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Abstract

Experimental design is becoming increasingly important to many applications from genetic

research to robotics. It provides a structured way of allocating resources in an e�cient

manner prior to an experiment being conducted. Assuming a model for the data, one

approach is to introduce a utility function to quantify the worth of a design given some

data and parameters. Typically experiment-speci�c utility functions are di�cult to elicit

and hence a pragmatic choice of utility concerning the information gained about the model

parameters is used. Bayesian experimental design aims to maximise the expected utility

accounting for uncertainty in the model parameters and the data which could be observed.

For this approach, di�culties arise as the expected utility is typically intractable and

computationally costly to approximate.

Modern applications often seek high dimensional designs. In these settings existing

algorithms such as the MCMC scheme of Müller (1999) and ACE (Overstall and Woods,

2017), require a high number of utility evaluations before they converge. For the most

commonly used utility functions this becomes a computationally costly exercise.

Therefore there is a need for an e�cient and scalable method for �nding the Bayesian

optimal design.

The contributions of this thesis are as follows. Firstly, stochastic gradient optimisation, a

scalable method widely used in the �eld of machine learning, is applied to the Bayesian

experimental design problem. The second contribution is to consider a utility function

based on the Fisher information matrix as a Bayesian utility function by showing it has a

decision theoretic justi�cation. These utilities are often available in a closed-form so are

fast to compute. The �nal contribution is to investigate surrogate functions for expensive

utilities as an e�cient way of �nding promising regions of the design space.
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Chapter 1

Introduction

Experimental design provides a structured way of allocating resources in order to gain the

most knowledge and/or make a decision. This is especially relevant when a limited number

of observations can be made in an experiment where the practitioner controls the value of

one or more covariate values. Throughout this thesis a model will be assumed for the data

observed in the experiment. The model will rely on some model parameters and the design

(e.g. the time or location at which observations should be made). Modern applications such

as placing sensors (Krause et al., 2009) or making observations in a numerical integration

problem (Oates et al., 2019) have the resources to make many observations however this

poses a computational challenge due to the size and dimension of the design space. Existing

methods for experimental design are expensive, especially for high dimensional designs.

This thesis will aim to address some of these di�culties using a scalable approach for

�nding the optimal deign and also investigating how the worth of a design can be quanti�ed

using computationally convenient functions.

There are two main areas of focus in experimental design: factorial design and optimal

design. Experimental design in the early twentieth century focused on classical factorial

designs with Fisher (1935) considered the foundational work on the area (Yates, 1964;

Box, 1980). Factorial design is where an experiment has two or more factors which can

take a �nite number of discrete values. The interest lies in the e�ect the factors have

on the response variable. Only the value of the response variable is required for such an

analysis and thus a model does not need to be speci�ed allowing processes with complex

error structures to be considered. Examples of these include investigating crop yield from

di�erent fertilisers in di�erent areas of a �eld (Yates, 1935) or conducting a chemical

analysis on di�erent specimens with various operators carrying out the testing (Snee, 1983).

The aim of factorial design is to assess the value of the response variable for each of the

factors as well as any interactions between them.

Optimal design considers a di�erent problem. Often a model with a simple error structure

is assumed which describes the relationship between the response and some design variables

1



Chapter 1

which the practitioner controls. These models can also involve some parameters which the

practitioner cannot control but which have an e�ect on the response. These are often

referred to as nuisance parameters. The aim of optimal design is to select the design

which maximises the value of conducting the experiment. In the Bayesian paradigm this

is quanti�ed through a utility function or an optimality criterion in the classical setting.

Often the interest lies in minimising the variance of the posterior (in the Bayesian setting)

or of the estimator (in the classical setting) rather than looking at the value of the response

variable as in the factorial experimental design. Examples which use optimal design include

determining sampling times in pharmacokinetic studies (Ryan et al., 2015) or selecting the

stress levels for degradation tests in engineering (Liu and Tang, 2010).

Kirstine Smith is credited with founding the �eld of optimal design. She proposed that in

experiments which were constrained by resources, such as time or expenditure, the

practitioner should make observations at a design which would maximise the knowledge

gained. Her doctoral dissertation (Smith, 1918) considered optimal designs for

polynomial regression models. Gustav Elfving was also instrumental in founding the �eld

of experimental design. Whilst con�ned to a tent due to bad weather on an expedition in

Greenland, Elfving considered the best locations to make observations in order to

estimate parameters in linear models (Elfving et al., 1952). Fellman (1999) gives a review

of Elfving's contribution to the emergence of optimal experimental design theory. The

paper by Kiefer (1959) was also important, marking the start of the systematic study of

the properties and construction of optimal designs. Their work and contribution is

summarised by Wynn (1984). Lindley (1972) following work from Minton et al. (1962)

introduced Bayesian optimal design by considering optimal design as a decision problem

accounting for the uncertainties in both the data which could be observed and the

parameter values. Müller (1999) presented the �rst practical, general purpose method for

Bayesian design using a Markov chain Monte Carlo approach. For a more comprehensive

history of experimental design see Atkinson and Bailey (2001).

Classical optimal design has been well studied in the literature (for example Box, 1982;

Hinkelmann and Maman, 2005; Atkinson et al., 2007). It mainly focuses on selecting a

design which optimises a criterion based on the Fisher information (Fisher, 1925), aimed

at minimising the variance of the estimator of the model parameters. The classical setting

fails to take into account any prior information about the model parameters, instead the

Fisher information is evaluated at a selected parameter value, often the maximum likelihood

estimate. In practice, prior to conducting an experiment there will be some knowledge of

these from previous experiments or from the expertise of the practitioner. The Bayesian

setting naturally incorporates this prior knowledge.

Methods for Bayesian optimal design have been developed and studied much more recently,

corresponding to the availability of computing resources. Throughout this thesis a model
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will be assumed for the data which relies on the design and some unknown parameter

values. In the Bayesian setting a distribution will be provided for the model parameters

which summarises the beliefs about them prior to the experiment taking place. The worth

of a design for a particular value of data and parameters is quanti�ed through a utility

function. Ideally an experiment-speci�c utility function would be elicited however this is

di�cult in practice. Often more pragmatic choices of utility are used, typically functions of

the posterior distribution of the model parameters. Bayesian experimental design aims to

�nd the design which maximises the expected utility. This takes into account uncertainty

by taking the expectation of the utility function over the model parameters and the data

which could be observed. For this approach, di�culties arise as the expected utility is

typically intractable and computationally costly to approximate.

Chaloner and Verdinelli (1995) provides a uni�ed view of Bayesian optimal design from

a decision theoretic viewpoint. The work of Müller (1999) has been widely extended by

other authors as a basis for their work, for example Ryan et al. (2014) used a dimension

reduction scheme for the design within the Müller algorithm and Amzal et al. (2006)

extends the ideas of Müller using a particle based approach. More recently Overstall and

Woods (2017) presented an algorithm considered state of the art capable of being applied

in high dimensional design settings.

Many existing methods are unsuitable for modern applications as they scale poorly with

the number of observations in a design. They may also require many utility evaluations,

each of which can be computationally demanding to evaluate. A possible solution could

be to develop methods which are scalable and e�cient in terms of the number of utility

evaluations required to �nd the optimal design. Alternatively computationally convenient

utility functions could be considered to reduce the computational burden of implementing

the optimal design methods.

Contribution

A promising solution to the problem of scalability in Bayesian optimal design methods

could be stochastic gradient optimisation. This has been well studied and widely used in

the �eld of machine learning, often to �t many parameters of a neural network. These

methods should easily translate to the design optimisation problem for high dimensional

designs as when an estimate of the gradient of the expected utility with respect to the

design can be made, stochastic gradient optimisation can be used to traverse the design

space to converge to an optimum. This thesis considers this approach and compares the

results to existing methods.

Computation of the utility function is often expensive. Those which are a function of the

posterior distribution often require costly inference methods like Monte Carlo
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approximations. This computational burden is ampli�ed due to each estimated expected

utility requiring many realised utilities (used within another Monte Carlo estimate) and

many methods needing multiple approximations of the expected utility. This thesis

considers utility functions based on the Fisher information matrix in Bayesian optimal

design. These are often available in closed-form so are fast to compute.

An alternative approach could be to use a surrogate function for the expensive utility

computations. These o�er a way of obtaining approximations to the utility that are cheap

to evaluate. The surrogate can be used as a proxy and the design which is optimal under

the surrogate could provide an approximation of the true optimal design. Furthermore the

surrogate could provide a way of identifying regions of the design space where the expected

utility is high. This could o�er improvements in the e�ciency of �nding the optimal design

by only considering promising regions when using expensive utility evaluations.

Outline of thesis

The structure this thesis is as follows. Chapter 2 gives some background information

that will be used throughout this thesis. An overview of Bayesian parameter inference

is provided alongside some asymptotic results. The Fisher information (Fisher, 1925) is

described in detail and de�ned for some distributions. These results will be used later

in Chapter 4. Next, an introduction to experimental design is given alongside a short

discussion on utility functions. Scoring rules are introduced and linked to utility functions

using a Bayesian decision theoretic approach. Finally, a brief literature review is conducted.

This describes the Müller and ACE algorithms in detail as these are used as benchmarks

later in the thesis. A short overview is provided for some other algorithms that target the

optimal design.

Chapter 3 considers stochastic gradient descent (SGD) for optimal design. First,

background information is provided giving a roadmap of how the basic vanilla SGD

update step is developed to incorporate features that help its performance in converging

to the optimal design and are illustrated with an example. For many applications designs

are subject to constraints. Including these into the SGD algorithm is described before

estimation of the gradient and implementation is discussed. Finally, the application of

SGD methods for optimal design is described.

In an optimal design problem the worth of a design has to be quanti�ed. Chapter 4 �rst

considers some commonly used utility functions in Bayesian design problems. The Fisher

information gain (FIG) utility is de�ned and shown to have a derivation from a Bayesian

decision theoretic viewpoint. The FIG utility has some undesirable properties so some

modi�cations are described which aim to address these issues. Finally, a utility based on

an optimality condition used in classical design is de�ned. Although considered pseudo
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Bayesian by the de�nitions of Ryan et al. (2016) this will be used to compare the optimal

designs under di�erent utility functions in subsequent chapters.

Chapter 5 looks at the designs returned for some example models under di�erent utility

functions. The �rst of these models, the simple death model, is used to verify that SGD

does target the correct design which optimises the expected utility. The second, a

geospatial model, investigates the performance of SGD to the current �state-of-the-art�

ACE algorithm in a setting where there are a large number of highly correlated

observations. Chapter 6 conducts a simulation study using a pharmacokinetic model.

This compares the designs returned under di�erent utility functions and also assesses the

designs output from the SGD, ACE and Müller algorithms.

Chapter 7 investigates the use of a surrogate utility function within optimal design. Some

background and discussion on using neural networks to estimate a posterior distribution

is given. This is then used to construct a surrogate of the utility function. The surrogate

utility is then used within a delayed acceptance Markov chain Monte Carlo scheme in the

Müller algorithm to investigate if there are any improvements in e�ciency. The surrogate

can also be used to identify good regions of the design space, those which yield a high

expected utility, to reduce the size of the search space when implementing an algorithm

using expensive utility realisations. This could potentially lead to e�ciency improvements

as the more expensive utility realisations are not being evaluated in the sub-optimal region

of the design space.

Finally, Chapter 8 summarises the �ndings of this thesis and gives suggestions for

directions of future work.
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Chapter 2

Background

This chapter will present the background material used in this thesis. First, Bayesian

inference and Fisher information are introduced in Section 2.1 and Section 2.2 before

describing the �eld of experimental design in Section 2.3. Section 2.4 outlines some

commonly used utility functions. Finally, existing methods for Bayesian optimal design

are discussed in Section 2.6.

2.1 Bayesian parameter inference

Bayesian inference aims to learn about some unknown parameters when data becomes

available. Throughout this thesis a model for the data is assumed with an associated

likelihood function which gives the density of the data conditional on the unknown

parameters. In the Bayesian framework (Bernardo and Smith, 1994; O'Hagan and

Forster, 2004) all unknown parameters are considered to be random variables. The beliefs

about these variables are summarised through distributions and are updated when data

is collected. The update procedure involves taking a prior distribution, π(θ), (which

summarises the beliefs about parameters θ before any data is collected) and combining

this with data y observed at design τ via the likelihood function f(y|θ; τ) (a function

that relates the parameters to the data) to obtain a posterior distribution π(θ|y; τ)
representing the updated beliefs. Throughout this thesis the unknown model parameters

are considered to be continuous random variables and hence π(·) will be a probability

density function.

Bayes theorem allows the posterior distribution to be expressed as

π(θ|y; τ) = π(θ, y; τ)

π(y; τ)
=
π(θ)f(y|θ; τ)

π(y; τ)
, (2.1)
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where π(y; τ) =
∫
Θ π(θ)f(y|θ; τ) dθ is the marginal likelihood or normalising constant,

ensuring the posterior is a proper distribution (
∫
Θ π(θ|y; τ) dθ = 1). Since the denominator

in Equation 2.1 is constant with respect to θ the posterior is proportional to the prior times

the likelihood,

π(θ|y; τ) ∝ π(θ)f(y|θ; τ). (2.2)

Typically, the marginal likelihood is rarely tractable in the sense that it is not available in

a closed form. Methods such as Markov chain Monte Carlo and importance sampling are

often used to approximate the posterior however they are often costly in terms of time and

computing resource. See Gelman et al. (2013) for more details of these and other related

methods.

2.1.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods allow sampling from a distribution that is

not available in closed-form. This methodology has been well studied especially in the �eld

of Bayesian statistics (see, for example, Brooks et al., 2011, Robert and Casella, 2013 and

Kruschke, 2014). MCMC methods work by constructing a Markov chain with stationary

distribution π(·) corresponding to the target distribution of interest. In the Bayesian

setting this is chosen to be the posterior π(θ|y; τ). Given any initial starting state the

chain should converge to the stationary distribution if run long enough. The chains are

liable to converging to local modes of the target distribution and so multiple chains are

often run to see if they converge to the same region. Once converged the chain can be

run for more iterations to give draws from the target distribution. These draws will be

correlated and so independent draws are produced by thinning the output in accordance

with the autocorrelation of the sample.

Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is a widely used MCMC scheme. It was �rst

proposed by Metropolis et al. (1953) and later generalised by Hastings (1970). This

algorithm works by proposing a new state θ∗ from the current state θ according to a

proposal density q(θ∗|θ). The proposed θ∗ is then accepted according to an acceptance

probability which depends on the (proportional) target density and the proposal density.

Otherwise, the chain stays at the current θ. The sequence θ(1), θ(2), . . . form a Markov

chain where the target is the stationary distribution. Algorithm 2.1 describes the MH

algorithm.

The choice of proposal density is arbitrary however it does impact the e�ciency of the

chain so is an important tuning consideration. A popular choice is to select a symmetric
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Algorithm 2.1 Metropolis-Hastings Markov chain Monte Carlo algorithm targetting the
posterior for θ given data y observed at design τ .

1: Initialise θ(0).
2: for i = 1, 2, . . . , N do

3: Propose θ′ ∼ q(θ|θ(i−1)).
4: Calculate the acceptance probability, α = min(1, A) where

A =
π(θ′)f(y|θ′; τ)q(θ(i−1)|θ′)

π(θi−1)f(y|θ(i−1); τ)q(θ′|θ(i−1))

5: With probability α, set θ(i) = θ′. Otherwise, set θ(i) = θ(i−1).

6: return θ(0), θ(1), . . . , θ(N)

proposal density as this simpli�es calculation of the acceptance probability. Often a Normal

random walk is used, i.e. θ∗|θ ∼ N(θ,Σ). In this case Σ is selected to give a su�ciently

high acceptance rate.

2.1.2 Importance sampling

Importance sampling is a technique which allows estimation of properties of a

distribution, in particular a posterior distribution. This is achieved by sampling points

from a proposal distribution and computing importance weights. It is particularly useful

in �nding Eθ∼π(θ|y;τ)[g(θ)] for some function g(·) when π(θ|y; τ) is di�cult to sample

from. Consider draws of θ from a proposal density q. The quantity of interest can then

be expressed as

Eθ∼π(θ|y;τ)[g(θ)] =
∫
Θ
g(θ)π(θ|y; τ)dθ, (2.3)

=

∫
Θ
g(θ)

π(θ|y; τ)
q(θ)

q(θ)dθ, (2.4)

= Eθ∼q(θ)
[
g(θ)π(θ|y; τ)

q(θ)

]
. (2.5)

Since samples from q are obtainable the expectation in Equation 2.5 can be estimated

using Monte Carlo integration,

Eθ∼π(θ|y;τ)[g(θ)] ≈
∑N

i=1 g
(
θ(i)
)
w(i)∑N

i=1w
(i)

, (2.6)

where each θ(i) is a draw from the proposal with associated importance weight w(i) =

π
(
θ(i)|y; τ

)
/q
(
θ(i)
)
(Monahan, 2011). Note that since the importance weights appear in

both the numerator and denominator in Equation 2.6 they can be calculated up to a
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Algorithm 2.2 Importance sampling

1: From a proposal, q, obtain N draws, θ(1), θ(2), . . . , θ(N).

2: Calculate w̃(i) = π(θ(i))f(y|θ(i);τ)
q(θ(i))

for i = 1, 2, . . . , N .

3: return θ(1), θ(2), . . . , θ(N), w̃(1), w̃(2), . . . , w̃(N)

constant of proportionality, i.e. using Equation 2.2, the weights w̃ = π(θ)f(y|θ; τ)/q(θ)
give an equivalent value for the expectation in Equation 2.6.

The output of the importance sampling routine (Algorithm 2.2) depends upon the choice

of proposal density through w̃. Importance sampling is not useful if these importance

weights vary substantially (Gelman et al., 2013). If many of the weights are small and a

few large then the approximation in Equation 2.6 will have a high variance. A widely used

diagnostic measure is the e�ective sample size (ESS) (Martino et al., 2017), given by

ESS =

(∑N
i=1 w̃

(i)
)2∑N

i=1(w̃
(i))2

, (2.7)

which takes values in the range [0, N ]. Larger values of the ESS are preferred.

In order to achieve a large e�ective sample size the proposal distribution should be a good

approximation of the posterior, i.e. π(θ|y; τ)/q(θ) ≈ 1. If the proposal density di�ers

signi�cantly from that of the posterior then the importance sampling routine will not be

e�cient and the results untrustworthy. A low e�ective sample size can be achieved through

choice of an unsuitable proposal.

Often an initial choice of proposal could be the prior density, q(θ) = π(θ). In this case

the weights are simple to calculate and are equal to the likelihood, w̃ = f(y|θ; τ). If the

posterior does not di�er substantially from the prior distribution then the ESS should be

su�ciently high.

2.1.3 Bayesian asymptotics

The mode and curvature of the posterior distribution can be approximated analytically

using a multivariate normal distribution (Berger, 2013) under easily satis�ed assumptions

(Chaloner and Larntz, 1989), namely, the likelihood is a continuous function of θ and the

mode θ̂ does not lie on the boundary of the parameter space Θ (Davison, 2003). Often

this is referred to as the Laplace approximation as it follows from work in Laplace (1810).

Consider a Taylor expansion of the logged posterior about the parameters which maximise

the likelihood function θ̂,

log
(
π(θ|y; τ)

)
≈ π(θ̂|y; τ) + (θ − θ̂)∇θ log π(θ̂|y; τ) +

1

2
(θ − θ̂)TH(θ̂)(θ − θ̂), (2.8)
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where ∇θ = ( ∂∂θ1 ,
∂
∂θ2

, . . . , ∂∂θp ) takes partial derivatives with respect to each parameter

and H(θ̂) = ∇θ∇Tθ log
(
π(θ̂|y; τ)

)
is the Hessian matrix of second derivatives of the log

posterior evaluated at θ = θ̂. Note that the mode is invariant under multiplicative and log

transformations of π(θ|y; τ) so θ̂ is easily found by maximising the logged prior distribution

multiplied by the likelihood, log(π(θ)f(y|θ; τ)). Since θ̂ is a maximum, ∇π(θ|y; τ) = 0

meaning Equation 2.8 can be expressed as

log
(
π(θ|y; τ)

)
≈ log(k)− 1

2
(θ − θ̂)T

[
−H(θ̂)

]
(θ − θ̂), (2.9)

where k is constant with respect to θ.

Upon exponentiating Equation 2.9 becomes

π(θ|y; τ) ≈ ke−
1
2
(θ−θ̂)T

[
−H(θ̂)

]
(θ−θ̂), (2.10)

showing that the posterior distribution is approximately a multivariate normal distribution

with mean θ̂ and covariance matrix −H(θ̂)−1.

For a large number of samples y1, y2, . . . , yd, it can be shown that the posterior distribution

concentrates mass in smaller and smaller neighbourhoods of θ0 and that |θ̂ − θ0| → 0 as

d → ∞ (Gelman et al., 2013). In this case the posterior distribution is dominated by the

likelihood and the Hessian matrix becomes

[
H(θ)

]
θ=θ̂

=
[
∇θ∇Tθ log

(
π(θ)

)]
θ=θ̂

+
d∑
i=1

[
∇θ∇Tθ log

(
f(yi|θ; τ)

)]
θ=θ̂

. (2.11)

This is dominated by the summation term when d is large. For θ̂ close to θ0 the curvature

of the posterior can be approximated by the Fisher information matrix (see Section 2.2)

evaluated at θ̂ (Gelman et al., 2013).

Asymptotically, a multivariate normal distribution centred at θ̂ with covariance matrix

equal to the inverse of the Fisher information matrix evaluated at the θ̂, I(θ̂; τ), can be

used as an approximation of the posterior, i.e. θ|y; τ ∼ Np

(
θ̂, I(θ̂; τ)−1

)
.

2.2 Fisher information

The Fisher information, de�ned by Fisher (1925), provides a measure of how much

information data y carries about parameters θ. The Fisher score is de�ned as the �rst

derivative of the log likelihood function with respect to the parameters (Lindgren, 1993),

u(θ, y; τ) = ∇θ log f(y|θ; τ). (2.12)
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The Fisher information matrix is then de�ned in terms of the Fisher score,

Iθ(θ; τ) = Ey∼f(y|θ;τ)[u(θ, y; τ)u(θ, y; τ)T ]. (2.13)

For certain models the information matrix is available in a closed form making it

computationally convenient. The Fisher information matrix can equivalently be expressed

in terms of the second derivatives of the log likelihood under some regularity conditions,

Iθ(θ; τ) = −Ey∼f(y|θ;τ)[∇θ∇Tθ log f(y|θ; τ)]. (2.14)

The following argument summarises the relationship between Equation 2.13 and Equation

2.14. First note that for f = f(y|θ; τ)

Ey∼f(y|θ;τ)
[
1

f
∇θ∇Tθ f

]
=

∫
Y

1

f
{∇θ∇Tθ f}fdy, (2.15)

= ∇θ∇Tθ
∫
Y
f dy, (2.16)

= ∇θ∇Tθ 1, (2.17)

= 0. (2.18)

The swapping of the order of the di�erentiation and integration requires some regularity

conditions (Klenke, 2013, Theorem 6.28). Lee (2012) argues these conditions are satis�ed

in any reasonable case. From Equation 2.14,

Iθ(θ; τ) = −Ey∼f(y|θ;τ)
[
∇θ∇Tθ log f

]
, (2.19)

= −Ey∼f(y|θ;τ)
[
∇θ
(
1

f
∇Tθ f

)]
, (2.20)

= −Ey∼f(y|θ;τ)
[
1

f
∇θ∇Tθ f −

1

f2
∇θf∇Tθ f

]
, (2.21)

= −Ey∼f(y|θ;τ)
[
1

f
∇θ∇Tθ f

]
+ Ey∼f(y|θ;τ)

[(
1

f
∇θf

)(
1

f
∇Tθ f

)]
, (2.22)

= Ey∼f(y|θ;τ)
[
(∇θ log f)(∇Tθ log f)

]
, (2.23)

= Ey∼f(y|θ;τ)[u(θ, y; τ)u(θ, y; τ)T ], (2.24)

thus showing the equivalence to Equation 2.13. Note that the de�nition of the Fisher

information matrix using the Fisher score is preferred as it does not require any regularity

conditions to be met or that the second derivatives exist.

Consider the case where a model with parameters θ is subject to a reparameterisation

ξ(θ). The alternative parameterisation may be of the same or di�erent length to the
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original parameters. Under this transformation element j of the Fisher score (Equation

2.12) becomes

uj(θ, y; τ) =
∂

∂θj
log f(y|θ; τ), (2.25)

=
∑
i

dξi
dθj

∂ log f

∂ξi
, (2.26)

and hence

∇θ log f(y|θ; τ) = J(ξ)∇ξ log f(y|ξ; τ), (2.27)

where J(ξ) is the Jacobian matrix of the transformation with ijth element equal to ∂ξi
∂θj

.

Using Equation 2.13 the Fisher information matrix can then be expressed as

Iθ(θ; τ) = Ey∼f(y|θ;τ)[∇θ log f(∇θ log f)T ], (2.28)

= Ey∼f(y|θ;τ)[J(ξ)∇ξ log f(J(ξ)∇ξ log f)T ], (2.29)

= J(ξ)Ey∼f(y|θ;τ)[∇ξ log f(∇ξ log f)T ]J(ξ)T , (2.30)

= J(ξ)Iξ(ξ; τ)J(ξ)T . (2.31)

2.2.1 Binomially distributed random variables

Consider a random variable Y = (Y1, Y2, . . . , Yd) observed at times τ = (τ1, τ2, . . . , τd).

The observations are independent and identically distributed according to a binomial

distribution,

Yi ∼ Bin(n, αi), (2.32)

where n is the initial population size and the probability of an event occurring αi = α(τi, θ)

depends on the design τi and a parameter θ. The log-likelihood of this distribution is given

by

` =
d∑
i=1

log

(
n

yi

)
+ yi log(αi) + (n− yi) log(1− αi), (2.33)

thus the score is given by

u(θ, y; τ) =
d`

dθ
, (2.34)

=
d∑
i=1

d`i
dθ
, (2.35)

=

d∑
i=1

d∑
j=1

dαj
dθ

∂`i
∂αj

. (2.36)

(2.37)
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Since the observations are independent ∂`i
∂αj

= 0 for i 6= j and so

u(θ, y; τ) =
d∑
i=1

dαi
dθ

∂`i
∂αi

, (2.38)

=

d∑
i=1

dαi
dθ

(
yi − nαi
αi(1− αi)

)
. (2.39)

For this example the score is a scalar value hence

I(θ; τ) = Ey∼f(y|θ;τ)[u(θ, y; τ)2]. (2.40)

2.2.2 Normally distributed random variables

This section considers models where observations have Normal error structure,

Y ∼ Nd

(
µ(θ, τ), Σ(θ, τ)

)
. (2.41)

Both the mean vector µ and covariance matrix Σ depend on parameters θ and design τ .

This allows errors to be correlated across observations so that those in close proximity will

be similar.

Under this model, an analytic solution for the expectation over the data is obtainable, with

the ijth entry for the Fisher information matrix given by (Malagò and Pistone, 2015)

Iij =
∂µT

∂θi
Σ−1

∂µ

∂θj
+

1

2
tr

(
Σ−1

∂Σ

∂θi
Σ−1

∂Σ

∂θj

)
, (2.42)

where ∂Σ
∂θi

is a matrix of partial derivatives of Σ with respect to a parameter θi. Equation

2.42 gives the form of the Fisher information matrix however for various covariance

structures this can be expressed in a simpler form.

Constant covariance with independent observations, Σ = σ2Id

In this simple case, the covariance matrix is proportional to the identity matrix Id.
Therefore Σ is not dependent on the parameters θ and thus ∂Σ

∂θk
= 0 for all k. The ijth

element of the Fisher information matrix is given by

Iij =
∂µT

∂θi
Σ−1

∂µ

∂θj
. (2.43)
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The inverse of Σ = σ2Id is given by Σ−1 = σ−2Id and so the ijth element of the information

matrix can be expressed as

Iij =
1

σ2
∂µT

∂θi

∂µ

∂θj
. (2.44)

Errors dependent upon mean function with independence across

observations, Σ = σ21Id + σ22diag(f(µ))

Consider a covariance matrix of the form Σ = σ21Id + σ22diag(f(µ)) where errors are

independent across designs but the magnitude of variation depends on some function of

the mean value, f(µ) = (f(µ1), f(µ2), . . . , f(µd)) = (f1, f2, . . . , fd). The matrix of partial

derivatives of Σ with respect to each element of θ is required in Equation 2.42. The

derivative of Σ with respect to θk is given by

∂Σ

∂θk
= σ22ζk, (2.45)

where ζk is a matrix of partial derivatives of f with respect to θk,

(ζk)ij =
∂fi
∂µj

dµj
dθk

. (2.46)

Here ζk is a diagonal matrix as ∂fi
∂µj

= 0 for i 6= j due to independence between observations.

As both Σ and ζ are diagonal matrices, the second term in Equation 2.42 can be expressed

as follows.

tr

(
Σ−1

∂Σ

∂θi
Σ−1

∂Σ

∂θj

)
= tr(Σ−1σ22ζiΣ

−1σ22ζj), (2.47)

= σ42

d∑
k=1

Σ−1kk

(
∂fk
∂µk

dµk
dθi

)
Σ−1kk

(
∂fk
∂µk

dµk
dθj

)
, (2.48)

= σ42

d∑
k=1

Σ−2kk

(
∂fk
∂µk

)2dµk
dθi

dµk
dθj

. (2.49)

The ijth entry for the Fisher information matrix is hence given by

Iij =
∂µT

∂θi
Σ−1

∂µ

∂θj
+
σ42
2

d∑
k=1

Σ−2kk

(
∂f(µk)

∂µk

)2dµk
dθi

dµk
dθj

. (2.50)

15



Chapter 2

Correlated errors across observations, Σ = Σ(τ)

Consider a covariance matrix which depends only on the design τ and not the parameters

θ. The covariance matrix considered here has the form

Σij =

σ21 + σ22, i = j

σ22 ρ(τi, τj), i 6= j
(2.51)

where ρ is a correlation function. Examples of suitable correlation functions would be the

Matérn family or squared exponential correlation. See, for example, Gaetan and Guyon

(2010) for a more detailed description of correlation functions. The covariance is constant

with respect to the model parameters and so the Fisher information matrix for this example

takes the form of Equation 2.43. Here Σ is not a diagonal matrix and thus requires matrix

inverse computations.

2.3 Experimental design

Many experiments are costly and expensive to conduct. Collection of data may involve an

invasive procedure on subjects or require a substantial amount of resources often limiting

the number of observations that can be made. For these reasons, practitioners are interested

in maximising the value of the data with respect to the experimental aims. Optimal

experimental design is a framework which aims to identify the optimal locations, over

space and/or time, to observe data. It can also be used to make other design decisions

such as treatment allocations.

2.3.1 Classical experimental design

In the classical setting, experimental design focuses on minimising the variance of the

estimators of the unknown parameters. This corresponds to maximising the information

present in the data. The quantitative summary of the worth of a design is often based

on optimality criteria involving the Fisher information matrix (see Section 2.2) and are

referred to as alphabet criteria due to the naming conventions as introduced by Kiefer

(1959).

Classical alphabet optimality

Alphabet criteria have been well studied in the classical literature (Box, 1982; Hinkelmann

and Maman, 2005; Atkinson et al., 2007). Consider the Fisher information matrix, I, with
non-zero eigenvalues, λ1, λ2, . . . , λp. The following optimality criteria can then be de�ned.
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DDD optimality is when the determinant criterion is minimised. This can be expressed as

minimising the product of non-zero eigenvalues,

min

p∏
i=1

1

λi
. (2.52)

AAA optimality corresponds to minimising the average variance criterion. The value of

this criterion is equal to the inverse of the average or sum of the inverse eigenvalues of I,

min

p∑
i=1

1

λi
. (2.53)

The optimal design under A optimality corresponds to minimising the average variance of

the parameter estimates.

TTT optimality aims to maximise the trace of the information matrix (using the de�nition

used by Sun and Sun, 2015 and Walker, 2016) , equivalent to the sum of its eigenvalues,

max

p∑
i=1

λi. (2.54)

Sun and Sun (2015) describe T optimality as an alternative to A optimality that is easier

to compute. Note that this naming convention is sometimes ambiguous as most other

authors (for example Atkinson and Fedorov, 1975, Dette et al., 2012 and Duarte et al.,

2015) de�ne T optimality as a criterion related to a test statistic, aiming to discriminate

between models.

2.3.2 Bayesian experimental design

The Bayesian experimental design framework incorporates any prior knowledge and

uncertainties by taking the expectation over the prior distribution for the model

parameters π(θ) and the assumed model for the observations f(y|θ; τ). The prior

distribution can incorporate information from previous studies as well as any subjective

beliefs or expertise elicited from the practitioner.

The aim of Bayesian experimental design is to make an optimal decision whilst accounting

for the uncertainties about the model parameters and data which could be observed. The

worth of observations taken at a particular design τ given data y is observed based on

sampled parameters θ is quanti�ed through a utility function which is to be optimised. In

practice, a utility function U(τ, θ, y) quantifying the worth of an experiment should �rst
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be elicited or chosen based on the aims of the experiment. Wolfson et al. (1996) present

a discussion on the mechanics of eliciting a utility function however this is di�cult to do

in practice and so alternative generic utilities are often used. See Section 2.4 for further

discussion. The prior distribution for the unknown parameters should be de�ned as well

as a model describing how they relate to observations in the experiment. The Bayesian

optimal design τ∗ maximises the expected utility J (τ) which is the prior predictive utility

function,

τ∗ = max
τ∈T
J (τ), (2.55)

where

J (τ) =
∫
Θ

∫
Y
U(τ, θ, y)π(θ, y; τ)dydθ. (2.56)

Usually the solution to Equation 2.56 does not have a closed form hence τ∗ is found using

numerical optimisation, typically of an approximation of the expected utility. See Section

2.6.

2.4 Utility functions

A utility function U(τ, θ, y) is a quantitative summary of an outcome which re�ects the

aims of the experiment. It should reward desirable results whilst penalising any costs

involved. The worth of a particular design is given by the expected utility J (τ), the
average utility weighted by the prior beliefs for parameters π(θ) and the assumed model

f(y|θ; τ) as de�ned in Equation 2.56. A design τ1 provides more knowledge than design τ2
if the expected utility is higher for τ1 than it is for τ2, i.e. J (τ1) > J (τ2).

It is often di�cult or infeasible to elicit a speci�c utility function from the practitioner and

so more general functions concerning estimation of the model parameters or predictions

from the model are often used. In the classical design setting utilities are usually based

on alphabet optimality conditions based on the Fisher information matrix. Section 2.3.1

de�nes some of these criteria. Often these have analogues in the Bayesian setting where

the classic alphabet criteria are averaged over Θ and Y. Such utilities are termed pseudo-

Bayesian by Ryan et al. (2016). To be a fully-Bayesian utility function Ryan et al. (2016)

proposed that the design criterion should be a function of the posterior distribution. Section

2.5.1 describes a decision theoretic view of optimal design where certain pseudo-Bayesian

utilities can be shown to be functions of the posterior and hence considered fully-Bayesian

under the preceding de�nitions. Chapter 4 gives further details and also describes some

commonly used Bayesian utility functions.
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2.5 Scoring rules

Scoring rules provide a quantitative measure of the accuracy of probabilistic predictions.

They originated as an approach to making and evaluating probabilistic predictions (Dawid,

2014). A score can be thought of as calibration measure, ensuring that the forecaster is

honest with his predictions, not being under or over con�dent in their beliefs. Alternatively

a score can be interpreted as a loss function where the minimum expected loss corresponds

to reporting the true set of probabilities or distribution.

Consider a random variable θ with true distribution given by P ∈ P where P is a set of

suitable distributions. In many cases P will be an unknown distribution which is estimated

by a quoted distribution, Q ∈ P. The expected score is the expected penalty between P

and Q given by

S(P,Q) = Eθ∼p(θ)[s(θ,Q)], (2.57)

where s is a scoring rule which quanti�es the penalty. This provides a method of quantifying

di�erences between the distributions.

For di�erent probabilistic forecasts Q1, Q2 ∈ P, S(P,Q1) < S(P,Q2) means Q1 is a more

accurate probabilistic forecast than Q2 because Q1 is closer to P . An expected score is

called strictly proper if S(P,Q) > S(P, P ) for Q 6= P . A proper scoring rule is bene�cial

as it rewards choices of Q which are closer to the true distribution P .

Entropy and divergence are concepts which are closely related to proper scoring rules.

Entropy is de�ned as the value of the expected score when the quoted distribution is the

truth, E(P ) = S(P, P ). The di�erence in entropy between the true and quoted

distributions, denoted D(P,Q) = S(P,Q)− E(P ), is referred to as the divergence.

The scoring rules used in this thesis, the logarithmic score (Good, 1992) and Hyvärinen

score (Hyvärinen, 2005), are de�ned in Table 2.1. The results relating to the Hyvärinen

score rely on the following regularity conditions.

1. p(θ) and q(θ) are twice di�erentiable with respect to θ.

2. Eθ∼p(θ)
[
||∇ log p(θ)||2

]
,Eθ∼q(θ)

[
||∇ log q(θ)||

]2
are �nite.

3. ∇θp(θ)→ 0,∇θq(θ)→ 0 for ||θ|| → ∞.

There are many other scoring rules de�ned in the literature, for example Tsallis (1988);

Brier (1950); Bregman (1967). Gneiting and Raftery (2007), Parry et al. (2012) and Dawid

and Musio (2014) all present further discussion of scoring rules.
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Logarithmic score Hyvärinen score

Scoring rule s(θ,Q) − log q(θ) 2∆ log q(θ) + ||∇ log q(θ)||2

Entropy −Eθ∼p(θ)[log p(θ)] −Eθ∼p(θ)[||∇ log p(θ)||2]

Divergence Eθ∼p(θ)[log p(θ)− log q(θ)] Eθ∼p(θ)[||∇ log p(θ)−∇ log q(θ)||2]

Table 2.1: Quantities associated with the logarithmic and Hyvärinen scores.

2.5.1 Bayesian decision theoretic approach

Following from Minton et al. (1962), Lindley (1972) considered a decision theoretic

approach to Bayesian experimental design. As in Section 2.3.2, a design τ ∈ T will be

selected and observations sampled given some model parameters drawn from the prior,

y ∈ Y for θ ∈ Θ. Based solely on observing y (without knowledge of θ) the practitioner

must choose an action a ∈ A where A is some set of possible actions. The bene�t of

taking this action is quanti�ed by a general utility V(a, τ, θ, y). The utility U(τ, θ, y)
required in Bayesian optimal design is then de�ned as taking the best action given y,

U(τ, θ, y) = V(â, τ, θ, y), (2.58)

where

â(y; τ) = max
a∈A

∫
Θ
V(a, τ, θ, y)π(θ|y; τ)dθ. (2.59)

The general utility could be elicited from the practitioner. However in practice this is

di�cult and instead a more generic function is often used. The action a could be a point

estimate where U is quadratic loss i.e. (a− θ)2 for θ ∈ Θ (Chaloner and Verdinelli, 1995).

Bernardo (1979) considered the case where the action a is to estimate a density. The

practitioner must quote a distribution for the model parameters after observing data in

the experiment. For the practitioner to be honest the expected general utility,

Eθ∼π(θ|y;τ)[V(a, τ, θ, y)], must be maximised at the true posterior. This corresponds to the

framework of proper scoring rules. Proper scoring rules (Section 2.5) are a class of

functions which assess the quality of density estimates which the generalised utility can

be based on.

The utility for the experiment U(τ, y) (as de�ned in Equation 2.58) can be expressed as the
di�erence between the score under prior uncertainty about θ and the score of the posterior

distribution once data y has been observed,

U(τ, y) = Eθ∼π(θ|y;τ)[s(θ, π(θ))]− Eθ∼π(θ|y;τ)[s(θ, π(θ|y; τ))] (2.60)

= S(π(θ|y; τ), π(θ))− S(π(θ|y; τ), π(θ|y; τ)) (2.61)

= D(π(θ|y; τ), π(θ)). (2.62)
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This comparison of the knowledge before and after the experiment makes it possible to

discuss the information gained from the experiment (Lindley et al., 1956). The expected

utility is thus given by

J (τ) = Ey∼f(y|θ;τ)
[
D(π(θ|y; τ), π(θ))

]
. (2.63)

2.6 Existing methods for Bayesian optimal design

This section provides an overview of some existing algorithms used for Bayesian optimal

design problems. These vary in complexity and e�ciency thus provide a benchmark for

assessing the performance of new methods of �nding the optimal design. This chapter

describes the Müller (Müller, 1999) and ACE (Overstall and Woods, 2017) algorithms in

detail. In addition, brief details of other methods for �nding the Bayesian optimal design

are given.

2.6.1 Müller algorithm

The Müller algorithm (Müller, 1999) is a simulation based method of �nding the optimal

design based on Markov Chain Monte Carlo methods. Samples are drawn from the target

density,

h(τ, θ, y) ∝ U(τ, θ, y)π(θ, y; τ), (2.64)

using a Metropolis Hastings MCMC scheme (Algorithm 2.3, M = 1). The target

distribution is de�ned such that the marginal density for τ is proportional to the

expected utility J (τ). The optimal design τ∗ is then chosen to be the design which

returns the mode for h(τ), the marginal density of h(τ, θ, y) for τ . The mode can be

approximated by �tting a suitable function to the MCMC output, for example a

multivariate normal distribution, whose mode can be expressed analytically.

In order to make the mode more easily identi�able, Müller suggests making the target

more peaked by powering up the distribution using a batch of M utility evaluations. The

new target density is

hM (τ, θ1, . . . , θM , y1, . . . , yM ) ∝
M∏
m=1

U(τ, θm, ym)π(θm, ym; τ). (2.65)

The marginal density for τ is now proportional to JM (τ) forM ∈ N. As the batch size,M ,

is increased the utility surface will become more peaked, thus allowing easier identi�cation

of the modal value. Algorithm 2.3 details this method.
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Algorithm 2.3 Müller algorithm using MCMC to target the optimal design. The batch
size, M , is the number of utility evaluations per iteration of the scheme.

1: Initialise τ (0). Simulate M independent realisations, θ(0)1 , . . . , θ
(0)
M , with corresponding

y
(0)
1 , . . . , y

(0)
M , from π(θ, y; τ (0)).

2: Compute H(0) =
∏M
m=1 U(τ (0), θ

(0)
m , y

(0)
m ).

3: for i = 1, . . . , N do

4: Propose τ ′ ∼ q(τ |τ (i−1)) and simulate (θ′1, y
′
1), . . . , (θ

′
M , y

′
M ) from π(θ, y; τ ′).

5: Compute H ′ =
∏M
m=1 U(τ ′, θ′m, y′m)

6: Calculate the acceptance probability, α = min(1, A) where

A =
H ′q(τ (i−1)|τ ′)

H(i−1)q(τ ′|τ (i−1))

7: With probability α, set τ (i) = τ ′ and H(i) = H ′. Otherwise, set τ (i) = τ (i−1) and
H(i) = H(i−1).

8: end

Müller et al. (2004) suggest adapting Algorithm 2.3 by gradually incrementing M so that

the target distribution changes over iterations, similar to simulated annealing

(Van Laarhoven and Aarts, 1987). Thus the target distribution becomes more peaked

throughout the iterations, helping to avoid becoming stuck in a local mode. In practice

this requires more simulations of the utility in later iterations of the MCMC scheme.

Theoretically, the marginal of τ of the powered up target hM (τ) should converge

uniformly to a Dirac delta function at the optimal design τ∗ as M → ∞ in the MCMC

scheme in Algorithm 2.3.

The Müller algorithm has proven to be a popular choice when selecting a method for

Bayesian optimal design. Many authors have employed similar strategies to solve design

problems (Bielza et al., 1999; Müller et al., 2004; Cook et al., 2008). However, in practice,

the algorithm has been found to be slow to converge and is particularly ine�cient if either

the design or parameter space are large (Stroud et al., 2001; Amzal et al., 2006).

Low dimension parametrisation of the design

Ryan et al. (2015) aimed to �nd a high dimensional optimal design using a dimension

reduction scheme within the Müller algorithm. Such schemes typically characterise a design

by a small number of parameters ν. Examples of such schemes include the Beta scheme and

geometric scheme (Ryan et al., 2014). Parametrising the design has the bene�t of reducing

the dimension of the optimisation problem and hence the computational burden of �nding

the optimal design. However Overstall and Woods (2017) showed that the designs returned

typically do not optimise the expected utility. The trade o� between computational cost

and design quality has to be considered when using low dimensional parametrisations.
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2.6.2 Approximate co-ordinate exchange algorithm

The approximate co-ordinate exchange (ACE) algorithm (Overstall and Woods, 2017) is a

more recently developed method aiming to �nd the optimal design. According to Overstall

and McGree (2018), the ACE algorithm is �currently the state of the art in computing

Bayesian designs for realistic-sized design spaces�. In Overstall and Woods (2017), the

authors demonstrated that in practice ACE returned better designs than Müller when

using a dimension reduction scheme, with further improvements seen when searching over

the original design space. The ACE algorithm is implemented in an R package, acebayes

(Overstall et al., 2017), which calls functions in C++ for increased speed. This makes the

ACE algorithm easy to use. ACE can be applied to a wide range of design problems with

�exibility in the choice of model and utility function. The design space can be continuous

or discrete with the option of adding constraints.

The ACE algorithm uses a two stage method; co-ordinate exchange followed by point

exchange. The �rst phase of the algorithm iteratively updates each component in the design

in turn. This reduces the problem to a one dimensional optimisation for each element of

the design. The update procedure �ts a surrogate model, typically a Gaussian process, to

the expected utility given that component of the design. The value which maximises this

is then estimated and is accepted or rejected according to a Bayesian test of equality to see

if the expected utility is improved. This uses a large number of simulations in the Monte

Carlo approximation of the expected utility under the current and proposed designs. Phase

1 performs this process iteratively looping over each component of the design N1 times.

Phase 2 of the ACE algorithm examines clusters of design points through use of a point

exchange algorithm with candidate points formed from the components of the design output

from phase 1. This tests if replication of some points is more bene�cial than the current

design. The component of the design whose replication yields the highest expected utility

(according to a Monte Carlo estimate) is identi�ed. This is then added to the design,

resulting in a design containing too many points. A search for the design point whose

deletion would lead to the lowest reduction in the estimated expected utility is conducted

and removed to form the candidate design. The replication and deletion are jointly accepted

or rejected, as in phase 1, according to a Bayesian test. This is repeatedN2 times, returning

an estimated optimal design.

The ACE algorithm can be subject to converging to local optima and hence the authors

suggest running the algorithm multiple times from di�erent starting designs and selecting

the design which has the highest expected utility, established using a Monte Carlo estimate

with many simulations. This can be performed in parallel, reducing computation time if

multiple cores are available. A further drawback of ACE is that it is ine�cient for highly

correlated designs as only one dimension is searched at a time.
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Algorithm 2.4 The approximate co-ordinate exchange algorithm. The tuning parameters
are: N1 and N2, the number of iterations of phase 1 and phase 2 respectively; b1 and b2, the
number of simulations used to establish the candidate design and compute the associated
acceptance probability; Q, the number points at which to evaluate the expected utility to
�t the model in phase 1.

1: Choose an initial design τ (0) =
(
τ
(0)
1 , . . . , τ

(0)
d

)
∈ T . Set τ (C) = τ (0).

Phase 1: Co-ordinate exchange
2: for n = 1, . . . , N1 do

3: for i = 1, . . . , d do
4: Select Q design points from the ith margin of the design space,

ξi = {ξi,1, ξi,2, . . . , ξi,Q}.
5: Approximate the expected utility via Monte Carlo using b1 simulations,

Ĵ (ξi,1|τ (C)
−i ), . . . , Ĵ (ξi,Q|τ (C)

−i ), where τ (C)
−i = (. . . , τ

(C)
i−1 , τ

(C)
i+1 , . . . ) is the current

design vector with the ith component removed.
6: Fit a model to

{
ξi,q, Ĵ (ξi,q|τ (C)

−i )
}Q
q=1

and �nd the scalar value ξ∗i
which maximises it.

7: Conduct a Bayesian test using b2 simulated utilities to obtain a probability p1
of accepting the proposed design τ ′ = (τ1, . . . , τ

(C)
i−1 , ξ

∗
i , τ

(C)
i+1 , . . . , τd).

8: Set τ (C) = τ ′ with probability p1.

Phase 2: Point exchange
9: for m = 1, . . . , N2 do

10: for j = 1, . . . , d do
11: Propose a point to be replicated

τκ = argmax
τk

Ĵ (τk|τ (C))

for τk ∈ τ (C). Concatenate this to the current design τ̃ = (τ (C), τκ). Note
that τ̃ 6∈ T .

12: Find the element of τ̃ whose removal yields the highest expected utility based
on a Monte Carlo approximation using b1 simulations,

ν = argmax
v

Ĵ (τ̃−v).

13: Conduct a Bayesian test using b2 simulated utilities to get probability p2
of accepting proposed design τ ′ = τ̃−ν .

14: Set τ (C) = τ ′ with probability p2.
return τ (C)
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2.6.3 Other optimal design algorithms

There are many more methods which target the optimal design. Chaloner and Verdinelli

(1995) and more recently Ryan et al. (2016) give a detailed review of Bayesian experimental

design in their respective papers. Some of these algorithms are described brie�y below.

Amzal (Amzal et al., 2006) is a simulation based method to �nding the optimal design.

The algorithm extends the ideas of the Müller algorithm (Section 2.6.1) but uses a particle

based approach. Like Müller it targets hM (τ) (Equation 2.65). Amzal uses a sequential

Monte Carlo approach. It targets hM (τ) with M increasing during the algorithm. As M

increases the distribution becomes more peaked around the mode τ∗.

The Amzal algorithm has two main advantages. The target distribution, hM (τ), is sampled

at each iteration therefore the design which returns the best utility can be estimated from

each iteration as opposed to waiting for asymptotic behaviour. Furthermore, the algorithm

adaptively targets the optimal design. That is, as the algorithm progresses designs are

sampled more densely around the modes of the powered utility surface.

Gillespie Boys (Gillespie and Boys, 2019) is another particle based approach to the

problem of Bayesian experimental design. This method considers designs on a discrete

grid over the design space T . Near continuous designs can be obtained using a �ne grid.

The algorithm simulates utility values at these designs, concentrating on those which give

estimated expected utilities in the top 100α% of their distribution. The tuning parameter

α is a sequence which decreases as the iterations increase causing the algorithm to focus on

near optimal designs. Throughout the algorithm previous approximations of the expected

utility are stored so that they can be combined with any new computed utilities via a

weighted average.

The Gillespie Boys algorithm bene�ts from being more e�cient under a �xed computational

budget than other algorithms when the dimension of the design is small. The algorithm

also performs well when the expected utility surface is multi-modal. Similarly to the

Amzal method, the Gillespie Boys algorithm adaptively targets the optimal design through

the iterations of the algorithm by concentrating on those which give a high estimated

expected utility. In a high dimensional design space the algorithm does not perform as

well. To explore this space for the optimal design a large number of points are required

and thus the computational cost of the algorithm increases due to the number of utility

realisations required. The computational burden of this algorithm is also dependent upon

the coarseness of the discrete grid used; the �ner the grid, the higher the computational

cost and vice versa.
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Induced natural selection heuristic (INSH) (Price et al., 2018) is a type of

evolutionary algorithm (Goldberg, 1994) which allows the best designs to �survive�

through evolutions/iterations. The algorithm is initialised by sampling a coarse grid of

designs from the design space. At each iteration the expected utility is estimated at each

design and the �best� are identi�ed to become the set of accepted designs. The authors

take the (user speci�ed) r designs which give the highest expected utilities from the

current and previous iterations. A new set of designs for the next iteration are proposed

from a perturbation function. This is a probability distribution which adds noise to the

accepted design. The algorithm then continues until it has exhausted the computational

budget or has converged.
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Stochastic gradient descent for

optimal design

Existing methods for optimal design problems typically require many evaluations of the

utility function, usually scaling with the dimension of the design. Typically in Bayesian

optimal design the utility is a function of the posterior distribution which can be

computationally expensive to estimate. Due to this, e�cient methods of �nding the

optimal design using as few utility evaluations as possible are desired.

Optimal design is an optimisation problem of the expected utility. This is a deterministic

function but typically only stochastic estimates can be obtained. Stochastic optimisation

methods could be employed as they o�er a computationally e�cient alternative to the

existing methods. Used widely in the �eld of machine learning, stochastic optimisation

algorithms can be used to search high dimensional spaces for values which optimise a

function. In this chapter some stochastic gradient descent (SGD) algorithms are described

which can be used to search for a design which maximises the expected utility function.

The stochastic gradient descent (SGD) algorithm aims to �nd φ∗ ∈ Rd, which minimises

a function, g(φ). SGD is particularly useful when g(·) cannot be evaluated but can be

estimated. A selection of adaptations to the general framework are presented in Section

3.1.3 and Section 3.1.4 which aim to improve some characteristics of the vanilla SGD

algorithm described in Section 3.1.2. Often constraints are required on φ. Section 3.2

outlines how these are applied to SGD. Finally, Section 3.3 describes methods of gradient

computation.

3.1 Stochastic gradient descent

Stochastic gradient descent (SGD) methods aim to �nd the vector which minimises the

objective function g(·),
φ∗ = argmin

φ
g(φ).
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Algorithm 3.1 General algorithm for SGD for n iterations.

1: Initialise φ0 and set i = 1.
2: while i 6 n do

3: φi = φi−1 − αih(φi−1)
4: i := i+ 1

5: return φn

If the aim is to maximise a function then SGD can be applied to the negative of the objective

function. This is known as stochastic gradient ascent. For convenience, throughout this

thesis any stochastic gradient optimisation will be referred to as SGD.

SGD is an iterative procedure which uses gradient estimates of g(·) to �nd φ∗. The generic
SGD algorithm is de�ned in Algorithm 3.1. After providing an initial state φ0 it iteratively

updates the current state φi by moving in the direction of −αih(φi−1), where αi is called
the learning rate and h(·) is a function of the gradient, or an estimate, at the previous

state.

3.1.1 Gradient descent

First, consider a special case of SGD where the gradient of the objective function, ∇g, can
be evaluated. The gradient descent algorithm (Curry, 1944) is applicable in this scenario

and can be thought of as traversing the surface of the function downhill until a state where

a gradient of zero is reached, i.e. a minimum. It is recovered when h(φi−1) = ∇g(φi−1) in
Algorithm 3.1, giving an update rule

φi = φi−1 − αi∇g(φi−1). (3.1)

The objective function is subject to some regularity conditions that are typically met

(Karimi et al., 2016). A sequence of learning rates αi must be set by the practitioner. A

typical choice is 1/i. It can be shown that φi will eventually converge to a local minimum

of the loss function (Bottou, 2010), if

∞∑
i=1

αi =∞,
∞∑
i=1

α2
i <∞, (3.2)

based on the theory of Robbins and Monro (1951). In speci�c cases, such as when g(·)
is a convex function, a function where a line drawn between any two points on the curve

is wholly greater than or equal to the function, the algorithm will converge to a global

minimum.
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3.1.2 Vanilla SGD

In the case where only noisy estimates of the gradient of the objective function, ∇g,
can be made, gradient descent (Section 3.1.1) is not applicable. Since ∇g cannot be

calculated directly, stochastic gradient descent is an adaptation of gradient descent which

uses an unbiased estimate of the gradient function ∇̂g. Speci�cally, h(φi−1) = ∇̂g(φi−1)
in Algorithm 3.1, leading to a state update rule of

φi = φi−1 − αi∇̂g(φi−1). (3.3)

It can be shown that convergence holds subject to conditions outlined by Bottou et al.

(2018).

Discussion

Here disadvantages of the gradient descent and vanilla SGD algorithms are discussed before

Section 3.1.3 and Section 3.1.4 present adaptive algorithms which aim to address some of

the following issues.

Firstly, both converge to local minima rather than the desired global minimum (Chollet,

2018). This problem can be partially solved by initialising the algorithm at a variety

of initial conditions. Comparing the value of g(·) at the �nal states will indicate which

(locally minimal) �nal state is best however there is no guarantee of converging to the

global minimum. Although this o�ers a solution to the issue of converging to a bad local

minimum, it increases the computation burden and can become unfeasible dependent upon

the dimension of the search space.

The second major disadvantage of these algorithms is that the practitioner has to select a

suitable sequence of learning rates. Within the conditions for convergence (Equation 3.2)

there still remains a wide variety of choice for αi. A popular sequence chosen by

practitioners is 1/i. The choice of sequence a�ects the speed and stability of the

convergence and so this is not suitable for all applications. Hence the practitioner is

required to tune αi which can be a di�cult task. Bengio (2012) and Goodfellow et al.

(2016) both describe the learning rate as the most important parameter which should

always be tuned. Adaptations to SGD which claim to require less tuning are discussed in

Section 3.1.4. Alternatively, online adaptation of the learning rate has been suggested

(Baydin et al., 2017). This involves updating the learning rate alongside the state within

the SGD algorithm. Wu et al. (2018) present a similar approach where the learning rate

is initialised at a high value before decreasing its magnitude according to gradient

observation made throughout the algorithm. Although a sequence is required to have

convergence guarantees, in practice, αi is often chosen to be �xed with favourable results.
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A further disadvantage is that if the gradient estimates oscillate around zero, causing

changes in the direction of the updates, the computational cost is increased as the algorithm

requires longer to converge. This e�ect is exaggerated in cases where the objective function

acts like a valley with steep sides. SGD using momentum (see Section 3.1.3) addresses this

issue by using information from past gradient estimates to make updates.

3.1.3 SGD with momentum

Modifying the vanilla SGD algorithm to include momentum aims to address the issue of

oscillatory behaviour. Momentum in the case of SGD incorporates a running average of

past gradient estimates into the update step. If consecutive updates move in the same

direction then the algorithm accumulates momentum and makes larger updates in that

direction. If the direction of the gradients contradict each other then the updates will slow

down by decreasing the momentum. For example this should happen close to a minimum

of the objective function.

The update step for SGD with momentum (Qian, 1999) is given by

φi = φi−1 − αih(φi−1), (3.4)

where

h(φi−1) = βh(φi−2) + (1− β)∇̂g(φi−1). (3.5)

Similarly to the vanilla SGD, using momentum also requires a sequence of learning rates,

αi, to be selected by the practitioner. This is typically chosen to be a constant value

αi = α. The weighting parameter, β, controls the decaying dependence on past gradient

estimates. A typical choice for β is around 0.9 (Ruder, 2016).

Using momentum introduces the bene�t of limiting the oscillatory behaviour exhibited by

the state when updates are based on the direction of the estimated gradient, ∇̂g. This

can contribute towards faster convergence (Rumelhart et al., 1986) which reduces the

computational cost of optimisation. The bene�ts of including momentum are achieved

when suitable hyper-parameters are selected. If bad values are chosen for β the updates

may be too dependent on previous gradient estimates, destabilising convergence to the

global optimum.

3.1.4 Adaptive moment estimation

The adaptive moment estimation (Adam) algorithm (Kingma and Ba, 2014) aims to build

upon the idea of using momentum within the SGD algorithm by updating exponential
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moving averages of the estimated gradient and squared gradient. This algorithm is widely

used in the �eld of machine learning with well documented improvements in speed of

convergence and loss obtained over alternative methods (Kingma and Ba, 2014; Ruder,

2016).

In Algorithm 3.1, the update step is de�ned for the Adam algorithm as

φi = φi−1 − αih(φi−1), (3.6)

where the gradient function h(·) is de�ned as

h(φi−1) = m̂i/(
√
v̂i + ε), (3.7)

with

mi = β1mi−1 + (1− β1)∇̂g(φi−1), (3.8)

m̂i =
mi

1− βi1
, (3.9)

vi = β2vi−1 + (1− β2)[∇̂g(φi−1)]2, (3.10)

v̂i =
vi

1− βi2
, (3.11)

where all operations are element-wise, αi is again the learning rate and parameters β1,

β2 and ε are constants. As in the other SGD algorithms, convergence is guaranteed for

a decreasing sequence of learning rates, αi. The authors use a �xed α which is shown to

work well in practice (Kingma and Ba, 2014).

The gradient function of the Adam algorithm uses momentum for the �rst and second

moments of the estimated gradient, ∇̂g. These are denoted m and v respectively with

both initialised at a value of zero, i.e. m0 = v0 = 0. Both moments are updated by using

a weighted average between the past moment estimates and the observed moment at the

current state (see Equations 3.8 and 3.10). The dependence upon the past moment

estimates is controlled by parameters β1 and β2 for the �rst and second moment

respectively. The initialisation of the moments introduces a bias towards zero in both mi

and vi which is corrected by Equation 3.9 and Equation 3.11. The bias corrected

moments along with a further parameter, ε, used to ensure numerical stability, give the

formulation of h(·) in Equation 3.7.

The parameters in the Adam algorithm are described with default values given in Table

3.1. The authors of the Adam algorithm show that the default values of the parameters

are suitable for many situations and do not require a lot of tuning (Kingma and Ba, 2014).
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Parameter Description Default value

α Learning rate, a constant 0.001
β1 Controls dependance on past mi's 0.9
β2 Controls dependance on past vi's 0.999
ε Ensures numerical stability in h(·) 10−8

Table 3.1: Description and default values of the parameters in the Adam algorithm (Section 3.1.4).

3.1.5 Other SGD algorithms

SGD algorithms are widely used in the �eld of machine learning and many further

adaptations to the vanilla algorithm exist. Some of these algorithms project accumulated

gradients forward before making a correction to obtain the next state as in the case of

Nesterov accelerated gradient (Nesterov, 1983). Others, namely Adagrad (Duchi et al.,

2011) and Adadelta (Zeiler, 2012) use adaptive procedures to update the learning rates

based on all or some of the past squared gradients similarly to Adam. An overview of

SGD methods is given by Ruder (2016).

3.1.6 Illustration of SGD algorithms

This section illustrates the dynamics of the vanilla SGD (Section 3.1.2), SGD with

momentum (Section 3.1.3) and Adam (Section 3.1.4) algorithms when the objective

function has a steep valley. The Rosenbrock function (Rosenbrock, 1960) is an example of

such a function and is widely used to test the performance of optimisation algorithms. It

is de�ned as

g(x, y) = (a− x)2 + b(y − x2)2. (3.12)

Here it is used to demonstrate the behaviour of the aforementioned algorithms.

Figure 3.1 shows that the vanilla SGD algorithm has highly oscillatory behaviour over

the initial iterations. The valley in the objective function gives rise to this behaviour as

consecutive gradient estimates have opposing signs in the y direction. Over the iterations

the magnitude of the gradients decrease and so the algorithm �nds the bottom of the valley

and traverses this until it �nds the minimum of the function.

For SGD with momentum a similar behaviour is observed however the oscillations are

damped and so the algorithm �nds the bottom of the valley quickly and moves along it

towards the minimum at (1, 1). The Adam algorithm again improves upon the oscillatory

behaviour of both the vanilla SGD and SGD with momentum algorithms. It quickly �nds

the minimum of the valley and moves towards the minimum of the objective function.
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Figure 3.1: The value of the objective function (left) and path (right) through the iterations of
the vanilla SGD (top), SGD with momentum (middle) and Adam (bottom) algorithms where the
objective function is the Rosenbrock function (Equation 3.12) with a = 1 and b = 10. All algorithms
share the same initial state indicated by a green circle. The minimum of the function is at (1, 1),
represented by a red cross.
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All of the algorithms reduce the objective rapidly for the �rst 50 iterations, then more

slowly thereafter. The trace plots of the objective function in Figure 3.1 show that the

Adam algorithm is most e�cient during this slower stage.

3.2 Constrained SGD

It is common for optimisation problems to be constrained in some way, for example φi > 0

or, more generally, φ ∈ T ⊆ Rd. In the context of optimal design, this could be due to

restrictions on the design space or proximity of sampling times to each other. A simple

solution to ensure the states of the algorithm are constrained to the permissible space is

to include a penalty in the objective function. This aims to ensure the gradients move

the states back to the feasible space, T . Penalties can be incorporated additively, g̃(φ) =

g(φ) + P(T , φ) or multiplicatively, g̃(φ) = g(φ)
(
1 + P(T , φ)

)
, where g̃ is a penalised

objective function which is to be minimised and P is a positive penalty function.

Throughout this thesis constraints on any optimisation are implemented by adding a large

penalty to the loss function for any φ 6∈ T where T is rectangular. Penalties can be used

to encourage states to stay within the lower and upper boundaries, ` = (`1, `2, . . . , `d)

and υ = (υ1, υ2, . . . , υd) respectively, or to encourage successive observations to be at least

distance δ apart.

Lower bound: P(T , φ) = kmax(`− φ, 0), for i = 1, 2, . . . , d

Upper bound: P(T , φ) = kmax(φ− υ, 0), for i = 1, 2, . . . , d

Separation: P(T , φ) = kmax(δ −D, 0), for i = 1, . . . , d− 2, d− 1

where D is a matrix of absolute di�erences between states, Dij = |φi − φj |, for i, j =

1, 2 . . . , d.

Under this penalty, the practitioner has to select a value for k. The magnitude of g(·)
should be considered when choosing k, ensuring that the penalty is large enough so that

the gradient updates are directed back towards the permissible region, T .

Simple penalties may not be e�ective in more complex settings and so more sophisticated

methods can be used which project the state into the permissible space (Kushner and Yin,

2003).
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3.3 Gradient estimation

SGD relies on obtaining an estimate of the gradient at the current state. In this section

various methods that can be used to compute gradients are described. Further to this,

software capable of implementing gradient computations is discussed.

3.3.1 Gradient computation

Implementing SGD requires estimating ∇g, a vector of derivatives of g(·). There are four
main ways in which the derivative of a function can be computed: manual di�erentiation;

symbolic di�erentiation; numerical di�erentiation; and automatic di�erentiation (Baydin

and Pearlmutter, 2014).

Manual di�erentiation requires a practitioner to derive an expression for the

derivative function. The advantage of this method is that, given the user makes no errors

(a strong assumption for complex calculations), there are no issues with error due to

approximation or numerical stability. Manual di�erentiation for more complex examples

is rarely straightforward and so calculation of the exact derivative formula by the user

can be infeasible or may be impossible due to intractability of the derivative.

Symbolic di�erentiation o�ers a method of obtaining an exact derivative without

requiring the user to do any calculations manually. Using a set of programmed calculus

rules, symbolic di�erentiation software takes an algebraic expression of the function and

outputs an expression for the gradient. Symbolic di�erentiation output can produce

excessively complex expressions of the gradient function, known as expression swell

(Baydin et al., 2018). This leads to the computation becoming memory intensive and

slow (Margossian, 2019).

Numeric di�erentiation computes the derivative through numerical methods such as

using the Newton quotient (Adams, 2009), otherwise known as �nite di�erencing.

dg(x)
dx

≈ g(x+ δ)− g(x)
δ

. (3.13)

Finite di�erencing o�ers fast computation of a simple function however the accuracy of

the estimate is dependent upon δ. In the limit as δ → 0 the true gradient is recovered. In

practice, if δ is too large, the estimated derivative will not be a good approximation of the

true gradient. On the other hand if too small this can lead to large truncation error and

issues with �oating point error (Margossian, 2019).
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Algorithm 3.2 Automatic di�erentiation of g(x1, x2, . . . , xm) using forward propagation
of gradients for a computational graph on N nodes, n1, n2, . . . , nN . The independent
variables x1, x2, . . . , xm and dependent variable g correspond to nodes n1, n2, . . . , nm and
nN respectively. Ch(n) is a function which gives the indices of the children of node n.

1: Fix the independent variable the derivative will be taken with respect to, here denoted
xj .

2: Set v1, . . . , vj−1, vj+1, . . . , vm = 0 and vj = 1.
3: for i = 2, . . . , N do

4: Compute the value of the derivative at each node recursively,

vi =
∑

k∈Ch(ni)

∂ni
∂nk

vk (3.14)

5: return
∂nN
∂xj

= vN

Automatic di�erentiation (AD) does not require analytical derivatives or manual

input. Instead it decomposes the function to be di�erentiated into simple operations and

uses standard di�erentiation rules to compute numerical values of the derivative vector.

In contrast to numeric di�erentiation, derivatives returned by AD are free from

truncation error (Griewank and Walther, 2008). Unlike symbolic di�erentiation, AD

outputs a numeric value of the gradient rather than an expression. The code for AD is

less restrictive than that of symbolic di�erentiation as it allows branching, loops, and

recursion (Baydin et al., 2018).

The function that is to be di�erentiated is represented by a directed computational graph

comprising of nodes n1, n2, . . . , nN and edges. Typically the nodes represent variables but

are labelled with the operation name. The inputs to the graph are the independent variable

values x1, x2, . . . , xm corresponding to nodes n1, n2, . . . , nm and the output is the function

value g corresponding to node nN . Edges between nodes show where data is communicated

through the graph, e.g. x→ y mean that x is an input in the operation to compute y. The

output of one node becomes the input for other nodes (Zaccone et al., 2017). See Figure

3.2 for an example.

Algorithm 3.2 and Algorithm 3.3 describe AD using forwards and backwards propagation

of gradients respectively. The direction of the gradient propagation refers to the direction

in which gradients are computed. Forwards indicates that the derivatives are taken with

respect to an independent variable xj and are computed recursively from the input nodes

n1, n2, . . . , nm in the direction of the edges in the graph until the derivative of the

dependent variable, corresponding to node nN , has been computed. Backwards

propagation of gradients computes the derivative of g with respect to each node

recursively starting at nN and moving in the opposing direction to the edges of the

graph. This gives the derivative of g with respect to each of the input nodes. AD using
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Algorithm 3.3 Automatic di�erentiation of g(x1, x2, . . . , xm) using backwards
propagation of gradients for a computational graph on N nodes, n1, n2, . . . , nN . The
independent variables x1, x2, . . . , xm and dependent variable g correspond to nodes
n1, n2, . . . , nm and nN respectively. Pa(n) is a function which gives the indices of the
parents of node n.

1: Fix the dependent variable g.
2: Set vN = 1.
3: for i = N − 1, N − 2, . . . , 1 do
4: Compute the value of the derivative at each node recursively,

vi =
∑

k∈Pa(ni)

∂nk
∂ni

vk, (3.15)

and store value vi.

5: return
∂g

∂n1
= v1,

∂g

∂n2
= v2, . . . ,

∂g

∂nm
= vm

forward propagation of gradients is often subject to substantial memory costs. In

contrast, propagating the gradients backwards addresses these issues thus is widely used

in machine learning and AD software (Goodfellow et al., 2016).

Illustration

Consider a simple function with two input variables, g(x, y) = ex sin(x + y). The

computational graph is shown in Figure 3.2. Illustrations of local gradients in both the

forwards and backwards cases of propagation of gradients are shown in Figure 3.3 and

Figure 3.4 respectively. In this example ∂g
∂x = ex

(
sin(x + y) + cos(x + y)

)
. When using

the forward propagation of gradients ∂g
∂x can be recovered by substitution of the relevant

terms in n′7 from Figure 3.3. (Note that when using AD software only the numerical

value would be given however the symbolic representation is used here to illustrate the

example.) If ∂g∂y was required then similar calculations would be required with n′1 = 0 and

n′2 = 1. In contrast, propagating the gradients backwards is more e�cient due to the

output being the seed variable. As there is only one output of the graph the gradients

with respect to each input variable can be recovered in a single pass through the graph.

In Figure 3.4, substitution of the symbolic gradient expressions into n′1 and n
′
2 recover

∂g
∂x

(as above) and ∂g
∂y = ex cos(x+ y).

Summary

In summary, for complex functions, manual di�erentiation is infeasible. Numeric

di�erentiation requires tuning of δ and can return estimates that are subject to
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Figure 3.2: Example of a computational graph used in automatic di�erentiation of the function
g(x, y) = ex sin(x+ y).
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Figure 3.3: Forward propagation of gradients with respect to x. If the partial derivative of g(·) with
respect to y was required the seed variables would be set as n′1 = 0 and n′2 = 1.
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Algorithm 3.4 Stochastic gradient optimisation of expected utility J̃ (τ) = J (τ)+P(τ).
1: Initialise design τ0, number of iterations n, batch size K (used in gradient estimation).
2: for t = 0, 1, 2, . . . , n− 1 or until a convergence condition is reached do
3: Calculate gt, an estimate of ∇J̃ (τ) at τ = τt using Equation 3.18.
4: Get τt+1 by calling the update rule of a stochastic gradient optimisation algorithm

with current state τt and gradient estimate gt. The update rule of the Adam
algorithm (Section 3.1.4) is used throughout this thesis.

5: return τn

truncation error. Although symbolic di�erentiation gives accurate expressions for the

gradient, it can incur a high computation and memory overhead in comparison to

automatic di�erentiation. Due to the ease of implementation and accuracy of the

calculation, automatic di�erentiation with backwards propagation of gradients is the

preferred method of calculating the gradient, ∇g, for SGD throughout this thesis.

3.3.2 Software choice

Automatic di�erentiation software will be utilised henceforth negating the need to carry out

the gradient computations for implementing SGD manually. Many programmes are capable

of automatic di�erentiation including Theano (Team, 2016), Torch (Collobert et al., 2011)

and Tensor�ow (Abadi et al., 2016).

Throughout this thesis SGD methods will be implemented using Tensor�ow. Tensor�ow

is primarily a machine learning framework hence conveniently has many SGD algorithms,

including Adam (Section 3.1.4), already implemented.

3.4 SGD applied to optimal design

Stochastic gradient descent methods can be applied to optimal design problems. The

optimal design τ∗ is an optimisation problem where only estimates of the expected utility

function can be found. If τ ∈ T where T is �nite then a penalty term is added to

the expected utility (see Section 3.2) and so the optimal design is found by maximising

J̃ (τ) = J (τ) + P(τ).

If gradients of the expected utility can be estimated then SGD is applicable and will

return a design corresponding to a local maxima of the expected utility. If the expected

utility surface is convex then the global maximum will be found and τ∗ will be returned.

Algorithm 3.4 describes the process of applying SGD to the optimal design setting.
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The dimension of the integration in the calculation of the expectation is often large and so

the numerical approximation is commonly found using a Monte Carlo estimate,

Ĵ (τ) = 1

K

K∑
i=1

U(τ, θi, yi), (3.16)

where (θi, yi) is a draw from the prior π(θ) and simulated data from the model with

parameters θi. Similarly, a Monte Carlo estimate is used for the gradients of the expected

utility

∇̂J (τ) = 1

K

K∑
i=1

∇U(τ, θi, yi), (3.17)

where ∇U is found using automatic di�erentiation software as discussed in Section 3.3.2.

Equation 3.17 is then used to compute the gradient of the expected utility including any

penalisation,

∇̂J̃ (τ) = ∇P(τ) + ∇̂J (τ), (3.18)

where P(τ) is a function de�ning the penalty at design τ .

This is a simple method to implement however it can become increasingly expensive

computationally when an accurate estimate of the expected utility is required. The cost

of this approximation also scales with respect to the dimensionality of the parameter

space Θ and sample space Y however in practice the SGD algorithm copes well with

more variable estimates of the expected utility gradient (see Section 6.2.2).
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Utility functions

This chapter considers utility functions used in Bayesian optimal design. First, Section

4.1 de�nes some commonly used utility functions. Next Section 4.2 derives the Fisher

information gain utility from a decision theoretical viewpoint. Finally, a utility function

relating to a classical alphabet optimality criterion is described in Section 4.3.

4.1 Common Bayesian utility functions

This section de�nes some of the most commonly used utilities in Bayesian experimental

design, namely the posterior precision (for example Cook et al., 2008; Drovandi et al., 2013;

Gillespie and Boys, 2019) and the Shannon information gain (for example Bernardo, 1979;

Ryan, 2003; Overstall et al., 2019).

Posterior precision is a utility function that involves the posterior covariance matrix,

de�ned as

UP (τ, θ, y) = |Σ|−1, (4.1)

where Σ = Var(θ|y; τ) and | · | takes the determinant of a matrix. The posterior precision

summarises how concentrated the posterior is around its mean. This utility may not be

suitable if the posterior distribution is multi-modal or has considerable skew.

Shannon information gain (SIG) is based on the concept of Shannon entropy

(Shannon, 1948) which quanti�es the average information content of a particular quantity

of interest. SIG looks at the change in entropy from the prior distribution to the

posterior. In terms of a utility function for optimal design, the SIG utility is given by

USIG(τ, θ, y) = log π(θ|y; τ)− log π(θ). (4.2)
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SIG has the following interpretation: when USIG is positive then the true parameter value

has higher density under the posterior than it did under the prior; if it is negative then it

has lower density.

Through application of Bayes theorem to Equation 4.2, the SIG utility can be expressed

as a function of likelihoods

USIG(τ, θ, y) = log f(y|θ; τ)− log f(y; τ), (4.3)

hence removing the need to calculate the posterior for θ, reducing the computational

burden. This now requires log f(y; τ) to be computed. Often this is estimated with a

Monte Carlo method which can become expensive depending on the dimension of Y and

the precision of the estimate required.

SIG is closely associated with the Kullback-Leibler divergence (KLD) (Kullback and

Leibler, 1951). The expected utility under the KLD is

JKLD(τ) =
∫
Y

∫
Θ
log

π(θ|y; τ)
π(θ)

π(θ|y; τ)dθ π(y; τ)dy, (4.4)

=

∫
Y

∫
Θ
log

π(θ|y; τ)
π(θ)

π(θ, y; τ)dθdy, (4.5)

= Eθ,y∼π(θ,y;τ)[log π(θ|y; τ)− log π(θ)], (4.6)

= JSIG(τ). (4.7)

Hence the expected KLD to the prior from the posterior is equivalent to the expected SIG

utility.

The SIG utility function also has a derivation from a decision theoretic approach (Bernardo,

1979). Using the expression for the divergence under the logarithmic score from Table 2.1

in Equation 2.63 the expected SIG utility function is recovered.

4.2 Fisher information gain

This section focuses on the Fisher information gain (FIG) utility function to quantify the

information about model parameters which is gained by making observations from a model.

The FIG utility is computationally convenient as it is based on the Fisher information

matrix which is available in closed-form for some commonly used distributions.
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4.2.1 Derivation of the Fisher information gain

The FIG utility function can be derived from a decision theoretic viewpoint using the results

from Section 2.5.1 and the divergence of the Hyvärinen score (see Table 2.1). The regularity

conditions of the Hyvärinen score are required for both the prior and the posterior given

any y, τ (see Section 2.5). Under the Hyvärinen score the divergence between distributions

P and Q satisfying the regularity conditions is

D(P,Q) = Eθ∼p(θ)
[
||∇ log p(θ)−∇ log q(θ)||2

]
. (4.8)

The expected utility function can then be expressed as the divergence between the posterior

and prior,

J (τ) = Ey∼f(y|θ;τ)
[
D(π(θ|y; τ), π(θ))

]
(4.9)

=

∫
Y

∫
Θ
||∇θ log π(θ|y; τ)−∇θ log π(θ)||2π(θ|y; τ)π(y; τ)dθdy (4.10)

=

∫
Θ

∫
Y
||∇θ log f(y|θ; τ)||2f(y|θ; τ)π(θ)dydθ (4.11)

= Eθ∼π(θ)
[
Ey∼f(y|θ;τ)

[
||∇θ log f(y|θ; τ)||2

]]
(4.12)

= Eθ∼π(θ)
[
trI(θ; τ)

]
(4.13)

where I(θ; τ) is the Fisher information matrix (de�ned in Section 2.2). The swapping of

the order of integration is subject to the conditions of Fubini's theorem (Walker, 2012),

namely,
∫
x

∫
y f(x, y)dydx =

∫
y

∫
x f(x, y)dxdy if

∫
x

∫
y |f(x, y)|dydx is �nite. This

requirement follows from the regularity conditions of the Hyvärinen score.

The FIG utility is de�ned as the trace of the Fisher information matrix with expected

utility de�ned in Equation 4.9,

UFIG(τ, θ, y) = trI(θ; τ). (4.14)

This can be considered a summary of asymptotic posterior precision (see Section 2.1.3). It

is equivalent to the classical T optimality condition (as de�ned in Section 2.3.1) averaged

over the joint distribution of parameters θ and data y. Under the de�nitions of Chaloner

and Verdinelli (1995) the FIG utility can be considered pseudo-Bayesian as it appears to

be a functional of the approximate posterior rather than the exact posterior. However,

Equation 4.9 shows that FIG can be derived from a decision theoretic viewpoint and thus

can be considered fully-Bayesian. Further to this, FIG gives the same expected utility as

a functional of the posterior: the Hyvärinen divergence. Walker (2016) came to a similar

conclusion that FIG has a Bayesian interpretation.
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4.2.2 FIG for data models

This section shows the derivation of the FIG for some data models used in the main

examples of this thesis. Several cases of normally distributed variables will be considered

as well as those which have a Binomial distribution.

Binomial distribution

Consider a vector of observations y = (y1, y2, . . . , yd) at times τ = (τ1, τ2, . . . , τd) where

each Yi|θ; τi ∼ Bin(n, αi) independently with αi = α(τi, θ). The parameter in this model

is a scalar quantity θ. From Section 2.2.1, the Fisher information is de�ned as

I(θ; τ) = Ey∼f(y|θ;τ)
[
u(θ, y; τ)2

]
, (4.15)

where

u(θ, y; τ) =
d∑
i=1

dαi
dθ

(
yi − nαi
αi(1− αi)

)
, (4.16)

as derived in Equation 2.39. In this model the Fisher information is a scalar meaning

trI = I and hence

UFIG(τ, θ) = I(θ; τ). (4.17)

Normal distribution

Consider observations distributed according to a multivariate normal distribution,

Y ∼ Nd(µ(θ, τ), Σ(θ, τ)), (4.18)

for some mean function µ(·) and covariance function Σ(·). This section derives the FIG

utility function for various choices of covariance structure using the equation of the Fisher

information matrix (Equation 2.42).

Constant covariance with independent observations. In this simple case, the

covariance matrix is proportional to the identity matrix, Σ = σ2Id. Σ is therefore not

dependent on the parameters θ = (θ1, θ2, . . . , θp) and thus ∂Σ
∂θi

= 0 for all i = 1, 2 . . . , p.

The FIG utility is then

UFIG(τ, θ) = tr(I(θ; τ)) =
p∑
i=1

∂µT

∂θi
Σ−1

∂µ

∂θi
. (4.19)
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Due to the covariance matrix being diagonal, the FIG can also be expressed as a double

summation,

UFIG(τ, θ) = tr(I(θ; τ)) = σ−2
p∑
i=1

d∑
k=1

(
∂µk
∂θi

)2

. (4.20)

Since the scale of the variance, σ2, is constant the maximum FIG is obtained by maximising∑p
i=1

∑d
k=1

(
∂µk
∂θi

)2
. Therefore the optimal design does not depend on the magnitude of

the variance.

Errors dependent upon mean function with independence across observations.

Here the covariance matrix takes the formΣ = σ21Id+σ22diag(f(µ)). The Fisher information

matrix for this model is de�ned in Equation 2.50. Using this the FIG utility is de�ned as

follows,

UFIG(τ, θ) = tr(I(θ; τ)) =
p∑
i=1

{
∂µT

∂θi
Σ−1

∂µ

∂θi
+
σ42
2

d∑
k=1

Σ−2kk

(
∂fk
∂µk

dµk
dθi

)2}
, (4.21)

where fk = fk(µ). The covariance matrix Σ is diagonal and thus the utility can be

expressed as

UFIG(τ, θ) =
p∑
i=1

d∑
k=1

(
∂µk
∂θi

)2

Σ−1kk +
σ42
2

d∑
k=1

Σ−2kk

(
∂fk
∂µk

dµk
dθi

)2

, (4.22)

=

p∑
i=1

d∑
k=1

(
∂µk
∂θi

)2

Σ−1kk

{
1 +

σ42
2
Σ−1kk

(
∂fk
∂µk

)2}
, (4.23)

where Σkk = σ21 + σ22fk.

Correlated errors across observations If the covariance matrix is correlated across

designs but does not depend on any other parameters, i.e. Σ = Σ(τ), then the Fisher

information matrix is de�ned as in Equation 2.43 since ∂Σ
∂θk

= 0 for all k. The corresponding

utility function is given by Equation 4.19,

UFIG(τ, θ) = tr(I(θ; τ)) =
d∑
i=1

∂µT

∂θi
Σ−1

∂µ

∂θi
. (4.24)

Note that for this speci�cation of the variance structure errors are correlated across the

design so Σ is not diagonal and so computation of UFIG(τ, θ) requires matrix calculations.
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4.2.3 Scaled FIG

The FIG utility is not scale invariant meaning that the value it takes depends on the scale

of the parameters θ. In certain models a lot of information about one of the parameters can

be easily gained whilst the others are negligible in terms of their contribution to the FIG. In

these cases the design which maximises the FIG will focus on optimising the contribution

from the dominant parameter. In practice this is undesirable as all parameters should be

learned equally if there is no prior motivation for weighting their contributions towards

the utility. To address this issue, each element of the trace of the information matrix can

be scaled by a constant, representing the typical value for that contribution, resulting in

the contribution relating to each parameter being roughly equal to unity. Weighting the

contributions is equivalent to scaling the parameters in the model and hence the optimal

design ideally should be invariant under this operation.

Weighted FIG considers a reparameterisation ξ(θ) = (w1θ1, w2θ2, . . . , wpθp) . Using

Equation 2.31, the weighted FIG utility is given by

UFIG(τ, θ; w̃) = trIξ(θ; τ, w̃), (4.25)

= diag(I(θ; τ))T w̃−1, (4.26)

=

p∑
i=1

Iii/w̃i, (4.27)

=

p∑
i=1

Ey∼f(y|θ;τ)

[
ui(θ, y; τ)

2

w2
i

]
, (4.28)

where diag maps a matrix to its leading diagonal, ui is the ith element of the Fisher score

(Equation 2.12) and w̃ = (w2
1, w

2
2, . . . , w

2
p) is the vector of squared weights, i.e. w̃i = w2

i .

When using weighted FIG, the goal is to �nd suitable weights and the optimal design,

i.e. the aim is to �nd (τ∗, w̃∗) such that

τ∗ = max
τ∈T
JFIG(τ ; w̃∗), (4.29)

where

w̃∗ = max
w̃
K(w̃; τ∗), (4.30)

with

K(w̃; τ) = −1

2
|| w̃ − Eθ∼π(θ)[diag(I(θ; τ))] ||2. (4.31)

The optimal weights are chosen according to K(w̃; τ) as this tries to make each of the

contributions to the sum in Equation 4.28 equal.

Algorithm 4.1 outlines a stochastic optimisation routine for optimal design with adaptive

weights. This requires estimates of the gradient of JFIG(τ ; w̃) and K(w̃; τ). Both are found
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Algorithm 4.1 Stochastic gradient optimisation of expected Fisher information gain with
adaptive weights.

1: Initialise design τ0, number of iterations n, batch size K (used in gradient estimation).
Set initial squared weights w̃0.

2: for t = 0, 1, 2, . . . , n− 1 or until a convergence condition is reached do
3: Calculate gτ,t, an estimate of ∇J (τ) at τ = τt using Equation 3.17 and gw̃,t an

estimated gradient for w̃.
4: Get τt+1, w̃t+1 by calling the update rule of a stochastic gradient optimisation

algorithm with current state τt, w̃t and gradient estimates gτ,t and gw̃,t. The
update rule of the Adam algorithm (Section 3.1.4) is used for both updates.

5: return w̃n

using unbiased Monte Carlo estimates:

∇̂JFIG(τ ; w̃) =
1

K

K∑
k=1

∇[diag(I(θ(k); τ))T w̃−1], (4.32)

and

∇̂K(w̃; τ) = 1

K

K∑
k=1

diag(I(θ(k); τ))− w̃, (4.33)

where θ(k) are independent draws from the prior.

Convergence of Algorithm 4.1 is di�cult to guarantee (see Appendix B of Harbisher

et al., 2019). The optimisation function becoming stuck in a cycle is also a possibility

with simultaneous gradient optimisation of the objective functions (Balduzzi et al., 2018).

However in practice convergence was achieved (see Section 6.2.1). The practical approach

to applying the adaptive algorithm is to conduct a pilot run for a �xed number of

iterations before �xing the weights and switching to the standard algorithm (Algorithm

3.4).

4.2.4 Adversarial FIG

Overstall (2020) discussed how the FIG is prone to returning designs which correspond to

an ill conditioned posterior. When maximising the expected Fisher information the

diagonal elements of the information matrix are not considered and as such the returned

design can correspond to a singular information matrix. The example considered in

Chapter 6 demonstrates this behaviour, even when using the adaptive weighting

procedure described in Section 4.2.3. This motivates the need for a modi�cation to FIG

to attempt to o�set this behaviour. One approach is to use an adversarial approach (see,

for example, Banks et al., 2015). This will aim to �nd the best design taking into account

that an adversary will select a linear transformation of the variables aiming to minimise
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the resulting utility. The transformation of variables introduces some dependence from

the o�-diagonal elements of the information matrix into the utility function. This

dependence should address some of the issues of the FIG utility therefore the adversarial

variant of FIG should avoid returning designs corresponding to singular information

matrices.

The adversarial FIG (AFIG) utility considers a transformation of variables, ξ(θ) = Aθ

where A is an invertible matrix with inverse B = A−1 and dimension p×p. From Equation

2.31,

Iξ(ξ; τ) = BIθ(θ; τ)BT . (4.34)

Hence the AFIG utility is given by

UAFIG(τ, θ, B) = tr(BIθBT ), (4.35)

= tr(BTBIθ), (4.36)

due to the cyclic property of the trace. Note that when B = diag(1/w1, 1/w2, . . . , 1/wp)

the scaled FIG (as described in Section 4.2.3) is recovered.

The matrix B can be considered the Cholesky factor of BTB and hence can be a lower

triangular matrix without loss of generality. Note that the magnitude of B scales the

utility by an arbitrary positive constant. This has no e�ect on the optimal design and so

the condition that |B| = 1 is recommended. The enforcement that B is lower triangular

with determinant equal to one reduces the number of parameters needed to de�ne B. The

ijth element of B is given by

Bij =



0, i < j

bij , i > j

exp(bij), i = j < p

exp(−
∑p−1

k=1 bkk), i = j = p

(4.37)

meaning B is parametrised by (b11, b21, b22, b31, . . . , bp p−1).

For the AFIG utility the objective function now relies on design τ and the matrix B,

K(τ,B) = Eθ∼π(θ)[UAFIG(τ, θ, B)]. (4.38)

Due to the adversarial nature of this utility function the aim is to �nd the optimal design

under the worst case scenario for the parametrisation of B, i.e.

τ∗ = max
τ
K(τ,B∗), (4.39)

B∗ = min
B
K(τ∗, B). (4.40)
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Algorithm 4.2 Stochastic gradient optimisation of expected adversarial Fisher
information gain K(τ,B).

1: Initialise design τ0, number of iterations n, batch size K (used in gradient estimation).
Set initial weights matrix B0.

2: for t = 0, 1, 2, . . . , n− 1 or until a convergence condition is reached do
3: Calculate gτ,t, an estimate of ∇τK(τ,B), and gB,t, an estimate of −∇BK(τ,B), at

τ = τt, B = Bt using a Monte Carlo estimate.
4: Get τt+1, Bt+1 by calling the update rule of a stochastic gradient optimisation

algorithm with current state τt, Bt and gradient estimates gτ,t and gB,t. The
update rule of the Adam algorithm (Section 3.1.4) is used for both updates.

5: return τn

The procedure to �nd τ∗ and B∗ via simultaneous gradient descent (Nagarajan and Kolter,

2017) is described in Algorithm 4.2.

The convergence of algorithm Algorithm 4.2 is not guaranteed and cyclic behaviour could

be observed. In practice, for the example considered in Section 6.4, convergence was

reached without any adaptations to the algorithm. If this was not the case then techniques

from the machine learning community could be employed, i.e. a two time-scale update rule

(Heusel et al., 2017). This is where the learning rates of the respective optimisation steps

are di�erent. Asymptotically, one of the learning rates should approach zero faster than

the other aiding convergence.

4.2.5 Limitations

The Fisher information is computationally convenient when available in closed form. In

the case where nuisance parameters or latent variables are present in the model then

these need to be integrated out of the likelihood. This may mean that the score function

∇θ log f(y|θ; τ) is not available in a closed form leading to the Fisher information being

intractable. It is possible in these circumstances to estimate the Fisher information using

samples from the posterior distribution of the nuisance parameters however this increases

the computational burden of obtaining the utility therefore limiting the computational

bene�ts of the FIG utility.

4.3 Utility based on classical D-optimality criterion

This section considers a utility function closely related to classical D-optimality and the

SIG utility functions. Section 4.3.1 de�nes and describes some properties of the

D-optimality utility function. Examples of �nding the design under this utility are shown

in Chapter 5 and Chapter 6.
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4.3.1 D-optimality utility function

A utility function that is often used in optimal design is the log determinant of the Fisher

information matrix,

UD(τ, θ, y) = UD(τ, θ) = log |I(θ; τ)|. (4.41)

This corresponds to classical D-optimality. Note that D-optimality can be generalised

to the Bayesian setting in several ways, usually as a function of the determinant of I,
i.e. UD(τ, θ, y) = g(|I(θ; τ)|) for some function g.

This utility does not depend on y as the information matrix takes the expectation over the

data. In Bayesian optimal design this is averaged over the prior predictive distribution to

obtain the expected utility. This utility is considered pseudo-Bayesian under the de�nition

of Chaloner and Verdinelli (1995). Using asymptotic results, the optimal design under this

utility can be thought of as maximising the approximate generalised precision.

Unlike the FIG utility, the log |I(θ; τ)| utility does not have a derivation from a decision

theoretic viewpoint. It can however be considered as an approximation to the SIG utility

(see Section 2.1.3). Lohr (1995) using a result from Clarke and Barron (1990) showed that

maximising log |I(θ; τ)| is equivalent to maximising SIG asymptotically.

A desirable property of this utility function is that log |I(θ; τ)| is invariant to linear

reparametrisations. Consider a reparameterisation ξ(θ) = Aθ + b where A is a constant

square matrix and b is a constant vector. Then using Equation 2.31 it is possible to show

log |Iθ(θ; τ)| = log |AIξ(ξ; τ)AT |, (4.42)

= 2 log |A|+ log |Iξ(ξ; τ)|, (4.43)

and so the transformation of variables only changes the utility by a constant with respect

to the design τ . The optimal design τ∗ is the same under both parameterisations. Due to

this, Firth and Hinde (1997) de�ned UD as parameter neutral and claimed it is the most

natural formulation of D-optimality for Bayesian optimal design.

A utility function based on the information matrix may be liable to rewarding a large

value for one diagonal element at the expense of not learning about the other model

parameters. This was discussed in Section 4.2.3. Ideally, the utility should give diminishing

returns so that the other model parameters can be learned. One way to do this is to

incorporate risk aversion, for example, including a transformation according to a concave

function (Parmigiani and Inoue, 2009). The log |I(θ; τ)| utility can be viewed as a more

risk averse than the FIG utility when expressed in terms of the eigenvalues λ1, λ2, . . . , λp
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of the information matrix I(θ; τ). Equation 4.44 demonstrates that the log |I| and FIG

can be expressed as
∑p

i=1 g(λi) where g is a function of the eigenvalues λ.

log |I(θ; τ)| =
p∑
i=1

log λi trI(θ; τ) =
p∑
i=1

λi (4.44)

The log |I(θ; τ)| utility uses a concave function g(x) = log(x) and so introduces some risk

aversion whereas FIG sets g as the identity function, g(x) = x.

This utility function is also well suited to optimisation via SGD type methods as the

gradients are easy to compute, especially when using automatic di�erentiation software.

Similarly to the FIG utility, the log |I| utility bene�ts from I often being available in

closed-form. However UD incurs a higher computational cost as the determinant of a

matrix is a more costly operation than �nding the trace of a matrix.
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Examples

This chapter considers using stochastic gradient descent (SGD) to �nd the optimal design

in two di�erent examples using the utility functions as described in Chapter 4. The �rst

example in Section 5.1 uses a simple death model to demonstrate that the SGD approach

does indeed return the correct optimal design. Next, a geostatistical model is used in

Section 5.2. This example requires a large number of observations that are correlated

hence should demonstrate an algorithms ability to scale to high dimensional problems.

5.1 Simple death model

The simple death model measures the size of a population over time where only deaths

can occur. The model assumes that there is no immigration or births into the system,

resulting in a population size that is strictly decreasing from its initial size. Other model

assumptions are that deaths happen independently and the rate of death remains constant.

This means that individuals within the population are not a�ected by their surroundings or

neighbours. In this case the design τ are the times at which observations of the population

size should be made in order to learn about the death rate θ.

The simple death model is widely used to demonstrate optimal design methodology as

certain utility functions have an analytically tractable solution to the design problem.

Many authors (Cook et al., 2008; Drovandi and Pettitt, 2013; Gillespie and Boys, 2019)

have used this model as an example to demonstrate that their method identi�es the correct

design.

Renshaw (1993) considers that deaths in the population occur with constant rate θ > 0

according to a stochastic process. First the probabilities of an individual being alive or
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dead at time τ are de�ned as

α(τ) = Pr(Individual alive at time τ), (5.1)

β(τ) = Pr(Individual dead at time τ) = 1− α(τ). (5.2)

For a small interval of time, [τ, τ + h),

α(τ + h) = Pr(Alive at time τ and does not die in [τ, τ + h)) (5.3)

= α(τ)× Pr(Does not die in [τ, τ + h)) (5.4)

' α(τ)(1− θh), (5.5)

which can be expressed as follows,

α(τ + h)− α(τ)
h

= −θα(τ). (5.6)

Taking the limit as h→ 0 yields

dα(τ)

dτ
= −θα(τ), (5.7)

which is solved to obtain

α(τ) = e−θτ , (5.8)

and thus

β(τ) = 1− e−θτ . (5.9)

The population at time τ is then a sum of Bernoulli random trials each with probability

of surviving α(τ) and thus the population at can then be modelled as a Binomial random

variable. In this example the initial population size is considered �xed at n giving

P (τ) ∼ Bin(n, α(τ)) ≡ Bin(n, e−θτ ), (5.10)

which has mean ne−θτ and variance ne−θτ (1− e−θτ ). Simulations from this model can be

made using the following relation

P (τ + δ)|P (τ) ∼ Bin(P (τ), e−θδ). (5.11)

where δ > 0 is an increment in time.

Since the death rate is constrained to be positive, a suitable choice of prior for θ is a log-

Normal. Following the example used by Cook et al. (2008); Drovandi and Pettitt (2013)

and Gillespie and Boys (2019), the prior distribution for the death rate is de�ned as

log(θ) ∼ N(−0.005, 0.01),
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Figure 5.1: Simulated prior predictive population sizes for the simple death model with initial
population size of 50.

with the initial population size �xed at n = 50.

The prior predictive populations displayed in Figure 5.1 show the exponential decay that

characterises the simple death model. The rate of this decay is controlled solely by the

parameter θ. For this choice of prior distribution the population appears to usually be

extinct by time τ = 7. The �gure also shows that the variability of the population size is

larger at τ ∈ [1.0, 2.5], suggesting that there may be more information about the true value

of θ in this range of times rather than at times where the population size is less variable.

5.1.1 FIG utility

In this example a single observation y is made at the scalar design τ . Using Equation 2.40

and V ar(Y ) = E[(Y − nα)2] = nα(1− α) the following is obtained.

I(θ; τ) =
(
dα

dθ

)2 n

α(1− α)
. (5.12)

Hence, the FIG for this model (using Equation 4.17) is given by

UFIG(τ, θ) = I(θ; τ) =
τ2ne−θτ

1− e−θτ
, (5.13)

since dα
dθ = −τe−θτ .

The utility surface for this model when a one observation design is required is shown in

Figure 5.2. The expected FIG,

JFIG(τ) = Eθ∼π(θ)
[
UFIG(τ, θ)

]
, (5.14)
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Figure 5.2: The expected FIG utility surface of the simple death model (left) and associated trace
plots of observation time τ against computation cost, measured in utility gradient evaluations, for
11 independent runs of the SGD algorithm (right). The optimal design τ∗ is shown by the dotted
line.

can feasibly be computed via numerical methods. Here the expected utility is maximised

at τ∗ ≈ 1.61.

For this example, the SGD algorithm (Algorithm 3.4) is implemented using default tuning

of the Adam update rule. Multiple independent runs are considered from 11 di�erent

initial states equally spaced over T = [0, 10]. Each run has a �xed computational budget

of 10, 000 utility evaluations.

Figure 5.2 (right) shows a trace plot of the SGD design over the computational cost,

measured in terms of utility gradient evaluations. It clearly converges to a design around

the optimal design value of 1.61 demonstrating that the SGD algorithm targets the correct

design to optimise the expected FIG utility. This is true for each of the 11 independent

runs of the SGD algorithm, each starting at an initial states evenly spaced over the interval

(0, 10). Note that the further the initial state is from the optimal design the more iterations

it requires to converge. Overall, this demonstrates that in this example of a unimodal

utility function the SGD algorithm converges to the correct design from a variety of initial

conditions.

5.1.2 AFIG utility

Consider the AFIG utility as described in Section 4.2.4. Here the model has a single

parameter θ. For the reparameterisation used in the AFIG utility ξ(θ) = aθ where a > 0 is

a scalar. This scales the utility by an arbitrary magnitude. Under the suggested constraints
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Figure 5.3: The expected log |I| utility surface of the simple death model (left) and associated trace
plots of observation time τ against computation cost ,measured in utility gradient evaluations, for
11 independent runs of the SGD algorithm (right). The optimal design τ∗ is shown by the dotted
line.

on A the magnitude of the transformation should be equal to 1, hence here a = 1. This

means the transformation is the identity function therefore the AFIG utility is equivalent

to the FIG utility function in this example.

5.1.3 D-optimality utility

This section considers the UD utility function rather than UFIG as used in Section 5.1.1.

Note that these utilities di�er only by the logarithmic term as the information matrix

(given by Equation 2.40) becomes a scalar in this example thus the trace and determinant

give equivalent values. The utility in this example is

UD(τ, θ) = log

(
τ2ne−θτ

1− e−θτ

)
. (5.15)

The expected utility curve under the prior for θ is shown in Figure 5.3. This was found

using numerical methods. Similarly to Section 5.1 the expected utility is maximised at

τ∗ = 1.61.

Figure 5.3 displays the trace over computational cost of 11 independent runs of the SGD

algorithm from initial states 0, 1, 2, . . . , 10. All of the runs converge to around 1.61 and

thus demonstrate that the SGD algorithm is targeting designs which maximise JD(τ) =
Eθ∼π(θ)[UD(τ, θ)] with those starting at initial states further from τ∗ taking longer to

converge. Compared to the traces when using the utility UFIG, convergence is slower for
the UD utility.
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5.2 Geospatial model

Geospatial models are used extensively to model processes over space. There are many

applications such as in environmental sciences where Sampson and Guttorp (1992) used

them to model solar radiation in south western British Columbia; crime mapping (Leitner,

2013); social science, modelling interactions between agents (Ward and Gleditsch, 2018)

and health research in spatial epidemiology (Bergquist and Rinaldi, 2010).

Gaussian processes (GPs) are often used for geospatial models (Diggle, 2007). These are

characterised by a mean function and a Gaussian error structure that is correlated over

space,

Y ∼ Nd(µ(θ, τ), Σ(θ, τ)). (5.16)

The covariance matrix quanti�es how inputs are related. It assumes that locations that

are close to each other should give similar outputs. Commonly used covariance functions

belong to the squared exponential and Matérn classes of functions. These are de�ned and

discussed in Rasmussen and Williams (2006). The covariance matrix can also include some

additive noise that is independent of location known as a nugget e�ect and thus Σ is

Σ(τ) = σ21Id +R(θ, τ), (5.17)

where σ21 controls the magnitude of the observational variance component, Id is the d

dimensional identity matrix corresponding to the number of observations in τ and R(θ, τ)

is some variance matrix.

The geospatial model considered in this section has a simple linear trend in two dimensions.

The design τ is a d×2 matrix where each row τi ∈ [−0.5, 0.5]2 is a location in a unit square

centred at the origin. Observations y are assumed to be correlated according to a squared

exponential covariance function with a nugget e�ect, giving:

Y ∼ N(µ(θ, τ), Σ(τ)), (5.18)

µi = θ1τi,1 + θ2τi,2, (5.19)

Σ(τ) = σ21I2 + σ22ρ(τ), (5.20)

ρi,j = exp

[
−

2∑
k=1

(τi,k − τj,k)2/`2
]
, (5.21)

where θ = (θ1, θ2) is the unknown parameter vector of interest that controls the trend, σ21
and σ22 are the observational variance components, ` is the covariance length scale and I2
is the 2-dimensional identity matrix. The form of Σ(τ) gives Var(Yi) = Var(Yj) for all i, j

i.e. all diagonal entries of Σ are the same. The parameters which control the behaviour

of the covariance (σ1, σ2 and `) are nuisance parameters. For simplicity, these parameters
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Figure 5.4: Example �elds drawn from the geospatial model as de�ned in Equation 5.18 for θ1 = 0.1,
θ2 = −0.3, σ1 = 0, σ2 =

√
0.5 and ` = 1. The z axis shows the simulated function value over the

unit square (x and y axis)

.

will be assumed to be �xed and known. Figure 5.4 shows example outputs from this model

for some �xed parameter values.

5.2.1 FIG utility

The FIG for the geospatial model is given by Equation 4.24. The derivative of the mean

function with respect to each parameter is given by ∂µj
∂θi

= τij , yielding

UFIG(τ, θ) =
2∑
j=1

τT·jΣ
−1τ·j , (5.22)

where τ·j is a column of τ .

59



Chapter 5

Note here the utility does not depend on the model parameters θ. Furthermore, if the

length scale ` and both σ21 and σ22 are �xed the utility function is deterministic. This

reduces the computational time required to �nd the optimal design as the integral over the

parameter space is no longer required.

When setting the values of σ21 and σ22 to be constant, the covariance matrix in Equation

5.20 can be written as

Σ = k[γI+ (1− γ)R] (5.23)

where k = σ21 + σ22, γ = σ21/(σ
2
1 + σ22) and R is the matrix of correlations between designs

with entries Rij = ρ(τi·, τj·). In this parametrisation of the covariance matrix, γ controls

the weighting between the nugget term and the smooth spatial variance. Note that the

constant k scales the utility function by an arbitrary amount therefore does not change

the optimal design and thus can be neglected when searching for the optimal design.

Search for optimal design using SGD and ACE

This example will search for the optimal 100 observation design. To visualise the e�ect

changing γ and ` have on the estimated optimal design returned by SGD see Table 5.1.

Note that the designed returned under the following scenarios appear very similar: (a)

large ` and γ → 1 leading to Σ → kγI; (b) ` → 0 and γ → 0 leading to Σ → kI; (c) ` → 0

and γ → 1 leading to Σ → kγI. In all of these scenarios the covariance matrix Σ tends

towards a scalar multiple of the identity matrix, Σ → k′`,γI, for some constant k′`,γ . Since

the optimal design is invariant to the scaling of the covariance matrix (see Section 4.2.2)

scenarios (a)-(c) should lead to the same optimal design.

In this example the length scale `2 is set to a constant value of 0.001 and the weighting

between I and R is set to be γ = 0.1. This corresponds to a situation where the variation

is heavily weighted towards the correlation. Also note that for this choice of length scale

there appears to be no replication of observations in the returned designs.

The results from the SGD algorithm (see Section 3.4) will be compared to those returned

from the ACE algorithm (Algorithm 2.4), both starting from the same initial states sampled

uniformly from the unit square centred at the origin. Note that phase 2 of the ACE

algorithm is omitted in this example as no replication of locations were observed. This

example discourages replication of design points at a particular location through the local

variation component suppressing the information gained by making multiple observations

close together.

Since the utility function is deterministic the number of iterations needed for convergence of

the SGD algorithm could be reduced compared to when a optimising a stochastic function.
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Figure 5.5: The expected FIG utility for the designs returned by the SGD and ACE algorithms
(right) and trace plots of the utility over the computation of the algorithms (left) for the geospatial
example. For this example the expected utility is deterministic and hence no estimation is required.
The horizontal line indicates the utility for a uniformly spaced grid over the design space. The
results shown are from 100 independent runs starting from di�erent initial conditions consistent
between methods.

Due to this the SGD algorithm was run for 50, 000 iterations with computational cost of

50, 000 utility evaluations. The ACE algorithm was used with the default settings and

hence required its default computational cost (≈ 85, 000 utility evaluation).

Figure 5.5 shows that for this example the ACE algorithm is outperformed by the SGD

algorithm both in terms of utility returned and also the computational overhead required.

The ACE algorithm may struggle to converge to the optimal design in this example due

to the high correlation between the observations, making it di�cult to identify the global

maximum utility by updating one τij value at a time. This has a lesser e�ect on SGD

which updates all design points simultaneously. SGD appears to have converged after the

budgeted number of utility evaluations whereas ACE may need some further iterations

before convergence is reached. Note that for SGD a utility evaluation is actually an

evaluation of a utility gradient. The SGD algorithm converges after very few iterations,

indicating that the computational cost could be lowered signi�cantly if a condition to

terminate at convergence was implemented.

This example has shown that in some scenarios, such as when the design points are highly

correlated, ACE takes longer to identify the best design. As well as returning designs with

better utilities, SGD converges within very few iterations representing an improvement in

computational cost required compared to the ACE algorithm.
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5.2.2 AFIG utility

In this example the AFIG utility is not required as the parameters are learned equally due

to the symmetry of the model. When the AFIG utility is implemented for this model the

weighting matrix quickly converges to values which are close to the identity matrix,

Bconv =

(
0.999 0.000

−0.016 1.001

)
, (5.24)

where Bconv is the value of B once the converge has been achieved in Algorithm 4.2. Hence

BTB is also very close to the identity matrix. In this case the AFIG utility is almost the

same as the FIG utility function, con�rming that the parameters are learned equally in

this model.

5.2.3 D-optimality utility

Here the optimal design under the UD utility is sought, again drawing comparisons between

the SGD and ACE algorithms. Only phase 1 of the ACE algorithm is used throughout

this example. There were no replicated locations observed in the design returned and so

phase 2 was omitted in this example. As in Section 5.2.1, the variation will be heavily

in�uenced by the correlation component with the weighting between the additive error

and the correlation, γ, set to be 0.1 and length scale `2 is a constant value of 0.001. When

constant, the parameter k only scales the utility and thus the optimal design is unchanged.

Here k is �xed at a value of 1.

As in the example of Section 5.2.1 the utility function is deterministic and so the number

of utility evaluations required by the algorithms should be reduced compared to when

a stochastic utility is used. For this example SGD was run for 50, 000 iterations which

corresponds to a computational cost of 50, 000 utility evaluations. ACE was run under its

default setting which incurred a computational cost of ≈ 85, 000 utility evaluations.

Figure 5.6 shows the trace plots and boxplots of the utility at the returned designs from

the SGD and ACE algorithms. The results are very similar to those displayed in Figure

5.5. SGD converges very quickly to designs which yield high utility values. ACE has

slower convergence and returns designs which have a smaller utility than those returned

by SGD. The trace plot for ACE appears to have a small positive gradient after 80, 000

utility evaluations indicating that the algorithm may not have converged within the

default computational budget. Similarly to when UFIG was used in Section 5.2.1, the

ACE algorithm su�ers due to the high correlation between designs and so the marginal

updates are not as e�ective as the updates used by SGD where all designs are updated

simultaneously. This means that ACE takes longer to converge which requires more

utility evaluations.
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Figure 5.6: The expected D-optimality utility for the designs returned by the SGD and ACE
algorithms (left) and trace plots of the utility over the computation of the algorithms (right) when
using the log |I| utility function for the geospatial example.
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Figure 5.7: An example design returned from the geospatial model using the FIG (left), AFIG
(middle), and log |I| (right) utility functions.

Comparison of returned designs

The designs returned under all utility functions for this model are very similar. All favour

placing points in the extremes of the design space. The spacing between locations is

approximately the same with no replication of points in any of the returned designs under

the di�erent utility functions.

5.3 Summary

Section 5.1 demonstrated that SGD targets the correct design for a simple example. This

was shown for both the FIG and log |I| utility functions. The speed of convergence of the

SGD algorithm is dependent upon the initial state with those further from the optimal

design taking longer to converge.
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Section 5.2 considered an example with many correlated observations. This demonstrated

SGD can scale well to �nd designs with lots of observations. In contrast to ACE, SGD was

shown to be well suited to examples where designs are correlated as all observations are

updated simultaneously. SGD was e�cient in terms of utility evaluations as it converged

after very few iterations and also to better designs than those returned by ACE.
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Simulation study

This chapter considers a pharmacokinetic model used to describe the dynamics of the

concentration of a drug over time. It is popularly used to compare methods of �nding the

optimal design. Simulation studies will be conducted to draw comparisons between the

SGD, ACE and Müller algorithms. The designs returned under di�erent utility functions

are also investigated.

6.1 Compartmental pharmacokinetic model

Pharmacokinetics (PK) is de�ned as the study of the time course of drug absorption,

distribution, metabolism, and excretion (Tozer and Rowland, 2006). The e�ect of a drug

is often related to its concentration. Often, the concentration level has to be observed

indirectly via samples of �uid (such as blood, plasma or urine) from the subject.

Models of observations will have some form of error structure to account for the variation

in measurements that arise through error inherent in the recording equipment and random

variation within the subjects. As continuous observation is infeasible, measurements must

be taken at prescribed discrete time points. Due to the sometimes invasive nature of

gathering measurements a constraint often enforced is that successive observations have

to be a certain time apart. The number of observations are constrained by budget and

resources, as well as patient comfort and well being.

Compartmental models are a class of model that are widely used in PK studies (Bonate,

2011). They view the drug as passing through several stages or �compartments� with

parameters controlling the rates of movement between compartments. They are popular

in optimal design literature, being used to demonstrate varying methodology (Atkinson

et al., 1993; Stroud et al., 2001; Gotwalt et al., 2009; Ryan et al., 2014; Overstall and
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Figure 6.1: Realisations y from the compartmental PK model using the prior as de�ned in Equation
6.6 and with σ2

1 and σ2
2 �xed at 0.1 and 0.01 respectively.

Woods, 2017). Here a one compartment model with �rst order absorption as used by Ryan

et al. (2014) and Overstall and Woods (2017) is described.

The model for the mean level of drug can be expressed as an ODE system,

dµ1(t)

dt
= −θ1µ1(t), (6.1)

dµ2(t)

dt
=
θ2
θ3
µ1(t)− θ2µ2(t), (6.2)

with boundary conditions µ1(0) = D and µ2(0) = 0, where t ∈ [0, 24] is the time in hours,

θ = (θ1, θ2, θ3) is the unknown parameter vector of interest, µ1 and µ2 are the quantity

of drug outside (i.e. in a drip) and inside the body (i.e. in the blood plasma) respectively,

and D = 400 is the known initial dose. This system of equations can be solved to give

µ1(t) = D exp(−θ1t), (6.3)

µ2(t) =
Dθ2

θ3(θ2 − θ1)
(exp(−θ1t)− exp(−θ2t)). (6.4)

For this example, interest lies in observing the amount of drug inside the body (Equation

6.4). Observations of the drug concentration y at times τ = (τ1, τ2, . . . , τd) are assumed to

be distributed

y ∼ Nd

(
µ2(τ), σ

2
1 + σ22 diag

(
µ2(τ)

2
))
, (6.5)

where µ2(τ) = (µ2(τ1), µ2(τ2), . . . , µ2(τd)) is the mean vector, σ1 and σ2 are the additive

and multiplicative standard deviations respectively and diag(·) maps to a diagonal matrix.

Often a condition that successive observations have to be made at least 0.25 hours apart

is imposed, i.e. |τi − τj | > 0.25 ∀ i 6= j
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The errors in this model are independent of patient or any other measurements. The

multiplicative term means that there is a relation between the concentration of drug and

the error variance with larger variance when the drug concentration is high. Additive error

is also present in this model, and is independent of the concentration.

In the Bayesian setting prior information and beliefs about the model parameters are

incorporated using prior distributions. Ryan et al. (2014) de�ned the prior as

log(θj) ∼ N(mj , 0.05), (6.6)

independently for j = 1, 2, 3 where m = (log(0.1), log(1), log(20)). Prior predictive

realisations from the model using this prior information are displayed in Figure 6.1. This

shows that the concentration y varies over time, increasing from the start of the

experiment until times around 3 hours, dependent upon the parameters. The drug is

then metabolised causing the concentration to decrease until the end of the observation

window of 24 hours.

6.2 FIG utility

This section investigates the performance of SGD under the FIG utility. Comparisons to

existing methods of �nding the optimal 15 observation design will be made, speci�cally

comparing SGD to the Müller (Section 2.6.1) and ACE (Section 2.6.2) algorithms. For

the purposes of the simulation study, simpli�cations to the PK model (de�ned in Section

6.1) are used to reduce the computation. Firstly, the multiplicative error term σ2 is set

to be zero and the additive error term σ1 is assumed to be known and set to a value of

0.1. Further to this, the condition that observations had to be at least 15 minutes apart is

also neglected from this simulation study for fairness, as implementation of this restriction

would vary between methods. Note that the purpose of this study is to compare methods

of �nding the optimal design. Simplifying the model and removing its constraints allows

the comparison to be made more easily. Due to this the designs which are returned may

be unrealistic and lack real world interpretation.

The FIG utility here is given by Equation 4.20,

UFIG(τ, θ) = σ−21

3∑
i=1

15∑
k=1

(
∂µk
∂θi

)2

, (6.7)
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where

∂µk
∂θ1

=
µk

θ2 − θ1
− Dθ2
θ3(θ2 − θ1)

τke
−θ1τk , (6.8)

∂µk
∂θ2

=
µk
θ2
− µk
θ2 − θ1

+
Dθ2

θ3(θ2 − θ1)
τke
−θ2τk , (6.9)

∂µk
∂θ3

= −µk
θ3
. (6.10)

Note that the σ−21 term in Equation 6.7 is ignored when implementing the optimal design

algorithms since it is a multiplicative constant and as such does not a�ect the optimal

design (see Section 4.2.2).

A consideration of the simulation study is the initial state of the algorithms. Each

simulation study will compute 100 independent runs of each algorithm, starting from

initial states which are drawn from a uniform distribution with support [0, 24]d, where

d = 15 is the number of observations in the design. For fairness, each simulation study

uses the same initial states.

The algorithms under consideration use di�ering numbers of utility evaluations at each

iteration depending on their tuning choices. To draw fair comparisons, a computation

budget will be set in terms of utility evaluations. The computational budget chosen here

is 1.8 × 107 utility evaluations, roughly the same number as required by the ACE

algorithm under the default tuning choices. Note that for the SGD algorithm a utility

gradient evaluation is considered. A computation of a utility gradient incurs a

comparable computational cost to a utility evaluation when using automatic

di�erentiation software (see Section 3.3.1). An initial �xed cost will be added for the

calculation of the computational graph for the function to return the utility gradient.

Thereafter a gradient of the utility can be realised through simple operations which can

be compared to the computations required to realise a utility. The timings of running

each of the methods will be given to allow comparison of timings despite each algorithm

being implemented in di�erent programming languages meaning direct comparison of

timings is di�cult.

The algorithms used in this simulation study all use various tuning choices meaning that

the variability of the estimated utility di�ers between methods. In order to draw fair

comparisons, the computation of the expected utility at the returned designs will be

consistent across methods. At each of the returned designs a Monte Carlo estimate of the

expected utility will be calculated using 20, 000 realised utility values.
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Figure 6.2: Trace plots of relative contribution to expected FIG (left), each observation time
(middle) and utility (right) over the iterations of the SGD algorithm using the unweighted (top)
and weighted (bottom) FIG utility for the PK example.

6.2.1 Scaling FIG contributions

Section 4.2.3 discussed the need for scaling the contributions to the FIG utility. This is

particularly important for the current example as the unweighted utility is dominated by

the one element of the trace of the information matrix. This can be seen in Figure 6.2

where the �rst entry in the trace of the information matrix is almost equivalent to the total

value of the trace.

To establish suitable weightings for the FIG contribution a pilot run was carried out

using adaptive weights. The weights w = (5 × 105, 3 × 103, 7 × 101) were found to be

suitable after a pilot run of the adaptive weights algorithm (Algorithm 4.1). These values

will be constant throughout the simulation study for the 15 point design. Note that

although the weighting changed slightly on di�erent runs using adaptive weighting, the

order of magnitude remained stable. These weights will the used in the weighted FIG

utility (Equation 4.28) under the reparameterisation as described in Section 4.2.3.

Figure 6.2 shows the e�ect of weighting on the design and utility over the iterations of the

SGD algorithm. Without weighting the observation times all converge to a single time and

the utility is of the order of 106. Once the FIG is weighted the observations converge to

two clusters and the utility is approximately 3, the same as the number of parameters p
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Method Tuning choices

ACE Phase I only, defaults as given by authors (Overstall and Woods, 2017)
SGD Iterations = 1.8× 107, K = 1
Müller1 J = 1, iterations = 1.8× 107, σ2RW = 1× 10−2

Müller2 J = 2, iterations = 1
2 × 1.8× 107, σ2RW = 2× 10−4

Table 6.1: Settings for the algorithms used in the simulation study under the default computational
cost of the ACE algorithm (1.8× 107).

in this example. The contribution to the utility is also more equally weighted between the

elements of the trace of the information matrix.

6.2.2 Tuning choices

This section outlines the tuning choices used for the SGD, ACE and Müller algorithms in

this simulation study. Table 6.1 summarises the settings chosen for the simulation.

Tuning choices in SGD

All methods targetting the optimal design require some form of tuning and SGD is no

di�erent. The main tuning parameters for SGD are the batch size, K, used to estimate

the gradient of the utility function (a larger batch size means a less variable estimate

and vice versa), the choice of stochastic optimisation algorithm and the hyper-parameters

associated with that choice and the number of iterations the algorithm should be run for,

N . The algorithm length could be constrained by computational budget, time or be set at a

su�ciently large number of iterations so that convergence can be achieved. An alternative

approach could be to set a convergence condition and run the algorithm until this is met.

Throughout this study the Adam optimisation algorithm (see Section 3.1.4) with the

default settings will be used. Kingma and Ba (2014) showed these are suitable for a

variety of problems. Under a �xed computational budget the only tuning left to consider

is the choice of batch size, i.e. the number of realisations used to estimate the gradient.

Here batch sizes of 1, 10 and 100 are considered to investigate the e�ect on the expected

utility through the iterations of the SGD algorithm.

Convergence here will be determined as when the expected utility stops improving,

determined informally from plots of the utility trace. Figure 6.3 shows that larger batch

sizes converge fastest in terms of iterations. In contrast, when considering computational

cost, a batch size of 1 appears to achieve convergence fastest. This shows a batch size of

1 is the most e�cient computationally and therefore will be used from now on.
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Figure 6.3: Trace plots of expected FIG utility for the PK example from 100 independent runs of
the SGD algorithm against iterations (top) and computational cost (bottom) for various choice of
batch size K used in the Monte Carlo estimate of the expected utility (Equation 3.16). The expected
utility displayed is computed from the simulated utilities made during the algorithm.

Tuning choices in ACE and Müller

For this study, the default values for the parameters in the ACE algorithm, as given by the

authors, will be used (Overstall and Woods, 2017). The Müller algorithm (Algorithm 2.3)

requires tuning the batch size used to power up the utility surface and the MCMC scheme.

Batch sizes of J = 1 and J = 2 will be considered. For this simulation study the MCMC

scheme will use a Normal random walk proposal with variance chosen to give a su�ciently

high acceptance rate (around 40%). After a short investigation the marginal variance of

the random walk σ2RW was set to be 0.01 and 0.0002 for J = 1 and J = 2 respectively. The

MCMC scheme was run for a �xed number of iterations (computed depending on choice

of J) so that the computational budget is exhausted, i.e. to always use the �xed number

of utility evaluations.

6.2.3 Comparison between methods

This section looks at the output from the various methods aiming to �nd the optimal

design. The designs and associated utilities will be investigated, allowing comparisons

to be drawn. In optimal design it is often the case that the utility is improved when

73



Chapter 6

1.5 2.0 2.5 3.0 3.5 4.0
Expected utility

Muller2 + ph2

Muller1 + ph2

SGD + ph2

ACE + ph2

Muller2

Muller1

SGD

ACE

Initial states

Figure 6.4: Box plot showing the expected utility of the returned designs from 100 independent runs
from di�erent initial states. Each expected utility is a Monte Carlo estimate using 20, 000 realised
utilities at the returned designs. The vertical line is the expected utility of a uniform grid over the
search space.

multiple observations are made at the same time (see, for example, Pronzato and Walter

(1985); Binois et al. (2019)). Therefore in this study a point exchange algorithm, namely

ACE phase 2 (Section 2.6.2), will be used to investigate how post-processing can a�ect

the returned designs and utilities. The computational cost for the ACE phase 2 using the

default settings is �xed and will be applied on the output of all of the methods considered

thus fair comparisons can still be drawn.

Figure 6.4 shows the expected utilities at the designs returned by the ACE, SGD, Müller1
(where J = 1) and Müller2 (where J = 2) methods before and after applying ACE phase

2 as post processing. This shows that all of the algorithms show some improvement over

the initial states. Both ACE and SGD show a marked improvement in the expected

utility whereas the Müller algorithms only show a slight improvement. Under the �xed

computational budget, ACE appears to perform the best as it returns designs with the

highest expected utilities. After applying the post processing algorithm, all of the methods

of �nding the optimal design improve the expected utility of the returned designs. It

appears SGD with phase 2 performs the best. Note that there are around 10 initial

conditions which return designs with low expected utility (≈ 2.4) after applying ACE

phase 2. This suggests that in these cases SGD may have converged to a local maxima

rather than the global maximum. Müller2 returns designs that are highly variable in

expected utility in comparison to Müller1 so using J = 1 appears preferable and will be

considered in further investigations.

The di�erent methods return very di�erent designs as shown in Figure 6.5. SGD returns

designs with multiple observations at two times, namely ≈ 1.2 and ≈ 8.2. Under the default
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Figure 6.5: Plots of the returned designs from the various runs of the SGD, ACE and Müller1
algorithms when using the FIG utility. Each returned design was sorted by time and indexed by
observation. The intensity of the colour represents the degree of repetition over the 100 independent
runs of the algorithms.

budget of utility evaluations SGD usually places between one and seven observations at

the earlier time with ten of the runs placing all observations at the latter time. The plot

of the marginal expected utility in Figure 6.6 indicates that there is a local maxima at ≈ 8

with the global maximum at 1.2 and thus provides evidence that SGD is converging to a

local maxima. After point exchange is applied almost all of the observations are placed

at time 1.2 with the exception of the 10 runs which do not contain an observation at 1.2

and therefore cannot place any observations at that time. These correspond to the designs

which return the cluster of expected utilities at ≈ 2.4.

ACE under the set computational budget returns designs which place some observations at

earlier times (between 0 and 4 hours) and up to half placed at later times (between 6 and

10 hours). After applying phase 2, all the returned designs place all observations between

1 and 2 hours. The designs returned from Müller1 after the computational budget was

exhausted are almost uniformly spread across the design space. This indicated that the

algorithm has not moved far from the initial states which were sampled from a uniform

distribution on the design space. Similarly to ACE, after applying the point exchange

algorithm all observations are placed at early times.

The returned designs indicate that the optimal design is found when all observations are

taken around time 1.2 hours. This repetition of all observations is shown to be optimal in
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Figure 6.6: (left) Monte Carlo estimate for the expected utility (using 2×106 particles) for di�erent
proportions of observations at times ≈ 1.2 and ≈ 8.2. The x axis shows the number of observations
taken at time 1.2. (right) Expected utility as one design point is varied with all others at �xed
values: four at time 1.2; ten at time 8.2.

Figure 6.6. This intuitively represents an unrealistic design and may be explained by the

lack of enforcement of the usual condition in the model that successive observations have

to be 15 minutes apart and the behaviour of the utility function. The shortcomings of the

FIG utility was discussed in Section 4.2.4 and is investigated further in Section 6.6.

Figure 6.7 displays a traceplot of the expected utility against computation cost for both the

ACE and SGD algorithms. SGD appears to converge very quickly, as the expected utility

from all 100 runs return stable expected utility values after very few utility evaluations. In

contrast, the traceplot relating to ACE shows that the expected utility is still improving,

suggesting that more iterations are required before it can be judged to have converged. All

of the runs of ACE appear to display very similar trajectories obtaining similar utilities, and

so the behaviour does not seem to depend too much on the initial state. SGD displays very

di�erent behaviour in that it returns di�erent expected utilities, implying that it converges

to di�erent local maxima dependent upon the initial starting point of the algorithm.

6.2.4 Summary

The results of the simulation study show that the optimal design in this situation is all

observations should be taken at time 1.2 hours. Other authors have also noted replication

of points in the optimal design (Pronzato and Walter, 1985). Boukouvalas et al. (2014)

and Binois et al. (2019) argue that repeated observations can be highly informative.

Nonetheless this degree of repetition intuitively gives a poor design for this example as

the 3 parameters controlling the shape of the concentration curve could not be inferred
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Figure 6.7: Traceplot of the expected FIG utility through the iterations of the ACE (left) and SGD
(right) algorithms for the 100 independent runs under the �xed computational budget.

by making observations at a single time point. Also, in practice, it would be di�cult for a

practitioner to take multiple samples at the same time. Further investigation into this

behaviour related to the choice of FIG utility is discussed in Section 6.6.

In summary, this simulation study has shown that SGD converges after far fewer utility

evaluations than ACE representing a better e�ciency in terms of computational expense.

This is especially bene�cial in situations where the utility function is expensive or di�cult

to compute. Although the convergence is faster (in terms of utility evaluations), SGD is

more susceptible to converging to undesirable local maxima rather than the global

maximum. This simulation study has shown that this can be resolved by post-processing,

at least for this example. A point exchange algorithm can be employed when clusters of

observations at a single time are permitted. This was shown to be bene�cial in the

majority of cases in the simulation study. However there were some cases (≈ 10%) where

post processing could not identify the global maximum. Other post processing schemes,

such as a perturbation on the returned design, could be employed when observations are

subject to restrictions on proximity to each other. Another solution to �nd the global

maximum is to run the algorithm from multiple initial states and select the design which

returns the best expected utility. This is also recommended by the authors for ACE.

The simulation study used utility evaluations as a rough proxy of computational cost.

For completeness the wall clock timings can also be considered. The approximate timings

to run each algorithm were: ACE 130; SGD 7, 800; Müller1 9, 000; Müller2 4, 500

(seconds). Note that the implementations used di�erent programming languages and the

Müller algorithm timing was dominated by non-utility calculations and hence was heavily

in�uenced by the number of iterations. The computation of SGD would also be subject

to some computational overhead related to non-utility calculations at each iteration.
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Under a �xed computation budget ACE was the fastest in wall-clock time. Although

SGD takes longer than ACE for the full computational budget it takes only 40 seconds to

reach 104 utility evaluations, at which point it has e�ectively converged.

Compared to the extensively used SIG utility FIG is faster to compute. Under this

pharmacokinetic model (de�ned in Section 6.1), the FIG utility can be found using

Equation 6.7 with Equations 6.8�6.10. The SIG utility, given in Equation 4.3, requires

evaluation of the likelihood. When using the programming language R for computations,

it took an average time of 0.008 seconds for FIG and 0.082 seconds for SIG to produce

1000 simulated utilities. This represents a tenfold improvement in speed of computation

for FIG over SIG.

6.3 D-optimality utility

This section carries out the simulation study as described in Section 6.2 but using the log |I|
utility function de�ned in Section 4.3.1. Comparisons will again be drawn between the

SGD, ACE and Müller algorithms. The Adam algorithm with default tuning parameters

will be used for the update step in SGD. The ACE algorithm will be used with its default

settings. The Müller algorithm uses the same tuning for the random walk as in Section 6.2:

σ2RW = 0.01 for J = 1; σ2RW = 0.0002 for J = 2. This gives a su�ciently high acceptance

rate. The computational budget will once more be set at the default number of utility

evaluations used by ACE.

Figure 6.8 shows the estimated expected utility at the designs returned by the SGD, ACE

and Müller algorithms before and after applying ACE phase 2 as post processing. The

Müller returns a design with a better expected utility than that at the initial state for

the majority of the runs however in some cases the design returned has a worse expected

utility than the initial state. ACE and SGD both improve over the initial states with ACE

returning the highest utilities before post processing, After applying ACE phase 2 the

expected utilities at the designs returned by all algorithms improve. The designs returned

by SGD after postprocessing correspond to the highest expected utilities. The designs from

100 independent runs of each algorithm are displayed in Figure 6.9. Both SGD and ACE

return designs with observations concentrated around three di�erent times. In contrast,

Müller places the designs close to uniformly over the design space. Before postprocessing

the number at each cluster is variable however after applying phase 2 of ACE all algorithms

place the designs evenly over the clusters with �ve observations made at each of the three

times.
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Figure 6.8: Box plot showing the expected log |I| utility of the returned designs from 100 independent
runs from di�erent initial states. The expected utility shown is from a Monte Carlo estimate using
20, 000 realised utilities at the returned designs. Both plots are the same but have di�erent x-axis
ranges to help inspection of results.
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Figure 6.9: Plots of the returned designs from the various runs of the SGD, ACE and Müller1
algorithms when using the log |I| utility. Each returned design was sorted by time and indexed
by the observation. The intensity of the colour represents the degree of repetition over the 100
independent runs of the algorithms.

6.4 AFIG framework

This section considers the optimal design problem under the AFIG utility function. The

SGD algorithm will be run independently from 100 di�erent initial states to see how this

a�ects the returned designs. The tuning choices are the same as those used in Section 6.2,

i.e. a batch size of 1 for estimating the expected utility and an Adam updates using default

parameter choices.

Section 4.2.4 discussed that convergence of Algorithm 4.2 is not guaranteed. To assess if

convergence was reached for this example a short pilot run of 100, 000 iterations of this

algorithm was carried out. Figure 6.10 shows that both the elements of the weighting

matrix B and the observation times of the design have e�ectively converged after 60, 000

iterations. No cyclic behaviour is shown in the traceplots and so there appears to be no

evidence that any modi�cations to the algorithm are required. The time until convergence

is a�ected by the initial state therefore for the simulation study the computational budget

is set to 500, 000 iterations. This ensures that there is enough time for the algorithm to

converge, even from an initial state far from a maxima of the expected utility.

Figure 6.11 shows the designs returned when running the Algorithm 4.2 to maximise the

expected AFIG utility. Each of the 100 returned designs corresponds to starting the
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Figure 6.10: Example traces of the elements of B (left) and the design (right) when using SGD
algorithm to maximise the expected AFIG utility.

algorithm at a di�erent initial state. In all cases the designs returned distribute the

observations at three distinct times (approximately times 1, 3 and 14 hours). Intuitively,

this should provide more information about the three model parameters than the optimal

design found for the expected FIG utility. Section 6.5 explores this in more detail by

comparing the posterior distribution at the optimal designs under di�erent utility

functions.

In this example the designs returned have repetition of observation times. For the examples

using other utility functions (see Section 6.2 and Section 6.3) SGD has converged to local

optima of the expected utility and ACE phase 2 is easily applied as a postprocessing step

to identify the global optimum. For the AFIG utility, it is unclear how to postprocess the

designs as the expected utility surface and objective function are dependent on the weights

matrix which should be updated simultaneously with the design. In future work it would

be interesting to explore methods trying to identify the global optimum of this objective

function.

6.5 Comparison of optimal designs under different

utility functions

This section considers the designs returned under various utility functions. The observation

times under these di�erent utilities will be considered and an informal comparison of the

typical posterior they produce will be conducted.
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Figure 6.11: Plots of the returned designs from the various runs of the SGD algorithm using
simultaneous updates for the expected AFIG utility. Each run uses a computational budget of
500, 000 utility evaluations. Each returned design was sorted by time.

Optimal design under SIG utility

The ACE algorithm (using both phase 1 and phase 2) was used to �nd the optimal

design under the SIG utility for the pharmacokinetic model. The designs output from 20

independent runs of the algorithm, each starting from a di�erent initial state, are shown

in Figure 6.12. All of the designs appear to display a similar pattern with a cluster of

around four or �ve observations around time 1, another cluster around time 4.5 and the

remaining observations at later times around time 15. The variability in the time an

observation is made is larger for those taken at later times suggesting there is less

sensitivity to where these observations taken in relation to the value of the expected

utility. For the purposes of the following comparison the returned design which yielded

the highest expected SIG value will be considered as the optimal design for this utility.

Comparison

The optimal design under the FIG utility is di�erent from the designs returned by other

utility functions as shown in Figure 6.13. It places all observations at a single time point.

Under the AFIG, SIG and log |I| utilities the designs are clustered together with some

observations taken at the same or similar times. In contrast to FIG, the designs under the

other utilities converge to multiple clusters of repeated observations at similar times. It is

unsurprising that the optimal designs are similar under the log |I| and SIG utility functions

as the log |I| utility is an approximation of the SIG utility (as discussed in Section 4.3.1).
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Figure 6.12: Plots of 20 returned designs (from ACE) for the pharmacokinetic model under the
SIG utility.

The optimal designs under the AFIG, SIG and log |I| utilities are intuitively better to

learn the model parameters than the optimal found under the FIG utility. Since the model

has 3 parameters, a design with observations at 3 or more times should be necessary to

learn about all of the parameters. Figure 6.14 demonstrates that these designs typically

give posteriors which are much more concentrated. The posterior when using the design

returned by FIG shows little improvement in precision from the prior to posterior over

the (θ1, θ2) and (θ1, θ3) margins. The (θ2, θ3) margin shows that the marginal posterior

of a function of the parameters is highly concentrated. This is evidence that the FIG

utility has maximised informativeness for a function of the parameters relating to one of

the eigenvalues of the information I (since the trace of a matrix is equal to the sum of its

eigenvalues).

6.6 Discussion

Throughout this chapter, SGD was compared to the Müller and ACE algorithms in a

simulation study on the pharmacokinetic example under the FIG and log |I| utility
functions. The investigation into tuning of SGD in Section 6.2.2 suggested that a smaller

batch size was more e�cient computationally. The simulations showed that SGD was fast

to converge but often to poor local maxima. ACE required a higher computational

budget to converge however this often returned designs with higher utilities than those

returned by SGD. Post processing could improve the returned design from both

algorithms. With post processing, SGD returned designs with expected utilities a bit

better than those returned by ACE.
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Figure 6.13: Optimal designs returned under the FIG, AFIG, SIG and log |I| utility functions for
the pharmacokinetic model.

The optimal design under the FIG utility placed all observations at a single time. This

is unrealistic and produced an ill-conditioned posterior. This motivated the investigation

into alternative utilities, namely the log |I| utility which has less theoretical backing as a

Bayesian utility and AFIG, an adversarial variant of the FIG utility. The AFIG utility

returned designs similar to those found when using the SIG and log |I|, all of which gave

concentrated posteriors. The objective function for AFIG is more complex than the other

utilities as it also depends on a weighting matrix B and requires simultaneous optimisation

with respect to both the design and the elements of B. This makes it di�cult to draw

comparisons between methods and to identify the global optimum. In the future it could be

interesting to develop a post processing procedure similar to the point exchange algorithm

used in ACE phase 2 that could identify the global optimum of the expected AFIG utility

function.

Although only used for the FIG, AFIG and log |I| utilities in this chapter, SGD methods

can be applied to design problems under a wider range of utility functions. If an unbiased

estimate of the gradient of the expected utility function can be obtained then SGD will be

applicable.
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Figure 6.14: Example bivariate posteriors for the parameters of the pharmacokinetic model for
each of the designs in Figure 6.13 for a draw (θ, y) from the prior and model. Colour represents
posterior density, with yellow showing highest density and purple lowest. From top to bottom, they
correspond to FIG, SIG, log |I| and AFIG. The priors are indicated by the white contours.
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Surrogate utility function

This chapter looks at the use of surrogate functions for the utility within optimal design.

Bayesian optimal design problems can require two stages of expensive approximations. In

most problems the expected utility is intractable and thus has to be approximated, usually

using Monte Carlo integration with a �nite sum of utility realisations. Utility functions

in Bayesian optimal design are often functions of a posterior distribution. This increases

the computational burden when the posterior distribution is itself intractable and Monte

Carlo methods have to be employed to get an estimate. Problems which require this can

quickly become computationally challenging. Surrogates to these expensive to evaluate

approximations could o�er a method of �nding the optimal design more e�ciently in these

settings.

Surrogate functions have been used extensively to emulate functions which are expensive

to compute. For example, in computer experiments Gaussian processes are often used as

surrogate functions (see, for example, Gramacy, 2020). Booker et al. (1999) outlines a

rigorous framework for optimisation of functions via surrogates. This also appears as a

step in ACE phase 1 where the practitioner has to choose a surrogate, normally a

Gaussian process, to emulate the univariate marginal utility (see Section 2.6.2). Using a

surrogate within the calculation of the expected utility function could potentially improve

the computational e�ciency of searching for the optimal design.

One approach is to construct a surrogate for the expected utility surface directly by �tting

a model to some expensive utility evaluations made at lots of di�erent designs. When

computing a utility the main computational cost involved is estimation of the posterior

distribution, except in cases where the utility function does not require this, e.g. ones using

the Fisher information. In most cases the posterior would not be a standard distribution

hence would have to be approximated using, for example, importance sampling or Markov

chain Monte Carlo (see Section 2.1). Another issue arising from these approximations is

that many rely on the ability to evaluate the likelihood function which, in some cases, may
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be di�cult or impossible. In these cases approximate Bayesian computation (ABC) may be

a solution (for a review of ABC see Marin et al. (2012)). This approach scales poorly with

dimension however the use of summary statistics o�ers a partial solution to this problem.

Drovandi and Pettitt (2013); Hainy et al. (2014); Price et al. (2016) present work using

ABC within experimental design. To approximate the posterior using any of these methods

requires a lot of computing resource. This would be required for each realisation of a utility

used within a Monte Carlo approximation of the expected utility. Many approximations

of the expected utilities would have to be computed at various designs in order to �t a

surrogate to the expected utility surface meaning this can be a computationally costly

procedure. Examples surrogates could be a Guassian process or a neural network. The

optimal design under the surrogate could then be found giving an approximation of the

true optimal design. Using a surrogate within existing methods for �nding the optimal

design would be more computationally e�cient however this does still incur a large cost in

obtaining the expensive-to-evaluate approximations of the expected utility used to �t the

surrogate.

Rather than �nd a surrogate for the expected utility, an alternative approach could be to

�nd a surrogate for the posterior distribution and use this to obtain cheap realisations of the

approximate utility. Overstall et al. (2018) considers using a Laplace approximation for the

posterior which is considerably cheaper to obtain than an approximation of the posterior

using Monte Carlo methods. Laplace approximations require running an optimisation

routine to �nd the posterior mode and can also be subject to numerical stability issues

when returning the Hessian matrix. Although faster than estimating the true posterior

directly, this routine can become expensive. This is ampli�ed in the experimental design

setting where thousands of utility functions need to be evaluated with a posterior estimate

is required for each. For these reasons an alternative approach that could address some

of these issues would be useful. Recent work by Papamakarios and Murray (2016) o�ers

a scalable, likelihood free method of producing a surrogate for the posterior distribution

using neural networks. This o�ers a promising method of obtaining quick to compute

posterior approximations which in turn allow for computationally cheap realisation of the

utility. Section 7.1 gives the background of this method. Bayesian optimal design using

a posterior approximation is described in Section 7.2. Section 7.3 and Section 7.4 employ

a surrogate for the posterior to get cheap approximate utility realisations using these

to target the optimal design. Section 7.5 considers a novel approach to estimating the

expected utility surface to identify which region of the design space yields the highest

expected utilities.

88



Surrogate utility function

7.1 Surrogate posterior using neural networks

A surrogate for the posterior distribution reduces the computational burden of calculating

commonly used Bayesian utility functions e.g. posterior precision. Surrogates should be fast

to compute whilst giving a good approximation to the true posterior. This section describes

how neural networks can be used to approximate a posterior distribution. Although they

incur a �xed computational cost to train, once trained posterior approximations are very

quick and computationally cheap to obtain.

7.1.1 Neural network approximation of posterior

Inspired by biological neurons, a neural network is a connected system of nodes. Nodes

belong to layers. Each node has a numerical value with the �rst layer representing the

input variables. The connections between the layers are modelled with weights with each

node being a weighted sum of the nodes of the previous layer plus some constant �bias�

value. These weights and biases are found by training the network. The output from each

node is subject to an activation function such as the identity, sigmoid, hyperbolic tangent,

or ramp/relu function. These can introduce non-linearity into the system (Shukla, 2018)

and also control the range of values that the network output can take.

Training uses pairs of inputs and outputs of the neural network, with an objective function

providing a measure of the error between the network output and the true outputs. This

should correlate well with the task the network is performing so that a network with optimal

weights gives the output required. Common objective functions include cross entropy and

mean square error (Chollet, 2018). The weights and biases in neural networks, denoted

φ, are trained using stochastic gradient optimisation (see Chapter 3). The gradient of the

objective function with respect to φ is used in the update step to train the network. For

more background on neural networks, including details on implementation, see for example

Goodfellow et al. (2016) and Ketkar et al. (2017).

Posterior approximation

Papamakarios and Murray (2016) proposed a fast likelihood free approach to estimate the

posterior distribution of the parameter vector using a neural network. Following this work

throughout this section an approximate posterior for θ is introduced which follows a normal

distribution with mean µ = µ(y, τ) and variance Σ = Σ(y, τ),

θ|y, τ ∼ Np(µ,Σ). (7.1)
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Figure 7.1: Example structure of a neural network used to estimate the mean µ = µ(y, τ) and
variance Σ = Σ(y, τ) of the approximate posterior.

The functions µ(y, τ) and Σ(y, τ) are estimated by a neural network.

The assumption that the posterior is a Normal distribution is not always applicable, as

the true posterior may, for example, be multi-modal and thus the approximation to the

posterior would be poor. In these cases Papamakarios and Murray (2016) extended the

approach to �t a mixture of Normal distributions with m components,

θ|y, τ ∼
m∑
i=1

wiNp(µi, Σi), (7.2)

where the weights w are also outputs from the neural network. This is more �exible with

the ability to model more features and thus would give a better approximation to the

posterior. For the examples using the simple death model (see Section 5.1) considered in

Section 7.3, Section 7.4 and Section 7.5 a single Normal distribution (Equation 7.1) was

su�cient to approximate the posterior distribution.

7.2 Bayesian optimal design using a posterior

approximation

Since many Bayesian utilities are functions of the posterior, a computationally convenient

approach to approximating the utility can be found via a surrogate for the expensive to

compute posterior. A surrogate posterior can be found using output from a neural network

as described in Section 7.1 and hence a surrogate of the utility. Foster et al. (2019) employs

a similar idea, using variational inference to estimate the posterior.

The neural network takes prior predictive data y and corresponding design τ as the

inputs, outputting estimates of the mean and variance of the �tted posterior (Equation

7.1). Training data is obtained by sampling N triples (τi, θi, yi), sampling τi uniformly

from the design space, θi from the prior, and yi from the model given τi, θi.
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The neural network is trained by minimising the cross entropy loss,

L(φ) = − 1

N

N∑
i=1

log[f(θ(i)|µφ(y(i), τ (i)), Σφ(y(i), τ (i)))]. (7.3)

This is equivalent to minimising the expected Kullback Leibler (KL) divergence (Kullback

and Leibler, 1951) from the true posterior π to the approximation f . The KL divergence

from π to f is given by

KL[π||f ] = Eθ∼π(θ|y;τ)[log π(θ|y; τ)− log f(θ|y; τ)]. (7.4)

This quantity is optimised by minimising −Eθ∼π(θ|y;τ)[log f(θ|y; τ)] as the remaining terms

are constant with respect to the parameters used in the approximation. The neural network

is trained by minimising the expected KL divergence which is approximated via Monte

Carlo integration using a �nite sample of size N (given by Equation 7.3).

The neural network outputs are an approximation of the mean vector and also a vector

which is used to de�ne the variance matrix of the posterior approximation. Care has to be

taken so that the estimated variance matrix output from the network is valid. In a simple

case where there is only one model parameter the posterior distribution is univariate and

a valid variance can be obtained by using a suitable activation function, i.e. the softplus

activation. More generally, for models with multiple parameters of interest, a valid variance

matrix can be obtained when the network outputs the elements of the matrix which is the

Cholesky decomposition of the variance matrix of the approximate posterior. This ensures

the variance matrix is symmetric, positive semi-de�nite and has positive diagonal entries.

Once �tted, the output from the neural network can be used to obtain a computationally

cheap approximation of the Bayesian utility functions. For example, an approximation of

posterior precision (see Section 4.1) can be obtained by taking |Σφ|−1. This is demonstrated

in Section 7.3, Section 7.4 and Section 7.5.

7.3 SGD using surrogate utility

SGD methods can be easily applied to �nd the design which results in the maximum

expected utility according to the surrogate utility function. First a neural network

approximation of the posterior is trained. This is used to de�ne a surrogate utility

function. Then automatic di�erentiation software can be used to implement SGD to

return the optimal design by maximising the expected surrogate utility.

To implement SGD the gradient of the expected surrogate utility has to be computed.

Equation 3.17 details how an estimated gradient can be found using a Monte Carlo
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Figure 7.2: Comparison of the surrogate and true expected posterior precision utility for the simple
death model for a one observation design.

approximation, ∇̂J (τ) = 1
K

∑K
i=1∇U(τ, θi, yi) where (θi, yi) is a draw from the prior

distribution for the parameters and the model. This requires calculation of

∇U(τ, θ, y) = ∂U
∂τ

+
∂U
∂y

dy

dτ
. (7.5)

Note that this derivative involves di�erentiating through y. When the data is generated

from a continuous distribution this derivative can be easily computed. If the data is

generated from a discrete distribution the derivative does not exist and so a continuous

approximation is used. The remaining terms in Equation 7.5 are straightforward to

compute.

Simple death model example

Consider the simple death model as described in Section 5.1. This section looks at a design

problem where the aim is to identify the observation times which maximise the posterior

precision, de�ned in Section 2.4, of the model parameter θ. In this example all observations

should be made between times 0 and 10.

The surrogate model for the posterior that is used for this example follows the procedure

outlined in Section 7.1. The network architecture consists of three fully connected layers

each with sixteen nodes and tanh activation function. Inputs to the network are draws

of y and τ and the outputs are the estimated mean µ(y, τ) and variance Σ(y, τ) of the

posterior for the model parameter θ. As θ is a single parameter in this example the mean

and variance will be scalar quantities (denoted µ and σ2). The loss function used to train

the network is the cross entropy loss as de�ned in Equation 7.3. Here a one observation and
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Figure 7.3: Comparison of the expected posterior precision utility using the true posterior (left)
and the neural network surrogate (right) for the simple death model for a two observation design.

two observation design are considered. For each example the neural network approximation

of the posterior was trained using one million designs with associated simulated data y over

100 epochs.

For this model, the practical consideration of computing the gradients via automatic

di�erentiation has be considered carefully. Since the data is generated from a discrete

(binomial) distribution this results in discontinuity. Maddison et al. (2016) overcomes

this by using a continuous approximation to the discrete density which allows gradient

computations to be made. They use a sigmoid transformed logistic distribution to

approximate a Bernoulli density, known as a relaxed Bernoulli distribution. A realisation

of a binomially distributed random variable can be found by taking a sum of Bernoulli

realisations. Simulation of the data in this example could be made via a continuous

approximation using a sum of realisations from a relaxed Bernoulli. In practice this was

found to give large approximation errors for this example. Alternatively the binomial

density can be approximated using a normal density with matched �rst and second

moments. This continuous approximation worked well in the following examples.

Figure 7.4 shows that the optimal design found using SGD in the one observation example

is τ∗ ≈ 1.70. The expected utility at this design is 133.0. Te known optimal τ∗ = 1.61 for

this model has an expected utility of 133.1. Similar results are seen for the two observation

model. Figure 7.4 shows that SGD on the utility using the surrogate posterior converges

to (1.06, 2.48) which gives an expected utility close to that of the optimal design under the

true utility surface, τ∗ = (1.10, 2.51). The approximation to the optimal design is highly

dependent upon the quality of the surrogate utility function. In both examples considered
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Figure 7.4: SGD using a surrogate function for the posterior precision utility for the simple death
model for a one observation (left) and two observation (right) design. The optimal design found
using SGD on the surrogate is shown in red with the path of the SGD algorithms indicated for the
two observation case. The known optimal is indicated by the purple marker.

here the surrogate is a good approximation as it produces an expected utility surface which

is similar in shape and with a mode close to that of the true expected utility surface. This

can be seen in Figure 7.2 and Figure 7.3. Due to this the optimal found using SGD on the

approximated expected utility is close to the known optimal.

Comments

Application of SGD methods is simple, returning the design which maximises the expected

utility under the surrogate posterior. This means that the accuracy of the estimated

optimum is highly dependent upon the quality of the surrogate estimate of the expected

utility. The quality of the surrogate model could be assessed by sampling some points

and computing the expected utility. A distance measure between these and the surrogate

output (i.e. mean squared error) could be used and the surrogate re�ned until it became

su�ciently close. This could be done using a transfer learning approach (Goodfellow

et al., 2016) taking the previously trained network as the initial weights then training with

additional data. Note that if the structure of the neural network is not �exible enough,

i.e. not enough nodes or layers, then the surrogate may not be able to get su�ciently close.

This method should be simple to apply to higher dimensional designs than those considered

here. Di�culties arise in verifying that the optimal design under the surrogate utility is

close to the true optimal in a high dimensional design application. This is challenging due

to the complexity in �nding the true optimal design.

94



Surrogate utility function

Using SGD returns a point estimate of the optimal design. Alternatively, di�erent

approaches which give the practitioner some information on the shape of the expected

utility surface could be considered when using the surrogate. For example, the surrogate

could be used to identify promising regions of the design space quickly and cheaply.

Expensive utility evaluations could then be used in these promising regions to identify

the optimal design. This could lead to an increase in e�ciency as expensive utility

evaluations would not be wasted in sub-optimal regions of the design space. Section 7.4

considers a closely related approach.

7.4 Delayed acceptance Markov chain Monte Carlo

Delayed acceptance MCMC (DA-MCMC) (Christen and Fox, 2005) is an adaptation of the

Metropolis-Hastings algorithm (Algorithm 2.1) which uses a two stage procedure for the

acceptance step. It aims to reduce the number of expensive evaluations of a target density

by �ltering bad proposals using a surrogate function for the target density. Algorithm 7.1

describes the DA-MCMC algorithm. In other applications this has been shown to speed

up the time of computation and the statistical e�ciency of estimating the target (see, for

example, Golightly et al., 2015 and Sherlock et al., 2017).

DA-MCMC is implemented via a two stage procedure in the acceptance step of an

Metropolis-Hastings iteration. The �rst stage accepts proposed draws probabilistically

based on the value of a surrogate function for the target. This �lters out proposed values

which have low density in the surrogate model. The promising proposals, those that are

not rejected in the �rst stage, are then accepted or rejected according to a probability

using expensive evaluations of the target distribution. Together this two stage acceptance

step ensures detailed balance holds and the chain has stationary distribution equal to the

target distribution. DA-MCMC aims to speed up inference as bad proposals are screened

at the �rst stage with only promising proposals used in the second computationally

expensive stage. Competing MCMC methods are usually compared through speed and

statistical e�ciency using wall clock time and e�ective sample size per second (ESS/sec)

respectively.

7.4.1 Application to optimal design

The Müller algorithm employs an MCMC based approach to the optimal design problem.

Each evaluation of the acceptance probability requires evaluation of the utility which can

be computationally expensive. This can be compared to inference problems where the

likelihood function is expensive to calculate. DA-MCMC aims to improve the speed or

e�ciency of such problems and thus can be used with the Müller algorithm to e�ciently

�nd the optimal design.
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Algorithm 7.1 Delayed acceptance Metropolis-Hastings Markov chain Monte Carlo
algorithm with target f(x) and proposal density q(·). An approximation to to the target
is denoted by f̃ .

1: Initialise x(0).
2: for i = 1, 2, . . . , N do

3: Propose x′ ∼ q(x|x(i−1)).
4: Calculate the acceptance probability, α1 = min(1, A1) where

A1 =
f̃(x′)q(x(i−1)|x′)

f̃(x(i−1))q(x′|x(i−1))
.

5: With probability α1 continue to step 6. Otherwise, set x(i) = x(i−1) and continue
from step 2.

6: Calculate the acceptance probability, α2 = min(1, A2) where

A2 =
f(x′)f̃(x(i−1))

f(x(i−1))f̃(x′)
.

7: With probability α2 continue to step, set x(i) = x′. Otherwise, set x(i) = x(i−1).

8: return x(0), x(1), . . . , x(N)

7.4.2 Example: two observation simple death model

This section considers an example using the simple death model as described in Section

5.1. Observations are assumed to follow a binomial distribution, P (τ) ∼ Bin(n, e−θτ ).

When multiple observations are required then simulations from the model are made using

Equation 5.11. This section considers an example searching for the optimal two time point

design when using the posterior precision utility function (described in Section 4.1).

The bene�t, if any, of using DA-MCMC in the Müller algorithm is investigated. In this

example the wall clock timings, statistical e�ciency (ESS/s) and e�ciency in terms of

expensive utility evaluations, herein referred to as the utility e�ciency, are considered

for various choices of M , the powering up coe�cient of the utility surface, in the Müller

algorithm.

The cheap to evaluate surrogate utility function ÛC will be constructed from the output of

a neural network. The network architecture is the same as described in Section 7.3, namely

three fully connected layers each with sixteen nodes and tanh activation function, trained

for one hundred epochs on one million draws (τ, θ, y) with τ sampled uniformly over the

design space [0, 10]2, model parameters θ drawn from the prior and y are samples from

the model given θ and τ . As the utility function in this example is the posterior precision,

the surrogate utility is computed by taking the inverse of the estimated variance. For

this example there is only one model parameter and so the variance σ̂2 is a scalar hence
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M Method used
in Müller

Average run
time (secs)

Average UE
evaluations

Average
ESS per sec

Average ESS per
UE evaluation

1 MCMC 1312 10000 6.59 0.86
DA-MCMC 1239 9244 6.37 0.85

2 MCMC 2638 10000 2.84 0.75
DA-MCMC 2327 8703 2.79 0.75

4 MCMC 5301 10000 1.10 0.59
DA-MCMC 4121 7674 1.21 0.65

Table 7.1: The mean results when searching for the optimal two observation design for the simple
death model using MCMC and DA-MCMC within the Müller algorithm.

ÛC(τ, θ, y) = 1/σ̂2(y, τ). The neural network is trained before being used in the DA-

MCMC scheme so the computation required has a �xed overhead however, once trained,

draws of ÛC are cheap to obtain.

The expensive utility function ÛE used in this example will involve computing draws from

the posterior which are then used to estimate the posterior precision. Importance sampling

(Section 2.1.2) will be used to estimate the posterior distribution. The prior distribution

for θ will be used as the proposal. One hundred thousand particles (N) were used in the

importance sampling to ensure that the e�ective sample size was su�ciently large to avoid

any degeneracy. The posterior precision is then estimated from the draws resampled with

respect to their importance weight. This procedure is required for each realisation of ÛE .

Table 7.1 and Figure 7.5 show the results of 20 independent runs of the standard MCMC

Müller and DA-MCMC within Müller starting from the same starting states. Each run

consisted of 10, 000 iterations. In all cases, Müller using DA-MCMC is faster to run than

Müller using MCMC according to the wall clock timings. This improvement becomes larger

as M increases. In contrast the statistical and utility e�ciency does not show any marked

di�erence for M = 1 and M = 2. For M = 4, using DA-MCMC appears marginally more

e�cient than using the standard MCMC routine.

7.4.3 Example: five observation simple death model

This section considers the same model as described above however here the optimal

design problem requires �ve observation times. The training of the neural network used

to construct the surrogate in this example used the same architecture (3 layers of 16

nodes with tanh activation) and the same number of epochs (100) as the previous

example however due to the increase in the number of observations in the design 107

training points, (τ, θ, y), were used.

Table 7.2 and Figure 7.6 show the results of 20 independent runs of the standard MCMC

Müller and DA-MCMC within Müller starting from the same starting states. As with the
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Figure 7.5: Run time (left column), ESS/s (centre column) and ESS per expensive utility evaluation
(right column) for the two observation simple death model for M = 1 (top row), 2 (middle row),
and 4 (bottom row).
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Figure 7.6: Run time (left column), ESS/s (centre column) and ESS per expensive utility evaluation
(right column) for the �ve observation simple death model for M = 1 (top row), 2 (middle row),
and 4 (bottom row).
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M Method used
in Müller

Average run
time (secs)

Average UE
evaluations

Average
ESS per sec

Average ESS per
UE evaluation

1 MCMC 2000 10000 4.35 0.87
DA-MCMC 1862 9187 4.20 0.85

2 MCMC 3942 10000 2.02 0.80
DA-MCMC 3486 8756 1.97 0.79

4 MCMC 7730 10000 0.88 0.68
DA-MCMC 6263 8022 0.89 0.70

Table 7.2: The mean results when searching for the optimal �ve observation design for the simple
death model using MCMC and DA-MCMC within the Müller algorithm.

previous example, using DA-MCMC is bene�cial in terms of wall clock timings. There

appears little discrepancy for the statistical e�ciency and utility e�ciency between the

two methods for this example. This is true for all choice of M considered.

7.4.4 Summary

The output from both Müller using MCMC and Müller using DA-MCMC is very similar

for both of the examples considered in this section. The e�ciency of using DA-MCMC

in Müller was assessed using the wall clock time of computation and the average number

of expensive utility evaluations. The e�ective sample size per second and per expensive

utility evaluation was considered as a measure of statistical e�ciency and utility e�ciency

respectively. The results showed that using DA-MCMC improves speed of computation

however there is no indication that it is better in terms of statistical e�ciency or utility

e�ciency than using MCMC.

7.5 Regression trees

Regression trees provide a method of computing a piecewise constant approximation to a

response variable. They can be applied to problems in high dimensional setting, giving a

quick approximation to the value of the response in regions of the input space.

First introduced by Morgan and Sonquist (1963), regression trees provide an algorithm

which approximates the expected response in sub regions of the explanatory variables.

Regression trees sequentially identify thresholds at which to split variables, aiming to

produce an approximation which minimises the error in predicting the response. Trees

start at a root node. Each decision causes a split where two child nodes are created. The

tree grows as more decisions are made recursively until some stopping criteria is met. The

terminal nodes of the tree are called leaf nodes. Trees partition the data according to
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Figure 7.7: An example regression tree to predict Y from variables X1 and X2. Here γi for i = 1, 2, 3
are the (constant) thresholds at which the splits occur.

Algorithm 7.2 Pseudo code for tree construction.

1: Start at the root node.
2: Choose the best partition of the dataset according to a splitting rule.
3: If a stopping criterion is met then stop. Otherwise apply step 2 to each child node.

splitting rules so that the leaf nodes contain the most homogeneous outcomes possible

(Moisen, 2008).

The threshold at which the data is subset is chosen according to a splitting rule using

an impurity measure. This grows the tree by creating two child nodes from the current

node. For regression trees this is often chosen to be the mean squared error between the

prediction and the data. Alternatively the mean absolute di�erence (Moisen, 2008) could

be used. Compared to the least squares approach this provides a more robust model as it

is less sensitive to outliers. However it performs poorly if a data set has a large number of

zeros.

The tree recursively splits until a stopping criterion is met. Stopping criteria are enforced

so that a tree does not over �t to the data. Typical stopping criteria are satis�ed when the

reduction in impurity is below a pre-speci�ed threshold (Loh, 2011) or less than a pre-set

fraction of the impurity at the root node (Loh, 2014). Alternative stopping criteria can be

based on the number of observations in each node or limitations on the structure of the

tree, i.e. setting a maximum number of layers or leaf nodes. Once the tree has stopped

growing, the value at each of the terminal nodes provides a piecewise constant estimate

of the regression function. Algorithm 7.2 outlines the method of constructing a tree with

Figure 7.7 illustrating an example of the structure of a regression tree.

There are many extensions which can be considered to the basic method of constructing

trees. Friedman et al. (2001) discusses some limitations of trees as well as describing some

extensions to overcome some of these di�culties.
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Algorithm 7.3 Pseudo code for narrowing down the design space to only include near
optimal designs.

1: De�ne a surrogate for the utility function, u(θ, y, τ). Note that ideally the surrogate
would be computationally e�cient however it could also be expensive to compute,
e.g. importance sampling utility estimates.

2: Draw a large number of design points uniformly over the design space and use the
surrogate to get an approximation to the utility at each design.

3: Fit a regression tree to get an approximation of the expected utility surface, U(τ).
4: Identify the regions of the design space which have the highest expected utility.
5: Either use an existing method to �nd the optimal design using expensive utility

evaluations or de�ne a new surrogate for the utility in the most promising regions
and repeat steps 2 to 4.

7.5.1 Application to optimal design

When considering optimal design problems, most of the design space considered will yield

designs which are sub optimal. Any search of this space reduces the e�ciency of the

search algorithm for the optimal design and thus should be avoided if possible. Using a

regression tree on realised utility draws will give a piecewise constant approximation to

the expected utility surface. This will allow regions of the design space which yield the

highest expected utility values to be identi�ed. Other methods could also be considered

for approximating the expected utility surface from realised utility draws, such as Bayesian

optimisation (Frazier, 2018). Typically these do not scale well and are only applicable for

problems up to ten dimensions (Wang et al., 2013).

Once the smaller area of the design space which gives rise to higher expected utilities has

been found then a number of algorithms could be used to identify the optimal design. For

example, points could be sampled in a grid from areas of high expected utility according

to the regression tree. This would allow a simple grid search to be conducted over this

grid of points or a particle based approach, such as that of Gillespie and Boys (2019),

could be used to e�ciently �nd the optimal design using expensive utility evaluations.

Alternatively, the surrogate model may be re�ned for the smaller region and the procedure

of �tting the regression tree applied recursively until the space of near optimal designs

was deemed su�ciently small or the expected utility su�ciently �at by the practitioner.

Algorithm 7.3 outlines this procedure.

7.5.2 Example: one observation simple death model

Consider the simple death model where a design of one observation is required. The same

surrogate as described in Section 7.3 will be used throughout this example to obtain cheap

utility evaluations. The regression tree will be �t using the existing software Scikit-learn
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Figure 7.8: The true expected utility surface found using numerical integration and regression
tree prediction (left) for the expected utility for the simple death model with a one observation
design. Areas which result in the top quartile (shown in yellow) for expected utility according to
the regression tree output are shown in the plot on the right.

(Pedregosa et al., 2011) using the mean squared error as the measure of impurity. The tree

is grown until there are no new splits that result in a decrease in impurity or until all leaf

nodes contain only one sample. After, the region of promising designs has been found using

a �tted regression tree, designs will be sampled from this space and the optimum identi�ed

using the particle based approach of Gillespie and Boys (2019) (see Section 2.6.3).

Figure 7.8 shows the tree �tted on cheap utility evaluations from the surrogate function.

When comparing this to the surrogate, the tree appears to �t well with both the tree and

surrogate closely matching that of the true expected utility. Also displayed in Figure 7.8

is a plot showing where the expected utility estimated by the regression tree is in the top

quartile of sampled responses. This allows the promising areas of the design space to be

identi�ed. Here the known optimum is contained in the selected region.

Here the Gillespie Boys algorithm will be used to target the optimal design with expensive

utility evaluations made using importance sampling to estimate the posterior (with the

same settings as outlined in Section 7.4.2). The Gillespie Boys algorithm here uses a

sample of 100 points from the selected region, using 10000 utility estimates in each stage

keeping designs which yield the top 50%, 25% then 12.5% of estimated expected utilities.

Note that these tuning parameters have been selected fairly arbitrarily in order to illustrate

the method. The output of this method can be seen in Figure 7.9. This identi�es points

close to the known optimum of τ∗ = 1.61, visiting them much more frequently than the

sub optimal designs.
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Figure 7.9: Output of the Gillespie Boys algorithm showing the number of times a sampled design
was visited (left) and the estimated expected utility (right) for the simple death model with a one
observation design. Optimal design τ∗ ≈ 1.61 indicated by blue vertical line.

7.5.3 Example: two observation simple death model

This approach is illustrated through application to the simple death model, as described in

5.1, where the aim is to identify the optimal two observation design. The optimal design

will be the one which maximises the posterior precision, de�ned in Section 2.4, of the model

parameter θ. The observations are ordered chronologically, τ = (τ1, τ2) for τ1 6 τ2. In this

example all observations should be made between times 0 and 10.

The surrogate model used for this example follows the procedure outlined in Section 7.1.

First a neural network is trained on some simulated data from the prior predictive

distribution to predict the mean, µ̂ and variance σ̂2 of the posterior which is assumed to

follow a Normal distribution. The output is then used to estimate the utility function,

ÛP (τ, θ, y) = 1/σ̂2. The same trained network as was used in Section 7.3 and Section

7.4.2 is used in this example.

To �t the regression tree, 104 designs are sampled uniformly over the design space and an

estimate of the utility is computed via the surrogate model for each. Figure 7.10 shows

the approximate expected utility surface predicted from the regression tree, Ĵ (τ), against
the actual expected utility surface, J (τ). Although the value of the utility di�ers, the

approximation appears to have a very similar shape to the true expected utility. The

areas of high utility correspond and thus the computationally cheap approximation to the

expected utility will identify regions in the design space where designs are near optimal.

Similarly to the example considered in Section 7.5.2, here the Gillespie Boys algorithm

is applied to particles sampled from the promising regions identi�ed by the regression
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Figure 7.10: The true expected utility surface found using numerical integration (top left), the
neural network surrogate (top right) and regression tree prediction (bottom left) for the expected
utility surface in the simple death model with a two observation design, (τ1, τ2). Also included is
a plot showing areas which give expected utilities in the top quantile of the regression tree output
(bottom right). Areas which result in the top quantile (shown in yellow) for expected utility according
to the regression tree output are shown in the plot on the right. The optimal design τ∗ = (1.1, 2.51)
is indicated by a cross.
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Figure 7.11: Output of the Gillespie Boys algorithm showing number of times the particle has
been visited (left) and the estimated expected utility (right). The optimal design τ∗ = (1.1, 2.51) is
indicated by a red cross.

tree. Again, expensive utility evaluations will be computed from a posterior estimated via

importance sampling. Figure 7.11 shows the output from the algorithm. It shows that the

most visited points are those around the true optimal.

7.6 Discussion

This chapter has considered constructing a surrogate function for the expected utility based

on using a neural network to approximate the posterior distribution. This approach incurs

a one o� computation to train the neural network after which realisations of utilities which

are functions of the posterior can be made easily and cheaply. These cheap estimated

utilities can then be used to target the optimal design.

The main cost involved with de�ning a surrogate is training the neural network to predict

parameters in the approximate posterior. This can have a signi�cant computational cost

since many simulated (τ, θ, y) are required however once trained approximate posteriors

can be realised easily from simulated (τ, y) draws. This means that the computational cost

of obtaining surrogate utility realisations is minimal, requiring only simple calculations.

The neural network approximation of the posterior parameters could be re�ned more.

This could potentially be required for more complex models than those considered in

this chapter. One approach could be to evaluate the expensive utility at some points in

the design space and observe how far away the surrogate utility under the approximate

posterior is. If the distance is outside of a user de�ned threshold then more (τ, θ, y)
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draws could be made and the network trained further starting from the weights of the

previously trained network similar to transfer learning (Goodfellow et al., 2016). This

could be repeated until the surrogate utility gave values close enough to those found under

the expensive utility.

Another way the network could be improved is by approximating the posterior as a mixture

model. Papamakarios and Murray (2016) suggest using the neural network to approximate

the weightings of the various Gaussian distributions as well as the respective means and

covariances. This provides a more �exible method to approximate the posterior and may

be required for a good approximation if the posterior has an unusual shape. The extra

complexity could also mean that more data is required to train the network su�ciently.

Use of a surrogate utility that is cheap to evaluate should allow improvements in

e�ciency of �nding the optimal design as cheap utility draws can used in existing

methods to approximate the optimal design (as in Section 7.3), in adaptations to existing

methods (Section 7.4) or to reduce the design space so that expensive utility evaluations

are not wasted in sub optimal regions (Section 7.5). For the approaches considered in this

chapter, targetting the optimal design of the surrogate expected utility and reducing the

design space appear the most promising. Using cheap utility evaluations within the

Müller algorithm did reduce the wall clock time to run the algorithm but did not appear

to increase its e�ciency. Future work could explore the approaches identi�ed as

promising and evaluate if the there is an increase in overall e�ciency of these methods

accounting for the training of the neural network.
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Conclusion

This thesis has considered the problem of optimal experimental design in the Bayesian

framework with the main interest in �nding computationally convenient methods of

�nding the optimal design. Firstly, stochastic gradient optimisation was considered as an

alternative to existing methods. This is scalable to high dimension designs as well as

e�cient in terms of utility (gradient) evaluations required for the algorithm to converge

to a locally optimal design. Another way of reducing the computational burden was to

consider utility functions that are cheap to compute. Often Bayesian utilities are

functions of the posterior distribution which are intractable requiring an expensive

estimation. The FIG utility was considered as an alternative Bayesian utility which is

cheap to compute for models with observations from some standard distributions. Finally

surrogates were considered as alternatives to the expensive to compute approximations of

the expected utility.

8.1 SGD methods

Throughout this thesis comparisons have been drawn between SGD and the existing

methods of Müller and ACE to �nd the optimal design. The Müller algorithm has some

theoretical backing to show that it does target a density whose margin in τ is

proportional to the expected utility. It does not scale well to higher dimensional designs

and, in the examples in this thesis, it was di�cult to select good tuning parameters of the

proposal density. The ACE algorithm addresses some of the issues of the Müller

algorithm. The default parameters seem to work well for most examples and it is scalable

to higher dimensional designs than Müller . The limitation of ACE is that it requires a

lot of utility realisations and that it can take a long time to converge especially if the

observations in the design are highly correlated.
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8.1.1 SGD for Bayesian optimal design

This thesis has used stochastic optimisation to target the optimal design. This was shown

to be faster and more e�cient than ACE and Müller in terms of utility realisations required

to converge. SGD is scalable and easy to implement using existing automatic di�erentiation

software given that the gradient of the utility can be computed. Here all experiments were

run using Tensor�ow on a CPU however further speed improvements could be made by

using Tensor�ow on a GPU due to more e�cient parallelisation.

SGD is prone to converging to local optima. This is undesirable as in practice multiple runs

from di�erent initial conditions have to be made to increase the probability of identifying

the global optimum, in turn increasing the computation cost of obtaining an estimate of the

optimal design. In examples where the returned design can contain repeated observations

existing methods, such as the point exchange algorithm of ACE phase 2, can be used as

post processing to assess how many observations should be made at each unique time point.

This was shown to target better designs in the example considered in Chapter 6. There

are various methods that could help SGD escape local optima which could be considered

in future work. These include using random perturbations in the update step (Robert and

Casella, 2013), tempering methods (Ye et al., 2017) or periodically conducting a line search

(such as one iteration of ACE phase 1) within the SGD algorithm. These adaptations may

provide more chance of escaping bad local optima however it would still remain advisable

to run the algorithm from multiple initial conditions to identify the returned design which

has the highest expected utility.

SGD returns a point estimate of the optimal design. This is desired by the practitioner

however this gives no information about the shape of the expected utility surface and thus

the sensitivity to perturbations of the design points. In practice, measurements through

an experiment will be taken close to but not exactly at the time of the optimal design

and so quanti�cation of how sensitive the expected utility is to these perturbations would

be useful. Gradient optimisation methods do not provide such information. Future work

could consider this, e.g. by looking at the second derivatives near the optimum. The output

of the Müller algorithm are draws whose margin in τ is proportional to the expected utility

surface and so the shape of the utility surface can be easily assessed by the practitioner.

For ACE a point estimate of the design is output however at each iteration of phase 1 the

estimated marginal expected utility is found for each element of τ . For the latter iterations

this could be output allowing the practitioner to see the shape of the estimated margins

of the expected utility surface.
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8.1.2 FIG utility

Section 4.2 considered a computationally convenient utility function, based on the Fisher

information matrix, that was shown to have a derivation from a decision theoretic

perspective and hence could be considered a Bayesian utility function. In the example

considered in Chapter 6 the design which maximised the expected FIG produced designs

with repeated points at one time leading to a posterior that was concentrated for one

linear combination of the parameters but di�use for others (see Figure 6.14). Overstall

(2020) notes that designs which maximise the expected Fisher information gain can result

in a singular Fisher information matrix and an ill conditioned posterior. One potential

reason why the FIG has this property is that under some observed data the repeated

observation times can produce a highly concentrated posterior and hence a high realised

utility. The expected FIG will reward this and so can be considered a risk seeking utility.

In scenarios where nuisance parameters are present in the model the Fisher information

becomes intractable (see Section 4.2.5). This means that the FIG utility function loses

some appeal in terms of computational convenience as unbiased estimates of the Fisher

information would have to be computed increasing the overall computation required.

A limitation of utilities based on the Fisher information matrix is that they only apply to

experimental design for inference of continuous parameters. Generalisation of the utility

to allow for inference for discrete parameters or model choice is not obvious. Ryan et al.

(2016) gives a review of some hybrid utility functions involving I for joint model and

parameter inference. Future work could investigate these. This thesis considered utility

functions which provide information abut the model parameters and so another direction

of future work could be to consider designs which optimise utilities based on the prediction

of continuous future observations.

Adversarial approach

An adversarial variation on the FIG utility was considered due to the drawbacks of FIG.

This considered the FIG under a parameterisation of θ to Aθ for some matrix A. The

elements of A were chosen to minimise the Fisher information gain whilst the design aimed

to maximise the expected FIG under the adversarial transformation. The optimal design

under this utility was found using SGD with simultaneous updates on the weights and the

design. This returned a design that was similar to the optimal designs found under other

utility functions, namely SIG and log |I|. In practice this appears to work well however

there is less theoretical backing for the adversarial approach, both for its use as a Bayesian

utility function and for convergence guarantees in the simultaneous update step required

to �nd the optimal design. This could be the subject of future work.
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8.2 Surrogate utilities

The �nal area considered in this thesis was using surrogate functions to alleviate some of

the computational burden of �nding the optimal design. This considered using a neural

network to approximate the posterior allowing for fast approximations of the utility to

be made. The neural network approach is a likelihood free approach to obtaining the

approximate posterior only requiring realisations of (τ, θ, y) to train. Chapter 7 considered

examples using the simple death model with various numbers of observations. This is a

simple model with only one model parameter where realisations from the model can be

made easily. It would be interesting to investigate using this surrogate more thoroughly

both for this simple example and also for examples with more model parameters to see the

bene�t, if any, in terms of wall clock timing and e�ciency of �nding the optimal design.

Section 7.3 considered using these cheap utility realisations within SGD to target the design

which maximised the approximate expected utility. The designs returned by this were close

to the optimal design in the examples considered. Further work could involve methods to

assess the quality of the surrogate as this method is highly reliant on a good approximation

with an optimum close to that of the true expected utility surface.

The cheap utilities were also used within a delayed acceptance MCMC step within the

Müller algorithm in Section 7.4. Initial results showed an improvement in the time taken

to run the algorithm however the statistical e�ciency did not seem to improve. Further

work would be required to assess the time taken to converge to a good design.

Additionally a regression tree was used to identify �good� regions of the design space.

Further investigation is required to assess any bene�t this has in reducing the

computational burden of identifying the optimal design. A direction of further work

could be to incorporate this approach into existing algorithms that use a line search. For

example, in ACE phase 1 rather than proposing a point which optimises a surrogate

(usually a Gaussian process) of the expected marginal utility, a regression tree could be

�t to realised utility draws in that margin and a proposed point drawn uniformly from

the region which corresponds to the highest prediction from the tree. This could

potentially reduce the overall number of utility realisations needed in the computation of

the ACE algorithm.

8.3 Summary

Overall, this thesis has shown that SGD o�ers a scalable and fast to converge alternative

to existing methods of optimal design. The computationally convenient FIG utility can
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be derived from a decision theoretic perspective. Although for some examples this results

in an ill conditioned posterior, adaptations have been proposed which appear to target

a design similar to the optimal found under other utility functions. Finally, surrogates

were considered as a way to gain a cheap-to-compute estimate of the posterior and hence

a realised utility. This approach o�ers many avenues for future work to explore with the

aim of improving the e�ciency of �nding the optimal design.
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