the 2 × 2 matrix of zeros. The

solutions to the above ODE system can be found in Appendix A.1.

6.4 Bayesian inference

Assume that we only observe the temperature component at discrete times, subject to

additive Gaussian error. That is

Yt = F TXt + εt, εt
iid∼ N(0, σ2ε )

and

F =

(
1

0

)
.

Let y = (yt0 , ..., ytn)T denote the observations at n + 1 discrete times t0, . . . , tn. Upon

ascribing a prior density π(λ) to λ = (θ1, θ2, θ3, θ4, σ1, σ2, B, σε)
T , Bayesian inference may

proceed via the posterior density

π(λ|y) ∝ π(λ)π(y|λ) (6.5)
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where the marginal likelihood is

π(y|λ) = π(yt0)
n−1∏
i=0

π(yti+1 |yt0:ti , λ)

and the constituent terms π(yti+1 |yt0:ti , λ) are

π(yti+1 |yt0:ti , λ) =

∫
π(yti+1 |xti+1 , λ)π(xti+1 |xti , λ)π(xti |yt0:ti , λ)dxti:ti+1 .

Note that this integral is analytically tractable due to the linear Gaussian structure of

the model. Recall from Section 4.1 that these terms can be computed efficiently using a

forward filter. For completeness, we give the forward filter in full, for this particular model

see Algorithm 9.

6.4.1 Forward filter

Assume that Xt0 ∼ N(a,C) such that if Xt0 = xt0 is known, a = xt0 and C is a 2 × 2

matrix of zeros.

Recall that λ = (θ1, θ2, θ3, θ4, σ1, σ2, B, σε)
T is the object of inference. Note that in

what follows, where appropriate, we suppress dependence on λ for notational simplicity.

The forward filter steps for this model are shown in Algorithm 9. Note that if interest

is also in the marginal posterior for the latent process, π(x|y), a backward sampler can

be used to obtain draws of x given y (and λ). The backward sampler is given in full in

Algorithm 10.

6.4.2 Metropolis-Hastings

Note that the posterior in (6.5) is intractable. We therefore generate draws of λ using

a Metropolis-Hastings scheme. We update λ using a random walk proposal with normal

innovations. That is, if the current value of the chain is λ, the proposal mechanism takes

the form

q(λ∗|λ) = N (λ∗;λ,Σ)

where Σ is a tuning matrix. For example Roberts & Rosenthal (2001) suggest taking

Σ = 2.382

2
ˆV ar(λ|y) where ˆV ar(λ|y) can be estimated from a pilot run.

The acceptance probability is then

α(λ∗|λ) = min

{
1,
π(λ∗)π(y|λ∗)
π(λ)π(y|λ)

}
where π(y|λ∗) can be obtained from a single run of the forward filter in Algorithm 9 (and

π(y|λ) is obtained from the last accepted value of λ).
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Algorithm 9 Forward filter for temperature model

1. Initialise.

(a) Marginal likelihood update. Note that Yt0 |Xt0 ∼ N(F ′Xt0 , σ
2
ε ), therefore

Yt0 ∼ N
(
F ′a, F ′CF + σ2ε

)
⇒ π (yt0) = N

(
yt0 ;F ′a, F ′CF + σ2ε

)
(b) Posterior at t0. Compute Xt0 |yt0 ∼ N (a0, C0) where

a0 = a+ CF
(
F ′CF + σ2ε

)−1 (
yt0 − F ′a

)
C0 = C − CF

(
F ′CF + σ2ε

)−1
F ′C

2. Perform the following for j = 0, 1, . . . , n− 1.

(a) Prior at tj+1. We have Xtj |Yt0:tj ∼ N (aj , Cj) which gives

Xtj+1 |Yt0:tj ∼ N (m(tj+1), V (tj+1))

where m(tj+1) and V (tj+1) are the solutions to the ODE system in (6.4) ini-
tialised with m(tj) = aj and V (tj) = Cj .

(b) Marginal likelihood update. Using the observation equation we have

Ytj+1 |Yt0:tj ∼ N
(
F ′m(tj+1), F

′V (tj+1)F + σ2ε
)

and therefore π
(
ytj+1 |yt0:tj

)
= N

(
ytj+1 ;F ′m(tj+1), F

′V (tj+1)F + σ2ε
)
. Hence

the updated marginal likelihood is

π
(
yt0:tj+1

)
= π

(
yt0 : ytj

)
π
(
ytj+1 |yt0:tj

)
.

(c) Posterior at tj+1.(
Xtj+1

Ytj+1

) ∣∣∣∣∣yt0:tj ∼ N
((

m(tj+1)
F ′m(tj+1)

)
,

(
V (tj+1) V (tj+1)F
F ′V (tj+1) F ′V (tj+1)F + σ2ε

))
⇒ Xtj+1 |yt0:tj+1 ∼ N(aj+1, Cj+1)

where

aj+1 = m(tj+1) + V (tj+1)F
(
F ′V (tj+1)F + σ2ε

)−1 (
ytj+1 − F ′m(tj+1)

)
,

Cj+1 = V (tj+1) + V (tj+1)F
(
F ′V (tj+1)F + σ2ε

)−1
FV (tj+1).
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Algorithm 10 Backwards sampler for temperature model

1. Draw xtn from Xtn |y ∼ N(atj , Ctj )

2. For j = n− 1, n− 2, . . . , 0,

(a) Joint distribution of Xtj and Xtj+1 . Note that Xtj |yt0:tj ∼ N(atj , Ctj ). The
joint distribution of Xtj and Xtj+1 conditional on yt0:tj is(

Xtj

Xtj+1

) ∣∣∣∣∣yt0:tj ∼ N
((

atj
mtj+1

)
,

(
Ctj CtjP

T
tj+1

Ptj+1Ctj Vtj+1 .

))

(b) Backwards distribution. The distribution of Xtj |xtj+1 , yt0:tj is N(âtj , Ĉtj ) where

âtj = atj + CtjP
T
tj+1

V −1tj+1
(xtj+1 −mtj+1),

Ĉtj = Ctj − CtjP Ttj+1
V −1tj+1

Ptj+1Ctj .

Draw xtj from Xtj |xtj+1 , yt0:tj ∼ N(âtj , Ĉjj ).

This algorithm can be applied to data for each experimental unit independently, at the

expensive cost of ignoring intra-subject variability. Therefore, in what follows, we develop

a joint model over all experimental units, formulated as an SDEMEM.

6.5 SDEMEM

To better quantify the differences between AL and CR mice we develop an SDEMEM. We

allow each mouse to have different parameters, but these parameters are drawn from dis-

tributions that are dependent on feeding regime, with regime-specific parameters. Hence,

we assess differences between groups by performing inference for the treatment-specific

parameters.

6.5.1 Bottom level

Consider experimental unit i in treatment group j with i = 1, . . . , nj and j = 1, 2, with

AL mice designated as group 1 and CR mice designated as group 2. Let

Xij
t =

(
Zijt , A

ij
t

)T
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and assume that Xij
t follows the SDE in (6.1) so that

dZijt = θij1

(
θij2 − Z

ij
t

)
dt+

π

12
Aijt cos

(
πt

12
+Bij

)
dt+ σij1 dW

ij
1,t

dAijt = θij3

(
θij4 −A

ij
t

)
dt+ σij2 dW

ij
2,t W ij

1,t ⊥W
ij
2,t.

6.5.2 Top level

We complete the specification of the hierarchical model via the following.

λij1 = θij1 ∼ N
(
µj1,
[
τ j1

]−1)
, λij2 = θij2 ∼ N

(
µj2,
[
τ j2

]−1)
,

λij3 = θij3 ∼ N
(
µj3,
[
τ j3

]−1)
, λij4 = θij4 ∼ N

(
µj4,
[
τ j4

]−1)
,

λij5 = σij1 ∼ N
(
µj5,
[
τ j5

]−1)
, λij6 = σij2 ∼ N

(
µj6,
[
τ j6

]−1)
,

λij7 = logit

(
Bij

2π

)
∼ N

(
µj7,
[
τ j7

]−1)
, i = 1, . . . , nj , j = 1, 2.

Note that we avoided using any log normal priors to enable better interpretability and

comparability. It remains that we specify prior distributions for the µjk and τ jk . We

assume that these parameters are independent a priori and specify

µjk ∼ N(bk, d
−1
k ), τ jk ∼ Ga(gk, hk), j = 1, 2, k = 1, . . . , 7.

Note that, for ease of interpretation of the bottom level parameters and to facilitate natural

comparison between the two treatment groups, we specify normal distributions for the unit

specific parameters (rather than their natural logarithms).

6.5.3 Bayesian inference

We assume that observations are subject to additive Gaussian error

Y ij
t = Zijt + εijt εijt

iid∼ N
(

0,
[
σ2e
]j)

,

allowing a different measurement error variance in each treatment group. We assume the

same observation regime within each treatment group so that mouse i in treatment group

j has measurements yij = (yijt0 , . . . , y
ij
tnj

)T . The complete data set is denoted by

y =
(
y11, y21, . . . , yn11, y12, y22, . . . , yn22

)
.
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The bottom level parameters for mouse i in treatment group j are denoted by λij =(
λij1 , . . . , λ

ij
7

)T
with

λ =
(
λ11, λ21, . . . , λn11, λ12, λ22, . . . , λn22

)
denoting all bottom level parameters. For the top level parameters we write µj =(
µj1, . . . , µ

j
7

)T
and τ j =

(
τ j1 , . . . , τ

j
7

)T
. To induce a compact notation, we further write

ψj =
(
(µj)T , (τ j)T

)T
so that

ψ =
(
ψ1, ψ2

)
denotes all bottom level parameters. Finally, we have σe =

(
[σe]

1, [σe]
2
)T

and drop the

use of the inner parentheses when referring to treatment groups. By Bayes theorem

π(λ, ψ, σe|y) ∝
2∏
j=1

nj∏
i=1

π(σje)π(ψj)π(λij |ψj)π(yij |λij , σje) (6.6)

where we have used that the yij are independent, given λij and σje. Given the assumption

that the components of ψj (j = 1, 2) are independent a priori we have

π(ψj) =
7∏

k=1

π(µjk)π(τ jk).

Since (6.6) is intractable we use a Metropolis-Hastings scheme to generate draws of λ, ψ

and σe.

6.5.4 Metropolis-Hastings

We update λ, ψ and σe by iterating over the following draws.

1. λij ∼ π
(
λij |µj , τ j , σje, yij

)
, i = 1, . . . , nj , j = 1, 2.

2. µjk ∼ π
(
µjk|τ

j
k , λ

1j
k , . . . , λ

njj
k

)
, j = 1, 2, k = 1, . . . , 7.

3. τ jk ∼ π
(
τ jk |µ

j
k, λ

1j
k , . . . , λ

njj
k

)
, j = 1, 2, k = 1, . . . , 7.

4. σje ∼ π
(
σje|λ1j , . . . , λnjj , y1j , . . . , ynjj

)
, j = 1, 2.

Note that we have exploited the conditional dependencies between parameter blocks where

possible. Steps 2 and 3 admit tractable updates. Metropolis-within-Gibbs steps are re-

quired for the remaining updates. We provide details as follows.
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λij update

We have that

π
(
λij |µj , τ j , σje, yij

)
∝ π(λij |ψj)π(yij |λij , σje).

Since this full conditional density (FCD) is intractable we update λij using a Metropolis-

Hastings step. For a symmetric proposal (e.g. random walk with normal innovations)

with density q
(
λ̃ij |λij

)
= q

(
λij |λ̃ij

)
the acceptance probability is

α
(
λ̃ij |λij

)
= min

{
1,
π(λ̃ij)π(yij |λ̃ij , σje)
π(λij)π(yij |λij , σje)

}
.

µjk update

We have that

π
(
µjk|τ

j
k , λ

1j
k , . . . , λ

njj
k

)
∝ π

(
µjk

) nj∏
i=1

π
(
λijk |µ

j
k, τ

j
k

)
∝ exp

{
−dk

2

(
µjk − bk

)2}
exp

{
−
τ jk
2

nj∑
i=1

(
λijk − µ

j
k

)2}

∝ exp

{
−dk

2

[
(µjk)

2 − 2bkµ
j
k

]
−
τ jk
2

[ nj∑
i=1

(
λijk

)2
− 2µjk

nj∑
i=1

λijk + nj

(
µjk

)2]}

∝ exp

{
−1

2

[(
µjk

)2 (
dk + τ jknj

)
− 2µjk

(
dkbk + τ jk

nj∑
i=1

λijk

)]}
.

So the full conditional distribution for µjk is

µjk|· ∼ N

(
dkbk + τ jk

∑nj

i=1 λ
ij
k

dk + njτ
j
k

,
1

dk + njτ
j
k

)
.
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τ jk update

We have that

π
(
τ jk |µ

j
k, λ

1j
k , . . . , λ

njj
k

)
∝ π

(
τ jk

) nj∏
i=1

π
(
λijk |µ

j
k, τ

j
k

)
∝
(
τ jk

)gk−1
exp{−τ jkhk}

(
τ jk

)nj/2
exp

{
−
τ jk
2

nj∑
i=1

(
λijk − µ

j
k

)2}

∝
(
τ jk

)gk+nj/2−1
exp

{
−τ jk

[
hk +

1

2

nj∑
i=1

(
λijk − µ

j
k

)2]}
.

So the full conditional distribution for τ jk is

τ jk |· ∼ Γ

(
gk + nj/2, hk +

1

2

nj∑
i=1

(
λijk − µ

j
k

)2)
.

σje update

We have that

π
(
σje|λ1j , . . . , λnjj , y1j , . . . , ynjj

)
∝ π(σje)

nj∏
i=1

π(yij |λij , σje).

We sample this intractable FCD using a Metropolis-Hastings step. Since σje must be

strictly positive we work with φje = log σje and propose φ̃je using a normal random walk.

Hence the acceptance probability is

α
(
φ̃je|φje

)
= min

1,
π
(
φ̃je
)∏nj

i=1 π
(
yij |λij , φ̃je

)
π
(
φje
)∏nj

i=1 π
(
yij |λij , φje

)


where π
(
φje
)

= N
(
φje; bφ , d

−1
φ

)
is the prior density ascribed to φje.

6.6 Application to real data

The model was fit to the complete data set. Recall that this consists of around 4000 hourly

temperature averages per mouse. After completing a pilot run to obtain appropriate tuning

values (e.g. suitable starting values and innovation variances used in the MH updates for

the bottom level parameters and observation error parameters) the Metropolis-Hastings
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scheme was carried out with 100k iterations. The priors for the hyper parameters were

µ1 ∼ N (1, 0.1) , τ1 ∼ Γ (10, 0.1) ,

µ2 ∼ N (36, 0.1) , τ2 ∼ Γ (10, 0.1) ,

µ3 ∼ N (1, 0.1) , τ3 ∼ Γ (10, 0.1) ,

µ4 ∼ N (3, 0.1) , τ4 ∼ Γ (10, 0.1) ,

µ5 ∼ N (0.5, 0.1) , τ5 ∼ Γ (10, 0.1) ,

µ6 ∼ N (0.5, 0.1) , τ6 ∼ Γ (10, 0.1) ,

µ7 ∼ N (0, 0.1) , τ7 ∼ Γ (10, 0.1) ,

log(σe) ∼ N (0, 1) .

This specification incorporates relatively strong prior beliefs regarding the average rever-

sion levels of Zt and At. In particular, we expect average core temperature level to be

around 36, and the prior for average amplitude level reflects our belief of a strong diurnal

pattern between 33 and 39. We have relatively weak prior beliefs regarding the precision

parameters. Our prior beliefs regarding average reversion rates and intrinsic noise reflects

beliefs that the process should be strongly mean reverting and that the level of noise is

small. Note also that the probability of assigning a negative value is small under these

priors.

Running the Metropolis-within-Gibbs scheme with 100k iterations including 10k for

burn-in (without thinning) gave output with reasonable mixing. Figures 6.3 – 6.5 give

the marginal posterior distributions for each hyper parameter for both treatment groups.

In Figure 6.3, the top centre plot shows the marginal posterior distributions of average

(across experimental units) of the overall temperature level (µ2) for the two treatment

groups. We see that the AL group exhibits a distinctly higher average temperature than

the CR group and the tails of these distributions do not considerably overlap. This result

is consistent with other works showing that mice compensate for the lack of calories with

a reduced core body temperature (Weindruch & Walford, 1988; Duffy et al., 1989; Roth

et al., 2002). The top left plot in Figure 6.3 shows the posterior distribution for the mean

reversion rate for the temperature, and the top right shows the posterior distribution for

the mean reversion rate for the amplitude, although the two groups of mice seem to revert

to the amplitude at the same rate, their rates of reversion to the temperature appears a

lot slower for those on the caloric restricted diet than for those fed ad libitum. We can

see the posterior distribution for the mean of the intrinsic stochasticity parameters for the

temperature process (µ5) in Figure 6.4 (top centre plot). It appears to be small and similar

for both groups. Also in Figure 6.4, the top left plot shows the posterior distribution of

the mean of the overall amplitude level (µ4) for the two treatment groups. We see that
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Figure 6.3: Marginal posterior distributions with top row showing the means µ1, µ2 and µ3 from
left to right and and the bottom row showing the precisions τ1, τ2 and τ3 from left to right. Pink
line shows AL mice, and blue line shows CR mice.

the AL group has a considerably higher amplitude than the CR group with the posteriors

not overlapping significantly. This suggests that the diurnal variation is plausibly lower

in the CR treatment group, as found previously (Golightly et al., 2012). The intrinsic

stochasticity for the amplitude is shown in the top right plot of Figure 6.4 and we can

see that the CR treatment group has a smaller underlying random variation. Whilst we

haven’t overlaid the prior distributions it is clear that the analysis has been informative.

We conclude that our findings support the hypothesis that mice have a lower temperature

with a reduced calorie diet and that their diurnal variation is also smaller. In Figure 6.5,

the left hand plot shows µ7, the mean of B, the phase shift. The posterior variance of this

parameter is much smaller for the AL group compared to CR, perhaps suggesting that

CR mice may enter different phases of the sinusoid during the diurnal period.
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Figure 6.4: Marginal posterior distributions with top row showing the means µ4, µ5 and µ6 from
left to right and the bottom row showing the precisions τ4, τ5 and τ6. Pink line shows AL mice,
and blue line shows CR mice.

Figure 6.5: Marginal posterior distributions for mean µ7, precision τ7 and mean of σe. Pink line
shows AL mice, and blue line shows CR mice.

6.7 Assessing model fit

Model fit can be assessed by drawing from the posterior predictive density (for mouse i in

treatment j)

π(ỹij |y) =

∫
π(ỹij |λij)π(λij |y)dλij .

Although this predictive density will typically be intractable, samples can be obtained by

taking a thinned set of posterior parameter samples {λij(1), . . . , λij(N)} and executing

the following steps for each m = 1, . . . , N :

1. Run the forward filter, backward sampler (Algorithms 9 and 10) conditional on

λij(m) to obtain xij(m)

89



Chapter 6. Application I

2. Set ỹ
(ij)
t (m) = xijt (m) + εijt , εijt ∼ N(0, [σ2ε ]

j(m)), t = t0, . . . , tnj .

We assess model fit by comparing the data at each time point with their corresponding

(marginal) predictive distributions. Figure 6.6 shows the marginal predictive mean and

95% credible intervals for two randomly chosen mice fed ad libitum, and two randomly

chosen mice on the caloric restricted diet. We used 96 data points from the middle of

the study and overlayed for comparison, with the disruptive periods removed. The model

appears to fit the data reasonably well, with nearly all observations falling within the

95% credible intervals in each case. Similar results across the entire data set suggest a

reasonable fit overall.

Time (hours)

T
e
m

p
e
ra

tu
re

0 20 40 60 80 100

3
3

3
4

3
5

3
6

3
7

3
8

3
9

Time (hours)

T
e
m

p
e
ra

tu
re

0 20 40 60 80 100

3
3

3
4

3
5

3
6

3
7

3
8

3
9

Time (hours)

T
e
m

p
e
ra

tu
re

0 20 40 60 80 100

3
3

3
4

3
5

3
6

3
7

3
8

3
9

Time (hours)

T
e
m

p
e
ra

tu
re

0 20 40 60 80 100

3
3

3
4

3
5

3
6

3
7

3
8

3
9

Figure 6.6: Predictive plots using the forward filter and backwards sampler. Top two plots show
results for two mice fed ad libitum. Bottom two plots show results for mice on the caloric restricted
diet. The black line shows the mean of predictive samples, the black dotted line shows the 95%
credible interval, and the red line shows the real data.
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Application II

This application is based on the work of Picchini & Forman (2019), that used a stochastic

differential mixed effects model to describe the tumour volume dynamics in mice receiving a

treatment for tumours. The original study involved four treatment groups and one control

group, and each group comprised seven or eight mice. Measurements of the tumours were

taken every Monday, Wednesday and Friday for six weeks; however the majority of the

mice were euthanized before the end of the study, once their tumour volumes exceeded

1000 cubic mm. We use the model derived in this study to generate a synthetic data set,

in order to facilitate comparison between CPMMH accuracy and efficiency with PMMH.

Although a transformation of the tumour growth process satisfies a linear SDE, a nonlinear

observation model precludes tractability of the observed data likelihood, necessitating the

use of (C)PMMH. We additionally derive a linear noise approximation (LNA) of the

SDEMEM, and compare inferences made under the LNA with the output of (C)PMMH.

7.1 Tumor growth SDEMEM

Following Picchini & Forman (2019), we consider a stochastic differential mixed effects

model with

dXi
1,t =

(
βi + (γi)2/2

)
Xi

1,tdt+ γiXi
1,tdW

i
1,t

dXi
2,t =

(
−δi + (ψi)2/2

)
Xi

2,tdt+ ψiXi
2,tdW

i
2,t (7.1)

for experimental units i = 1, . . . ,M . Here, W1,t and W2,t are uncorrelated Brownian

motion processes, Xi
1,t and Xi

2,t are respectively the volume of surviving tumor cells and

volume of cells killed by a treatment for mouse i. We have that γ2 controls the within-

subject growth rate variance which therefore means that the instantaneous growth rate

is not exactly βi but deviates from this by a random normal perturbation. Similarly,

ψ2 controls the within-subject kill rate variance and so the instantaneous kill rate is not
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exactly δi. We adopt the parameterisation in (7.1) (with (γi)2/2 and (ψi)2/2 included in

the drift of the SDE) so that the individual growth/death processes are given by

Xi
1,t = xi1,0 exp(βit + γW i

1,t)

Xi
2,t = xi2,0 exp(−δit + ψW i

2,t) (7.2)

which are log-normally distributed stochastic processes. Note that in the absence of in-

trinsic stochasticity (with γ = ψ = 0) we obtain xi1,0 exp(βit) and xi2,0 exp(−δit), which

coincides with the ODE mixed effects model described later in Section 7.4.

Let V i
t = Xi

1,t + Xi
2,t denote the total tumor volume at time t in mouse i. The

observation model is given by

Y i
t = log V i

t + εit, εit
indep∼ N(0, σ2e). (7.3)

That is, the logarithm of total tumour volume is observed subject to additive Gaussian

noise. Let φi = (log βi, log γi, log δi, logψi). We complete the SDEMEM specification via

the assumption that

φij |η
indep∼ N(µj , τ

−1
j ), j = 1, . . . , 4 (7.4)

so that η = (µ1, . . . , µ4, τ1, . . . , τ4).

We recognise that Xi
1,t and Xi

2,t are geometric Brownian motion processes and (7.1) can

be solved analytically (by applying the Itô formula to the logarithm of both components)

to give (7.2). Hence,

Xi
1,t|X1,0 = x1,0 ∼ LN

(
log(x1,0) + βit , (γi)2t

)
Xi

2,t|X2,0 = x2,0 ∼ LN
(
log(x2,0)− δit , (ψi)2t

)
(7.5)

where LN(·, ·) denotes the lognormal distribution. We emphasise that despite the avail-

ability of a closed form solution to the underlying SDE model, the observed data likelihood

is intractable, due to the nonlinear form of (7.3).

We mimicked the real data application in Picchini & Forman (2019) by generating 21

observations at integer times for M = 10. We took

η = (log 0.29, log 0.25, log 0.09, log 0.34, 10, 10, 10, 10)

and sampled φij |η using (7.4). The latent SDE process was then generated using (7.5)

with an initial condition of x0 = (75, 75)T (assumed known), and each observation was

corrupted according to (7.3) with σ2e = 0.2. The resulting data traces are consistent

with the observations on total tumor volume of those subjects receiving chemotherapy

in Picchini & Forman (2019) and can be seen in Figure 7.1. Note that for simplicity we
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only consider this treatment group and therefore do not include a treatment effect. We

have also assumed data traces of equal length and on a regular time grid. We analyse this

5 10 15 20

6
8

1
0

1
2

1
4

Time

Figure 7.1: Simulated data for 10 units of tumour volume growth in mice. Dotted lines denote the
tumour volume without observation error, solid lines have had observation error added.

synthetic data set in Section 7.3. In what follows, we note that a tractable approximation

of the SDEMEM can be found by seeking a (linear) Gaussian approximation of log V i
t .

The resulting linear noise approximation (LNA) is derived next in Section 7.2. We then

compare inference under the gold standard SDEMEM to that obtained under the LNA.

7.2 LNA

Consider the tumor growth model in (7.1), (7.3) and (7.4) and a single experimental unit

so that the superscript i can be dropped from the notation. To obtain a tractable observed

data likelihood, we construct the linear noise approximation of log Vt = log(X1,t +X2,t).

Let Zt = (Z1,t, Z2,t, Z3,t)
T = (log Vt, logX1,t, logX2,t)

T . The SDE satisfied by Zt can
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be found using the Itô formula, for which we obtain

dZt = α(Zt, φ)dt+
√
β(Zt, φ)dWt

where

α(Zt, φ) =
{
β + 0.5γ2

}
eZ2,t−Z1,t +

{
−δ + 0.5τ2

}
eZ3,t−Z1,t − 0.5

{
γ2e2(Z2,t−Z1,t) + ψ2e2(Z3,t−Z1,t)

}
β

−δ



β(Zt, φ) =

γ
2e2(Z2,t−Z1,t) + τ2e2(Z3,t−X1,t) γ2e2(Z2,t−Z1,t) ψ2e2(Z3,t−Z1,t)

γ2e2(Z2,t−Z1,t) γ2 0

ψ2e2(Z3,t−Z1,t) 0 ψ2

 .

We apply the linear noise approximation (LNA) by partitioning Zt as Zt = mt+Rt where

mt is a deterministic process satisfying

dmt

dt
= α(mt, φ) (7.6)

and {Rt, t ≥ 0} is a residual stochastic process satisfying

dRt = {α(Zt, φ)− α(mt, φ)} dt+
√
β(Zt, φ)dWt.

By Taylor expanding α and β about the deterministic process mt and retaining the first

two terms in the expansion of α, and the first term in the expansion of β, we obtain an

approximate residual stochastic process {R̃t, t ≥ 0} satisfying

dR̃t = JtR̃tdt+
√
β(mt, φ)dWt

where Jt is the Jacobian matrix with (i, j)th element (Jt)i,j = ∂αi(mt, φ)/∂mj,t. Assuming

initial values m0 = z0 and R̃0 = 0, the approximating distribution of Zt is given by

Zt|Z0 = z0 ≈ N(mt, Ht) (7.7)

where mt satisfies (7.6) and, after several calculations which we omit for brevity, Ht is the

solution to
dHt

dt
= HtJ

T
t + β(mt, φ) + JtHt. (7.8)
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7.2.1 Inference using the LNA

Note that the observation model in (7.3) can be written as

Yt = P TZt + εt, εt
indep∼ N(0, σ2e). (7.9)

where P is a 3×1 ‘observation vector’ with first entry 1 and zeros elsewhere. The linearity

of (7.7) and (7.9) yields a tractable approximation to the marginal likelihood π(y|φ, σe),
which we denote by πLNA(y|φ, σe). The approximate marginal likelihood πLNA(y|φ, σe)
can be factorised as

πLNA(y|φ, σe) = πLNA(y1|φ, σe)
n∏
i=2

πLNA(yi|y1:i−1, φ, σe) (7.10)

where y1:i−1 = (y1, . . . , yi−1)
T . Suppose that Z1 ∼ N(a,C) a priori, for some constants a

and C. The marginal likelihood under the LNA, πLNA(y1:n|φ, σe) := πLNA(y|φ, σe) can be

obtained via a forward filter, which is given in Algorithm 1. Inference for the SDEMEM

defined by (7.1), (7.3) and (7.4) may be performed via a Gibbs sampler that draws from

the following full conditionals

1. πLNA(φ|η, σe, y) ∝
∏M
i=1 π(φi|η)πLNA(yi|σe, φi),

2. πLNA(σe|η, φ, y) ∝ π(σe)
∏M
i=1 πLNA(yi|σe, φi),

3. π(η|σe, φ, y) ∝ π(η)
∏M
i=1 π(φi|η).

The results for this scheme can be seen in the following section, in Table 7.1 and Figure 7.2

where we will also compare with the SDEMEM model using the various PMMH schemes.

7.3 SDEMEM vs LNA

We adopted semi conjugate, independent N(−2, 1) and Ga(2, 0.2) priors for the µj and

τj respectively. We took log σe ∼ N(0, 1) to complete the prior specification. Given the

use of synthetic data of equal length for each experimental unit, we pragmatically took

the number of particles as Ni = N , i = 1, . . . , 10. Our choice of N was guided by the

tuning advice of Section 5.4.4. We compare four approaches: naive PMMH (where the

ui are updated with both the subject specific and common parameters), PMMH (where

the ui are only updated with the subject specific parameters – Algorithm 8), CPMMH

(Algorithm 8 with a Crank-Nicolson proposal on the ui) and the LNA-based approach.

We ran each scheme for 500k iterations.

The results are summarised in Table 7.1 and Figure 7.2.
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Algorithm ρ N CPU (m) mESS mESS/m Rel.

LNA - - 1286 3676 2.858 16
PMMH - naive 0 40 8844 1598 0.181 1
PMMH 0 30 3842 2559 0.666 4
CPMMH 0.999 10 957 2311 2.415 13

Table 7.1: Tumour model. Correlation ρ, number of particles N , CPU time (in minutes m),
minimum ESS, minimum ESS per minute and relative minimum ESS per minute. All results are
based on 500k iterations of each scheme.

Figure 7.2 shows marginal posterior densities of the components of η, based on the

ground truth SDEMEM and LNA. We see that inferences for these parameters are con-

sistent with the true values that generated the data (with similar results obtained for the

other parameters). Figure 7.3 shows the trace plots for µ1 and τ1, which we can see show

that the CPMMH scheme converges well. Convergence is similar for all other parame-

ters. We also note that the LNA based approach provides an accurate alternative to the

SDEMEM.

Table 7.1 indicates that CPMMH with ρ = 0.999 yields results that are 13 times more

efficient that naive PMMH and three times more so than standard PMMH. Although we

can see that LNA is slightly more efficient than CPMMH there is a significant saving in

CPU time making this method a reasonable competitor to using the LNA with the Gibbs

sampler.

7.4 Comparison with ODEMEM

To highlight the potential issues that arise by ignoring inherent stochasticity, we consider

inference for an ordinary differential equation mixed effects model (ODEMEM) of tumour

growth. We take the SDEMEM in (7.1) and set γi = ψi = 0 to give

dxi1,t = βixi1,tdt,

dxi2,t = −δixi2,tdt (7.11)

for i = 1, . . . ,M . The observation model and random effects distributions remain un-

changed from (7.3) and (7.4) upon omitting log γi and logψi from φi. The ODE system

in (7.11) can be solved to give

xi1,t = xi1,0 exp{βit}, xi2,t = xi2,0 exp{−δit}.
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The likelihood associated with each experimental unit is then obtained simply as

π(yi|φi, σe) =
21∏
t=1

N
(
yit; log(xi1,t + xi2,t), σ

2
e

)
.

Fitting the ODEMEM to the synthetic data set from Section 7.1 is straightforward, via a

Metropolis-within-Gibbs scheme. Figures 7.4 and 7.5 summarise our findings.

Unsurprisingly, since the ODEMEM is unable to account for intrinsic stochasticity, the

observation standard deviation is massively over-estimated. Figure 7.4 shows little agree-

ment between the marginal posteriors under the ODEMEM and SDEMEM for this param-

eter. In terms of model fit, both the observation (Y 1
t ) and latent process (X1

t = log V 1
t )

predictive distributions for unit 1 are over-concentrated for the ODEMEM. Similar re-

sults (not shown) are obtained for the other experimental units. Notably, from Figure 7.5,

around half of the actual simulated Xt values lie outside of the 95% credible interval under

the ODEMEM.
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Figure 7.2: Marginal posterior distributions for µi and τi, i = 1, . . . , 4. dotted line is from the
LNA scheme, solid line is from the CPMMH scheme.
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Figure 7.4: Marginal posterior distributions for the (logged) subject specific parameters log β1,
log δ1, and the observation standard deviation log σe. Dashed line shows results from ODEMEM,
solid line is from SDEMEM.
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Figure 7.5: Posterior predictive mean (black) and 95% credible intervals (grey) for the observed
process Y 1

t (circles, left panel) and the latent process X1
t = log V 1

t (circles, right panel). Dashed
line shows results from ODEMEM, solid line is from SDEMEM.
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Discussion and further work

The aim of this thesis was to efficiently infer model parameters of biological processes that

evolve over time. These processes are often complicated by inherent stochasticity and the

observations are usually subject to measurement error. When observations on multiple

experimental units/subjects are available, it is important that the modelling approach

additionally accounts for between subject variation. We sought to create Bayesian infer-

ence schemes that could capture these variations whilst inferring the model parameters.

We focused particularly on SDEMEMs whose underlying dynamics were driven by linear

SDEs. While SDEMEMs are a flexible class of model that capture both between- and

within-subject variation, their widespread use has been limited by technical difficulties

that make the execution of inference algorithms (both classic and Bayesian) computa-

tionally intensive. In the SDEMEMs we considered, the random effect parameters could

have any distribution (not restricted to the Gaussian family) and the observation model

does not have to be a linear combination of the latent states. Our contribution, therefore,

is an inferential framework that applies to a large class of SDEMEMs, albeit under the

assumption that the underlying SDE is linear in the state process.

We considered both instances of the observation process being linear and non-linear.

These scenarios typically lead to the observed data likelihood being tractable and in-

tractable respectively. For example, the former may arise if the SDE admits a Gaussian

solution and the observation model is linear and Gaussian. In the scenario where the

observed data likelihood was tractable it was calculated analytically using a forward filter.

It is worth emphasising that even in this case, the marginal (in the sense of integrating out

the latent dynamic process for each experimental unit) posterior distribution of all quanti-

ties of interest remains intractable. We therefore used a Metropolis-within-Gibbs scheme

to generate draws from the posterior. We proposed alternating between draws of blocks

consisting of parameters governing each experimental unit, population level parameters,

and parameters governing the observation process.
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For a non-linear (and/or non Gaussian) observation process, the observed data likeli-

hood became intractable. Nevertheless, a particle filter (targeting the distribution of the

latent process given the observations) can be used to unbiasedly estimate the observed data

likelihood. This technique admits a class of Metropolis-Hastings (MH) scheme known as

pseudo-marginal MH (PMMH). In essence, a carefully constructed MH scheme is used to

target a joint density over an extended state space (that includes the variables used to gen-

erate the likelihood estimates) that admits the posterior density of interest as a marginal.

We proposed a pseudo-marginal-within-Gibbs scheme applicable to SDEMEMs, and pro-

posed to block together updates of the population level parameters and the innovations

to improve mixing. It is worth noting again here that the efficiency of pseudo-marginal

schemes will be sensitive to the number of particles N used in the particle filter. A like-

lihood estimator with large variance is likely to result in parameter chains that exhibit

sticky behaviour. This problem can be alleviated by increasing N , but also at an increased

computational cost. We therefore further adapted a recently proposed correlated pseudo-

marginal MH method to the case of SDEMEMs. The basic idea is to induce strong and

positive correlation between successive likelihood estimates, thereby reducing the variance

of the MH acceptance ratio. This correlation is induced by proposing new innovations us-

ing a Crank-Nicolson kernel, which in turn requires specification of a correlation parameter

ρ by the practitioner. We investigated the performance of the proposed methodology in the

second of two applications, and additionally compared against an approximate approach,

that constructs a linear noise approximation (LNA) of the SDEMEM.

In our first data application we used an SDEMEM to model core temperature over

multiple experimental units (mice) that were involved in a feeding regime experiment. This

allowed for the incorporation of intrinsic stochasticity inherent in observed temperature

traces. Our hierarchical model allowed for time varying amplitude, was governed by

underlying linear SDEs and had a linear observation model. We fitted the model to 4000

observations on 20 experimental units. We used the Metropolis-within-Gibbs algorithm

described above to infer the model parameters. We found that the mice have a lower

temperature when subjected to a reduced calorie diet and that their diurnal variation is

also smaller. This is consistent with previous studies (e.g Weindruch & Walford, 1988;

Duffy et al., 1989; Roth et al., 2002; Golightly et al., 2012).

In our second data application we used a stochastic differential mixed effects model to

describe the tumour volume dynamics in mice receiving treatment for tumours. We im-

plemented the pseudo-marginal-Metropolis-within-Gibbs algorithm described above, and

compared against a PMMH approach, and an MH scheme targeting the posterior un-

der the linear noise approximation, where the latter was constructed by an appropriate

linearisation of the observation model. We found that a correlated PMMH (CPMMH)

approach permits fewer particles compared to PMMH, while still obtaining a comparable
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effective sample size (ESS). Consequently, overall efficiency, as measured by ESS per sec-

ond is much reduced. We found that an increase in overall efficiency of up to a factor of

25 was possible. The LNA gave improved performance, as expected (since in this case the

observed data likelihood can be calculated without recourse to sampling), although there

was relatively little difference between the CPMMH and LNA approaches. It is worth not-

ing that some care must be taken when choosing ρ, which governs the level of correlation

between successive likelihood estimates. Taking ρ ≈ 1 can result in the sampler failing to

adequately mix over the auxiliary variables. We found that this problem was exacerbated

when using relatively few particles (such as N = 1), but can be overcome by reducing ρ.

It was also necessary to set the number of particles N and, when correlated particle filters

are used, the correlation parameter ρ (however this one is easily set within the interval

[0.90, 0.999]). Finally, the usual settings for the MCMC proposal distribution should be

decided (covariance matrix of the proposal density, q(·|·)). Nevertheless, it is clear that

the CPMMH approach requires minimal tuning, over and above PMMH.

There are a number of ways in which our approach could be extended and improved

upon. The proposed methodology relies on the use of the bootstrap particle filter, within

which particles are propagated according to the SDE solution, myopically of the next ob-

servation. In scenarios where the density of process conditional on the next observation is

available, or can be accurately approximated, its use inside the particle filter (for propa-

gating particles) is likely to lead to gains in overall efficiency. Examples of this approach

for generic SDEs can be found in Golightly & Wilkinson (2011). We have focused on

SDEMEMs driven by a linear class of SDE. The extension of our inference approach to

nonlinear SDEMEMs also remains of interest. However, we note that several difficulties

become apparent. For example, nonlinear SDEs rarely admit analytic solutions necessitat-

ing a tractable approximation (such as the LNA) or the use of numerical approximations.

If the latter approach is adopted, it is usually the case that intermediate times are added

(between observation instants) to make the numerical approximation achieve a desired

level of accuracy. Integrating over the uncertainty at these intermediate times is partic-

ularly challenging, and typically requires the use of a proposal construct that takes into

account the observations, between which the latent process is required. This scenario is

considered in Botha et al. (2019); see for example their component-wise pseudo-marginal

(CWPM) method, which is similar to the naive Gibbs strategy we also propose. In order

to correlate the particles, Botha et al. (2019) advocate the use of the blockwise pseudo-

marginal strategy of Tran et al. (2017): this way, at each iteration of a CPMMH algorithm

they randomly pick a unit in the set {1, ..,M}, and only for that unit they update the

corresponding auxiliary variates, whereas for the remaining M − 1 units they reuse the

same auxiliary variates ui as employed in the last accepted likelihood approximation. This

approach implies an estimated correlation between loglikelihoods of around 1−1/M , which
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also implies that the correlation level is completely guided by the number of units. This

means that for a small M (e.g. M = 5 or 10, implying a correlation of 0.80 and 0.90

respectively) a blockwise pseudo-marginal strategy might not be as effective as it could

be. Nevertheless a comparison of our approach with that described in Botha et al. (2019)

remains an interesting avenue for future research.
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A.1 Solving a linear SDE model of temperature dynamics

A.1.1 SDE model

Recall that

Xt = (Zt, At)
T

where

dZt = θ1(θ2 − Zt)dt+
π

12
At cos

(
πt

12
+B

)
dt+ σdWt

dAt = θ3 (θ4 −At) dt+ σAdW
A
t

Therefore our SDE is

dXt =


−θ1

π
12 cos

(
πt
12 +B

)
0 −θ3


Zt
At

+

θ1θ2
θ3θ4


 dt+

σ 0

0 σA

 d

Wt

WA
t



⇒ dXt = [α1(t)Xt + α2(t)] dt+
√
β(t)dWt

and the solution will be of the form

Xt|X0 ∼ N (m(t), V (t)) .

Note that in what follows, for notational clarity, we denote deterministic functions of t as

m(t), V (t) etc.
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A.1.2 Solving first-order linear ODEs with integrating factors

Consider a first order linear differential equation of the form

dy(t)

dt
= q(t)− p(t)y(t)

for known functions q(·) and p(·). It is straightforward to show that

y(t) =
u(ti−1)y(ti−1)

u(t)
+

1

u(t)

∫ t

ti−1

u(t)q(t)dt

where

u(t) = e
∫
p(t)dt

is an integrating factor.

A.1.3 Mean

The mean of the process with varying amplitude satisfies

dm(t)

dt
= α2(t) + α1(t)m(t)

=

θ1θ2
θ3θ4

+

−θ1
π
12 cos

(
2πt
24 +B

)
0 −θ3


m1(t)

m2(t)

 .

This yields a system of linear ODEs.

dm1(t)

dt
= θ1θ2 − θ1m1(t) +

π

12
cos

(
2πt

24
+B

)
m2(t) (1)

dm2(t)

dt
= θ3θ4 − θ3m2(t) (2)
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Equation (2) can be solved using the integrating factor with p(t) = θ3, and q(t) = θ3θ4,

so that u(t) = eθ3t. Hence we obtain

m2(t) =
eθ3(ti−1)m2,0

eθ3t
+ e−θ3t

∫ t

ti−1

θ3θ4e
θ3sds

= m2(ti−1)e
−θ3(t−ti−1) + e−θ3t

[
θ4e

θ3s
]t
ti−1

= m2(ti−1)e
−θ3(t−ti−1) + e−θ3t

[
θ4e

θ3t − θ4eθ3ti−1

]
= m2(ti−1)e

−θ3(t−ti−1) + θ4

(
1− e−θ3(t−ti−1)

)
.

Now, to solve equation (1), substitute in the form of m2(t) to give

dm1(t)

dt
= θ1θ2 − θ1m1(t) +

π

12
cos

(
πt

12
+B

)
m2,ti−1e

−θ3t−ti−1

+
π

12
cos

(
πt

12
+B

)
θ4 −

π

12
cos

(
πt

12
+B

)
θ4e
−θ3(t−ti−1).

The above can be solved using the integrating factor with

p(t) = θ3

q(t) = θ1θ2 +
π

12
cos

(
πt

12
+B

)
m2,ti−1e

−θ3t−ti−1

+
π

12
cos

(
πt

12
+B

)
θ4 −

π

12
cos

(
πt

12
+B

)
θ4e
−θ3(t−ti−1)

u(t) = eθ1t

Hence we obtain

m1(t) = e−θ1(t−ti−1)m1(ti−1) + e−θ1t
∫ t

ti−1

u(s)q(s)ds

Now ∫ t

ti−1

u(s)q(s)ds = θ1θ2

∫ t

ti−1

eθ1sds

+
π

12
m2(ti−1)e

θ3(ti−1)

∫ t

ti−1

es(θ1−θ3) cos
(πs

12
+B

)
ds

+
π

12
θ4

∫ t

ti−1

eθ1s cos
(πs

12
+B

)
ds

− π

12
θ4e

θ4ti−1

∫ t

ti−1

es(θ1−θ3) cos
(πs

12
+B

)
ds.
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Using f1(t, ν) for
∫
es(ν) cos

(
πs
12 +B

)
ds which is derived in Appendix A.2.1 we get∫ t

ti−1

u(s)q(s)ds = θ2

[
eθ

t
1 − eθ1ti−1

]
+

π

12
m2(ti−1)e

θ3(ti−1) [f1(t, ν1)− f1(ti−1, ν1)]

+
π

12
θ4 [f1(t, θ1)− f1(ti−1, θ1)]

− π

12
θ4e

θ4ti−1 [f1(t, ν1)− f1(ti−1, ν1)]

where ν1 = (θ1 − θ3). Bringing this all together for m1(t) we have

m1(t) = e−θ1(t−ti−1)m1(ti−1)

+ e−θ1tθ2

[
eθ

t
1 − eθ1ti−1

]
+ e−θ1t

π

12
m2(ti−1)e

θ3(ti−1) [f1(t, ν1)− f1(ti−1, ν1)]

+ e−θ1t
π

12
θ4 [f1(t, θ1)− f1(ti−1, θ1)]

− e−θ1t π
12
θ4e

θ4ti−1 [f1(t, ν1)− f1(ti−1, ν1)] .

A.1.4 Variance

The variance of the process with varying amplitude satisfies

dV (t)

dt
= V (t)α1(t)

T + β(t)2 + α1(t)V (t)

⇒ d

dt

V11(t) V12(t)

V21(t) V22(t)

 =

−θ1V11(t) + V12(t)
π
12 cos

(
πt
12 +B

)
−θ3V12(t)

−θ1V21(t) + V22(t)
π
12 cos

(
πt
12 +B

)
−θ3V22(t)

+

σ
2 0

0 σ2A



+

−θ1V11(t) + V21(t)
π
12 cos

(
πt
12 +B

)
−θ1V12(t) + V22(t)

π
12 cos

(
πt
12 +B

)
−θ3V21(t) −θ3V22(t)



This yields a system of linear ODEs.
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

dV11(t)
dt = 2

(
V12(t)

π
12 cos

(
πt
12 +B

)
− θ1V11(t)

)
+ σ2, V11(ti−1) = v11(ti−1)

dV12(t)
dt = dV21(t)

dt = −V12(t) (θ1 + θ3) + V22(t)
π
12 cos

(
πt
12 +B

)
, V12(ti−1) = v12(ti−1)

dV22(t)
dt = −2θ3V22(t) + σ2A, V22(ti−1) = v22(ti−1)

(A.1)

The hierarchical nature of this system suggests starting with the ODE satisfied by V22(t).

Solution of V22(t)

Using the integrating factor method as in A.1.2, let p(t) = 2θ3, q(t) = σ2A, hence u(t) =

e2θ3t. Then

V22(t) = V22(0)e−2θ3ti−1e−2θ3t + e−2θ3t
∫ t

ti−1

σ2Ae
2θ3sds

= V22(0)e−2θ3(t−ti−1) + e−2θ3t
∫ t

ti−1

σ2Ae
2θ3sds

= V22(0)e−2θ3(t−ti−1) +

[
σ2A
2θ3

e2θ3s
]t
ti−1

= V22(0)e−2θ3(t−ti−1) +
σ2A
2θ3

(
1− e−2θ3(t−ti−1)

)
Solution of V12(t)

Substituting in the form of V22(t) we obtain

dV12(t)

dt
=− V12(t) (θ1 + θ3)

+

[
V22(ti−1)e

−2θ3(t−ti−1) +
σ2A
2θ3

(
1− e−2θ3(t−ti−1)

)] π
12

cos

(
πt

12
+B

)
Again, using the integrating factor method, let

p(t) = θ1 + θ3

q(t) =
π

12
cos

(
πt

12
+B

)[
V22(ti−1)e

−2θ3(t−ti−1) +
σ2A
2θ3

(
1− e−2θ3(t−ti−1)

)]
u(t) = et(θ1+θ3)
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Then

V12(t) = V12(ti−1)e
ti−1(θ1+θ3)−t(θ1+θ3) + e−t(θ1+θ3)

∫ t

ti−1

u(s)q(s)ds

Now

∫ t

ti−1

u(s)q(s)ds =
π

12
V22(ti−1)

∫ t

ti−1

es(θ1+θ3)e−2θ3(s−si−1) cos
(πs

12
+B

)
ds

+
π

12

σ2A
2θ3

∫ t

ti−1

es(θ1+θ3)
(

1− e−2θ3(s−si−1)
)

cos
(πs

12
+B

)
ds

⇒ V12(t) =V12(ti−1)e
(ti−1−t)(θ1+θ3)

+
π

12
V22(ti−1)e

−t(θ1+θ3)e2θ3(si−1)

∫ t

ti−1

es(θ1−θ3) cos
(πs

12
+B

)
ds︸ ︷︷ ︸

∗

+
π

12

σ2A
2θ3

e−t(θ1+θ3)
∫ t

ti−1

es(θ1+θ3)
(

1− e−2θ3(s−si−1)
)

cos
(πs

12
+B

)
ds︸ ︷︷ ︸

∗∗

Looking at ∗ we have

∗ =

∫ t

ti−1

es(θ1−θ3) cos
(πs

12
+B

)
ds

= f1(t, ν1)− f1(ti−1, ν1)

Where ν1 = θ1 − θ3 and f1(t, ν1) is given in Appendix A.2.1.

Looking at ∗∗ we have

∗∗ =

∫ t

ti−1

es(θ1+θ3)
(

1− e−2θ3(s−si−1)
)

cos
(πs

12
+B

)
ds

=

∫ t

ti−1

es(θ1+θ3) cos
(πs

12
+B

)
ds− e2θ3(ti−1)

∫ t

ti−1

es(θ1−θ3) cos
(πs

12
+B

)
ds

= f1(t, ν2)− f1(ti−1, ν2)− e2θ3(ti−1)
(
f1(t, ν1)− f1(ti−1, ν1)

)
Where ν1 = θ1 − θ3, ν2 = θ1 + θ3 and f1(t) is defined in Appendix A.2.1.

Pulling this all together we get an expression for V12(t)
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V12(t) =V12(ti−1)e
−(t−ti−1)(θ1+θ3)

+
π

12
V22(ti−1)e

−t(θ1+θ3)e2θ3ti−1
(
f1(t, ν1)− f1(ti−1, ν1)

)
+
πσ2A
24θ3

e−t(θ1+θ3)
[
f1(t, ν2)− f1(ti−1, ν2)− e2θ3ti−1

(
f1(t, ν1)− f1(ti−1, ν1)

)]
Solution to V11(t)

Substituting in the form of V12(t), we get:

dV11(t)

dt
= 2

π

12
V12(ti−1)e

−(θ1+θ3)(t−ti−1) cos

(
πt

12
+B

)
+ 2

( π
12

)2
V22(ti−1)e

−t(θ1+θ3)e2θ3ti−1
(
f1(t, ν1)− f1(ti−1, ν1)

)
cos

(
πt

12
+B

)
+
πσ2A
12θ3

π

24
e−t(θ1+θ3)

[
f1(t, ν2)− f1(ti−1, ν2)− e2θ3ti−1

(
f1(t, ν1)− f1(ti−1, ν1)

)]
cos

(
πt

12
+B

)
− 2θ1V11(t) + σ2.

Using the integrating factor method, let

p(t) = 2θ3

q(t) = 2
π

12
V12(ti−1)e

−(θ1+θ3)(t−ti−1) cos

(
πt

12
+B

)
+ 2

( π
12

)2
V22(ti−1)e

−t(θ1+θ3)e2θ3ti−1
(
f1(t, ν1)− f1(ti−1, ν1)

)
cos

(
πt

12
+B

)
+
πσ2A
12θ3

π

24
e−t(θ1+θ3)

[
f1(t, ν2)− f1(ti−1, ν2)− e2θ3ti−1

(
f1(t, ν1)− f1(ti−1, ν1)

)]
cos

(
πt

12
+B

)
+ σ2.

u(t) = e2θ1t

Then

V11(t) = V11(ti−1)e
−2θ1(t−ti−1) + e−2θ1t

∫ t

ti−1

u(s)q(s)ds
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Now∫ t

ti−1

u(s)q(s)ds = 2
π

12
V12(ti−1)e

(ti−1(θ1−θ3)) ×
∫ t

ti−1

es(θ1+θ3) cos
(πs

12
+B

)
ds︸ ︷︷ ︸

?

+ 2
( π

12

)2
V22(ti−1)e

2θ3ti−1 ×
∫ t

ti−1

es(θ1−θ3)f1(s, ν1) cos
(πs

12
+B

)
ds︸ ︷︷ ︸

??

− 2
( π

12

)2
V22(ti−1)e

2θ3ti−1f1(ti−1, ν1)×
∫ t

ti−1

es(θ1−θ3) cos
(πs

12
+B

)
ds︸ ︷︷ ︸

?

+
σ2A
θ3

(
π2

288

)
×
∫ t

ti−1

es(θ1−θ3)f1(s, ν2) cos
(πs

12
+B

)
ds︸ ︷︷ ︸

? ? ?

−
σ2A
θ3

(
π2

288

)
f1(ti−1, ν2)×

∫ t

ti−1

es(θ1−θ3) cos
(πs

12
+B

)
ds︸ ︷︷ ︸

?

−
σ2A
θ3

(
π2

288

)
e2θ3ti−1 ×

∫ t

ti−1

es(θ1−θ3)f1(s, ν1) cos
(πs

12
+B

)
ds︸ ︷︷ ︸

??

+
σ2A
θ3

(
π2

288

)
e2θ3ti−1f1(ti−1, ν1)×

∫ t

ti−1

es(θ1−θ3) cos
(πs

12
+B

)
ds︸ ︷︷ ︸

?

+ σ2
∫ t

ti−1

e2θ1tds.

The solution to the integral in ? is defined in A.2.1 to be f1(t, ν) with ν = θ1 ± θ3, hence:

? = f1(t, ν)− f1(ti−1, ν)

The solution to the integral in ?? can be found using integration by parts which states

that: ∫
udv = uv −

∫
vdu

We shall define u = f1(s, ν1) and dv = eν1s cos
(
πt
12 +B

)
, hence:

du = eν1s cos

(
πt

12
+B

)
v = f1(s, ν1)
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so then we have that∫ t

ti−1

f1(s, ν1)e
sν1 cos

(πs
12

+B
)
ds = f1(s, ν1)f1(s, ν1)−

∫ t

ti−1

f1(s, ν1)e
ν1s cos

(πs
12

+B
)
ds

⇒2

∫ t

ti−1

f1(s, ν1)e
sν1 cos

(πs
12

+B
)
ds = f1(s, ν1)

2

⇒
∫ t

ti−1

f1(s, ν1)e
sν1 cos

(πs
12

+B
)
ds =

1

2

(
f1(t, ν1)

2 − f1(ti−1, ν1)2
)

then

? ? =
1

2

(
f1(t, ν1)

2 − f1(ti−1, ν1)2
)

Now, substituting the form for f1(t, ν2) into ? ? ? we obtain

? ? ? =

∫ t

ti−1

eν1sf1(s, ν2) cos
(πs

12
+B

)
ds

=

(
1 +

(
12

π

)2

ν22

)−1
12

π
×∫ t

ti−1

eν1s cos
(πs

12
+B

)(
eν2s sin

(πs
12

+B
)
− 12

π
ν2e

ν2s cos
(πs

12
+B

))
ds

=

(
1 +

(
12

π

)2

ν22

)−1
12

π
×

∫ t

ti−1

e2θ1s sin
(πs

12
+B

)
cos
(πs

12
+B

)
ds︸ ︷︷ ︸

4

−12

π
ν2

∫ t

ti−1

e2θ1s cos
(πs

12
+B

)2
ds︸ ︷︷ ︸

44


To solve 4 we first apply the double angle formula (shown in A.2.4) to get

4 =
1

2

∫ t

ti−1

e2θ1s sin
(

2
[πs

12
+B

])
ds

and the solution to the above integral is defined in A.2.2 to be g1(t)

Hence:

4 =
1

2
(g1(t)− g1(ti−1))

To solve 44 we again apply a double angle formula, as described in section A.2.4. This

yields

44 =

∫ t

ti−1

e2θ1s
(

1 + cos
(

2
(πs

12
+B

)))
ds
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Resulting in:

44 =
1

4θ1

(
e2θ1t − e2θ1ti−1

)
+

1

2

∫ t

ti−1

e2θ1s cos
(

2
(πs

12
+B

))
ds︸ ︷︷ ︸

�

To complete the solution for 44, we again need to employ repeated integration by parts

to solve �. In section A.2.3 the solution to � is defined to be g2(t), hence:

� =
1

2
(g2(t)− g2(ti−1))

Pulling this all together for ? ? ? we have

? ? ? =

∫ t

ti−1

eν1tf2(t, ν2) cos

(
πt

12
+B

)
dt

=

(
1 +

(
12

π

)2

ν22

)−1
12

π
×[

1

2
(g1(t)− g1(ti−1))−

12

π
ν2

(
1

4θ1

(
e2θ1t − e2θ1ti−1 +

1

2
(g2(t)− g2(ti−1))

))]
Pulling these solutions together for V11(t) we get that
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V11(t) = V11(ti−1)e
−2θ1(t−ti−1)

+ e−2θ1t
2π

12
V12(ti−1)e

ti−1(ν1) [f1(t, ν1)− f1(ti−1, ν1)]

+ 2
( π

12

)2
V22(ti−1)e

2θ3ti−1

[
1

2

(
f1(t, ν1)

2 − f1(ti−1, ν1)2
)]

− 2
( π

12

)2
V22(ti−1)e

2θ3ti−1f1(ti−1, ν1) [f1(t, ν1)− f1(ti−1, ν1)]

+
σ2A
θ3

(
π2

288

)(
1 +

(
12

π

)2

ν22

)−1
12

π
×[

1

2
(g1(t)− g1(ti−1))−

12

π
ν2

(
1

4θ1

(
e2θ1t − e2θ1ti−1 +

1

2
(g2(t)− g2(ti−1))

))]
−
σ2A
θ3

(
π2

288

)
f1(ti−1, ν2) [f1(t, ν1)− f1(ti−1, ν1)]

−
σ2A
θ3

(
π2

288

)
e2θ3ti−1

[
1

2

(
f1(t, ν1)

2 − f1(ti−1, ν1)2
)]

+
σ2A
θ3

(
π2

288

)
e2θ3ti−1f1(ti−1, ν1) [f1(t, ν1)− f1(ti−1, ν1)]

+
σ2

2θ1

[
e2θ1t − e2θ1ti−1

]
.

A.1.5 Mean and variance summary

The mean of the process with varying amplitude is governed by:

m1(t) = e−θ1(t−ti−1)m1(ti−1)

+ e−θ1tθ2

[
eθ

t
1 − eθ1ti−1

]
+ e−θ1t

π

12
m2(ti−1)e

θ3(ti−1) [f1(t, ν1)− f1(ti−1, ν1)]

+ e−θ1t
π

12
θ4 [f1(t, θ1)− f1(ti−1, θ1)]

− e−θ1t π
12
θ4e

θ4ti−1 [f1(t, ν1)− f1(ti−1, ν1)] .

m2(t) = m2(ti−1)e
−θ3(t−ti−1) + θ4

(
1− e−θ3(t−ti−1)

)
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The variance of the process with varying amplitude is governed by:

V11(t) = V11(ti−1)e
−2θ1(t−ti−1)

+ e−2θ1t
2π

12
V12(ti−1)e

ti−1(ν1) [f1(t, ν1)− f1(ti−1, ν1)]

+ 2
( π

12

)2
V22(ti−1)e

2θ3ti−1

[
1

2

(
f1(t, ν1)

2 − f1(ti−1, ν1)2
)]

− 2
( π

12

)2
V22(ti−1)e

2θ3ti−1f1(ti−1, ν1) [f1(t, ν1)− f1(ti−1, ν1)]

+
σ2A
θ3

(
π2

288

)(
1 +

(
12

π

)2

ν22

)−1
12

π
×[

1

2
(g1(t)− g1(ti−1))−

12

π
ν2

(
1

4θ1

(
e2θ1t − e2θ1ti−1 +

1

2
(g2(t)− g2(ti−1))

))]
−
σ2A
θ3

(
π2

288

)
f1(ti−1, ν2) [f1(t, ν1)− f1(ti−1, ν1)]

−
σ2A
θ3

(
π2

288

)
e2θ3ti−1

[
1

2

(
f1(t, ν1)

2 − f1(ti−1, ν1)2
)]

+
σ2A
θ3

(
π2

288

)
e2θ3ti−1f1(ti−1, ν1) [f1(t, ν1)− f1(ti−1, ν1)]

+
σ2

2θ1

[
e2θ1t − e2θ1ti−1

]
.

V12(t) =V12(ti−1)e
−(t−ti−1)(θ1+θ3)

+
π

12
V22(ti−1)e

−t(θ1+θ3)e2θ3ti−1
(
f1(t, ν1)− f1(ti−1, ν1)

)
+
πσ2A
24θ3

e−t(θ1+θ3)
[
f1(t, ν2)− f1(ti−1, ν2)− e2θ3ti−1

(
f1(t, ν1)− f1(ti−1, ν1)

)]

V22(t) = V22(0)e−2θ3(t−ti−1) +
σ2A
2θ3

(
1− e−2θ3(t−ti−1)

)
The functions in the above solutions are all defined below.

f1(t, ν) =

(
1 +

(
12ν

π

)2
)−1

12

π
e±νt

(
sin

(
πt

12
+B

)
± 12

π
ν cos

(
πt

12
+B

))

g1(t, θ =

(
1 +

(
12θ1
π

)2
)−1(

6

π

)
e2θ1t

(
12

π
θ1 sin

(
2

[
πt

12
+B

])
− cos

(
2

[
πt

12
+B

]))

g2(t, θ) =

(
1 +

(
12θ1
π

)2
)−1(

6

π

)
e2θ1t

(
sin

(
2

[
πt

12
+B

])
+

12

π
θ1 cos

(
2

[
πt

12
+B

]))
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A.2 Useful integrals

A.2.1 Deriving f1(t)

To solve
∫
e±νt cos

(
πt
12 +B

)
dt we use integration by parts which states that∫

udv = uv −
∫
vdu

with u = e±νt and dv = cos
(
πt
12 +B

)
. This results in∫

e±νt cos

(
πt

12
+B

)
dt = e±νt sin

(
πt

12
+B

)
12

π
∓ 12

π
ν

∫
e±νt sin

(
πt

12
+B

)
dt

Using the technique again for
∫
e±νt sin

(
πt
12 +B

)
dt gives:∫

e±νt sin

(
πt

12
+B

)
dt = ∓e±νt cos

(
πt

12
+B

)
12

π
+

12

π
ν

∫
±e±νt cos

(
πt

12
+B

)
dt

Combining the two equations above yields:∫
e±νt cos

(
πt

12
+B

)
dt =

12

π
e±νt sin

(
πt

12
+B

)
±
(

12

π

)2

νe±νt cos

(
πt

12
+B

)
−
(

12ν

π

)2 ∫
e±νt cos

(
πt

12
+B

)
dt

We then add the last term to both sides of the above equation and then divide through

by
(

1 +
(
12ν
π

)2)
we are left with:

∫
e±νt cos

(
πt

12
+B

)
dt =

(
1 +

(
12ν

π

)2
)−1

12

π
e±νt

(
sin

(
πt

12
+B

)
± 12

π
ν cos

(
πt

12
+B

))

Which we shall define as f1(t):

f1(t) =

∫
eθ1t cos

(
πt

12
+B

)
dt

A.2.2 Deriving g1(t)

To solve
∫
e2θ1t sin

(
2
[
πt
12 +B

])
dt we use integration by parts with u = e2θ1t and dv =

sin
(
2
[
πt
12 +B

])
. This results in:∫

e2θ1t sin

(
2

[
πt

12
+B

])
dt = − 6

π
e2θ1t cos

(
2

[
πt

12
+B

])
+

12

π
θ1

∫
e2θ1s cos

(
2
[πs

12
+B

])
ds

(A.2)
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Again, we have an integral in the above solution that requires the use of integration by

parts to solve it. We will use u = e2θ1t and dv = cos
(
2
[
πt
12 +B

])
.∫

e2θ1s cos
(

2
[πs

12
+B

])
ds =

6

π
e2θ1t sin

(
2

[
πt

12
+B

])
−12θ1

π

∫
e2θ1s sin

(
2
[πs

12
+B

])
ds

(A.3)

Substituting in what we have for
∫
e2θ1t sin

(
2
[
πt
12 +B

])
dt and rearranging gives us

∫
e2θ1s sin

(
2
[πs

12
+B

])
ds+

(
12

π

)2

θ21

∫
e2θ1s sin

(
2
[πs

12
+B

])
ds

=

(
72

π2

)
e2θ1tθ1 sin

(
2

[
πt

12
+B

])
− 6

π
e2θ1t cos

(
2

[
πt

12
+B

])

Dividing through by (1 +
(
12
π

)2
θ21) leaves us with∫

e2θ1t sin

(
2

[
πt

12
+B

])
dt

=

(
1 +

(
12

π

)2

θ21

)−1(
6

π

)
e2θ1t

(
12

π
θ1 sin

(
2

[
πt

12
+B

])
− cos

(
2

[
πt

12
+B

]))

Which we define as g1(t)

g1(t) =

∫
e2θ1t sin

(
2

[
πt

12
+B

])
dt

A.2.3 Deriving g12(t)

To solve
∫
e2θ1t cos

(
2
[
πt
12 +B

])
dt we use the result from A.3. This results in:∫

e2θ1s cos
(

2
[πs

12
+B

])
ds =

6

π
e2θ1t sin

(
2

[
πt

12
+B

])
−12θ1

π

∫
e2θ1s sin

(
2
[πs

12
+B

])
ds

(A.4)

In the above result we have the same integral as A.2, so substituting that result in an

rearranging give us∫
e2θ1t cos

(
2

[
πt

12
+B

])
dt+

(
12

π

)2

θ21

∫
e2θ1t cos

(
2

[
πt

12
+B

])
dt

=
6

π
e2θ1t sin

(
2

[
πt

12
+B

])
+

72θ1
π2

e2θ1t cos

(
2

[
πt

12
+B

])
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Dividing through by (1 +
(
12
π

)2
θ21) leaves us with∫

e−2θ1t
1

2
cos

(
2

[
πt

12
+B

])
dt

=

(
1 +

(
12

π

)2

θ21

)−1(
6

π

)
e2θ1t

(
sin

(
2

[
πt

12
+B

])
+

12

π
θ1 cos

(
2

[
πt

12
+B

]))

Which we define as g2(t)

g2(t) =

∫
e−2θ1t cos

(
2

[
πt

12
+B

])
dt.

A.2.4 Double angle formulae

The double angle formula can be stated in in multiple ways

Double angle formula for functions of the form sin(2A)

2 sin (A) cos (A) = sin (2A)

Double angle formula for functions of the form cos(2A)

cos(2A) = cos2(A)− sin2(A)

120



Bibliography

Ait-Sahalia, Y. 2008 Closed-form likelihood expansions for multivariate diffusions. The

Annals of Statistics 36 (2), 906–937.

Andrieu, C., Doucet, A. & Holenstein, R. 2009 Particle Markov chain Monte Carlo

for efficient numerical simulation. In Monte Carlo and Quasi-Monte Carlo Methods 2008

(ed. P. L’Ecuyer & A. B. Owen), pp. 45–60. Spinger-Verlag Berlin Heidelberg.

Andrieu, C., Doucet, A. & Holenstein, R. 2010 Particle Markov chain Monte Carlo

methods (with discussion). J. R. Statist. Soc. B 72 (3), 1–269.

Bérard, J., Del-Moral, P. & Doucet, A. 2013 A lognormal central limit theorem

for particle approximations of normalizing constants.

Black, F. & Scholes, M. 1973 The pricing of options and corporate liabilities. Journal

of Political Economy 81, 637–654.

Botha, I., Kohn, R. & Drovandi, C. 2019 Particle methods for stochastic differential

equation mixed effects models.

Bucy, R. & Joseph, P. 2005 Filtering for Stochastic Processes with Applications to

Guidance, 2nd edn. John Wiley & Sons.

Choppala, P., Gunawan, D., Chen, J., Tran, M.-N. & Kohn, R. 2016 Bayesian

inference for state space models using block and correlated pseudo marginal methods.

Available from http://arxiv.org/abs/1311.3606.

Cotter, S. L., Roberts, G. O., Stuart, A. M. & White, D. 2013 MCMC methods

for functions: modifying old algorithms to make them faster. Statistical Science 28,

424–446.

Dahlin, J., Lindsten, F., Kronander, J. & Schon, T. B. 2015 Accelerating

pseudo-marginal Metropolis-Hastings by correlating auxiliary variables. Available from

https://arxiv.1511.05483v1.

121



Bibliography

Del Moral, P. 2004 Feynman-Kac Formulae: Genealogical and Interacting Particle

Systems with Applications. New York: Springer.

Del Moral, P., Doucet, A. & Jasra, A. 2006 Sequential Monte Carlo samplers.

Journal of the Royal Statistical Society, Series B: Statistical Methodology 68, 411–436.

Delattre, M. & Lavielle, M. 2013 Coupling the SAEM algorithm and the extended

Kalman filter for maximum likelihood estimation in mixed-effects diffusion models.

Statistics and its interface 6 (4), 519–532.

Deligiannidis, G., Doucet, A. & Pitt, M. K. 2018 The correlated pseudo-marginal

method. J. R. Statist. Soc.B 80, 839–870.

Donnet, S., Foulley, J.-L. & Samson, A. 2010 Bayesian analysis of growth curves

using mixed models defined by stochastic differential equations. Biometrics 66 (3), 733–

741.

Donnet, S. & Samson, A. 2013a A review on estimation of stochastic differential equa-

tions for pharmacokinetic/pharmacodynamic models. Advanced drug delivery reviews

65 (7), 929–939.

Donnet, S. & Samson, A. 2013b Using PMCMC in EM algorithm for stochastic mixed

models: theoretical and practical issues. Journal de la Société Française de Statistique
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