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Abstract

The rising popularity of Software-Defined Networking (SDN) is increasing as it promises

to offer a window of opportunity and new features in terms of network performance,

configuration, and management. As such, SDN is exploited by several emerging appli-

cations and environments, such as cloud computing, edge computing, IoT, and data-

driven applications. Although SDN has demonstrated significant improvements in in-

dustry, still little research has explored the embracing of SDN in the area of cross-layer

optimization in different SDN-aware environments.

Each application and computing environment require different functionalities and

Quality of Service (QoS) requirements. For example, a typical MapReduce application

would require data transmission at three different times while the data transmission

of stream-based applications would be unknown due to uncertainty about the number

of required tasks and dependencies among stream tasks. As such, the deployment of

SDN with different applications are not identical, which require different deployment

strategies and algorithms to meet different QoS requirements (e.g., high bandwidth,

deadline). Further, each application and environment has unique architectures, which

impose different form of complexity in terms of computing, storage, and network.

Due to such complexities, finding optimal solutions for SDN-aware applications and

environments become very challenging.

Therefore, this thesis presents multilateral research towards optimization, modeling,

and simulation of cross-layer optimization of SDN-aware applications and environ-

ments. Several tools and algorithms have been proposed, implemented, and evaluated,

considering various environments and applications[1–4]. The main contributions of

this thesis are as follows:

• Proposing and modeling a new holistic framework that simulates MapReduce ap-

plications, big data management systems (BDMS), and SDN-aware networks in

cloud-based environments. Theoretical and mathematical models of MapReduce

in SDN-aware cloud datacenters are also proposed.
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• Proposing and modeling a novel framework that simulates SD-WAN and dis-

tributed SDN-aware datacenters. The framework models several network com-

ponents, including TCP and UDP protocols and network delays. A new SD-

WAN routing technique is proposed based on graph theory, which dynamically

computes the best route for every network flow. A new coordination technique

for SDN and SD-WAN controllers is also proposed to coordinate network func-

tionalities in a global sense.

• Proposing and modeling a new SD-WAN based Workflow Broker (SDWAN-WB)

to deploy the workflows of data-driven applications across multiple SD-WAN-

enabled datacenters. An adaptive Genetic Algorithm (GA) is also proposed for

selecting near-optimal solutions based on green energy usage, the topology and

deadline of data-driven workflows, and overall energy consumption and cost.

• Proposing a unified osmotic computing framework that models and simulates

complex IoT applications running over heterogeneous edge-cloud environments.

Theoretical and mathematical models of osmotic computing are also proposed,

in addition to several system management policies.
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Chapter 1: Introduction

Introduction

Network systems are the core components that interconnect devices to each other

for the purpose of sharing data. Constant development and improvement of network

systems are essential to accelerate data delivery and satisfy modern applications’ net-

working requirements. Recently, Software-Defined Networking (SDN) has emerged as

a game-changer of traditional networking systems [7, 8]. It is a new paradigm aiming

to address the real-time programmability shortcomings of traditional network systems.

It has evolved as a new network model to dynamically program, control, change, and

manage networking components in real-time [9]. As such, SDN has been deployed in

various technological domains (e.g., cloud datacenters, edge datacenters) to facilitate

network management and satisfy the quality of services (QoS) requirements [10, 11].

Figure 1.1 illustrates an overview of SDN usage and deployment in several computing

environments (e.g., IoT-edge, cloud, and SD-WAN).

The rising popularity of SDN is increasing as it promises to offer a window of opportu-

nity and great values to several emerging applications and environments. Data-driven

applications are among the most beneficiaries to take advantage of SDN capabilities

within cloud datacenters [3, 12, 13]. Such applications require various operations

(e.g., capturing, transmission, storing, processing) and several big data programming

models to effectively analyze large-scale data-sets at an astonishing speed. Big data

has become the most prominent mechanism to delve into data-sets that are generated

by data-driven applications [14, 15]. It harnesses the power of clustering commod-

ity hardware to carry out data analysis in a parallel and simultaneous manner. The

coordination and integration of SDN and big data in cloud datacenters would offer un-

precedented advantages for data-driven applications, such as improving their network

topology configuration and data transmission at run-time.

SDN paradigm has been also exploited by Wide Area Network (WAN) to obtain SDN

functionalities [16, 17]. The traditional WAN is a core network layer that provides

the fundamental building blocks for secure and salable shared resource access across

geographically dispersed distributed systems [18]. The merging of WAN and SDN

is referred to as a Software-defined Wide Area Network (SD-WAN). The SD-WAN
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SD-WAN

Controllers

SDN Cloud 

Controllers

Edge

Datacenter

Cloud Datacenter

SDN Edge 

Controllers

Cloud

Datacenter

MapReduce

MapReduce

Figure 1.1: An overview of SDN usage and deployment in several environments

paradigm enables distributed cloud datacenters to gain a high level of resource man-

agement and efficiency, especially for data-driven applications, such as Internet of

Things (IoT) applications and distributed gaming applications [19].

The leveraging of SDN’s power is also exploited by edge computing and cellular net-

works (e.g., 5G) to facilitate the management of edge-cellular networks and accelerate

the processing of IoT applications [20, 21]. An edge infrastructure significantly cuts

the time it takes to process and analyze IoT generated data for specific applications

as it offers processing mechanisms near IoT devices and sensors [22]. It also elimi-

nates the amount of SD-WAN network traffic between edge and cloud. By adopting

SDN, edge datacenters can seamlessly determine network utilization behavior, which

results in an informed network decisions. SDN would also add remarkable benefits for

IoT-based data-driven applications running across edge-cloud environments, such as

finding optimal network routes at run-time [23, 24].

The transition from distributed systems (e.g., cloud computing) to a distributed sys-

tem of systems – with the edge and cloud acting as independently managed systems to

support IoT ecosystems and workflow analytics – has led to a new generation of het-

erogeneous and complex environments. Such transition can be defined as osmotic com-

puting paradigm [25]. The osmotic computing paradigm provides a simplified model

for the deployment of IoT applications and workflows in the integrated edge-cloud en-
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vironment. It focuses on the design and implementation of a unified computing model

that leverages the capabilities of various distributed systems, which include IoT, edge

computing, cloud computing, SDN, and SD-WAN. The coordination and integration

of osmotic computing components empowered by SDN capabilities are essential to

optimize the performance of data-driven IoT applications.

As shown in Figure 1.1, this thesis focuses on SDN usage and deployment in several

emerging applications and computing environments. In the figure, it can be seen that

there are multiple SDN-aware controllers implemented in IoT-edge, cloud, and SD-

WAN environments. Starting from the IoT-edge, the SDN controller is responsible

for managing edge internal network along with incoming IoT traffic. When IoT-edge

data require further processing, it would forward data to cloud datacenters via SD-

WAN layer. SD-WAN controllers are used to manage network between distributed

edge/cloud datacenters. SDN cloud controllers are used to manage cloud internal net-

works, such as enforcing real-time instructions and rules on network devices. Further,

IoT-edge data might require complex big data models to accelerate processing time;

as such, MapReduce big data applications are essential to be implemented in cloud

datacenters to deliver such processing requirements. To this end, this thesis studies

how to effectively model, optimize, integrate, and simulate SDN within different data-

driven applications and infrastructures, which includes IoT-edge, cloud, SD-WAN, and

MapReduce big data applications.

1.1 Research Motivation

Although the SDN paradigm provides well-defined communication standards and ap-

plication programming interfaces (APIs), the availability of software frameworks and

algorithmic techniques to dynamically manage and optimize the performance of SDN-

aware applications and SDN-aware computing environments is still nascent. SDN

imposes several challenges that require a variety of solutions based on the require-

ments of different applications and infrastructures (e.g., performance optimization,

automatic configuration, energy-saving, bandwidth allocation, 5G slicing, security as-

surance) [26–29]. Every challenge has a different form of complexity based on given
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requirements (e.g., high bandwidth, deadline), which requires a unique solution.

This thesis considers an overall question of how to optimize the performance of data-

driven applications in SDN-aware distributed systems based on different objective re-

quirements? The question is categorized as an NP-hard problem, where NP stands for

“Non-deterministic Polynomial time.” To solve this question, optimization approaches

are required, which are determined to find feasible solutions with single or multiple

objectives that maximize and/or minimize variables related to performance metrics,

taking into account limited infrastructure resources.

1.1.1 NP-Hard: data-driven applications in SDN-aware cloud
datacenters

Each data-driven application (e.g., MapReduce [30]) mainly relies on computing, stor-

age, and network components and requires different configurations for each component.

Considering a simple scheduling problem where MapReduce tasks are mapped into

appropriate cloud virtual machine (VMs) – such that the number of used VMs is min-

imized and each task of MapReduce is served. The objective here is to minimize cloud

energy consumption while meeting MapReduce execution requirements. To prove this

problem belongs to an NP-hard class, it can be transformed into a bin-packing problem

[31] – that is, the mappers of a given MapReduce application are represented as ob-

jects, whereas VMs are represented as bins. Such transformation maps the bin-packing

problem into the simplest MapReduce scheduling problem. Thus, this simple problem

is proven to be at least as hard as a bin-packing problem, which is already proved to

be NP-hard [31]. Adding network requirements to the MapReduce scheduling problem

(e.g., an optimal path between MapReduce distributed tasks using SDN) would require

cross-layer optimization, which makes the problem a strong NP-hard. To study and

solve such kind of NP-hard problems, new modeling and simulation abstractions of

MapReduce running in SDN-aware cloud datacenters are required.
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1.1.2 NP-Hard: data-driven WAN traffic between distributed
SDN-aware cloud datacenters

Several companies have leveraged SD-WAN to manage and control the network con-

nections and traffic between geographically distributed datacenters, such as Google’s

SD-WAN [16], Microsoft SD-WAN [17], and Facebook Express Backbone1. Some prob-

lems these companies encounter are how to determine the required number of SDN

controllers, how to determine the placement of SDN controllers, how to obtain best

routes for data-driven applications in real-time, to name a few. Such problems can be

categorized as optimization problems [32, 33]. The placement of the SDN controllers,

as an example, is categorized as an NP-hard problem [32, 33]. Still, studying NP-hard

problems and evaluating new proposed solutions in the context of multiple SDN-aware

cloud datacenters interconnected via SD-WAN networks require new modeling and

simulation abstractions.

1.1.3 NP-Hard: data-driven SD-WAN traffic between dis-
tributed SDN-aware edge-cloud datacenters

Several IoT-based data-driven applications require to process data across edge-cloud

infrastructures. For example, online cloud games (e.g., First-Person Shooter) con-

tinuously produce massive amount of data that are required to be processed across

edge-cloud systems. Such applications are very sensitive to delay, which require low-

latency data transmission and processing [34]. The study in [35] concludes that the

maximum tolerable delay of online games should be less than 100 milliseconds (MS)

in order to obtain a reasonable gaming experience. To improve players’ Quality of

Experience (QoE), such as minimizing jitter time (inconsistency of delay rates) [36],

optimal deployment decisions for data computations across edge-cloud are required,

in addition to the leveraging of the SDN and SD-WAN paradigms. The deployment

of every online gaming application is very complex as it requires to distribute compu-

tations across SDN-aware edge-cloud environments based on multi-objective criteria

and constraints, such as minimizing network latency, minimizing processing time, and

1https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-
facebook-s-new-long-haul-network/
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prioritizing SD-WAN traffic. Such deployment and configuration problems can be

categorized as strong NP-hard optimization problems. To evaluate the strengths and

weaknesses of new optimization solutions in the context of edge-cloud infrastructure

and end-to-end SDN-aware, new modeling and simulation that captures the abstrac-

tions of such ecosystems are required.

1.1.4 Evaluating SDN-related NP-hard solutions

Solving NP-hard problems are intractable because the more inputs are given to a

solution’s function, the more time the solution’s function takes to find an answer [32,

33]. For example, finding a feasible solution for the aforementioned simple MapReduce

scheduling problem usually requires a massive search of all candidate solutions of

possibilities and combinations. Unfortunately, there is no known way to find a solution

that solves NP-hard problems quickly (in a polynomial time) [37, 38]. However, several

techniques are used to find an approximation answer for a given problem, subject to

the problem’s objectives and constraints. For example, heuristic algorithms along with

approximation algorithms can be used to reduce a solution’s search space, which often

leads to an optimal or sub-optimal solution [3, 39].

The behavior and impacts of proposed SDN-aware solutions under various hypotheses

must be evaluated to ensure their practicality. One evaluation approach is to test

the solutions in real computing environments. However, real SDN-aware environments

might be inaccurate due to the behavior instability of computing and network infras-

tructures. They also impose several challenges, such as high cost, time-consuming,

and configuration complexity [1]. Moreover, every application might require several

QoS requirements across computing and network infrastructures, which would make

the evaluation process very difficult to achieve.

An alternative evaluation approach is to use simulation-based tools [40]. Simulation

tools seamlessly offer unified, generic, and customizable knowledge representation mod-

els. They can capture domain-specific information required for modeling the behav-

ior of hardware and software components relevant to a given environment. Besides,

they offer the ability to simulate large-scale infrastructures in an easy, repeatable,

controllable, and configurable manner. Most importantly, simulation tools undertake
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various ”what-if” investigation and analysis, which aims to measure the impact of

changing/tuning the values of dependent and/or independent variables on complex

ecosystems (e.g., SDN-aware cloud, SD-WAN).

1.2 Research Challenges

Developing novel modeling and simulation techniques for several SDN-aware envi-

ronments in order to study and test optimization solutions are full of new research

challenges. For every environment (e.g., SDN-aware clouds running MapReduce ap-

plications), there must be unique modeling approaches. The following illustrate some

of the challenges considered in this thesis:

• Infrastructure heterogeneity: The modeling and simulation requires the use of a

multi-layered architecture (applications, servers, and networks). Each layer con-

stantly evolves with heterogeneous components, data workflow, and protocols,

which might involve a number of different behaviours and configuration parame-

ters. Moreover, every SDN-aware environment (e.g., edge, cloud) requires unique

modeling characteristics in order to capture the underlying system abstractions.

• Coordination complexity: The modeling and simulation of coordination mecha-

nisms require the components of every environment to communicate, direct, and

possibly control other components in terms of data flow and processing along

with requesting for specific actions to be undertaken. For example, components

from different computing environments (e.g., SDN cloud controllers, SD-WAN

controllers) require to coordinate with one another in order to forward network

traffic to destinations.

• Network complexity: As every SDN-aware environment has its own network

layer, it is required to model such networks in dynamic manners using graph

theory modeling approaches. Such modeling is essential in order to avoid the

hard coding of network topologies, which definitely decreases the practicality of

SDN-aware simulation tools. The modeling of network communication would
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also be required in order to simulate different wireless and wired network mech-

anisms and protocols. Further, the modeling of complex control and data flow

dependencies within and between different environments are required in order to

perform highly detailed SDN-aware simulations.

• Complexity of application graph: Increasingly, applications can be represented

as a graph of distributed components, tasks, and services, with different data and

control flow dependencies between them encoded in the graph. An application

can be executed across multi-SDN environments with heterogeneous sets of QoS

criteria. Such graph complexity needs to be modelled in a manner that enables

different SDN-aware system models to co-exist and execute given applications

properly.

• Policy modeling: Each application can have specific functional and QoS require-

ments that needs to be enforced into systems’ layers. For example, a MapReduce

application might require to find a set of VMs that minimize task execution time

in addition to finding optimal routes that minimize data transmission time be-

tween tasks. Such requirements must be modeled in a way that it can be easily

translated and submitted to given SDN-aware simulation tools.

• Validation and evaluation: Validating the generalizability of proposed models,

techniques, and abstractions within SDN-aware simulation tools is required in

order to illustrate the level of accuracy of the tools as compared to real-world

SDN-aware environments. Moreover, validation and evaluation is crucial in order

to test efficacy and prove that proposed models are capable of producing results

that are realistic and reflective of existing SDN-aware ecosystems.

1.3 Research Aims

As a response to these motivations and challenges, this PhD thesis aims to introduce

an extendable toolchain that delivers novel simulation and modeling of SDN-aware en-

vironments. It investigates, develops, and proposes novel techniques and frameworks

for modeling several SDN-aware environments. The thesis also aims to introduce a
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number of optimization solutions in several SDN-aware environments. The thesis’s

overall outcome is to provide multi-purpose SDN-aware simulations, which enable re-

searchers to evaluate and analyze their proposed solutions and hypotheses with less

effort, time, and cost.

1.4 Research Questions

The main question in this PhD research can be stated as how to optimize the perfor-

mance of data-driven applications in SDN-aware distributed systems based on differ-

ent objective requirements? To answer this question, this PhD research divides the

question into four sub-questions. As such, this thesis is guided by the following four

questions:

1. How to abstract, model, and represent SDN-aware networks and MapReduce

big data applications in cloud datacenters, considering the heterogeneous sets

of criteria and components of SDN, MapReduce, and cloud infrastructures? As

the performance of MapReduce applications require joint-optimization of host

and network layers in the context of SDN-aware cloud datacenters, it is required

to investigate and capture underlying components and factors that have high

impacts on MapReduce applications running in SDN-aware cloud datacenters.

2. How to abstract, model, and represent SD-WAN networks that interconnect

distributed SDN-aware cloud infrastructures considering the complexity of SD-

WAN and SDN altogether? Distributed cloud datacenters require massive amounts

of data to be transferred to one another via SD-WAN (e.g., replicating data across

datacenters for high availability). As such, new optimization solutions are essen-

tial to ensure optimal performance and best practices for resource utilization in

a global manner. Still, new proposed optimization solutions need to be tested

against a range of probable outcomes in order to ensure their practicality; there-

fore, the outcome of this question would provide a testing framework based on

proper capturing of SD-WAN and SDN-aware cloud systems.

3. How to efficiently execute the workflows of data-driven applications across multi-
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ple SD-WAN-enabled cloud datacenters and at the same time minimize non-green

energy consumption and cost while avoiding SLA violations? Such workflows of-

ten lead to an enormous increase in energy usage which is not only a financial

burden but also increases overall carbon footprints. To solve such problem, new

system and algorithmic solutions are required, considering several factors, such

as the application topology and deadline of data-driven applications, the usage of

green energy, leveraging of SD-WAN capabilities, and decreasing overall energy

consumption and cost.

4. How to abstract and represent different models of SDN-aware networks run-

ning in different types of datacenters, including large-scale cloud datacenters

and small-scale edge datacenters, in addition to IoT and SD-WAN ecosystems?

Interconnecting the layer of IoT data producers to several hierarchy layers of sys-

tems (known as osmotic computing), as previously shown in Figure 1.1, requires

the gluing and interaction of multiple complex models. This type of emerging

ecosystem introduces an unprecedented scale of NP-hard problems. To prop-

erly evaluate the strengths and weaknesses of new osmotic-based solutions, a

framework with different types of SDN-aware models is required.

1.5 Research Contributions

As SDN and SD-WAN can be involved in several domains, this thesis focuses on three

types of ecosystems: (a) SDN-aware cloud datacenters running MapReduce big data

applications, (b) distributed SDN-aware cloud datacenters interconnecting via SD-

WAN, and (c) SDN-aware osmotic computing. The main contributions of this thesis

are listed below:

• To solve the first discussed question, this thesis proposes a new holistic frame-

work that simulates MapReduce applications, big data management systems

(BDMS), and SDN-aware networks in cloud-based environments (demonstrated

later in Chapter 3). Theoretical and mathematical models of MapReduce in

SDN-aware cloud datacenters are also proposed. It also proposes multiple sys-

tem models to simulate different samples of MapReduce running in SDN-aware
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cloud infrastructures. The framework’s accuracy is validated against a real-world

MapReduce SDN-aware infrastructure.

• To solve the second discussed question, this thesis proposes a novel framework

that simulates and models SD-WAN and distributed SDN-aware datacenters

(demonstrated later in Chapter 4). It provides accurate modeling of TCP and

UDP protocols in addition to network delays. A new SD-WAN routing technique

is proposed based on graph theory, which dynamically computes the best route

for every network flow. A new scheme for SDN and SD-WAN controllers is

proposed to coordinate network functionalities in global sense. The framework’s

accuracy is validated against a real-world SDN-aware infrastructure.

• To solve the third discussed question, this thesis proposes a new SD-WAN based

Workflow Broker (SDWAN-WB) that deploys data-driven workflows across mul-

tiple SD-WAN-enabled datacenters, in addition to automating resource provi-

sioning, task provisioning, and data provisioning (demonstrated later in Chapter

5). An adaptive Genetic Algorithm (GA) is also proposed for selecting near-

optimal solutions based on green energy usage, the topology and deadline of

data-driven workflows, and overall energy consumption and cost. The question

is also solved by leveraging SD-WAN capabilities to decrease overall network

energy consumption. Extensive experimental evaluation compared with other

baseline algorithms is conducted to study the feasibility of the proposed schedul-

ing algorithm and system. This was a collaborative work in which I precisely

contribute in network and energy modeling as well as the implementation of the

proposed system and algorithm in our proposed IoTSim-SDWAN simulator , as

demonstrated in Chapter 4.

• To solve the fourth discussed question, this thesis proposes a unified osmotic com-

puting framework that models and simulates complex IoT applications running

over heterogeneous edge-cloud environments while interconnecting via SD-WAN

infrastructures (demonstrated later in Chapter 6). Theoretical and mathemati-

cal models of osmotic computing are also proposed, in addition to several system

management policies. A case study validation using an energy management and
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billing application is presented, highlighting the unique capabilities provided by

IoTSim-Osmosis for analyzing various parameters, such as IoT energy usage,

execution time, and network transmission delays.

1.6 Thesis Structure

The structure of the thesis is shown in Figure 1.2. The chapters are derived from

several articles which were published during the PhD candidature. The rest of the

thesis is organized as follows:

• Chapter 2 illustrates the background of SDN-aware environments and applica-

tionsand discusses different techniques for modeling and simulation.

• Chapter 3 presents a modeling and simulation framework of big data manage-

ment system, MapReduce programming model, and SDN-aware networks in a

cloud computing environment. This chapter is derived from:

– K. Alwasel, R. N. Calheiros, S. K. Garg, R. Buyya, M. Pathan, D. Geor-

gakopoulos, and R. Ranjan, “BigDataSDNSim: A Simulator for Analyzing

Big Data Applications in Software-Defined Cloud Datacenters,” Journal of

Software: Practice and Experience, October, 2020.

• Chapter 4 introduces a framework that models and simulates SD-WAN and

distributed SDN-aware cloud datacenters. This chapter is derived from:

– K. Alwasel, D. Jha, E. Hernandez, D. Putha, M. Barika, B. Varghese, S.

Garg, P. James, A. Zomaya, G. Morgan, and R. Ranjan, “IoTSim-SDWAN:

A Simulation Framework for Interconnecting Distributed Datacenters over

Software-Defined Wide Area Network (SD-WAN),” Journal of Parallel and

Distributed Computing, May, 2020.

• Chapter 5 proposes an adaptive solution for scheduling the workflows of data-

driven applications across multiple SD-WAN-enabled cloud datacenters. This

chapter is derived from:
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– Z. Wen, S. Garg, G. Aujla, K. Alwasel, D. Puthal, S. Dustdar, A. Zomaya,

and R. Rajan, “Running Industrial Workflow Applications in a Software-

defined Multi-Cloud Environment using Green Energy Aware Scheduling

Algorithm,” IEEE Transactions on Industrial Informatics, December, 2020.

• Chapter 6 presents a framework that models and simulates multiple osmotic sys-

tems in a unified environment, which enables the integration and communication

of IoT, edge and cloud ecosystems via an SD-WAN and SDN networking. This

chapter is derived from:

– K. Alwasel, D. Jha, F. Habeeb, U Demirbaga, O. Rana, T. Baker, S. Dust-

dar, M. Villari, P. James, E. Solaiman, and R. Ranjan, “IoTSim-Osmosis:

A Framework for modeling and Simulating IoT Applications over an Edge-

Cloud Continuum,” Journal of Systems Architecture, November, 2020.

• Chapter 7 summarizes the thesis and illustrates directions for future work.
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Summary

This chapter demonstrates background and relevant concepts of the overall topics ad-

dressed in this thesis. It starts by describing SDN and its architecture as compared

to traditional networks. Next, it discusses the deployment of SDN in several envi-

ronments. In particular, it illustrates the deployment of SDN in cloud datacenters to

enhance the overall performance of MapReduce applications. Next, it demonstrates

the leveraging of SD-WAN between several distributed cloud datacenters. It also dis-

cusses the use of SDN within IoT edge datacenters. In addition, this chapter describes

how SDN-aware solutions can be evaluated.

2.1 Software-Defined Networking (SDN)

SDN is a networking paradigm originally derived from the work of Martin Casado in

2005 [41]. SDN was initially designed to simplify the process of network management

and configuration. The rising of SDN started with the invention of the OpenFlow

(OF) SDN protocol in 2008 [42]. OF is a network management protocol to control

the flows of network packets in a given SDN-aware network. The main pillars of SDN

include:

• Moving network control logic from network devices (e.g., routers, switches) to

SDN controllers.

• Real-time programming of networks through software applications and/or appli-

cation programming interfaces (APIs).

• Global view of data flow across given networks.

• Making network decisions (forwarding and routing) based on different criteria,

such as applications, flows, and Internet Protocol addresses (IPs).

SDN aims to enable dynamic configuration of networks and overcome the limitations of

traditional network infrastructure [9]. The key difference between traditional networks

and SDN is that the control layer of network devices, which acts like a ”brain,” is moved
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away to an SDN controller, as shown in Figure 2.1. Such a tactic makes networks

more robust, simplified, and flexible to changes as the network is controlled from a

central point instead of complex, distributed control mechanisms. The control layer

seamlessly enforces SDN customized management and routing policies in the data layer

using well-defined APIs, such as OpenFlow [42]. As a result of the attractive features

and world-wide adoption of SDN, several network vendors (e.g., HP, Pica8, Netgear)

have introduced numerous network devices that are SDN-aware, which bring a better

consumer experience.

2.1.1 SDN architecture

Figure 2.2 demonstrates an overview of SDN architecture and OF. The architecture

consists of three layers: data, control, and management. The data layer contains

network devices that implement an OF protocol. It allows remote management and

access to heterogeneous devices without exposing internal designs and functionalities.

Every network device maintains an OF table in order to enable an SDN controller to

configure its network states dynamically. For example, a routing table embedded in a

given network device can be used to add, retrieve, remove, and update routing entries

on behalf of a respective SDN network manipulation functions and applications (e.g.,

routing, monitoring, traffic load-balancing).

The control plane contains one or multiple SDN controllers where they expose several

southbound and northbound APIs to the data and management layers, respectively.

The data layer enables SDN controllers to instruct and manipulate network devices’

rules seamlessly via an OF protocol and the southbound APIs. On the other hand, the
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management layer enables SDN controllers to deploy the functions of various network

applications via the northbound APIs. Such network applications are used to configure,

control, and orchestrate an entire given network without having direct communications

with network devices. Every application can contain various parameters and functions

which are injected into SDN controllers.

2.2 SDN deployment

Several domains have adopted SDN at a rapid pace as it offers promising performance

and management solutions. SDN has re-moulded the long-established, traditional

networks to a smarter and innovative infrastructure in order to keep pace with the

digital age’s rapid development. In particular, SDN networking revolution empowers

the new era of cloud computing, data-driven applications, edge computing, IoT, and

SD-WAN.
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2.2.1 Cloud computing

Cloud computing is a novel way of delivering and offering on-demand Information

technology (IT) infrastructures and services via virtualized utilities [43]. It is based on

subscription and consumption models where consumers pay for services based on their

usage. It consists of several geographically distributed datacenters where each data-

center has its own components, such as storage, networking, and computing. Cloud

consumers can seamlessly scale up and down their computing requirements (e.g., CPUs,

VMs) according to a Service Level Agreement (SLA).

Cloud computing offers three services: Software as a Service(SaaS), Platform as a

Service (PaaS), and Infrastructure as a Service (IaaS) [44]. SaaS provides off-the-shelf

software applications that are ready for immediate use. Such services are beneficial

for start-up companies to accelerate the launching phase along with streamlining op-

erations. PaaS plays a vital role in building customized applications with particular

software elements. It supports adding special services and properties to applications

while a trusted third party manages underlying IT infrastructures. IaaS supports the

idea of managing an underlying IT infrastructure through virtualization mechanisms.

It fulfills consumer needs by providing complete control over resources, such as VMs,

storage, and services.

2.2.2 Big Data

Big data analytics has emerged as the preferred option to effectively analyze large-scale

data sets at an astonishing speed as compared to traditional database systems, which

require excessive time and a single super-computing capability [45]. Big data harnesses

the power of clustering commodity hardware to carry out data analysis in a parallel

and simultaneous manner. It has become the most prominent mechanism to delve

into data sets and provide valuable insights, such as detection of emerging risks and

threats, predicting behaviors and patterns, and providing business opportunities [46].

In general, data is defined as ”big data” if they share three characteristics, which are

variety (various data types), volume (a massive among of data), and velocity (data

processing speed) [12].
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To bring big data analytics into existence, several frameworks have been developed and

launched in cloud-based environments, such as Hadoop MapReduce [30] and Apache

Storm[47]. These frameworks facilitate the process of utilizing parallel programming

models and engines, along with meeting different aspects of big data requirements.

For instance, the MapReduce programming model can be used to analyze historical

data, while a stream processing model is used to handle a never-ending data stream at

a speed of milliseconds [48]. Moreover, a big data application can rely on multiple big

data models and engines (e.g., Apache Hadoop YARN[49]) to handle different aspects

of data analysis simultaneously. As such, big data management systems (BDMS),

YARN, have emerged to coordinate and schedule resources among big data engines

and applications co-hosted on a shared big data cluster.

2.2.3 WAN to SD-WAN

WANs are the core communication infrastructures that interconnect geographically

distributed systems and devices into a single network [50]. Although traditional WANs

have been developed to interconnect distributed systems, there are some limitations

with respect to lack of adaptive routing behavior, unbalanced load distribution, re-

quirement of complex network protocols, lack of prioritization and the need for spe-

cialist hardware. Due to these drawbacks, the management and deployment of tra-

ditional WANs in the context of data-driven applications is limited. For a complete

distributed cloud datacenters that offers better resource management and efficiency

within modern data-driven applications (e.g., smart energy clouds, content delivery

network, distributed gaming), the WAN needs to be part of the whole adaptable SDN

solution.

SD-WAN originates from the SDN paradigm which leverages the SDN mechanisms of

managing, operating, automating, and simplifying networks within a WAN context

[51]. SD-WAN has emerged as a promising solution to alleviate the issues of classical

WAN along with the objectives to enhance the performance and deployment of various

data-driven applications [16, 17, 52]. The concept of SDN’s decoupling of the control

and data layers is applied to the SD-WAN ecosystem, in addition to the leveraging

of software-based centralized controllers. SDN is primarily responsible for controlling
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and managing datacenters’ internal network operations (e.g., cloud and edge), whereas

SD-WAN moves the focus to manage the interconnecting geographically distributed

applications, systems, and datacenters.

The earliest integration of an SD-WAN ecosystem for improving network utilization

was by Microsoft [17] in 2013, followed by Google in 2014 [16]. Both Microsoft and

Google leverage SD-WAN solutions to accelerate the process of copying a large amount

of data across and between datacenters while improving network performance, co-

ordination, traffic engineering, and overall resource optimizations. Recently, cloud

providers, such as Amazon1, have leveraged SD-WAN solutions to move from IP-based

WAN routing and management mechanisms to application-based SD-WAN ecosystems.

Figure 2.3 illustrates the key difference between WAN and SD-WAN environments.

In the classical WAN, a gateway contains both data and control planes, whereas an

SD-WAN separates control planes from gateways to a centralized SD-WAN controller.

The data plane maintains routing information while the control plane is responsible for

making all network decisions and providing the data plane with routing information.

From the figure, it can be seen that the SD-WAN controller oversees and manages

the whole network. This results in cohesive global network decisions made with an

awareness of current (and legacy) traffic issues. The SD-WAN can also enforce a new

network policy/QoS on the fly, something that a classical WAN may never achieve due

1https://aws.amazon.com/blogs/apn/exploring-architectures-with-cisco-sd-wan-and-aws-transit-
gateway/
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to its static nature. Moreover, an SD-WAN is capable of load balancing the network in

a global sense, by directing data flows across the least congested routes of a network.

Such traffic engineering techniques improve network transmission time and the QoS of

traffic flow (including improving resource utilization).

2.2.4 Edge computing and IoT

Edge computing is a new computing paradigm with the aim to process and store

data closer to the data origin location [53]. It improves the overall performance of

distributed data-driven applications by minimizing response time. It also saves net-

work consumption and avoids network choke points by reducing the amount of data

forwarded to geographically distributed cloud datacenters. Edge computing can have

different environment forms, from a smartphone, to a Raspberry Pi, to a laptop, to

small-scale datacenters. Edge datacenters are similar to cloud datacenters with a small

number of components, such as servers and switches.

IoT can be described as a set of physical things “devices” with the ability to sense sur-

rounding environments and process sensed data for observing particular patterns [53].

IoT devices can communicate with each other and with respective computing environ-

ments based on given configurations. IoT is anticipated to permeate society according

to research conducted by Gartner2 (an IT service management company). Gartner pre-

dicts that IoT will connect up to 20.4 billion devices by 2020, which will add around

3 trillion US dollars to the world economy. As a result, IoT has become the backbone

of several emerging applications, such as smart buildings, smart cities, smart vehicles,

environmental sensing and forecasting, and disaster management, among others [54].

An IoT application, such as a smart meter application, can distribute its real-time

computation process across IoT devices, edge and cloud datacenters based on the

desired functional and QoS parameters [55]. To obtain such distributed computations,

generated data are forwarded from IoT device to edge and further from edge to cloud

using different communication and network protocols. The computational result can

be used to make some decisive actions to fulfill the desired application process.

2http://www.gartner.com/newsroom/id/3598917
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2.2.5 Osmotic computing

The IoT infrastructure is now used across a number of applications, such as smart

city, healthcare, and manufacturing. In such applications, data from IoT devices can

be processed by different resources at edge and cloud datacentres [56]. The transition

from distributed systems (e.g. cloud computing) to a distributed system of systems –

with the edge and cloud acting as independently managed systems to support an IoT

ecosystem, has led to a new generation of heterogeneous and complex environments.

Although the platforms that support a system of systems perspective may vary, a

common theme is to link different types of distributed systems in a unified manner,

which can be defined as osmotic computing [25].

The osmotic computing paradigm provides a simplified model for the deployment of

IoT applications in the integrated edge-cloud environment [25]. It focuses on the design

and implementation of a unified computing model that leverages the capabilities of

various distributed systems and networks (IoT-edge, cloud datacenters, and SD-WAN).

Osmotic computing suggests the migration of workload to/from a cloud datacentre to

edge devices via SD-WAN, based on performance and security trigger events. The aim

of osmotic computing is to optimize the performance of the overall IoT ecosystem as

well as the performance of individual components that are part of such an ecosystem.

2.3 Evaluation methods

The evaluation of proposed SDN-aware designs, architectures, and algorithms in a

given environment (cloud, edge, etc.) is essential to estimate the level of performance

considering a wide-spectrum of systems’ behaviors and components. In general, the

SDN evaluation process can be conducted using three different methodologies: ex-

periments with real SDN-aware environments, SDN-aware emulation, and SDN-aware

simulation.

2.3.1 Real SDN-aware environments

Leveraging real SDN-aware environments is an option for evaluating new SDN-aware

solutions. Such environments are often conducted in small-scale infrastructures, which
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might understate or overstate the effectiveness of proposed solutions [1]. Also, most

scientists and researchers cannot obtain such infrastructures due to several reasons

related to financial and technical constraints. Albeit live production environments are

feasible, it is not recommended to be used during the testing phase because proposed

solutions might lead to failure or performance degradation [57]. Moreover, to carry

out real SDN-aware environments, switches and routers need to be SDN-aware with

an embedded OF protocol. An SDN controller software (e.g., Ryu3, OpenDaylight4)

is also required to control and configure network devices via an OF protocol.

2.3.2 SDN-aware emulation

An emulator can be defined as a hardware or software tool designed to imitate similar

functions of given hardware platforms, operating systems, or applications [58]. With

the rapid development of technology, emulation-based tools and strategies have be-

come essential to accelerate the development of a given IT environment vastly. For

example, SwiftUI5 and Android Studio6 are emulators designed to enable developers

to create new smartphone applications using computers without the need to obtain

real smartphone devices and operating systems. Similarly, several emulators exist to

imitate SDN-aware environments. For instance, Mininet7 is a network emulator de-

signed to create a realistic virtual SDN-aware network where the network is controlled

by an SDN controller (e.g., Ryu8). Although emulators are powerful tools to be used

based on given requirements, SDN-aware emulators suffer from several shortcomings,

such as the inability to emulate distributed cloud datacenters where each datacenter

has its network and computing infrastructures [59].

2.3.3 SDN-aware simulation

Modeling can be defined as an abstract representation of real-world systems in which

it captures functions and properties [60]. On the other hand, a simulation is an act

3https://ryu-sdn.org/
4https://www.opendaylight.org/
5https://developer.apple.com/xcode/swiftui/
6https://developer.android.com/studio
7http://mininet.org/
8https://ryu-sdn.org/
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of executing models in a code-base programming manner [60]. Compared with real-

world systems and emulators, simulation is capable of simulating large-scale distributed

infrastructures without much cost and in a configurable and easy manner [1, 60]. It

is the most practical approach to quantify new solutions with acceptable accuracy.

Simulation tools might rely on one or several models to effectively capture underlying

system behaviors, depending on the system’s complexity. In general, simulation tools

can be designed in two approaches: continuous or discrete-event [60]. Also, simulation

tools can be hybrid in which they combine the two approaches [60].

2.3.3.1 Continuous simulation

A continuous simulation is an act of modeling the properties and behaviors of real-

world objects in continuous functions where a set of dependant variables are continu-

ously changing with respect to time [60]. It is typically based on differential equations

to demonstrate the rates of change in a given system’s states [60]. For example, ve-

hicles’ motion can be simulated based on a continuous approach where the states of

motion continuously change. While a continuous approach is capable of tracking an

exact motion, a discrete-event approach can be used as an alternative to provide an

approximation of vehicles’ motion.

2.3.3.2 Discrete-event simulation

A discrete-event approach simulates the change of state of real-world objects as a

set of events occurring at particular instances of time [60]. It is commonly used in

several domains, such as health care, logistics, transportation, manufacturing, and

computing [61, 62]. Figure 2.4 illustrates the principle of the discrete-event approach,

where events are intercepted with respect to time. The activities occurring between
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the events are neglected as they do not change systems’ behavior as compared to the

continuous approach.

The main components of a discrete-event simulation environment are entities, a clock,

and an event queue. The entities represent stand-alone elements with their unique

functions, procedures, and behaviors, such as SDN controllers, switches, and servers.

Each element can be mapped into several different objects (e.g., numerous SDN con-

trollers) where each object can have its own functions and data structures. The simu-

lation clock is continuously updated according to the time of every intercepted event.

In this case, a simulator can be described as a scheduler where it executes events in a

sequential manner. Once there are no more events in the event queue, simulation will

finish and statistics and results will be reported.
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Summary

To support the testing and bench-marking of MapReduce applications that rely on

data processing and transmission across multiple VMs, this chapter presents a new,

self-contained simulation tool named BigDataSDNSim. The new simulator enables

the modeling and simulation of the big data management system (YARN), its related

programming models (MapReduce), and SDN-aware networks in a cloud computing

environment. The chapter also validates and compares the accuracy and correctness

of BigDataSDNSim with a real MapReduce SDN-aware environment. Finally, the

chapter presents two uses cases of BigDataSDNSim, which exhibit its practicality and

features, illustrate the impact of data replication mechanisms of MapReduce in YARN,

and show the superiority of SDN over traditional networks to improve the performance

of MapReduce applications.

3.1 Introduction

The advent of the MapReduce programming model, BDMS, and clouds has contributed

to improving the existing practice of data analysis and synthesis. However, one critical

issue of MapReduce is that every MapReduce application faces several performance

challenges due to its unique context and requirements of data flow and processing

[48, 51, 63, 64]. In particular, every MapReduce application has its characteristics and

runs across tens of servers distributed in different datacenter racks; therefore, every

application would most often require unique scheduling mechanisms, subject to the

given processing and communication requirements and patterns [12]. Undoubtedly,

MapReduce host-network scheduling plays a vital role in achieving performance goals,

reducing execution time, minimizing computing costs, and ensuring proper resource

utilization and management [65, 66].

The architecture and performance of MapReduce, which is managed by a BDMS,

depends on two major factors: processing and network transmission. Most of the ex-

isting solutions inform design decisions in terms of MapReduce processing performance

and neglects the transmission performance due to the lack of real-time, dynamic net-

work configurations. With the advent of SDN, a number of studies have leveraged
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MapReduce in SDN-aware environments and proposed novel joint-optimization so-

lutions, which notably enhance MapReduce performance in terms of processing and

transmission [3, 4, 67]. Still, several challenges need to be tackled to leverage and

evaluate the benefits of SDN for supporting the network capabilities MapReduce ap-

plications in cloud contexts. To fill this gap, we present BigDataSDNSim: a new,

discrete-event simulation tool designed to enable the modeling and simulation of big

data management systems (YARN), big data programming models (MapReduce), and

SDN-aware networks within cloud computing environments.

To the best of our knowledge, BigDataSDNSim is the first tool that models and simu-

lates the three merging technologies (MapReduce-BDMS, SDN, cloud) in a single sim-

ulated environment. Based on our proposed system-based and mathematical models,

the simulator is capable of capturing the key functions, characteristics, and behaviors

of the SDN-aware computing environment. It can also model the functionalities of

MapReduce applications in line with mimicking diverse SDN capabilities and interac-

tions with BDMS systems in a seamless manner.

The main contribution of BigDataSDNSim is the ability to generate different samples

of SDN-aware MapReduce-BDMS infrastructures, along with reducing the complexity

of deploying new SDN-aware MapReduce optimization solutions. The simulator can

predict and quantify the impact of new SDN-aware MapReduce solutions and designs

running in cloud environments. The accuracy and correctness of BigDataSDNSim are

validated by comparing the behavior and results of a real environment that combines

MapReduce and SDN with an equivalent simulated environment given by BigDataS-

DNSim. Evaluation results demonstrate that BigDataSDNSim is closely comparable

with real environments. To gain insight of the features and functionalities of Big-

DataSDNSim, this chapter present two use cases that demonstrate the ability of SDN

to improve the performance of MapReduce applications as compared to traditional

networks and illustrate the impact of Hadoop Distributed File System (HDFS) repli-

cation mechanisms in the overall MapReduce performance. In summary, the main

contributions of this chapter are as follows:

• A new holistic simulation framework that simulates MapReduce applications,

BDMS, and SDN-related networks in a cloud-based environment
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Figure 3.1: An overview model of MapReduce processing and data flow phases

• Theoretical modeling of MapReduce processing and transmission in SDN-aware

cloud datacenters

• Multiple system models to simulate different samples of MapReduce running in

SDN-aware cloud infrastructures

• Validation and comparison of the accuracy and correctness of BigDataSDNSim

with a real-world MapReduce SDN-aware environment

The rest of this chapter is organized as follows: Section 3.2 provides an overview of a

MapReduce-BDMS architecture running in an SDN-aware cloud datacenter. Section

3.3 presents related work and reflects the importance and unique capabilities of Big-

DataSDNSim. Section 3.4 elaborates the architecture and design of BigDataSDNSim

framework in detail. Section 3.5 demonstrates the modeling of BigDataSDNSim math-

ematically and descriptively. Section 3.6 validates and compares the accuracy and cor-

rectness of BigDataSDNSim with a real MapReduce SDN-aware environment. Section

3.7 presents two use cases of BigDataSDNSim. Section 3.8 concludes the chapter and

highlights some future work.

3.2 Overview

MapReduce is a programming model that runs in the form of a big data application

[30]. Apache Hadoop YARN [49] is considered to be the most dominant framework

for building MapReduce applications. A fundamental part of the YARN is HDFS,
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which is a distributed file storage that distributes data across virtual machines (VMs)

in a given big data cluster. It supports a replication mechanism of data sets for

fault tolerance purposes, which is set up to three replications by default. On data

set submission, HDFS breaks down the data into several small data blocks and then

replicate and distribute these blocks into selected slave VMs. HDFS tries to balance

the distribution of data blocks among VMs fairly; however, the distribution of a given

data block can be later altered if all VMs that contain the data block are busy. By using

a data locality technique, YARN copies the functions of map and reduce to all salve

VMs so that any VM can be selected to execute a map or reduce function. Whenever

a MapReduce application is being executed, YARN would specify it as a MapReduce

job, which holds information and records, such as the number of data blocks and

the execution time of every map and reduce task. So, a MapReduce application and

a MapReduce job are interchangeable. To avoid confusion, we use the “MapReduce

application” throughout this article.

MapReduce applications can have different building blocks and characteristics based on

processing and data flow requirements. The simplest model of MapReduce is illustrated

in Figure 3.1, which consists of six phases, assuming that HDFS, mappers, and reducers

reside in different nodes. As it can be seen the HDFS splits the data (D) into several

blocks (e.g., B1, B2, B3) where each block is replicated and forwarded to elected

VMs via a network layer. For every data block, a single mapper is selected to carry

out the processing. Once every mapper completely processes the data, it starts the

transmission of the output to respective reducers (e.g., R1, R2) according to the key-

value pairs. The key-value mechanism of MapReduce requires reducers to wait for all

mappers to finish processing so that the output of reducers is accurate. Once every

reducer finishes processing, it transfers its output to the HDFS to be combined and

reported. The block replication mechanism is also required for reducers to divide their

output into small-scale data blocks and transfer the blocks to other elected VMs based

on the replication factor.

Figure 3.2 illustrates an overview of SDN-aware YARN systems running MapReduce

applications. In a given datacenter, every big data cluster is managed by a resource

manager and have a single HDFS shared by all MapReduce applications. The resource
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manager contains a list of worker VMs where each VM is controlled and monitored by

an implemented agent (node manager). For every requested MapReduce application,

the resource manager creates a new application master and links requested VM re-

sources to the application master. Once the application master is activated, it copies

the code-based functions of its map and reduce tasks to all respective VMs so that ev-

ery VM can be elected to run the map and/or reduce task, as previously mentioned to

ensure the principle of data locality. Following that, the execution logic of MapReduce

applications follows the six processing and transmission phases, as mentioned earlier.

The description above of MapReduce, BDMS, and SDN should be considered to derive

correct simulation models and ensure the accuracy of simulated results. BigDataS-

DNSim, therefore, is modeled and designed accordingly with the given descriptions. It

also provides abstract layers for enforcing new policy-based solutions. For example, the

components of a single MapReduce application running in a cloud datacenter might be

located on different servers and/or racks due to insufficient resource capacity in a single

server. Such distribution logic requires accurate abstractions and modeling in order

to properly evaluate optimization solutions for MapReduce running across several dis-

tributed servers. In another example, the same MapReduce application might require

special QoS requirements (e.g., traffic prioritization, policy-based routing mechanisms)

and excessive data transmission on the network layer from one server to another. As

SDN-aware networks are capable of meeting such requirements, BigDataSDNSim is

modeled to seamlessly provide easy deployments of QoS requirements on behalf of

every MapReduce application.

3.3 Related works

Several simulation tools were developed due to the surge in adoption of MapReduce

and SDN in cloud-based environments. Some of the tools were developed from the

ground up while others were developed on top of existing tools. We believe that

there is a clear gap in state-of-the-art simulators in terms of modeling and support

for MapReduce applications, BDMS, and SDN in cloud-based infrastructures. This

section demonstrates existing simulators in terms of their ability to model and simulate
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Figure 3.2: Overview of SDN-aware YARN-related systems

MapReduce-DBMS within SDN-aware cloud datacenters. It then illustrates how our

simulation framework fulfills the gap of existing simulation frameworks in a holistic

manner. Table 3.1 illustrates the differences and similarities of existing simulators and

emulators as compared to our simulation framework.

There are several simulation tools capable of simulating and modeling the character-

istics of cloud and legacy networks. For example, CloudSim [1] is one of the most

popular cloud-based tools that allow the modeling of physical and virtual cloud infras-

tructures using an event-driven architecture. It is capable of simulating and evaluating

the performance of cloud infrastructures as well as deploying various provisioning and

allocation policies (e.g., VM placement, CPU task scheduling). CloudSim forms the

base upon which several simulation tools were developed to fill the gap of networks

and applications aspects (e.g., NetworkCloudSim [68], WorkflowSim [69]). GreenCloud

[70], iCanCloud [71], and NetworkCloudSim are other cloud-based tools focusing on

the perspective of legacy networks in terms of characteristics and communications in

cloud datacenters.

Mininet [72] is an SDN-aware emulation tool that runs on a single device configured

with a Linux-based system. It emulates different types of network topologies together

with hundreds of virtual hosts and diverse UDP/TCP traffic patterns. The exter-

nal SDN controller(s) communicates and enforces network policies on Mininet via its

unique IP address and OpenFlow APIs. While Mininet is limited to run on a sin-

gle physical machine, MaxiNet [73] was introduced to enable Mininet to run across
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multiple physical machines. MaxiNet is capable of emulating large-scale SDN cloud

environments along with evaluating new SDN-aware routing algorithms. Moreover, to

allow Mininet to mimic the behaviors of MapReduce applications, MRemu [74] was

introduced where it is capable of using realistic MapReduce workloads/traces within

Mininet environments. It operates on latency periods extracted from MapReduce job

traces (duration of tasks, waiting times, etc.).

Similarly, EstiNet [75] is another SDN-aware simulation and emulation tool, allowing

each simulated host to run a real Linux-based system coupled with several types of

real applications. It is capable of simulating hundreds of OpenFlow switches and

generating real TCP/IP traffic. CloudSimSDN [2] is an SDN-aware cloud simulator

that is modeled and implemented on top of CloudSim [1]. It enables the simulation

of SDN-network behaviors in a cloud-based environment. The focus of CloudSimSDN

is to model power-based management policies to reduce the energy consumption of

hosts and network devices. SDNSim [76] is an SDN-aware simulator that simulates

datacenter elements (e.g., switches, links, and hosts) along with the layer of SDN data

plane. The control plane of SDNSim is handled by an external SDN controller, which

enforces network decisions and solutions through APIs. Moreover, SDN-Sim [77] is

an SDN-aware simulation and emulation tool that integrates several frameworks to

facilitate the end-to-end performance evaluation of wireless technologies (e.g., 5G).

The Virtual infrastructure of SDN-Sim depends on VMWare ESXi servers while its

network layer is managed by OpenFlow protocol and Opendaylight controller. SDN-

Sim’s network can be emulated using GNS3 and Mininet. It depends on MATLAB

server to run real world SDN wireless scenarios.

IoTSim [78] is an extension of CloudSim that mimics the characteristics of the MapRe-

duce programming model. It allows simulation and modeling of the old version of the

Hadoop framework (e.g., job trackers, task trackers). It provides a simple management

mechanism to configure MapReduce applications based on IoT-generated data. Simi-

larly, MR-CloudSim [79], MRSim [80], and MRPerf [81] are other tools that enable the

simulation of MapReduce-based applications with different focuses and features. In

addition, BigDataNetSim [82] is a simulator designed to evaluate the data placement

strategies of HDFS within a dynamic network cluster. It focuses on evaluating solu-
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Table 3.1: Comparison of related simulators and emulators
X* with the help of the INET framework [5]; X** with the help of SDN controllers
from other projects (e.g., Floodlight [6])

Simulators
Features

Language
Evaluation
Objectives

MapReduce
Model

Network
Model

BDMS
Model

SDN
Model

Cloud
Model

Dynamic Routing
Mechanisms

CloudSim [1] Java Performance X
NetworkCloudSim [68] Java Performance Limited X

WorkflowSim [69] Java Performance X
GreenCloud [70] C++/Otcl Energy X X X
iCanCloud [71] C++ Performance X* X X*

Mininet [72] Python Performance X X** X**
MaxiNet [73] Python Performance X X** X X**
MRemu [74] Python Performance X X X** X**
EstiNe [75] C++ & Python Performance X X X

CloudSimSDN [2] Java Performance
& Energy

X X X

SDNSim [76] MATLAB & Python Performance X X X X
SDN-Sim [77] MATLAB, Java & Python Performance X X X
IoTSim [78] Java Performance X X

MR-CloudSim [79] Java Performance X X
MRSim [80] Java Performance X Limited
MRPerf [81] Python Performance X X Limited

BigDataNetSim [82] Java Performance X Limited X
MaxHadoop [83] Python Performance X X X X
BigDataSDNSim

(Proposed)
Java Performance

& Energy
X X X X X X

tions for transferring HDFS data to distributed nodes while it neglects the logic and

dependencies of MapReduce. MaxHadoop [83] is an emulation tool developed on top

of MaxiNet [73] to evaluate the performance of MapReduce strategies within an SDN

network environment. The network within MaxHadoop is managed by an external

SDN controller, such as Floodlight [6].

While these tools are powerful for simulating cloud-based environments, MapReduce

applications, traditional networks, and SDN, BigDataSDNSim differs in supporting

a holistic simulation framework that simulates MapReduce applications, BDMS, and

SDN-related networks in cloud-based environments. In particular, BigDataSDNSim

differs in terms of modeling and simulating:

• A generic big data approach for executing different big data programming models

(e.g., MapReduce, Stream) simultaneously

• MapReduce applications within big data cluster management (BDMS), which is

one of the prominent platforms for running different big data models

• Behaviors and features of SDN dynamic networks coupled with the coordination

and interaction with MapReduce applications within cloud environments
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Figure 3.3: Architecture of BigDataSDNSim simulator

• Dynamic routing mechanisms based on graph theory to enable any type of net-

work topology to be seamlessly simulated

• Several policies for SDN, MapReduce, and VM within cloud datacenters for

multilevel optimization

3.4 Architecture

This section demonstrates the fundamental functionalities and components of Big-

DataSDNSim. The modeling logic of our simulation framework is based on the overview

in Section 3.2. Figure 3.3 presents the key components of our proposed architecture, in

addition to a few used elements of CloudSim and CloudSimSDN. The Figure facilitates

our simulator’s use by categorizing the architecture into two main layers: program-

ming and infrastructure and big data. The detailed description of every component

in every layer is discussed later in Section 3.5. The overall description of each layer is

given as follows:
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3.4.1 Programming layers

The programming layer facilitates the deployment of strategies, policies, and algo-

rithms. It abstracts away the underlying complexities of BigDataSDNSim. It provides

the baseline to implement multi-level MapReduce optimizations in SDN-aware cloud

environments. It consists of the following layers:

• Input : This layer allows the implementation of different simulation scenarios

in a simple manner. The configurations of datacenters (e.g., requirements and

descriptions of hosts and networks) can be easily defined using a single JSON

file. The layer also provides mechanisms for configuring big data clusters, such as

the number of required VMs and MapReduce applications. The descriptions of

processing and data transmission of MapReduce applications can be submitted

in a CSV file, which includes attributes such as start time and the size of data

to be transferred between components (e.g., from HDFS to VMs). By using

the input of this layer, BigDataSDNSim instructs its respective components to

behave according to the given rules.

• Policy : By considering the importance of different policy requirements of MapRe-

duce applications and SDN traffic engineering, this layer is designed to provide

a mixed composition of MapReduce and SDN policies. Such policies are key

factors for obtaining optimal performance in MapReduce processing and trans-

mission. Therefore, this layer allows the implementation of new algorithms for

every listed policy.

3.4.2 Infrastructure and big data layers

The infrastructure and big data layers contain the core, complex components of Big-

DataSDNSim. If new functionalities emerge for big data programming models and the

current SDN capabilities of BigDataSDNSim are not supported, these layers should be

extended. In this layer, most of the components communicate with each other using

a discrete-event mechanism.
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• Big Data: This layer holds components responsible for simulating the behav-

iors and characteristics of MapReduce and BDMS. Big data applications might

require cross-engine data executions; thus, this layer integrates big data program-

ming models/engines. Currently, this layer allows the simulation and analysis

of the MapReduce model. As maintaining various programming models of big

data is essential to support applications that demand different processing mech-

anisms (MapReduce, stream, etc.), more required components can be added to

this layer.

• Infrastructure: It contains physical and virtual resources of cloud datacenters.

With virtualization mechanisms, hosts in BigDataSDNSim are designed to share

their resources among multiple VMs, where each VM has its own memory, stor-

age, and processor characteristics. This layer also maintains network and SDN

entities. The fundamental functionalities, deployment, and management of net-

work components and SDN are handled in this layer.

• CloudSim: This layer is equipped with the core entities, functionalities, and en-

gine of CloudSim, such as resource provisioning and allocation and event process-

ing mechanisms. It provides essential components to simulate cloud datacenters.

The BigDataSDNSim simulator operates on top of this layer, where entities can

easily communicate via a discrete-event mechanism.

3.5 Simulation Modeling and Design

This section illustrates the modeling and design of our simulation framework. It first

demonstrates its theoretical modeling of BigDataSDNSim. Next, it illustrates multiple

proposed designs of BigDataSDNSim, which includes system, policies, and interactions.

3.5.1 Theoretical model

According to the YARN framework [49], the first step required for execution of MapRe-

duce applications is the determination of HDFS data block size. HDFS can be defined

as a distributed file storage that breaks down every received data set into small-scale
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Figure 3.4: BigDataSDNSim MapReduce-HDFS Model

data, referred to as a block, and stores all the blocks on distributed VMs. In a MapRe-

duce YARN-based application, data is broken down into blocks for two times. First,

when the HDFS splits a submitted data set into several HDFS blocks to be forwarded

to elected VMs, which in turn are assigned to elected mappers for processing. Note

that HDFS would only instruct one of the elected mappers to carry out the execution

while the others are in a standby mode. The second time is when reducers finish

executing where every reducer will split its output into several reducer blocks and

distribute the blocks into elected VMs. We denote the former to “HDFS block” and

the latter to “reducer block.” The two types of blocks use the same block factor bsc

for determining their data block size.

Every generated HDFS block is first copied to elected VMs based on a given replication

factor bsc. One of the elected VMs is selected to run a new mapper for every received

HDFS block, while other VMs are in a standby mode. This technique is known as“data

locality” where computation is moved to a given data location (e.g., HDFS blocks)

instead of vice versa, which helps in reducing MapReduce network loads. Moreover, the

output of every reducer is divided into other blocks (reducer blocks) where each block
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is replicated and copied to elected VMs based on the same given replication factor bsc.

The HDFS replication mechanism ensures that the processing time of HDFS blocks

by mappers is decreased while the reducer replication ensures that the final output of

a MapReduce application, which combines data from all reducers, is available at all

times. The modeling of BigDataSDNSim MapReduce-HDFS is illustrated in Figure

3.4.

By default, the HDFS engine assigns a default data size bsd of 128MB to all HDFS

and reducer blocks. Every HDFS data block is the input data for every mapper. To

tune the number of required mappers, the block size bsn can be configured. Equation

3.1 is used to select the overall block size where c is a decision variable to denote the

demand for changing the default data block size. Let H = {1, 2, . . . , U} be a set of

HDFS blocks where each h ∈ H has a data block size, denoted as d ∈ Dh. Given the

size of the MapReduce submitted data set ds, Equation 3.2 is used to compute the

total number of HDFS blocks |H|. The total number of HDFS blocks |H| is inversely

proportional to bsc, represented as (|H| ∝ (bsc)
−1). YARN applies division by repeated

subtraction to determine the size of every HDFS block d, which means that all elected

VMs that store HDFS blocks obtain the same size for all the blocks except for the last

one. To properly determine the data size of every block d ∈ Dh, Equation 3.3 is used.

bsc =

bsd, if c = 0

bsn, if c = 1

(3.1)

|H| = ceil

(
ds

bsc

)
(3.2)

Datah =

bsc, if h < |H| − 1

ds%bsc, otherwise

(3.3)

Every reducer needs to obtain intermediate data from every mapper. The output size

of every mapper cannot be exactly determined because every mapper may produce

different patterns of output. For the sake of simplicity, we assume that all of the

reducers of a MapReduce application a ∈ A obtain an equal size input from every
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mapper. Let M = {1, 2, . . . , Q} be a set of mappers where each m ∈ M has a data

output, denoted as Outm. The total number of mappers |M | is equal to the total

number of HDFS blocks |H|. Let R = {1, 2, . . . ,W} be a set of reducers where each

r ∈ R obtains input data, denoted as Inr. Equation 3.4 is used to estimate the data

input size Inr for every reducer r ∈ R by dividing the output size of every mapper

m ∈ M by the total number of reducer |R|. For every MapReduce application, there

must be at least one reducer; therefore, BigDataSDNSim assigns a single reducer for

every requested MapReduce application. However, the number of reducers can be

changed if required.

Inr =

(
Outm
|R|

)
, ∀m ∈M (3.4)

The execution time of every mapper and reducer depends on the number of instructions

that is required to be executed on their VMs, which is given in Million Instructions

(MI). The execution time also depends on the speed of the central processing unit

(CPU) of VMs, which is measured in Million of Instructions Per Second (MIPS). In

discrete-event simulators, modeling the speeds, overheads, and sharing factors of CPU,

memory, and a hard drive is hard, if not impossible. To correctly capture this type

of model, a configurable parameter α is used to capture hidden overheads of VMs

when needed. To compute the processing capacity for every VM assigned for any

mapper or reducer, Equation 3.5 is used where Cvm is the processing capacity of every

vm ∈ VM = {1, 2, . . . , E}, mips(vm) is the MIPS speed of vm, and cpu(vm) is the

number of CPU cores of vm. Let Pt to be a processing demand of every m ∈ M , Gr

be a processing demand of every r ∈ R, and t ∈ {M,R} be a MapReduce task. The

execution time of every task t can be computed using Equation 3.6 where E(t, vm)

denotes the execution time of t executed in a VM vm.

Cvm = mips(vm)× cpu(vm)× α, α ∈ [0, 1] (3.5)

E(t, vm) =
Pt
Cvm

(3.6)
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Every mapper and reducer might have different execution times due to CPU sharing

mechanisms among all map and/or reduce tasks. In addition, the policy design (e.g.,

HDFS replica placement, CPU scheduling policies) plays a vital role on the execution

time. The feasible option for computing the execution time of a given set of mappers

and reducers belonging to a given MapReduce application is to observe the highest

execution time of mappers and reducers. To estimate the total execution time ET (a)

of every MapReduce application a ∈ A, Equation 3.7 is used.

ET (a) = max{E(t, v)}+ max{E(t′, v)}, ∀t ∈M, ∀t′ ∈ R, ∃v ∈ VM (3.7)

By default, every MapReduce application a ∈ A creates three replicas for every block

to ensure fault tolerance in case of a VM failure. The replication is performed for every

HDFS block and reducer block. Equation 3.8 is used to select the number of required

replicas Φ ∈ N where Ω is the requested replication factor and |VM | represents the

total available number of VMs. Ω cannot be higher than |VM |. Let each Rh ∈ N be the

set of replicas for each HDFS block h ∈ H. Given the set of the data of HDFS blocks

Dh and the set of HDFS replica size |Rh| = Φ, every HDFS block d ∈ Dh is mapped to

every corresponding replica o ∈ Rh by using a matrix, denoted as Uh = Dh×Rh. The

data of every replica u ∈ Uh will be then transferred from the HDFS to every elected

VM.

Φ =

Ω, if Ω < |VM |

|VM |, otherwise

(3.8)

Similarly, every reducer divides and replicates its output into a number of reducer

blocks based on the overall given block size bsc. Every block is then replicated according

to the replication factor Φ and forwarded to elected VMs. The replication is required

to ensure that the final output of every MapReduce application is not lost when some

VMs are not available. Let Outr be a set of reducer output and Br = {1, 2, . . . , P}
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be a set of reducer blocks for each r ∈ R where each b ∈ Br has some data, denoted

as z ∈ Dr. The total number of reducer blocks |Br| is inversely proportional to bsc,

represented as (|Br| ∝ (bsc)
−1). To determine the total number of blocks |Br| created

by every reducer, Equation 3.9 is used. To estimate the data size of every reducer block

z ∈ Dr, Equation 3.10 is used. Let Each Rr ∈ N be the set of replicas for each reducer

block b ∈ Br. Given the set of the data of reducer blocks Dr and the set of reducer

replica size |Rr| = Φ, the data of every reducer block z ∈ Dr is mapped to every

corresponding replica n ∈ Rr by using a matrix, denoted as Lr = Dr × Rr. The data

of every replica l ∈ Lr is then transferred from a VM that contains a corresponding

reducer r ∈ R to every other elected VM.

|Br| = ceil

(
Outr
bsc

)
,∀r ∈ R (3.9)

Datar =

bsc, if r < |Br| − 1

Outr%bsc, otherwise

(3.10)

A network channel must be established to transfer data from a source VM to a desti-

nation VM if they reside in different hosts where each VM may host some MapReduce

elements (e.g., HDFS, mappers, reducers). The modeling of channels prevents VMs

from overloading any given link existing in its route, which would lead to network con-

gestion. Let L = {1, 2, . . . , K} be a set of links where each l ∈ L has a bandwidth BWl

and a number of associated channels NCl passing through. Let C = {1, 2, . . . , Z} be

a set of channels traveling through some links where each c ∈ C obtains a bandwidth

BWc based on the smallest bandwidth of links existing on the route of the channel

c. To compute BWc for every channel c, Equation 3.11 is used where BWc(s, d) is

the bandwidth of channel c from a source VM s to a destination VM d, BWl is the

bandwidth of a link l that a channel c traverses through, and NCl is the number of

channels traveling and sharing a link l.

BWc(s, d) =
min{BWl(s, d)}

NCl
, s, d ∈ VM,∃l ∈ L (3.11)
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For any data to be transferred via an SDN-aware network, it must be encapsulated

inside a network flow. We avoid using network packet modeling to prevent our simula-

tion tool from generating millions of network packet objects, which would overload the

computing resources of a machine that runs our simulator. Define NFc as a number

of flows that a channel c ∈ C has and F = {1, 2, . . . , U} as a set of flows where each

f ∈ F has a network bandwidth, denoted as BWf . As every channel bandwidth BWc

can be shared by flows that travel from a source VM s to a destination VM d, the

bandwidth of every flow f can be computed using Equation 3.12.

BWf (s, d) =
BWc(s, d)

NFc(s, d)
, ∃c ∈ C (3.12)

Every MapReduce application requires to transfer data at different times. The trans-

mission of data can be summarized as follows: (1) from HDFS to elected VMs, (2) from

mappers to reducers, (3) from reducers to other elected VMs, and (4) from reducers

to a VM that reports the final MapReduce results. Let x ∈ {Uh, Outm,Lr, Outr} be

data where each x has an associated flow f to transfer the data of x from one VM to

another via the SDN-aware network. To compute the transmission time of every data

x, Equation 3.13 is used. The total transmission time T T (a) of a MapReduce appli-

cation a ∈ A is calculated using Equation 3.14. The overall completion time CT (a) of

a MapReduce application a, which is composed of all executions and transmissions, is

computed using Equation 3.15.

T (x) =
x

BWf (s, d)
, ∃s, d ∈ VM,∃f ∈ F (3.13)

T T (a) = max{T (x)}+ max{T (x′)}+ max{T (x′′)}+ max{T (x′′′)}}, (3.14)

∀x ∈ Uh,∀x′ ∈ Outm,∀x′′ ∈ Lr,∀x′′′ ∈ Outr
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CT (a) = ET (a) + T T (a) (3.15)

Depending on the value of replication factor, the generated data of every MapRe-

duce application a ∈ A is different. To compute the total generated data TD(a)

of every a, Equation 3.16 is used. The data characteristics generated by different

types of MapReduce applications differ from one another. For example, mappers in

page-ranking MapReduce-based applications often have a larger size of outputs as

compared to the size of their inputs, while word-count MapReduce-based applica-

tions follow the opposite [84]. The modeling logic of BigDataSDNSim allows different

types of MapReduce applications to be seamlessly simulated by tuning the values of

x ∈ {Uh, Outm,Lr, Outr}.

TD(a) =
∑
∀x∈Uh

x+
∑

∀x′∈Outm

x′ +
∑
∀x′′∈Lr

x′′ +
∑

∀x′′′∈Outr

x′′′ (3.16)

3.5.2 Implementation

As mentioned earlier, BigDataSDNSim is a discrete-event simulator. Every element

that requires communication and cooperation with other elements (e.g., datacenter,

resource manager, SDN controllers, etc.) must do so by issuing events that are pro-

cessed and delivered by the simulation engine. Every event may contain actions to be

carried out and data to be used by destinations. The following describes and indicates

the property of every component developed in BigDataSDNSim:

• ResourceManager : This entity is responsible for the configuration, deployment,

and scheduling of worker nodes’ resources among competing big data applica-

tions. It carries out provisioning mechanisms for new big data applications in a

given big data cluster. It tries to reserve the required resources using VM usage

statistics. If cluster’s resources are insufficient, requests are held in a waiting

queue. Once resources become available, the required resources are reserved.

The queue is based on a first-come-first-served mechanism. This entity can be

instructed with different policies if required.
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• ApplicationMaster : It is designed to manage the application life-cycle of big

data programming models. A new application master is initiated for every new

big data application. The initiation of every application master is carried out

by a resource manager. The current development of this entity is based on the

MapReduce programming model.

• NodeManager : This entity is in charge of controlling and monitoring VM re-

sources. Every node manager is coupled with a single VM to track and report

the status of its VM. It informs the actual usage of the VM to a resource man-

ager. Such update is used to properly allocate a cluster’s resources among big

data applications, alleviating resource contention.

• NetworkNIC : It is an interface equipped in every node. It is responsible for

establishing and maintaining the network connection of a given node. It is similar

to the network interface card (NIC) embedded in most of today’s devices. The

key feature of the interface is to allow the modeling of southbound network

management protocols (OpenFlow and Open vSwitch [85] (OVS)) in switches

and hosts. Such protocols enable SDN controller(s) to have a full network control

of nodes, build routing and forwarding tables, and capture a global network view.

• SDNController : This is an entity designed to mimic the behavior of an SDN

controller. It provides abstractions for programming and monitoring networks

dynamically. By gathering the information from each node (switches and hosts),

the controller builds dynamic routing for each host, VM, or application based

on a given routing algorithm. The controller is developed to seamlessly shape

network traffic for each MapReduce application based on a given traffic policy.

The network can be controlled and managed by more than one SDN controllers

if required. Network optimization and the reconfiguration of a given network can

be easily achieved by implementing smart routing and traffic policies.

• HDFS : Every data submitted to a MapReduce application is stored in a dis-

tributed manner by the HDFS. The entity divides the data set into several blocks

based on given block size. Once data blocks are determined, it copies them to
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elected VMs via a network infrastructure. The election of VMs is based on a

given HDFS replica placement policy.

• BigDataTask : This entity can be shaped in different ways based on a selected big

data application. The current design of BigDataTask represents the modeling

of mappers and reducers. In the case where a new big data model is required

(e.g., stream), the entity can be inherited to obtain the common features that

all other big data tasks have in common.

• Topology : It is responsible for maintaining a network graph and relations among

switches and hosts. An SDN controller uses this entity to obtain network graphs

and relations and adjust the network graph if required. Moreover, the SDN

controller uses this entity to build routing and forward tables among VMs and

applications.

• Flow : This is used to facilitate the process of network traffic modeling. A

network flow is initiated for every traffic from a source component to a destination

component (e.g., hosts, VMs, MapReduce applications). An SDN controller

shapes the network traffic of every flow according to given routing and traffic

policies.

Figures 3.5 demonstrates an overview of the interactions and workflows among entities

throughout the runtime of BigDataSDNSim. The simulator’s functionalities are classi-

fied into four phases: building required infrastructure, establishing requested MapRe-

duce application(s), carrying out task processing and data transmission, and finally

reporting the results of every MapReduce application. The infrastructure is built by

parsing a configuration file provided in a JSON format. Once BigDataSDNSim obtains

the file, it initiates the corresponding objects of hosts, switches, and network links. At

the same time, it establishes the required components, such as the SDN controller and

resource manager, and builds a required network topology. Once the resource man-

ager is active, it couples every VM with a node manager for monitoring and reporting

purposes.

Shortly after BigDataSDNSim starts, it instructs the resource manager to initiate

every requested MapReduce application. The resource manager would create a single
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Figure 3.5: Underlying interactions of BigDataSDNSim (overview)

application master for each required MapReduce application. Once every application

master is active, every application is fed with the configuration requirements in a CSV

file containing different information such as start time, number of mappers, size of

flows, and amount of MIs. Each MapReduce application is composed of computational

tasks and data flow transmissions, which are carried out in a specific order. The current

application logic supported in BigDataSDNSim is based on two processing activities

and four transmissions, as depicted earlier in Figure 3.1. For the processing stage to

take place, two requirements must be met: (i) the execution logic of map and reduce

tasks must be placed into VMs and (ii) mappers and reducers must acquire the whole

required data to start execution. The transmission stage, on the other hand, includes

four sequence activities (1) dividing initial data into HDFS blocks and transferring the

blocks from HDFS to elected VMs; (2) transferring the output of mappers to reducers;

(3) dividing the output of reducers into blocks and transferring the blocks to elected

VMs; and (4) transferring the output of reducers to a VM, which reports the final

MapReduce results.

Any element (e.g., HDFS, mapper, reducer) that requires data transmission must
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create a network flow and inject its data to it. Next, it encapsulates the flow inside an

event and sends the event to an SDN controller through the implemented discrete-event

mechanism. When the SDN controller receives the event, it updates the progress of

existing network flows and removes completed ones along with idle network channels.

Next, the SDN controller updates or builds forwarding tables based on VM-to-VM

communications, with respect to the implemented SDN routing algorithms. If there is

no existing route between a source and a destination, the SDN controller will build a

route, add a forwarding rule to every node along the route (switches and hosts), create

a channel, and encapsulate the received flow inside the channel. In order for the SDN

controller to track the completion of flows, it calculates the earliest finish time eft

of existing flows, creates an event with an invoking time of eft, and sends the event

internally to itself to be intercepted according to the given time of eft. In general, the

eft can be computed using Equation 3.17 where fr(j) is the remaining data of the jth

flow to be transferred and cbw(j) is the flow bandwidth of the jth flow.

eft = min
{ fr(j)

fbw(j)

}
(3.17)

Once there is no more activity or event to take place, the simulation concludes and

results are reported. The report structure reflects the information of MapReduce ap-

plications, performance measurement of transmission and processing, and information

of SDN forwarding tables. The overall output illustrates every MapReduce applica-

tion’s status, such as submission time, queuing delay, start time, etc. The processing

result shows the performance metrics of mappers and reducers (e.g., VM’s ID, start

time, execution time), while the transmission result demonstrates the statistics of ev-

ery connection (IDs of source and destination, size of flows, start time, transmission

time, etc.). The information of SDN forwarding tables shows the list of traversing

nodes for every flow and any changes made to the flow’s bandwidth in terms of size

and time throughout the transmission period.
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Figure 3.6: Modeling of policies in BigDataSDNSim

3.5.3 Policies design

Developing new policies that dynamically respond to changing behaviors and optimize

the performance of different MapReduce applications running in SDN-aware clouds is

essential. Therefore, we modeled and developed our simulator to support host-network

policies so that different MapReduce policies can be seamlessly implemented. Figure

3.6 shows a sample of different policies currently developed in BigDataSDNSim. The

policies are categorized into five groups: app selection, HDFS replica placement, VM-

CPU scheduling, routing, and traffic. Several polices are developed for each group.

The significance of each group is described as follows:

• Application selection: Resources reserved for a big data cluster may be limited.

Therefore, an application selection policy is essential to determine the selection

criteria based on given QoS (e.g., deadlines). A resource manager queues incom-

ing MapReduce applications and schedules them based on resource availability

and given selection policy. There are two different application selection policies

implemented within BigDataSDNSim: prioritization and first come, first served.

• HDFS replica placement : The replication mechanism is an integral part of MapRe-

duce production systems to ensure reliability and performance. There are many

existing policies with different goals to tune the replication mechanism accord-

ing to a given criteria and constraints (e.g., rack-aware replica placement policy).

Therefore, we modeled the HDFS replica placement policy and also included ex-

amples of general policies (e.g., round-robin, least used VM, most used VM).

New HDFS replica placement policies can be implemented by extending this

component.
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• VM-CPU scheduling : Multiple tasks can be scheduled to be executed in a single

VM. The scheduling criteria can be different from one MapReduce application to

another. The VM-CPU scheduling was originally implemented in CloudSim. The

overall MapReduce processing performance depends on this policy; therefore, we

implemented a new VM-CPU scheduling policy called Time-Shared-Multiple-

CPUs to enable the use of multiple CPU cores by mappers and reducers.

• Routing : In general, the structure of every network is represented as graphs. The

network and routing mechanisms of BigDataSDNSim are modeled in a dynamic

manner to establish pairwise relationships among different entities (e.g., switches,

hosts, VMs, and applications). By such dynamic modeling, BigDataSDNSim

enables any network type to be simulated and pairwise relationships and routes

to be defined based on different policies (e.g., shortest path). It also enables

an SDN controller to manage the entire network routes according to the given

criteria. BigDataSDNSim implements the Dijkstra’s algorithm [86], which is

capable of finding the shortest paths from a single source (e.g., VM, mapper,

reducer) to all other destinations based on a single objective, which is a minimum

number of traversed nodes. We also enhanced the Dijkstra’s algorithm to meet

multiple objectives by proposing SDN load balancing algorithm. The objective

of our proposed algorithm is to constantly load balance network traffic by finding

different paths based on maximum bandwidth.

• Traffic: As different types of applications share the resources of a given network,

there must be some mechanisms to ensure the network traffic quality for every

application. The traffic requirements and flows of every MapReduce applica-

tion can be different; therefore, the modeling of network traffic policy within

BigDataSDNSim is essential to shape the data flows of MapReduce applications

according to some QoS criteria. To illustrate the advantage of modeling the

traffic policy, we implemented two traffic policies: fair-share and prioritization.

New MapReduce SDN-aware traffic policies can be implemented by extending

this component.
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Figure 3.7: Validation setup of the real experiment

3.6 Validation of BigDataSDNSim

This section reports the simulation accuracy and correctness of BigDataSDNSim by

comparing the behavior and results of a real environment that combines MapReduce

and SDN with an identical simulated environment that is provided by BigDataS-

DNSim. The experiment is conducted on two host machines. Each one has Intel Core

i77500U 2.70 GHz, 16 GB of RAM memory, and 1000 Mbps of NIC. Each host is

equipped with a single guest host (VM) running Linux 4.4.0-31-generic. Each VM has

4 virtual CPUs and 4 GB of memory. Two switches designed by Shenzhen Helor Cloud

Computer [16] are used. Each switch has Intel Celeron 1037U (2 Cores, 1.80 GHz),

4GB of memory, and 6 Ethernet ports. The throughput of each port is 1000 Mbps.

On each switch, Linux 4.15.0-29-generic and Open vSwitch (OvS) [17] are installed.

The OvS is a virtual switch used to allow an SDN controller to instruct and control

the switches’ data plane via an OpenFlow protocol. An SDN-aware framework called

Ryu is used as an SDN controller [87]. The type of cables that connect machines and

switches is Ethernet Cat5e. Each cable attains 1000 Mbps of speed.

Table 3.2: Validation configuration

Environment
Configuration for every VM

MIPS
Number
of cores

Total number
of MIPS

Memory size
Network

Bandwidth
real experiment 3592 4 14368 4GB 850 Mbps

BigDataSDNSim with α overheads 3563 4 14252 4GB 1000 Mbps
BigDataSDNSim 3592 4 14368 4GB 1000 Mbps
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Figure 3.8: Comparison of the real experiment, simulated exp1, and simulated exp2

For the real experiment, we executed a word count MapReduce application using the

Hadoop-YARN framework [49]. We executed the experiment six times and reported

the average processing and network transmission times. Moreover, two simulated

experiments were carried out: BigDataSDNSim with α overhead (simulated exp1)

and BigDataSDNSim without α overhead (simulated exp2). The obtained results of

these experiments are compared with the real experiment. The simulated exp1 is

intended to slow the simulated VMs to represent performance overheads (e.g., I/O

operations, etc.) introduced in the VMs of the real experiment. The configurations of

MIPS, VMs, and network that we obtained from the real testbed was replicated in the

simulated experiments. Also, the same setup scenario of the real experiment (shown

in Figure 3.7) is replicated in the simulated experiments. The configuration validation

of the real and simulated experiments is illustrated in Table 3.2.

The validation scenario is designed to have one VM that contains HDFS while the

Table 3.3: Configuration for validating MapReduce application

Environment
Total executed

MIPS per mapper ( mptmi)
Total executed

MIPS per reducer (rdtmi)
Number of mappers Number of reducers

File size
(HDFS to mappers)

Replication factor

Real experiment 296939 100576 2 1 272.7 MB 1
Simulated experiments 296939 100576 2 1 272.7 MB 1
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other VM contains two mappers and a single reducer. The HDFS contains a text

file of 272.7 MB that needs to be transferred to the mappers. Once the whole file

is transferred, the mappers start processing. In the real experiment, the Hadoop

framework tries to place mappers and reducers in the same VM; therefore, there is

no need for network transmission between the mappers and reducers. We configured

the real experiment to have a single replication of data blocks; thus, the destination

VM would only receive unreplicated data blocks. Moreover, the reducer would not

transfer its output and data blocks to other VMs since the replication factor is set

to one. Data is only transferred once from HDFS to mappers. Table 3.3 shows the

MapReduce configuration parameters used in the validation, which is obtained using

the Equations 3.18-3.23.

In the real environment, we executed a Linux command on VMs to obtain the number

of MIPS nvm, which only indicates the MIPS for a single core. Since the VMs have

more than one core, we used Equation 3.18 to estimate the total number of MIPS tnm

for every VM where nvm is multiplied by the total number of VM cores vmc. We

estimated the real network bandwidth bw of the real experiment by dividing the file

size fs by a network transmission time ntt, as shown in Equation 3.19.

tnm = nvm× vmc (3.18)

bw =
fs

ntt
(3.19)

By using Equation 3.20, the number of MIPS for mappers mpmi is estimated where

tnm is divided by the number of mappers mpn running in the VM. We use Equation

3.21 to obtain the number of MIPS for reducers rdmi where tnm is divided by the

number of reducers rdn running in the VM. Note that reducers only run after all

mappers are finished; therefore, the number of MIPS for mappers and reducers are

different. Equation 3.22 is used to calculate the total number of MIPS mptmi executed

by mappers where mpmi is multiplied by the maximum execution time mpex taken

by the mappers obtained in the real experiment. Equation 3.23 is used to estimate

the total number of MIPS rdtmi executed by reducers where rdmi is multiplied by the
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maximum execution time rdex taken by the reducers.

mpmi =
tnm

mpn
(3.20)

rdmi =
tnm

rdn
(3.21)

mptmi = mpmi ×max(mpex) (3.22)

rdtmi = rdmi ×max(rdex) (3.23)

Figure 3.8 shows the comparison results of real and simulated experiments. In Figure

3.8a, it can be seen that the bandwidth of the real experiment is 850 Mbps, while the

simulated experiments are 1000 Mbps. The small discrepancy is acceptable because

there are many factors that hinder the real VMs to achieve the maximum network ca-

pacity, such as the speed of CPU, the speed of hard drive (I/O), and the size of memory

assigned to the MapReduce application. Figure 3.8b illustrates the transmission times

taken to transfer the text file from the source VM (HDFS) to the destination VM that

contains the mappers. It can be seen that the real experiment shows a slightly higher

transmission time compared with the simulated experiments. Such difference of time

can be reduced by changing the value of α parameter in the simulated exp1.

In Figure 3.8c, it can be observed that processing time of mappers and reducer of the

real experiment and simulated exp2 are the same. Such similarities are expected since

the VMs, mappers, and reducer of both experiments have similar configurations of

MIPS. In the same figure, the simulated exp1 has a higher processing time as compared

to the real experiment because of the value of α parameter, which makes up the time

difference of the network transmission in the real experiment. Figure 3.8d shows the

completion time taken in every experiment. By tuning the value of α parameter

of the simulated exp1, the simulated exp1 is capable of obtaining approximately a

similar completion time as compared to the real experiment. Also, the completion

time of the simulated exp2 is closely comparable to the real experiment. Figure 3.8e
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illustrates the correlation of the completion time among the experiments. We derive

the figure based on the completion time of Figure 3.8d. It can be seen that the

completion time has a strong positive correlation, which reveals that the accuracy

and correctness of BigDataSDNSim are closely comparable to the real SDN-aware

MapReduce environment.

3.7 Use cases of BigDataSDNSim

For the purpose of demonstrating the practicality and advantages of using BigDataS-

DNSim, we present two use cases: one replica (1R) and three replicas (3R). They

shed light on MapReduce performance in terms of illustrating the impact of using

HDFS replication mechanisms and the advantages of using SDN. We developed and

implemented several MapReduce policies and routing algorithms, which are used in

the simulated use-case experiments. Following is the list of policies we modeled and

implemented in BigDataSDNSim:

• MapReduce application selection policy is configured on a first-come-first-served

basis.

• HDFS replica placement policy is configured based on round-robin, where each

replicated block is forwarded to an elected VM in a sequence-based manner.

• VM-CPU scheduling is configured based on time-shared-multiple-CPUs, where

every map and reduce task can use multiple CPUs for processing.

• Traffic policies are configured as fair-share, where all the network flows obtain

an equal amount of bandwidth.

• Routing algorithms are configured to use two different routing policies: SDN load

balancing and traditional network shortest path. Each routing policy is used in

both 1R and 3R experiments and final results are presented and compared.

Both routing algorithms play a vital role in illustrating some advantages of using our

simulator. They clearly show the difference between traditional networks and SDN-

aware networks in terms of optimizing performance of MapReduce applications. For
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Figure 3.9: Fat-tree topology used in the simulated use-case experiments

Table 3.4: Infrastructure configuration for the use-case

CPUs RAM (GB) MIPS/CPU Total MIPS
VM

4 4 1250 5000
Link Bandwidth - -

HDFS to edge switch 3 Gbps - -
VMs to edge switches 1 Gbps - -

edge switches to aggregate switches 1 Gbps - -
Network

aggregate switches to core switches 1 Gbps - -

the traditional networks, we implemented the well-known Dijkstra’s algorithm [86]

to find the shortest paths to destinations based on a minimum number of traversing

network nodes. One limitation of traditional networks is that it lacks the selection of

different paths from a specific source to a specific destination in a dynamic manner,

despite having many elected paths. It finds all elected paths and randomly selects

one path where flows of respective source and destination permanently travel via the

selected path. On the other hand, SDN-aware networks can program the network on

the fly; therefore, we modeled and implemented an SDN load balancing (SDN-LB)

algorithm by extending the Dijkstra’s algorithm with two objectives of finding routes

that obtain a minimum number of traversing node and then finding a route that has

the maximum bandwidth among the elected routes. Every time a new flow enters

the network, the SDN controller attempts to balance the usage of links by finding

an appropriate route for the flow based on our proposed algorithm. For example,
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Table 3.5: MapReduce configuration for the use-case experiments

Use-case
Replication

factor
Total executed

MIPS per mapper
Total executed

MIPS per reducer
Number of
mappers

Number of
reducers

Data size - HDFS
to VMs (mappers)

Data size –
mappers to

reducers

Final data size -
reducers to the main VM

Replicated data size -
reducers to VMs

HDFS
Block Size

Single replica (R1) 1 500000 150000 16 3 1 ×15 = 15GB 12 GB 3 GB 1 ×3 = 3GB 950 MB
Three replicas (R3) 3 500000 150000 16 3 3 ×15 = 45GB 12 GB 3 GB 3 ×3 = 9GB 950 MB

two flows from the same VM can have two different routes to the same destination

VM, which would theoretically and practically reduce network transmission time for

MapReduce applications.

To set up the simulated environments, we created a single cloud datacenter with the

most used fat-tree topology in existing datacenters [88]. Figure 3.9 depicts the physical

topology that includes three layers of switches and one leaf layer of hosts containing

VMs. There are four core switches (L4), eight aggregation switches (L3), eight edge

switches (L2), and 16 VMs (L1) at the leaf of the tree. The network and VMs are

configured according to Table 3.4. The structure and link arrangement of the fat-tree

topology enables all switches to have additional links to one another so that transmis-

sion of data can follow different paths according to a given routing and QoS policies.

Every link is configured with a bandwidth of 1 Gbps. The main VM that contains

the YARN engine, including the HDFS file system, is connected to the edge switch

via a link’s bandwidth of 3 Gbps. As the HDFS node is connected to a single link, it

would not take advantage of SDN load balancing if its link cannot accommodate a high

volume of data. Thus, it is important to have such high bandwidth to demonstrate

the impact of SDN load balancing.

The MapReduce configurations of R1 and R3 experiments are shown in Table 3.5. For

R1, the replication factor is set to one, which means that every block of HDFS and

reducer is only transferred to a single elected VM. On the other hand, R3 is configured

to replicate every HDFS data block to three different VMs along with requesting

every reducer to split its final output into blocks and replicate each block according

to the replication factor. Such configuration demonstrates the impact of replication

mechanisms on the overall MapReduce performance. As the HDFS block size can be

altered, we set it up to 950 MB so that the number of mappers is equal to 16. We try

to place HDFS, mappers, and reducers in separate VMs as much as possible in order

to heavily stress the network within more MapReduce traffic.
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Figure 3.10: Data size of a single replication (R1)

3.7.1 Results of use cases

BigDataSDNSim derived the proper data sizes to be transferred from one element to

another (e.g., from HDFS to elected VMs) based on Table 3.5 and the MapReduce-

HDFS modeling in Figure 3.4. Figure 3.10a demonstrates the size of blocks to be

transferred from HDFS, residing in the main VM, to other elected VMs, which are

nominated for running mappers. It can be seen that the last block(s) contain fewer

data compared to others due to the use of division by repeated subtraction. Figure

3.10b shows the output size to be transferred from every mapper to every reducer.

We assume that the output of every mapper is equally divided by the total number of

reducers. Figure 3.10c illustrates the block size of every reducer to be transferred to
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Figure 3.11: Transmission time of MapReduce in a traditional network (R1)

elected VMs. As mentioned earlier, the HDFS requires every reducer to split its output

into blocks, replicate every block according to the replication factor, and send every

replicated block to nominated VMs. Finally, Figure 3.10d shows the total output size

of every reducer to be transferred to the main VM to be combined as the final data.

Figure 3.11 and Figure 3.12 illustrate the transmission time of R1 in the traditional

network and SDN load balancing, respectively. Some of the transmissions are equal to

zero because both the source and destination elements reside in the same VM. More-

over, some of the transmissions are shorter than others. This is because the number

of transmissions traveling in the same path is smaller than the number of transmis-
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Figure 3.12: Transmission time of MapReduce in an SDN load balancing network (R1)
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Figure 3.14: Data size of three replications (R3)

sions traveling via different paths, which results in shorter transmission time. Figure

3.13 shows the performance comparison of the R1 experiment between the traditional

network and SDN load balancing. In Figure 3.13a, it is apparent that the SDN load

balancing decreases the transmission time by approximately 45% as compared to the

traditional network. Figure 3.13b shows the execution time of the mappers and re-

ducers. It is expected similar execution times for the SDN and traditional network as

the policy for the CPU scheduling, the distribution of mappers and reducers, and the

number of MIPS is the same. The results in Figure 3.13c show the total completion

time of R1 in the traditional network and SDN load balancing. The total comple-

tion time is determined from the time the HDFS starts transferring data blocks and
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Figure 3.15: Transmission time of MapReduce in a traditional network (R3)

ends when the reducers send their final output to the main VM. It can be seen that

the SDN load balancing decreases the total completion time by approximately 8% in

comparison to the traditional network.

Figure 3.14 illustrates the data size to be transferred from one element to another in

R3. The only difference between R3 and R1 is that the former replicates every block

of HDFS and reducer three times, which increases the overall data sizes. Figures 3.15

and 3.16 illustrate the transmission time of R3 in the traditional network and SDN

load balancing, respectively. Figure 3.17 depicts a performance comparison of R3

between the traditional network and SDN load balancing. It can be noticed that the
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Figure 3.16: Transmission time of MapReduce in SDN load balancing network (R3)

former decreases the network transmission time by approximately 48% as compared

to the latter. The SDN load balancing also decreases the total completion time by

approximately 14% in comparison to the traditional network.

The comparison of total data size and total completion time between R1 and R3 is

shown in Figure 3.18. Figure 3.18a shows that R1 has a smaller data size because

its replication factor is set to one. In Figure 3.18b, it can be observed that R1 has a

shorter total completion time in both SDN load balancing and traditional network as

compared to R3. Moreover, the replication factor is directly proportional to the total

completion time.

- 66 -



Chapter 3: BigDataSDNSim: A Simulator for Analyzing Big Data Applications in
Software-Defined Cloud Datacenters

28.98

55.31

0

40

80

120

160

SDN
load balancing

Traditional
network

Tr
an

sm
is

si
on

 ti
m

e 
(s

ec
on

ds
)

(a) Total transmission time
(R3)

130 130

0

40

80

120

160

SDN
load balancing

Traditional
network

P
ro

ce
ss

in
g 

tim
e 

(s
ec

on
ds

)

(b) Total processing time
(R3)

158.98

185.31

0

50

100

150

200

SDN
load balancing

Traditional
network

C
om

pl
et

io
n 

tim
e 

(s
ec

on
ds

)

(c) Total completion time
(R3)
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Figure 3.18: Comparison between R1 and R3

R1 and R3 illustrate an overview of BigDataSDNSim’s modeling and features. They

stress the significance of the simulator for testing the strengths and weaknesses of

new solutions intended for optimizing the performance of MapReduce applications in

SDN-aware cloud environments. BigDataSDNSim shows a full picture of the possible

states of hypotheses and new proposed solutions. By obtaining the results of every

solution, individuals can easily identify and address hidden issues along with ensuring

the optimal performance of their approaches and algorithms.

3.8 Conclusions

As the use of simulation-based approaches has been widely applied in numerous fields

for analyzing new hypotheses and solutions along with raising awareness of hidden

dilemmas, this chapter presents BigDataSDNSim: a novel simulation-based tool that

is capable of simulating and evaluating the performance of MapReduce applications

in SDN-aware cloud datacenters. The objective of the simulator is to offer holistic
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modeling and integration of MapReduce BDMS-based models that are compatible

with SDN network functions in cloud infrastructures. BigDataSDNSim provides an

infrastructure for researchers to quantify the performance impacts of MapReduce ap-

plications in terms of a joint-design of host and network. It contains a variety of

application-network policies for diverse purposes (e.g., scheduling and routing), which

can be seamlessly extended without a deep understanding of the complex interactions

among BigDataSDNSim’s components.

In order to demonstrate the correctness and accuracy of the simulator, the performance

of BigDataSDNSim is validated with a real MapReduce SDN-aware environment. The

validation measures the performance similarities of BigDataSDNSim with the real

environment. It reports the comparison results of bandwidth, transmission time, pro-

cessing time, total completion time, and correlation. Validation results reveal that

BigDataSDNSim simulation results are closely comparable to results obtained from

real MapReduce SDN-aware environments.

The practicality and advantages of using BigDataSDNSim are demonstrated by pre-

senting two use cases. The use cases focus on MapReduce performance in terms of the

impact of using HDFS replication mechanisms and the advantages of using SDN. The

performance impacts of SDN load balancing versus traditional networks on MapRe-

duce applications in cloud datacenters are illustrated. The results of the simulated

experiments confirm the SDN load balancing decreases the total completion time of

MapReduce applications as compared to the traditional networks.

Software availability : The BigDataSDNSim’s software with the source code can be

downloaded from https://github.com/kalwasel/BigDataSDNSim. A number of exam-

ples and tutorials illustrating the use of BigDataSDNSim are given on the web site.
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Summary

To support the testing and bench-marking of data-driven applications that rely on data

ingestion and processing (e.g., Smart Energy Cloud, Content Delivery Networks) across

multiple cloud datacenters, this chapter presents a new simulator, named IoTSim-

SDWAN. To the best of our knowledge, IoTSim-SDWAN is the first simulator that

facilitates the modeling, simulating, and evaluating of new algorithms, policies, and

designs in the context of SD-WAN ecosystems and SDN-aware multiple cloud data-

centers. This chapter provides an empirical validation by comparing IoTSim-SDWAN

with a real-world network environment. Finally, IoTSim-SDWAN is evaluated for

network performance and energy to illustrate the difference between classical WAN

and SD-WAN environments. The obtained results show that SD-WAN surpasses the

classical WAN in terms of accelerating traffic flows and reducing power consumption.

4.1 Introduction

Proliferation of cloud computing has revolutionized hosting and delivery of Internet-

based application services. Cloud-based solutions are essential for managing and pro-

cessing real-time streaming data, such as the data of smart meters connected to millions

of households [89, 90]. As streaming data sources are geographically distributed, an

overall QoS would vary in terms of data ingestion, transmission, and processing [91].

This variation is dependent upon the location of cloud datacenters in relation to the

varied locations of input data streams. The main reason for variable network QoS

across data sources and cloud datacenters is the underlying WAN architectures. To

obtain optimized network QoS, SD-WAN would be an ideal substitute as its relative

SDN solutions have demonstrated significant improvements in several areas such as

flow optimization and bandwidth allocation in cloud datacenters [19].

While a number of research has been achieved in proposing and evaluating solutions for

SDN located in datacenters, there is a need to address the shortfall in proposing and

evaluating new SD-WAN solutions. The benefits are significantly less explored when

considering SD-WAN architectures in the context of delivering solutions by networking

multiple cloud datacenters. To fill this gap, this chapter presents a new simulation
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framework named IoTSim-SDWAN. It models and simulates SD-WAN ecosystems and

SDN-aware multi-cloud environments in a discrete-event mechanism. To the best of

our knowledge, IoTSim-SDWAN is the first simulator that facilitates the modeling,

simulating, and evaluating of new algorithms, policies, and associated design choices

in the context of SD-WAN ecosystems and SDN-aware multi-cloud datacenters.

The models, formulas, and framework of IoTSim-SDWAN are empirically validated

using real world network data. The validation objective is to illustrate the level of

accuracy of bandwidth, network transmission time, TCP/UDP outputs, and overall

network delays. The validation is based on three different types of experiments: Iperf3

TCP, Iperf3 UDP, and transferring real data over Ubuntu secure Shell (SSH). The

validation results demonstrate that IoTSim-SDWAN is capable of obtaining a high

degree of accuracy compared with real networks. Furthermore, this chapter presents

two use-case experiments to demonstrate the practicality and capability of IoTSim-

SDWAN. The objective of the experiments is to compare the network performance

and power consumption of SD-WAN and classical WAN. The obtained results show

that SD-WAN surpasses the classical WAN in terms of accelerating traffic flows and

reducing power consumption.

The main contribution of IoTSim-SDWAN is the ability to generate different samples of

SD-WAN and SDN-aware cloud infrastructures. The simulator can seamlessly evaluate

and report the impact of new solutions. The accuracy and correctness of IoTSim-

SDWAN are validated using the simulator’s output results with the results obtained

from an equivalent, real SDN-aware environment. The validation results demonstrate

that IoTSim-SDWAN is closely comparable with real environments. This chapter

also demonstrates the practicality and advantages of IoTSim-SDWAN by presenting

a use-case evaluation experiment, which considers the comparison of performance and

energy-consumption of SD-WAN and SDN-aware cloud datacenters as compared to

classical WAN and cloud datacenters respectively. In summary, the main contributions

of this chapter are as follows:

• Proposing a novel framework that simulates and models the SD-WAN and SDN-

aware datacenters

- 71 -



Chapter 4: IoTSim-SDWAN: A Simulation Framework for Interconnecting
Distributed Datacenters over Software-Defined Wide Area Network (SD-WAN)

• Accurate modeling of TCP and UDP protocols in addition to network delays in

IoTSim-SDWAN

• Proposing an SD-WAN routing technique to dynamically compute the best route

for every network flow together with proposing a coordination scheme for SD-

WAN and SDN controllers

• Empirically validating IoTSim-SDWAN with a real-world network environment

The rest of this chapter is divided into several sections as follows. Section 4.2 dis-

cusses design criteria and motivation. The design and modeling capabilities of IoTSim-

SDWAN is presented in Section 4.4. Section 4.3 illustrates the most rel event related

work. Section 4.5 describes the empirical validation and accuracy of IoTSim-SDWAN.

Experiments are presented in Section 4.6 to show how IoTSim-SDWAN can contribute

to multi-CDC design issues for smart applications. Section 4.7 concludes the chapter

and highlights our future plans.

4.2 Overview

To better understand the difficulty of creating, evaluating and banchmarking perfor-

mance using a bespoke testbed for data-driven multi-cloud applications, consider the

example of a smart energy cloud. It is well understood and documented that energy

companies collect significant amounts of data, possibly beyond the amount that they

can manage and analyse. The problem of big data arises for these companies due

to large scale deployment of smart meters and smart grid devices (e.g., transformer

sensors, circuit breaker sensors, voltage regulator sensors, and other assets that have

the ability to communicate their status back to the private/public CDC-based control

center in real-time). Considering the sheer number of configurable elements within this

scenario, there is no real practical solution to deriving optimal parameter values apart

from modeling through industry recognised benchmarks. Even if such a model yields

non-optimal results, sufficient information will provision the engineer with a clearer

understanding of network QoS requirements to achieve appropriate Demand Response

(DR) latency in the presence of data-streams exhibiting volatile behaviours.
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Figure 4.1: Architecture of distributed enterprise ecosystems and SD-WAN

The (classical) WAN is a core communication layer where it provides the fundamental

building block for enabling secure and salable shared resource access across geograph-

ically dispersed distributed systems. However, the main drawback of a WAN is that

it typically exhibits under resource utilization (30-40% [16]). Losing 60% of network

utilization due to the static nature of WAN network management (inability to manage

utilisation in varying traffic flows) is not acceptable for modern, resource aware, smart

digital infrastructures. To improve today’s WANs, new software based approaches

(SD-WAN) are adopted by commercial and state organisations. The earliest inte-

gration of an SD-WAN ecosystem for improved network utilization was by Microsoft

[17] in 2013 followed by Google in 2014 [16]. Both Microsoft and Google leverage

SD-WAN solutions to accelerate the process of copying large amount of data across,

and between, datacenters while improving network performance, coordination, traffic

engineering and overall resource optimizations.
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A simplified view of the layered architecture of distributed enterprise ecosystems that

utilise SD-WAN is highlighted in Figure 4.1. Applications can directly leverage SD-

WAN capabilities to better deliver services. For example, multimedia providers can

use an SD-WAN to efficiently interconnect their distributed datacenters to enable

optimized delivering of geographic aware streamed videos to customers. This provides

improved customer satisfaction (e.g., less transmission time), reduces operational costs

(e.g., optimum average network utilization), and efficiently manages the entire network

infrastructure (e.g., end-to-end view of per-flow performance).

SD-WAN can be deployed in a variety of ways. For example, an enterprise can leverage

SD-WAN across global private networks (e.g., Aryaka [92], Silver-Peak [93]). Such

enterprises may improve user experience, such as prioritizing network traffic based on

user’s demands. Another SD-WAN deployment option is to allow global brands (e.g.,

Google [16]) to manage their own resources in the context of mass data migration and

storage requirements. The relation between enterprise ecosystems and SD-WAN, as

depicted in Figure 4.1, is demonstrated as the following layers:

• Data source/sink maintains various devices that generate and receive data. The

devices include, but are not limited to, IoT devices (e.g., smart meters, sensing

devices), and computing devices (laptops, Raspberry Pi). These devices can

transfer data to the respective datacenters while the datacenters can instruct and

send data to devices. For devices to access SD-WAN, they must be connected

to their nearest network gateways.

• SD-WAN provides a two-way approach of deployment and communication. The

first enables the communication of datacenter-to-datacenter (DC-to-DC) and

assumes responsibility for exchanging large amounts of data across geographically

dispersed datacenters. Secondly, it enables the communication between users and

distributed datacenters (user-to-DC). Both types require different management

and policies for defining and modifying SD-WAN networks in real-time based on

changing traffic flow requirements. The current stage of our work presented in

this chapter (IoTSim-SDWAN) focuses on the modeling of DC-to-DC.

• Infrastructure consists of datacenter and SD-WAN hardware supporting require-
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ments. Every datacenter contains storage, computing, and networking equip-

ment in addition to the deployment of SDN controller(s) for managing the in-

ternal network. SD-WAN requires networking equipment and SD-WAN con-

troller(s) for managing the network between distributed datacenters in addition

to end users.

• Management provides the ability to control, configure, and program the resources

of datacenters and SD-WAN. This enables every datacenter to enforce different

policies on applications, such as priority and task selection. This also allows

every datacenter to program and monitor its internal network through the use

of SDN. The management layer also offers features to SD-WAN for controlling,

programming, and reshaping SD-WAN network traffic.

• Application facilitates the interactions with different type of services and appli-

cations. Every enterprise requires software enabled services to reinforce efficiency

and productivity. This layer provides an abstraction from the underlying layers,

allowing enterprises to focus on the development and deployment of efficient ap-

plications and services while maintaining minimal knowledge of the underlying

layers.

IoTSim-SDWAN is based on the design criteria of the above layers. The current stage

of IoTSim-SDWAN satisfies the requirement, design and implantation of the three

layers: SD-WAN, infrastructure, and management. IoTSim-SDWAN also supports

a generic design for the application layer where the tools support users in designing

and implementing the relations and workflows of their applications. For example, im-

plementing the behaviours and interactions of web applications according to a given

web architecture (e.g., middleware systems, databases). The modeling approach of

IoTSim-SDWAN is generic and flexible where any type of datacenter and SD-WAN

topology can be simulated. IoTSim-SDWAN also supports the modeling and evalua-

tion of network performance and energy consumption.
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4.3 Related Work

For several decades, there have been numerous solutions for tackling a traditional

WAN’s issues in performance management (e.g., slow packet delivery, waste of net-

work resources, routing complexity) together with monitoring and improving network

performance and QoS. For example, the emergence of Multiprotocol Label Switching

(MPLS) [94] in the early 2000s aimed at increasing network bandwidth and improving

network packet delivery overcame the shortcomings of classical WAN traffic engineer-

ing along with improving QoS for latency-sensitive applications. Although MPLS has

become the de-facto standard for WAN traffic engineering since its discovery, it still

encounters major obstacles such as long setup times, inflexible in the presence of dy-

namic changes in network conditions, and a lack of dynamic routing mechanisms. The

characteristics of modern applications coupled with rapid evolution of large systems,

the classical WAN fails to cope. This is evident when considering today’s application

requirements, such as application-aware traffic engineering, obtaining real-time net-

work changes, on-the-fly network re-configuration/provisioning, and real-time band-

width reservation. Edge based streaming services and on-demand high volume data

migration services all place these types of requirements on existing distributed systems.

There are many simulation tools have been developed to aid researchers and develop-

ers to evaluate new algorithms for the management of different computing resources

and systems in a controllable and repeatable manner. These tools can be categorized

into four main groups relevant to IoTSim-SDWAN’s work: (i) Cloud Simulators that

model behaviour of cloud components such as datacenters and virtual machines along

with scheduling and provisioning policies; (ii) Network Simulators which focus on the

modeling and simulating of network systems in different computing environments; and

(iii) Cloud-based Application Simulators that capture and simulate the behaviours,

workflows, and dependencies of various applications, such as MapReduce and web ap-

plications; and (iv) Edge Simulators that simulate the characteristics and behaviours

of edge environments (e.g., IoT devices, edge devices, computing and analytic opera-

tions).

CloudSim [1] is a discrete-event simulation tool that enables the modeling and simu-
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lation of cloud-related systems. It supports the modeling of cloud system components

such as datacenters and virtual machines (VMs) in addition to resource provisioning

policies with the aim of optimizing the performance of cloud infrastructures. Green-

Cloud [70] is a simulator designed for energy-aware cloud datacenters. It evaluates the

energy consumption of datacenter components such as servers. iCanCloud [71] is a

cloud-based simulator designed to conduct large-scale experiments to ease the process

of integrating new policies for cloud brokers. NetworkCloudSim [68] is an extension

of CloudSim with the aim of providing network modeling and also provides a general-

ized application model to allow the evaluation of scheduling and resource provisioning

policies. These tools provide cloud infrastructures and some of network capabilities

but fail to model SDN and SD-WAN infrastructures.

CloudSimSDN [2] is a simulation framework for SDN-aware cloud environments devel-

oped on top of CloudSim. Its objective is to model SDN environments as well as reduce

the energy consumption of hosts and network components by evaluating scenarios with

different management policies. However, it is not flexible in terms of simulating dif-

ferent network topologies and does not adapt to varying application traffic policies.

Moreover, it lacks the modeling and simulation of SD-WAN environments.

BigDataSDNSim [95] is a simulator developed on top of CloudSim and CloudSimSDN.

BigDataSDNSim models and simulates big data analytics applications of MapReduce

by allowing reducers and mappers that are spread across multiple hosts to communicate

with one another over SDN-aware cloud datacenters. This approach also allows the

simulating of any type of network topology along with providing greater flexibility

for implementing new MapReduce SDN-aware scheduling techniques. Nevertheless,

it is limited within a single datacenter and lacks SD-WAN ecosystem properties to

interconnect distributed datacenters.

Mininet [96] is a lightweight network emulator that uses OS-level virtualisation for

prototyping large networks with the resources of a single laptop. It supports the

emulation of SDN and networked systems. It can be used to evaluate the performance

of SDN. Similarly, NS-3 [97] consists of a discrete-event network simulator that allows

the emulation of real world protocols in both IP and non-IP based networks, but

it lacks the modeling of SDN environments. These tools do not allow the modeling

- 77 -



Chapter 4: IoTSim-SDWAN: A Simulation Framework for Interconnecting
Distributed Datacenters over Software-Defined Wide Area Network (SD-WAN)

Table 4.1: Comparison of related simulators

Simulators
Features

Cloud
support

Traditional
n/w support

Multi-data-
center comm.

SDN
support

SD-WAN
support

TCP/UDP
n/w protocols

Dynamic n/w
adaptability

Heterogeneous
n/w topology

Power
modeling

CloudSim[1] X
GreenCloud[70] X X
iCanCloud[71] X

NetworkCloudSim[68] X X
CloudSimSDN[2] X X X X

BigDataSDNSim[95] X X X X X X
Mininet[96] X X X X X

NS-3[97] X X X X
IoTSim-SDWAN

(Proposed)
X X X X X X X X X

and evaluation of cloud environments and features, such as virtual machines allocation

policies and application workload distribution. They also lack the support of SD-WAN

environments.

EdgeCloudSim [98] and IoTSim-Edge [99] are simulators designed to imitate the en-

vironments of edge computing and IoT. EdgeCloudSim focuses on the modeling of

some behaviours of edge computing and IoT devices, such as network communica-

tion, mobility, and processing operations of edge devices. IoTSim-Edge models many

behaviours and mechanisms of edge and IoT devices, such as network and edge pro-

tocols, heterogeneity, mobility, and power consumption. However, these tools lack the

modeling and simulation of SDN and SD-WAN environments.

The summary of aforementioned simulators are provided in Table 4.1. To the best

of our knowledge, there is no existing tool capable of simulating workloads on cloud

environments that span several datacenters, each exhibiting a specific network topology

enabled through SDN. IoTSim-SDWAN is a novel simulator that allows the modeling of

cloud-specific application executing across heterogeneous datacenters with SDN-aware

support both within the datacenters (local) and between them (WAN).

4.4 Design of IoTSim-SDWAN

This section describes the model and framework designs of IoTSim-SDWAN. Sub-

section 4.4.1 illustrates various factors that affect network performance, for example,

the impact of TCP/UDP protocols and delays produced by different approaches. We

mathematically model the behaviour, relationships, and variables of SD-WAN in sub-

section 4.4.2. Sub-section 4.4.3 demonstrates the network modeling of SD-WAN and

- 78 -



Chapter 4: IoTSim-SDWAN: A Simulation Framework for Interconnecting
Distributed Datacenters over Software-Defined Wide Area Network (SD-WAN)

Application
Layer

Transport
Layer

Network
Layer

Data Link 
Layer

Sender 
OS

Sender 
NIC

Generate Data Stream

Generate TCP/UDP Packets

Write to allocated memory buffer

D

Generate IP Packets

D + H <= IP packet size

D H D H

H D H

D
at

a 
is

 e
n

ca
p

su
la

te
d

 a
t 

ea
ch

 la
ye

r

Generate Frames

Split up 

D D

D H D H D H D H D H D H

IP packet > frame size 

Application
Layer

Transport
Layer

Network
Layer

Data Link 
Layer

Receiver 
OS

Receiver 
NIC

Unify Data Chunks

Reassemble Data

D

Reassemble TCP/UDP Packets

D H D H

H D H

Reassemble IP Packets

D D

D H D H D H D H D H D H

Switch/Router

D
at

a 
is

 r
ea

ss
e

m
b

le
d

 a
t 

ea
ch

 la
ye

r

…

…

…
…

…

…

Figure 4.2: Procedure of data transmission based on the TCP/IP model

classical WAN based on graph theory along with presenting our proposed Shortest

Path Maximum Bandwidth (SPMB) routing algorithm and our proposed coordination

scheme for SD-WAN and SDN controllers. Sub-section 4.4.4 illustrates the system

structure overview and physical properties of IoTSim-SDWAN and demonstrates the

interactions among the components of IoTSim-SDWAN in a simplified form.

4.4.1 Considerations for performance modeling

End-to-end network performance between endpoints depend on many internal struc-

tures of applications, systems, and networks. Even with two directly connected nodes,

theoretical network measurements may not achieve the same values as practical net-

work measurements. The dynamic changing status and the underlying capabilities

of such structures are hard to determine. However, we attempt to list and illustrate

the factors that play important roles in network performance obtained from our real

network observations. Such factors are captured and modelled in IoTSim-SDWAN.

In figure 4.2, a conceptual network model (known as a TCP/IP model [100]) is pre-

sented to illustrate how data is being transferred from a sender to a receiver. Each

layer can affect the performance of data transmission in different ways. Each layer

appends a header or footer with the passing data for identification, flow control and

error control purposes. Based on the underlying protocols, every layer ensures that
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Figure 4.3: Overview of network delays

the data size does not exceed its total allowed size; otherwise, the data is split into a

number of smaller packets/frames with each packet/frame tagged with a new header.

Such techniques increases the data size which results in longer transmission time.

Figure 4.3 shows the total delay introduced when transmitting data in a simplex

communication mode (one-way). The main delays can be characterized into processing,

queuing, transmission, and propagation. The processing delay differs from one node

to another. For example, a sender’s CPU needs to acquire data from a hard drive

(first delay), apply some operations on the data (second delay), and store the data in

memory (third delay). A traditional switch has different processing delays where it

read the headers of incoming packets and finds an output port/link, subject to the time

taken for searching and finding a record in its database table that matches the header’s

details. In case of SD-WAN and SDN-aware mode, most of network processing delays

are delegated to an SD-WAN and SDN controller.

The queuing delay is the waiting time of each packet before it is put on a link or

processed by a given node. There are many factors that affect the waiting time, such

as available network bandwidth and a node’s processing capabilities. The transmission

delay is the time taken to place the whole data of a given packet onto a link. If the

packet size originated from the network layer is larger than a frame maximum size

(maximum transmission unit - MTU) size, the data link layer will split-up/fragment the

packet into multiple frames (described in sub-section 4.4.2). Another way to describe

the transmission delay is the total time taken to push all consecutive bits belonging

to a frames of single packet to a given link. The propagation delay is the time taken

to deliver bits of frames belonging to a given packet between two adjacent nodes (e.g.,

sender and switch in figure 4.3). The propagation delay is subject to the physical

length and propagation speed of a given cable.
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Network speed is not the only factor that affects the transmission time of given data.

There are a number of contributing factors that are involved in determining the trans-

mission time, such as the speed of network interface controllers (NICs), allocated

memory sizes of senders and receivers, and the hard drive writing and reading speeds

of senders and receivers. Moreover, applications cannot use a given network separately,

they must somehow share the network according to a given set of policies (e.g., fair-

share, prioritizing). Such sharing techniques affect the transmission time. Therefore,

considering such performance requirements in IoTSim-SDWAN is important to achieve

a realistic network performance as much as is feasible.

4.4.2 Theoretical model

The transport layer of TCP/IP model (as shown in figure 4.2) plays a critical role

in today’s networks (e.g., SD-WAN, WAN, datacenter networks, LANs). This layer

contains two common protocols: UDP and TCP. UDP is critical for many today’s

applications (e.g., multimedia) where minimum rate of transmission time is more im-

portant than sending data reliably. On the other hand, TCP is important for many

applications (e.g., e-commerce), which require improved reliability for transmitting

data while tolerating a degree of delay. In essence, TCP provides a degree of reliabil-

ity at the expense of delay while UDP dispenses with any reliability effort to improve

transmission delays which may result in lost messages (increased error). In this way,

UDP is considered to be faster than TCP protocol as it does not enforce any overhead

mechanism found in TCP (requesting if packets have arrived and re-sending of lost

packets). TCP is often seen as a streamed interaction using sliding window protocols

to improve reliability whereas UDP is seen as a one-off send without sender considering

any reliability issues.

The packet payload size at the transport layer is subject to the system and applica-

tion performance of senders and receivers. The payload size of every TCP packet is

difficult, if not possible, to accurately quantify on the fly due to consistently changing

factors (e.g., the write speed and allocated size of sender’s memory, the read speed and

allocated size of receiver’s memory). The payload size is also subject to an advertised

TCP sliding window size originated from the receiver at some point during a given

- 81 -



Chapter 4: IoTSim-SDWAN: A Simulation Framework for Interconnecting
Distributed Datacenters over Software-Defined Wide Area Network (SD-WAN)

network communication. There are some techniques that can be used to increase the

window size (a.k.a TCP window scaling [101]) where receivers can handle more data

than the traditional window size can. A UDP payload size is not restricted where a

respective receiver consistently receives packets with no restrictions on memory size.

If too many UDP packets arrive at a receiver than the receiver can handle they are

simply dropped and forgotten. For sake of simplicity, we used the concept of averaging

to give an approximation of TCP and UDP payload size, this is left for users to decide

according to their specific application dependent scenarios.

Table 4.2 illustrate the symbol used in modeling IoTSim-SDWAN. Given the data size

ds(i) of ith data and an average packet payload size pls at the transport layer, the

total number of packets pn for the given data is calculated using Equation 4.1. When

TCP/UDP packets are handed to the lower network layer, they would be encapsulated

into IP packets where the IP addresses of source and destination are stamped. If

TCP/UDP packets at the transport layer are larger than the predefined size of IP

packet at the network layer, they would be broke up into multiple IP packets. For

simplicity, we assume that all packets at the transport layer are less than or equal to

the IP packet size at the network layer.

pn =
ds(i)

pls
(4.1)

Each packet at both the transport and network layers must be tagged with a unique

identification header. Equation 4.2 is used to obtain the header size hs(p) of every

Table 4.2: Modeling Notation

Symbol Description Symbol Description
H Set of all hosts c(i, j) A channel from sender i to receiver j
C Set of all channels tc(n) Total number of channels carried out by nth link
F Set of all flows cbw(i, j) Channel bandwidth between sender i and receiver j
N Set of all networks (datacenters & SD-WAN) lbw(n) Link bandwidth for nth link
pn Total number of packets fn Number of flows between endpoints
ds(i) Data size of ith data f(si, dj) Number of flows between sth application on ith

node and dth application on jth node
pls Average packet payload size fbw Flow bandwidth
hs(p) Header size of every packet fs Total data size of a flow
tph Transport header size d Total network delay
iph Network (IP) header size dp, dq, dt, dp Processing, queuing, transmission,

and propagation delays respectively
ts(p) Total size of each packet td(f) Total delays of given flow
nf Total number of frames tr(f) End-to-end transmission time of a flow
mtus Average MTU size tn Routing of traditional networks
tf Size of each frame r(ni, nj) Link connecting node i to node j

dlht(p) Header and footer sizes of the data link layer nc Total number of channels
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packet p where tph is the transport header size and iph is the network (IP) header size.

Equation 4.3 is used to determine the total size ts(p) of each packet p that includes

the average packet payload size pls and header size hs(p)

hs(p) = tph + iph (4.2)

ts(p) = pls + hs(p),∀p ∈ {1, 2, ..., pn} (4.3)

When the network layer passes IP packets to the lower data link layer, the packet will

be encapsulated into a frame. If the IP packet size is larger than the MTU, the packet

will be segmented into multiple frames according to the maximum MTU size [102].

The MTU is not always constant due to the nature of networks. To simplify the MTU

size, an average MTU size mtus is used. Equation 4.4 is used to calculate the total

number of frames nf that packets can be fragmented into. The size of each frame tf

is computed using Equation 4.5 where dlht(p) is header and footer sizes appended by

the data link layer.

nf =

∑pn
n=1 ts(pn)

mtus
(4.4)

tf = mtus + dlht(p) (4.5)

In order to send the data from a sender i to a receiver j, a channel c(i,j) must be

established which traverses throughout all the underlying nodes of a selected path.

Using the concept of channel makes the network bandwidth management easier where

all hosts H can share the network based on a given traffic policy (e.g., fair share,

prioritizing). The total number of channels nc in a given SD-WAN and SDN-DC

network is determined using Equation 4.6.

nc =
∑
i,j∈H

c(i, j) (4.6)

Every channel must pass through certain links that connect senders and receivers.
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Every link has its own available bandwidth that constantly changes according to the

number of shared channels. The initial bandwidth size of a given link l is determined

by taking the minimum bandwidth value of its two directly connected nodes’ network

interface cards (NICs). The bandwidth for each NIC is obtained from a given topology

file in a JSON format (refer to figure 4.8). For every node that has more than one

connected link, it must attach a separate NIC for each link. Every link can have

different numbers of channels. Therefore, Equation 4.7 is used to compute the total

number of channels tc(n) carried out by a given nth link.

tc(n) =
∑
c∈C

l(c) (4.7)

A network can be congested when the transmission for a set of packets belonging to a

given application/data is not restricted. To avoid network congestion, we assign band-

width to every channel by taking the minimum bandwidth of links that the channel

passes through. Given the link bandwidth lbw(n) for nth link and the total number of

channels tc(n) passing through the nth link, the channel bandwidth cbw(i, j) between

sender i and receiver j is calculated using Equation 4.8.

cbw(i, j) = min

(
lbw(n)

tc(n)

)
(4.8)

In reality, data transferred via a network can be mapped into millions of packets.

However, having such a packet modeling approach is difficult, if not impossible, due to

memory resource limitations within a software implemented modeller such as IoTSim-

SDWAN. To reduce the difficulty of network packet modeling, we use the concept of

flow, which is defined as a stream of packets belonging to a given application repre-

sented as a 4 tuple ID (source application, destination application, source host, and

destination host). For every application between two endpoints, a new flow f must

be established. The number of flows fn between two endpoints is computed using

Equation 4.9 where si is the sth application executing on ith node and dj is the dth

application executing on jth node. Applications represented by flows share the band-

width of their assigned channels. We assume the bandwidth is fairly shared amongst

the flows. Given the channel bandwidth cbw and number of flow fn, Equation 4.10 is
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Figure 4.4: Multi-datacenters and SD-WAN topology for experiments.

used to fairly obtain flow bandwidth fbw. The total data size of a given flow fs is com-

puted by summing the size of all nf frames where the size of each frame is considered

to be tf as given in Equation 4.11.

fn =
∑
f∈F

f(si, dj) (4.9)

fbw =
cbw
fn

(4.10)

fs =

nf∑
j=1

tf(j) (4.11)

For every frame, there are transit delays encountered, as shown in figure 4.3. As

described earlier in 4.4.1, the main delays are processing dp, queuing dq, transmission

dt, and propagation dρ. Such delays must be computed for every frame. Equation 4.12

is used to compute all delays d. Equation 4.13 is used to obtain total delays td for all

frames belonging to a given flow f .

d = dp + dq + dt + dρ (4.12)

td(f) = nf × d (4.13)
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The SD-WAN and SDN-DC are responsible for tracking the transmission time of all

its applications/flows. In figure 4.4, every SD-WAN and SDN-DC controller must

compute the transmission time for all of generated flows. For instance, the SDN

controller in datacenter one (datacenter 1) must track all flows going from and into

host one (H1) and host two (H2) up to the core switch (C1). Every network can have

different transmission times for every flow due to the fact that the network is shared

by other applications. Therefore, the end-to-end transmission time tr of a given flow f

passing through nth network can be computed by taking the maximum transmission

time of the flow in all networks (SD-WAN and datacenters).

tr(f) = max
n

(
fs
fbw

+ td(f)

)
(4.14)

The above equations are implemented in IoTSim-SDWAN . In the validation sec-

tion 4.5, the equations are filled with numbers according to our real-world network

observations using Wireshark [103] and according to TCP/IP predefined header sizes

[104].

4.4.3 Network modeling

An SD-WAN simulator must be sufficiently flexible to support different mechanisms

that allow changes in experimental contexts (e.g., network topology, QoS) without

the need to change the basis of the simulator’s actual code. The main flexibly of

our tool is allowing different WAN and datacenter topologies, such as the topologies

provided by The Internet Topology Zoo [105] where they present hundreds of WAN

topologies used by different companies around the globe. For a given topology to be

simulated, researchers must code the way that nodes connect to one another along with

building internal routing tables, which impedes the researchers to focus on evaluating

and solving their intended problems.

One well-accepted solution for solving the aforementioned problem is the use of graph

theory. Graph theory is the core solution for network systems to dynamically maintain

the location and connection information between nodes. By using graph theory in our

tool, we not only analyze and contribute to the performance of SD-WAN and SDN-
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Algorithm 1 Shortest Path Maximum Bandwidth
Require: N: a set of nodes (hosts & switches)

f: a network flow containing a stream of packets
s: a source node
d: a destination node

Ensure: froute
1: /* Construct/update two network graphs, one for distance weight and one for real-time bandwidth capacity */
2: for each i ∈ N do
3: for each k ∈ N do
4: if distanceWeight[i][k] ≡ ∅ or isNetwrokGraphChange ≡ true then
5: distanceWeight[i][k]← getDistanceWeight(i, k) . if i & k adjacent return 1, otherwise return 0
6: end if
7: /* always update network bandwidth availability*/
8: availabBandwidth[i][k]← getAvailableBw(i, k) . get real-time bandwidth of a link connecting i & k
9: end for
10: end for
11: for each n ∈ N do
12: distance[n]← +∞
13: bandwidth[n]← −∞
14: elected[n]← false
15: end for
16: distance[s]← 0 . distance of source host to itself is always 0
17: bandwidth[s]← 0 . bandwidth of source host to itself is always 0
18: parentNode[s]← ∅ . source node does not have a parent node
19: for each i ∈ N (we only need N size!!!) do
20: minDistance← +∞
21: maxBandwidth← −∞
22: for each u ∈ N do
23: if elected[u] ≡ false and distance[u] ≤ minDistance and bandwidth[u] ≥ maxBandwidth then
24: minDistance← distance[u]
25: maxBandwidth← bandwidth[u]
26: en← u . en: an elected node with min distance and max bw
27: end if
28: end for
29: elected[en]← true
30: for each k ∈ N do
31: if elected[k] ≡ false and distanceWeight[en][k] 6= 0 and distance[en] + distanceWeight[en][k] ≤

distance[k] and
32: availabBandwidth[en][k] ≥ bandwidth[k] then
33: distance[k]← distance[en] + distanceWeight[en][k]
34: bandwidth[k]← availabBandwidth[en][k] . Select the least bw along the route to avoid network

congestion
35: parentNode[k]← en
36: end if
37: end for
38: end for
39: routeBuilt← false
40: currentNode← d
41: nextNode← ∅
42: while routeBuilt ≡ false do
43: nodeLists.add(currentNode)
44: if currentNode.equal(s) then
45: routeBuilt← true
46: end if
47: nextNode← parentNode[currentNode]
48: link ← linkList.get(currentNode, nextNode)
49: routeLinks.add(link)
50: end while
51: flowLinks.put(f, link)

DC traffic policies but also to the performance of SD-WAN and SDN-DC routing

algorithms. We leverage the classical Dijkstra algorithm [86], which is based on graph

theory, for solving the challenge for maintaining a dynamic network graph and finding

the shortest path from every node to all other nodes. As figure 4.4 shows, every given
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SD-WAN and SDN-DC controller maintains its own network in the form of a sub-

graph; therefore, each one must execute its own routing algorithm to properly allocate

routes for its respective nodes.

To make our approach more accessible and easier to use, IoTSim-SDWAN has the

ability to compare the solutions of traditional WAN and DC networks with the new

solutions of SD-WAN and SDN-DC. We simulate classical WAN and DC networks

by applying the classical shortest path Dijkstra algorithm (SP) with a single net-

work objective of finding a shortest path based on a minimum number of traversing

nodes. Equation 4.15 is used to obtain the objective function of finding a route r that

minimizes the traversing number of nodes in traditional networks tn where (ni, nj)

represents a link connecting two nodes.

tn = min
n

∑
ni,nj∈N

r(ni, nj) (4.15)

We propose a Shortest Path Maximum Bandwidth algorithm (SPMB) to simulate

SD-WAN and SDN-DC networks. SPMB is a novel routing algorithm that extends

the classical Dijkstra algorithm to obtain a min-max objective. This is designed to

find all elected routes that have the minimum number of traversing nodes and then

select a route that has maximum bandwidth in real-time. Algorithm 1 shows the

pseudo-code of our proposed SPMB algorithm. Equation 4.16 is used to obtain the

objective function of finding a route r that minimizes the traversing number of nodes

and maximizes bandwidth bw.

SPMB = max
bw

tn, ∑
ni,nj∈N

r(ni, nj)

 (4.16)

Since our proposed algorithm (Algorithm 1) is based on Dijkstra’s algorithm with

two objectives (Path and Bandwidth) to optimize, the worst case time complexity is

O(N2+N2), where N represents the number of nodes (hosts and switches). Ultimately,

the time complexity is reduced to O(N2).

Figure 4.5 shows the overview of steps and actions taken by every SD-WAN and SDN-

DC controller to enable H1 to send data to H2. In the first step, every controller
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Figure 4.5: Overview of SD-WAN/SDN-DC controller’s actions to build forwarding
rules. H#: host, S#:switch, MNTS: minimum number of traversing switches, XBW:
maximum bandwidth of traversing switches, XNTS: maximum number of traversing
switches.

initially builds its own network (sub-graph of the whole network). For every network

objective, there must a separate sub-graph. In the case of SPMB, every controller

must maintain two sub-graphs, one for storing/updating the minimum number of

nodes while the other for storing/updating real-time network bandwidth. As shown,

there are two elected routes that obtain the same number of traversing nodes (via S2-

S3 and S4-S5). However, once a controller executes its own SPMB algorithm to find

the optimal route that has maximum bandwidth between H1 and H2, it only selects

the route (H1, S1, S4, S5, S9) that satisfies the objective of SPMB (see step two).

In step three, the controller stores the final elected route between H1 and H2 in its

routing table. For each child node starting from the destination (H2) up to source

(H1), the controller must map the child node to its parent node if it exist. In the final

step, the controller installs the forwarding rule on all traversing switches to instruct

switches for the appropriate output link/port.

As each SD-WAN and SDN-DC controller separately manages and isolates its network
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 "datacentres": [

    {

      "name": "dc1",

      "vmAllocationPolicy": "VmAllocationPolicyCombinedLeastFullFirst",

      "numberOfVms": 2,

      "vmType": 3,

      "controllers": [

        {

          "name": "dc1_sdn1",

          "trafficPolicy": "FairShare",

          "routingPolicy": "ShortestPathBw"

        }

      ],

      "switches":[

        {

          "type" : "gateway",

          "name": "dc1_gateway",

          "controller": "dc1_sdn1",

          "iops":1000000000,

          "bandWidth" : 400000000

        },

        {

          "type" : "edge",

          "name": "edge1",

          "controller": "dc1_sdn1",

          "iops":1000000000,

          "bandWidth" : 200000000

         },

      ],

      "hosts": [

        {

          "name": "host1",

          "pes" : 4,

          "mips" : 1250,

          "ram" : 32750,

          "storage" : 6400000000000,

          "bandWidth" : 200000000

        },        

      ],

      "links" : [

        { "source" : "core1" , "destination" : "dc1_gateway" , "latency" : 1.0 },

        { "source" : "core1" , "destination" : "aggregate1" , "latency" : 1.0 },

        { "source" : "aggregate1" , "destination" : "edge1" , "latency" : 1.0 },

        { "source" : "edge1" , "destination" : "host1" , "latency" : 1.0 },

    ]

  "wan": {

    "wanController": {

      "name": "wan_sdn",

      "trafficPolicy": "FairShare",

      "routingPolicy": "ShortestPathBw"

    },

    "switches":[

    ],

    "wanLinks": [

      { "source" : "dc1_gateway" , "destination" : "dc2_gateway" , 

"latency" : 1.0 },

      { "source" : "dc1_gateway" , "destination" : "dc4_gateway" , 

"latency" : 1.0 },

      { "source" : "dc2_gateway" , "destination" : "dc3_gateway" , 

"latency" : 1.0 },

      { "source" : "dc2_gateway" , "destination" : "dc5_gateway" , 

"latency" : 1.0 },

      { "source" : "dc2_gateway" , "destination" : "dc6_gateway" , 

"latency" : 1.0 },

      { "source" : "dc4_gateway" , "destination" : "dc3_gateway" , 

"latency" : 1.0 },

      { "source" : "dc4_gateway" , "destination" : "dc5_gateway" , 

"latency" : 1.0 },

      { "source" : "dc4_gateway" , "destination" : "dc6_gateway" , 

"latency" : 1.0 },

      { "source" : "dc5_gateway" , "destination" : "dc6_gateway" , 

"latency" : 1.0 }

    ]

}

Figure 4.8: An example of JSON input file

(as shown in figure 4.4), they must coordinate with one another in order for each

controller to make appropriate (mutually agreeable) routing decisions. Figure 4.6

proposes a simple but effective scheme that is implemented in IoTSim-SDWAN, which

enables the the coordination among SD-WAN and SDN-DC controllers. An SD-WAN

broker submits network transmission requests on behave of users to respective source

SDN-DC controllers. If the source and destination hosts reside in the same datacenter,

the transmission process internally takes place and the broker is acknowledged on

transmission success. If destination hosts reside in different datacenters, packets will be

forwarded to source gateway(s). The transmission process between gateways is handled

by an SD-WAN controller. Once the destination gateway(s) receive external packets,

they will internally forward the packets to destination hosts. If routing records do not

exist, every SD-WAN and SDN-DC controller must execute its routing algorithm and

store elected route information in its routing table.
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4.4.4 Components modeling and interaction of IoTSim-SDWAN

Figure 4.7 presents a system structure overview of IoTSim-SDWAN. As shown, IoTSim-

SDWAN uses some classes of other simulating tools (CloudSim [1] and CloudSimSDN

[2]). IoTSim-SDWAN extends the datacenter to enable the interactions with SDN-

DC controllers in addition to the provisioning and management of hosts and VMs.

SD-WAN and SDN-DC controllers extend the class of networking operating systems

(NOS) where the designs, functionalities, and characteristics of such controllers are

implemented. The SD-WAN coordinator is responsible for sharing and advertising the

required information among SD-WAN controllers, SDN-DC controllers, and datacen-

ters; for example, sharing the location of requested hosts in order to build appropriate

routes to respective destinations.

IoTSim-SDWAN describes the arrangement and relation among components in the

topology class. The topological description is provided to IoTSim-SDWAN in a JSON

file format. Once the file is submitted, IoTSim-SDWAN will instruct the topology

class to parse, generate, and store the properties and relations among components.

Figure 4.8 shows an example of the JSON format. As shown, every datacenter must

define and configure its own topology that includes SDN-DC controllers, switches, and

hosts in addition to the links that connect switches and hosts to one another. In

addition, an SD-WAN topology must be defined and configured in terms of specifying

the properties of SD-WAN controllers and links that connect datacenters together.

Every SD-WAN and SDN-DC controller must implement routing protocols/algorithms.

The routing protocol class is designed to facilitate the implementation of such algo-

rithms by providing abstract functions that can be used to develop smarter routing

algorithms. Currently, IoTSim-SDWAN contains two routing algorithms (SPMB and

SP) as described in sub-section 4.4.3. New routing algorithms can easily extend the

routing protocol class. IoTSim-SDWAN couples every switch with a forwarding table

so that controllers can manipulate the way switches forward packets. Figure 4.9 illus-

trates how controllers handle network packets. Every incoming packet must be put

into a queue so that controllers may serve packets in order. Packets will obtain their

optimal routes dictated by the routing algorithms of controllers.
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For IoTSim-SDWAN to function correctly, the transport protocol must be specified.

IoTSim-SDWAN is equipped with two transport protocols: TCP and UDP. A given

SD-WAN and SDN-DC controller must be instructed on which protocol is to be

utilised. This allows computation of overhead bytes or headers and footers for gen-

erated packets in a given network. Moreover, the header data introduced by network

and data link layers must also be computed. In the validation section 4.5, the number

of bytes to be added to the original data are presented according to our real-world

network analysis and observation using the Wireshark network monitoring tool [103].

Figure 4.10 illustrates the interaction across the components of IoTSim-SDWAN in
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a simplified form. The generation of packets will take place once IoTSim-SDWAN

initializes the required infrastructure according to a submitted JSON file. Generally,

the life-cycle of SD-WAN packets start from a source datacenter, pass through an SD-

WAN network, and end in a destination datacenter (see figure 4.4). The submission

of packets is carried out by a broker who forwards packets to their respective source

SDN-DC controllers. When SDN-DC controllers receive packet transmission requests,

they will correlate packets to flows, find optimal routes using provided routing pro-

tocols/algorithms, and instruct switches to forward packets to destination hosts. If

destination hosts are not within a given datacenter, packets will be forwarded to a

gateway switch. Once the packet reaches the gateway, it is routed to the appropriate

datacenter using an SD-WAN controller. When packets reach the gateway of a des-

tination datacenter, an SDN-DC controller residing in the destination datacenter will

find the appropriate route to local destination hosts and acknowledge/report back the

output results once packets reach destination hosts.

4.5 Empirical Validation of IoTSim-SDWAN

Validating IoTSim-SDWAN against real-world networks is crucial in order to illus-

trate its accuracy and efficacy and prove its models produce results that are realistic

and reflective of existing systems. It is worth noting that reaching maximum net-

work capacity for a given real-world network environment is difficult to achieve (and

unwarranted for live systems due to service disruption). Therefore, to benchmark at

this extreme is difficult to achieve. Furthermore, network and system engineers may

identify suitable factors that effect network capability and may inform a model (e.g.,

identifying network protocols that consume a part of the network bandwidth), but may

not be able to identify other hidden factors (e.g.,how receiving hosts queue and deal

with network packets and perform read/write operations on hard drives). Therefore,

accepting a slight difference between theoretical models and reality is acceptable when

measuring real network environments with the theoretical output values. A slight

difference occurring in IoTSim-SDWAN should, therefore, also be acceptable. Never-

theless, we have tried to eliminate the difference rate of IoTSim-SDWAN compared

with real networks by understanding and observing the conditions and behaviours that
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Figure 4.11: Network topology design for the validation experiments

effect the performance of real network systems. Based on our observations, we have

derived and established the theoretical model in sub-section 4.4.2. The validation re-

sults proves that IoTSim-SDWAN is capable of obtaining a high degree of accuracy

compared with real networks.

4.5.1 Validation setup and configuration

The validation experiments are conducted on two machines that have Intel Core i7-

7500U 2.70GHz and 16GB of RAM memory. Each machine has an installed guest host

(VM) running Linux 4.4.0-31-generic. Each VM is configured with 4 virtual processors

and 4GB of memory. Two Linux-based switches designed by Shenzhen Helor Cloud

Computer [106] are used with similar configurations. Every switch has Intel Celeron

1037U (2 Cores, 1.80GHz), 4GB of memory, and 6 Ethernet ports each attaining

1000Mbps of throughput. Every switch is installed with an OpenFlow switch (OVS)

[107], which enables controllers to instruct and manipulate the data plane of switches.

The SDN controller used is Ryu SDN framework [108]. Machines and switches are

connected via Ethernet cables Cat5e with 1000Mbps of speed.

For validating IoTSim-SDWAN, a number of real and simulated experiments are car-

ried out. Validation objectives are to:

• Identify the correctness, accuracy, and credibility of the IoTSim-SDWAN frame-

work compared with a real-world network environment in terms of bandwidth,

network transmission time, TCP/UDP outputs, and network delays.

- 95 -



Chapter 4: IoTSim-SDWAN: A Simulation Framework for Interconnecting
Distributed Datacenters over Software-Defined Wide Area Network (SD-WAN)

• Measure how realistically a real-world network can reach its maximum network

bandwidth.

• Observe the internal impact of applications and system structures of hosts/servers

(CPU, memory, and hard drives) on network bandwidth/speed.

• Validate TCP and UDP models of IoTSim-SDWAN compared with a real-world

network environment.

Figure 4.11 shows a network topology design for the validation experiments. Similar

designs are also developed for IoTSim-SDWAN. The validation is carried out using

three different types of applications: Iperf3 TCP, Iperf3 UDP, and Secure Shell (SSH).

All of the experiments have the Internet connection disabled and only run intended

applications, excluding default applications and those operations required by operat-

ing systems. In this step, unintentional use of networks and operating systems by

unintended applications is eliminated. Iperf3 [109] is a well-known network tool for

capturing and analyzing network performance in terms of TCP and UDP protocols.

It is mainly designed to measure network throughput, which means that the internal

structures of given hosts have no or minimal impact on network performance. To en-

sure we consider internal structures, SSH is used to transfer a video file between hosts

that involves the internal structures of hosts (e.g., memory, CPU, and hard drives).

By using SSH, the impact of hosts’ internal structures on network performance can be

captured, which allows further validation of IoTSim-SDWAN.

The configuration used to validate IoTSim-SDWAN is given in Table 4.3. The header

sizes and average payloads of given applications are obtained according to our Wire-

Table 4.3: Validation configuration

TCP UDP delays
Transport header size 20 bytes Transport header size 10 bytes Processing 0.001 ms
Network header size 20 bytes Network header size 12 bytes Queuing 0.001 ms
Data link header size 26 bytes Data link header size 12 bytes Propagation 0.0001 ms

- - - - Transmission 0.0001 ms

App data sizes Average packet payload Average frame payload
Iperf3 UDP 1061.49 MB 8146 Bytes 1366 Bytes
Iperf3 TCP 778.35 MB 21464.8 Bytes 1448 Bytes
Video file 493.42 MB 13007 Bytes 1408 Bytes
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shark observations. Capturing every single delay of real network processing, queuing,

transmission, and propagation is beyond the scope of this chapter. However, obtaining

the total delay of a real network environment is possible using a time counter. Delays

are considered to be in the order of milliseconds [110].

The management layer of the SDN is added to our empirical network to program,

manage, and instruct our network during execution (see figure 4.9). The SDN mech-

anism does not change a network’s built-in capabilities, such as network bandwidth,

but does manage the network in real-time (e.g., finding global optimal routes between

given nodes, reserving a part of network bandwidth for given applications). The inter-

action time between OpenFlow switches and the SDN controller is negligible and does

not affect the overall network performance. As it can be seen in figure 4.9, an Open-

Flow switch requires a one-time reactive interaction with the SDN controller to obtain

a flow entry for a stream of packets holding same IP source and IP destination. The

SDN controller, for example, would determine the best path for the given flow entry

and feed the switch (s1) with routing information. The controller can also instruct the

switch to hold the flow entry for a period of time (e.g., 30 seconds), which means that

the switch knows how to forward the remaining stream of packets based on the given

time to live

4.5.2 Validation results

Figure 4.12 shows the overall header data sizes added to original data. The original

data size of each application is increased when being transferred due to the added

network headers. Each header size is injected by each of its respective layer as shown

in the network model (see figure 4.2). We can see that IoTSim-SDWAN is capable

of obtaining approximate header sizes compared with the real-world network environ-

ment. In Iperf3 UDP, however, simulated header sizes have a slight difference due to

the average header size not always reflecting expected accuracy.

Figure 4.12b and 4.12c show the the number of packets and frames. We can observe

that the number of packets and frames of each application in IoTSim-SDWAN and the

real environment is closely comparable. The average payload factors of packets and

frames as given in 4.4.2 verify that we can obtain approximate results as compared to
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Figure 4.12: Comparison of IoTSim-SDWAN and a real network environment

real network environments, even though the distribution payload sizes of packets and

frames may vary in real network environments.

Figure 4.13 shows the comparison of bandwidth, speed, and delay between IoTSim-

SDWAN and a real network environment. In figure 4.13a, the maximum bandwidth

rate of Iperf3 UDP is 951Mbps while for Iperf3 TCP is 929Mbps. Iperf3 cannot achieve

the speed of the theoretical network bandwidth (1000Mbps) because there are addi-

tional factors affecting Iperf3, such as the performance of the network interface cards

(NICs) of hosts and switches, CPU performance of hosts and switches. The bandwidth

for the video file is 832Mbps, which is less than Iperf3 bandwidth. Unfortunately,

transmitting real data (e.g., video files) not only depends on network performance but
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Figure 4.13: Bandwidth, speed, and delay comparison of IoTSim-SDWAN and a real
network environment

also on the performance of given hosts in terms of CPU, memory, and hard drives.

Iperf3 generates random data originating from CPU (no hard drive) while the video

file application requires data from a hard drive and then writes the data to memory,

which degrades the overall performance.

Figure 4.13b shows overall network delay as a result of processing, queuing, transmis-

sion, and propagation delays. We can observe that the delays of IoTSim-SDWAN and

the real network are closely comparable. Figure 4.13c compares the IoTSim-SDWAN

with the real network environment in terms of transmission time. It can be seen that

IoTSim-SDWAN and the real network environment have a positive correlation. The

transmission time of IoTSim-SDWAN compared with iperf3 TCP and iperf3 UDP is
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Table 4.4: Evaluation configuration

Sender Receiver Protocol data sizes Average packet payload Average frame payload
Host 1 (H1) Host 3 (H3) TCP 10 Gb 21464.8 Bytes 1448 Bytes
Host 2 (H2) Host 4 (H4) TCP 10 Gb 8146 Bytes 1366 Bytes

closely comparable. IoTSim-SDWAN and the video file has a slight difference in trans-

mission time, which is expected since the video file depends on the performance of the

internal structures of hosts in addition to the network. As IoTSim-SDWAN is mainly

intended to simulate the network layer and components of SD-WAN; therefore, iperf3

is the suitable candidate to validate the accuracy of IoTSim-SDWAN.

4.6 Use case evaluation

This section is intended to demonstrate the practicality and advantages of IoTSim-

SDWAN. Mainly, we consider the comparison of performance and energy-consumption

of SD-WAN and classical WAN environments in addition to traditional cloud datacen-

ters compared with SDN-aware cloud datacenters. Figure 4.14 presents the network

topology design used in the evaluation experiments. Both SD-WAN and classical

WAN have a similar topology design. Every datacenter has a single gateway that is

connected to other datacenter gateways. In the classical WAN and cloud datacen-

ters, gateways and switches have full control of their network decisions. In SD-WAN

and SDN-aware environments, SD-WAN and SDN controllers have full network con-

trol to instruct gateways and switches to enable the management and influence on

network traffic in real-time. Table 4.4 shows the configuration used in the evaluation

experiments. Using TCP or UDP protocol would not impact the evaluation results;

therefore, TCP is the protocol that we use in this evaluation. The average payload

size of packets and frames in addition to header sizes and delays are similar to the

ones used in the validation section in table 4.3.

IoTSim-SDWAN shapes network traffic in SD-WAN and classical WAN environments

according to the network model in 4.4.3. As mentioned earlier, the classical shortest

path Dijkstra algorithm (SP) is used to shape network traffic in classical WAN envi-

ronments whereas SD-WAN shapes its traffic based on our proposed SPMB algorithm

(see algorithm 1). Figure 4.14 conceptually illustrates how the SD-WAN and classical
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Figure 4.14: Network topology used in IoTSim-SDWAN

WAN work. Both environments must forward packets that are generated from H1 and

H2 residing in datacenter 1 to H3 and H4 residing in datacenter 3. In the classical

WAN, the packets have the same route where they fairly share network bandwidth.

This is because the classical WAN lacks the ability to dynamically forward packets

based on real-time changes in network congestion and bandwidth availability. How-

ever, SD-WAN is capable of obtaining such information and forwards the packets to

different routes based on appropriate choice. The coordination of SD-WAN and SDN

controllers is also possible to efficiently improve their traffic engineering decisions, as

shown in figure 4.6.

Figure 4.15 shows the header data sizes added to the original data, number of packets,

number of frames, and end-to-end delays. It can be seen that the SD-WAN (SPMB)

and WAN (SP) have the same number of header sizes, packets, frames, and delays.

This is expected because both SD-WAN and WAN have no impact on TCP and UDP

protocols. To appropriately evaluate the network performance of SD-WAN and WAN,

both networks must be overwhelmed with packets from different sources at the same

time. Packets from sources to destinations are being transferred simultaneously during

the simulation. Figure 4.16a illustrates the network transmission time of SD-WAN
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Figure 4.15: Simulation result and comparison between SPMB and SP

and WAN. It can be seen that SD-WAN optimized network performance and usage by

decreasing the transmission time by approximately 50%. Exceptional performance is

achieved because SD-WAN and SDN-DC controllers are capable of locating the least

congested routes in addition to minimizing the number of traversing nodes in real

time, while the classical WAN can only find routes in a static manner (determined in

advance in most cases).

Further, we illustrate the practicality of IoTSim-SDWAN by using energy consumption

models. These allow the gathering and reporting of power consumption of switches and

gateways. The modeling of power consumption is done by CloudSimSDN [2]. Figure

4.16b shows the overall energy consumption of both WAN and SD-WAN environments.
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Figure 4.16: Simulation result and comparison between SPMB and SP

As the figure shows, SD-WAN consumes less energy than WAN by approximately 54%.

The reason SD-WAN consumes less energy is that packet transmission is faster and if

packets spend less time within the infrastructure then fewer resources are consumed.

4.7 Conclusion

In this chapter, we present a new tool IoTSim-SDWAN for simulating the behavior

and properties of SD-WAN and SDN-aware cloud datacenters. IoTSim-SDWAN is a

new tool providing a variety of modeling approaches and functionalities to evaluate

and test SD-WAN cloud-based solutions. IoTSim-SDWAN obtains several models,

including SD-WAN ecosystems, TCP and UDP protocols, network delays, in addition

to the network routing models of SD-WAN and classical WAN using graph theory. We

propose a coordination scheme for SD-WAN and SDN controllers residing in different

datacenters.

We empirically validate and analyze the accuracy and correctness of IoTSim-SDWAN.

Three different types of experiments are used in the validation: Iperf3 TCP, Iperf3

UDP, and transferring real data over Ubuntu Secure Shell (SSH). The validation con-

siders measuring the level of similarities of IoTSim-SDWAN and a real-world net-

work environment in terms of bandwidth, transmission time, TCP/UDP outputs, and

network delays. The validation results prove that the accuracy and correctness of

- 103 -



Chapter 4: IoTSim-SDWAN: A Simulation Framework for Interconnecting
Distributed Datacenters over Software-Defined Wide Area Network (SD-WAN)

IoTSim-SDWAN are closely comparable to real networks.

We model and present a number of evaluation experiments with a goal to illustrate

the practicality and features of IoTSim-SDWAN. The evaluation compares the network

performance and power consumption of SD-WAN and classical WAN. The evaluation

results demonstrate that SD-WAN outperforms WAN in both performance and en-

ergy consumption. Such evaluation experiments also provide a flexible approach for

designing new experiments in order to help researchers to seamlessly implement and

evaluate their new SD-WAN, SDN routing and power consumption approaches.

Software availability : The IoTSim-SDWAN’s software with the source code can be

downloaded from https://github.com/kalwasel/IoTSim-SDWAN. A number of exam-

ples and tutorials illustrating the use of IoTSim-SDWAN are given on the web site.
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Summary

This chapter proposes an adaptive solution for scheduling the workflows of data-driven

applications across multiple SD-WAN-enabled cloud datacenters. It does so by leverag-

ing a well-known metaheuristic genetic algorithm and SD-WAN networks that smartly

interconnect cloud datacenters to one another. The proposed solution is capable of

increasing the usage of green energy which reduces carbon footprints and at the same

time meet user given deadline and keeps energy cost to a minimum. The performance

of the proposed algorithm is evaluated using real-world data-driven workflows with

different sizes under various configurations. The experimental results show that our

proposed method can increase the usage of green energy up to 3× times with a slight

increase in energy cost when compared to cost-based workflow scheduling methods.

5.1 Introduction

Data-driven applications have emerged to improve the processes and operations of nu-

merous fields (e.g., smart cities, Industry 4.0) based on the leveraging of a range of

smart technologies. Cloud computing is considered one of the main building blocks

that effectively provide on-demand infrastructures to facilitate data-driven workflows

[111, 112]. As cloud computing has proved its capability and success for providing tech-

nological needs on-demand and with low-cost prices, data-driven applications started

to deploy their complex workloads and elements on remote clouds. As such, this leads

to an increase in data-driven workflows forwarded and executed at cloud datacenters,

which requires new scheduling mechanisms to satisfy a range of data-driven applica-

tions’ requirements.

It is quite evident that the amount of energy consumed by datacenters worldwide is

continuously increasing, which puts an enormous strain on energy sources. In 2010,

datacenters had consumed about 1.3 percent of total electricity usage worldwide [113].

Since then, the datacenter landscape’s size has increased dramatically, which claimed

to be doubled in their electricity usage worldwide [114]. Clearly, to operate such large

infrastructures, a tremendous amount of electricity is required, subject to a given data-

center’s size. Such increase in electricity usage not only contributes to high operational
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costs, but also emits considerable amounts of carbon dioxide (CO2). According to a

report published by the European Union,1 the volume of emission worldwide must be

decreased to keep the global temperature below 2◦C. Therefore, the green/renewable

energy procurement and energy usage optimization of cloud datacenters are essential

elements to decrease the level of human-caused global warming.

In order to minimize non-green energy usage while avoiding SLA violations of data-

driven applications, new system and algorithmic solutions are required. The solutions

should consider several factors, including the topology and deadline of data-driven

tasks, green energy usage, leveraging SD-WAN capabilities, and decreasing overall en-

ergy consumption and cost. Such solutions require cross-layer optimization techniques,

which are defined as NP-hard problems [115]. To this end, this chapter proposes an

adaptive genetic algorithm to schedule the workflows of data-driven applications con-

sidering these factors, in addition to the use of the previously proposed SPMB algo-

rithm to effectively transfer data-driven traffic among distributed datacenters through

SD-WAN, referred to Chapter 4. In particular, our proposed algorithm minimizes exe-

cution cost while selecting solutions that minimize carbon footprints by using multiple

datacenters with more green energy usage and interconnected via SD-WAN (Table 5.3

highlights the novelty of our work). The contributions of this chapter are:

• A new SD-WAN based Workflow Broker (SDWAN-WB) to deploy data-driven

workflows across multiple datacenters while automating resource provisioning,

task provisioning, and data provisioning.

• An adaptive Genetic Algorithm (GA) for selecting near-optimal solutions based

on green energy usage, the topology and deadline of data-driven tasks, and overall

energy consumption and cost.

• Leveraging SD-WAN capabilities to decrease overall network energy consump-

tion.

• A trade-off analysis of different factors (e.g., energy cost, green energy availabil-

ity, data-driven requirements) and extensive experimental evaluation to study

1https://www.ec.europa.eu/clima/policies/strategies/progressen
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the feasibility of the proposed scheduling algorithm and architecture based on

real data.

The rest of the chapter is organized as follows. Section 5.2 highlights the research prob-

lems addressed by this chapter. Next, we present our proposed solutions (SDWAN-

WB, system model, and GA algorithm) in Sections 5.3 and 5.4. In Section 5.5 and

5.6, we evaluate the experimental results. Section 5.7 describes related work by com-

paring the chapter’s proposed solutions with state-of-art efforts. Section 5.8 provides

concluding comments and future work.

5.2 Overview

5.2.1 Executing data-driven applications across multiple dat-
acenters via SD-WAN

To execute the workflows of data-driven applications on cloud datacenters, we need

sufficient computing resources, the code-base of data-driven tasks, and actual data to

be processed (e.g., provided by users, generated from upstream tasks). To this end,

the scheduler of data-driven applications have to handle three factors at the same

time: resource provisioning, task provisioning, and data provisioning. Some studies

[116, 117] developed schedulers to run scientific workflows over multiple datacenters.

However, they did not embrace the SD-WAN capabilities, which offers more flexibility

for designing new green energy scheduling algorithms. Another study [118] proposed

a method that leverages SDN capabilities to optimize the latency of tasks in the cloud

network and VM layers, in addition to maximizing the revenue of cloud providers.

However, this solution does not consider SD-WAN capabilities to interconnect multi-

ple cloud datacenters along with optimizing overall network performance and energy

consumption.

5.2.2 Optimizing energy efficiency while avoiding SLA vio-
lations

While cloud computing aims to optimize the use of hosted Information and Commu-

nication Technology (ICT) resources, cloud providers should have an effective solution
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for simultaneously optimizing energy consumption and SLAs (e.g., deadline, processing

cost), especially for data-driven applications in software-defined geo-distributed envi-

ronments. One primary obstacle for obtaining such solutions is that cloud providers

operate multiple large datacenters distributed across multiple locations. Depending

on the location of datacenters and applications, the scheduling process for every ap-

plication has to automate the cloud datacenter selection and, in doing so, ensure that

SLA and energy requirements (e.g., task deadline, total electricity bills, sustainability

goals) are met at the same time, which are often conflicting. When selecting ICT

resources (e.g., VMs, containers, storage) from multiple datacenters, cloud providers

must consider a heterogeneous set of criteria and complex dependencies across multiple

layers (e.g., application level, datacenter level) which is impossible to resolve manually.

There is a substantial amount of related work for reducing carbon footprints of dat-

acenters by managing customers’ workloads at different levels, such as storage, com-

putation, and network [119–121]. However, most of these solutions are not directly

applicable in the context of data-driven applications and SD-WAN, which is the focus

of this chapter. As each application has a different workload and execution profile,

a unique strategy is needed to minimize energy usage while optimizing SLAs. Data-

driven applications are among the most complex applications where several tasks have

to be executed in a synchronous and inter-connected manner to achieve the required

QoS [122]. Communication between different tasks makes the matter worse as net-

work’s energy usage also needs to be considered, along with other constraints. Several

authors have proposed several solutions that embrace the idea of distributing given

tasks across multiple datacenters to improve energy cost and minimize energy envi-

ronmental impacts [123]. However, these solutions are designed for simple applications

that consist of independent tasks. Also, the existing solutions do not embrace the ad-

vantages of SD-WAN capabilities to improve data provisioning and energy consump-

tion. A comprehensive comparison of the chapter’s proposed work with the state-of-

the-arts is discussed later in Section 5.7.
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Figure 5.1: High level system model for executing data-driven applications

5.3 System model

Figure 5.1 presents a high-level of our proposed system model, which contains the

components of SDWAN-WB. The components are used for executing data-driven ap-

plications over geo-distributed cloud datacenters in an efficient manner. The proposed

system S = (dck∪sdg | k ∈ {1, δ}, g ∈ {1, ζ}) consists of a set datacenters (DC) owned

by a cloud provider (e.g., Amazon EC2) where dck = {vmi ∈ VM, d ∈ D,n ∈ N}

represents a datacenter k which contains a set of VMs, storage (D), and network de-

vices (N). sdq ∈ Q denotes an SD-WAN-enabled network devices that interconnect

datacenters to each other.

In the figure, a cloud provider utilizes the workflow orchestrator to deploy the work-

flows of data-driven applications across multiple datacenters, and the SD-WAN con-

troller is used to optimize data transmission among geo-distributed datacenters so that

a given data-driven application is executed with minimal execution cost and carbon

footprints. In particular, users submit their workflows and application logic with all

information such as execution requirements, task descriptions, and desired security

requirements to our broker. The workflow orchestrator is responsible for mapping

workflow tasks to different datacenters based on electricity prices and green energy

usage, along with meeting other constraints (e.g., deadlines). Based on the workflow

orchestrator’s decisions, it interacts with each datacenter to prepare VMs to execute

the workflow tasks according to defined dependencies/orders. The SD-WAN controller
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manages data transmission among different tasks during the execution by dynamically

configuring the forwarding-tables of the related SD-WAN-enabled network devices.

5.3.1 User’s cost model

We assume that each datacenter dck has three types of VMs: Type(vmi) ∈ {small,

medium, large}. This chapter assumes that users are charged according to how long

they use VMs. Based on this assumption, the cost of executing a workflow task am ∈ A

over vmm
i ∈ VM can be computed using Equation 5.1 where A is a set of activities

(e.g., processing, transmission) that belongs to a given workflow λ. Tl(vm
m
i ) is the

time required to launch a VM i that host a workflow task m, Te(vm
m
i ) represents

the time required to execute am over vmi, V Price(Type(vm
m
i )) denotes the price of

a selected vmi according to its type, Tt(vm
m
i ) denotes the time required to transfer

am’s input data to vmi, and NPrice(vmm
i ) represents the network usage price based

on am’s data size. If all the input data are in the same VM, the network transmission

time and cost is equal to 0 (e.g., Tt(vm
m
i ) = 0, NPrice(vmm

i ) = 0). The models for

calculating these times will be detailed in the next subsection.

UCost(am, vmi) =(Tl(vm
m
i ) + Te(vm

m
i ))× V Price(Type(vmm

i ))+

Tt(vm
m
i )×NPrice(vmm

i )
(5.1)

5.3.2 Performance model

The performance (makespan) of executing the workflow of a data-driven application

over different VMs that are deployed across different datacenters includes three el-

ements: the time a VM (Tl) takes to be launched, the network transmission time

of task am’s input data to its allocated VM (Tt), and the execution time (Te) of a

workflow task am. In order to model this, we assume that the launching time of

each type of VM is the same, which is equal to Tl. Next, network bandwidth is de-

noted as tpvmi
∈ {tp, 2tp, 3tp}, which respectively corresponds to Type(vmi) ∈ {small,

medium, large}. Moreover, data transmission time is not only affected by VMs’ band-

width, but also by the VMs’ geographical locations and the number of traversing
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network devices. The following illustrates how data transmission time is formulated.

Single datacenter. A workflow can have numerous dependant tasks. For example,

assume a single workflow has two dependant tasks (a1 and a2) where data is generated

from a1 and transferred to a2. The tasks are allocated into two different VMs (vm1 and

vm2) in the same datacenter. As such, the network bandwidth between a1 and a2 can

be acquired as tpa1→a2 = min(tpvm1 , tpvm2). So, the time required to transfer P size

of data from am to aj is computed as Tt(am, aj) = P
min(tpvmm

i
,tp

vm
j
x

)
+ P ×ϕ×H(dcm,jk )

where vmm
i is the ith VM that hosts a workflow task am, ϕ is the average latency

incurred at each network device (e.g., routers/switches), and H(dcm,jk ) is the number

of network devices in the kth datacenter that transfers the data between workflow

tasks m and j.

Multiple datacenters. The VMs of a1 and a2 can be also allocated at different data-

centers. For instance, if the vm1 which is used to host a1 is deployed on dc1, and vm2

which is used to host a2 is deployed on dc2; then, the time for transferring P size of

data from a1 to a2 is acquired as Tt(am, aj) = P
min(tpvmm

i
,tp

vm
j
x

)
+ P × ϕ×H(dcmk , dc

j
q),

where ϕ is the average latency incurred at each network device and H(dcmk , dc
j
q) is the

number of network devices between datacenters dck and dcq, that are involved in the

transmission process, including the network devices of each datacenter.

The makespan of each workflow depends on the performance of its allocated VMs and

network. Thus, the makespan of executing a workflow λ is computed using Equation

5.2 where A ⊂ λ is a set of the activities (e.,g, executions, transmissions) that belong

to λ.

Makespan(am, vmi) = Tl(vm
m
i ) + Te(vm

m
i ) + Tt(vm

m
i , vm

j
x)

m, j ∈ A,m 6= j, i 6= x
(5.2)

5.3.3 Energy model

A data-driven workflow application mainly consumes energy when performing two

main operations: a) data processing or computation and b) network communication.

For computation, in general, the power consumption of a server/host varies as a func-

tion of its utilization level. If a host is idle, the power saving mechanism lowers the
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frequency of the CPU, and therefore only a small proportion (α) of peak power is

utilized. If ρ is peak power consumption and u is the utilization of resources, then the

power consumption of a host in a single datacenter can be computed using Equation

5.3.

P comp
host = α× ρ+ (1− α)× ρ× u (5.3)

A host may run several VMs at a given time. Each VM will consume its host’s energy

according to its usage of resources. Even though a host may have several resources

such as CPU cores, disks, memories, and other elements, we assume that uvmi
indicates

aggregate resources utilized by each VM i hosted on a given host. As such, the power

consumption of a host is formalized using Equation 5.4.

Pcomphost (am, vmi) = α× ρ+ (1− α)× ρ× u(vmm
i ) (5.4)

For modeling network energy consumption, we assume that network devices consume

energy in two ways: one while running network devices’ operating systems and associ-

ated operations while the other when sending data through active network ports/links.

Let i,m → x, j denote the data transmission from the ith VM that hosts a workflow

task m to the xth VM that hosts another workflow j. For computing end-to-end net-

work energy consumption for every given data among workflow tasks, Equation 5.5 is

used where Pswitch is the required energy for operating network devices, Pport repre-

sents network ports that are involved in the transmission process, and s ∈ S denotes

a network device. Based on Equation 5.4 and 5.5, the total energy consumption of

am ∈ A can be formalized using Equation 5.6.

Pcommnetwork(ai,m→x,j) =
∑
s∈S

P i,m→x,jswitch (s) + P i,m→x,jport (s)

m, j ∈ A; i, x ∈ VM
(5.5)
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TEnergy(am, vmi) = Pcomphost (am, vmi) + Pcommnetwork(ai,m→x,j) (5.6)

5.3.4 Electricity cost

The electricity cost is computed according to data processing and communication. We

compute the electricity cost of data processing by multiplying the local electricity price

of a given datacenter with energy consumed by a corresponding VM i that execute

a workflow task m, as shown in Equation 5.7, where Eprice(vmm
i ) represents the

electricity price of vmm
i .

Ecomphost (am, vmi) = Pcomphost (am, vmi)× Eprice(vmm
i ) (5.7)

Regarding the electricity cost occurred as a result of data exchange, we assume that

the electricity price is a constant value Ω for each network device. As such, the network

electricity cost is acquired using Equation 5.8. Based on Equation 5.7 and 5.8, the

total electricity cost for am ∈ A is formalized in Equation 5.9.

Ecommnetwork(am→j, vmi→x) = Pcommnetwork(am→j, vmi→x)× Ω

m, j ∈ A; i, x ∈ VM
(5.8)

TEle(am, vmi) = Ecomphost (am, vmi) + Ecommnetwork(am→j, vmi→x) (5.9)

5.4 Proposed energy-aware GA algorithm (GreenGA)

The aim of this chapter is to find an optimized solution that maximizes renewable en-

ergy usage and minimizes the electricity cost under users’ deadline constraints. This

can be considered as a dual objective optimization problem. Given the complexity

of the workflow scheduling problem with multiple objective functions and constraints
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(which is defined as an NP-hard problem), it is not possible to find an optimal solu-

tion in a polynomial time. Thus, this chapter adapts a Genetic Algorithm (GA), a

well-known evolutionary algorithm capable of finding a near-optimal solution for data-

driven workflow deployments. Previously, the GA has been applied for optimizing the

makespan of data-driven applications [116, 117]; however, its applicability and perfor-

mance have not been evaluated to optimize different factors (e.g., deadline, cost, energy

consumption, and carbon footprints) with the embracing of SD-WAN capabilities.

In our GA approach, we first converted this multi-objective problem into a single

objective optimization problem by multiplying each objective. The resultant problem

is formulated in Equation 5.10 where N indicates the non-green energy consumption,

C represents the total monetary cost for running a given workflow λ, and am,s ∈ O

represents one deployment solution for task am. σ(am,s) is a function that calculates the

proportion of renewable energy consumption of the deployment solution am,s. Finally,

deadline and budget, which are given by users, denote the hard constraints for running

a workflow λ.

minimize
∑

am,s∈O

(N (am,s)× C(am,s))

s.t. N (am,s) = (1− σ(am,s))× TEnergy(am,s, vmi)

C(am,s) = TEle(am,s, vmi)∑
am,s∈O

Makespan(am,s, vmi) ≤ deadline

∑
am,s∈O

UCost(am,s, vmi) ≤ budget

∀vmi ∈ VM

(5.10)

5.4.1 Algorithm details

The GA aims to search its solution space and find the best values for the given objective

function (minimization of non-green energy usage and energy cost). To this end, the

objective function in Equation 5.10 is encoded into a deployment solution O using a

vector [a1
z,c; a

2
b,y :::: aqw,e], where akm,s denotes a deployment solution s for an activity
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am (e.g., processing) deployed on a cloud datacenter dck. Therefore, the vector can

be used to compute the values of the objective function based on the three proposed

models (cost, energy, and performance), in addition to the constraints (deadline and

budget). After encoding, we can perform the adaptive GA to compute near-optimal

solutions through the following four phases:

1. Initializing population and candidate list generation: Initially, we randomly gen-

erate the population, which is coded according to the objective function. We

select cloud datacenters from the “Candidate List” that meet the constraints

(e.g., deadline) of a given workflow activity to reduce the possibility of generat-

ing an infeasible solution.

2. Selection: The selection process is based on two methods: fitness function and

diversity mechanism. The fitness function is represented in a numeric format,

which is used to select superior solutions. The fitness function is the same as

the objective function, which aims to minimize the non-green energy usage and

energy cost as well as meeting the constraints. To prevent superior individuals

from being destroyed in the crossover and mutation (discussed in the next phase),

the elitism method [124] given in Algorithm 2 is used. So, if a solution is tagged

as an elitist, it should be a part of the new population’s generation process.

This method can ensure that the proposed GA algorithm is computationally

efficient as it avoids the re-discovery process of good results, which have been

already obtained in previous generations. The diversity mechanism performed in

the crossover and mutation phase is a crucial step to consider, as it impacts the

future steps of crossover and mutation. The low diversity of a population usually

indicates a local extreme, which impacts the search for optimal solutions.

3. Crossover and mutation: A crossover aims to exchange some parts of two chro-

mosomes to generate two new chromosomes. The proposed GA algorithm uses

one-point crossover [125]. A mutation is used to enhance the search range by

avoiding local minima; therefore, the algorithm consists of a method that ran-

domly selects a small proportion of given chromosomes in the current generation

and changes them to new feasible chromosomes for the next generation (as de-
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Algorithm 2 Elitist Prevention
Require:

elist: elitist list
s: elitist size
pop: all individuals
T : task list
C: cloud list

1: if elist is empty then
2: . ASCsort sorts the pop as ascending order
3: pop← ASCsort (pop)
4: . copy the first s number of solutions to elist
5: elist← from pop[0] to pop[s− 1]
6: end if
7: for t in T do
8: for c in C do
9: pop ← combine(elist, pop)
10: pop← ASCsort (pop)
11: . delete s numbers of pop in tail
12: elist← from pop[0] to pop[s− 1]
13: end for
14: end for

scribed in [126]). The initial mutation rate is set to 0.015, which is a very small

value. Nevertheless, the proposed algorithm can dynamically adjust the muta-

tion rate, detailed in the following phase.

4. Diversity mechanism: Algorithm 3 illustrates the procedure used to dynami-

cally adjust the diversity of a chromosome based on mutation rates. Firstly, the

algorithm computes the density d of the population by comparing unique chro-

mosomes (sr) with the total number of population (size). Next, it increases the

mutation rate if d is less than a predefined threshold. However, if the mutation

rate is higher than its maximum rate, it will be decreased. The increasing and

decreasing step is computed as 1.75
κ×|pop| as recommended by Smith et al. in [127].

κ denotes the length of chromosomes.

5.4.1.1 Termination method

If the number of iterations is ∞, the proposed GA algorithm can provide an optimal

solution. However, as the computation resource is limited, the proposed GA algorithm

should be terminated at some points. Therefore, the algorithm would terminate it-

self when there is no further improvement for a given solution in a fixed number of

interactions R.
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Algorithm 3 Diversity mechanism
Require:

pop: all individuals
size: size of pop
threshold: threshold of diversity
rate: current mutation rate
Max: maximum mutation rate

1: . function removeDup removes the duplication
2: rpop ← removeDup(pop)
3: sr ← |rpop|
4: d ← 1− sr

size
5: if d < threshold then
6: increase rate
7: else if rate > Max then
8: decrease rate
9: end if

5.4.1.2 Time Complexity

The proposed method is split into four operators: selection, crossover, mutation, and

diversity mechanism. The time complexity of the selection phase is O(|P |× |G|× |T |),

where P is the size of the population, G is the number of generations, and T represents

the total number of tasks of a given workflow. For the crossover phase, each selected

individual needs to be processed in every generation, so the crossover’s complexity

is O(|P | × |G|). Although the mutation is not applied to each selected individual in

each generation, its rate must be computed in the diversity mechanism phase, which

requires to sort the solutions. Thus, the time complexity of the mutation and diversity

mechanism together is O(|P | × |G|). As a result, the proposed method’s overall time

complexity is O(|P | × |G| × |T |).

5.5 Performance evaluation

5.5.1 Experimental setup

To evaluate the proposed GA algorithm [128], we use our proposed simulator “IoTSim-

SDWAN,” as discussed in the previous chapter. IoTSim-SDWAN is capable of sim-

ulating multiple cloud datacenters interconnected via traditional WAN or SD-WAN

environments. IoTSim-SDWAN is developed on top of CloudSim [129], which is one of

the most used cloud-based simulators worldwide. CloudSim was evaluated and com-

pared with several real-world test-beds in many scenarios, including deploying scientific

and data-driven workflows on multiple clouds [117, 130].
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Figure 5.2: Geo-distributed cloud datacenters (D* denotes a datacenter number)

VM type Small Medium Large

Price 10.5 ($/h) 12.8 ($/h) 30 ($/h)

CPU 70 (MIPS) 80 (MIPS) 100 (MIPS)

Storage size 1000 (GB) 2000 (GB) 4000 (GB)

RAM 512 (MB) 2000 (MB) 6000 (MB)

Energy consumption 4.5 (kWh) 6.5 (kWh) 10.5 (kWh)

Table 5.1: The configuration of VMs

5.5.1.1 Cloud provider configurations

• Datacenter location and proportion of green energy: The chapter assumes that

there are six cloud datacenters, which are allocated in different countries, as

shown in Figure 5.2. The figure illustrates how the geo-distributed datacenters

are interconnected with each other via an SD-WAN network topology, where the

SD-WAN bandwidth is set to 1 GB for all links. The weight of each SD-WAN

route represents the number of network devices that exist between two respective

datacenters. Data have to traverse through these network devices to reach their

destinations. The green energy usage of each datacenter is given based on an

ascending datacenter order and as follows: 0.895, 0.895, 0.934, 0.932, 0.622, and

0.071.

• VM configuration: The chapter assumes that each datacenter has three types of
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Workflow Medium Large Very large

CyberShake 30 100 1000

Montage 25 100 1000

LIGO 30 100 1000

Epigenomics 24 100 995

Table 5.2: Number of tasks of each workflow at each scale.

VMs: small, medium, and large. Table 5.1 shows the configuration of each VM

type. For example, the small VM costs 10.5 US Dollars per hour, and its CPU,

storage size, and RAM are 70 MIPS, 1000 GB, and 512 MB, respectively. The

MIPS describes the CPU powers in Millions of Instructions Per Second. The

small VM is also assumed to consume a total of 4.5 kilowatts of electric energy

per hour (kWh).

• Electricity Prices: Market electricity prices vary based on several variables: coun-

try, hour, and day. To simulate each datacenter’s market electricity cost, we used

the energy markets’ prices in the United Kingdom observed over one week.2

5.5.1.2 User Configuration

• Workflow generation: To evaluate the proposed GA algorithm, four data-driven

workflow applications are considered: Epigenomics (bioinformatics), CyberShake

(earthquake risk characterization), LIGO (detection of gravitational waves), and

Montage (generation of sky mosaics). The XML description files of the work-

flows are available via the Pegasus project.3 Table 5.2 shows the number of

tasks of each workflow application. Notably, our evaluations only consider input

and output data sizes, VM’s processing for each given task, and SD-WAN net-

work traffic among geo-distributed datacenters. The internal network traffic of

workflows between tasks in a given datacenter is not considered.

• Deadline generation: In this chapter, the deadline is a hard constraint defined as

the mean of fastest solution and slowest solution. Fastest solution is the optimal

deployment solution, which means to deploy a given workflow over the most

2http://www.nordpoolspot.com, accessed 01-06-2015
3µhttps://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub
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powerful VMs in the same datacenter, while the slowest solution is to deploy the

workflow over the least powerful VMs across different datacenters.

5.5.2 Experimental results

The performance of the proposed GA algorithm is evaluated based on five objectives:

electricity cost, energy consumption, deadline, the usage of renewable energy, and the

level of energy efficiency using SD-WAN as compared to a classical WAN infrastructure.

To this end, we compare the solutions generated by our proposed algorithm with the

best and worst case of each objective. Moreover, we evaluate our adaptive algorithm’s

performance in two ways: 1) to optimize only one objective and keep others within

predefined constraints (EleCostGA); 2) to optimize more than one objective by map-

ping these objectives into a weighted linear function while ensuring other objectives

within the predefined constraints (GreenGA).

5.5.2.1 Electricity cost

We develop two versions of GA-based algorithms, namely EleCostGA and GreenGA to

optimize data-driven workflow deployments across multiple datacenters. EleCostGA

only aims to minimize electricity costs while meeting other constraints (makespan, en-

ergy consumption, and user budgets). On the other hand, GreenGA aims to minimize

both electricity cost and consumption of non-renewable energy and meet the same

constraints as in EleCostGA (makespan, energy consumption, and user budgets).

Figures 5.3, 5.4, and 5.5 show the results of applying both algorithms to different types

of workflows. The Lower bound represents the lowest electricity cost obtained with-

out considering any constraints, where Y-axis is the ratio of the results generated by

the proposed algorithms with the Lower bound (e.g., EleCostGA
Lower bound

and GreenGA
Lower bound

). The

results illustrate that the cloud providers have to spend more when they optimize the

proportion of renewable energy usage. However, with the increasing size of the work-

flows, the differences in electricity cost for GreenGA and ElecCostGA become smaller.

Figure 5.6 shows the relation between the number of generations of the propped GA

algorithm and electricity cost saving. We first set the result of 10 generations as the
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Figure 5.3: Electricity cost for medium
size workflow
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Figure 5.4: Electricity cost for large size
workflow

Epigenomics
CyberShake LIGO Montage

Workflows

0

1

2

3

4

Ra
tio

 o
f e

le
ct

ric
ity

 c
os

t Lower_bound GreenGA ElecCostGA

Figure 5.5: Electricity cost for very large
size workflow
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Figure 5.6: Electricity cost vs number
of generation

baseline and then compute how many percentages can be saved when the number of

generations is increased.

5.5.2.2 Energy efficiency

In this chapter, we do not aim to minimize the energy consumption for executing the

workflows of data-driven applications across a set of datacenters. Nevertheless, our

proposed method allows cloud providers to set a constraint for energy consumption.

To this end, we first provide the Lower bound and Upper bound of energy consumption

for executing the workflows over available datacenters.

Lower bound and Upper bound. The Lower bound of energy consumption is com-

puted by selecting the most energy efficient VMs inside the same datacenter to execute

a given workflow. So, the most energy efficient VM (vmi) for a task am is determined

using: arg minvmi∈VM Makespan(am, vmi) ∗ Pcomphost (am, vmi). On the other hand, the

Upper bound aims to select VMs that consume the most energy among datacenters.
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Figure 5.7: Energy consumption for
Epigenomics
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Figure 5.8: Energy consumption for Cy-
berShake
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Figure 5.9: Energy consumption for
Montage
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Figure 5.10: Energy consumption for
LIGO

Figures 5.7, 5.8, 5.9, and 5.10 indicate the energy consumption of executing the given

workflows over different datacenters. The Y-axis indicates the ratio of the energy

consumption of different solutions (GreenGA, EleCostGA, and Upper bound) with

the Lower bound’s energy consumption. Although both GreenGA and EleCostGA

are not designed to minimize energy consumption in general, they can guarantee that

the energy consumption will meet the predefined constraints while at the same time

minimize the electricity cost.

5.5.2.3 Green energy efficiency

This subsection shows the proportion of renewable energy usage of each solution gen-

erated by GreenGA and EleCostGA. Figures 5.11, 5.12, and 5.13 show that the

GreenGA’s solutions use more green energy than those generated by EleCostGA.

However, the difference reduces as the size of workflows increases. The larger size

of workflows correspond to more deployment solutions; which sometimes leads a local
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Figure 5.11: The proportion of the us-
age of renewable energy for medium size
workflow
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Figure 5.12: The proportion of the usage
of renewable energy for large size work-
flow
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Figure 5.13: The proportion of the usage
of renewable energy for very large size
workflow
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Figure 5.14: The presentation of time
save comparing with deadline

optimum. The local optimum has a very high probability of causing the proposed

GA algorithms to terminate when meeting the predefined termination conditions, as

described in Subsection 5.4.1.1.

5.5.2.4 Performance (makespan)

Deadline is a hard constraint, which means that the execution time of each submitted

workflow must be equal to or less than a specified deadline. Figure 5.14 shows the

time saving of the generated solutions. The figure compares the saving time with given

deadlines, where the Y-axis represents the ratio of saving time and the given deadlines

( savedT ime
deadLine

). The X-axis denotes to the type of workflow; for example, “M EP”, “L EP”

and “VL EP” represent the medium, large, and very large size of Epigenomics work-

flows, respectively. The results in the figure show that all of the generated solutions

meet the given deadlines.
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Figure 5.15: Energy consumption in a
small-scale SDWAN/WAN - medium size
workflows
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Figure 5.16: Energy consumption in a
small-scale SDWAN/WAN - large size
workflows
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Figure 5.17: Energy consumption in a
small-scale SDWAN/WAN - very large
size workflows
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Figure 5.18: Energy consumption in a
large-scale SDWAN/WAN - medium size
workflows

Epigenomics
CyberShake LIGO Montage

Workflows

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

  o
f e

ne
rg

y 
us

ag
e SD-WAN/WAN

Figure 5.19: Energy consumption in a
large-scale SDWAN/WAN - large size
workflows
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Figure 5.20: Energy consumption in a
large-scale SDWAN/WAN - very large
size workflows
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5.6 Energy efficiency in SD-WAN

To evaluate SD-WAN’s energy efficiency and flexibility when transferring the data

of data-driven applications, we also use IoTSim-SDWAN [128]. As discussed in the

previous chapter, IoTSim-SDWAN provides the facilities to evaluate networks’ energy

consumption in both traditional WAN and SD-WAN environments.

Experiment configuration. We consider two types of network topologies: small scale

SD-WAN/WAN and large scale SD-WAN/WAN. The number of network devices in

the large scale SD-WAN/WAN are twice as in the small scale SD-WAN/WAN. Re-

garding the datacenters and workflows, we keep their configurations similar to the

experiments performed in the previous section. In the traditional WAN environment,

we identify a set of shortest paths and then randomly select one of the paths to be the

prime paths for data transmission. In the SD-WAN environment, we use our proposed

SPMB algorithm, discussed in the previous chapter, to transfer data among distributed

datacenters via SD-WAN networks (refer to Subsection 4.4.3).

We report the experimental results as the ratio of the energy consumption of SD-

WAN-based solution and WAN-based solution (SD − WAN/WAN). Figures 5.15,

5.16, and 5.17 show that the SD-WAN-enabled environment consumes less energy

than the WAN environment for transferring data across multiple datacenters in the

small-scale network topology. The SD-WAN solution can save network energy up to

32.5% as compared to the WAN solution. However, the advantage reduces when the

size of the workflow increases. For example, from medium-sized workflows to very

large-sized workflows, the energy-saving of SD-WAN compared to WAN is reduced

from 38.6% to 27.4%. This is because the SD-WAN has fewer paths to consider when

transferring data in small-scale networks.

When the network topology becomes bigger and more complicated, the advantage of

the SD-WAN becomes more significant. Compared to the WAN solution, the SD-

WAN solution saves network energy up to 73.8%, as shown in Figures 5.18, 5.19, and

5.20. Similar to the small-scale case, this advantage degrades when the size of the

workflows increase. However, the degradation is slight; for example, from medium-

sized workflows to very large-sized workflows, the energy saving is reduced from 77%
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Table 5.3: Compare with other related work

Feature/ Re-
search work

[120] [121] [131] [118] [117] [116] [132] [133] Proposed
work

Workflow appli-
cation

× × × × X X × × X

SD-WAN aware × × × × × × × × X
Multiple clouds × × X × X X X X X
Green energy X × × × × × X X X
Energy minimiza-
tion

× X X × × × X X X

Cost minimiza-
tion

X X X × X X X X X

to 70.75%.

5.7 Related work

5.7.1 Cost and performance-based tasks scheduling

To improve the performance of complex workflow-based applications, Mao et al. [134]

introduced an auto-scaling method to allocate workflow tasks to a set of cloud VMs

according to user deadline constraints. Malawski et al. [135] considered the constraint

of monetary cost for scheduling large-scale, workflow-based applications in cloud dat-

acenters. An algorithm was proposed to make trade-off decisions between makespan

and financial cost. Moreover, a new algorithm was proposed by Calheiros et al. [136]

to accelerate the execution time of complex workflow applications in cloud datacenters.

The algorithm takes advantage of idle cloud VMs, in addition to meeting a number of

constraints (e.g., deadline, user budget).

In multi-distributed cloud datacenters, Yuan et al. [131] proposed an effective al-

gorithm for scheduling tasks across private and public datacenters, considering the

objective of minimizing cost and overall delays. PANDA [137] was also developed to

schedule workflow-based applications across private and public datacenters, aiming

to find the best trade-off decisions between performance and cost. Fard et al. [138]

proposed a solution that considers the trade-off between monetary cost and comple-

tion time using a Pareto-optimal based algorithm. Jrad et al. [139] introduced a static

method to optimize the deployment of workflow-based applications on multiple clouds,
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considering security, makespan, and monetary cost.

5.7.2 Green scheduling

Various existing proposals suggested different solutions with respect to green schedul-

ing in cloud computing [132, 133]. Catena et al. [140] proposed a predictive energy

saving algorithm based on online scheduling to reduce the energy consumption of dis-

tributed web search engines. Y.Li et al.[141] proposed an energy model across edge

and cloud environments. The author aimed to estimate the energy consumption based

on the number of IoT devices and the desired application QoS. There are many studies

and solutions [119, 142–144] proposed to improve the performance of cloud datacenters

in terms of minimizing electricity usage and carbon footprint. For instance, Aksanli

et al. [142] proposed a database scheduling strategy which predicts the green energy

availability in order to reduce the number of rescheduled tasks due to green energy

unavailability. Goiri et al. [143] also proposed a prediction mechanism that aims to

maximize green energy consumption while minimizing the use of traditional energy

sources. The author focused on the workflows of big data applications (MapReduce).

Moreover, Deng et al. [144] proposed an online algorithm to ensure energy reliabil-

ity and minimize the operational cost of cloud datacenters by using multiple energy

resources in a complementary manner.

Most of the above studies focus on single datacenters. In multi-distributed cloud

datacenters, Garg et al. [145] proposed a cloud-based framework that aims to min-

imize carbon footprints introduced by cloud datacenters. The author’s framework

depends on the usage proportion of green energy to select the most green-aware cloud

provider, along with the consideration of user’s QoS preferences. Kaushik et al. [146]

proposed an energy-saving solution for cloud datacenters by using data classification,

power characteristics, and idleness. The author’s solution aims to divide cloud storage

structures into different cloud datacenters, which leads to the minimization of cloud

providers’ energy usage and operational costs. Kiani et al.[147] proposed a solution

that increases green energy utilization by distributing a given workload into several

cloud datacenters based on residual green energy rate. To find an optimal green-energy

datacenter, the author applied the technique of brute-force optimization. Giacobbe et
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al. [123] introduced an approach to minimize clouds’ carbon dioxide emissions by mi-

grating VMs and their workloads among distributed federated clouds. The study uses

a percentage quota of renewable energy to decide its optimal placement of VMs and

workloads. Yuan et al. [120] proposed a time-aware task scheduling algorithm based

on a hybrid chaotic particle swarm optimization. The author’s proposed solution aims

to meet user constraints (e.g., task deadlines) while at the same time maximizing the

proportion of green energy and cloud providers’ profits.

In summary, to the best of our knowledge, our proposed GA-based scheduling method

is the first work that focuses on maximizing the usage proportion of green energy and

minimizing electricity cost for data-driven applications executed in multiple SD-WAN-

enabled cloud datacenters. Our work differs from the above studies by considering

cross-layer optimizations in terms of application, server, and network. By leveraging

an evolutionary search process (genetic algorithm), our work is capable of finding near-

optimal solutions in a time-efficient manner. Table 5.3 provides a comparison between

our proposed work and the state-of-the-arts.

5.8 Conclusion

This chapter considers the problem of finding a suitable deployment solution for data-

driven applications in geo-distributed cloud datacneters. We argue that, in order to

find the best deployment solution that minimize non-green energy and energy cost as

weel as meeting other constraints (e.g., user’s deadline and budget), it is necessary

to embrace SD-WAN capabilities and efficient search algorithms. In this context, this

chapter proposed an adaptive genetic algorithm method that utilizes multiple SD-

WAN-enabled cloud datacenters not only to improve green energy usage but also keep

the cost of execution to a minimum. The performance of the proposed algorithm are

evaluated using real data-driven workflows with different sizes under various configu-

rations of virtual machines. The experimental results clearly show that our proposed

algorithm favors more green energy usage along with minimizing overall energy con-

sumption as compared with other baseline algorithms.
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Chapter 6: IoTSim-Osmosis: A Framework for Modeling and Simulating IoT
Applications over an Edge-Cloud Continuum

Summary

To support the testing and evaluation of IoT data-driven applications that rely on

data processing and transmission across multiple edge-cloud datacenters, this chap-

ter proposes IoTSim-Osmosis– a simulation framework that enables the evaluation

and validation of osmotic computing applications. The detailed related work anal-

ysis given in this chapter demonstrates that IoTSim-Osmosis is the first simulation

framework that enables unified modeling and simulation of complex IoT applications

over heterogeneous edge-cloud environments while interconnecting via SD-WAN. The

effectiveness and practicality of IoTSim-Osmosis is demonstrated using an electric-

ity management and billing application case study. The IoTSim-Osmosis’s proposed

models are evaluated using various run-time QoS parameters, such as IoT battery

consumption, IoT execution time, end-to-end network transmission time, and energy

consumption of edge-cloud datacenters.

6.1 Introduction

Osmotic computing sets out the principles and algorithms for simplifying the deploy-

ment of applications in integrated edge-cloud environments. It unifies many distributed

systems and applications so that data delivery and analytics are optimized in addition

to migrating tasks from one environment to another based on performance metrics. As

osmotic computing is a new paradigm, the analysis of proposed osmotic approaches,

algorithms, and QoS policies are required to undertake various“what if” investigations.

To fill this gap and support an easy evaluation of new osmotic solutions, this chapter

proposes IoTSim-Osmosis– an SD-WAN and SDN-aware osmotic computing toolkit.

IoTSim-Osmosis supports the modeling and simulation of multiple osmotic systems in a

unified environment. It enables the integration of IoT, edge and cloud ecosystems along

with mechanisms to support SD-WAN and SDN networking. Using this toolkit, IoT

devices are able to send data using different wireless technologies (e.g., WiFi,) while

the edge can include virtualized devices and SDN-aware infrastructure. Similarly,

a cloud datacenter can include virtualized host machines and SDN-aware networks.
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IoTSim-Osmosis also provides policies to control different components (e.g. edge and

cloud task scheduling, and edge to cloud routing protocols).

This main contribution of this chapter is to provide a novel framework that models

and simulates osmotic computing environments. In particular, the key contributions

of this chapters are:

• Proposing an architecture and system models of SD-WAN and SDN-aware os-

motic computing along with simulating several components used to support edge-

cloud heterogeneity and IoT application complexity.

• Modeling of several system management policies for cross-layer optimizations.

• Presenting a case study to evaluate the performance of IoTSim-Osmosis using

an energy (electricity) management and billing application.

The rest of the chapter is organized as follows. Section 6.2 describes osmotic comput-

ing and graph-based IoT application construction. Section 6.3 describes related work

by comparing IoTSim-Osmosis with state-of-art efforts. Section 6.4 discusses the mod-

eling capabilities of IoTSim-Osmosis and Section 6.5 provides an empirical validation

of our approach. Section 6.6 provides concluding comments and future work.

6.2 Overview

6.2.1 IoT environment

Although actual IoT infrastructure can vary across different application areas, a com-

mon (abstract) model can be represented using a 4-tier architecture, as shown in Figure

6.1. The four tiers are:

Tier 1 (IoT layer): This layer can consist of sensors, actuators, Radio Frequency Iden-

tification (RFID) tags, and mobile devices. The layer senses surrounding physical

environment and transfers sensed data to edge or/and cloud datacenters for further

analysis [148, 149]. These devices can have different designs in terms of software, hard-

ware, architecture, data usage, energy sources, and communication protocols. Unlike
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Figure 6.1: 4-tier architecture – the outer layer is composed of IoT devices generating
data and transmitting these to Edge devices (second layer). The Innermost layer is
comprised of a Cloud datacenter, with a data network connecting these layers

devices and networks which exist to offer physical connectivity, network-connected

applications create opportunities for human-to-device connectivity [150].

Tier 2 (Edge layer): For applications with the following properties: (a) close coupling

between data generators and processing environments [151], (b) network bandwidth is

limited [152], and (c) data generating devices are battery operated [56], it is not efficient

to send all the data to a cloud system. Emergence of edge computing which offers data

storage and analysis to the network edge closer to IoT devices provides an efficient

solution. Edge devices, including smart phone, Raspberry Pi and UDOO board, favour

local processing and data storage in proximity to data generation. Similar to IoT

devices, edge devices can be heterogeneous, which makes the modeling complex.

Tier 3 (Network layer): This layer is involved in transferring data between various IoT

infrastructure layers. The sensor and actuator nodes (Tier 1) form arbitrary network

topologies that are interconnected via edge gateways (Tier 2) to remote clouds (Tier

4) via the Internet backbone. The inter-connectivity of these network types vary from
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Figure 6.2: Application MEL graph

short-range low-power wireless links offering a bandwidth of few hundred Kb/s with a

radio range of few meters, to powerful local and cellular area networks. There is often

direct communication between an IoT device and an edge device using light weight net-

work protocols such as LoRa-WAN, NB-IoT (over long distances) and Bluetooth Low

Energy (over shorter distances), whereas edge and cloud layers use network protocols

such as 4G/5G [16]. The dynamic nature of modern IoT applications requires dynamic

reconfiguration of network links and support for bandwidth slicing, which requires a

move away from traditional WAN solutions towards SD-WAN solutions [53].

Tier 4 (Cloud layer): This layer provides computing as a utility service which can be

provisioned on a pay-per-use basis, as user demand changes. To handle the increasing

diversity and scalability of current applications, cloud environments offer resources

with different characteristics and at different costs (based on duration of use).

Regardless of the complexity of the above 4 layers, it is necessary to optimize the

performance of an application executing across the the combined IoT-edge-cloud en-

vironment.
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6.2.2 Application Topology

Osmotic Computing focuses on strategies and mechanisms to extend IoT device capa-

bilities by developing a computing model that makes use of all the 4 IoT infrastruc-

ture layers [153]. To handle the complexity and diversity of applications, it provides

an abstraction referred to as “Microelements” (MELs) – which encapsulates services,

resources, and data. In particular, any IoT application can be represented using a

graph of MELs, as shown in Figure 6.2. Modeling an application as a graph of MELs

involves the following:

• Encapsulation of multiple components: In the context of an IoT application,

sensed data needs to be processed across a number of functions and operations.

The representation of each operation can take different forms, leading to an

IoT application being specified as a graph of MELs. Each MEL can contain

micro data and be realised as a microservice which can be deployed on the IoT

infrastructure. A MEL, as an entity, needs to abstract all of these capabilities.

• Maintaining data and control flow: There is a strict dependency between various

MELs within an application. The dependency can be in the form of data transfer

or control flow. An example of MEL graph dependency is given in Figure 6.2.

• Performance optimization across heterogeneous IoT infrastructure: This in-

volves understanding how the Cloud (L1) interacts and coordinates with the IoT

(L4) and Edge (L3) layers, through an SDWAN (L2). Each MEL has specific

QoS constraints limiting the locations at which a MEL can be deployed. For

example a deep learning model cannot be deployed on IoT or edge device if it

has specific QoS constraints. In addition to this, it is necessary to optimize the

underlying IoT infrastructure layers while executing MELs.

6.3 Related Work

To simulate the complex environment of cloud, edge and underlying networks, various

simulation and emulation frameworks have been introduced. This section summa-

rizes the most relevant simulation and emulation frameworks and illustrates how these
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frameworks are not able to satisfy the requirements for osmotic computing environ-

ments as compared to our proposed IoTSim-Osmosis simulator.

6.3.1 Cloud simulators

Multiple simulation frameworks have been proposed to model and simulate cloud com-

puting infrastructures. The most popular one is CloudSim [1], which is a discrete-event

simulation tool designed to enable the modeling and simulation of cloud-based systems

and services. It supports the modeling of various cloud system components; for exam-

ple, cloud datacenters, virtual machines (VMs) along with providing mechanisms to

easily test and evaluate new strategies that improve the performance of cloud infras-

tructures. NetworkCloudSim [68] extends the functionality of CloudSim to leverage

traditional network infrastructures within cloud datacenters. RC2Sim [154] is another

cloud-based tool with the focus on evaluating cloud management techniques. It is

a combination of simulation (e.g. calculating a time for creating a VM image) and

emulation (e.g. sending real TCP/IP traffic) to enable the testing of large-scale cloud

environments in a single machine.

iCanCloud [71] is also a cloud simulator offering several features for conducting large-

scale cloud experiments. It can simulate computing and network resources efficiently.

It is equipped with a global hyper-visor to test different cloud brokering strategies.

GreenCloud [70] is a cloud simulation toolkit built on top of an NS-2 simulator. It is

capable of simulating computing and network cloud infrastructures along with offering

numerous energy-aware models.

DCSim [155] is a cloud-based simulator that enables the modeling and simulating of

cooling systems in addition to computing and network infrastructures. It is provides

mechanisms to quantify the performance and energy consumption in terms of servers,

network, and cooling systems. By using DCSim, energy-aware algorithms can be ef-

fectively evaluated. Multi-RECloudSim [156] is an extension of CloudSim focusing

on modeling and simulating of multi-resource task executions. It provides rich fea-

tures in terms of power modeling and multi-resource task scheduling. DISSECT-CF

[157] is a customizable simulation framework which builds upon existing cloud com-

puting concepts. It is mainly designed for energy consumption evaluation in relation
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to Infrastructure-as-a-Service (IaaS), which supports model task scheduling.

These simulators have the power to support modeling and simulation of cloud in-

frastructures, which include computing and traditional networking. However, they are

limited to traditional clouds and do not simulate current technological paradigms (e.g.,

IoT, SDN, SD-WAN).

6.3.2 Network simulators and emulators

Several network-based simulation tools have been introduced for building and evaluat-

ing different types of network infrastructures in a simulated manner. Some examples of

network infrastructures include wireless sensor networks (WSNs), local area networks

(LANs), internet protocols (e.g. border gateway protocol). One of the most powerful

network-based tools is NS-3 [40]. NS-3 is an open-source network simulator based on

discrete-event mechanisms, which offers several types of network infrastructures, such

as WSNs and LANs. It also provides several features, such as the ability to evaluate

the designs and algorithms for the energy consumption and routing protocols of WSNs.

ConesC [158] is a verification WSN tool designed to easily deploy and test different

types of WSN models in terms of design perspectives. It efficiently allows developers

to check and evaluate the correctness of proposed WSN designs. COOJA [159] is a

simulator that can be employed to model multiple deployment levels (e.g. operating

systems, machine code instruction sets, and networks). Although COOJA is prin-

cipally designed for use with the Contiki operating systems, it can also be used to

support simulation of heterogeneous network nodes.

TOSSIM [160] is a toolkit that simulates the hardware components of sensor devices.

It allows TinyOS applications to seamlessly run and interact with the underlying com-

ponents of TOSSIM without the need for real sensor devices. TinyOS [161] is an oper-

ating system designed for wireless devices that are equipped with low-power batteries.

By using TOSSIM, TinyOS applications can easily be evaluated and tested in terms

of performance and energy consumption. OMNeT++ [162] is a generic network-based

toolkit designed to simulate several network-specific domains/models (e.g., wireless

ad-hoc network simulations, storage area network simulations). OMNeT++ has an ef-

fective graphical user interface (GUI) which accelerates and simplifies the deployment
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of different network-based scenarios. Castalia [163] is as an extension of OMNet++

developed to simulate networks of low powered devices, such as body area networks.

It can also be used to dynamically model and simulate large numbers of mobile nodes.

GreenCastalia [164] extends the capability of Castilia to allow the modeling and sim-

ulation of harvesting-aware power management for embedded devices. The most im-

portant limitation of these simulators lies in the fact that they lack the support for

SDN-aware mechanisms within and across edge-cloud environments.

6.3.3 SDN-aware network simulators and emulators

Mininet [72] is a lightweight SDN-centric emulation tool that enables virtualization

mechanisms for large-scale SDN-aware networks in a single machine. It offers the

advantage of quantifying SDN performance within different network structures and

routing protocols. CloudSimSDN [2] extends the functionality of CloudSim to pro-

vide SDN architectures and models within cloud datacenters. Additionally, it consists

of different network and management strategies for energy management. BigDataS-

DNSim [95] is built on top of cloudSimSDN and provides models to derive different

performance and network metrics of big data applications in SDN-aware cloud data-

centers.

IoTSim-SDWAN [128] is a new simulation tool that provides a model of distributed

SDN-aware cloud datacenters communicating via SD-WAN network infrastructures.

It facilitates the process of evaluating new designs and algorithms in the context of

SD-WAN/SDN aware datacenters. SDN-Sim is a new simulator and emulation toolkit

that integrates multiple frameworks (e.g., OpenDaylight SDN controller, Mininet, and

GNS-3). It supports different SDN-aware simulation and emulation models to evaluate

different SDN performance perspectives. The focus of SDN-Sim [77] is to facilitate the

deployment and testing of several SDN-aware policies, such as channel modeling, traffic

shaping, and QoS demands.

6.3.4 IoT, edge, and fog simulators

In recent years, several simulators have been proposed to simulate IoT and edge en-

vironments. SimIoT [165] is another simulator which operates by modeling the trans-
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Table 6.1: Comparison of various simulation frameworks with the proposed IoTSim-
Osmosis

Simulator
Features

Cloud
processing

SDN
support

SD-WAN
support

Network
comm.

Network
protocols

Edge
processing

Edge
comm.

IoT
devices

Application
composition

CloudSim [1] X
NetworkCloudSim [68] X X

RC2Sim [154] X X
iCanCloud [71] X X

GreenCloud [70] X X
DCSim [155] X X

Multi-RECloudSim [156] X
DISSECT-CF [157] X

NS-3 [40] X X
ConesC [158] X
COOJA [159] X X
TOSSIM [160] X X

OMNeT++ [162] X X
Castalia [163] X X

GreenCastalia [164] X X
Mininet [72] X X X

CloudSimSDN [2] X X X
BigDataSDNSim [95] X X X X X
IoTSim-SDWAN [128] X X X X X

SDN-Sim [77] X X X X
SimIoT [165] X X

Edge-Fog [166] X X X
iFogSim [167] X X X X

MyiFogSim [168] X X X X X
EdgeCloudSim [98] X X X
IoTSim-Edge [169] X X X X X

Diasuite [170] X X X
IoTsuite [171] X X

AWS IoT
Device Simulator1 X X X X

Microsoft
IoT Simulator2 X X X X

Propoed
IoTSim-Osmosis

X X X X X X X X X

mission of data between IoT devices and cloud datacenters. Whilst the simulations

associated with this tool do not include edge devices, it permits the dynamic testing

of multi-user submissions in IoT contexts. Another simulator, Edge-Fog [166] sup-

ports various energy and network models in addition to assisting with task scheduling.

iFogSim [167] can be employed for modeling IoT and Fog environments where all the

computing nodes are represented as fog nodes. Moreover, it measures the influence

of resource managements in relation to network congestion, cost, latency, and energy

use. MyiFogSim [168] extends iFogSim and simulate network configurations, failures,

and provisioning of mobile customers according to given virtual machine migration

policies.

EdgeCloudSim [98] and IoTSim-Edge [169] extends the capability of CloudSim to

incorporate different features of IoT and edge computing environments. While Edge-
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CloudSim explores the modeling of network links, mobility, and edge servers, it lacks

IoT application composition and network complexities. IoTSim-Edge handles the ap-

plication complexity along with heterogeneous communication mechanisms and mobil-

ity. However, both these simulators does not support the cloud and SD-WAN layers,

which are essential components of IoT infrastructures.

A number of IoT-based simulators are also proposed for the deployment and testing of

IoT applications. Diasuite [170] and IoTsuite [171] are the most common frameworks

for managing the whole lifecycle of IoT applications. Both rely on a Siafu [172] simula-

tor for evaluating proposed solutions for IoT applications. However, these frameworks

have a very limited support for handling the complexity and deployment of IoT appli-

cations and infrastructures. Few industry-oriented simulators are also available (e.g.,

AWS IoT Device Simulator1 and Microsoft IoT Simulator2). The Amazon Web Ser-

vices (AWS) simulator can be executed only on AWS infrastructures (where user have

to pay) while the Microsoft simulator can be used only on a Windows 10 environment.

There are limits to how far they support networking and SDN-aware environments.

Also, defining and evaluating various end-to-end IoT policies and algorithms are com-

plex in these industry simulators.

In summary, there are numerous frameworks available for simulating cloud, edge

and/or SDN-aware network components. However, none of the existing frameworks

simulate the composition of all these components along with abstraction of complex

IoT applications. Our proposed simulator, IoTSim-Osmosis covers all these compo-

nents in a holistic manner and provides researchers the necessary support to evaluate

end-to-end IoT application performance using the concept of osmotic computing. The

advantage of IoTSim-Osmosis as compared with the existing simulation frameworks is

clearly visible in Table 6.1.

6.4 Design of IoTSim-Osmosis

This section discusses the conceptual model of IoTSim-Osmosis, including the archi-

tecture and components.

1https://aws.amazon.com/solutions/implementations/iot-device-simulator/
2https://www.microsoft.com/en-us/p/iot-simulator/
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Figure 6.3: Architecture of IoTSim-Osmosis simulator

6.4.1 IoTSim-Osmosis architecture

The architecture of IoTSim-Osmosis is presented in Figure 6.3. It is divided into four

main layers: input, management, osmotic orchestrator , and infrastructure. IoTSim-

Osmosis requires two input files – an end-to-end configuration file which includes a

description of each infrastructure element. For example, it contains attributes of IoT

device (e.g. device ID, bandwidth, battery capacity). When IoTSim-Osmosis finishes

building the required infrastructure, it would require an IoT-MEL graph as workload

to execute. The workload contains details of a transaction, represented as MELs and

network operations. Each transaction can have different performance and can be used

to evaluate the performance of a given osmotic application.

The management layer is modeled to facilitate the process of deploying tailor-made

osmotic policies. It obtains several policies for different purposes, such as a network

policy to instruct SDN/SD-WAN controllers with routing and traffic. As another

example, VM policy is used to select a host that can deploy requested VMs. For

each policy, IoTSim-Osmosis has a number of implemented algorithms that can be

seamlessly used.

The infrastructure layer is modeled to represent four infrastructure components: IoT,

edge, cloud, and SD-WAN. To provide a realistic representation of osmotic computing,
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Figure 6.4: IoTSim-Osmosis system components

each infrastructure component is modeled with many elements. For example, an IoT

component is designed to obtain IoT devices with various attributes, such as device

type, data rate, data type, and supporting network protocols. Finally, the osmotic

orchestrator is designed to control all the events and operations happening in IoTSim-

Osmosis. By Using the event management system, IoTSim-Osmosis is able to manage

the infrastructure and network while allowing a user to apply the management policies.

6.4.2 IoTSim-Osmosis system components

An overview of IoTSim-Osmosis’s system components is illustrated in 6.4. IoTSim-

Osmosis has an SDN system component, which mimics the general behaviour of SDN.

It is coupled with a routing table to store routing information and relation among

nodes in its respective network. The child components (SDN-Edge controller, SDN-

DC controller, and SD-WAN controller) extend the SDN system to obtain general,

shared functions along with adding their customized functions. Each controller obtains

its unique route table, which is used to make proper routing decisions. An osmotic

coordinator is used to interlink the controllers so that routing decisions are made in a

global manner.

Each component of edge datacenter, cloud datacenter, and SD-WAN is coupled with

a topology component to describe the arrangement of the networks’ nodes (e.g., edge
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Figure 6.5: IoTSim-Osmosis overview model

devices, hosts, switches). Each component separately defines the way different nodes

are interconnected with each other. The topology component is totally managed by a

respective controller. Every controller must update its topology with network changes,

such as an edge device is disconnected. Also, each controller uses its topology to help

build routing tables.

Every edge datacenter has an associated proxy component – on an edge and IoT

device. Similarly, the edge datacenter can have a number of connected IoT devices,

generating data over a particular time interval. Each IoT device obtains a battery with

an integrated consumption policy. Data from each IoT device is forwarded to a MEL

component residing at an edge device. Every cloud datacenter maintains a number of

hosts with associated MELs to carry out further processing when required.
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6.4.3 IoTSim-Osmosis model

An overview of IoTSim-Osmosis’s model is shown in Figure 6.5. Every IoT device

consistently senses its surrounding environment over a given time interval, sending

its sensed data to a respective MEL residing in an edge datacenter. The MEL pro-

cesses the received data, with the computational capability of MEL being specified in

Million Instructions Per Seconds (MIPS). To support additional processing, data may

be exchanged with another MEL residing in the same edge datacenter or in another

edge/cloud datacenter. The routing decision is handled by an SDN-edge controller. If

the SDN-edge controller cannot determine the destined MEL, it will ask the source

MEL to forward the data to its edge datacenter gateway. As an SD-WAN controller

is updated with network information of all associated datacenters by the osmotic or-

chestrator, it easily determines a path to the destined MEL. As a result, the SD-WAN

controller sends the data to the gateways of the destined MEL. As data arrives, the

gateway requests its associated edge/cloud SDN controller to find a network route to

the destined MEL (for data processing). The journey from IoT device to the last MEL

is considered to be a transaction where every processing and transmission results are

stored.

In general, data transmission in osmotic computing takes place multiple times based

on a given application MEL graph. Any MEL graph always starts from an IoT layer

where IoT devices observe and send their observed data to an associated edge MEL(s).

To compute every IoT data transmission time iott, Equation 6.1 is used where iotds

is the IoT observed data size, iotbw is the available bandwidth of an IoT device, and

embw is the available bandwidth of an edge MEL. As the edge MEL might receive data

from different IoT devices, it is important to take the minimum bandwidth of the two

associated elements.

Edge Datacenter SDWAN Cloud Datacenter

D melt= 2 secs D melt = 2 secs D melt = 2 secs

D melt = 2 secs melt = 2 secs

melt = 6 secs1

2

Figure 6.6: Illustration of osmotic network transmission time
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iott =
iotds

min(iotbw, embw)
(6.1)

More data transmissions occur when edge MELs require further analysis from other

edge/cloud MELs. It is important to compute a MEL data transmission time whenever

a given MEL sends data to another MEL, whether in the same edge datacenter or in

other edge/cloud datacenters. To properly compute every MEL data transmission

time melt, an end-to-end network path must be first determined. Failure to do so

would lead to incorrect estimation of melt. For example, Figure 6.6 illustrates how the

end-to-end network transmission time is computed incorrectly in step 1 and correctly

in step 2. In step 1, it can be seen that each separate environment computes melt of

the same data (D) and then melt are summed altogether. Each environment computes

melt to 2 seconds, which result in melt = 6 seconds. Such estimation is incorrect

because melt should be computed from a source MEL to a destined MEL rather than

from one environment to another. The correct calculation is shown in step 2 where an

end-to-end network estimation of melt is considered, which results in melt = 2 seconds.

In order to obtain an end-to-end osmotic network estimation for any given melt, an

end-to-end path must first be established. Every edge, cloud, and SD-WAN controller

must communicate with one another via the event management component to establish

the end-to-end path. Every controller has full control of its network where it selects the

best path based on its routing algorithm (e.g., shortest path, maximum bandwidth).

Following similar graph theory technique, as previously proposed in Chapter 4, the

path/routing table of every controller can be dynamically determined. Once every

controller determines its path, it sends the path information to the osmotic orchestra-

tor. When the osmotic orchestrator has the end-to-end path information, it estimates

the bandwidth of the end-to-end path endbw(x) for the xth MEL by using Equation

6.2 where l denotes a link, L denotes a set of links, m is a decision variable set to 1 or

0 to determine if the link exists on the path or not respectively, and bw is the available

bandwidth of l.

Next, the orchestrator requests the source MEL to send the data and in turn the
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orchestrator keeps estimating melt until the data is fully transmitted. To compute

melt(x) of the xth MEL, the orchestrator uses Equation 6.3 where melds(x) is the

data size of the xth source MEL.

endbw(x) = min(l(m, bw)) m = 1,∀l ∈ L (6.2)

melt(x) =
melds(x)

endbw(x)
(6.3)

To compute the processing time of each MEL, Equation 6.4 is used where mele(t) is

the processing time of the tth MEL, melmi(t) is the Million Instruction (MI) size of

the tth MEL, and melmi(t) is the MIPS capacity of the tth MEL.

mele(t) =
melmi(t)

melmips(t)
(6.4)

Equation 6.5 is used to compete the total time of each transaction T where X is a set

of MEL belongs to the transaction. The transaction is important to consider as it can

determine the performance of each osmotic application.

T = iott +
∑
∀x∈X

melt(x) +mele(x) (6.5)

IoTSim-Osmosis can be configured to stop generating IoT data at any given time.

However, if the battery of all the IoT devices are drained, then IoTSim-Osmosis must

stop and report the results. Therefore, to estimate the total running time RT (a) of

the ath osmotic application, Equation 6.6 is used where trs(first) is the start time of

the first transaction and trf (last) is the finish time of the last transaction.

RT (a) = trs(first)− trf (last) (6.6)
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As IoT devices might depend on batteries, IoTSim-Osmosis is modeled to track the

battery consumption of each IoT device. Every time an IoT device senses new data,

IoTSim-Osmosis would use Equation 6.7 to update the battery consumption bc of the

device where sr is the draining rate for sensing the surrounding environment and tr is

the draining rate for sending the data. For computing the power consumption in edge,

cloud, and SD-WAN, IoTSim-Osmosis follows similar patterns as given in [2].

bc = sr + tr (6.7)

6.5 Evaluation of IoTSim-Osmosis

A wide range of osmosis applications can be simulated and evaluated in IoTSim-

Osmosis. This section illustrates the overall applicability of IoTSim-Osmosis in terms

of simulating smart city applications based on the osmosis paradigm. The paradigm

shift in traditional IoT environments to provide next-generation services and im-

proves city infrastructures require a hybrid infrastructure that smartly interconnects

IoT-oriented computing systems (SDN-aware edge, SDN-aware cloud, and SD-WAN).

IoTSim-Osmosis is developed to allow such hybrid infrastructure to be simulated where

the dynamic management and performance metrics of IoT-oriented services across edge

and cloud datacenters interconnected via SD-WAN are easily achieved. The section

provides strong evidence that IoTSim-Osmosis is an effective tool for assessing the

effectiveness of tailor-made solutions for accelerating and enhancing the performance

of heterogeneous osmosis applications.

6.5.1 Smart city

The advances of IoT have contributed to the establishment of smart cities to improve

citizens’ quality of life. Developing a smart city requires the complex deployment of

IoT ecosystems in numerous domains, such as in smart meters to save energy con-

sumption, in roads to improve traffic management, and in self-driving cars to provide
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IoT smart meter

Edge

datacenter
Cloud 

datacenter

SD-WAN

Network

Figure 6.7: Osmotic computing example (a smart home connected to a smart city
electricity meter)

Table 6.2: Computing configuration for the use-cases

IoT device Edge device Host (Cloud) VM (Cloud)
Bandwidth 100 Mbps CPUs 4 CPUs 4 CPUs 2

Battery capacity 100 mA Bandwidth 100 Mbps Bandwidth 1 Gbps Bandwidth 100 Mbps
Battery sensing rate 0.001 mAH RAM 4 GB RAM 8 GB RAM 2 GB
Battery sending rate 0.001 mAH MIPS/CPU 250 MIPS/CPU 1250 MIPS/CPU 250

Network type WiFi Storage 200 GB Storage 500 GB Storage 200 GB

Table 6.3: Network configuration for the use-cases

Edge network SD-WAN network Cloud network
Edge device to edge switch 100 Mbps Edge gateway to SD-WAN router 100 Mbps Gateway to aggregate switches 100 Mbps

edge switch to gateway 100 Mbps Between SD-WAN routers 100 Mbps Core switches to aggregate switches 100 Mbps
- - Cloud gateway to SD-WAN router 100 Mbps Aggregate switches to edge switches 100 Mbps
- - - - Edge switches to VMs 100 Mbps

transportation for customers on demand. Each domain has various requirements (e.g.,

a certain level of communication delays, artificial intelligence to enrich the decision-

making process). Osmotic computing would play an essential role in enabling such

requirements. It allows IoT applications to be defined in the form of MELs, which are

deployed across several edge-cloud resources.

The example of electricity management and billing in smart city is used as an evalua-

tion scenario. Several smart meter sensors installed in houses that collects data about

the energy consumption. The sensor sends the data to a local gateway (edge device)

installed nearby to perform basic analytic operation such as filtering and windowing.

Since the smart meters can be of different types, we considered two scenarios, a) smart

meter sensors with varying data rate (dynamic data flow) and b) varying the number

of smart meters (dynamic number of IoT devices). Finally the data is sent to cloud

for further analysis and storage. Figure 6.7 illustrates an overview of a smart home

connected to a smart city meter for electricity management and billing.
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IoT Devices Edge Cloud
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Figure 6.8: Osmosis infrastructure for case 1

Table 6.4: Application configuration for case 1

Tests
Data time

interval (seconds)
Stop IoT data

generation (seconds)
IoT device name

IoT Device
output data (Mb)

MEL name EdgeLet size
MEL output
data (Mb)

VM name CloudLet size

Test 1 10 3600 Variable 90 Variable 250 70 Variable 200
Test 2 15 3600 Variable 90 Variable 250 70 Variable 200
Test 3 20 3600 Variable 90 Variable 250 70 Variable 200
Test 4 25 3600 Variable 90 Variable 250 70 Variable 200

Table 6.5: Device requirement for case 1

Number of IoT devices Number of edge devices Number of MELs Number of hosts Number of VMs
10 2 2 2 2

6.5.1.1 IoTSim-Osmosis policies

IoT-based osmotic applications and infrastructures require a number of policies in

every layer of osmotic computing. IoTSim-Osmosis is modeled to support the imple-

mentation of new policies in a seamless manner where researchers can easily extend

the main policies and develop tailor-made solutions and algorithms. Each layer can

have different policies; for example, the task scheduling of MELs in the edge can

have a time-shared policy while VMs in the cloud can have a space-share mechanism.

To properly execute IoTSim-Osmosis and illustrate the given use cases, the following
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policies are used:

• The task scheduling of MELs and VMs is based on a time-shared policy.

• The allocation of MELs and VMs is set to the least used resources of edge devices

and cloud servers.

• Network routing in the edge, cloud, and SD-WAN is based on our previously

proposed routing algorithm (SPMB), given in Chapter 4.

• The network traffic policy of IoT applications is based on a fair-share mechanism

where each application obtains an equal amount of network bandwidth.

6.5.1.2 Case 1: dynamic data flow

This case is used to evaluate the outcome effectiveness of the simulator based on

dynamic data intervals. The case is executed with four different data generation times.

An overview of the simulated infrastructure setup is illustrated in Figure 6.8. Table

6.2 shows the computing configuration of edge and cloud datacenters while Table 6.3

illustrates the network configuration in the edge, cloud, and SD-WAN. Finally, Table

6.4 presents the attributes used to run each test. Table 6.5 shows the number of

devices used in the case. The focus of this case is to show the effect of dynamic data

generation intervals.

The simulation results are presented in Figure 6.9. Figure 6.9a illustrates the battery

consumption of the IoT Devices. It can be observed that the lower the time interval

for sending data, the higher the battery consumption. Figure 6.9b shows the total size

of the generated data by IoT devices, while Figure 6.9c illustrates the total number of

transactions. It can be seen that the total size of the generated data and transactions

is inversely proportional to the size of the time interval. Figure 6.9d shows the total

time taken by each transaction. It can be observed that they consume similar time.

This is because different transactions do not interfere with each other at any given

resource (e.g., edge device, edge network). If the interval time is, for instance, set to

one second, the time of each transaction would most likely vary. Figure 6.9e shows the

total energy consumption of edge, cloud, and SD-WAN. The Figure reveals that the
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Figure 6.9: Simulation result for case 1

lower the time interval for IoT generating data, the higher the energy consumption.

Figure 6.9f shows the total time of transactions of every time interval. It is apparent

that generating more data would lead to higher transaction times due requirement for

more processing and transmission. Figure 6.9g illustrates the total running/simulation

time. The IoT devices are set to stop generating data at 3600 seconds. It can be seen

that the finishing time is not similar because the last transaction of time intervals 10,
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Figure 6.10: Energy consumption of cloud, edge, and SD-WAN infrastructures (use
case 2)

15, and 20 requires more time to finish.

6.5.1.3 Case 2: dynamic number of IoT devices

This case is used to evaluate the energy consumption of the osmotic environment by

changing the number of associated IoT devices. The computing and network configu-

rations are shown in Table 6.2 and 6.3. This case has similar application configuration

and device requirement as case 1 (see Table 6.4 and 6.5). However, the number of

IoT devices varies from 2 to 10 to illustrate the impact of IoT devices on energy con-

sumption of edge, cloud, and SD-WAN. Also, the time interval for IoT devices to

generate data is set to 10. Figure 6.10 illustrates the energy consumption of edge,

cloud, and SD-WAN. It is apparent that the increase in the number of IoT devices

requires more energy for the edge, cloud, and SD-WAN. The battery consumption

of IoT devices is neglected because data generation is static, which results in similar

battery consumption for all the IoT devices.

6.6 Conclusions

The proposed simulation framework IoTSim-Osmosis provides seamless mechanisms

for analyzing and validating new solutions in osmotic computing environments. In

particular, IoTSim-Osmosis models the heterogeneity of integrated edge-cloud environ-

ments along with the complexity of IoT applications. The efficacy of IoTSim-Osmosis

is validated using a case study for an electricity management and billing application
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within a smart city. Results show the various capabilities of IoTSim-Osmosis in terms

of IoT battery consumption, execution time, and energy consumption. The experi-

mental results and related work analysis demonstrate the useful and unique simulation

capabilities of IoTSim-Osmosis.

Software availability : The IoTSim-Osmosis’s software with the source code can be

downloaded from https://github.com/kalwasel/IoTSim-Osmosis. A guideline for in-

stallation is given along with presenting a number of examples and tutorials to illus-

trate the use of the simulator. IoTSim-Osmosis uses features from a combination of

existing simulation environments (IoTSim-SDWAN [128] and IoTSim-Edge [169]).
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Summary

The chapter briefly summarizes the research work of every chapter of this thesis. The

following sections illustrate the thesis’ novel works and solutions in terms of modeling,

simulating, and optimizing data-driven applications in SDN-aware environments. The

last section demonstrates a number of research directions that have been identified

during the PhD studies. Every research direction encounters new challenges, which

require new research works to be conducted.

7.1 Thesis Summary

The emerging of SDN paradigm has shitted the directions of using hard-to-program

traditional networks to smart, automated networks. Such smart transition provides the

ability of programming and controlling networks in real-time through a combination of

SDN-aware applications and functions. As a result, SDN has been leveraged in several

domains (e.g., edge datacenters, cloud datacenters) to obtain unprecedented network

features along with improving cross-layer performance. Still, SDN-aware solutions

considering different application and environment contexts are required due to the

differences in dependencies across multiple levels of SDN-aware ecosystems along with

different QoS requirements. As such, novel cross-layer optimization techniques, which

is defined as NP-hard problems, are essential to obtain optimal solutions considering

a set of variables and constraints.

To this end, this thesis explores several challenges in terms of developing novel model-

ing, simulation, and optimization techniques for several SDN-aware environments and

applications, in addition to proposing novel solutions. The contributions of this is

summarize as follows:

Chapter 2 first provides an overview of SDN and its architecture. It then demonstrates

SDN deployment within diverse environments and applications. It next explains the

different ways of testing and evaluating new SDN-aware designs, architectures, and

optimization solutions. Based on illustrated research gaps and challenges, the chap-

ter highlights the thesis’ proposed solutions considering a set of models, algorithms,
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and frameworks that facilitate the evaluation and testing of SDN-aware solutions in

simulated environments.

Chapter 3 introduces a holistic modeling and integration of MapReduce BDMS-based

applications in SDN-aware cloud infrastructures. As a result of such modeling, the

chapter presents a novel simulation toolkit named“BigDataSDNSim,”which provides a

simulated infrastructure for researchers to quantify the performance impacts of MapRe-

duce applications in terms of cross-layer optimization. A variety of application-network

policies for diverse purposes (e.g., scheduling and routing) are illustrated, which helps

implementing new cross-layer optimization solutions without a deep understanding of

the complex interactions among BigDataSDNSim’s components. Further, the valida-

tion and accuracy of the simulator are illustrated by comparing its output results with

a real MapReduce SDN-aware environment. The practicality and advantages of using

BigDataSDNSim are demonstrated by presenting two use cases, which show the impact

of MapReduce-HDFS replication mechanisms and the advantages of using SDN.

Chapter 4 proposes a novel framework that facilitates the modeling, simulating, and

evaluating of new algorithms, policies, and designs in the context of SD-WAN ecosys-

tems and SDN-aware multiple cloud datacenters. The framework is implemented into

a new simulator named “IoTSim-SDWAN,” which is capable of providing a variety of

modeling approaches and functionalities to evaluate and test SD-WAN cloud-based so-

lutions. The chapter then demonstrates several proposed models, including SD-WAN

ecosystems and TCP and UDP protocols. Further, the chapter presents network rout-

ing models of SD-WAN and classical WAN using graph theory, in addition to demon-

strating new proposed coordination scheme for SD-WAN and SDN controllers residing

in different datacenters. The chapter also illustrates the validation and correctness of

the simulator in terms of measuring the level of similarities with a real-world network

environment. Finally, a number of evaluation experiments with a goal to illustrate the

practicality and features of IoTSim-SDWAN are presented.

Chapter 5 presents a new SDN-aware workflow broker that deploys the workflows

of data-driven applications across multiple SD-WAN-enabled cloud datacenters. The

chapter proposes an adaptive genetic algorithm to find solutions that maximizes the

proportion of renewable energy usage and minimizes the real electricity cost along with
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meeting several QoS constraints (e.g., user’s given budget and deadline). Further, the

chapter demonstrates several models used in the proposed approach, in addition to de-

scribing the proposed algorithm in detail. The chapters illustrates the performance of

the algorithm using real data-driven workflows with different sizes under various con-

figurations of VMs. Finally extensive experimental evaluation to study the feasibility

of the proposed scheduling algorithm and architecture is presented.

Chapter 6 chapter presents a new framework that models the osmotic computing

paradigm, which consists of heterogeneous, integrated SDN-aware edge-cloud envi-

ronments along with the complexity of IoT applications interconnecting via SD-WAN.

The framework is implemented into a new toolkit named IoTSim-Osmosis– a simulator

that that enables the testing and evaluation of osmotic computing cross-layer design

and optimization solutions in a unified modeling manner. The chapter demonstrates

the IoTSim-Osmosis’s proposed models in terms of osmotic application and network

topologies and heterogeneous components dependencies. Finally, the chapters demon-

strates the validation and efficacy of IoTSim-Osmosis by presenting a case study for

an electricity management and billing osmotic application within a smart city.

7.2 Future Research Directions

During the phase of conducting this thesis, a number of research directions have been

identified. The directions can be categorized into three areas: modeling and simulation,

cross-layer optimization, and machine learning. Each area encounters new challenges

and yet requires new research works to be conducted.

7.2.1 Modeling and simulation

In the current work, a number of simulation frameworks are proposed which model

and simulate several SDN-aware ecosystems. The frameworks can be enhanced in a

number of ways. As our future work, we will enhance BigDataSDNSim by adding big

data stream models in the context SDN-aware multi cloud environments. We will also

enhance IoTSim-SDWAN by modeling and implementing Network Function Virtual-

ization (NFV) and a distributed application layer over multiple cloud datacenters. For
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IoTSim-Osmosis, we would enhance it by modeling and implementing complex IoT

protocols (e.g., XMPP). We will also enhance the current, basic wireless communica-

tions (e.g., WiFi) models by adding advanced models that simulates the mechanisms

of different signal factors, such as distance and IoT device mobility.

7.2.2 Cross-layer optimization

In the current work, a number of algorithms are proposed to enhance the overall

performance applications running SDN-aware ecosystems. Every proposed simulation

framework is capable of testing and evaluating different context of problems and envi-

ronments. Therefore, We will work on proposing a number of cross-layer optimization

algorithms. In particular, we would focus on optimizing the deployment of MapRe-

duce applications in SDN-aware cloud datacenters. We will also work on optimizing

the deployment of osmotic applications considering coordination and data knowledge

from several layers, including IoT, SDN-edge, SDN-cloud, and SD-WAN.

7.2.3 Machine learning

Simulation framework are capable of producing a massive amount of synthetic data

according to given system models and hypotheses. In this thesis, every proposed simu-

lation framework is also capable of producing synthetic data (e.g., traffic and processing

matrices), which can be used in tackling different research problems other than in op-

timization contexts. For example, machine learning approaches and algorithms can

use simulators’ synthetic data to diagnose, predict, and detect the performance and

behavior of different SDN ecosystems. As such, we would work on proposing machine

learning solutions to predict and detect the performance degradation in MapReduce

and osmotic applications.
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[5] M. Tüxen, I. Rüngeler, and E. P. Rathgeb, “Interface connecting the inet sim-
ulation framework with the real world,” in Proceedings of the 1st international
conference on Simulation tools and techniques for communications, networks and
systems & workshops, 2008, pp. 1–6.

[6] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,“Advanced
study of sdn/openflow controllers,” in Proceedings of the 9th central & eastern
european software engineering conference in russia, 2013, pp. 1–6.

[7] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-
defined networking,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1,
pp. 27–51, 2014.

[8] J. Son and R. Buyya, “A taxonomy of software-defined networking (sdn)-enabled
cloud computing,” ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–36,
2018.

[9] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: a comprehensive survey,” Proceedings of
the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[10] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assignment in data
center networks: Stable matching with transfers,” in IEEE INFOCOM 2016-
The 35th Annual IEEE International Conference on Computer Communications.
IEEE, 2016, pp. 1–9.

- 161 -



[11] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing benefit from
software-defined networking: A survey, use cases, and future directions,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2359–2391, 2017.

[12] L. Cui, F. R. Yu, and Q. Yan,“When big data meets software-defined networking:
Sdn for big data and big data for sdn,” IEEE network, vol. 30, no. 1, pp. 58–65,
2016.

[13] G. S. Aujla, N. Kumar, A. Y. Zomaya, and R. Ranjan, “Optimal decision making
for big data processing at edge-cloud environment: An sdn perspective,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 2, pp. 778–789, 2017.

[14] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory big data
management and processing: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 27, no. 7, pp. 1920–1948, 2015.

[15] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou,
and A. Bouras, “A survey of clustering algorithms for big data: Taxonomy and
empirical analysis,” IEEE transactions on emerging topics in computing, vol. 2,
no. 3, pp. 267–279, 2014.

[16] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed
software defined wan,” in ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4. ACM, 2013, pp. 3–14.

[17] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp.
15–26.

[18] R. Cahn, Wide area network design: concepts and tools for optimization. Mor-
gan Kaufmann, 1998.

[19] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area network
(sd-wan): Architecture, advances and opportunities,” in 2019 28th International
Conference on Computer Communication and Networks (ICCCN). IEEE, 2019,
pp. 1–9.

[20] X. Li, D. Li, J. Wan, C. Liu, and M. Imran, “Adaptive transmission optimization
in sdn-based industrial internet of things with edge computing,” IEEE Internet
of Things Journal, vol. 5, no. 3, pp. 1351–1360, 2018.

[21] M. Uddin, S. Mukherjee, H. Chang, and T. Lakshman,“Sdn-based multi-protocol
edge switching for iot service automation,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 12, pp. 2775–2786, 2018.

[22] C. Li, Y. Xue, J. Wang, W. Zhang, and T. Li, “Edge-oriented computing
paradigms: A survey on architecture design and system management,” ACM
Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–34, 2018.

- 162 -
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