
School of Computing Science

Innovative Techniques for
Deployment of Microservices in

Cloud-Edge Environment

Devki Nandan Jha

Submitted for the degree of Doctor of
Philosophy in the School of Computing,

Newcastle University

September 2020

c© 2020, Devki Nandan Jha

- B -

Abstract

The evolution of microservice architecture allows complex applications to be structured

into independent modular components (microservices) making them easier to develop

and manage. Complemented with containers, microservices can be deployed across

any cloud and edge environment. Although containerized microservices are getting

popular in industry, less research is available specially in the area of performance

characterization and optimized deployment of microservices.

Depending on the application type (e.g. web, streaming) and the provided functional-

ities (e.g. filtering, encryption/decryption, storage), microservices are heterogeneous

with specific functional and Quality of Service (QoS) requirements. Further, cloud

and edge environments are also complex with a huge number of cloud providers and

edge devices along with their host configurations. Due to these complexities, finding

a suitable deployment solution for microservices becomes challenging.

To handle the deployment of microservices in cloud and edge environments, this the-

sis presents multilateral research towards microservice performance characterization,

run-time evaluation and system orchestration. Considering a variety of applications,

numerous algorithms and policies have been proposed, implemented and prototyped.

The main contributions of this thesis are given below:

• Characterizes the performance of containerized microservices considering various

types of interference in the cloud environment.

• Proposes and models an orchestrator, SDBO for benchmarking simple web-

application microservices in a multi-cloud environment. SDBO is validated using

an e-commerce test web-application.

• Proposes and models an advanced orchestrator, GeoBench for the deployment of

complex web-application microservices in a multi-cloud environment. GeoBench

is validated using a geo-distributed test web-application.

- i -

• Proposes and models a run-time deployment framework for distributed streaming

application microservices in a hybrid cloud-edge environment. The model is

validated using a real-world healthcare analytics use case for human activity

recognition.

- ii -

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this thesis

has previously been submitted for a degree or any other qualification at Newcastle

University or any other institution.

Devki Nandan Jha

September 2020

- iii -

- iv -

Publications

Portions of the work within this thesis have been documented in the following publi-

cations:

Published

1. D. N. Jha, P. Michalak, Z. Wen, R. Ranjan, and P. Watson, “Multi-objective

Deployment of Data Analysis Operations in Heterogeneous IoT Infrastructure”,

IEEE Transactions of Industrial Informatics, vol. 16, no. 11, pp. 7014-7024,

2020, IEEE, https://doi.org/10.1109/TII.2019.2961676.

2. D. N. Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K. Battula, et

al., “IoTSim-Edge: A simulation framework for modeling the behavior of Internet

of Things and edge computing environments”, Software: Practice and Experience,

vol. 50, no. 6, pp. 844-867, 2020, Wiley, https://doi.org/10.1002/spe .2787.

3. Y. Li, D. N. Jha, G. S. Aujla, G. Morgan, A. Zomaya, and R. Ranjan, “IoTWC:

Analytic Hierarchy Process Based Internet of Things Workflow Composition Sys-

tem”, In 2020 IEEE International Conference on Cloud Engineering (IC2E), pp.

1-10. IEEE, 2020, https://doi.org/10.1109/IC2E48712.2020.00007.

4. K. Alwasel, D. N. Jha, E. Hernandez, D. Puthal, M. Barika, B. Varghese, et

al., “IoTSim-SDWAN: A simulation framework for interconnecting distributed

datacenters over Software-Defined Wide Area Network (SD-WAN)”, Journal

of Parallel and Distributed Computing, vol. 143, pp. 17-35, 2020, Elsevier,

https://doi.org/10.1016/j.jpdc.2020.04.006.

5. B. Qian, J. Su, Z. Wen, D. N. Jha, Y. Li, Y. Guan, et al., “Orchestrating the

Development Lifecycle of Machine Learning-based IoT Applications: A Taxon-

- v -

omy and Survey”, ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1-47,

2020, ACM, https://doi.org/10.1145/3398020.

6. D. N. Jha, Z. Wen, Y. Li, M. Nee, M. Koutny, and R. Ranjan, “A Cost-Efficient

Multi-cloud Orchestrator for Benchmarking Containerized Web-Applications”,

In International Conference on Web Information Systems Engineering, pp. 407-

423. Springer, 2019, https://doi.org/10.1007/ 978-3-030-34223-4 26.

7. M. Villari, M. Fazio, S. Dustdar, O. Rana, D. N. Jha, and R. Ranjan, “OSMO-

SIS: OSmotic computing platform for MicrOelementS in cloud, edge and Internet

of thingS”, Computer, vol. 52, no. 8, pp. 14-26, 2019, IEEE, https://doi.org/10.1

109/MC.2018.2888767.

8. D. N. Jha, M. Nee, Z. Wen, A. Zomaya and R. Ranjan, “SmartDBO: Smart

Docker Benchmarking Orchestrator for Web-application”, In The World Wide

Web Conference (www2019), pp. 3555-3559. ACM, 2019, https://doi.org/10.114

5/3308558.3314137.

9. D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan, “A

Study on the Evaluation of HPC Microservices in Containerized Environment”,

Concurrency and Computation: Practice and Experience, e5323, 2019, Wiley,

https://doi.org/10.1002/cpe.5323.

10. A. Noor, D. N. Jha, K. Mitra, P. P. Jayaraman, A. Souza, R. Ranjan, and S.

Dustdar, “A framework for monitoring microservice-oriented cloud applications

in heterogeneous virtualization environment,” 2019 IEEE International Confer-

ence on Cloud Computing (CLOUD 2019), pp. 156-163, IEEE, https://doi.org/

10.1109/CLOUD.2019.00035.

11. D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan, “A

Holistic Evaluation of Docker Containers for Interfering Microservices”, In IEEE

International Conference on Services Computing (SCC2018), pp. 33-40, IEEE,

2018, https://doi.org/10.1109/SCC.20 18.00012.

12. G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, and R. Ranjan. “Modelling and

- vi -

simulation challenges in internet of things”, IEEE Cloud Computing, vol. 4, no.

1, pp. 62-69, 2017, IEEE, https://doi.org/10.1109/ MCC.2017.18.

Under Review

1. D. N. Jha, Y. Li, Z. Wen, G. Morgan, P. P. Jayaraman, A. Zomaya, and

R. Ranjan, “GeoBench: A User-Centric Cost-Efficient Geo-Distributed Web-

Applications Deployment via Automatic Benchmarking”, IEEE Transactions on

Computers, IEEE.

2. D. N. Jha, Z. Chen, Sh. Liu, M. Wu, R. Ranjan and X. Li, “Accuracy and

Energy Aware Activity Recognition In IoT Environment”, IEEE Transactions

on Sustaianable Computing, IEEE.

3. K. Alwasel, D. N. Jha, F. Habeeb, O. Rana, T. Baker, S. Dustdar, et al.,

“IoTSim-Osmosis: a Framework for Modeling and Simulating Smart IoT Appli-

cations in Edge-Cloud Continuum”, Journal of Systems Architecture, Elsevier.

- vii -

- viii -

Acknowledgements

This thesis would not have been possible without the guidance and support of many

people over many years. My foremost gratitude extends to my advisor, Prof. Rajiv

Ranjan for believing in my abilities and guiding me with innovative ideas, timely

suggestions, feedbacks and unflinching support throughout my PhD candidature. Raj

has taught me about the various aspects of research: finding good problems, exploring

the solution space, keeping the bigger picture in mind, and the importance of clear

research communication. Furthermore, I wish to thank Prof. Paul Watson who has

been demonstrative and generous in his guidance and support throughout my PhD

study. I am also very grateful to Dr. Xiaoli Li for his guidance and valuable suggestions

during my visit to A* Star, Singapore.

I would also like to thank my examiners, Prof. Joanna Kolodziej and Prof Aad van

Moorsel, who provided encouraging and constructive feedbacks. It is not an easy task,

reviewing a thesis, and I am grateful for their thoughtful and detailed comments.

The work presented in this thesis is a result of many collaborations. I am grateful to

Prof. Albert Zomaya (Sydney University), Prof. Rajkumar Buyya (University of Mel-

bourne) and Prof. Schahram Dustdar (TU, Wien), who provided close collaboration

and mentorship throughout my PhD. Special thanks to Dr. Prem Prakash Jayaraman

(Swinburne University) and Dr. Saurabh Garg (University of Tasmania) for guiding

me at different stages of my research.

I would like to thank all my colleagues and lab-mates: Areeb Alsoshan, Ayman Noor,

Bin Qian, Deepak Puthal, Fawzy Habeeb, Jiahan Zhang, Jie Su, Gagangeet Aujla,

Khaled Alwasel, Michael Nee, Nipun Balan, Osama Alrajeh, Peter Michalak, Top

Phengsuwan, Umit Demirbaga, Xianghua Huang and Yinhao Li. I’m thankful that

our centre brought us together so we can learn from each other. Special mention

to Zhenyu Wen for being a great friend and brilliant collaborator. Your insightful

comments and constructive criticisms at different stages of my research were thought-

provoking and helped me to focus on my ideas. Thank you all for bringing the energy

- ix -

that kept me going forward.

I would like to thank Billy Lau, Min Wu, Shudong Liu, Uzair Javaid and Zhenghua

Chen for all your help and support during my study trip to Singapore.

I wish to thank all the people whose works have been utilized for developing and im-

plementing ideas outlined in the thesis. I am also grateful to the Newcastle-Singapore

scholarship committee for funding my PhD candidature. I would like to thank the

administrative staff and IT support members in the School of Computing for their

support and help during the last four years. Special thanks to Helen Munday for mak-

ing everything run smoothly, always happy to help, and having genuine care for our

wellbeing.

This thesis would never have been possible if it were not for the support of family and

friends, especially my mother, Nilam Ranjan Jha, father, Anil Kumar Jha, sister, Dipti

Kumari and brother in law, Nandan Jha. Above all, I am indebted to the almighty

for making my life meaningful even outside the confines of this PhD candidature.

- x -

Contents

1 Introduction 1

1.1 Project motivation . 3

1.2 Contributions . 7

1.3 Thesis outline . 9

2 Literature review 11

2.1 Virtualization . 12

2.1.1 Hypervisor-based virtualization 13

2.1.2 Container-based virtualization 14

2.1.3 Why container? . 15

2.2 Microservices . 16

2.2.1 Internal structure of microservices 18

2.3 Deployment environment . 19

2.3.1 Cloud computing . 19

2.3.2 Edge computing and Internet of Things 20

2.4 Microservices deployment . 20

2.5 Thesis scope in terms of microservice deployment 22

2.5.1 Evaluation of containers for interfering HPC micro- services . . 23

2.5.2 Orchestration for benchmarking containerized web application
in multi-cloud environment . 24

2.5.3 Deployment of geo-distributed web-application micro- services
via automated benchmarking in a multi-cloud environment . . . 26

2.5.4 Deployment of streaming application microservices in cloud-edge
environments . 27

3 Holistic evaluation of Docker containers for interfering microservices 31

3.1 Introduction . 32

3.2 Evaluation methodology . 35

3.3 Performance evaluation: Experimental design 37

3.3.1 Requirement recognition and service feature identification . . . 37

3.3.2 Metrics and benchmarks listings and selection 38

3.3.3 Experimental factors listings and selection 41

- xi -

3.3.4 Experimental design . 42

3.4 Performance evaluation: Experimental results 42

3.5 Related work . 56

3.6 Discussion . 58

3.7 Conclusion . 59

4 Multi-cloud orchestrator for benchmarking containerized web-application
microservices 61

4.1 Introduction . 62

4.2 System overview . 64

4.2.1 SDBO architecture . 64

4.2.2 SDBO design . 66

4.3 Execution workflow . 69

4.4 Metrics profiling . 71

4.4.1 Basic metrics . 71

4.4.2 Advanced metrics . 72

4.5 Evaluation . 73

4.5.1 Experiment setup . 74

4.5.2 Cost optimization . 75

4.5.3 Basic metrics profiling . 76

4.5.4 Advanced metrics profiling . 79

4.5.5 Flexible execution . 81

4.6 Related work . 82

4.7 Discussion . 84

4.8 Conclusion . 85

5 A user-centric cost-efficient geo-distributed web-applications deploy-
ment via automatic benchmarking 87

5.1 Introduction . 88

5.2 Background and motivation . 91

5.2.1 Geo-distributed web-application 91

5.2.2 Deployment challenges . 93

5.3 System overview . 94

5.3.1 Web-application deployment model 94

5.3.2 Problem formalization . 95

- xii -

5.4 System design . 97

5.5 Adaptive PSO algorithm . 98

5.6 Optimize the deployment . 101

5.6.1 Clustering . 102

5.6.2 Budget allocation . 104

5.6.3 Deployment solution generation 104

5.6.4 Benchmarking in real-world environment 105

5.7 Evaluation . 105

5.7.1 Experiment setup . 106

5.7.2 Algorithm evaluation . 107

5.7.2.1 Clustering . 107

5.7.2.2 Number of solutions vs. budget 109

5.7.2.3 Effectiveness of diversity 112

5.7.3 Scalability test . 113

5.7.4 GWA execution in real cloud environments 114

5.8 Related work . 115

5.9 Discussion . 116

5.10 Conclusion . 117

6 Deployment of streaming application microservices in cloud-edge en-
vironment 119

6.1 Introduction . 120

6.1.1 Contributions . 122

6.2 Formal model . 123

6.2.1 Basic concepts . 123

6.3 Non-functional requirements . 125

6.3.1 Problem definition . 128

6.3.2 Complexity analysis . 128

6.4 System model . 130

6.4.1 User Input . 131

6.4.2 PATHfinder . 132

6.4.2.1 Initial Optimization 132

6.4.2.2 AHP Based Multi-objective Optimization (ABMO) . . 133

6.4.2.3 Device-specific Compilation 136

- xiii -

6.4.3 PATHdeployer . 136

6.4.4 Time complexity . 137

6.5 Experimental evaluation . 139

6.5.1 Experimental setup . 139

6.5.2 Experimental results and analysis 140

6.6 Related work . 144

6.7 Discussion . 146

6.8 Conclusion . 147

7 Conclusion 149

7.1 Thesis summary . 150

7.2 Future research directions . 153

7.2.1 A generic benchmarking orchestrator 153

7.2.2 Modelling the benchmark metrics to handle the infrastructure
uncertainty . 153

7.2.3 Run-time migration of microservices 153

7.2.4 Simulation models for digital twins 154

Bibliography 155

- xiv -

List of Figures

1.1 Microservice-based application deployment 4

1.2 Thesis organization . 9

2.1 Virtualization evolution . 13

2.2 Virtualization types (a) Type-1 hypervisor-based virtualization (b)
Type-2 hypervisor-based virtualization and (c) Container-based
virtualization . 14

2.3 Resource restrictions provided by the cgroups 15

2.4 Monolithic vs. Microservice representation of the example
web-application . 17

2.5 Layered structure of a microservice unit 19

2.6 Deployment requirements taxonomy . 21

2.7 Workplan undertaken by this thesis . 23

3.1 Resource restrictions provided by the cgroups 38

3.2 Steps for Linpack HPC microservice construction 40

3.3 Linpack performance results . 43

3.4 Linpack Interference Ratio (IR) values. Horizontal axis labels
represent various cases. 1 – 6 represents L(+L), L(+Y), L(+S),
L+(B), L(+NS) and L(+NR) for Case 2. Similarly, 7 – 12 and 13 – 18
is used to represent different scenarios for Case 3a and 3b respectively. 45

3.5 Y-Cruncher performance result for Computation Time (CT) and Total
Time (TT). Black bars on the top represents the SD. 46

3.6 Y-Cruncher Interference Ratio (IR) values. Horizontal axis labels
represent various cases. 47

3.7 STREAM performance result (in GB/sec) 48

3.8 STREAM Interference Ratio (IR) values. Horizontal axis labels
represent various cases. 49

3.9 Bonnie++ Interference Ratio (IR) values. Horizontal axis labels
represent various cases. 53

3.10 Netperf Performance result . 54

3.11 Netperf Interference Ratio (IR) result. Horizontal axis labels
represents various cases. 55

4.1 System architecture of SDBO . 65

- xv -

4.2 SDBO execution workflow . 69

4.3 Benchmark experiment definition . 70

4.4 Comparing the optimized result with random selected result 76

4.5 Schematic diagram showing the execution time complexity of the
Optimizer . 77

4.6 Basic container system metrics while specifying the workload to 300
requests per second with ramp up period as 0 seconds. CPU and
memory usage are given in percentage while network and block I/O
throughput are in Megabits per second (Mbps). Black bar on top
represents the standard deviation. 79

4.7 System throughput and response time. Both these metrics are
calculated by stabilizing the server with enough requests. Black bars
in (b) show the standard deviation. 80

4.8 Workload pattern for continuous and optimized execution 82

5.1 The response time is affected by both location between host and user
as well as the capacity of the host. 92

5.2 An example of the bipartite graph G 95

5.3 System architecture of GeoDeploy 98

5.4 Movement of a solution Pi in APSO 100

5.5 The execution workflow of the proposed method 102

5.6 Clustering the given data to find the best cluster size (a) and
clustering result (b). 108

5.7 Number of solutions generated. Black bar on top represents the
standard deviation. 109

5.8 The host diversity comparison between GeoDeploy and the baseline
methods. Each host configuration is represented as a circle in 2D
space of CPU and memory values. The triangle shows the host
configurations selected by the respective methods. 110

5.9 Average total unutilized Budget for different methods with varying
Budget values. Black bar on top represents the standard deviation. . . 111

5.10 Total execution time obtained by varying the number of hosts and
replicas for GWA . 113

5.11 Average response time obtained by executing the methods for text
data only. Timeout represents the requests are not responded. 114

5.12 Average response time obtained by executing the algorithms for image
data. Timeout represents the requests are not responded. 115

6.1 Distributed deployment of IoT application 122

6.2 Non-functional requirements . 125

- xvi -

6.3 Holistic representation of the deployment plan 131

6.4 Normalized non-functional requirement values for selected plans 143

6.5 Final rank in different cases . 144

- xvii -

- xviii -

List of Tables

2.1 A summary of literature review with the major challenges addressed in
this thesis. 28

3.1 STREAM benchmark operations . 39

3.2 Metrics and Benchmarks for selected resource types 40

3.3 Linpack result (GFLOPS) . 44

3.4 Bonnie++ Block Input result (in /sec). 50

3.5 Bonnie++ Block Output result (in /sec). 51

3.6 Bonnie++ Block Rewrite result (in /sec). 52

3.7 Bonnie++ Random Seeks result (in /sec). 52

4.1 Apdex acceptable zones . 72

4.2 Experiment host configuration . 74

4.3 Number of requests to saturate the host 77

4.4 Advanced metrics profile . 80

4.5 Comparison of Optimized; Opt and Continuous; Cont method for
Response Time and Throughput. Values in [] represent standard
deviation. 82

5.1 A summary of symbols used in the chapter 97

5.2 Paired t-test result for comparing the number of solutions obtained.
The paired comparison is performed with respect to the proposed
approach. Higher the value larger the difference (negative value for
Greedy shows the better result as compared to the proposed approach. 112

5.3 Paired t-test result for comparing the un-utilized budget. The paired
comparison is performed with respect to the proposed approach.
Higher the negative value larger the difference. 112

6.1 A summary of symbols and abbreviations used in the chapter 129

6.2 Satty scale for assigning the priority value 133

6.3 Random Index (RI) value . 134

6.4 Power Consumption Coefficients for the Pebble Steel Watch. 141

6.5 Power Consumption Coefficients for the LG G4 mobile phone. 141

- xix -

- xx -

1
Introduction

Contents
1.1 Project motivation . 3

1.2 Contributions . 7

1.3 Thesis outline . 9

- 1 -

Chapter 1: Introduction

This chapter introduces the context of the research themes explored in this thesis. It

starts with a high-level overview of the microservice architecture for application design

and analyzes the deployment environment for microservices. Next, it discusses the

fundamental challenges for optimized deployment of microservices in the cloud-edge

environment which is the motivation behind this research. The chapter thereafter

outlines the contribution of this thesis and finally concludes with the thesis structure.

Introduction

With the advent of technology, different applications are developed to transform as-

pects of our everyday lives. These applications can vary from a simple calculator to a

complex smart city. Depending on the data generation, computing requirements and

user interaction, these applications can be categorized into different types such as High-

Performance Computing (HPC), Web, Streaming, Machine Learning or a combination

of these.

The emergence of microservice architecture has revolutionized the application design

and development. By adopting the microservice architecture, developers can engineer

applications that are composed of multiple self-contained components communicating

with each other using lightweight APIs [80]. Each application microservice can be

deployed, updated and redeployed independently without compromising the integrity

of the application’s ecosystem [85, 105]. Updating only one or few microservices instead

of the entire application stack increases the application scalability and availability.

Currently, cloud computing is the most commonly used deployment environment for

a variety of application microservices. It provides seemingly unlimited resource access

on a pay-per-use basis which enables applications to customize their deployment plan

in a highly elastic manner [106]. These cloud providers are distributed in different

geographical regions and can be accessed ubiquitously on demand. Numerous cloud

providers (e.g. Amazon, Google, Microsoft, IBM) are available in the marketplace to

offer a variety of configurations.

The emergence of edge computing, which provides cloud-like services but at the edge

of the network, facilitates the processing of microservices without sending the Internet

- 2 -

Chapter 1: Introduction

of Things (IoT) data to the cloud [126, 131]. This is necessary for certain applications

where the delay incurred by the centralized cloud-based deployment is unacceptable.

It is also effective for the environment where the network is unstable with a higher

chance of failure or data loss. Smart edge devices such as Smartphone, Raspberry Pi,

UDOO board support local processing and storage of data on a widespread but smaller

scale. Unlike the cloud where the location of a datacenter is fixed, edge devices can be

mobile and change location frequently. Combining edge and cloud datacenters creates

a complex IoT infrastructure.

Cloud and edge resources are virtualized to deploy the application microservices. Al-

though hypervisor- and container-based virtualization are available [62], microservices

can be efficiently deployed on containers. Container as a virtual runtime environment

executing on the top of the host operating system supports the design principle of mi-

croservices by wrapping up all their requirements and dependencies into a lightweight

single unit with the desired level of isolation. Containers uses Linux namespace and

cgroups features to provide isolation and abstraction [136]. For the deployment of these

containerized microservices, three main Deployment Infrastructures (DI) are provided

by cloud and edge computing environments: Bare Metal (BM), Virtual Machine (VM)

and Container Service (CS) [61]. Each type of DI has the variety of hosts either

predefined by the providers or user-customized. For example, Amazon EC2 provides

different types of pre-customized hosts (VMs) for their customers along with the self-

customized hosts. In the rest of the thesis, we use the host to represent an instance of

the DI. The containerized microservices can be deployed and executed on any type of

host.

1.1 Project motivation

The fundamental objective behind the emergence of microservice is to ease the de-

sign and development of various applications, however, deployment of containerized

microservices brings new challenges. Depending on the application type (e.g. web,

HPC, streaming) and the provided functionality (e.g. filtering, storage, encryption),

microservices can be heterogeneous with specific requirements in terms of hardware

- 3 -

Chapter 1: Introduction

Cloud Edge

…
Web-application

E-Commerce

ML application

Face Recognition

HPC application

DNA Sequencing

Streaming application

Smart Healthcare

Applications
(Software)

Deployment
environment

(Infrastructure)

Microservices
graph (Platform)

Figure 1.1: Microservice-based application deployment

and software specification. In addition to this, there is a strict data and control flow

dependency between different microservices. As shown in Figure 1.1, an application

generates a graph of microservices with strict data and control flow dependency. It is

important to maintain the dependency and satisfy the requirements and constraints

while deploying in the cloud or edge environment.

Due to the rising popularity of cloud and edge computing, the number of cloud

providers along with their host configurations and type of edge devices continues to

grow at a rapid pace. For the deployment of microservices, it is necessary to find a suit-

able host configuration that satisfies the requirements and constraints in an optimal

manner.

Finding a suitable deployment solution for microservices has many challenges [38, 61],

a few of the main challenges considered in this thesis are given below:

Deployment environment heterogeneity. Cloud and edge environments are het-

erogeneous with a variety of host configurations available. The hardware and software

support provided by each host is also different. In addition to this, the internal mod-

eling and provisioning mechanism for each cloud provider is unique e.g. AWS resource

can be managed using Amazon CloudFormation which cannot be used for any other

environment.

- 4 -

Chapter 1: Introduction

Communication protocols. To offer a unified deployment of the microservices,

IoT, edge and cloud infrastructure components need to communicate with each other.

Since the capabilities of different infrastructure components are not the same, a single

communication mechanism is not an option. Protocols for Application layer (e.g.

Constrained Application Protocol (CoAP), Message Queuing Telemetry Transport

(MQTT)), Infrastructure layer (e.g. Datagram Transport Layer Security (DTLS),

IPv6 over Low power Wireless Personal Area Networks (6LoWPAN), Bluetooth Low

Energy (BLE), IEEE 802.11), Discovery process (e.g. Universal Plug and Play (uPnP),

Apache River) and Semantic protocols (e.g. RDF/XML, SensorML) are available

which must be selected depending on the requirements and constraints defined for the

application [32]. In addition to this, adoption of NFV (Network Function Virtualiza-

tion) and SDN (Software-Defined network) technology [41] requires some alternative

protocols that support flexibility and usability in network management and communi-

cation.

Network imbalance. The underlying cloud and edge network is unpredictable as

it relies not only on the local area network (LAN) but also on wide area network

(WAN) using the Internet. Since the application microservice can be distributed across

different cloud and edge datacenters, communication through the Internet may lead

to jitter, data loss or unordered data delivery which leads to performance loss.

Interference. The performance of containerized microservices not only depends on

its own characteristics but is also affected by other microservices running on the same

host/server leading to interference. Executing an application microservices in cloud

where the resources are virtualized, interference is inevitable. The performance of

containerized microservice might be affected by other microservices running inside

the same container causing intra-container interference. However, the performance of

microservices running in separate containers may also get affected because of inter-

container interference as the containers share the same host machine. The effect

of interference multiplies if all the collocated microservices have similar resource re-

quirements. It is necessary to visualize the performance variation before making the

deployment decision.

Monetary cost. Deployment in the cloud and edge environment incurs a cost and the

- 5 -

Chapter 1: Introduction

user always tries to minimize the cost without losing the performance. A cheaper host

may not always satisfy the requirements which lead to testing numerous host configu-

rations before making a deployment decision. Analyzing all the possible options before

making the deployment decision is not always feasible in polynomial time. Neverthe-

less, host performance that fluctuates due to unforeseen reasons requires long-duration

analysis which again increases the cost.

Energy. Executing the microservices in the cloud or edge host consumes energy. En-

ergy consumption depends on various factors such as functionality support, load state

and network connectivity in a non-linear way and is complex to manage, especially,

for edge and IoT devices which are powered by a battery with limited capacity and

need to be recharged after a particular time period. These devices need to sustain the

battery for longer durations, especially for the case where it is not easy to recharge

e.g. sensor in the river or at a disaster site (earthquake, landslip, etc.). Saving energy

impacts on cost-saving which is vital for every application, however energy saving may

lead to performance degradation or delay.

This PhD project aims to find an optimal deployment solution while considering the

aforementioned challenges. In particular, this PhD thesis is guided by the following

research questions:

1. How does the interference of microservices executing in the cloud-edge environ-

ment affect the overall application performance? As different microservices may

have similar resource requirements which may lead to interference and resource

contention. It is important to recognize the performance variation of microser-

vices executing together so that the interference can be minimized and resources

can be utilized in an optimal manner.

2. How can we identify a suitable deployment environment for application microser-

vices belonging to different applications in a cloud-edge environment? Each ap-

plication microservice has numerous Quality of Service (QoS) objectives which

can be conflicting. The obtained solution need to find a trade-off between various

objectives depending on the application requirements and available cloud-edge

deployment environment.

- 6 -

Chapter 1: Introduction

3. How can we deploy the application microservices for the solution obtained by 2 in

the selected cloud-edge environment? There is a complex data and control flow

dependency between different microservices. In addition to this, cloud and edge

environment have heterogeneous infrastructure. Deployment of microservices

should be orchestrated in such a way that maintains the dependency between

microservices irrespective of the underlying infrastructure heterogeneity.

1.2 Contributions

Since the deployment of microservices is dependent on application type and the un-

derlying infrastructure, this thesis focus only on three three types of application: (a)

HPC application, (b) web-application and (c) streaming application with HPC and

web application executing only in cloud environment while streaming application is

executing in cloud-edge environment. The main contributions of this thesis are as

given below:

• A survey of research issues and research opportunities in microservice deploy-

ment: An overview of existing work on microservice performance evaluation in

a containerized environment is discussed. In addition to this, a detailed discus-

sion about the available deployment approach for microservices in cloud-edge

environment is presented.

• Performance evaluation of containerized microservices in the interfering environ-

ment: A detailed evaluation of application microservice in the cloud environment

is performed. The work is particularly concerned with how intra-container and

inter-container interference influences the performance of microservices. More-

over, it also investigates the performance variations of microservices when control

groups (cgroups) are used for resource limitation. For ease of presentation and re-

producibility, it uses Cloud Evaluation Experiment Methodology (CEEM) [101]

to conduct the comprehensive analysis. The analysis is performed using HPC

microservices.

• An orchestrator for benchmarking web-microservices in multi-cloud environments:

- 7 -

Chapter 1: Introduction

To find a suitable deployment option for containerized microservices, we consid-

ered the approach of benchmarking the host configuration. To achieve this, a

novel orchestrator is developed and implemented for defining and executing the

benchmark application microservices in a multi-cloud environment. In particu-

lar, the orchestrator allows users to choose the benchmark application and host

configurations across different cloud providers. It also permits the user to choose

a maximum budget and execution time for benchmarking. The orchestrator

computes the performance metrics of different host configurations which can be

used to choose the optimal one. The orchestrator is evaluated for an e-commerce

web-application benchmark executing on AWS and Azure cloud environments.

• A deployment framework for complex geo-distributed web-application microser-

vices using benchmarking in multi-cloud environment: To find a suitable deploy-

ment option for the complex and distributed web-application microservices, a

model is developed and implemented. Based on the user’s requirements, the

model first generates a set of candidate deployment solutions using K-means

clustering [82] and Adaptive Particle Swarm Optimization (APSO). Next, these

solutions are executed over the real cloud environments and finally, the resulting

metrics are evaluated to find a suitable deployment solution. The model is val-

idated using a customized geo-distributed web-application executing on AWS,

Azure and Google cloud environments.

• A multi-objective deployment framework for a complex, distributed streaming ap-

plication microservices in cloud-edge environments: Combining the edge and IoT

in the cloud environment increases the complexity of deployment. To solve this, a

multi-objective optimization model is developed and implemented for distributed

streaming application microservices. First, a formal model is developed and the

deployment problem is proved to be NP-hard. Next, using a well-known heuris-

tic method, Analytic Hierarchical Process (AHP) [124], an optimal deployment

solution is found. Finally, the application is deployed on the selected deployment

solution using the Path2iot model. The model is validated using a healthcare-

based streaming application.

- 8 -

Chapter 1: Introduction

Chapter 1
Introduction

Chapter 2
Literature Survey

Chapter 3
Holistic Evaluation of
Docker Containers for

Interfering Microservices

Chapter 4
Multi-cloud Orchestrator
for Benchmarking Simple

Web-application
Microservices

Chapter 7
Conclusion and
Future Works

Chapter 5
Deployment of Geo-

distributed Web-application
Microservices in Multi-cloud
Environment via Automated

Benchmarking

Deployment of Web-
application microservices

Chapter 6
Deployment of

Streaming Application
Microservices in Cloud-

Edge environment

Figure 1.2: Thesis organization

1.3 Thesis outline

The remainder of this thesis is structured as shown in Figure 1.2. The arrow here

represents the flow of chapters i.e. order in which one should read as the former chap-

ters have prerequisite information for later chapters. Chapter 2 provides the back-

ground of virtualization, microservices and deployment infrastructure and discusses

related work on addressing the deployment challenges in cloud and edge environments.

Chapter 3 describes a detailed performance evaluation of microservices in the inter-

fering cloud environment. Chapter 4 presents an orchestrator for benchmarking a

simple application microservice while Chapter 5 discuss the orchestrator for com-

plex geo-distributed applications. Both these works are validated by a benchmark

web-application executing in a multi-cloud environment. Chapter 6 develops and

- 9 -

Chapter 1: Introduction

presents a deployment framework for distributed application microservices with multi-

ple conflicting objectives in the cloud-edge environment. The validation is performed

using a real healthcare based streaming application. Finally, Chapter 7 concludes

the thesis by summarizing the work done in this thesis and presents some directions

for future work.

- 10 -

2
Literature review

Contents
2.1 Virtualization . 12

2.1.1 Hypervisor-based virtualization 13

2.1.2 Container-based virtualization 14

2.1.3 Why container? . 15

2.2 Microservices . 16

2.2.1 Internal structure of microservices 18

2.3 Deployment environment . 19

2.3.1 Cloud computing . 19

2.3.2 Edge computing and Internet of Things 20

2.4 Microservices deployment . 20

2.5 Thesis scope in terms of microservice deployment 22

2.5.1 Evaluation of containers for interfering HPC micro- services . . 23

2.5.2 Orchestration for benchmarking containerized web application
in multi-cloud environment . 24

2.5.3 Deployment of geo-distributed web-application micro- services
via automated benchmarking in a multi-cloud environment . . 26

2.5.4 Deployment of streaming application microservices in cloud-edge
environments . 27

- 11 -

Chapter 2: Literature review

Summary

This chapter starts by describing some background information concerning the overall

topic, including a brief primer on virtualization techniques, microservices and the

underlying cloud and edge computing environment. Section 2.4 discusses the research

in the area of microservice deployment which is the main focus of this thesis. At the

same time, current research gaps are highlighted and it is briefly illustrated how this

thesis fills these gaps.

2.1 Virtualization

Virtualization is considered to be the core component of cloud and edge computing

that allows multiple tenants to run their heterogeneous applications in an isolated

environment [154]. It provides numerous advantages including heterogeneous workload

consolidation, easy allocation, reduced failure probability and increased availability

that makes virtualization user amenable whilst increasing hardware utilization.

Virtualization is not a new concept. The term “virtualization” was first coined by IBM

in 1960 to represent a time-sharing system which allowed multiple users to concurrently

use the system emulating the hardware. The first hypervisor which allowed multiple

operating systems (OS) to run simultaneously was IBM’s CP − 40 developed in 1964.

In 1965, CP − 40 was replaced by CP − 67 with new memory sharing features and is

considered to be first fully virtualized virtual machine (VM). Later in the 1970s para-

virtualization was developed in Denali virtual machine manager which can update the

guest OS with hypervisor code to make specific system calls. In 1979 a new concept

Chroot was introduced for creating and hosting a separate virtualized copy of the

software system which was considered to be the start of OS virtualization. The idea

of hypervisors was abandoned due to inexpensive x86 servers during the 1980s. In

the late 1990s, hardware performance increased but server under-utilization became

apparent as multiple applications could not be executed together. To overcome this,

VMWare released the first virtualization software for x86 systems in 1999 and is

considered as the rebirth of virtualization. Later on other hypervisors such as Xen

(2003) and KVM (2006) were developed. In 2006, application virtualization evolved

- 12 -

Chapter 2: Literature review

Timesharing

Full
Virtualization

Para
Virtualization

Operating
System
Virtualization

Application
Virtualization

Time

V
ir

tu
al

iz
at

io
n

 d
ev

el
o

p
m

en
t

1960

1965

1970

1979

2006 KVM (2006)

LXC (2008)

Docker (2013)

Figure 2.1: Virtualization evolution

which separates the application from the host OS thus allowing them to execute in

environments that do not suit the native application. Development of LXC 2008 and

Docker 2013 providing isolated user-space (containers) with the help of namespace and

cgroups changes the means of virtualization specially for application virtualization by

providing a lightweight and isolated option. Figure 2.1 depicts the basic evolution

timeline for virtualization.

The details of two main types of virtualization, namely, hypervisor-based and OS-

based/container-based virtualization, are given below:

2.1.1 Hypervisor-based virtualization

In hypervisor-based virtualization, each virtual machine (VM) has its own OS irrespec-

tive of the host machine running on a hypervisor. Virtual machines are considered to

be the default method of virtualization. They provide all the advantages of virtual-

ization but at the cost of high overhead as compared to the bare-metal performance.

Xen [37], VMWare [86], KVM [66], etc. are typical examples of hypervisor-based

virtualization.

Hypervisor-based virtualization can be either Full, where the guest OS is unaware

about the virtualization or Para, where the guest OS is modified so that it can make

- 13 -

Chapter 2: Literature review

HARDWARE

HYPERVISOR

VM1

Guest OS

Libs/Bins

Applications

VM2

Guest OS

Libs/Bins

Applications

HARDWARE

HOST OS

CONTAINER ENGINE

Container1

Libs/Bins

Applications

Container2

Libs/Bins

Applications

(a) (c)

HARDWARE

HOST OS

HYPERVISOR

VM1
Guest OS

Libs/Bins

Applications

VM2
Guest OS

Libs/Bins

Applications

(b)

Figure 2.2: Virtualization types (a) Type-1 hypervisor-based virtualization (b) Type-2
hypervisor-based virtualization and (c) Container-based virtualization

specific hyper-calls to the hosting system. Regardless of the type, hypervisor-based

virtualization can be categorized into two broad classes on the basis of architecture

namely Type 1 and Type 2 hypervisor. There is a basic difference between Type

1 and Type 2 hypervisors, as a Type 1 hypervisor communicates directly with the

hardware of the host machine and controls the virtual machine hardware resources

itself whereas a Type 2 hypervisor runs on the top of the host OS and lets the OS

handle the virtual hardware resources. The architectural difference between Type 1

and Type 2 hypervisors is shown in Figure 2.2.

2.1.2 Container-based virtualization

Container-based virtualization utilizes the services provided by the host OS using a

container engine. Different containers can share the same physical resources but from

a hosted application’s point of view, each container has its autonomous OS running

independently. Docker[11], LXC[19], etc. are typical examples of container-based

virtualization.

The isolation and abstraction in a container are provided by the Linux feature, names-

pace and cgroups [136]. The namespace feature restricts the visibility of a container

so that it can only access the resources allocated to it. PID, MNT, NET, IPC are

some common namespace features used by containers to provide the abstraction for

process ids, file system mount points, network features and inter-process communi-

- 14 -

Chapter 2: Literature review

Figure 2.3: Resource restrictions provided by the cgroups

cations respectively in an inter-container environment [40]. Each new container uses

the clone() system call to create an abstract system of an existing namespace in the

OS kernel. Linux cgroups are additional kernel mechanisms that control the resource

allocation by restricting the system resource consumption in terms of CPU, memory,

network and disk I/O for each process group. cgroups also determine the priority of

resource usage by a process group. Figure 2.3 shows the resource limitations provided

by cgroups.

2.1.3 Why container?

The remainder of this thesis uses container-based development and deployment. The

reasons for choosing containers are given below:

a. Lightweight. Containers are considered to be a lightweight alternative to hypervi-

sor based virtualization, which creates multiple isolated user-space working instances.

Unlike VMs, a container engine parses down the equipment necessary to run the soft-

ware inside it, rather than packing multiple functions into the same virtual machine,

which makes the rapid development and testing of microservices easier. While hyper-

visors provide an abstraction for the full guest OS (one per VM), the container based

virtualization works at the OS level. Figure 2.2 shows the main difference between

container and hypervisor-based virtualization.

b. DevOps support. Recently, DevOps practices are gaining popularity as they

- 15 -

Chapter 2: Literature review

support the continuous delivery of software application and allow easy collaboration

among different phases of application development [59]. Although DevOps is not

dependent on containers, use of containers provides several benefits to enable DevOps

workflow. As the container environment is persistent irrespective of the underlying OS,

it is easy to provide a consistent environment for development, testing and production

phases. In DevOps, application or application module requires continuous updates

which is easy to implement with the help of containers.

c. Microservice compatibility. Recent trends move towards the decoupling of ap-

plication systems into smaller modules (microservices) so that each application module

can be developed independently supporting heterogeneous technology. Since contain-

ers provide a lightweight environment which can isolate microservices with minimal

dependency, it is suitable for the fast development and deployment of microservices

[61, 147].

d. Limited research work. Although container-based virtualization was proposed

long ago, containers gained popularity only after the development of Docker in 2013.

With the numerous advantages provided by containers, it also brings some new chal-

lenges such as adapting applications to support containers, increasing complexity,

maintaining isolation, handling host resource utilization and guaranteeing security.

Compared with the VM-based application development and deployment, container-

based development is still emerging. For the progression of containers, new research

is required which addresses these challenges with the adoption of containers.

2.2 Microservices

Traditional representation of an application follows monolithic representation with

each application being represented as a single autonomous unit. Consider an example

of a standard web-application. For designing such applications, we need a Web server

for providing access to users, an App server (Application server) for handling all the

business logic and a Database server for providing the access and retrieving data from a

database. Now, in order to run the entire application, we will create either a WAR or an

EAR package and deploy it on an application server (like Tomcat, JBoss or WebLogic).

- 16 -

Chapter 2: Literature review

Database Server

Tomcat

Web Server

App Server

Database Server

(a) Monolithic representation

Web Server

App Server

Database Server

(b) Microservice representation

Figure 2.4: Monolithic vs. Microservice representation of the example web-application

Now, because we have packaged everything as an EAR/WAR, it becomes monolithic,

which means that, even though we have separate and distinguishable components,

everything is wrapped under one roof. Figure 2.4a shows the example monolithic

application.

The problem with such monolithic architecture is that even a small modification of

the application requires the deployment of a new running version of the codebase.

Failure of one component leads to the breakdown of the entire application which is

problematic. In the DevOps environment, where multiple components can follow dif-

ferent technology, it cannot be handled using monolithic architecture. The adoption

of microservice architecture is transforming the way to design future applications by

providing the flexibility to change and redeploy the modules without worrying about

the rest of the components. Figure 2.4b shows how the web-application is decomposed

into multiple independent microservice components. The arrow in Figure 2.4b shows

REST-based communication.

Microservices as a new architectural pattern attract attention from both industry and

academia, and a report shows that 91% of industries either use or have plans to use

microservices [104]. According to NIST, a microservice is defined as “a basic element

- 17 -

Chapter 2: Literature review

that results from the architectural decomposition of an application’s components into

loosely coupled patterns consisting of self-contained services that communicate with

each other using a standard communications protocol and a set of well-defined APIs,

independent of any vendor, product or technology” [83].

Modern applications either can be entirely composed of microservices or use microser-

vices as auxiliary support for a monolithic application. Since the microservice archi-

tecture is lightweight and can easily be shipped and updated, it is ideal for engineering

applications where we cannot fully anticipate functionalities in advance.

2.2.1 Internal structure of microservices

Microservices are formed as a result of decomposing an application over the functional

boundaries. Generally, they are designed according to Domain-Driven Design (DDD)

principles and each unit exposes their functionalities in the form of interfaces. Re-

gardless of the application type, each microservice unit is considered to have a layered

structure as shown in Figure 2.5 [80, 94]. There are four main components as described

below:

1. Resources. This layer is involved in translating service requests from a user into

the domain objects. It performs the validation of each request before transferring

them to the domain layer and also sends the output back to the user in the desired

protocol-specific format.

2. Domain model layer. This layer has three components and is mainly involved in

performing service logic. The services perform co-ordination across multiple domains

where each domain is involved in performing business logic implementation. A domain

contains all the entities and objects to process the required implementation. The

repositories stores the collection of domain entities.

3. Data mappers. This layer is involved in providing persistence access to the

objects between domains. This is usually achieved with an object-relation mapping

which can be directly stored in an external datastore.

4. Gateways. Gateway is involved in communicating with other collaborator services.

- 18 -

Chapter 2: Literature review

Resources

Data Mappers

Domain Model Layer

Domain

Services

Repositories G
at

ew
ay

s

Ex
te

rn
al

 S
er

vi
ce

External Datastore

Figure 2.5: Layered structure of a microservice unit

It usually maps the messages (requests/responses) coming to or from the domain

objects.

2.3 Deployment environment

2.3.1 Cloud computing

Cloud computing is the most popular deployment environment for a variety of appli-

cations/microservices. According to NIST, “Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable com-

puting resources that can be rapidly provisioned and released with minimal management

effort or service provider interaction” [106]. It provides computing as a utility which

can be provisioned on a pay-per-use basis with the users’ applications demand ubiqui-

tously. The computing requirements are provided by public cloud (e.g. Amazon AWS

[1], Microsoft Azure [20], Google Cloud [14]), private cloud (e.g. Newcastle University

datacentre) or a combination of these cloud platforms. Availability of the cloud ser-

vices across the globe has been possible because of the proliferation of the Internet,

- 19 -

Chapter 2: Literature review

though private cloud also provides services through Intranet.

To handle the increasing diversity and scalability of current applications, cloud envi-

ronments offer resources with different characteristics and abstraction. The resources

are usually provided in terms of infrastructure, platform and software as-a-service. The

infrastructure resources are virtualized to provide different hardware and software con-

figurations. Public cloud providers offer multiple choice with different dimensions such

as Amazon AWS gives more than 275 pre-defined host configurations, over 4 different

OSs distributed across more than 10 different geographically distributed datacenters.

Applications are deployed on the cloud environment at a minimal cost.

2.3.2 Edge computing and Internet of Things

With the gaining popularity of Internet of Things (IoT) applications that create huge

data and require real-time processing, a traditional cloud environment may not always

be a suitable environment. For data processing in the cloud, all the data need to be sent

to cloud which delays the processing. Also, it consumes a lot of network bandwidth.

This may not be optimal for certain applications where the requirement is (a) close

coupling between the data generators and actions taken based on the analysis of the

data [155], (b) data transfer bandwidth is limited [132] and (c) data-generating devices

are battery-operated [110]. To addresses these challenges, an alternative approach is

to execute some parts of the application close to the data generating device.

This approach has been made possible by the introduction of what has become known

as edge computing. Development of smarter IoT and edge devices, with some storage

and processing, opens up a tremendous opportunity for local analytics. Smartphones

and field gateways can perform local analytic operations on the data, as well as acting

as a network bridge between IoT devices and the cloud [42, 139].

2.4 Microservices deployment

As discussed in Section 1.1, deployment of microservice is challenging. Depending

on the type of application and the supported functionality, microservices can have

different requirements. The requirements can be categorized in to two types, functional

- 20 -

Chapter 2: Literature review

Deployment
Requirements

Hardware
Specifications

Software
Specifications

Non-functional
Requirements

Functional
Requirements

System-specific

User-specific

Figure 2.6: Deployment requirements taxonomy

and non-functional as shown in Figure 2.6. The details of each requirement is discussed

as follows:

Functional requirements. These define the specific behaviours or functions required

by that specific application. The infrastructure must satisfy these requirements for

deploying the application. It can be partitioned into two categories as given below.

1. Hardware Specification – generally consists of CPU, memory, storage and

network requirements. These requirements can be either known apriori or can be

predicted/detected at the run time. Since the heterogeneous cloud infrastructure

is not stable and the requirements may vary at run time, infrastructure with

extra resources is allocated. Different elasticity and scalablility mechanisms are

imposed to increase the utilization and reduce the resource wastage.

2. Software Specification – indicates the OSs, programming languages and soft-

ware tools required for the application. Because of the heterogeneity of infras-

tructure, an application microservice can not be deployed everywhere. It is

necessary to analyze the infrastructure before deployment.

Non-functional requirements. Non-functional requirement, also known as Quality

of Service (QoS) requirements, outlines the entire qualities and characteristics of the

- 21 -

Chapter 2: Literature review

resulting system. It specifies criteria that can be used to judge the operation of a

system, rather than specific behaviours [64]. To provide a holistic view of QoS re-

quirements needed to select a host configuration, Service Measurement Index (SMI)

attributes are designed based on International Organization for Standardization (ISO)

standards [133]. It is partitioned in two categories as given below.

1. System-specific requirements that are affected by the performance of the de-

ployment system. Throughput, response time, reliability, scalability, security,

etc. are some common system-specific metrics.

2. User-specific requirements that specify the user dependent criteria such as

budget, reputation, client interface and user experience.

2.5 Thesis scope in terms of microservice deploy-

ment

Containerized microservices are getting popular in industry however, there is very little

research available in the area of deployment optimization in cloud and edge environ-

ments. Although there are numerous problems to be solved for the deployment of

containerized microservices, this thesis is bounded by the workplan given in Figure

2.7. We consider the microservices belonging to three application types namely HPC

application, web-application and streaming application. Since the HPC and web appli-

cations are mainly cloud-based, therefore, we consider the cloud environment for their

deployment. However, streaming applications are now deployed in a hybrid cloud-edge

environment, therefore we also considered a similar environment.

To cover multiple aspects of the deployment, we started with the performance char-

acterization of microservices. We utilized HPC application execution in cloud envi-

ronments for this purpose. We then address the challenges for the deployment of

web-application microservices. Since benchmarking the host configuration beforehand

leads to finding a suitable deployment solution, we first proposed and implemented

a benchmarking orchestrator for a simple web-application in the multi-cloud environ-

ment. Later, we proposed a deployment framework utilizing a run-time benchmark

- 22 -

Chapter 2: Literature review

Microservices

Performance
characterization

Edge

Cloud

HPC
application

Web-
application

Streaming
application

Benchmark
orchestration

Deployment

Figure 2.7: Workplan undertaken by this thesis

for a complex geo-distributed web-application. Finally, we address the deployment of

streaming applications with multiple, conflicting objectives in a hybrid cloud-edge en-

vironment. The section below briefly outlines each problem with the current research

gaps.

2.5.1 Evaluation of containers for interfering HPC micro-
services

Numerous efforts [18, 36, 62, 112, 153] show that containerizing the cloud infrastructure

leads to highly efficient and agile solutions. It is evident from the previous work that

containers can reduce the execution overhead while increasing the overall performance.

These studies compare the performance of containers with respect to VMs for different

benchmarks and show that the performance of the container is better than or almost

equal to the performance of the VM.

A few of the works also specify running HPC applications in a Docker environment.

Jacobsen et al. [75] advocates the use of containers for HPC environments. The work

in [68] shows how to orchestrate multiple containers on a physical node. The study

confirms that a job can be transparently executed inside a Docker container without

having any knowledge about the underlying host configuration.

- 23 -

Chapter 2: Literature review

Most of the above studies do not consider the effect of interference in containerized en-

vironments. Ruiz et al. [123] evaluated the performance of LXC containers in different

configurations e.g. isolated, inter-container and multi-node inter-container using NAS

parallel benchmark. The results conclude that inter-container communication is faster

than physical machine communication but there is a degradation of CPU performance

for memory-intensive operations. The result also shows that for a multi-node inter-

container communication, the performance of network-intensive applications degrades.

Sharma et al. [130] also compares the performance of collocated applications on a com-

mon host but only one application is running in a container/VM. They show the effects

of interference caused by noisy neighbour containers running competing, orthogonal

or adversarial applications. All the experiments are done on the LXC container.

Ye et al. [156] also considers the inter-container interference for big data application

(Spark). Similar work is done by Kejiang et al. [159] that evaluates the performance

of big data applications by changing the system configurations and also considering

the interference between containers. Using different Spark applications (K-Means,

Page rank, etc.) and changing the Docker system configurations using cgroups, the

performance is evaluated.

None of the existing works considers the performance evaluation of heterogeneous mi-

croservices executing inside a container and compares the interference impact with the

microservices running in separate containers. In this thesis, we have demonstrated

the performance evaluation of HPC micro-benchmarks intended towards specific re-

source type (CPU, memory, disk and network) in the form of microservices running

inside the Docker container. The obtained result presents the performance variation

of containers while running single or multiple co-allocated (competing or independent)

microservices. More details are presented in Chapter 3.

2.5.2 Orchestration for benchmarking containerized web ap-
plication in multi-cloud environment

Nowadays, web-applications are becoming complex and may have multiple tiers and

each tier may be developed using a wide range of technology stacks such as Java,

.NET, PHP, Neo4j. Evaluating the real web-application in the cloud environment

- 24 -

Chapter 2: Literature review

gives the best performance behaviour, however, it is very hard if not impossible to test

it on all the available cloud host configurations. This is due to the complexity of the

web-application which is not easy to set-up and control.

Benchmark applications which are simple but mimic the exact behaviour of a web-

application are developed. The emulated benchmark has mainly three features server-

side – to emulate the domains, associated tiers and interactivity support; workload

generation – to capture the user interaction behavior; and workload injection – to

maintain a continuous stream of load [55]. Regardless of the complexity to capture the

idiosyncrasies of every domain, it is necessary to consider as many domains as possible

to make the benchmark generic. Numerous benchmarks are proposed in the literature.

TPC-W [27] and RUBiS [23] (for e-commerce), Wikibooks [28] (for Wikipedia) and

SPECWeb2009 [25] (for banking and e-commerce) are some common web-application

benchmarks. However, most of these benchmarks are old and may not be suitable for

web 2.0 due to the lack of interactive content and support for mobile users. Few of

the benchmarks are modified (e.g. TPC-W [116]) while many new benchmarks are

proposed to tackle the complexity of web 2.0.

CloudStone [135] and WPress [43] are multi-platform benchmarsk for web 2.0 which

are composed of a load injection framework and a test application. BenchLab [49] is

another realistic cloud benchmark that uses Wikibooks [28] and Cloudstone [135] as

the backend server and a browser-based load generator to replay the workload trace.

However, most of the above research in benchmarking is focused on developing a better

benchmark application in terms of the reality of emulation, efficiency and scalability.

Also, the benchmarks configuration, host configuration and set up, benchmark exe-

cution and result collection are performed manually. It is not convenient to perform

all these operations ourselves in a multi-cloud environment as each cloud provider has

specific APIs/SDKs for interaction. Also, benchmarking across a large number of hosts

increases the complexity.

To compare the performance of web-applications on various cloud environments, Cloud-

Guide [103] is proposed which compares the performance of the cloud environment

using a legacy web-application. However, the profiling of the cloud host is generic

without considering the application complexity and dependency. CloudBench [134]

- 25 -

Chapter 2: Literature review

and Smart CloudBench [50] offers a framework that automates the benchmarking and

evaluation in a multi-cloud environment. Another model, Okta [57], provides a generic

framework for the execution of complex multi-tier benchmarks on the real cloud en-

vironment. It is dependent on Cloud WorkBench [128] for the basic benchmarking,

Apache Jmeter [17] for load generation and Chef [7] for provisioning and automation.

These frameworks are specific for the virtual machine environment and may not be

applicable for the containerized microservices. In addition to this, defining the bench-

marks using these frameworks is not easy and requires specific knowledge. Performing

benchmark is very expensive but none of the available work considers the cost of bench-

marking. Also, testing the host for longer duration gives more accurate evaluation but

imposes high cost and is not always suggested. Since the number of cloud hosts is

very large and the benchmark application needed to execute for a longer duration,

it is not possible to benchmark all the available hosts. In Chapter 4 of this thesis,

we propose an orchestrator for automating the benchmarking of web-application mi-

croservices that allows a user to choose a set of cloud hosts from the available host

list. It then finds a subset of hosts which maximizes the diversity and execution time

within the defined budget. The orchestrator is based on Infrastructure as a code that

allows users to reuse the available code.

2.5.3 Deployment of geo-distributed web-application micro-
services via automated benchmarking in a multi-cloud
environment

Current web-applications deliver personalized services to their users distributed across

the globe. To handle the varying user requests, current WA require a sophisticated

architecture that supports distributed databases, geographical replication of contents,

temporal and spatial caching mechanisms along with fast prefetching. Deployment

of applications in a geo-distributed manner has been well studied in the literature

[74, 96, 107, 150–152], however, most of the available work is on the scientific workflows.

Compared to web-application, these systems are not affected by the location of users

accessing the application thus affecting the response time. Various benchmark studies

and orchestrators are proposed for web-application as discussed in §2.5.2 however, none

- 26 -

Chapter 2: Literature review

of them are able to handle the complexity of geo-distributed web-application.

To overcome these challenges, we propose an orchestrator for the deployment of geo-

distributed web-applications. It first finds a set of deployment solutions with maximum

host and location diversity in a defined budget for benchmarking. Next, it executes

all those solutions with a test web-application and captures various metrics. Finally,

it evaluates the collected metrics to find an optimal solution for the deployment of the

geo-distributed web-application. More details are given in Chapter 5.

2.5.4 Deployment of streaming application microservices in
cloud-edge environments

Compared to web-applications, the current streaming application is distributed and

deployed across the edge and cloud environment. As discussed in §1.1 the inclusion of

edge devices brings additional challenges as compared to cloud-native environments.

The deployment problem of stream processing in the cloud environment has been

extensively studied in the literature. Frameworks such as Stream [35], Flextream [70],

Naiad [113], Cayuga [46] from academia and Apache Storm [3], Amazon Kinesis [2],

Google MillWheel [31], Time-Stream [119] from industry are common examples of

stream processing frameworks. However, these approaches are limited only to the

cloud environment.

Very few models are available in the literature that considers the deployment of stream-

ing applications across edge and cloud environments. Work in [69, 125] presents a

framework for large-scale distributed streaming applications in the cloud-edge envi-

ronment, however the model is theoretical and very simple.

[127] proposes a programming infrastructure, Foglets, for distributing the deployment

across edge and cloud environments. However, the model is evaluated using simulation.

Another model LEONORE [144] is presented that provisions applications on resource-

constrained edge devices for flexible application deployment. The model is scalable but

it does not consider the application’s QoS requirements in the deployment process.

Kea [56] is another framework for offloading the sensor data computation for processing

on edge or cloud. Similar work is done in [81] which considers the problem of dynamic

- 27 -

Chapter 2: Literature review

Table 2.1: A summary of literature review with the major challenges addressed in this
thesis.

Problem Related Works Challenges

Evaluation of containers for
interfering microservices in
cloud environment

[62], [153], [112],
[18], [36], [75],
[68], [123], [130],
[156], [159]

- no intra-container performance
evaluation.
- no cgroups enabled or disabled
performance evaluation.

Orchestration for benchmarking
containerized web application
in multi-cloud environment

[27], [23], [28],
[25], [116], [135],
[43], [49], [135],
[103], [134], [50],
[57],

- most frameworks are specific for
the VM environment only.
- defining the benchmarks is not easy
- benchmarking a large number of
host for longer duration is very
expensive

Deployment of geo-distributed
web-application microservices
in a multi-cloud environment

[96], [74], [107],
[150], [152], [151],
[65], [57], [65],
[109], [54], [128],
[51], [115], [48],
[30]

- not able to handle the complexity
of geo-distributed web-application
- most of the work ignores the geo-
location of client for making the
deployment decision

Deployment of streaming
application microservices in
cloud-edge environments

[2], [3], [31],
[35], [46], [69],
[70], [113], [119],
[125], [127], [144],
[56], [81], [47]

- most of the work are theoretical
- not considered automatic compu-
tation partitioning and deployment
- not considered conflicting non-
functional requirements

computation offloading on wearable healthcare devices. The main focus of both these

work is to make a decision about offloading the data processing to cloud or not. An

abstract model to support QoS-aware deployment is presented in [47], where a multi-

component IoT application is deployed across fog infrastructure. A simple Java-based

prototype, FogTorch is presented to illustrate the proposed model however, it does not

address how to optimize the deployment solution.

In addition to these frameworks, various simulation environments are proposed for

modelling the application deployment in an edge-cloud environment. iFogSim [67],

EdgeCloudSim [137] and IoTSim-Edge [76] are some popular simulators, however,

these environments are very generic and are not able to give infrastructure-specific

performance evaluation.

Early efforts centred on the deployment of IoT applications across cloud and edge

datacentres are mostly theoretical. Moreover, these solutions have not considered

automatic computation partitioning and deployment. Nor have they considered the

optimization of multiple conflicting non-functional requirements during the deploy-

- 28 -

Chapter 2: Literature review

ment process. In Chapter 6 of this thesis, we propose, implement and evaluate an

optimized framework to find a suitable deployment solution for the distributed stream

processing application. The framework incorporates the user preferences along with

a high-level computation description to generate the deployment solution which opti-

mizes the conflicting non-functional requirements.

A summary of research problems, related works and the current challenges is summa-

rized in Table 2.1.

- 29 -

Chapter 2: Literature review

- 30 -

3
Holistic evaluation of Docker

containers for interfering
microservices

Contents
3.1 Introduction . 32

3.2 Evaluation methodology . 35

3.3 Performance evaluation: Experimental design 37

3.3.1 Requirement recognition and service feature identification . . . 37

3.3.2 Metrics and benchmarks listings and selection 38

3.3.3 Experimental factors listings and selection 41

3.3.4 Experimental design . 42

3.4 Performance evaluation: Experimental results 42

3.5 Related work . 56

3.6 Discussion . 58

3.7 Conclusion . 59

- 31 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

Summary

To investigate the performance evaluation of containerized microservices, this chapter

presents an extensive experimental evaluation of microservices executing in an interfer-

ing cloud environment. Specifically, we have considered the performance variation of

heterogeneous High-Performance Computing (HPC) microservices executing together

inside a container or in different containers. Moreover, we have also investigated the

performance variation due to the explicit definition of cgroups. The experiment re-

sults can be used in understanding the behavior of HPC microservices in the interfering

environment and can further also be used to make smart deployment decisions for mi-

croservices.

3.1 Introduction

Virtualization is the key concept of cloud computing that separates the computation

infrastructure from the core physical infrastructure. There are numerous benefits of

virtualization such as: (a) it supports heterogeneous applications to run on one physical

environment which is not otherwise possible, (b) it allows multiple tenants to share

the physical resources which increases the overall resource utilization, (c) multiple

tenants are isolated from each other using virtualization abstraction that maintains

the performance of each virtualized application guaranteeing the QoS requirements,

(d) it also helps in easy allocation and maintenance of resources for each tenant, (e) it

helps in easy resource scale up or scale down depending on the dynamically changing

process requirements and (f) it increases the service availability and reduces the failure

probability. Applications leverage the advantages of virtualization for cloud services

in the form of software, platform or infrastructure [154].

There are two types of virtualization practices common in cloud environments namely,

hypervisor-based virtualization and container-based virtualization. Hypervisor-based

virtualization represents the de-facto method of virtualization where, the hypervisor

partitions the computing resources in terms of virtual machines (VMs) e.g. KVM

[86], VMWare [66]. Each VM possesses an isolated operating system allowing het-

erogeneous consolidation. However, the advantages of virtualization are provided at

- 32 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

a cost of additional overhead as compared to the non-virtualized system. Since there

are two levels of abstraction, top-level by VM operating system and bottom level by

the physical host machine, any delay incurred by the VM layer can not be removed.

Current research trends concentrate on reducing the degree of performance variation

between virtualized and bare-metal systems [136]. Containers provide the virtualiza-

tion advantages by exploiting the services provided by the host operating system e.g.

LXC[19], Docker[11]. Except for applications that require strict security requirements,

it becomes a viable alternative for virtual machines.

Different features provided by the containers (e.g. light-weight, self-contained, fast

start-up and shut down) makes it a popular choice for virtualization. Recent research

findings [62, 68, 123] verifies the suitability of the containers as an alternative deploy-

ment infrastructure for the high performance computing (HPC) applications. Most of

the HPC applications have strict software requirements including system libraries and

support software which are closely dependent on the operating system version, under-

lying compilers and particular environment variables. Containers can easily embed

these functionalities in an image that can run on heterogeneous host platforms. These

features allow containers to perform repeatable and reproducible experiments on dif-

ferent host environment without considering the system heterogeneity and platform

configurations. Container images also are very flexible as it can be easily customized

to add or remove any additional functionality. A recent study [61] also shows that

multiple microservices can be executed inside a container.

Executing different microservices together can have many benefits such as dropping off

any inter-container data transfer delay, efficient utilization of the resources, avoiding

any dependency, etc. Using this scenario is suitable for HPC workloads where the

resource requirements for each component/microservices are fixed and known apriori.

However, the performance of containerized microservice might be affected by other

microservices running inside the same container causing intra-container interference.

The performance of microservices running in separate containers may also get affected

because of inter-container interference as the containers share the same host machine.

The effect of interference is higher if both the microservices are having similar resource

requirements (competing). To make an optimal decision about the deployment of

- 33 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

microservices requires extensive performance evaluation of both intra-container and

inter-container interference.

Despite the increased interest in container technology, there is a lack of detailed study

that evaluates the performance of containerized microservices considering different in-

terference effects. Many research studies are available for HPC micro-benchmarks

running in containerized environment [62, 68, 112, 123] but they normally consider

micro-benchmarks running in an isolated environment. Our work is built on the exist-

ing works by evaluating the performance variation of containerized microservices while

considering the interference effects. In a nutshell, this chapter is intended to answer

the following research questions:

RQ 1. How does the performance of containers vary while running in the intra-

container and the inter-container environment?

RQ 2. Is it suitable to deploy multiple microservices inside a container? If yes, which

type of microservices should be deployed together?

The motivation of this chapter is based on the above two research questions. This

chapter answers these questions and provides an understanding of performance varia-

tion for HPC microservices. The most common way to evaluate the performance of a

system is to benchmark the system parameters. To represent the behavior of the HPC

application, we considered a set of micro-benchmarks where each micro-benchmark is

specific for a particular resource type. Here, the micro-benchmarks are considered as

microservices. For evaluating the performance of common system parameters, namely

CPU, memory, disk and network, we consider Linpack, STREAM, Bonnie++ and Net-

perf (TCP Stream and TCP RR) micro-benchmarks respectively. We also considered

another micro-benchmark Y-Cruncher which, has an affinity towards both CPU and

memory. All these micro-benchmarks are evaluated in the Docker container environ-

ment under real-world conditions. To ease the performance evaluation of containerized

microservices, we employed Cloud Evaluation Experiment Methodology (CEEM) [101].

In particular, the main contributions of this chapter are as follows:

• We evaluate the performance of containers running collocated microservices caus-

ing intra-container interference and compare it with the baseline container that

- 34 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

runs only one microservice in an isolated environment. This helps us to identify

the interference effect of varying microservices, each intended towards specific

resource types, running inside a container (intra-container interference). This

also gives an idea about mixing different microservices inside a container with

minimal performance degradation.

• We also evaluate the performance of containers running in an inter-container

environment. Two containers running in parallel can cause interference and

the effect of interference depends on the type of microservice the containers

are executing. If both the containers are executing microservices having similar

resource requirements, the interference effect may be higher. Our result compares

the performance of this interference with the baseline performance and intra-

container performance. The result can also be used for modeling smart container

resource provisioning techniques to minimize the interference effect.

Outline. The rest of this chapter is organized as follows. The basic concepts of

evaluation methodology, CEEM is presented in §3.2 followed by the application of

CEEM for the evaluation of Docker container in §3.3. §3.4 presents the experimental

results with the detailed inference effect. §3.5 gives some relevant related work while

§3.6 gives some insights about the results. Finally, a detailed discussion along with

the conclusion is presented in §3.7.

3.2 Evaluation methodology

In order to investigate the performance of heterogeneous HPC microservices running in

a container (such as Docker), we followed the Cloud Evaluation Experiment Methodol-

ogy [101]. CEEM is a well-established performance evaluation methodology for cloud

service evaluation and provides a systematic framework to perform evaluation studies

that can easily be reproduced or extended for any environment. Due to similar guiding

principles of VMs and containers, we argue by using CEEM, we will achieve rational

and accurate experimental results [100]. The steps of CEEM is briefly illustrated as

follows [98, 101]:

- 35 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

1. Requirement Recognition: Identify the problem and state the purpose of the

proposed evaluation.

2. Service Feature Identification: Identify cloud services and their features to

be evaluated.

3. Metrics and Benchmarks Listing: List all the metrics and benchmarks that

may be used for the proposed evaluation.

4. Metrics and Benchmarks Selection: Select suitable metrics and benchmarks

for the proposed evaluation.

5. Experimental Factors Listing: List all the factors that may be involved in

the evaluation experiments.

6. Experimental Factors Selection: Select limited factors to study, and also

choose levels/ranges of these factors.

7. Experimental Design: Design experiments based on the above work. Pilot

experiments may also be done in advance to facilitate the experimental design.

8. Experimental Implementation: Prepare experimental environment and per-

form the designed experiments.

9. Experimental Analysis: Statistically analyze and interpret the experimental

results.

10. Conclusion and Reporting: Draw conclusions and report the overall evalua-

tion procedure and results.

To represent our evaluation in a better-structured way, we divide the CEEM method-

ology into two major steps namely Experimental design and Experimental evaluation

as given in §3.3 and §3.4 respectively.

- 36 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

3.3 Performance evaluation: Experimental design

3.3.1 Requirement recognition and service feature identifi-
cation

Following the CEEM methodology, the whole study is completely based on explicitly

defined requirements. In this chapter, our main aim is to evaluate the performance

variation of containerized microservices executing in the interfering environment and

compare it with the baseline performance. The requirement is defined in terms of

two research questions as given in §3.1. The evaluation is mainly driven under the

following three scenarios:

Case 1. Single container running one microservice. The resources are constrained by

defining the strict cgroups for different resource types. This performance acts as

a baseline for the remaining experimental comparisons.

Case 2. Single container running multiple microservices (either competing or indepen-

dent). No cgroups restrictions are enforced so, containers can share the host

machine resources in a fair-share manner. We call this set-up as intra-container

configuration.

Case 3. Multiple containers each running one microservices. We specified two sub-

case:

a. No cgroups: no cgroups restrictions are defined so containers can compete

for the resources in a fair-share manner.

b. With cgroups: the maximum resource a container can use is limited by

specifying the cgroups restrictions.

We call this set-up as inter-container configuration.

For the sake of experimental validity and fair performance comparison, the resources

allocated to each container depends on the number of microservices executed by that

particular container. For instance, the resource allocated to a container deploying

- 37 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

HOST

CONTAINER

μi μj

HOST

CONTAINER 1 CONTAINER 2

μi μj

HOST

CONTAINER

μi

HOST

CONTAINER 1 CONTAINER 2

μi μj

Case 1: Single container single
microservice (cgroups enabled)

Case 2: Single container multiple
microservices (cgroups disabled)

Case 3a: Multiple containers single
microservice (cgroups disabled)

Case 3b: Multiple containers single
microservice (cgroups enabled)

Figure 3.1: Resource restrictions provided by the cgroups

two microservices is double the resource allocated to a container running only one

microservice. Figure 3.1 depicts the different scenarios explained here.

In this study, we view containers as an alternative to virtual machines. Following the

cloud service evaluation strategy [99], we examine the fundamental resource parameters

e.g. CPU computation, memory, I/O and network to evaluate.

3.3.2 Metrics and benchmarks listings and selection

For measuring the performance of containerized microservices, we need to consider

the metrics that represent the exact system behavior. The selection of benchmarks

depends on the chosen metrics, again, it is also required to be easily configurable and

customizable to adapt to different system configurations. The metrics and benchmarks

selected for the fundamental resource parameters are discussed below:

1. CPU Computation Performance: CPU is the system component responsible for

all the processing operations happening in the system. To measure the CPU

computation performance, we considered measuring FLOPS (Floating Point Op-

erations Per Seconds), Total Computation Time and Total Turnaround Time.

- 38 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

Table 3.1: STREAM benchmark operations

Operation Kernel
Flops per
Iteration

Bytes per
Iteration

COPY A[i] = B[i] 0 16
SCALE A[i] = n × B[i] 1 16
ADD A[i] = B[i] + C[i] 1 24
TRIAD A[i] = B[i] + n × C[i] 2 24

To check the FLOPS, we used the HPC benchmark, Linpack [15]. It measures

the CPU computation performance by solving a set of linear algebra equations

of defined order (N) using partial pivoting and Lower-Upper (LU) factorization.

It estimates the highest CPU performance.

To evaluate the Total Computation and Turnaround Time, we considered Y-

Cruncher. Y-Cruncher [29] is a CPU+memory benchmark that stresses the CPU

by computing the value of Pi for large decimal digits. It is also dependent on the

disk memory for swapping the content at run time when the available memory

is not enough. It measures the performance for single-core as well as multi-core

systems. Y-cruncher is very flexible as it allows us to set different run-time

parameters.

2. Memory Performance: To measure the memory performance, we considered

STREAM [26] micro-benchmark that measures the data throughput for different

memory operations. We choose STREAM benchmark for analyzing the mem-

ory performance. The system performance is measured by performing different

operations (COPY, SCALE, ADD and TRIAD) on the memory system. Table

3.1 explains the kernel operations and FLOPS used by the STREAM operations.

The result of STREAM is presented in terms of MB/sec.

3. Disk I/O Performance: We considered disk throughput and random seeks to

measure the disk I/O performance. To measure the disk throughput, we used

Bonnie++ [6] micro-benchmark, which allows us to measure the I/O file sys-

tem performance with respect to data read/write speed. The output represents

different performance parameters in terms of data read/write, data rewrite and

random seeks per second.

- 39 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

Table 3.2: Metrics and Benchmarks for selected resource types

Resource
Type

Selected
Metrics

Selected
Benchmarks

Version

CPU
FLOPS (Floating Point
Operations Per Sec)

Linpack Mklb p 2018.0.006

Total Computation Time
Total Turnaround Time

Y-Cruncher 0.7.5

Memory Data Throughput STREAM 5.10

Disk I/O
Data Throughput
Random Seeks

Bonnie++ 1.03e

Network Network Throughput Netperf 2.7.0

Linpack micro-benchmark
(Mklb_p_2018.0.006)

Ubuntu 16.04
Base Image

Libs./Bins.

Mklb_p_2018.0.006

wrapped up in a container
image as a microservice

μ

Containerized microservice
image stored in the Docker

Hub repository

Containerized microservice
deployed on the host

machine

CPU-intensive HPC
workload

behaviour is
mimicked by

HOST

Container

μ

Figure 3.2: Steps for Linpack HPC microservice construction

4. Network Performance: To measure the network performance, we considered

round-trip network throughput. We choose Netperf [21] for measuring network

throughput. It is a request-response benchmark that measures the network per-

formance between two hosts. We identified the bidirectional network traffic using

the TCP-Stream test. We also used to show the round trip network performance

by using the TCP-RR test. To maintain integrity, no external traffic is placed

during the test duration. The results are given in terms of Mbps.

Table 3.2 summarizes the selected metrics and benchmarks for different resource types.

For deployment, the micro-benchmarks are first containerized by wrapping up in the

form of a container image and then initialized to evaluate the performance. Figure

3.2 shows the whole process of composing a Linpack microservice benchmark and

deploying on a host machine. A similar process is used for other micro-benchmarks.

Finally, the container image is stored in the Docker Hub [12] repository so that it can

be easily downloaded and deployed anytime.

- 40 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

3.3.3 Experimental factors listings and selection

The performance of designed experiment is entirely driven by the experimental factor

selection. Following the experimental factor framework for cloud service evaluation

[102], we identify the various factors as given below:

• Resource Type: We considered Docker container (version: 17.05.0 − ce, API

version: 1.29, Go version: go1.7.5) for our evaluation. The selection of Docker

containers is because of its popularity and uniformity across the cloud environ-

ments. Docker can easily wrap up the application along with its dependency on

one image that can be deployed in different environments without having any

prior knowledge of the underlying infrastructure environment.

• CPU Index: The CPU configuration of the host machine running Docker con-

tainer is X64 bit CPU @ 2.30 GHz processor with 2 cores. For Case 1 and Case

3b, each container can use only 1 CPU core as specified by the cgroups while for

Case 2 and 3a, both the available cores are shared by the two containers in a fair

share manner.

• Memory and Storage Size: The host memory and storage configuration is 4 GB

DDR3 RAM and 50 GB respectively. Similar to CPU configuration, containers

in Case 1 and 3b can use 2 GB and 25 GB of RAM and storage respectively

while the configuration is fairly shared for Case 2 and 3a.

• Operating System: The operating system employed for all the experiments is

Ubuntu:16.04. Docker also uses Ubuntu:16.04 as a base image for all the con-

tainers.

• Workload Size and Configuration: For each micro-benchmark, we specified a par-

ticular configuration. For Linpack, the problem size i.e. the number of equations

to solve is considered to be 15000. Also, the leading dimensions of the array and

data alignment value are set to 15000 and 4 Kbytes respectively. For Y-Cruncher,

the decimal digit is set to 100M . We are only concerned about the single-core

performance so parallelism is disabled (-PF: none). We set the STREAM bench-

mark by configuring DSTREAM ARRAY value as 60M and DNTIMES value

- 41 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

as 200. The file size for Bonnie++ is set to 8192 MB while the uid is set as

root. Finally, for Netperf, we specified TCP as the selected protocol. To check

the network streaming and round trip performance, we choose TCP-Stream and

TCP-RR benchmark. Also, we set the testlen at 120 seconds.

3.3.4 Experimental design

Our aim is to evaluate the performance of individual microservice running in the con-

tainerized environment. We used docker run command to start a new container

instance. The container is removed (using —rm instruction) after finishing the execu-

tion and a new container instance is started. For Case 1 where only one microservice

performance is evaluated at an instance, we simply run the containers and collect the

results. To validate the results and normalize for any variations, we repeated our

experiments for 50 times.

For running multiple microservices together, we considered all combinations as dis-

cussed in §3.3.1 with different cases of independent and competing microservices e.g.

CPU-intensive with other CPU-intensive or with memory-intensive and so on. Since

the average running time of different microservices are not identical, running the exper-

iments for Case 2 and 3 for a particular number of iterations is not suitable. Therefore,

we repeat the experiments for an interval of two hours and compute the average per-

formance. For Case 2, both the microservices are executing in parallel in an infinite

loop while for Case 3, both the containers are running in parallel.

3.4 Performance evaluation: Experimental results

This section describes the experimental evaluations illustrating the effect of interfer-

ence for containerized microservices executing in different cases as given in §3.3.1. For

the easy representation of the results, the following abbreviations are used for the mi-

croservices, Bonnie++: B, Linpack: L, Netperf TCP-Stream: NS, Netperf TCP-RR:

NR, STREAM: S and Y-Cruncher: Y.

For each experimental outcome, we compute different statistics e.g. Mean, Trimmed

Mean, Median, Maximum, Minimum, Standard Deviation (SD), Coefficient of Variance

- 42 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

0

5

10

15

20

25

30

L L(+L) L(+Y) L(+S) L(+B) L(+NS) L(+NR) L(+L) L(+Y) L(+S) L(+B) L(+NS) L(+NR) L(+L) L(+Y) L(+S) L(+B) L(+NS) L(+NR)

Case 1 Case 2 Case 3a Case 3b

G
FL

O
P

S
(h

ig
h

er
 is

 b
et

te
r)

Mean Max Min

Figure 3.3: Linpack performance results

(CV) and Interference Ratio (IR). These statistics are categorized into three types.

The first category consists of Mean, Trimmed Mean and Median that represents the

average result. Mean is the most commonly used parameter to represent the average

result, however, in some situations where there is a large variation in the result, mean

does not provide the exact average. Hence, we also selected Trimmed Mean and

Median values. Trimmed Mean simply discards the 10% extreme value (that may

represent the error spikes) while calculating the total average. The second category of

statistics consists of Maximum, Minimum, SD and CV. Maximum, minimum and SD

represent the variations of the result but are not able to give a clear comparison for

the different range of values. To compare the degree of variation between the different

range of values, we chose CV. Finally, IR composes the third category of statistics

which explains the effect of interference as compared to the baseline performance. IR

is calculated using the following equation:

IR =

(µi − µ)/µ, if higher is better

(µ− µi)/µ, if lower is better

(3.1)

where, µi is the mean value for the particular set of microservices and µ is the baseline

mean. The positive value of IR represents the performance enhancement while negative

IR value represents the performance degradation.

- 43 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

Table 3.3: Linpack result (GFLOPS)

Mean Median Tr. Mean SD CV
Case1 L 19.17 19.37 19.19 0.5 0.026

Case 2

L(+L) 15.14 15.14 15.14 0.641 0.042
L(+Y) 16.18 16.48 16.43 0.94 0.058
L(+S) 23.81 23.99 23.87 0.6 0.025
L(+B) 22.92 23.06 22.93 0.586 0.026

L(+NS) 20.81 20.55 20.82 1.753 0.084
L(+NR) 16.57 16.88 16.62 1.193 0.072

Case 3a

L(+L) 16.09 16.47 16.16 0.871 0.054
L(+Y) 15.76 15.68 15.73 0.961 0.061
L(+S) 17.09 17.5 17.1 1.403 0.082
L(+B) 15.49 15.81 15.58 1.177 0.057

L(+NS) 17.63 17.71 17.63 0.496 0.028
L(+NR) 15.38 15.68 15.47 0.874 0.057

Case 3b

L(+L) 16.39 16.75 16.48 0.824 0.05
L(+Y) 15.32 15.4 15.22 1.03 0.067
L(+S) 16.02 15.75 16.02 1.104 0.069
L(+B) 14.18 14.24 14.19 0.314 0.022

L(+NS) 18.93 19.01 18.97 0.284 0.015
L(+NR) 18.49 18.61 18.53 0.359 0.019

1. CPU Computation Performance Evaluation and Analysis

To evaluate the CPU performance, we implemented Linpack and Y-Cruncher

microservice in Docker container. Figure 3.3 shows the arithmetic Mean with

Maximum and Minimum value for the performance of Linpack in different sce-

narios. Other statistics are presented in Table 3.3. The result shows that the per-

formance of Linpack is highest in Case 2 L(+S) with a value of 23.81 GFLOPS,

which is 24% higher than the baseline performance. The next highest perfor-

mance is for Case 2 L(+B) followed by Case 2 L(+NS) with a performance

gain of 19% and 8% respectively. The performance gain is achieved because of

the availability of extra computation resources not used by other microservices

(non-CPU intensive) thus, increasing the performance of Linpack.

For all the other cases, considerable performance interference is noticed. The

worst performance is observed in Case 2 L(+L) where, two instances of Linpack

are competing in the same container with a performance degradation of 21%.

This is because of the lack of resource pinning which causes both the microser-

- 44 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Case 2 Case 3a Case 3b

L(+L) L(+S)L(+Y) L(+B) L(+NS) L(+NR)

Figure 3.4: Linpack Interference Ratio (IR) values. Horizontal axis labels represent
various cases. 1 – 6 represents L(+L), L(+Y), L(+S), L+(B), L(+NS) and L(+NR)
for Case 2. Similarly, 7 – 12 and 13 – 18 is used to represent different scenarios for
Case 3a and 3b respectively.

vices to compete for the same core at a time even though multiple cores are

available. For two Linpack instances, the best performance is observed for Case

3b where microservices are running in separate containers with cgroups enabled

with the performance degradation of only 14%. The remaining performances are

comparable with the baseline performance. The effect of interference is clearly

observed in Figure 3.4.

The result in Figure 3.3 and Table 3.3 also shows that the results do not deviate

too much from the Mean value. The maximum deviation is noticed in Case 2

L+(NS) followed by Case 3a L+(S) with the SD of 1.753 and 1.403 and CV of

8.4% and 8.2% respectively. Also, the difference between the Mean and Median

is very small with the highest difference of 0.41 for Case 3a L(+S) which is much

smaller than the SD value (1.403).

Y-Cruncher is a CPU as well as memory-intensive microservice. The average

performance of Computation Time (CT) and Total Time (TT) evaluated by Y-

Cruncher in different scenarios is presented in Figure 3.5. The result shows that

the performance of Y-Cruncher is worst for Case 2 Y(+L) with a performance

degradation of almost 46% as compared to the baseline performance. This is be-

cause of the fact that both Linpack and Y-Cruncher are CPU-intensive microser-

vices, they both compete for CPU resources inside a container and therefore lead

- 45 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

0

20

40

60

80

100

120

140

160

Y Y(+Y) Y(+L) Y(+S) Y(+B) Y(+NS) Y(+NR) Y(+Y) Y(+L) Y(+S) Y(+B) Y(+NS) Y(+NR) Y(+Y) Y(+L) Y(+S) Y(+B) Y(+NS) Y(+NR)

Case 1 Case 2 Case 3a Case 3b

Ti
m

e
(i

n
 S

ec
)

(l
o

w
er

 is
 b

et
te

r)

CT TT

Figure 3.5: Y-Cruncher performance result for Computation Time (CT) and Total
Time (TT). Black bars on the top represents the SD.

to performance degradation. Since the operations in Y-Cruncher are highly par-

allelized using multi-threading which fully utilizes the multi-core processor, there

is very small performance degradation (< 2%) for Case 2 Y(+Y) as in this sce-

nario, two cores available for the execution of two instances of Y-Cruncher. For

a similar reason, the performance degradation for Case 3a and Case 3b Y(+Y) is

only 2.3% and 2.4% respectively. The next worst performance is observed for the

collocated execution of Y-Cruncher and Bonnie++ with a performance degrada-

tion of 28.7%, 30.6% and 21.4% for Case 2, Case 3a and Case 3b respectively.

This is because of the constrained disk size. Since Y-Cruncher uses continuous

swapping from main memory to disk while Bonnie++ also accesses the disk for

performing different operations, only one process can access the disk memory to

perform the I/O leading to the higher completion time for Y-Cruncher.

Even though both Y-Cruncher and STREAM are memory-intensive microser-

vice, for the collocated execution of Y-Cruncher and STREAM, there is only a

slight degradation of 4% for Case 2 and 1.9% and 2.5% for Case 3a and Case 3b

respectively. The reason behind this is the availability of enough memory to run

the experiment without any performance degradation. The best performance is

observed for Case 2 Y(+NS) followed again by Case 2 Y(+NR) with a perfor-

mance gain of 2.4% and 1.5% respectively as they are not directly interfering for

any resources. The effect of interference can be easily observed in Figure 3.6.

- 46 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Computation Time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Total Time

Y(+Y) Y(+S)Y(+L) Y(+B) Y(+NS) Y(+NR)

Case 2 Case 3a Case 3b Case 2 Case 3a Case 3b

Figure 3.6: Y-Cruncher Interference Ratio (IR) values. Horizontal axis labels represent
various cases.

Overall, the result infers that inter-container interference is lesser than intra-

container interference while considering a similar type of CPU-intensive microser-

vices. Another important point to notice is that the performance of microservices

is comparable for the case with having cgroups enabled or disabled for our defined

scenarios.

2. Memory Performance Evaluation and Analysis

To evaluate the memory performance, we used STREAM microservice bench-

mark. Different statistics for the four vector operations namely, COPY, SCALE,

ADD and TRAID are presented in Figure 3.7. For COPY operation, degrada-

tion of 14%, 15% and 16% is observed for collocated execution of two STREAM

microservices for Case 2, Case 3a and Case 3b respectively. This is because of the

interference caused by the other memory-intensive operation executing together.

The next worst-case performance is observed for Case 2 S(+Y) as Y-Cruncher is

also intended to share the available memory with degradation of 3%. For other

combinations in Case 2, a slight performance gain is noticed with a maximum of

4.8% gain for S(+L) followed by 3.9% for S(+NS) due to non-strict dependency

of these microservices on memory. The result also shows that there is a slight

deviation from the Mean value as the Median and Trimmed Mean are almost

- 47 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

0

2000

4000

6000

8000

10000

12000

14000

16000

S S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR) S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR) S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR)

Case 1 Case 2 Case 3a Case 3b

M
em

o
ry

 C
O

P
Y

 T
h
ro

u
g
h
p

u
t

COPY
Mean Median Tr. Mean Max Min

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR) S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR) S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR)

Case 1 Case 2 Case 3a Case 3b

M
em

o
ry

 S
C

A
LE

 T
h

ro
u

gh
p

u
t

Chart TitleMean Median Tr. Mean Max Min

0

2000

4000

6000

8000

10000

12000

14000

S S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR) S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR) S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR)

Case 1 Case 2 Case 3a Case 3b

M
em

o
ry

 A
D

D
 T

h
ro

u
gh

p
u

t

Chart TitleMean Median Tr. Mean Max Min

5800

6000

6200

6400

6600

6800

7000

7200

S S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR) S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR) S(+S) S+(L) S(+Y) S(+B) S(+NS) S(+NR)

Case 1 Case 2 Case 3a Case 3b

M
em

o
ry

 T
R

IA
D

 T
h

ro
u

gh
p

u
t

Chart TitleMean Median Tr. Mean Max Min

Figure 3.7: STREAM performance result (in GB/sec)

- 48 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Axis Title

COPY

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Axis Title

SCALE

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Axis Title

ADD

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Axis Title

TRIAD

Case 2 Case 3a Case 3b Case 2 Case 3a Case 3b

S(+S) S(+Y)S(+L) S(+B) S(+NS) S(+NR)

Case 2 Case 3a Case 3bCase 2 Case 3a Case 3b

Figure 3.8: STREAM Interference Ratio (IR) values. Horizontal axis labels represent
various cases.

the same as the Mean. The Maximum and Minimum values are also very close

to the Mean value except for the case of collocated execution of two STREAM

instance.

For the SCALE and ADD operation, there is a slight difference in various sce-

narios. For SCALE operation, the worst performance is for S(+S) with 7.6% and

7% for Case 3a and Case 3b followed by 3.7% for Case 2. The remaining perfor-

mance is comparable with a maximum gain of 1% for Case 2 S(+L). Similarly,

for the ADD operation, the worst performance is noticed for collocated execution

of STREAM with degradation of 13%, 12% and 7% for Case 3a, Case 3b and

Case 2 respectively. The maximum performance gain is observed for S(+NS)

followed by S(+L) with an increment of 12% and 10% respectively. However,

for TRIAD operation, a large performance deviation is observed but follows the

same trend of performance degradation for collocated execution of the same type

- 49 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

Table 3.4: Bonnie++ Block Input result (in /sec).

Mean Median
Tr.
Mean

Max Min SD CV

Case1 B 348948.7 346912.5 349092.2 366590 328725 8816.5 0.025

Case 2

B(+B) 150318.6 151020.0 150499.3 153749 143634 2707.9 0.018
B(+L) 280510.3 279708.0 280276.2 300307 264927 9073.6 0.032
B(+Y) 310682.1 306304.0 307027.5 401019 286128 25319.8 0.081
B(+S) 293854.5 294489.5 294033.4 304766 279722 7891.1 0.027
B(+NS) 321789.2 322759.5 322253.7 333090 302127 8111.1 0.025
B(+NR) 345039.6 345520.0 344307.0 379975 323291 12765.5 0.037

Case 3a

B(+B) 152934.3 153021.5 152967.7 155528 149739 1549.4 0.010
B(+L) 268383.2 271084.0 268774.8 291607 238110 16004.1 0.060
B(+Y) 292321.3 292458.0 292357.1 306960 277038 7988.0 0.027
B(+S) 291840.9 293848.5 292551.0 303054 267845 8129.0 0.028
B(+NS) 330460.5 329437.0 330246.0 367948 296834 14219.2 0.043
B(+NR) 326684.5 326248.0 326754.7 343819 308286 11378.8 0.035

Case 3b

B(+B) 150259.9 149811.0 150222.7 159286 141903 5348.0 0.036
B(+L) 292410.9 292421.5 292703.9 301705 277842 6226.1 0.021
B(+Y) 313616.1 296750.5 297370.1 639995 279666 77770.2 0.248
B(+S) 294275.9 295652.0 295235.1 302914 268373 7984.3 0.027
B(+NS) 263074.5 266438.0 264483.2 285272 215519 17366.2 0.066
B(+NR) 288610.8 293233.0 289713.6 310925 246446 16459.5 0.057

of microservices. The maximum performance deprivation is observed in S(+S)

for Case 3a (5%) followed by Case 3b (4%) and Case 2 (2.5%). The effect of

interference in terms of IR is given in Figure 3.8.

Overall, the execution of STREAM microservice in different scenarios does not

show a large variation from the baseline performance. A small performance

gain is achieved when STREAM is collocated with different microservice inside

a container. Also, the performances are comparable in Case 3a and Case 3b for

different scenarios.

3. Disk I/O Performance Evaluation and Analysis

The I/O performance is represented using Bonnie++ microservice which gener-

ates a dataset of size at least twice the size of available memory (RAM). The per-

formance for Sequential Block Input, Block Output, Block Rewrite and Random

Seeks is presented in Table 3.4, Table 3.5, Table 3.6 and Table 3.7 respectively.

For Block Input, the performance is always affected by the collocated execution

of other microservices. The maximum performance degradation is observed for

- 50 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

Table 3.5: Bonnie++ Block Output result (in /sec).

Mean Median
Tr.
Mean

Max Min SD CV

Case1 B 278362.4 277073.0 278099.4 294574 266885 8425.81 0.030

Case 2

B(+B) 159530.5 152429.5 152711.6 294041 147760 31809.07 0.199
B(+L) 283667.1 281342.5 281533.3 332479 273264 12189.84 0.043
B(+Y) 281957.0 283641.0 281708.0 303000 265396 8224.12 0.029
B(+S) 289314.7 289074.0 289009.1 305278 278851 8192.07 0.028
B(+NS) 310772.1 309600.5 309897.6 350216 287068 14772.71 0.048
B(+NR) 283923.6 285201.5 283682.2 297530 274662 6981.28 0.025

Case 3a

B(+B) 148960.7 148394.0 148732.7 161455 140569 4818.72 0.032
B(+L) 264280.2 263157.0 262325.1 290663 243089 11910.16 0.045
B(+Y) 252390.3 252859.5 252346.7 293046 232520 4665.51 0.018
B(+S) 270180.9 279268.5 269561.9 286893 254610 8232.98 0.030
B(+NS) 262805.1 268557.0 262225.2 273535 242514 12189.49 0.046
B(+NR) 255982.2 256025.0 256512.7 288801 233615 10050.62 0.039

Case 3b

B(+B) 154354.5 153829.0 153333.8 177870 149210 6037.06 0.039
B(+L) 269236.3 268707.5 268775.0 286873 249902 13364.55 0.050
B(+Y) 252809.9 251839.0 252907.3 264715 239152 5977.67 0.024
B(+S) 270158.8 268596.5 269212.7 291482 265866 9354.95 0.035
B(+NS) 269616.7 270105.5 269896.2 283752 250450 9592.73 0.036
B(+NR) 257024.6 257307.5 257125.4 266154 246080 5303.87 0.021

two instances of Bonnie++ with a loss of 56.92%, 56.17% and 56.13% for Case

2, 3a and 3b respectively. The high degradation is occurred because of the com-

mon disk which is shared by all the microservices thus, leading to performance

degradation. The least interference is noticed for the collocated execution of

Bonnie++ with Netperf (NS, NR) with performance loss of only (7%, 1%), (5%,

6%) and (24%, 17%) for Case 2, Case 3a and Case 3b respectively. Table 3.4

also shows that the results are consistent as there is a slight difference between

Mean, Median and Trimmed Mean values except for Case 3b B(+Y) and Case

2 B(+Y) with SD value of 77770.2 and 25319.8 and with CV of 24.8% and 8.1%

respectively. In these situations, Median and Trimmed Mean are the more ap-

propriate measures to represent the average values. The interference effect is

presented in Figure 3.9.

For Block Output operation, a slight performance gain is observed for heteroge-

neous execution of microservices for Case 2 with a maximum performance gain

of 11.6% for B(+NS) followed by 3.9% for B(+S). As usual, the performance

of multiple instances of Bonnie++ is worst with a maximum loss of 46.48% for

- 51 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

Table 3.6: Bonnie++ Block Rewrite result (in /sec).

Mean Median
Tr.
Mean

Max Min SD CV

Case1 B 149159.4 149094.0 149202.7 153877 143663 2841.94 0.019

Case 2

B(+B) 66082.6 66379.5 66575.9 67674 55611 2546.87 0.039
B(+L) 129841.8 129942.0 129935.8 134415 123577 3087.65 0.024
B(+Y) 125820.3 125511.0 125729.9 131053 122215 2721.36 0.022
B(+S) 131675.6 131611.0 131756.6 137909 123983 4193.53 0.032
B(+NS) 131091.2 131262.0 131171.2 136593 124149 3128.53 0.024
B(+NR) 127168.5 126673.5 127022.2 136821 120149 4287.56 0.034

Case 3a

B(+B) 66617.6 66792.5 66614.1 68768 64529 1223.94 0.018
B(+L) 132061.0 132441.5 132218.2 139880 121412 4558.59 0.035
B(+Y) 126750.6 126659.0 126806.7 131635 120855 2589.28 0.020
B(+S) 132399.4 131666.5 132319.7 139712 126521 3440.37 0.026
B(+NS) 134379.0 133777.5 133984.6 147012 128845 4553.22 0.034
B(+NR) 111762.8 123709.5 116469.7 127234 11566 34380.04 0.308

Case 3b

B(+B) 67366.5 67807.5 67362.8 70339 64459 1627.47 0.024
B(+L) 137653.4 137873.5 137813.6 142397 130027 3186.39 0.023
B(+Y) 133628.2 132893.0 133397.9 142822 128580 3435.94 0.026
B(+S) 136741.4 137559.5 136850.7 144602 126913 3577.91 0.026
B(+NS) 126108.8 127890.5 127169.7 131055 102065 6403.13 0.051
B(+NR) 128480.1 129910.0 128663.6 134240 119417 4381.08 0.034

Table 3.7: Bonnie++ Random Seeks result (in /sec).

Mean Median
Tr.
Mean

Max Min SD CV

Case1 B 10801.3 10807.4 10817.4 11890.7 9422.4 628.77 0.058

Case 2

B(+B) 3576.1 3538.0 3572.6 3901.1 3314.5 156.69 0.044
B(+L) 9974.5 9918.3 9940.6 11877.4 8681.6 813.41 0.082
B(+Y) 8895.7 8947.2 8915.1 9452.9 7988.8 370.89 0.042
B(+S) 10274.4 10427.5 10330.5 11516.4 8022.4 779.58 0.076
B(+NS) 10849.3 11048.3 10878.1 12582.4 8596.7 1224.63 0.113
B(+NR) 9607.7 9925.2 9626.5 10670.6 8205.9 715.84 0.075

Case 3a

B(+B) 3912.7 3866.1 3905.5 4191.9 3763.3 131.87 0.034
B(+L) 9290.7 9480.5 9447.6 11660.3 4096.4 1782.48 0.192
B(+Y) 8779.4 8803.5 8822.2 9550.6 7239.3 488.66 0.056
B(+S) 10401.3 10583.1 10409.4 11882.7 8773.5 766.95 0.074
B(+NS) 8198.8 8130.5 81711.2 9231.5 7243.3 785.97 0.096
B(+NR) 8652.5 8335.0 8720.6 9861.5 6218.2 844.55 0.098

Case 3b

B(+B) 4877.5 4745.0 4896.1 6149.2 3270.8 926.19 0.190
B(+L) 9821.2 9619.9 9785.0 11232.2 9061.9 614.84 0.063
B(+Y) 8234.6 8245.3 8249.7 8713.6 7483.6 293.17 0.036
B(+S) 9803.9 10233.4 9948.3 11260.3 5748.7 1397.07 0.143
B(+NS) 8180.1 8592.0 8282.0 9531.7 4994.1 1290.04 0.158
B(+NR) 7642.7 7671.3 7664.9 8224.5 6660.5 451.41 0.059

- 52 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Block Input

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Block Output

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Block Rewrite

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Random Seeks

B(+B) B(+Y)B(+L) B(+S) B(+NS) B(+NR)

Case 2 Case 3a Case 3bCase 2 Case 3a Case 3b

Case 2 Case 3a Case 3bCase 2 Case 3a Case 3b

Figure 3.9: Bonnie++ Interference Ratio (IR) values. Horizontal axis labels represent
various cases.

Case 3a followed by 44.5% and 42.6% for Case 3b and Case 2 respectively. The

remaining performances are comparable to the baseline performance.

The result of Block Rewrite follows the trend of Block Input as is clear from

Table 3.6. The worst performance is observed for Case 2 B(+B) with 55.7%

followed by Case 3a B(+B) with 55.3% performance loss. The least performance

loss is noticed for Case 3a B(+L) with degradation of only 7.7%. A similar

performance is visualized for Random Seeks with only a small performance gain

of 0.4% for Case 2 Y(+NS). For all other scenarios, there is a performance loss

with the maximum of 66.9% for Case 2 B(+B). There is one important point to

notice here is that there is a large variation in the result as shown by the SD

(CV) values for example in Case 3a B(+L), the SD (CV) is 1782.48 (19.2%).

4. Network Performance Evaluation and Analysis

Netperf microservice is used to analyze the system network performance. It

- 53 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

0

2000

4000

6000

8000

10000

12000

NS NS(+NS) NS(+L) NS(+Y) NS(+S) NS(+B) NS(+NS) NS(+L) NS(+Y) NS(+S) NS(+B) NS(+NS) NS(+L) NS(+Y) NS(+S) NS(+B)

Case 1 Case 2 Case 3a Case 3b

N
et

w
o

rk
 T

h
ro

u
gh

p
u

t
(i

n
 M

b
p

s)

TCP Stream

Mean Median Tr. Mean Max Min

0

5000

10000

15000

20000

25000

30000

NR NR(+NR) NR(+L) NR(+Y) NR(+S) NR(+B) NR(+NR) NR(+L) NR(+Y) NR(+S) NR(+B) NR(+NR) NR(+L) NR(+Y) NR(+S) NR(+B)

Case 1 Case 2 Case 3a Case 3b

N
et

w
o

rk
 T

h
ro

u
gh

p
u

t
(i

n
 M

b
p

s)

TCP RR

Mean Median Tr. Mean Max Min

Figure 3.10: Netperf Performance result

uses client-server architecture for data transfer. In our test case, one container

serves as a server that runs the netserver application of Netperf while the other

container serves as the client running the netperf application. Data stream is

transferred from the client to the server for a defined duration of 120 seconds

using TCP protocol and the network performance is analyzed. The throughput of

Request-Response is also analyzed for the defined configuration. The experiment

results showing the performance of TCP Stream and TCP RR is presented in

Figure 3.10.

The result in Figure 3.10 shows that the average throughput for Netperf TCP-

Stream is always affected by the co-execution of other microservice. On average

the maximum deprivation is observed for multiple microservices executing inside

a container (Case 2) with an average performance loss of 42.8%. The worst

- 54 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

performance is noticed for NS(+Y) with degradation of 60.4% as compared to

the baseline. For other cases also, there is a large performance degradation for

co-execution of TCP Stream with Y-Cruncher with a loss of 38.3% and 41.4%

for Case 3a and Case 3b respectively. This is due to the fact that Y-Cruncher

is a stress testing tool that stresses both CPU and memory together leading

to performance interference. TCP Stream also accesses the memory and CPU

for transferring continuous data stream. For the execution of two instances

of TCP Stream in different containers, the performance is comparable with the

baseline performance with only a small degradation of 1% and 8% for Case 3a and

3b respectively, however, a large degradation of 36% is observed for collocated

execution inside a container (Case 2). The result also shows a huge performance

difference for other scenarios for Case 2.

For TCP RR, the result is somewhat different from that of the TCP Stream.

Most of the performance is comparable with the baseline performance with an

exception of two instances of TCP Stream executing inside a container (Case 2

NR(+NR)) with a performance degradation of 22% from the baseline. For this

scenario, the result also shows a large variation with Mean and Median values far

apart. In other cases, these values are almost the same. The best performance is

noticed for the execution of two instances of TCP RR for Case 3a and 3b with a

performance loss of only 6% and 2% respectively. The overall interference effect

is visualized from Figure 3.11.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

TCP Stream

-0.25

-0.2

-0.15

-0.1

-0.05

0

TCP RR

Case 2 Case 3a Case 3b Case 2 Case 3a Case 3b

NS(+L)NS(+NS) NS(+Y) NS(+S) NS(+B) NR(+Y) NR(+S)NR(+L)NR(+NR) NR(+B)

Figure 3.11: Netperf Interference Ratio (IR) result. Horizontal axis labels represents
various cases.

- 55 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

3.5 Related work

Numerous efforts [18, 36, 62, 112] show that containerizing the cloud infrastructure

leads to highly efficient and agile solutions. It is evident from the previous work

that containers can reduce the overhead while increasing the overall performance.

These studies compare the performance of containers with respect to VMs for different

benchmarks and show that the performance of the container is better than or almost

equal to the performance of the VM. Xavier et al. [153] compared the performance of

VM with container-based virtualization for HPC environments. The experiments are

performed on Linux VServer, OpenVZ and LXC comparing with Xen and bare-metal

performance using NAS Parallel Benchmark (NPB). The result shows that container-

based virtualization has near-native performance for different fundamental components

(CPU, memory, disk and network).

Felter et al. [62] performed similar experiments but with Docker in comparison to

KVM using different benchmarks. The result shows that for CPU and memory the

performance of Docker container is comparable to KVM but for I/O and network-

intensive applications, the Docker’s performance is better than KVM. A similar study

is performed by Morabito et al. [112], but here LXC and OSv are also compared with

Docker and KVM. They conclude that LXC outperforms KVM and Docker in almost

all cases. A similar study is given by Li et al. [97] that uses DoKnowMe evaluation

strategy to compare the performance of KVM and Docker and illustrates that the

effect of virtualization depends not only on features but also on job types. The result

shows that the average performance of container is almost better than the VM but it

also shows a lot of performance variation in the case of containers.

Similar comparative study between bare-metal, VM and container performed on Open-

Stack is presented in [89]. The experimental result shows that Docker container has

the fastest boot-up time. Also, the performance is comparable with the bare-metal

except for network performance. The VM has a high overhead that increases with the

workload size and the assigned resources.

A study by Kozhirbayev et al. [90] evaluates the performance of two-container tech-

nology Docker and Flockport running different benchmarks and shows that Flockport

- 56 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

outperforms Docker in almost all case. Study in [111] compares the power consumption

of container and VM and shows that both types of virtualization has similar power con-

sumption for the idle situation and CPU/memory operations, but containers consume

less power for network-intensive operations.

Cuadrado-Cordero [53] compared the QoS and energy performance of Docker contain-

ers and KVM for different services. The experimental result shows that Docker allows

more services to run as compared to KVM. The result also shows that the Docker

consumes less energy than KVM allowing more energy savings.

Few of the works also specify running HPC workloads in Docker containers. Jacobsen

et al. [75] advocates the use of containers for HPC environments. The work in [68]

shows how to orchestrate multiple containers on a physical node. The study confirms

that a job can be transparently executed inside a Docker container without having any

knowledge about the underlying host configuration. The study is validated by running

Linpack inside the container.

Few of the studies also consider big data applications for comparing the performance

of containers. Bhimani et al. [39] compares the performance of VMWare and Docker

for different big data applications using Spark. The experimental results show that

Docker achieves a speed-up for map- and reduce- intensive applications. Zhang et

al. [159] also presented a similar study where an extensive comparison between VM

and Docker container is presented for different big data applications. The result shows

that Docker containers are more convenient, highly scalable and achieves higher system

utilization as compared to VMs.

Most of the above study does not consider the effect of interference in containerized

environments. Ruiz et al. [123] evaluate the performance of LXC containers in different

configurations e.g. isolated, inter-container and multi-node inter-container using NAS

parallel benchmark. The results conclude that inter-container communication is faster

than physical machine communication but there is a degradation of CPU performance

for memory-intensive operations. The result also shows that for a multi-node inter-

container communication, the performance of network-intensive applications degrades.

Sharma et al. [130] also compares the performance of collocated applications on a

common host but only one application is running in a container/VM. They show

- 57 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

the effects of interference caused by noisy neighbour containers running competing,

orthogonal or adversarial applications. All the experiments are done on the LXC

container.

Ye et al. [156] also considers the inter-container interference for big data application

(Spark). Similar work is done by Kejiang et al. [159] that evaluates the performance

of big data applications by changing the system configurations and also considering

the interference between containers. Using different Spark applications (K-Means,

Page rank, etc.) and changing the Docker system configurations using cgroups, the

performance is evaluated.

From the best of our knowledge, none of the existing works consider the performance

evaluation of heterogeneous microservices executing inside a container and compares

the interference impact with the microservices running in separate containers. In this

chapter, we have demonstrated the performance evaluation of HPC micro-benchmarks

intended towards specific resource types (CPU, memory, disk and network) in the form

of microservices running inside the Docker container.

3.6 Discussion

Extensive experimental evaluation results highlight the performance of microservices

executing in the interfering cloud environment. For the combined CPU + memory

intensive operations, network intensive operations cause the least performance inter-

ference while the core CPU intensive operations cause the highest performance degra-

dation. The result shows that memory-intensive operations are least affected by any

other microservices. Memory- and network-intensive operations can be combined to-

gether with the least interference effect. I/O intensive operations shows a similar

performance for for all the cases. One important point for network-intensive opera-

tion is that interference effect is less when the microservices are executed in separate

containers.

The interference caused by microservices with similar resource requirements is always

higher as compared to the microservices with different resource requirements. The re-

- 58 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

sult also shows that the effect of interference for similar resource-intensive microservice

is higher for intra-container scenarios than inter-container scenarios. Also, the perfor-

mance of containerized microservices are comparable with either cgroups enabled or

disabled if the system resources in both the cases are exactly the same.

Limitations. Although the benchmark experiments are extensive, it is performed in

a controlled private cloud environment. Executing in public cloud environment may

leads to different performance however, we agree that the performance pattern must

follow similar pattern. The benchmarking experiments here are performed manually

using script which is not feasible for benchmarking large number of systems.

3.7 Conclusion

With the combination of virtualization advantages and bare-metal performance, con-

tainers are treated as a feasible alternative for VM in the cloud environment. They

bind all the required environment variables along with the application in a container

image that can easily be executed in different environments. These advantages can be

easily utilized to package HPC microservices, which usually have complex software and

hardware requirements. However, the execution of microservices in a containerized en-

vironment may cause interference that leads to performance degradation. Therefore,

it is necessary to understand the behavior of microservices executing in a containerized

environment.

In this chapter, we investigated the performance of HPC microservices in the Docker

container environment. The result presents comprehensive details about the perfor-

mance variation of containerized microservices. It shows that executing multiple mi-

croservices inside a container is also a feasible deployment option as the result indicates

that for some cases the achieved performance is better than the baseline performance.

The obtained result can be used for making further deployment decision.

- 59 -

Chapter 3: Holistic evaluation of Docker containers for interfering microservices

- 60 -

4
Multi-cloud orchestrator for

benchmarking containerized
web-application microservices

Contents
4.1 Introduction . 62

4.2 System overview . 64

4.2.1 SDBO architecture . 64

4.2.2 SDBO design . 66

4.3 Execution workflow . 69

4.4 Metrics profiling . 71

4.4.1 Basic metrics . 71

4.4.2 Advanced metrics . 72

4.5 Evaluation . 73

4.5.1 Experiment setup . 74

4.5.2 Cost optimization . 75

4.5.3 Basic metrics profiling . 76

4.5.4 Advanced metrics profiling . 79

4.5.5 Flexible execution . 81

4.6 Related work . 82

4.7 Discussion . 84

4.8 Conclusion . 85

- 61 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Summary

The previous chapter evaluated the performance of containerized microservices in an

interfering environment. However, that evaluation alone cannot be used for making the

deployment decision. To facilitate the microservice deployment decision, this chapter

presents an orchestrator, Smart Docker Benchmarking Orchestrator (SDBO). SDBO

is a general orchestrator that automatically benchmarks containerized applications in

a multi-cloud environment. At the same time, SDBO is able to maximize the num-

bers of evaluated cloud providers and type of hosts without exceeding users’ budgets.

Moreover, a flexible execution module is proposed which enhances SDBO’s ability to

capture the performance variation of benchmark web-application for a longer period

in the defined users’ budgets. Although SDBO is generic enough for a different type

of applications, the current chapter focuses only on the web-application benchmarking

orchestration.

4.1 Introduction

In the past three decades, web-applications have transformed from serving only static

content to a complex multi-tier Web 2.0 system. Current web-applications provide

extensive interactivity and personalization support on different devices (smartwatch,

mobile phone, tablet, laptop, etc.) for geographically distributed clients in real-time.

To handle the varying user’s requests, current web-applications require a sophisticated

architecture that supports distributed databases, geographical replication of contents,

temporal and spatial caching mechanisms along with fast prefetching. With the in-

creasing complexity of web-applications, it is not easy to handle the development

and deployment of web-applications in a monolithic way [88, 121]. The evolution of

microservice architecture that modularizes the application into smaller independent

components gives the flexibility for developers to implement each component as a

standalone service. Note that many cloud providers such as Amazon and Microsoft

offer containers virtualized at the operating system level which facilitates the deploy-

ment of microservices i.e. each component of the web-application can be encapsulated

into a container. Since containers have many advantages including light-weight, fast

- 62 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

start-up/shut down, packaged; as a result, users can move their web-applications fast

and deploy them efficiently.

However, the multi-cloud environment provides diverse options for users to deploy their

web-applications, which means users have more chance to find a cheaper host which

still meets their deployment requirements such as cost, throughput and latency. To

this end, the users need to test the performance in these hosts before actually deploying

and publishing their web-applications. The common practice is to use the standard

benchmarking applications to test the hosts instead of using users’ own applications.

This is because these benchmarking applications have the standard procedures to

evaluate the performance of the host, thereby obtaining more comprehensive results.

Moreover, benchmarking all the hosts from different cloud providers is very challenging

as each provider has its own architecture and programming interface [120]. Existing

research [128, 135] focuses mainly on evaluating the benchmarking web-application on

different host configurations alone. However, [50, 134] discuss some frameworks that

provide automatic systems to perform the benchmark across multiple clouds.

Web-application is a long running system and its performance must be guaranteed

all the time. On the other hand, the underlying cloud environment is very dynamic

and resource preemption happens frequently in the virtualized environment [92]. The

performance is also affected by the interference caused by other applications deployed

on the same server [77]. Observing the performance variation for a longer duration

is an important task for benchmarking web-application. Unfortunately, running the

benchmark applications in various hosts over different clouds for a longer duration

(say at least 24 hours) is very costly. To the best of our knowledge, we could not find

any study that considers cost efficiency for benchmarking i.e. maximize the number

of evaluated hosts and benchmarking time within a defined budget.

In this chapter, we aim to build a smart orchestrator for benchmarking container-

ized web-applications in a multi-cloud environment. SDBO is designed to solve the

complexity of deploying benchmark applications in multi-cloud environment that have

different programming APIs and numerous ways to interact. To achieve the cost effi-

ciency, first, we develop an algorithm that maximizes the number of evaluation hosts

based on users’ budgets and pre-defined benchmarking time. Then, the flexible execu-

- 63 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

tion module is designed to capture the performance variation of cloud environment by

partitioning the pre-defined benchmarking time into a set of slots. In summary, this

chapter makes the following contributions:

• We developed a novel orchestrator, SDBO that automates the definition and

execution of benchmarks for containerized web-applications. In particular, the

orchestrator allows the user to choose the benchmark applications and hosts

across different cloud providers.

• SDBO has a native feature of optimization that maximizes the utility of user’s

budget by maximizing the number of cloud providers and the hosts for bench-

marking.

• Based on the optimized execution plans, we interact the plans with the flexi-

ble execution module to run the benchmarks in a set of time intervals thereby

capturing the performance variation for a longer duration.

Outline. We illustrate the system design of SDBO in § 4.2, following which we show

the execution workflow of our system in § 4.3. Next § 4.4 show the basic features

that can be collected by our system and other advanced measurements that can be

obtained based on the basic metrics and in § 4.5, we evaluate the experimental results.

In § 4.6, we outline the related work and highlight the contributions of this chapter

after which, we presents a discussion about the results obtained and the limitation of

this chapter in § 4.7. Finally, we draw a conclusion in § 4.8.

4.2 System overview

This section discusses the architecture and system design details of SDBO.

4.2.1 SDBO architecture

Figure 5.3 illustrates the architecture of SDBO and the dependencies of each com-

ponent. SDBO is implemented as a web-application that provides a User Interface

for users to interact, explore and manage their benchmarking experiments. The User

- 64 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

User

Image
Configurations

Test Plan B
e

n
ch

m
ar

k
Ex

ec
u

ti
o

n

Download Image

Store Results

ProvisionerOptimizer

U
se

r
In

te
rf

ac
e

Results

Docker Hub Private Repo.

P
ro

vi
d

er
 S

p
ec

if
ic

 A
P

I/
SD

K

SDBO

Database

Jmax files

Benchmark
Configurations

Host
Configurations

Figure 4.1: System architecture of SDBO

Interface allows the user to choose an existing benchmark application or customize

a new application. Moreover, users can easily select the available hosts from differ-

ent cloud providers, define the benchmarking time for each selected host, and specify

the total budget for running the experiments. Next, this configuration information is

stored in a relational Database.

The Optimizer is designed to create an optimized host list based on the informa-

tion provided by the user. It retrieves the necessary information (host configurations,

benchmark duration and budget) from the Database and applies a heuristic algorithm

to generate an optimized host list for running the benchmarking experiments. More

details about the Optimizer are given in § 4.2.2. The generated host list is automat-

ically stored in the Database. Next, users can choose the flexible execution option

for benchmark execution. If the user chooses to execute the benchmark experiments,

the Provisioner will be triggered to provision the resources, deploy the benchmark

applications and execute the applications based on the user entered information and

optimized host list. The benchmark is executed for the specified interval of time and

the completion is notified to the Provisioner. The results are stored in the Database

in real-time for further evaluation and analysis. Finally, the user is notified after

completion of the benchmarking experiment and following that cloud resources are

released.

- 65 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

4.2.2 SDBO design

Optimizer and its Formal Model. SDBO benchmarks web-application in a multi-

cloud environment. Let N represent the number of cloud providers Ci|i ∈ {1, N} where

each provider Ci has T type of hosts vi,t|t ∈ {1, T}. In our model, we assume a one-

to-one mapping between host and container. Consider C(vi,t) to be the unit cost of

using vi,t, τi,t is the time units for which vi,t is chosen to run and B is the user budget

for the benchmark, finding an optimal set of hosts for the benchmark is modelled as a

Binary Integer Linear Programming problem (BILP). The defined objective function

is given in equation 4.1 subject to constraints as given in equation 4.1a – 4.1c.

maximize:

N∑
i=1

T∑
t=1

xi,t + λ

N∑
i=1

(

T∑
t=1

xi,t −T) (4.1)

N∑
i=1

T∑
t=1

(C(vi,t)× τi,t) ≤ B (4.1a)

∀i ∀t τi,t ≥ 0 (4.1b)

∀i
T∑
t=1

xi,t ≥ 1, ∀t
N∑
i=1

xi,t ≥ 1 (4.1c)

Where, xi,t|xi,t ∈ {0, 1} is a binary variable which represents whether vi,t is selected or

not. The first factor of the optimization problem is to comprehend the maximum selec-

tion of hosts and the second considers a penalizing factor to boost the spanning of the

maximum number of cloud providers. λ is a tunable parameter which is incorporated

to maintain a balance.

Constraint 4.1a states that the total cost of benchmarking different containers running

inside the host must be less than the defined budget. Also, the cost is calculated

only if xi,t is 1 with a positive execution time for host vi,t (constraint 4.1b). Finally,

constraint 4.1c enforces the selection of at least one cloud provider and at least one

host configuration.

We developed and implemented a heuristic algorithm for the Optimizer to solve the

problem formalized above. The algorithm generates an optimized list of hosts while

satisfying all the defined constraints. The details about how to create an optimized

list of hosts are discussed in Algorithm 2. It first calculates the total cost, CT (vi1,t1) for

each selected host, vi1,t1 (line 4). It then performs a local sorting (using merge sort)

- 66 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Algorithm 1: Optimizer

Input: V 1 - list of hosts vi1,t1 selected by the user, τi1,t1 - time for executing the
benchmark on host vi1,t1, C(vi1,t1) - unit cost of using host vi1,t1, B -
budget

Output: V 2 - optimized list of hosts
1 ∀i1 finei1 = 0, V 2 = [], final cost = 0
2 for each selected provider i1 do
3 for each selected host type t1 do
4 CT (vi1,t1) = C(vi1,t1)× τi1,t1
5 end
6 Sort the host vi1,t1 in ascending order of total cost CT (vi1,t1) using Merge sort

and store in a list, Listi1
7 end
8 while (final cost ≤ B) do
9 Search the first element of all list and find the host vi1′,t1′ with smallest cost

10 if (finei1′ > 100 & ∀i1 (!empty(Listi1))) then
11 Skip Listi1 from current calculation
12 continue

13 else if (finei1′ ≤ 100 & ∀i1 (!empty(Listi1))) then
14 Add vi1′,t1′ to V 2
15 Delete vi1′,t1′ from the list Listi1′
16 final cost = final cost+ CT (vi1′,t1′)
17 finei1′ = finei1′ × 10
18 for (∀ i1 <> i1′) do
19 if (finei1 ≥ 10) then
20 finei1 = finei1/10
21 end

22 end

23 else
24 Add vi1′,t1′ to V 2
25 Delete vi1′,t1′ from the list Listi1′
26 final cost = final cost+ CT (vi1′,t1′)

27 end

28 end

for each selected cloud provider, i1 according to the increasing host cost and stores

it in a temporary list, Listi1 (line 6). Following that it selects a host with minimum

cost globally and adds to the final host list, V 2 (line 14, line 24) until the final cost is

less than budget, B (line 8). To maintain fairness and diversity among different cloud

providers, there is a provision to add a penalty if the cloud has been selected (line 17).

A host is selected only if the penalty imposed on that cloud is less than a defined value

(100 for our case) or if there are no other providers left for selection (line 10).

- 67 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Optimizer complexity analysis. The problem of orchestrating the optimized bench-

mark for a set of cloud service providers is a complex problem and involves many steps

as shown in the above sub-section. The complexity of most of the steps is constant

except the creation of an optimized list. The complexity of this step depends on the

number of cloud service providers and the number of hosts each cloud service providers

have as discussed in Algorithm 2. The time complexity is given as:

O((N ×max(Ti)) +max(Ti × logTi) + (N × (N − 1)×max(ti)))

where, (N × max(Ti)) is the complexity to compute the total cost for each selected

host, max(Ti×logTi) is time to sort the host for cloud provider with maximum number

of hosts and (N × (N − 1)×max(ti) is the complexity for searching the suitable host

based on the cost and imposed fine.

After reducing, the overall complexity is O(max(Ti×logTi)+(N×(N−1)×max(ti))).

Provisioner. Once the Optimizer generates a benchmark plan, the users can decide

whether they want to submit the plan for execution via the user friendly web interface.

If the user agrees to perform the experiment, the functions implemented in Provisioner

will be triggered. First, the Provisioner will check the connection and the requirement

of the resources on different clouds. Next, it uses a background process application,

Hangfire to create and launch the hosts on the selected cloud providers.

Flexible execution. SDBO offers two types of execution strategy (a) solitary ex-

ecution and (b) manifold execution. Solitary execution is the basic strategy where

users can set a particular time interval for evaluating the benchmark on the desired

host configuration. The performance evaluation in this case is limited as it executes

only for the particular time interval. We know that the host’s QoS performance is

highly dependent on the system parameters, e.g. current workload, network state,

etc. which may vary with time [58]. This variation is especially significant for the

web-applications due to the continuous execution and the resource preemption in the

virtualized environment.

To capture this variation, we propose manifold execution strategy that executes the

benchmark application in the same host but in multiple time intervals. The user is

- 68 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Optimizer Provisioner Provider
APIs/SDKs

Cloud
Host

Enter the information

Create an
optimized host list

Database

Store information Retrieve host
information

Retrieve optimized information

Establish

Run the

Release resources

Provision resources
(start the benchmark)

(for each host)

(Step 3)
(Step 4)

(Step 13)

(Step 6)

(Step 5)

(Step 8)

(Step 10)
(Step 9)

(Step 12)
Store results

(Step 7)

Validate information

Experimenter User
Interface

(Step 2)
(Step 1)

Store information

Notify Completion
(Step 11)

communication

benchmark

Figure 4.2: SDBO execution workflow

asked to define the number of iterations along with other parameters for the optimizer.

The optimizer then generates an optimized list of hosts which is associated with the

execution timestamps. As a result, the Provisioner can schedule the deployment and

execution based on the host configurations and its associated execution timestamps.

4.3 Execution workflow

SDBO is implemented using Microsoft ASP.NET Core 2.1 C# and Javascript. The

current version of code along with samples and installation details are available as an

open-source project on github [24].

The following describes the main steps of the execution workflow of SDBO, which is

also shown in Figure 4.2.

Define the benchmark experiment. To start the benchmark, the experimenter

needs to enter different information as depicted by Step 1 in Figure 4.2. The details

of the experiment definition are given in Figure 4.3. To define a new experiment,

first, we need a benchmark application that can be selected from the available ones

or created from the given template. Each application consists of an application image

and a load generator image. The images are referred from Docker hub or another

repository. Thus, users can refer their own images which are available on any pub-

- 69 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Define a new
Experiment

Select
Application

Select
Benchmark Host

Define
Benchmark Host

Select Load
Generator Host

Define Load
Generator Host

Select
Testplan

Create
Application

Define
Testplan

Define
Cost

Define
Iteration

Not
available

D
ATABASE

Write to Database

Read from Database

Not
available

Not
available

Not
available

Figure 4.3: Benchmark experiment definition

lic repository. The second component is the host configuration which is required to

execute the benchmark. The User Interface allows us to choose a name, description,

host type (application/load generator) and cloud-specific (e.g. credentials, template)

information. To guarantee secure communication, TLS and HTTP authentication is

also provided.

The third component is the test plan that includes all the parameters for the load

generator to create a continuous load for the benchmark application. SDBO allows

us to define the workload using a test plan where we can provide the required file (e.g.

JMX, AJAX) for continuous workload generation. New test plans can be easily added

by filling the template provided by the framework. Moreover, we also need to specify

the maximum budget, execution time for benchmark and flexible execution interval.

Validate and store the entered information. The user input may not be valid all

the time. To avoid any error caused by this, SDBO provides a validation mechanism

that uses a jQuery validation plugin for the user’s input validation (Step 2 in Figure

4.2). The user is notified to enter new information if the data is invalid. After the

data validation, all the inputs are stored in the Database (Step 3).

Create an optimized list. The Optimizer retrieves the input host information from

the Database (Step 4) to generate an optimized host list for the execution (Step 5).

At the same time, the optimized host list is stored in the Database (Step 6).

Benchmark execution. To start the benchmark execution, first Provisioner re-

trieves the optimized host list from the Database (Step 7). Next, a background pro-

cess is started which handles a separate thread for each selected experiment. For

each thread, the communication with the cloud host is established using the provider-

- 70 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

specific APIs/SDKs (Step 8) and then resources are provisioned for benchmarking

(Step 9). After completing the execution, Provisioner is notified (Step 11) and the

result is stored in the Database (Step 12) for visualization and further analysis. The

experiment result provides different performance metrics including benchmark statis-

tics (e.g. started at, benchmark length), benchmark container metrics (e.g. CPU

percentage mean, CPU percentage range, memory percentage mean, network input

total, network output total), benchmark web-server metrics (e.g. throughput, average

response time, number of requests) and Apdex rating (Apdex count, Apdex rating,

Apdex satisfied count,). Finally, the resources are released (Step 13). The whole pro-

cess is automatically repeated depending on the number of iterations specified for the

benchmark execution.

4.4 Metrics profiling

SDBO can support benchmarking for different types of web-applications including

e-commerce, social media and banking system. It does not only capture the basic

web-application features, e.g. response time, throughput illustrated in §4.4.1, but also

supports more complex and advanced metrics (see §4.4.2).

4.4.1 Basic metrics

Response Time (∆T). Response time is the total time taken by the web-application

to process a request and generate its response. It is a basic metric to evaluate the

performance of any web-application. Normally, response time depends on many factors

varying from the host infrastructure, scheduling policy and the current load on the

system to the host capability and network capacity to handle a user’s request. Average

response time µ(T) and standard deviation of the response time σ(T) is used frequently

to measure the performance of the web-applications. Lower response time represents

better performance.

Throughput (TP). Throughput represents the host performance in terms of the

number of requests that can be handled per unit time. Consider that there are total

- 71 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Table 4.1: Apdex acceptable zones

Level Satisfied Tolerated Frustated
Multiplier <= T >T or <= 4T >4T

N number of sample requests which are successfully executed in ∆t time interval where

∆t = (Start time− Finish time), throughput is calculated as TP = N/∆t.

CPU Usage (CPU). It gives the percentage of CPU used by the container while ex-

ecuting the process. We obtain this information from docker stats APIs [13] embedded

with our orchestrator.

Memory Usage (Memory). Docker stats APIs also allow us to obtain the percentage

of memory used by the monitored container.

Network Throughput (Net). This metric indicates how much data can be trans-

ferred from a client to the target container in a unit time interval and is represented

in Mega bits per seconds (Mbps).

Block I/O (I/O). Block input/output refers to the amount of data written to or

read from the block storage devices in a unit time interval and is also represented in

Mbps. We collect Net and I/O also from Docker stats APIs.

4.4.2 Advanced metrics

Based on the collected basic metrics which are stored in our database, users can per-

form more complex queries to profile the complex systems.

Apdex Score. Apdex (Application Performance Index) [4] is considered as an open

standard developed to standardize the methods for benchmarking, tracking and re-

porting the application performance. It utilizes the Response Time (∆T) to check the

user satisfaction level for an application’s performance. Based on a defined threshold

for the response time T, Apdex defines three acceptable zones namely Satisfied, Tol-

erated or Frustrated (Table 4.1) for the application performance. The threshold can

be set based on the application requirements e.g. threshold, T is set to 0.5 sec in [51].

An Apdex score is calculated using the number of requests satisfied and tolerated out

of the total requests received. The contribution of satisfied and tolerated requests for

- 72 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

the user satisfaction level is 100% and 50% respectively. Let NR, SR and TR be

the total number, satisfied number and tolerated number of requests respectively, an

Apdex score is calculated as given in equation 6.11. The value of an Apdex score lies

between 0 and 1 with higher values representing better satisfaction levels.

Apdex Score = (SR+ TR/2)/NR (4.2)

Host Stability. The stability of host machine is the metric to measure the consistency

of the system performance. It is defined as the inverse of variability experienced by

different basic metrics. Given the average µi and standard deviation σi for ith basic

system metric (i ∈M) executed for time T , variability is calculated as given in equation

4.3.

V ariability = 1/T

T∑
t=0

M∑
i=0

(σi,t/µi,t) (4.3)

Thereby, host stability is calculated as Host Stability = 1/V ariability. Hosts with

smaller stability values show that the performance is inconsistent and is not suggested

for execution.

Host Suitability. The host suitability metric represents the worthiness of a host in

terms of performance and cost. It is computed using equation 4.4.

Host Suitability = TP/Cost (4.4)

where, TP is the throughput, Cost is the per unit execution cost for that particular

host. The higher the value of host suitability the better is the host.

4.5 Evaluation

To illustrate the effectiveness of SDBO, we performed a case study using a simple

web-application benchmark. The details are presented in the section below.

- 73 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Table 4.2: Experiment host configuration

CSP Host Type CPU cores Memory Disk Price/hr($)

AWS

t2.nano 1 0.5 EBS 0.0066
t2.micro 1 1 EBS 0.0132
t2.small 1 2 EBS 0.026

t2.medium 2 4 EBS 0.052
t2.large 2 8 EBS 0.1056
m4.large 2 8 EBS 0.116
t2.xlarge 4 16 EBS 0.2112
c4.xlarge 4 7.5 EBS 0.237

m4.2xlarge 8 32 EBS 0.464
c4.2xlarge 8 15 EBS 0.476

Azure

Standard B1s 1 1 2 0.0118
Standard B1ms 1 2 2 0.0236
Standard B2s 2 4 4 0.0472
Standard F2 2 4 8 0.119

Standard B2ms 2 8 4 0.0944
Standard D2 v3 2 8 4 0.116
Standard B4ms 4 16 8 0.189

Standard A4 v2 4 8 8 0.222
Standard B8ms 8 32 16 0.378
Standard D8 v3 8 32 16 0.464

4.5.1 Experiment setup

SDBO is tested both in simulation and on a real testbed. The simulation is to test the

scalability of our proposed optimization algorithm, and the real testbed is to evaluate

the system performance. The experiment setup is detailed as follows.

Scalability evaluation. Our algorithm is tested on a Lenovo PC with Intel(R)

Core(TM) i5-6200U CPU @2.3GHz - 2.4GHz with 16 GB memory and 512 GB SSD.

We collected 20 host configurations from AWS and Azure as the input dataset shown

in Table 4.2.

Benchmark application and its deployment. SDBO is published on Google

Cloud App Engine (B2 instance class) London (europe-west2). Therefore, the users

can access the system from any place and run their benchmarking applications via

the user interface. PostgreSQL Databaseis associated with the SDBO, and stores

different configuration of hosts and benchmark images for running the experiments.

The Database is also deployed on a Google cloud n1-standard-2 instance with 2 vCPUs,

- 74 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

7.50 GB memory, 128 GB disk. All these components are running independently

following the microservice architecture.

We utilized a popular benchmark application, TPC-W[27] with SimplCommerce that

emulate the activities of a sample e-commerce web-application. This application is

containerized and used to benchmark various type of hosts on AWS and Azure as

shown in Table 4.2. The load on the web-application is created by Apache JMeter[17]

according to the test plans defined by the user. To emulate real traffic, JMeter is not

configured on the same cloud where the benchmark applications are running. The

containerized load generator is deployed on Digital Ocean cloud and the host is a

Standard droplet machine with 6 vCPUs, 16 GB memory and 320 GB SSD disk.

4.5.2 Cost optimization

In this section, we evaluate the performance of our optimizer which aims to maximize

the number of hosts within the constraint of users’ budgets and pre-defined bench-

marking time.

To highlight the advantages of the optimizer, we considered 20 host configurations

from AWS and Azure (see Table 4.2). Moreover, we assume that the user would like

to run their benchmarking experiment for 3.5 hours, with four different budgets $

0.5, $ 1.0, $ 1.5 and $ 2.0. We compared the performance of our optimized selection

method (Opt) with the random selection method (Rand).

Figure 4.4 demonstrates that the optimized option selects the higher number of host

in all the cases, compared to the random selection method. The reason is because the

optimizer always selects the host with a lower price first and then it moves to a higher

cost host. This is based on the logic that a user wants to deploy their web-application

on the cheapest hosts that can meet their QoS requirements. Our algorithm design fits

to this logic very much. However, the random selection method selects any host which

may not be cost optimized. In addition to this, our method can provide a more stable

number of hosts as shown in Figure 4.4, where the Opt has a much smaller variance

than Rand.

We also evaluate the scalability of our algorithm by simulating a scenario with a

- 75 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

RandOpt
0

2

4

6

8

10

Nu
m

be
r o

f H
os

ts

Cost=0.5

RandOpt
0

2

4

6

8

10

Cost=1.0

RandOpt
0

2

4

6

8

10

Cost=1.5

RandOpt
0

2

4

6

8

10

Cost=2.0

Figure 4.4: Comparing the optimized result with random selected result

varying number of cloud providers with each provider having 50 different host con-

figurations available. Figure 4.5 shows the execution time of different cases with an

increasing number of cloud providers varying from 1 to 30. The result shows that

the execution time only increases linearly as the number of cloud providers increases.

Moreover, the maximal execution time is 5.7 milliseconds for 30 cloud providers, which

is comparatively very small as compared to the deployment time.

4.5.3 Basic metrics profiling

In this subsection, we present the benchmark results of an optimized test case. We

select a subset of the hosts from Table 4.2 as the input to our optimizer that then

generates 6 hosts (highlighted with the gray color in Table 4.2) for benchmarking

experiments.

To obtain the throughput of each deployed benchmark application, we emulated the

bursty request, i.e. we send the maximal number of requests to the web-applications si-

multaneously without causing any response error. In other words, the web-applications

are fully saturated. Table 4.3 shows the maximal number of requests for each selected

host. Figure 4.6 illustrates the value of basic metrics (as specified in §4.4.1) of the

selected hosts, collected from the experiments.

CPU Usage. Figure 4.6a shows the CPU usage of each selected host. The result

- 76 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

0 10 20 30
Number of CSPs

2

4

6

Ex
ec

ut
io

n
tim

e
(m

s)

Figure 4.5: Schematic diagram showing the execution time complexity of the Optimizer

Table 4.3: Number of requests to saturate the host

CSP Seq Host
No. of requests

(to saturate)

AWS
A t2.small 300
B t2.medium 600
C t2.xlarge 1500

Azure
D Standard B1ms 300
E Standard B2s 600
F Standard B4ms 1500

clearly shows that CPU usage decreases as we increase the size of the host. Also, the

more powerful hosts have less variation for CPU usage. For example, the variance of

the CPU usage for the big size hosts C and F is only 7% and 5% and that for small

host A and D reaches 24% and 12% respectively. Except for small-sized hosts, the

performance of AWS to Azure is almost comparable. For the small size host, there

is a huge performance difference (52.5% degradation) as Azure has less CPU usage

compared to AWS for processing the same number of requests.

Memory Usage. The memory usage (Figure 4.6b) also shows a similar trend except

for the variation which is much less (highest is 0.76 for host E) as compared to CPU

usage. The highest memory usage is noticed for host D followed by host A with 16.1%

and 15.3% respectively. Note that the memory usage is varying only in the initial

phase, after that the usage is almost constant. It is caused by the property of the

- 77 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Docker container, the memory once allocated is not released back until the container

is terminated or restarted.

Network Throughput. The result in Figure 4.6c shows that the hosts from Azure

have about twice the network throughput, compared to the hosts from AWS. The

hosts from the same cloud provider have the same network throughput except for host

B from AWS where the throughput is much less (487.2 Mbps) than others A (889.2

Mbps) and C (869.2 Mbps).

I/O Throughput. As compared to the above three basic metrics, block I/O shows

different trends (see Figure 4.6d). The I/O throughput of AWS hosts is very random

which is because of the selected hosts that offer EBS support. Thus, the throughput

is also affected by the time elapsed between the I/O requests and EBS server [16].

Moreover, our benchmark application is block I/O intensive, so the collected statistics

are not the maximal I/O throughput of each host. This is demonstrated very well in

Azure hosts (see D, E, F in Figure 4.6d) that the I/O throughput increases with the

increase in the number of requests.

System Throughput. Figure 4.7a illustrates the throughput of different hosts. It

is clearly depicted from the figure that the throughput increases linearly with the

capacity of the host and AWS hosts have comparatively better throughput than Azure

for similar sized machine except for host B. The reason for lower throughput for

host B is the degraded network throughput as depicted in Figure 4.6c. Therefore,

the network becomes the bottleneck in this case. The highest throughput achieved by

AWS host is 8.93 requests per second (host C).

Response Time. Figure 4.7b shows the results of the response time. The results

show that the response time is significantly affected by the network throughput and the

number of requests. Figure 4.6c show that host B has the worst network throughput

which causes the significantly higher response time as shown in Figure 4.7b, i.e. 252.2

seconds. If the network throughput is constant, the response time increases with the

increase in the number of requests. Note that we try to saturate the web-application

until it reaches the maximal number of requests that it can handle without causing

errors. Thus, a large number of requests are queuing and waiting for being processed,

- 78 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

A B C D E F
Hosts

0

25

50

75
CP

U
(%

)

(a) CPU Usage

A B C D E F
Hosts

0

10

20

M
em

or
y

(%
)

(b) Memory Usage

A B C D E F
Hosts

0

1000

2000

Ne
t (

M
bp

s)

(c) Network

A B C D E F
Hosts

0

20

40

60

I/O
 (M

bp
s)

(d) Block I/O

Figure 4.6: Basic container system metrics while specifying the workload to 300 re-
quests per second with ramp up period as 0 seconds. CPU and memory usage are
given in percentage while network and block I/O throughput are in Megabits per
second (Mbps). Black bar on top represents the standard deviation.

and this is the main reason that causes a high response time for many requests.

4.5.4 Advanced metrics profiling

In this subsection, we compute different advanced metrics based on the collected basic

metrics that can help in selecting the cloud provider and the hosts for the actual

deployment.

Apdex Score. We calculate the Apdex score for the same case as discussed in §4.5.3.

Since we are considering the case of a saturated system where the response time is high,

we set the threshold for the response time to 50 second. The higher the Apdex score,

- 79 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

A B C D E F
Hosts

0.0

2.5

5.0

7.5

10.0

TP
 (R

eq
/s

ec
)

(a) Throughput

A B C D E F
Hosts

0

100

200

300

400

T
(s

ec
)

(b) Response Time

Figure 4.7: System throughput and response time. Both these metrics are calculated
by stabilizing the server with enough requests. Black bars in (b) show the standard
deviation.

Table 4.4: Advanced metrics profile

CSP Hosts
Apdex
Score

Host
Stability

Host
Suitability

AWS
A 1 1.115 286.399
B 0.15 0.790 36.313
C 0.5 0.834 42.311

Azure
D 0.8 0.921 109.979
E 0.5 0.772 104.470
F 0.4 0.846 32.042

the better users’ satisfaction. Table 4.4 shows the Apdex score for all selected hosts.

The result clearly shows that smaller hosts have better Apdex scores as compared to

larger hosts. We have explained why the smaller hosts have lower response time (see

§4.5.3 Response Time). The lowest score of 0.15 is noticed for host B due to its bad

network throughput (see Figure 4.6c).

Host Stability. A host with a higher stability value is considered best as it signifies

less performance variation with the elapsed time. The result in Table 4.4 shows that

the stability of small and large host instances are higher. The highest value is for host

A with a stability index of 1.115 followed by host D with the index of 0.921. The

worst stability index is for host E with a value of only 0.772.

Host Suitability. Host suitability is computed as discussed in equation 6.12. A

- 80 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

host with a higher suitability value is considered to be better as it provides better

throughput to cost ratio. The suitability index for the selected hosts show a downward

trend with increasing size. For both AWS and Azure, smaller machines have better

suitability values as shown in Table 4.4.

4.5.5 Flexible execution

Continuous execution of a benchmark for a longer duration is the best way to capture

the performance variation. However, the benchmarking cost in this case is very high.

To capture the performance variation of the changing environment in a defined budget,

SDBO offers the flexible execution module.

We do not have access to the cloud hypervisor, therefore, we are not able to emulate

the resource changing or preemption of the hosts. As an alternative, we emulate the

performance variation of our web-application by changing the number of requests in

a period of time. If our tool can observe the performance variation with the changing

number of requests, it can also capture the variations that may be caused by other

reasons.

To this end, we define 9 test plans, each plan is defined with a timestamp and the

number of requests need to be sent as shown in Figure 4.8 depicted by Cont. For

example, the first plan is to send 15 requests starting at 00:00 minute timestamp.

Following that, the second plan sends 50 requests starting at 30:00 minute timestamp.

We keep the web-application (benchmark application) running for 360 minutes to

cover all timestamps from the test plans. For the Opt case, we randomly selected 5

test plans and sort them based on the timestamp as shown in Figure 4.8 and Table

4.5. The web-application (benchmark application) is executed for 10 minutes, if and

only if the timestamp is reached. The above described two experiments were executed

simultaneously with the same host configuration (AWS t2.medium).

Table 4.5 shows response time and throughput collected from both scenarios. The

result clearly shows that SDBO can capture the same performance with a maximal

variation of 15% in Case I for response time and 5.9% in Case III for throughput. The

cost for the optimized method is much less than the continuous way of deployment as

the total time of deployment for Opt is only 50 minutes as compared to 360 for Cont.

- 81 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

0 100 200 300
Time (minutes)

0

100

200

300
Nu

m
be

r o
f R

eq
ue

st
s

cont
opt

Figure 4.8: Workload pattern for continuous and optimized execution

Table 4.5: Comparison of Optimized; Opt and Continuous; Cont method for Response
Time and Throughput. Values in [] represent standard deviation.

Case
No. of
Req

Response Time
(sec)

Throughput
(Req/sec)

Cont. Opt. Cont. Opt.
Case I 10 0.684 [±0.29] 0.789 [±0.36] 6.71 6.54
Case II 15 2.114 [±0.10] 2.122 [±0.15] 6.23 6.17
Case III 50 4.105 [±0.13] 4.441 [±0.18] 10.49 9.87
Case IV 200 21.381 [±1.34] 22.482 [±2.04] 6.90 6.59
Case V 300 23.463 [±6.13] 24.649 [±4.18] 7.56 7.25

4.6 Related work

The web-application benchmarks need to be deployed on various host configurations

in the multi-cloud environment. Orchestrating the systematic deployment consists of

the following steps [149]: (i) defining the benchmark with their attributes and rela-

tionships, (ii) defining the host machine configuration (e.g. CPU cores, location), (iii)

instantiating the cloud host complying the application requirements, (iv) monitoring

the resources to ensure the QoS and SLA parameters, and (v) controlling the overall

processes. Performing all these steps manually is tedious, error-prone and requires

a lot of time and diverse knowledge of architecture and accessing mechanism of all

these environments. There are different frameworks available that automate/semi-

automate the orchestration steps. [90, 130] evaluated the performance of containers

- 82 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

for scientific applications where a few of them [153, 159] evaluate for big data appli-

cations. However, most of these works are intended for a single cloud environment,

without considering the complexity of interacting with various APIs/SDKs provided

by different cloud providers.

There are few existing frameworks that handle the orchestration of benchmarks in

a multi-cloud environment. CloudBench [134] and Smart CloudBench [50] automates

the benchmark execution in multi-cloud environment. However, it is not easy to define

the benchmarks using these frameworks. Also, they are not specific to the container-

ized environment. Additionally, Varghese et al. proposed a framework called DocLite

[142] to evaluate the performance of VMs using containerized microbenchmarks. Mi-

crobenchmarks are executed on different VMs and the ranking is evaluated by using

the set of weights provided by the user for different system parameters. This frame-

work is specific for scientific application and may not be applicable for web-application.

Our proposed SDBO orchestrates the benchmark for web-application while allowing

users to define and deploy the benchmark in a very interactive and user-friendly way.

Additionally, there are some commercial tools, e.g. CloudHarmony [9], Cloud Spec-

tator [8] available that perform the benchmark for users but are not specific for a

particular application. Also, they do not provide all the required metrics specific to

that particular application for making proper decisions before final resource selection

and provisioning. The limitations of the existing work are briefly summarized as fol-

lows.

Constraints. The cloud providers offer shared computing resources to their cus-

tomers, which makes the cloud environments dynamic and the SLA very hard to

guarantee [129]. Moreover, the web-application is very sensitive to the dynamically

changing environment that directly affects user’s satisfaction. Capturing or monitor-

ing the changing behavior of the cloud environments requires the users to run their

benchmark applications over a considerable time, which is very costly. Existing bench-

mark frameworks are not able to solve the trade-off between the limited budgets and

the long-time benchmarking experiments.

Additionally, the variety of cloud providers offer a massive configuration choice of

hosts. For instance, Amazon EC2 provides 43 types of hosts for their customers

- 83 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

excluding self customized hosts. It is not possible to run the benchmark applications

overall available resources. The state-of-the-art systems do not consider this case that

provides an optimized recommendation to help users in selecting the hosts from the

massive number of available hosts spanned across multiple cloud providers.

To overcome the limitations discussed above, our proposed SDBO framework con-

tributes towards three main features. First, it automatically orchestrates any con-

tainerized benchmark application across multi-cloud environments based on the users’

specifications. This will remove the huge burden from the user side, i.e. the users

do not need to manually deploy the benchmark applications and define the bench-

mark plans over various cloud datacenters. Second, it captures the dynamicity and

the uncertainty of the cloud environment while ensuring the cost does not exceed the

users’ budget. This dynamicity and uncertainty may affect the performance of web-

application, therefore reducing users’ satisfaction [71]. Finally, we should be able to

find an optimal set of hosts for benchmarking in a fixed budget that covers the diver-

sity, in terms of host configurations, both within a cloud provider and across the cloud

providers. This feature improves the chance for a user to find the best mix of hosts

for deploying their web-applications. In other words, with our design, the users have

more chance to find the cheaper hosts which meet the performance requirements of

their web-applications.

4.7 Discussion

The experiment results show that the Optimizer of SDBO selects a higher number

of hots for benchmarking the containerized microservices as compared to the Random

selection approach. The execution time of Optimizer is also small as compared to the

deployment time. The test case experiments on real-cloud validate the orchestration

process. Results also show that SDBO can capture the performance variation of web-

application benchmark execution for a longer duration in a limited budget. The flexible

execution model can achieve the same response time and throughput as continuous

execution with a maximum 15 % and 5.9 % respectively.

- 84 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

Limitations. Although, SDBO can orchestrate the benchmarking of any type of

web-application, it is not able to orchestrate geo-distributed web-application with nu-

merous components located in different geographic locations. Also, the current chapter

performed only a small test experiment with e-commerce benchmark application. This

can be extended for a large number of host configurations and other benchmark ap-

plications.

4.8 Conclusion

To facilitate web-application benchmarking in multiple cloud with cost efficiency and

flexibility, we proposed SDBO which is the first cost-efficient web-application bench-

marking orchestrator. In this chapter, we have presented the architecture and imple-

mentation of SDBO along with some case study that shows the effectiveness of SDBO

compared to the existing frameworks. SDBO provides the smart user interface that

expedites the handling of the benchmark even for a non-expert user. Also, the cost

optimization offered by the orchestrator helps the user to select a variety of hosts while

flexible execution captures the long time performance variation in a limited budget.

Although this chapter discusses SDBO from the perspective of web-applications, it

can be easily used for HPC applications.

- 85 -

Chapter 4: Multi-cloud orchestrator for benchmarking containerized web-application
microservices

- 86 -

5
A user-centric cost-efficient

geo-distributed web-applications
deployment via automatic

benchmarking

Contents
5.1 Introduction . 88

5.2 Background and motivation . 91

5.2.1 Geo-distributed web-application 91

5.2.2 Deployment challenges . 93

5.3 System overview . 94

5.3.1 Web-application deployment model 94

5.3.2 Problem formalization . 95

5.4 System design . 97

5.5 Adaptive PSO algorithm . 98

5.6 Optimize the deployment . 101

5.6.1 Clustering . 102

5.6.2 Budget allocation . 104

5.6.3 Deployment solution generation 104

5.6.4 Benchmarking in real-world environment 105

5.7 Evaluation . 105

5.7.1 Experiment setup . 106

5.7.2 Algorithm evaluation . 107

5.7.3 Scalability test . 113

5.7.4 GWA execution in real cloud environments 114

5.8 Related work . 115

5.9 Discussion . 116

5.10 Conclusion . 117

- 87 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

Summary

In the previous chapter, we have proposed SDBO orchestrator for benchmarking sim-

ple web-application in a multi-cloud environment. However, SDBO is not able to

handle the deployment of a complex geo-distributed web-application (GWA) which is

executed across geographically separated cloud-enabled data centers to provision inter-

nationalized user requirements (e.g. currency, taxation). In this chapter, we propose

GeoDeploy; an orchestrator suitable for deployment of GWA using benchmark-

ing. We analyze the performance of GeoDeploy using both numerical analysis and

real-cloud experiment and demonstrate that our approach outperforms other baseline

methods.

5.1 Introduction

Modern web-applications (WA) like Google, Amazon and Alibaba pursue a business

model where there is a desire to offer their services to users distributed across the

globe reachable by the Internet. This global service delivery has two key constraints

(or requirements): 1) End-user of these WA spread across all over the world, and hence

ensuring quality of service (QoS) (e.g. low latency) for majority users is not trivial; 2)

Privacy and data sovereignty laws in some countries restrict the raw data transmission

across some regions [146, 157]. GDPR (General Data Protection Regulation of the

EU) restricts a transfer of the personal data between an EEA (European Economic

Area) country or non-EEA country [33].

To overcome these constraints, these services are usually geographically distributed in

a multi-cloud environment in a federated manner [91, 118, 148, 151]. An application

supported in this way is commonly referred to as a Geo-Distributed Web-Applications

(GWA).

Their deployment must be achieved across varied datacenter hardware/software sup-

porting services. An added issue in their deployment are the numerous laws and

regulations often declared at the commercial region boundaries or country borders.

Therefore, determining the optimal approach to deploy all the components that make

- 88 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

up a GWA appropriate (both legally while considering QoS issues) in a geographic

sense is a non-trivial research problem.

Content-distribution networks (CDN) [34, 44, 73] share the similar purpose, serving

users worldwide. CDN aims to deliver a large volumes of data such as video to users,

but this chapter focuses on ensuring the QoS (e.g. low latency) of a GWA. The CDN

has to handle the long-running requests and require high-bandwidths to meet QoS

requirements. Moreover, CDN does not have the restrictions of privacy and data

sovereignty laws. The GWA is designed to quickly and simultaneously respond many

users’ requests. As a result, the rich solutions developed for CDN are not applicable

for GWA.

An approach is to source a set of candidate deployment solutions and evaluate these

solutions over real environment. Various studies from academia [93, 95, 141] and in-

dustry [9, 10] evaluate the performance of cloud hosting configurations. These works

focus on computation intensive applications which tend not to be user facing in the

context of time sensitivity and interactivity, and reflect the evaluation (or benchmark-

ing) for elasticity and scalable thresholds associated to Big Data style applications.

[25, 116, 135, 138] are developed for WA benchmarking, but can only be deployed on

a cloud datacenter manually. A number of works [78, 128] also propose to automati-

cally orchestrate the WA on a cloud datacenter, benchmarking the performance of the

deployed WA. These systems do not consider a WA that has multiple components (or

replicas) and the components have some dependencies. Moreover, they fails to find

an optimized deployment solution for a given WA or GWA. Our proposed method

can be further adapted to these systems, adding an important feature to evaluate the

performance of a GWA.

All existing studies able to benchmark the deployment of WA, fails to apply for GWA

that have following challenges. 1) satisfying users distributed geographically: a suitable

deployment solution of GWA needs to meet the requirements of users spread all over

the world. The requirements mainly consist of fast response time (e.g. in millisec-

onds), privacy protection and so on. 2) diversity of the cloud resources: the cloud

providers (CPs) offer massive configurations for their hosts (e.g. virtual machines,

containers), including CPU, memory, locations and so on. This diversity outlines a

- 89 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

combinatorial challenge for optimal deployment of a GWA. 3) limited budget and time

for benchmarking: searching and benchmarking the available solutions for deploying a

GWA are vast and cannot be evaluated within limited budget (or time).

To the best of our knowledge, this is the first work that considers optimizing the

deployment of GWA in multi-cloud environments through automatic benchmarking. In

this chapter, we propose, develop and validate SDBO that automatically 1) generate

a set of candidate deployment solutions based on the requirements of the GWA, 2)

run benchmarks of these deployment solutions over real cloud environments and 3)

recommend the most suitable deployment solution based on the GWA requirements.

Although there are various GWA QoS requirements to satisfy, this work considers only

response time metrics to select a deployment solution.

SDBO incorporates a novel variant of Particle Swarm Optimization (PSO); Adap-

tive PSO (APSO) which generates a set of optimal candidate deployment solutions

considering geo-location of the cloud hosts and users of the GWA, budget limitation,

configurations of cloud hosts such as CPU and memory and costs. The choice of APSO

is based on the large solution search space with high dimensionality which converges

without being trapped in the local minima.

We summarise the main contribution of our work as follows:

• We propose SDBO, a novel user-centric cost-efficient GWA deployment orches-

trator that automatically deploys and benchmarks GWA’s in a multi-cloud en-

vironment.

• A novel algorithms Adaptive Particle Swarm Optimization (APSO) algorithm

that ensures optimal selection of candidate deployment solution.

• A comprehensive experimental evaluation using real-world multi-cloud environ-

ment to validate the performance of the proposed APSO algorithm in comparison

to the baseline methods.

Outline. In § 5.2, we outline the background and highlight the research problems

addressed by this chapter. Then, we illustrate the system design of GeoDeploy in

- 90 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

§ 5.3 followed by system design §5.4. Next, we present our proposed Adaptive PSO

algorithm (see § 5.5) and the deployment optimization (see § 5.6). In § 5.7, we evaluate

the experimental results. We give a discussion highlighting our work and limitations

in §5.9. Before drawing a conclusion in § 5.10, the related work is presented in §5.8.

5.2 Background and motivation

In this section, we first discuss the architectural details of GWA. We then analyze the

challenges of deploying applications in a geo-distributed environment.

5.2.1 Geo-distributed web-application

A GWA follows a sophisticated architecture with a set of user-interfaces deployed

close to the users in order to provide low latency. Each user-interface may have a local

database to cache the frequently visited contents. Moreover, these user-interfaces

connect to one or more central databases, because moving a large volume of data is

not easy and the sensitive data must be stored at a specific location/region due to

privacy and ethical issues [145].

Variety and uncertainty of deployment environment. The cloud computing

provides an opportunity for WA owners to realize the global deployment. Since there

are more than 267 CPs available in the marketplace, offering numerous host config-

urations at each datacenter geo-location (e.g. AWS offers 275 instances in Europe

(London) datacenter). Moreover, these hosts are inter-connected using WAN. How-

ever, the available bandwidth between a pair of DCs can be variable. The authors in

[143] reported that the ratio of the highest pair to the lowest pair bandwidth is greater

than 20 in both Amazon EC2 and Microsoft Azure.

Location matters. The response time is dramatically affected by the location be-

tween the user and the WA host. Figure 5.1a shows a huge fluctuation of the response

time when a WA is deployed on the AWS London datacenter and numerous users

are accessing from different geo-locations. It shows that the highest latency is almost

6 times to the lowest one. Additionally, Figure 5.1b shows that with the fixed host

- 91 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

L0 L5 L10 L15 L20
Location of Users

1

4

7

10
Re

sp
on

se
 ti

m
e

(s
ec

)

(a) The response time for users sending requests from different geolocations. L0
represents a specific geolocation of a User.

200 600 1000 1400 1800 2200
Number of requests

1

4

7

10

Re
sp

on
se

 ti
m

e
(s

ec
)

(b) The response time for a users with varying number of requests

Figure 5.1: The response time is affected by both location between host and user as
well as the capacity of the host.

capacity the latency increase dramatically when the host is saturated, i.e. when more

than 2000 requests are sent simultaneously.

- 92 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

5.2.2 Deployment challenges

Importance of deployment location. Assume that a company wants to open

its global business, starting to build a GWA. The central database is deployed at

its headquarters inside the UK along with a user-interface. Due to the limited bud-

get, the company can only set-up another user-interface that is deployed in China.

The users from China can experience low latency of visiting this GWA. However, if

many requests need to be redirected to the central database, the users from China

may experience huge latency because of the long-distance communication and limited

bandwidth. However, no literature has considered to tackle this issue.

Importance of choosing host types. User’s experience (e.g. response time) is sig-

nificantly dependent on the capacity of the hosts executing GWA. The cxloud providers

(CPs) offer tons of host configurations; the GWA owner may not have a clear idea of

choosing the suitable ones, without executing them. If the hosts could not provision

the sufficient computing resources, it will also cause high response time or even outage

problems. In contrast, hiring a powerful host may cause computing resources under

provisioning, which can bring dramatic resource wastage. As a result, the hosts must

be benchmarked before deploying the real GWA.

Benchmarking geo-distributed web-application. Benchmarking GWA is chal-

lenging from both system and algorithm perspective. The system challenge is that the

ideal benchmark orchestrator is able to interact with various CPs that offer different

ways to access their computing resources and automatically run the benchmark ap-

plication on these resources while providing the required evaluation results. However,

most of the research is focused on single cloud scenarios [49, 128]. [78, 79] tackled

the problem of deploying containerized web-application on multiple clouds belonged

to different CPs, but these tools fail to orchestrate a GWA benchmarking.

Regarding the algorithm challenge, the desired orchestrator has to select the host

from massive available candidates within a limited budget. This challenge is amplified

when we aim to maximize the user’s experience at a global level. In other words, the

orchestrator has not only to consider which types of hosts should be benchmarked,

but also where to run the selected hosts. As a result, the proposed algorithm needs to

- 93 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

have the following desirable properties.

Close to users. The generated benchmarking solutions need to deploy the GWA

close to its users, which is one of the important tricks for reducing the response time

significantly.

Increase the diversify hosts. If we can benchmark more diverse deployment solu-

tions, including host configuration and location, we will have more chances to find a

suitable solution.

Consider the benchmarking time and budget. To benchmark a GWA, the time

and budget must be under consideration. Both directly influence how many selected

deployment solutions can be obtained.

5.3 System overview

5.3.1 Web-application deployment model

A WA can be represented as a directed acyclic graph (DAG) Gweb = (Vweb, Eweb), where

Vweb represents the web-application components (microservices) and Eweb represents

the dependency between two related components including data flow and transac-

tions. The underlying computing resources offered by the variety of cloud providers is

assumed as a complete graph Gres = (Vres, Eres) where the nodes Vres represents the

set of available hosts provided by various cloud providers and edges Eres represents the

network connections among the hosts. Each pair of distinct nodes (vires, v
j
res ∈ Vres)

in Gres is connected by a pair of edges (ei,jres and ej,ires). A host vires is a 4 tuple system

〈c, h, loc, p〉 where, c ∈ C is a cloud provider, h ∈ H represents the host type, loc ∈ L

represents the datacenter geo-location and p represents the pricing of using the host.

Each h ∈ H is represented by 4 attributes {name, cpu, memory and storage} while p

includes the unit execution cost of vires and unit data downloading and uploading cost

from and to vjres.

To model the deployment of a web-application Gweb to the cloud providers Gres, we

use an injective mapping σ that creates a bipartite graph G = (Vweb ∪ Vres, E) where,

e ∈ E between viweb and vires indicates the component viweb ∈ Vweb is running on

- 94 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

!"#$!%#&

'(()#$
*)

'(()#$
+)

'(()#$
+,)

A

A’

B

A

B

A’

…-./0 -1
2./02′4/0 212′5

… -.
20 2′0 24 2′4
-0

Figure 5.2: An example of the bipartite graph G

host vires ∈ Vres. Let θt ∈ Θ be a deployment solution obtained by applying an

injective mapping that maps each component viweb ∈ Vweb to a unique host vires ∈ Vres
(viweb → vires). Since |Vres| � |Vweb|, the mapping should be strictly injective (not

surjective). Figure 5.2 shows an example of deploying Gweb to Gres.

As a result, we formulate our design goals as a two-phase optimization problem as

follows.

5.3.2 Problem formalization

Based on the desirable properties of the selected deployment solution, in this chap-

ter, we aim to develop an algorithm that maximizes the type of hosts and the hosts’

locations within the limited budget thereby increasing the chance of obtaining a de-

ployment option which can maximize user’s satisfaction. As a result, we formulate our

research problem as a two-phase optimization problem as follows.

First phase We aim to find a set of Θ = {θ1, θ2, ...θT} which can maximizes the

types of hosts h and the hosts’ locations loc within the defined budget B. For θt ∈ Θ,

the location of each underlying host must be unique and the type of host deploying

different components is similar in the configuration. In this paper, we consider two

types of cost: execution cost and communication cost both given in terms of time.

Equation 5.1a indicates the execution cost for θt, where P(vires) is the cost for running

vires in a unit time and O(vires) is the total execution time. The communication cost is

illustrated in equation 5.1b, Dei,jres represents the size of data transferred from vires to

- 95 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

vjres and N (E
vires,v

j
res

res) is the cost of transferring one unit of data from vires to vjres. Note

Eres is a DAG, and N (E
vires,v

j
res

res) may not equal to N (E
vjres,v

i
res

res), i.e. N (E
vires,v

j
res

res) 6=

N (E
vjres,v

i
res

res). Total cost Cθt for θt is shown in 5.1c.

Cexe =
∑
vires∈θt

O(vires)× P(vires) (5.1a)

Ccom =
∑

vires,v
j
res∈θt

Dei,jres ×N (Evires,v
j
res

res) (5.1b)

Cθt = Cexe + Ccom (5.1c)

We thus formulate our goal as an integer linear programming problem given in equa-

tion 5.2 with a set of constraints as shown in equation 5.2a-5.2c.

maximize |Θ| (5.2)

subject to:

θi 6= θj → hi 6= hj ∀θi, θj ∈ Θ, hi, hj ∈ H (5.2a)

∀θi ∈ Θ, v1
res(loc) 6= v2

res(loc), v
1
res, v

2
res ∈ θi (5.2b)∑

θi∈Θ

(Cθi) ≤ B (5.2c)

Our main aim is to maximize the number of |Θ|. It allows the developer to evaluate

more options in the aim of finding the most suitable option θbest. Cons 5.2a states

that the selected option must be unique in terms of its type of host, and each θi only

considers one type of host. Moreover, for each deployment solution θi, the location of

each host must be different as shown in Cons 5.2b. Finally, Cons 5.2c represents the

total incurred cost must be less than or equal to the total budget B.

Second phase. In the first phase, we generate a set of deployment solutions Θ.

These solutions will be deployed and executed on the real cloud environment, and the

execution results are collected. The solution with “minimal” response time is selected

and resulted for the deployment of the desired GWA.

- 96 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

Table 5.1: A summary of symbols used in the chapter

Symbols Description
Gweb = (Vweb, Eweb) Graph of GWA
Gres = (Vres, Eres) Fully connected graph of cloud provider hosts
vires ∈ Vres Host i of Gres

c ∈ C Cloud Provider for host vires
h ∈ H Host type for host vires
loc ∈ L Datacenter geo-location for host vires
θt ∈ Θ Solution t in set of solution Θ
P(vires) Unit execution cost host vires
O(vires) Total execution time for vires

N (E
vires,v

j
res

res) Unit data transferr cost from vires to vjres
Dei,jres Size of data transferred from vires to vjres
Cθtexe, Cθtcom Execution cost and transfer cost for a solution θt
Cθt Total cost of a solution θt
B User’s budget
s Population of particle
Pi, P

local
i , V eli Position, local best position and velocity of a particle

P global
best Global best position
ζ Optimization objective (maximize or minimize)

Pos Output solution set

η = |Pos| Number of output solution
ω Inertia weight
C1, C2 Self recognition and scoial constant factor
Clus = {Clus1, ..., ClusK} K disjoint clusters
uj Data point reresenting cluster center for Clusj
ai Data point representing host vires

5.4 System design

GeoDeploy is a user-centric and cost-effective middleware that aims to offer a full

stack benchmarking solutions for GWA. It is a comprehensive integration tool that

optimizes and automates the GWA deployment on multiple clouds. Correspondingly,

there are two main subsystems in GeoDeploy: benchmark planner and benchmark

orchestrator, as depicted in Figure 5.3.

Benchmark planner. When a GWA and benchmark budget are submitted to

GeoDeploy, the benchmark planner takes these information along with the collected

host information to generate a set of deployment solutions for benchmarking using our

proposed algorithms (detailed in §5.6) or other baseline algorithms such as Random

- 97 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

Benchmark planner

Host
information

Benchmark orchestrator

Load
generator

Resource
provisioner

Result
aggregator

Deployment
solutions

GWA

... ...

Provider specific API/SDK

GeoBench

Figure 5.3: System architecture of GeoDeploy

selection and Greedy approach.

Benchmark orchestrator. It first receives the set of deployment solutions generated

by the benchmark planner and performs a sanity check. It then executes those solutions

in the real cloud environment. First, the Resource provisioner automatically provision

the cloud resources and deploy the given GWA based planned deployment solutions.

It hides the complexity of cloud provider deployment in terms of accessing provider-

specific APIs, installing and accessing containers, establishing communications, etc.

Further, to evaluate the performance of the deployed GWA, the Load generator is

developed to emulate the users visiting the GWA globally. To this end, the Load

generator can automatically create a pool of clients across the world according to the

registered data centers in GeoDeploy. Each client is specified with a test plan that

contains the request sending rate, request types and the number of total requests. After

the benchmarking experiments, the Result aggregator collects the results including

users’ response time and system statistics, and then recommends a suitable deployment

solution for the given GWA.

5.5 Adaptive PSO algorithm

In this section, we present the proposed APSO (Adaptive Particle Swarm Optimiza-

tion) algorithm which is an extension of Particle Swarm Optimization (PSO) [84]. Our

proposed APSO is able to find a sub-optimal solution that minimizes or maximizes

- 98 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

the deployment cost for a given GWA. Algorithm 2 illustrates the key steps of APSO.

Algorithm 2: Adaptive PSO

Input: s - population size, Gres = (Vres, Eres) - connection graph of cloud
providers host, η - number of required solution, ζ - optimization
constraint

Output: P - list of η resulting solutions
1 for ∀i ∈ {0, s} do
2 // Initialize vectors P , V el and P local

3 Pi ← rand (0, |Vres|)
4 // Validate the solution Pi

5 Pi ← VPG (Pi)
6 V eli ← rand (−|Vres|, |Vres|)
7 P local

i ← Pi
8 // Compute the fitness function Fi
9 Fi ← fitness (Pi, Gres)

10 end
11 //Initialize the output P

12 P srt ← sort (P,F , ζ)

13 P ← P srt[0, η]
14 // Initialize the global best solution P globalbest

15 P global
best ← P srt[0]

16 //Repeat till the termination condition not reached

17 while !terminate do
18 //Update the solutions P

19 for ∀i ∈ {0, s} do

20 P new
i , V elnewi ← update (Pi, V eli, P

local
i , P global

best)
21 // Validate the updated solution Pnewi

22 P new
i ← VPG (P new

i)
23 // Compute the fitness function Fnewi

24 Fnewi ← fitness (Pi, Gres)
25 // update the local best solution P locali

26 if Fnewi � Foldi then
27 P local

i = P new
i

28 if Fnewi is better than Fglobalbest then
29 //update the global best solution

30 P global
best = P new

i

31 end
32 //Update the output P

33 P ← Replace(P new, P)

34 end

First, we initialize three vectors P = {P1, P2, ..., Ps}, P local = {P local
1 , P local

2 , ..., P local
s }

and V el = {V el1, V el2, ..., V els}. P records the current deployment solutions; each

Pi represents a solution θi. The best deployment solution obtained for each Pi during

- 99 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

𝑃𝑖

𝑃𝑏𝑒𝑠𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

𝑃𝑖
𝑙𝑜𝑐𝑎𝑙

𝑉𝑒𝑙𝑖

𝑃𝑖
𝑛𝑒𝑤

𝑉𝑒𝑙𝑖
𝑛𝑒𝑤

Inertia weight (ω)

Self Recognition
(𝐶1)

Social Constant
(𝐶2)

Figure 5.4: Movement of a solution Pi in APSO

the run-time of the algorithm is stored in P local. In V el, each V eli represents the

variable to update the value of Pi. We initialize Pi by randomly mapping a host from

Vres for each component of the GWA. The generated Pi is checked for the validity of

the deployment solution as specified by the constraints in §5.3.2 and concealed only if

found valid (Algorithm 2 Line 3-5). Otherwise, it will be discarded and a new valid

one is generated. To allow a uniform update of current deployment solution Pi to a

new one P new
i , V eli is initialized to a set of randomly generated integer values between

−|Vres| and |Vres| (Algorithm 2 Line 6). P local equals to P at this stage.

Next,the fitness value Fi of each Pi is computed by using equation 5.1c (Algorithm 2

Line 9). Here, the fitness value Fi represents the total cost Cθi for deploying Pi. Based

on the obtained fitness values, we can select η solutions P as shown in Algorithm 2

Line 12-13. ζ represents the objective of the algorithm, i.e. find a list of deployment

solutions that maximizes or minimizes the fitness value and η is the desired number

of output solutions. At the same time, we choose the Pi with best fitness value as the

global best solution P global
best (Algorithm 2 Line 15).

To find better deployment solution i.e. to update Pi to P new
i , we used three variables,

V eli, P
local
i and P global

best . Figure 5.4 shows how to update Pi using these three variables

and equation 5.3 and equation 5.4 are used to compute the new deployment solution.

- 100 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

First, we compute a V elnewi which is the key variable to update Pi, which is affected

by the three variables. Where ω defines how much V eli can contribute to the updating

process. C1 is a factor which affects similarity between P new
i and P local

i ; and C2

affects the similarity between P new
i and P global

best . We set the value of C1 and C2 as 2

suggested by [45]. The randomly generated F1 and F2, following uniform distribution

between 0 and 1, reduce the bias introduced by P local
i and P global

best . To restrict the search

space within the available host |Vres| for computing both V elnewi and P new
i , we apply

a modular operation.

V elnewi = (ω × V eli + C1× F1× (P local
i − Pi)

+C2× F2× (P global
best − Pi))%|Vres|

(5.3)

P new
i = (Pi + V elnewi)%|Vres| (5.4)

The new deployment solutions are checked and the fitness values the valid solutions

will be calculated. If the new fitness value Fnewi is better than the fitness value of

P local
i and P global

best , it should be updated (Algorithm 2 Line 27-30). Finally, we update

the solutions P by replacing the exiting solutions with that in P new which have better

fitness values (Algorithm 2 Line 32). The described steps (Algorithm 2 Line 16-30)

are repeated until it meet the termination condition.

Termination. In this chapter, the terminate is set that either repeat 100 iterations

or there is no updating of the P global
best in 30 iterations.

5.6 Optimize the deployment

This section presents the detailed description of our proposed approach which consists

of four main components, including clustering, budget allocation, deployment solution

generation and benchmarking in real-world environment.

To obtain the “best” deployment solution, each component is executed sequentially

as shown in Algorithm 3 and Figure 5.5. An input set should be provided, in which

- 101 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

Hosts

C1

C2

C3

BudgetC1

C2

C3

Deployment
solutions

Budget

Budget

Geo-distribution clouds

Deploy &
execution

Select the
best solution

Result collection

Clustering

Clustering

Clustering

Budget
allocation

Budget
allocation

Budget
allocation

Solution
Generation

Solution

Generation

SolutionGeneration

1
2

3

4

5
Generate report

Provide
web-application
and other
information

6

Figure 5.5: The execution workflow of the proposed method

the GWA, benchmarking budget B and benchmarking time O are provided by the

user, and the host information Vres including the CPU, memory, location and price,

about provider is pre-collected. In the first step, we partition the host into K clusters

(see Algorithm 3 Line 2). Next, the given budget B is allocated to K clusters in

step 2 (see Algorithm 3 Line 4). In step 3, based on the allocated budget, clustered

hosts and other provided information, a set of deployment solutions are generated (see

Algorithm 3 Line 6). The obtained solutions are automatically deployed and executed

on the corresponding hosts (step 4). Finally, the benchmarking results are collected

and then a report is generated and sent back to the user (illustrated in step 5, 6 and

Algorithm 3 Line 8). The following subsections indicate the technical details of each

key component.

5.6.1 Clustering

Our first step is to create a set of clusters to group all the nodes Vres, i.e. each node

vires ∈ Vres is mapped to one and only one cluster with all the nodes belonging to

the same cluster bearing similar host type characteristics (h ∈ H). Each host type

h is associated with many dimensions of resources such as CPU, memory, storage,

bandwidth, etc. In this chapter, our clustering algorithm considers CPU and memory.

- 102 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

Algorithm 3: : GeoDeploy’s algorithm overview

Input: Gweb = (Vweb, Eweb) - dependency graph of the web-application,
Gres = (Vres, Eres) - connection graph of cloud providers host, O -
benchmarking time, B - User’s Budget

Output: θ - obtained solution
1 // Partition the Vres hosts’ configuration into K clusters

2 K,Clus ← Clustering(Vres)
3 // Allocate B to K clusters

4 allocateBudget(Clus, B);
5 // Generate solutions for each cluster

6 Θ ←
∑

i∈K genSolution (Clusi, Bi)
7 // Benchmark the selected solutions and choose the best solution

8 θ ← Benchmark (Θ)

We employed K −means algorithm to partition the data points into K disjoint clus-

ters Clus = {Clus1, ...ClusK} [82]. Initially, each cluster Clusj is assigned with an

arbitrary cluster center uj. A data point ai included CPU and memory information

is allocated to a cluster Clusj based on the closeness to the cluster center uj using

equation 5.5. ||·|| represents the function (Euclidean function) to measure the distance

between the data point ai and the cluster center uj. With each iteration, uj is also

updated according to equation 5.6. Here cj ∈ [0, 1] in an index variable which is only

equal to 1 if ai is allocated to cluster Clusj. These steps are repeated until the cluster

center uj remains unchanged.

arg min
j
||ai − uj||2 (5.5)

uj =

∑
j(cj × ai)∑

j cj
cj = 1, 0 (5.6)

It is to be noted that the parameter K needs to be chosen and given as an input to

the K-means algorithm. Determining the number of cluster K is essential to achieve

optimal partitioning. In this work, we employed Elbow Method to find the optimal

value of K [108]. It starts with different values of k ∈ K and computes a total Intra

Cluster Variation ICVk for each cluster size k as given in equation 5.7.

- 103 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

ICVk =
k∑
j=1

∑
ai∈Clusj

||ai − uj||2 (5.7)

The optimal cluster number K appears when the difference between ICVk and ICVk+1

dropped significantly. It is worth mentioning that the clustering stage is done only

once on a host data set. The stage is repeated only when the dataset is changed.

5.6.2 Budget allocation

As we discussed above, deployment solutions are generated for each cluster, so it is

necessary to fairly distribute the given budget B to the clusters Clus. Since, the unit

execution cost P(vires) of host vires varies from one cluster to other, it is not suitable to

divide the budget B equally among the clusters. The average cost for benchmarking

a cluster is a good reference for budget distribution to ensure fairness. However,

evaluating the average cost for a cluster requires computing the cost of each possible

solution which is not feasible. Alternatively, we use the mean of solutions which have

the maximum and minimum cost as the reference to distribute the budget B. To

this end, we interact our Algorithm 4 with the APSO (discussed in §5.5). For each

cluster k ∈ K, we first obtain a solution θk with maximum cost Cθkmax and minimum

cost Cθkmin by setting the optimization constraint ζ as maximization and minimization

respectively (see Algorithm 3 Line 3-7). Next, the average cost for each cluster k,

Cθkav is computed by normalizing the maximum and minimum cost as shown in Line

9. Finally, the user’s budget B is distributed to each k cluster using the equation as

shown in Line 12 and output Bk, k ∈ {1, K} is returned.

5.6.3 Deployment solution generation

In this stage, the cluster budget Bk is distributed to find a set of solutions for each

cluster Clusk as given in Algorithm 5. First, we generate η set of solution P k for

each cluster k using APSO algorithm (Line 3). Next, each solution P k[ik] is added

individually to a final list Θfin
k till no solution can be added in the remaining budget

Bleftk (Line 6). To maximize the utilization of the budget, we combine all the remaining

cluster budget Bleftk (Line 12). Later, the budget Bleft is allocated to each cluster in

- 104 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

Algorithm 4: : Budget allocation

Input: Clus = Clus1, ..., ClusK - K clusters of cloud providers host, B - User’s
Budget

Output: Bk,∀k ∈ {1, K} - clustered budget
1 for ∀k ∈ K do
2 // Get a solution θk with maximum total cost Cθkmax
3 Θmax ← APSO(Clusk, ζ = maximization)
4 θmaxk = Θmax[0]
5 // Get a solution θk with minimum total cost Cθkmin
6 Θmin ← APSO(Clusk, ζ = minimization)
7 θmink = Θmin[0]
8 // Compute the average cost of Cθkav
9 Cθkav =

Cθkmin+Cθkmin
2

10 end
11 // Distribute the budget B

12 Bk = Cθkav∑K
k=1 C

θk
av

× B ∀k ∈ K

a descend order based on its reference (refer to Algorithm 3 Line 9) to compute more

solutions (Line 14-18). Finally, the clustered solutions Θfin
k from each k cluster are

merged together to get the final list of solution Θ′ for the real deployment.

5.6.4 Benchmarking in real-world environment

The set of solutions obtained in the previous step Θ′ is finally deployed using the

benchmark orchestrator discussed in §5.4. More details about the deployment and the

evaluations are given in §5.7. Finally, the evaluation results are collected and analyzed

to find θbest.

5.7 Evaluation

In this section, we evaluate our GeoDeploy for both algorithm and system perfor-

mance. We first performed numerical analysis on the data collected from different

cloud providers which results in a small set of deployment solutions which are then

deployed on the real-cloud environment. We compared our proposed algorithm with

some baseline methods in terms of diversity and scalability. We further show that

selected solutions obtained by our algorithm have a better user experience compared

to other methods by executing in the real multiple clouds environment.

- 105 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

Algorithm 5: Solution generation

Input: Clusk, k ∈ {1, K} - K clusters of cloud providers host, Bk,∀k ∈ {1, K} -
cluster budget

Output: Θ′ - optimized list of hosts
1 // Get a set of solution Θk for each cluster k

2 for ∀k ∈ K do
3 P k = APSO(Clusk, ζ = minimization)

4 Btempk = 0, Θk = [], ik = 0

5 while (Btempk ≤ Bk) do

6 Θfin
k ← P k[ik]

7 Btempk ← Btempk + CPk[ik]

8 ik ← ik + 1

9 end

10 end
11 // Compute the left budget Bleft

12 Bleft ←
∑K

k=1(Bk − Btempk)
13 // Utilize Bleft to add more solutions

14 for k ∈ {K, 1}, do

15 if Bleft ≤ CPk[ik] then

16 Θfin
k ← P k[ik]

17 Bleft ← Bleft − CPk[ik]

18 ik ← ik + 1

19 end

20 end
21 // Merge the solutions Θfin

k to get the final list Θ′

22 Θ′ ←
∑K

k=1 Θfin
k

5.7.1 Experiment setup

Environment for algorithm evaluation. We evaluated GeoDeploy and it com-

parison algorithms on a PC with Intel(R) Core(TM) i5-6200U CPU @2.3GHz - 2.4GHz

with 16 GB memory and 512 GB SSD.

Dataset and evaluation methodology. We considered three main cloud providers

i.e. AWS1, Microsoft Azure2 and Google Cloud3 and for each of them we selected

four datacenters allocated in UK South (London), US West (Oregon), South America

(Sao Paulo) and Asia Pacific (Singapore). As a result, the input of our algorithm

includes 776 host configurations with their execution and communication cost, which

1https://aws.amazon.com/ec2/pricing/on-demand/
2https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
3https://cloud.google.com/compute/vm-instance-pricing

- 106 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

is available on GitHub4.

In the algorithm evaluation, we compared our proposed algorithm with four baseline

algorithms namely, Random Selection - randomly select the solution till the budget

is available, Greedy with Computation Cost (Greedy) - select the solutions starting

from cheapest computation cost one till the budget is available and Clustered Greedy

with Computation Cost (Clus Greedy) - first create K clusters and for each cluster

follow Greedy with Computation Cost (Greedy) strategy, and evaluated them in three

metrics: (i) the number of obtained solutions; (ii) the diversity of the hosts in the

obtained solutions; and (iii) the utilization of the budget. To accurately determine the

effectiveness, we repeat each experiment for 20 times independently and calculate the

average.

Benchmark application and its execution environment. Once the selected

deployment solutions are obtained by our algorithm and baseline algorithms, our

GeoDeploy can automatically deploy the obtained solutions, based on the provided

host configurations, cloud providers and locations. Then, we emulated a pool of 50

users that are deployed in different geo-locations and a set of them are selected to

continuously send the requests to the deployed WA. The average response time is the

main metric for evaluating each solution.

5.7.2 Algorithm evaluation

5.7.2.1 Clustering

As we discussed in §5.6.1, we partition the host configurations into various clusters

and then perform our algorithm through the clustered hosts to increase the diversity.

This directly brings a question: what is the best cluster number? Using Elbow method,

we vary the cluster size from 1 to 11 and find the best cluster size. Figure 5.6a shows

that at the cluster size 3, a clear bent is visible which indicates it as the best cluster.

Next, we clustered our data with K = 3. Figure 5.6b depicts the generated cluster

with its centroid represented using a black circle.

We set the same inputs for all the evaluated algorithms. The budget is varied from

4https://github.com/DNJha/Middleware2020

- 107 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

0 2 4 6 8 10
No of clusters

0.00

0.25

0.50

0.75

1.00

In
tra

-c
lu

st
er

 v
ar

ia
tio

n
1e7

(a) Elbow Method

0 50 100
CPU cores

0

100

200

300

400

500

M
em

or
y

siz
e

(G
B)

(b) K-means Clustering Result

Figure 5.6: Clustering the given data to find the best cluster size (a) and clustering
result (b).

- 108 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

$100 $200 $300 $400
Budget

0

10

20

30

40

Nu
m

be
r o

f s
ol

ut
io

ns

Random
Greedy
Clus. Greedy
Proposed

Figure 5.7: Number of solutions generated. Black bar on top represents the standard
deviation.

$100 to $400, and we set the size of the data transferred among the components of

a GWA via randomly selecting values between 4.3 and 344 GB/hour. This is based

on the analysis of the real GWA workload executed on the experiment system in a

controlled environment where each user request consumes approximate 25 - 500 KB

data per seconds to repose. Based on the analysis, we assume that about 50 - 200

users attempt to access a component of GWA at any given hour.

5.7.2.2 Number of solutions vs. budget

In this subsection, we consider a WA consists of three components, i.e. one central

database and two web-servers. Figure 5.7 shows that our algorithm obtained more

solutions compared to Random and Clus. greedy for all the cases. On average our

algorithm generates 72.5 % more solutions than Random and 40.5 % more solutions

than Clus. greedy. Moreover, the proposed algorithm is comparable with the Greedy

approach with an average of 6 % less number of obtained solutions. Since Greedy

concentrates on host configurations with low computation cost, the expected number

of solutions are high, however, GWAs always have a high amount of data transfer

- 109 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

0 50 100
CPU cores

0

100

200

300

400

500

M
em

or
y

siz
e

(G
B)

(a) Random Selection Algorithm

0 50 100
CPU cores

0

100

200

300

400

500

M
em

or
y

siz
e

(G
B)

(b) Greedy Algorithm

0 50 100
CPU cores

0

100

200

300

400

500

M
em

or
y

siz
e

(G
B)

(c) Clustered Greedy Algorithm

0 50 100
CPU cores

0

100

200

300

400

500
M

em
or

y
siz

e
(G

B)

(d) Proposed Algorithm

Figure 5.8: The host diversity comparison between GeoDeploy and the baseline
methods. Each host configuration is represented as a circle in 2D space of CPU and
memory values. The triangle shows the host configurations selected by the respective
methods.

which is not covered by this approach leading to a comparable number of solutions.

Figure 5.9 shows our algorithm outperforms in utilizing budget compared to others,

which is more than 17 times better than Clust Greedy. The wasted budget for Random

is too variable, indicated by its high error rate (standard deviation) in Figure 5.9, and

on average the wastage is almost 14× as compared to our proposed approach. Again,

the wastage with Clus. Greedy is very high with an average of 16× higher as compared

to the proposed method.

To show the fair comparison result, we have also performed paired t-test where we

compared the proposed approach with baseline methods. The t-test results are based

on equation 5.8.

- 110 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

$100 $200 $300 $400
Budget

0

10

20

30

40

50

Le
ft

Bu
dg

et
 ($

)

Random Greedy Clus. Greedy Proposed

Figure 5.9: Average total unutilized Budget for different methods with varying Budget
values. Black bar on top represents the standard deviation.

t =
µ1 − µ2

Σp × 2√
n

(5.8)

where, µ1 is the mean value obtained from the proposed method, µ2 is the mean value

obtained from other baseline methods, n is the number of samples and σp =

√
σ2
1+σ2

2

2

is the composite variance. Table 5.2 gives the t-test results for the number of solutions

obtained. The result clearly shows that except for the Greedy case, proposed approach

is far batter than the other approach. As explained in §5.7.2.2, Greedy approach

finds the cheapest solution therefore it shows better performance as compared to the

proposed approach.

Table 5.3 gives the t-test results for the value of un-utilized budget. In this case,

higher negative value shows that our approach utilizes budget in a better manner.

The obtained result shows that the mean µ and variance σ2 of Random approach is

comparable to the proposed approach. The worst value is obtained for Clus. Greedy

approach.

- 111 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

Table 5.2: Paired t-test result for comparing the number of solutions obtained. The
paired comparison is performed with respect to the proposed approach. Higher the
value larger the difference (negative value for Greedy shows the better result as com-
pared to the proposed approach.

Budget Random Greedy Clus. greedy
$100 167.96 0.0 388000.0
$200 246.68 -6208.51 19660.29
$300 592.72 3104.18 41906.55
$400 574.47 -310400.0 1086400.0

Table 5.3: Paired t-test result for comparing the un-utilized budget. The paired com-
parison is performed with respect to the proposed approach. Higher the negative value
larger the difference.

Budget Random Greedy Clus. greedy
$100 -41.16 -13478.33 -167051.63
$200 -44.99 -6029.97 -19336.02
$300 -64.35 -11772.28 -8982.27
$400 -29.70 -177.44 -15849.90

5.7.2.3 Effectiveness of diversity

The key to find the most suitable hosts for a WA is to increase the diversity of the

hosts in the generated solutions. Figure 5.8 shows the diversity of results computed

by different algorithms with the budget $400, where the yellow dots are the available

hosts and the triangles represent the hosts selected by different algorithms.

The results (Figure 5.8d) clearly show that our proposed approach is scattered better

than others. Random Selection approach also provides good scatter but the total

number of solutions is 68% less the proposed algorithm. Greedy approach has the worst

diversity and the total number of solutions is 85% less than the proposed approach.

Clus. greedy has better diversity, compared to Greedy approach. However, there are

no solutions selected for smaller size host configurations as shown in Figure 5.8c. The

reason behind this is that the total budget is distributed according to the average

computation cost only. The communication is established only if the solution is valid

and selected which can not be predicted beforehand. Since GWA have high data

communication cost, none of the solutions can be selected in the allocated budget.

This results in a selection of average 75 % fewer host configurations as compared to

the proposed approach.

- 112 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

400 800 1200 1600 2000
No. of Hosts

0

10

20

30

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

P = 3
P = 6
P = 9

Figure 5.10: Total execution time obtained by varying the number of hosts and replicas
for GWA

5.7.3 Scalability test

It is necessary for our proposed approach to scale with the increasing number of hosts

and replicas of GWA components. We evaluated the scalability of our proposed ap-

proach for three GWA cases a) Problem Size P = 3, b) Problem Size P = 6 and c)

Problem Size P = 9. The number of cloud providers is set to 5. We increase the

number of hosts varying from 200 to 2000. To maintain consistency, we increased the

Budget for each case such that Budget
ProblemSize

= 50 in every case. We also set the number

of datacenter geo-locations to be 12 so that a valid solution is always generated.

Figure 5.10 depicts the result obtained. The figure clearly shows that the total ex-

ecution time does not significantly increase with increasing the number of host con-

figurations for any case. The maximum increase is visualized for P = 3 with a value

of 6 % as compared to the average value. The figure also shows that the execution

time increases with the increase in the problem size. With the increased problem size,

the algorithm complexity increase as first it needs to search more elements, second for

each new element the validity is tested and finally, the fitness function is computed.

However, the total execution time does not increase exponentially with the increasing

- 113 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

500 1000 2000
Number of requests

0

3

6

9
Av

er
ag

e
re

sp
on

se
 ti

m
e

(s
ec

)

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Random
Greedy
Clus.Greedy
Proposed

Figure 5.11: Average response time obtained by executing the methods for text data
only. Timeout represents the requests are not responded.

problem size.

5.7.4 GWA execution in real cloud environments

To evaluate the advances of our proposed algorithm, we deploy all the solutions gen-

erated from different algorithms in §5.7.2.2 with budget $100 on the real cloud envi-

ronment using the benchmark orchestrator as discussed in §5.4. In each experiment,

we evaluate the solutions by using both text data and image data and computed its

response time.

Figure 5.11 shows the average response time obtained by executing all the solutions

from different algorithms. The result clearly shows that the proposed algorithm out-

performs others with an average of 3.3× and 1.3× less response time compared to

Random and Clus. greedy respectively. One point to notice here is that Greedy ap-

proach results to timeout in all the cases as the host size is very small and is not able

to handle even 500 requests.

Similar trend is observed for image data as shown in Figure 5.12. In general, the

proposed method achieve less response time, i.e. 2.1× and 1.3× less, compared to

- 114 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

500 1000 2000
Number of requests

0

3

6

9

Av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Random
Greedy
Clus. Greedy
Proposed

Figure 5.12: Average response time obtained by executing the algorithms for image
data. Timeout represents the requests are not responded.

Random and Clus. Greedy respectively.

5.8 Related work

Web-Application benchmark. To evaluate the performance of WA, many bench-

mark tools have been developed and used by academic and industry [25, 49, 116, 135,

138, 158]. TPC-W [116], TPC-E [138] and SPECWeb2009 [25] are the are some tradi-

tional benchmarks for assessing the performance of WA. However, these benchmarks

are not suited for Web 2.0 due to the lack of interactive content and support of mobile

users. CloudStone [135] is an open-source toolkit supporting social Web 2.0 application

but the implementation of the client-side is very simple, which can not emulate the

real-world workloads. To provides a realistic client-base realization, WPBench [158]

and BenchLab [49] leverage the web browsers to emulate the users visiting the web

sites. However, benchmarking a WA requires to run the benchmark tools on differ-

ent computing resources while assessing the performance of these resources based on

the collected results. This process is complex, error-prone and should be automated.

GeoDeploy is designed to orchestrate the benchmark tool, running on multiple cloud

- 115 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

data centers automatically and cost efficiently.

Benchmark orchestrator. Various orchestartion frameworks are available for or-

chestrating benchmark applications. [51, 54, 57, 78, 109, 128]. SmartDBO [78], Cloud

WorkBench [57, 128] and Smart CloudBench [51] allow orchestrating WA benchmark

for different cloud providers. Cloud WorkBench [128] allows a reusable benchmark

definition leveraging Chef and provisioning the benchmark on heterogeneous cloud.

However, the benchmarking definition is complex. Smart CloudBench [51] not only

automates the benchmark provisioning but also provides a comparison between var-

ious cloud providers. However, both these works ignore the benchmarking cost and

time which is necessary to consider while benchmarking in cloud environment. Smart-

DBO [78] orchestrates the benchmarking process with a simple user interface allowing

users to interact. It also considers the benchmarking cost and time while selecting the

provisioning process. However, none of them can support the benchmarking of GWA.

Geo-distributed orchestration system. Orchestrating the application in geo-

distributed manner have been well studied [74, 96, 107, 150–152]. [150, 152] focuses

on optimizing the deployment of scientific workflow across federated clouds. These

applications have well-defined computation logic, which is easy to be optimized and

deployed. Orchestrating or scheduling big data systems in a geo-distributed environ-

ment is a challenge. [72, 74, 87, 96, 107, 117, 143] develop various orchestration and

optimization algorithms to efficiently run big data systems across multiple cloud data

centers while considering the limitation of bandwidths. These systems are not sensitive

to the response time for users, compared to WA, and therefore do not consider the

latency caused users’ requests are submitted from a different location. Our GeoDe-

ploy is the first system that tackles the challenge of benchmarking GWA, which aims

to maximize users’ satisfaction (e.g. low response time). The users may send their

requests from all over the world.

5.9 Discussion

Experiment results highlight the performance of GeoDeploy. Numerical analysis

- 116 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

shows that GeoDeploy can generate up to 72.5 % more number of solutions as

compared to the baseline approaches in a given budget. The results also show that the

solutions generated are more diverse as compared to any other approach. In terms of

scalability, APSO-based optimization approach is scalable with an increasing number

of cloud host, however, a slight increase is noticed when the size of GWA components

increases. Finally, the real-cloud experiment shows GeoDeploy can lead to a solution

with up to 2.1× better response time as compared to the other baseline approaches.

Limitations. While the experiment results encourage the benchmarking of GWA,

there are few other aspects to be considered. Sine the cloud environment is very

dynamic, to analyze the exact performance variation benchmark execution needs to

be performed for a longer duration. Executing benchmarks for a longer duration is very

costly and applicable. [79] used a flexible execution that schedules the benchmark for

a longer duration while actually executing for a very short time period thus, covering

the long-term variation in a defined budget. Developing similar techniques to adapt

GeoDeploy’s execution plan under the defined budget is part of our future work

plan.

5.10 Conclusion

In this chapter, we consider the problem of finding a suitable deployment option for

GWA in a multi-cloud environment using benchmarking. We argue that, in order to

find the best deployment solution, it is necessary to increase the diversity of hosts

while maintaining the dependency of GWA components for benchmarking. We design

GeoDeploy, a novel GWA benchmarking orchestrator that incorporates a variety

of novel heuristics for the above-mentioned issues. We implement GeoDeploy with

AWS, Azure and Google cloud platform but can be easily extended for any other CPs.

Experiment results confirm that GeoDeploy outperforms the baseline methods in

simulation as well as real-cloud experiments thus provide better user response time.

- 117 -

Chapter 5: A user-centric cost-efficient geo-distributed web-applications deployment
via automatic benchmarking

- 118 -

6
Deployment of streaming

application microservices in
cloud-edge environment

Contents
6.1 Introduction . 120

6.1.1 Contributions . 122

6.2 Formal model . 123

6.2.1 Basic concepts . 123

6.3 Non-functional requirements . 125

6.3.1 Problem definition . 128

6.3.2 Complexity analysis . 128

6.4 System model . 130

6.4.1 User Input . 131

6.4.2 PATHfinder . 132

6.4.3 PATHdeployer . 136

6.4.4 Time complexity . 137

6.5 Experimental evaluation . 139

6.5.1 Experimental setup . 139

6.5.2 Experimental results and analysis 140

6.6 Related work . 144

6.7 Discussion . 146

6.8 Conclusion . 147

- 119 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Summary

This chapter presents a heuristic model for the deployment of streaming application

microservices with multiple conflicting criteria in cloud-edge environment. It does so by

leveraging a well known multi-criteria decision-making method Analytic Hierarchical

Processes (AHP) and a basic deployment framework PATH2iot. The applicability of

the deployment model is validated using a real-world digital healthcare analytics use

case. The results show that our model is able to find the optimal deployment solution

with varying user preferences.

6.1 Introduction

Advances in IoT technology are transforming the society and the economy through

their widespread impact, e.g. smart homes, smart healthcare and smart agriculture.

This will continue to grow: research by Cisco predicts that 50 billion smart devices

will be connected to IoT by 2020 [52]. To extract and process the massive streaming

data collected from these data sources, several stream processing engines are developed

that run in cloud providing common programming frameworks e.g. Apache Storm [3],

Amazon Kinesis [2].

However, this cloud-based approach is not suitable for many critical IoT applications

for three main reasons. Firstly, some applications require close coupling between the

IoT data generators and actions taken based on the analysis of the data [155]. For

these applications, the centralized cloud-based analytics approach might introduce un-

acceptable message transfer delays, and there may be a major problem due to network

failure. Secondly, sending all the raw data from sensors to the cloud for analysis is not

possible in cases where it may require higher bandwidth than is available or affordable

[132]. Thirdly, sending all data to the cloud may flatten the battery of devices such as

healthcare wearables too quickly [110].

To address these challenges, an alternative approach is to run part of the application on,

or close to, the sensors that generate the data. This approach has been made possible

by the introduction of what has become known as edge devices. The development of

- 120 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

smarter IoT and edge devices, with some local storage and processing (e.g. healthcare

wearables) opens up a tremendous opportunity for local analytics. Smartphones and

field gateways can perform some basic analytic operations on the data, as well as acting

as a network bridge between IoT devices and the cloud [42, 139]. As given in [110],

executing a subset of application microservice on/near to IoT device increases the IoT

device battery hours up to 4× as compared to the entire execution on cloud.

In the literature, an IoT application can be represented using a set of queries (Qis)

which can be modelled as a directed acyclic graph (DAG) with data transformation op-

erations (Ois) as its nodes, and dataflow dependencies (or control flow dependencies for

computational synchronization, if/as needed) between data transformation operations

Oi representing microservices as its vertices (see Figure 6.1) [114]. Unfortunately, dis-

tributing applications across such a wide range of infrastructure (clouds, edge devices,

sensors) (see Figure 6.1) is an extremely challenging task for a systems programmer,

especially for critical IoT applications such as in healthcare and city management. Key

challenges include:

• heterogeneity of IoT infrastructure - applications need to be deployed across a

wide variety of heterogeneous platforms with differing programming interfaces

and capabilities (e.g. sensors may have very limited computational capabilities).

Data must be communicated between them over a variety of networks, each with

its own idiosyncrasies and limitations.

• meeting multiple, non-functional requirements - optimizing several requirements

is challenging as the requirements may be conflicting to each other e.g. perfor-

mance, energy, cost, dependability.

These challenges leads to the following research questions:

RQ 1. How to model the problem of mapping complex IoT application across dis-

tributed IoT infrastructure with heterogeneous hardware and software configurations?

RQ 2. How to compute an optimal set of hardware and software configurations for

each micro-operations/microservices of an IoT application considering conflicting non-

functional requirements?

- 121 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

O7

O8

O4 O5 O6

O1

O2 O3

Q1
Q2
Q3
Q4

O1

O2 O3

O4 O5 O6

O7

O8

IoT layer

Edge layer

Cloud layer

Figure 6.1: Distributed deployment of IoT application

Early efforts centered on the deployment of IoT applications across cloud and edge

datacenters are mostly theoretical. Moreover, these solutions have not considered au-

tomatic computation partitioning and deployment. Nor have they considered the op-

timization of multiple conflicting non-functional requirements during the deployment

process. Michalak et al. developed PATH2iot framework [110] that decomposes a com-

plex IoT application into self-contained micro-operations/microservices. Based on the

deployment criteria, PATH2iot automatically distributes the set of micro-operations

across IoT infrastructure platforms, while respecting their run-time data and control

flow dependencies. However, this work does not consider the multiple non-functional

requirements for making deployment decisions.

6.1.1 Contributions

To address the limitations of existing works, this chapter makes the following new

contributions:

1. We provide a formal model for the deployment of a general IoT application across

a distributed IoT infrastructure (e.g. sensors, edge devices, cloud).

2. We prove that the partitioning and deployment of an IoT application across a

distributed IoT infrastructure is a strong NP-hard problem.

- 122 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

3. We introduce a new heuristic model ABMO (AHP Based Multi-objective Opti-

mization) based on Analytic Hierarchical Processes (AHP) [124] for finding the

optimal deployment plan taking into account multiple, potentially-conflicting

non-functional requirements. This includes user preferences for making deci-

sions based on a set of non-functional requirements. ABMO works on the top of

PATH2iot framework.

4. A comprehensive experimental evaluation is carried out using a real-world, dig-

ital health-care scenario for verifying the performance of the proposed decision-

making technique.

Outline. The rest of this chapter is organized as follows. A formal model for the

proposed framework is presented in §6.2. It also discuss the complexity analysis of the

deployment problem. §6.4 describes the system model of the proposed framework. §6.5

evaluates the proposed framework on the real-world healthcare IoT application. §6.6

discuss the relevant related work. Before discussing conclusion in §6.8, §6.7 highlight

the results and present the limitations of this work.

6.2 Formal model

In this section, we give some basic concepts and formally define our problem.

6.2.1 Basic concepts

Definition 1. An IoT application A is a triple 〈DS,Q,Γ〉 where

1). DS represents a continuous stream of data generated by the IoT device.

2). Q = {q1, q2, ..., qk} is the set of k queries defined by the user as a description of the

computation. The set Q is logically decomposed using a stream optimization function

P() into a set of computational micro-operations O, which need to be deployed on the

processing elements, as given in equation (6.1).

O = {o1, o2, ..., ol} = P{q1, q2, ..., qk} (6.1)

- 123 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

The dependency among various micro-operations is represented by a topologically or-

dered DAG. Each micro-operation ol has specific hardware and software requirements

RH and RS respectively. Some constraints Cons are also associated with the require-

ment specification.

3). Γ represents the identity property of the application and is represented as 〈id, rH , rS, cons〉

where id is the identifier of the application, rH and rS are the set of hardware and soft-

ware requirements and cons is the set of constraints defined for the hardware/software

requirement of the application.

Definition 2. An IoT infrastructure I is a quadruple 〈D,E,C, λ〉 where,

1). D is the set of IoT devices d, each represented by a set of 4-tuple 〈id, Type, SH , SS〉

where id is the identifier, Type represents the type of device and SH and SS respectively

represents the hardware and software support provided by the device d.

2). E is the edge datacenter consisting set of edge devices e, each denoted by

〈id, SH , SS〉 where id is the identifier, SH and SS respectively represents the hard-

ware and software support provided by the edge device e.

3). C is the set of cloud datacenter components (VMs or containers) c, each denoted

by 〈id, SH , SS〉 where id is the identifier, and SH and SS respectively represents the

hardware and software capabilities provided by c.

4). λ ∈ {{D × E × C} ∪ {D × E} ∪ {D × C} ∪ {E × C}} is a set of all the available

connections from IoT device to edge to cloud.

Definition 3. The set R of non-functional requirements is a sequence of r elements

R = {R1, R2, ..., Rr} where each element Ri can have either numeric or boolean values.

Unspecified values of element Ri are denoted by ∅.

Numerous non-functional requirements may be associated with the application. Our

approach is general, but those considered in this chapter are discussed in §6.3. Fig-

ure 6.2 shows the hierarchical representation for all the non-functional requirements

considered in this chapter.

- 124 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Comm
Cost

Cloud
Cost

Edge
Cost

IoT
Cost

Edge Device
Battery

IoT Device
Battery

Find the best
deployment plan

Total Turnaround
TimeSustainability Cost ...

Figure 6.2: Non-functional requirements

6.3 Non-functional requirements

The details of different non-functional requirements considered in this chapter are as

follows.

Sustainability. This considers the energy impact in terms of the battery life of all

the IoT and edge devices. Battery life is very important to consider as it can be

a limiting factor: for example, healthcare wearables that don’t last a full day on a

single charge of the battery are not going to be used in practice. Battery power is

represented in terms of Energy Impact (EI) which is measured in Milli Joule (mJ). As

an example, the energy impact for a BLE connected IoT device EID and edge device

EIE is calculated as given in equation (6.2) and equation (6.3).

EID = OSidle +

n∑
i

c costi+

msg countD × n costD +BLEactive ×BLEdur
cycle length

(6.2)

EIE = OSidle +

n1∑
j

c costj +
msg countE × n costE +RFactive

time slice
(6.3)

Where, OSidle is the power consumption by the IoT device/edge device caused by the

operating system, c cost and n cost are the overall power consumption of the IoT

device (D) and edge device (E) for each computation and transmission respectively,

msg count specifies the number of messages transmitted from IoT device to edge device

or edge device to cloud device, BLEactive is the power consumption for the Bluetooth

- 125 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

low energy active state that is activated just after the message transfer, BLEdur is the

period of BLEactive state, cycle length is the time duration after which the whole cycle

repeats and time slice is the particular period of time considered for edge device.

The energy impact value represents the average power consumed by the IoT device

and the edge device. The battery life is inversely proportional to the energy impact.

The battery life in hours (batD) for IoT device D is computed as given in equation

(6.4).

batD ∝ (EID)−1 ⇒ batD = βD × (EID)−1 (6.4)

Where, βD is a constant called maxBat that depends on IoT device D and is given by

equation (6.5) where bat(C) is the battery capacity and bat(V) is the battery voltage.

maxBat = bat(C)× bat(V)× 3.6 (6.5)

Similarly, for an edge device, the battery life in hours batE is calculated in terms of

energy impact EIE and a device-specific constant βE as given in equation (6.6).

batE = βE × (EIE)−1 (6.6)

Total Turnaround Time. The raw data generated by the accelerometer is partially

processed by the IoT device and is then transferred to edge devices for further process-

ing. The final processing takes place in a cloud datacenter which also saves the result

for further processing (e.g. for cross-population analytics that can generate better

predictive models). The total turnaround time T 3 is given by summing the time taken

by IoT device TD, edge device TE and cloud datacenter TC from data generation to

data computation and is given by equation (6.7).

T 3 = TD + TE + TC (6.7)

Each layer performs some operation and then sends the data to the upper layer. The

time taken by IoT device TD is given in equation (6.8). The total time is equal to the

cycle length as it includes both computation time and time to send data to the edge

device.

- 126 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

TD = cycle length (6.8)

The time taken by edge and cloud datacenter are given in equation (6.9a) and (6.9b)

respectively.

TE = TE(comp) + TE→C(trans) (6.9a)

TC = TC(comp) (6.9b)

Where, TE→C(trans) is the transmission time from edge to cloud and Tx(comp) is the

computation time taken by either edge device or cloud datacenter. For the sake of

simplicity, we are not considering any waiting time or queueing time at any part of

the IoT infrastructure.

Cost. Performing the operations on either IoT device, edge or cloud datacenter incurs

some cost in terms of electricity charge, set up cost, cloud VM cost or storage cost.

There is an additional cost associated with the data transfer. The total cost (CostTotal)

is given by the sum of the cost incurred by an IoT device (CostD), edge device (CostE),

cloud datacenter (CostC) and communication cost (Costcomm). The cost incurred by

an IoT device is determined in terms of electricity cost in charging the device plus

a fixed set up cost. The electricity cost depends on the power consumed (Energy

Impact) by the device and the per unit electricity rate ρelec. The value of CostD is

given in equation (6.10a). Similarly, the cost for an edge device depends on the setup

cost and electricity cost as given in equation (6.10b). The cost for cloud datacenter

can be given in terms of launching cost and the processing and storage cost of a VM

as given in equation (6.10c).

CostD = (EID × ρelec) + CostD(setup) (6.10a)

CostE = (EIE × ρelec) + CostE(setup) (6.10b)

CostC = CostC(VMproc) (6.10c)

Data is transferred from the IoT device to the edge, and from the edge device to the

cloud. For an IoT device, the data transfer costs drain the battery (see sustainability

above) but the data transfer from edge device to cloud datacenter costs not only in

terms of the edge device’s battery charge cost but also the network charge e.g. for

transferring data over a 3G or 4G network. The communication cost is calculated by

- 127 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

multiplying the quantity of data transferred (msg countE) with the data rate charge

(ρdata) as given in equation (6.11).

Costcomm = (msg counte +msg header)× ρdata (6.11)

6.3.1 Problem definition

Definition 4:. Let A = 〈DS,Q,Γ〉 be an IoT application and I = 〈D,E,C, λ〉 be

the IoT infrastructure. A possible deployment plan ∆i is a mapping from operation

O : P(Q) to λ ∈ {{D × E × C} ∪ {D × E} ∪ {D × C} ∪ {E × C}} (∆i = O → λ) if

and only if:

1. all oj ∈ O must be mapped to some IoT infrastructure Ik ∈ I.

2. for each oj ∈ O , Ik ∈ I, if (oj → Ik) ∈ ∆ then RH(oj) � SH(Ik) , RS(oj) �

SS(Ik) and satisfied(Cons(oj))

3.
∑max

j=1 RH(oj) ≤ SH(Ik) and
∑max

j=1 RS(oj) ≤ SS(Ik).

The definition given above considers all the constraints to meet the optional deploy-

ment requirements. Condition (1) guarantees that all the operations must be de-

ployed on some IoT infrastructure. Condition (2) allocates the operations oj only

to infrastructure Ik, which satisfies their hardware requirements RH(oj) and software

requirements SH(oj), along with any other deployment constraints Cons defined for

the operation oj. Condition (3) limits the number of operations to be deployed on an

infrastructure component so that the hardware and software requirements are enough

to satisfy the demands of selected operations oj|j ∈ {i,max}.

Definition 5: Given the available possible plans ∆, find the best possible plan ∆best ∈

∆ that optimizes all non-functional requirements such that for any other plan ∆i ∈ ∆,

∆i ≤ ∆best|∀Rl ∈ R and ∆i < ∆best|∃Rl ∈ R.

6.3.2 Complexity analysis

Given an IoT application A and IoT infrastructure I, finding the optimal deployment

plan ∆best from the set of possible plans ∆ that optimizes all R non-functional re-

- 128 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Table 6.1: A summary of symbols and abbreviations used in the chapter

Symbol Explanation

A IoT application
DS Data Stream
Q Set of queries qk
Γ Identity property of the application
O Set of operations ol
P() Stream optimization function
RH Hardware requirements of micro-operation oi
RS Software requirements of micro-operation oi
Cons Constraints for micro-operation ol
id Identifier of the component A
rH Hardware requirements of application A
rS Software requirements of application A
cons Constraints for application A
I IoT infrastructure
D Set of IoT devices d
E Set of edge devices e
C Set of cloud datacenter components c
SH Hardware support
SS Software support
λ Connection between different IoT components
R Set of non-functional requirements Ri

φ Unspecified values for Ri

∆ Set of mappings ∆i for Operation O to λ
� Satisfied by
PL Set of logical plans
POD Set of all possible deployment plans
PPD Set of all physical deployment plans
M Comparison Matrix
CR Consistency Ratio
CI Consistency Index
RI Random Index
eig Maximum eigen Value of comparison matrix M
Wj Weight for non-functional requirement j
N Number of plans to shortlist
EI Energy Impact
T 3 Total Turnaround Time

quirements is strong NP-hard and can be proved by reduction from the Bin-Packing

problem.

Bin-Packing is known to be a strong NP-hard problem, which is non-solvable in any

polynomial time [63]. It is defined as: given a set of o objects with sizes s1, s2, ..., so

- 129 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

and a set of bins B1, B2, B3, ... of same capacities C, find the smallest integer k ∈ N

such that all the o objects got mapped to some bins Bi following the condition that

for any i = {1, 2, ..., k},
∑

i∈Bk si ≤ C.

Proposition 1: Finding an optimal mapping for the deployment of streaming applica-

tion in cloud-edge environment is NP-hard.

Proof: Considering the formal definition of the Bin-packing problem as given above, it

is possible to transform the Bin-Packing problem into the simplest deployment problem

in polynomial time. The transformation is as follows.

Change all the bins Bi to IoT infrastructure deployment nodes I (IoT device, edge

device or cloud datacenter components) with equal hardware capacities and no software

support. Change all the objects o to operations O with so hardware requirements, no

software requirements, no constraints and no dependency between operations.

This maps the Bin-packing problem into the simplest case of our deployment problem.

This transformation can be easily achieved in polynomial time. Thus, proves that the

simplest case of our problem is at least as hard as the Bin-packing problem which is

already strong NP-hard, making the generic streaming application deployment problem

∈ strong NP-hard.

Inherently, as given in proposition 1, finding a solution of the Bin-packing problem

in polynomial time leads to finding a solution of the generic streaming application

deployment problem in polynomial time. No such algorithm exists for any NP-hard

problem, therefore we need a heuristic algorithm to find a solution.

6.4 System model

Our proposed framework is built on top of the PATH2iot framework. Figure 6.3 sum-

marizes the internal processing of our proposed framework. The framework is divided

into three components. The first is the User Input that accepts a set of EPL queries

which defines – in high-level terms - the computation, the state of the deployment

infrastructure, and the non-functional requirements to be placed on the system. The

second is the PATHfinder implementation, where all the deployment decisions are per-

formed automatically, while the third is the PATHdeployer that performs the physical

- 130 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Non-functional
Requirements

Resource
Catalogue

User
Preferences

Computation
Description

User Input

Logical
Optimization

Physical
Optimization

Normalization

Plan
Shortlisting

Calculating
Weights

Logical
Plan

Physical
Plan

Normalized
Value

Shortlisted
Plan

Hierarchical
Structure

Multi-constraint
Optimization

Device-specific
Compilation

Weights

Optimal
Plan

Pathdeployer

Physical
Deployment

IoT
Deployment

Cloud
Deployment

Edge
Deployment

Pathfinder

Figure 6.3: Holistic representation of the deployment plan

infrastructure deployment. PATHfinder is again divided into three stages, namely,

Initial Optimization, ABMO and Device Specific Compilation. A detailed discussion

of each component is given below.

6.4.1 User Input

The whole system is driven by the following inputs:

Resource Catalogue. It holds a description of all the relevant features of the IoT

infrastructure platforms over which the computations can be distributed. This includes

the infrastructure capabilities in terms of hardware support SH and software support

SS. It represents the state of the infrastructure, i.e. a description of the available

cloud resources, IoT and Edge devices with their current state (e.g. active/disabled,

battery level, battery capacity, network bandwidth). It also holds the constraints that

need to be recognized when making deployment decisions. This includes a definition of

User Defined Functions (UDF) that are supported by the system with their placement

constraints, along with the Energy Impact coefficients for the supported operators.

The optimizer accesses this information in the form of a JSON file.

Computation Description. To allow automatic partitioning over a set of platforms,

it requires the computation to be defined in a high-level declarative language which

can be analyzed, distributed and optimized. In this chapter, we adopt the approach

- 131 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

of [110] and use a Complex Event Processing (CEP) based relational model in which

an Event Processing Language (EPL) is used to define the computation.

Non-functional Requirements. This defines all the requirements that are required

to be optimized. The set of non-functional requirements considered in this paper are

discussed in detail in §6.3. The non-functional requirements are represented by a top-

down hierarchical structure of level L where lower-level elements are grouped under

some higher-level elements based on a common property, e.g. lower-level attributes

IoT cost, Edge cost and Cloud cost are grouped as they all calculate the cost.

User Preferences. This is one of the key user inputs as it defines the relative

importance of the non-functional requirements. A user submits pairwise comparison

values for all the non-functional requirements in the form of a CSV file.

6.4.2 PATHfinder

PATHfinder is an internal module of the proposed framework and is divided into three

stages as explained below.

6.4.2.1 Initial Optimization

This stage is divided into two consecutive phases Logical Optimization and Physical

optimization. The details are given below.

1) Logical optimization. The high-level user description for the computation is

decomposed into a DAG, and the operators of the DAG are topologically sorted.

Therefore, each operation is executed in a valid sequence. Various stream optimization

techniques can be used to optimize the DAG [?]. A list of topologically sorted logical

plans PL is created that acts as input for the next step.

2) Physical optimization. This step generates a set of physical deployment plans

based on the logical plans PL generated by the previous step. For each logical plan,

it first creates all possible deployment plans POD based on the topological ordering of

the operations.

Algorithm 6 is used to shortlist the plans that satisfy the constraints and non-functional

requirements and generates a list of physical deployment plans PPD.

- 132 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Algorithm 6: Physical Optimization
Input: POD – list of optional deployment plans, RH – hardware requirements, SH – software

requirements, Cons – defined constraints, I – IoT infrastructure
Output: PPD – list of physical deployment plans

1 for all p ∈ POD do
2 if (RH(p) � RH(I) && SH(p) � SH(I) && Satisfied(Cons)) then
3 ADD POD to PPD
4 end

5 end

Table 6.2: Satty scale for assigning the priority value

Value
Priority

Scale
Value

Priority
Scale

1 Equal 7 Demonstrated
3 Moderate 9 Extreme
5 Strong 2, 4, 6, 8 Intermediate

6.4.2.2 AHP Based Multi-objective Optimization (ABMO)

This stage uses the Analytic Hierarchical Process (AHP) [124] for calculating the rank

of each physical deployment plan. The whole process is divided into four steps as given

below.

1) Calculating Weights. This step uses AHP to first find the weights for each non-

functional requirements, based on user preferences. The preferences are measured by

using Satty scale [?] as given in Table 6.2. A reciprocal comparison matrix M is

constructed from the user-preferences following the rules as given in equation (6.12).

Mij =


1, when i = j

X, when i > j

1/Mij , when i < j

} (6.12)

Before calculating the weights of the non-functional requirements, it is necessary to

check whether the provided user-preference values are consistent or not. The consis-

tency of comparison matrix is verified by checking the consistency ratio (CR) value.

CR is calculated using the maximum eigen value (eig), size of the comparison matrix

(M.size) and the Random Index (RI) values. The default RI values are given in the

Table 6.3. Equation (6.13) is used to calculate the CR.

CR = CI/RI (6.13)

- 133 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Table 6.3: Random Index (RI) value

Size 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Algorithm 7: Calculating Weights
Input: Prefjk – preference of jth non-functional requirement over kth non-functional

requirement, Rr – list of r non-functional requirements, M – Reciprocal comparison
matrix

Output: W – non-functional requirements weight
1 construct M using Prefjk following equation (6.12)
2 if (!Consistent(M)) then
3 Notify user to enter new values
4 return -1

5 else
6 W = average (principle eigen vector (M))
7 end
8 Consistent(M)

9 eig = max(eigenvalue(M))
10 CI = (eig −M.size)/(M.size− 1)
11 CR = CI/RI |RI is the Random Index as given in Table 6.3
12 if (CR < 0.1) then
13 Matrix M is consistent
14 return TRUE

15 else
16 Matrix M is inconsistent
17 return FALSE

18 end

where, CI = (eig − M.size)/(M.size − 1). If the comparison matrix M is found

to be consistent, AHP is used to calculate the final weights Wj for non-functional

requirement j. Otherwise, the user is instructed to re-enter the preference values. AHP

uses principal eigenvector to calculate the priority of each non-functional requirement.

The final weights are computed by averaging the priority values. The pseudo-code for

the whole process is explained in Algorithm 7.

2) Normalization. Directly comparing different non-functional requirement values

is not possible as each requirement can have a different data-type and range. Also, the

optimal value depends on the type of requirements: in some cases, higher is better e.g.

Battery Power, while in others lower is better e.g. Cost. It is necessary to normalize

all these values to one type and range.

The normalization is performed according to the data type of the non-functional re-

quirements e.g. boolean, numerical, etc. and the function whether to maximize or

- 134 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Algorithm 8: Normalization
Input: PPD – list of physical deployment plans, Rr – list of r non-functional requirements,

typeRj
– data type of the non-functional requirement Rj , OptionRj

– option for the
non-functional requirement Rj to be maximized or minimized, Rj(Pi) – value of jth
non-functional requirement for ith plan

Output: norm(Rj(Pi)) – normalized value of jth non-functional requirement for ith plan
1 initialize norm(Rj(Pi)) to 0 for all Rj(Pi)
2 for each Rj ∈ Rr do
3 if (typeRj

== Numeric) then
4 if (OptionRj

== maximize) then
5 Sum(Rj) =

∑
iRj(Pi)

6 norm(Rj(Pi)) = Rj(Pi)/Sum(Rj)

7 else if (OptionRj == minimize) then
8 Sum1(Rj) =

∑
iRj(Pi)

9 norm1(Rj(Pi)) = Sum1(Rj)/Rj(Pi)
10 Sum(Rj) =

∑
i norm1(Rj(Pi))

11 norm(Rj(Pi)) = norm1(Rj(Pi))/Sum(Rj)

12 else
13 option is not valid
14 end

15 end
16 if (typeRj

== Boolean) then
17 if (OptionRj

== maximize) then
18 Sum(Rj) =

∑
iRj(Pi)

19 norm(Rj(Pi)) = Rj(Pi)/Sum(Rj)

20 else if (OptionRj == minimize) then
21 swap 0 with 1
22 do same as maximize

23 else
24 option is not valid
25 end

26 end
27 if (typeRj == Unordered set) then
28 find the maximal set Rmax
29 norm1(Rj(Pi)) = size(Rj(Pi) ∩Rmax)/size(Rmax))
30 repeat the same process as in Numeric with maximize using the value norm1(Rj(Pi))

in place of (Rj(Pi))
31 end
32 if (typeRj == Numeric Range) then
33 find the optimal Range Ropt
34 norm1(Rj(Pi)) = length(Rj(Pi) ∩Ropt)/length(Ropt))
35 repeat the same process as in Numeric with maximize using the value norm1(Rj(Pi))

in place of (Rj(Pi))
36 end

37 end

minimize. The steps of normalization process are summarized in Algorithm 8.

3) Plan Shortlisting. The complexity of the Pathfinder depends on the number of

physical deployment plans. To manage the complexity of the Pathfinder, we shortlist

N plans from the full list of physical deployment plans. If the total number of the

- 135 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Algorithm 9: Plan Shortlisting
Input: PPD – list of physical deployment plans, Rr – list of r non-functional requirements,

norm(Rj(Pi)) – normalized value of jth non-functional requirement for ith plan, N –
maximum number of plans to be generated, grade(Pi) – grade of the plan (Pi)

Output: PPPD – list of shortlisted physical deployment plans
1 initialize grade(Pi) to 0 for all Pi ∈ PPD
2 for each Pi ∈ PPD do
3 for each Rj ∈ Rr do
4 grade(Pi) = grade(Pi) + norm(Rj(Pi))
5 end

6 end
7 sort grade(Pi) in descending order
8 select top N plans and store the list in PPPD

plans is less than N we can skip this step.

Algorithm 9 explains the steps involved in the pruning process. It first ranks all the

plans and finally selects the top N plans for further evaluation.

4) Multi-constrained Optimization. This step combines the final weights of the

non-functional requirement with the corresponding values of the plans to find the final

rank of the plans. This step aims to find the optimal plan over the selected plans. The

rank of each plan Pi is computed using equation (6.14), where Wj is the weight for

non-functional requirement j, and norm(Rj(Pi)) is the normalized value for the plan

Pi. The plan with the highest rank is selected for the physical execution.

Rank(Pi) =

r∑
j=0

(Wj)× norm(Rj(Pi)) (6.14)

6.4.2.3 Device-specific Compilation

Once the execution plan is derived, the framework converts the selected plan into a

deployment configuration which is finally transmitted to PATHdeployer for deployment

over the available IoT infrastructure.

6.4.3 PATHdeployer

Following PATH2iot [110], there are two stages to deploy the optimized plan: Cloud

Deployment and Edge and IoT Deployment. The two stages are detailed below.

- 136 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Cloud Deployment. is the first phase, where the framework verifies through the

ZooKeeper that the destination D2ESPer instances are available in the infrastructure

and then transmits the deployment configuration to them. The configuration infor-

mation is then parsed and dynamically compiled EPL statements are executed within

the Esper CEP engine, which is wrapped inside the D2ESPer tool.

Edge and IoT Deployment. occurs once the cloud deployment has been completed.

The configuration information is passed through a REST API endpoint. Pre-installed

agents on IoT and Edge devices pull regularly configuration from the endpoint and

once it has been received start the processing accordingly.

6.4.4 Time complexity

This section computes the time complexity of our proposed framework. Let o be the

number of operations and I is the number of IoT infrastructure components. Consider

the non-functional requirements R is represented in a hierarchical structure with L

number of levels The complexity of each phase is given below.

Path Finder. This phase is divided into three stages, and the complexity of each

stage is given below.

a). Initial Optimization: There are two steps for this stage, the complexity of Log-

ical optimization depends only on the operator reordering operation. For one Logical

optimization, the maximum complexity of operator-reordering is O(o). Varying the

window size between a given range, R1 and R2 with defined step size Step creates

{(R1 − R2)/Step} plans. Since, R1, R2 and Step is constant, the complexity for

creating a set of logical plans, PL is O(o). For Physical optimization, finding all the

possible deployment plans for one logical plan takes O(o × I) searches. Thus, the

total complexity for finding all the optional deployment plan POD for the given set

of logical plan PL is O(PL × o × I). For finding the physical deployment plan PPD,

we have to check all the available possible deployment plan making the complexity as

O(POD) = PL × o× I.

After reduction, the overall complexity for Initial Optimization step is O(PL × o× I).

- 137 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

b). ABMO: This stage consists of four steps, Calculating Weights, Normaliza-

tion, Plan Shortlisting and Multi-constrained Optimization. Calculating weights com-

pares the user preferences for each attribute by using matrix manipulation and com-

putes eigen vector as the priority values. Given n elements, the complexity to cal-

culate the normalized eigen vector is O(n3) . Considering Nlev number of attributes

at level lev and rsub,lev number of sub-attributes at level lev of subth attribute at

level (lev − 1), the complexity to calculate the normalize eigen vector is given as

O(
∑L

lev=1

∑Nlev−1

sub=1 (rsub,lev)
3). The complexity value seems large but is comparatively

very small when compared with the comparison complexity without using AHP. The

total complexity for comparing all the low level elements without using AHP is (
∑N0

sub=1

(rsub,1))3 which is >> (
∑L

lev=1

∑Nlev−1

sub=1 (rsub,lev)
3) when there are a large number of el-

ements which can be represented in a hierarchical structure. AHP reduces the com-

plexity by breaking the problem in a hierarchical structure resulting in more, smaller

comparisons.

For the Normalization step, the time taken to normalize any non-functional require-

ment value is O(PPD) irrespective of the data type. The complexity to normalize all

R non-functional requirements is O(R × PPD). Therefore, the final complexity for

Normalization step is O(R×PPD). Plan shortlisting step finds the grade for each plan

which is O(R × PPD) complex. The time taken to sort the grade values is O((PPD)2)

and finally selecting the top N plan is O(1). Therefore, the final complexity for Plan

Shortlisting is given as O((PPD)2). For final step, Multi-constrained optimization step,

the complexity to calculate the rank for plan is O(R). For all N plan, the complexity

is O(R×N) = O(R) as N is a constant. Finally, the time taken to find the best value

from sorted plan is O(N) = O(1).

Thus the total time complexity for second stage is reduced to O(
∑L

lev=1

∑Nlev−1

sub=1 (rsub,lev)
3+

R× PPD + (PPD)2).

c). Device-specific Compilation The complexity of this step is constant as there is only

one execution plan for the deployment.

Path Deployer. The complexity of this step is also constant as the deployment is

always performed for one selected plan.

- 138 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Thus, the overall time complexity of our proposed framework is summarized as O((PL×

o× I) +
∑L

lev=1

∑Nlev−1

sub=1 (rsub,lev)
3 +R× PPD + (PPD)2).

6.5 Experimental evaluation

In this section, we evaluate the performance of our proposed framework on a real

testbed.

6.5.1 Experimental setup

For experimentation, we choose a healthcare based application that captures the phys-

ical activity and blood glucose level of a type II diabetes patients [122]. To analyze the

activity, we used the Pebble Steel smartwatch that contains an embedded accelerome-

ter. The smartwatch connects to an LG G4 smartphone via a Bluetooth Low Energy

(BLE) network and the phone is then connected to the cloud via a 4G mobile network.

The data analysis uses a Step Count algorithm [160] that accepts the raw accelerom-

eter data and generates activity information. Our proposed framework automatically

decides where to place the components of the analysis while optimizing different crite-

ria (maximizing the battery life on the smartwatch and mobile phone, minimizing the

turnaround time, etc.). The starting point is a description of the required computation

as a set of EPL rules:

1. INSERT INTO AccelEvent
SELECT getAccelData(25, 60)
FROM AccelEventSource

2. INSERT INTO EdEvent
SELECT Math.pow(x× x+ y × y + z × z, 0.5) AS ed, ts
FROM AccelEvent WHERE vibe = 0

3. INSERT INTO StepEvent
SELECT * FROM EdEvent
MATCH RECOGNIZE (MEASURES A AS ed1, B AS ed2 PATTERN (A B) DE-
FINE A AS (A.ed > THR), B AS (B.ed ≤ THR))

4. INSERT INTO StepCount
SELECT count(*) AS steps
FROM StepEvent.win:flexi time batch(30, 120, 15, sec)

5. SELECT persistResult(steps, ‘step sum’, ‘time series’) FROM StepCount

- 139 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Using PATH2iot [110], the proposed framework can interpret this into a graph of basic

operations, and then considers all the possible solutions that map these operations

onto the available IoT infrastructure (Pebble watch, mobile phone and cloud). For

each option, a cost is derived, and the one that has the maximal value of the non-

functional requirements is selected.

In order to calculate the energy consumption of the Pebble Steel watch and the Mobile

Phone, we must know the energy consumption of performing each operation (i.e. per

sample received from the accelerometer). A series of experiments were conducted in

which the watch and the mobile phone was connected to a Monsoon Power Monitor to

measure the energy expenditure with each executed operation. Based on Central Limit

Theorem (CLT), we assume that the entire data set follows Gaussian distribution.

Therefore, we compute the 95% confidence interval (Conf) using equation (6.15),

where sd and X̄ are the standard deviation and mean of the sample and n is the size

of the sample. The results are shown in Table 6.4 and Table 6.5. Notably, the Energy

Impact shown in the two tables represents the mean of the sample.

Conf = X̄ ± 1.96× sd√
n

(6.15)

To calculate the battery life resulting from each option, we need to know the overall

capacity of the battery. The battery capacity and battery voltage of Pebble watch and

LG G4 are 130 mAh, 3.7 V and 3000 mAh, 3.85 V respectively. The maxBatteryLife

of Pebble watch and Mobile Phone βD and βE is calculated as βD = 130mAh×3.7V ×

3.6 = 1731.6J and βE = 3000mAh× 3.85V × 3.6 = 41580J .

To calculate the total transmission time from Mobile phone to cloud, we considered

the Wi-Fi data rate from our phone (30 Mbps). Also, to calculate the Total Cost,

we considered the standard electricity cost (ignoring the average fixed cost) as £0.155

/KWh [5] and standard data-rate cost as £0.01 /MB [22]. We have neglected the VM

cost for our experiment as the VM cost is almost the same for all the cases.

6.5.2 Experimental results and analysis

We have compared three scenarios, where different non-functional requirements of the

IoT infrastructure have been monitored. The detail of these scenarios are as follows:

- 140 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Table 6.4: Power Consumption Coefficients for the Pebble Steel Watch.

Operation Energy Impact (mJ) 95% Conf Int

OSidle 1.78 ± 0.0370
25 Hz sampling 0.06 ± 0.0153

SELECT 0.09 ± 0.0416
ED 0.34 ± 0.0665

POW 0.03 ± 0.1039
WIN 0.06 ± 0.0605

net cost 5.06 ± 0.2747
BLEactive 12.12

Table 6.5: Power Consumption Coefficients for the LG G4 mobile phone.

Operation Energy Impact (mJ) 95% Conf Int

OSidle 56.28 ± 4.520
n cost 161.62 ± 6.813

RF active 2497.10 ± 226.288

1) Baseline. The generated raw accelerometer data (under 25 Hz) is streamed from

the Pebble Steel watch to the cloud as quickly as possible. Given the software restric-

tions, this is done in a batch of 10 accelerometer samples, therefore with a frequency of

2.5 messages per second. This scenario gives the best Turnaround Time but consumes

maximum energy.

2) Optimized by energy. The main focus, in this case, is to optimize the energy

consumption of IoT devices to increase the battery running hours. This is outlined in

[110], where, the optimizer selects the deployment plan where some of the operators are

placed on the wearable watch, reducing the amount of data required to be transmitted

and pushing windows closer to the data source in this case directly on the wearable

device, with a fixed window size of 120 seconds, greatly reducing the energy required to

keep the Bluetooth connection opened. The result shows that we achieved a significant

improvement in the energy consumption of the wearable device of 453% as compared

to the Baseline approach. However, the Turnaround Time in this scenario is higher as

compared to the Baseline approach.

3) Optimized by multiple conflicting criteria. Depending on the type of appli-

cation and user requirements, the module automatically selects the best deployment

plan. It can be easily converted to the previous scenarios i.e. Baseline or Optimized by

- 141 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

energy by setting up the user preference highest for Turnaround Time or Sustainability

respectively. To illustrate the effectiveness of our proposed plan, we considered three

cases with different user-preferences, as given below:

Case 1: In this case, the battery constraints are more important, so making the user-

preferences inclined towards sustainability. The comparison matrix, C1 for level

1 is given below. For other levels, we considered an equal priority for all the

attributes.

C1 =

Sus. T 3 Cost

Sus. 1 7 9

T 3 1/7 1 2

Cost 1/9 1/2 1

Case 2: In this case, total turnaround time has a higher preference as compared to

other non-functional requirements. The comparison matrix, C1 for this case is

given below:

C1 =

Sus. T 3 Cost

Sus. 1 1/7 2

T 3 7 1 9

Cost 1/2 1/9 1

Case 3: In this case cost has given higher preference as compared to other non-

functional requirements. The comparison matrix, C1 for this case is shown below:

C1 =

Sus. T 3 Cost

Sus. 1 2 1/7

T 3 1/2 1 1/9

Cost 7 9 1

After completing the Initial Optimization stage, a total of 108 optimal plans got se-

lected which acts as input for the ABMO. After execution of ABMO, the final result

gives Plan107, Plan9 and Plan1 for the physical deployment in Case 1, Case 2 and

- 142 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

IoT bat.

Edge bat.

T3

IoT cost

Edge cost

Comm. cost

0.01
0.02
0.03
0.04
0.05

Plan 1
Plan 9
Plan 107

Figure 6.4: Normalized non-functional requirement values for selected plans

Case 3 respectively. Figure 6.4 presents a clear comparison of the normalized values

for all three selected plans. The figure clearly shows that Plan1 has the best normal-

ized value for communication cost and T3 with the value of (0.0157 and 0.0179) as

compared to Plan9 and Plan107 with values of (0.0010 and 0.0082) and (0.0003 and

0.0045) respectively. However for remaining non-functional requirements, Plan9 and

Plan107 gives better results.

Based on the user preference values, the final rank is calculated as discussed in §6.4.2.2.

Depending on the users’ preferences, our proposed approach always select the optimal

solution. Figure 6.5 shows the actual rank value for the best three plans. For Case

1, Plan107 has the highest rank value of 0.0345 followed by Plan9 with the rank

value of 0.0261. For Case 2, the highest rank (0.0187) is shown for Plan9 followed

by Plan107 (0, 0158). Finally, for Case 3, Plan1 gives the best result (rank value of

0.0128) followed by Plan107 (rank value of 0.0124).

- 143 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

Case 1 Case 2 Case 3
Plans

0.00

0.01

0.02

0.03

Ra
nk

 v
al

ue

Plan 1
Plan 9
Plan 107

Figure 6.5: Final rank in different cases

6.6 Related work

Compared to the web-application, the current streaming application needed to be

distributed and deployed across the edge and cloud environment. As discussed in §1.1

edge devices bring multiple challenges. The deployment problem of stream processing

in the cloud environment has been extensively studied in the literature. Frameworks

such as Stream [35], Flextream [70], Naiad [113], Cayuga [46] from academia and

Apache Storm [3], Amazon Kinesis [2], Google MillWheel [31], Time-Stream [119]

from industry are common examples of stream processing frameworks. However, these

approaches are limited only to the cloud environment.

Very few models are available in the literature that considers the deployment of stream-

ing application across edge and cloud environments. Work in [69] presents a Mobile

Fog framework for large-scale distributed streaming applications in the edge-cloud en-

vironment. The model is very simple and is evaluated for a traffic data stream using

Omnet++ [140] simulator. [125] proposes a theoretical model for the deployment of

IoT application in fog computing infrastructure. It analyses the latency and energy

- 144 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

performance in fog environment and compares with that in the cloud environment.

[127] proposes a programming infrastructure, Foglets for distributing the deployment

across edge and cloud environment. Foglets are used for managing the distributed

deployment of the application with latency and sensor mobility parameters taken into

account. The evaluation is performed by simulating a vehicular network workload on

Docker-based foglets.

In [144], an infrastructure model, LEONORE, is presented that provisions applications

on resource-constrained edge devices. It uses both pull (allowing independent schedule

provisioning) and push (allowing immediate schedule initiation) based mechanism for

flexibility and control over the deployed application. Using the distributed provisioning

mechanism, it improves the scalability and reduces the network delay. However, the

model does not consider the application’s QoS requirements in the deployment process.

Kea [56] is another system for offloading the sensor data computational for processing

on edge or cloud. It is based on the application metric profiling performed beforehand

and the user’s weight for all the metrics. It also takes into consideration the hardware

capabilities, communication energy and latency costs. Similar work is done in [81]

which considers the problem of dynamic computation offloading in wearable healthcare

devices. An improvement of 21.1% in battery life is achieved by partitioning the

computation between the wearable and a mobile device However, the approach is

derived and validated using a simulation environment. Also, the main focus of both

these works is to make a decision about offloading the data processing to cloud or not.

A general model to support QoS-aware deployment is presented in [47], where a multi-

component IoT application is deployed across fog infrastructure. The fog infrastructure

here considers both edge and cloud environment. A simple Java-based prototype,

FogTorch is presented to illustrate the proposed model. Although the deployment of

an application across the IoT infrastructure is considered, it does not address how

to optimize the deployment solution. Also, this is an abstract model that does not

consider how to generate the distributed IoT application and how to perform the

physical deployment.

In addition to these frameworks, various simulation environments are proposed for

- 145 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

modelling the application deployment in edge-cloud environment e.g. iFogSim [67],

EdgeCloudSim [137] and IotSim-Edge [76]. However, these environments are very

generic and are not able to give the infrastructure specific performance evaluation.

Early efforts centered on the deployment of IoT applications across cloud and edge

datacenters are mostly theoretical. Moreover, these solutions have not considered

automatic computation partitioning and deployment. Nor have they considered the

optimization of multiple conflicting non-functional requirements during the deployment

process. In this chapter, we implemented and evaluated an optimized framework to

find a suitable deployment solution for the distributed stream processing application.

The framework incorporates the user preferences along with a high-level computation

description to generate the deployment solution which optimizes the conflicting non-

functional requirements.

6.7 Discussion

The experiment results highlight the applicability of the proposed framework for a

healthcare-based step-count application. The results show that our proposed ap-

proach can find the most suitable solution for any user preferences. Although the

proposed approach uses the hierarchical-based management method for making the

deployment decision, it can also be done using fully distributed-based management

approach. However, the hierarchical approach has smaller time complexity as it cat-

egorizes the non-functional attributes into smaller groups which are then compared

within the group to compute the respective weights. On the contrary, the distributed

approach compares all the attributes exhaustively which makes the computation larger

and time-consuming.

Limitations. Although, the proposed work obtains the optimal deployment solution,

the whole process is static i.e. the deployment solution is found before the actual

deployment. This may not be suitable for cases where the user preference changes at

run-time, for example, if the battery of IoT device is found to be less than a minimum

value, IoT device will stop transferring data to the cloud. Such a decision can only

- 146 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

be possible if the deployment decision can be made dynamically. This requires the

deployment plans to adjusted automatically with the changing environment.

6.8 Conclusion

The proposed framework provides a novel framework to facilitate the partitioning and

deployment of streaming application across the distributed IoT infrastructure. The

case study shows that the proposed framework always chose the optimal deployment

plan based on user preferences. The approach is very general; while we have described

a healthcare use case in this chapter, it can be directly applied to any other domain in

which non-functional requirements are vital. The system also works well when a model

derived by machine learning is used to classify, or predict behavior: in this case, the

model is simply treated as an operation in the computational graph, and the proposed

framework is then used to decide where to place it in order to meet the non-functional

requirements. Finally, whilst the focus of this chapter is on stream processing IoT

application, the approach can be easily applied to batch query processing workload.

To this end, a batch query can be modelled as an operation, within our IoT graph,

deployed at either edge or cloud layer. Since batch processing is normally executed

over massive historical data, batch query operation is most likely to be mapped to the

cloud layer.

- 147 -

Chapter 6: Deployment of streaming application microservices in cloud-edge
environment

- 148 -

7
Conclusion

Contents
7.1 Thesis summary . 150

7.2 Future research directions . 153

7.2.1 A generic benchmarking orchestrator 153

7.2.2 Modelling the benchmark metrics to handle the infrastructure
uncertainty . 153

7.2.3 Run-time migration of microservices 153

7.2.4 Simulation models for digital twins 154

- 149 -

Chapter 7: Conclusion

Summary

In this chapter, we firstly summarize the research work presented in this thesis. We

then outline the contributions and discuss open research problems in the field that

could guide future work.

7.1 Thesis summary

The evolution of microservice architecture that modularizes the application into smaller

independent components (known as microservices) gives the flexibility for developers

to engineer an application with independent, self-contained and portable run-time

components. Complemented with containers, microservices can be deployed across

any cloud and edge environment. However, deployment of microservices is challeng-

ing as it requires efficient and scalable techniques that undermine the heterogeneity

of underlying infrastructure and provides a näıve platform. Based on the application

requirements, the techniques also need to handle the functional and non-functional

requirements in an optimal manner.

In this thesis, we explored numerous challenges for the deployment of microservices

in a cloud and edge environment, and proposed solutions that ease the deployment

process. In particular, this thesis contributes as

Chapter 2 first presents an overview of microservices and the available deployment

environments. It then evaluates the current work on the performance character-

ization of microservices which is one of the key features for making any deploy-

ment decision. Based on the requirements of the application microservices, we

discuss the relevant related work and highlights the research gap. To bridge this

gap, in this thesis we proposed a set of algorithms and frameworks facilitating

the deployment of microservices.

Chapter 3 discusses the performance evaluation of containerized microservices for

HPC applications in the interfering environment with cases of inter-container and

intra-container interference. It uses CEEM methodology [101] to evaluate the

- 150 -

Chapter 7: Conclusion

performance of all these microservices. The results present comprehensive details

about the performance variation of containerized microservices. The results show

that:

– Executing multiple microservices inside a container is also a feasible de-

ployment option as the result shows that the performance is better than

the baseline performance for some cases.

– The interference caused by microservices with similar resource requirements

is always higher as compared to the microservices with different resource

requirements. Also, the effect of interference is higher for intra-container

scenarios than inter-container scenarios. The performance in intra-container

scenarios is worst for network-intensive stream operations.

– The result also shows that the performance of containerized microservies are

comparable with either cgroups enabled or disabled if the system resources

in both cases are exactly the same.

Chapter 4 presents an orchestrator, SDBO for the deployment of simple web-application

microservices in a multi-cloud environment. The proposed approach offers a user

interface for users to define or select from the available benchmarks and cloud

host configurations. Users also set the benchmark duration and a maximum bud-

get for the benchmark. The inbuilt Optimizer component of the orchestrator uses

a heuristic method to find a subset of cloud hosts for executing the benchmarks

and then the Provisioner executes the benchmark on a real cloud infrastructure.

SDBO is validated with SimplCommerce web-application executing on AWS and

Azure cloud environments. With flexible execution, SDBO provides a long time

performance within the limited budget. Result shows that:

– Optimizer is able to choose a higher number of host configurations as com-

pared to random selection algorithm. It also shows that the time complexity

of the optimizer does not increase exponentially with the increasing number

of cloud providers.

– Various system parameters result from the Provisioner which facilitates the

fair comparison of host configurations for the selection of an optimal one.

- 151 -

Chapter 7: Conclusion

– For a varying workload pattern, flexible execution matches the performance

achieved by continuous execution, thus guarantees the longer duration per-

formance within a limited budget.

Chapter 5 presents a deployment framework for complex web-application microser-

vices in cloud environments using benchmarking. Emphasizing a complex geo-

distributed web-application, it presents GeoBench, which first receives user re-

quirements from the user (web-application graph, number of components, bud-

get, etc.) and finds a suitable deployment solution. The Benchmark Planner

component has an attached database storing the cloud host configuration in-

formation. It leverages K-means clustering [82] and PSO [84] to generate a set

of deployment solutions which increases the number and diversity of the cloud

hosts. The Benchmark Orchestrator component orchestrates the execution of

benchmark in the real cloud environment. Experiment results shows that:

– On average, GeoBench is able to find more diverse options in the multi-cloud

environment as compared to the state-of-the-art methods (e.g. Random,

Greedy). Also, it utilizes the users’ budget in an optimized manner.

– Benchmark Planner can be easily scaled with the increasing complexity of

applications (number of microservice components) and the number of cloud

host configurations.

– Cloud execution result confirms that GeoBench is able to find better solu-

tions as compared to the state-of-the-art methods for different data-types.

Chapter 6 discusses the deployment of streaming application microservices in IoT

environments. Emphasizing the deployment of complex streaming applications,

which is an NP-hard problem, it presents ABMO which extends the basic PATH2iot

[110] framework. ABMO presents a heuristic model which leverages AHP [124]

for selecting a suitable deployment option in the IoT environment. The model

receives the computation description, non-functional requirements, resource cat-

alogue and user preferences as input. Using the basic PATH2iot, it computes

the physical optimized plans which acts as input for the multi-constrained opti-

mization. The weights of non-functional requirements are also computed along

- 152 -

Chapter 7: Conclusion

with their normalized value. Finally an optimal plan is selected which is then

deployed on the IoT environment. The case study shows that based on user

preferences, ABMO always selects the optimal deployment plan.

7.2 Future research directions

Microservice architecture can be extended and generalized for many other types of

application, where their applicability is yet to be reviewed. Here we provide motivation

for a number of areas of future research, which can be inspired by the work done in

this PhD thesis.

7.2.1 A generic benchmarking orchestrator

In the current work, we implemented an orchestrator for benchmarking web-applications.

The orchestrator can also benchmark HPC applications. However, currently it does

not support orchestration of batch processing applications or machine learning applica-

tions. Additionally, the orchestrator is focused only on the cloud environment. Future

work could address the design of a generic orchestrator which is able to benchmark

any type of application executing in the cloud-edge platforms.

7.2.2 Modelling the benchmark metrics to handle the infras-
tructure uncertainty

In the current work, we analyzed the obtained benchmark metrics to find a suitable

solution. Also the flexible execution allows the users to execute the benchmark in any

pre-defined timestamp. Future work can leverage the feature of flexible execution and

develop an advanced sampling method to collect the system metrics that can be fed

to some machine learning methods to have a better observation of the uncertainty in

cloud and edge environments.

7.2.3 Run-time migration of microservices

The QoS performance of microservices needs to be guaranteed. Since the cloud-edge

system performance changes abruptly, it is necessary to manage the deployment of

- 153 -

Chapter 7: Conclusion

microservices at run-time. Future research can combine the current benchmark metrics

with the live monitoring data to make a deployment decision.

7.2.4 Simulation models for digital twins

Digital twins [60] represent virtual replicas of a physical device or system which can

be used for numerous purposes including system analysis and problem identification.

Benchmark results integrated with real-time simulation can be easily employed for

performing various analysis in digital twins.

- 154 -

Bibliography

[1] Amazon aws. Available at https://aws.amazon.com/.

[2] Amazon kinesis. Available at https://aws.amazon.com/kinesis/.

[3] Apache storm. Available at http://storm.apache.org/.

[4] Apdex. Available at http://www.apdex.org/index.html.

[5] Average variable unit costs and standing charges for standard electricity in uk.
Available at https://www.gov.uk/government/uploads/system/uploads/ attach-
ment data/file/357808/qep 224.xls.

[6] Bonnie++. Available at https://www.coker.com.au/bonnie++/.

[7] Chef. Available at https://www.chef.io/.

[8] Cloud spectator. Available at https://cloudspectator.com/.

[9] Cloudharmony: transparency for the cloud. Available at https://cloudharmony.
com/.

[10] Cloudorado: Cloud computing comparison engine. Available at
https://www.cloudorado.com/.

[11] Docker. Available at https://www.docker.com.

[12] Docker hub. Available at https://hub.docker.com/.

[13] Docker stats. Available athttps://docs.docker.com/engine/reference/commandline/stats/.

[14] Google cloud. Available athttps://cloud.google.com/.

[15] Intel math kernel library benchmarks. Available at https://software.intel.com/
en-us/articles/intel-mkl-benchmarks-suite/.

[16] I/o characteristics and monitoring. Available at https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/ebs-io-characteristics.html/.

[17] Jmeter. Available at https://jmeter.apache.org/.

[18] Kolla. Available at https://wiki.openstack.org/wiki/Kolla.

[19] Lxc: Linux containers. Available at https://www.linuxcontainers.org.

[20] Microsoft azure. Available at https://azure.microsoft.com/en-gb/.

[21] The netperf homepage. Available at https://hewlettpackard.github.io/netperf/.

[22] Pay as you go rates on three. Available at http://www.three.co.uk/Store/Pay
As You Go Price Plans.

- 155 -

[23] Rubis. Available at http://rubis.ow2.org/.

[24] Sdbo. Available at https://github.com/smartdockerbenchmarkingorchestrator/Smart-
Docker-Benchmarking-Orchestrator.

[25] Specweb2009. Available at https://www.spec.org/web2009/.

[26] Stream benchmark. Available at http://www.cs.virginia.edu/stream/.

[27] Tpc-w. Available at https://cs.nyu.edu/totok/professional/software/tpcw/tpcw.html.

[28] Wkibook. Available at https://www.wikibooks.org/.

[29] Y-cruncher - a multi-threaded pi-program. Available at
http://www.numberworld.org/y-cruncher/.

[30] M Aazam and E.-N Huh. Fog computing micro datacenter based dynamic re-
source estimation and pricing model for iot. In 2015 IEEE 29th International
Conference on Advanced Information Networking and Applications, pages 687–
694. IEEE, 2015.

[31] T Akidau, A Balikov, K Bekiroğlu, S Chernyak, J Haberman, R Lax, S McVeety,
D Mills, P Nordstrom, and S Whittle. Millwheel: fault-tolerant stream process-
ing at internet scale. Proceedings of the VLDB Endowment, 6(11):1033–1044,
2013.

[32] A Al-Fuqaha, M Guizani, M Mohammadi, M Aledhari, and M Ayyash. Internet
of things: A survey on enabling technologies, protocols, and applications. IEEE
communications surveys & tutorials, 17(4):2347–2376, 2015.

[33] J. P Albrecht. How the gdpr will change the world. Eur. Data Prot. L. Rev.,
2:287, 2016.

[34] S Androutsellis-Theotokis and D Spinellis. A survey of peer-to-peer content
distribution technologies. ACM computing surveys (CSUR), 36(4):335–371, 2004.

[35] A Arasu, B Babcock, S Babu, J Cieslewicz, M Datar, K Ito, R Motwani, U Sri-
vastava, and J Widom. Stream: The stanford data stream management system.
In Data Stream Management, pages 317–336. Springer, 2016.

[36] K Bankole, D Krook, S Murakami, and M Silveyra. A practical approach to
dockerizing openstack high availability, 2014.

[37] P Barham, B Dragovic, K Fraser, S Hand, T Harris, A Ho, R Neugebauer,
I Pratt, and A Warfield. Xen and the art of virtualization. ACM SIGOPS
operating systems review, 37(5):164–177, 2003.

[38] D Bhamare, M Samaka, A Erbad, R Jain, and L Gupta. Exploring microser-
vices for enhancing internet qos. Transactions on Emerging Telecommunications
Technologies, 29(11):e3445, 2018.

- 156 -

[39] J Bhimani, Z Yang, M Leeser, and N Mi. Accelerating big data applications
using lightweight virtualization framework on enterprise cloud. In 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE,
2017.

[40] E. W Biederman and L Networx. Multiple instances of the global linux names-
paces. In Proceedings of the Linux Symposium, volume 1, pages 101–112. Cite-
seer, 2006.

[41] M. S Bonfim, K. L Dias, and S. F Fernandes. Integrated nfv/sdn architectures:
A systematic literature review. ACM Computing Surveys (CSUR), 51(6):114,
2019.

[42] F Bonomi, R Milito, J Zhu, and S Addepalli. Fog computing and its role in the
internet of things. In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, pages 13–16. ACM, 2012.

[43] A. H Borhani, P Leitner, B.-S Lee, X Li, and T Hung. Wpress: An application-
driven performance benchmark for cloud-based virtual machines. In 2014 IEEE
18th International Enterprise Distributed Object Computing Conference, pages
101–109. IEEE, 2014.

[44] S Borst, V Gupta, and A Walid. Distributed caching algorithms for content
distribution networks. In 2010 Proceedings IEEE INFOCOM, pages 1–9. IEEE,
2010.

[45] D Bratton and J Kennedy. Defining a standard for particle swarm optimization.
In 2007 IEEE swarm intelligence symposium, pages 120–127. IEEE, 2007.

[46] L Brenna, A Demers, J Gehrke, M Hong, J Ossher, B Panda, M Riedewald,
M Thatte, and W White. Cayuga: a high-performance event processing en-
gine. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 1100–1102. ACM, 2007.

[47] A Brogi and S Forti. Qos-aware deployment of iot applications through the fog.
IEEE Internet of Things Journal, 4(5):1185–1192, 2017.

[48] V Cardellini, V Grassi, F Lo Presti, and M Nardelli. Optimal operator placement
for distributed stream processing applications. In Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, pages 69–80,
2016.

[49] E Cecchet, V Udayabhanu, T Wood, and P Shenoy. Benchlab: An open
testbed for realistic benchmarking of web applications. In Proceedings of the 2Nd
USENIX Conference on Web Application Development, WebApps’11, pages 4–4,
Berkeley, CA, USA, 2011. USENIX Association.

[50] M. B Chhetri, S Chichin, Q. B Vo, and R Kowalczyk. Smart cloudbench–
automated performance benchmarking of the cloud. In 2013 IEEE Sixth Inter-
national Conference on Cloud Computing, pages 414–421. IEEE, 2013.

- 157 -

[51] M. B Chhetri, S Chichin, Q. B Vo, and R Kowalczyk. Smart cloudbench—a
framework for evaluating cloud infrastructure performance. Information Systems
Frontiers, 18(3):413–428, 2016.

[52] Cisco. Fog computing and the internet of things: Extend the cloud to where the
things are. pages 1–6, 2015.

[53] I Cuadrado-Cordero, A.-C Orgerie, and J.-M Menaud. Comparative experimen-
tal analysis of the quality-of-service and energy-efficiency of vms and containers’
consolidation for cloud applications. In International Conference on Software,
Telecommunications and Computer Networks (SoftCOM 2017), pages 1–6, 2017.

[54] M Cunha, N Mendonça, and A Sampaio. Cloud crawler: a declarative perfor-
mance evaluation environment for infrastructure-as-a-service clouds. Concur-
rency and Computation: Practice and Experience, 29(1):e3825, 2017.

[55] M Curiel and A Pont. Workload generators for web-based systems: Characteris-
tics, current status, and challenges. IEEE Communications Surveys & Tutorials,
20(2):1526–1546, 2018.

[56] R. B Das, N. V Bozdog, M. X Makkes, and H Bal. Kea: A computation offloading
system for smartphone sensor data. In Cloud Computing Technology and Science
(CloudCom), 2017 IEEE International Conference on, pages 9–16. IEEE, 2017.

[57] C Davatz, C Inzinger, J Scheuner, and P Leitner. An approach and case study
of cloud instance type selection for multi-tier web applications. In 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 534–543. IEEE, 2017.

[58] Q Duan. Cloud service performance evaluation: status, challenges, and opportu-
nities – a survey from the system modeling perspective. Digital Communications
and Networks, 3(2):101 – 111, 2017.

[59] C Ebert, G Gallardo, J Hernantes, and N Serrano. Devops. Ieee Software,
33(3):94–100, 2016.

[60] A El Saddik. Digital twins: The convergence of multimedia technologies. IEEE
multimedia, 25(2):87–92, 2018.

[61] M Fazio, A Celesti, R Ranjan, C Liu, L Chen, and M Villari. Open issues in
scheduling microservices in the cloud. IEEE Cloud Computing, 3(5):81–88, 2016.

[62] W Felter, A Ferreira, R Rajamony, and J Rubio. An updated performance
comparison of virtual machines and linux containers. In 2015 IEEE International
Symposium On Performance Analysis of Systems and Software (ISPASS), pages
171–172. IEEE, 2015.

[63] M. R Garey and D. S Johnson. Computers and intractability: a guide to the
theory of NP-completeness. Freeman, 1979.

[64] M Glinz. On non-functional requirements. In 15th IEEE International Require-
ments Engineering Conference (RE 2007), pages 21–26. IEEE, 2007.

- 158 -

[65] M Gonçalves, M Cunha, N. C Mendonça, and A Sampaio. Performance inference:
A novel approach for planning the capacity of iaas cloud applications. In 2015
IEEE 8th International Conference on Cloud Computing, pages 813–820. IEEE,
2015.

[66] A Gulati, A Holler, M Ji, G Shanmuganathan, C Waldspurger, and X Zhu.
Vmware distributed resource management: Design, implementation, and lessons
learned. VMware Technical Journal, 1(1):45–64, 2012.

[67] H Gupta, A Vahid Dastjerdi, S. K Ghosh, and R Buyya. ifogsim: A toolkit
for modeling and simulation of resource management techniques in the inter-
net of things, edge and fog computing environments. Software: Practice and
Experience, 47(9):1275–1296, 2017.

[68] J Higgins, V Holmes, and C Venters. Orchestrating docker containers in the hpc
environment. In International Conference on High Performance Computing,
pages 506–513. Springer, 2015.

[69] K Hong, D Lillethun, U Ramachandran, B Ottenwälder, and B Koldehofe. Mo-
bile fog: A programming model for large-scale applications on the internet of
things. In Proceedings of the second ACM SIGCOMM workshop on Mobile cloud
computing, pages 15–20. ACM, 2013.

[70] A. H Hormati, Y Choi, M Kudlur, R Rabbah, T Mudge, and S Mahlke. Flex-
tream: Adaptive compilation of streaming applications for heterogeneous archi-
tectures. In Parallel Architectures and Compilation Techniques, 2009. PACT’09.
18th International Conference on, pages 214–223. IEEE, 2009.

[71] J. A Hoxmeier and C DiCesare. System response time and user satisfaction: An
experimental study of browser-based applications. AMCIS 2000 Proceedings,
page 347, 2000.

[72] K Hsieh, A Harlap, N Vijaykumar, D Konomis, G. R Ganger, P. B Gibbons, and
O Mutlu. Gaia: Geo-distributed machine learning approaching {LAN} speeds. In
14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17), pages 629–647, 2017.

[73] M Hu, J Luo, Y Wang, and B Veeravalli. Practical resource provisioning and
caching with dynamic resilience for cloud-based content distribution networks.
IEEE Transactions on Parallel and Distributed Systems, 25(8):2169–2179, 2013.

[74] Y Huang, Y Shi, Z Zhong, Y Feng, J Cheng, J Li, H Fan, C Li, T Guan, and
J Zhou. Yugong: geo-distributed data and job placement at scale. Proceedings
of the VLDB Endowment, 12(12):2155–2169, 2019.

[75] D. M Jacobsen and R. S Canon. Contain this, unleashing docker for hpc, 2015.

[76] D. N Jha, K Alwasel, A Alshoshan, X Huang, R. K Naha, S. K Battula, S Garg,
D Puthal, P James, A. Y Zomaya, et al. Iotsim-edge: A simulation framework for
modeling the behaviour of iot and edge computing environments. arXiv preprint
arXiv:1910.03026, 2019.

- 159 -

[77] D. N Jha, S Garg, P. P Jayaraman, R Buyya, Z Li, G Morgan, and R Ranjan.
A study on the evaluation of hpc microservices in containerized environment.
Concurrency and Computation: Practice and Experience, page e5323, 2019.

[78] D. N Jha, M Nee, Z Wen, A Zomaya, and R Ranjan. Smartdbo: smart docker
benchmarking orchestrator for web-application. In The World Wide Web Con-
ference, pages 3555–3559, 2019.

[79] D. N Jha, Z Wen, Y Li, M Nee, M Koutny, and R Ranjan. A cost-efficient
multi-cloud orchestrator for benchmarking containerized web-applications. In
International Conference on Web Information Systems Engineering, pages 407–
423. Springer, 2019.

[80] C. T Joseph and K Chandrasekaran. Straddling the crevasse: A review of mi-
croservice software architecture foundations and recent advancements. Software:
Practice and Experience, 49(10):1448–1484, 2019.

[81] H Kalantarian, C Sideris, B Mortazavi, N Alshurafa, and M Sarrafzadeh. Dy-
namic computation offloading for low-power wearable health monitoring systems.
IEEE Transactions on Biomedical Engineering, 64(3):621–628, 2017.

[82] T Kanungo, D. M Mount, N. S Netanyahu, C. D Piatko, R Silverman, and A. Y
Wu. An efficient k-means clustering algorithm: Analysis and implementation.
IEEE transactions on pattern analysis and machine intelligence, 24(7):881–892,
2002.

[83] A Karmel, R Chandramouli, and M Iorga. Nist definition of microservices,
application containers and system virtual machines. Technical report, National
Institute of Standards and Technology, 2016.

[84] J Kennedy and R Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95-International Conference on Neural Networks, volume 4, pages 1942–
1948. IEEE, 1995.

[85] T Killalea. The hidden dividends of microservices. Communications of the ACM,
59(8):42–45, 2016.

[86] A Kivity, Y Kamay, D Laor, U Lublin, and A Liguori. kvm: the linux virtual
machine monitor. In Proceedings of the Linux symposium, pages 225–230, 2007.

[87] K Kloudas, M Mamede, N Preguiça, and R Rodrigues. Pixida: optimizing data
parallel jobs in wide-area data analytics. Proceedings of the VLDB Endowment,
9(2):72–83, 2015.

[88] H Knoche. Sustaining runtime performance while incrementally moderniz-
ing transactional monolithic software towards microservices. In Proceedings of
the 7th ACM/SPEC on International Conference on Performance Engineering,
ICPE ’16, pages 121–124, New York, NY, USA, 2016. ACM.

[89] C. G Kominos, N Seyvet, and K Vandikas. Bare-metal, virtual machines and
containers in openstack. In 2017 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN), pages 36–43. IEEE, 2017.

- 160 -

[90] Z Kozhirbayev and R. O Sinnott. A performance comparison of container-based
technologies for the cloud. Future Generation Computer Systems, 68:175–182,
2017.

[91] C Krintz. The appscale cloud platform: Enabling portable, scalable web appli-
cation deployment. IEEE Internet Computing, 17(2):72–75, 2013.

[92] P Leitner and J Cito. Patterns in the chaos—a study of performance
variation and predictability in public iaas clouds. ACM Trans. Internet Technol.,
16(3):15:1–15:23, April 2016.

[93] P Leitner and J Cito. Patterns in the chaos—a study of performance varia-
tion and predictability in public iaas clouds. ACM Transactions on Internet
Technology (TOIT), 16(3):1–23, 2016.

[94] J Lewis and M Fowler. Microservices guide. Available at
https://martinfowler.com/microservices/, 2014.

[95] A Li, X Yang, S Kandula, and M Zhang. Cloudcmp: comparing public cloud
providers. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pages 1–14. ACM, 2010.

[96] H Li, H Xu, and S Nutanong. Bohr: similarity aware geo-distributed data analyt-
ics. In Proceedings of the 14th International Conference on emerging Networking
EXperiments and Technologies, pages 267–279, 2018.

[97] Z Li, M Kihl, Q Lu, and J. A Andersson. Performance overhead comparison
between hypervisor and container based virtualization. In 2017 IEEE 31st In-
ternational Conference on Advanced Information Networking and Applications
(AINA), pages 955–962. IEEE, 2017.

[98] Z Li, K Mitra, M Zhang, R Ranjan, D Georgakopoulos, A. Y Zomaya, L O’Brien,
and S Sun. Towards understanding the runtime configuration management of
do-it-yourself content delivery network applications over public clouds. Future
Generation Computer Systems, 37:297–308, 2014.

[99] Z Li, L OBrien, R Cai, and H Zhang. Towards a taxonomy of performance eval-
uation of commercial cloud services. In 2012 IEEE 5th International Conference
on Cloud Computing (CLOUD), pages 344–351. IEEE, 2012.

[100] Z Li, L OBrien, R Ranjan, and M Zhang. Early observations on performance of
google compute engine for scientific computing. In 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science (CloudCom), volume 1,
pages 1–8. IEEE, 2013.

[101] Z Li, L O’Brien, and H Zhang. CEEM: A practical methodology for cloud services
evaluation. In 2013 IEEE Ninth World Congress on Services (SERVICES), pages
44–51. IEEE, 2013.

- 161 -

[102] Z Li, L O’Brien, H Zhang, and R Cai. A factor framework for experimental de-
sign for performance evaluation of commercial cloud services. In 2012 IEEE 4th
International Conference on Cloud Computing Technology and Science (Cloud-
Com), pages 169–176. IEEE, 2012.

[103] S. H Liew and Y.-Y Su. Cloudguide: Helping users estimate cloud deployment
cost and performance for legacy web applications. In 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings, pages 90–
98. IEEE, 2012.

[104] LightStep. Global microservices trends: A survey of development profes-
sionals. Available at https://go.lightstep.com/rs/260-KGM-472/images/global-
microservices-trends-2018.pdf, 2018.

[105] D. S Linthicum. Practical use of microservices in moving workloads to the cloud.
IEEE Cloud Computing, 3(5):6–9, 2016.

[106] F Liu, J Tong, J Mao, R Bohn, J Messina, L Badger, and D Leaf. Nist cloud com-
puting reference architecture. NIST special publication, 500(2011):1–28, 2011.

[107] G Liu, H Shen, and H Wang. Cooperative job scheduling and data allocation
for busy data-intensive parallel computing clusters. In Proceedings of the 48th
International Conference on Parallel Processing, pages 1–11, 2019.

[108] M. A Masud, J. Z Huang, C Wei, J Wang, I Khan, and M Zhong. I-nice: A
new approach for identifying the number of clusters and initial cluster centres.
Information Sciences, 466:129–151, 2018.

[109] N Michael, N Ramannavar, Y Shen, S Patil, and J.-L Sung. Cloudperf: A
performance test framework for distributed and dynamic multi-tenant environ-
ments. In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, pages 189–200, 2017.

[110] P Michalák and P Watson. Path2iot: A holistic, distributed stream processing
system. In Cloud Computing Technology and Science (CloudCom), 2017 IEEE
International Conference on, pages 25–32. IEEE, 2017.

[111] R Morabito. Power consumption of virtualization technologies: An empirical
investigation. In 2015 IEEE/ACM 8th International Conference on Utility and
Cloud Computing (UCC), pages 522–527. IEEE, 2015.

[112] R Morabito, J Kjällman, and M Komu. Hypervisors vs. lightweight virtualiza-
tion: a performance comparison. In 2015 IEEE International Conference on
Cloud Engineering (IC2E), pages 386–393. IEEE, 2015.

[113] D. G Murray, F McSherry, R Isaacs, M Isard, P Barham, and M Abadi. Naiad:
a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 439–455. ACM, 2013.

[114] M Nardelli, S Nastic, S Dustdar, M Villari, and R Ranjan. Osmotic flow: Os-
motic computing+ iot workflow. IEEE Cloud Computing, 4(2):68–75, 2017.

- 162 -

[115] P Pietzuch, J Ledlie, J Shneidman, M Roussopoulos, M Welsh, and M Seltzer.
Network-aware operator placement for stream-processing systems. In 22nd In-
ternational Conference on Data Engineering (ICDE’06), pages 49–49. IEEE,
2006.

[116] M Poess and C Floyd. New tpc benchmarks for decision support and web com-
merce. ACM Sigmod Record, 29(4):64–71, 2000.

[117] Q Pu, G Ananthanarayanan, P Bodik, S Kandula, A Akella, P Bahl, and I Sto-
ica. Low latency geo-distributed data analytics. ACM SIGCOMM Computer
Communication Review, 45(4):421–434, 2015.

[118] B Qian, J Su, Z Wen, D. N Jha, Y Li, Y Guan, D Puthal, P James, R Yang,
A. Y Zomaya, O Rana, L Wang, M Koutny, and R Ranjan. Orchestrating the
development lifecycle of machine learning-based iot applications: A taxonomy
and survey. ACM Comput. Surv., 0(ja).

[119] Z Qian, Y He, C Su, Z Wu, H Zhu, T Zhang, L Zhou, Y Yu, and Z Zhang.
Timestream: Reliable stream computation in the cloud. In Proceedings of the
8th ACM European Conference on Computer Systems, pages 1–14. ACM, 2013.

[120] R Ranjan, B Benatallah, S Dustdar, and M. P Papazoglou. Cloud resource
orchestration programming: overview, issues, and directions. IEEE Internet
Computing, 19(5):46–56, 2015.

[121] Z Ren, W Wang, G Wu, C Gao, W Chen, J Wei, and T Huang. Migrating
web applications from monolithic structure to microservices architecture. In
Proceedings of the Tenth Asia-Pacific Symposium on Internetware, Internetware
’18, pages 7:1–7:10, New York, NY, USA, 2018. ACM.

[122] L Roberts, P Michalák, S Heaps, M Trenell, D Wilkinson, and P Watson. Au-
tomating the placement of time series models for iot healthcare applications.
In 2018 IEEE 14th International Conference on e-Science (e-Science), pages
290–291. IEEE, 2018.

[123] C Ruiz, E Jeanvoine, and L Nussbaum. Performance evaluation of containers for
hpc. In European Conference on Parallel Processing, pages 813–824. Springer,
2015.

[124] T. L Saaty. Axiomatic foundation of the analytic hierarchy process. Management
science, 32(7):841–855, 1986.

[125] S Sarkar and S Misra. Theoretical modelling of fog computing: a green comput-
ing paradigm to support iot applications. Iet Networks, 5(2):23–29, 2016.

[126] M Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39,
2017.

[127] E Saurez, K Hong, D Lillethun, U Ramachandran, and B Ottenwälder. Incre-
mental deployment and migration of geo-distributed situation awareness appli-
cations in the fog. In Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, pages 258–269. ACM, 2016.

- 163 -

[128] J Scheuner, J Cito, P Leitner, and H Gall. Cloud workbench: Benchmarking
iaas providers based on infrastructure-as-code. In Proceedings of the 24th Inter-
national Conference on World Wide Web, pages 239–242, 2015.

[129] D Serrano, S Bouchenak, Y Kouki, F. A de Oliveira Jr, T Ledoux, J Lejeune,
J Sopena, L Arantes, and P Sens. Sla guarantees for cloud services. Future
Generation Computer Systems, 54:233–246, 2016.

[130] P Sharma, L Chaufournier, P Shenoy, and Y. C Tay. Containers and virtual
machines at scale: A comparative study. In Proceedings of the 17th International
Middleware Conference (Middleware ’16), pages 1–13, 2016.

[131] W Shi, J Cao, Q Zhang, Y Li, and L Xu. Edge computing: Vision and challenges.
IEEE internet of things journal, 3(5):637–646, 2016.

[132] W Shi and S Dustdar. The promise of edge computing. Computer, 49(5):78–81,
2016.

[133] J Siegel and J Perdue. Cloud services measures for global use: the service
measurement index (smi). In 2012 Annual SRII Global Conference, pages 411–
415. IEEE, 2012.

[134] M Silva, M. R Hines, D Gallo, Q Liu, K. D Ryu, and D Da Silva. Cloudbench:
Experiment automation for cloud environments. In 2013 IEEE International
Conference on Cloud Engineering (IC2E), pages 302–311. IEEE, 2013.

[135] W Sobel, S Subramanyam, A Sucharitakul, J Nguyen, H Wong, A Klepchukov,
S Patil, A Fox, and D Patterson. Cloudstone: Multi-platform, multi-language
benchmark and measurement tools for web 2.0. In Proceedings of CCA, 2008.

[136] S Soltesz, H Pötzl, M. E Fiuczynski, A Bavier, and L Peterson. Container-
based operating system virtualization: a scalable, high-performance alternative
to hypervisors. ACM SIGOPS Operating Systems Review, 41(3):275–287, 2007.

[137] C Sonmez, A Ozgovde, and C Ersoy. Edgecloudsim: An environment for per-
formance evaluation of edge computing systems. Transactions on Emerging
Telecommunications Technologies, 29(11):e3493, 2018.

[138] T. P. P. C TPC. Tpc benchmarkTM e. 2010.

[139] L. M Vaquero and L Rodero-Merino. Finding your way in the fog: Towards a
comprehensive definition of fog computing. ACM SIGCOMM Computer Com-
munication Review, 44(5):27–32, 2014.

[140] A Varga and R Hornig. An overview of the omnet++ simulation environment.
In Proceedings of the 1st international conference on Simulation tools and tech-
niques for communications, networks and systems & workshops, page 60. ICST
(Institute for Computer Sciences, Social-Informatics and . . . , 2008.

[141] B Varghese, O Akgun, I Miguel, L Thai, and A Barker. Cloud benchmarking for
maximising performance of scientific applications. IEEE Transactions on Cloud
Computing, 7(1):170–182, 2016.

- 164 -

[142] B Varghese, L. T Subba, L Thai, and A Barker. Doclite: A docker-based
lightweight cloud benchmarking tool. In 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 213–222.
IEEE, 2016.

[143] R Viswanathan, G Ananthanarayanan, and A Akella. {CLARINET}: Wan-
aware optimization for analytics queries. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), pages 435–450,
2016.

[144] M Vögler, J. M Schleicher, C Inzinger, and S Dustdar. A scalable framework
for provisioning large-scale iot deployments. ACM Transactions on Internet
Technology (TOIT), 16(2):11, 2016.

[145] P Voigt and A Von dem Bussche. The eu general data protection regulation
(gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing,
2017.

[146] A Vulimiri, C Curino, P. B Godfrey, T Jungblut, J Padhye, and G Vargh-
ese. Global analytics in the face of bandwidth and regulatory constraints. In
12th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 15), pages 323–336, 2015.

[147] X Wan, X Guan, T Wang, G Bai, and B.-Y Choi. Application deployment using
microservice and docker containers: Framework and optimization. Journal of
Network and Computer Applications, 119:97–109, 2018.

[148] Z Wang, B Li, L Sun, and S Yang. Cloud-based social application deploy-
ment using local processing and global distribution. In Proceedings of the 8th
International Conference on Emerging Networking Experiments and Technolo-
gies, CoNEXT ’12, page 301–312, New York, NY, USA, 2012. Association for
Computing Machinery.

[149] D Weerasiri, M. C Barukh, B Benatallah, Q. Z Sheng, and R Ranjan. A tax-
onomy and survey of cloud resource orchestration techniques. ACM Computing
Surveys (CSUR), 50(2):26, 2017.

[150] Z Wen, J Ca la, P Watson, and A Romanovsky. Cost effective, reliable and se-
cure workflow deployment over federated clouds. IEEE Transactions on Services
Computing, 10(6):929–941, 2016.

[151] Z Wen, T Lin, R Yang, S Ji, R Ranjan, A Romanovsky, C Lin, and J Xu.
Ga-par: Dependable microservice orchestration framework for geo-distributed
clouds. IEEE Transactions on Parallel and Distributed Systems, 31(1):129–143,
2019.

[152] Z Wen, R Qasha, Z Li, R Ranjan, P Watson, and A Romanovsky. Dynamically
partitioning workflow over federated clouds for optimising the monetary cost and
handling run-time failures. IEEE Transactions on Cloud Computing, 2016.

- 165 -

[153] M. G Xavier, M. V Neves, F. D Rossi, T. C Ferreto, T Lange, and C. A De Rose.
Performance evaluation of container-based virtualization for high performance
computing environments. In 2013 21st Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pages 233–240.
IEEE, 2013.

[154] Y Xing and Y Zhan. Virtualization and cloud computing. In Future Wireless
Networks and Information Systems, pages 305–312. Springer, 2012.

[155] M Yannuzzi, R Milito, R Serral-Gracià, D Montero, and M Nemirovsky. Key
ingredients in an iot recipe: Fog computing, cloud computing, and more fog
computing. In Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), 2014 IEEE 19th International Workshop on, pages
325–329. IEEE, 2014.

[156] K Ye and Y Ji. Performance tuning and modeling for big data applications in
docker containers. In 2017 International Conference on Networking, Architec-
ture, and Storage (NAS), pages 1–6. IEEE, 2017.

[157] Y Yuan, D Ma, Z Wen, Y Ma, G Wang, and L Chen. Efficient graph query
processing over geo-distributed datacenters. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 619–628, 2020.

[158] K Zhang, L Wang, X Guo, A Pan, and B. B Zhu. Wpbench: a benchmark for
evaluating the client-side performance of web 2.0 applications. In Proceedings of
the 18th international conference on World wide web, pages 1111–1112. ACM,
2009.

[159] Q Zhang, L Liu, C Pu, Q Dou, L Wu, and W Zhou. A comparative study of
containers and virtual machines in big data environment. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), pages 178–185. IEEE,
2018.

[160] N Zhao. Full-featured pedometer design realized with 3-axis digital accelerome-
ter. Analog Dialogue, 44(06):1–5, 2010.

166

	Introduction
	Project motivation
	Contributions
	Thesis outline

	Literature review
	Virtualization
	Hypervisor-based virtualization
	Container-based virtualization
	Why container?

	Microservices
	Internal structure of microservices

	Deployment environment
	Cloud computing
	Edge computing and Internet of Things

	Microservices deployment
	Thesis scope in terms of microservice deployment
	Evaluation of containers for interfering HPC micro- services
	Orchestration for benchmarking containerized web application in multi-cloud environment
	Deployment of geo-distributed web-application micro- services via automated benchmarking in a multi-cloud environment
	Deployment of streaming application microservices in cloud-edge environments

	Holistic evaluation of Docker containers for interfering microservices
	Introduction
	Evaluation methodology
	Performance evaluation: Experimental design
	Requirement recognition and service feature identification
	Metrics and benchmarks listings and selection
	Experimental factors listings and selection
	Experimental design

	Performance evaluation: Experimental results
	Related work
	Discussion
	Conclusion

	Multi-cloud orchestrator for benchmarking containerized web-application microservices
	Introduction
	System overview
	SDBO architecture
	SDBO design

	Execution workflow
	Metrics profiling
	Basic metrics
	Advanced metrics

	Evaluation
	Experiment setup
	Cost optimization
	Basic metrics profiling
	Advanced metrics profiling
	Flexible execution

	Related work
	Discussion
	Conclusion

	A user-centric cost-efficient geo-distributed web-applications deployment via automatic benchmarking
	Introduction
	Background and motivation
	Geo-distributed web-application
	Deployment challenges

	System overview
	Web-application deployment model
	Problem formalization

	 System design
	Adaptive PSO algorithm
	Optimize the deployment
	Clustering
	Budget allocation
	Deployment solution generation
	Benchmarking in real-world environment

	Evaluation
	Experiment setup
	Algorithm evaluation
	Clustering
	Number of solutions vs. budget
	Effectiveness of diversity

	Scalability test
	GWA execution in real cloud environments

	Related work
	Discussion
	Conclusion

	Deployment of streaming application microservices in cloud-edge environment
	Introduction
	Contributions

	Formal model
	Basic concepts

	Non-functional requirements
	Problem definition
	Complexity analysis

	System model
	User Input
	PATHfinder
	Initial Optimization
	AHP Based Multi-objective Optimization (ABMO)
	Device-specific Compilation

	PATHdeployer
	Time complexity

	Experimental evaluation
	Experimental setup
	Experimental results and analysis

	Related work
	Discussion
	Conclusion

	Conclusion
	Thesis summary
	Future research directions
	A generic benchmarking orchestrator
	Modelling the benchmark metrics to handle the infrastructure uncertainty
	Run-time migration of microservices
	Simulation models for digital twins

	Bibliography

